Oracle® Communications Unified

Inventory Management
Developer's Guide

Release 7.4.2
F40325-01
June 2021

ORACLE"

Oracle Communications Unified Inventory Management Developer's Guide, Release 7.4.2
F40325-01
Copyright © 2010, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XVi
Documentation Accessibility XVi
Diversity and Inclusion XVi
Related Documentation XVil

1 Overview

Extending UIM 1-1
Creating Cartridges 1-1
Extending the Data Model 1-1
Extending Life Cycles, Topology, and Security 1-2
Creating Rulesets 1-2
Creating Web Services 1-2
Customizing the User Interface 1-3
Localizing UIM 1-3
Optimizing Concurrent Resource Allocation in UIM 1-3
Federation with UIM 1-3
Requirements for Extending UIM 1-3
Tools for Extending UIM 1-3
Design Studio 1-4
Additional Tools 1-4
Documentation for Extending UIM 1-4
Information Model Documentation 1-4
API Documentation 1-4
Javadoc Documentation 1-5
Guidelines for Extending UIM 1-5
Backward Compatibility 1-5
Detecting Code Changes Between Releases 1-6
Software Requirements 1-6

ORACLE iii

2 Using Design Studio to Extend UIM

Installing Design Studio 2-1
Configuring Design Studio 2-1
Setting System Variables 2-1

Setting the Compiler Compliance Level 2-2
Configuring the eclipse.ini File 2-3
Importing the Model Projects 2-3
Configuring the Project Library List 2-4

About Design Studio Perspectives 2-4
About Design Studio Views 2-4
About Cartridges and Cartridge Packs 2-5
Working with Cartridges in Design Studio 2-5
Working With Cartridge Dependencies 2-5

About Imported Cartridge Packs 2-6
Viewing Cartridges in Design Studio 2-7

How Content Is Displayed 2-9

About Building Cartridges 2-10

About Deploying Cartridges and Cartridge Packs 2-10

About Cartridge Upgrades 2-11

About the UIM SDK 2-11
UIM SDK Contents 2-12
Building an Inventory Cartridge Using the UIM SDK 2-13
About the Developer-Facing Inventory Menu Options 2-16
Understanding the Sequence Specification 2-16
Using the Sequence Specification in Custom Code 2-17

Using the Sequence Specification with the Entity Identification Specification 2-19
Additional Tools 2-21
Installing, Configuring, and Using Ant 2-22
Downloading Ant 2-22
Installing Ant 2-22
Configuring Ant 2-23
Running Ant Targets 2-23

3 Using the Persistence Framework

About the Persistence Framework Foundation 3-1
Understanding Persistence Framework Concepts 3-1
Eager and Lazy Fetching 3-2
Managed and Non-Managed Entities 3-2
Persistence Framework Classes and APl Methods 3-4
PersistenceManager 3-4

ORACLE

TypeRegistry 3-4
Finder 3-5
Defining JPQL Statement Methods 3-5
Finder.find() and Finder.findMatches() Methods 3-6
PersistenceManager refresh(), attach(), and connect() Methods 3-6
InventoryFinder 3-7
PersistenceHelper 3-8
Persistent 3-8
Entity Managers 3-8
Defining Entity Managers 3-8

Entity Manager Implementation Inheritance Structure 3-9
PersistenceManagerBean 3-10
TransitionManagerimpl 3-10
BaselnvManager 3-10
JPQL Query Examples 3-10

4 Extending the Data Model

About the UIM Data Model 4-1
About Entities 4-1
About Entity Capabilities 4-2

About Entity Relationships 4-2

About Entity Managers 4-2

About Entity ID Sequencing 4-3

About the Metadata Files 4-3
Understanding Metadata File Content 4-6
Understanding Entity Definitions 4-6
*-entities.xml Files 4-6

More on Entity Definitions 4-8
Understanding Entity Attribute Definitions 4-8
*-types.xsd Files 4-8
Understanding Enumeration Definitions 4-8
*-enum-entities.xml Files 4-9
*-enum-types.xsd Files 4-9
Understanding Native Sequence Definitions 4-9
ocim-entityidsequenceextension-entities.xml File 4-10
Understanding the Tags that Govern Definitions 4-11
Extending the Data Model Through the Metadata Files 4-13
Defining New Entities 4-13
Creating New Entity Managers 4-14
Defining New Entity Attributes 4-14

ORACLE

Defining New Enumerations 4-15

Defining New Native Sequences 4-16
Extending Existing Entities 4-16
Understanding the Extension Tag 4-16
Extending Existing Entities 4-18
Extending Existing Entity Attributes 4-18
Extending Existing Enumerations 4-19
Extending Existing Native Sequences 4-19
Applying Metadata Static Extensions 4-20
About the build.xml File 4-21
Generating, Compiling, and Packaging the Entity Source Files 4-22
More on Entity Definitions 4-26
Understanding Entity Capability Definitions 4-26
Understanding Entity Relationship and Collection Definitions 4-27
Uni-Directional, One-to-One Relationship 4-27
Uni-Directional, One-to-Many Relationship 4-27
Uni-Directional, Many-to-Many Relationship 4-28
Bi-Directional, One-to-One Relationship 4-28
Bi-Directional, One-to-Many Relationship 4-29
Bi-Directional, Many-to-Many Relationship 4-30
Relationship Definition Affect on Generated Entities 4-31
Understanding Entity Manager Definitions 4-33
Defining Entity Managers 4-33

5 Extending Life Cycles

About Business Interactions 5-1
Understanding Metadata File Content 5-2
Understanding Life-Cycle Managed Entity Definitions 5-2
Understanding Life-Cycle Managed Enumeration Definitions 5-3
About Life-Cycle States 5-3
Understanding Business State Enumerations 5-3
Understanding Transition Definitions 5-4
Understanding How Transitions Are Triggered 5-5

About Transition Groups 5-7
Extending Life Cycles through the Metadata Files 5-8
Extending Entity Definitions 5-8
Defining an Entity as Life-Cycle Managed 5-8
Defining an Entity as Business-Interaction Enabled 5-9
Defining an Entity as Life-Cycle Managed and Business-Interaction Enabled 5-9
Extending Enumeration Definitions 5-9

ORACLE vi

Extending Transition Definitions 5-9

Defining New Transitions 5-10
Extending Existing Transitions 5-10
Updating Properties Files 5-10
Updating Security 5-11

More on Transition Definitions 5-12

About Life Cycle Management Interfaces 5-14
LifeCycleManaged 5-14
TransitionManager 5-14
Transition Definition Search 5-15

6 Extending the Topology

About Topology Entities and Topology-Managed Entities 6-1
Topology Entities 6-1
Topology-Managed Entities 6-2

About Topology Mapping 6-3
TopologyEdge 6-3
TopologyNode 6-3

Extending the Topology 6-3
Defining an Entity as Topology-Managed 6-4

Extending the BusinessObjectType.java File 6-4
Extending the Mapping 6-5
Configuring the topologyProcess.properties file 6-5

About Path Analysis 6-5

Configuring and Customizing Path Analysis 6-5
Configuring the Path Analysis Mode 6-5
Customizing Path Analysis 6-6

Adding Filtering Criteria 6-7
Setting the Analysis Mode 6-7
Limiting the Analysis by Pipe Specification 6-7

About Topology Interfaces 6-8
TopologyObject 6-9
TopologyManager 6-9
TopologyMapper 6-9
PathAnalysisManager 6-9
PathAnalysisMapper 6-9
TopologyProfileMapper 6-10
TopologyEdgeSearchCriteria 6-10
TopologyNodeSearchCriteria 6-10

ORACLE vii

About the topologyProcess.properties File 6-10
7 Extending Security

Securing APIs 7-1
Securing APIs through the SecurityValidation Aspect 7-1
Creating the Global Extension Point 7-2
Creating the Global Ruleset Extension Point 7-2
Securing APIs through Rulesets and Extension Points 7-2
Securing Entity Data 7-3
About Entity Access Control 7-3
Securing Entity Data through Rulesets and Extension Points 7-3
Setting Permissions in a Custom Ruleset 7-4

Setting Partitions in a Custom Ruleset 7-5
Enforcing Security in a Custom Ruleset 7-6
Creating Custom Rulesets and Extension Points 7-6
Creating Custom Rulesets 7-7
Securing APIs Example 7-7
Securing Entity Data through Permissions Example 7-10
Securing Entity Data through Partitions Example 7-11
Securing Entity Data for a Range of Entities Example 7-12
Enforcing Security Example 7-13
Creating Extension Points 7-14
Creating the Ruleset Extension Point 7-15

8 Extending UIM Through Rulesets

About Using Rulesets to Extend UIM 8-1
About Rules 8-1
Using Drools to Define Rules 8-1
Using Groovy to Define Rules 8-2
About Rulesets and Extension Points 8-3
Extension Points 8-5
Specification-Based Extension Points 8-5

Global Extension Points 8-5
Extension Point Types 8-6
Ruleset Extension Points 8-6
Understanding Extension Point Type and Ruleset Placement 8-6
Enabled Extension Points 8-10
About the UIM Extensibility Framework 8-11
RulesExecutor Class 8-11

ORACLE

viii

ExtensionPointContext and ExtensionPointRuleContext Class
aop.xml File
About Base Rulesets
About Base Extension Points and Base Enabled Extension Points
About Naming Conventions
Working with Rulesets
Installing, Configuring, and Using the Drools Eclipse Plug-ins
Installing the Drools Eclipse Plug-ins
Configuring the Drools Eclipse Plug-ins
Configuring the Project Builders
Using the Drools Eclipse Plug-ins
Installing, Configuring, and Using the Groovy Eclipse Plug-ins
Installing the Groovy Eclipse Plug-ins
Configuring the Groovy Eclipse Plug-ins
Using the Groovy Eclipse Plug-ins
Creating Rulesets
Name Field
DRL File or Groovy File
Creating Extension Points
Creating the Extension Point in Design Studio
Creating the aop.xml File
Creating Ruleset Extension Points
Creating Enabled Extension Points
Name Field
Specification Class Name Field
Configuration Version Instance Type Field
Configuring a Specification for a Ruleset Extension Point
Validating and Compiling Rulesets
Compiling Rulesets with Third-Party Dependencies
Deploying Cartridges Containing Rulesets
Running Rulesets
Manually Running Rulesets
Automatically Running Rulesets
Debugging Custom Drools Rulesets
Debugging Custom Groovy Rulesets
Converting Inventory Projects to Groovy Projects
Setting Up Debug Configurations
Debugging Groovy Rules
Troubleshooting Rulesets and Cartridge Deployment
Troubleshooting Custom Rulesets
Troubleshooting Custom Extension Points

ORACLE

8-11
8-12
8-15
8-16
8-16
8-17
8-19
8-19
8-20
8-21
8-22
8-22
8-22
8-23
8-25
8-25
8-25
8-25
8-26
8-27
8-28
8-30
8-30
8-30
8-31
8-31
8-32
8-32
8-33
8-34
8-34
8-34
8-34
8-34
8-35
8-35
8-35
8-35
8-36
8-36
8-36

Troubleshooting Configuring a Ruleset to Run at an Extension Point 8-37

Troubleshooting Using Timing Events 8-37
Troubleshooting Cartridge Deployment 8-37
Base Cartridges are Deployed 8-37

Java JDK Version 8-38
Maximum Characteristics for a Table and Required Privileges 8-38
Existing Custom Extensions Overwritten 8-39
Upgrading or Converting Rulesets 8-40
Upgrading Drools Rulesets 8-40
Converting Drools Rulesets to Groovy Rulesets 8-41
Handling Concurrent Scenarios 8-42

O Using Rulesets for Bills of Materials

About Cost Information for Bills of Materials 9-1
Extending BOM Manager Methods 9-1
Cost References 9-2

10 Extending Notifications

About Notifications 10-1
About Extending Notification Functionality 10-1
Understanding Notification Message Content 10-2

Understanding Message Variables 10-2
Understanding Message Templates 10-3

Extending Notifications 10-5
Customizing Message Content and Format 10-6
Changing the Type of Notification Messages Sent 10-6
Adding Notifications for Additional Events 10-7

Overview of Notification Java Classes 10-8
Notification Functionality Class Diagram 10-9
About Event Java Classes 10-10

InventoryEvent Java Class 10-10
Activity Event Java Classes 10-10
About Notification Behavior Java Classes 10-11
Handler Classes 10-11
Resolver Classes 10-11
Overview of Internal Notification Java Classes 10-11
Factory Classes 10-11
NotificationType Class 10-12
MailMessenger Class 10-12

ORACLE X

System Configuration Properties for Notifications 10-12

11 Customizing the User Interface

Installing JDeveloper 11-1
Extracting the inventory.ear File into JDeveloper 11-2
Configuring the JDeveloper Project 11-4
Customizing the User Interface 11-5
About the Ul Files 11-5
JSFF and XML Files 11-5

XML Files 11-6

Java Files 11-7

XLF Files 11-8

DCX File 11-9
Displaying Custom Attributes on a Web Page 11-9
Adding Custom Input Fields to a Web Page 11-9
Adding Conditional Components to a Web Page 11-10
Disabling an Input Field on a Web Page 11-11
Adding a Custom Action to a Web Page 11-11
Adding a Custom Search Field 11-12
Extending the API 11-12
Extending the Ul 11-12
Deploying User Interface Customizations 11-14
Customizing Logos 11-15
Testing User Interface Customizations 11-17
Adding Verification while Creating an Entity 11-17
Disabling Edit Option in Entity Search and Entity Summary Pages 11-18

12 Localizing UIM

Setting the Language Preference in Internet Explorer 12-1
Determining the Locale ID 12-2
Localizing UIM 12-2
About the UI-Specific Files 12-2
Localizing the Ul-Specific Files 12-3
Importing the Localization Archive File into Design Studio 12-3
Locating the Ul-Specific Files within the Project 12-3
Copying and Renaming the Ul-Specific Files 12-4

Editing the Ul-Specific Files 12-5
Deploying the Cartridge Containing the Localized Files 12-7
Testing the UIM Ul Localization 12-7

ORACLE Xi

Localizing UIM Help 12-7

About UIM Help 12-8
About the Oracle Help Configuration File 12-8
About the UIM Help Files 12-8

Localizing the UIM Help Files 12-8
Extracting the Help Files 12-9
Translating the Help Files 12-9
Creating the Localized Help JAR File 12-11
Configuring the Oracle Help File 12-12

Deploying the Localized Help System 12-14

Testing the UIM Help Localization 12-15

13 Optimizing Concurrent Resource Allocation

About Concurrent Resource Allocation 13-1
About Row Locking 13-1
Understanding How Row Locking Works 13-2
About Releasing Locked Rows 13-3
About the LockPolicy Object 13-3
numberOfResources 13-3
expirationTimeStamp 13-4
filterExistingLocks 13-4
Example LockPolicy Attribute Combinations 13-4

About the Lock Strategies 13-4
Extending UIM Entities to Use Row Locking 13-5
Statically Extending the Data Model 13-6
Enabling Row Locking 13-6
Using Row Locking with Entity Finder APIs 13-7
Understanding How UIM Uses Row Locking 13-7

Writing Custom Code to Use Row Locking 13-8

Using Row Locking Without Entity Finder APIs 13-12

14 Using the Federation Framework

About the Federation Cartridge Packs 14-1
About the Federation Data Domain Cartridges 14-1
About the Federation Protocol Cartridges 14-2

About External Arrangements 14-2

About Transaction-Based and Order-Based Federation 14-3
Transaction-Based Federation 14-3
Order-Based Federation 14-3

ORACLE Xii

Work Order 14-4
Business Interaction Attachment 14-4
About Externally Enabled Entities 14-5
External Identification 14-5
Federation Solution Considerations 14-7
Determining the Solution Type 14-7
Avoiding Federation Cartridge Conflicts 14-7
Managing External Identifiers 14-8
Creating Externally Enabled Entities in UIM 14-8
Creating Custom Web Services 14-9
15 Integrating UIM Using UIM-Formatted URLS
About UIM-Formatted URLs 15-1
About the URL Format 15-2
About id 15-2
About entity 15-3
About the InventoryGroup Entity 15-3
Using UIM-Formatted URLsS 15-3
Extending UIM-Formatted URL Functionality 15-4
MasterFlow.xml 15-4
Extending MasterFlow.xml 15-4
MasterBean.class 15-4
Extending MasterBean 15-5
TaskFlowModel.class 15-8
Extending TaskFlowModel 15-9
A Federation Data Domain Cartridges
About the Federation Data Domain Cartridges A-1
Accessing the Federation Data Domain Cartridges A-2
Using the Federation Data Domain Cartridges A-2
Creating New or Extending Existing Federation Data Domain Cartridges A-3
Federation Solution Considerations A-3
Creating New Specifications A-3
Accessing a New External System A-3
B Federation Protocol Cartridges
About the Federation Protocol Cartridges B-1
About the Federation Protocol Infrastructure Artifacts B-1
About the Federation Protocol Implementation Sample B-2
ORACLE Xiii

Accessing the Federation Protocol Cartridges B-3
Using the Federation Protocol Cartridges B-3
Extending the Federation Protocols Cartridge Functionality B-3
Configuring the Federation Properties Cartridge B-4
Changing the Entity Type B-4
Changing Operations List B-4
External System Settings B-5
C Base Rulesets

Address Range Validation C-1
Running the Base Ruleset C-1
Convert LD SR1 to SR2 C-2
Running the Base Ruleset C-2
Create Address Characteristic Map C-3
Running the Base Ruleset C-3
Find Address Range C-4
Running the Base Ruleset Cc-4
Import Inventory C-5
Running the Base Ruleset C-5
Place Format Identifier C-6
Running the Base Ruleset C-8
Reservation Check Redeemer C-9
Running the Base Ruleset C-10
Reservation Expiration c-11
Running the Base Ruleset Cc-11
System Export and System Import C-12
Exporting Data C-12
Queries C-12
Parameters C-13
Importing Data C-14
Running the Base Rulesets C-15
Telephone Number Formatting C-16
Running the Base Ruleset C-18
Telephone Number Grading C-19
TN Selection C-20
Trail Pipe Topology Edge C-20
Running the Base Ruleset C-20
Validate Address for Range C-21
Running the Base Ruleset C-22
Validate Relate Places C-23

ORACLE

Xiv

Running the Base Ruleset

C-23

ORACLE"

XV

Preface

Preface

Audience

This guide explains how to extend Oracle Communications Unified Inventory
Management (UIM) through standard Java practices using Oracle Communications
Design Studio, which is an Eclipse-based integrated development environment. This
guide includes references to both applications, and often directs the reader to see the
Design Studio Help and the UIM Help for instructions on how to perform specific tasks.

This guide should be read after reading UIM Concepts, because this guide assumes
that the reader has a conceptual understanding of UIM. This guide should be read
from start to finish because the information presented in a chapter often builds upon
information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

This guide is intended for developers who implement code to extend UIM. The
developers should have a good working knowledge of XML and Java development
and, in particular, JPA, standard Java practices, and J2EE principles.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documentation

For more information, see the following documents in the Oracle Communications Unified
Inventory Management documentation set:

* UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and post-installation tasks.

* UIM System Administrator's Guide: Describes administrative tasks such as working with
cartridges and cartridge packs, maintaining security, managing the database, configuring
Oracle Map Viewer, and troubleshooting.

* UIM Security Guide: Provides guidelines and recommendations for setting up UIM in a
secure configuration.

* UIM Concepts: Provides an overview of important concepts and an introduction to using
both UIM and Design Studio.

e UIM Web Services Developer's Guide: Describes the UIM Service Fulfillment Web
Service operations and how to use them, and describes how to create custom web
services.

e UIM API Overview: Provides detailed information and code examples of numerous APIs
presented within the context of a generic service fulfilment scenario, and within the
context of a channelized connectivity enablement scenario.

e UIM Information Model Reference: Describes the UIM information model entities and
data attributes, and explains patterns that are common across all entities. This is
available on the Oracle Software Delivery Cloud under “Oracle Communications Unified
Inventory Management Developer Documentation."

e Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains patterns
that are common across all entities. The information described in this reference is
common across all Oracle Communications products. This is available on the Oracle
Software Delivery Cloud under “Oracle Communications Unified Inventory Management
Developer Documentation."

e UIM Cartridge Guide: Provides information about how you use cartridges and cartridge
packs with UIM. Describes the content of the base cartridges.

* UIM NFV Orchestration Implementation Guide: Provides information about how you use
NFV Orchestration components and the NFV Orchestration RESTful API resources.

For step-by-step instructions for performing tasks, log in to each application to see the
following:

e Design Studio Help: Provides step-by-step instructions for tasks you perform in Design
Studio.

e UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

ORACLE wvii

Overview

This chapter provides an overview of extending Oracle Communications Unified Inventory
Management (UIM).

" Note:

Throughout this guide, the UIM_Home placeholder is used to represent the
directory where you installed UIM. For a typical UIM installation, UIM_Home is opt/
Oracle/Middleware/user_projects/domains/domain_namelUIM, where
domain_name is the domain name you supplied when installing UIM.

Extending UIM

UIM extensions can be categorized as static or dynamic:

e Static extensions are changes made prior to rebuilding the application, which results in
the changes becoming a part of the application deployment. For example, extending the
data model involves adding content to the existing metadata files, which are contained
within the inventory.ear file. So, you must rebuild the inventory.ear file to include the
changed metadata files, and then redeploy the application for the changes to affect.

* Dynamic extensions are made anytime, applied at run time, and do not require rebuilding
the application for the changes to take effect. For example, a cartridge containing
specifications can be deployed into UIM, making the specifications available within the
application without rebuilding the application.

Creating Cartridges

Cartridges can contain specifications, characteristics, rulesets, and extended code. You can
create cartridges to meet specific business needs in Oracle Communications Design Studio.
For example, if your equipment requires specific logic not provided by the
EquipmentManager class, you can create your own class, inherited from the
EquipmentManager class, and write a new method to address the specific equipment logic.
The new method can then be called from within a ruleset.

The extensions defined within a cartridge may be static or dynamic. Cartridges are further
explored in "Using Design Studio to Extend UIM".

Extending the Data Model

You can statically extend the data model by adding new columns to existing tables, or by
adding new tables. For example, your business requirements may dictate that you save
particular information regarding a telephone number that the existing UIM data model does
not save. You can extend the UIM data model to include this piece of information. Your
business requirements may dictate that you save information unrelated to any data that the

ORACLE 1-1

Chapter 1
Extending UIM

existing UIM data model saves. You can extend the UIM data model to include a new
table to retain this information.

This is done through additions to the metadata. The UIM installation provides tools that
enable you to automatically regenerate the data model based on the metadata, and to
update the application (inventory.ear) to reflect the additions. This topic is further
explored in "Extending the Data Model".

You can dynamically extend the data model through characteristics. For example, you
can define a specification for a telephone number and add characteristics that further
describe the telephone number. When you create entities in UIM based on a
specification that includes characteristics, the characteristics are automatically
included in the entities. This topic is further explored in UIM Concepts. For instructions
on how to define characteristics in Design Studio, see the Design Studio Help.

Extending Life Cycles, Topology, and Security

An entity is a Java representation of UIM data, and an entity can be defined as life-
cycle-managed in the metadata. Life cycle refers to an entity having a start to its life,
an end to its life, and a defined state at any given point during its life. Life-cycle
transition definitions are part of the UIM metadata, and you can extend these
definitions to solve specific business requirements.

An entity can also be defined as topology-managed in the metadata. Topology is a
graphical representation of the spatial relationships and connectivity among your
inventory entities. Topology-managed entities map to topology entities, which are used
in the graphical representation. UIM defines several entities as topology-managed,
and you can extend topology by defining additional entities to be topology-managed.

Information on security is provided in UIM System Administrator's Guide. However, this
guide (UIM Developer's Guide) provides additional security information specific to
securing UIM APIs and UIM entities.

These topics are further explored in:
* Extending Life Cycles

* Extending the Topology

* Extending Security

For information specific to securing web services, see UIM Web Services Developer's
Guide.

Creating Rulesets

A ruleset is custom code that extends existing logic at a specified point. You can
dynamically extend UIM by creating rulesets to meet specific business needs. For
example, if the default telephone number format does not match the telephone number
format used by the country in which you are implementing UIM, you can use a ruleset
to reformat the telephone number.

This topic is further explored in "Extending UIM Through Rulesets".

Creating Web Services

Web services are APIs that can be accessed over a network, such as the Internet, and
run on a remote system hosting the requested services. UIM provides web services

ORACLE 1-2

Chapter 1
Tools for Extending UIM

that are used for service fulfilment and for cartridge management. You can statically extend
UIM by creating custom web services. For example, you can write a web service that
performs a search for a specified entity, such as a pipe, a party, or a telephone number.

This topic is further explored in UIM Web Services Developer's Guide.

Customizing the User Interface

You can customize the user interface by adding fields or functionality to existing pages, or by
adding new pages. For example, you may want to add a field named Type to the Equipment
Maintenance page and populate it with your equipment type. Customizing the user interface
statically extends UIM.

This topic is further explored in "Customizing the User Interface".

Localizing UIM

Localizing UIM is the process of changing the user interface and the online Help from the
language in which it was written to another language. This process involves modifying files
that contain text that displays in the user interface and the online Help.

This topic is further explored in "Localizing UIM".

Optimizing Concurrent Resource Allocation in UIM

You can optimize UIM performance by extending entity types that are heavily used in your
UIM environment to implement the rowLock pattern.

This topic is further explored in "Optimizing Concurrent Resource Allocation”.

Federation with UIM

You can extend UIM to interface with other external systems through federation, leasing in
data, leasing out data, viewing data, or sharing data. UIM provides sample cartridges that you
can configure and use, or extend and use as a starting point in creating a custom federation
solution.

This topic is further explored in "Using the Federation Framework", "Federation Data Domain
Cartridges" and "Federation Protocol Cartridges".

Requirements for Extending UIM

Extending UIM requires the installation of Design Studio, Oracle WebLogic Server, and UIM.
Extensions are developed in Design Studio, but you also need access to a UIM development
environment into which you can deploy cartridges and run unit tests.

Tools for Extending UIM

Several tools are available for extending UIM and are described in "Using Design Studio to
Extend UIM".

ORACLE 1-3

Chapter 1
Documentation for Extending UIM

Design Studio

Design Studio is an Eclipse-based integrated development environment. Design
Studio is not part of UIM, but it does come with features specific to UIM that enable
you to extend UIM. Information on using Design Studio to extend UIM is in "Using
Design Studio to Extend UIM".

Additional Tools

Additional tools such as Ant, Drools, and Groovy are available to you when extending
UIM. The UIM installation includes a collection of Apache Ant executable targets that
are used to extend the data model. These targets automate entity regeneration, entity
recompilation, and repackaging the application EAR file to include the recompiled
entities. The Drools and Groovy plug-ins can be used to edit ruleset syntax within
Design Studio. Information on these tools, how to install them, and how to use them is
in "Using Design Studio to Extend UIM".

Documentation for Extending UIM

Additional information needed to extend UIM is described in the following sections.
The resources described here are intended to be used together. For example, the
Javadoc provides specific information on methods that are available per entity, and
method signatures may define specific entity attributes. However, the Javadoc does
not get into details regarding the entity itself or any of the attributes it defines; this type
of information is covered elsewhere. See "Information Model Documentation” for more
information.

Information Model Documentation

Entities are Java representations of UIM data. The entities that comprise UIM are
detailed in Oracle Communications Information Model Reference and UIM Information
Model Reference. The documents describe each entity, lists the entity attributes,
provides examples, and includes information on patterns that are common across all
entities.

Oracle Communications Information Model Reference and UIM Information Model
Reference are located under “Oracle Communications Unified Inventory Management
Developer Documentation" on the Oracle Software Delivery Cloud.

APl Documentation

ORACLE

Information on UIM APIs is detailed in UIM API Overview. The document provides
detailed information and code examples of numerous APIs presented within the
context of a generic service fulfillment scenario, and within the context of a
channelized connectivity enablement scenario. The document also provides
information about transactions, exceptions, and logging when working the APIs. It also
provides a complete listing of the UIM entity manager classes and common utility code
examples.

1-4

Chapter 1
Guidelines for Extending UIM

Javadoc Documentation

The classes that comprise UIM, and the Platform classes upon which UIM is built, contain
Javadoc. The Javadoc that comes with the UIM installation includes both UIM and Platform
Javadoc.

To access the Javadoc:

1.

Start the application server.

For instructions on how to start the application server, see UIM System Administrator's
Guide.

From the application server console, deploy the UIM_Homelapplinventory.ear file, which
automatically deploys the UIM_Homeldoclora_uim_javadoc.war file.

For instructions on how to deploy a file from the application server console, see UIM
System Administrator's Guide.

In your Web browser, do one of the following:

* If UIM was installed with SSL, enter:
https://server:port/ora_uimjavadoc

« If UIM was installed without SSL, enter:
http://server:port/ora_ui mjavadoc

where server is the specific server on which the application is deployed and port is the
port on which the application listens.

Guidelines for Extending UIM

You should be aware of backward compatibility guidelines when extending UIM.

Backward Compatibility

Before you extend UIM, understand the implications of backward compatibility and the effects
on future upgrades.

ORACLE

UIM maintains backward compatibility for one release for all published external interfaces:

Manager interfaces and method signatures
Published extension points

Web service interfaces

UIM does not maintain backward compatibility for:

Metadata and physical data model
User interface

Localization

1-5

Chapter 1
Software Requirements

Detecting Code Changes Between Releases

The UIM_Homeldoclora_uim_delta.war file contains information regarding changes
between releases. Oracle recommends that you review the WAR file content when
upgrading UIM to determine if any of the upgrades affect your current extensions.

To read about code changes between releases:

1.

Start the application server.

For instructions on how to start the application server, see UIM System
Administrator's Guide.

From the application server console, deploy the UIM_Homeldocl
ora_uim_delta.war file.

For instructions on how to deploy a file from the application server console, see
UIM System Administrator's Guide.

In your Web browser, do one of the following:

* If UIM was installed with SSL, enter:
https://server:port/ora_uimdelta

* If UIM was installed without SSL, enter:
http://server:port/ora_uimdelta

where server is the specific server on which the application is deployed and port is
the port on which the application listens.

Software Requirements

For developers, the list of software tools expands beyond installing and running the
UIM application. For instance, Design Studio, Java, and Eclipse plug-ins have specific
version requirements with each UIM release.

ORACLE

Table 1-1 lists the developer-related software and the required versions.

Table 1-1 Software Versions for Developer Tools

Software Version

Design Studio 7.4.1

Java JDK Java 8 (with the latest critical patches applied)
Groovy 2.5.6

Drools 7.31.0

Eclipse 4.6 (Neon)

Oracle WebLogic Server Enterprise | 12¢ (12.2.1.4)
Edition (included with the Oracle
Fusion Middleware WebLogic

Server)
Apache log4j 291
Ant 19.1

1-6

Chapter 1
Software Requirements

For more information on software requirements, see UIM Installation Guide.

ORACLE e

Using Design Studio to Extend UIM

This chapter provides information on Oracle Communications Design Studio, an Eclipse-
based integration development environment. Design Studio comes with features specific to
Oracle Communications Unified Inventory Management (UIM) that enable you to extend UIM.

Installing Design Studio

Design Studio is used to extend Oracle products. Different features are available for the
different Oracle products, and each feature provides JAR files that are unique to the product.

For directions on how to install Design Studio, see Design Studio Installation Guide. The
instructions describe how to install all available Oracle Communications features with a single
installation. Of the features installed, UIM requires:

e Oracle Communications Design Studio Platform
e Oracle Communications Design Studio Domain Modelling

e Oracle Communications Design Studio for Inventory

Configuring Design Studio

To do development work in Design Studio, you must configure the Design Studio
environment. This requires:

e Setting System Variables

* Setting the Compiler Compliance Level
» Configuring the eclipse.ini File

e Importing the Model Projects

* Configuring the Project Library List

Setting System Variables

After installing Eclipse, you must set system variables to point to the correct version of the
JDK.

To set the system variables:

1. From the Windows Start menu, select Control Panel, then select System.
The System Properties window appears.

2. Click the Advanced tab.

3. Click Environment Variables.
The Environment Variables window appears.

4. Define a new system variable named JAVA_HOME:

a. Inthe System Variables section, click New.

ORACLE 2-1

Chapter 2
Installing Design Studio

The New System Variables window appears.
b. Inthe Variable name field, enter JAVA_HOME.

c. Inthe Variable value field, enter the path to the jdk directory for your
installation. For example:

C:./JavaljdkVersionDir/bin

where jdkVersionDir is the supported JDK version directory.
d. Click OK.
For information on the JDK version, see "Software Requirements".
Update the existing system variable Path:
a. Inthe System Variables section, select Path, and click Edit.
The Edit System Variables window appears.

b. Inthe Variable value field, add the path to the bin directory for your jdk
installation. This should be added at the beginning of the Path to take
precedence on other possible system path values. For example:

C:./JavaljdkVersionDir/bin

where jdkVersionDir is the supported JDK version directory.
c. Click OK.
The Environment Variables window appears.
For information on the JDK version, see "Software Requirements".
Click OK.
The System Properties window appears.
Click OK.

Setting the Compiler Compliance Level

ORACLE

When you install Eclipse, the compiler compliance level is set to a default value. This
compliance value must reflect the correct version of the JDK for UIM.

See "Software Requirements" for information on the JDK version.

To set the compiler compliance level in Design Studio:

1.

From the menu, select Window, then select Preferences.

The Preferences window appears.

In the navigation panel, expand Java, and click Compiler.

Verify that the Compiler compliance level is set to the correct Java version.

If it is not, from the Compiler compliance level list, select the correct Java
version.

Click Apply, then click OK.

2-2

Chapter 2
Installing Design Studio

Configuring the eclipse.ini File

You must configure the eclipse.ini file to include the -vm run-time option, which is used to
locate the Java VM to use to compile projects within Eclipse. If not specified, Eclipse uses a
search sequence to locate a suitable VM. If an incorrect VM is used to compile a project, you
may encounter issues when deploying the resultant cartridge into UIM.

To configure the eclipse.ini file:

1. Navigate to your Eclipse_Home directory.
2. Open the eclipse.ini file.

3. Add the -vm run-time option and its value (the path to your Java executable) before the -
vmargs run-time option.

When adding the -vm option, follow these guidelines:
e The -vm option and its value (the path) must be on separate lines.

e The -vm option value must be the full absolute path to the Java executable, not just
to the directory that contains the Java executable.

e The -vm option value cannot contain spaces. If any of the directories in the path to
your Java executable contain spaces, you must rename the directories.

e The -vm option must be placed before the -vmargs option, which is a default option
that is present in the eclipse.ini file.

The following are examples; your exact path to the Java executable may be different:

-vm
C:/Javal j dkVersionDir/bin/javaw exe

Or:

-vm
C:/j dkVersi onDi r/ bi n/j avaw. exe

where jdkVersionDir is the JDK version directory where you installed Java.
4. Save and close the eclipse.ini file.

See "Software Requirements" for information on the JDK version.

Importing the Model Projects

ORACLE

The following model projects must be imported into your workspace before modeling any UIM
entities in Design Studio. The successful compilation of an Inventory project is dependent
upon the model projects; however, the model projects are not compiled in Design Studio, nor
are they deployed into UIM. The model projects are located in the UIM_Homelcartridges/
required directory, and are also delivered as part of the UIM SDK. See "About the UIM SDK"
for more information.

e ora_uim_mds
e ora_uim_model

For instructions on how to import projects into Design Studio, see the Design Studio Help.

2-3

Chapter 2
About Design Studio Perspectives

< Note:

The model projects are installed with UIM. As a result, the model projects
may change with each new UIM patchset or maintenance release. Contact
your System Administrator to get the latest version of the model projects.

Configuring the Project Library List

Depending on the contents of your project, you may or may not need to configure the
project library list. For example, if you are extending a UIM class, the project library list
must be configured to point to the location of the UIM JAR file that contains the UIM
class you are extending. In this example, the UIM JAR file is required to compile the
project. The UIM JAR files, and other files, are provided in the UIM Software
Developer's Kit (UIM SDK). See "About the UIM SDK" for more information, including
a listing of the UIM SDK contents, and instructions on how to build an Inventory project
using the UIM SDK.

Imported projects include a library list of the files needed to compile the project, and
the project library list must be configured to point to a location to pick up the cited files.

For instructions on how to configure the project library list, see the Design Studio Help.

< Note:

Project library lists include JAR files that are installed with UIM. As a result,
these JAR files may change with each new UIM patchset or maintenance
release. Contact your System Administrator to get the latest version of these
JAR files.

About Design Studio Perspectives

Perspectives define your Workbench layout and provide different functionality for
working with different types of resources. Several perspectives are available within
Design Studio.

When extending UIM, commonly used perspectives include:

e Java
e Studio Design
e Studio Environment

For instructions on how to open a perspective, see the Design Studio Help.

About Design Studio Views

Within a given perspective, views further define your Workbench layout and provide
different presentations of resources. Several views are available within Design Studio,
and the available views are dependent upon the perspective.

ORACLE 2.4

Chapter 2
About Cartridges and Cartridge Packs

When extending UIM, commonly used views include:

e Java perspective views:
— Ant
— Navigator
— Package Explorer
— Problems
e Studio Design perspective views:
— Cartridge
— Package Explorer
— Problems
» Studio Environment perspective views:
— Cartridge Management
— Environment
— Problems

For instructions on how to open a view, see the Design Studio Help.

About Cartridges and Cartridge Packs

A cartridge is collection of entity specifications, characteristics, rulesets, and extended code
defined in Design Studio. Cartridges are built in Design Studio from projects. When a project
is compiled, the result is a JAR file (the cartridge) that you can deploy into UIM. The name
you choose for the project becomes the name of the cartridge, and everything you create
within that project is automatically part of the cartridge.

A cartridge pack is one or more cartridges that collectively address a particular business
need or technology. Oracle offers cartridge packs that extend UIM for a particular technology,
such as Cable TV or GSM 3GPP. Cartridge packs can also be created by customers and third
parties. Cartridge packs can be deployed as downloaded, or they can be imported into
Design Studio and extended before deployment.

You can create your own custom cartridges to extend UIM and to organize the extensions.
For example, you could create a cartridge that contains all characteristics, another that
contains all specifications, and so forth. Or you could create one cartridge per business area,
such as telephone numbers or equipment, where each cartridge contains characteristics,
specifications, and so forth, that are specific to the business area.

See UIM Cartridge Guide for additional information.

Working with Cartridges in Design Studio

This section includes a brief overview of how you work with projects and cartridges in Design
Studio. For more information see Design Studio Help.

Working With Cartridge Dependencies

A cartridge can be dependent on other cartridges. These dependencies are specified on the
Project editor Dependency tab. For example, all Inventory cartridges are dependent upon

ORACLE 2-5

Chapter 2
About Cartridges and Cartridge Packs

the ora_uim_model project. So, when you create a new Inventory project, the
Dependency tab automatically includes ora_uim_model in the list of project names.
Projects that are listed on the Dependency tab indicate that the project can be
referenced by the Inventory project at design time.

The projects listed on the Dependency tab do not indicate project compilation
dependencies, which simply require that dependent projects be present in the
workspace. For example, to compile an Inventory project, both the ora_uim_model
and ora_uim_mds projects must be present in your workspace. However, only the
ora_uim_model project is listed on the Dependency tab. The ora_uim_mds project
is not listed on the Dependency tab because designing the Inventory project content
is not dependent upon referencing anything in the ora_uim_mds project; but, the
ora_uim_mds project must be present in the workspace to compile run-time artifacts
that are used by the UIM UL.

You can define additional cartridge dependencies on the Project editor Dependency
tab, and specify the order of compilation by moving the project names up or down
within the list. For instructions on how to define cartridge dependencies, see the
Design Studio Help.

About Imported Cartridge Packs

ORACLE

When you import a cartridge pack into Design Studio, its contents are sealed, meaning
that you cannot modify them. Figure 2-1 shows the Studio Design perspective Studio
Projects view of the imported projects from the Cable TV cartridge pack.

2-6

Chapter 2
About Cartridges and Cartridge Packs

Figure 2-1 Imported Cartridge Packs

% Solution [=] Studio Projects 52 [# Package Explorer = O

s = #(G) v
Folder Search folder &
Mame Search name q."'
4 @ ora_uim_video_charactenstics [Sealed] -

- [Bg Data Schemas
@, ora_uim_video_characteristics
4 @ ora_uim_video_configuration [Sealed]
- [Bg Data Schemas
2 % Involvement Specifications
@, ora_uim_video_configuration
- i=% Role Specifications
- @ Service Configuration Specifications
2 @ Service Specifications
4 @ ora_uim_video_infrastructure [Sealed]
- [B Data Schemas
3 Inventory Group Specifications -
» g Logical Device Specifications
» .z Metwork Specifications
@' ora_uim_video_infrastructure
- (A Place Specifications
4 @ ara_uim_video_subscription [Sealed)
- B Data Schemas
2 % Media Stream Specifications
@' ora_uirm_videc_subscription
» 58 Physical Device Specifications

m

4 @ ora_uim_video [Sealed]
- [B Data Schemas
@' ora_uim_video

: % Ruleset Extension Points T

- % Rulesets -

Imported projects include a library list of the files needed to compile the project, and the
project library list must be configured to point to a location to pick up the cited files. See
"Configuring the Project Library List" for more information.

For instructions on how to import a cartridge pack into Design Studio, see the Design Studio
Help.
Viewing Cartridges in Design Studio

There are several ways to view the content of cartridges in Design Studio.

Figure 2-2 shows a cartridge project called my_cartridge as it appears in the Studio Projects
view. The corresponding Inventory Project editor is also shown.

ORACLE 2.7

Chapter 2
About Cartridges and Cartridge Packs

Figure 2-2 Studio Projects View of a Project

(S Solution| =] Studio Projects 52 | [2 Package Explorer = B[] my_cartridge 53

= M= = - .
s & 355 f= Inventory Project : my_cartridge
Folder Search folder &
Mame Search name Description
4 B my_cartridge - Properties
4 B Data Schemas
B my_cartridge Provider InventoryCartridge
my_cartridge
e my_ z Identifier my_cartridge
: @ rylny
s @ ora_uim_address [Sealed] Major Version Mumber 1

> % ora_uim_baseextpts [Sealed]

) Minor Version Mumber 0
s @ ora_uirm_basemeasurements [Sealed)

- [ora_uim_basephone_mgmt [Sealed] E Maintenance Pack 0

> @ cra_uim_baserulesets [Sealed] Generic Patch 0

> % ora_uim_basespecifications [Sealed]

- [ora_uim_basetechnologies [Sealed] Customer Patch 0

> ﬁ ora_uim_canada_address [Sealed] Build Murnber 0

s % ora_uim_canada_tn [Sealed]

. ﬁ ora_uim_connectivity_cooperation Target Version 124 v

2 @ ora_uim_devices 4

> @ ora_uim_dwdm [Sealed] State Unsealed
> % ora_uim_geccoder_sample [Sealed] Namespace

> % ora_uim_mds [Sealed]
s @ ora_uim_model [Sealed]
s ﬁ ora_uim_party_customer [Sealed]

Simple Namespace poms

- Properties | Copyright | Dependency

s ﬁ ora_uirm_pathanalysis_sample [Sealed]

By expanding the cartridge in the Studio Projects view, you can see the contents
created with each cartridge.

By switching to the Package Explorer view and expanding the cartridge, you can see
the file types of the contents created with each cartridge. Figure 2-3 shows
my_cartridge as it appears in the Package Explorer view. The resultant JAR file
resides in the cartridgeBin directory. The corresponding Inventory Project editor is
also shown.

ORACLE 2-8

Figure 2-3 Package Explorer View of Inventory Cartridge

Chapter 2
About Cartridges and Cartridge Packs

4 &> my_cartridge
[src
> B JRE System Library [JavaSE-1.7]
4 [= cartridgeBin
|&] my_cartridge.jar
4 [~ cartridgeBuild
» = META-INF
4 [dataDictionary
|=| my_cartridge_companion.xsdc
B my_cartridge.ssd
= doc
= lib
= model
== resources
=] my_cartridge.inventoryCartridge
- 2> mylnv
s E; ora_uim_address
5 E; ora_uim_baseextpts
s E; ora_uim_basemeasurements
3 E; ora_uim_basephone_mgmt
s E; ora_uim_baserulesets
s {3:‘;- ora_uim_basespecifications
s E; ora_uim_basetechnologies
s E; ora_uim_canada_address

% Solution [=] Studic Projects % Package Explorer 52 = B

B ry_cartridge 3

(= Inventory Project : my_cartridge

Description

Properties
Provider InventoryCartridge
Identifier my_cartridge

Major Version Mumber 1

Minor Version Mumber 0

Maintenance Pack 0
Generic Patch 0
Customer Patch 0
Build Mumber 0
Target Version 724 "

State Unszealed

MNamespace

Simple Mamespace poms

Properties | Copyright | Dependency

The Package Explorer view shows four files named my_cartridge. They are:

° my_cartridge: The Studio Inventory project.

* my_cartridge.jar: The JAR file that is deployed into UIM.

* my_cartridge.xsd and my_cartridge_companion.xsdc: Design Studio core files that
are used to store characteristics as data elements within a schema entity (data

dictionary).

* my_cartridge.inventoryCartridge: The Inventory Project editor, shown on the right side

of Figure 2-3.

The cartridgeBin and cartridgeBuild directories do not exist until you build the project,

which also creates the my_cartridge.jar file.

How Content Is Displayed

The specifications and other content of a project are grouped based on type in the Studio
Projects view of the Studio Design perspective. For example, when an Equipment

ORACLE

2-9

Chapter 2
About Cartridges and Cartridge Packs

specification is created, it is grouped under Equipment Specifications. When a Pipe
specification is created, it is grouped under Pipe Specifications.

These groupings are purely organizational; they do not represent physical directories.
Figure 2-4 shows cartridge content that includes six entities created from three
different specifications.

Figure 2-4 Cartridge Content

. Solution [=] Studic Projects 52 | [Package Explorer = B

s &= % (5] >
Folder Search folder J"

Mame Search name ¥

4 @ my_cartridge
a B Data Schemas
Ba rmy_cartridge
4 [Equipment Specifications
ED MyEquipSpecl
ED MyEquip5pec?
=] my_cartridge
4 o2 Pipe Specifications
@2 MyPipespecl
@2 MyPipeSpec?
Telephone Murmnber Specifications
=2 MyTelMumSpecl
25 MyTelMumSpec?

1Y
i
1]

About Building Cartridges

When building cartridges in Design Studio, it is important that you configure your
environment correctly to avoid errors later in the process.

See "Configuring Design Studio" for more information.

About Deploying Cartridges and Cartridge Packs

You can deploy cartridges and cartridge packs into UIM using the following methods:

» Deploy directly from Design Studio.

You can deploy cartridges and cartridge packs interactively from Design Studio to
test environments. Design Studio enables you to manage cartridges in the test
environment consistently, manage common test environment connection
parameters across the design team, and compare cartridge version and build
numbers in the development environment with those of the cartridges deployed in
the test environment. See the Design Studio Help for more information.

» Deploy using the Design Studio Cartridge Management Tool.

ORACLE 2-10

Chapter 2
About the UIM SDK

The Cartridge Management Tool (CMT) enables you to automate cartridge deployment.
You can use the CMT to deploy cartridges into both test and production environments.
See the Design Studio Developer's Guide for more information.

* Deploy using the UIM Cartridge Deployer Tool.

The UIM Cartridge Deployer Tool (CDT) is a GUI-based tool that enables you to deploy to
UIM run-time environments. The Oracle Universal Installer installs the CDT as part of the
UIM installation process. See the UIM Cartridge Guide for more information.

See "Troubleshooting Cartridge Deployment" for information on working around possible
cartridge deployment issues.

About Cartridge Upgrades

Cartridges can be upgraded. For example, the cartridges in a cartridge pack might be
upgraded for a new release. The upgrade process occurs in Design Studio and begins
automatically when you open a cartridge that was built in a previous release.

When upgrading a cartridge that is dependent on another cartridge, you must upgrade the
dependent cartridge first. During the upgrade process, all dependent cartridges must exist in
the workspace to ensure that the upgrade process can convert all cartridges in the correct
order.

For instructions on how to upgrade a cartridge, see the Design Studio Help.

About the UIM SDK

ORACLE

The UIM Software Developer's Kit (UIM SDK) provides the resources required to build an
Inventory cartridge in Design Studio.

Any custom code that extends UIM can be written in Design Studio by creating an Inventory
cartridge and adding custom Java code to the cartridge. In the Java perspective Package
Explorer view, you can create package structures and Java source files as needed.
Depending on what your custom code references, you may need the SDK to successfully
build your Inventory cartridge. For example, you need the SDK if you do one of the following
tasks:

e Call a UIM API Entity Manager method.

» Use the utility methods provided in the ora_uim_common cartridge.

e Build a new UIM web service.

» Install the TOSCA Parser (an OpenStack project) for use with NFV Orchestration.
* Use the metadata files that define the UIM data model.

This section describes the UIM SDK contents and provides instructions for setting up your
Design Studio workspace to include the UIM SDK-provided resources required to build an
Inventory cartridge.

" Note:

Compiled code becomes part of the Inventory cartridge JAR file that can be
deployed into UIM. See "About Deploying Cartridges and Cartridge Packs" for more
information.

2-11

Chapter 2
About the UIM SDK

UIM SDK Contents

The UIM SDK contains the directories, subdirectories, and artifacts for the support of
Design Studio cartridges. Figure 2-5 shows the following contents:

ORACLE

» UIM_SDKIcartridges directory and its following subdirectories

base: Contains the UIM base cartridges.
required: Contains the UIM required cartridges for any inventory cartridge.
sample: Contains some sample cartridges.

tools.studioProjects: Contains the ora_uim_entity sdk cartridge ZIP file. See
"About the Metadata Files" for more information about this cartridge.

* UIM_SDKIlib directory with the list of UIM libraries. See Figure 2-6 for the file
content list.

* UIM_SDKINSO tools directory and subdirectory containing artifacts for NFV
Orchestration support.

ToscaTranslator: Contains the Python setup files for Tosca parser support.

* UIM_SDKIwebservices directory containing cartridge project ZIP files that you
import into Design Studio.

For more details on the contents of the UIM_SDK/webservices directory and the UIM
Reference Web Service, see UIM Web Services Developer's Guide.

For more information on the NFV Orchestration RESTful API resources, refer to UIM
NFV Orchestration Implementation Guide.

Figure 2-5 shows contents of the UIM_SDK directory.

Figure 2-5 UIM SDK High Level Contents

F
A

UIM_SDK
= cartridges
. = base
- = required
- = sample
o = tools.studioProjects

» = lib

F

F

= M50 tools
. = ToscaTranslator
= webservices
=| custom.ear
1, reference_webservice.zip
1, schema_lnventory_webservice.zip
1, schema_webservice.zip

Figure 2-6 shows the UIM_SDKIlib directory, which contains UIM JAR files that you
use to configure your project library list in Design Studio.

2-12

Building an Inventory Cartridge Using the UIM SDK

ORACLE

Figure 2-6

UIM SDK lib Directory Contents

4 = UIM_SDE
» = cartridges

4 = lib

Lis

—
) S
» L',- Wel

|| capacity_caps.jar

characteristic_caps.jar
camms-platform-uijar
consumable_caps.jar
Core_caps.jar
groupenabled_caps.jar
Nso-rmanagers,jar
ora_uim_commonLib.jar
persistence.jar
platform_managers.jar
platform-persistence.jar
platformWsFrarmework.jar
pormns.jar
uim-api-framework.jar
uim-caps.jar

uim-entities,jar
uirm-entity-xmlbean.jar
uirm-rmanagers.jar

uim-tools,jar
uim-webservices-adapter-rpc.jar
uim-webservices-base,jar
uim-webservices-framework-xsd.jar
uim-webservices-framewaork.jar
0 tools

bservices

Chapter 2
About the UIM SDK

See "Building an Inventory Cartridge Using the UIM SDK" for instructions on importing the
ZIP files into Design Studio, and configuring your project library list with the JAR files in
Design Studio.

This section assumes you have already installed the following software for use with the UIM

SDK for UIM

* Design Studio

If not, see Design Studio Installation Guide for information on installing Design Studio.

« JDK (wit

If not, see UIM Installation Guide for information on installing the JDK.

To build an Inventory cartridge using the UIM SDK:

1. Create a local directory, such as UIM_SDK_Home.

h the latest critical patch)

2-13

ORACLE

Chapter 2
About the UIM SDK

From the Oracle Software Delivery Cloud, download the UIM SDK into the
UIM_SDK_Home local directory.

Open the downloaded UIM_SDK.zip file and extract the contents into the
UIM_SDK_Home local directory.

Create another local directory named OTHER_LIB.

Copy the following WebLogic libraries from your WebLogic Server installation into
the OTHER_LIB local directory:

* WL_Homeloracle_common/modules/javax.ejb_version.jar

* WL_Homeloracle_common/modules/javax.jms_version.jar

* WL_Homeloracle_common/modules/javax.persistence_version.jar

* WL_Homeloracle_common/modules [jersey-core-version.jar

* WL_Homelwlserver/modules/com.bea.core.xml.xmlbeans_version.jar
* WL_Homelwlserver/modules/javax.transaction_version.jar

* WL_Homelwlserver/serverlliblweblogic.jar

* WL_Homelwlserveri/serverllib/wliclient.jar

* WL_Homelwlserver/modules/wsee-jaxrpc-client-ext.jar

* WL_Homelwlserver/modules/com.bea.core.xml.beaxmlbeans_version.jar
where

WL_Home is the WebLogic Server installation home directory.

* version is the version number in each filename located in the WebLogic Server
installation.

See "Software Requirements" for version information on the WebLogic Server
installation.

Copy the log4j-version.jar file into the OTHER_LIB local directory where version
is the recommended log4j version.

¢ Note:
If you do not have this file, go to the following website:
http://archive. apache. org/ di st/1 oggi ng/ | 0g4j

Select the appropriate software version directory. Download the apache-
logdj-version.zip file and extract the log4j-version.jar file into the
OTHER_LIB local directory.

See "Software Requirements" for version information on log4j utility.
Open Design Studio.

Configure your Design Studio environment for development work. See
"Configuring Design Studio" for more information.

Open a new workspace.

2-14

http://archive.apache.org/dist/logging/log4j

ORACLE

10.

11.

12.

13.

14.

15.

16.

Chapter 2
About the UIM SDK

Import the required cartridges into your workspace from the UIM_SDK_HomelUIM_SDKI
cartridges/required directory.

" Note:

See the Design Studio Help for information on how to import projects using
archive files related to steps 10-14.

Import any needed base cartridges into your workspace from the UIM_SDK_Homel
UIM_SDKIcartridges/base directory.

Import any needed sample cartridges into your workspace from the UIM_SDK_Homel
UIM_SDKI/cartridges/sample directory.

Import any needed tools into your workspace from the UIM_SDK_HomelUIM_SDK/
cartridges/tools directory.

Import any needed web service cartridges into your workspace from the
UIM_SDK_HomelUIM_SDKI/webservices directory.

Create a new Inventory project.

See the Design Studio Help for information on creating new cartridge projects.
Configure the Inventory project library list with the UIM libraries:

a. Select the Inventory project.

b. From the project menu, select Properties.

Select Java Build Path.

d. Click the Libraries tab.

e. Click Add Variable.

o

The New Variable Classpath Entry dialog box appears.
f. Click Configure Variables.
The Preferences dialog box appears.
g. Click New.
The New Variable Entry dialog box appears.
h. In the Name field, enter UIM_LIB.
i. Click Folder, and browse to and select UIM_SDK_HomelUIM_SDKI/lib.
j. Click OK.
The Preferences dialog box appears.
k. Click OK.
The New Variable Classpath Entry dialog box appears.
. Select UIM_LIB.
m. Click Extend.
The Variable Extension dialog box appears.
n. Select all libraries.
o. Click OK.

2-15

Chapter 2
About the Developer-Facing Inventory Menu Options

The Inventory project Java Build Path dialog box appears with the selected
libraries added.

p. Click OK.

17. Configure the Inventory project library list with the other libraries from WebLogic
and Log4j. To do so, repeat step 16, but:

a. For step 16.h: In the Name field, enter OTHER_LIB.
b. For step 16.i: Click Folder, and browse to and select OTHER_LIB.
c. For step 16.1: Select OTHER_LIB.

18. Build the Inventory project.

After you successfully build the project, add any custom artifacts and rebuild the
project.

About the Developer-Facing Inventory Menu Options

From the Studio menu, select New, then select Inventory, then select
Administration to see the developer-facing options that are available in Design Studio
with the installation of the Inventory feature. The options are:

» Sequence Specification

e Extension Point

» Enabled Extension Point

* Ruleset

* Ruleset Extension

* Ruleset Extension - Global

* Inventory Group Specification

The Sequence Specification option is described in the following sections. The
remaining developer-facing options, with the exception of Inventory Group
Specification, are described in Extending UIM Through Rulesets. For information on
Inventory Group Specification, see UIM Concepts and the Design Studio Help.

Understanding the Sequence Specification

ORACLE

A sequence is a unique, generated number that is used as an identifier. Sequences
can be used alone, or concatenated with other attributes to create a larger identifier,
such as a connection ID. For example, in the following connection ID, a sequence can
be generated to represent the facility designator in bold: 101/T1/PLANTXXAKO01/
IRVGTXXAKL.

The Sequence specification defines criteria for a sequence. Figure 2-7 shows the
Sequence Specification editor Properties tab where the criteria of Minimum Value,
Maximum Value, and Increment Value are defined.

For instructions on how to create a Sequence Specification, see the Design Studio
Help.

2-16

Chapter 2
About the Developer-Facing Inventory Menu Options

Figure 2-7 Sequence Specification Editor

g MySeqspec 2 = g
+4 Sequence Specification : MySeqSpec 1 @
Display Name | | [default] -
Minimum Value 0 = | Maximum Yalue 0 = | Increment Value 1 =

Specification Properties | Properties | Media

The Sequence specification can be used:

* |n custom code to set an identifier

e With the Entity Identifier specification to set the entity identifier

Using the Sequence Specification in Custom Code

ORACLE

UIM provides the SequenceGenerator interface, which is a mechanism for generating
sequences. The interface exposes methods that generate three types of sequences:

* Global Sequence
* Context-Based Sequence

» Specification-Based Sequence

Global Sequence

A global sequence is a generated number that starts at 1, is incremented by 1, and is unique.
When writing custom code, you can obtain a global sequence by calling the following method
on SequenceGenerator:

public long next()

This method returns a global sequence (a humber that is unique across all calls to the
method).

A global sequence does not use the Sequence specification.

Context-Based Sequence

A context-based sequence is a generated number that starts at 1, is incremented by 1, and is
unigue within a given context. When writing custom code, you can obtain a context-based
sequence by calling the following method on SequenceGenerator:

public long next(String context)

2-17

ORACLE

Chapter 2
About the Developer-Facing Inventory Menu Options

This method returns a context-based sequence (a number that is unique across all
calls to the method that supply the same context). A context-based sequence does not
use the Sequence specification.

The request for a context-based sequence results in the creation of an Oracle native
sequence, created with a name that equals the context value. This Oracle native
sequence is used to generate subsequent sequence values for the context. The
maximum length of an Oracle sequence name is 30 characters. Therefore, the context
value for a context-based sequence cannot exceed 30 characters.

Specification-Based Sequence

A specification-based sequence is a generated number that starts at 1, is incremented
by 1, and is unique within a given context. Additionally, the number is based on criteria
that is defined by a Sequence specification (minimum value, maximum value, and
increment value). When writing custom code, you can obtain a specification-based
sequence by calling the following method on SequenceGenerator:

public long next(String sequenceSpecName, String context)

This method returns a specification-based sequence, which is the next sequence
value for the combination of the context and sequence specification. (This is a number
that is unique across all calls to the method that supply the same context, and that is
based on the sequence criteria as defined by the supplied Sequence specification.)

The request for a specification-based sequence results in the creation of an Oracle
native sequence, created with a name that follows the naming convention:

<CONTEXT>_<SequenceSpeci fi cati on ENTI TYI D>

where <SequenceSpecification ENTITYID> is the internal primary key ENTITYID value
on the SEQUENCESPECIFICATION row for the given sequence specification, and
<CONTEXT> is the given context value. This Oracle sequence is used to generate
subsequent sequence values for the combination of sequence specification and
context.

The maximum length for the CONTEXT portion of the name for a specification-based
Oracle native sequence is 10 characters. This constraint is due to the fact that the
maximum length of an Oracle native sequence name is 30 characters, and the
ENTITYID, (defined as NUMBER(19)) and the underscore take up 20 of the 30
characters.

When calling the next method to get a specification-based sequence, your custom
code must be coded with the Sequence specification name. Also, the custom cartridge
that defines the Sequence Specification must be deployed before running the custom
code.

¢ Note:

SequenceGenerator operates outside of a transaction. So, if the transaction
gets rolled back, any IDs created are not rolled back. (Oracle native
sequences work the same way.)

2-18

Chapter 2
About the Developer-Facing Inventory Menu Options

Using the Sequence Specification with the Entity Identification Specification

The Sequence specification can also be used with the Entity Identification specification to
obtain a specification-based sequence to set the entity identifier.

In the metadata, an entity can be defined to have the Entity Identification pattern, as
described in Oracle Communications Information Model Reference. When an entity defines
this pattern, the entity defines the id attribute (entity identifier), which is unique across a
specific entity type. For example, EquipmentHolder is defined with the Entity Identification
pattern. So, each equipment holder defines the id attribute, and the id attribute value is
unique across all equipment holders.

" Note:

The id attribute differs from the entityld attribute: Only entities that are defined with
the id attribute can be defined with the Entity Identification pattern. All entities
define the entityld attribute, which is always unique across the entire database.

For entities that define the Entity Identification pattern, the specification editor includes the
Enter Id Manually check box, as shown in Figure 2-8. When the check box is selected, it
indicates that when creating an instance of the specification in UIM, you must manually enter
the id attribute value through the UIM UL.

In Figure 2-8, the Enter Id Manually check box is selected, and the option to select an Entity
Identification Specification is disabled.

Figure 2-8 Specification Editor: Enter Id Manually Selected

@ MyEqupimentHelderSpec 52 = O
@ Equipment Holder Specification : MyEqupimentHolderSpec @ @
Display Mame [default] -
Start Date [[] March -27-14 End Date [C] March -27-14

Systemn Provided
Can be assigned to multiple entities [

Enter Id Manually
Entity Identification Specification
Description

Characteristics | Specification Properties | Related Specifications | Configuration Spec Usage | Rules | Layouts | Media | Extends

ORACLE 2-19

Chapter 2
About the Developer-Facing Inventory Menu Options

When the Enter Id Manually check box is deselected, it indicates that when creating
an instance of the specification in UIM, the id attribute value is automatically
generated. In Figure 2-9, the Enter Id Manually check box is deselected, and the
option to select an Entity Identification Specification is now enabled.

Figure 2-9 Specification Editor: Enter Id Manually Deselected

@ MyEqupimentHolderSpec 53 = O
@ Equipment Holder Specification : MyEqupimentHolderSpec i @
Display Mame [default] -
Start Date [] March -27-14 End Date [] March -27-14

Systern Provided
Can be assigned to multiple entities [7]

Enter Id Manually]
Entity Identification Specification
Description

Characteristics | Specification Properties | Related Specifications | Configuration Spec Usage | Rules| Layouts | Media | Extends

When the id attribute value is to be automatically generated (Enter Id Manually is
deselected, which is the default), UIM uses the SequenceGenerator interface to obtain
a sequence that is used to set the id attribute value. You can optionally format the id
attribute value by selecting an Entity Identification specification. When you click
Select, a list of all previously defined Entity Identification specifications displays. If no
Entity Identification specification is selected, a context-based sequence is generated
and used to set the id attribute value. For example, in this scenario the context is the
Equipment Holder entity type, resulting in the sequence being unique across all
equipment holders.

Figure 2-10 shows the Entity Identification Specification Properties tab, where you
can define the sequence format. For instructions on how to create an Entity
Identification Specification, see the Design Studio Help.

ORACLE 2-20

Chapter 2
Additional Tools

Figure 2-10 Entity Identification Specification Editor

i) MyEntityIDSpec 52 = B

[Entity Identification Specification : MyEntityIDSpec (i) (3

Display Mame

Prefin
Suffix

[default] -

Sequence Specification Select... |

Specification Properties | Properties

Based on the Entity Identification specification, the id attribute value is generated as:

prefix + sequence + suffix

where:

prefix is the Prefix value specified by the Entity Identification specification. Specifying a
prefix is optional.

sequence is a unigue sequence value based on Sequence specification criteria.
Specifying a Sequence Specification is required.

suffix is the Suffix value specified by the Entity Identification specification. Specifying a
suffix is optional.

< Note:

You can choose to not specify the prefix or suffix. For example, to have your id
attribute value incremented by 100, define an Entity Identification specification with
no prefix or suffix, and specify a Sequence specification that defines an increment
value of 100.

Additional Tools

Third-party tools such as Ant, Drools, and Groovy are used to extend UIM:

ORACLE

Ant is used to extend the UIM data model, web services, and user interface.

Ant is an open source software tool for automating a build process. Ant uses XML to
describe a build process and its dependencies. When extending the UIM data model,
web services, or user interface, Ant targets are run from within Design Studio. See
"Installing, Configuring, and Using Ant" for more information.

2-21

Chapter 2
Additional Tools

Drools is used to extend UIM through rulesets.

Drools is an open source project that enables accessing, changing, and managing
business rules. When extending UIM using rulesets with Drools, Oracle
recommends that you install the Drools Eclipse plug-ins in Design Studio. The
plug-ins provide a Drools editor, and Drools-specific menu options. See "Installing,
Configuring, and Using the Drools Eclipse Plug-ins" for more information.

Groovy is also used to extend UIM through rulesets.

Groovy is an open source project that enables accessing, changing, and
managing business policies. When extending UIM using rulesets with Groovy,
Oracle recommends that you install the Groovy Eclipse plug-ins in Design Studio.
The plug-ins provide a Groovy editor. See "Installing, Configuring, and Using the
Groovy Eclipse Plug-ins" for more information.

Installing, Configuring, and Using Ant

This section provides information on:

Downloading Ant
Installing Ant
Configuring Ant
Running Ant Targets

Downloading Ant

Installing Ant

ORACLE

To download Ant:

1. Go to the following website:
http://archive. apache. org/ di st/ ant/binaries

2. Scroll down and click the apache-ant-releaseNumber-bin.zip link, where
releaseNumber is the latest patch of the recommended Ant software release
version. See "Software Requirements" for information on the Ant version.

The File Download window appears.

3. Click Save.

The Save As window appears.

4. Navigate to a local directory such as tempDir and click Save.

To install Ant:

1. Inyour local hard drive root directory, or in your Program Files directory, create a
new directory named ant.

2. Open the tempDir/lapache-ant-releaseNumber-bin.zip file where releaseNumber
is the latest patch recommended Ant software release version. See "Software
Requirements" for information on the Ant version.

3. Extract the file contents to the ant directory you created in step 1.

2-22

http://archive.apache.org/dist/ant/binaries

Configuring Ant

Chapter 2
Additional Tools

To configure Ant:

1.

From the Windows Start menu, select Control Panel, then select System.
The System Properties window appears.
Click the Advanced tab.
Click Environment Variables.
The Environment Variables window appears.
Define a new system variable named ANT_HOME:
a. Inthe System Variables section, click New.
The New System Variables window appears.
b. In the Variable name field, enter ANT_HOME.

c. Inthe Variable value field, enter the path to the extracted directory. For example,
C:lant/apache-ant or C:/Program Files/ant/apache-ant.

d. Click OK.

Update the existing system variable Path:

a. Inthe System Variables section, select Path, then click Edit.
The Edit System Variables window appears.

b. Inthe Variable value field, add the path to the bin directory of the extracted Ant
directory.

For example, C:lant/lapache-ant/bin or C:IProgram Files/ant/ apache-ant/bin.
c. Click OK.
The Environment Variables window appears.
Click OK.
The System Properties window appears.
Click OK.

Running Ant Targets

ORACLE

This procedure is applicable only if the cartridge you imported contains a build.xml file that
defines Ant targets.

To run an Ant target within Design Studio:

1.

Open the Java perspective.

For instructions on how to open the Java perspective, see the Design Studio Help.
From the Window menu, select Show View, then select Ant.

The Ant window appears.

Within the Ant window, right-click and select Add Buildfiles.

The Buildfile Selection window appears.

Navigate to and select the file that contains the Ant target you plan to run.

2-23

Chapter 2
Additional Tools

5. Click OK.

The Ant targets defined in the selected file appear in the Ant window, as shown in
Figure 2-11.

Figure 2-11 Design Studio Ant Window

& ank 22 sk 4 W QD X % — O
= B inventoryEar <taskdef class kodo.jdbe. ant.Ma
19 alter.0OL
@ buildEntities
® codegen

compile. codegen
create, DDL
enhance, enkiky

®--E--E--E
& & @

&k

&)

&) enhanceEntities

@ help [default]

@) jar . enkity

@) jar . entity, Framework,
i@ jar.src.enkiby

o A

P
+® refresh,schema

6. Double-click a target.

The Ant target runs.

ORACLE 2.24

Using the Persistence Framework

This chapter provides information on using the persistence framework, which moves program
data (in memory objects) to and from a permanent data store (the database). The persistence
framework also manages the database and manages the mapping between the database
and the objects.

You use the persistence framework when extending Oracle Communications Unified
Inventory Management (UIM). For example, custom rulesets or custom web services typically
have code that reads or updates the database, which is done using the persistence
framework. So, UIIM custom code developers need to be familiar with the contents of this
chapter.

About the Persistence Framework Foundation

The persistence framework is built on top of EclipseLink, which implements Java Persistence
API (JPA) technology. Functional extensions employ standard Java practices.

This chapter does not replace the EclipseLink or JPA development guides. Both technologies
are covered in greater detail at the following websites:

JPA Specifications
http://wiki.eclipse.org/EclipseLink/ Specs
EclipseLink
http://wiki.eclipse.org/EclipseLink

JPA

http://ww. eclipse. org/eclipselink/# pa

" Note:

Documentation on third-party software products is limited to the information needed
to use the UIM persistence framework. If you need additional information on a third-
party software application, consult the documentation provided by the product's
manufacturer.

Understanding Persistence Framework Concepts

The persistence framework employs the concepts of eager and lazy fetching and of managed
and non-managed entities, as described in the following sections.

ORACLE 3-1

http://wiki.eclipse.org/EclipseLink/Specs
http://wiki.eclipse.org/EclipseLink
http://www.eclipse.org/eclipselink/#jpa

Chapter 3
Understanding Persistence Framework Concepts

Eager and Lazy Fetching

A fetchType of eager means that a persistence provider loads the attribute of an entity
along with the entity, while a fetchType of lazy is a hint to the provider that the
attribute need not be fetched along with the entity. This means that even though you
may specify the fetchType as lazy, the persistence provider may choose to load the
attribute eagerly.

By default, all relationships are configured as lazy loading in the metadata, and all
basic attributes are configured as eager fetched in the metadata. To configure an
attribute as lazy loading in the metadata, set the <lazy> attribute to true. For example:

<entity type="cim Dat aTypes"
interface="oracl e. communi cations. pl atformentity. DataTypes">
<attribute name="clobString" |azy="true"/>

<lentity>

The result is a generated annotation within the DataTypesDAO.java class. For
example:

@asi c(fetch=FetchType. LAZY) private java.lang. String clobString;

If a field is configured as lazy loading, and you want to eager fetch it when the entity is
retrieved from the database, use the Finder.addEagerFetchField() method. For
example:

finder = PersistenceHel per. makeFi nder();

finder.set Resul t O ass(Tel ephoneNumber. cl ass);
finder.setJPQFilter("o.id = :tnld");
finder.addParanmeter("tnld", "88888888");
finder.addEager Fet chFi el d(Eager Fet ch. LEFT_FETCH, "o. speci fication");
Col | ecti on<Tel ephoneNurmber> tns = finder.findMatches();
finder.close();

The previous example shows a fetch mode of LEFT_FETCH. The persistence
framework supports the following fetch modes for an eager fetch:

e BATCH: Batch reading may require more than one trip to the database but is
usually more efficient than a join fetch, especially join fetches that involve
collection relationships. Batch reading configures the query to optimize the
retrieval of the related objects, and the related objects for all the resulting objects
are read in a single query (instead of multiple queries).

e FETCH: This fetch mode uses an inner join.

e LEFT_FETCH: This fetch mode uses an outer join.

Managed and Non-Managed Entities

ORACLE

A persistence context is a set of entities such that for any persistent identity there is a
unique entity instance. Within a persistence context, entities are managed. An entity
manager controls life cycles and accesses data store resources.

When a persistence context ends, previously managed entities become non-managed.
A non-managed entity is no longer under the control of the entity manager and no
longer has access to data store resources. The major difference between an entity that
is managed and an entity that is non-managed is:

3-2

Chapter 3
Understanding Persistence Framework Concepts

* When an entity is managed, the object is connected to the database and changes made
to the object are reflected in the database when committed, or flushed in a transaction.

* When an entity is non-managed, the object is not connected to the database, so changes
are never applied to the database.

The non-managed object can be stale, which can cause you to receive the
OptimisticLockingException when calling the EclipseLink attach() method. In this case,
discard the stale non-managed object, retrieve the new object from the data store, and
perform any update operation against the new version.

When a transaction already exists and an entity is explicitly retrieved from the database, the
entity is managed. There is no need to eager fetch the entity attributes because the attributes
and relationships can be lazy-loaded while the transaction is still active.

When no transaction exists, the entity becomes non-managed. EclipseLink supports the lazy
loading of relationships of a non-managed entity. EclipseLink also supports the lazy loading of
primitive attributes such as String.

Note:

If an entity is serialized and then deserialized, such as sent through a remote EJB
interface or web service, the relationships cannot be lazy loaded, and an eager
fetch must be used to access the relationships. Alternatively, the application can
start a transaction to make the entity managed. When the entity is managed, the
attributes and relationships can be accessed directly, and the eager fetch is not
required.

When an entity is created, it is neither managed nor non-managed. The entity status is
Transient because there is no representation of the entity in the database yet. All relational
and collection attributes on a transient entity are available (that is, if it is null, then it is really
null). When the transient entity is passed to a ManagerX.createX(..) method, the entity is
persisted into the database. The entity is persisted by reference. The entity life-cycle status is
changed from Transient to Persistent-New. There is a copy of the entity created. When the
transaction is committed, the entity becomes non-managed.

Usually, the Ul code keeps the non-managed entity in the session so that it can be updated.
Sometimes, the Ul code does an explicit Find to retrieve and store a non-managed entity in a
session. You can store the non-managed entity in a session to avoid table locks on the
database. The client code performs a set on the detached entity. When the updated entity is
passed into the ManagerX.updateX(..) method, the manager persists the changes by using
the EclipseLink attach() method. The current implementation of EclipseLink attach makes a
copy of the entity and persists the changes. The new copy represents the managed entity,
making the non-managed entity obsolete. For example, the createEntity() and updateEntity()
methods each return a new copy of the entity. The returned copies are managed entities,
making the original non-managed entity obsolete.

A
A

createEntity(A)
updat eEntity(A)

ORACLE 3-3

Chapter 3
Persistence Framework Classes and API Methods

Persistence Framework Classes and APl Methods

All of the persistence framework classes covered in this section expose APl methods
that you can use when extending UIM. For example, you may want to add additional
validations to existing UIM functionality, or add additional processing.

Note:

For information on the classes described in this section, including a listing of
method names, arguments, and returns, see the Javadoc. For instructions on
how to access the Javadoc, see "Javadoc Documentation”.

PersistenceManager

Package: oracle.communications.platform.persistence

PersistenceManager generically manages entities defined in the *-entities.xml files.
This manager provides methods to:

» Create, update, and delete an entity or entities

» Check whether an EntityManager is invoked from a Java Transaction API (JTA)
context

(JTA specifies standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system: The resource manager, the
application server, and the transactional applications. A JEE application may use
JTA, but a standalone JSE application does not.)

* Set and get the logging level

This class is a wrapper for the methods defined in the standard
javax.persistence.EntityManager class.

TypeRegistry
Package: oracle.communications.platform.persistence

TypeRegistry is a generated class that extends TypeRegistryBase. As part of the entity
code generation process, each entity is added to a class list managed by
TypeRegistry. TypeRegistry provides convenient methods to get a data access object
(DAO) implementation class for each entity. Table 3-1 contains a list of the methods
defined in the TypeRegistryBase class.

Table 3-1 TypeRegistryBase APIs
|

API Description

classFor(Class) Gets the concrete class, which implements the given inventory
entity class.

interfaceFor(Class) Gets the inventory entity interface, based on the concrete class.

ORACLE 3-4

Finder

Chapter 3
Persistence Framework Classes and APl Methods

Table 3-1 (Cont.) TypeRegistryBase APIs

e
API Description

classForDiscriminator(Stri | Gets the entity implementation class, based on the discriminator.
ng discriminator)

discriminatorForClass(Cla | Gets the discriminator, based on the implementation class.
ss)

Package: oracle.communications.platform.persistence

Finder provides methods for querying entities based on simple or complex search criteria. It
has convenience methods that set up query parameters and fetch properties. Convenient find
methods are provided; however, a complex Java persistence query language (JPQL) query
can also be built iteratively.

Finder provides the most frequently used query mechanism. Additional query complexity that

can be reused should be incorporated into the entity managers instead. The entity managers

should then use Finder for building the queries, or use JPA directly. See "Entity Managers" for
more information.

Finder defines methods that enable you to:

* Get an entity based on the entity key

* Refresh an entity or a collection of entities

* Find an entity or entities based on various options, such as name, entity, or ID
* Define a JPQL statement

* Run the defined JPQL statement

* Reset the Finder, which resets all query parameters to null

These methods are further explored in the following sections.

Defining JPQL Statement Methods

ORACLE

The Finder class provides numerous methods that you can use to define a JPQL statement.
By using these methods you can:

e Set the result class to query

e Add a join expression

* Setfilters, such as a where clause or min/max

e Add an attribute to specify the result set be returned in ascending or descending order
e Set a range to filter the result set

e Add and set parameters

* Declare variables

e Add and set variables

e Add hints, which are JPA-specific

3-5

Chapter 3
Persistence Framework Classes and API Methods

* Add eager fetch fields

» Clear eager fetch fields

Finder.find() and Finder.findMatches() Methods

ORACLE

The Finder.find(Class<E> candidateType, String filter) method is a convenient method
to use because it does not consider any parameters you set on Finder before you call
that method. To include parameters, use the Finder.find(Class< E > candidateType,
String filter, String [] paramNames, Object [] params) method.

Alternatively, you can build the parameters list using Finder beforehand, then use the
findMatches() method. The findMatches() method uses the parameters you set.

Table 3-2 lists some of the commonly used methods defined in the Finder class.

Table 3-2 Finder APIs

API

Description

find

Overloaded method that finds an entity or entities based on
various arguments, such as entity type, the current filter setting
on Finder, a list of the current parameters set on Finder, etc.

findByName, findByld,
findByEntity

Various methods that find an entity or entities based on name,
ID, or entity type.

findMin and findMax

Finds the minimum or maximum value based on entity type and
the value of min or max, which is used by the method to call
Finder.setJPQLFilter().

findMatches

Overloaded methods that finds an entity or entities based on
various arguments, such as an Oracle Text search String, and
other arguments that you set.

findByJPQL

Finds a result set based on a String argument representing a
JPQL statement that you define.

executeUpdateJPQL

Executes an update based on a String argument representing a
JPQL statement that you define. This method returns the
number of updated entities.

findByNativeSQL

Finds a result set based on a String argument representing a
native SQL statement that you define.

executeUpdateNativeSQL

Executes an update based on a String argument representing a
native SQL statement that you define. This method returns the
number of updated entities.

get Overloaded method that gets an entity based on entity type and
entity key, or based on entity type, entity key, and whether or
not the entity is a valid entity.

refresh Overloaded method that refreshes the given entity, or the given

collection of entities.

PersistenceManager refresh(), attach(), and connect() Methods

The basic differences between PersistenceManager.refresh(),
PersistenceManager.attach(), and PersistenceManager.connect() are:

* Refresh() refreshes the entity content back to the state of the database, and
discards any changes made to the entity. If the entity is managed, the refresh API

3-6

Chapter 3
Persistence Framework Classes and APl Methods

retrieves a copy from the database to refresh the managed entity. If the entity is non-
managed, the refresh APl makes the entity managed. Any changes previously made to
the managed or non-managed entity are discarded. The refresh API returns the reference
to the managed entity.

» Attach() makes the non-managed entity managed, and retains any changes made to the
entity. If the entity is already managed, the attach API does nothing in terms of attaching
the entity to the database. If the entity is non-managed, the attach APl makes the entity
managed. Any changes previously made to the managed or non-managed entity are sent
to the database by EclipseLink when the transaction is committed or flushed. The attach
API returns the reference to the managed entity.

» Connect() makes the non-managed entity managed, and discards any changes made to
the entity. If the entity is already managed, the connect API does nothing in terms of
connecting the entity to the database. If the entity is non-managed, the connect API
makes the entity managed. Any changes previously made to the managed or non-
managed entity are discarded. The connect API returns the reference to the managed
entity.

Refresh() does a get from the database. refresh() takes a detached entity, connects it to the
database, but does not merge the entity attribute into the database. Refresh() re-retrieves the
entity even when it is already attached.

Attach() takes a detached entity and merges its data into the database. The operation fails if

the detached entity is stale. When attach attaches the detached entity to the database, it also
merges the entity attribute values into the database. Attach() ignores the entity if it is already

attached.

If you do not intend to merge the entity attributes of an entity in the database, do not use
attach(). If you do, you may be updating an attribute in the database. Also, the last modified
fields for the entity are updated, and the entity version is updated.

Note:

Using attach() may cause an OptimisticLockVerificationException because it tries to
merge values in the database. If the detached entity is a stale entity (some other
code thread has modified the same entity and has incremented the entity version),
using attach again causes this exception.

InventoryFinder

ORACLE

Package: oracle.communications.inventory.api.framework.persistence
InventoryFinder extends Finder and provides a few additional methods, as described in
Table 3-3.

Table 3-3 InventoryFinder APIs
|

API Description

find(String queryExpression, This method finds and returns the result of executing a JPQL search

Object... parms); using the passed expression.

findTotalCounts(); This method returns the total number of records found for a given
JPQL.

3-7

Chapter 3
Persistence Framework Classes and API Methods

PersistenceHelper

Package: oracle.communications.platform.persistence

PersistenceHelper is a generated class that provides factory methods to get an
instance of an entity manager, the TypeRegistry, a Finder, an InventoryFinder, or the
PersistenceManager.

Persistent

Package: oracle.communications.platform.persistence

All persistent entities implement the Persistent API. It provides convenience methods
for determining the state of an entity. These methods are all read-only; so, the
methods can run whether or not there is an active transaction. The following methods
are defined in the Persistent API and are available on all entities.

public Cass getEntityType();

public String getGd();

public long getEntityld();

public String getEntityCdass();

public int getEntityVersion();

public bool ean isEntityldvalid();

public Identifier makeldentitifer();

public void makeTransient();

public bool ean isPopul ated(String fiel dNang);
public void unpopul ate(String fiel dNane);
public bool ean isTransient();

public bool ean isPersistent();

public bool ean isTransactional ();

public bool ean isNew();

public boolean isDirty();

public bool ean isDel eted();

public bool ean isDetached();

public <E extends Persistent> E connect ()
public <E extends Persistent> E refresh()
public <E extends Persistent> E attach();
public String getEntityDescription();

Entity Managers

Entity managers are not part of the persistence framework: they are additional
managers that use the persistence framework to support the overall application logic.
An entity manager manages the database tables for a specific functional area. For
example, EquipmentManager manages the Equipment table, but it also manages
EquipmentHolder, PhysicalPort, PhysicalConnector, PhysicalDevice, and so forth.

Defining Entity Managers
Entity managers are defined in the metadata by the <manager> element and

<interface> attribute. Example 3-1 is an excerpt from the uim-equipment-entities.xml
file:

ORACLE 3-8

Chapter 3
Persistence Framework Classes and APl Methods

Example 3-1 uim-equipment-entities.xml

<manager interface="oracle.communications.inventory.api.equipnent.Equi pment Manager"
cl ass="oracl e. conmuni cati ons. i nventory. api . equi prent . i npl . Equi pnent Manager | npl "/ >

Every entity manager defined in the metadata has a corresponding entity manager and
implementation of the manager. So, based on Example 3-1, the following classes exist:

e EquipmentManager
e EquipmentManagerimpl

Entity managers are not generated classes; however, the factory methods in
PersistenceHelper that allow for the instantiation of the managers are generated. These
factory methods are generated based on the metadata definition.

Note:

Entity managers are provided for all entities defined in the metadata. If the database
is extended to define new entities, the entity manager and implementation of the
manager must be written.

The relationship of entity to entity manager is not one-to-one. For example, in ocim-
equipment-entities.xml file, there are a number of entities defined, and each entity defines
its own entity interface (which differs from a manager interface). An entity interface defines
the getter and setter methods for data defined for the entity. Example 3-2 is an excerpt from
the ocim-equipment-entities.xml file that shows two entity definitions. The definitions
include the interface that is defined for an entity (not for a manager).

Example 3-2 ocim-equipment-entities.xml

<entity type="oci m Equi pnent"
i nterface="oracl e.communi cations.inventory.api.entity.Equi pnent"
accessControl | ed="true">

<entity type="oci m Equi prent Hol der"
interface="oracl e.comuni cations.inventory.api.entity. Equi pnent Hol der"
accessControl | ed="true">

Entity Manager Implementation Inheritance Structure

ORACLE

The PersistenceManagerBean class is the common base class for all entity manager
implementations, and all entity manager implementations extend BaselnvManager.
TransitionManagerBean is another layer of inheritance. The inheritance structure of all entity
manager implementations is shown below. The following sections discuss each of these
classes.

Per si st enceManager Bean

|
Transi ti onManager | npl

Basel nvManager

I
Enti t yNameManager | npl

3-9

Chapter 3
JPQL Query Examples

< Note:

In some cases, there are additional layers between BaselnvManager and
EntityNameManagerIimpl, but these four layers of inheritance are always
present. An example that has additional layers is LogicalDeviceManagerimpl.

Specifying the <managedBy> attribute for an entity in the metadata allows the entity
manager to override the default behavior of the following methods:

* TransitionManager.transition(LifeCycleManaged, Object)
» PersistenceManagerBean.completeCreate(Persistent)
» PersistenceManagerBean.completeUpdate(Persistent)

* PersistenceManagerBean.completeDelete(Persistent)

PersistenceManagerBean

Package: oracle.communications.platform.persistence.impl

PersistenceManagerBean is the common base class for all entity managers. It
provides convenient create, read, update, and delete (CRUD) methods for managing
entity persistence. It also provides methods to attach an object to the persistence
engine, and methods to test for object equality. Developing entity managers requires
the use of the PersistenceManagerBean class. It defines all the persistence-related
methods used by entity managers, it hides the JPA standard PersistenceManager, and
it wraps the persistence logic required.

TransitionManagerimpl

Package: oracle.communications.inventory.api.common.impl

TransitionManagerimpl transitions an entity's business and object states, which is only
applicable for entities defined as life-cycle managed in the metadata. This layer of
inheritance is always in place, but it is used only by life-cycle managed entities. See
"Extending Life Cycles" for more information.

BaselnvManager

Package: oracle.communications.inventory.api.common

BaselnvManager extends PersistenceManagerBean and provides application-specific
logic to the PersistenceManagerBean methods. All entity manager classes must
extend this class.

JPQL Query Examples

ORACLE

This section provides some JPQL query examples that show common UIM search
scenarios.

3-10

ORACLE

Chapter 3
JPQL Query Examples

Example 3-3 Custom Object Search

/1 This exanple shows a search for a custom object based on the name of the custom//
obj ect.

SELECT COUNT(DI STI NCT 0) FROM Cust onbj ect o

WHERE UPPER(o0. nane) LI KE UPPER(: naneParan) escape '\'

AND o. speci fication = :specParam

AND (0. 0bjectState = oracl e.communi cations.inventory. api.Chject State. ACTI VE
OR 0.o0bjectState = oracl e. conmuni cations. i nvent ory. api . Obj ect St at e. | NACTI VE)

Example 3-4 Physical Port Search

/1 This exanple shows a search for a physical port based on physical device name //
and physical port specification nane.

SELECT COUNT(DI STINCT o) FROM Physi cal Port o

WHERE o0.id is not null

AND o. speci fication = :specParam

AND UPPER(0. physi cal Devi ce. name) LI KE UPPER(: pdNanmePar anm) escape '\'

AND (0. object State = oracl e. communi cations. inventory. api.Object State. ACTI VE
OR o0.0bjectState = oracl e. communi cations.inventory. api . j ect St ate. | NACTI VE)

Example 3-5 Physical Device Search

/1 This exanpl e shows a search for a physical device based on a characteristic.

SELECT COUNT(DI STINCT o) FROM Physi cal Device o

JO N o.characteristics charsOvar

WHERE o0.id is not null

AND (charsOvar.name = :pChar NaneOPar am

AND UPPER(charsOvar. val ue) LIKE : pCharVal ueOParam escape '\')

AND o. speci fication = :specParam

AND (0. object State = oracl e. communi cations.inventory. api.ObjectState. ACTIVE OR
0.0bj ect State = oracl e. communi cations. i nventory. api.Obj ect St at e. | NACTI VE)

3-11

Extending the Data Model

This chapter provides information on how to extend the Oracle Communications Unified
Inventory Management (UIM) data model through additions to the metadata. The information
describes statically extending the UIM data model, which can result in backward compatibility
issues. See "Backward Compatibility” for the implications regarding this type of extension.
Another option is to dynamically extend UIM through characteristics. For information about
characteristics, see UIM Concepts.

About the UIM Data Model

The UIM data model extends the Oracle Communications Information Model (Information
Model). The Information Model is shared by several Oracle Communications products,
including UIM. The data model for each product is defined by a collection of XML and XSD
files called metadata. Some metadata files are defined by the Information Model, and some
metadata files are defined by the product. Regardless of their origin, all metadata files are
part of the product installation.

Metadata files define:

* Tables and columns that comprise the UIM database

» Entities and attributes that correspond to the tables and columns
* Enumerated data

» Life-cycle state transition data

* Native sequences

* Tags that govern the definition of an entity, entity manager, enumeration, and native
sequence

The metadata files, in conjunction with UIM-provided Ant targets, are used to regenerate the
database tables and the corresponding entity Java source files. Another UIM-provided Ant
target compiles the entity source files into entity class files and rebuilds the inventory.ear file
to include the entity class files.

¢ Note:

The generated entities and compiled source files reside in the inventory.ear file
upon installation. The Ant targets for regeneration and compilation are needed only
if you statically extend the data model.

About Entities

ORACLE

Entities are Java representations of UIM data and are used to persist data in the database.
For example, in the UIM database, the TelephoneNumber table defines several columns of
data including ID, name, and description, each of which are defined with a data type of String.

4-1

Chapter 4
About the UIM Data Model

For each table, there is corresponding Java entity class, such as
TelephoneNumber.class, that is compiled from a Java source file, such as
TelephoneNumber.java. Each source file defines data attributes with the same names
and same data types as the data columns defined for the corresponding table. Each
row in the TelephoneNumber table is persisted by an instance of
TelephoneNumber.class. The TelephoneNumber table name, column names, and data
types correspond directly to TelephoneNumber.java attributes and data types because
both are generated from the same entity definition in the metadata.

About Entity Capabilities

A capability is a design pattern that is applied to an entity, such as enabling an entity to
be life- cycle managed. For example, an entity that is life-cycle managed progresses
through a succession of states during the course of its life. For life-cycle managed
entities, UIM tracks two states: administrative state and object state. To support this
capability, an entity must define the adminState and objectState attributes. Rather
than define these attributes for every entity that supports this pattern, the capability is
declared as part of the entity definition. As a result of this declaration, the adminState
and objectState attributes are generated for the entity. So, a capability that is declared
in an entity definition can result in the generation of attributes, and also the generation
of any related entities that support the capability, neither of which are explicitly defined
in metadata.

When extending the data model, you can extend existing entities to declare
capabilities, or you can create new entities that declare capabilities. See
"Understanding Entity Capability Definitions" for more information.

About Entity Relationships

Entity relationships describe how an entity relates to other entities. Entity relationships
can be defined as one-to-one, one-to-many, many-to-one, or many-to-many. An entity
definition can specify a relationship to an explicitly-defined entity, or to a capability-
generated entity.

When extending the data model, you can extend existing entities to define additional
relationships, or you can create new entities that define relationships to other entities.
See "Understanding Entity Relationship and Collection Definitions" for more
information.

About Entity Managers

ORACLE

Entity managers are Java classes that manage a specified set of database tables for a
specific functional area. For example, the EquipmentManager class manages the
Equipment table, but it also manages other tables in the equipment functional area
such as EquipmentHolder, PhysicalPort, PhysicalConnector, and PhysicalDevice.

Entity manager class files are part of UIM and work with the Persistence Framework in
managing the UIM database. The metadata defines entity manager interfaces, citing
existing entity manager classes in the definition.

When extending the data model, you can extend existing entities to be managed by a
specific entity manager, or you can create new entities which requires the creation of
new entity managers. See "Understanding Entity Manager Definitions" for more
information.

4-2

Chapter 4
About the Metadata Files

About Entity ID Sequencing

The Oracle database provides a mechanism for obtaining a generated unique number known
as a sequence. This mechanism is called an Oracle native sequence. Each UIM entity
defines the entityld attribute, which the persistence framework uses to uniquely identify an
object. In previous releases, the entityld attribute value was set using just one Oracle native
sequence, resulting in the value being a unique number across the entire database. However,
this scenario does not provide for optimal processing performance.

To improve processing performance, UIM now defines several additional Oracle native
sequences. Each native sequence is given a sequence generator name that is based on a
functional area, such as ConnectivitySeqGen, EquipmentSeqGen, and
TelephoneNumberSeqgGen. The native sequences and corresponding sequence generator
names are defined in the metadata, and an entity definition may specify a sequence
generator, indicating the native sequence that the entity is to use when setting the entityld
attribute value for the entity. For example, the Pipe, PipeTerminiationPoint, and PipeRel entity
definitions specify the ConnectivitySeqGen sequence generator. In this scenario, the entityld
values for the entities that use a specific native sequence are unique; entityld values are not
unique across the entire database.

To keep this information centrally located, all native sequences and their corresponding
sequence generator names are defined in the same type of file. Additionally, all entity
definitions that specify a sequence generator are extended to specify it in the same type of
file. Entity definitions that do not specify a sequence generator name use the default native
sequence provided by the database.

Depending on your implementation of UIM, you may determine that you have heavily-used
entities that, upon installation, use the default database native sequence. You can extend the
data model by extending your heavily-used entity definitions to specify one of the UIM-
defined sequence generators. You can also define your own native sequences and
corresponding sequence generator names in the metadata, and extend your heavily-used
entity definitions to specify one of your new sequence generators. See "Understanding Native
Sequence Definitions" for more information.

¢ Note:

The remainder of this chapter refers only to entities and attributes, rather than to
tables and columns and corresponding entities and attributes, all of which are
generated from entity definitions in the metadata.

About the Metadata Files

ORACLE

The metadata files are contained in the UIM_Homelcartridges/tools/
ora_uim_entity_sdk_cartproj.zip file. This ZIP file is also located in the UIM SDK. Within
the ZIP file, the metadata files are located in the src/luim_poms_lib.jar file unless otherwise
noted.

The metadata files include:

4-3

ORACLE

Chapter 4
About the Metadata Files

ocim-**

File names that start with ocim- indicate that the file is part of the Information Model.
These files are common to several Oracle Communications products, including UIM.

uim-*.*

File names that start with uim- indicate that the file defines UIM-specific entities, entity
attributes, entity managers, enumerations, and transitions.

*.entities.xml

File names that end with -entities.xml indicate that the file defines entities for a
specific area, such as service, equipment, or connectivity. Entities are defined through
XML tags that are governed by the package.xsd file and the *-plugin.xsd files, which
are described below. Any tags used in an entity definition are a subset of the tags
defined in the package.xsd file and the *-plugin.xsd files.

In addition to defining entities, *-entities.xml files also define entity managers,
enumerations, and native sequences. The *-entities.xml file content is further
explored in "Understanding Entity Definitions".

*-types.xsd

File names that end with -types.xsd indicate that the file defines entity attributes
(name and data type), or inherits entity attributes from a specified entity. For example,
the Equipment entity defines several attributes including id, name, and description,
all of which are defined as String. In another example, the EquipmentRole entity does
not define any attributes; rather, it inherits all of InventoryRole entity attributes. The *-
types.xsd file content is further explored in "Understanding Entity Attribute
Definitions".

~enum-.*

File names that contain -enum- indicate that the file defines either enumeration types
or enumeration values. The *-enum-*.* file content is further explored in
"Understanding Enumeration Definitions".

*-entityidsequenceextension-entities.xml

File names that end with -entityidsequenceextension-enitities.xml indicate that the
file defines native sequences and corresponding sequence generator names, and that
it extends both explicitly-defined and capability-generated entities by specifying a
sequence generator for the entity to use. The -entityidsequenceextension-
enitities.xml file content is further explored in "Understanding Native Sequence
Definitions".

*.transitions.xml

File names that end with -transitions.xml indicate that the file defines life-cycle state
transitions. The *-transitions.xml file content is further explored in Extending Life
Cycles.

*-plugin.xsd

File names that end with -plugin.xsd indicate that the file defines XML tags that
govern definitions in the *-entities.xml files. The *-plugin.xsd files include:

4-4

ORACLE

Chapter 4
About the Metadata Files

* uim-plugin.xsd
e core-plugin.xsd

» capability-plugin.xsd files, where capability represents a specific capability such as
capacity, characteristic, or consumable

The file content of the *-plugin.xsd files is similar to the package.xsd file content. See
"package.xsd" for more information.

The uim-plugin.xsd resides in the srclora_uim_poms.jar file. The core-plugin.xsd file
resides in the src/platformFiles/pomsicore_poms_lib.jar file.

The capability-plugin.xsd files reside in the correspondingly named srciplatformFiles/
pomsicapability_poms_lib.jar files, where capability represents a specific capability such as
capacity, characteristic, or consumable.

*-libs.xml

The capacity-caps-libs.xml and capacity-model-libs.xml files are internal files that support
the modularity of the capability-plugin.xsd files.

The *-libs.xml files reside in the correspondingly named src/platformFiles/poms/
capability_poms_lib.jar files, where capability represents a specific capability such as
capacity, characteristic, or consumable.

package.xsd

The package.xsd file, and the *-plugin.xsd files, defines XML tags that govern definitions in
the *-entities.xml files. For example, <entity>, <implements>, and <relationship> are XML
tags used to define an entity, to specify an interface that the entity implements, and to define
the entity's relationship to other entities.

The XML tags defined in these files are enforced by the build that generates the database
and entities. If an XML tag is added to an *-entities.xml file that is not defined in the
package.xsd file or in a *-plugin.xsd file, the build fails with an error citing the invalid XML
tag.

There is only package.xsd file and copy of the file resides in each of the src/platformFiles/
pomsicapability_poms_lib.jar files, where capability represents a specific capability such as
capacity, characteristic, or consumable.

Note:

Platform is the base code upon which all Oracle Communications products are built.
Platform provides common code used by all Oracle Communications products,
including the code that generates and builds the each product's database and
entities using the metadata files.

XMLSchema.xsd

The XMLSchema.xsd file defines all the XML tags for the World Wide Web Consortium
(W3C). The W3C is the main international standards organization for the World Wide Web.

The XMLSchema.xsd file is industry-standard specific.

4-5

Chapter 4
Understanding Metadata File Content

Understanding Metadata File Content

The metadata file content defines:
» Entities

* Entity attributes

e Enumerations

* Native sequences

« XML tags that govern the definition of an entity, entity manager, enumeration, and
native sequence

Understanding Entity Definitions

Entity definitions result in the creation of database tables and corresponding entity
source files, which are compiled into entity class files. Entity classes are used to
persist data in the database, and each entity class instance mirrors a unique database
record in a table.

*.entities.xml Files

ORACLE

Entities are defined by XML elements and attributes that identify various properties of
the entity. An entity definition can reside in an ocim-*-entities.xml file, in a uim-*-
entities.xml file, or in both files. When an entity definition resides in both files, the UIM
portion of the definition extends from the Information Model portion of the definition.
For the UIM data model, most entities are defined by both files. There are a handful of
entities that are UIM-specific, in which case the entity definition resides only in the
uim-*-entities.xml file.

Example of an Entity Defined by Both Files

In the UIM data model, most entity definitions reside in an ocim-*-entities.xml file,
with the entity definition extended in a uim-*-entities.xml file, as shown in the
following examples. Example 4-1 is an excerpt from the ocim-number-entities.xml
file that shows the TelephoneNumber entity definition. The entity definition includes
any interfaces the entity implements, any capabilities for which the entity is enabled,
and any relationships that the entity has to other entities.

Example 4-1 Entity Definition

<entity type="oci m Tel ephoneNunber"
interface="oracl e.communi cations.inventory.api.entity. Tel ephoneNunber"
accessControl | ed="true" entityldSequenceGener at or =" Tel ephoneNurber SeqGen” >
<inplenents interface=
"oracl e. conmuni cations.inventory. api.entity.comon. Net wor kAddr ess"/ >
<attribute name="id" index="true"/>
<attribute name="nane" index="true"/>
<! . Khkkkkkkkkkkkkkkk C:apabl | | tl es ******************__>
<lifecycle stateType="oci mlInventoryState"/>
<consunmabl e prefix="TN' attribute="tel ephoneNunber"
assi gnnent St at eType="oci m Assi gnment St at e" >
<consuner nanme="oci m Service" ConfigurationltenEnabl ed="true"/>
</ consumabl e>
<referenceEnabl ed prefix="Tel ephoneNunber" attribute="tel ephoneNunber"/>

4-6

ORACLE

Chapter 4
Understanding Metadata File Content

<characteristic spec="oci m CharacteristicSpecification">
<characteristicNanme nane="oci m TNChar acteri stic"
interface=
"oracl e. conmuni cations.inventory.api.entity. TNCharacteristic"
tabl e="TN_CHAR'/ >
</characteristic>
<busi nessl nteracti onEnabl ed hi story="true" visibilityState="SHOW/>
<gr oupEnabl ed/ >
<! . Khkkkkkkkkkkkkkk*k Rel at| OnShI ps ******************__>
<I'-- One-Sided Many-to-One Tel ephoneNunber to Tel ephoneNunber Spec -->
<rel ationshi p nanme="specification">
<ot her Si de type="oci m Tel ephoneNunber Speci fication"/>
</rel ationshi p>
<lentity>

Example 4-2 is an excerpt from the uim-number-entities.xml file. The example shows the
TelephoneNumber entity definition that extends the TelephoneNumber entity definition from
the ocim-number-entites.xml file. In this example, the entity declares an entity manager
through the managedBYy tag because the entity is business-interaction enabled, as defined in
the ocim-number-entities.xml file. Any methods that an entity needs to implement are also
defined in the UIM portion of the entity definition.

Example 4-2 Extended Entity Definition

<entity type="oci m Tel ephoneNunber"
managedBy="or acl e. cormuni cat i ons. i nvent ory. api . nunber . Tel ephoneNunber Manager " >
<met hod nanme="get Di spl ayl nf 0" >
<si gnat ur e><!'[CDATA[String get Di spl ayl nfo()]]></signature>
<body><! [CDATA]
return getName();]]>
</ body>
<javadoc>Return an identifiable info String for this resource.</javadoc>
</ met hod>
<lentity>

Example of a UIM-Specific Entity Definition

Very few entities are defined by a uim-*-entities.xml file only. One such example is the uim-
rule-entities.xml file. Rulesets are UIM-specific functionality, so the Information Model does
not define any ruleset entities.

Example 4-3 an is an excerpt from the uim-rule-entities.xml file. The file defines four entities
that deal with rulesets. The excerpt shows the ExtensionPoint entity definition, which includes
any interfaces the entity implements, any capabilities for which the entity is enabled, and any

relationships that the entity has to other entities.

Example 4-3 Entity Definition

<entity type="oci m Extensi onPoint"

i nterface="oracl e.communi cations.inventory.api.entity.Extensi onPoint">
<I'-- Two-Si ded One-to-Many ExtensionPoint to Enabl edExtensionPoint -->
<rel ati onshi p nane="enabl edExt ensi onPoi nt s" >

<t hi sSi de inverse="true" collection="java.util.HashSet"/>

<ot her Si de dependent="true" type="oci m Enabl edExt ensi onPoi nt"/>
</rel ationshi p>
<l'-- Two-Si ded One-to-Many ExtensionPoint to ExtensionPointRul eSet -->
<rel ationshi p nane="ext ensi onPoi nt Rul eSet s" >

<t hi sSi de inverse="true" collection="java.util.HashSet"/>

<ot her Si de dependent="true" type="oci m Ext ensi onPoi nt Rul eSet"/>

4-7

Chapter 4
Understanding Metadata File Content

</rel ationshi p>
<lentity>

More on Entity Definitions

Entity definitions include capability and relationship declarations. See "Understanding
Entity Capability Definitions" and "Understanding Entity Relationship and Collection
Definitions" for more information.

The *-entities.xml files also define entity managers. See "Understanding Entity
Manager Definitions" for more information.

Understanding Entity Attribute Definitions

Each entity defines a set of attributes in which to store data. Entity attribute definitions
result in the creation of database table columns and corresponding entity attributes in
source files, which are compiled into entity class files. Entity classes are used to
persist data in the database, and each entity class instance mirrors a unique database
record in a table.

*-types.xsd Files

Entity attributes are defined by XML elements and attributes that define an attribute's
name and data type. Entity attribute definitions reside in *-types.xsd files. Each *-
entities.xml file has a corresponding *-types.xsd file. For example, ocim-number-
entities.xml and ocim-number-types.xsd, or uim-rule-entities.xml and uim-rule-
types.xsd. For each set of corresponding files:

e The *-entities.xml files define entities and entity managers
e The *types.xsd files define entity attributes (name and data type)

Example 4-4 is an excerpt from the ocim-number-types.xsd file that defines the
entity attributes (name and data type) for the TelephoneNumber entity. The attribute
names defined in the excerpt are id, name, and description, and all of the attribute
data types are defined as string.

Example 4-4 Entity Attributes Definition

<xs: conpl exType name="Tel ephoneNunber ">
<Xs: sequence>

<xs:el ement nane="id" type="xs:string">
</ xs: el enent >
<xs: el ement name="nanme" type="xs:string">
</ xs: el enent >
<xs: el ement nanme="description" type="xs:string">
</ xs: el enent >

</ xs: sequence>
</ xs: conpl exType>

Understanding Enumeration Definitions

Enumeration definitions result in attributes that are defined with an enumeration type
being limited to storing only previously defined data values. Enumerations are used to

ORACLE 4-8

Chapter 4
Understanding Metadata File Content

regulate data upon which code is based. For example, code can be written to handle a finite
number of scenarios based on a finite number of defined enumeration values.

The following *-enum-*.* files are in the metadata:
e ocim-enum-entities.xml

e uim-enum-entities.xml

e ocim-enum-types.xsd

e uim-enum-types.xsd

*-enum-entities.xml Files

Enumeration types are defined in the ocim-enum-entities.xml and uim-enum-entities.xml
files. Example 4-5 is an excerpt from the uim-enum-entities.xml file that shows the definition
of two enumeration types: BusinesslinteractionState and BusinessinteractionAction.

Example 4-5 Enumeration Type Definition

<enum t ype="oci m Busi nessl nteractionState"

enunifype="or acl e. comrmuni cati ons. i nventory. api.entity. Busi nesslnteractionState"
adm nState="true"/>

<enum t ype="oci m Busi nessl nt eracti onActi on"

enuniType="or acl e. comrmuni cati ons. i nventory. api . entity. Busi nesslnteractionAction"/>

*-enum-types.xsd Files

Enumeration values are defined in the ocim-enum-types.xsd and uim-enum-types.xsd
files. Example 4-6 is an excerpt from the ocim-enum-types.xsd file that shows the definition
of two sets of enumeration values. The ocim-enum-entities.xml file and the ocim-enum-
types.xsd file both show excerpts of BusinessinteractionState and
BusinessinteractionAction. The ocim-enum-entites.xml file defines the enumeration type,
and the ocim-enum-types.xsd file defines the enumeration values that are valid for each
enumeration type.

Example 4-6 Enumeration Value Definition

<xs: si npl eType nanme="Busi nesslnteractionState">
<xs:restriction base="xs:string">
<xs:enuneration val ue="CANCELLED'/ >
<xs:enuneration val ue="COWPLETED'/ >
<xs:enuneration val ue="CREATED'/ >
<xs:enuneration val ue="I N_PROGRESS"/ >
</xs:restriction>
</ xs:si npl eType>
<xs: si npl eType name="Busi nessl nteractionAction">
<xs:restriction base="xs:string">
<xs:enuneration val ue="CANCEL"/ >
<xs:enuneration val ue="COVPLETE"/ >
<xs:enuneration val ue="PROCESS"/ >
<xs:enuneration val ue="TRANSFER'/ >
</xs:restriction>
</ xs:si npl eType>

Understanding Native Sequence Definitions

ORACLE

Several native sequences and their corresponding sequence generator names are defined in
the metadata. Native sequence definitions result in the creation of the native sequence in the

4-9

Chapter 4
Understanding Metadata File Content

database. Several entity definitions are extended to specify a sequence generator,
which results in the corresponding native sequence being used to set the entityld
attribute value for the entity. The native sequence definitions, their corresponding
sequence generator names, and the entity definitions that are extended to specify a
sequence generator, reside in the ocim-entityidsequenceextension-entities.xml file.

Note:

Entity definitions that do not specify a native sequence use the default native
sequence provided by Platform.

ocim-entityidsequenceextension-entities.xml File

ORACLE

Example 4-7 is an excerpt from the ocim-entityidsequenceextension-entities.xml
file that shows the definition of three native sequences:

- ENTITYID_CONNECTIVITY_SEQ
- ENTITYID_EQUIPMENT_SEQ
- ENTITYID_TN_SEQ

The corresponding sequence generator names given to these native sequences are:

* ConnectivitySeqGen

* EquipmentSeqGen

* TelephoneNumberSegGen

Example 4-7 Native Sequence Definition

<entityl dSequenceGenerator nane="ConnectivitySeqGen"
sequence="ENTI TYI D_CONNECTI VI TY_SEQ' />

<entityldSequenceGenerat or name="Equi prent SeqGen"”
sequence="ENTI TYI D_EQUI PMENT_SEQ" />

<entityl dSequenceGenerator nane="Tel ephoneNunber SeqGen"
sequence="ENTI TYI D TN SEQ' />

Example 4-8 is an excerpt from the ocim-entityidsequenceextension-entities.xml
file that shows the extended definition of three entities to include a sequence
generator. In this example, the Pipe, PipeTerminationPoint, and PipeRel entities all
specify the ConnectivitySeqGen sequence generator, which results in these entities
using the corresponding ENTITYID_CONNECTIVITY_SEQ native sequence to set
their respective entityld attribute values.

Example 4-8 Extended Entity Definition

<entity type="ocim Pipe"

entityl dSequenceGenerat or="ConnectivitySeqCGen" extension="true"/>
<entity type="oci m Pi peTermi nati onPoi nt"

entityl dSequenceCGenerat or="ConnectivitySeqGen" extension="true"/>
<entity type="oci m Pi peRel "

entityl dSequenceCGenerat or="ConnectivitySeqCGen" extension="true"/>

4-10

Chapter 4
Understanding Metadata File Content

< Note:

See the Persistent Pattern chapter in Oracle Communications Information Model
Reference for more information, including a list of entity-to-sequence mappings.

Understanding the Tags that Govern Definitions

ORACLE

The package.xsd and *-plugin.xsd files define the tags that govern definitions of entities,
entity managers, enumerations, and native sequences in *-entities.xml files.

This section introduces the package.xsd and *-plugin.xsd file content to help you better
understand the content when you are viewing it. This section also explains the entity
definition's use of the tags to help you better understand how the tags correlate to an entity
definition.

" Note:

This section does not explain the functionality of the governing tags; it explains
where the governing tags are defined and how they are used within the *-
entities.xml files.

For information on the functionality that the tags provide, see:

e The documentation for each tag within the package.xsd and *-plugin.xsd files

e Oracle Communications Information Model Reference

The package.xsd defines the following complexType elements:
* entity

° manager

e enum

* entityldSequenceGenerator

The <entity> element defines several elements, and some of the elements define attributes.
For example, the <entity> element defines the <import>, <implements>, <attribute>,
<relationship>, and <method> elements, as well as several other elements. The
<relationship> element defines the join, thisSide, and otherSide attributes. The <entity>
element also defines several attributes directly (as opposed to the attributes being defined for
an element). For example, the <entity> element defines the interface and managedBy
attributes. Within the file, each complexType, element, and attribute is described.

In a similar fashion, the *-plugin.xsd files also define tags that are used in the *-entities.xml
files. For example, the capability-*-plugin.xsd files (where capability represents a specific
capability such as capacity, characteristic, and consumable) only define tags that are used in
an entity definition to declare a particular capability for an entity.

Example 4-9 shows the TelephoneNumber entity definition. The example is numbered so that
the information describing the example can be referenced.

4-11

ORACLE

Chapter 4
Understanding Metadata File Content

Example 4-9 Entity Definition

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<entity type="oci m Tel ephoneNunber"
i nterface="oracl e. conmuni cati ons.inventory.api.entity. Tel ephoneNunber"

accessControl l ed="true" >
<inplenents interface=
"oracl e. communi cations. inventory. api.entity.conmon. Net wor kAddr ess"/ >
<attribute name="id" index="true"/>
<attribute name="name" index="true"/>
<!__ kkkkkkhkkkhkkkkkkkk%x (:apabllltles ******************__>
<lifecycle stateType="oci mlnventoryState"/>
<consunabl e prefix="TN' attribute="tel ephoneNunber"
assi gnnent St at eType="oci m Assi gnnent St at e" >
<consuner name="oci m Service" ConfigurationltenEnabl ed="true"/>
</ consumabl e>
<ref erenceEnabl ed prefix="Tel ephoneNunber" attribute="tel ephoneNunber"/ >
<characteristic spec="oci m CharacteristicSpecification">
<characteristi cName nanme="oci m TNChar acteri stic"
interface=
"oracl e. communi cations.inventory. api.entity. TNCharacteristic"
tabl e="TN_CHAR'/ >
</characteristic>
<busi nessl nteractionEnabl ed history="true" visibilityState="SHOW/>
<gr oupEnabl ed/ >
<!__ kkkkkkkkhkkkkkkkk%x Rel atlonshl pS ******************__>
<l-- One-Sided Many-to-One Tel ephoneNunber to Tel ephoneNunber Spec -- >
<rel ationshi p name="specification">
<ot her Si de type="oci m Tel ephoneNunber Speci fication"/>
</rel ationship>
</entity>

Lines 01 through 07 define the entity with various tags. For example:

Line 01 uses <entity> and type; <entity> is defined as a complexType in
package.xsd, and type is defined as an attribute of the <entity> element in
package.xsd.

Line 02 uses interface, which is defined as an attribute of the <entity> element in
package.xsd.

Line 03 uses accessControlled, which is defined in the core-plugin.xsd file.

Lines 04 and 05 use <implements> and interface; <implements> is defined as an
element of the <entity> element in package.xsd, and interface is defined as an
attribute of the <implements> element in package.xsd.

Lines 06 and 07 use <attribute> and name; <attribute> is defined as a
complexType in package.xsd, and name is defined as an attribute of the
<attribute> element in package.xsd.

Lines 08 through 22 continue the entity definition by defining the entity's capabilities.
For example:

Line 09 uses <lifecycle> and stateType, both of which are defined in uim-
plugin.xsd.

Lines 10 through 13 uses several tags that are defined in consumable-
plugin.xsd.

Line 14 uses <referenceEnabled>, which is defined in uim-plugin.xsd.

4-12

Chapter 4
Extending the Data Model Through the Metadata Files

» Lines 15 through 20 uses several tags that are defined in characteristic-pluginx.xsd.

e Line 21 uses <businessinteractionEnabled> and visibilityState, both of which are
defined in uim-plugin.xsd.

* Line 22 uses <groupEnabled>, which is defined in groupenabled-plugin.xsd.

Lines 23 through 27 continue the entity definition by defining the entity's relationships to other
entities. For example, <relationship>, name, <otherSide>, and type are all defined in
package.xsd.

Extending the Data Model Through the Metadata Files

You extend the data model by creating new metadata files.

" Note:

Do not make modifications to the existing metadata files. See "Backward
Compatibility" for the issues involved with modifying the existing metadata files.

You use Oracle Communications Design Studio to create new metadata files by importing the
ora_uim_entity_sdk_cartproj.zip file, and creating new XML or XSD files within the
imported project. Any new metadata files you create must reside in the ora_uim_entity_sdk
project, within the src directory.

When you define new entities and attributes, or extend existing entities and attributes, the
changes are picked up by the Ant target that generates the database and the corresponding
entity Java source files. For example, if you add the new entity myNewEntity, myNewEntity
is generated as a new table in the database, and MyNewEntity is generated as an entity
Java source file. If you add myNewAttribute to an existing entity, myNewAttribute is
generated as a new column on the existing table in the database, and myNewAttribute is
generated as an attribute within the generated entity Java source file.

The following sections describe extending the data model through the creation of new
metadata files.

Defining New Entities

ORACLE

When defining new entities, look at existing *-entities.xml files for examples of how to define
various entity properties. The XML tags you use to define a new entity are governed by the
package.xsd and *-plugin.xsd files. Be sure to include any referenced schemas in the
package statement.

To define a new entity:

1. Create a new XML file.
The file name must end with -entities.xml. For example, myNewFile-entities.xml.
2. Open an existing *-entities.xml file.
3. Copy and paste an entity definition from the existing file to your new file.
4. Modify the copied entity definition as needed:

a. Change the name of the entity to reflect the name of your new entity.

4-13

Chapter 4
Extending the Data Model Through the Metadata Files

b. Remove or update the tags to reflect the definition of your new entity.

Write an entity manager that defines the interfaces to manage the new entity. See
"Creating New Entity Managers".

Write an entity manager implementation that inherits from BaselnvManager and
defines the methods to manage the new entity. See "Creating New Entity
Managers".

Include the entity manager interface definition in your new *-entities.xml file.

Creating New Entity Managers

When creating new entity managers, the entity managers:

Should provide coarse-grained methods that may involve other entity managers
Assume that the caller is managing transaction boundaries

Must be developed so that they are stateless and thread safe so they can be
exposed to web service calls

Should avoid creating duplicate records using makePersistent(). To avoid this, call
the connect() method before you set entities to the transient state. See
"PersistenceManager refresh(), attach(), and connect() Methods" for more
information.

See Using the Persistence Framework for more information on entity managers.

Defining New Entity Attributes

When defining new entity attributes, look at the existing *-types.xsd files for examples
of how to define various attributes. The XML tags you use to define new entity
attributes are governed by the XMLSchema.xsd file. Be sure to include any
referenced schemas in the package statement.

ORACLE

XSD is an industry standard. For information about writing XSD, see the W3C website:

http://ww. w3. or g/ XM/ Schema. ht m

To define attributes for a new entity, or to add new attributes to an existing entity:

1.

Create a new XSD file.

The file name must end with -types.xsd. For example, myNewFile-types.xsd.
Open an existing *-types.xsd file.

Copy and paste an entity attribute definition from the existing file to your new file.

If defining attributes for a new entity, modify the copied entity attributes definition
as needed:

a. Change the entity name to reflect the new entity name.
b. Change the attribute names to reflect the new attribute names.
c. Change the attribute types to reflect the new attribute types.

If adding new attributes to an existing entity, modify the copied entity attributes
definition as needed:

a. Change the entity name to reflect the entity name that defines the attributes to
which you are adding new attributes.

4-14

http://www.w3.org/XML/Schema.html

Chapter 4
Extending the Data Model Through the Metadata Files

b. Change the attribute names to reflect the new attribute names you are adding.

c. Change the attribute types to reflect the new attribute types you are adding.

Defining New Enumerations

ORACLE

When defining new enumeration types, look at the existing *-enum-entities.xml files for
examples of how to define them; when defining new enumeration values, look at the existing
*-enum-types.xsd files for examples of how to define them. The XML tags you use to define
new enumerations are governed by the XMLSchema.xsd file. Be sure to include any
referenced schemas in the package statement.

Enumerations are an industry standard. For information about writing enumerations, see the
W3C Web Services Enumeration website at:

http:// wwv. w3. or g/ Subm ssi on/ W5- Enuner at i on/

You can place all new enumeration types in one new file, and all new sets of enumeration
values in another new file.

To define a new enumeration type:

1. Create a new XML file.

The file name must contain -enum- and end with -entities.xml. For example, myNew-
enum-entities.xml.

2. Open an existing *-enum-entities.xml file.
3. Copy and paste an enumeration type definition from the existing file to your new file.
4. Modify the copied enumeration type definition as needed.

To define enumeration values for a new enumeration type, or to add new enumeration values
to an existing enumeration type:

1. Create a new XSD file.

The file name must contain -enum- and end with -types.xsd. For example, myNewFile-
types.xsd.

2. Open an existing *-enum-types.xsd file.
3. Copy and paste a set of enumeration values from the existing file to your new file.

4. If defining new enumeration values for a new enumeration type, modify the copied
enumeration values as needed:

a. Change the enumeration type to reflect your new enumeration type.
b. Change the data type to reflect the data type of your new enumeration values.
c. Change the enumeration values to reflect your new enumeration values.

5. If adding new enumeration values to an existing enumeration type, modify the copied
enumeration values as needed:

a. Change the enumeration type to reflect the name of the existing enumeration type to
which you are adding the new enumeration values.

b. Change the data type to reflect the same data type as defined by the enumeration
type to which you are adding the new enumeration values.

c. Change the enumeration values to reflect the new enumeration values you are
adding to the enumeration type.

4-15

http://www.w3.org/Submission/WS-Enumeration/

Chapter 4
Extending the Data Model Through the Metadata Files

Defining New Native Sequences

When defining new native sequences, look at the existing ocim-
entityidsequenceextension-entities.xml file for examples of how to define a native
sequence and corresponding sequence generator name. Be sure to include any
referenced schemas in the package statement.

To define a new native sequence, and specify an entity to use it:

1. Create a new XML file.

The file name must end with -entities.xml. The file name should also contain a
meaningful reference so you can readily recognize the file content, such as -
segext-. For example, myNewSeqExts-entities.xml.

2. Open the existing ocim-entityidsequenceextension-entities.xml file.
3. Copy and paste a native sequence definition from the existing file to your new file.
4. Modify the copied native sequence definition as needed:

a. Change the name of the native sequence to reflect the name of your new
native sequence.

b. Change the corresponding sequence generator name to reflect a functional
name for your new native sequence.

5. Copy and paste an extended entity definition from the existing file to your new file.
6. Modify the copied extended entity definition as needed:
a. Change the entity name.

b. Change the specified sequence generator to your new sequence generator.

Extending Existing Entities

You can extend an existing entity using the XML tags defined in the package.xsd and
*-plugin.xsd files that enable an entity's use of framework functionality. For example,
you can extend an entity to be life-cycle enabled, capacity enabled, business-
interaction enabled, place enabled, group enabled, and so forth. Each of these are
functional areas of UIM that become available to an entity through the entity's original
definition, or through an extension and custom code.

There are two kinds of existing entities: Explicitly-defined entities and capability-
generated entities. For example, the Equipment entity is explicitly defined in the
metadata, and includes the declaration of the consumable capability. As a result of this
declaration, the EquipmentConsumer entity is generated, even though the
EquipmentConsumer entity is not explicitly defined in the metadata.

Explicitly-defined entities and capability-generated entities are extended the same way,
with one slight difference: When extending a capability-generated entity, you must
include the extension tag.

Understanding the Extension Tag

The package.xsd file defines tags that are used to govern entity definitions. One such
tag is the extension tag. Since entities are defined in *-entities.xml files, the
extension tag may only be used within an *-entities.xml file.

ORACLE 4-16

Chapter 4
Extending the Data Model Through the Metadata Files

You can use the extension tag to extend:

» Capability-generated entities
» Generated attributes of an explicitly-defined entity
» Generated relationships of an explicitly-defined entity

For example, the following is an excerpt from the ocim-entityidsequenceextension-
entities.xml file that extends the capability-generated EquipmentConsumer entity to use the
ConsumerSeqGen native sequence:

<entity type="oci m Equi pment Consuner"
entityl dSequenceGener at or =" Consuner SeqGen" ext ensi on="true"/>

A similar extension in the same file for the explicitly-defined Equipment entity does not
require the extension tag because the entity is not capability-generated:

<entity type="oci m Equi pnent"
entityl dSequenceGener at or =" Equi pnent SeqGen"/ >

In another example, the TelephoneNumber entity is explicitly defined in the metadata, and by
default has the Trackable Pattern as described in Oracle Communications Information Model
Reference. The Trackable Pattern generates the createdDate, createdUser,
lastModifiedDate, and lastModifiedUser attributes. You can extend any of these generated
attributes through the use of the extension tag. For example, the following adds an index to
the createdUser generated attribute:

<entity type="oci m Tel ephoneNunber" extension="true">
<attribute nane="createdUser" index="true"/>
</entity>

The TelephoneNumber entity explicitly defines several attributes, such as id, name, and
description. So, a similar extension for an explicitly-defined attribute of TelephoneNumber
does not require the extension tag because the attribute is not generated:

<entity type="oci m Tel ephoneNunmber" >
<attribute name="id" index="true"/>
<lentity>

Note:

You cannot add the extension tag to the original entity definition; the tag must be
placed in a separate entity definition that reflects the same name as the entity you
are extending. The separate entity definition can reside in the same file as the
original entity definition or in a separate file, but because Oracle recommends that
you do not modify the metadata files directly, the separate entity definition should
reside in a separate file.

ORACLE 4-17

Chapter 4
Extending the Data Model Through the Metadata Files

< Note:

The extension tag that is defined by the package.xsd file should not be
confused with the standard XSD extension tag, which is used to define
entity attributes in the *-types.xsd files, or to define enumeration values in
the *-enum-types.xsd files. For example, the ocim-equipment-types.xsd
file defines the PipeRole entity to define the same attributes that the
InventoryRole entity defines through the use of the standard XSD extension
tag:

<xs: conpl exType name="Pi peRol ">
<xs: conpl exCont ent >
<xs: extensi on base="oci m|nventoryRol e"/>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Extending Existing Entities

You can extend an existing entity through a new *-entities.xml file that defines the
same entity name and includes additional properties for the entity. When regenerating
the entities:

» For explicitly-defined entities, the properties defined for the entity in both files are
merged together, resulting in the entity possessing the original properties and the
extended properties.

» For capability-generated entities, the properties of the generated entities and any
extended definitions are merged together, resulting in the entity possessing the
original generated properties and the extended properties.

To extend an existing entity:

1. Create a new XML file.

The file name must end with -entities.xml. For example, myNewfFile-
entities.xml.

2. Open an existing *-entities.xml file.

3. Copy and paste an entity definition from the existing file to your new file.

4. Modify the copied entity definition as needed:
a. The entity name must be the same name as the entity you are extending.
b. Add any tags to reflect the extension.

c. If you are extending a capability-generated entity, include the extension tag.

Extending Existing Entity Attributes

ORACLE

Extending an existing entity attribute is done in an *-entities.xml file, not in the *-
types.xsd file.

You can extend an existing attribute using the XML tags defined for attributes in the
package.xsd file. For example, you can extend an attribute definition to have an
index, to be encrypted, or to have a maximum length that the database stores for an
attribute. See "Understanding the Tags that Govern Definitions" for more information.

4-18

Chapter 4
Extending the Data Model Through the Metadata Files

There are two kinds of existing attributes: Explicitly-defined attributes and capability-
generated attributes. For example, the Equipment entity and its attributes are explicitly
defined in the metadata. The Equipment entity definition includes the declaration of the life
cycle management capability. As a result of this declaration, the adminState and objectState
attributes are generated for the Equipment entity, even though they are not explicitly defined
in the metadata.

Explicitly-defined attributes and capability-generated attributes are extended the same way,
with one slight difference: When extending a capability-generated attribute, you must include
the extension tag. See "Understanding the Extension Tag" for more information.

You can extend an existing attribute through a new *-entities.xml file that defines the same
entity name, and includes the attribute extension. When regenerating the entities:

* For explicitly-defined attributes, the properties defined for the attribute in both files are
merged together, resulting in the attribute possessing the original properties and the
extended properties.

* For capability-generated attributes, the properties of the generated attributes and any
extended definitions are merged together, resulting in the attribute possessing the original
generated properties and the extended properties.

To extend an existing attribute:

1. Create a new XML file.
The file name must end with -entities.xml. For example, myNewFile-entities.xml.
2. Open an existing *-entities.xml file.
3. Copy and paste an entity definition from the existing file to your new file.
4. Modify the copied entity definition as needed:

a. The entity name must be the same name as the entity that defines or generates the
attribute you are extending.

b. Update the tags to reflect the extension.

c. Ifyou are extending a capability-generated entity, include the extension tag.

Extending Existing Enumerations

You cannot extend existing enumerations. To clarify, you can add new enumeration values to
an existing set of enumeration values. See "Defining New Enumerations" for more
information.

Extending Existing Native Sequences

ORACLE

You can extend the use of any UIM-defined native sequences to include additional entities.
To extend the use of UIM-defined native sequences:

1. Create a new XML file.

The file name must end with -entities.xml. The file name should also contain a
meaningful reference so you can readily recognize the file content, such as -seqgext-. For
example, myNewSeqExts-entities.xml.

2. Open the existing ocim-entityidsequenceextension-entities.xml file.

3. Copy and paste an extended entity definition from the existing file to your new file.

4-19

4.

Chapter 4
Applying Metadata Static Extensions

Modify the copied extended entity definition as needed:
a. Change the entity name.

b. Change the specified sequence generator to a UIM-defined sequence
generator that you want the entity to use.

c. If the entity is a capability-generated entity, include the extension tag.

You can also modify existing UIM-defined native sequences.

Note:

Oracle recommends that modifications to existing sequences be made
before using UIM (before any sequence numbers have been generated).

To modify existing UIM-defined native sequences:

1.

o > w0 D

Create a new XML file.

The file name must end with -entities.xml. The file name should also contain a
meaningful reference so you can readily recognize the file content, such as -
segext-. For example, myNewSeqExts-entities.xml.

Open the existing ocim-entityidsequenceextension-entities.xml file.
Copy and paste an extended entity definition from the existing file to your new file.
In the copied file, modify the sequence definition as needed.

In the copied file, set the entityldSequenceGeneratorPriority attribute to a value
higher than the entityldSequenceGeneratorPriority value in the original file so
that the modified sequence overrides the original sequence.

If modifying the existing sequence after using UIM (after sequence numbers have
been generated):

a. Determine which entities use the modified sequence.

b. For each entity using the sequence, determine the current maximum entityld
value.

c. For each entity using the sequence, extend the entity definition to set the
initialValue attribute to a value 50 to 100 higher than the current maximum
entityld value.

See "Extending Existing Entities" and "Extending Existing Entity Attributes" for
information on how to do this.

Applying Metadata Static Extensions

Statically extending the data model involves manually extending the metadata files. To
apply the metadata static extensions:

ORACLE

Generate the entity source files from the metadata files
Compile the generated entity source files

Package the compiled entity source files in the inventory.ear, inventory-
adapter.ear, and custom.ear files.

4-20

Chapter 4
Applying Metadata Static Extensions

* Deploy the inventory.ear, inventory-adapter.ear, and custom.ear files

You generate, compile, and package the entity source files using Ant targets that are
provided in the ora_uim_entity sdk_cartproj.zip/src/build.xml file.

About the build.xml File

The build.xml file defines several Ant targets that you can run to manage the database. An
Ant target is a set of executable tasks that can be run using Ant. See "Running Ant Targets"
for more information.

Note:
If you are running these Ant targets on Linux/Solaris, set the following variables:

export COVPUTERNAME=host Name of Linux/ Sol ari s machi ne
export ANT_HOMVE=path to Ant installation

Table 4-1 describes the Ant targets defined in the build.xml file.

Table 4-1 build.xml Ant Targets

- ___|
Ant Target Description

entities From the metadata, this target generates entity source files and
compiles them into entity Java classes. As a result, this target creates:

* The api/build directory, where all of the generated source files and
compiled classes reside. This directory is placed in the
ora_uim_entity_sdk/src directory.

* The uim-entities.jar file, which contains all of the entity classes.
This file is placed in the ora_uim_entity_sdk/src/generated/
inventory/entities/APP-INF/lib directory.

clean This target deletes the api/build and generated directories created by
the entities Ant target.

Oracle recommends that you always run the clean target prior to
running the entities target.

create.tables This target creates new database tables based on any new entities
defined in the metadata; this target does not alter existing tables that
were created as part of the UIM installation.

To connect to the database in which you are creating tables, set the
database credentials in step 8 of the procedure to generate, compile,
and package the entity source files. See "Generating, Compiling, and
Packaging the Entity Source Files" for more information.

alter.tables This target creates new database tables based on any new entities
defined in the metadata.This target also alters existing database tables
based on any new attributes defined for existing entities in the metadata.

To connect to the database in which you are creating or altering tables,
set database credentials in step 8 of the procedure to generate,
compile, and package the entity source files. See "Generating,
Compiling, and Packaging the Entity Source Files" for more information.

ORACLE 4-21

Chapter 4
Applying Metadata Static Extensions

Table 4-1 (Cont.) build.xml Ant Targets

- ___|
Ant Target Description

create.DDL This target creates the createDDL.jdbc and alterDDL.jdbc scripts
based on any new entities defined in the metadata, or any new
attributes defined for existing entities in the metadata. These files are
placed in the ora_uim_entity_sdk/src/generated/entities/scripts
directory.

Run these scripts to create new database tables or alter existing
database tables. The create.DDL target is used in place of the
create.tables and alter.tables targets.

update.earwithEntities This target updates the inventory-adapter.ear and uim_core_lib.ear
files with the generated uim-entities jar file.

Generating, Compiling, and Packaging the Entity Source Files

ORACLE

To generate, compile, and package the entity source files for deployment:

1. Configure your Design Studio environment. Define the following system variables:
« JAVA_HOME
See "Configuring Design Studio” for more information.
* ANT_HOME
See "Configuring Ant" for more information.
2. In Design Studio, open the Studio Design perspective.

For instructions on how to open perspectives in Design Studio, see the Design
Studio Help.

3. Import the UIM_Homelcartridgesitools/ora_uim_entity_sdk_cartproj.zip file.

For instructions on how to import a project into Design Studio using archive files,
see the Design Studio Help.

4. Change to the Java perspective.

For instructions on how to change perspectives in Design Studio, see the Design
Studio Help.

5. Copy and rename the ora_uim_entity_sdk/etc/COMPUTERNAME.properties
file to HOSTNAME.properties, where HOSTNAME is the name of the computer
where Design Studio is installed.

You can determine the computer name by running the following DOS command:

echo %COVPUTERNAMEY

6. Inthe HOSTNAME . properties file, set the following properties to reflect your

configuration:
+ UIM_HOME
- DB_HOME

* PROJECT_HOME

4-22

Chapter 4
Applying Metadata Static Extensions

From a command line, navigate to your workspace ora_uim_entity sdk/src directory,
and run the following Ant command:

ant -f build_extract_pons_zip. xm

This command extracts the POMS SDK into the ora_uim_entity sdk/src/platformFiles/
extract directory.

In the ora_uim_entity_sdk/srciplatformFiles/extract/objectmgmt/pomsiconfig/
poms.properties file, set the ConnectionUserName, ConnectionPassword, and
ConnectionURL database credentials to reflect your database:

#Set datastore connection information for offline utilities.
pons. ConnectionDriverName = oracle.jdbc. Oracl eDriver

pons. Connect i onUser Nane = ui muser

pons. Connect i onPassword = wel cone@23

pons. Connecti onURL = jdbc: oracl e: thin: @ocal host: 1521: XE

Configure the project library list.
For instructions on how configure the project library list, see the Design Studio Help.

Figure 4-1 shows the imported project library list, which includes the JAR files needed to
compile the project.

Figure 4-1 Project Library List Before Configuring

E# Source | 1= Projects | B Libraries | % Order and Export
JaRs and class Folders on the build path:

B

2 o] [R O e O I [y) R = O O 2 O A
fdePIEIETIOETOIODA

ORACLE

uim-enkities. jar - \ora_uim_entity_sdkisrclgeneratediinventoryentities\ APP-IMFYib (missing)
POMS_LIB/lib/eclipselink. jar
POM3_LIESlib)ka-specl _0_1.jar
POMS_LIBJlib/persistence. jar
POMS_LIESplib/platform-persiskence, jar
IJIM_LIEjcapacity_caps.jar
IUIM_LIB/characteristic_caps.jar
IJIM_LIEjconsumable_caps. jar
IIM_LIEjcore_caps.jar
JIM_LIE/groupenabled_caps.jar
1JIM_LIE/sdoapi.jar

1JIM_LIB uim-api-framewark. jar
JIM_LIEjuim-caps. jar
UIM_LIEjuim-managers. jar
JIM_LIEjuim-webservices-framework, jar
B, JRE Swskem Library [jred)

" Note:

The uim-entities.jar file gets created and placed in the specified directory by a
later step in this procedure.

The project library list of JAR files does not indicate the location of the files, so you must
configure the project library list to point to the location of the JAR files. To do this, you

4-23

Chapter 4
Applying Metadata Static Extensions

need to add new variables named POMS_LIB and UIM_LIB that point the
specified directory, as listed in Table 4-2.

Table 4-2 Location of JAR Files
- |

Variable Name Directory Name
POMS_LIB Oracle_Home/POMSClient/lib
UIM_LIB UIM_Home/lib

Figure 4-2 shows the project library list after the variables are added. Notice that
the library list now includes the location of the JAR files, not just the JAR file
names.

Figure 4-2 Project Library List After Configuring

#® Source | 1= Projects | B Libravies | % Order and Export
1ARs and class folders on the build path:

Fe dim-entities. jar - Yora_uimn_entity_sdkisrchgener atediinventoryentities\ APP-IMNFib (rnissing)

POMA_LIB - i OracleCommunications | POMSClient i

POMS_LIB/libfeclipselink. jar - C:\OraceCommunicationstPOMSClientilibliblecipselink., jar

POMs_LIB/lib)jta-specl_0_1.jar - C:hOracleCommunications\POMSClientliblibijta-specl_0_1.jar
POMS_LIB/lib/persistence. jar - C:OracleCommunications | POMSClientibllibhpersiskence . jar
POMS_LIB/plib/platform-persistence. jar - C:\OraceCommunications)POMSClienttibtplib platform-persistence. jar

UIM_LIE - C:\OracletMiddlewareiuser_projectsidamainsibase_domainl | IIM)ib

UIM_LIBfcapacity_caps.jar - C\OracleiMiddlewareiuser _projectsidomainsibase_domain i UIMib\capacity _caps. jar
UIM_LIB/charackeristic_caps.jar - C:lOracle\Middlewareluser_projectsidomainsibase_domainJIMib\char acteristic_caps. jar
I _LIBfconsumable_caps.jar - COracletMiddliewareiuser _projectsidomainsibase_domainliyUIMiiblconsumable_caps. jar
UIM_LIB core_caps.jar - ZOracleMiddiewareiuser _projectsidomainsibase_domainl UMbl core_caps. jar
UIM_LIBfgroupenabled_caps. jar - C\OracleiMiddlewarei\user _projectstdomainsibase_domain\UIMYiblgroupenabled_caps.jar
UIM_LIBfsdoapi.jar - Coracle\Middlewareluser _projectsidomainsibase_domain1\WIMliblsdoapi.jar

IM_LIB uim-api-framewark,jar - Ciioracle\Middlewaretuser_projectsidomainsibase_domainl \IIMyibluim-api-framewark, jar
UIM_LIBfuim-caps.jar - CiOracelMiddlewareluser_projects\domainsibase_domainl\UIMibhuim-caps. jar

- BB

+
deoevsoOoOOOOTOTOORTOTOODE

[e oy Y B e O Y

¥

UIM_LIB uim-managers.jar - C:\OracleiMiddlewareiuser_projects|domains\base_domainl \WIMYlibYuirm-reanagers. jar
UIM_LIBfuim-webservices-framewark, jar - C:0racle\Middiewareiuser_projectsidomainsibase_domainl \UIMYibluim-webservice
B, JRE Svystem Library [jre6]

- B

10. Add any new metadata files to the ora_uim_src_entity/srclapi directory. See
"Extending the Data Model Through the Metadata Files" for more information.

11. Modify the ora_uim_src_entity/srclapi/custom-model-lib.xml file to include any
new metadata files in the build. For example, if you have created new files named
my-entities.xml and my-entities.xsd, you need to add these file names in the
custom-model-lib.xml as follows:

12. Add any custom Java code that supports new entities to the
ora_uim_src_entity/srclapilsrc-man directory. For example, defining new
entities in the metadata requires creating new entity managers. See "Creating New
Entity Managers" for more information.

13. From a command line, navigate to your workspace ora_uim_src_entity/src
directory, and run the following Ant command:

ant entities

ORACLE 4-24

14.

15.

16.

17.

18.
19.
20.

21.

22.

Chapter 4
Applying Metadata Static Extensions

This command creates the uim-entities.jar file and places it in the
ora_uim_src_entity/src/generated/inventory/APP_INF/lib directory. The uim-
entities.jar file contains the entity Java classes for all UIM entities and all custom
entities. See "About the build.xml File" for more information.

Make a backup copy of the following files:
* UIM_Homelapplinventory-adapter.ear
* UIM_Homelappl7_2_xIluim_core_lib.ear

From a command line, navigate to your workspace ora_uim_src_entity/src directory
and run the following Ant command:

ant update.earwithEntities
This command updates the inventory-adapter.ear and uim_core_lib.ear files with the

uim_entities.jar file created in step 13. See "About the build.xml File" for more
information.

If your Domain_HomelserversiserverNamelupload/oracle.communications.
inventory.corelib/7_2_xlapp directory contains a uim_core_lib.ear file:

a. Make a backup copy of this uim_core_lib.ear file.

b. Copy Domain_HomelUIMlappl7_2_xIluim_core_lib.ear to Domain_Homel serversl/
serverNamelupload/oracle.communications.inventory.corelib/7_2_x/app.

From a command line, navigate to your workspace ora_uim_src_entity/src directory
and run one of the following set of Ant commands:

ant create.tables
ant alter.tables

or
ant create. DDL
These commands update the database either directly (create.tables, alter.tables), or

indirectly through a script (create.DDL). See "About the build.xml File" for more
information.

Deploy the updated inventory-adapter.ear file.
Deploy the updated uim_core_lib.ear file.

If you have custom Java code in the ora_uim_entity_sdk project, deploy the resultant
ora_uim_entity_sdk.jar file (cartridge) from the Studio environment into UIM.

Deploying the cartridge adds your custom Java code to the UIM_Homelappl7_2_xI
uim_custom_lib.ear file.

Deploy the inventory.ear file. At the time of deploying this EAR file, you must name this
application oracle.communications.inventory.

If you added custom code, deploy the custom.ear file.

Example 4-10 custom-model-lib.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<l'i bs>

ORACLE

<nodel | i b>
<id>
<nane>http://xnl ns. oracl e. com communi cat i ons/ per si st ence/ Ui mvbdel </ nane>
<versi on>1. 0</ ver si on>

4-25

Chapter 4
More on Entity Definitions

<fid>
<art>nmy-entities. xm</art>
<art>ny-types. xsd</art >
</ nodel | i b>
</libs>

More on Entity Definitions

This section further describes entity definitions, focusing on:

* Understanding Entity Capability Definitions
» Understanding Entity Relationship and Collection Definitions

e Understanding Entity Manager Definitions

Understanding Entity Capability Definitions

A capability is a design pattern that is applied to an entity, such as enabling an entity to
be life-cycle managed. A capability is declared in the metadata using tags, and results

in the generation of attributes and related entities that are not explicitly defined in the *-
entities.xml or *-types.xsd files.

For example, an entity that is life-cycle-managed progresses through a succession of
states during the course of its life. For life-cycle-managed entities, UIM tracks two
states: administrative state and object state. To support this capability, an entity must
define the adminState and objectState attributes. Rather than declare these
attributes in the *-types.xsd of every entity that supports this pattern, the capability is
declared for the entity in the *-entities.xml file using the <lifeCycle> element
stateType tag. As a result of this tag, the adminState and objectState attributes are
generated on the entity, and the corresponding columns are generated on the
database table.

The package.xsd and *-plugin.xsd files defines the tags that are available to declare
a capability. Some capability definitions are modularized, such as the capacity,
characteristic, consumable, and group-enabled capabilities, as defined in the following
*-plugin.xsd files:

e capacity-plugin.xsd

» characteristic-plugin.xsd

e consumable-plugin.xsd

e groupenabled-plugin.xsd
Other *-plugin.xsd files include:
* core-plugin.xsd

e uim-plugin.xsd

The design patterns that are declared as capabilities are documented in Oracle
Communications Information Model Reference.

ORACLE 4-26

Chapter 4
More on Entity Definitions

Understanding Entity Relationship and Collection Definitions

< Note:

For information on all possible elements and attributes that can be used to define
entity relationships and collections, see the package.xsd file.

The *.entities.xml files define entities and their relationships to other entities. Relationships
between entities can be categorized into two types: Uni-directional and bi-directional. A uni-
directional relationship only allows one-way traversal from one entity to another; a bi-
directional relationship allows traversal both ways. The relationships can also be separated
into three cardinalities: One-to-one, one-to-many, and many-to-many. Types and cardinalities
of relationships result in any given entity relationship falling into one of six different
combinations. Examples of these six different combinations are described in the following
sections.

The direction of the relationships is not the determining factor of how primary and foreign
keys are defined in the physical model. It affects only how the logical object model is defined.
However, the relationship cardinality and ownership dictates the primary-foreign keys and join
table definitions.

Relational and collection-type attributes can also be dependent. The entity or collection of
entities referenced by a dependent attribute is deleted when the owning entity is deleted.

Uni-Directional, One-to-One Relationship

In Example 4-11, TopologyProfileEdge has a reference to TopologyEdge, but TopologyEdge
does not have a reference to TopologyProfileEdge.

Example 4-11 Uni-Directional, One-to-One Relationship

<entity type="oci m Topol ogyProfil eEdge"
interface="oracl e.communi cations.inventory.api.entity. Topol ogyProfil eEdge"
accessControl | ed="true" entityldSequenceCGener at or =" Topol ogySeqGen" >

<I-- (One-Sided One-to-One Topol ogyProfil eEdge to Topol ogyEdge -->
<rel ati onshi p nane="t opol ogyEdge" >
<ot her Si de type="oci m Topol ogyEdge"/ >
<j avadoc>
The Topol ogyEdge that contains the Topol ogyProfil eEdge
</javadoc>
</relationship>
</entity>

Uni-Directional, One-to-Many Relationship

ORACLE

In Example 4-12, CharactersticSpecification has a reference to a collection of
CharacteristicSpecValue entities, but a CharacteristicSpecValue does not have a reference
back to the CharacteristicSpecification. The relationship can be omitted only on the many
side. The CharacteristicSpecification ENTITYID foreign key is still realized physically as a
column in the CharacteristicSpecValue table. However, a CharacteristicSpecValue entity does

4-27

Chapter 4
More on Entity Definitions

not have a Java attribute generated that allows the traversal back to the
CharacteristicSpecification.

Example 4-12 Uni-Directional, One-to-Many Relationship

<entity type="ocim CharacteristicSpecification”

interface="oracl e.comuni cations.inventory.api.entity.CharacteristicSpecification
" timeBound="true">

<inpl ements interface="java.lang. C oneabl e"/>

<I'-- One-Sided One-to-Mny
CharacteristicSpecification to CharacteristicSpecVal ue-->
<rel ationshi p name="val ues">
<thi sSi de collection="java.util.HashSet"/>
<ot her Si de dependent="true" type="oci m CharacteristicSpecVal ue"/>
</rel ationshi p>
<lentity>

The collection data type is defined as a java.util. ArrayList. EclipseLink suggests that
java.util. HashSet be used whenever possible to achieve better performance on their
smart proxies logic because list-type collections such as ArrayList require sequential
ordering for the elements for indexed access and allow for duplicate values of
elements. Therefore, if the usage pattern of the collection attributes does not involve
direct indexed access to a specific element, and the elements are unique within the
collection, set-type collections should be used instead.

Uni-Directional, Many-to-Many Relationship

There is no example in UIM of a uni-directional, many-to-many relationship; however, it
is a valid relationship. Using a scenario of entityl and entity2, entityl is applicable to
multiple entity2s, and each entity2 has access to multiple entityls. However, only
entityl has a collection of entity2s. A join table is required for the many-to-many
relationship.

In this relationship, the logical object model does not provide immediate insight that
the relationship is many-to-many. From the entityl point of view, it is one-entity1-to-
many-entity2s. The logical object model does not show the many-to-many cardinality
because there is no relationship back to entityl. However, the physical model exhibits
the many-to-many relationship through the use of the join table.

Bi-Directional, One-to-One Relationship

ORACLE

In Example 4-13, Equipment has a reference to EquipmentEquipmentRel, and
EquipmentEquipmentRel has a reference back to its sole Equipment. The relationship
is owned by the Equipment and the EquipmentEquipmentRel is dependent on the
Equipment.

The relationship name is used for generating the attribute name in the entity.
Example 4-13 Bi-Directional, One-to-One Relationship
<entity type="oci m Equi prent"

i nterface="oracl e. conmuni cations.inventory.api.entity.Equi pment"
accessControl | ed="true" entityl dSequenceCenerat or =" Equi pment SeqGen" >

4-28

Chapter 4
More on Entity Definitions

<I'-- Two-Si ded One-to-One Equi prent to Equi prent Equi pnentRel (B) -->
<rel ati onshi p nane="parent Equi pment " >
<t hi sSi de inverse="true"/>
<ot her Si de type="oci m Equi pment Equi prent Rel "
attribute="chil dEqui pment"/>
<j avadoc>
The hol di ng parent equi pment.
</javadoc>
</rel ationshi p>
<lentity>

<entity type="oci m Equi prent Equi pnent Rel "
i nterface="oracl e. communi cations.inventory.api.entity.Equi pment Equi prent Rel "
tabl e="Eq_EqRel " accessControl | ed="true" entityl dSequenceGener at or =" Equi pment SeqGen" >

<I'-- Two-Si ded One-to-One Equi pment Equi prent Rel to Equi prent -->
<rel ati onshi p nane="chi | dEqui prent ">
<ot her Si de type="oci m Equi prent" attribut e="parent Equi pnent "/ >
</rel ati onshi p>
<lentity>

Bi-Directional, One-to-Many Relationship

In Example 4-14, Equipment has a reference to a collection of
EquipmentHolderEquipmentRel entities, and EquipmentHolderEquipmentRel has a reference
back to Equipment.

The inverse relationship is always on the one side of the relationship because the foreign key
is on the many side. The relationship is owned by the Equipment. The collection of
EquipmentHolderEquipmentRel entities is defined as dependent. As a dependent collection,
the entities in the collection are deleted automatically when the owner entity is deleted. A
dependent property is also applicable to simple no-collection type attributes.

Example 4-14 Bi-Directional, One-to-Many Relationship

<entity type="oci m Equi pnent"
i nterface="oracl e. conmuni cations.inventory.api.entity.Equi pment"
accessControl | ed="true" entityl dSequenceCenerat or =" Equi pment SeqGen" >

<I'-- Two-Si ded One-to-Many Equi pnent to Equi pment Equi prent Hol der Rel - ->
<rel ati onshi p nane="parent Equi pment Hol der s" >
<t hisSide inverse="true" collection="java.util.HashSet"/>
<ot her Si de dependent="true" type="oci m Equi prent Hol der Equi pnent Rel "
attribute="equi pnent"/>
<j avadoc>
Set of parent equi pment hol ders the equipnent is held by.
</javadoc>
</rel ationshi p>
<lentity>

<entity type="oci m Equi pment Hol der Equi pnent Rel "
interface="oracl e.comuni cations.inventory.api.entity. Equi pnent Hol der Equi pment Rel "

ORACLE 4-29

Chapter 4
More on Entity Definitions

tabl e="EqHol der _EqRel " accessControl | ed="t rue"
entityl dSequenceGener at or =" Equi pnent SeqGen" >

<I'-- Two-Si ded Many-to-One Equi pnent Hol der Equi pment Rel to Equi pnent -->
<rel ationshi p name="equi pnent" >
<ot her Si de type="oci m Equi pment" attri but e="par ent Equi pnent Hol ders"/>
<j avadoc>
The child equi prent.

</javadoc>

</rel ationshi p>

<lentity>

Bi-Directional, Many-to-Many Relationship

ORACLE

In Example 4-15, Equipment can have multiple Devicelnterface entities, and each
Devicelnterface entity can be applicable to many Equipment entities. A value of
inverse="true" means that the other side of a two-way relationship owns the foreign
key. In a many-to-many relationship, the inverse is arbitrary because there should be a
join table created. In this case, the inverse="true" defines the other side as the owner
of the relationship. Collection types include ArrayList and HashMap. See the
EclipseLink documentation for all supported collection types.

Example 4-15 Bi-Directional, Many-To-Many Relationship

<entity type="oci m Equi pment"
interface="oracl e. communi cations.inventory.api.entity.Equi pnent"
accessControl | ed="true" entityl dSequenceCener at or =" Equi pment SeqGen" >

<I'-- Two-Si ded Many-to-Many Equi pment to Devicel nterface-->

<rel ationshi p name="supportedDevi cel nterfaces">
<join tabl e="equi pnent _devi cei nterface"/>
<thisSi de inverse="true" collection="java.util.HashSet"/>
<ot her Si de type="oci m Devi celnterface"/>
<j avadoc>

The list of mapped device interaces supported by the equiprent.

</javadoc>

</rel ationshi p>

<lentity>

<entity type="oci m Devicelnterface"
interface="oracl e.communi cations.inventory.api.entity.Devicelnterface"
accessControl | ed="true" entityldSequenceCGenerator="Logi cal Devi ceSeqGen" >

<I'-- Two-Si ded Many-to-Many Devicelnterface to Equiprent-->
<rel ationshi p name="supportingEqui pment" >
<join tabl e="equi pnent _devi cei nterface"/>
<thi sSi de collection="java.util.HashSet"/>
<ot her Si de type="oci m Equi pment "/ >
<j avadoc>
The list of equipment up the hierarchy that supports the device
interface mapping. This will only be populated if the device
interface i s mapped.

4-30

Chapter 4
More on Entity Definitions

</javadoc>
</rel ationshi p>
<lentity>

Relationship Definition Affect on Generated Entities

Each relationship definition adds an attribute to the generated entity for which it is defined.
For a uni-directional relationship, an attribute is generated for the owning entity. For a bi-
directional relationship, an attribute is generated for the owning entity and for the dependent
entity.

Example 4-16 is an excerpt from the uim-rule-entities.xml file that defines the
extensionPoint, ruleSetEntity, and specification relationships for the
ExtensionPointRuleSet entity.

Example 4-16 Entity Definition

<entity type="oci m Ext ensi onPoi nt Rul eSet"
interface="oracl e.comuni cations.inventory.api.entity.ExtensionPointRul eSet">
<identifier>
<attribut e>extensi onPoint</attribute>
<attribute>rul eSetEntity</attribute>
<attribute>specification</attribute>
</identifier>
<l'-- Two-Si ded Many-to-One ExtensionPointRul eSet to ExtensionPoint -->
<rel ationshi p name="ext ensi onPoi nt" >
<ot her Si de type="oci m Ext ensi onPoi nt" attribute="extensi onPoi nt Rul eSets"/>
</rel ationshi p>
<l'-- Two-Si ded Many-to-One ExtensionPointRul eSet to Rul eSetEntity -->
<rel ationship name="rul eSetEntity">
<ot her Si de type="oci m Rul eSetEntity" attribute="extensionPointRul eSets"/>
</rel ationshi p>
<I'-- Two-Si ded Many-to-One ExtensionPointRul eSet to Specification -->
<rel ationshi p name="specification">
<ot her Si de type="oci m Speci fication"
attri bute="extensi onPoi nt Rul eSet s"/ >
</rel ationshi p>
<lentity>

Example 4-17 is an excerpt from the uim-rule-types.xsd file that defines the type attribute
and the sequence attribute for the ExtensionPointRuleSet entity.

Example 4-17 Entity Attributes Definition

<xs: conpl exType name="Ext ensi onPoi nt Rul eSet " >
<xs:annot ati on>
<xs: docunent ati on>
Associ ates extension points and rul esets.
</ xs: docunent ati on>
</ xs:annot ati on>
<Xs: sequence>
<xs: el ement nanme="type" type="oci m Extensi onPoi nt Rul eSet Type" >
</xs:annot ati on>
</ xs: el ement >
<xs: el ement name="sequence" type="integer">
</xs:annot ati on>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>

ORACLE 4-31

Chapter 4
More on Entity Definitions

Example 4-18 is a code excerpt from the ExtensionPointRuleSet generated source file
that defines the attributes for ExtensionPointRuleSet entity. The type attribute and the
sequence attribute are generated based on the attributes defined in the uim-rule-
types.xsd file for the ExtensionPointRuleSet entity. The fields extensionPoint,
ruleSetEntity, and specification are generated based on the relationships defined in the
uim-rule-entities.xml file for the ExtensionPointRuleSet entity.

Example 4-18 Generated Source File

/*
* Ext ensi onPoi nt Rul eSet . j ava
* [CODE- GENERATED]
*/
package oracl e. communi cations.inventory.api.entity;
/**
* Associ at es extension points and rul esets.
*/
public interface ExtensionPointRul eSet
extends java.io. Serializable,
oracl e. communi cati ons. pl at f orm persi st ence. Persi stent,
oracl e. communi cations.inventory. api.Trackabl e
{
public static final
oracl e. communi cati ons. pl atform persistence.inpl.EntityField _type = new
oracl e. communi cat i ons. pl at f orm persi stence.inpl.EntityFi el d(Ext ensi onPoi nt Rul eSet
.class, "type");

public static final

oracl e. communi cati ons. pl atform persistence.inpl.EntityField _sequence = new
oracl e. communi cat i ons. pl at f orm persi stence.inpl.EntityFi el d(Ext ensi onPoi nt Rul eSet
.class, "sequence");

public static final

oracl e. communi cati ons. pl at f orm persi stence.inpl.EntityField _extensionPoint =
new

oracl e. communi cat i ons. pl at f orm persi stence.inpl.EntityFi el d(Ext ensi onPoi nt Rul eSet
.class, "extensionPoint");

public static final

oracl e. communi cati ons. pl atform persistence.inpl.EntityField _ruleSetEntity =

new

oracl e. communi cat i ons. pl at f orm persi stence.inpl.EntityFi el d(Ext ensi onPoi nt Rul eSet
.class, "ruleSetEntity");

public static final

oracl e. communi cati ons. pl atform persistence.inpl.EntityField _specification =

new

oracl e. communi cati ons. pl at f orm persi stence.inpl.EntityFi el d(Ext ensi onPoi nt Rul eSet
.class, "specification");

Taking the example one step further, you can look at the generated source code for
the ExtensionPoint, RuleSetEntity, and Specification entities. These entities are
defined as the other side of the bi-directional relationships in Example 4-16. All three
generated source files define the extensionPointRuleSets attribute, as defined by the
otherSide attribute for each.

ORACLE 4-32

Chapter 4
More on Entity Definitions

Understanding Entity Manager Definitions

The persistence framework manages the database and the mapping between the database
and the entity classes. An entity manager manages the database tables for a specific

functional area. For example, EquipmentManager manages the Equipment table, but it also
manages EquipmentHolder, PhysicalPort, PhysicalConnector, PhysicalDevice, and so forth.

Defining Entity Managers

ORACLE

Entity managers are UIM classes. As a result, entity managers are defined in uim-*-
entities.xml files, and not in ocim-*-entities.xml files. Entity managers are defined using the
<manager> element and interface attribute that are defined in the package.xsd file.
Example 4-19 is an excerpt from the uim-equipment-entities.xml file that shows the
EquipmentManager entity manager definition.

Example 4-19 Entity Manager Definition

<manager interface="oracle.comunications.inventory.api.equipnent.Equi pment Manager"
cl ass="oracl e. conmuni cati ons. i nventory. api . equi pment . i npl . Equi pnent Manager | npl "/ >

Upon installation of UIM, every entity manager that is defined in the metadata has a
corresponding entity manager and implementation of the manager. For example, based on
the excerpt shown in Example 4-19, the following classes exist:

* EquipmentManager
* EquipmentManagerimpl

If you extend the data model by creating a new entity, you must also create a new entity
manager, and implementation of the manager, to manage the entity data. See "Creating New
Entity Managers" for more information.

The relationship of entity to entity manager is not one-to-one. For example, ocim-
equipment-entities.xml defines several entities, each of which defines its own entity
interface. An entity interface differs from a manager interface; an entity interface defines the
getter and setter methods for entity attributes, while a manager interface defines methods for
the entity, such as the createEquipment(), getEquipment(), or updateEquipment() methods.
Example 4-20 is an excerpt from the ocim-equipment-entities.xml file that shows a portion
of the Equipment and EquipmentHolder entity definitions.

Example 4-20 Entity Definition
<entity type="oci m Equi pnent"

i nterface="oracl e. conmuni cations.inventory.api.entity.Equi pment"
accessControl | ed="true" entityl dSequenceGener at or =" Equi pment SeqGen" >

<entity type="oci m Equi prent Hol der"
interface="oracl e.communi cations.inventory.api.entity.Equi pment Hol der"
accessControl | ed="true" entityl dSequenceGener at or =" Equi pment SeqGen" >

Both of these entities are extended in the uim-equipment-entities.xml file, as shown in
Example 4-21.

Example 4-21 ManagedBy Declarations

<entity type="oci m Equi pment"
managedBy="or acl e. cormuni cat i ons. i nvent ory. api . equi pment . Equi pment Manager " >

4-33

ORACLE

Chapter 4
More on Entity Definitions

<entity type="oci m Equi prent Hol der"
managedBy="or acl e. conmuni cati ons. i nvent ory. api . equi pnent . Equi pment Manager " >

The managedBYy tag is only present on entities that are business-interaction enabled.

For business-interaction enabled entities, the managedBYy tag specifies which entity
manager manages the entity.

4-34

Extending Life Cycles

This chapter provides information on extending Oracle Communications Unified Inventory
Management (UIM) entity life cycles. An entity life cycle refers to an entity having a start to its
life, an end to its life, and a defined state at any given point during its life. Life-cycle state
transition definitions are part of the UIM metadata, and these definitions can be extended to
solve specific business requirements.

An entity can be defined as life-cycle managed in the metadata. Life-cycle managed entities
transition through various states throughout the life cycle. The states are determined by the
transition definition specified for the entity in the metadata.

The information presented in this chapter describes statically extending UIM, which can result
in backward compatibility issues. See "Backward Compatibility” for the implications regarding
this type of extension.

< Note:

Before you begin reading about extending life cycles, you should have an
understanding of the following concepts described in UIM Concepts:

* Business Interactions

e Life Cycles

About Business Interactions

ORACLE

Business interactions represent business transactions or events that affect products,
services, and resources in inventory. They include service requests, sales orders, and
network planning projects. Business interactions are modeled in inventory to facilitate change
in the inventory, provide traceability, and enable transaction cancellations and changes. They
can involve current business transactions, such as service orders, or future planned events,
such as grooming projects.

In the UIM user interface (Ul), you can switch between business interactions and current
inventory by choosing Current on the menu bar. The Current menu has the following
options:

e Current: Switches from a business interaction to current inventory.
e Recent Bls: Lists the five most recently accessed business interactions.

e Search: Opens the Business Interaction Search page. Accessing a business interaction
from the Search page switches the current business interaction to the selected business
interaction, and also adds the selected business interaction as an option on the Current
menu.

Business interactions tie in with transition definitions because the business states through
which an entity transitions depend on whether the entity is within the context of a business

5-1

Chapter 5
Understanding Metadata File Content

interaction or current inventory. Each transition definition can define different <f r on»
and <t 0> business states for business interaction versus current inventory. See
Example 5-4.

Understanding Metadata File Content

Extending an entity to be life-cycle managed, and extending life-cycle state transitions,
is done through the metadata files and involves the definitions of:

e Entities
Enumerations

e Transitions

Understanding Life-Cycle Managed Entity Definitions

This section builds upon the information presented in "Understanding Entity
Definitions".

An entity can be defined as life-cycle managed and business-interaction enabled in the
metadata. A business-interaction enabled entity is, by inheritance, automatically a life-
cycle managed entity. Conversely, an entity can be defined as life-cycle managed in
the metadata without being a business-interaction enabled entity. The elements and
attributes used to define an entity as life-cycle managed and business-interaction
enabled are defined in the uim-plugin.xsd file. For example, the <lifecycle> element
is used to define an entity as life-cycle managed, and the
<businesslinteractionEnabled> element is used to define an entity as business-
interaction enabled.

Example 5-1 is an excerpt from the ocim-number-entites.xml file that shows the
TelephoneNumber entity definition. The definition includes the declaration of the life-
cycle managed and business-interaction enabled capabilities, which are bolded in the
example. The <lifecycle> element defines the stateType attribute, which defines a
value of InventoryState. InventoryState is an enumeration and is described in
"Understanding Life-Cycle Managed Enumeration Definitions".

Example 5-1 Entity Definition

<entity type="oci m Tel ephoneNunmber"
i nterface="oracl e. conmuni cations.inventory.api.entity.Tel ephoneNurmber" accessControl | ed="true">

<] . kkkkkkkkhkkkkkkkkk Capabl | | tl es ******************__>

<lifecycle stateType="oci mlnventoryState"/>
<consunabl e prefix="TN' attribute="tel ephoneNunber"
assi gnnent St at eType="oci m Assi gnrent St at " >
<consuner nanme="oci m Service" ConfigurationltenEnabl ed="true"/>
</ consumabl e>
<ref erenceEnabl ed prefix="Tel ephoneNunber" attribute="tel ephoneNunber"/>
<characteristic spec="oci m CharacteristicSpecification">
<characteristicNane nane="oci m TNChar acteristic"
i nterface="oracl e. cormuni cations.inventory.api.entity. TNCharacteristic"
tabl e="TN_CHAR'/ >
</characteristic>
<busi nessl nteractionEnabl ed history="true" visibilityState="SHOW/>
<groupEnabl ed/ >

ORACLE 5-2

<lentity>

Chapter 5
Understanding Metadata File Content

Understanding Life-Cycle Managed Enumeration Definitions

This section builds upon the information presented in "Understanding Enumeration
Definitions".

About Life-Cycle States

Life-cycle managed entities transition through various states throughout the life cycle. These
life-cycle states are defined as enumerations. There are two types of life-cycle states that an
entity transitions through: Business states and object states.

* A business state represents the current state as a result of a business action such as
validate, approve, issue, complete, or cancel.

* An object state represents the current state as a result of an object activity such as
create, update, or delete.

Business state enumerations are defined in the *-enum-entities.xml and *-enum-types.xsd
metadata files. Numerous business state enumerations are defined in the metadata upon
installation of UIM, and you can extend the business state enumerations to solve business
requirements.

Object state enumerations are defined in a Java class and cannot be extended. The object
state enumerations are:

- PLANNED
- QUEUED

- ACTIVE

« INACTIVE

< CANCELLED
- DELETED

Understanding Business State Enumerations

ORACLE

Example 5-2 is an excerpt from the ocim-enum-entities.xml file, which defines the
InventoryState enumeration type.

Example 5-2 Enumeration Type Definition

<enum type="oci m | nvent orySt ate"
enuniType="or acl e. comrmuni cati ons. i nventory. api.entity.InventoryState"
adnmi nState="true"/>

Example 5-1 defined the TelephoneNumber entity to be life-cycle managed, and the definition
included the stateType attribute value of InventoryState, which is an enumeration.

Example 5-3 is an excerpt from the ocim-enum-types.xsd file, which defines the
enumeration values for the InventoryState enumeration type. The enumeration type and

5-3

Chapter 5
Understanding Metadata File Content

enumeration values indicate that the TelephoneNumber entity may transition through
up to eight business states during its life cycle.

Example 5-3 Enumeration Values Definition

<xs: si npl eType name="InventoryState">
<xs:annot ati on>
<xs: document ati on>l nventory Status</xs: document ati on>
</ xs: annot ati on>
<xs:restriction base="xs:string">
<xs:enuneration val ue="PLANNED"/ >
<xs:enumneration val ue="PENDI NG_| NSTALL"/ >
<xs:enuneration val ue="| NSTALLED"/ >
<xs:enumneration val ue="PENDI NG_UNAVAI LABLE"/ >
<xs:enumeration val ue="UNAVAI LABLE"/ >
<xs:enuneration val ue="PENDI NG_ REMOVE"/ >
<xs:enumneration val ue="END OF_LI FE"/>
<xs:enumer ation val ue="PENDI NG_AVAI LABLE"/ >
</xs:restriction>
</ xs: si npl eType>

Understanding Transition Definitions

ORACLE

" Note:

Transition definitions for current inventory are defined within the <live>
element; <live> displays as current in the UIM UI.

A transition defines the intermediate step from one business state to another business
state, or from one object state to another object state. For example, within the context
of a business interaction, the create transition moves an entity from inception to the
initial PENDING_INSTALL business state, and the createComplete transition moves
an entity from the PENDING_INSTALL business state to the INSTALLED business
state. Similarly, the create transition moves an entity from inception to the initial
QUEUED object state, and the createComplete transition moves an entity from the
QUEUED obiject state to the ACTIVE object state.

Transition definitions are defined in files that start with uim- and end with -
transitions.xml. For example, uim-default-transitions.xml. The transition definition
files are located in the UIM_Homelcartridges/tools/ora_uim_entity sdk.zip/src/
uim_poms_lib.jar file.

You can extend business state enumerations, but you cannot extend object state
enumerations. For transitions, you can extend both business state and object state
transitions.

Example 5-4 is an excerpt from the uim-default-transitions.xml file, which defines
the Create transition for the business state:

e From inception to PENDING_INSTALL within the context of a business interaction
e From inception to INSTALLED within the context of current inventory

The example also defines the Create transition for the object state:

* From inception to QUEUED within the context of a business interaction

5-4

Chapter 5
Understanding Metadata File Content

* From inception to ACTIVE within the context of current inventory

Example 5-4 Create Transition

<transition nane="Create" priority="0" defaul t="true">
<obj ect Activity val ue="CREATE"/ >
<busi nessState type="oci mInventoryState">
<attribute name="adm nState" isCharacteristic="false"/>
<busi nessl nteraction>
<from >
<t 0>PENDI NG_| NSTALL</t 0>
</ busi nessl nteraction>

<live>

<from >

<t 0> NSTALLED</ t 0>
<[live>

</ busi nessSt at e>
<obj ect St at e>
<busi nessl nteracti on>
<from >
<t 0>QUEUEDK/ t 0>
</ busi nessl nteraction>

<live>

<from >

<t 0>ACTI VE</ t 0>
<[live>

</ obj ect St at e>
</transition>

Understanding How Transitions Are Triggered

Transitions can be triggered automatically from within custom code or manually from within
the UIM user interface.

For information on the life cycle management interfaces that are available when writing
custom code to automatically transition an entity's life-cycle state, Custom code can be called
from:

e Customized user interface
* Rulesets
Web services

You can manually transition an entity's life-cycle state from the Actions menu on the
Summary page of any entity that is defined as life-cycle managed. The Actions menu
options reflect the applicable transitions defined for the entity, based on the entity's current
state.

Note:

Manually transitioning through an entity's life cycle by selecting the options on the
Actions menu implies that the correct life-cycle state is dependent on user
interaction to initiate the transition.

Example 5-5 is an excerpt from the uim-default-transitions.xml file, which defines the
Activate and Deactivate transitions. The Activate and Deactivate transitions are shown in
Figure 5-1.

ORACLE 5-5

ORACLE

Chapter 5
Understanding Metadata File Content

The example defines the Activate transition for the business state:

* From UNAVAILABLE to PENDING_AVAILABLE within the context of a business
interaction

* From UNAVAILABLE to INSTALLED within the context of current inventory

The example defines the Activate transition for the object state:

e Nothing is defined within the context of a business interaction
e From INACTIVE to ACTIVE within the context of current inventory

The example defines the Deactivate transition for the business state:

* From INSTALLED to PENDING_UNAVAILABLE within the context of a business
interaction

* From INSTALLED to UNAVAILABLE within the context of current inventory

The example defines the Deactivate transition for the object state:

* Nothing is defined within the context of a business interaction
* From ACTIVE TO INACTIVE within the context of current inventory
Example 5-5 Activate and Deactivate Transitions

<transition name="Activate" priority="0" default="true">
<busi nessAction type="oci m Resour ceAction" val ue="ACTI VATE"/ >
<businessState type="oci mlnventoryState">
<attribute name="adm nState" isCharacteristic="false"/>
<busi nessl nteraction>
<f r omPUNAVAI LABLE</ f r o>
<t 0>PENDI NG_AVAI LABLE</ t 0>
</ busi nessl nteraction>
<live>
<f r omPUNAVAI LABLE</ f r o>
<t 0>| NSTALLED</ t 0>
</live>
</ busi nessSt at e>
<obj ect St at e>
<live>
<f ronp| NACTI VE</ f r on>
<t 0>ACTI VE</ t 0>
</live>
</ obj ect St ate>

</transition>
<transition name="Deactivate" priority="0" default="true">
<busi nessAction type="oci m Resour ceActi on" val ue="DEACTI VATE"/ >
<businessState type="oci mlnventoryState">
<attribute name="adm nState" isCharacteristic="false"/>
<busi nessl nteraction>
<fronpl NSTALLED</ f r on»
<t 0>PENDI NG_UNAVAI LABLE</ t 0>
</ busi nessl nteracti on>
<live>
<fron»l NSTALLED</ f r on»
<t 0>UNAVAI LABLE</ t 0>
</live>
</ busi nessSt at e>

5-6

Chapter 5
Understanding Metadata File Content

<obj ect State>
<live>
<f r onPACTI VE</ fronp
<t 0> NACTI VE</ t 0>
<[live>
</ obj ect St ate>

</transition>

Figure 5-1 shows the Telephone Number Summary page Actions menu, which reflects the
applicable transitions defined for the TelephoneNumber entity based on its current state. The
telephone number, shown in the context of current inventory, has an inventory status of
Installed, so Deactivate is the only available transition option. If you select Deactivate, the
inventory status changes to Unavailable, and Activate becomes the only available transition
option. When in the context of a business interaction, the value of the Inventory Status field
reflects the states defined for <businessinteraction> based on the entity's current state. When
in the context of current inventory, the value of the Inventory Status field reflects the status
defined for current (live) based on the entity's current state.

Figure 5-1 Summary Page Actions Menu

Telephone Number Summary - 972-396-93003 Related Pages ~ m Live -
Deactivate P
~|Telephone Humber Information =5 | g
Fhone Mumber 972-396-2300 Assignment Unassigned
Description Status
Inventory Status Installed Specification usTelephoneMumber
Winback] Responsible
- Pr 'L-I .
TN Type e

~|Inventory Groups

View - E Associate 22 Delete % ﬁ' Detach
Mame |DE5|:|'i|:|ti|:-n |Speciﬁcatiu:-n |5tal't Date |E|'u:| Date
Mo data to display.

~|Custom Involvements

E

tnCountryCode Morth America

Total Results: 0

About Transition Groups

ORACLE

A transition group provides the ability to associate a group of transition definitions with a
specification. A transition group requires a name, which is used to associate it with a
specification. A transition group can be associated with multiple specifications. By default,
transition definitions defined within a transition group are templates. Templates are transition
definitions that are not active/searchable until the group in which they are defined is

5-7

Chapter 5
Extending Life Cycles through the Metadata Files

associated with a specification. Within a uim-*-transitions.xml file, the
<transitionGroup> element can define the templateOnly optional attribute, which
defaults to true. If set to true, the transition definitions in the group are active/
searchable, even though they are not yet associated with a specification.

Example 5-6 shows an example of a transition group.

Extending Life Cycles through the Metadata Files

You extend life cycles by creating new metadata files.

" Note:

Do not make modifications to the existing metadata files. See "Backward
Compatibility” for the issues involved with modifying the existing metadata
files.

The metadata files are contained in the UIM_Homelcartridges/tools/
ora_uim_entity sdk.zip/src/luim_poms_lib.jar file.

You can use Oracle Communications Design Studio to create new metadata files. For
example, you can import the ora_uim_entity_sdk.zip file and create any new XML or
XSD files within the imported project.

This section builds upon information presented in Extending the Data Model. Any new
metadata files you create must reside in ora_uim_entity_sdk project to be picked up
by the generator. See "Applying Metadata Static Extensions" for more information.

Extending Entity Definitions

You can extend an entity definition to be business-interaction enabled, life-cycle
managed, or both.

Defining an Entity as Life-Cycle Managed

ORACLE

The presence of the <lifecycle> element in the entity definition defines an entity as life-
cycle managed. stateType is a required attribute of the <lifecycle> element. The value
of stateType is an enumeration type that is defined in the ocim-enum-entities.xml
file. This file defines several enumeration types that can be specified for stateType.
Each enumeration type defines a set of enumeration values that represent the states
of a specific life cycle. initialState is an optional attribute of the <lifecycle> element.
initialState defines an enumeration that represents the default initial life-cycle state.

To define a new entity as life-cycle managed, add the <lifecycle> element to the entity
definition in the new *-entities.xml file. See "Defining New Entities" for more
information.

To define an existing entity as life-cycle managed, add the <lifecycle> element to the
existing entity by extending the entity definition in the new *-entities.xml file. See
"Extending Existing Entities" for more information.

Any new entity files you create must end with -entities.xml and reside in the
ora_uim_entity sdkl/srcl/api directory, to be picked up by the entity generator.

5-8

Chapter 5
Extending Life Cycles through the Metadata Files

Defining an Entity as Business-Interaction Enabled

The presence of the <businessinteractionEnabled> element in the entity definition defines an
entity as business-interaction enabled. history is an optional attribute of the
<businessinteractionEnabled> element. The history attribute is a boolean: if it is set to true,
the version object is kept in the data store; if it is set to false, the version object is deleted.
(Versioning is not covered in this guide. For information about versioning, see UIM
Concepts.) visibilityState is also an optional attribute of the <businessinteractionEnabled>
element. visibilityState defines an enumeration that is the default initial display level for the
business-interaction enabled entity.

To define a new entity as business-interaction enabled, add the
<businessinteractionEnabled> element to the new entity definition in the new *-entities.xml
file. See "Defining New Entities" for more information.

To define an existing entity as business-interaction enabled, add the
<businesslinteractionEnabled> element to the existing entity by extending the entity definition
in the new *-entities.xml file. See "Extending Existing Entities" for more information.

Any new entity files you create must end with -entities.xml and reside in the
ora_uim_entity sdk/srclapi directory to be picked up by the entity generator.

¢ Note:

If an entity is inherited from a business-interaction enabled entity, the entity cannot
be defined as business-interaction enabled.

Defining an Entity as Life-Cycle Managed and Business-Interaction Enabled

A business-interaction enabled entity is, by inheritance, automatically a life-cycle managed
entity. The presence of the <businessinteractionEnabled> element in the entity definition
defines an entity as business-interaction enabled and as life-cycle managed. However, the
presence of the <lifecycle> element in the entity definition is still required to specify
stateType. Example 5-1 showed both the <lifecycle> and <businessinteractionEnabled>
elements in the entity definition.

Extending Enumeration Definitions

You can create new enumeration files to address business requirements. New files you
create must end with -entities.xml or -types.xsd. New files that follow this naming
convention, and that reside the ora_uim_entity _sdk/src/api directory, are picked up by the
entity generator.

See "Defining New Enumerations" and "Extending Existing Enumerations" for more
information.

Extending Transition Definitions

When extending transitions by either creating new transitions or extending existing
transitions, look at the existing uim-*-transitions.xml files for examples. Any new entity files

ORACLE 5-9

Chapter 5
Extending Life Cycles through the Metadata Files

you create that end with -transitionss.xml and that reside in the
ora_uim_entity sdkl/srcl/api directory are picked up by the entity generator

The following transition procedures state how to create a new file, but you do not need
to create a new transitions file for each new transition. For example, you can optionally
define all new transitions and extending existing transitions in the same file.

Defining New Transitions

To add a new transition to a new *-transitions.xml file:

1.

Create a new XML file.

The file name must end with -transitions.xml. For example, myNewfFile-
transitions.xml.

Open an existing uim-*-transitions.xml file.

Copy and paste a transition definition from the existing file to your new file.
Modify the copied transition definition as needed:

a. Change the name of the transition to reflect the name of your new transition.

b. Remove or update the tags to reflect the definition of your new transition.

Extending Existing Transitions

To extend an existing transition in a new *-transitions.xml file:

1.

Create a new XML file.

The file name must end with -transitions.xml. For example, myNewfFile-
transitions.xml.

Open the existing uim*-transitions.xml file that you plan to extend.

Copy and paste the transition definition from the existing file to your new file.
Modify the copied transition definition as needed:

a. Add additional <businessState> elements as needed.

b. Do not change the transition name.

c. If the copied transition does not define the priority attribute, add it and set the
value to 1 (the default is 0). If the copied transition already defines the priority
attribute, increase the value. The priority attribute value is used when the
transition name is not unique. The higher the value, the higher the priority.

Updating Properties Files

ORACLE

If you extend life cycles, you need to update some properties files that are used to
display life-cycle statuses. The following properties files are located in the UIM_Homel
config/resources/logging directory:

status.properties

This file defines statuses that are referenced by the Ul. If life cycles are extended
by introducing new statuses through the metadata transition files, and the statuses
are referenced by the Ul, the status.properties file must be updated to reflect the
new statuses.

5-10

Chapter 5
Extending Life Cycles through the Metadata Files

° enum.properties

This file defines enumerations that are referenced by the Ul. If life cycles are extended by
introducing new enumerations through the metadata enumeration files, and the
enumerations are referenced by the Ul, the enum.properties file must be updated to
reflect the new enumerations.

Updating Security

ORACLE

If you extend life cycles, you need to update security for any new actions to display in the
UIM UL.

To update security:

1. Log in to the Enterprise Manager Console.

2. In the navigation panel, expand Application Deployments and click the
oracle.communications.inventory (AdminServer) link.

The oracle.communications.inventory page appears.

3. From the Application Deployment list menu, select Security, then select Application
Policies.

The Application Policies page appears.
4. Expand the Search page.
5. From the Principle Type list, select Application Role and click the search icon.
The search results display.
6. Select the uimuser row and click Edit.
The Edit Application Grant page appears.
7. Under Permissions, click Add.
The Add Permission dialog box appears.
8. Expand the Search page, and choose Permissions.
9. From the Permission Class list, select oracle.security.jps.ResourcePermission.
10. From the Resource Name list, select Starts With.

11. In Resource Name, enter the following text where Entity is any entity such as Service,
CustomObject, and so forth, and where BusinessAction is your custom business action:

resourceType=PAGE_ACTION,resourceName=Entity.BusinessAction
12. Click the search icon.
The search results display.
13. Select the applicable resource name, and click Continue.
14. In Permission Actions, enter view.
15. Click Select.
The Add Permission dialog box closes.

16. Click OK to grant the permission.

5-11

Chapter 5
Extending Life Cycles through the Metadata Files

More on Transition Definitions

ORACLE

The following information is provided to help you define *-transitions.xml files. Each
transition file can define multiple transition definitions, and each transition definition
can define multiple states. Example 5-6 includes all the possible elements and
attributes described below.

<transition> can be defined multiple times within the same file.

— name is required and should be unigue. If duplicate transition names are
found, the one with the higher priority attribute value is used.

— entityType is optional. If it is not specified, the transition definition is available
for all entity types.

— priority is optional, and has a default value of 0. The higher the value, the
higher the priority. The value is used when name is not unique. If the same
name and same priority are specified, an error occurs.

<specification> is optional. If it is not specified, the transition definition is available
for entities with any specification.

<businessAction> and <objectActivity> are optional, but one of them must be
specified. These values are used by the lookup process to determine the transition
definition.

<businessState> can be defined multiple times within a transition. This defines the
business states that the entity transitions through during its life cycle.

<businessState> can be set on an entity's attribute or a custom attribute.
— type must be a valid enumeration.

— isCharacteristic indicates whether <businessState> is an attribute or a
custom attribute.

— name is either the attribute name or the custom attribute name.

— If isCharacteristic is set to true, you can specify the
characteristicSpecName attribute. If this attribute is not set, the system uses
the name attribute value as the characteristic-specific name.

— <businessState> can optionally define zero, one, or many
<businessInteraction> blocks, or zero or one <live> block, or both.

— If <businessinteraction> is defined, its <from> state is used to match the
entity's current business state if the transition happens within the context of a
business interaction. If <from> is not specified, it is considered a wild card and
can be matched with any entity's current state.

— If <live> is defined, its <from> state is used to match the entity's current
business state if the transition happens within the context of current inventory.

— If the transition happens within the context of a business interaction and
<businesslinteraction> is not defined, the search for a match continues.
Similarly, if the transition happens within the context of current inventory and
<live> is not defined, the search for a match continues.

The <businessinteraction> block and <live> block can define multiple <from>
states. This allows matching multiple <from> states without defining them
separately in each <businessState> block. If <from> is not specified, it is
considered a wild card and can be matched with any entity's current state.

5-12

ORACLE

Chapter 5
Extending Life Cycles through the Metadata Files

There can be only one <to> state defined in the <businessinteraction> and <live> blocks.

The value is used to set the entity's business state. If <to> is not specified, the entity's
current state is not changed.

Only one <objectState> block can be defined for the transition definition.

<objectState> can define zero, one, or many <businesslinteraction> blocks, and zero or

one <live> block, and each can define multiple <from> states.

The <dependants> block defines the methods to retrieve the dependent entities and how

to transition them. Multiple <dependants> blocks can be defined in a transition definition.

attribute is the attribute name of the parent entity and is used to hold the dependent
entities by the parent entity.

isCollection is a boolean that indicates whether attribute holds a collection (true) or
a single dependent entity (false).

If the dependent entity is accessed indirectly through the weak reference of the
attribute, then weakReference is the name of the access method to resolve the weak
reference. For example, the Businessinteraction entity has an items attribute that
holds a collection of Businessinteractionltem entities, but the Businessinteractionltem
entity has a weak reference that refers to the real dependent entity
(TelephoneNumber). The toEntity attribute is specified to resolve the
TelephoneNumber entity from the Businessinteractionltem entity.

After the dependent entities have been resolved, the system is ready to transition the
dependent entities with the parent's business action and object activity. However, if
useDependentObjectActivity is true, the system uses the dependent entity's object
activity and parent entity's business action to transition the dependents.

If the parent's business action is not valid for transitioning the dependents, you have
the option to specify one or more <transitionName> elements in the <dependants>
block. TransitionNames retrieves the transitions in sequence, then uses the
transition's business action and object activity to look up the matching transition for
each dependent. If there is no matching transition by using transitionNames, the
action described in the previous bullet is performed.

Example 5-6 Transitions Definition

<transitionG oup name="def aul t Busi nesslnteracti onG oup" tenplateOnly="fal se">
<transition name="Busi nesslnteractionCreate"
entityType="oci m Busi nesslnteraction" assignable="true" priority="0">

<obj ect Activity val ue="CREATE"/ >
<busi nessState type="oci m Busi nessl nteractionState">
<attribute nane="adm nState" isCharacteristic="false"/>
<busi nessl nteracti on>
<from >
<t 0>CREATED</ t 0>
</ busi nessl nteracti on>
<live>
<from >
<t 0>CREATED</ t 0>
<[live>
</ busi nessSt at e>
<obj ect St at e>
<busi nessl nt eracti on>
<from >
<t 0>ACTI VE</ t 0>
</ busi nessl nt eracti on>
<live>
<from >

5-13

Chapter 5
About Life Cycle Management Interfaces

<t 0>ACTI VE</ t 0>
</live>
</ obj ect St at e>
</transition>
<transition nane="Busi nesslnteracti onConpl ete"
entityType="oci m Busi nesslnteraction" assignable="true" priority="0">
<busi nessAction type="oci m Busi nesslnteractionAction" val ue="COWLETE"/ >
<busi nessState type="oci m Busi nesslnteractionState">
<attribute name="adm nState" isCharacteristic="false"/>
<busi nessl nteraction>
<f r om>CREATED</ f r o>
<fronpl N_PROGRESS</ f r onp
<t 0>COMPLETED</ t 0>
</ busi nessl nteraction>
<busi nessSt at e>
<obj ect St at e>
<busi nessl nteraction>
<f r onPACTI VE</ f r o>
<t 0>l NACTI VE</ t 0>
</ busi nessl nteraction>
</ obj ect St at e>
<dependants attribute="itenms" isCollection="true"
weakRef erence="t oEntity"
useDependent Obj ect Activity="true">
</ dependant s>
</transition>
</transitionG oup>

About Life Cycle Management Interfaces

The following sections describe life cycle management interfaces. For information on
the methods defined by any of these interfaces, see the Javadoc. For instructions on
how to access the Javadoc, see "Javadoc Documentation”.

LifeCycleManaged

An entity that is defined as life-cycle managed in the metadata automatically
implements the LifeCycleManaged interface. It is not necessary to include the tag:

<inpl ements interface="oracl e.cormuni cations.inventory.api.LifeCycl eManaged"/>

The LifeCycleManaged interface:

» Defines a business state for the entity

A business state represents the current state as a result of a business action such
as validate, approve, issue, complete, or cancel.

e Defines an object state for the entity

An object state represents the current state as a result of an object activity such as
create, update, or delete.

TransitionManager

An entity that is defined as life-cycle managed in the metadata automatically
implements the LifeCycleManaged interface. This enables you to call methods on the

ORACLE 5-14

Chapter 5
About Life Cycle Management Interfaces

oracle.communications.inventory.api.common.TransitionManager interface, which takes in a
LifeCycleManaged entity as an input parameter.

The TransitionManager interface:

» Defines methods that take in a business action and appropriately transition the business
and object states

e Automatically updates the business state and object state of any life-cycle managed
dependent entities when the parent life-cycle managed entity business state or object
state is updated

e Provides the ability to associate or disassociate a specification with a transition group

Transition Definition Search

ORACLE

The transition() method provides the ability to transition through the defined business states
and object states. To do this, it must first determine the transition definitions for business
state and object state that apply to the entity. This is accomplished through a search that
takes place within the transition() method.

The transition() method input parameters are the life-cycle managed entity, business action,
and object activity. The life-cycle managed entity parameter contains entity type and
specification, which are used in the transition definition search. If no match is found, a less
relevant search is performed until a transition definition is found. The following lists the
search criteria in the most-significant to least-significant order. The least-relevant transition
definition returned would be the default transition definition.

1. Business action, object activity, entity type, specification
2. Business action, object activity, entity type
3. Business action, object activity

At this point, the search has returned one or more transition definitions that matched the
criteria. This list of transition definitions is now interrogated to find one that defines a <from>
business state that matches the entity's current business state. Whether the entity is within
the context of a business interaction determines which <from> business state is interrogated:
Business interaction or current (live).

5-15

Extending the Topology

This chapter provides information on extending the topology in Oracle Communications
Unified Inventory Management (UIM). The topology is a graphical representation of the
spatial relationships and connectivity among your inventory entities.

The topology uses a specific set of entities and a specific algorithm to determine the path
between any two entities. This algorithm is called the path analysis. You can extend the
topology to include additional entities in the topology, and you can modify the path analysis to
suit your business needs.

The information presented in this chapter describes statically extending UIM, which can result
in backward compatibility issues. See "Backward Compatibility” for the implications regarding
this type of extension.

< Note:

Before you begin reading about extending topology, it is important that you have an
understanding of the following subjects described in UIM Concepts:

e Connectivity

e Topology

About Topology Entities and Topology-Managed Entities

Topology entities are defined in the metadata and are used to display the topology. Topology-
managed entities are also defined in the metadata and are indirectly used to display the
topology. UIM maps topology-managed entities to one of two topology entities, and, as a
result of the mapping, topology-managed entities indirectly display in the topology.

Topology Entities

ORACLE

The metadata defines the following topology entities:
e TopologyEdge
e TopologyNode

TopologyNode entities represent locations, network nodes, or devices, and TopologyEdge
entities represent pipes or network edges.

The metadata defines the topology entities in the topology-entities.xml file. Example 6-1 is
an excerpt from this file that shows the definition of the TopologyNode entity.

Example 6-1 topology-entities.xml
<entity type="oci m Topol ogyNode"

interface="oracl e.communi cations.inventory.api.entity. Topol ogyNode"
accessControl | ed="true" entityl dSequenceCener at or =" Topol ogySeqGen" >

6-1

Chapter 6
About Topology Entities and Topology-Managed Entities

<inplenents interface="java.lang. C oneabl e"/ >
<inmplenents interface=
"oracl e. communi cations.inventory. api.entity.comon. Topol ogyQhj ect"/ >
<attribute name="isTopLevel Node" index="true"/>
<attribute name="geonetry" spatial ="true"/>
<rel ationshi p nane="busi nessthj ect">
<t hi sSi de inverse="true"/>
<ot her Si de dependent="true" type="oci m TopNodeAssoci ati on"
attribute="topol ogyNode"/ >
</rel ationshi p>
<lentity>

The TopologyEdge entity is also defined in the topology-entities.xml file in the same
manner.

¢ Note:

There are actually several topology entities defined in the topology-
entities.xml file that support topology. However, within the context of
extending topology, this chapter focuses solely on the TopologyEdge and
TopologyNode entities.

Topology-Managed Entities

The metadata defines the following entities as topology-managed:
e Equipment

e GeographicPlace

e LogicalDevice

* Network

e NetworkEdge

* NetworkNode

e PhysicalDevice

e Pipe

The metadata defines these entities as topology-managed throughout the various *-
entities.xml files. Example 6-2 is an excerpt from the equipment-entities.xml file.
The example shows the entity definition for PhysicalDevice, which includes the
implementation of the TopologyObiject interface. Implementing the TopologyObject
interface in the entity definition is what defines an entity as topology-managed.

Example 6-2 Topology-Managed Entity Definition

<entity type="oci m Physi cal Devi ce"

interface="orac

e. communi cations. inventory. api.entity. Physical Device" accessControl | ed="true"

entityl dSequenceGener at or =" PhyDevi ceSeqGen" >

<inpl enents
<inpl enents
<inpl enents
<inpl enents

"oracl e.

ORACLE

interface="oracl e.comuni cations.inventory.api.entity.comon. Physi cal Resource"/ >
interface="java.l ang. d oneabl e"/ >

interface="oracl e.comuni cations.inventory.api.entity.comon. Topol ogyQhj ect"/>
interface=

conmuni cations. inventory. api.entity.common. Physi cal Mappi ngQbj ect”/ >

6-2

Chapter 6
About Topology Mapping

<inplenents interface="oracle.conmunications.inventory.api.entity.comon. Networ kNodeEnabl ed"/ >

<lentity>

About Topology Mapping

Entities defined as topology-managed in the metadata are mapped to either TopologyEdge or
TopologyNode by the UIM-provided TopologyMapperimpl class.

TopologyEdge
The following topology-managed entities are mapped to TopologyEdge:

* NetworkEdge
* Pipe

TopologyNode

The following topology-managed entities are mapped to TopologyNode:
e Equipment

e GeographicPlace

e LogicalDevice

* Network

* NetworkNode

e PhysicalDevice

< Note:

The GeographicPlace entity is defined as topology-managed in the UIM metadata,
and the UIM mapping logic indirectly maps this entity to TopologyNode. The
mapping logic actually checks for GeographicLocation and GeographicSite, not
GeographicPlace. GeographicPlace is a parent to GeographicLocation and
GeographicSite. A place becomes a topology object when it is associated to a
resource such as Logical Device or Physical Device.

Extending the Topology

To extend the topology:

1. Determine entities that you plan to define as topology-managed. (This step is performed
by the business analyst, who relays the information to the developer.)

2. Determine the mapping of each topology-managed entity to TopologyEdge or
TopologyNode. (This step is performed by the business analyst, who relays the
information to the developer.)

ORACLE 6-3

Chapter 6
Extending the Topology

3. Define identified entities as topology-managed in the metadata by creating new

ext-*-entities.xml files. See "Defining an Entity as Topology-Managed" for more
information.

4. Regenerate the entities to pick up the new ext-*-entities.xml files. See "Applying
Metadata Static Extensions" for more information.

5. Extend the mapping logic to include the mapping of any additional entities defined
as topology-managed in the metadata. See "Extending the Mapping" for more
information.

Defining an Entity as Topology-Managed

An entity can be defined as topology-managed through a new file in the metadata.

Note:

Do not modify existing metadata files. See "Backward Compatibility" for the
issues involved with making additions to the existing metadata files.

To define a new entity as topology-managed, add the <implements> element to the
entity definition in the new *-entities.xml file to implement the TopologyObject
interface. See "Defining New Entities" for more information.

To define an existing entity as topology-managed, add the <implements> element to
the entity by extending the entity definition in the new *-entities.xml file to implement
the TopologyObject interface. See "Extending Existing Entities".

Extending the BusinessObjectType.java File

ORACLE

If you define an entity as topology-managed in the metadata, you must also extend the
BusinessObjectType class by modifying it to include an enumerated value for that
entity. This provides the ability to keep a weak reference between the topology entity
and the business object.

For example, the BusinessObjectType class defines the BusinessObjectType
enumeration, and you must assign an enumerated value to any entities you define as
topology-managed:

/**
* This class defines the business |IDs for nappi ng Business objects to
* Topol ogyEdges and Topol ogyNodes in the topol ogy nodel.
* Every different business entity nust have a unique ID.
* Once a value has been set it cannot be changed.
*/
publ i ¢ enum Busi nessObj ect Type {
Logi cal Devi ceDao(1), Geographi cPl aceDao(2), PipeDao(3),
Physi cal Devi ceDao(4), NetworkDao(5), NetworkNodeDao(6),
Net wor kEdgeDao(7), Equi pment Dao(8), Physi cal Connect orDao(9),
Physi cal Port Dao(10), Equi pment Hol der Dao(11), Custombj ect Dao(12),
Servi ceDao(13), CeographicSiteDao(14), ServiceConfigurationVersionDao(15),
Topol ogyOnl y(9999) ;

6-4

Chapter 6
About Path Analysis

Extending the Mapping

Entities defined as topology-managed in the metadata must be mapped to TopologyEdge or
TopologyNode by extending the TopologyMapperimpl class.

This class is located in the oracle.communications.inventory.api.topology package.

Configuring the topologyProcess.properties file

If you extend the mapping, you must also configure the topologyProcess.properties file to
point to your new mapper class.

For example, the file includes the following upon installation, and you must configure it to
point to your new mapper class instead:

mapperC ass - The Cass Chject that naps the business nodel to Topol ogy
mapper G ass=or acl e. cormuni cat i ons. api . t opol ogy. mapper . i npl . Topol ogyMapper | npl

About Path Analysis

Path analysis is an automated process in UIM that helps you locate and assign pipes for
enablement. You specify a starting point (the source), an ending point (the target), and a
variety of optional criteria. Path analysis evaluates possible paths based on the criteria you
provide and returns paths from which you can select. See UIM Concepts for more
information.

Path analysis uses the topology to find paths.

Configuring and Customizing Path Analysis

Path analysis evaluates connections based on topology-managed entity data. Only entities in
the topology are included in path analysis. You can configure and customize path analysis, as
described in the following sections.

Configuring the Path Analysis Mode

Path analysis can use two different algorithms to determine paths:

e The Complex algorithm (the default) considers all possible paths between end points,
which means evaluating a large number of permutations. You can use filtering to limit the
amount of data to be processed. This mode of path analysis is suitable for complex
networks with many possible connections.

e The Simple Linear algorithm works by iteratively analyzing paths working from the end
points toward a common node. This mode of analysis is suited to relatively simple
scenarios where paths are inherently linear and include 10 or fewer hops, such as POTS.
The Simple Linear algorithm has less impact on system performance than the Complex
algorithm.

You can use the topologyProcess.properties file to configure path analysis. For example,
the properties file includes the following upon installation:

Path Analysis Properties
si npl eLi near Mode=f al se

ORACLE 6-5

Chapter 6
Configuring and Customizing Path Analysis

si npl eLi near ModeMaxCycl es=5
cont i nueProcessi ngl ndi cat or=true

* The simpleLinearMode parameter is used to denote the path analysis mode. The
default value is false, indicating that Complex mode is the default path analysis
mode.

Note:

Before changing the value of this parameter, you need to be certain that
the Simple Linear mode is appropriate for your needs. Path analysis will
not find some kinds of paths in this mode.

You can extend path analysis so that Simple Linear mode is used when analyzing
paths for particular pipe specifications, even when Complex mode is used for the
application in general. See "Customizing Path Analysis" for more information.

e The simpleLinearModeMaxCycles parameter denotes the number of connected
neighbors that a Simple Linear path analysis finds before determining that a path
cannot be found. The default value is 5. You can increase the value if path
analysis fails to find paths.

* The continueProcessinglndicator parameter denotes whether UIM will try to find
a path with the Complex mode if no path can be found by using Simple Linear
mode. The default value is true, indicating that if no path is found using Simple
Linear mode, path analysis continues by attempting to find a path using Complex
mode. Setting the value to false indicates that if no path is found using Simple
Linear mode, path analysis stops.

Customizing Path Analysis

ORACLE

You can use rulesets to customize path analysis. By associating rulesets to individual
Pipe specifications, you can tailor path analysis to meet various business scenarios.

A sample ruleset is provided with UIM to serve as a starting place for three types of
customization:

* Adding additional filter criteria to the analysis. See "Adding Filtering Criteria" for
more information.

» Setting Simple Linear mode for path analysis involving a particular Pipe
specification. See "Setting the Analysis Mode" for more information.

» Specifying that only pipes based on particular specifications be included in a path
analysis. See "Limiting the Analysis by Pipe Specification" for more information.

The PATHANALYSIS_FINDPATHS SETCUSTOMCRITERIA sample ruleset is
included in the UIM_Homelcartridges/sample/ora_uim_pathanalysis_sample
cartridge.

You can customize path analysis by appending code to the body of the ruleset. The
sample ruleset includes examples of each of the three types of customizations
mentioned in this section.

The ruleset is applicable to Pipe specifications and must be associated with the
PathAnalysisManager_findPaths base extension point and the

6-6

Chapter 6
Configuring and Customizing Path Analysis

oracle.communications.inventory.api.entity.PipeSpecification enabled extension point. The
placement of the ruleset extension point must be BEFORE.

Adding Filtering Criteria

You can add filtering criteria to a path analysis. Filtering criteria restrict the amount of data
that UIM considers when locating paths, reducing the amount of processing required.

Note:

Because the additional criteria are defined using standard JPAQL syntax,
knowledge of JPAQL is required to implement this feature.

For example, you can limit the analysis to consider only nodes or edges that include
particular characters in their names or only pipes in a particular status. Including the following
code in the PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA ruleset limits the path
analysis to pipes in the Installed state.

filterStr.append("businessQbject.referenceld == vPipe. ext:getColum('ENTITYID) ");
filterStr.append(" && vPipe.adm nState == pStatus ");

par ans. add(" pSt at us");

val ues. add(1 nventoryState. | NSTALLED) ;

criteria.set AppendQuery (params, values, filterStr.toString());

Setting the Analysis Mode

You can configure path analysis to use Simple Linear mode when enabling pipes based on a
particular specification. Including the following code in the
PATHANALYSIS FINDPATHS SETCUSTOMCRITERIA ruleset sets the mode to Simple
Linear when the ruleset runs. It also sets values for the SimpleLinearModeMaxCycles and
ContinueProcessingindicator parameters.

criteria.setSinplelLinearMde(true);
criteria.setSinplelLinear ModeMaxCycl es(10);
criteria.setContinueProcessinglndicator(true);

Limiting the Analysis by Pipe Specification

You can limit the pipe analysis so that it considers only transport pipes based on a particular
specification. For example, you can filter out trunk and ISDN lines that are not valid
connections for POTS. Similarly, if there are cables between a switch and an MDF that are
not used for POTS, you can exclude them from the pipe analysis.

< Note:

You can also limit path analysis to particular Pipe specifications by including a
specification in the Transport configuration item of a Pipe configuration.

ORACLE .

Chapter 6
About Topology Interfaces

For example, including the follow code in the
PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA ruleset limits the path
analysis to pipes based on the Sample Terminated Pipe specification:

SpecManager sm = | nvent or yHel per . makeSpecManager () ;
SpecSearchCriteria specCriteria = sm mkeSpecSearchCriteria();
CriterialtemecritSpecNanme = specCriteria. makeCriterialten();
crit SpecNare. set Val ue(" Sanpl eTer ni nat edPi pe");

critSpecName. set Operator (CriteriaQOperator. EQUALS | GNORE_CASE) ;

specCriteria.setName(critSpecNane);
Li st <Speci fication> specs = smfindSpecifications(specCriteria);
ArrayList includeSpecs = new ArraylList();
for (Specification pipespec : specs){
i ncl udeSpecs. add(new Long(pi pespec. getEntityld()));
}

criteria.setlncludeSpecifications(includeSpecs);

About Topology Interfaces

You can use the topology interfaces when writing rulesets or web services to meet
business requirements that involve extending the topology or customizing path
analysis.

The following sections describe the available topology interfaces. For information on
the methods defined by any of these interfaces, see the Javadoc. For instructions on
how to access the Javadoc, see "Javadoc Documentation”.

TopologyObiject is the only topology interface described in this section that is available
to all entities. Defining an entity to implement this interface makes the entity topology-
managed. Topology-managed entities must be mapped to TopologyEdge or
TopologyNode.

The remaining interfaces described in this section are available to TopologyEdge and
TopologyNode entities. Example 6-3 is an excerpt from the uim-common-entities.xml
file showing the common manager interfaces defined for the entities, including
TopologyEdge and TopologyNode.

Example 6-3 uim-common-entities.xml Manager Interfaces

<manager interface="oracle.comunications.inventory.api.framework.policy.SearchPolicy"

cl ass="oracl e. conmuni cati ons. i nventory. api . framewor k. pol i cy. i npl . Sear chPol i cyl npl "/ >
<manager interface="oracle.comunications.inventory.api.common. Transiti onManager"

cl ass="oracl e. conmuni cati ons. i nventory. api . conmon. i npl . Transi ti onManager | npl "/ >
<manager interface="oracle.comunications.inventory.api.common. Attachnment Manager"

cl ass="oracl e. conmuni cati ons. i nventory. api . conmon. i npl . At t achment Manager | npl "/ >
<manager interface="oracle.comunications.inventory.api.common. SequenceCenerator"

cl ass="oracl e. conmuni cati ons. i nventory. api . conmon. i npl . SequenceCener ator | npl "/ >
<manager interface="oracle.comunications.inventory.api.consuner.Consumer Manager"

cl ass="oracl e. conmuni cati ons. i nventory. api . consumer . i npl . Consumer Manager | npl "/ >
<manager interface="oracle.comunications.inventory.api.consuner.Assignment Manager"

cl ass="oracl e. conmuni cati ons. i nventory. api . consumer . i npl . Assi gnnent Manager | npl "/ >
<manager interface="oracle.comunications.inventory.api.conmmon. Configurationl nput Manager"

cl ass="oracl e. conmuni cati ons. i nventory. api . cormon. i npl . Confi gurati onl nput Manager | npl "/ >
<manager interface="oracle.communications.inventory.api.consuner.Conditi onManager"

cl ass="oracl e. conmuni cati ons. i nventory. api . consurmer. i npl . Condi ti onManager | npl "/ >
<manager interface="oracle.comunications.inventory.api.consuner.ReservationManager"

cl ass="oracl e. conmuni cati ons. i nventory. api . consurmer. i npl . Reservati onManager | npl "/ >
<manager interface="oracle.communications.inventory.api.conmmon. Federati onManager"

cl ass="oracl e. conmuni cati ons. i nventory. api . conrmon. i npl . Feder at i onManager | npl "/ >

ORACLE 6-8

Chapter 6
About Topology Interfaces

<manager interface="oracle. communications.inventory.api.comon. EntityldGenerator"
cl ass="oracl e. conmuni cati ons. i nventory. api . comon. i npl.EntityldGeneratorl|npl"/>
<manager interface="oracle.commnications.inventory.api.adm n.SecurityManager"
cl ass="oracl e. conmuni cati ons.inventory.api.admn.inpl.SecurityMnager!|nmpl"/>
<manager interface="oracle.comunications.inventory.api.topol ogy. Topol ogyManager"
cl ass="oracl e. conmuni cati ons. i nventory. api . t opol ogy. i npl . Topol ogyManager | npl "/ >
<manager interface="oracle.comunications.inventory.api.topol ogy. mapper. Topol ogyMapper"
cl ass="oracl e. conmuni cati ons. i nventory. api . t opol ogy. mapper. i npl . Topol ogyMapper | npl "/ >
<manager interface="oracle.comunications.inventory.api.topol ogy.PathAnal ysi sManager"
cl ass="oracl e. conmuni cati ons. i nvent ory. api . t opol ogy. i npl . Pat hAnal ysi sManager | npl "/ >
<manager interface="oracle.comunications.inventory.api.topol ogy. mapper. Pat hAnal ysi sMapper"
cl ass="oracl e. conmuni cati ons. i nventory. api . t opol ogy. mapper . i npl . Pat hAnal ysi sMapper | mpl "/ >
<manager interface="oracle.comunications.inventory.api.topol ogy. mapper. Topol ogyProfil eMapper"
cl ass="oracl e. conmuni cati ons. i nventory. api . t opol ogy. mapper. i npl . Topol ogyProf i | eMapper | mpl "/ >
<manager interface="oracle.comunications.inventory.api.capacity. CapacityMnager"
cl ass="oracl e. conmuni cati ons.inventory. api . capaci ty.inpl. Capaci t yManager| npl "/ >
<manager interface="oracle.comrmunications.inventory.api.characteristic.CharacteristicManager"
cl ass="oracl e. conmuni cations.inventory.api.characteristic.inpl.CharacteristicMnagerlnpl"/>
<manager interface="oracle.commnications.inventory.api.role.Rol eManager"
cl ass="oracl e. conmuni cati ons.inventory.api.role.inpl.Rol eManager| npl"/>
<manager interface="oracle.commnications.inventory.api.comon. RowLockManager"
cl ass="oracl e. conmuni cati ons. i nventory. api . conmon. i npl . RowLockManager I npl "/ >
<manager interface="oracle.comunications.inventory.api.framework.policy.LockPolicy"
cl ass="oracl e. conmuni cati ons. i nventory. api . framewor k. pol i cy. i npl . LockPol i cyl npl "/ >

TopologyObject
Package: oracle.communications.api.inventory.entity.common

This interface defines getter methods for the object's IDs: ID, ENTITYID, and OID. There are
no setter methods because these IDs are generated for the object, not set for the object.

TopologyManager

Package: oracle.communications.inventory.api.topology

This interface defines methods for finding and maintaining TopologyEdge and ToplogyNode
entity objects.

TopologyMapper

Package: oracle.communications.inventory.api.topology.mapper

This interface defines the business rules for mapping topology-managed entity objects to a
TopologyEdge entity object or a TopologyNode entity object.

PathAnalysisManager

Package: oracle.communications.inventory.api.topology

This interface defines methods for finding paths (edges and nodes) through the topology
network based on specified criteria.

PathAnalysisMapper

Package: oracle.communications.inventory.api.topology.mapper

ORACLE 6-9

Chapter 6
About the topologyProcess.properties File

This interface defines the business rules for mapping business object path analysis
criteria to values used in the topology model. This object provides a mapping layer
between the business model and the topology model for cases where the data in the
topology model must be converted from a value in the business model.

TopologyProfileMapper

Package: oracle.communications.inventory.api.topology.mapper

This interface defines mapping for service topology. While topology is extended
through the metadata, service topology is extended through characteristics,
specifications, extension points, and rulesets, all of which can be defined in Oracle
Communications Design Studio. UIM provides a service topology sample cartridge that
is a working example of how you could extend service topology. See UIM Cartridge
Guide for more information on the service topology sample cartridge.

TopologyEdgeSearchCriteria

Package: oracle.communications.inventory.api.topology

This interface defines the available search criteria for the TopologyEdge entity object
and is an input parameter to topology manager and topology mapper interface
methods.

TopologyNodeSearchCriteria

Package: oracle.communications.inventory.api.topology

This interface defines the available search criteria for the TopologyNode entity object
and is an input parameter to topology manager and topology mapper interface
methods.

About the topologyProcess.properties File

ORACLE

Topology logic references the UIM_Homelconfig/resourcesl/event/
topologyProcess.properties file for specifying the mapper class and for configuring
path analysis. You can also use this file to:

e Turn off topology updates. If you turn off topology updates, you can rebuild the
topology if you need to use a topology-related feature. See UIM System
Administrator's Guide for more information.

For example, the file includes the following upon installation:

di sabl eTopol ogy - turns Topol ogy Refresh On or Of
di sabl eTopol ogy=f al se

e Opt whether to update the topology synchronously or asynchronously with
business model updates. See UIM System Administrator's Guide for more
information.

For example, the file includes the following upon installation:

processSynchronous - Topol ogy is refreshed as part of the transaction
(true)

or asynchronoul sy in a seperate transaction (false)
processSynchronous=true

6-10

Extending Security

This chapter provides information on extending Oracle Communications Unified Inventory
Management (UIM) security to include APIs and entity data.

Security for other parts of UIM is handled by external systems, such as the Oracle WebLogic
Server Administration Console and Oracle Enterprise Manager. See UIM System
Administrator's Guide for more information.

Note:

For information on securing web services, see UIM Web Services Developer's
Guide.

Securing APIs

By default, UIM APIs are not secured. To secure an API, you must extend UIM security to
include the APIs. This can be done by:

e Securing APIs through the SecurityValidation Aspect

» Securing APIs through Rulesets and Extension Points

Securing APIs through the SecurityValidation Aspect

ORACLE

You can secure access to an API by adding the APl method to the UIM-provided security
extension point (securityExtensionPoint) definition, which is defined within the
SecurityValidation aspect in the aop.xml file. See Extending UIM Through Rulesets for more
information about aspects and the aop.xml file.

At the framework level, security is automatically enforced at the security extension point for
any methods that the extension point defines. For example, if no API methods are defined for
the security extension point within the SecurityValidation aspect, then no APIs are secured. If
20 APl methods are defined for the security extension point within the SecurityValidation
aspect, then those 20 APl methods are validated/secured.

Example 7-1 shows API security definitions that are provided as a comment in the aop.xml
file. If uncommented, these definitions would secure the createConditions, updateConditions,
and deleteConditions APIs using the SecurityValidation aspect through the specified
extension point (securityExtensionPoint). The result of this entry in the aop.xml file is that
security validations are run prior to every call to the createConditions, updateConditions, and
deleteConditions APIs.

You can use this example as a starting point by modifying it and uncommenting it in the
aop.xml file to secure any API.

7-1

Chapter 7
Securing APIs

Example 7-1 SecurityValidation Aspect

<concr et e- aspect
nanme="or acl e. conmuni cati ons. ext ensi bi | i ty. extensi on. SecurityValidation"
extends=
"oracl e. communi cat i ons. ext ensi bi | i ty. extensi on. SecurityValidationExtension" >
<poi ntcut name="securityExtensi onPoi nt" expression="
call (public *
oracl e. conmuni cati ons. i nvent ory. api . consuner. Condi ti onManager
createConditions(java.util.Collection))
call (public *
oracl e. conmuni cati ons. i nvent ory. api . consuner. Condi t i onManager
updat eCondi tions(java.util.Collection))
call (public *
oracl e. conmuni cati ons. i nvent ory. api . consuner. Condi ti onManager
del et eCondi tions(java.util.Collection))"/>
</ concr et e- aspect >

Creating the Global Extension Point

Global extension points are created in Oracle Communications Design Studio. For
information on global extension points, see Extending UIM Through Rulesets. For
instructions on how to create a global extension point, see the Design Studio Help.

When using this approach to secure APIs, you must also create one global extension
point that defines the handleSecurityViolation API, which enables the rulesets to
generate errors. The handleSecurityViolation APl is located in the
oracle.communications.inventory.api.admin.SecurityManager package. Example 7-2
shows the API method signature to use when defining the global extension point for
the handleSecurityViolation API.

Example 7-2 Custom Global Extension Point Signature

public void oracle. comrunications.inventory.api.adm n. SecurityMnager
handl eSecurityViolation([])

Creating the Global Ruleset Extension Point

Global ruleset extension points are created in Design Studio. For information on global
ruleset extension points, see Extending UIM Through Rulesets. For instructions on
how to create a global ruleset extension point, see the Design Studio Help.

After you have created the ruleset and global extension point in Design Studio, you
must also create the corresponding global ruleset extension point in Design Studio. A
global ruleset extension point associates a ruleset with a global extension point, so the
global extension point knows which ruleset to run.

Securing APIs through Rulesets and Extension Points

ORACLE

You can also secure access to an API by creating custom rulesets that run at specified
extension points. The custom rulesets set permissions for an API, enforces any
permissions that are set for an API, and logs error messages whenever a security
violation is detected.

Setting and enforcing API permissions through rulesets is done in the same manner as
setting and enforcing entity data permissions. See "Securing Entity Data through
Rulesets and Extension Points" for more information.

7-2

Chapter 7
Securing Entity Data

Securing Entity Data

By default, UIM entity data is not secured. To secure entity data, you must extend UIM
security to control data access to individual entities. This is done by creating custom rulesets
that run at specified extension points. The custom rulesets set permissions or partitions for an
entity, enforces any permissions or partitions that are set for an entity, and logs error
messages whenever a security violation is detected.

About Entity Access Control

To configure access control for an entity, the entity must be declared as access-controlled in
the metadata. For example, the following is an excerpt from the metadata that shows the
Equipment entity definition, which is declared as access-controlled:

<entity type="oci m Equi pnent"
i nterface="oracl e.cormuni cations.inventory.api.entity.Equi pnent"
accessControl | ed="true">

Most, but not all, entities are declared as access-controlled. If you want to configure access
control for an entity that is not declared as access-controlled in the metadata, you must first
extend the data model to declare the entity as access-controlled. See "Extending the Data
Model" for more information.

Access-controlled entities define additional attributes that contain security-specific data. For
example, access-controlled entities define the owner, permissions, and partition attributes.
Access-controlled entities also extend the AccessControlled class, so each entity class has
access to the setOwner(), setPermissions(), and setPartition() methods defined in the
AccessControlled parent class. The value of these attributes can be set by custom rulesets
that call these methods.

< Note:

When controlling access to a range of entities, the ruleset custom code must iterate
through the range and call the method for each entity in the range. See "Securing
Entity Data for a Range of Entities Example" for more information.

Securing Entity Data through Rulesets and Extension Points

You can secure entity data through rulesets and extension points by:

e Setting Permissions in a Custom Ruleset
e Setting Partitions in a Custom Ruleset

* Enforcing Security in a Custom Ruleset

ORACLE a

Chapter 7
Securing Entity Data

Setting Permissions in a Custom Ruleset

ORACLE

< Note:

This section also applies to securing APIs through permissions.

To control data access to an entity through permissions, set the permissions attribute
for the entity through custom code that calls the setPermissions() method, which is
defined as:

public void setPermssions(String acl);

This method is defined in the oracle.communications.inventory.api.AccessControlled
class, which is the parent class of all entities that are declared as access-controlled in
the metadata. In the custom ruleset, you can call this method on the parent class
(AccessControlled) or on the child class (EntityName, such as TelephoneNumber,
Equipment, and so forth).

See "Creating Custom Rulesets and Extension Points " for examples of
setPermissions() method calls.

Understanding ACL

The permissions are defined as an access control list (ACL). The ACL is a Java string
that specifies who is allowed to access an object and what operations they can
perform on an object.

An ACL consists of one or more entry statements separated by semicolons. Each
statement includes the type of permission (allow or deny), the permission (r for read
or w for write), and a principal or role to whom the permission is granted. (A principal is
a user or group. It is easier to manage permissions at the level of roles, however.)

The syntax is as follows:

allowdeny riw = principal|roles[rolel,role2,role3...];

where principal is the name of any user or group and role is the name of any role.
Example 7-3 shows the ACL syntax in Extended Backus-Naur Format (EBNF).
Example 7-3 ACL Syntax

acl:= acl _entry (';"acl _entry)*

acl _entry:=("allow |'deny')permssion? target_list

permssion:= ("r'|'w)"=

target list:= target (','target)*

target:= principal|'roles’ '['role_list']"
role list:=role(','role)*

Note the following about the ACL:

e The ACL is evaluated left to right until a security decision of allow or deny is
enforced.

e If no permission is stated, allow is implied.

7-4

Chapter 7
Securing Entity Data

Allowing write access implies allowing read access.
» Denying read access also implies denying write access.

* Any user having the uimuser role is permitted full access to an entity, regardless of the
permissions set for the entity. This role exists by default and is defined as a superuser.

Table 7-1 lists examples of permissions and how they work together.

Table 7-1 Examples of Permissions

Permissions Explanation

Allow roles[billing_admin]; deny all Anyone assigned to the billing_admin role can read or
write the entity, but no one else.

Allow all Everyone can read or write the entity. The same can be
achieved by simply not defining permissions for the
entity.

Allow r=all,w=roles[location_admin] Everyone can read the entity; anyone having the
location_admin role can write the entity.

Deny all No one may can the entity except superusers.

Deny w=all No one can write the entity except superusers, but

everyone may read the entity.

Deny roles[OrderEntryUser,GeoMapAdmin | Anyone having either the OrderEntryUser or the
User] GeoMapAdminUser role is denied access. Everyone
else has full access.

Setting Partitions in a Custom Ruleset

ORACLE

To control data access to an entity through partitions, set the partition attribute for the entity
through custom code that calls the setPartition() method, which is defined as:

public void setPartition(String partition);

This method is defined in the oracle.communications.inventory.api.AccessControlled class,
which is the parent class of all entities that are declared as access-controlled in the metadata.
In the custom ruleset, you can call this method on the parent class (AccessControlled) or on
the child class (EntityName, such as TelephoneNumber, Equipment, and so forth).

See "Creating Custom Rulesets and Extension Points " for examples of setPartition() method
calls.

Configuring Partitions

To control data access to an entity through partitions, some additional configuration is
required:

1. Inthe WebLogic Server Administration Console, you must define a user group within a
security realm. The group you define represents a data partition in UIM. For instructions
on how to do this, see UIM System Administrator's Guide.

7-5

Chapter 7
Creating Custom Rulesets and Extension Points

Caution:

The group name must begin with ora_uim_partition# to be recognized
by UIM. For example, if you define a group name of
ora_uim_partition#myPartition, then the custom ruleset would set the
partition to /ImyPartition.

2. In the UIM_Homelconfiglsystem-config.properties file, set the
uim.security.filter.enabled property to true, as shown here:

uimsecurity.filter.enabl ed=true

Enforcing Security in a Custom Ruleset

< Note:

This section also applies to enforcing security permissions set for APIs.

API access that is controlled through set permissions, and entity data access that is
controlled through set permissions and partitions is enforced through custom code that
calls the checkPermissions() method, which is defined as:

public void checkPerm ssions(String perm AccessControlled instance);

This method is defined in the
oracle.communications.inventory.api.framework.security.UserEnvironment class. The
checkPermissions() method calls the hasAccessToPartition() method, so the
checkPermissions verifies access for both permissions and partitions.

If a security violation is detected, the application throws a
java.security.AccessControlException. The custom code catches and logs the
AccessControlException by calling the error() method, which is defined as:

public void error(String s, Throwable t);

This method is defined in the
oracle.communications.inventory.api.framework.logging.Log class.

See "Creating Custom Rulesets and Extension Points " for examples of error() method
calls.

Creating Custom Rulesets and Extension Points

ORACLE

When using custom rulesets to secure an API or entity data, you must also create an
extension point or global extension point to run the ruleset. The following sections
provide additional information and examples for creating the ruleset and extension
point. If creating a global extension point, see "Creating the Global Extension Point" for
more information.

7-6

Chapter 7
Creating Custom Rulesets and Extension Points

Creating Custom Rulesets

Rulesets are created in Oracle Communications Design Studio. Rulesets can be written using
Drools or Groovy. This section provides several custom ruleset examples, and each example
is shown twice; once using Drools and once using Groovy. For information on rulesets, and
using Drools and Groovy, see "Extending UIM Through Rulesets". For instructions on how to
create a ruleset, see the Design Studio Help.

Note:

In the following custom ruleset examples, all import statements are omitted.

Securing APIs Example

ORACLE

Example 7-4 shows a custom ruleset that secures access to the createConditions,
updateConditions, and deleteConditions APIs by setting permissions. The ruleset defines four
rules:

Default Condition Validation Rule

This rule always runs and calls the validate() method, which simply logs the method
name and logs the user that is calling the method.

Create Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the
createConditions API. This rule calls the setConditionsOwner() method, which sets
permissions.

Update Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the
updateConditions API. This rule calls the validateConditionsOwner() method, which
enforces security and logs an error if a security violation is detected.

Delete Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the
deleteConditions API. This rule also calls the validateConditionsOwner() method, which
enforces security and logs an error if a security violation is detected.

7-7

ORACLE

Chapter 7
Creating Custom Rulesets and Extension Points

< Note:

Example 7-4 uses the context.getArguments() method. However, depending
on how you configure your custom ruleset to run (before, after, or instead of
the method your extension point defines), you may need to use the
context.getReturnValue() method instead.

For example, when the ruleset runs before the method the extension point
defines, use context.getArguments() because the return value is always
empty in this scenario. When the ruleset runs after the method the extension
point defines, use context.getReturnValue() because the data in the context
argument that was passed to the ruleset may have changed through the use
of context.setArguments().

See "ExtensionPointRuleContext.returnValue" for more information.

Example 7-4 Custom Ruleset Using Drools

package oracl e. communi cations. rul es;

gl obal Log | og;

function void validat e(Ext ensi onPoi nt Rul eCont ext context, Log |ogger,
User Envi ronnment env) {

logger.info("", new String[]{"********"1);

l ogger.info("", new String[]{"method: ", context.getMethodName()});
l ogger.info("", new String[]{"user: ", env.getUserName()});
logger.info("", new String[]{"********"1);

}

function void setConditionsOaner (Ext ensi onPoi nt Rul eCont ext context, Log |ogger,
User Envi ronnment env) {
logger.info("", new String[]{"*****x**"1),
I ogger.info("", new String[]{"setConditionsOmer"});
Col I ection conditions = (Col |l ection) context.getArgunents()[0];
if (conditions !'= null && !conditions.isEmty())
{
String owner = env. get UserName();
for (lterator itr = conditions.iterator(); itr.hasNext();) {
Condi tion cond = (Condition) itr.next();
if (cond instanceof AccessControlled) {
((AccessControl | ed) cond) . set Oaner (owner);
((AccessControl | ed) cond) . set Perni ssi ons("deny
cont ract Enpl oyees");

}
}
}
I ogger.info("", new String[]{"********"1);

}

function void validateConditionsOaer (Ext ensi onPoi nt Rul eCont ext context, Log
| ogger, UserEnvironnent env) {
logger.info("", new String[]{"********"1);

7-8

Chapter 7
Creating Custom Rulesets and Extension Points

I ogger.info("", new String[]{"validateConditionsOaner"})

Col l ection conditions = (Collection) context.getArguments()[0];
String nmethodName = context.get Met hodName() ;

String target Name = context.getDecl aringTarget Type(). get Si npl eNarre() ;
String policyName = targetNane + "." + methodNang;

I ogger.info("", new String[]{"policyName: ", policyNane})

if (conditions !'=null && !conditions.isEnpty()) {
for (Iterator itr = conditions.iterator(); itr.hasNext();) {
Condi tion cond = (Condition) itr.next()
if (cond instanceof AccessControlled) {

try {
env. checkPer ni ssi ons(policyNane, (AccessControlled) cond);
}

catch (java.security. AccessControl Exception ace) {
I ogger.error("", new String[] {ace.getMessage()});

| ogger.error("", new String[] {"M error nessage for: " +
cond.toString()})
}
}
}
}
I ogger.info("", new String[]{"*****x**"})
}
e T T
/'l RULES
e T T
rule "Default Condition Validation Rule"
salience 10
when
context: ExtensionPoi nt Rul eCont ext ()
t hen
User Envi ronnent env = User Envi ronnent Fact ory. get User Envi ronnent ()
Rul eDebug. br eakPoi nt (cont ext);
Rul eDebug. br eakPoi nt (env) ;
val i date(context, log, env)
end

rule "Create Condition Validation Rule"
salience 1
when
context: ExtensionPoint Rul eCont ext (met hodName == "creat eCondi tions")
t hen
User Envi ronment env = User Envi ronment Fact ory. get User Envi ronnent ()
set Condi ti onsOaner (context, |og, env)
end

rule "Update Condition Validation Rule"
salience 1
when
context: ExtensionPoint Rul eCont ext (met hodName == "updat eCondi ti ons")
t hen
User Envi ronnent env = User Envi ronnent Fact ory. get User Envi ronnent ()
val i dat eCondi ti onsOaner (context, |og, env);
end

rule "Delete Condition Validation Rule"
salience 1

ORACLE 7-9

Chapter 7
Creating Custom Rulesets and Extension Points

when
context: ExtensionPoint Rul eCont ext (met hodName == "del et eCondi ti ons")
t hen
User Envi ronnent env = User Envi ronnent Fact ory. get User Envi ronnent ()
val i dat eCondi ti onsOaner (context, |og, env);
end

Example 7-5 shows the same custom ruleset content-wise, but using Groovy instead

of Drools. Only the rules section is shown. (The functions section content is the same;
the only difference between Drools and Groovy is the syntax of the function definition

itself: Drools uses the key word function and Groovy uses the key word def.)

Example 7-5 Custom Ruleset Using Groovy

User Envi ronnment env = User Envi r onnment Fact ory. get User Envi ronnent () ;
String methodName = Ext ensi onPoi nt Rul eCont ext . get Met hodNange() ;

i f (methodName == "createConditions") {
set Condi ti onsOaner (context, log, env); }
el se {

i f (methodName == "updateConditions") {
val i dat eCondi ti onsOaner (context, |og, env); }
el se {
i f (methodName == "del eteConditions") {
val i dat eCondi ti onsOaner (context, log, env); }
el se {
val i date(context, log, env)

}
}

Securing Entity Data through Permissions Example

ORACLE

Example 7-6 shows a custom ruleset that secures access to party entities by setting
permissions. The ruleset name implies that it is intended to run when a party is
created.

Example 7-6 Custom Ruleset Using Drools

package oracl e. comuni cations.inventory.rules;

gl obal Log I og;

rule "Create Party with Pernissions"
salience 2
when
partyList : Collection()
then
User Envi ronnent environnent = User Envi ronnent Fact ory. get User Envi ronnent ();
if ((partyList !'=null) & !(partyList.isEmty())) {
for (hject partyO: partyList) {
Party party = (Party)partyQ
party.set Oaner ("inv");
party.setPerm ssions("allow inv; deny all");

7-10

Chapter 7
Creating Custom Rulesets and Extension Points

}

end

Example 7-7 shows the same custom ruleset content-wise, but using Groovy instead of
Drools. Only the rules section is different, so that is all that is shown.

Example 7-7 Custom Ruleset Using Groovy

User Envi ronnment environnment = User Environnent Fact ory. get User Envi ronnent () ;
if ((partyList !'=null) && !(partyList.isEmty())) {
for (Qoject partyO: partylList) {
Party party = (Party)partyQ
party.set Oamer("inv");
party.setPerm ssions("allow inv; deny all");

}
Retrieving Permissions Information Example

Example 7-8 shows a custom ruleset that retrieves user and role information so you can view
the permissions that are set for a user through roles.

Example 7-8 Custom Ruleset Using Drools

package oracl e. comuni cations.inventory.rules;

rule "Get Permissions Info"
salience 2
when
true
then
User Envi ronnent environnent = User Envi ronnent Factory. get User Envi ronnent ();
String user = env.getUser();
String userName = env. get User Name();
Col lection roles = env. getRoles();
end

Example 7-9 shows the same custom ruleset content-wise, but using Groovy instead of
Drools. Only the rules section is different, so that is all that is shown.

Example 7-9 Custom Ruleset Using Groovy

User Envi ronnment environnent = User Envi ronnent Fact ory. get User Envi ronnent () ;
String user = env.getUser();

String userName = env. get User Nane();

Col l ection roles = env. getRol es();

Securing Entity Data through Partitions Example

Example 7-10 shows a custom ruleset that secures access to logical device entities by
setting a partition. The ruleset name implies that it is intended to run when a logical device is
created.

ORACLE 7-11

Chapter 7
Creating Custom Rulesets and Extension Points

Example 7-10 Custom Ruleset Using Drools

package oracl e. conmuni cations.inventory.rul es;

gl obal Log | og;
rule "Create Logical Device with Partitions”
salience 2
when
I dList : Collection()
t hen
User Envi ronment envi ronment = User Envi r onnent Fact ory. get User Envi ronnent () ;
if ((IdList !'=null) & !(ldList.isEnmpty())) {
for (oject Id: IdList) {
((Logi cal Device)ld).setPartition("/US_PARTI TI ON NY_PARTI TI ON') ;
}

}

end

Example 7-11 shows the same custom ruleset content-wise, but using Groovy instead
of Drools. Only the rules section is different, so that is all that is shown.

Example 7-11 Custom Ruleset Using Groovy

User Envi ronnent environnent = User Environnent Fact ory. get User Envi ronnent () ;
if ((IdList '= null) & !(ldList.isEnmpty())) {
for (Qoject Id: IdList) {
((Logi cal Device)ld).setPartition("/US_PARTI TI ON NY_PARTI TI ON');
}

}

Securing Entity Data for a Range of Entities Example

When securing entity data for a range of entities, the ruleset custom code must iterate
through the range and call the access control method for each entity in the range. To
do this, you must configure your custom ruleset to run After the API call.

Example 7-12 shows a custom ruleset that secures access to a range of logical
devices by iterating through the range of logical devices, and setting a partition for
each logical device in the range. The ruleset name implies that it is intended to run
when a range of logical devices are created.

" Note:

Example 7-12 shows the use of the setPartition() method to secure entity
data for a range, but the same concept applies when using the setOwner() or
setPermissions() methods to secure entity data for a range.

Example 7-12 Custom Ruleset Using Drools

package oracl e. communi cations.inventory.rules;

gl obal Log | og;

ORACLE 7-12

Chapter 7
Creating Custom Rulesets and Extension Points

rule "Create Range of Logical Devices with Partitions"
salience 2
when
I dList : Collection()
t hen
User Envi ronnent environnent = User Environnent Fact ory. get User Envi ronnent ()
if ((Idlist '= null) && !(ldList.isEmpty())) {
for (wject obj : IdList) {
Logi cal Device |d = (Logi cal Devi ce) obj
I'd.setPartition("/US_PARTI TI ON' NY_PARTI TI ON');

}

end

Example 7-13 shows the same custom ruleset content-wise, but using Groovy instead of
Drools. Only the rules section is different, so that is all that is shown.

Example 7-13 Custom Ruleset Using Groovy

User Envi ronnment environnment = User Envi ronnent Fact ory. get User Envi ronnent ()
if ((ldList '=null) && !'(ldList.isEmty())) {
for (Qoject obj : IdList) {
Logi cal Device |d = (Logi cal Devi ce) obj
I d.setPartition("/US_PARTI TI ON' NY_PARTI TION');

}

Enforcing Security Example

ORACLE

Example 7-14 shows a custom ruleset that enforces security access to a party. The ruleset
name implies that it is intended to run when a party is updated.

Example 7-14 Custom Ruleset Using Drools

package oracl e. comruni cations.inventory.rules

gl obal Log I og

rule "Secure Update Party"
salience 2
when
partyList : Collection()
then
User Envi ronnent environnent = User Envi ronnent Fact ory. get User Envi ronnent ();
if ((partyList !'=null) & !(partyList.isEmty()))
{

for (hject partyO: partyList) {
Party party = (Party)partyQ

try {
envi ronment . checkPer m ssi ons

(WitePermssion.getlnstance().toString(), party)

cat ch(Throwabl e t){
log.error("", t);

}

7-13

Chapter 7
Creating Custom Rulesets and Extension Points

end

Example 7-15 shows the same custom ruleset content-wise, but using Groovy instead
of Drools. Only the rules section is different, so that is all that is shown.

Example 7-15 Custom Ruleset Using Groovy

User Envi ronnment environnment = User Environnent Fact ory. get User Envi ronnent ()
if ((partyList !'=null) && !(partyList.isEmty()))
{

for (Qoject partyO: partyList) {
Party party = (Party)partyQ
try {
envi ronment . checkPer ni ssi ons
(WitePermssion.getlnstance().toString(), party);

cat ch(Throwabl e t){
log.error("", t);

}
}

Creating Extension Points

ORACLE

" Note:

Check the ora_uim_baseextpts cartridge to determine if any extension
points you may need are already defined. Depending on what you are
securing, you may or may not need to create new extension points.

Extension points are created in Design Studio. For information on extension points,
see "Extending UIM Through Rulesets". For instructions on how to create an extension
point, see the Design Studio Help.

When securing APIs, you must create one extension point per API to secure, where
each extension point defines the specific APl method to secure. In the same vein,
when securing entity data, you must create one extension point per entity to secure,
where each extension point defines the specific entity method to secure.The same
ruleset can be called from multiple extension points. Example 7-16 shows the API
method signatures to use when defining the extension point for each API secured by
the custom ruleset shown in Example 7-4.

Example 7-16 Custom Extension Point Signhatures

public void
oracl e. communi cati ons. i nventory. api.consuner. Condi ti onManager . cr eat eCondi ti ons
(java.util.Collection)

public void
oracl e. communi cati ons. i nventory. api . consuner. Condi ti onManager . updat eCondi t ons
(java.util.Collection)

public void

oracl e. communi cati ons. i nventory. api.consuner. Condi ti onManager . del et eCondi ti ons
(java.util.Collection)

7-14

Chapter 7
Creating Custom Rulesets and Extension Points

Creating the Ruleset Extension Point

Ruleset extension points are created in Design Studio. For information on ruleset extension
points, see "Extending UIM Through Rulesets". For instructions on how to create a ruleset
extension point, see the Design Studio Help.

After you have created the ruleset and extension point in Design Studio, you must also create
the corresponding ruleset extension point in Design Studio. A ruleset extension point
associates a ruleset with an extension point, so the extension point knows which ruleset to
run.

ORACLE 7-15

Extending UIM Through Rulesets

This chapter provides information about extending Oracle Communications Unified Inventory
Management (UIM) by using rulesets.

About Using Rulesets to Extend UIM

A ruleset is a file containing custom code that extends existing UIM code at a specified point.
The UIM extensibility framework supports the use of rulesets and is built upon the open
source project of AspectJ. Ruleset code is written using either Drools or Groovy, both of
which are also open source projects.

AspectJ is an Eclipse open source project that enables aspect-oriented programming (AOP).
AOP provides the ability to insert code at various points across a code base. For example,
when UIM is started, the Aspect] engine weaves (interlaces) custom extension points into the
UIM code stream. The AspectJ engine is called the Weaver.

Drools and Groovy are open source projects that enable accessing, changing, and managing
business rules. Both enable you to view business rules because they are completely
decoupled from the code. This allows for greater flexibility in changing, adding, or removing
rules as business needs change.

About Rules

Rules are written using either Drools or Groovy. A ruleset contains one or more rules. The
following sections describe rules in terms of Drools and Groovy.

Using Drools to Define Rules

ORACLE

A Drools rule is a two-part structure that defines a condition and an action. When the
condition evaluates to true, the action occurs. While the entire rule is custom code, the action
is the business-specific custom code. This chapter uses the term custom code to refer to the
business-specific custom code.

Example 8-1 shows the structure of a Drools rule:

Example 8-1 Structure of a Drools Rule

rule "Rul eName"
salience 0
when
condition
then
action
end

8-1

Chapter 8
About Rules

< Note:

You do not need to specify a condition in the rule. If no condition is specified,
the condition is assumed to be true and the action occurs.

The custom code may reside:

e In the action
e In a function within the ruleset that the action calls
* In a separate Java class that the action calls

If the custom code is short and simple, you can place it in the action, or within a
function in the ruleset. If the custom code is even slightly complex, Oracle
recommends that you place it in a separate Java class. The advantage of placing
custom code in a separate Java class is that you can use the use of the Java features.
For example, the Java editor catches syntax errors, creates import statements, and
provides a list of method names when you type a class name.

Note:

A ruleset always runs, but this does not mean that the custom code always
runs. Whether or not the custom code runs depends on the outcome of the
rule conditions.

A rule can optionally define soft keywords, one of which is salience. Example 8-1
includes the salience soft keyword, which is commonly used.

Salience defines the priority of when a rule runs, which is necessary when multiple
rules run at the same time. Salience is a numeric value that defaults to zero; the higher
the number, the higher the priority. The rule with the highest priority runs first.

For more information about soft keywords, see the topic of keywords on the Drools
Documentation website:

http://docs. | boss. org/drool s/rel ease/ 6.5.0. Fi nal /drool s-docs/htm _singl e/

Using Groovy to Define Rules

ORACLE

Unlike Drools rules that define a condition and an action, a Groovy rule defines only an
action (the business-specific custom code). You define Groovy rules in Groovy scripts.

Example 8-2 shows the structure of a Groovy script:
Example 8-2 Structure of a Groovy Script

def x = "World"printin "Hello, $x"
if (condition) action

The custom code may reside:

* Inthe rule (action)

8-2

http://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/

Chapter 8
About Rulesets and Extension Points

* In a function within the ruleset that the rule (action) calls
* In a separate Groovy script that the rule (action) calls

If the custom code is short and simple, you can place it in the rule, or within a function in the
ruleset. If the custom code is even slightly complex, Oracle recommends that you place it in a
separate Groovy script. The advantage of placing custom code in a separate Groovy script is
having the full use of the Eclipse debugging functionality. For example, the debugger may not
stop on a breakpoint in the rule Groovy code itself, but will stop on a breakpoint within a
Groovy script that the parent script calls. See "Debugging Custom Groovy Rulesets" for more
information.

About Rulesets and Extension Points

ORACLE

A ruleset is a file that contains one or more rules. UIM provides several base rulesets in the
ora_uim_baserulesets cartridge and also provides a framework that enables you to create
custom rulesets. Each base ruleset provides a Drools version and a Groovy version of the
ruleset. See "About Base Rulesets" for more information.

In addition to rules, a ruleset may also contain:

e A package statement

* Import statements

* Global and local variables

e Functions (similar to Java methods)

The content of a ruleset file is similar to the content of a Java source file (.java), but a ruleset
is either a Drools file (.drl) or a Groovy file (.groovy).

Example 8-3 shows a ruleset that contains a package statement, import statements, a global
variable, a function, and a Drools rule. Within a ruleset, functions must be defined prior to the
rule so the rule can recognize the function when compiling. When a ruleset runs, execution
begins at the rule; it does not begin at any functions that may be defined prior to the rule.

Example 8-3 Drools Ruleset

package oracl e. comuni cations.inventory.rules

i mport oracl e. communi cations.inventory.api.entity. Tel ephoneNunber Speci fication;
i mport oracl e. communi cations.inventory.extensibility.extension.util.

Ext ensi onPoi nt Rul eCont ext ;

i mport oracl e. communi cations.inventory.api.frameworKk. | oggi ng. Log;

gl obal Log | og;

function String get Edit Mask(Tel ephoneNunber Speci fication tnSpec)
{
/] Set the default edit nmask.
String edit Mask = "##H#HH#HIR"
if (tnSpec == null)
return editMsk;

/1 Set the edit mask based on specification nane

i f(tnSpec. get Nane(). equal s("US TN Spec NPA- NXX"))
edi t Mask = "##Ht- #iH- #HE

8-3

ORACLE

Chapter 8
About Rulesets and Extension Points

return editMask;

}
e T T
/1 RULES
e T T
rule "Get TN Edit Mask"
salience 0
when
t el ephoneNunber Speci fi cation : Tel ephoneNunber Speci fi cati on()
context : ExtensionPoi nt Rul eCont ext ()
t hen
String editMask = get Edit Mask(t el ephoneNunber Speci fication);
cont ext . set Ret ur nVal ue(edi t Mask) ;
end

Example 8-4 shows a ruleset that contains a package statement, import statements, a
global variable, a function, and a Groovy rule. Example 8-3 and Example 8-4 provide
the same functional result, but one was written using Drools and the other using
Groovy.

Example 8-4 Groovy Ruleset

package oracl e. communi cations.inventory.rules

i nport oracl e. communi cations.inventory.api.entity. Tel ephoneNunber Speci fication;
i mport oracl e. communi cations.inventory.extensibility.extension.util.

Ext ensi onPoi nt Rul eCont ext ;

i mport oracl e. comuni cations.inventory.api.framework. | oggi ng. Log;

gl obal Log | og;

String editMsk = get Edi t Mask(t el ephoneNunber Speci fication);
cont ext . set Ret ur nVal ue(edi t Mask) ;

[e
/1 FUNCTI ON
[e R
def String get Edi t Mask(Tel ephoneNunber Speci fi cation t nSpec)
{
/] Set the default edit nmask.
String edit Mask = "####H#HHI#H"
if (tnSpec == null)
return editMask;
/1 Set the edit mask based on specification nane
i f(tnSpec. get Nane().equal s("US TN Spec NPA- NXX"))
edi t Mask = " ##H#- #itH- HiHHH"
return edit Mask;
}

Rulesets enable you to run custom code that extends UIM code at specified points
called extension points.

Rulesets:

» Use Drools or Groovy rules and are enabled by AspectJ

* Functionally extend UIM through custom code

8-4

Chapter 8
About Rulesets and Extension Points

» Dynamically extend UIM through additions, changes, or deletions to rulesets without
rebuilding or restarting UIM

* Are provided in the ora_uim_baserulesets cartridge (base rulesets)

e Can be created in Oracle Communications Design Studio within an Inventory project
(custom rulesets)

* Are deployed into UIM as part of a cartridge

To understand how custom rulesets work, you must understand the following concepts:

» Extension Points
* Ruleset Extension Points

Enabled Extension Points

Extension Points

An extension point defines a UIM API method signature to establish a specific point in the
code at which to call a ruleset. UIM provides several base extension points in the
ora_uim_baseextpts cartridge and also provides a framework that enables you to create
custom extension points.

Custom extension points are created in Design Studio in the Extension Point editor and in a
corresponding custom aop.xml file. See "Creating Extension Points" for more information.

An extension point is defined as specification-based or global, based on the Design Studio
Extension Point editor Global check box. If the Global check box is not selected, the
extension point is specification-based. If the Global check box is selected, the extension
point is global.

Specification-based extension points pertain to a particular specification, and global
extension points do not.

Specification-Based Extension Points

The signature argument for specification-based extension points must define a specific UIM
entity object, such as TelephoneNumber, Equipment, or Pipe, or define a generic object, such
as a java.util.Collection that can contain specific UIM entity objects. For example, the
TelephoneNumberManager_createTelephoneNumbers base extension point defines the
following signature:

public abstract interface java.util.List
oracl e. comrmuni cat i ons. i nventory. api . nunber. Tel ephoneNunber Manager .
creat eTel ephoneNunber s(j ava.lang. String, java.lang. String,
oracl e. communi cations.inventory.api.entity. Tel ephoneNunber)

The signature defines TelephoneNumber as the method argument. This indicates that the
extension point is intended to be used with the Telephone Number specification.

Global Extension Points

The signature argument for global extension points is not restricted; it may define any type of
argument, or no argument at all. For example, the TimeoutEventListener_timerExpired base
global extension point defines the following signature, which includes no argument:

ORACLE 8-5

Chapter 8
About Rulesets and Extension Points

public void
oracl e. communi cati ons. i nventory. api . conmon. Ti meout Event Li st ener. ti mer Expi red()

Extension Point Types

Extension points also define a type, which dictates how the extension point is weaved
into the UIM code stream. There are two extension point types:

Execution
e Call

To understand extension point types, you must first understand ruleset extension
points. See "Ruleset Extension Points".

Ruleset Extension Points

A ruleset extension point configures a ruleset to run at an extension point and
configures the placement of the ruleset with respect to the method signature defined
by the extension point. UIM provides no ruleset extension points, but it does provide a
framework that enables you to create ruleset extension points.

Through a ruleset extension point, you can configure:

* Abase ruleset to run at a base extension point

* Abase ruleset to run at a custom extension point

* A custom ruleset to run at a base extension point

* A custom ruleset to run at a custom extension point
* Whether to run the rule set:

* Before the method

e After the method

* Instead of the method

Ruleset extension points are created in Design Studio in the Ruleset Extension Point
and Ruleset Extension Point - Global editors. See "Creating Ruleset Extension Points"
for more information.

Understanding Extension Point Type and Ruleset Placement

An extension point defines a type of execution or call, and a ruleset extension point
defines where and when the ruleset is run (before, after, or instead of the method
defined by the extension point). Together, this information dictates how the extension
point is weaved into the UIM code stream, as explained using the following figures.

Figure 8-1 represents the UIM code stream. Within the UIM code stream, method a()
is shown, as well as calls to UIM method a() from various places within the UIM code
stream. The dots within method a() represent executable lines of code.

ORACLE 8-6

ORACLE

Chapter 8
About Rulesets and Extension Points

Figure 8-1 UIM Code Stream

Call to method a()

e method af)

y
Call to method a() ~

Figure 8-2, Figure 8-3, and Figure 8-4 show an extension point type of execution, which
dictates the extension point is weaved within the method defined by the extension point. For
this type, the extension point is weaved in only one place: within the method itself.

Figure 8-2 represents a ruleset configured to run before the method. For this type of
configuration, the extension point is weaved into the method, immediately prior to the first line
of the method's executable code. The result is that the ruleset custom code runs before the
method runs.

Figure 8-2 Type Execution, with Placement Before

Call to method a() }
Xx" method af)
o
{/’/ extension point
o
)_f’
o
A

Call to method a() <~

Figure 8-3 represents a ruleset configured to run after the method. For this type of
configuration, the extension point is weaved into the method, immediately following the last
line of the method's executable code. The result is the ruleset custom code runs after the
method runs.

Figure 8-3 Type Execution, with Placement After

Call to method a() /5

f/" method a()
P
/’
e
f,,f' .
,ﬁ’f extension point
Call to method a() =~

8-7

ORACLE

Chapter 8
About Rulesets and Extension Points

Figure 8-4 represents a ruleset configured to run instead of the method. For this type
of configuration, the extension point is weaved into the method, and the method's
executable code does not run. The result is the ruleset custom code runs instead of
the method.

Figure 8-4 Type Execution, with Placement Instead

Call to method a() ;
//" g method af)
'./
/"-/ ."'I
z"’j/ i
- o
// extension point
Call to method a() =~

Figure 8-5, Figure 8-6, and Figure 8-7 show an extension point type of call, which
dictates the extension point is weaved at the call to the method defined by the
extension point. For this type, the extension point may be weaved in multiple places: at
each place from where the method is called.

Figure 8-5 represents a ruleset configured to run before the method. For this type of
configuration, the extension point is weaved into the UIM code stream, immediately
prior to the method call. The result is the ruleset custom code runs before the method
runs.

Figure 8-5 Type Call, with Placement Before

extension point
Call to method ai)

o~ method af}

extension point -
Call to method a() -~

Figure 8-6 represents a ruleset configured to run after the method. For this type of
configuration, the extension point is weaved into the UIM code stream, immediately
after the method call. The result is the ruleset custom code runs after the method runs.

8-8

ORACLE

Chapter 8
About Rulesets and Extension Points

Figure 8-6 Type Call, with Placement After

Call to method af) e
extension point //f
/,/" method al)
-
Py
f’/ff
/,,f’
Call to method a()

extension point

Figure 8-7 represents a ruleset configured to run instead of the method. For this type of
configuration, the extension point is weaved into the UIM code stream, and the method is not
called. The result is the ruleset custom code runs instead of the method.

Figure 8-7 Type Call, with Placement Instead

/I Call to method af) /I;
extension point -
e
e method a()
_-’"
e
.-'/f{
-
/
e
'.-’
//f
/f Call to method a()
extension point

Runtime performance is not affected by extension point type; however, server startup
performance is affected because that is when custom extension points are weaved, and there
is more to weave for type call. For this reason, Oracle recommends that extension points be
defined as type execution.

Based on this recommendation, you cannot specify extension point type in the Design Studio
Extension Point editor; all extension points default to type execution. However, there are
cases when you may need to use type call. For example, if your custom code needs to know
the calling class for processing reasons, or needs to know if the call originated from a web
service for processing reasons. In such cases, you must define type call, and there is a way
to do this: see "Creating Extension Points" for more information.

¢ Note:

Base extension points are all defined as type execution. Base extension points are
part of the UIM code base, so they are not weaved into the UIM code stream when
UIM is started. Only custom extension points are weaved into the UIM code stream
when UIM is started.

The benefit of specifying type call is the ruleset can retrieve the caller through the
ExtensionPointRuleContext.getCaller() method. The drawback of specifying type call is the

8-9

Chapter 8
About Rulesets and Extension Points

ruleset does not run if the method the extension point defines is called by a method
defined in the same class or subclass.

For example, Figure 8-8 shows ClassA, which defines methods x() and y(), and y()
calls x(). ClassB extends ClassA and defines method z(), and z() also calls x(). The
aop.xml file defines an extension point for method x() of type call. The ruleset runs
when method x() is called from anywhere outside ClassA or ClassB, but the ruleset
does not run when method x() is called from y() or z() because x() is called from within
the same class or subclass.

Figure 8-8 Type Call Drawback

ClassA ClassB extends A
method x() method z()
{ {
L ClassA.x()
} }
method yi)
{
this.x()
}

Enabled Extension Points

ORACLE

" Note:

Enabled extension points are used only with specification-based extension
points; they are not used with global extension points.

An enabled extension point enables a specification-based extension point for a
particular specification. UIM provides several base enabled extension points in the
ora_uim_baseextpts cartridge and also provides a framework that enables you to
create enabled extension points.

Enabling a specification-based extension point for a particular specification is
accomplished by associating an entity specification Java class to a specification-based
extension point. To understand an enabled extension point, you must first understand
that, for specification-based extension points, you must configure the specification for
a ruleset extension point. This configuration is done on the Rules tab of any
specification editor, where you select a ruleset extension point from a list. The list is
populated for the specification, based on extension points that are enabled for the
specification. If no extension points are enabled for the specification, no ruleset
extension points are available for selection on the Rules tab of the specification.

For example, if 10 extension points are defined, along with 10 ruleset extension points,
and no enabled extension points are defined, the Equipment Specification editor
Rules tab lists no ruleset extension points from which to choose. However, if 10

8-10

Chapter 8
About Rulesets and Extension Points

extension points are defined, along with 3 ruleset extension points, and 3 of these extension
points are enabled for the EquipmentSpecification Java class through enabled extension
points, the Equipment Specification editor Rules tab lists 3 ruleset extension points from
which to choose.

Enabled extension points are created in Design Studio in the Enabled Extension Point editor.
See "Creating Enabled Extension Points" and "Configuring a Specification for a Ruleset
Extension Point" for more information.

About the UIM Extensibility Framework

The extensibility framework supports the functionality that rulesets and extension points
provide. The following sections describe various parts of the extensibility framework that are
critical to understanding how rulesets work.

RulesExecutor Class

Package: oracle.communications.inventory.extensibility.rules
This class defines the following methods:

* load()
* execute()
e unload()

You use these methods to load, execute, and unload rulesets. The extensibility framework
enables you to automatically run rulesets at extension points. However, you can also write
custom code that directly runs a ruleset by calling the execute() method on the
RulesExecutor class. See the Javadoc for information about this class. For instructions on
how to access the Javadoc, see "Javadoc Documentation”.

ExtensionPointContext and ExtensionPointRuleContext Class

ORACLE

Package: oracle.communications.extensibility.extension.util
ExtensionPointRuleContext extends ExtensionPointContext.

For any given extension point, ExtensionPointRuleContext is constructed and made available
to the ruleset as an argument. The extensibility framework adds the ExtensionPointContext
as an argument, following any arguments defined by the extension point signature.

For extension points of type call, the context contains the calling class. This is provided so
custom code can process differently based on the caller. For example, the custom code may
need to perform a different process if called from the Ul, versus being called from a web
service. In this scenario, the custom code can use the context's getCaller() method to make
the determination. For extension points of type execution, the context does not contain the
calling class. So, the getCaller() method should not be used for extension points of type
execution because the return is always null.

Regardless of type, the context contains the target class and method arguments. Method
arguments are placed into the argument collection in left-to-right parameter order. Integral
types are placed in the corresponding wrapper object. For example, int arguments are
passed by reference using an Integer.

8-11

aop.xml File

ORACLE

Chapter 8
About Rulesets and Extension Points

ExtensionPointRuleContext.returnValue

Data is returned to a ruleset in the returnValue attribute defined in the
ExtensionPointRuleContext class. For example, you use the
ExtensionPointRuleContext.setReturnValue(Object) method to set the returnValue
attribute. The placement of the ruleset affects the use of the returnValue attribute as
follows:

 Before

If the ruleset populates the returnValue attribute, the intercepted method removes
any returnValue set by the ruleset.

o After

Data in ExtensionPointRuleContext is available to the ruleset to manipulate. The
ruleset can change the returnValue attribute either by setting a new return object
in the context or by changing attribute values of the return object already in the
context. For this scenario, the return value type must match the value type that is
normally returned by the intercepted method or an exception is thrown.

e Instead

The ruleset completely controls what is returned to the caller by setting the
returnValue attribute. For this scenario, the return value type must match what is
normally returned by the intercepted method or an exception is thrown.

For an example of the use of ExtensionPointRuleContext, view the
TELEPHONE_NUMBER_FORMATTING ruleset that is provided in the
ora_uim_baserulesets cartridge.

The UIM_Homelconfiglextensibility/META-INF/aop.xml file is provided as an
example to follow when creating custom extension points, which is a two-part process:
Creating the extension point in the Design Studio Extension Point editor, and creating
a custom aop.xml file. Both are deployed into UIM as part of a cartridge.

The custom aop.xml file must reside in the cartridge's modellaspects directory. When
UIM is started, the aop.xml file is used to weave custom extension points into the UIM
code stream.

Example 8-5 is an excerpt from the provided aop.xml file, and shows all of the XML
elements that the file defines, as well as several of the example extension points that
the file defines. (Many of the extension point definitions were removed for readability.)

Example 8-5 aop.xml File

<aspectj >
<l--
<aspect s>

<concr et e-aspect name=
“oracl e. communi cations.inventory. extensibility.extension. SpecAsTarget"

ext ends=
“oracl e. communi cations. inventory. extensibility.extension. SpecTar get Ext ensi on">

<poi ntcut name="rul eExt ensi onPoi nt" expressi on="execution(public *

oracl e. communi cations. i nventory.api.inpl.entity.Specificati onDAO getNanme(..))"/>

</ concr et e- aspect >
<concr et e-aspect name=

8-12

ORACLE

Chapter 8
About Rulesets and Extension Points

"oracl e. communi cations. i nventory. extensibility.extension. SpecBasedAsAr gunent "
ext ends=
"oracl e. communi cations.inventory.extensibility.extension. SpecBasedAr gument Ext ensi on" >
<poi ntcut nanme="rul eExt ensi onPoi nt" expressi on="
call (public *
oracl e. cormuni cati ons. i nventory. api . nunber. Tel ephoneNurber Manager . cr eat eTel ephoneNunber
s(String, String, oracle.comunications.inventory.api.entity.Tel ephoneNunber
java.util.Set, java.util.List))
|| call(public *
oracl e. cormuni cati ons. i nventory. api . nunber. Tel ephoneNunber Manager . del et eTel ephoneNunber
s(oracl e. communi cations.inventory.api.entity. Tel ephoneNunber...))
|| call(public *
oracl e. cormuni cati ons. i nventory. api . nunber. Tel ephoneNunber Manager . updat eTel ephoneNunber
s(java.util.List, java.util.Set, java.util.List))"/>
</ concr et e- aspect >

<concr et e- aspect name=
"oracl e. comuni cations. i nventory. extensibility.extension. SpecAsArgunent”
ext ends=
"oracl e. communi cations.inventory. extensibility.extension. SpecArgunent Ext ensi on">
<poi ntcut nanme="rul eExt ensi onPoi nt" expressi on="
call (public *
oracl e. communi cations.inventory. api.consuner. Reservati onManager . ext endReser vat i on(or acl
e.comuni cations.inventory.api.entity. ServiceSpecification, java.util.List
java.lang. String, oracle.conmunications.inventory.api.entity.ReservedForType))
|| call(public *
oracl e. communi cations.inventory. api.consuner. ReservationManager. reserveResour ce(oracl e
conmuni cations.inventory.api.entity.ServiceSpecification, java.util.Collection
oracl e. communi cations.inventory. api.entity.common. Reservation))
|| call(public *
oracl e. communi cations.inventory. api.service. Servi ceManager . creat eServi ce(oracl e. comun
cations.inventory.api.entity. Service
oracl e. cormuni cations. i nventory.api.entity. ServiceSpecification))"/>
</ concr et e- aspect >

<concr et e- aspect nane=
"oracl e. communi cations. i nventory. extensibility.extension.d obal Rul "
ext ends=
"oracl e. communi cations.inventory.extensibility.extension.d obal Rul eExtension" >
<poi ntcut nanme="rul eExt ensi onPoi nt" expressi on="
call (public *
oracl e. communi cations.inventory. api.conmon. Ti meout Event Li st ener. timer Expired())
|| call(public *
oracl e. communi cations.inventory. api.adnin. SecurityMnager. handl eSecurityViolation(..))
|| call(public *
oracl e. communi cations.inventory. api.conmon. Att achment Manager . cr eat eAtt achnent (or acl e. co
muni cations.inventory. api.entity.comon. Attachnent...))
|| call(public *
oracl e. cormuni cati ons. i nventory. api . conmon. At t achnment Manager . updat eAt t achnent (oracl e. co
muni cations.inventory.api.entity.comon. Attachnent...))
|| call(public *
oracl e. communi cations.inventory. api.conmon. Att achnent Manager . del et eAt t achnent (or acl e. co
muni cations.inventory.api.entity.comon. Attachnent...))"/>
</ concr et e- aspect >

<concr et e- aspect
name="or acl e. communi cations.inventory.extensibility.extension.SecurityValidation"

ext ends="oracl e. cormuni cations.inventory.extensibility.extension. SecurityValidationExte

nsion" >
<poi ntcut name="securityExtensi onPoi nt" expression="

8-13

ORACLE

Chapter 8
About Rulesets and Extension Points

call (public *

oracl e. communi cations.inventory. api.group. | nventoryG oupManager. creat el nventoryGr
oup(oracl e. cormuni cations.inventory.api.entity.InventoryGoup))

|| call(public *
oracl e. communi cations.inventory. api.group. | nventoryG oupManager . del et el nvent oryGr
oup(oracl e. cormuni cations.inventory.api.entity.InventoryGoup))

|| call(public *
oracl e. communi cations.inventory. api.group. | nventoryG oupManager . updat el nvent oryGr
oup(oracl e. cormuni cations.inventory.api.entity.InventoryGoup))"/>

</ concret e- aspect >
</ aspect s>

<weaver >
<include within=
"oracl e. communi cations. i nventory. api . nunber.inpl. Tel ephoneNunber Manager | mpl "/ >
<include within=
"oracl e. cormuni cations.inventory.api..*"/>
</ weaver >

-->
</ aspectj >

The provided aop.xml file defines the following:

« aspects

This element defines the concrete extensions through the <concrete-aspect>
element. The implemented aspects are:

— SpecAsTarget

Defines extension points for method signatures defined on a specification
object. An example of a specification object is a specification itself, such as
EquipmentSpecification. For example, when the
EquipmentSpecification.setModelNumber(String modelNbr) method is called,
EquipmentSpecification is the target of the invocation.

Oracle recommends that you not use this type of aspect.
— SpecBasedAsArgument

Defines extension points for method signatures that define specification-based
arguments. An example of a specification-based argument is an instance of an
entity, such as Equipment. For example, the
Equipment.createPhysicalPorts(Equipment equip, List physPorts) method
defines an argument of Equipment.

— SpecAsArgument

Defines extension points for method signatures that define specification
arguments. An example of a specification argument is a specification itself,
such as TelephoneNumberSpecification. For example, the
SpecManager.getEditMask(TelephoneNumberSpecification) method defines
an argument of TelephoneNumberSpecification.

— GlobalRule

Defines global extension points for method signatures that define arguments
that are neither a specification nor specification-based. For example,
ReservationManager.expireReservation(boolean) is a method defined as a
global extension point.

— SecurityValidation

8-14

Chapter 8
About Base Rulesets

Defines extension points for APIs that require authorization to access. Extension
points defined in this element are neither specification-based nor global because they
are not part of the extensibility framework. Rather, they are part of the Security
Validation Extension framework, and the execution of the APIs defined for these
extensions go through UIM logic authorization.

e weaver

Defines the Java packages the extensibility framework is to search for classes in which to
weave any custom extension points. The weaving of custom extension point is done
when UIM is started.

* There are five aspects defined, and each aspect defines several extension points.
» Extension points are defined, including type of call or execution.

* The argument for the deleteTelephoneNumbers() method uses a notation of “..." to
represent an array of TelephoneNumber objects. This notation is used in the aop.xml
method signature, but not in the Design Studio method signature. See "Creating
Extension Points" for more information.

» All of the method signatures in the SpecBasedAsArgument aspect define at least one
argument that is specification-based (TelephoneNumber, an Array of TelephoneNumber
objects, and a java.util.Collection of TelephoneNumber objects).

» All of the method signatures in the SpecAsArgument aspect define at least one argument
that is a specification (ServiceSpecification).

* The method signatures in the GlobalRule aspect may define specification-based
arguments, specification arguments, generic arguments, or no arguments at all. There
are no restrictions on these arguments. So, regardless of the arguments defined, a
ruleset configured to run at a global extension point always runs because it is defined
within the <GlobalRule> element.

* The method signatures defined in the SecurityValidation aspect control access to the API
methods of createlnventoryGroup, deletelnventoryGroup, and updatelnventoryGroup.

* The <weaver> element tells the extensibility framework what packages to search when
looking to weave any custom extension points.

Turning the Weaver On

When UIM is started, the custom aop.xml file is used to weave custom extension points into
the UIM code stream. To initiate this weaving of custom extension points, the Weaver must
be turned on. UIM_Home/Domain_HomelbinlstartUIM.cmd is the script that starts UIM, and
it calls UIM_Home/Domain_HomelbinlsetUIMEnv.cmd. The setUIMEnv.cmd script sets the
UIM environment, and includes the following lines. To turn the Weaver on or off, uncomment
or comment the following lines in the setUIMEnv.cmd file.

set JAVA OPTI ONS=%JAVA OPTI ONS% - j avaagent : %J M HOVE% | i b\ aspect j weaver. j ar
set JAVA OPTI ONS=%J AVA_OPTI ONS% - Daj . weavi ng. ver bose=f al se

About Base Rulesets

This section provides information on base rulesets, and on base extension points and base
enabled extension points that can be used call a base ruleset or custom ruleset.

ORACLE 8-15

Chapter 8
About Base Rulesets

< Note:

See Base Rulesets for detailed information about each base ruleset,
including a description of what the base ruleset does and step-by-step
instructions for running it.

UIM provides several base rulesets in the ora_uim_baserulesets cartridge. Base
rulesets are called by UIM code and provide examples for creating custom rulesets.
Each base ruleset provides a Drools version and a Groovy version of the ruleset. You
can find the base rulesets in the UIM_Homelcartridges/basel
ora_uim_baserulesets.jar file.

Base rulesets can be viewed in Design Studio or in UIM:

» To view base rulesets in Design Studio, import the ora_uim_baserulesets
cartridge into Design Studio. After you import the base cartridge, you can view the
base rulesets in the Design perspective Studio Projects view.

For instructions on how to import a cartridge into Design Studio, see the Design
Studio Help.

» To view base rulesets in UIM, deploy the ora_uim_baserulesets cartridge into
UIM. After you deploy the base cartridge, you can view the rulesets in UIM by
clicking the Rulesets link in the Tasks panel of the UIM Home page.

See UIM Cartridge Guide for information about deploying cartridges and cartridge
packs.

About Base Extension Points and Base Enabled Extension Points

UIM provides numerous base extension points and base enabled extension points in
the ora_uim_baseextpts cartridge. You can use the base extension points to call
base rulesets or custom rulesets. You can find the base extension points and base
enabled extension points in the UIM_Homelcartridges/baselora_uim_baseextpts.jar
file.

Base extension points and base enabled extension points can be viewed in Design
Studio. To do so, import the ora_uim_baseextpts cartridge into Design Studio. After
you import the base cartridge, you can view the base extension points and base
enabled extension points in the Design perspective Studio Projects view.

For instructions on how to import a cartridge into Design Studio, see the Design Studio
Help.

See UIM Cartridge and Technical Pack Guide for more information on the
ora_uim_base_extpts cartridge.

About Naming Conventions

ORACLE

Understanding the naming convention used for the base extension points and base
enabled extension points helps you readily locate them within the
ora_uim_baseextpts cartridge, which is important because there are hundreds of
them. Within the base cartridge, the base extension points are grouped together
alphabetically, and the base enabled extension points are grouped together
alphabetically.

8-16

Chapter 8
Working with Rulesets

The naming convention for base extension points is ClassName_methodName. For example,
the TelephoneNumberManager_createTelephoneNumbers.

The naming convention for base enabled extension points is
SpecificationName_ClassName_methodName. For example, the
TelephoneNumberSpecification_TelephoneNumberManager_createTelephoneNumbers.

There are often multiple base extension points defined per class. For example, Figure 8-9 is
an excerpt of the ora_uim_baseextpts cartridge expanded in Design Studio that shows
several base extension points defined for several entity manager classes. Specifically,
IPAddressManager, IPNetworkManager, IPv4AddressManager, and IPv6AddressManager
each define extension points for their respective create(), delete(), and update() methods.

Figure 8-9 IP Address Entity Manager Classes

@, Solution [=] Studio Projects 52 | [Package Explorer

w & (5
Folder Search folder

Mame 5earch name

@, IPAddressManager_createlPAddress_Global

@, IPAddressManager_deletelPAddress_Global

@ IPAddressManager_updatelPAddress_Global

@ IPMetworkManager_createlPMetworks_Global
@, IPMetworkiManager_deletelPMetworks_Global
@ IPMetworkManager_updatelPMetworks_Global
@ IPvdAddressManager_createlPAddresses_Global
@ IPvdAddressManager_deletelPAddresses_Global
@ IPvd AddressManager_updatelP Addresses_Global
@, IPviiAddressManager_createlPAddresses_Global
@ IPvGAddressManager_deletelPAddresses_Global
@ IPvGAddressManager_updatelPAddresses_Global

Note:

The naming convention used for these extension points indicates that these are
global extension points. However, this naming convention is not always employed.
So, when working with base extension points, be sure to look at the extension point
definition to determine whether the Global check box is selected, indicating that the
extension point is a global extension point.

Working with Rulesets

ORACLE

Before reading this section:

* Read the preceding sections of this chapter and have an understanding of rules, rulesets,
extension points, and ruleset extension points.

8-17

ORACLE

Chapter 8
Working with Rulesets

You should understand what a cartridge is, how to create one in Design Studio,
and how to deploy one into UIM.

You should understand Design Studio perspectives and views, and how to switch
between them.

When working with rulesets to extend UIM:

1.

Determine the functionality that you plan to extend and how you plan to extend it.

See UIM Concepts to learn about existing UIM functionality. See the UIM Javadoc
to learn about specific classes or methods you plan to extend. For information on
accessing the Javadoc, see "Javadoc Documentation".

Configure Design Studio. When working with rulesets, it is important that you
configure your environment correctly to avoid errors later in the process.

See "Configuring Design Studio".
In Design Studio, install, configure, and learn how to use one of the following:
* Drools Eclipse plug-ins
See "Installing, Configuring, and Using the Drools Eclipse Plug-ins".
* Groovy Eclipse plug-ins
See "Installing, Configuring, and Using the Groovy Eclipse Plug-ins".
Create an Inventory project.
See the Design Studio Help.
Create a ruleset.
See "Creating Rulesets".
Create an extension point, or use an existing base extension point.
See "Creating Extension Points".

Create a ruleset extension point to configure the ruleset to run at the extension
point.

See "Creating Ruleset Extension Points".

For specification-based extension points, create an enabled extension point to
enable the extension point for the specification.

See "Creating Enabled Extension Points".

For specification-based extension points, configure the specification for the ruleset
extension point.

See "Configuring a Specification for a Ruleset Extension Point".

10. Validate and compile the ruleset, and build the project to create the cartridge.

11.

12.

See "Validating and Compiling Rulesets" and the Design Studio Help.

If your ruleset custom code is dependent upon third-party code for successful
compilation, see "Compiling Rulesets with Third-Party Dependencies".

Deploy the cartridge into UIM.
See "Deploying Cartridges Containing Rulesets".

If you created an extension point (as opposed to using a base extension point),
make sure the Weaver is turned on and restart UIM.

8-18

Chapter 8
Working with Rulesets

See "Turning the Weaver On".
13. Run the ruleset.
See "Running Rulesets".
14. If problems are encountered, debug and troubleshoot.

See "Debugging Custom Groovy Rulesets".

Installing, Configuring, and Using the Drools Eclipse Plug-ins

Installing, configuring, and using the Drools Eclipse plug-ins are described in the following
sections:

» Installing the Drools Eclipse Plug-ins
* Configuring the Drools Eclipse Plug-ins
e Configuring the Project Builders

» Using the Drools Eclipse Plug-ins

Installing the Drools Eclipse Plug-ins

ORACLE

To install the Drools Eclipse plug-ins:

1. From the Design Studio Help menu, select Install New Software.

The Install window appears.
2. Click Add.

The Add Repository window appears.
3. In the Name field, enter an arbitrary name, such as “Drools."
4. Copy the following URL and paste it into the Location field:

http://downl oads. j boss. org/ drool s/ rel ease/ 6.5. 0. Fi nal / org. drool s. updat esite/
5. Click OK.
The Add Repository window closes.
From the Work with list, select the name of the repository you just added.
Select the Group items by category check box, if it is not already selected.
Expand Drools and jBPM.

Select Drools and jBPM, which automatically selects following plug-ins to install:

© ® N 9

« JBoss Drools Core
« JBoss Drools Guvnor
* JBoss iBPM Core
10. Click Next twice, accept the license agreement, and click Finish.
A security warning response window appears.
11. Click OK.
A prompt to restart Eclipse appears.

12. Click Yes.

8-19

Chapter 8
Working with Rulesets

You must restart Eclipse for the installed plug-ins to work.

Configuring the Drools Eclipse Plug-ins

ORACLE

After you install the Drools Eclipse plug-ins in Design Studio, you must configure
Design Studio to recognize them. Configuring the Drools Eclipse plug-ins is described
in the following sections:

e Configuring the Drools Runtime Preference
» Configuring the File Associations Preference

e Configuring the Cartridge for Drools Files

Configuring the Drools Runtime Preference
To configure the Drools runtime preference:

1. Within your Eclipse_Home directory, create a new folder and name it
myDroolsRuntime.

2. In Design Studio, from the Window menu, select Preferences.

The Preferences window appears.
3. Inthe navigation panel, expand Drools and select Installed Drools Runtimes.
4. Click Add.

The Drools Runtime window appears.
5. Click Create a new Drools Runtime.

The Browse For Folder window appears.
6. Navigate to the Eclipse_HomelmyDroolsRuntime folder and click OK.

The Browse For Folder window closes.

The Name and Path fields are now populated on the Drools Runtime window.
7. Click OK.

The Drools Runtime window closes.

8. Select the check box located to the left of the Drools Runtime you just added, and
click OK.

The Preferences window closes.

Configuring the File Associations Preference
To configure the File Associations preference:

1. In Design Studio, from the Window menu, select Preferences.
The Preferences window appears.

2. In the navigation panel, expand General, then Editors, and then select File
Associations.

3. Inthe File types section, select .drl.
4. In the Associated editors section, select Rule Editor and click Default.
5. Click OK.

8-20

Chapter 8
Working with Rulesets

The Preferences window closes.

Configuring the Cartridge for Drools Files

To configure the .project and .classpath files, perform the following steps for each cartridge
in which you plan to create rulesets:

g M w0 d P

10.

11.

12.

In Design Studio, open the Java perspective, and open the Navigator view.
Expand the cartridge in which you will create rulesets with Drools files.

Open the cartridge's .project file by double-clicking the file name.

In the .project file editor, click the Source tab located at the bottom of the editor.

Within the XML, create a new <buildCommand> element by copying and pasting one of
the existing <buildCommand> elements.

Change the copied <buildCommand> element to the following value:

<bui | dCormand>
<name>or g. dr ool s. ecl i pse. dr ool sbui | der </ nane>
<argunent s>
</ ar gunent s>

</ bui | dConmand>

Save the .project file.
In the Navigator view, open the .classpath file by double-clicking the file name.
In the .classpath file editor, click the Source tab located at the bottom of the file editor.

Within the XML, create a new <classpathentry> element by copying and pasting one of
the existing <classpathentry> elements.

Change the copied <classpathentry> element to the following value:

<cl asspat hentry ki nd="con" pat h="DROOLS/ Dr ool s"/>

" Note:

When specifying the path, the case matters: it must be as shown above.

Save the .classpath file.

Configuring the Project Builders

ORACLE

To configure the project builders:

1.

g H w D

In Design Studio, open the Java perspective, and open the Navigator or Package
Explorer view.

Select the cartridge.
From the Project menu, select Properties.
In the navigation panel, select Builders.

Select Drools Builder and click Down as needed to place Drools Builder at the end of
the list.

8-21

Chapter 8
Working with Rulesets

Using the Drools Eclipse Plug-ins

The Drools Eclipse plug-ins provide a Drools rule editor and several Drools-specific
menu options.

Drools Rule Editor

After you install and configure the plug-ins, the Drools rule editor works in a Drools file
opened within Design Studio. The editor catches syntax errors when you are writing a
ruleset. The rule editor also provides the ability to compile a ruleset prior to deploying

the cartridge containing the ruleset.

Drools-Specific Menu Options
To access the Drools-specific menu options:

1. In Design Studio, from File menu, select New, then select Other.
2. Expand Drools.

The Drools-specific menu options are:

* Decision Table

« Domain Specific Language

e Drools Project

* Flow File

e Knowledge Base

* Rule Resource

For information on using the Drools-specific menu options, see the Drools
Documentation website:

http://docs. jboss. org/ drool s/rel ease/ 6. 5. 0. Final /drool s-docs/htm _singl e/

Installing, Configuring, and Using the Groovy Eclipse Plug-ins

Installing, configuring, and using the Groovy Eclipse plug-ins is described in following
sections:

e Installing the Groovy Eclipse Plug-ins
e Configuring the Groovy Eclipse Plug-ins
e Using the Groovy Eclipse Plug-ins

For more information on installing Groovy plug-ins, see the Groovy Eclipse Wiki
website:

https://github. com groovy/ groovy-eclipse/ w Ki

Installing the Groovy Eclipse Plug-ins

To install the Groovy Eclipse plug-ins:

1. From the Design Studio Help menu, select Install New Software.

The Install window appears.

ORACLE 8-22

http://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/
https://github.com/groovy/groovy-eclipse/wiki

Chapter 8
Working with Rulesets

2. Click Add.
The Add Repository window appears.
3. Inthe Name field, enter an arbitrary name, such as “Groovy."

4. Determine the appropriate update site URL from the list provided in the Groovy Eclipse
Wiki website.

See "Software Requirements" for information on the required Groovy version.
5. Paste the update site URL into the Location field.
6. Click OK.
The Add Repository window closes.
7. From the Work with list, select the name of the repository you just added.
8. Select the Group items by category check box, if it is not already selected.
9. Expand and select the Groovy-Eclipse plug-in feature, and follow the prompts to install.
10. Accept the license agreement, and click Finish and OK.
11. Click Yes to agree to restart Eclipse.

You must restart Eclipse for the installed plug-ins to work.

Configuring the Groovy Eclipse Plug-ins

After you install the Groovy Eclipse plug-ins in Design Studio, you must configure Design
Studio to recognize them. Configuring the Groovy Eclipse plug-ins is described in the
following sections:

* Configuring the Groovy Compiler Version
e Configuring File Associations for Groovy

e Configuring the Cartridge for Groovy Files

Configuring the Groovy Compiler Version

ORACLE

To configure the Groovy compiler version:

1. In Design Studio, from the Window menu, select Preferences.
The Preferences window appears.

2. Inthe navigation panel, select Groovy to expand the list and select Compiler. By default
the highest compiler version is selected.

3. Click the appropriate Groovy version for UIM.
4. Click Yes to confirm the change.
5. Click OK.
The Preferences window closes.
6. Restart Eclipse for the compiler setting to take effect.
7. Verify that the Groovy compiler version is set correctly:
a. From the Design Studio Window menu, select Preferences.

b. Inthe navigation panel, select Groovy to expand the list and then select Compiler.

8-23

Chapter 8
Working with Rulesets

c. Verify that the compiler version is set to the appropriate version.

See "Software Requirements" for the Groovy version information.

Configuring File Associations for Groovy

To configure File Associations for Groovy:

1.

In Design Studio, from the Window menu, select Preferences.
The Preferences window appears.

In the navigation panel, expand General, then Editors, and then select File
Associations.

In the File types section, select .groovy.
In the Associated editors section, select Groovy Editor and click Default.
Click OK.

The Preferences window closes.

Configuring the Cartridge for Groovy Files

ORACLE

To configure the .project and.classpath files, perform the following steps for each
cartridge in which you plan to create rulesets:

g ©w b P

10.

11.

12.

In Design Studio, open the Java perspective, and open the Navigator view.
Expand the cartridge in which you will create rulesets.

Open the cartridge's .project file by double-clicking the file name.

In the .project file editor, click the Source tab located at the bottom of the editor.

Within the XML, create a new <nature> element by copying and pasting one of the
existing <nature> elements.

Change the copied <nature> element to the following value:
<nat ure>or g. ecl i pse.j dt. groovy. core. groovyNat ur e</ nat ur e>
Save the .project file.

In the Navigator view, open the cartridge's .classpath file by double-clicking the
file name.

In the .classpath file editor, click the Source tab located at the bottom of the
editor.

Within the XML, create a new <classpathentry> element by copying and pasting
one of the existing <classpathentry> elements.

Change the copied <classpathentry> element to the following value:

<cl asspat hentry exported="true" kind="con" path="CGROOVY_SUPPCRT"/ >

< Note:

The path value is case-sensitive and must be entered as shown above.

Save the .classpath file.

8-24

Chapter 8
Working with Rulesets

Using the Groovy Eclipse Plug-ins

The Groovy Eclipse plug-ins provide a Groovy editor and several Groovy-specific menu
options.

Groovy Editor

After you install and configure the plug-ins, the Groovy editor works in a Groovy file opened
within Design Studio. The editor catches syntax errors when you are writing ruleset code. The
Groovy editor also enables you to compile a ruleset prior to deploying the cartridge containing
the ruleset.

Groovy-Specific Menu Options
To access the Groovy-specific menu options:

1. In Design Studio, from the File menu, select New, and then Other.
2. Select Groovy.

The Groovy-specific menu options are:

e Groovy Class

e Groovy DSL Descriptor

e Groovy Project

e Groovy Test Case

For information about using Groovy, see the Groovy documentation at the following website:

http://ww. groovy- | ang. or g/ docunent ati on. ht ni

Creating Rulesets

Name Field

For instructions on how to create a ruleset in Design Studio, see the Design Studio Help.
When creating a ruleset, use the following information.

When entering the name of the ruleset in the Name field, the text editor forces you to enter all
capitals. Oracle recommends that you use underscores for readability, such as
MY_RULE_SET.

DRL File or Groovy File

ORACLE

A ruleset resides in a .drl file or in a .groovy file, both of which you access from the Ruleset
editor. These files are saved in the inventory project's model directory.

When writing a custom ruleset, Oracle recommends that you:

* Read the preceding conceptual information in this chapter.
See "About Rules" and "About Rulesets and Extension Points".
* Install one of the following in Design Studio:

— Drools Eclipse plug-ins

8-25

http://www.groovy-lang.org/documentation.html

Chapter 8
Working with Rulesets

See "Installing, Configuring, and Using the Drools Eclipse Plug-ins".
— Groovy Eclipse plug-in
See "Installing, Configuring, and Using the Groovy Eclipse Plug-ins".

» Determine the base extension point or custom extension point that is to run your
ruleset. The extension point dictates the ruleset input parameters to code, which,
in turn, dictates the data made available to the ruleset.

See "Creating Extension Points".

* Review some of the base rulesets, which provide examples that can help you gain
a better understanding of rulesets.

See "About Base Rulesets".

e Start with a base ruleset .drl or .groovy file and modify it as needed. To do this,
copy any base ruleset .drl or .groovy file to your custom ruleset .drl or .groovy
file.

See "About Base Rulesets".

* Review examples of custom code that call various UIM API methods.
See UIM API Overview.

» Reference the Drools documentation as needed.
See the Drools Documentation website:

http://docs. jboss. org/ drool s/ rel ease/ 6. 5. 0. Fi nal / dr ool s-docs/
htm _singl e/

Creating Extension Points

This section applies to specification-based and global extension points.

" Note:

Before creating a custom extension point, check the UIM_Homelcartridgesl/
baselora_uim_baseextpts cartridge to see if a base extension point already
exists that defines the UIM API method you need to use.

Before you create an extension point, you must first determine the UIM APl method
signature that you want the extension point to define. For example, you may want to
create an extension point that deals with disassociating a telephone number from an
inventory group. To determine the UIM API method signatures you need to use the
Javadoc and search for the manager class using *Manager.class as search criterion
to return a list of all manager classes such as TelephoneNumberManager,
EquipmentManager, and PipeManager. After locating the appropriate manager class,
search the list of methods for the most likely method, such as the
TelephoneNumberManager.disassociate TN() method.

For instructions on how to access the Javadoc, see "Javadoc Documentation”.
Creating an extension point is a two-part process:

* Creating the Extension Point in Design Studio

ORACLE 8-26

http://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/
http://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/

Chapter 8
Working with Rulesets

* Creating the aop.xml File

Both are deployed into UIM as part of a cartridge.

Creating the Extension Point in Design Studio

For instructions on how to create an extension point in Design Studio, see the Design Studio
Help. When creating an extension point, use the following information.

Name Field

When entering a name, Oracle recommends that you follow the same naming convention
used in the ora_uim_baseextpts cartridge, which is ClassName_methodName. For example
TelephoneNumberManager_disassociateTN.

Point Name Field

When entering a point name, Oracle recommends that you follow the same naming
convention used in the ora_uim_baseextpts cartridge, which is ClassName.methodName.
For example, TelephoneNumberManager.disassociate TN.

Signature Field

Correctly entering the method signature in the Signature field is critical for the ruleset to run.
An exact signature match is required. For example, spacing errors result in the ruleset not
executing, as well as using a class interface hierarchy supertype. Oracle recommends that
you copy the signature from the UIM_Homellibluim-core-interfaces.txt file and paste it into
the Signature field. The uim-core-interfaces.txt file provides a generated listing of all API
method signatures. Copy the text from public abstract interface through the end of the line.

Example 8-6 shows a typical signature definition:

Example 8-6 Signature

public abstract interface java.lang.String

oracl e. communi cati ons. i nventory. api . busi nessi nt eracti on. Busi nessl nt eracti onManager . get EntityActi on(oracl
e. comruni cations.inventory.api.entity.conmon. RootEntity,

oracl e. communi cations.inventory.api.entity.Businesslinteraction, java.lang.String)

ORACLE

A signature requires the following:
» Visibility modifier (public, private, protected)

The visibility modifier must be defined as public abstract interface, as shown in
Example 8-6. The existence of the Javadoc for the method indicates that the method is a
public interface. AspectJ requires that all methods defined for an extension point be
declared as abstract, even if the method in the Java code is not defined as abstract.

e Return

This part of the signature defines the return values. In Example 8-6, getEntityAction()
returns java.lang.String.

e Fully qualified method call, which includes:
— Package

In Example 8-6, the package that contains the BusinessinteractionManager class is
oracle.communications.inventory.api.businessinteraction.

— Class

8-27

Chapter 8
Working with Rulesets

In Example 8-6, the class is BusinessinteractionManager.
— Method

In Example 8-6, the method is getEntityAction().
— Arguments

In Example 8-6, the arguments are the fully qualified objects of RootEntity,
Businessinteraction, and String.

Putting all parts together results in the signature being defined as shown in
Example 8-6.

When entering the signature:

Characters that define the signature are case sensitive.
No extra spaces can exist within the signature.

If the signature defines multiple arguments, the arguments are separated by a
comma followed by a space.

Signatures that define arrays must use [] to represent an array of objects.

Signatures that define an array of objects as a parameter must contain the
transient keyword. The AspectJ framework requires this keyword to retrieve the
extension point, as shown in Example 8-7.

Example 8-7 Signature with Transient and Array

public abstract transient interface

oracl e. communi cations.inventory.api.entity.Businesslnteraction

oracl e. communi cations.inventory. api.busi nessinteraction. Busi nessl nteractionManager.transferltems(
oracl e. communi cations.inventory. api.entity.Businesslnteraction,

oracl e. communi cations.inventory. api.entity.Businesslnteraction,

oracl e. communi cations.inventory. api.entity.Businessinteractionlten]])

< Note:

Do not copy the signature from the Javadoc and paste it into the Signature
field: Copying from an HTML file results in spacing errors. Avoiding these
spacing errors is critical because the ruleset does not run and you do not get
an error, so it is difficult to determine the problem.

Creating the aop.xml File

To create an aop.xml file:

1
2.
3.

ORACLE

In Design Studio, create an Inventory project.
Switch to the Java perspective.

Expand the inventory project, and expand the model directory. (The model
directory gets created when the inventory project is created.)

Create a new directory named aspects within the model directory.

Create a new file named aop.xml in the modellaspects directory.

8-28

Chapter 8
Working with Rulesets

6. Model the contents of the custom aop.xml file after the UIM_Homelconfiglextensibility/
META-INF/aop.xml file. See "aop.xml File" for more information on the aop.xml file.

7. Determine the aspect of the extension point, which is based on the method signature
defined by the extension point. See "aop.xml File" for more information on aspects.

8. Define the extension point within the determined aspect. See "aop.xml File" for more
information.

9. Delete any <concrete-aspect> elements that do not define any extension points.
10. Ensure that the <weaver> element is not commented out.

11. Update the <weaver> include elements to reflect the correct package or packages that
are applicable to your custom extension point. See "aop.xml File" for more information.

12. Save the aop.xml file.
13. Open the UIM_Home/Domain_HomelbinlstartUIM.cmd file.
14. Verify that the following lines are uncommented:

set JAVA OPTI ONS=%JAVA_OPTI ONS% - j avaagent : %J M_HOVE% | i b\ aspect j weaver . j ar
set JAVA OPTI ONS=%JAVA_OPTI ONS% - Daj . weavi ng. ver bose=f al se

See "Turning the Weaver On" for more information.

15. Save the startUIM.cmd file.

¢ Note:

The concrete-aspect name must be unique across all extension points installed on
your application server or the following error appears on server startup: "Error
Attempt to concretize but chosen aspect name already defined: name in aop.xml
warning register definition failed."

To fix this error, change the concrete-aspect name. Do not change the extends
portion of the concrete-aspect. Example 8-8 shows the before and after reflecting
this change.

Example 8-8 Concrete-Aspect Name

/| Before
<concr et e-aspect nane="oracl e. cormuni cati ons. extensi bility. extension. SpecBasedAsAr gunent "
ext ends="oracl e. conmuni cati ons. ext ensi bi [i ty. ext ensi on. SpecBasedAr gunent Ext ensi on" >
<poi ntcut name="rul eExt ensi onPoi nt" expressi on="
call (public abstract interface java.util.List
oracl e. communi cati ons. i nventory. api.connectivity. Pi peManager . updat ePi pes(j ava. util. Coll ection))"/>

Il After
<concr et e- aspect nanme="oracl e. cormuni cati ons. extensi bi | i ty. extensi on. SpecBasedAsAr gunment Xyz"
ext ends="oracl e. conmuni cati ons. ext ensi bi [i ty. ext ensi on. SpecBasedAr gunent Ext ensi on" >
<poi ntcut name="rul eExt ensi onPoi nt" expressi on="
call (public abstract interface java.util.List
oracl e. communi cati ons. i nventory. api . connectivity. Pi peManager . updat ePi pes(j ava. util. Coll ection))"/>

ORACLE 8-29

Chapter 8
Working with Rulesets

Creating Ruleset Extension Points

< Note:

This section applies to ruleset extension points and global ruleset extension
points.

Note:

No base ruleset extension points are provided. If you want to use a base
ruleset and a base extension point, you must create a ruleset extension point
to configure the base ruleset to run at the base extension point.

The ruleset extension point configures a ruleset to run at a specification-based
extension point and configures the placement of the ruleset.

For instructions on how to define a ruleset extension point, see the Design Studio
Help.

Creating Enabled Extension Points

Name Field

ORACLE

Note:

This section applies only to specification-based extension points.

Note:

Before creating a custom enabled extension point, check the
ora_uim_baseextpts cartridge to see if a base enabled extension point
already exists for the specification and extension point that you need to
enable.

Create an enabled extension point for every specification-based extension point you
create. For instructions on how to create an enabled extension point, see the Design
Studio Help. When creating an enabled extension point, use the following information.

When entering a name, Oracle recommends that you follow the same naming
convention used in the ora_uim_baseextpts cartridge, which is
SpecificationName_ClassName_methodName. For example,
usTelephoneNumber_TelephoneNumberManager_disassociateTN.

8-30

Chapter 8
Working with Rulesets

Specification Class Name Field

You must select a value from the Class Specification Name list, which is preloaded with the
fully qualified entity specification Java class names.

Nearly all of the Studio Inventory entities are recognizable by their Java class nhame. For
example, the Telephone Number Specification entity appears in the list as
oracle.communications.inventory.api.entity. TelephoneNumberSpecification, and the
Equipment Specification entity appears in the list as
oracle.communcations.inventory.api.entity. EquipmentSpecfication.

The only exceptions to this recognizable naming convention are the configuration
specifications:

» Logical Device Configuration Specification
* Network Configuration Specification

» Pipe Configuration Specification

» Place Configuration Specification

* Service Configuration Specification

To enable an extension point for a configuration specification, you must select the
oracle.communications.inventory.api.entity.InventoryConfigurationSpec class, which enables
the Configuration Version Instance Type field. See "Configuration Version Instance Type
Field" for more information.

Configuration Version Instance Type Field

The Configuration Version Instance Type field is enabled only when you select
oracle.communications.inventory.api.entity.InventoryConfigurationSpec for the Specification
Class Name field.

When enabled, you may select a value for Configuration Version Instance Type, which is
preloaded with the available entity configuration specification Java class names. The
selection list displays the following fully qualified Java class hames:

e oracle.communications.platform.entity.impl.LogicalDeviceConfigurationVersionDAO
e oracle.communications.platform.entity.impl.NetworkConfigurationVersionDAO

e oracle.communications.platform.entity.impl.PipeConfigurationVersionDAO

e oracle.communications.platform.entity.impl.PlaceConfigurationVersionDAO

e oracle.communications.platform.entity.impl.ServiceConfigurationVersionDAO

If you select a value for Configuration Version Instance Type, the extension point is
enabled for the selected entity configuration specification. If you do not select a value for
Configuration Version Instance Type, the extension point is enabled for all of the entity
configuration specifications.

ORACLE 8-31

Chapter 8
Working with Rulesets

Configuring a Specification for a Ruleset Extension Point

< Note:

This section applies only to a ruleset extension points; it does not apply to
global ruleset extension points.

To run a ruleset that is configured to run at a specification-based extension point, you
must also configure the specification for the ruleset extension point. This configuration
is done in Design Studio, on the Rules tab of any Specification editor. For example,
Figure 8-10 shows that, when you click Select to select a ruleset extension point, only
the ruleset extension points that are enabled for the Equipment Specification appear.

For instructions on how to configure a specification for a ruleset extension point, see
the Design Studio Help.

Figure 8-10 Specification Editor Rules Tab

i my_cartridge

ol MyEquipSpec &7 %™

Al Equipment Specification : MyEquipSpec extends Equipment @ @

Display Mame

Ruleset Extension Point Cartridge

Select.. | | Open | | Remove | | Add..

Characteristics | Specification Pro... | Properties | Visualization | Related Specifica... | Configuration Spe... | Rules | *;

Validating and Compiling Rulesets

Rulesets are validated:

ORACLE

As you write a ruleset. The respective rule editor, either Drools or Groovy,
validates syntax to prevent compilation errors. These rule editors are not part of
UIM or Design Studio, but can readily be installed. See "Installing, Configuring,
and Using the Drools Eclipse Plug-ins" or "Installing, Configuring, and Using the
Groovy Eclipse Plug-ins" for more information.

8-32

Chapter 8
Working with Rulesets

When you build the project. Validations are performed to ensure that required values are
supplied and that the specification configured for a ruleset extension point complies with
the definitions in the enabled extension points.

Rulesets are compiled:

When UIM is started and there are uncompiled rulesets (such as after an upgrade). The
serialized compilation is stored in the database. If compilation errors are encountered, the
startup fails and the errors are cited.

When a cartridge that contains rulesets is deployed. The serialized compilation is stored
in the database. If the compilation errors are encountered, the deployment fails and the
errors are cited.

" Note:

When compiling rulesets or building cartridges that contain rulesets, it is important
that you configure your environment correctly to avoid errors later in the process.

See "Configuring Design Studio" for more information.

Compiling Rulesets with Third-Party Dependencies

ORACLE

If your ruleset custom code is dependent upon third-party code for successful compilation,
you must add the third-party JAR files containing the code upon which your custom code is
dependent to the Inventory project. The third-party JAR files must be included in the
Inventory project so when the resultant cartridge is deployed into UIM, the third-party code is
available to the ruleset at runtime.

¢ Note:

Adding third party JAR files to the Eclipse project library list successfully compiles
dependent custom code, but if compiled in this manner, third party code is not part
of the Inventory project and is not available at runtime.

To add third-party JAR files to your Inventory project:

In Design Studio, within the Studio Design perspective, open the Package Explorer view.

In the Package Explorer view, expand your Inventory project containing your ruleset and
third party-dependent custom code.

Under the model directory, create the following directory structure: content/
inventory.ear/APP-INF/lib.

Copy any required third-party JAR files into the modellcontent/inventory.ear/APP-
INF/lib directory.

Build the project.

8-33

Chapter 8
Debugging Custom Drools Rulesets

Deploying Cartridges Containing Rulesets

Deploying cartridges containing rulesets and extension points is no different than
deploying other cartridges. See UIM Cartridge Guide for information about deploying
cartridges and cartridge packs.

Running Rulesets

Rulesets can be run manually or automatically.

Manually Running Rulesets

Rulesets can be run manually from within UIM by clicking the Execute Rule link in the
Tasks panel. Manually running rulesets is commonly used to manage UIM data. For
example, you can manually run the SYSTEM_EXPORT base ruleset in one
environment to export data, and manually run the SYSTEM_IMPORT base ruleset in
another environment to load the exported data. See "About Base Rulesets" for more
information.

Automatically Running Rulesets

Rulesets can be run automatically after they are deployed into UIM: When an event
occurs that runs an existing UIM method that was defined as an extension point, the
extensibility framework calls the RulesExecutor.execute() method, which runs the
ruleset associated with the extension point.

Debugging Custom Drools Rulesets

ORACLE

For information on debugging custom rulesets (DRL files), see the Drools
Documentation website:

http://docs. jboss. org/ drool s/rel ease/ 6. 5. 0. Fi nal / drool s-docs/ htm _singl e/

Note:

The Drools documentation describes debugging rulesets within Eclipse,
within the context of a Drools project, not within the context of a UIM server.

¢ Note:

The Drools documentation on debugging states you must install the Eclipse
Graphical Editing Framework (GEF) to debug rulesets. However, the Design
Studio Inventory feature plug-in contains the GEF, so it is already installed.

For information on turning on debugging in UIM (to debug anything other than DRL
files), see UIM System Administrator's Guide.

8-34

http://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/

Chapter 8
Debugging Custom Groovy Rulesets

Debugging Custom Groovy Rulesets

This section provides information on debugging custom Groovy rulesets and extension
points. Ensure that the steps for installing and configuring the Groovy Eclipse plug-ins are
completed prior to setting up debug. See "Installing, Configuring, and Using the Groovy
Eclipse Plug-ins" for more information.

Converting Inventory Projects to Groovy Projects

To convert an Inventory project to a Groovy project, perform the following steps before the
project is deployed to the UIM server for the first time:

1.

In the Design Studio Package Explorer view, right-click the desired Inventory project, and
select Configure.

A submenu for the Configure action appears.
Select Convert to Groovy Project.

The project is converted.

Setting Up Debug Configurations

To set up a debug configuration to allow debugging of the project:

1.

Ensure the UIM server is running so that a debugger can be connected. See the UIM
System Administrator's Guide for more information.

In the Design Studio Project Explorer view, select your project.

From the Run menu, select Debug Configurations.

The Debug Configurations window appears.

Click Remote Java Application, and then the New icon.

A new remote java application is created with prompts for the settings.
Click Browse and select your project.

Click the Connect tab and enter the host and port information for the UIM server on
which the cartridge with the custom rulesets is located.

On the Common tab, under the Display in favorites menu, select the Debug check
box.

Click Apply to save the configuration.
Click Close.

The Debug Configurations window closes.

Debugging Groovy Rules

To debug your Groovy rule code:

ORACLE

1.

Set a breakpoint on at least one line of your code that is enabled. You can set a
breakpoint by a double-click on a line of code, or right-click on the line of code and select
Toggle Breakpoint.

8-35

Chapter 8
Troubleshooting Rulesets and Cartridge Deployment

In the Design Studio Project Explorer view, select your project.
From the Run menu, select Debug Configurations.

The Debug Configurations window appears.

Under Remote Java Application, select your application.
Click Debug.

The application is launched in debug mode and the debug perspective is
displayed. The Eclipse debugger stops on the line of code where the breakpoint is
set.

¢ Note:

Only the secondary level of scripts can be debugged. The parent-level
rule code does not recognize breakpoints; and only a breakpoint in a
script that is called from the parent is recognized.

Troubleshooting Rulesets and Cartridge Deployment

This section provides information on troubleshooting problems you may encounter
when working with custom rulesets, extension points, and cartridge deployment.

Troubleshooting Custom Rulesets

When troubleshooting custom rulesets, check the following:

Does the ruleset compile?

— Use the Drools or Groovy Eclipse plug-in editor.

— Check the import statements.

— Check the project library list.

Does the cartridge build and deploy successfully?

— Check the UIM application server log.

If using Drools, does the ruleset condition ever evaluate to true?
— Debug to find out.

Are the ruleset argument values and return values correct?

— Debug to find out.

Troubleshooting Custom Extension Points

When troubleshooting custom extension points, check the following:

ORACLE

Is the extension point defined in both Design Studio and in a custom aop.xml file?
Is the signature defined correctly in both places?
— Check spacing.

— Check spelling of package and class names.

8-36

Chapter 8
Troubleshooting Rulesets and Cartridge Deployment

Regarding the weaver section in the custom aop.xml file:

— Did you include it?

— Are the package names correct?

Did the cartridge build and deploy successfully?

— Check the UIM application server log.

Is the Weaver turned on?

— Check the UIM_Home/Domain_HomelbinlsetUIMEnv.cmd file.

After deploying a cartridge containing custom extension points, did you restart the UIM
application server?

— Check the UIM application server log to see if the custom extension point was
successfully weaved into the UIM code stream.

Troubleshooting Configuring a Ruleset to Run at an Extension Point

When using base rulesets and base extension points, base ruleset extension points are not
provided. You must configure base rulesets, and custom rulesets, to run at extension points.

Did you create a ruleset extension point to configure the ruleset to run?
Did you select the correct ruleset?
Did you select the correct extension point?

Did you select the correct placement of the rule to run before, after, or instead of the
method?

Be mindful of the rule placement. For example, if you are expecting your ruleset custom
code to perform a process based on something the extension point method does, and
you configure the ruleset to run before or instead of the method, you will not get the
results you are expecting.

Troubleshooting Using Timing Events

If you set up rulesets based on timing events, be sure the UIM_Homelconfig/
timers.properties file has the timing event you are using turned on. For example, if you
configure a ruleset to run based on the timing of telephone number aging, and the timing
event for this is not turned on, your ruleset will never run. For more information on the
timers.properties file, see UIM System Administrator's Guide.

Troubleshooting Cartridge Deployment

When deploying a cartridge from Design Studio, you check the following items to ensure you
can successfully deploy a cartridge.

Base Cartridges are Deployed

All required base cartridges are deployed into UIM before deploying other cartridges. Oracle
recommends that you deploy all base cartridges even if they are not immediately required.
See the UIM Cartridge Guide for more information on base cartridges.

ORACLE

8-37

Chapter 8
Troubleshooting Rulesets and Cartridge Deployment

Java JDK Version

If you encounter the Design Studio error shown in Example 8-9, the build of your
project may be picking up an incorrect version of the Java. (In Example 8-9,
cartridgeName is the name of the cartridge you are attempting to deploy, and
releaseNumber_buildNumber is the release number and build number of the cartridge
you are attempting to deploy.)

Example 8-9 Design Studio Error

Error installing cartridges: {<Cartridge cartridgeName
rel easeNunber _bui | dNunber >=j ava. i 0. | OException: The nodel data cannot be
imported. Please verify logs for nore information.}

In the server log, this error may appear as shown in Example 8-10. In this example,
MySampleManager is a Java file in a cartridge that is trying to import MyHelper,
which is another file in the same cartridge. However, MySampleManager cannot find
MyHelper because MyHelper.java and the other files in the cartridge have
inadvertently been compiled with the incorrect version.

Example 8-10 Server Log

2013-09-25 11:30:45,910 ERROR [] [[ACTI VE] ExecuteThread: '11' for queue:

"webl ogi c. kernel . Default (self-tuning)'] [Rul esExecutor] [INV-180014]

A JBoss Rul es conpilation error occurred in: SAVPLE DEVI CE_ASSI GN

Error inporting :

"oracl e. communi cations. i nventory. t echpack. sanpl e. MyHel per'

j ava. |l ang. Exception

at oracle.conmuni cations.inventory.extensibility.rules.inpl.Rul esExecutorlnpl.
get Rul eBase(Rul esExecut or I npl . j ava: 151)

at oracle.conmuni cations.inventory.extensibility.rules.inpl.Rul esExecutorlnpl.
conpi | eRul es(Rul esExecut or I npl . j ava: 200)

at oracle.conmuni cations.inventory.extensibility.rules.RuleConpiler.run
(Rul eConpi l er. java: 128)

at webl ogi c. work. j 2ee. J2EEWr kManager $Wor kW t hLi st ener. run
(J2EEWr kManager . j ava: 184)

at webl ogi c. wor k. Execut eThr ead. execut e(Execut eThr ead. j ava: 256)

at webl ogi c. wor k. Execut eThr ead. run(Execut eThread. j ava: 221)

To resolve this error, verify that you have configured Design Studio correctly, as
described in "Configuring Design Studio”. In particular, pay close attention to
"Configuring the eclipse.ini File" because even though you may have your Eclipse
compiler compliance level set correctly, Eclipse can still pick up an incorrect Java JDK
if you have more than one Java version installed on your machine. You can also use a
decompiler on your class files to verify the correct version of the Java JDK is being
used.

Maximum Characteristics for a Table and Required Privileges

ORACLE

While deploying a cartridge, you can need create table privileges on the UIM
database schema. Characteristics within a cartridge can require additional database
tables by UIM core. This user privilege is required when the number of characteristics
per entity exceeds the maximum number of columns (1000) in the table.

The error returned for this situation has the following text:

Error installing cartridges:
org. ecl i pse. persi stence. excepti ons. Dat abaseExcepti on

8-38

Chapter 8
Troubleshooting Rulesets and Cartridge Deployment

Internal Exception: java.sql.SQSyntaxErrorException:

ORA-01031: insufficient privileges

ORA-06512: at "U734B383. CREATE_CHAR EXT TABLE",

ORA-06512: at "Ur34B383. ADD_CHAR COLUMN_TRI GGER',

ORA- 04088: error during execution of trigger 'U734B383. ADD_CHAR COLUMN_TRI GGER

If you encounter this error, ensure the user deploying the cartridge has create table
privileges for the database.

Existing Custom Extensions Overwritten

This section describes options to resolve the issue when a cartridge deployment is
overwriting existing custom extensions. For a cartridge that has a custom aop.xml file, it is
possible to overwrite another cartridge's aop.xml file. Try one of the following resolution
options:

Post-deployment option: Rename the mslv-aop-filter-aop.jar in the custom library
before deploying another cartridge having a custom aop.xml file. This custom library
resides in the uim_custom_lib.ear file in the UIM_Home/Domain_Home/UlMlappl
uim_custom_lib/luim_custom_lib_releaseNumber.version directory, where
releaseNumber is the UIM software release and version is the sequential number of
changes to the library. You must select the highest existing version. Figure 8-11 shows a
sample directory with four versions of the custom library. For this example, the correct
directory to select is uim_custom_lib_releaseNumber.0.4 directory.

Within the EAR file, the JAR file is located in the APP-INF/lib directory.

Figure 8-11 Sample Directories of Custom Library

4 UM
- app
4 uim_custom_lib
uim_custom_lib_[releaseMumber].0.1
uim_custom_lib_[releaseMumber].0.2
wim_custom_lib_[releaseMumber].0.3

uim_custom_lib_[releaseMumber].0.4

Pre-deployment option: When you can make the change before deployment, this is a
more desirable option that the post-deployment option. Before deploying the cartridge,
rename the aop.xml for every custom cartridge that has the XML file in the model/
aspects folder to the filename:

prefixAop.xml

where prefix is any string value that makes the filename unique. This generates a mslv-
aop-filter-prefixAop.jar when the cartridge is built successfully.

Clean-up option: To delete or disable a previously deployed ruleset, redeploy the same
cartridge with an empty aop.xml file.

See "Creating the aop.xml File" for more information on creating custom aop.xml files.

ORACLE

8-39

Chapter 8
Upgrading or Converting Rulesets

Upgrading or Converting Rulesets

Rulesets may be written using either Drools or Groovy. The following sections further
describe upgrading or converting rulesets in terms of Drools and Groovy.

Note:

This section assumes that you have already upgraded UIM, so have already
deployed the base cartridges for the current release, and deployed any
applicable cartridge packs for the current release. See UIM Installation Guide
for ore information on upgrading UIM.

Upgrading Drools Rulesets

ORACLE

" Note:

This section is only applicable if you:

e Plan to use Drools in this release

e Are upgrading from a previous release of UIM to UIM 7.2.3 or later
e Have existing custom rulesets written using Drools

If you plan to use Drools in this release and are new to UIM, this section is
not applicable. If you plan to use Groovy in this release, see "Converting
Drools Rulesets to Groovy Rulesets".

Previous versions of UIM (before 7.2.3) used Drools 3.0.4, and UIM 7.2.3 and forward
uses a later Drools release. The Drools upgrade requires that you upgrade custom
rulesets, which may reside in custom cartridges or in extended cartridge packs. See
UIM Catrtridge Guide for more information on extended cartridge packs.

See "Software Requirements" for information on the Drools version for UIM.

To upgrade custom rulesets:

1.

Configure Design Studio. When upgrading custom rulesets, it is important that you
configure your environment correctly to avoid errors later in the process.

See "Configuring Design Studio".

In Design Studio, recompile all custom rulesets and all custom code your rulesets
call.

See "Validating and Compiling Rulesets" for more information.

If compilation errors are encountered, update custom rulesets and custom code as
follows:

Refer to Table 8-1 and update all occurrences of these commonly used 3.0.4
Drools methods to the newer Drools methods.

8-40

Chapter 8
Upgrading or Converting Rulesets

Table 8-1 Upgraded Drools Methods
|

3.0.4 Drools Method Updated Drools Method
assert() insert()

assertObject() insert()

assertLogical() insertLogical()
assertLogicalObject() insertLogical()

modify() update()

modifyObject() update()

b. If compilation errors remain, refer to the Drools Knowledge API Javadoc to determine
if your custom code calls any other Drools methods that have changed. You can
access the Drools Knowledge API Javadoc at the website:

http://docs.jboss. org/drool s/rel ease/5.5. 0. Fi nal / know edge- api - j avadoc/
i ndex. ht m

Then select the Drools version, and knowledge-api-javadoc directory.
Deploy all cartridges containing recompiled custom rulesets and custom code.
See "Deploying Cartridges Containing Rulesets" for more information.

Test your changes by running the rulesets.

See "Running Rulesets" for more information.

Converting Drools Rulesets to Groovy Rulesets

ORACLE

Note:
This section is only applicable if you:

e Plan to use Groovy in this release
e Are upgrading from a previous release of UIM to UIM 7.3.0 or later

e Have existing custom rulesets written using Drools that you want to convert to
Groovy

If you plan to use Groovy in this release and are new to UIM, this section is not
applicable. If you plan to use Drools in this release, see "Upgrading Drools
Rulesets".

To convert existing custom rulesets from Drools to Groovy:

1.
2.

In Design Studio, open the Studio Design perspective and the Studio Projects view.
Import the following base cartridges:

e ora_uim_baserulesets

e oOra_uim_mds

e ora_uim_model

Import your custom cartridge containing the custom ruleset you are converting.

8-41

http://docs.jboss.org/drools/release/5.5.0.Final/knowledge-api-javadoc/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/knowledge-api-javadoc/index.html

Chapter 8
Handling Concurrent Scenarios

4. Expand your custom cartridge that contains the custom ruleset you are converting,
and open the custom ruleset.

The Ruleset editor opens.

5. Click Browse Drools Code.
The DRL file opens.

6. Copy all of the content and close the DRL file.

7. In the Ruleset editor, click Browse Groovy Code.
The GROOVY file opens.

8. Update the rule section of the code.

Note:

All of the base rulesets provide both a DRL file and a GROOVY file. Look
at the base rulesets for examples of how the code needs to change.

9. Save and close the GROOVY file.

When the cartridge is deployed, both the DRL and the GROOVY files are updated
in the RULESET database table in UIM.

10. In the Ruleset editor, click the Run Extension Language list arrow and select
GROOVY.

When the cartridge is deployed, this indicator is updated in the RULESET
database table in UIM. At runtime, this indicator tells UIM which file to run; the
DRL file or the GROOQVY file.

11. Save and close the Ruleset.
12. Rebuild the cartridge that contains the ruleset.

13. Redeploy the cartridge that contains the ruleset into UIM.

Handling Concurrent Scenarios

ORACLE

Sometimes you may be required to concurrently update the entity relationships in the
ruleset. For example, for an existing network, there may be a need to add nodes and
edges concurrently. Typically, when you concurrently add nodes and edges in a
network, there is a possibility of the network getting updated resulting in an Optimistic
Locking exception.

To avoid this situation, add the following code in the ruleset to not update the network
when nodes and edges are concurrently added to the network:

(Net wor kNodeBaseDAO) nt wkNodel) . set Net wor k(net, f al se)

The above code adds the network node to the network without updating the network;
however, it is possible that the network in the Eclipselink cache may get out of synch
and not contain the newly added node/edge.

To clear the Eclipselink cache, add the following code at the end of the ruleset:

EntityManager em =
Per si st enceHel per . makePer si st enceManager () . get Per si st enceManager () ;

8-42

Chapter 8
Handling Concurrent Scenarios

EntityManager!lnpl eminpl = (EntityManagerlnpl) JpaHel per. getEntityManager(en;
Cache cache = ((EntityManager Fact oryDel egat e)

em nmpl . get Enti t yManager Factory()). get Cache();

cache.evictA I ();

ORACLE 8-43

Using Rulesets for Bills of Materials

This chapter provides information about using rulesets to extend Oracle Communications
Unified Inventory Management (UIM) Bills of Materials (BOMSs).

See UIM Concepts for more information about BOMSs.

About Cost Information for Bills of Materials

BOMs can be generated for engineering work orders, business interactions, and projects.
Retrieving the BOM cost information is based on the resource and task specification tags. A
database table is provided for storing the cost information. You must either write a SQL script
that populates this table or provide your own method of storing and retrieving the cost
information to fit your requirements.

Extending BOM Manager Methods

You can customize BOM data by using extension points in the BOMManager API interface,
which generates BOMs. This interface includes methods that you can use or override to
perform the following customizations:

ORACLE

Provide your own cost retrieval functionality. You can extend the getCostFromReference()
method with custom logic replacing this functionality. The getCostFromReference()
method retrieves the cost for a specified cost reference ID. A string is the single input
parameter to this method and it returns the cost value as a string. The input parameter is
the cost reference tag provided in Design Studio. You can override this method and
provide your own cost retrieval functionality. By default, this method retrieves and returns
the COST field from the COSTREFERENCE table. The default SQL query is the
following:

SELECT COST FROM COSTREFERENCE WHERE COSTREFERENCEI D = i nput _val ue
where input_value is the cost reference ID key for the table row. See "Cost References"
for more information.

Provide additional information about BOM activities by using the
populateAdditioninfoOnActivity() method. This method populates the Activity class
attributes with information. The method takes the following input parameters:

— BillOfMaterialActivity item
— Activity object

You can provide functionality that populates the Activity object attributes as needed. By
default, this method is empty.

Provide additional information about BOM resources by using the
populateAdditionalinfoOnResource() method. This method populates the inventory
resource class attributes with information. The method takes the following input
parameters:

— BillOfMaterialResource item

9-1

Chapter 9
Cost References

— Inventory object (resource)

You can provide functionality that populates the resource object attributes as
needed. By default, this method is empty.

e Customize the format of BOMs by using the toXML() method on the BillOfMaterial
object that is generated by the getBOM() method. The getBOM() method
generates and returns a BillOfMaterial object. The method takes the following
input parameters:

— BOMENtityType (project or business interaction)
— String for the entity identifier (the project name or business interaction ID)
— BOMType (activity, quote, resource, or engineering type)

You can use the toXML() method to format the output: for example, as a report or
spreadsheet.

Cost References

ORACLE

BOMs can include cost information. Cost information for a resources or task is
generated when the cost reference tag is associated with the entity specification. The
tag includes a cost reference ID. By default, UIM uses the cost reference ID to retrieve
the cost from a database table named COSTREFERENCE. You can populate this
table by using a SQL script. Table 9-1 describes the required columns for the
COSTREFERENCE table.

Table 9-1 COSTREFERENCE Table Columns
- |

Column Name Type
COSTREFERENCEID String
COST String

You can modify this default behavior. For example, you can call a third-party system or
access a custom database table.

A cost reference tag can be associated with a specification in Design Studio. A cost
reference ID must begin with the string costreferenceid- as a prefix. The private
getCostReference() method finds the tag matching this prefix. This method uses the
costreferenceid field as the key to look up the cost value.

Example 9-1 shows a snippet of the getCostReference() private method that shows
how the tag is retrieved from the TagSpecificationRel object.

Example 9-1 getCostReference() Method Snippet

private String get Cost Ref erence(Specification spec) {

Li st <TagSpeci fi cati onRel > Tags = spec. get Tags();
for (TagSpecificationRel tag : Tags) {
Tag itenffag = tag.getTag();
if (itenTag.getNane().startsWth("costreferenceid-")) {
return iteniag. get Gt herInformation();

}

9-2

Chapter 9
Cost References

ORACLE' 9-3

Extending Notifications

This chapter provides information about extending notifications in Oracle Communications
Unified Inventory Management (UIM).

About Notifications

Notifications in UIM are messages that can optionally be sent to a user or a user group when
a qualifying event occurs. By default, qualifying events relate to workflows and their activities,
but notifications can be extended to other events. Notification messages inform the recipient

that an event requires attention.

By default, UIM sends notifications when the following events occur:

* An activity in a workflow is changed to the Ready state, which indicates a user or group
can work on the activity.

* An activity in a workflow is assigned to a user or a user group.

These events cause a notification to be sent to the user assigned to the activity. (For more
information about activities and workflows, see UIM Concepts.)

Notifications are email messages by default. You can extend notifications to include other
types of messages, such as Short Message Service (SMS) text messages. You can also
customize message content. Additionally, you can extend notifications for other UIM events
by creating custom events and handling these events using rulesets.

" Note:

Notifications are sent only if the system administrator has configured UIM to send
notifications.

About Extending Notification Functionality

ORACLE

You can customize the UIM natification functionality in the following ways:

* By customizing the content and format of notification messages. You can specify the
message text or template that is sent to users. You can format messages by using HTML
markup, or you can use simple text format. You can use variables in message template
strings. The variables are replaced in notification messages by values that are retrieved
at the time the messages are sent. See "Understanding Notification Message Content"
for more information about the structure and syntax of templates and variables.

* By changing the type of notification message sent or sending multiple types of messages.
You customize the type of message sent by using different Java handler classes. UIM
includes a handler for email messages by default. To send other types of messages, such
as SMS text messages, you create a custom handler. See "Changing the Type of
Notification Messages Sent" for more information.

10-1

Chapter 10
About Notifications

* By setting up notifications for additional types of events. For example, you might
want to send an email when a service moves to a pending disconnect status. See
"Adding Notifications for Additional Events" for more information.

When you customize UIM notification functionality, you supply the following information
in the system-config.properties file:

* The names of the handler classes used for different message types
* The message template string

* The name of the resolver class used to resolve variables in the message template
string

See "System Configuration Properties for Notifications" for a list of the notification
properties you set in the system-config.properties file.

Understanding Notification Message Content

The content of a notification message consists of a message template and variables
within that template. When a qualifying event occurs, the notification framework
resolves the variables and sends the message.

The following sections describe the structure of variables and templates.

Understanding Message Variables

ORACLE

A notification message variable is a value that can be different in each notification.
When generating an event, the Java notification resolver classes substitute values
retrieved from the event for the variables in the template.

For example, you might use a variable to represent the sender of the message. When
the notification message is generated, the sender's name or address is retrieved and
is inserted into the message content.

Variables have the following syntax:
${variableName}
where variableName is the name of the variable.

For example, the variable ${activityName} in a message template represents the name
of an activity. When a notification message is generated, the activity name (for
example, “Print Reports”) replaces the variable in the notification message.

If you want to use custom variables, you can create a custom Java resolver class that
looks up and resolves each variable. For example, the resolver class can look up the
following:

« Avalue from the activity event object
e Avalue from an API call
* Avalue from a customized property file

See "Customizing Message Content and Format" for additional examples of variable
references in message templates.

10-2

Chapter 10
About Notifications

Understanding Message Templates

ORACLE

Message templates provide the text that is included in every notification for a particular event.
UIM includes a default message template for email notification messages. You can define
your own template to modify the message content for email messages or to define content for
other types of messages. The message string is the value of a configuration property in the
system-config.properties file.

You define message templates in the inventory.EventClassName.message.template property
in the system-config.properties configuration file. EventClassName represents the name of
your Java event class. You enter the full text and formatting marks of the message template
in the inventory.EventClassName.message.template property.

See Table 10-1 "Table 10-1" for additional information on this and other notification
properties.

Notification message templates can have these formats:

* Rich text format using HTML tags. You use HTML tags to apply formatting to the text,
such as bold, color, fonts, and so on.

* Simple text format that includes line feed characters (\n).

Both rich text and simple text templates can include variables.

Message Templates in HTML Format

You can use HTML tags to apply formatting to the message templates. Example 10-1 shows
an email message template in HTML format that includes several different variables. Some
variables are enclosed with quotation characters (\") when the quotes are desired in the
output text. This example template is also the UIM default template.

Note:

This example includes extra white space for readability. You do not include extra
white space in the template property value.

Example 10-1 Example Email Message Template in HTML Format

<htm >
<body>
<p|’ e>
<span style=\"font-famly: tahoma, arial, helvetica,

sans-serif; font-size: small;\">${notificationReceiver},

 An activity named

 \"${activityName}\" from Wrk O der

\"${wor kOr der Nane}\ "</ strong> which is assigned to you, is
ready for action.

 Please note that this activity should start on

${activityStartDate}

 and finish no later than

${activityEndDate}

10-3

ORACLE

Chapter 10
About Notifications

</ strong>
</ span>

<span style=\"font-famly: tahom, arial, helvetica, sans-serif;
font-size: small;\"> Login to
Uni fied I nventory Management
Appl i cation
to check the details
</ span>

<span style=\"font-famly: tahoma, arial, helvetica, sans-serif;
font-size: small;\"> Thanks, </ span>
</ pre>
<p|’ e>
<span style=\"font-famly: tahom, arial, helvetica, sans-serif;
font-size: small;\"> ${notificationCOiginator}
</ pre>
</ body>
</htn >

Figure 10-1 shows the email text that is the result of the template in HTML format in
Example 10-1.

Figure 10-1 Email Message from an HTML Template

John Doe,

An activity named “Assess Parts Order” from Work Order "Enable Site”
which is assigned to you, is ready for action.

Please note that this activity should start on
Tue Aug 04 13:15:00 CST 2015 and finish no later than
Fri Aug07 13:15:00 CST 2015.

Loginto Unified Inventory Management Application to check the details.

Thanks,
Administrator

Example 10-2 shows how the example email template in HTML format is set as the
value of the inventory.ActivityAssignmentEvent.message.template property.

Example 10-2 Example Email Message Template (HTML) as a Property Value

inventory. ActivityAssi gnment Event . message. t enpl ate = <ht m ><body><pr e>$
{notificationReceiver},

 An activity named \"${activityNane}
\" activity fromWrk O der "${workO derName}\" has
been assigned to you.

 Please note that this activity should start
on ${activityStartDate}
and finish no later than $
{activityEndDat e} </ span>.

<span style=\"font-

10-4

Chapter 10
Extending Notifications

fanmly: tahoma, arial, helvetica, sans-serif; font-size: small;\"> Login to <a href=\"$
{ui MURL}I\">Uni fied Inventory Managenent Application to check the details. </
span>
<br [>
<span style=\"font-famly: tahoma, arial, helvetica, sans-
serif; font-size: small;\"> Thanks, </ span></pre><pre><span style=\"font-famly:

tahoma, arial, helvetica, sans-serif; font-size: small;\"> ${notificationOiginator}</
span></ pre></ body></ ht nl >

Message Templates in Simple Text Format

You can use minimal text formatting in message templates. Example 10-3 shows an email
message template in simple text format.

" Note:

This example includes extra white space for readability. You do not include extra
white space in the template property value.

Example 10-3 Example Email Message Template in Simple Text Format

${notificationReceiver}, \n\n

An activity named \"${activityName}\" from Work Order \"${workOrderNane}\" has been
assigned to you. \n\n

Pl ease note that this activity should start on ${activityStartDate} and finish no
later than ${activityEndDate}. \n\n

Login to ${uimJRL} to check the details. \n\n

Thanks,\n\n
${notificationOiginator}

Example 10-4 shows how the example email template in simple text format is set as the
value of the inventory.ActivityAssignmentEvent.message.template property.

Example 10-4 Example Email Message Template (Simple Text) as a Property Value

i nventory. Activi t yAssi gnment Event . nessage. tenpl ate = ${notificati onReceiver}, \n \n
An activity named \"${activityNane}\" from Work O der \"${workO derNane}\" has been
assigned to you. \n \n Please note that this activity should start on $
{activityStartDate} and finish no later than ${activityEndDate}. \n \n Loginto $
{uinURL} to check the details. \n\n Thanks,\n\n ${notificationOiginator}

Extending Notifications

ORACLE

This section explains how to extend the notification functionality. You can extend the
functionality to alter message content, notification type, or behavior. You can:

e Alter the message content of the message using property settings without making
additional changes. For this extension, you only need to add the new template definition
in the system configuration property file.

e Alter the content and the variables of the message. For this extension, you add the
template text and provide a resolver class. The resolver class is specified with a
configuration property.

10-5

Chapter 10
Extending Notifications

Alter the type of notification messages that UIM sends or alter the behavior of the
default email message. For this extension, you specify one or more handler
classes in the configuration properties. For example, the handler classes can
change the functionality by:

— Retrieving the recipients of the message from a third-party system.

— Determining the type of notification to send, such as email, SMS or another
type.

— Sending multiple types of notification messages for one event.

— Tailoring the subject of the message depending on some other criteria.

Alter the notifications for additional custom events. For this extension, you specify
one or more handler classes in the configuration properties.

Customizing Message Content and Format

You can customize the content and format of notification messages by defining a
message template. The message content in your template can include variables.

To customize notification message content and format, you perform the following
tasks:

In the UIM_Homelconfig/system-config.properties file, where UIM_Home
represents the directory into which UIM was installed, define the message
template. You define the message template as the value of the
inventory.EventClassName.message.template property, where EventClassName
represents the name of your Java event class. Add a property entry for each event
type to which the template applies, or to the InventoryEvent event class if the
generic class applies.

See "Understanding Notification Message Content" for information about the
syntax of the template value.

If your message template includes variables, do the following:

— Create a custom resolver class to resolve the variables and replace them with
values in the notification messages. The resolver class must extend the
StrLookup class in the Apache Commons project.

For information about the StrLookup class, refer to the Apache Commons
project website:

https://commons. apache. or g/

— In the system-config.properties file, specify your custom resolver class as
the value of the inventory.EventClassName.variable.resolver property, where
EventClassName represents the name of your Java event class. Add a
property entry for each event type to which the template applies.

For more information about the notification properties in the system-
config.properties file, see "System Configuration Properties for Notifications".

Changing the Type of Notification Messages Sent

You can change the type of notification messages that UIM sends. You can also send
additional types of messages, such as SMS text messages.

To change the type of notification message sent, you perform the following tasks:

ORACLE

10-6

https://commons.apache.org/

Chapter 10
Extending Notifications

Create a custom Java handler class that handles the new message type. For simplicity,
create a handler class for each type of message that you want to send. Your custom
handler classes must extend the NotificationHandler class.

In the UIM_Homelconfig/system-config.properties file, specify your custom handler
class in the value of the inventory.event.EventClassName.handler.list property. To specify
multiple handler classes, separate the class hames with a comma. UIM invokes the
handlers in the order you list them.

(Optional) If you want to define a new notification message template or modify an existing
template for the new message type, perform the tasks described in "Customizing
Message Content and Format".

See "System Configuration Properties for Notifications" for more information about the
notification properties in the system-config.properties file.

Adding Notifications for Additional Events

You can extend UIM noatifications to include additional events. To add a notification for a new
event class, you perform the following tasks:

ORACLE

Create a custom Java event class that extends InventoryEvent class.

Create a custom Java handler class that handles the new event class. Your custom
handler classes must extend the NotificationHandler class.

In the UIM_Homelconfiglsystem-config.properties file, specify your custom handler
class in the value of the inventory.event.EventClassName.handler.list property. To specify
multiple handler classes, separate the class names with a comma. UIM invokes the
handlers in the order you list them.

Define a new notification message template for this new event class. Refer to the tasks
described in "Customizing Message Content and Format" for more information on this
topic.

Create ruleset logic to inject code for any APl manager method with an extension point.
You include the handling of the new custom event in the rule logic.

Refer to "Extending UIM Through Rulesets" for more information on rulesets and
extension points.

Your new custom event class includes the following:

A constructor where you set the message information for this event, such as the subject
and handler classes.

A populateValueMap() method that returns a HashMap of the variable values.

(Optional) A getUIMUTrI() method if you need direction navigation from the email template
to a specific UIM web page.

Example 10-5 gives an example of a constructor for a custom event class.

Example 10-5 Code Example for a Custom Event Class Constructor

public CustomEvent() {

String propertyName = "inventory." + this.getC ass().getSinpleName() +

". nmessage. tenplate";

/] get the tenplate fromthe property file
set Noti ficati onMessage(SystenConfig. getlnstance().getProperty(propertyNane,

DEFAULT_MESSAGE_TEMPLATE)) ;

10-7

Chapter 10
Overview of Notification Java Classes

Li st<NotificationHandl er> notificationHandl erList =
new ArrayList<NotificationHandl er>();

/1 get the list of handlers fromthe property file

notificationHandl erList.add(NotificationHandl er Factory. get Notifi cati onHandl er(
NotificationType. Email));

set Noti ficationHandl ers(notificationHandl erList);

String subject = MessageResource. get Message("custom event”, null);

set Noti fi cationSubject (subject);

}

Example 10-6 gives an example of a populateValueMap() method for a custom event
class.

Example 10-6 Code Example of a populateValueMap() method for a Custom
Event

protected Map<String, String> popul ateVal ueMap() {
HashMap<String, String> valuesMap = new HashMap<String, String>();
val uesMap. put ("notificationReceiver",
this. get User Di spl ayNanme(t his. get NotificationReceiver().get(0)));
val uesMap. put ("activityName", this.getActivityNane());
val uesMap. put (“wor kOr der Nane", this. get Wr kO der Nane()) ;
val uesMap. put ("activityStartDate", this.getActivityStartDate());
val uesMap. put ("activityEndDate", this.getActivityDueDate());
val uesMap. put ("ui mURL", this.getU MKxI());
val uesMap. put ("notificationOiginator",
this. get User Di spl ayNanme(this.getNotificationOriginator()));
return val uesMap;

}

Example 10-7 gives an example of a getUIMUrl() method for a custom event class.
Example 10-7 Code Example of a getUIMUrl() method for a Custom Event

private static final String ACTIMITY_URL =

"http://${SERVER}: ${ PORT}/ I nvent ory/ f aces/ adf . t ask- f | ow?

adf . tf 1 d=Mast er Fl ow&adf . t f Doc=/ WEB- | NF/ Mast er FI ow. xn &obj ect | d=$
{ActivityQ d}&entity=Activity&nworkO der=${Wor kO der G d}";

public String getU MJI() {
String serverDetails = super.getU MJl();
String[] serverDetailsArray = serverDetails.split(":");
String serverName = serverDetail sArray[0];
String serverPort = serverDetailsArray[1];
HashMap<String, String> val uesMap = new HashMap<String, String>();
val uesMap. put (" SERVER', serverNane);
val uesMap. put (" PORT", serverPort);
val uesMap. put ("ActivityQ d", this.getActivityGd());
val uesMap. put ("WorkOrder G d", this.getWorkOrderQd());
StrSubstitutor substitutor = new StrSubstitutor(val uesMap);
String url = substitutor.replace(ACTIVITY_URL);
return url;

Overview of Notification Java Classes

This section provides an overview of the Java classes that support UIM notification
functionality. The Java classes are grouped into the following categories:

ORACLE 10-8

Chapter 10
Overview of Notification Java Classes

» Container or data classes that are the event classes
» Behavioral classes that are the handler and utility classes

e Internal UIM classes

Notification Functionality Class Diagram

The primary Java natification classes and their relationships are represented in Figure 10-2.
The factory classes (EventFactory and NotificationHandlerFactory) create the specific
instances of event or handler classes. ActivityAssignmentEvent and ActivityReadyEvent
extend the abstract InventoryEvent class. EmailHandler, the UIM handler class, extends the
abstract NotificationHandler class. MailMessenger is called by EmailHandler. The
InventoryEvent class calls the custom resolver class, when it is provided, in an extension.

Figure 10-2 Notification Functionality Class Diagram

CustomBResolver

InventornyEvent
MailMessenger
//m\ + =zendl eszage
/ 4
|
ActivityAssignment ActivityReady '
Event Event EmailHandler
h»_“ v + handleN atification
/
\ ! ?
A !
Y/ |__| NotificationHandler
EventFactory
+ handleN otification

llTl
I

NofificationHandler
Factory

ORACLE 10-9

Chapter 10
Overview of Notification Java Classes

About Event Java Classes

This section describes the classes used to manage the event data. These classes
include getter and setter methods for the event data. The constructor sets many of the
member values.

InventoryEvent Java Class

The InventoryEvent Java class is an abstract base class for ActivityAssignmentEvent
and ActivityReadyEvent. You can create your own custom events by extending
InventoryEvent. This base class maintains the generic notification data. The
InventoryEvent class has getter and setter methods for the following attributes:

* The notificationOriginator string indicates the originating email of this event, such
as the user or user group source of the email.

* The notificationMessage string is the content of the notification message.
* The natificationSubject string is the subject of the natification.
» The notificationReceiver is a Java list of strings indicating who is being notified.

e The naotificationHandler is a Java list of NotificationHandler objects that represents
the Java handler classes. The handler classes determine the notification behavior
of event instances that extend InventoryEvent. See "Handler Classes" for
definitions of the Java handler classes used for notifications.

» The copyNotificationTo is a Java list of strings indicating who is being copied on
the notification. The strings specify the recipients' email addresses. This attribute
is used only in extensions of the notification functionality.

Example 10-8 illustrates the package location and the declaration of the
InventoryEvent class.

Example 10-8 InventoryEvent Class Declaration

package oracl e. conmuni cations.inventory.api.franmework. event;
public abstract class |nventoryEvent

Activity Event Java Classes

ORACLE

The ActivityAssignmentEvent and ActivityReadyEvent classes manage activity event
notification data. ActivityAssignmentEvent encapsulates the data required to notify
users when they are assigned activities. ActivityReadyEvent encapsulates the data
required to send a notification when an activity is in the Ready state. These classes
have getter and setter methods for attributes, such as activity start date, activity due
date, and activity name. The activity event classes extend the InventoryEvent class.

Example 10-9 illustrates the package location and the declaration of the
ActivityReadyEvent class.

Example 10-9 ActivityReadyEvent Class Declaration

package oracl e. conmuni cations.inventory.api.franmework. event;
public class ActivityReadyEvent extends |nventoryEvent

Example 10-10 illustrates the package location and the declaration of the
ActivityAssignmentEvent class.

10-10

Chapter 10
Overview of Notification Java Classes

Example 10-10 ActivityAssignmentEvent Class Declaration

package oracl e. conmuni cations.inventory. api.franmework. event;
public class ActivityAssignment Event extends |nventoryEvent

About Notification Behavior Java Classes

This section describes the classes used to manage the notification behavior and message
variables. The handler and resolver classes do not have getter and setter methods.

Handler Classes

When an event occurs, the Java notification handler classes determine the behavior of the
notification for the following:

e The recipients for the message

e The mechanisms to look up the message addresses

e The subject of the message

e The originator of the message

e The type of natification message to send, such as sending an email or a text

UIM includes the default EmailHandler notification handler class. A handler class must
implement the interface NotificationHandler.

Resolver Classes

The Java resolver classes resolve the variables in the message templates for an event class.
You can use the same resolver class for multiple types of notification messages. The resolver
class looks up a variable string key and provides a string value result. You must define this
class to extend the class StrLookup in the Apache Commons project. See "Understanding
Message Variables" for more information on variables.

< Note:
For information about the StrLookup class, refer to the Apache Commons website:

https://comons. apache. or g/

Overview of Internal Notification Java Classes

This section describes the Java classes that are part of the notification functionality but are
internal to UIM. They are included in the documentation to provide clarity on the usage of all
classes. The internal classes do not have getter and setter methods.

Factory Classes

The Java notification factory classes provide instances of the notification classes. The
EventFactory class creates the event classes, and the NotificationHandlerFactory class
creates a list of NotificationHandler classes.

ORACLE 10-11

https://commons.apache.org/

Chapter 10
System Configuration Properties for Notifications

NotificationType Class

The NotificationType class is an enumeration class that identifies the type of
notification message to send. Example 10-11 show the class declaration, which
enumerates the Email and SMS message types.

Example 10-11 NotificationType Enum Class

public enum NotificationType {
Eni |
SMS

}

MailMessenger Class

The Java MailMessenger class is a utility class that sends email messages. The
MailMessenger class does not have getter and setter methods. This class holds a
private constant that identifies the mail session name.

< Note:

The system administrator must configure the server to set up the mail
session as a postinstallation step after UIM is installed. For more information
about this topic, see UIM Installation Guide. For more information about
managing the email addresses for users and user groups, see UIM System
Administrator's Guide.

System Configuration Properties for Notifications

ORACLE

This section describes the system configuration properties that you set when you
customize UIM notification functionality. You add the properties to the system-
config.properties file in the UIM_Homelconfig directory, where UIM_Home
represents the directory into which UIM was installed. By default, these properties are
not in the properties file; you add them only to extend the notification functionality.

When specifying the property name that includes an event name, you include the
name of the event Java class for which to send notifications. For instance:

i nventory. event. Event O assNane. | i st

The property applies to that event class and to all its subclasses. The general syntax
of the property entries is a name and value pair:

property_nane=val ue

For properties that can have multiple values, such as the handler list properties, values
must be separated by a comma. For example:

inventory. event.|nventoryEvent. handl er.|ist=Cust onEnai | Handl er, Cust onSMSHandl er
The syntax of the message template property values depends on how you want to

format the notification message. See "Understanding Notification Message Content"
for information about how to specify the template value.

10-12

ORACLE

Chapter 10
System Configuration Properties for Notifications

Table 10-1 describes the notification properties you set in the system-config.properties file.

Table 10-1 System Configuration Properties for Notifications

Property

Description

inventory.event.ActivityAssignmentEven
t.handler.list

A comma-delimited list of Java handler classes that handle
notifications when an activity event is assigned to a user.
This handler list takes precedence over the generic event
handlers defined in the
inventory.event.InventoryEvent.handler.list property.

inventory.event.ActivityReadyEvent.han
dler.list

A comma-delimited list of Java handler classes that handle
notifications when an activity event is moved to the Ready
state. This handler list takes precedence over the generic
event handlers defined in the
inventory.event.InventoryEvent.handler.list property.

inventory.event.InventoryEvent.handler.|
ist

A comma-delimited list of Java handler classes that handle
notifications for all events. This handler list takes lower
precedence than the specific event handlers defined in the
ActivityAssignmentEvent and ActivityReadyEvent properties.

inventory.event.EventClassName.handl
er.list

A comma-delimited list of Java handler classes that handle
notifications for a custom event where EventClassName is
the name of the custom event class.

inventory.ActivityAssignmentEvent.mes
sage.template

Defines the notification message template. The template
provides the static text of the notification message for the
ActivityAssignmentEvent and can include variables that are
resolved by the Java resolver class.

inventory.ActivityReadyEvent.message.t
emplate

Defines the notification message template. The template
provides the static text of the notification message for the
ActivityReadyEvent and can include variables that are
resolved by the Java resolver class.

inventory.EventClassName.message.te
mplate

Defines the notification message template. The template
provides the static text of the notification message for a
custom event where EventClassName is the name of the
custom event class.

inventory.ActivityAssignmentEvent.varia
ble.resolver

Specifies the Java resolver class name. This class
determines the variable values in the message template for
the ActivityAssignmentEvent event class. This resolver class
looks up a variable string key and provides a string value
result.

inventory.ActivityReadyEvent.variable.r
esolver

Specifies the Java resolver class name. This class
determines the variable values in the message template for
the ActivityReadyEvent event class. This resolver class looks
up a variable string key and provides a string value result.

inventory.EventClassName.variable.res
olver

Specifies the Java resolver class name. This class
determines the variable values in the message template for a
custom event where EventClassName is the name of the
custom event class. This class looks up a variable string key
and provides a string value result.

uim.host.name

Specifies the server host name. This is the Oracle WebLogic
Server host name where UIM runs. This property is used in
building the URL in the default email template text.

10-13

ORACLE

Chapter 10
System Configuration Properties for Notifications

Table 10-1 (Cont.) System Configuration Properties for Notifications

- ____________________________________|
Property Description

uim.host.port Specifies the server port. This is the Oracle WebLogic
Server port where UIM runs. This property is used in
building the URL in the default email template text.

10-14

Customizing the User Interface

This chapter provides information on customizing the Oracle Communications Unified
Inventory Management (UIM) user interface (Ul), which is written using Oracle Application
Development Framework (ADF) and Platform Common User Interface (CUI). The information
in this chapter describes statically customizing the Ul, which can result in backward
compatibility issues. See "Backward Compatibility" for the implications regarding this type of
extension.

UIM Ul customizations are made in JDeveloper. After installing JDeveloper, you customize
the UIM Ul by importing the UIM_Homelapplinventory.ear file into JDeveloper and making
the desired customizations. You then update the inventory.ear file with the customizations
and redeploy it for testing.

Installing JDeveloper

" Note:

Before installing JDeveloper, you must install the Java Development Kit (JDK). For
information on installing JDK, see UIM Installation Guide.

JDeveloper is included in the Unified Inventory Management software distribution on the
Oracle Software Delivery Cloud. To install JDeveloper, contact your system administrator for
the location of downloaded the JDeveloper JAR file.

1. Copy the JDeveloper JAR file named jdev_suite_version.jar to a local directory, such as
JDev_Home where version is a version number in the filename.

2. From a command line, navigate to JDev_Home and run the following command:

java -jar jdev_suite_version.jar

This initiates the JDeveloper installer.
3. On the Welcome window, click Next.
The Choose Middleware Home Directory window appears.

4. Select Create a new Middleware Home, enter a middleware home directory name, and
click Next.

Note:

The remainder of this chapter refers to the middleware home directory you
entered as JDev_Home.

ORACLE 11-1

Chapter 11
Extracting the inventory.ear File into JDeveloper

The Choose Install Type window appears.

Select Complete and click Next.

The JDK Selection window appears.

Click Browse and navigate to your local installation of the JDK, and click Next.
The Confirm Product Installation Directories appears.

Take the defaults and click Next.

The Choose Shortcut Location window appears.

Take the defaults and click Next.

The Installation Summary window appears.

Take the defaults and click Next.

The installation begins.

10. When the installation completes, click Done.

Extracting the inventory.ear File into JDeveloper

To extract the inventory.ear file into JDeveloper:

ORACLE

1.
2.
3.
4

Create a local directory, such as tempEar_Home.
Copy the UIM_Homelapplinventory.ear file to tempEar_Home.
Double-click the JDev_Homeljdeveloperl/jdeveloper.exe file.
Set the role to Studio Developer by doing one of the following:
* If the Select Role window appears when you launch JDeveloper:
Select Studio Developer (All Features) and click OK.
* If the Select Role window does not appear when you launch JDeveloper:

From the JDeveloper menu, select Tools, then select Switch Roles, then
select Studio Developer (All Features).

From the JDeveloper menu, select File, then select New, then select From
Gallery.

The New Gallery window appears.
Under Categories, expand General, and select Applications.
Under Items, select Application from EAR File, and click OK.

The Create Application from EAR File window appears. This window has three
parts: Location, Ear Modules, and Finish. Location appears first.

Next to the EAR File field, click Browse and navigate to the tempEar_Homel
inventory.ear file.

Selecting the inventory.ear file automatically populates the fields on this window
as follows:

* EAR File defaults to tempEar_Homelinventory.ear, based on the selected
EAR file.

* Application File defaults to inventory, based on the name of the selected
EAR file.

11-2

ORACLE

Chapter 11
Extracting the inventory.ear File into JDeveloper

Directory defaults to C:/JDeveloper/myworkl/inventory. You can change the
defaulted directory to any directory you prefer. The directory specified gets created by
the process you are about to initiate.

Source Roots defaults to tempEar_Home.

Leave the Copy Files to Application check box deselected, and click Next.

Ear Modules appears.

10. Accept the default module names and project names, and click Next.

Finish appears, showing the inventory.ear file location, and the location of the projects
that JDeveloper is about to build based on the modules in the inventory.ear file.

11. Click Finish.

JDeveloper does the following:

Creates a workspace. The workspace directory name and location are based on the
directory name and location specified in the Directory field on the Location window.

Creates an application in the workspace. The application name (inventory) is based
on the imported EAR file name.

Creates several projects within the inventory application, as shown in Figure 11-1.
Each project name is based on a module name from the selected inventory.ear file.

Figure 11-1 Inventory Application Projects

Applicatiun Mavigator * | [:]
fnvsnbory - -
Projects] & - 3=~

Cove_raps

isseih

=5 2

inventoryeib
imventorwwseib
sdoapi

-0 wim-antities
uimserwicafulfilment

Application Resaurces
Caka Controls i 5
Recently Opened Files

12. Delete all of the projects except the inv project by doing the following:

a.

b.

Select all of the projects except the inv project.
Right-click on the group of selected projects and select Delete Project.
The Confirm Delete Project window appears.

Select Remove projects from application, and click Yes.

11-3

Chapter 11
Configuring the JDeveloper Project

Configuring the JDeveloper Project

You must configure the JDeveloper project to successfully compile the project.

ORACLE

To configure the JDeveloper project:

1.

Outside of JDeveloper, copy the following JAR files from the UIM_Homellib
directory to a temporary directory used for the duration of extending the Ul:

e capacity_caps.jar
e characteristic_caps.jar
e commes-platform-ui.jar

The comms-platform-ui.jar file is located in the UIM_Homellib/ comms-
platform-webapp.war/WEB-INF/lib directory.

e consumable_caps.jar

e core_caps.jar

e groupenabled-caps.jar

e es.jar

e ojdbcversion.jar

e poms.jar

e sdoapi.jar

e stringtemplate-version.jar

e uim-api-framework.jar

e uim-caps.jar

e uim-entities.jar

e uim-entity-xmlbean.jar

e uim-managers.jar

e uim-webservices-framework.jar

e uim-webservices-framework-xsd.jar
where version is the version number in the filename.

In addition, copy the following JAR files from the cited directory to the same
temporary directory:

e adf richclient-api-version.jar

The adf_richclient-api-version.jar file is located in the DOMAIN_NAMEI
servers/AdminServer/itmp/_WL_user/adf.oracle.domain.webapp/
directory_namelWEB-INFI/lib directory, where version is the version in the
filename and directory_name is an auto-generated name that varies per
installation.

e platform-managers.jar

The platform-managers.jar file is located in the UIM_Homelapplversionl
uim_core_lib.ear/APP-INF/lib directory, where version is the UIM version
number.

11-4

Chapter 11
Customizing the User Interface

e adfsharembean.jar

The adfsharembean.jar file is located in the Oracle_Homeloracle_common/
modules/oracle.adf.share_version where version is the version number in the
directory name.

3. In JDeveloper, select the inv project, right-click, and select Project Properties.
The Project Properties window appears.

4. In the navigation panel, click Libraries and Classpath.
The Project Properties Libraries and Classpath window appears.

5. Click Add JARI/Directory.

6. Navigate to the temporary directory that contains the copied JAR files.

7. Select all of the copied JAR files and click OK.
The JAR files are added to the Project Properties Libraries and Classpath window.

8. Click OK again to close the Project Properties window.

Customizing the User Interface

Customizations can be in the form of new files or additions to existing files. If you are deleting
files or modifying existing files with changes or deletions, be aware of the errors this may
cause. These types of errors are logged by Oracle WebLogic Server when you deploy the
updated inventory.ear file.

Note:

You cannot customize the UIM home page.

About the Ul Files

UIM Ul customizations involve several types of files, such as JSFF, XML, Java, and XLF files,
as described in the following sections.

JSFF and XML Files

ORACLE

Each page in the UIM Ul is defined by a JSFF and XML file. For example, the UIM Party
Summary page is defined by the PartySummary.jsff and PartySummaryPageDef.xml, and
the UIM Party Maintenance page is defined by the PartyEdit.jsff and PartyEditPageDef.xml
files.

These files are located within the inventory application inv project, in the Web Content/
oracle/lcommunications/inventoryluilfunctionalArealpage directory, where functionalArea is
a UIM functional area such as equipment, number, service, and so forth.

Within each functionalArealpage directory, the JSFF and XML file names follow the naming
convention shown in Figure 11-2. For example, each file name contains the entity name
(Place, Party, and so forth), and the Web page (Search, List, Summary, Edit, and so forth).
The XML page file names end with PageDef.

11-5

XML Files

ORACLE

Chapter 11
Customizing the User Interface

Figure 11-2 Page File Naming Conventions

Applicatiun Mavigator * | E]
et oy b <
Projects Bl @ V- -
|__-_||:| party
l:l delegate
l—:l Flione
E||_:| page

..... & PartyEdit. jsff

----- E| PartyEditPageDef, xml

----- & partyList. jsfF

----- g PartyListPagelef . xml

----- @ PartySearch. jsff

----- E| PartySearchPageDef, xml
----- @ Partysummary, jsff

----- {E PartySummaryPagebef . xmil
i1 7] physicalconnectar

- [T physicaldevice

-7 physicalport

=[] place

D delegate

D Flotes

=1 page

----- @ PlaceEdit.jsff

----- {E PlaceEditPagelef .«

----- @ PlaceList,jsff

----- {E PlaceListPageDef, xml

----- @ PlaceSearch. jsff

----- g PlaceSearchPageDef . xml
----- @ Placesummary, jstf

----- E| PlaceSurmmaryPagelef, xml
F-C7) product

| gy ey T o B oy |

Each page in the UIM Ul has a specific task flow defined by an XML file. For example,
the UIM Party Summary page task flow is defined by the PartySummaryFlow.xml file,
and the UIM Party Maintenance page task flow is defined by the PartyEditFlow.xml
file.

These files are located within the inventory application inv project, in the Web
Content/WEB-INF/oracle/communications/inventoryluilfunctionalAreal/flow
directory, where functionalArea is a UIM functional area such as equipment, number,
service, and so forth.

Within each functionalArealflow directory, the XML file names follow the naming
convention shown in Figure 11-3. For example, each file name contains the entity
name (Place, Party, and so forth), and the Web page (Search, List, Summary, Edit,
and so forth). The XML task flow file names end with Flow.

11-6

Java Files

ORACLE

Chapter 11
Customizing the User Interface

Figure 11-3 Task Flow File Naming Conventions

{Zlapplication Navigator * | 2]
wErbary - <
Projects Bl & V- E-
|_:_|D parky
-7 Flow

L_|E| PartyEditFlow, xml

L_'E' PartySearchResulksFlow, xml
L_'E‘ PartySurnrmaryFlow, =l
k-7 phesicalconneckor

F-[7] physicaldevice

-7 physicalport

=[] place

=7 Flow

L_|E| PlaceSummaryFlow, xml

The functionality of each page in the UIM Ul is driven by logic in a Java source file that is
compiled into a Java class file. For example, the UIM Equipment Summary page is driven by
the EquipmentSummaryBean.class file, and the Equipment Maintenance page is driven by
the EquipmentEditBean.class file.

These files are located within the inventory application inv project, in the Web Content/WEB-
INFIclassesloracle/lcommunications/inventoryluilfunctionalArea Ibean/page directory,
where functionalArea is a UIM functional area such as equipment, number, service, and so
forth.

Within each functionalArealbeanlpage directory, the Java file names follow the naming
convention shown in Figure 11-4. For example, each file name contains the entity name
(Place, Party, and so forth), and the Web page (Search, List, Summary, Edit, and so forth).
The Java file names end with Bean.

11-7

Chapter 11
Customizing the User Interface

Figure 11-4 Java File Naming Conventions

{Zl Application Navigator * | 2]
iy - <~
“ Projecks Bl & V=
E'D party
=[] bean

BD TE

------- E PartyEditBean. dass

- [&] PartyListBean. class

| PartyResultsBean. tlass

I @ PartySummaryBean. class
-3 query

-7 delegate

-] Flow

-] model

-7 page

-7 phvsicalconnectar

-7 phvsicaldevice
E
F

-] physicalport

=-{7] place

=7 bean

=1 page

- ------ @ PlaceEditEean.class

------- @ FlaceListBean. class

r_—l o
= Data Contrals F IR

XLF Files

XLF files define text values that display throughout the UIM Ul. XLF files also define
formats that are used to display the text values in a specific way.

The InventoryUlBundle.xIf file, which defines text values, is located within the
inventory application inv project, in the Web Content/WEB-INF/classes/oracle/
communicationsl/inventory/uilcommon/bundle directory.

The Preferences.xlf file, which defines the DATE_FORMAT, is located within the
inventory application inv project, in the Web Content/WEB-INFIclasses/oracle/
communications/platform/ui directory.

ORACLE 11-8

Chapter 11
Customizing the User Interface

< Note:

If you customize the DATE_FORMAT in the Preferences.xlIf file, you must also
change the system.dateFormat specified in the UIM_Homelconfiglresources/
logging/system.properties file.

When entity managers throw informational, warning, or error messages that contain
a date, the message date is not formatted using the DATE_FORMAT specified in
the XLF file. Rather, the message date is formatted using the system.dateFormat
specified in the system.properties file. So, if you customize the date format, you
must change it in both files.

DCX File

The DataControls.dcx file defines the registry for all the delegates, which are defined as
data controls. If your customizations require a new delegate, this file needs to be updated to
include the new delegate.

This file is located within the inventory application inv project, in the Web Content/oracle/
communications/inventorylui directory.

The following documentation is useful when working with DCX files to customize the UIM UI:

* Oracle Fusion Middleware Developing Applications with Oracle ADF Data Controls:

https://docs. oracl e. con en/ m ddl ewar e/ devel oper -t ool s/ adf/12. 2. 1. 4/ devel op-
dat a-control s/index. htm

» The Oracle Fusion Middleware Web User Interface with Oracle ADF Faces:

https://docs. oracl e. con en/ nm ddl ewar e/ devel oper -t ool s/ adf/12. 2. 1. 4/ devel op-
faces/index. htm

e Additional information can be found at:

https://docs. oracl e. con en/ nm ddl ewar e/ devel oper -t ool s/adf/12.2. 1. 4/
i ndex. htm

Displaying Custom Attributes on a Web Page

Custom attributes are any attributes that you have added to an existing entity. You can
display custom attributes by editing the JSFF files for the entity's functional area. For
example, if you add the subscriberld attribute to the Service entity, you can display
subscriberld on the UIM Service Summary page by editing the inv/oracle/
communications/inventorylui/servicelpage/ServiceSummary.jsff file.

To display the value of the subscriberld attribute, add the following component to the JSFF
file:

<af: out put Text val ue="#{pageFl owScope. Servi ceSunmaryBean. entityQhj ect. subscri berld}"/>

Adding Custom Input Fields to a Web Page

You can edit the value of custom attributes in the UIM Ul by adding an input field to the JSFF
file for the entity's maintenance page.

ORACLE 11-9

https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/develop-data-controls/index.html
https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/develop-data-controls/index.html
https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/develop-faces/index.html
https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/develop-faces/index.html
https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/index.html
https://docs.oracle.com/en/middleware/developer-tools/adf/12.2.1.4/index.html

Chapter 11
Customizing the User Interface

By convention, maintenance page file names end with Edit. For example,
EquipmentEdit.jsff maintains an equipment entity, and ServiceEdit.jsff maintains a
service entity. Maintenance pages operate in two modes:

* New: For creating a new instance of the entity
» Edit: For modifying an existing instance of the entity

A managed bean exists for every entity, and the bean contains all of the attributes
defined for the entity. For example, for an equipment entity, the page is
EquipmentEdit.jsff and the Java class is EquipmentEditBean.class. Similarly, for a
service entity, the page is ServiceEdit.jsff and the Java class is
ServiceEditBean.class.

If the type attribute is added to the Equipment entity, type can be displayed on the
UIM Equipment Summary page and edited on the UIM Equipment Maintenance page.

To do this, edit the following files:

* Inthe InventoryUlBundle.xIf file, add the following to define the text for the type
attribute as it displays in the Ul:

<trans-unit id="TYPE">
<sour ce>Type</ sour ce>
<target/>
</trans-unit>

* In the EquipmentSummary.jsff file, add the following ADF component:

<af : panel Label AndMessage | abel ="#{i nvent oryU Bundl e. Type}" i d="pl an2" >
<af: out put Text
val ue="#{ pageFl owScope. Equi pnent Sunmar yBean. enti tyhj ect. type}"
id="ot3"/>
</ af : panel | abel AndMessage>

* In the EquipmentEdit.jsff file, add the following ADF component to edit the field:

<af:input Text val ue="#{pageFl owScope. Equi prent Edi t Bean. entity(hj ect. type}"
| abel ="#{i nvent oryUl Bundl e. Type}" id="it1"></af:input Text >

Adding Conditional Components to a Web Page

ORACLE

Components are Web page building blocks. For example, the OutputText component
is used for displaying entity attribute values on a Web page, and the InputText
component is used for editing entity attribute values on a Web page. Conditional
components are components that may or may not be rendered on a Web page,
depending upon the outcome of an expression that can be evaluated. You can make a
component a conditional component with custom logic.

To make a component a conditional component, edit the JSFF page file and map the
component to a Java method, which evaluates an expression. The expression can be
implemented with a custom logic class that extends the original bean class. For
example, to make the Activate/Deactivate check box attribute on the UIM Equipment
Maintenance page conditional upon an active condition being true, make the following
changes:

* In the EquipmentEdit.jsff file:

<af: sel ect Bool eanCheckbox val ue="#{ pageFl owScope. Equi pment Edi t Bean. acti ve}"
text="#{i nventoryU Bundl e. Active}" disabl ed="#{!
(pageFl owScope. Equi prent Edi t Bean. active)}" id="it7">

11-10

Chapter 11
Customizing the User Interface

» Create a new Java class that extends EquipmentEditBean.java, and have the class
define the following method:

public bool ean getActive()

{
i f(this.getEquiprment() !'= null && this.getEquipnent() instanceof Equi pnent)
{
Equi pnent equi pnent = (Equi prent)t hi s. get Equi pment () ;
InventoryState inventoryState = equi pment.get Admi nState;
return(inventoryState != null
Il nventoryState. equal s(lnventoryState. END OF LIFE):true);
}
return fal se;
}

Disabling an Input Field on a Web Page

You can disable InputText components based on a condition. For example, to make the type
attribute on the UIM Equipment Maintenance page conditional upon an active condition being
true, make the following changes to the EquipmentEdit.jsff page file:

<af:input Text val ue="#{pageFl owScope. Equi pment Edi t Bean. enti t yChj ect . type}"
| abel ="#{i nvent oryU Bundl e. Type}" id="it1" disabl ed="#{!

(pageFl owScope. Equi prent Edi t Bean. active)}">

</ af : i nput Text >

Adding a Custom Action to a Web Page

ORACLE

You can add a custom action to a Web page by editing the JSFF page file to include a link or
a button to call a custom listener method on the page. For example, to add a button to the
UIM Service Summary page, which calls the generateReport() method, make the following
changes to the ServiceSummary.jsff file:

<af : commandBut t on act i onLi st ener =#{ pageF| owScope. Ser vi ceSunmary. gener at eReport}">
<af : out put Text val ue="Text value of the |ink"/>
</ af : commandBut t on>

A custom class needs to implement this method, and the custom class needs to run in place
of the original. This is done using rulesets and extension points. For information on rulesets
and extension points, see Extending UIM Through Rulesets.

If the custom class is com.foo.ServiceSummary.class, the ServiceSummary.java source
file would reside in the inv/Web Content/WEB-INF/src/comifoo directory and would contain
the following:

package com f 00;
public abstract class ServiceSummary
ext ends oracl e. communi cations.inventory.ui.service. bean. page. Servi ceSunmar yBean

{

public void generatReport(Acti onEvent event)

{

/'l perfromthe custom|ogic here
Systemout. println(getService().toString());

}

Next, the inviWeb Content/WEB-INF/oracle/communications/inventoryl/uil servicel/flow/
ServiceSummaryFlow.xml task flow must be edited to add the new
com.foo.ServiceSummary.class to the pageFlowScope.

11-11

Chapter 11
Customizing the User Interface

Adding a Custom Search Field

You can add a custom search field to existing search criteria. For example, you can
add the Grade field to the Telephone Number Search criteria. To do this, you must
extend the API that the Ul calls, as well as the UL.

Extending the API

To add a custom search field to existing search criteria and extend the API to take this
new field into account:

1. Write a ruleset to extend the TelehoneNumberManager.findTelephoneNumber()
method. Set the rule to have placement before the findTelephoneNumber()
method.

2. In the extension code, add your business-specific code to include new search
criteria to restrict the result set. In the extension, you set the custom query with the
setCustomJPQL() method on the existing UIM search criteria class. You also need
to set the attributes and values for the criteria with the setCustomParameters()
method.

See "Extending UIM Through Rulesets" for information on how to write a ruleset.

Example 11-1 is an example code section of a business interaction query and
using the setCustomJPQL() and setCustomParameters() methods.

Example 11-1 Using the setCustomJPQL() and setCustomParameters()
Methods

Busi nesslnteractionSearchCriteria criteria =
bi Myr. makeBusi nessinteractionSearchCriteria();

criteria.setCustomJPQL(" AND o.id LIKE :id AND o.nane LIKE :name");

String[] attributes = {"id", "name"};
oj ect[] values = new Qhject[] {"225005", "CREATE SERVI CE" };

criteria.setCustonParaneters(attributes, values);

Col | ecti on<Busi nesslnteraction> bis = bi Myr.findBusinessinteraction(criteria);

Extending the Ul

ORACLE

TelephoneNumberSearch.jsff renders InventoryQuery.jsff to build the query criteria
on the page. To add the Grade field:

1. Create a new custom class, such as TNQueryBean.java, that extends the
oracle.communications.inventory.ui.number.bean.query.TelephoneNumberQ
ueryBean class. To add a new field, the getAttributeDescriptors() method needs to
be overridden.

2. Your custom class, TNQueryBean.java, needs to have something as shown in the
following example. (In the getAttributeDescriptors() method, the fields in the
queryAttributes String Array are rendered on the Ul as search fields.)

package oracl e. communi cations.inventory. ui.nunber.bean. query;

import java.util.List;

11-12

ORACLE

Chapter 11
Customizing the User Interface

inport oracle.adf.viewrich. nodel.AttributeDescriptor;

i nport oracle.comunications. platformui.bean.query. AttributeDescriptorlnpl;
i mport oracl e. comuni cations.inventory. ui.comon. utils. Constants;

i mport oracle.adf.viewrich.model . AttributeDescriptor. Conponent Type;

public class TNQueryBean extends Tel ephoneNunber Quer yBean

{
public static final String GRADE = "GRADE";
public TNQueryBean() { super(); }
protected List<AttributeDescriptor> getAttributeDescriptors()
{
Li st<AttributeDescriptor> attributeDescriptors =
super. get AttributeDescriptors();
AttributeDescriptorinpl attributeDescriptor = null;
attributeDescriptor =
this.createAttributeDescriptorlnpl
("GRADE", "GRADE", Constants.STRING TYPE nul |,
Conponent Type. i nput Text);
attributeDescriptors.add(attributeDescriptor);
String[] queryAttributes =
{ TELEPHONE_NUMBER, RANGE_FROM Const ant's. SPECI FI CATI ON, RANGE_TO,
SERVI CE_SPECI FI CATI ON, | NVENTORY_GROUP, Const ants. | NVENTORY_STATUS
CONDI TI ON_TYPE, Const ant's. RESOURCE_ASSI GNVENT_STATUS, GRADE};
this.set QueryAttributes(queryAttributes);
return attributeDescriptors;
}
}

Change the TelephoneNumberSearchResultsFlow.xml file to add your custom class
(TNQueryBean) in pageFlowScope, as shown below:

<managed- bean>
<managed- bean- nane>l nvent or yQuer yBean</ managed- bean- nane>
<managed- bean- cl ass>
oracl e. comruni cations. i nventory. ui . nunber. bean. query. TNQuer yBean
</ managed- bean- cl ass>
<managed- bean- scope>pageFl ow</ managed- bean- scope>
<managed- property>
<property-nane>beanC ass</ property-nane>
<property-class>java. |l ang. String</property-class>
<val ue>
oracl e. comuni cations.inventory.api.entity. Tel ephoneNunber
</val ue>
</ managed- pr operty>
<managed- pr operty>
<property- nane>sear chNane</ pr operty- name>
<property-class>java. |l ang. String</property-class>
<val ue>Tel ephone Nunber Search</val ue>
</ managed- pr operty>
</ managed- bean>

Create a new custom class, such as TNDelegate.java, that extends the
TelephoneNumberDelegate class. In the custom class, override the getSearchCriteria()
method to pass the Grade field to API. On the API side, extend
oracle.communications.inventory.api.number.TelephoneNumberSearchCriterialmpl
, and define the Grade field as a member. This is shown in the following example:

11-13

Chapter 11
Deploying User Interface Customizations

i mport oracl e. comuni cations.inventory. ui.comon. utils.CriteriaContainer;

i mport
oracl e. cormuni cati ons. i nventory. api . nunber. Tel ephoneNunber SearchCriteri a;

public class TNDel egate extends Tel ephoneNunber Del egat e

{
public TNDel egate() { super(); }

protected CriteriaContainer getSearchCriteria()
{

CriteriaContainer container = super.getSearchCriteria();

/* Get the criteria fromthe container and cast it to the

Cust onTNSear chCriterial npl custom tel ephone nunber search criteria */
Cust onTNSearchCriterial npl criteriaTNOhj =

(Cust oniNSear chCriterial npl)container.getCriteria();

/* Create a Criterialtemfor the newy added Grade field and set the itemin

the criteriaTNGbj custom tel ephone nunber search criteria */

i f (searchFi el dDefs. contai nsKey(" GRADE") && criteriaTNCbj !'= null)
Criterialtemitem = searchFiel dDefs. get (" GRADE");

itemsetVal ue((itemgetValue().toString()));

criteriaTNObj . setGrade(item;} /* Pass criteriaTNCbhj to the

finder nmethod and return the container */

contai ner = new CriteriaContainer(tnManager, "findTel ephoneNunbers",

criteriaTNObj);

return container;

}

5. Update the DataControls.dcx file to include the new TNDelegate, as shown
below:

<Adapt er Dat aContr ol i d="Tel ephoneNunber Del egat e"

Fact oryC ass="oracl e. conmuni cati ons. i nventory. ui . framework. datacontrol .| nvent
oryDat aCont r ol Fact oryl npl "

| npl Def =" or acl e. adf . model . adapt er. beanBeanDefi ni ti on"

Support Transacti ons="f al se"

SupportsSort Col | ection="true"

Support sReset St at e="f al se"

Support sRangesi ze="f al se"

Support sFi ndMbde="f al se

Support sUpdat es="t rue"

Definition="oracl e.comuni cations.inventory. ui.nunber. del egate. TNDel egat e"
BeanCl ass="oracl e. cormuni cati ons. i nventory. ui . nunber. del egat e. TNDel egat e"
xm ns="http://xm ns. oracl e. conl adf nf dat acontrol ">

6. Copy TelephoneNumberDelegate.xml, paste it in the same directory, and
rename it TNDelegate.xml. Afterward, open TNDelegate.xml and change all
occurrences of TelephoneNumberDelegate to TNDelegate.

Deploying User Interface Customizations

To deploy your UIM Ul customizations:

1. In JDeveloper, create the inv.war file:

a. Inthe Application Navigator, right-click on the inv project, select Deploy, then
select inv.

ORACLE 11-14

Chapter 11
Customizing Logos

The Deploy inv window appears. This window has two parts: Deployment Action,
and Summary. Deployment Action appears first.

b. Select Deploy to WAR and click Next.
Summary appears, showing the location of inv.war file after JDeveloper builds it.

c. Click Finish.

Note:

Neither the created inv.war file nor the created deploy directory in which
inv.war resides displays in JDeveloper, even after a refresh. To see the inv.war
file, navigate to your JDeveloper workspace outside of the JDeveloper
application.

Update the inventory.ear file to include the updated version of the inv.war file you just
created:

a. Outside of JDeveloper, navigate to tempEar_Home.
b. Open the inventory.ear file.

c. Add the inv.war file to the inventory.ear file, replacing the existing inv.war file with
the inv.war file that contains your Ul customizations.

d. Save and close the inventory.ear file.

e. Copy the updated inventory.ear file from tempEar_Home to the UIM_Homelapp
directory.

Deploy the updated inventory.ear file.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's
Guide.

Customizing Logos

When customizing the Ul, you can also customize logos. Customizing logos involves a
different set of files, so there is a separate procedure for customizing them.

ORACLE

To customize logos:

1.

Open the UIM_Homelliblcomms-platform-webapp.war file and extract the WEB-
INF/lib/lcomms-platform-ui.jar file to a local directory, such as tempDir.

Open the tempDirlcomms-platform-ui.jarlimages directory and add your custom logo
file.

Note:
Custom logo files are images, which are typically GIF, JPG, or PNG file types.

Open the tempDirlcomms-platform-ui.jar/oracle/communications/ platform/
templates/CommsUIShell.jspx file, and modify the file as follows:

a. Locate the text:

11-15

Chapter 11
Customizing Logos

<af:imge id="oracl el nage"
source="/afr/| ogo-oracl e-red. png"
client Conponent ="true" shortDesc="Oacle"/>

b. Change the text that defines the source to:

<af:imge id="oracl el nage"
sour ce="/i mages/ cust om_ogoFi | eNarre"
client Conponent ="true" shortDesc="Oacle"/>

where customLogoFileName is the name of your custom logo file that you
previously added to the tempDirlcomms-platform-ui.jarlimages directory.
The customLogoFileName includes the file type extension, such as .qgif, .jpg,

or .png.
4. Save and close the tempDirlcomms-platform-ui.jar file.
5. Repackage the WAR file by doing the following:

a. Open the UIM_Homelliblcomms-platform-webapp.war/WEB-INF/lib
directory.

b. Replace the comms-platform-ui.jar file with the tempDirlcomms-platform-
ui.jar file that contains your customizations.

c. Save and close the UIM_Homelliblcomms-platform-webapp.war file.
6. Log in to the WebLogic Server Administration Console.
7. Stop the UIM application:
a. Inthe left panel, under Domain Structure, click the Deployments link.
The Summary of Deployments page appears.
b. Select the check box for oracle.communications.inventory, and click Stop.
c. Choose Force Stop Now, and click Yes.
The UIM application stops.

8. To delete the Ul library, on the Summary of Deployments page, select the check
box for oracle.communications.platform.cui.webapp, and click Delete.

The library is deleted.

9. Open a command line.

10. Navigate to the UIM_HomelserversiserverNameltmpl_WL_user directory:
cd U M Hone/ servers/ serverNanme/ t np/ _W.__user

11. Delete the oracle.communications.inventory directory.

rm-rf oracle.comunications.inventory

Note:

If working in a clustered environment, delete the
oracle.communications.inventory directory from the tmp/_WL_user
directory for each of the servers.

12. Close the command line and return to the WebLogic Server Administration
Console, Summary of Deployments page.

ORACLE 11-16

Chapter 11
Testing User Interface Customizations

13. To install the Ul library, click Install, and select comms-platform-ui.jar located in
UIM_Homellib.

The library is installed.
14. Select the check box for oracle.communications.inventory, and click Update.

This redeploys the inventory.ear file and starts the UIM application.

Testing User Interface Customizations

You can test your UIM Ul customizations by running UIM and navigating to the customized
pages or new pages to validate that the customizations are working correctly. If
customizations included changes or deletions to existing files, regression testing is required
to ensure the customizations did not break existing UIM Ul functionality.

Adding Verification while Creating an Entity

You can add a verification window while creating an entity. The verification window appears
after you click Save on the entity creation page.

To add this verification window, you need to add a new displayPopup() method in the
<Entity>EditBean. Make changes in <Entity>Edit.jsff page for SAVE_AND_CONTINUE and
SAVE_AND_ADD_ANOTHER buttons to call the displayPopup() method.

Example 11-2 gives an example of the new method.
Example 11-2 Code Example for displayPopup() Method

di spl ayPopup(Acti onEvent actionEvent) {
War ni ngDi al ogAft er Acti onExecut eEL war ni ngDi al ogAf t er Acti onExecut eEL =
new
Wr ni ngDi al ogAft er Acti onExecut eEL("#{ |1 nvent or yHel per Bean. saveActi on}",
new O ass[] { ActionEvent.class },
new Cbject[] { actionEvent });
String warni ngDi al ogBi nding =
"#{ backi ngBeanScope. navi gat i on\\r ni ngDi al og}";
Wr ni ngDi al og war ni ngDi al og =
Wr ni ngDi al og. get | nst ance(war ni ngDi al ogBi ndi ng) ;
String message =
I nvent or yUl Bundl eManager . get Label (" SAVE_CONFI RVATI ON') ;
String textForLeaveButton =
I nvent or yUl Bundl eManager . get Label (" YES");
String textForStayButton = InventoryUl Bundl eManager. get Label ("NO');
String title =
I nvent or yUl Bundl eManager . get Label (" CONFI RVATI ON_TI TLE") ;

/1 Add logic to validate entity before saving to database.
/1 Display confirmation dialog nessage to user.
/1 Based on the user action, user can save or not save the entity.

if (warningDialog != null)
war ni ngDi al og. showMar ni ngDi al og(title, message, textForLeaveButton,
t ext For St ayBut t on, war ni ngDi al ogAft er Acti onExecut eEL);

}

ORACLE 11-17

Chapter 11
Disabling Edit Option in Entity Search and Entity Summary Pages

Disabling Edit Option in Entity Search and Entity Summary

Pages

ORACLE

You can disable the Edit button in the Search and Summary pages of an entity. You
need to define the checkForEditButton() validation in <Entity>SummaryBean and
<Entity>ResultsBean methods.

Example 11-3 gives an example of the checkForEditButton() validation.
Example 11-3 Code Example for Validation on Disabling Edit Option

publi ¢ bool ean checkForEditButton() {

/1 Check for security if user has access to edit task flow |If access
is not enabled return fal se;

/1 1f access is enabled, but want to restrict edit for entities of
particul ar specification, do the bel ow steps.

/1 Get the Specification of the entity

/1 Check the name of the entity specification.

/1 1f the specification name matches return fal se

11-18

Localizing UIM

This chapter provides information on localizing the Oracle Communications Unified Inventory
Management (UIM) user interface (Ul), and on localizing the UIM Help. Localization is the
process of translating a Ul or Help system from the original language in which it was written
into a different language for use in a specific country or region. For example, the UIM Ul and
UIM Help are written in English. If your company is based in France and you purchase UIM,
you may want to localize UIM to display the Ul and Help in French.

Localizing UIM involves modifying a specific set of files that UIM uses to display text in the Ul
and in the Help.

Note:

Before localizing your UIM environment, you must identify a strategy for maintaining
future localizations. Oracle does not provide a file that lists the details of what
changed between releases.

Setting the Language Preference in Internet Explorer

ORACLE

For a localized version of UIM to display correctly in Internet Explorer, users need to
configure language preferences.

To configure language preferences in Internet Explorer:
1. From the Tools menu, select Internet Options.
The Internet Options window appears.
2. Click Languages.
The Language Preference window appears.
3. The language you plan to use must display at the top of the list to have priority.
If the language you plan to use is listed:
a. Select the language.
b. Click Move Up to move the language you plan to use to the top of the list.
If the language you plan to use is not listed:
a. Click Add.
The Add Language window appears.
b. Select a language.
c. Click OK.

The Language Preference window returns.

12-1

Chapter 12
Determining the Locale ID

d. Select the language you have added, and click Move Up to move it to the top
of the list.

4. Click OK.

Determining the Locale ID

Alocale ID is a standardized ID that represents a language and region in which the
language is spoken. For example, fr-CA is the locale ID for French spoken in Canada,
and es-MX is the locale ID for Spanish spoken in Mexico.

Localizing UIM involves copying and renaming existing files to include a locale ID. The
renamed files that include a locale ID become the translated version of the original
files.

To determine the locale ID in Internet Explorer:

1. From Tools menu, then select Internet Options.
The Internet Options window appears.

2. Click Languages.
The Language Preference window appears.

3. Click Add.
The Add Language window appears.

Languages are listed alphabetically. Several languages are spoken in more than
one country, so the locale ID reflects the language and the country in which the
language is spoken.

4. Locate the language to which you are localizing and note the locale ID.

5. Close the Add Language, Language Preference, and Internet Option windows.

Localizing UIM

Localizing the UIM Ul involves working with a UIM-provided cartridge that you import
into Oracle Communications Design Studio, modify, and deploy. Design Studio also
provides various editors, such as an XML editor and an HTML editor, that you can use
to translate files for localization.

The following sections describe localizing UIM:

e About the Ul-Specific Files

e Localizing the Ul-Specific Files

e Deploying the Cartridge Containing the Localized Files
e Testing the UIM Ul Localization

About the Ul-Specific Files

The Ul-specific files are a set of .xIf and .properties files that contain localizable text
strings that define labels and messages. You modify the text string within these files to
localize UIM.

o xlf files

ORACLE 12-2

Chapter 12
Localizing UIM

The UIM Ul was written using Application Development Framework (ADF). ADF-specific
files use the .xIf file extension. XLF files contain localizable text strings for labels that
display in the Ul.

.properties files

The UIM Ul calls UIM API methods, which may result in an information, warning, or error
message displaying in the Ul. Properties files contain localizable text strings for API
messages that display in the UI.

Localizing the UI-Specific Files

Localizing the Ul is accomplished by modifying the text strings in XLF and properties files that
display in the UL.

To localize the Ul-specific files, perform the work described in the following sections:

Importing the Localization Archive File into Design Studio
Locating the Ul-Specific Files within the Project

Copying and Renaming the Ul-Specific Files

Editing the Ul-Specific Files

Importing the Localization Archive File into Design Studio

Note:

Within Design Studio, you must be in the Studio Design perspective Studio Projects
view.

Within Design Studio, you must be in the Studio Design perspective Cartridge view.

The UIM_Homelcartridges/sample/ora_uim_localization_reference_cartproj.zip file
contains an Inventory project with all of the Ul-specific files that you can import into Design
Studio to localize.

For instructions on how to import projects using archive files, see the Design Studio Help.

Locating the UI-Specific Files within the Project

¢ Note:

Within Design Studio, you must be in the Java perspective Package Explorer view.

The localization archive file that you imported into Design Studio contains the
ora_uim_localization_reference project. The Ul-specific files are contained within the
project.

ORACLE

12-3

Chapter 12
Localizing UIM

XLF Files

The Ul-specific XLF files are located in the ora_uim_localization_reference project,
within the model/content/inventory.ear/inv.war/WEB-INF/classes/oracle/
communications directory. The communications directory contains the following
subdirectories, which contain the Ul-specific XLF files:

* inventoryluilcommon/bundle/InventoryUlBundle.xIf
* inventoryluilframework/bundle/InventoryOHWBundle.xIf
« platform/ui/CommsUIShell.xIf

« platform/ui/Preferences.xIf

Properties Files

The Ul-specific properties files are located in the ora_uim_localization_reference
project, within the model/content/product_home/config/resources/logging
directory.

Copying and Renaming the UI-Specific Files

Copying and renaming the Ul-specific files ensures that the default file is always in
place to use for display if needed. Adding the locale to the file name differentiates your
localized files from the default files, which simplifies upgrades. If files are edited for
localization without being renamed to reflect the locale, all localization efforts are lost
when you upgrade because the files are overwritten.

To copy and rename the files within the Design Studio Java perspective Package
Explorer view:

1. Right-click on the file and select Copy.

2. Right-click on the parent directory of the copied file and select Paste.
The Name Conflict dialog box appears.

3. Modify the file name to include the appropriate locale ID.

For example, rename InventoryUlBundle.xIf to InventoryUlBundle_fr_ca.xIf
and rename equipment.properties to equipment_fr_ca.properties for French
spoken in Canada.

See "Determining the Locale ID" for more information.

Note:

On the Add Language window shown in "Determining the Locale ID", the
locale ID is separated by a dash. When renaming the XLF and properties
files, use an underscore in place of the dash.

4. Click OK.

ORACLE 12-4

Chapter 12
Localizing UIM

< Note:

If you copy and paste the file, and then try to rename it, the Rename menu option is
not available when right-clicking on the file in the Java perspective. You can,
however, copy and paste the file and rename by selecting File from the menu, and
then selecting Rename.

Editing the Ul-Specific Files

ORACLE

To edit the Ul-specific files, perform the work described in the following sections:

» Editing the XLF Files
* Editing the Properties Files

Editing the XLF Files
To edit the XLF files within Design Studio:

1. Open the Java perspective.
2. Open the Package Explorer view.
3. Within the imported project, locate the XLF files.
See "Locating the Ul-Specific Files within the Project” for more information.

4. Right-click on the file and select Open With, then select Text Editor.

Caution:

If you double-click on the file, Design Studio may open the file for editing
outside of Design Studio.

5. Edit the value of the <source> elements, which define text that displays in the UL.

Example 12-1 is an excerpt from the InventoryUlBundle.xIf file that shows numerous
<source> elements. Edit only the value of the <source> elements: for example UIM
Home Page, Inventory, Home, and Products.

Note:

The Preferences.xlf file defines a date format. If you want to localize the date
format, see "XLF Files" for more information.

Example 12-1 InventoryUlBundle.xIf

<trans-unit id="LANDI NG PAGE TI TLE">
<sour ce>Ul M Hone Page</ source>
<target/>

</trans-unit>

<trans-unit id="MENU_| NVENTORY" >
<sour ce>l nvent or y</ sour ce>
<target/>

12-5

Chapter 12
Localizing UIM

</trans-unit>

<trans-unit id="MENU_HOVE'>
<sour ce>Home</ sour ce>
<target/>

</trans-unit>

<trans-unit id="MENU_PRODUCT" >
<sour ce>Pr oduct s</ sour ce>
<target/>

</trans-unit>

Editing the Properties Files
To edit the properties files within Design Studio:

1. Open the Java perspective.
2. Open the Package Explorer view.
3. Within the imported project, locate the properties files.
See "Locating the Ul-Specific Files within the Project" for more information.

4. Right-click on the file and select Open With, then select Text Editor.

Caution:

If you double-click on the file, Design Studio may open the file for editing
outside of Design Studio.

5. Edit the text strings that define APl messages that display in the UI.

Example 12-2 is an excerpt from the party.properties file that shows two
messages. Each message is defined by two lines: the first line defines the
message ID, and the second line defines the message text that displays in the Ul.
Edit only the message text: for example, Party Id {0} already exists and The
party with Id {0} was successfully deleted.

Example 12-2 also shows that messages are not necessarily error messages; the
partyDeleted message in is an informational message.

For languages that have a heavy usage of single quotes like the French language,
you use two single quotes in order to have the single quote show in the message.
Example 12-3 has an example of using the two single quotes. This example
results in the following message:

¢ En attente d'attribution

< Note:

UIM uses Java's MessageFormat class, which use a single quote to
represent a pattern within the string. To have a single quote visible, you
must use two single quotes to represent a single quote in the string.

Most of the entries in the properties files are informational and error messages.
Example 12-4 is a date format example where the value exists with a single line
definition. This date format property is defined in the system.properties file.

ORACLE 12-6

Chapter 12
Localizing UIM Help

For the single-line property values that are not messages, the symbols must contain
English abbreviations. For instance, French abbreviations for the date values

MW jj/aaaa

create an error situation. Example 12-5 shows a property setting to accommodate a
modified date display.

Example 12-2 party.properties

party. al readyExi sts.i d=230002

party. al readyExi sts=Party Id {0} already exists.

party. partyDel et ed. i d=230009

party. partyDel eted=The party with Id {0} was successfully del eted.

Example 12-3 Languages with Use of Single Quotes Need Two Single Quotes

st at us. PENDI NG_ASSI G\=En attente d'"attribution
Example 12-4 system.properties Entry with a Date Format
syst em dat eFor nat =MM dd/ yyyy

Example 12-5 system.properties Entry with a Modified Date Format

syst em dat eFor nat =dd/ MM yyyy

Deploying the Cartridge Containing the Localized Files

Localized files are modified as part of a project. After the modifications are complete, build
the project to create the cartridge that can be deployed into UIM. Every cartridge should be
cleaned and rebuilt prior to deploying.

See UIM Cartridge Guide for information about deploying cartridges and cartridge packs.

Note:

When a cartridge containing localizable XLF files is deployed into UIM, the
inventory.ear file is automatically redeployed, resulting in the localization changes
being applied to the UL.

Testing the UIM Ul Localization

You can test your UIM Ul localization by running UIM and navigating from page to page to
validate that the pages are displaying the localized text.

Localizing UIM Help

The following sections describe localizing UIM Help:

e About UIM Help
* Localizing the UIM Help Files
» Deploying the Localized Help System

ORACLE 12-7

Chapter 12
Localizing UIM Help

* Testing the UIM Help Localization

About UIM Help

The UIM Help uses Oracle Help for the Web. Oracle Help is a browser-based Help
system that runs as a Web application based on a Java servlet. You do not need
specialized knowledge of Oracle Help to localize UIM Help; you can use the
information in this chapter, supplemented by the Oracle Help documentation. See
Oracle Fusion Middleware Developing Help Systems with Oracle Help for more
information:

http://docs. oracl e. conl m ddl ewar e/ 1213/] dev/ devel op-hel p/toc. ht m

About the Oracle Help Configuration File

The Oracle Help configuration file, ohwconfig.xml, is located in the UIM_Homelappl
inventory.ear/inv.war/WEB-INF/help directory. The ohwconfig.xml file contains
references to each Help system deployed into an application. Upon installation,
ohwconfig.xml references the default UIM Help system (English) deployed into UIM.
This file requires configuration for localization.

About the UIM Help Files

The UIM Help files are located in the UIM_Homelapplinventory.earlinv.war/WEB-
INF/help/helpsets/uimoh_help.jar file, which contains the following Help files:

* .htm files: Each HTML file is a separate Help topic. The text in all of the HTML
files requires translation.

» uimoh.hs: This file describes the Help system. When UIM Help is initiated through
the UIM user interface, uimoh.hs is the starting point. This file does not require
translation.

« toc.xml: This file defines the Table of Contents that appears in the left pane of the
Oracle Help window. The text in this file requires translation.

« map.xml: This file associates Help IDs with the HTML file names. The toc.xml file
uses the IDs to link entries to Help topics. This file does not require translation.

» search.idx: This file is used when you perform a text search of the Help content.
The file defines a search index that searches the Help content in the HTML files.
After the HTML files are translated, the search index will not recognize the
translated topics.

» target.db: This file contains cross-reference information used for navigating
between Help topic headings. This file does not require translation.

* dcommon/html/cpyr.htm: This file defines the Help copyright page and requires
translation. (The dcommon directory contains standard Oracle support files,
including a CSS file, several graphics files, and the Help copyright page, but only
the Help copyright page requires translation.)

Localizing the UIM Help Files

To localize UIM Help, perform the work described in the following sections:

» Extracting the Help Files

ORACLE 12-8

http://docs.oracle.com/middleware/1213/jdev/develop-help/toc.htm

Chapter 12
Localizing UIM Help

e Translating the Help Files
» Creating the Localized Help JAR File
* Configuring the Oracle Help File

¢ Note:

If you localize the Help, the search functionality will not retrieve the translated
content.

Extracting the Help Files

Use the default Help files installed with UIM as the starting point for your localization.
To extract the Help files:

1. Copy the UIM_Homelapplinventory.earlinv.war/WEB-INF/help/helpsets/
uimoh_help.jar file to tempDir, where tempDir is a local directory.

2. Open the tempDirluimoh_help.jar file.
3. Extract all the objects in the uimoh_help.jar file into tempDir.
4. Click the File column heading in tempDir, which sorts the objects by file type.
You should see the following directories and files in tempDir:
* dcommmon directory
e img directory
* META-INF directory
* target.db
* uimoh_help.jar
e uimoh.hs
* numerous .htm files
* search.idx
* map.xml

e toc.xml

Translating the Help Files

To translate the Help files, perform the work described in the following sections:
» Translating the Copyright Page

* Translating the Help Topics

e Translating the Table of Contents

Translating the Copyright Page

To translate the copyright page:

1. Navigate to the tempDirldcommon/html directory.

ORACLE 12-9

ORACLE

Chapter 12
Localizing UIM Help

2. Open the cpyr.htm file.

3. Translate the content of the <title>, <h1> through <h6>, and <p> elements to the
local language.

For example, translate the bolded content in Example 12-6:
Example 12-6 Excerpt from cpyr.htm

<title>Oracle Legal Notices</title>

<link rel ="styl esheet" href="../css/bl afdoc.css" type="text/css" />
</ head>

<body>

<h1>Oracl e Legal Notices</hl>

<h2>Copyri ght Notice</h2>
<p>Copyright © 1994-2012, Oracle and/or its affiliates. Al rights
reserved. </ p>

Translating the Help Topics
To translate the Help topics:

1. Navigate to the tempDir directory.

The Help topics text is defined in the numerous .htm files within this directory.
Each .htm file must be translated.

2. Open an .htm file.

3. Translate the content of the <title>, <h1> through <h6>, <p>, and <td> elements to
the local language.

For example, translate the bolded content in Example 12-7. Elements that are not
text, such as the HTML tags themselves, should not be changed.

4. Repeat steps 2 and 3 for each .htm file in the tempDir directory.
Example 12-7 Excerpt from tel_nbr_info_work_area.htm

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'
"http://ww. w3.org/ TR/ xht md 1/ DTDY xht ml 1-transitional . dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xm :1ang="en" |ang="en">
<head>
<meta name="0AC_| GNORE_SKI P_NAV' content="true" />
<meta http-equiv="Content-Type" content="text/htm ; charset=us-ascii" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta http-equiv="Content-Script-Type" content="text/javascript" />
<title>Tel ephone Number - Information Wrk Area</title>
<neta name="generator" content="Oracl e DARB XHTM. Converter (Mde = ohj/ohw) -
Version 5.1.2 Build 073" />
<neta name="date" content="2012-09-17T22: 25: 552" />
<neta name="robots" content="noarchive" />
<meta name="doctitle" content="Tel ephone Nunber - Information Wrk Area" />
<neta name="rel nunf content="Rel ease 7" />
<nmeta name="partnunl' content="E36042-0" />
<meta name="topic-id" content="tel ephonel nfo" />
<link rel ="copyright" href="./dcomon/htm /cpyr.htn title="Copyright"
type="text/htm" />
<link rel ="styl esheet" href="./dcommn/css/ bl af doc. css" title="Oracle BLAFDoc"
type="text/css" />
<link rel ="contents" href="toc.htnf title="Contents" type="text/htm" />
</ head>
<body>

12-10

Chapter 12
Localizing UIM Help

<p><a i d="CHDCJEI G' name="CHDCJEl G'><a id="t el ephonel nf 0"
nanme="t el ephonel nf 0" ></ a></ p>

<div class="sect1"><!-- infolevel ="al|" infotype="Ceneral" -->
<h1>Tel ephone Number - Information Wrk Area</hl>
<p>You use the Tel ephone Nunber - Information

work area to edit the information that appears in the Sunmary work area l nfornmation panel. Sone data el ements, such as the ID
cannot be changed after the entity is created.</p>

<div align="center">

<div class="inftbhlnote">

<tabl e class="Note oac_no_warn" sumary="" cel | paddi ng="3" cel | spaci ng="0">

<t body>

<tr>

<td align="left">

<p class="notepl">Note: </ p>

The fields that appear in this work area are determned by the entity specification
definition used to create the entity. The specification is created in Design Studio
The fields defined below for this entity are common anong nmost specifications. </td>
</tr>

Translating the Table of Contents
To translate the Table of Contents:

1. Navigate to the tempDir directory.
2. Open the toc.xml file.

Each item in the Table of Contents is defined by a <tocltem> element.
3. Translate the content of each <tocltem> to the local language.

For example, translate the bolded content of the text attribute in Example 12-8. Do not
change the content of the target attribute.

Example 12-8 Excerpt from toc.xml

<tocitemtarget="uimhelp_interface. htm' text="Cetting Started with Unified Inventory
Managenent " >

Note:

Oracle Help automatically translates the Help window menu options; field names;
and informational, warning, and error messages. The translation is based on the
locale defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and the
ohwconfig.xml file defines a single locale of French, Oracle Help translates the
Help window menu options, field names, and messages to French.

Oracle recommends that the language preference with the highest priority be the
same language defined as the locale in the ohwconfig.xml file.

Creating the Localized Help JAR File

After translating the Help files, create a new JAR file containing the localized Help files.

To create the new JAR file:

ORACLE 12-11

7.

Chapter 12
Localizing UIM Help

Navigate to the tempDir directory.

The tempDir directory contains the uimoh_help.jar file, the translated Help files,
and the regenerated search index file.

Copy the uimoh_help.jar file to tempDir to create a second copy of the
uimoh_help.jar file in tempDir.

Select the copied version of the uimoh_help.jar file and rename it
uimoh_help.jar_Jlocale.jar, where locale is the standardized ID that represents a
language and region in which the language is spoken. For example, fr-CA is the
locale for French spoken in Canada, and es-MX is the locale for Spanish spoken
in Mexico.

For more information, see "Determining the Locale ID".

¢ Note:

On the Add Language window shown in "Determining the Locale ID", the
locale ID is separated by a dash. When renaming the JAR file, use an
underscore in place of the dash.

Open the uimoh_help_locale.jar file.
Delete all of the objects in the JAR file.

Add the localized Help files to the uimoh_help_Jocale.jar file. (This includes all of
the directories and all of the files in tempDir, with the exception of uimoh_help.jar
and uimoh_help_/locale.jar.

Save and close the uimoh_help_Jlocale.jar file.

You can verify that you included all of the directories and files by checking the number
of objects in the uimoh_help.jar file and in the uimoh_help_locale.jar file; the two
JAR files should contain the same number of objects. To determine the number of
objects in each JAR file, select all of the objects in each JAR file; this provides a count
of all objects selected.

Configuring the Oracle Help File

ORACLE

After translating the Help files and creating a localized Help JAR file, configure the
ohwconfig.xml file to reflect the localized Help JAR file.

To configure the ohwconfig.xml file:

1.

Open the UIM_Homelapplinventory.earl/inventory.war/WEB-INF/help/
ohwconfig.xml file.

The file defines the default Help system (English):

<l ocal es>
<I-- English: -->
<l ocal e | anguage="en">
<books>
<hel pSet id="ui moh_hel p"
jar="/hel pset s/ ui noh_hel p.jar"
| ocation="ui moh. hs"/>
</ books>
</l ocal e>
</l ocal es>

12-12

ORACLE

Chapter 12
Localizing UIM Help

2. Update the <locale> element to reflect the localized Help system:

<l ocal es>
<!-- French Canadi an: -->
<l ocal e | anguage="fr">
<books>
<hel pSet id="ui moh_hel p_fr_ca"
jar="/hel psets/uinoh_hel p_fr_ca.jar"
| ocati on="ui noh. hs"/>
</ books>
</l ocal e>
</l ocal es>

You do not need to change the location attribute value, which is the name of the file that
resides in the specified JAR file.

About Multiple Locales

Oracle Help can support multiple locales. For multiple locales, each localized Help system is
configured with a <locale> element in the ohwconfig.xml file. For example, the following
results in both French and Spanish Help systems being available in UIM upon redeployment:

<l ocal es>
<l-- French: -->
<l ocal e | anguage="fr">
<books>
<hel pSet id="ui moh_hel p_fr_ca"
jar="/hel psets/uimoh_hel p_fr_ca.jar"
| ocati on="ui noh. hs"/>
</ books>
</l ocal e>
</l ocal es>
<l ocal es>
<I'-- Spanish: -->
<l ocal e | anguage="es">
<books>
<hel pSet id="ui moh_hel p_es_nx"
jar="/hel psets/ui noh_hel p_es_nx.jar"
| ocati on="ui noh. hs"/>
</ books>
</l ocal e>
</l ocal es>
<par anet er s>
<conbi neBooks>f al se</ combi neBooks>
<uselLabel | nf 0>t r ue</ useLabel I nf 0>
<cacheSi ze>3</ cacheSi ze>
</ par anet er s>

When multiple locales are defined, the language preference for all locales must be set. If not
set, only the first locale defined in the ohwconfig.xml file displays in UIM Help. See "Setting
the Language Preference in Internet Explorer" for more information.

When multiple locales are defined, the <parameters> element configuration values are
applied:

e <combineBooks>

To merge Help systems, set the value of <combineBooks> to true. The Help navigational
views behave as a single, integrated Help system.

12-13

Chapter 12
Localizing UIM Help

To use separate Help systems, set the value of <combineBooks> to false. The
separate Help navigational views are accessed based on the language preference
with the higher priority.

Regardless of the <combineBooks> value, each locale that is defined in the
ohwconfig.xml file must be specified as a language preference. See "Setting the
Language Preference in Internet Explorer” for more information.

Note:

Oracle Help automatically translates the Help window menu options; field
names; and informational, warning, and error messages. The translation
is based on the first locale defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and
the ohwconfig.xml file defines the locales of French and Spanish,
Oracle Help translates the Help window menu options, field names, and
messages to French.

However, when multiple locales are defined, the language preference for
all locales must be specified. Otherwise, only the first locale defined in
the ohwconfig.xml file displays in UIM Help. So, when the language
preferences are set, Oracle Help translates the Help window menu
options, field names, and messages to the language preference with the
highest priority.

e <uselabellnfo>

If <useLabellnfo> is set to true, author-defined labels are used for the navigators
of merged Help systems.

If <useLabellnfo> is set to false, default labels such as Contents, Index, and
Search are used for the navigators of merged Help systems.

e <cacheSize>

<cacheSize> indicates the number Help systems kept in memory at one time. The
default value is 3.

For more information on the web configuration file, see Oracle Fusion Middleware
Developing Help Systems with Oracle Help which you can find here:

http://docs. oracl e. com m ddl ewar e/ 1213/ dev/ devel op- hel p/toc. ht m

Deploying the Localized Help System

ORACLE

The default Help system is deployed when you deploy the inventory.ear file.
To deploy the localized Help system:

1. Repackage the UIM_Homelapplinventory.ear file to include the localized Help
files by doing the following:

a. Delete the UIM_Homelapplinventory.ear/inv.war/WEB-INF/help/helpsets/
uimoh_help.jar file.

b. Copy the tempDirluimoh_help_J/ocale.jar file to the UIM_Homelappl
inventory.ear/inv.war/WEB-INF/help/helpsets directory.

12-14

http://docs.oracle.com/middleware/1213/jdev/develop-help/toc.htm

Chapter 12
Localizing UIM Help

< Note:

If your UIM Help is supporting multiple locales, each JAR file defined by
each <locale> element in the ohwconfig.xml file must be present in the
UIM_Homelapplinventory.ear/inv.war/WEB-INF/help/helpsets directory.

2. Deploy the repackaged inventory.ear file.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's
Guide.

Testing the UIM Help Localization

ORACLE

After you deploy the localized Help system, test your UIM environment to verify that the
localized Help system is working correctly.

In UIM, open the Help and do the following:

¢ Navigate to several topics from links in the Table of Contents to ensure that the correct
topics appear and display correctly.

e Test several links within Help topics to ensure they are working.

e If testing multiple locales that function as a single Help system, verify translations for all
locales.

e If testing multiple locales that function as separate Help systems, change the language
preference priority to verify translations for each locale.

12-15

Optimizing Concurrent Resource Allocation

This chapter provides information about optimizing Oracle Communications Unified Inventory
Management (UIM) concurrent resource allocation. The information describes the use of row
locking to optimize concurrent resource allocation for consumable entities, and how you can
extend additional entities to use row locking in your UIM environment. For example, if your
UIM environment heavily uses party entities, you can extend UIM to have party entities use
row locking to optimize concurrent resource allocation of party entities.

About Concurrent Resource Allocation

Concurrent resource allocation occurs when multiple clients simultaneously select the same
resource from the same resource pool and then try to reserve or assign that resource.

The inherent problem with concurrent resource allocation is that only one of the clients can
assign the resource; the other clients fail and must re-try the operation. When the client re-
tries the operation, the resources are queried a second time, and again only one client
succeeds. As this scenario unfolds, new clients may query the same resource pool. Multiple
clients simultaneously selecting from the same resource pool, failing to reserve or assign a
resource, and re-trying the operation can continue indefinitely, causing performance issues.

For example, when two clients simultaneously search by ZIP code for an available telephone
number to assign, the search results can return the same telephone number to both clients. If
both clients try to assign the same telephone number, one client succeeds, and one client
fails. The client that fails must re-run the search to get a new set of available telephone
numbers from which to assign.

In most UIM environments, telephone number entities are heavily used. Due to this,
telephone number entities use row locking to optimize concurrent resource allocation for
assigning and reserving telephone numbers. See "About Row Locking" for more information.

About Row Locking

ORACLE

This section builds upon the information presented in "Extending the Data Model".

Row locking is a capability, which is a design pattern that is applied to an entity. A capability is
declared in the metadata using tags, and results in the generation of attributes and related
entities that are not explicitly defined in the *-entities.xml or *-types.xsd metadata files. See
"About Entity Capabilities" and "Understanding Entity Capability Definitions" for more
information.

The row locking capability is declared for a UIM entity in the metadata files using the
RowLockEnabled tag. The row locking capability declaration results in the generation of the
EntityNameRowLock entity, where EntityName is the name of an entity. Row locking is
enabled and used through UIM functionality, which processes entities with row locking
capabilities differently than entities without row locking capabilities.

The following example shows the RowLockEnabled tag as declared for the
TelephoneNumber entity:

13-1

Chapter 13
Understanding How Row Locking Works

<rowLockEnabl ed prefix="Tel ephoneNunber"/>

In this example, the RowLockEnabled tag as declared for the TelephoneNumber
entity results in the generation of the TelephoneNumberRowLock entity.

Upon UIM installation, all consumable entities have row locking capability and use row
locking through UIM. For example, TelephoneNumber, Equipment, IPAddress, and so
forth. (Being a consumable entity is also a capability that is declared in the metadata
files.)

You can statically extend additional entities to declare the row locking capability
through the metadata files, and enable and use row locking on these entities through
custom code.

When row locking is in place for an entity and an entity finder API called, lock policy
details may be provided to the entity finder API. If lock policy details are provided,
selected entity rows are locked. If no lock policy details are provided, selected entities
are returned to the client with no row locks on them.

For example, when two clients simultaneously search by ZIP code for an available
telephone number to reserve or assign, the search results do not return the same
telephone number to both clients because each telephone number entity that meets
the search criteria is locked prior to returning the search results. The locking is
achieved by updating the TelephoneNumberRowLock table with the telephone
numbers returned in the search. If a telephone number is already present in the
TelephoneNumberRowLock table, the telephone number is filtered from the search
results prior to returning the search results to the client. When telephone number locks
are released, the telephone numbers are removed from the
TelephoneNumberRowLock table.

Row locking removes the potential of the same telephone number being returned to
both clients. If the same number is not returned to both clients, the same number
cannot be selected by both clients, which eliminates the possibility of one client failing
to assign the telephone number.

Row locking is applied by setting the appropriate LockPolicy values during the search.
See "About the LockPolicy Object” for more information.

¢ Note:

Implementing row locking as described here achieves the same result as
database row-locking. However, traditional database row-locking is not used.

Understanding How Row Locking Works

ORACLE

This section uses the TelephoneNumber entity as an example to provide an
understanding of how row locking works.

In UIM, TelephoneNumber entities are used for resource reservation and resource
assignment. Upon UIM installation, the TelephoneNumber entity declares the row
locking capability through the entity definition in the metadata. UIM search logic
performs row-locking operations based on the lock policy details provided to the
search.

13-2

Chapter 13
Understanding How Row Locking Works

For example, when the entity finder APl is called to find telephone numbers for resource
reservation, the entity finder API logic row-locks the telephone numbers.If the row-lock
operation is successful, telephone numbers are reserved and the row-locks are released. If
the row-lock operation fails (row-locks for all the telephone numbers are not obtained), an
error message displays and no attempt is made to reserve the telephone numbers.

Similarly, when the entity finder API is called to find telephone numbers for resource
assignment, the entity finder API logic row-locks the telephone numbers. If the row-lock
operation is successful, telephone numbers are assigned to a configuration item and the row-
locks are released. If the row-lock operation fails (row-locks for all the telephone numbers are
not obtained), an error message displays and no attempt is made to assign the telephone
numbers.

The RowLock capability is statically declared for an entity in the metadata. Additionally, a
LockPolicy object is used in the entity search criteria. When searching for entities, such as
telephone numbers or logical devices, the entities returned in the search results are locked
based on the details specified in the LockPolicy object. In this manner, concurrent resource
allocation attempts return different sets of entities.

About Releasing Locked Rows

Locked rows are released in the following ways:

* When an entity finder APl is called with a LockPolicy, the entity finder API logic calls a
method at the end of the operation that releases the locks.

« Atimer listener automatically releases row-locked entities at specified intervals.

* A database administrator can manually release row-locked entities.

About the LockPolicy Object

The LockPolicy object defines the attributes listed in Table 13-1. LockPolicy attribute values
are set as part of the search criteria, which is passed to the entity finder API, and which
affects the search behavior.

Table 13-1 LockPolicy Attributes
|

Attribute Data Type Default Value
numberOfResources long 0
expirationTimeStamp Date or int Value specified for the

lockPolicy.defaultRowLockExpirationDuration
property in the system-config.properties file.

filterExistingLocks boolean false

numberOfResources

ORACLE

The numberOfResources value tells the entity finder API the number of entity rows to lock.
For example, when a value of zero is specified, no entity rows are locked; when a value
greater than zero is specified, the number of entity rows specified by the value are locked.

If the search criteria specifies a range, and the numberOfResources value is greater than
zero, the entity finder API ignores the range and returns the number of entities specified by
the numberOfResources value. For example, if the range specifies 0-20 and the

13-3

Chapter 13
Understanding How Row Locking Works

numberOfResources values specifies 50, 50 entities are returned. This occurs
because the find-by-range feature is disabled when row locking is used when calling
and entity finder API.

expirationTimeStamp

The expirationTimeStamp value is used by the entity finder API when creating the
locked row. The expirationTimeStamp value can be set as a date or as a duration.
When the value is a date, the value is used to set the lock expiration date and time.
When the value is a duration, the value is added to the current timestamp to calculate
the lock expiration date and time.

filterExistingLocks

The filterExistingLocks value indicates whether or not the entity finder API filters out
existing locked entities from the search result. When the value is true, existing locks
are not included in the search results. When the value is false, existing locks are
included in the search results. When a client search results are for view-only purposes,
the value must be false.

Example LockPolicy Attribute Combinations

The entity finder API finds entities based on the specified search criteria and lock
policy. Table 13-2 summarizes the different LockPolicy attribute value combinations
and the affect each has on the entity finder API search results.

When numberOfResources is zero, the expirationTimeStamp value is not applicable
because if no locks are applied, there is no need to set when the locks expire. When
numberOfResources is greater than zero, the expirationTimeStamp value does not
affect the outcome. As a result, the expirationTimeStamp attribute is not included in

the table.

Table 13-2 LockPolicy Attribute Combination Outcomes

numberOfR | filterExisting | Entity Finder APl Search Results

esources Locks

0 true The search results exclude row-locked entities. From the search
results, no entities are locked. The search results are returned to
the client.

0 false The search results include row-locked entities. From the search
results, no entities are locked. The search results are returned to
the client.

n true The search results exclude row-locked entities. From the search
results, n entities are locked, time stamped, and returned to the
client.

n false The search results include row-locked entities. From the results,

n entities are locked, time stamped, and returned to the client.

About the Lock Strategies

The LockStrategy object utilizes the LockPolicy object when a lock of resources is
requested. UIM provides the following lock strategies:

ORACLE

13-4

Chapter 13
Extending UIM Entities to Use Row Locking

* The Random Range Locking Strategy selects the range of resources to be locked
randomly. The start range is determined using a thread-based local random value. This
allows the concurrent threads to look at different resources so that collisions are avoided.

* The Extended Range Locking Strategy executes the concurrent threads with the same
range; however, the range is widened by a multiplier so that collisions are avoided. For
example, if the client code requires 10 resources, this strategy looks at 1-100 resources
assuming the range multiplier is 10.

* The No Range Locking Strategy is a strategy where no range is applied. This strategy
continues until the required number of locks are obtained. You can use this in cases
where the ordering or resources to be consumed is critical to the scenario.

You choose the lock strategy by specifying the value in the locking policy properties file
named locking-policy.properties. You can also define a custom lock strategy. The valid
values are:

* RandomRangeLocking
* ExtendedRangeLocking
* NoRangeLocking

e Custom

For example:

| ockpol i cy. processi ng. strat egy=RandonRangeLocki ng

Table 13-3 lists the locking properties.

Table 13-3 Locking Property Settings
. _______________________________________|

Property Default Value Description
lockpolicy.processing. | NoRangeLocking This property defines the desired locking strategy.
strategy The valid UIM strategy values are

RandomRangeLocking, ExtendedRangeLocking,
and NoRangeLocking. The value of Custom is also
valid. If Custom is given then you must provide the
class name in the lockpolicy.custom.strategy.class

property.
lockpolicy.custom.stra | n/a This property defines the custom Java class nhame of
tegy.class the strategy. You only give this property a value if the
lockpolicy.processing.strategy property is set to
the Custom.

In addition to setting the locking strategy in the property file, the following method can be
used for a particular scenario.

| ockpol i cy. set Locki ngStrategy();

Use this method only if you need a locking strategy other than the one defined in the property
file.

Extending UIM Entities to Use Row Locking

ORACLE

Extending UIM entities to use row locking involves:

e Statically Extending the Data Model

13-5

Chapter 13
Extending UIM Entities to Use Row Locking

» Enabling Row Locking
» Using Row Locking with Entity Finder APIs

Statically Extending the Data Model

This section builds upon the information presented in "Extending the Data Model".
To statically extend the data model.

1. Open Oracle Communications Design Studio.

2. Import the UIM_Homelcartridgesitools/ora_uim_entity_sdk_cartproj.zip file.
3. Create a new uim-*-entities.xml file in the ora_uim_entity_sdk/src directory.
4

Open the existing *-entities.xml file that contains the entity definition you plan to
extend.

5. Copy and paste the entity definition you plan to extend from the existing file to your
new file.

6. Add the EntityRowLock tag to the entity definition.

Example 13-1 is an excerpt from the uim-number-entities.xml metadata file that
shows the TelephoneNumber entity definition, which declares the row locking
capability.

Example 13-2 shows what you would need to add to the uim-party-entities.xml
metadata file to extend the Party entity to declare the row locking capability.

7. Generate the data model to include any newly declared entity row lock capabilities.
See "Generating, Compiling, and Packaging the Entity Source Files" for more
information.

Example 13-1 uim-number-entities.xml

<entity type="oci m Tel ephoneNunber"
managedBy="or acl e. conmuni cati ons. i nvent ory. api . nunber . Tel ephoneNunber Manager " >

<|__ EEEEE SR EEEEEEE SR Capabllltles R R EEEEEEEEREEE SRS >
<rowLockEnabl ed prefix="Tel ephoneNunmber"/ >
</entity>

Example 13-2 uim-party-entities.xml

<entity type="ocimParty"
managedBy="or acl e. communi cati ons. i nvent ory. api . nunber . Part yManager " >

<|__ kkkkkhkkkhkkkkkkkkkx*k Capabllltles kkkkkkkkkkhkkkkkhkkk*k >
<rowLockEnabl ed prefix="Party"/>
</entity>

Enabling Row Locking

To enable row locking:

ORACLE 13-6

Chapter 13
Extending UIM Entities to Use Row Locking

1. Configure the timer.properties file so the default RowLockExpiryTimerListener class is
called at regular intervals by defining the firstTime and period properties, as shown in
Example 13-3.

Note:

Do not change the rowLockExpiration.listener property. The default
RowLockExpiryTimerListener class clears out expired locks for all entities with
row locking capability, including any entities you extend to have the capability.

2. Configure the system-config.properties file to set the default values for the
defaultRowLockExpirationDuration and maxSupportedRowLocks properties, as
shown in Example 13-4.

Example 13-3 timer.properties File

Timer to cleanup the expired entity row | ocks

rowLockExpiration. firstTi me=120

rowLockExpi rati on. peri od=600

rowLockExpi ration. |istener=oracl e. conmuni cations. i nventory. api.comon. i npl. RowLockExpi r
yTi mer Li st ener

Example 13-4 system.config.properties File

The default row | ocks expiration duration in mlliseconds for the entity.
This val ue should be defined to be less than the transaction tine out.
| ockPol i cy. def aul t RowLockExpi rat i onDur at i on=30000

Default maxi mum nunber of entities to be row | ocked.
This should be in sync with the maxi num nunber or range.
| ockPol i cy. MaxSupport edRowLocks=100

Using Row Locking with Entity Finder APIs

You can write custom code to use row locking with entity finder APIs for any heavily-used
entities in your UIM environment.

Understanding How UIM Uses Row Locking

ORACLE

Figure 13-1 shows the flow of an entity finder API call for UIM entities that do not use row
locking. When a UIM user initiates an entity search, an entity finder API is called, and the
search results are returned to the client.

Figure 13-1 Flow of Entity Finder API without Row Locking

UIM user Finder AP| Search results
initiates search returmed to UIM

¥
v

Figure 13-2 shows the flow of an entity finder API call for UIM entities that use row locking.
When a UIM user initiates an entity search, the LockPolicy attributes are set before calling
the entity finder API, and the locked search results are returned to the client.

13-7

Chapter 13
Extending UIM Entities to Use Row Locking

Figure 13-2 Flow of Entity Finder API with Row Locking

UIM user Locked
initiates search, Finder AP search results
LockPolicy set returned to UIM

LJ

v

Writing Custom Code to Use Row Locking

ORACLE

You can write custom code to use row locking with entity finder APIs for any heavily-
used entities in your UIM environment. The custom code must set the LockPolicy
attributes and call the entity finder API. This can be accomplished through:

e Custom Rulesets

e Custom Web Services

Custom Rulesets

< Note:

This section builds upon the information presented in Extending UIM
Through Rulesets, and assumes you have an understanding of rulesets,
extension points, and ruleset extension points.

In the following scenario, the custom code resides in an Inventory cartridge, within a
custom Java class that is called by a custom ruleset.

Figure 13-3 shows the flow of an entity finder API call for rowlock-enabled entities that
you use with row locking through custom code. After the customizations are in place,
when a UIM user initiates an entity search, an entity finder APl is called. However,
before the entity finder API runs, the method is intercepted by the custom extension
point, which is configured to run the custom ruleset instead of the entity finder API.
The custom ruleset calls the custom code, which sets the LockPolicy attributes and
calls the same entity finder API. Based on the LockPolicy attributes specified, the
search results are locked and returned to the client.

13-8

ORACLE

Chapter 13

Extending UIM Entities to Use Row Locking

Figure 13-3 Flow of Entity Finder APl Using a Custom Ruleset

UIM user
initiates search

Y

Finder API
Ext Pt Intercept

Custom Ruleset

¥

Custom Code
sets LockPolicy,
initiates search

Finder AP

v

Locked
search results
returned to UIM

The following procedure provides detailed steps and example custom code that you can use

to create the customized flow of an entity finder API call that uses row locking.

To use row locking with entity finder APIs:

1. Create a custom Java class.

Example 13-5 shows a custom Java class that finds party entities using row locking, but
you can write similar logic for any entity. To accomplish this, the custom logic must:

e Create a LockPolicy object

* Set the LockPolicy attributes

» Set the entity-specific search criteria object with the LockPolicy object

» Call the appropriate entity finder APl method, passing in the appropriate entity search
criteria object that is populated with the LockPolicy

e Set the ruleset return value to the row-locked results from the entity finder API call

2. Create a custom ruleset.

Example 13-6 shows a custom ruleset that call the custom Java class shown in

Example 13-5. You can write a similar custom ruleset to call any custom Java class.

13-9

Chapter 13
Extending UIM Entities to Use Row Locking

< Note:

The criteria local variable is based on the argument that the custom
extension point defines, which is PartySearchCriteria, as shown in
Example 13-8. The context local variable of
ExtensionPointRulesetContext is made available to all rulesets by the
extensibility framework, which appends this argument to the list of
arguments defined by the custom extension point. See
"ExtensionPointContext and ExtensionPointRuleContext Class" for more
information.

3. Create a custom extension point.

Example 13-8 shows the custom extension point method signature for the
findParty API method. You can define a similar extension point signature for any
entity finder API.

4. Create a custom ruleset extension point.

The custom ruleset extension point configures the custom ruleset to run at the
custom extension point. In this scenario, the placement of the custom ruleset must
be Instead of the method defined by the custom extension point. In this manner,
the custom ruleset calls the entity finder API and returns the row-locked entities to
UIM.

Example 13-5 Custom Java Class

package oracl e. communi cati ons. cust om

inport java.util.*;

i nport oracl e. communi cati ons. pl at f or m per si st ence. Per si st enceHel per;
i nport oracl e.comuni cations.inventory.api.entity.Party;

i nport oracl e.conmuni cations.inventory.api.party. PartyManager;

i nport oracl e.communi cations.inventory.api.party.PartySearchCriteria;
i nport oracl e. communi cations.inventory.api.framework. LockPolicy;

i nport oracl e.comuni cations.inventory.extensibility.extension.util.
Ext ensi onPoi nt Rul eCont ext ;

public class CustomnPartySearch
{

public void main(PartySearchCriteria criteria ExtensionPointRul eCont ext
context) throws Exception

{
LockPol i cy |ockPolicy =

Per si st enceHel per. makeLockPol i cy();
| ockPol i cy. set Number Of Resour ces(20) ;
| ockPol i cy. set Expi ration(5000);
| ockPol i cy. setFilterExistingLocks(true);

criteria.setLockPolicy(lockPolicy);

Part yManager partyMyr
Per si st enceHel per. makePart yManager () ;
List<Party> partyCbhjs = partyMyr.findParty(criteria);

context . set ReturnVal ue(partyQjs);

ORACLE 13-10

ORACLE

Chapter 13
Extending UIM Entities to Use Row Locking

Example 13-6 Custom Ruleset Using Drools

package oracl e. conmuni cations.inventory.rul es

i nport oracle.comuni cations. cust om Cust onPartySear ch;

inport oracle.comunications.inventory.api.entity.party.PartySearchCriteria;
inport racle.communications.inventory.extensibility.extension.util.

Ext ensi onPoi nt Rul eCont ext ;

rul e "PartySearch"
salience 0
when
criteria : PartySearchCriteria()
context : ExtensionPointRul eContext ()
t hen
Cust onPar t ySear ch cust onCl ass = new Cust onPartySearch();
custonC ass. mai n(criteria, context);
end

Example 13-7 shows the same custom ruleset content-wise, but using Groovy instead of
Drools. For more information on writing custom rulesets, and on the use of Drools and
Groovy to do so, see "Extending UIM Through Rulesets".

Example 13-7 Custom Ruleset Using Groovy

package oracl e. communi cations.inventory.rules

i nport oracl e. communi cati ons. cust om Cust onPart ySear ch;

i mport oracl e.comuni cations.inventory.api.entity.party.PartySearchCriteria;
i mport racle.communications.inventory.extensibility.extension.util.

Ext ensi onPoi nt Rul eCont ext ;

Cust onPart ySear ch cust onCl ass = new Cust onPartySearch();
custonC ass. nain(criteria, context);

Example 13-8 Custom Extension Point Signature

public abstract interface java.lang.String
oracl e. cormuni cations. i nventory. api . party. PartyManager. findParty(oracl e.comuni cations.
inventory.api.entity.party. PartySearchCriteria)

Custom Web Services

Note:

This section builds upon information presented in UIM Web Services Developer's
Guide, and assumes you have an understanding of web services and how to
develop them.

In this scenario, the custom code resides in a custom web service.

Figure 13-4 shows the flow of an entity finder API call for rowlock-enabled entities that you
use with row locking through custom code. After the customizations are in place, the web
service is initiated by an external system through a request. The web service custom code
sets the LockPolicy attributes and calls the entity finder API. Based on the LockPolicy
attributes specified, the search results are locked and returned to the web service. The web
service then sends the locked search results back to the external system through a response.

13-11

ORACLE

Figure 13-4 Flow of Entity Finder APl Using a Custom Web Service

External system
sends request

Custom Web svc
sets LockPolicy,

Y

initiates search

Finder API

¥

Locked
search results
returned to
Custom Web sve

Custom Web svc
sends response

Chapter 13

Extending UIM Entities to Use Row Locking

v

Lacked
search results
returned to
axternal system

To use row locking with entity finder APIs through a custom web service, the web

service must contain a Java class similar to the one shown in Example 13-5.

Using Row Locking Without Entity Finder APIs

You can also use row locking without using entity finder APls. Example 13-9 shows a
custom Java class that locks a Collection of entities. To accomplish this, the custom

logic must:

e Create a Collection of entities

» Create a LockPolicy object

* Set the LockPolicy attributes

» Call the RowLockManager.lock method, passing in the entity rows to be locked
and the LockPolicy used to lock them

Example 13-9 Custom Java Class

package oracl e. comuni cati ons. cust om

import java.util.*;

i mport oracl e. comuni cati ons. pl at f or m per si st ence. Per si st enceHel per;
i mport oracl e. communi cations.inventory. api.conmon. RowLockManager ;
i nport oracl e. communi cations.inventory.api.framework. LockPolicy;

13-12

ORACLE

Chapter 13
Extending UIM Entities to Use Row Locking

public class CustonC ass
{

public void main() throws Exception

{
Col l ection nyCol | ection = new Col | ection();

/1 Poulate nyCollection with like entities, such as Party entities,
Il Role entities, etc.

/] Create a LockPolicy and popul ate the attributes
LockPol i cy | ockPolicy = PersistenceHel per. makeLockPolicy();
| ockPol i cy. set Number Of Resour ces(20) ;
| ockPol i cy. set Expi ration(5000);
| ockPol i cy. setFilterExistinglLocks(true);

Il Call RowLockManager.lock to lock entities in nyCollection
RowLockManager rowLockMyr =
Per si st enceHel per . makeRowLockMyr () ;
Col | ection myLockedCol | ection =
rowLockMr. | ock(myCol I ection, |ockPolicy);

}

¢ Note:

You can use rulesets and extension points to run the custom code shown in
Example 13-9. See "Using Row Locking with Entity Finder APIs" for an example.

13-13

Using the Federation Framework

This chapter provides information about the Oracle Communications Unified Inventory
Management (UIM) federation framework. The federation framework enables UIM to work
with other systems, such as Oracle Communications Internet Name and Address
Management (INAM), and Oracle Communications MetaSolv Solution (MSS). The federation
framework also enables communication with other external systems via different
communication protocols.

About the Federation Cartridge Packs

Federation is ability of different software systems to communicate, cooperate, and exchange
information. Federation can present a common user experience or simply convey information
about a data object from an external system.

Each federation cartridge pack is a set of sample cartridges and artifacts that provides:

» Extension functionality for data domains like IP Address and VLANS interfacing with
external systems, such as INAM and MSS. See "About the Federation Data Domain
Cartridges" for more information.

» Extension functionality providing a database connection as well as JMS and SOAP
communication. See "About the Federation Protocol Cartridges” for more information.

About the Federation Data Domain Cartridges

The federation data domain cartridges focus on the exchange of different types of data, such
as IP Addresses and VLANS. You use these cartridges when you design a federation solution
utilizing a specific type of data while leveraging externally enabled entities.

These are the federation data domain ZIP files that contain the cartridges:

e IP Address Federation - OracleComms_UIM_IPAddress_Federation

* VLAN ID Federation - OracleComms_UIM_VLAN_ID_Federation

e Connectivity Federation - OracleComms_UIM_Connectivity Federation

e Objectel Federation - OracleComms_UIM_Objectel_Federation

Note:

The federation protocol cartridges are not utilized in these cartridges. The
federation protocol cartridges use an alternative communication infrastructure to
interface with the external systems.

See "Federation Data Domain Cartridges" for more information on these federation data
domain cartridges.

ORACLE 14-1

Chapter 14
About External Arrangements

About the Federation Protocol Cartridges

The federation protocol cartridges focus on enabling communication protocols. They
provide a database connection as well as JMS and SOAP communication. You use
these cartridges when you design a federation solution utilizing a specific type of
communication protocol optionally using externally enabled entities.

These are the federation protocol cartridges and artifacts:

* Protocol Cartridge - OracleComms_UIM_FederationProtocols

* Properties Cartridge - OracleComms_UIM_FederationProperties
* Message Driven Bean - UIMFederationResponseListenerMBD

* Response Queue Script - UIMFederationResponseQueue

See "Federation Protocol Cartridges" for more information on the federation protocol
artifacts.

About External Arrangements

In a federation arrangement, specific data access, data management tasks, and
processes are transparently delegated to other systems. For example, UIM manages
services, and INAM manages IP addresses. The two systems federate through the
use of the ora_uim_ipaddress_cooperation cartridge. When this federation is in
place, it is transparent to you that UIM is communicating with INAM to supply the IP
address.

The different ways in which systems federate are called external arrangements. The
federation framework supports four types of external arrangements:

* Federated

* Leased In

* Leased Out
* Shared

Table 14-1 lists the external arrangements used by the IP address, VLAN ID, and
connectivity cartridges, and also the federation protocol cartridges.

Table 14-1 External Arrangements and the Federation Cartridges

External External IP Address VLAN ID Connectivity Federation
Arrangement Arrangement Federation Federation Federation Protocol
Enum Display in Ul
FEDERATED Viewed From UIM views IP UIM views Not applicable. Not applicable.
addresses from | network system
INAM. and product
catalog from
MSS.
ORACLE 14-2

Chapter 14
About Transaction-Based and Order-Based Federation

Table 14-1 (Cont.) External Arrangements and the Federation Cartridges

External External IP Address VLAN ID Connectivity Federation
Arrangement Arrangement Federation Federation Federation Protocol
Enum Display in Ul
LEASED_IN Leased From UIM leases in IP | Not applicable. UIM leasesina |UIM leasesin a
address from connection from | Local Loop (Pipe)
INAM for service an external entity reference
assignment. system for from an external
service trail system.
enablement.
LEASED_OUT Leased To Not applicable. UIM leases out Not applicable. Not applicable.
VLAN ID to MSS
for service
assignment.
SHARED Shared With Not applicable. MSS shares Not applicable. Not applicable.
service catalog
and network
system entities to
relate to UIM

VLAN domains.

About Transaction-Based and Order-Based Federation

The federation cartridges fall into one of the following categories:

» Transaction-Based Federation

e Order-Based Federation

Transaction-Based Federation

Transaction-based federation is a point-to-point integrations between UIM business logic and
an external system. Transaction-based federation typically revolves around a simple
resource, such as a telephone number or IP address.

For transaction-based federation to work, the external system must support a synchronous
API that UIM can call. The synchronous transaction has a beginning and an end through the
use of the startTransaction method and the endTransaction method.

The IP address federation cartridge and the VLAN ID federation cartridge are examples of
transaction-based federation. These solutions use the Custom Object and Custom Network
Address entities, which have a generic nature that can model virtually any resource from a
foreign system. They are simple and avoid complex requests in UIM.

Order-Based Federation

ORACLE

Order-based federation is a schema-based integration between UIM and an external order
management system, such as Oracle Communications Order and Service Management
(OSM). Order-based federation involves order requests from UIM to an external system that
creates, designs, assigns, activates, and tests resources. The external system then provides
a response back to UIM. Order-based federation typically revolves around a multi-phased
design and delivery process, such as an OSM order flow. Within the multi-phased process,

14-3

Work Order

Chapter 14
About Transaction-Based and Order-Based Federation

the external order management system may send requests to UIM to lease data, such
as pipe-related data for connectivity.

For order-based federation to work, UIM must support the ability to create an order
request and send it asynchronously to an external system. Additionally, UIM must
support the ability to listen for, and handle, the asynchronous order response from the
external system.

The connectivity federation cartridge is an order-based interface that calls
asynchronous APIs provided by external systems to lease connectivity resources. This
solution uses the Connectivity (Pipe), Business Interaction, and Service entities. A
complex resource such as a circuit can be federated, but UIM does not have a native
connectivity understanding of the resource; so, in this type of scenario, it is better to
relay the work to the external system through a work order.

Note:

The following subsections build upon information presented in UIM Web
Services Developer's Guide, which describes a Service Order, and how the
Service Order is saved as a business interaction attachment.

A Service Order is a type of Business Interaction request from an external system for
UIM to perform various actions on a Service entity. The actions can affect a service,
service configuration, and the life cycles of supporting service configuration item
resources. Similarly, a Work Order is a type of Business Interaction request from UIM
to an external system to perform various actions on inventory entities in external
systems, such as network resources, connections, devices, or services. The work
order is used within the context of order-based federation.

The schema used for external systems to communicate with UIM is consistent and
extensible. For example, the schema:

« Provides a consistent way to organize and group the items and entities related to
the order

e Supports actions with corresponding parameters or properties at the order, item,
and entity level

» Defines one structure that is used for both requests and responses, regardless of
which system is requesting or responding

» Defines the <parameter> element, which makes the schema readily extensible
through custom parameter names and corresponding custom parameter values

Business Interaction Attachment

ORACLE

When a Service Order request is received by UIM from an external system, the XML is
saved as business interaction attachment. Similarly, when a Work Order request is
sent by UIM to an external system, the XML is saved as a business interaction
attachment.

The BusinessinteractionAttachment entity defines the following attributes:

14-4

Chapter 14
About Externally Enabled Entities

name
The name attribute is used for identifying the entity in UIM.
content

The content attribute supports any generic content for a request or response. The content
attribute data type is a BLOB, so the entity attachments can contain formats other than
XML requests and responses.

category

The category attribute in an enumeration that distinguishes the different attachment
categories. The enumeration values are REQUEST and RESPONSE.

parentAttachment and childAttachments

The parentAttachment and childAttachments attributes make it possible to receive
multiple responses per request, such as relating the request to its responses in a
hierarchical relationship. As a result, the parentAttachment and childAttachments
attributes create a parent-child relationship for the attachments. The childAttachments
attribute is an ordered list.

About Externally Enabled Entities

This section builds upon the information presented in "Extending the Data Model".

Externally enabled entities are entities that are part of a federation solution. To support
federation in UIM, several entities are defined as externally enabled in the metadata through
the use of the <externalEnabled> element. The externally enabled entities are:

Businessinteraction
CustomNetworkAddress
CustomObject
IPAddress

IPSubnet

Pipe

Service

< Note:

The federation protocol cartridges do not require using externally enabled entities.
Using externally enabled entities is recommended, but is optional depending on
your solution requirements.

External Identification

ORACLE

UIM requires a consistent way to identify external entities, so their external system identities
need to be maintained. The entity external identity may or may not have similar properties to
UIM entity identity.

External entity identities and internal UIM entity identities must be correlated for both systems
to operate on the same intended entity. In addition, the same entity may have other types of

14-5

ORACLE

Chapter 14
About Externally Enabled Entities

identity. For example, the NativeEMS domain presents another identity that is typically
found for network-facing entities.

So, it is possible for an entity to have multiple identities, depending on the perspective
used to refer to the entity. This perspective is known as the entity management
domain. The entity management domain is the context in which the entity identity is
commonly known and used, which is typically the owner of the entity identity.

It is also possible to have a one-to-many relationship from the entity to multiple
identities. However, some of the more commonly used identities are defined as
attributes on the main entity to improve performance and to support application logic.
For example, the application logic that supports federated inventory is dependent on
these identities.

Externally enabled entities have the following generated attributes:

* externalObjectld

The externalObjectld attribute provides a public unique identity for a business
entity within the context of the domain specified by externalManagementDomain.

» externalName

The externalName attribute provides a business-meaningful name of the business
entity (identified by externalObjectID) within the context of the domain specified by
externalManagementDomain.

e externalManagementDomain

The externalManagementDomain attribute identifies an external system, domain
name, party, or participant in a federation solution.

Note:

externalManagementDomain is not the entity owner. Entity ownership
can refer to technical or system ownership, such as MSS or INAM. Entity
ownership can also refer to business or ownership, such as AT&T or
East Region. These two types of entity ownership are independent of
each other, as is the type of entity ownership that refers to entity
identification management. An ownership attribute is not supported.

+ externalArrangement

The externalArrangement attribute is an enumeration that identifies the federation
model between UIM and the external party for the given entity. The valid
enumerated values are:

— FEDERATED

Used when the resource is temporarily retrieved from an external system into
UIM views. For example, Network System, Product Catalog, and IP Address;
before Network System, Product Catalog, and IP Address are shadowed into
UIM.

— LEASED_IN

Used when data is leased by UIM from an external system, such as an IP
address or a connection.

— LEASED_OUT

14-6

Chapter 14
Federation Solution Considerations

Used when data is leased by UIM to an external system, such as VLAN ID.
— SHARED

Used when data is managed cooperatively between UIM and an external system. For
example, Network System and Product Catalog data are shadowed into UIM. That is,
the data is stored in both the Network System and in UIM.

Note:

In UIM, the availability of a leased resource, such as connectivity (Pipe) or VLAN ID
(Custom Network Address), is based on the entity's Inventory State attribute value
of INSTALLED or UNAVAILABLE. The leasing terms for the resources, such as
effective dates, are not managed using additional entity attributes. Leasing terms
are instead managed by communication with the external system. For example,
UIM is responsible for initiating or terminating the lease of the resources, along with
a corresponding update to the resource inventory state; updates to the entity start
and end date are not necessary.

Federation Solution Considerations

When planning federation with an external system, you need to consider the following
actions.

Determining the Solution Type

When planning a federated solution, one of the first decisions you need to make is
determining which type solution best suits your needs:

* Transaction-based solution
e Order-based solution

For the federation data domain cartridges, all of the entities that are used in the provided
transaction-based and order-based solutions are defined in the metadata as externally-
enabled entities. The federation protocol cartridges use a combination of utilizing
characteristics and utilizing externally-enabled entities for persisting data from the external
system.

When planning a federation solution, you can use any of these entities in your solution, or
you can extend the data model by defining any entity to be externally enabled. See Extending
the Data Model for more information.

For additional information on planning a federation solution, see the federation technical
white papers, which provide detailed information about these solution approaches, including
examples of good approaches, as well as approaches to avoid.

Avoiding Federation Cartridge Conflicts

ORACLE

Oracle recommends that you deploy only one version of each of the cartridges into any given
UIM environment. All three of the federation data domain cartridges, and all the federation
protocol cartridges can be deployed into one UIM environment, but not multiple versions of
the same cartridge.

14-7

Chapter 14
Federation Solution Considerations

See UIM Cartridge Guide for more information on upgrading and extending cartridges
and cartridge packs.

Managing External Identifiers

Your federation solution must manage external identifiers (IDs). The IDs in UIM, and
the IDs in the federated external system, must be evaluated and included in the
solution planning process. During the planning process, consider the following
regarding managing external IDs:

» If the external system is represented in UIM as a Custom Obiject, the deployed
federation cartridge logic must maintain the UIM ID, ensuring the uniqueness
across all Custom Objects. The same principle holds true for all the external
enabled entities.

* The external system has its own ID for the object. This ID can be used to set the
UIM ID for the object. For example, the VLAN ID federation cartridge, which
interfaces with MSS, sets UIM IDs to system-component-externalSystemiD, where
system is MSS, component is an MSS component, and externalSystemID is the
MSS native ID for the object. This results in UIM IDs such as MSS-NS-1234 or
MSS-PC-1234.

Setting UIM IDs using this type of pattern ensures Custom Objects are unique in
UIM. Similarly, the IP Address federation cartridge, which cooperates with INAM,
sets the UIM ID to include the unique IP address from INAM. This ensures that the
Custom Network Addresses are unique in UIM.

* The UIM externalObjectld attribute stores the external system's unique ID for an
object. The externalObjectld value must be set for UIM logic, or any ruleset logic,
to correctly determine which objects are external, and which are native, to UIM.

Creating Externally Enabled Entities in UIM

ORACLE

When a deployed federation cartridge creates an externally enabled entity in UIM, and
wants to utilize the externally enabled entity features, the logic that creates the entity
must also set the entity attributes. This includes the externally-enabled entity attributes
of:

externalObijectld
externalName (optional)
externalArrangement
externalManagementDomain

The methods to set these attributes are defined on the entity. For example,
EntityName.setExternalObjectld(), where EntityName is any externally-enabled entity
such as CustomObject, Businessinteraction, Service, and so forth. See "External
Identification” for more information about these attributes.

In addition to setting the attributes, the cartridge logic must declare the entity as
external by calling the setExternal(true) method. The setExternal() method then calls
the setTemporaryEntityld() method to generate a temporary ID for the UIM internal
entity ID. Whenever you persist the external entity in UIM, you must first call the
unsetTemporaryEntityld() method to remove the temporary ID for the UIM internal
entity ID. You can then safely persist the entity in UIM. These methods are also
defined on the entity. For example, EntityName.setExternal(), where EntityName is any

14-8

Chapter 14
Federation Solution Considerations

externally-enabled entity such as CustomObject, Businessinteraction, Service, and so forth.

Creating Custom Web Services

ORACLE

You can extend a federation cartridge by adding custom code in a ruleset, or adding custom
Java code that a ruleset calls. The custom logic can call a custom web service, making
custom web services part of a new federation solution. For example, the VLAN ID federation
cartridge that enables communication between UIM and MSS includes a web service called
by MSS to update the status of UIM objects.

You can also extend a federation cartridge by using JMS queues to invoke external web
services. Refer to the connectivity federation cartridge ora_uim_connectivity _cooperation and
the federation protocol cartridge pack for a sample of this scenario.

See UIM Web Services Developer's Guide for information on creating custom web services.

14-9

Integrating UIM Using UIM-Formatted URLs

This chapter provides information about integrating Oracle Communications Unified Inventory
Management (UIM) with an external application using a UIM-formatted Uniform Resource
Locators (URL), which provides the ability for an external application to access a UIM page.

For example, the OSM-UIM Reference Implementation uses a UIM-formatted URL to access
a UIM page from within OSM. In the implementation, the OSM task flow defines numerous
tasks, one of which calls the UIM Service Fulfillment Web Service operation of
Processlinteraction. If the operation fails, an OSM fallout task provides a URL link that the
user can click to access the UIM Business Interaction Summary page for the business
interaction that failed to process.

In such scenarios when a UIM-formatted URL is used to access a UIM page, UIM redirects to
the UIM Login page so you can enter your security credentials before continuing to the page
specified by the URL. After the specified UIM page is accessed, you have the ability to
navigate freely in UIM. For example, from a summary page, you can click Edit and update
UIM data from a maintenance page.

About UIM-Formatted URLS

ORACLE

UIM-formatted URLs are used to access UIM pages from an external application.

Table 15-1 lists the supported UIM pages you can access using UIM-formatted URLs. The
table also lists the corresponding entity type that you specify as part of the UIM-formatted
URL, as described in "About the URL Format".

If you need to access UIM pages other than those listed in Table 15-1, you can do so by
extending the UIM-formatted URL functionality. See "Extending UIM-Formatted URL
Functionality" for more information.

Table 15-1 Supported Page Names and Corresponding Entity Type
|

Page Name

Entity Type

Business Interaction Summary

Businesslinteraction

Connectivity Details

Connectivity

Device Interface Summary

Devicelnterface

Equipment Summary

Equipment

Inventory Group Summary

InventoryGroup

Logical Device Summary

LogicalDevice

Logical Device Account Summary

LogicalDeviceAccount

Network Summary

Network

Physical Device Summary

PhysicalDevice

Pipe Summary

Pipe

Pipe Configuration Summary

PipeConfiguration

15-1

Chapter 15
About UIM-Formatted URLs

Table 15-1 (Cont.) Supported Page Names and Corresponding Entity Type
|

Page Name Entity Type
Property Location Details PropertyLocation
Service Summary Service

Service Configuration Summary ServiceConfiguration

About the URL Format

About id

ORACLE

The URL format for invoking the UIM master flow, which is defined by the
MasterFlow.xml file, is:

http://server:port/Inventory/faces/adf.task-flow?adf.tfld=MasterFl ow&adf.tfDoc=/
VAEB- | NF/ Mast er Fl ow. xm & d=i d&entity=entity

where:

e server:portis the server and port on which UIM is running
e idis the id number of the entity you want to access
e entity is the entity type for the summary page you want to access

For example, the following URL invokes the UIM master flow on myServer:7001, and
accesses the Business Interaction Summary page for the business interaction with id
456:

http://myServer: 7001/ | nvent ory/ faces/ adf .t ask-fl ow?
adf . tf | d=Mast er Fl ow&adf . t f Doc=/ \EB- | NF/
Mast er Fl ow. xm & d=456&ent i t y=Busi nessl nteraction

< Note:

The UIM Help > Link To Page menu option displays the UIM-formatted URL
for the current page, which you can view for additional examples.

The id that you specify in the UIM-formatted URL is the sequentially-generated id
attribute that uniquely identifies a UIM entity. This is not to be confused with the
persistent pattern-generated entityld attribute.

" Note:

For more information about the sequentially-generated id and persistent
pattern-generated entityld, see Oracle Communications Information Model
Reference.

15-2

About entity

Chapter 15
Using UIM-Formatted URLs

The entity that you specify in the UIM-formatted URL is the Java class name, so it must be
spelled correctly and have no spaces.

For example, this is a valid URL:

http://jsmth: 7001/ I nventory/faces/adf.task-fl ow?adf.tfl d=Mast er Fl ow&adf . t f Doc=/ \EB-
| NF/ Mast er Fl ow. xm & d=102&ent i t y=Busi nessl nt eracti on

And this is an invalid URL:

http://jsnmith: 7001/ I nventory/faces/ adf . task-fl ow?adf. tfl d=Mast er Fl ow&adf . t f Doc=/ \EB-
| NF/ Mast er Fl ow. xm & d=102&ent i t y=Busi ness Interaction

About the InventoryGroup Entity

If you specify InventoryGroup as the entity in the UIM-formatted URL, you must replace id
with hame and provide the inventory group name because for an inventory group, the name
is the unique identifier.

For example:

http://jsmth: 7001/ I nvent ory/faces/adf.task-fl ow?adf.tfl d=Mast er Fl ow&adf . t f Doc=/ \EB-
| NF/ Mast er Fl ow. xm &ame=MyI nvG pName&ent i t y=I nvent or yG oup

Using UIM-Formatted URLS

ORACLE

You can use UIM-formatted URLSs to access any of the supported UIM pages from an
external application. This is done by writing custom code that constructs a UIM-formatted
URL, which is then used as the input argument to the following Java method:

j avax. faces. context. External Context.redirect(java.lang.String url)

The redirect() method takes in a URL and opens a page based on the input URL. The page is
opened in a new browser. To return to the external application that called the redirect()
method, close the new browser.

To learn more about this method, see the following website:
http://docs. oracle. com javaeel/ 7/ api / j avax/ f aces/ cont ext / Ext er nal Cont ext . ht ni

How you call the custom code depends on the external application and how it supports
extending the application through custom code. For example, when extending UIM, custom
code is called through the use of rulesets and extension points.

Example 15-1 shows custom code that constructs the UIM-formatted URL and calls the
redirect() method.

Example 15-1 Custom Code

/1 This exanple code assumes that server, port, id, and entity are either input
/] argunents, or readily retrievable/available to the custom code.
Il 1t also assumes that idis an int, and the rest are Strings.

String url = "http://" + server + ":" + port + "/lnventory/faces/adf.task-flow?

adf . tf 1 d=Mast er Fl ow&adf . t f Doc=/ W\EB- | NF/ Mast er Fl ow. xml & d=" + Integer.toString(id) +
"&entity=" + entity;

15-3

http://docs.oracle.com/javaee/7/api/javax/faces/context/ExternalContext.html

Chapter 15
Extending UIM-Formatted URL Functionality

FacesCont ext facesContext = FacesContext.get Currentlnstance();
Ext ernal Cont ext external Context = facesContext. get External Context();
external Context.redirect(url);

Extending UIM-Formatted URL Functionality

If you need to access UIM pages other than those listed in Table 15-1, you must
extend the UIM-formatted URL functionality through the following:

* MasterFlow.xml
 MasterBean.class

* TaskFlowModel.class

MasterFlow.xml

UIM_Homelinventory.earlinv.war/WEB-INF/MasterFlow.xml defines the master task
flow for UIM and is used to invoke specific task flows, such as
BusinessinteractionSummaryFlow, EquipmentSummaryFlow, and so forth.

Extending MasterFlow.xml

To extend MasterFlow.xml:

1. Ensure the <visibility> element defines the <url-invoke-allowed> element. For
example:

<visibility id="__7">
<url-invoke-al | owed/ >
</visibility>
2. Ensure the <data-control-scope> element value is set to isolated. For example:

<dat a- contr ol - scope>i sol at ed</ dat a- cont rol - scope>

MasterBean.class

The UIM_Homelinventory.earlinv.war/WEB-INF/classes/oracle/communications/
inventory/uilcommon/bean/MasterBean.class logic supports the UIM pages listed in
Table 15-1.

MasterBean runs when an ADF standard-formatted URL that invokes the UIM
MasterFlow is entered in a browser. MasterBean uses the input ADF standard-
formatted URL to construct the UIM-formatted URL by doing the following:

» Defines a static Map that houses taskflow data
» Defines an init() method that:
— Extracts the entity type and entity id from the ADF standard-formatted URL

— Uses the entity type to get the entity taskflowMap and load it into the static
Map that houses the taskflow data

— Uses the entity id to get the entity and stores some of the entity data in local
variables

ORACLE 15-4

Chapter 15
Extending UIM-Formatted URL Functionality

— Calls the MasterBean.getCurrentUrl() method, passing in various taskflow data and
entity data to construct and return the UIM-formatted URL

— Calls the javax.faces.context.ExternalContext.redirect() method, passing in the UIM-
formatted URL to access the page

» Defines the getCurrentUrl() method, which takes in various taskflow data and entity data
and uses it to construct and return the UIM-formatted URL

Extending MasterBean

If you need to access UIM pages other than those listed in Table 15-1, you must extend
MasterBean to handle any additional taskflow data or entity data that may be needed to
access other UIM pages, construct the UIM-formatted URL accordingly using the additional
data, and call the redirect() method with the customized UIM-formatted URL.

To extend MasterBean:

1. View the UIM-formatted URL for the page you want to access to determine what data the
custom URL requires:

a. Loginto UIM.

b. Navigate to the UIM page you want to access from the external application.
c. Click Help > Link To to display the UIM-formatted URL.

d. Study the UIM-formatted URL to determine what data it uses.

2. Create a new custom Java class that extends
oracle.communications.inventory.ui.common.bean.MasterBean.

3. Define a static Map named taskFlowMap to store taskflow-related data.
For example:

private static final Map<String, TaskFl owvbdel > taskFl owvap =
new HashMap<String, TaskFl owhbdel >();

4. In a static block, define the taskflow for the UIM page you need to access.

For example, the existing MasterBean logic defines the taskflows for all of the UIM
pages listed in Table 15-1, of which Business Interaction is shown here:

static {
TaskFl omvbdel taskFl owmvbdel Obj =
new TaskFl owMbdel (Busi nessl nteraction. cl ass,
I nvent or yU Bundl eManager . get Label (" BUSI NESS_| NTERACTI ON_SUMVARY")) ;

t askFl owMbdel Qoj . set TaskFl owl d("/ WEB- | NF/ or acl e/ communi cat i ons/inventory/ui/
busi nessi nteraction/fl ow
Busi nessl nt eracti onSummar yFl ow. xm #Busi nessl nt eract i onSummar yFl ow') ;

t askFl owMap. put (" Busi nessl nteraction", taskFl owvbdel Obj);
}

5. Define an init() method that does the following:

ORACLE 15-5

ORACLE

Chapter 15
Extending UIM-Formatted URL Functionality

< Note:

These steps assume your custom code knows the entity type you want
to access, and has the id of the entity you want to access.

a. Use the entity type to get the entity taskflowMap from the static Map that is
defined and loaded when the class is created. For example:

t askFl owMbdel Obj = taskFl owvap. get (entity);
b. Use the entity id to get the entity. For example:

finder = PersistenceHel per. makeFi nder();
Collection result = null;
result = finder.findByld(taskFl omvbdel Obj.getEntityd ass(),id);

c. Depending on what you determined in step 1, create local variables and
populate them with the retrieved taskflow data and retrieved entity data.

The variables you create depend on the data required for the UIM-formatted
URL for the page you want to access. These variables will be used as method
input parameters in the next step.

d. Call your custom getURL() method (as described in step 6, below).

Pass in the appropriate taskflow data and entity data to construct and return
the UIM-formatted URL. For example, the following shows a call to the
getURL() method using local variables of taskFlowld, taskKeyList,
taskParameterList, taskLabel, and taskType:

String url = get URL(taskFl ow d, t askKeyLi st, t askPar anet er sLi st
taskLabel , t askType);

e. Call the javax.faces.context.ExternalContext.redirect() method, passing in
the UIM-formatted URL to access the page. For example:

FacesCont ext facesContext = FacesContext.get Currentlnstance();
Ext ernal Cont ext external Context = facesContext. get External Context();
external Context.redirect(url);

6. Define a custom getURL() method that:

a. Defines input arguments that reflect the taskflow-related data and entity data
needed to construct the custom UIM-formatted URL.

b. Constructs the custom UIM-formatted URL using the input argument data.
See "About the URL Format" for detailed information on the URL format.
c. Returns a String that is the custom UIM-formatted URL.

Example 15-2 shows the MasterBean.getCurrentURL() method, which you can
use in writing a similar custom getURL() method.

Example 15-2 MasterBean.getCurrentURL()

public String getCurrentURL(String navTaskFl ow d, String navTaskKeyli st,
String navTaskParanetersList, String navTaskLabel,
String navTaskType) throws Exception

{
try {
String honePageWebApp = nul | ;
String homePageViewd = null;

15-6

ORACLE

Chapter 15
Extending UIM-Formatted URL Functionality

bool ean cont ext ual AreaCol | apsed =
Pat t er nsConst ant s. DEFAULT_CONTEXTUAL_AREA COLLAPSED;
int contextual AreaWdth =
Pat t er nsConst ant s. DEFAULT_CONTEXTUAL_AREA W DTH,
StringBuffer url = null;
FacesContext facesContext = FacesContext.getCurrentlnstance();
String urlStr = null;
url Str = Control | erContext.getlnstance().getd obal Vi ewActi vityURL
("/1nventoryU Shell");

int glndex = urlStr.indexOr("?");
if (glndex > -1) {
url Str = url Str.substring(0, glndex);

}

url = new StringBuffer(urlStr);
if (urlStr.indexCx('?') > -1) {
url . append(' &);
} else {
url.append(' ?');

url . append(Mai nAr eaHandl er. FND) . append(' =");

StringBuffer fndBuffer = new StringBuffer();
if (navTaskFlowd !'= null) {
f ndBuf f er. append
(URLEncoder . encode(navTaskFl owt d, Mai nAreaHandl er. UTF_8));

}
fndBuf f er. append(';");
i f (navTaskParanetersList != null) {
f ndBuf f er. append
(URLEncoder . encode(navTaskPar armet er sLi st, Mai nAreaHandl er. UTF_8));
}

fndBuf f er. append(';");
if (navTaskKeyList !'= null) {

f ndBuf f er. append

(URLEncoder . encode(navTaskKeyLi st, Mai nAreaHandl er. UTF_8));

}
fndBuf f er. append(';");
if (navTaskLabel !'= null) {

f ndBuf f er. append

(URLEncoder . encode(navTaskLabel , Mai nAreaHandl er. UTF_8));
}
fndBuf f er. append(';");
if (navTaskType !'= null) {
fndBuf f er. append
(URLEncoder . encode(navTaskType, Mai nAreaHandl er. UTF_8));

}
fndBuffer.append(';"');
f ndBuf f er. append

(URLEncoder . encode(String. val ueC (cont ext ual AreaCol | apsed),

Mai nAreaHandl er. UTF_8));

fndBuf f er. append(';");
f ndBuf f er. append

(URLEncoder . encode(Stri ng. val ueCf (cont ext ual AreaW dt h),

Mai nAr eaHandl er. UTF_8));

url . append

(URLEncoder . encode(fndBuffer.toString(), MinAreaHandl er. UTF_8));

Il Get fromthe nodel when navigating fromthe Home Page
Map<String, Object> viewScopeMap =

15-7

}

Chapter 15
Extending UIM-Formatted URL Functionality

Adf FacesCont ext . get Current | nst ance() . get Vi ewScope() ;
Di stri but edMenuMbdel honepageMenuhbdel =
(Di stributedvenuModel) vi ewScopeMap. get
(PatternsConst ant s. HOVEPAGE_MENU_MODEL) ;
i f (homepageMenuModel == null) {
honepageMenuhbdel =
(DistributedvenuModel) PatternsUtil. get CurrentDi stributedVenuModel
(PatternsConst ant s. HOVEPAGE_MENU_MODEL) ;
}
i f (homepageMenuModel !'= null) {
| temNode focusltemNode =
PatternsUtil . get FocusltemNode(homepageMenuhbdel) ;
if (focusltenNode !'= null) {
honePageVi ew d = focusltenNode. get FocusVi ewl d() ;
Map<String, String> custonProplList =
focusl t emNode. get Cust onPropLi st ();
if (customPropList !'=null) {
homePageWebApp =
cust onProplLi st. get (Patt ernsConst ant s. WEBAPP_NAME) ;

}
}
/1 Model may not be available when avigating in between Apps pages
if (homePageViewid == null && homePageViewd == null) {
honePageVWebApp =
(String)vi ewScopeMap. get (Patt ernsConst ant s. WEBAPP_NAME) ;
honePageView d =
(String)viewScopeMap. get (Patt ernsConst ants. HOVEPAGE_VI EW I D) ;
}
if (homePageViewd !'= null && homePageWebApp !'= null) {
url.append("&"). append(PatternsConst ant s. WEBAPP_NAME) . append
("=").append(homePage\WWebApp) . append
("&").append(PatternsConst ants. HOEPAGE_VI EW | D) . append("="). append
(URLEncoder . encode(honmePageVi ewl d, Mai nAreaHandl er. UTF_8));

Control | erContext. getlnstance(). markScopeDirty(vi ewScopeMap);
Ht t pSer vl et Request request =
(Htt pServl et Request) f acesCont ext . get Ext er nal Cont ext (). get Request () ;
String hostnamePort = request.getScheme() + "://" +
request.get ServerName() + ":" + request.getServerPort();
String full Url = hostnamePort + url.toString();
return fullUrl;

finally {

}

TaskFlowModel.class

ORACLE

UIM_Homelinventory.earlinv.war/WEB-INF/classes/oracle/communications/
inventory/uilcommon/modellTaskFlowModel.class holds taskflow-related data.
Specifically, TaskFlowModel defines the entityClass, displayLabel, and taskFlowid
class variables, and defines get() and set() methods for each.

When MasterBean is created, an instance of TaskFlowModel is created for each of
the supported UIM pages listed in Table 15-1. The code example in step 4 of the
"Extending MasterBean" shows this.

15-8

Chapter 15
Extending UIM-Formatted URL Functionality

Extending TaskFlowModel

The TaskFlowModel logic supports the UIM pages listed in Table 15-1. If you need to access
UIM pages other than those listed in Table 15-1, you may need to extend the
TaskFlowModel logic to hold any additional taskflow-related data needed to access other
UIM pages.

Note:

You only need to extend TaskFlowModel if additional data is needed to construct
the custom UIM-formatted URL, as determined in step 1 of the "Extending
MasterBean" section.

To extend TaskFlowModel:

1. Create a new custom Java class that extends
oracle.communications.inventory.ui.common.model.TaskFlowModel.

2. Define additional class variables as needed.

3. For each class variable, define the corresponding get() and set() methods.

ORACLE 15-9

Federation Data Domain Cartridges

This appendix provides information about using the Oracle Communications Unified Inventory
Management (UIM) federation data domain cartridges. These cartridges enable UIM to work
cohesively with other external systems, such as Oracle Communications Internet Name and
Address Management (INAM) and Oracle Communications MetaSolv Solution (MSS), in
handling IP addresses, VLAN IDs, and connectivity.

" Note:

This appendix builds upon the information presented in "Using the Federation
Framework".

About the Federation Data Domain Cartridges

ORACLE

The federation data domain cartridges focus on the exchange of different types of data, such
as IP Addresses and VLANS. You use these cartridges when you design a federation solution
utilizing a specific type of data while leveraging externally enabled entities.

Understanding the federation data domain cartridges is necessary when extending UIM to
federate data or cooperate with external systems.

< Note:

In previous releases, UIM referred to federation using the term “cooperation” in
describing this type of functionality.

The federation data domain cartridges include the following:

 |IP Address Federation

In the IP address federation cartridge, UIM works with INAM. For example, UIM manages
services, and INAM manages IP addresses. When a service resource assignment
requires an IP address, INAM is the IP address resource repository from which UIM finds
a resource to assign. The cartridge ZIP filename is
OracleComms_UIM_IPAddress_Federation.zip.

« VLAN ID Federation

In the VLAN ID federation cartridge, UIM works with MSS. For example, MSS manages
service configurations, and UIM manages VLAN IDs. When a service resource
assignment requires a VLAN ID, UIM is the VLAN ID resource repository from which
MSS finds a resource to assign. The cartridge ZIP filename is
OracleComms_UIM_VLAN_ID_Federation.zip.

* Connectivity Federation

A-1

Appendix A
Accessing the Federation Data Domain Cartridges

In the connectivity federation cartridge, UIM works generically with an external
system to manage connectivity resources. For example, UIM sends a Work Order
to an external system, such as MSS, to request a lease on connections. The
cartridge ZIP filename is OracleComms_UIM_Connectivity _Federation.zip.

* Objectel Federation

In the objectel federation cartridge set, UIM demonstrates connectivity interfacing
with Objectel for MetroEthernet service fulfillment scenarios. The cartridge ZIP
filename is OracleComms_UIM_Objectel_Federation.zip.

Note:

The federation protocol cartridges are not utilized in these federation data
domain cartridges. These federation protocol cartridges use an alternative
communication infrastructure to interface with the external systems.

Accessing the Federation Data Domain Cartridges

Using the

ORACLE

You can download the federation data domain cartridges from the Oracle Software
Delivery Cloud. Within the cartridge pack ZIP file, these cartridges will be located in
the Federation/Data Domains directory.

See UIM Cartridge Guide for instructions on how to download the cartridge pack ZIP
file.

You can access detailed information about these federation data domain cartridges in
the following technical white papers, located within the cartridges:

* UIM_Cooperation_Technical_Spec_Intro.pdf

* UIM_Cooperation_Technical_Spec_VLAN_ID.docx

* UIM_Cooperation_Technical_Spec_Connectivity.docx

Additionally, the connectivity topic contains the following sequence diagrams:
e UIM_Cooperation_Technical_Spec_ConnectivitySegDiagCreatelLease.pdf

e UIM_Cooperation_Technical_Spec_ConnectivitySeqDiagDisconnect.pdf

Federation Data Domain Cartridges

The IP Address and VLAN ID federation cartridges are fully functional and can be
deployed with minimal customizations: You must import the cartridge into Oracle
Communications Design Studio and:

* Update the properties files to reflect your environment
» Update CooperationConstants class to reflect your environment
* Rebuild the cartridge to include your updates

The connectivity federation cartridge is also functional; however, in addition to minimal
customizations listed above, you must also:

» Configure your UIM environment to specify the external system

A-2

Appendix A
Federation Solution Considerations

Creating New or Extending Existing Federation Data Domain Cartridges

You can also use a federation data domain cartridge as an example to follow when creating a
new cartridge, or you can modify an existing federation data domain cartridge to suit your
requirements. Whether you are creating a new cartridge or modifying an existing federation
cartridge, you must avoid deploying cartridges that contain same-named rulesets, extension
points, or ruleset extension points. Doing so results in the last cartridge deployed overriding
any same-named cartridge content that was previously deployed. See "Avoiding Federation
Cartridge Conflicts".

Note:

Follow the guidelines in UIM Cartridge Guide when creating or extending federation
data domain cartridges.

Federation Solution Considerations

When planning a federation solution, you need to consider the following actions.

Creating New Specifications

If you are extending a federation data domain cartridge by creating a new specification,
Oracle recommends that you follow the specification naming convention used in the
federation data domain cartridges. The naming convention dictates that specification names
end with (E) to designate the specifications that represent external objects. For example, if
you intend to name your new specification:

¢ INAMIPAddress, instead name it INAMIPAddress(E)
e VLANIDForM6, instead name it VLANIDForM6(E)
e M6NetworkSystem, instead name it M6NetworkSystem(E)

While this naming convention is not required, it makes it possible for end users to
immediately recognize which objects are external.

Accessing a New External System

ORACLE

Accessing a new external system may be part of a new federation solution. For example,
your solution may require UIM to have a federated view of System-X. In this scenario, UIM
must be able to query SES and include object references to System-X.

When accessing System-X:

» Determine which items to retrieve from System-X. In this example, Component-X has
been the determined item to retrieve from System-X.

* Determine how Component-X is to be represented in UIM. For example, Component-X
can be represented by any externally-enabled entity such as CustomObiject,
CustomNetworkAddress, and so forth.

e Determine the mechanism that is to retrieve the information from the System-X. For
example, API calls, direct database queries, and so forth.

A-3

ORACLE

Appendix A
Federation Solution Considerations

Determine the specification names for these objects.

Create the necessary Custom Object, Custom Network Address, Pipe, Business
Interaction, and Service specifications in Design Studio.

Create a new Java manager interface that contains the method signatures that
support the desired behavior.

Modify the ruleset logic to call the new Java Manager and its methods. Ruleset
logic can be added directly in the DRL or GROOVY file, or in a new Java class that
the DRL or GROOVY file calls. Keep in mind that you cannot debug a DRL file.
You can debug a Groovy file, and you can debug a Java class called by either a
DRL or Groovy file. See "Extending UIM Through Rulesets" for more information.

When accessing System-X and using the federation data domain cartridges:

Create a file that contains any constants you may need for accessing a new
external system. For example, see the CooperationConstants.java source file.
This file is located in each of the federation data domain cartridges, in the srcl/
oracle/communications/inventoryltechpacki/cooperation/datalcommon
directory, where data is either ipaddress, vlanid, or connectivity, depending on
the federation data domain cartridge.

In the constants file:
— Add new constants for any new specification names.

— Add new constants for the interface to System-X. For example, host, port, user
ID, and password.

— Add new constants for the external system and the component. For example,
System-X and Component-X.

Create a file that contains a list of all externally-enabled entities, and that includes
mapping information of each entity to the external system and component. For
example, see the ExternalEntitiesRegistry.java source file. This file is located in
each of the federation data domain cartridges, in the srcloracle/
communicationsl/inventoryl/techpack/cooperation/datalcommon directory,
where data is either ipaddress, vlanid, or connectivity, depending on the
federation data domain cartridge.

Create a new Java implementation class that contains the logic that supports the
desired behavior. Add any new error messages to the
dataCooperation.properties file, where data is ipaddress, vlanid, or
connectivity.

A-4

Federation Protocol Cartridges

This appendix provides information about using the Oracle Communications Unified Inventory
Management (UIM) federation protocol cartridges, which enable UIM to interface with other
external systems via different communication protocols, such as a database connection,

JMS, and SOAP.

" Note:

This appendix builds upon the information presented in "Using the Federation
Framework".

About the Federation Protocol Cartridges

The federation protocol cartridges enable communication with external systems using various
protocols. They provide functionality for a database connection as well as JMS and SOAP
communication. You use these cartridges when you design a federation solution utilizing a
specific type of communication protocol optionally using externally enabled entities.

Understanding the federation protocol cartridges is necessary when extending UIM to
communicate with external systems. You can utilize these cartridges for the following
communication protocol options:

e JMS
e SOAP
» Database connection

The JMS protocol is asynchronous, and the SOAP and database connection protocols are
synchronous. The federation protocol cartridges include:

» A set of infrastructure artifacts to use communicating with the external system.

« A set of artifacts providing an example implementation illustrating the usage of the
infrastructure artifacts.

About the Federation Protocol Infrastructure Artifacts

ORACLE

You can use the federation protocol infrastructure artifacts to enable JMS, SOAP and
database connection communication with external systems. The federation protocol
infrastructure artifacts include the following:

* Protocol Cartridge

The protocol cartridge provides abstract adapter classes for leveraging a variety of
protocols in federation integrations. You can extend these adapters to provide your
tailored and specific implementation. The cartridge name is
OracleComms_UIM_FederationProtocols.

B-1

Appendix B
About the Federation Protocol Cartridges

Properties Cartridge

The properties cartridge provides files for managing property settings. For
instance, you can configure the following types of information:

— The JMS request queue

— The class name that provides the implementation

The cartridge name is OracleComms_UIM_FederationProperties.
Message Driven Bean

The message driven bean listens for messages on the response queue for the
JMS protocol. You must package this MDB file in the custom.ear file. The
filename is UIMFederationResponseListenerMBD.jar.

Response Queue Script

The response queue Python script creates the response queue for the IMS
bridge. You must update this file to reflect the appropriate host name, port, user
name, and password before running the script. The Python script file name is
UlMFederationResponseQueue.py.

About the Federation Protocol Implementation Sample

The implementation example provides sample code utilizing the federation protocol
infrastructure. This example interfaces with an additional UIM system as the external
system.

ORACLE

Note:

This implementation uses UIM as the external system, however using UIM
as an external system is not a typical business scenario. UIM is used as the
example so you can successfully test the implementation and compare it to
your external system selection.

The following set of artifacts provide the implementation example.

The OracleComms_UIM_FederationProtocolsimpl cartridge is an example of using
and implementing the OracleComms_UIM_FederationProtocols cartridge and its
adapter classes.

The ExternalSystem cartridge is used for the SOAP and JMS testing setup on the
external system. This cartridge contains the following:

— Various UIM specifications that the code references
— Arruleset extension point
— Ruleset code to complete a business interaction

— A BlHelper class which has a completeBI() method to look up the response
gueue and post a reply

ExternalSystemsMDB is the message driven bean that listens for IMS messages
on the request queue of the external system.

ExternalSystemQueues.py is the Python script that creates the request and
response queues for the JMS protocol on the external system. You must update

B-2

Appendix B
Accessing the Federation Protocol Cartridges

this file to reflect the appropriate host name, port, user name, and password values.

* UlMFederationRequestQueue.py is the Python script that creates the request on queue
for the JMS protocol in UIM.

* The externalsystem_webservice cartridge is a web service that can be invoked on the
external system. The WSDL file is located within the cartridge with the filename
ExternalSystemWS.wsdl in the wsdl directory.

The following set of technical documents provide setup instructions and an overview of the
implementation:

* UIM Reference Implementation JMS Federation_Setup_Guide.docx details the
required steps for the JIMS protocol setup.

* UIM Reference Implementation SOAP Federation_Setup_Guide.docx details the
required steps for the SOAP protocol setup.

* UIM Reference Implementation Federation_Dev_Guide.docx contains implementation
details, such as class level information.

Accessing the Federation Protocol Cartridges

You can access the federation protocol infrastructure artifacts from the UIM Software
Development Kit (SDK). Within the UIM SDK, you find these cartridges in the
federation_sdk.zip file which is located in the cartridges/sample directory.

See "About the UIM SDK" for more information on the UIM SDK.

You can download the federation protocol implementation sample from the Oracle Software
Delivery Cloud. Within the cartridge pack ZIP file, these artifacts will be located in the
Federation/Communication Protocols directory.

See UIM Catrtridge Guide for instructions on how to download the cartridge pack ZIP file.

Using the Federation Protocol Cartridges

After importing the federation protocol cartridge into Design Studio, you use the technical
documents provided in the Federation/Communication Protocols/doc directory of the
cartridge pack ZIP file. Refer to the UIM Cartridge Guide for instructions on how to download
the cartridge pack ZIP file

These technical documents aid in understanding how to extend, configure and test these
cartridges.

Extending the Federation Protocols Cartridge Functionality

ORACLE

You extend the OracleComms_UIM_FederationProtocols cartridge to build your own tailored
implementation to federate data in an external system. This cartridge contains the following
adapter classes for supporting communication via JMS, SOAP or a database connection. The
adapter classes are:

* InventoryFederationJMSAdapter
* InventoryFederationSOAPWSAdapter
* InventoryFederationDBAdapter

These classes all extend from the base class InventoryFederationBaseAdapter.

B-3

Appendix B
Using the Federation Protocol Cartridges

Configuring the Federation Properties Cartridge

You use the OracleComms_UIM_FederationProperties cartridge to configure property
file settings for the external system communication. This cartridge contains the
following files that can be configured:

* The federation-config.xml file contains information about the external system,
such as the connection type the supported entities and the external system access
information.

* The federation-config-schema.xsd contains the XML schema definition for the
federation-config.xml file. Oracle does not recommend altering this file, unless you
“clone and own" the cartridges. If you alter this file, you must change the
supporting classes to support the changes.

See UIM Catrtridge Guide for more information on the “clone and own" topic for
cartridges.

In addition to the properties files in this cartridge, you change the UIM system-
config.properties file to specify if the configuration file reloads. You must add this
property and its setting to the system-config.properties file.

ui m f ederationProtocol s. f ederati onConfi gRel oad=t r ue

By default, this setting is not in the system configuration file and must be added. You
use the true setting to reload the values in the federation-config.xml file. This setting is
recommended for development when values are changing.

Changing the Entity Type

You can set the entity type within the SupportedEntities section of the federation-
config.xml file. This portion of the file shows UIMEntity Type field:

<SupportedEntities>
<Entitylnfo>
<Ul MEntityType>Pi pe</ U MEntityType>
<Ext ernal SystenEntityType>Pi pe</ Ext ernal SystenEntityType>
<Ul MEntitySpecification>H Local _Loop</U MentitySpecification>
<Ext er nal Syst enSupport edQper ati onLi st >Create, Retri eve, Updat e, Del ete
</ Ext er nal Syst enSupport edCper ati onLi st >
</Entitylnfo>
</ SupportedEntities>

You find the valid values for this setting in the
OracleComms_UIM_FederationProtocols cartridge. The Java enum
InventoryFederationSupportedEntityTypes in the package:

oracle.cominventory.federationFramework

defines the valid entities for the UIMEntityType field.

Changing Operations List
You can set the operations list, such as create, retrieve, update, and delete within the

SupportedEntities section of the federation-config.xml file. This portion of the file
shows the ExternalSystemSupportedOperationList field:

ORACLE B-4

Appendix B
Using the Federation Protocol Cartridges

<SupportedEntities>
<Entitylnfo>
<Ul MEntityType>Pi pe</ U MEntityType>
<Ext er nal SystenEntityType>Pi pe</ Ext ernal SystenEntityType>
<Ul MEntitySpecification>H Local _Loop</U MentitySpecification>
<Ext er nal Syst enSupport edQper ati onLi st >Create, Retri eve, Updat e, Del ete
</ Ext er nal Syst enSupport edOper ati onLi st >
</Entitylnfo>
</ SupportedEntities>

You find the valid values for this setting in the OracleComms_UIM_FederationProtocols
cartridge. The Java enum InventoryFederationSupportedOperations in the package:

oracle.cominventory.federationFramework

defines the valid entities for the ExternalSystemSupportedOperationList field.

External System Settings

The federation-config.xml also contains the settings to login to the external system. This
section provides sample XML file segments for the SOAP, JMS and database connection
protocol settings.

SOAP Protocol Settings

Example B-1 shows a portion of the external system metadata information for the SOAP
communication protocol:

Example B-1 SOAP Protocol External System Settings

<Ext er nal Syst em\kt adat a>
<Property>
<Name>W5_URL</ Name>
<Val ue>http://1 ocal host: 9001/ Ext er nal Syst em\AS/ Ext er nal Syst em\BHTTP</ Val ue>
</ Property>
<Property>
<Name>W5_USERNAME</ Nanme>
<Val ue>8A2F9B36DE151F1A12C878EE41681F54</ Val ue>
</ Property>
<Property>
<Name>W5_PASSWORD</ Nanme>
<Val ue>DE59BC74FC2B56 COFF19E0D7BCA8C016</ Val ue>
</ Property>
</ Ext er nal Syst em\et adat a>

You must update these values in the XML file with the correct values to connect to the
external system. To set the user name and password values, you run the rule EncryptText
under the Execute Rule option in UIM GUI. Figure B-1 shows the GUI to run a rule and
encrypt these values.

ORACLE B-5

Appendix B
Using the Federation Protocol Cartridges

Figure B-1 Execute EncryptText Rule Ul in UIM

Execute Rule3 Process

~|Execute Rule Information

* Ruleset: | EncryptText v |

File: | Choose File | Mo file chosen

See Base Rulesets for examples of running base rulesets.

JMS Protocol Settings

Example B-2 shows a portion of the external system metadata information for the JIMS
protocol:

Example B-2 JMS Protocol External System Settings

<Ext er nal Syst em\kt adat a>
<Property>
<Nanme>CONNECTI ON_FACTORY</ Nare>
<Val ue>f eder at i onQueueCF</ Val ue>
</ Property>
<Property>
<Nanme>REQUEST QUEUE</ Name>
<Val ue>f eder at i onRequest Queue</ Val ue>
</ Property>
</ Ext er nal Syst em\et adat a>

You must update the connection factory and the request queue name values in the
XML file with your values to connect to the external system.

Database Connection Protocol Settings

Example B-3 shows a portion of the external system metadata information for the
database connection protocol:

Example B-3 Database Connection Protocol External System Settings

<Ext er nal Syst em\kt adat a>
<Property>
<Name>JDBC_DATA SOURCE</ Nane>
<Val ue>j dbc/ MssTxDat aSour ce</ Val ue>
</ Property>
</ Ext er nal Syst em\et adat a>

You must update the JDBC data source value in the XML file with your value to
connect to the external system.

ORACLE B-6

Base Rulesets

< Note:

This appendix assumes that you have read "Extending UIM Through Rulesets" and
have an understanding of rulesets, extension points, ruleset extension points, and
enabled extension points.

This appendix provides information about the Oracle Communications Unified Inventory
Management (UIM) base rulesets, which are located in the UIM_Homelcartridges/base/
ora_uim_baserulesets.jar file. This appendix provides a description of each base ruleset,
and instructions on how to run each base ruleset.

Each base ruleset provides both a DRL file and a GROOQOVY file.

Address Range Validation

The Address Range Validation base ruleset validates the content of an input
GeographicAddressRange object. If a validation error is encountered, the ruleset logs an
error. If a validation error is not encountered, processing continues. You can customize the
base ruleset to perform custom validations as required by your business needs, and
configure the ruleset to run when an address is associated with an address range in UIM.

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to perform each
step, see the Oracle Communications Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Modify the ADDRESS RANGE_VALIDATION base ruleset to reflect your business needs
regarding validating address ranges.

3. Save the modified base ruleset.

4. Deploy the extended ora_uim_baserulesets cartridge, which now contains the modified
ADDRESS_RANGE_VALIDATION ruleset.

5. Create an Inventory project.

The Inventory Project editor appears.

Click the Dependency tab.

Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as dependencies.

Save the Inventory cartridge.

© ® N9

Within the cartridge, create a global ruleset extension point.

C-1

Appendix C
Convert LD SR1 to SR2

The Ruleset Extension Point-Global editor appears.

10. Configure the global ruleset extension point as indicated in Table C-1:

Table C-1 Global Ruleset Extension Point Configuration

e
Ruleset Point Placement

ADDRESS_RANGE_VALI |AddressRangeManager_va| Instead
DATION lidateAddressForRange (There are no core validations.

The validateAddresForRange()
method exists for the purpose of
running custom validations. So,
whether you configure the base
ruleset to run before, after, or
instead, the outcome is the
same; the custom validations
are the only validations that
run.)

11. Save the global ruleset extension point.
12. Build the cartridge and deploy it into UIM.
13. In UIM, associate an address to an address range.

When you associate an address to an address range, the
AddressRangeManager.validateAddressForRange() method is called. This results
in the base ruleset running instead the method, thereby running your custom
validations.

Convert LD SR1 to SR2

Because logical devices were enhanced to include the ability to define rate codes. The
Convert LD SR1 to SR2 base ruleset updates existing logical devices that were
created in UIM prior to release 7.2.2 to have rate codes.

For example, prior to UIM Release 7.2.2, XYZ Logical Device Specification is created
and does not define rate codes; all logical devices created in UIM based on XYZ
Logical Device Specification do not have rate codes. In UIM 7.2.2, XYZ Logical Device
Specification is updated to define rate codes; from UIM 7.2.2 and later, all logical
devices created in UIM based on XYZ Logical Device Specification have rate codes.
This base ruleset provides the ability to update the existing pre-7.2.2 logical devices to
have rate codes that reflect the rate codes XYZ Logical Device Specification now
defined.

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to
perform each step, see the Design Studio Help and the UIM Help.

1. Create a text file, input.txt, and save it in a temporary directory, tempDir.
2. Format the input.txt file as follows:

Logi cal Devi ceSpeci fi cati onNanel
Logi cal Devi ceSpeci fi cati onNane2
Logi cal Devi ceSpeci fi cati onNane3

C-2

Appendix C
Create Address Characteristic Map

where LogicalDeviceSpecification is the name of a Logical Device Specification that
defines rate codes. The input file can contain multiple Logical Device Specification
names, formatted one per line.

3. Save the input.txt file.

4. In UIM, in the Tasks panel Administration group, click the Execute Rule link.
The Execute Rule page appears.

5. From the Ruleset list, select CONVERT_LD_SR1 TO_SR2.

6. Click Browse.
The Choose File to Upload window appears.

7. Navigate to tempDir.

8. Select the input.txt file.

9. Click Open.
The Choose File to Upload window closes.

10. In the Execute Rule page, in the upper-right corner, click Process.

The base ruleset runs and, based on the input file content, updates any logical device
entities that were created from the specified input Logical Device Specifications. The
logical device entities are updated with the rate codes defined for the applicable Logical
Device Specification.

Create Address Characteristic Map

The Create Address Characteristic Map base ruleset creates a Map object and populates it
with characteristic names and corresponding values. The characteristic names and values
are mapped from a GeographicAddress object that is input to the ruleset, and the
characteristics in the GeographicAddress are derived from the Place specification from which
the input GeographicAddress entity was created.

For example, the MyPlace Place specification defines characteristics of address, city, state,
and zipCode, as well as a default value for each. In UIM, when a place is created from the
MyPlace Place specification, the characteristics are populated with the default values defined
in the Place specification. The place is saved as a GeographicPlace object. If the Create
Address Characteristic Map base ruleset is called passing in this place, the result is a Map
object containing the characteristics of address, city, state, and zipCode, and the
corresponding value for each.

Running the Base Ruleset

The Create Address Characteristic Map base ruleset is a supporting ruleset that is called by
the Find Address Range and Validate Address For Range base rulesets. The Create Address
Characteristic Map ruleset is not intended to be configured to run through a ruleset extension
point. See "Find Address Range" and "Validate Address for Range" for more information, and
where modifying the Create Address Characteristic Map base ruleset is a step in the
instructions for running these base rulesets.

ORACLE C-3

Appendix C
Find Address Range

Find Address Range

The Find Address Range base ruleset finds an AddressRange that is valid for the input
GeographicAddress, and returns the found AddressRange through the ruleset context.
You can customize the base ruleset to find the AddressRange based on customized
criteria from the input GeographicAddress, and configure the ruleset to run when you
search for an address range for a specific address.

The Find Address Range base ruleset calls the Create Address Characteristic Map
base ruleset. See "Create Address Characteristic Map" for more information about this
supporting base ruleset.

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to
perform each step, see the Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Modify the FIND_ADDRESS_RANGE base ruleset to reflect your business needs
regarding finding an address range.

3. Modify the CREATE_ADDRESS_CHARACTERISTIC_MAP base ruleset, which
the FIND_ADDRESS RANGE ruleset calls.

See "Create Address Characteristic Map" for more information.
4. Save the modified base ruleset.

5. Deploy the extended ora_uim_baserulesets cartridge, which now contains the
modified FIND_ADDRESS_ RANGE ruleset.

6. Create an Inventory project.
The Inventory Project editor appears.
7. Click the Dependency tab.

8. Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

9. Save the Inventory cartridge.
10. Within the cartridge, create a global ruleset extension point.
The Ruleset Extension Point-Global editor appears.
11. Configure the global ruleset extension point as indicated as follows:
* Ruleset: FIND_ADDRESS_RANGE
e Point: AddressRangeManager_findAddressRange
* Placement: Instead
12. Save the global ruleset extension point.
13. Build the cartridge and deploy it into UIM.

14. In UIM, search for an address range for a specific address.

C-4

Appendix C
Import Inventory

When you search for an address range for a specific address, the
AddressRangeManager.findAddressRange() method is called. This results in the base
ruleset running instead the method, where your customized search criteria is then used to
find the address range.

Import Inventory

The Import Inventory base ruleset does the following, using an input text file that provides a
telephone number ID, a logical device account ID, and an equipment ID:

» Creates an instance of a telephone number if it does not exist
» Creates an instance of a logical device account if it does not exist
» Creates an instance of equipment if it does not exist

* Validates and creates a custom involvement between the telephone number and logical
device account

» Validates and creates a custom involvement between the logical device account and
equipment

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to perform each
step, see the Design Studio Help and the UIM Help.

1. In Design Studio, create the following specifications, which will be used by the ruleset to
create telephone numbers, logical device accounts, and equipment:

e Telephone Number Specification

e Logical Device Account Specification

e Equipment Specification

Save the specifications.

Deploy the cartridge containing the specifications you just created.
Import the ora_uim_baserulesets cartridge into Design Studio.

Modify the IMPORT _INVENTORY ruleset to reflect the specification names you just
created.

g > @ D

Save the modified base ruleset.

o

7. Deploy the extended ora_uim_baserulesets cartridge, which now contains the modified
Import Inventory ruleset.

8. Create an input text file, input.txt, and save it in a temporary directory, tempDir.
9. Format the content of the comma delimited input.txt file as follows:

TN, LDA, EQUI P
Tel ephoneNunber | d, Logi cal Devi ceAccount | d, Equi pnent | d

where TN, LDA, and EQUIP are the attribute names defined in the ruleset, and where
TelephoneNumberld, LogicalDeviceAccountld, and Equipmentld are the corresponding
values of the attributes. The file format requires a minimum of one set of attribute values,
but multiple sets of attribute values can also be specified.

10. Save the input.txt file.

C-5

Appendix C
Place Format Identifier

11. In UIM, in the Tasks panel Administration group, click the Execute Rule link.
The Execute Rule page appears.

12. From the Ruleset list, select IMPORT_INVENTORY.

13. Click Browse.
The Choose File to Upload window appears.

14. Navigate to tempDir.

15. Select the input.txt file.

16. Click Open.
The Choose File to Upload window closes.

17. In the Execute Rule page, in the upper-right corner, click Process.

The base ruleset runs and, based on the input file content, telephone numbers,

logical devices, and equipment are created if the supplied IDs are not found. The

ruleset also creates custom involvements between any supplied telephone
numbers and logical devices, and creates custom involvements between ant
supplied logical device accounts and equipment.

Place Format Identifier

The Place Format Identifier ruleset defines the display format of the Formatted

Identifier field for places that are associated with a specific Place specification. The

field is comprised of the characteristics defined for the Place specification with which
the place is associated. This ruleset runs in UIM whenever the Formatted Identifier
field displays for a place. Figure C-1 shows the Place Summary page for an address

where the ruleset concatenates the State, City, Zip Code, Country, Address Line
and Address Line 2 characteristics to set the Formatted Identifier field.

Figure C-1 Formatted Identifier Field

Place Summary - 16 @ Related Pages
~|Place Information Edit
Place Type Address Formatted Identifier CA Beverly Hills 90210 US 428 Rodeo Drive
Specification usAddress Latitude
ID 16 Longitude
Mame Vertical
Description Harizontal
City Bewerly Hills State CA
Zip Code 90210 Address Line 1 428 Rodeo Drive
Address Line 2 Country US

1,

-

-~

ORACLE

To modify the ruleset, open it in Design Studio and modify the boldface code in
Example C-1 if using Drools, or in Example C-2 if using Groovy. The default code
randomly appends the characteristics defined for the specification. By modifying the

code, you can specify the characteristics to include in the display, and you can specify

the order in which the characteristics appear in the display.

C-6

Appendix C
Place Format Identifier

Example C-1 Place Format Identifier Rule (Drools)

rule "Locations"
salience 0
when
pl ace : GeographicPl ace()

eval (pl ace i nstanceof GeographicLocation)
t hen

Il execute for |ocation
StringBuilder formattedlidentifier = new StringBuilder();
List pc = new ArraylLi st (place.getCharacteristics());
if (pc !'=null) {
for(int i=0;i<pc.size();i++) {
String value = ((PlaceCharacteristic)pc.get(i)).getValue();
if (value '=null) formattedldentifier.append(value).append(" ");

}
}

pl ace. set Formattedldentifier(formattedl dentifier.toString().trim));
end

rul e "Addresses"
salience 0
when
pl ace : GeographicPl ace()

eval (pl ace i nstanceof Geographi cAddress)
t hen

Il execute for address
StringBuilder formattedlidentifier = new StringBuilder();
List pc = new ArraylLi st (place.getCharacteristics());
if (pc !=null) {
for(int i=0;i<pc.size();i++) {
String value = ((PlaceCharacteristic)pc.get(i)).getValue();
if (value '=null) formattedldentifier.append(value).append(" ");

}
}

pl ace. set Formattedldentifier(formattedl dentifier.toString().trim));
end

Example C-2 Place Format Identifier Rule (Groovy)

if (place instanceof GeographicLocation)

{
Il execute for location
StringBuil der formattedldentifier = new StringBuilder();
List pc = new ArraylList(place. get Characteristics());
if (pc !'=null)
{
for(int i=0;i<pc.size();i++)
{
String value = ((PlaceCharacteristic)pc.get(i)).getValue();
if (value !'= null) formattedldentifier.append(val ue).append(”
")
}
}
pl ace. set Formattedl dentifier(formattedldentifier.toString().trim));
}
if (place instanceof GeographicAddress)
{

Il execute for address
StringBuil der formattedldentifier = new StringBuilder();

List pc = new ArraylList(place. get Characteristics());
if (pc !'=null)

ORACLE .

Appendix C
Place Format Identifier

for(int i=0;i<pc.size();i++)
{

String value =

((PlaceCharacteristic)pc.get(i)).getValue();

if (value !'= null)

formattedl dentifier.append(val ue).append(" ");

}

}
}
pl ace. set Formattedl dentifier(formattedidentifier.toString().trim));

Running the Base Ruleset

To run the base ruleset, perform the following steps. For instructions on how to
perform each step, see the Design Studio Help and the UIM Help.

ORACLE

1.

10.

11.
12.

13.

In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

Modify the PLACE_FORMAT_IDENTIFER ruleset as described above to reflect
the needs of your UIM environment.

Save the modified base ruleset.

Deploy the extended ora_uim_baserulesets cartridge, which now contains the
modified PLACE_FORMAT_IDENTIFIER ruleset.

Create an Inventory project.
The Inventory Project editor appears.
Click the Dependency tab.

Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

Save the Inventory cartridge.
Within the cartridge, create a ruleset extension point.
The Ruleset Extension Point editor appears.

Configure the ruleset extension point as indicated in Table C-2:

Table C-2 Ruleset Extension Point Configuration
|

Ruleset Point Placement
PLACE_FORMAT_IDENTIFIER PlaceManager_createGeographicP | After
lace

Save the ruleset extension point.
Within the cartridge, create another ruleset extension point.
The Ruleset Extension Point editor appears.

Configure the ruleset extension point as indicated in Table C-3:

C-8

14.
15.

16.
17.

Appendix C
Reservation Check Redeemer

Table C-3 Ruleset Extension Point Configuration

Ruleset Point Placement
PLACE_FORMAT_IDENTIFIER PlaceManager_updateGeographicPla | After
ce

Save the ruleset extension point.

Because you are working with specification-based extension points, you must also
configure any applicable Place Specifications for the ruleset extension points by doing
the following for each applicable Place specification:

Note:

You do not need to create enabled extension points to configure the Place
Specifications; the ora_uim_baseextpts cartridge provides the following base
enabled extension points, which enable the
PlaceManager_createGeographicPlace and
PlaceManager_updateGeographicPlace specification-based extension points
for the Place Specification:

* PlaceSpecification_PlaceManager_createGeographicPlace

* PlaceSpecification_PlaceManager_updateGeographicPlace

a. Open the Place Specification editor.
b. Click the Rules tab.
c. Click Select.
The Add Entities window appears.
d. Select the two ruleset extension points that you just created.
e. Click OK.

The Add Entities window closes, and the Place Specification is now configured for
the two ruleset extension points.

f. Save the Place Specification.
Build the cartridge and deploy it into UIM.
In UIM, create or update a place.

When a place is created or updated, the PlaceManager.createGeographicPlace() method
or PlaceManager.updateGeogrphicPlace() method is called. This results in the base
ruleset running after, which uses the customized formatting to display the Place Summary
Formatted Identifier field.

Reservation Check Redeemer

ORACLE

The Reservation Check Redeemer ruleset enables reservation redemption validations in

UIM. By default, reservation redemption validations are disabled in UIM.

In UIM, you can reserve resources to prevent them from being used by other entities or
processes. If the reservation is not redeemed by the expiry date, the resource is released

C-9

Appendix C
Reservation Check Redeemer

back into inventory. You redeem a reserved resource when you assign the resource to
a configuration item. By default, UIM does not validate the redemption to ensure that it
matches the reservation. So, you may wish to use this ruleset to enable reservation
redemption validations.

See UIM Concepts for more information about reservations.

Running the Base Ruleset

ORACLE

To run the ruleset, perform the following steps. For instructions on how to perform
each step, see the Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Create an Inventory project.
The Inventory Project editor appears.
3. Click the Dependency tab.

4. Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

5. Save the Inventory cartridge.
6. Within the cartridge, create a global ruleset extension point.
The Ruleset Extension Point-Global editor appears.

7. Configure the global ruleset extension point as indicated in Table C-4:

Table C-4 Global Ruleset Extension Point Configuration
- __________________________ |

Ruleset Point Placement
RESERVATION_CHECK_REDEE | ReservationManager_checkRedee | Instead
MER mer

8. Save the global ruleset extension point.
9. Build the cartridge and deploy it into UIM.
10. In UIM, assign a reserved resource to a configuration item.

When you assign a reserved resource to a configuration item, the
ReservationManager.checkRedeemer() method is called. This method simply
returns false, which results in reservation redemption validations being disabled.
Conversely, the base ruleset simply returns true. So, when you configure the base
ruleset to run instead of the ReservationManager.checkRedeemer() method,
reservation redemption validations are enabled. When enabled, and you assign a
reserved resource to a configuration item, you are required to enter valid
reservation information to redeem the reservation.

Note:

If you enable reservation validations through the base ruleset and then later
decide you want to disable reservation validations, modify the ruleset to
return false and redeploy the cartridge.

C-10

Appendix C
Reservation Expiration

Reservation Expiration

The Reservation Expiration base ruleset customizes the reservation expiration process by
setting a custom value for the expiry interval when expiring reservations.

When a reservation is created, you can set an expiry date. The expiry date indicates when
resource a resource is no longer reserved and the resource returns to the Unassigned state.
If no expiry date is set when the reservation is created, the expiry date is calculated and set
based on a default interval specified in the UIM_Homelconfiglconsumer.properties file. The
default interval indicates the period of time that must elapse before a resource is no longer
reserved and returns to the Unassigned state.

The reservation expiration process runs at timed intervals, as specified in the UIM_Homel
configltimers.properties file. When the reservation expiration process runs, reservations
are checked to see if the expiry date has been reached. If the expiry date has been reached,
the reservation is deleted and the resource is returned to the Unassigned state.

The Reservation Expiration ruleset is used to customize the telephone number aging
process, which is configured to run at timed intervals specified in the UIM_Homelconfigl/
timers.properties file. Reservation expiration is the process of checking reservations to see
if the expiry date has been reached. The Reservation Expiration ruleset provides a way to
customize the stateExpiry interval for telephone numbers in the Disconnected state. At the
specified timed intervals, the ruleset queries for telephone numbers in the Disconnected or
Transitional state. If a telephone number is the Disconnected state, the ruleset transitions the
state to Transitional, and if a telephone number is the Transitional state, the ruleset
transitions the state to Unassigned.

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to perform each
step, see the Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Modify the RESERVATION_EXPIRATION ruleset to reflect the needs of your UIM
environment regarding reservation expiration for short term or long term reservations, or
both.

3. Save the modified base ruleset.

4. Deploy the extended ora_uim_baserulesets cartridge, which now contains the modified
RESERVATION_EXPIRATION ruleset.

5. Create an Inventory project.

The Inventory Project editor appears.

Click the Dependency tab.

Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as dependencies.

Save the Inventory cartridge.

© ® N 2o

Within the cartridge, create a global ruleset extension point.
The Ruleset Extension Point-Global editor appears.

10. Configure the global ruleset extension point as indicated in Table C-5:

C-11

Appendix C
System Export and System Import

Table C-5 Global Ruleset Extension Point Configuration

Ruleset Point Placement
RESERVATION_EXPIRATION ReservationManager_expireReser | Instead
vation

11. Save the global ruleset extension point.
12. Build the cartridge and deploy it into UIM.

13. Modify following property values in the UIM_Homelconfigltimers.properties file
as needed for your UIM environment configuration:

e cleanReservation.firstTime
e cleanReservation.period

See UIM System Administrator's Guide for more information about the
timers.properites file.

14. Save the modified timers.properties file.

ReservationManager.expireReservation() is automatically called at the timer
intervals you specified in the timers.properties file. When
ReservationManager_expireReservation() is called, the ruleset runs instead of the
method, as specified by the global ruleset extension point. The ruleset runs your
custom code and sets the custom expiry interval for short term or long term
reservations, or both.

System Export and System Import

The System Export and System Import rulesets are used to manage UIM data. For
example, you may wish to create a new UIM test environment and load the test
environment with data from another UIM environment, or you may wish to export UIM
data to send the data upstream in the order fulfillment process.

Exporting Data

Queries

ORACLE

The System Export ruleset exports database entities into XML-formatted output files,
places the XML files in a ZIP file, and returns the ZIP file. Input to the System Export
ruleset is a text file that specifies the export configuration. The input text file name is
arbitrary, but it is commonly named config.txt. The config.txt file is also returned in
the ZIP file, along with the XML files.

The export configuration specified in the config.txt file defines two sections:

e Queries

e Parameters

Queries must be in the form of:

C assName#QueryString

where ClassName is the data object representation of the database table you are
querying, and QueryString is a valid query statement. For example:

C-12

Parameters

ORACLE

Appendix C
System Export and System Import

oracl e. comrmuni cations. i nventory. api.entity. Tel ephoneNunber Speci fi cati on#o. name LI KE

" Sanpl €'

oracl e. comrmuni cations. i nventory. api.entity. Tel ephoneNunber Speci fi cati on#o. | ast Modi fi edU
ser='inventory'

When defining the queries section in the config.txt file:

* You must pre-pend all attribute names with o because the table name is hard-coded to
have an alias of o in the extensibility framework.

* You can specify multiple queries within a single config.txt file.

Parameters must be in the form of:

conmmi t Si ze=Nuneri cVal ue
dupl i cat eActi on=Acti onEnunVal ue
rel ationshi psTol ncl ude=I ncl udeEnunval ue

Where NumericValue, ActionEnumValue, and IncludeEnumValue are described as values for
the commitSize, duplicateAction, and relationshipsTolnclude parameters as follows:

* commitSize: numeric value greater than 1 and up to a reasonable export size. The
default value is 1000.

» duplicateAction: action to take when duplicate data is encountered in the target data
store. Options are:

— Update: (default) any duplicate record is updated with the newly imported data
values.

— Ignore: do not process, skip the duplicate record.

— Error: when a duplicate record exists in the target data store, report it as such and
end the transaction without taking any action.

» relationshipsTolnclude: describes how to process objects that are related to the
selected entity. Options are:

— Meta: (default) only include relationships that are metadata type relationships, such
as specification relationships.

— Data: only include relationships that are business data in nature, such as
characteristics.

— All: include all relationships including metadata and normal business data
associations.

— None: do not include any relationships and only process the integral type attributes
of the selected entity.

For example:

commi t Si ze=1000
dupl i cat eActi on=Error
rel ationshi psTol ncl ude=Met a

When defining the parameters section in the config.txt file:

e You must place the parameters section directly after the queries section.

* You may specify all, some, or none of the parameters. Any parameters not specified
assume the default value.

C-13

Appendix C
System Export and System Import

Caution:

The System Export ruleset exports data from the UIM database. Metadata
Services (MDS) stores additional data used by the UIM Ul in the presentation
of specifications and characteristics. The export ruleset does not export this
additional data from the MDS.

If you are using System Export to export data from environment A, along with
System Import to import data into environment B, you can do the following to
work around the issue:

1. Run the System Export ruleset in environment A.
2. Run the System Import ruleset in environment B.

3. Deploy the cartridge or cartridges that define the specifications and
characteristics that were previously deployed into environment A
(resulting in the additional specification and characteristic data being
stored in the MDS) into environment B.

If you are using the System Export ruleset without System Import, for
example to send data upstream, this is not an issue.

Importing Data

ORACLE

The System Import ruleset imports previously exported XML-formatted data into the
system and returns a count of the records imported. Input to the System Import ruleset
is the ZIP file returned by the System Export ruleset; the ZIP file contains the XML
files.

Note:

To perform the System Import, you must deploy all the same cartridges, that
are deployed the System Export environment, to the System Import
environment as well.

Caution:

Prior to importing data, you must check the data in the XML files for entity
IDs that are duplicates of any entity IDs already in the system into which you
are importing. If you find duplicate entity IDs, modify the entity IDs in the XML
file prior to importing the data.

The way UIM handles duplicate IDs during import depends on the value of
the DuplicateAction parameter specified in the config.txt file. (The
config.txt file is available to the System Import ruleset because the input is
the ZIP file returned from the System Export ruleset; and the ZIP file contains
the XML files and the config.txt file.)

C-14

Appendix C
System Export and System Import

Running the Base Rulesets

To run the base rulesets, perform the following steps. For instructions on how to perform each
step, see the Design Studio Help and the UIM Help.

ORACLE

1
2
3.
4

10.

11.

12.

13.

14.

15.

16.
17.

Create a text file, config.txt, and save it in a temporary directory, tempDir.
Format the config.txt file as described above in the "Exporting Data" section.
Save the config.txt file.

In the UIM environment from where you plan to export data, in the Tasks panel
Administration group, click the Execute Rule link.

The Execute Rule page appears.

From the Ruleset list, select SYSTEM_EXPORT.

Click Browse.

The Choose File to Upload window appears.

Navigate to tempDir.

Select the config.txt file.

Click Open.

The Choose File to Upload window closes.

In the Execute Rule page, in the upper-right corner, click Process.

The base ruleset runs and, based on the queries and parameters specified in the
config.txt file, exports the data to a ZIP file.

When the process completes, a message displays on the UIM Execute Rule page,
informing you of the number of records processed, and the location and name of the
created ZIP file. For example:

Processed 85 Records Successful ly.

Exported Inventory to the |ocation:

/ shar e/ ui ncl ust er/ domai ns/ cl ust er Ui ni722b385/ Ul M t np/ xm dat a/ ui nuser 1/ export/
xm export. zip

Click Download File to save xmlexport.zip to a temporary directory.
The File Download window appears.

Click Save.

The Save As window appears.

Navigate to a temporary directory and click Save.

If necessary, copy xmlexport.zip to a location that can be accessed from the UIM
environment where you plan to import the data. (If the UIM environments from which you
are exporting and importing are running on the same machine, you do not need to
perform this step.)

In the UIM environment where you plan to import the data that you just exported, in the
Tasks panel Administration group, click the Execute Rule link.

The Execute Rule page appears.
From the Ruleset list, select SYSTEM_IMPORT.

Click Browse.

C-15

Appendix C
Telephone Number Formatting

The Choose File to Upload window appears.
18. Navigate to the temporary directory that contains the xmlexport.zip file.
19. Select the xmlexport.zip file.
20. Click Open.
The Choose File to Upload window closes.
21. In the Execute Rule page, in the upper-right corner, click Process.

The base ruleset runs and, based on the xmlexport.zip file content, imports the
data.

Telephone Number Formatting

ORACLE

The Telephone Number Formatting base ruleset defines the telephone number length
and display format of telephone numbers in UIM. The ruleset defines a default edit
mask that is applied to all telephone numbers, unless otherwise specified. The ruleset
can also define additional edit masks that apply to specified Telephone Number
specifications. The ruleset runs in UIM when working with telephone numbers and
applies a default edit mask of 10 digits (#####H##H1H#).

To modify the base ruleset in Design Studio, scroll to the FUNCTIONS section of the
code. You can modify the default edit mask, the specification name and corresponding
edit mask, or both. You can also replicate the code and define multiple edit masks that
are specific to a particular specification. In Example C-3, the boldface code is the code
you need to modify.

Example C-3 Telephone Number Formatting Rule (Drools)

function String getEdit Mask(Tel ephoneNunber Speci fi cation tnSpec)
{ /1 The character # is reserved and represents a required digit.
/1 The default mask is eight required digits.
String editMask = "##H#H#HIHIR"
if (tnSpec == null)
return editMsk;

/1 Define the edit mask based on the spec nanme
i f(tnSpec. get Nane(). equal s("TNspec NPA- NXX"))
edi t Mask = "##- #HiH- #HHE"

return editMask;

}
e R LR T
/1l RULES
e
rule "Get TN Edit Mask"
salience 0
when
t el ephoneNunber Speci fi cation : Tel ephoneNurber Speci fi cati on()
context : ExtensionPoi nt Rul eCont ext ()
t hen
String editMisk = get Edit Mask(t el ephoneNunber Speci fication);
cont ext . set Ret ur nVal ue(edi t Mask) ;
end

C-16

ORACLE

Appendix C
Telephone Number Formatting

Example C-4 Telephone Number Formatting Rule (Groovy)

e T
/1 FUNCTI ONS
b R
def String getEdi t Mask(Tel ephoneNunber Speci fication tnSpec)
{
Il The character # is reserved and represents a required digit.
Il The default mask is eight required digits.
String edit Mask = "#####HH#HHI#E"
if (tnSpec == null)
return editMsk;
Il Define the edit mask based on the spec name
i f (tnSpec. get Nane() . equal s(" TNspec NPA- NXX"))
edi t Mask = "###- #HH- #HHHE
return editMsk;
}
b R
Il RULE
b R
| og. debug ("", "Get TN Edit Mask");

String editMask = get Edi t Mask(t el ephoneNunber Speci fication);
cont ext . set Ret ur nVal ue(edi t Mask) ;

Example C-5 (Drools) and Example C-6 (Groovy) show the modified portion of the Telephone
Formatting rule in boldface. (The only difference between the two examples is that Drools
defines a function and Groovy defines a def.)

In these examples, the modified rule redefines the default edit mask length format from 10
digits to 11 digits. The examples also redefine the telephone number display format for
telephone numbers created from the NANPA telephone number specification to display as +#
(xxx) xxx-xxxx. For example, +1 (972) 555-8495.

Example C-5 Telephone Number Formatting Rule (Drools)

function String get Edi t Mask(Tel ephoneNunber Speci fi cation tnSpec)
{
Il The character # is reserved and represents a required digit.
[l The default mask is eleven required digits.
String editMask = "##H#HIHIHIHE"
if (tnSpec == null)
return editMask;

/] Define the edit mask based on the spec nane
i f(tnSpec. get Nane(). equal s(" NANPA"))
edi t Mask = "+ (###) #HiH#H- #EHE"

return editMsk;
}

Example C-6 Telephone Number Formatting Rule (Groovy)

def String getEdit Mask(Tel ephoneNunber Speci fication tnSpec)
{
/1 The character # is reserved and represents a required digit.
/1 The default mask is eleven required digits.
String edit Mask = "###HH##HHIHH]"
if (tnSpec == null)
return editMask;

C-17

Appendix C
Telephone Number Formatting

/1 Define the edit mask based on the spec nanme
i f(tnSpec. get Nane(). equal s(" NANPA"))
edi t Mask = "+ (###) #iH#H- #HHHHE"

return editMask;
}

From this point forward, all telephone numbers created from the NANPA telephone
number specification and the TELEPHONE_NUMBER_FORMATTING ruleset are
based on the new default length and display format. Any telephone numbers created
from the NANPA telephone number specification prior to this ruleset being deployed do
not reflect this new default length and display format, nor will they; the telephone
number formatting is not applied retroactively.

You can also modify the telephone number default edit mask in the
number.properties file. See UIM System Administrator's Guide for more information.

Running the Base Ruleset

ORACLE

To run the base ruleset, perform the following steps. For instructions on how to
perform each step, see the Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Modify the TELEPHONE_NUMBER_FORMATTING ruleset as described above to
reflect the needs of your UIM environment.

3. Save the modified base ruleset.

4. Deploy the extended ora_uim_baserulesets cartridge, which now contains the
modified TELEPHONE_NUMBER_FORMATTING ruleset.

5. Create an Inventory project.
The Inventory Project editor appears.
6. Click the Dependency tab.

7. Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

8. Save the Inventory cartridge.
9. Within the cartridge, create a ruleset extension point.
The Ruleset Extension Point editor appears.

10. Configure the ruleset extension point as indicated in Table C-6:

Table C-6 Ruleset Extension Point Configuration
- __________________________ |

Ruleset Point Placement
TELEPHONE_NUMBER_FORMA | SpecManager_getEditMask Instead
TTING

11. Save the ruleset extension point.

C-18

Appendix C
Telephone Number Grading

12. Because you are working with a specification-based extension point, you must also
configure any applicable Telephone Specifications for the ruleset extension point by doing
the following for each applicable Telephone Number specification:

f.

Note:

You do not need to create an enabled extension point to configure the
Telephone Number Specifications; the ora_uim_baseextpts cartridge provides
the following base enabled extension point, which enables the
SpecManager_getEditMask specification-based extension point for the
Telephone Number Specification:

« TelephoneNumberSpecification_SpecManager_getEditMask

Open the Telephone Number Specification editor.
Click the Rules tab.

Click Select.

The Add Entities window appears.

Select the ruleset extension point that you just created.
Click OK.

The Add Entities window closes, and the Telephone Number Specification is now
configured for the ruleset extension point.

Save the Telephone Number Specification.

13. Build the cartridge and deploy it into UIM.

14. In UIM, create or update a telephone number.

When you create or update a telephone number, the SpecManager_getEditMask()
method is called. This results in the ruleset running instead of the method, which applies
the default edit mask or specified edit mask to the telephone number and displays the
number accordingly.

< Note:

Telephone number formatting is not applied retroactively. If you change the
formatting for a telephone number specification, the change is not applied to
existing telephone numbers created from the specification prior to the edit mask
change. However, the change is applied to any new telephone numbers you create
from the specification.

Telephone Number Grading

The Telephone Number Grading base ruleset is no longer used. However, the ruleset
provides a good example of how to set a characteristic or field, such as country code, when a
telephone number is created.

ORACLE

C-19

Appendix C
TN Selection

TN Selection

The Telephone Number Grading base ruleset is no longer used, but provides a good
ruleset example to follow when creating custom rulesets.

Trail Pipe Topology Edge

¢ Note:

The Trail Pipe Topology Edge base ruleset is valid for use with Connectivity -
Pipe entities; it is not valid for use with Connectivity - Channelized entities.

The Trail Pipe Topology Edge base ruleset provides a way for a trail pipe to become a
topology edge, which makes the trail pipe be included in the topology and available for
path analysis.

In pipe connectivity, all trail pipes are topology edged. However, in channelized
connectivity, trail pipes that ride channelized pipes are not topology edges and not
available for path analysis. So, you may wish to use this ruleset in channelized
connectivity to make trail pipes that ride channelized pipes topology edges so they are
included in the topology and available for path analysis.

Running the Base Ruleset

ORACLE

To run the ruleset, perform the following steps. For instructions on how to perform
each step, see the Design Studio Help and the UIM Help.

1. In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

2. Create an Inventory project.
The Inventory Project editor appears.
3. Click the Dependency tab.

4. Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

5. Save the Inventory cartridge.
6. Within the cartridge, create a ruleset extension point.
The Ruleset Extension Point editor appears.

7. Configure the ruleset extension point as indicated in Table C-7:

Table C-7 Ruleset Extension Point Configuration

|
Ruleset Point Placement

TRAIL_PIPE_TOPOLOGY_ | TopologyMapper_createEnabledByPipes Instead
EDGE TopologyEdge

C-20

10.
11.

Appendix C
Validate Address for Range

Save the ruleset extension point.

Because you are working with a specification-based extension point, you must also
configure any applicable Pipe specifications for the ruleset extension point by doing the
following for each applicable Pipe specification:

Note:

You do not need to create an enabled extension point to configure the Pipe
Specifications; the ora_uim_baseextpts cartridge provides the following base
enabled extension point, which enables the
TopologyMapper_createEnabledByPipesTopologyEdge specification-based
extension point for the Pipe Specification:

e PipeSpecification_TopologyMapper_createEnabledByPipesTopologyEdge

a. Open the Pipe Specification editor.
b. Click the Rules tab.
c. Click Select.
The Add Entities window appears.
d. Select the ruleset extension point that you just created.
e. Click OK.

The Add Entities window closes, and the Pipe Specification is now configured for the
ruleset extension point.

f. Save the Pipe Specification.
Build the cartridge and deploy it into UIM.

In UIM, within a topology model, enable a trail pipe through one or more pipes and save
the pipes.

Saving a pipe calls the processPipe() method, which eventually calls the
TopologyMapper_createEnabledByPipesTopologyEdge method.

When the TopologyMapper.createEnabledByPipesTopologyEdge() method is called, the
ruleset is called instead.

Validate Address for Range

The Validate Address For Range base ruleset takes in a GeographicAddressRange and a
GeographicAddress and determines whether the given address range is valid for the given
address. If valid, the ruleset returns the valid geographic address range through the ruleset
context. If not valid, the ruleset returns null. You can customize the base ruleset to perform
custom validations as required by your business needs, and configure the ruleset to run when
an address is associated with an address range in UIM.

ORACLE

The Validate Address for Range base ruleset calls the Create Address Characteristic Map
base ruleset. See "Create Address Characteristic Map" for more information.

C-21

Appendix C
Validate Address for Range

Running the Base Ruleset

To run the base ruleset, perform the following steps. For instructions on how to
perform each step, see the Design Studio Help and the UIM Help.

ORACLE

1.

10.

11.

12.
13.
14.

In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

Modify the VALIDATE_ADDRESS_FOR_RANGE base ruleset to reflect your
business needs regarding validating address ranges.

Modify the CREATE_ADDRESS CHARACTERISTIC_MAP base ruleset, which
the VALIDATE_ADDRESS FOR_RANGE ruleset calls.

See "Create Address Characteristic Map" for more information.
Save the modified base ruleset.

Deploy the extended ora_uim_baserulesets cartridge, which now contains the
modified VALIDATE_ADDRESS_FOR_RANGE ruleset.

Create an Inventory project.
The Inventory Project editor appears.
Click the Dependency tab.

Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as
dependencies.

Save the Inventory cartridge.
Within the cartridge, create a global ruleset extension point.
The Ruleset Extension Point-Global editor appears.

Configure the global ruleset extension point as indicated in Table C-8:

Table C-8 Global Ruleset Extension Point Configuration
|

Ruleset Point Placement
VALIDATE_ADDRESS_FOR | AddressRangeManager_vali | Instead
_RANGE dateAddressForRange (There are no core

validations. The
validateAddresForRange()
method exists for the
purpose of running custom
validations. So, whether you
configure the base ruleset to
run before, after, or instead,
the outcome is the same; the
custom validations are the
only validations that run.)

Save the global ruleset extension point.
Build the cartridge and deploy it into UIM.
In UIM, associate an address to an address range.

When you associate an address to an address range, the
AddressRangeManager.validateAddressForRange() method is called. This results

C-22

Appendix C
Validate Relate Places

in the base ruleset running instead the method, thereby running your custom validations.

Validate Relate Places

The Validate Relate Places base ruleset validates the existence of a parent-child relationship
between two input GeographicAddress objects by determining if the specifications from which
the graphic addresses were created have a parent-child relationship.

Running the Base Ruleset

To run the base ruleset, perform the following steps. For instructions on how to perform each
step, see the Design Studio Help and the UIM Help.

1.

o o p W

ORACLE

In Design Studio, import the ora_uim_baseextpts and ora_uim_baserulesets
cartridges.

Create an Inventory project.

The Inventory Project editor appears.

Click the Dependency tab.

Add the ora_uim_baseextpts and ora_uim_baserulesets cartridges as dependencies.
Save the Inventory cartridge.

Within the cartridge, create a ruleset extension point.

The Ruleset Extension Point editor appears.

Configure the ruleset extension point as indicated in Table C-9:

Table C-9 Ruleset Extension Point Configuration

e
Ruleset Point Placement

VALIDATE_RELATE_PLACES PlaceManager_relatePlaces Before

Save the ruleset extension point.

Because you are working with a specification-based extension point, you must also
configure any applicable Place specifications for the ruleset extension point by doing the
following for each applicable Place specification:

" Note:

You do not need to create an enabled extension point to configure the Place
Specifications; the ora_uim_baseextpts cartridge provides the following base
enabled extension point, which enables the PlaceManager_relatePlaces
specification-based extension point for the Place Specification:

* PlaceSpecification_PlaceManager_relatePlaces

a. Open the Place Specification editor.
b. Click the Rules tab.
c. Click Select.

C-23

Appendix C
Validate Relate Places

The Add Entities window appears.
d. Select the ruleset extension point that you just created.
e. Click OK.

The Add Entities window closes, and the Place Specification is how configured
for the ruleset extension point.

f. Save the Place Specification.
10. Build the cartridge and deploy it into UIM.
11. In UIM, relate two places.

When you relate two places, the PlaceManager.relatePlaces() method is called.
This results in the ruleset running before the method, which validates the
relationship between the geographic places before establishing the relationship
between them.

ORACLE C-24

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation

	1 Overview
	Extending UIM
	Creating Cartridges
	Extending the Data Model
	Extending Life Cycles, Topology, and Security
	Creating Rulesets
	Creating Web Services
	Customizing the User Interface
	Localizing UIM
	Optimizing Concurrent Resource Allocation in UIM
	Federation with UIM
	Requirements for Extending UIM

	Tools for Extending UIM
	Design Studio
	Additional Tools

	Documentation for Extending UIM
	Information Model Documentation
	API Documentation
	Javadoc Documentation

	Guidelines for Extending UIM
	Backward Compatibility
	Detecting Code Changes Between Releases

	Software Requirements

	2 Using Design Studio to Extend UIM
	Installing Design Studio
	Configuring Design Studio
	Setting System Variables
	Setting the Compiler Compliance Level
	Configuring the eclipse.ini File
	Importing the Model Projects
	Configuring the Project Library List

	About Design Studio Perspectives
	About Design Studio Views
	About Cartridges and Cartridge Packs
	Working with Cartridges in Design Studio
	Working With Cartridge Dependencies
	About Imported Cartridge Packs
	Viewing Cartridges in Design Studio
	How Content Is Displayed
	About Building Cartridges
	About Deploying Cartridges and Cartridge Packs
	About Cartridge Upgrades

	About the UIM SDK
	UIM SDK Contents
	Building an Inventory Cartridge Using the UIM SDK

	About the Developer-Facing Inventory Menu Options
	Understanding the Sequence Specification
	Using the Sequence Specification in Custom Code
	Using the Sequence Specification with the Entity Identification Specification

	Additional Tools
	Installing, Configuring, and Using Ant
	Downloading Ant
	Installing Ant
	Configuring Ant
	Running Ant Targets

	3 Using the Persistence Framework
	About the Persistence Framework Foundation
	Understanding Persistence Framework Concepts
	Eager and Lazy Fetching
	Managed and Non-Managed Entities

	Persistence Framework Classes and API Methods
	PersistenceManager
	TypeRegistry
	Finder
	Defining JPQL Statement Methods
	Finder.find() and Finder.findMatches() Methods
	PersistenceManager refresh(), attach(), and connect() Methods

	InventoryFinder
	PersistenceHelper
	Persistent
	Entity Managers
	Defining Entity Managers
	Entity Manager Implementation Inheritance Structure

	PersistenceManagerBean
	TransitionManagerImpl
	BaseInvManager

	JPQL Query Examples

	4 Extending the Data Model
	About the UIM Data Model
	About Entities
	About Entity Capabilities
	About Entity Relationships
	About Entity Managers
	About Entity ID Sequencing

	About the Metadata Files
	Understanding Metadata File Content
	Understanding Entity Definitions
	*-entities.xml Files
	More on Entity Definitions

	Understanding Entity Attribute Definitions
	*-types.xsd Files

	Understanding Enumeration Definitions
	*-enum-entities.xml Files
	*-enum-types.xsd Files

	Understanding Native Sequence Definitions
	ocim-entityidsequenceextension-entities.xml File

	Understanding the Tags that Govern Definitions

	Extending the Data Model Through the Metadata Files
	Defining New Entities
	Creating New Entity Managers

	Defining New Entity Attributes
	Defining New Enumerations
	Defining New Native Sequences
	Extending Existing Entities
	Understanding the Extension Tag
	Extending Existing Entities

	Extending Existing Entity Attributes
	Extending Existing Enumerations
	Extending Existing Native Sequences

	Applying Metadata Static Extensions
	About the build.xml File
	Generating, Compiling, and Packaging the Entity Source Files

	More on Entity Definitions
	Understanding Entity Capability Definitions
	Understanding Entity Relationship and Collection Definitions
	Uni-Directional, One-to-One Relationship
	Uni-Directional, One-to-Many Relationship
	Uni-Directional, Many-to-Many Relationship
	Bi-Directional, One-to-One Relationship
	Bi-Directional, One-to-Many Relationship
	Bi-Directional, Many-to-Many Relationship
	Relationship Definition Affect on Generated Entities

	Understanding Entity Manager Definitions
	Defining Entity Managers

	5 Extending Life Cycles
	About Business Interactions
	Understanding Metadata File Content
	Understanding Life-Cycle Managed Entity Definitions
	Understanding Life-Cycle Managed Enumeration Definitions
	About Life-Cycle States
	Understanding Business State Enumerations

	Understanding Transition Definitions
	Understanding How Transitions Are Triggered
	About Transition Groups

	Extending Life Cycles through the Metadata Files
	Extending Entity Definitions
	Defining an Entity as Life-Cycle Managed
	Defining an Entity as Business-Interaction Enabled
	Defining an Entity as Life-Cycle Managed and Business-Interaction Enabled

	Extending Enumeration Definitions
	Extending Transition Definitions
	Defining New Transitions
	Extending Existing Transitions
	Updating Properties Files
	Updating Security
	More on Transition Definitions

	About Life Cycle Management Interfaces
	LifeCycleManaged
	TransitionManager
	Transition Definition Search

	6 Extending the Topology
	About Topology Entities and Topology-Managed Entities
	Topology Entities
	Topology-Managed Entities

	About Topology Mapping
	TopologyEdge
	TopologyNode

	Extending the Topology
	Defining an Entity as Topology-Managed
	Extending the BusinessObjectType.java File

	Extending the Mapping
	Configuring the topologyProcess.properties file

	About Path Analysis
	Configuring and Customizing Path Analysis
	Configuring the Path Analysis Mode
	Customizing Path Analysis
	Adding Filtering Criteria
	Setting the Analysis Mode
	Limiting the Analysis by Pipe Specification

	About Topology Interfaces
	TopologyObject
	TopologyManager
	TopologyMapper
	PathAnalysisManager
	PathAnalysisMapper
	TopologyProfileMapper
	TopologyEdgeSearchCriteria
	TopologyNodeSearchCriteria

	About the topologyProcess.properties File

	7 Extending Security
	Securing APIs
	Securing APIs through the SecurityValidation Aspect
	Creating the Global Extension Point
	Creating the Global Ruleset Extension Point

	Securing APIs through Rulesets and Extension Points

	Securing Entity Data
	About Entity Access Control
	Securing Entity Data through Rulesets and Extension Points
	Setting Permissions in a Custom Ruleset
	Setting Partitions in a Custom Ruleset
	Enforcing Security in a Custom Ruleset

	Creating Custom Rulesets and Extension Points
	Creating Custom Rulesets
	Securing APIs Example
	Securing Entity Data through Permissions Example
	Securing Entity Data through Partitions Example
	Securing Entity Data for a Range of Entities Example
	Enforcing Security Example

	Creating Extension Points
	Creating the Ruleset Extension Point

	8 Extending UIM Through Rulesets
	About Using Rulesets to Extend UIM
	About Rules
	Using Drools to Define Rules
	Using Groovy to Define Rules

	About Rulesets and Extension Points
	Extension Points
	Specification-Based Extension Points
	Global Extension Points
	Extension Point Types

	Ruleset Extension Points
	Understanding Extension Point Type and Ruleset Placement

	Enabled Extension Points
	About the UIM Extensibility Framework
	RulesExecutor Class
	ExtensionPointContext and ExtensionPointRuleContext Class
	aop.xml File

	About Base Rulesets
	About Base Extension Points and Base Enabled Extension Points
	About Naming Conventions

	Working with Rulesets
	Installing, Configuring, and Using the Drools Eclipse Plug-ins
	Installing the Drools Eclipse Plug-ins
	Configuring the Drools Eclipse Plug-ins
	Configuring the Project Builders
	Using the Drools Eclipse Plug-ins

	Installing, Configuring, and Using the Groovy Eclipse Plug-ins
	Installing the Groovy Eclipse Plug-ins
	Configuring the Groovy Eclipse Plug-ins
	Configuring the Groovy Compiler Version
	Configuring File Associations for Groovy
	Configuring the Cartridge for Groovy Files

	Using the Groovy Eclipse Plug-ins

	Creating Rulesets
	Name Field
	DRL File or Groovy File

	Creating Extension Points
	Creating the Extension Point in Design Studio
	Creating the aop.xml File

	Creating Ruleset Extension Points
	Creating Enabled Extension Points
	Name Field
	Specification Class Name Field
	Configuration Version Instance Type Field

	Configuring a Specification for a Ruleset Extension Point
	Validating and Compiling Rulesets
	Compiling Rulesets with Third-Party Dependencies

	Deploying Cartridges Containing Rulesets
	Running Rulesets
	Manually Running Rulesets
	Automatically Running Rulesets

	Debugging Custom Drools Rulesets
	Debugging Custom Groovy Rulesets
	Converting Inventory Projects to Groovy Projects
	Setting Up Debug Configurations
	Debugging Groovy Rules

	Troubleshooting Rulesets and Cartridge Deployment
	Troubleshooting Custom Rulesets
	Troubleshooting Custom Extension Points
	Troubleshooting Configuring a Ruleset to Run at an Extension Point
	Troubleshooting Using Timing Events
	Troubleshooting Cartridge Deployment
	Base Cartridges are Deployed
	Java JDK Version
	Maximum Characteristics for a Table and Required Privileges
	Existing Custom Extensions Overwritten

	Upgrading or Converting Rulesets
	Upgrading Drools Rulesets
	Converting Drools Rulesets to Groovy Rulesets

	Handling Concurrent Scenarios

	9 Using Rulesets for Bills of Materials
	About Cost Information for Bills of Materials
	Extending BOM Manager Methods
	Cost References

	10 Extending Notifications
	About Notifications
	About Extending Notification Functionality
	Understanding Notification Message Content
	Understanding Message Variables
	Understanding Message Templates

	Extending Notifications
	Customizing Message Content and Format
	Changing the Type of Notification Messages Sent
	Adding Notifications for Additional Events

	Overview of Notification Java Classes
	Notification Functionality Class Diagram
	About Event Java Classes
	InventoryEvent Java Class
	Activity Event Java Classes

	About Notification Behavior Java Classes
	Handler Classes
	Resolver Classes

	Overview of Internal Notification Java Classes
	Factory Classes
	NotificationType Class
	MailMessenger Class

	System Configuration Properties for Notifications

	11 Customizing the User Interface
	Installing JDeveloper
	Extracting the inventory.ear File into JDeveloper
	Configuring the JDeveloper Project
	Customizing the User Interface
	About the UI Files
	JSFF and XML Files
	XML Files
	Java Files
	XLF Files
	DCX File

	Displaying Custom Attributes on a Web Page
	Adding Custom Input Fields to a Web Page
	Adding Conditional Components to a Web Page
	Disabling an Input Field on a Web Page
	Adding a Custom Action to a Web Page
	Adding a Custom Search Field
	Extending the API
	Extending the UI

	Deploying User Interface Customizations
	Customizing Logos
	Testing User Interface Customizations
	Adding Verification while Creating an Entity
	Disabling Edit Option in Entity Search and Entity Summary Pages

	12 Localizing UIM
	Setting the Language Preference in Internet Explorer
	Determining the Locale ID
	Localizing UIM
	About the UI-Specific Files
	Localizing the UI-Specific Files
	Importing the Localization Archive File into Design Studio
	Locating the UI-Specific Files within the Project
	Copying and Renaming the UI-Specific Files
	Editing the UI-Specific Files

	Deploying the Cartridge Containing the Localized Files
	Testing the UIM UI Localization

	Localizing UIM Help
	About UIM Help
	About the Oracle Help Configuration File
	About the UIM Help Files

	Localizing the UIM Help Files
	Extracting the Help Files
	Translating the Help Files
	Creating the Localized Help JAR File
	Configuring the Oracle Help File

	Deploying the Localized Help System
	Testing the UIM Help Localization

	13 Optimizing Concurrent Resource Allocation
	About Concurrent Resource Allocation
	About Row Locking
	Understanding How Row Locking Works
	About Releasing Locked Rows
	About the LockPolicy Object
	numberOfResources
	expirationTimeStamp
	filterExistingLocks
	Example LockPolicy Attribute Combinations

	About the Lock Strategies

	Extending UIM Entities to Use Row Locking
	Statically Extending the Data Model
	Enabling Row Locking
	Using Row Locking with Entity Finder APIs
	Understanding How UIM Uses Row Locking
	Writing Custom Code to Use Row Locking

	Using Row Locking Without Entity Finder APIs

	14 Using the Federation Framework
	About the Federation Cartridge Packs
	About the Federation Data Domain Cartridges
	About the Federation Protocol Cartridges

	About External Arrangements
	About Transaction-Based and Order-Based Federation
	Transaction-Based Federation
	Order-Based Federation
	Work Order
	Business Interaction Attachment

	About Externally Enabled Entities
	External Identification

	Federation Solution Considerations
	Determining the Solution Type
	Avoiding Federation Cartridge Conflicts
	Managing External Identifiers
	Creating Externally Enabled Entities in UIM
	Creating Custom Web Services

	15 Integrating UIM Using UIM-Formatted URLs
	About UIM-Formatted URLs
	About the URL Format
	About id
	About entity
	About the InventoryGroup Entity

	Using UIM-Formatted URLs
	Extending UIM-Formatted URL Functionality
	MasterFlow.xml
	Extending MasterFlow.xml

	MasterBean.class
	Extending MasterBean

	TaskFlowModel.class
	Extending TaskFlowModel

	A Federation Data Domain Cartridges
	About the Federation Data Domain Cartridges
	Accessing the Federation Data Domain Cartridges
	Using the Federation Data Domain Cartridges
	Creating New or Extending Existing Federation Data Domain Cartridges

	Federation Solution Considerations
	Creating New Specifications
	Accessing a New External System

	B Federation Protocol Cartridges
	About the Federation Protocol Cartridges
	About the Federation Protocol Infrastructure Artifacts
	About the Federation Protocol Implementation Sample

	Accessing the Federation Protocol Cartridges
	Using the Federation Protocol Cartridges
	Extending the Federation Protocols Cartridge Functionality
	Configuring the Federation Properties Cartridge
	Changing the Entity Type
	Changing Operations List
	External System Settings

	C Base Rulesets
	Address Range Validation
	Running the Base Ruleset

	Convert LD SR1 to SR2
	Running the Base Ruleset

	Create Address Characteristic Map
	Running the Base Ruleset

	Find Address Range
	Running the Base Ruleset

	Import Inventory
	Running the Base Ruleset

	Place Format Identifier
	Running the Base Ruleset

	Reservation Check Redeemer
	Running the Base Ruleset

	Reservation Expiration
	Running the Base Ruleset

	System Export and System Import
	Exporting Data
	Queries
	Parameters

	Importing Data
	Running the Base Rulesets

	Telephone Number Formatting
	Running the Base Ruleset

	Telephone Number Grading
	TN Selection
	Trail Pipe Topology Edge
	Running the Base Ruleset

	Validate Address for Range
	Running the Base Ruleset

	Validate Relate Places
	Running the Base Ruleset

