Oracle® Communications Unified

Inventory Management
AP| Overview

Release 7.4.2
F40326-01
June 2021

ORACLE"

Oracle Communications Unified Inventory Management API Overview, Release 7.4.2
F40326-01
Copyright © 2013, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Vi

Documentation Accessibility Vi

Diversity and Inclusion Vi

Related Documentation Vil
1 Overview

2 Working with Transactions, Exceptions, and Logging

Working with Transactions 2-1
Working with Exceptions 2-2
Working with Logging 2-3
Configuring the Logging Level 2-3
Working with the Log Interface 2-3
About UIM Log Messages 2-4
Defining Custom Log Messages 2-5
Working with the FeedbackProvider Interface 2-5
3 Implementing a Generic Service Fulfillment Scenario

About the Generic Service Fulfillment Scenario 3-1
Querying for the Specification 3-4
Querying for the Specification Using Finder API 3-5
Creating the Service and Service Configuration 3-6
Creating the Service 3-7
Retrieving the Service Configuration Specification 3-8
Retrieving the Service Configuration Specification Using Finder API 3-9
Creating the Service Configuration 3-9
About Alternate Flows 3-10
Changing the Service 3-11
Disconnecting the Service 3-12

ORACLE iii

Creating and Associating the Party
Creating the Party
Creating the Party Role
Associating the Party and Party Role with the Service
About Alternate Flows
Disassociating the Party and Party Role from the Service
Deleting the Party
Deleting the Party Role
Creating and Associating the Geographic Address with the Service
Creating the Geographic Place
Creating the Place Role
Associating the Geographic Place and Place Role with the Service
About Alternate Flows
Disassociating the Geographic Place and Place Role from the Service
Deleting the Geographic Place
Deleting the Place Role
Configuring the Resources for the Service Configuration
Finding the Service
Finding the Service by ID Using Finder API
Finding the Current Service Configuration Version
Finding the Service Configuration Item
Finding the Custom Object to Assign
Creating the Custom Object to Assign
Assigning the Resource to a Configuration Item
Referencing the Resource to a Configuration Item
About Alternate Flows
Unassigning Resources from a Configuration Item
Reserving a Custom Object
Unreserving a Custom Object
Creating a Blocked Condition for a Custom Object
Deleting a Blocked Condition for a Custom Object
Setting Characteristic Values for the Service Configuration Item
Finding Configuration Item and Setting Characteristics
About Alternate Flows
Unsetting Characteristic Values for the Service Configuration Item
Transitioning the Lifecycle Status
Creating a Property Location
Referring Property Location to a Service Configuration Item
About Undo Actions

ORACLE

3-13
3-13
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-21
3-21
3-22
3-23
3-23
3-24
3-25
3-26
3-26
3-27
3-28
3-29
3-31
3-34
3-34
3-36
3-38
3-39
3-41
3-42
3-44
3-47
3-48
3-48
3-50
3-51
3-51

4 Implementing a Channelized Connectivity Enablement Scenario

About the Channelized Connectivity Enablement Scenario 4-1
Creating a Property Location and Associating Network Entity Codes 4-2
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes 4-4
Creating Channelized Connectivity 4-6
Create Channelized Connectivity 4-7
Configure Capacity on the Channelized Connectivity 4-8
Configure Auto Termination on the Channelized Connectivity 4-9
Enabling Channelized Connectivity 4-10
Manually Enabling Channelized Connectivity 4-10
Performing Gap Analysis 4-11
Adding Segments To Connectivity Path Based on the Gap Analysis Results 4-13

A UIM Entity Managers

B NFV Orchestration Java Managers

C Common Utility Code Examples

D Frequently Used APIs for Design and Assign Methods

Reference UIMTECHPACK Cartridge D-1
oracle.communications.inventory.api.dna.ServiceDesigner D-1
oracle.communications.inventory.api.dna. ConnectivityDesigner D-5
oracle.communications.inventory.api.dna. ConnectivityHelper D-5
oracle.communications.inventory.api.dna. ResourceHelper D-6

ORACLE Y

Preface

Preface

Audience

This guide explains how to extend Oracle Communications Unified Inventory
Management (UIM) through standard Java practices using Oracle Communications
Design Studio, which is an Eclipse-based integrated development environment. This
guide includes references to both applications, and often directs the reader to see the
Design Studio Help and the UIM Help for instructions on how to perform specific tasks.

This guide includes information about the UIM entity managers. This guide also
includes the list of Java managers which provide UIM's NFV Orchestration
functionality. Similar to extending UIM and using the UIM APIs, the information in this
guide applies to extending the NFV Orchestration functionality as well.

This guide should be read after reading UIM Concepts, because this guide assumes
that the reader has a working knowledge of UIM architecture and concepts. This guide
should be read from start to finish because the information presented in a chapter
often builds upon information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

This guide is intended for developers who implement code to extend UIM. The
developers should have a good working knowledge of XML and Java development
and, in particular, JPA, standard Java practices, and J2EE principles. In working with
the NFV Orchestration functionality, this guide assumes you have a working
knowledge of NFV concepts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

initiative to build a more inclusive culture that positively impacts our employees, customers,
and partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's
offerings and industry standards evolve. Because of these technical constraints, our effort to
remove insensitive terms is ongoing and will take time and external cooperation.

Related Documentation

For more information, see the following documents in the Oracle Communications Unified
Inventory Management documentation set:

ORACLE

UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and postinstallation tasks.

UIM System Administrator's Guide: Describes administrative tasks such as working with
cartridges and cartridge packs, maintaining security, managing the database, configuring
Oracle Map Viewer, and troubleshooting.

UIM Security Guide: Provides guidelines and recommendations for setting up UIM in a
secure configuration.

UIM Concepts: Provides an overview of important concepts and an introduction to using
both UIM and Design Studio.

UIM Developer's Guide: Explains how to customize and extend many aspects of UIM,
including the data model, life-cycle management, topology, security, rulesets, user
interface, and localization.

UIM Web Services Developer's Guide: Describes the UIM Service Fulfillment Web
Service operations and how to use them, and describes how to create custom web
services.

UIM Information Model Reference: Describes the UIM information model entities and
data attributes, and explains patterns that are common across all entities. This is
available on the Oracle Software Delivery Cloud under “Oracle Communications Unified
Inventory Management Developer Documentation."

Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains patterns
that are common across all entities. The information described in this reference is
common across all Oracle Communications products. This is available on the Oracle
Software Delivery Cloud under “Oracle Communications Unified Inventory Management
Developer Documentation."

UIM Cartridge Guide: Provides information about how you use cartridges and cartridge
packs with UIM. Describes the content of the base cartridges.

UIM NFV Orchestration Implementation Guide: Provides information about the NFV
Orchestration functional module and includes how to you install, use, and extend this
functionality. This guide also provides reference information for the NFV Orchestration
RESTful APlIs.

For step-by-step instructions for performing tasks, log in to each application to see the
following:

Design Studio Help: Provides step-by-step instructions for tasks you perform in Design
Studio.

UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

Vii

Overview

ORACLE

This document provides information that you can use when working with the Oracle
Communications Unified Inventory Management (UIM) application programming interfaces
(APIs). This document also provides information that you can use when working with NFV
Orchestration Java manager APIs which are also UIM APIs. The UIM APIs can be extended
through custom code. The APIs, or extended APIs, can be called from various places, such
as from custom rulesets, custom web services, or customized portions of the user interface
(un.

This document provides information on common tasks you need to do when working with any
of the UIM APIs, such as working with transactions, handling errors, and logging messages.
This information is described in Working with Transactions, Exceptions, and Logging.

The bulk of this document is an overview of numerous UIM APIs, which were specifically
selected to describe API usage patterns and best practices for implementing common
business scenarios. Code samples are provided to show correct usage of the APIs and
expectations of implementing the APIs. This information is described in Implementing a
Generic Service Fulfillment Scenario and Implementing a Channelized Connectivity
Enablement Scenario.

This document also provides a listing of the following:

* UIM entity manager classes. See "UIM Entity Managers" for more information.

* NFV Orchestration Java managers. See "NFV Orchestration Java Managers" for more
information.

* Code examples for common utility methods. See "Common Utility Code Examples" for
more information.

* Frequently used APIs. See "Frequently Used APIs for Design and Assign Methods" for
more information.

This document does not cover detailed Javadoc information, nor does it cover model and
domain information provided in other UIM documentation. This document assumes that you
are familiar with UIM functionality, and are planning to extend UIM functionality by
implementing a custom solution based on information provided in UIM Developer's Guide or
UIM NFV Orchestration Implementation Guide.

1-1

Working with Transactions, Exceptions, and
Logging

This chapter describes working with transactions, exceptions, and logging. You can use this
information when working with all UIM APIs because all APIs must be called from within a
transaction, and the calling code must handle exceptions and log any errors.

See the UIM Javadoc for detailed information about APl methods, such as the exception
thrown by each method.

Working with Transactions

This section describes handling transactions when calling APIs. A standard transaction flow
typically includes:

e Starting a transaction

e Calling an API

* Determining if an error occurred

» Performing a commit or rollback of the transaction based on whether an error occurred

Example 2-1 shows a custom method that calls a manager API within a transaction:
Example 2-1 Call to an API from within a Transaction

public void sanpleCal | API ()
{
User Envi ronnent ue = null;
User Transaction ut null;
try {
/] Step 1. Begin a User Environment and Transaction
ue = startUserEnvironnment (); /* see appendix */
ut = PersistenceHel per. nakePersi st enceManager (). get Transaction();
ut . begin();

Il Step 2: Call the API
Pl aceManager ngr = PersistenceHel per. makePl aceManager ();
Li st <Pl aceSpecification> list = nmgr.get Al | Pl aceSpecs();
/1 Do sonething with the list...
}
catch (Throwable t) {
Il Step 3: Handl e Exception
try {
if (t instanceof ValidationException)
/1 Do something with the Exception, such as print it.
Systemout. println("Method call returned validation exception.");

}
catch (Exception ignore) {}

}
finally {

Il Step 4. Commit or Rollback Transaction
comm t Or Rol | back(ut); /* see appendix */

ORACLE 2-1

}

Chapter 2
Working with Exceptions

Il Step 5: End User Environment

it (ue !=null)

endUser Envi ronnent (ue); /* see appendix */

When managing transactions and calling APIs from within a transaction, consider the
following:

A commitis usually needed between separate groups of API calls that are making
updates to the database. The group of APlIs is called for an atomic and complete
set of operations.

* Avrollback is needed when any error occurs.

* Ensure the API call is made within the correct context of live or business
interaction.

» Ensure the User Environment is started before the transaction, and is ended within
the finally block.

Working with Exceptions

This section describes the exceptions that the UIM APIs can throw. The EntityManager
API methods typically throw a ValidationException when a validation error is
encountered. However, other exceptions can also be thrown. Table 2-1 describes all of
the UIM Exceptions that can be thrown, including the ValidationException.

Table 2-1 Exception Descriptions

Exception

Extends

Description

ValidationException

InventoryException

This exception is widely used and represents all
variations of business validation exceptional
conditions.

TransientObjectException

ValidationException

This exception is thrown by manager methods if an
object is passed into a method in a transient state.

ReadOnlyEntityException RuntimeException This exception is thrown when a read-only entity is
updated or deleted. A read-only entity can be an entity
that is in a queued/planned object state.

InventoryException Exception This exception is the Base Inventory Exception and

other exceptions extend it.

InvalidBusinessinteractionE
xception

RuntimeException

This exception is thrown when the caller attempts to
perform an operation against an entity under a
Businessinteraction with an invalid status such as
completed or cancelled.

DeletedObjectException

ValidationException

This exception is thrown by manager methods if an
object is passed into a method in a deleted state.

BusinessinteractionDisasso
ciationException

ValidationException

This exception is thrown when the manager method is
attempting to alter a Business Interaction or Business
Interaction Item and the Business Interaction
validation determines it is not allowed.

ORACLE

2-2

Chapter 2

Working with Logging
Table 2-1 (Cont.) Exception Descriptions
Exception Extends Description
BusinessinteractionComplet | ValidationException This exception is thrown when the manager method is
eException attempting to complete a Business Interaction and the
validation determines it is not allowed.

Working with Logging

This section describes logging messages (informational, warning, and debug messages).
This section also describes detecting what messages were logged during an API call, which
is helpful when trying to determine the success or failure of an API call.

See UIM System Administrator's Guide for information on configuring UIM logging, including
changing the logging level.

Configuring the Logging Level

The logging level, which is the amount of logging output to the log files from UIM API calls, is
determined by the values configured in the UIM_Homelconfig/lloggingconfig.xml file.

Example 2-2 shows an entry from the loggingconfig.xml file. This entry results in any debug
messages (through log.debug) existing in the code to be output to the log file when the class
exists in the specified package:

Example 2-2 Entry from loggingconfig.xml

<Logger name="oracl e. comruni cations.inventory.extensibility" additivity="false">
<l evel ="debug" />
<Appender Ref ref="stdout"/>
<Appender Ref ref="rollingFile"/>

</ Logger >

Working with the Log Interface

The Log interface is located in the package:
oracle.communications.inventory.api.framework.logging

The Log interface provides the ability for an API, or custom code calling an AP, to log errors,
throw exceptions, and log informational, warning, or debug messages.

Table 2-2 lists the items that can be requested of the Log interface. See the UIM Javadoc for
information regarding the specific parameters of each method.

Table 2-2 Log Interface Description

Description Method to Use Throws Exception Checked with Method on
FeedbackProvider

Fatal Exception fatal() LogFatalException getFatals()

Validation Exception validationException() ValidationException or the getErrors()hasMessages()

exception type provided on
method input

ORACLE

2-3

Chapter 2
Working with Logging

Table 2-2 (Cont.) Log Interface Description

Description

Method to Use Throws Exception Checked with Method on
FeedbackProvider

Validation Error

validationError() Currently does not throw a | getErrors()hasMessages()
ValidationException

Warning Message warn() Not applicable getWarnings()hasMessages(
)

Informational Message info() Not applicable getNotes()hasMessages()

Debug Message debug() Not applicable getDebugs()

When calling an API method, additional errors may be thrown. For example, a custom
ruleset that calls an API method may throw additional log messages that the developer
wants to include in the log file. Example 2-3 shows custom code that adds additional
log messages to the log file by calling the Log interface to log an informational
message and a debug message:

Example 2-3 Using the Log Interface

i nport oracle.comunications.inventory.api.framework.|ogging. Log;
i nport oracle.comunications.inventory.api.framework.|oggi ng. LogFactory;
protected Log |og;

public void testLog()

{
this.log = LogFactory. getLog(this.getCass());
this.log.validationError("service.findServiceError", service.getld());

if (this.log.islnfoEnabled())
this.log.info ("", "This is an informational message");

if (this.log.isDebugEnabled())
this.log.debug ("", "This is a debug message.");
}

About UIM Log Messages

ORACLE

Messages logged by UIM APIs are defined in several *.properties files, per domain.
For example, the service.properties file defines the messages for the service domain,
and the equipment.properties file defines the messages for the equipment domain.
All message-specific *.properties files are located in the UIM_Homelconfig/
resourcesllogging directory.

Several of methods on the Log interface define an input parameter of a String key for
an error message. These unique keys, along with a corresponding error message
String, are defined in the message-specific *.properties files. Example 2-4 shows a
single message entry from the servce.properties file:

Example 2-4 Message Entry from service.properties

service. findServiceError.id=110311
service. findServiceError=Error finding service with id {0}.

2-4

Chapter 2
Working with Logging

The numbers within the braces are parameter values passed in as arguments to the method
call.

Defining Custom Log Messages

You can define custom log messages in the UIM_Homelconfiglresourcesllogging /

* properties files by adding a unique key and corresponding message. The key must be
unique across all *.properties files in this directory, and across any *.properties files
contained in any installed cartridges.

Working with the FeedbackProvider Interface

ORACLE

The FeedbackProvider interface is located in the package:
oracle.communications.inventory.api.framework.logging

After calling an API, the code must determine what messages have been logged. The
FeedbackProvider interface provides the ability for an API, or custom code calling an API, to
interrogate what has occurred. Example 2-5 shows code that checks to see if an error has
been logged, and then prints the error:

Example 2-5 Using the FeedbackProvider Interface

public void sanpl eCal | APl Wt hFeedbackPr ovi der ()

{
User Envi ronment ue = nul | ;
User Transaction ut = null;
try {
Il Step 1. Begin a User Environment and Transaction
Il Step 2: Call the API
if ('hasErrors()) /* see appendix */
ut.comit();
el se {
ut.rollback();
Li st <FeedbackMessage> errors =
ue. get FeedbackProvi der().getErrors();
for (java.util.lterator iter = errors.iterator(); iter.hasNext();)
FeedbackMessage error = (FeedbackMessage)iter.next();
Systemout.printIn("Error occurred: " + error.get Message());
}
}
catch (Throwabl e t)
Il Step 3: Handl e Exception
}
finally
Il Step 4: Commit or Rollback Transaction
/1 Step 5: End User Environnent
}
}

2-5

Implementing a Generic Service Fulfillment
Scenario

This chapter describes implementing a generic service fulfillment scenario using various
Oracle Communications Unified Inventory Management (UIM) application program interfaces
(APIs). You can use this information to gain a better understanding of how the UIM APIs can
be used to implement any service scenario.

About the Generic Service Fulfillment Scenario

ORACLE

The generic service fulfillment scenario is a Service entity with a single Custom Object
resource assignment. The example Service entity is simplified, but the API descriptions are

applicable and extensible to other types of services with various types of resource
assignments.

Figure 3-1 shows the process flow for a generic service fulfillment scenario:

3-1

Chapter 3

About the Generic Service Fulfillment Scenario

Figure 3-1 Process Flow of Generic Service Fulfillment Scenario

Configure
Resources for

Create and
r—-" Associate F--—3
i Party I
1 I
1 i
1 i
1 1
1 1
} Create and :
- > Associate — - =1
i Address :
1
1 1
! 3
Create
Query Create
il — e Service
Specification Service Configuration
Retrieve
Configuration
Specification
Create Intitial
' Service
Configuration
Default
Service Config
ltems
N Change
” Service
.| Disconnect
Service

A 4

Query
Resources

Set and Unset
Characteristics

Create
Resources

Transition
Lifecycle
Statuses

Validate
Resources

Assign and

Unassign
Resources

Reference and
Unreference
Resources

-

Undo Actions
(Reallocate -
i) '

Rereference
Resources)

-

Reserve and
Unreserve
Resources

Add and Delete
Resource
Conditions

ORACLE

3-2

ORACLE

Chapter 3
About the Generic Service Fulfillment Scenario

The process flow begins with querying for the service specification, which is used in
subsequent steps in the process flow, such as creating the Service and searching for
resources.

The process flow continues with creating the service, based upon the retrieved service
specification.

Next is creating the service configuration, which involves querying for the service
configuration specification, creating the service configuration based upon the retrieved
service configuration specification, and any creating default service configuration items.

The process flow continues with the optional steps of creating additional entities, such as
Party and Geographic Address (a concrete Geographic Place entity representing a Service
Address). These entities are created and associated to the Service with specific inventory
roles.

Next in the process flow is configuring the resources for the service (resource management),
which involves querying for resources based on specific criteria using core API searches or
using custom searches. For example, you can call an API directly to search for a Custom
Object by ID, or you can call a custom API to search for a Custom Object by its association to
an Inventory Group or association to another Custom Object. You can also create resources
for immediate assignment to the service. The main goal of resource management is to
retrieve and validate the correct resources for assignment to the service. However, you can
also manage the resources with alternate flows, such as creating reservations and
conditions. Assignments, references, reservations, and conditions are the main consumption
concepts for a given resource.

In addition to resource assignments and references, the service and service configuration
also have characteristic values. These values are used to setup and configure the service
instance.

After the service has been configured through resource and characteristic value assignments,
the process flow continues with transitioning the lifecycle status of various entities. APIs are
presented to show the transition of the statuses, and how the statuses are managed within
the core API functionality.

The process flow shown in Figure 3-1 shows the initial creation of the service, and also
shows other scenarios, such as changing the service configuration and disconnecting the
service. These additional scenarios are also described.

Now that you have a high-level understanding of the generic service fulfillment process flow,
each part of the process flow is further described in the following sections. Each section
includes information about the specific UIM APIs used to perform each step and possible
alternate flows of each step. Example code is also included for each step.

e Querying for the Specification

* Creating the Service and Service Configuration

* Creating and Associating the Party

* Creating and Associating the Geographic Address with the Service
* Configuring the Resources for the Service Configuration

» Setting Characteristic Values for the Service Configuration Item

* Transitioning the Lifecycle Status

3-3

Chapter 3
Querying for the Specification

Querying for the Specification

ORACLE

This section describes the UIM API method used to query for the service specification.
The retrieved service specification will later be used to create the service.

Table 3-1 and example code provide information about using the APl method.

Table 3-1 Querying for the Specification
|

Topic Information

Name SpecManager.findSpecifications

Description This method retrieves specifications based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to

select the desired specification to be used to create the service.

Set the SpecSearchCriteria.setValidSpecsOnly (true) to instruct the
find method to only return active specifications.

Set the SpecSearchCriteria.setSpecClass (ServiceSpecification.class)
to instruct the find method to only return service specifications.

Additional criteria, such as name, may also be set to further constrain
the list of service specifications returned by the find method.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObject specification to be

used later for resource query or creation.

Example 3-1 Querying for the Specification

Speci fication spec = null;
SpecManager specMyr = Persi st enceHel per. makeSpecManager () ;

SpecSearchCriteria criteria = specMyr. makeSpecSearchCriteria();
CriterialtemcritSpecName = criteria. makeCriterialten();

crit SpecNane. set Val ue(specNane) ;

critSpecNane. set Operator (CriteriaOperator. EQIALS | GNORE_CASE) ;
criteria.setNane(critSpecNane);

criteria.setSpecC ass(ServiceSpecification.class);

Li st<Speci fication> specs = specMyr.findSpecifications(criteria);
if (Wils.isEmty(specs))
{

}

spec = specs. get(0);

/* log error */

3-4

Chapter 3
Querying for the Specification Using Finder API

Querying for the Specification Using Finder API

ORACLE

This section describes the UIM APl method used to query for a service specification using a
generic Finder.findByName API.

Table 3-2 and example code provide information about using this APl method.

Table 3-2 Querying for the Specification Using Finder API

Topic Information

Name Finder.findByName

Description This method retrieves entity objects based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to select

the desired specification to be used to create the service.

If the specification is not found, the Find method returns empty collection
<ServiceSpecification>.

Note: The specification name is not a unique field, but it is recommended to
have unigue specification names.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObject specification or any UIM

entity to be used later for resource query or creation.

Example 3-2 Querying for the Service Specification Using Finder API

Speci fication spec = null;
Finder f = null;

try{
f = PersistenceHel per. makeFi nder();

Col | ection<Servi ceSpecification> specs =
f.findByName(Servi ceSpecification.class, “Service_Spec_nane");
if (Wils.isEmpty(specs))

{
/* log error */
}
spec = specs.iterator().next();
}

cat ch(Exception e){
/* 1og exception */

}
finally{
if(fl=null){
f.close();
}
}

3-5

Chapter 3
Creating the Service and Service Configuration

Creating the Service and Service Configuration

This section describes the UIM APl methods used to create the service and service
configuration, and to create default configuration items on the service configuration.
The API methods are listed in the order in which they must be called.

Figure 3-2 shows the generic service configuration specification used in the generic
service fulfillment scenario:

Figure 3-2 Generic Service Configuration Specification Example

CONFIG
ServiceSpecification InventoryConfiguration Ghar:al cte ngun
Genaric Sarvi Spec Specification
(Generic Service Spec) {Generic Service Config Spec) (Char 1 Spec)
ITEM(1..1)
InventoryConfiguration Characteristic
Spec Specificaiton
(GO Item) (Char 2 Spec)
SpecinventoryConfig
SpecOption
CustomObject
Specification
(CO Spec)

ORACLE" 3-6

Chapter 3
Creating the Service and Service Configuration

Creating the Service

ORACLE

This section describes the UIM APl method used to create the service, based upon the
retrieved service specification.

Table 3-3 and example code provide information about using the APl method.

Table 3-3 Creating the Service
|

Topic Information
Name ServiceManager.createService
Description This method creates a service instance built from the input service

specification. The service will be populated with the hard facts and
characteristics supplied by the caller.

Pre-Condition A service specification has been selected.

Internal Logic The service is created using the input service specification.
Post-Condition The service has been created and is in Pending status.

Extensions Not applicable

Tips The Service.startDate and Service.name are required attributes. The

Service.characteristics can be populated with the desired characteristics. If
the service specification is defined with any required characteristics that do
not have default values specified, then those characteristic must be set on
the service in order for it to be created successfully.

Example 3-3 Creating the Service with Characteristics

Servi ceManager snmgr = null;

Finder f = null;

try{
smgr = Persi stenceHel per. makeSer vi ceManager () ;
f = PersistenceHel per. makeFi nder ();

Col | ecti on<Servi ceSpeci fication> serviceSpecCol | ection =
f.findByName(ServiceSpecification.class,"service_spec");

Servi ceSpeci fication serviceSpec = (ServiceSpecification)
servi ceSpecCol | ection.iterator().next();

Servi ce serviceMdel = smgr. makeServi ce(Service. class);
servi ceMbdel . set Nane(" Servi ce_t est 22");

servi ceMbdel . set Descri ption("Service_test22 desc");
servi ceMbdel . setld("Service_test22");

servi ceMbdel . set Speci fi cati on(servi ceSpec);

HashSet <Char act eri sticSpecification> char Specs =
new HashSet <Char act eri sticSpecification>();
char Specs =
CharacteristicHel per.getCharacteristicSpecifications(serviceSpec);
/*char Specs is populated with the characteristics specifications of the serviceSpec.
Now, we are ready to set the value for each characteristic based on its name. Bel ow
code has if-else condition for the sane.
*/
if (!charSpecs.isEmty()) {

3-7

Chapter 3
Creating the Service and Service Configuration

Set <Servi ceCharacteristic> servChars =
new HashSet <Servi ceCharacteristic>();
Servi ceCharacteristic servChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

servChar = sd. nmakeServi ceCharacteristic();

servChar. set Nane(char Spec. get Nang());

i f (charSpec. getName().equals ("test_CharSpec_text")) {
servChar. set Val ue("service testing char");

}

else if
(char Spec. get Nane() . equal s("t est _Char Spec_TF_Nuneric")) {
servChar. set Val ue("500");
}
servChar. set CharacteristicSpecification(charSpec);
servChars. add(servChar);

}

servi ceMbdel . set Characteristics(servChars);

}

Col | ection<Service> services = new ArrayLi st<Service>();
servi ces. add(servi ceMdel) ;

Li st<Servi ce> createdServices = sngr.createService(services);
service = createdServices.get(0);
}
cat ch(Exception e){
/* 1og exception */

}
finally{
if(f!=null){
f.close();
}
}

Retrieving the Service Configuration Specification

ORACLE

This section describes the UIM API method used to retrieve the service configuration
specification. The retrieved service configuration specification will later be used to
create the service configuration.

Table 3-4 and example code provide information about using the APl method.

Table 3-4 Retrieving the Service Configuration Specification
|

Topic Information

Name ConfigurationManager.getConfigSpecTypeConfig

Description This method retrieves the configuration specifications related to the
input service specification.

Pre-Condition The service specification is associated to one or more configuration
specifications.

Internal Logic The configuration specifications related to the service specification are

retrieved and returned.

3-8

Chapter 3
Creating the Service and Service Configuration

Table 3-4 (Cont.) Retrieving the Service Configuration Specification

Topic Information

Post-Condition A configuration specification has been selected.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to
select the desired specification to be used to create the service
configuration.

Example 3-4 Retrieving the Service Configuration Specification

Confi gurati onManager configurationManager =
Per si st enceHel per. makeConfi gur ati onManager ();

Li st< I nventoryConfigurationSpec > configSpecs =
confi gurationManager. get Confi gSpecTypeConfi g(serviceSpec, true);

return configSpecs;

Retrieving the Service Configuration Specification Using Finder API

You can retrieve the service configuration specification using the finder.findByName API. See
Table 3-2 for more information.

Example 3-5 Querying for the Service Configuration Specification Using Finder API

I nvent oryConfi gurati onSpec spec = nul | ;
Finder f = null;

try{
f = PersistenceHel per. makeFi nder();

Col | ection< InventoryConfigurationSpec > specs =

f.findByName(I nventoryConfigurationSpec.class, *“Service_Configuration_Spec_nane");
if (Uils.isEmpty(specs))

{

}

spec = specs.iterator().next();

}
cat ch(Exception e){

/* 1og exception */

/* log error */

}
finally{
if(fl=null){
f.close();
}
}

Creating the Service Configuration

This section describes the UIM APl method used to create the service configuration, based
upon the retrieved service configuration specification.

Table 3-5 and example code provide information about using the APl method:

ORACLE 3-9

ORACLE

Chapter 3

Creating the Service and Service Configuration

Table 3-5 Creating the Service Configuration

Topic Information

configurable, InventoryConfigurationVersion configuration,
InventoryConfigurationSpec configSpec)

Name BaseConfigurationManager.createConfigurationVersion(Configurable

Description This method creates a service configuration version and associates it
to the service.

Pre-Condition The service exists with no service configuration versions.

Internal Logic Not applicable

Post-Condition The first configuration version is created and associated to the service.
This method will default the configuration items based on the input
configSpec.

Extensions Not applicable

Tips The service, configuration and configSpec parameters are required.

Example 3-6 Creating the Service Configuration

Finder f = null;
try{
f = PersistenceHel per. makeFi nder();
Col | ecti on<Servi ce> serviceCol | ection =
f.findByld(Service.class, servld);
Service serv = serviceCollection.iterator().next();
f.reset();
Col | ecti on<l nvent oryConfi gurati onSpec> i nvSpecCol | ection =
f.findByNanme(| nventoryConfigurationSpec.class,"Serv_Config");
I nvent oryConfi gurati onSpec invSpec =
i nvSpecCol | ection.iterator().next();
BaseConfi gurati onManager bcd =
Per si st enceHel per. makeConf i gur at i onManager
(ServiceConfigurationVersion.class);
I nvent oryConfi gurati onVersion scv =
bcd. makeConf i gur ati onVersi on(serv);
scv. set Description(configld);
scv. setld(configld);
scv. set Name(configld);
scv. set Ef f Dat e(new Date());
I nvent oryConfi gurati onVersion createdConfig =
bcd. creat eConfi gurati onVersion(serv, scv,invSpec);
}cat ch(Exception e){
/* 1 og exception*/

}
finally{
if(fl=null)
f.close();
}

About Alternate Flows

The generic service fulfillment scenario creates a service and initial service

configuration. Alternate flows to this scenario may be to change the service, or to

disconnect the service.

3-10

Chapter 3
Creating the Service and Service Configuration

The alternate flows described in this section are:

* Changing the Service

» Disconnecting the Service

Changing the Service

ORACLE

This section describes the UIM APl method used to change an existing service by adding a
new service configuration version. The main goal is to create an IN_PROGRESS service
configuration version so additional resource or characteristic changes can be executed. For
example, after creating an initial service configuration version to assign a custom object to a
service, a second service configuration version can be created to unassign the custom object
previously allocated.

Table 3-6 and example code provide information about using the APl method.

Table 3-6 Changing the Service
|

Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration)

Description This method creates new configuration version from the most recently
completed previous configuration version.

Pre-Condition A service with a completed service configuration version must exist.

Internal Logic Not applicable

Post-Condition A service configuration version is created with a status of IN_PROGRESS.

Extensions Not applicable

Tips The service and configuration parameters are required.

Example 3-7 Changing the Service

Finder f = null;
try{
f = PersistenceHel per. makeFi nder ();
Col | ection<Service> serviceCol l ection = f.findByld(Service.class, servid);
Service serv = serviceCollection.iterator().next();
f.reset();
Col | ecti on<l nvent oryConfi gurati onSpec> i nvSpecCol | ection =
f.findByNane(l nventoryConfi gurationSpec.cl ass, "Serv_Config");

I nvent oryConfi gurati onSpec invSpec =

i nvSpecCol | ection.iterator().next();
BaseConfi gurati onManager bcd =

Per si st enceHel per. makeConf i gur ati onManager (Servi ceConfi gurati onVersi on. cl ass);
I nvent oryConfi gurati onVersion scv =

bcd. makeConfi gurati onVersi on(serv);
scv. set Description(configld);
scv.setld(configld); scv.setNane(configld);
scv. set Ef f Dat e(new Date());
I nvent oryConfi gurati onVersion createdConfig =

bcd. creat eConfi gurati onVersion(serv, scv);

}

catch(Exception e){

/*l og exception */

Hinally{
if(fl=null)

3-11

Chapter 3
Creating the Service and Service Configuration

f.close();

}

Example 3-8 Updating the Characteristics of a Service

Service service = null;
Finder f = null;
BaseConf i gur ati onManager configMyr = null;

try{

f = Persi stenceHel per. makeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

HashSet <Char act eri sti cSpeci fi cati on> char Specs =
new HashSet <Char act eri sticSpecification>();
char Specs = CharacteristicHel per.get CharacteristicSpecifications
(Service. get Specification());
if (!charSpecs.isEnpty()) {
Set <Servi ceConfi gurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfi gurati onltenCharacteristic>();
Servi ceConfigurationltenCharacteristic sciChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();
String charName = sci Char. get Name(char Spec. get Narme()) ;
i f (charNane. equal s("char_nane_1)){

sci Char. set Val ue("t extupdat ed");

}
sci Chars. add(sci Char);

}
}

service. set Characteristics(sciChars);

}

}
cat ch(Exception e){

/* 1og exception*/

}
finally{
if(fl=null)
f.close();
}

Disconnecting the Service

This section describes the UIM APl method used to disconnect a service when the
service is no longer needed.

Table 3-7 and example code provide information about using the APl method.

Table 3-7 Disconnecting the Service

|
Topic Information

Name ServiceManager.disconnectService

ORACLE 3-12

Chapter 3
Creating and Associating the Party

Table 3-7 (Cont.) Disconnecting the Service

O
Topic Information

Description This method will transition the state of a service and invoke necessary
business logic for the service and configuration version depending on
the type of transition initiated.

Pre-Condition The service exists and there are no configuration versions in a state
other than Completed or Cancelled.

Internal Logic Not applicable

Post-Condition The service has a Pending Disconnect status.

A new configuration version is created and any resources that are
currently assigned, are unassigned. The configuration version has an
In Progress status.

Extensions Not applicable

Tips The businessAction to be passed as input to the transition method is
ServiceAction.DISCONNECT.

Example 3-9 Disconnecting the Service

Servi ceManager sm = Per si st enceHel per. makeSer vi ceManager () ;
sm di sconnect Servi ce(service);

Creating and Associating the Party

This section describes the UIM APl methods used to create a party, create a party role, and
associate the party and party role with the service. The APl methods are listed in the order in
which they must be called.

" Note:

The associations of the party and party role with the service are optional, and can
be associated before or after the creation of the initial service configuration.
Typically, these types of associations do not change for the service, but alternate
flows are presented to show how the associations can be changed if necessary.

Creating the Party

This section describes the UIM APl method used to create the party.

Table 3-8 and example code provide information about using the APl method.

Table 3-8 Creating the Party

|
Topic Information

Name PartyManager.createParties

ORACLE 3-13

Chapter 3
Creating and Associating the Party

Table 3-8 (Cont.) Creating the Party
|

Topic Information

Description This method takes a collection of Party entities and persist them into the
database. The Party Role and association to the Service is setup by a
different API.

Pre-Condition Party Specification is valid and retrieved from the database. Party has a

valid and unique ID.

Internal Logic Take the collection of transient Party entities and persists them into the
database, and return the collection of persisted Party entities. Validate that
the Parties are not duplicated by ID and they all have valid

PartySpecification.
Post-Condition Persistent Party entities are returned.
Extensions This APl is defined as an extension point to allow custom validation before

or after the Parties are created. For instance, the IDs can be generated
based on some custom algorithm.

Tips Party is a CharacteristicExtensible entity. The characteristic values should
be added when the Party instance is created. Use RoleManager APIs to
manage the roles played by a given Party, and use AttachmentManager to
associate the Party with specific Role to a given Service.

Example 3-10 Creating the Party

Fi nder finder = null;
PartyManager nmgr = null;
try{

finder = PersistenceHel per. makeFi nder();

mgr = Persi st enceHel per. makePart yManager () ;
Party party = ngr.makeParty();
Col | ection<Party> parties = new ArrayList<Party>();

party.setld(partyld);
party.set Name("Party_Nane");
party.setDescription("Party_Description");

Col | ection<PartySpecification> partyspec =
finder.findByName(PartySpecification.class,"Test_Party Spec");

PartySpeci fication partySpec =partyspec.iterator().next();
party.set Speci fication(partySpec);

parties.add(party);

List<Party> results = ngr.createParties(parties);
Party resulty = results.iterator().next();
}
cat ch(Exception e){
/*1 og exception here*/
inally{
if(finder!=null){
finder.close();
}
}

ORACLE 3-14

Chapter 3
Creating and Associating the Party

Creating the Party Role

This section describes the UIM API method used to create the party role.

Table 3-9 and example code provide information about using the APl method.

Table 3-9 Creating the Party Role
|

Topic Information
Name RoleManager.createlnventoryRole
Description This method takes a collection of InventoryRole entities and persist them

into the database. The roles passed in are the concrete subclass, for
instance PartyRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The Party
which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists them into
the database, and return the collection of persisted InventoryRole entities.
Validate that the roles are not duplicated and they all have valid
InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PartyRole) entities are returned.
Extensions Not applicable
Tips Use RoleManager.makePartyRole() API to get a transient instance of the

correct concrete subclass of role to create. InvRoleSpecification is required.

Example 3-11 Creating the Party Role

Finder finder = PersistenceHel per.makeFi nder();
Rol eManager rol eMgr = Persi st enceHel per. makeRol eManager () ;
PartyRol e role = rol eMyr. makePartyRol e();
[* Wility Method Call - see 3.2.1 Query Spec */
Col | ecti on<l nvRol eSpeci fication> invrol especlist =
finder.findByName(|nvRol eSpecification.class, ("Test_Party_Role_Spec");
I nvRol eSpeci fication rol espec =
(I'nvRol eSpeci fication)invrol especlist.iterator().next();
rol e. set Speci fication(rol eSpec);
Li st<lnventoryRol e> rol es = new Arrayli st <l nventoryRol e>();
rol es.add(role);
rol eMyr. createl nventoryRol e(rol es);

Associating the Party and Party Role with the Service

ORACLE

This section describes the UIM APl method used to associate the party and party role with
the service. The APl method must be called once per association. So, in this scenario, the
APl is called to associate the party with the service, and then called again to associate the
party role with the service.

Table 3-10 and example code provide information about using the APl method. The example
shows associating the party with the service; it does not show associating the party role with
the service, which is accomplished by calling the same API method.

3-15

Chapter 3
Creating and Associating the Party

Table 3-10 Associating the Party and Party Role with the Service

Topic Information

Name AttachmentManager.createRel

Description This method creates an involvement (an association) between two
entities.

Pre-Condition Service, Party and PartyRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from Party

to Service with a specific PartyRole. The Party is the parent of this
involvement. Validates that the relationship is not duplicated.

Post-Condition PartyServiceRel is created referencing the entities.
Extensions Not applicable
Tips Set the FROM entity to Party and TO entity to Service. Set the FROM

entity role to the PartyRole.

Example 3-12 Associating the Party to the Service

String roleGd = role.getGd();
At t achment Manager invol vement Myr =
Per si st enceHel per. makeAt t achment Manager () ;
I nvol venent invol verent =
i nvol venment Myr . makeRel (PartyServi ceRel . cl ass);
i nvol venent . set ToEntity(service);
i nvol venent . set FronEntity(party);
i nvol venent . set FronEnt i t yRol eKey(rol eG d);
i nvol verment Myr . cr eat eRel (i nvol verent) ;
PartyServi ceRel partyServiceRel = (PartyServiceRel)invol venent;

About Alternate Flows

The generic service fulfillment scenario creates a party and party role, and associates
them with the service. Alternate flows to this scenario may be to disassociate the party
and party role from the service, and then delete the party and party role.

The alternate flows described in this section are:

» Disassociating the Party and Party Role from the Service
* Deleting the Party
* Deleting the Party Role

Disassociating the Party and Party Role from the Service

ORACLE

This section describes the UIM APl methods used to retrieve a party or service, and
then use the retrieved data to disassociate the party from the service. The API
methods are listed in the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an
API is called to retrieve the party or service, and another API is called to disassociate
the party from the service. This process is repeated to disassociate the party role from
the service: An APl is called to retrieve the party role or service, and another API is
called to disassociate the party role from the service.

3-16

Chapter 3
Creating and Associating the Party

Table 3-11 and Table 3-12 provide information about using the APl methods.

Table 3-11 Getting the Party and the Service

Topic Information
Name Service.getParty() or Party.getService()
Description These methods are used to retrieve the bidirectional relationship

PartyServiceRel between Party and Service. Once retrieved, the correct
instance can be deleted.

Pre-Condition

PartyServiceRel is already created.

Internal Logic

Simple relationship attribute on the entities to get list of relationships to
iterate through.

Post-Condition

PartyServiceRel is found and passed to next method for deletion.

Extensions

Not applicable

Tips

Not applicable

Table 3-12 Disassociating the Party from the Service

Topic Information
Name AttachmentManager.deleteRel
Description This method deletes an involvement (an association) between two entities.

In this example, an existing relationship between the Party and Service with
a specific role is deleted.

Pre-Condition

PartyServiceRel is already created.

Internal Logic

Delete the PartyServiceRel entity.

Post-Condition

PartyServiceRel is deleted.

Extensions

Not applicable

Tips

Delete existing PartyServiceRel and create new ones to change Party to
Service relationships.

Deleting the Party

ORACLE

This section describes the UIM APl method used to delete a party.

Table 3-13 provides information about using the API method.

Table 3-13 Deleting the Party

Topic Information
Name PartyManager.deleteParty
Description This method deletes an existing Party, and all its existing PartyRoles.

Pre-Condition

Party is already created.

Internal Logic

Delete the Party entity. The Party will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition

Party is deleted.

3-17

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-13 (Cont.) Deleting the Party

Topic

Information

Extensions

The APl is an extension point for adding custom validation logic, such as
logging and removing any relationships before deleting.

Tips

Use this method to delete an incorrect or obsolete Party before creating a
new Party.

Deleting the Party Role

This section describes the UIM APl method used to delete a party role.

Table 3-14 provides information about using the API method.

Table 3-14 Deleting the Party Role

Topic

Information

Name

RoleManager.deletelnventoryRoles

Description

This method deletes an existing InventoryRole on a given entity. In this
example, a PartyRole subclass instance is deleted.

Pre-Condition

PartyRole is already created.

Internal Logic

Delete the PartyRole entity.

Post-Condition

PartyRole is deleted.

Extensions

Not applicable

Tips

Use this method to delete an incorrect or obsolete role before creating
a new role.

Creating and Associating the Geographic Address with the

Service

This section describes the UIM APl methods used to create a place, create a place
role, and associate the place and place role with the service. (A place is a
GeographicPlace entity, which id is a concrete entity representing a geographic
address / service address.) The APl methods are listed in the order in which they must

be called.

< Note:

ORACLE

The associations of the place and place role with the service are optional,
and can be associated before or after the creation of the initial service
configuration. Typically, these types of associations do not change for the
service, but alternate flows are presented to show how the associations can
be changed if necessary.

3-18

Chapter 3
Creating and Associating the Geographic Address with the Service

Creating the Geographic Place

This section describes the UIM APl method used to create the geographic place.

Table 3-15 and example code provide information about using the APl method.

Table 3-15 Creating the Geographic Place
|

Topic Information
Name PlaceManager.createGeographicPlace
Description This method takes a collection of Geographic Address entities which

represents the Service Address and persist them into the database. The
Place Role and association to the Service is setup by a different API. For
this example, create a Geographic Address, a concrete subclass of
Geographic Place, as an instance of the Service Address.

Pre-Condition Place Specification is valid and retrieved from the database. Geographic
Address has a valid and unique ID.

Internal Logic Take the collection of transient Geographic Address entities and persists
them into the database, and return the collection of persisted Geographic
Address entities. Validate that the Geographic Address are not duplicated by
ID and they all have valid PlaceSpecification.

Post-Condition Persistent Geographic Address entities are returned.

Extensions This APl is defined as an extension point to allow custom validation before
or after the Geographic Addresses are created. For instance, the IDs can be
generated based on some custom algorithm.

Tips Geographic Address is a CharacteristicExtensible entity. Its characteristic
values should be added as the instance is created. Use RoleManager APIs
to manage the roles played by a given Geographic Address, and use
AttachmentManager to associate the Geographic Address with specific Role
to a given Service. (Same as Party.)

Example 3-13 Creating the Geographic Place

Finder finder = PersistenceHel per. makeFi nder();
Pl aceManager pl aceMyr = Persi st enceHel per. makePl aceManager () ;
CGeogr aphi cAddress place =
pl aceMyr . makeGeogr aphi cPl ace(Geogr aphi cAddr ess. cl ass) ;
pl ace. setld("Place_ID');
pl ace. set Nane(" Pl ace_Nane");

Col | ecti on<Pl aceSpeci fi cati on> pl aceSpecification = finder.findByName
(PllaceSpecification.class, (String)paramvap. get("Test Pl ace_Spec"));

Pl aceSpeci fication pcspec = PlaceSpecification.iterator().next();
pl ace. set Speci fication((Pl aceSpecification) placeSpec);

Li st places = new Arrayli st <Geographi cAddress>();
pl aces. add(pl ace);

pl aces = pl aceMyr. creat eGeogr aphi cPl ace(pl aces);
pl ace = (Geographi cAddress) places.iterator().next();

Creating the Place Role

This section describes the UIM APl method used to create the place role.

ORACLE 3-19

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-16 and example code provide information about using the APl method.

Table 3-16 Creating the Place Role
|

Topic Information
Name RoleManager.createlnventoryRole
Description This method takes a collection of InventoryRole entities and persist

them into the database. The roles passed in are the concrete
subclass, for instance PlaceRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The
Geographic Address which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists
them into the database, and return the collection of persisted
InventoryRole entities. Validate that the roles are not duplicated and
they all have valid InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PlaceRole) entities are returned.

Extensions Not applicable

Tips Use RoleManager.makePlaceRole() API to get a transient instance of
the correct concrete subclass of role to create. InvRoleSpecification is
required.

Example 3-14 Creating the Place Role

Finder finder = PersistenceHel per. makeFi nder();
Rol eManager rol eMgr = Persi st enceHel per. makeRol eManager () ;
Pl aceRol e role = rol eMyr. makePl aceRol e();

Col | ecti on<l nvRol eSpeci fication> invrol especlist =
f.findByName(I nvRol eSpecification.class, "Test_Place_Role_Spec");

I nvRol eSpeci fication rol espec =

(I'nvRol eSpecification)invrol especlist.iterator().next();
rol e. set Specification(rol eSpec);
Li st<lnventoryRol e> rol es = new Arrayli st <l nventoryRol e>();
rol es.add(role);
rol eMyr. createl nventoryRol e(roles);

Associating the Geographic Place and Place Role with the Service

This section describes the UIM APl method used to associate the geographic place
and place role with the service. The API method must be called once per association.
So, in this scenario, the APl is called to associate the geographic place with the
service, and then called again to associate the place role with the service.

Table 3-17 and example code provide information about using the API method. The
example shows associating the geographic place with the service; it does not show
associating the place role with the service, which is accomplished by calling the same
API method.

Table 3-17 Associating the Geographic Place and Place Role with the Service

|
Topic Information

Name AttachmentManager.createRel

ORACLE 3-20

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-17 (Cont.) Associating the Geographic Place and Place Role with the
Service

O
Topic Information

Description This method creates an involvement (an association) between two
entities. In this example, a relationship is created between Geographic
Address and Service with a specific role created earlier.

Pre-Condition Service, Geographic Address and PlaceRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from
Geographic Address to Service with a specific PartyRole. The
Geographic Address is the parent of this involvement. Validates that
the relationship is not duplicated.

Post-Condition PlaceServiceRel is created referencing the entities.
Extensions Not applicable
Tips Set the FROM entity to Geographic Address and TO entity to Service.

Set the FROM entity role to the PlaceRole.

Example 3-15 Associating the Geographic Place with the Service
String roleGd =role.getGd();

At t achment Manager invol vement Myr = Per si st enceHel per. makeAt t achment Manager () ;
I nvol venent invol venent = invol venent Myr. makeRel (Pl aceServi ceRel . cl ass);

i nvol venment . set ToEntity(service);

i nvol venment . set FronEntity(place);

i nvol venent . set FronEnt i t yRol eKey(rol eG d);

i nvol vement Myr . cr eat eRel (i nvol verent) ;

Pl aceServi ceRel placeServiceRel = (Pl aceServiceRel) involvenent;

About Alternate Flows

The generic service fulfillment scenario creates a geographic place and place role, and
associates them with the service. Alternate flows to this scenario may be to disassociate
geographic place and place role from the service, and then delete the geographic place and
place role.

The alternate flows described in this section are:

» Disassociating the Geographic Place and Place Role from the Service
» Deleting the Geographic Place

* Deleting the Place Role

Disassociating the Geographic Place and Place Role from the Service

ORACLE

This section describes the UIM APl methods used to retrieve a place or service, and then use
the retrieved data to disassociate the place from the service. The API methods are listed in
the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an APl is
called to retrieve the place or service, and another API is called to disassociate the place
from the service. This process is repeated to disassociate the place role from the service: An

3-21

ORACLE

Chapter 3
Creating and Associating the Geographic Address with the Service

APl is called to retrieve the place role or service, and another APl is called to
disassociate the place role from the service.

Table 3-18 and Table 3-19 provide information about using the APl methods.

Table 3-18 Getting the Place and Service

Topic Information
Name Service.getPlace() or GeographicPlace.getPlaceservicerels ()
Description These methods are used to retrieve the bidirectional relationship

PlaceServiceRel between Geographic Address and Service. Once
retrieved, the correct instance can be deleted.

Pre-Condition

PlaceServiceRel is already created.

Internal Logic

Simple relationship attribute on the entities to get list of relationships to
iterate through.

Post-Condition

PlaceServiceRel is found and passed to next method for deletion.

Extensions

Not applicable

Tips

Not applicable

Table 3-19 Disassociating the Place and Place Role from the Service

Topic Information
Name AttachmentManager.deleteRel
Description This method deletes an involvement (an association) between two

entities. In this example, an existing relationship between the
Geographic Address and Service with a specific role is deleted.

Pre-Condition

PlaceServiceRel is already created.

Internal Logic

Delete the PlaceServiceRel entity.

Post-Condition

PlaceServiceRel is deleted.

Extensions

Not applicable

Tips

Delete existing PlaceServiceRel and create new ones to change
Geographic Address to Service relationships.

Deleting the Geographic Place

This section describes the UIM API method used to delete a geographic place.

Table 3-20 provides information about the APl method.

Table 3-20 Deleting the Geographic Place

Topic Information
Name PlaceManager.deleteGeographicPlace
Description This method deletes an existing Geographic Address, and all its

existing PlaceRoles. In this example, the Service Address as in
instance of a Geographic Address is deleted.

Pre-Condition

Geographic Address is already created.

3-22

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-20 (Cont.) Deleting the Geographic Place
|

Topic

Information

Internal Logic

Delete the Geographic Address entity, and all its existing PlaceRoles.
The Geographic Address will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition

Geographic Address is deleted.

Extensions The API is an extension point for adding custom validation logic, such
as logging and removing any relationships before deleting them.
Tips Use this method to delete an incorrect or obsolete Geographic

Address before creating a new Geographic Address.

Deleting the Place Role

This section describes the UIM APl method used to delete a place role.

Table 3-21 provides information about the APl method.

Table 3-21 Deleting the Place Role

Topic Information
Name RoleManager.deletelnventoryRoles
Description This method deletes an existing InventoryRole on a given entity. In this

example, a PlaceRole subclass instance is deleted.

Pre-Condition

PlaceRole is already created.

Internal Logic

Delete the PlaceRole entity.

Post-Condition

PlaceRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating a
new role.

Configuring the Resources for the Service Configuration

This section describes the APIs need to assign a custom object to a service configuration
item. The APIs are listed in the order in which they must be called.

Note:

If assignment is being done as part of creating the service and service configuration
(see "Creating the Service and Service Configuration"), then start at section
"Finding the Service Configuration Item" because the service and service
configuration are already known.

Figure 3-3 shows how the service and configuration are created by calling the APIs described
in Creating the Service and Service Configuration.

ORACLE 3-23

Chapter 3

Configuring the Resources for the Service Configuration

Figure 3-3 Generic Service Example

N PROGRESS

Service
(Generic SVC-1)

ServiceConfiguration
Version
Wersion 1)

Finding the Service

This section describes the UIM APl method used to find the service. The retrieved
service will be used to find the service configuration.

ORACLE

ServiceConfiguration
[tem

ServiceConfiguration
[tem
(GO Item)

Table 3-22 and example code provide information about using the APl method.

Table 3-22 Finding the Service

Topic Information
Name ServiceManager.findServices
Description This method retrieves services based on input criteria.

Pre-Condition

The desired service already exists.

Internal Logic

The database is queried for services meeting the input criteria.
Services matching the criteria are returned.

Post-Condition

The desired service has been retrieved.

Extensions

Not applicable

Tips

If a list of services is returned, the list will need to be iterated to select

the desired service.

3-24

Finding the

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Example 3-16 Finding the Service

Servi ceManager ngr = Persi st enceHel per. makeSer vi ceManager ();
ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
citem=criteria.mkeCriterialten();

citem set Val ue(" Service_Test _22");

citem setOperator(CriteriaQOperator. EQUALS);
criteria.setNane(citen;

Li st<Service> list = ngr.findServices(criteria);

Service by ID Using Finder API

This section describes the UIM APl method that is used to find the service using the
finder.findByName API.

Table 3-23 and example code provide information about using the APl method.

Table 3-23 Querying for the Service by ID using Finder API
- ___|

Topic Information

Name Finder.findByName

Description This method retrieves services based on input criteria.

Pre-Condition The desired service already exists.

Internal Logic The database is queried for services meeting the input criteria. Services
matching the criteria are returned.

Post-Condition The desired service has been retrieved.

Extensions Not applicable

Tips If a list of is returned, the list will need to be iterated to select the desired
service.

If the service is not found, the find method will return empty collection.

Note: The name is not a unique field, but it is a common to have unique
service names.

This method is applicable for retrieving other entities by supplying the
correct class as the query parameter. For example, it can be used to retrieve
a CustomObiject or any UIM entity to be used later for resource query or
creation.

Example 3-17 Finding the Service by ID Using Finder API

Service service = null;
Finder f = null;

try{

f = PersistenceHel per. makeFi nder();

Col | ection<Service> services = f.findByNane(Service.class, "service_name");
service = Services.iterator.next();

1

cat ch(Exception e){

/* 10g exception*/

}
finally{
if(fl=null)
f.close();
}

3-25

Chapter 3
Configuring the Resources for the Service Configuration

Finding the Current Service Configuration Version

To find the current service configuration version:

1. Find the service. See "Finding the Service".
2. Select the service configuration versions using service.getConfigurations().

3. Process the retrieved service configuration versions, looking for one with a
configState of IN_ PROGRESS, DESIGNED or ISSUED.

There will only be one service configuration version in one of these states at a
given point in time for a service. If a service configuration version is not found in
one of these states, you cannot proceed with resource assignment.

In the generic service fulfillment scenario, Version 1 would be selected.
Example 3-18 Finding the Current Service Configuration Version

I nvent oryConfi gurati onVersion invConfigVersion = null;

Servi ceConfi gurati onManager scm =
Per si st enceHel per. makeSer vi ceConf i gur ati onManager () ;
Busi nessinteractionState configState = BusinesslnteractionState. | N PROGRESS;
/*simlarly, other BusinesslnteractionStates (COVWLETED, CANCELLED) can al so be
passed as parameter*/

Li st <l nvent oryConfi gur ati onVersi on> configs =
scm get EntityConfigurationVersions(configurable, configState);

I nvent oryConfigurationVersion latestConfig = null;
if ('Utils.isEnpty(configs)) {
i nvConfi gVersion = configs.get(0);
}
Servi ceConfigurationVersion scv = (ServiceConfigurationVersion)
i nvConfi gVersi on;

Finding the Service Configuration Item

ORACLE

To find the service configuration item:

1. Find the current service configuration version. See "Finding the Current Service
Configuration Version".

2. Select the service configuration items using service.getConfigltems().

3. Process the retrieved service configuration items, looking for one with the
configType of ITEM.

In the generic service fulfillment scenario, CO Item would be selected.

Note:

In this simplified example, we know there is only one item level
configuration item, and we know it is associated to an option for a
custom object specification, which is why the following sections find or
create a custom object to assign.

3-26

Chapter 3
Configuring the Resources for the Service Configuration

Example 3-19 Finding the Current Service Configuration Item

Servi ceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
Li st<? extends InventoryConfigurationlten itenms = confVersion.getConfigltens();
I nventoryConfigurationlteminvConfigltem= null;
for (InventoryConfigurationltemitem: itens) {
i f (nane.equal sl gnoreCase(item getNane())) {
invConfigltem=item
break;

}

Example 3-20 Finding the Current Service Configuration Item - Alternate Way
Including Checks for Existing References or Assignments on the Item

Servi ceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
bool ean checkRef er enceAndAssi gnnent = true;
Li st<? extends InventoryConfigurationlten> itens = confVersion.getConfigltems();
I nventoryConfigurationlteminvConfigltem= null;
for (InventoryConfigurationltemitem: itens) {
i f (name. equal sl gnoreCase(item getName())) {

i f (checkRef erenceAndAssi gnment) {
if (configltemgetAssignment() == null
&& configltem get Reference() == null) {
invConfigltem=item
br eak;
}
}

}

Finding the Custom Object to Assign

ORACLE

This section describes the UIM APl method used to find the custom object to assign to the
retrieved service configuration item. When assigning a custom object to a service
configuration item, you can either find an existing custom object, or you can create a new
custom object to assign, as described in the following section, "Creating the Custom Object to
Assign".

Table 3-24 and example code provide information about using the APl method.

Table 3-24 Finding the Custom Object
|

Topic Information

Name CustomObjectManager.findCustomObjects

Description This method retrieves custom objects based on input criteria.

Pre-Condition The custom object to be allocated already exists.

Internal Logic The database is queried for custom objects meeting the input criteria.
Custom objects matching the criteria are returned.

Post-Condition The desired custom object has been retrieved.

Extensions Not applicable

3-27

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-24 (Cont.) Finding the Custom Object

- ___|
Topic Information

Tips Set the
CustomObjectSearchCriteria.setAssignmentState(AssignmentState. UNASSI
GNED) to instruct the find method to only return available custom objects.

In this example, we could choose to set the
CustomObijectSearchCriteria.setCustomObjectSpecification
(CustomObjectSpecification) to the CO Spec instance.

If a list of custom objects is returned, the list will need to be iterated to select
the desired custom object to be allocated to the service configuration item.

Example 3-21 Finding the Custom Object

Fi nder finder = null;
Cust onhj ect Manager mgr = nul | ;
try{
mgr = Persi st enceHel per. makeCust onObj ect Manager () ;
Cust onhj ect SearchCriteria criteria =
mgr . makeCust onhj ect SearchCriteria();
criteria.setAdnminState(lnventoryState.|NSTALLED);
finder = PersistenceHel per. makeFi nder();
int quantity = 1;// any positive nunber to ensure the query does not go
unbounded
Col | ecti on<Cust ombj ect Speci fi cati on> cust onCbj ect Specs =

finder.findByName(Cust onObj ect Speci fication. cl ass, "Test_Cust om Obj ect _Spec");

criteria.setCustonthject Specification(custonthjectSpecs.iterator().next());
criteria.setRange(0, quantity);
myr . findCust onChj ects(criteria);

/* anot her exanple */
Col | ecti on<Cust ombj ect > cust Cbjs = f.findByl d(Custonbj ect.class, "CO1");
}
catch (Exception e){
/* log exception */

}
finally{
if(fl=null)
f.close();
}

Creating the Custom Object to Assign

ORACLE

This section describes the UIM APl method used to create a custom object to assign
to the retrieved service configuration item. When assigning a custom object to a
service configuration item, you can either create a new custom object, or you can find
an existing custom object to assign, as described in "Finding the Custom Object to
Assign".

Table 3-25 and example code provide information about using the APl method.

3-28

Chapter 3

Configuring the Resources for the Service Configuration

Table 3-25 Creating the Custom Object

Topic Information

Name CustomObjectManager.createCustomObjects

Description This method creates a custom object. The custom object will be populated
with the hard facts and characteristics supplied by the caller.

Pre-Condition Not applicable

Internal Logic The custom object is created.

Post-Condition The custom object has been created and is in Installed status.

Extensions Not applicable

Tips A custom object can be created with or without a specification.

Example 3-22 Creating the Custom Object

Finder f = null;

Cust onmhj ect Manager custMyr = nul | ;

try{

cust Myr = Persi stenceHel per. makeCust onChj ect Manager () ;
f = PersistenceHel per. makeFi nder();

Col | ecti on<Cust onbj ect Speci fi cati on> specList =
new ArraylLi st <Cust onObj ect Speci fi cati on>
(f.findByName(Cust onbj ect Speci fication.class, "SPEC CUST_001"));

if (specList != null && !specList.isEnpty())
{
Cust onbj ect Speci fi cati on cust Chj Spec =
specList.iterator().next();

Col | ecti on<Cust onObj ect > cust Cbj ects = new ArraylLi st <Cust onbj ect >();
Cust ombj ect cust Gbj = cust Myr. makeCust onObj ect () ;

custQbj . setld("CUST_OBJ_ID");

cust Obj . set Name(" CUST_OBJ_NAME") ;

cust Qbj . set Descri ption("CUST_OBJ_DESC');

cust Obj . set Speci fi cation(cust Cbj Spec); /* optional */

cust Obj ect s. add(cust oj);

cust Myr. creat eCust onbj ect s(cust bj ects); }

}
cat ch(Exception e){

/* 1 og exception*/

}
finally{
if(fl=null)
f.close();
}

Assigning the Resource to a Configuration ltem

This section describes the UIM APl method used to assign the resource to a configuration
item. In the generic service fulfillment scenario, the resource is the custom object that was
either found or created when "Finding the Custom Object to Assign" or "Creating the Custom

ORACLE

Object to Assign".

3-29

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-26 and example code provide information about using the APl method.

Table 3-26 Assigning the Resource to a Configuration Item

O
Topic Information

Name BaseConfigurationManager.assignResource(E
item,oracle.communications.inventory.api.entity.common.Consumable
Resource resource,java.lang.String reservedFor,java.lang.String
reservedForType)

In this example, the full signature of the method is included because
there are multiple overloaded assignResource methods.

Description This method assigns the input resource to the input service
configuration item. In this example, a custom object is used as the
consumable resource for assignment.

Pre-Condition The configuration item to allocate the custom object to has been
selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration
item.

Extensions Not applicable

Tips The input item is the entity configuration item to assign the resource to

(ConsumableResource). In this example, ConsumableResource is set
to the CustomObject for CO-1. The reservedFor and reservedForType
parameters should be populated if the resource to be assigned is
reserved, so the reservation can be redeemed.

Example 3-23 Assigning the Resource to a Configuration Item

Finder finder = PersistenceHel per.makeFi nder();
Col | ecti on<Cust ombj ect > cust Qbj s =
finder.findByName(Cust onbj ect. class, "CO1");
Cust onhj ect custGbj = custQbjs.iterator().next();
Servi ceManager ngr = PersistenceHel per. makeServi ceManager ();

ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
Criterialtemcitem= criteria. makeCriterialten();

citem set Val ue(" Servi ce_Test _22");
citemsetOperator(CriteriaQperator. EQUALS);
criteria.setNane(citen);

List<Service> |ist = ngr.findServices(criteria);

Service service = list.get(0);

Li st <Servi ceConfi gurationVersi on> srvConfigurations =
service. get Configurations();

Servi ceConfigurationltemAl | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();

int i = srvConfigurations.get(0).getVersionNunber();

/IWite logic to get the latest ServiceConfigurationVersion of the Service.
/I Process the retrieved service configuration versions,

/Il1ooking for one with a configState of | N PROGRESS, DESI GNED or | SSUED.
Servi ceConfigurationVersion |atestConfiguration;

/1 Assign the |atest ServiceConfigurationVersion

//to the variable |atestConfiguration
Li st<Servi ceConfigurationltenr configltenms =

3-30

Chapter 3
Configuring the Resources for the Service Configuration

| at est Configuration.get Configltenms();
for(ServiceConfigurationltemitem: configltens)
{
if((itemgetName()!= null && item getNane().equal sl gnoreCase("CO Iteni)))
{
i tenDat a. set Resour ce(cust Obj);
i tenDat a. set Servi ceConfigurationlten(iten;
String reservedFor= null; // "Service-123"
String reservedFor Type= null; // "Longternt
BaseConfi gurati onManager bcd =
Per si st enceHel per. makeConfi gur ati onManager
(ServiceConfigurationVersion.class);
bcd. assi gnResource(item custoj, reservedFor, reservedFor Type);
br eak;

}

Referencing the Resource to a Configuration Item

ORACLE

This section describes the UIM APl method used to reference the resource to a configuration

item. In a generic service fulfillment scenario, the resource is a custom object that was either

found or created when "Finding the Custom Object to Assign” or "Creating the Custom Object
to Assign".

Table 3-24 and example code provide information about using the APl method.

Table 3-27 Referencing the Resource to a Configuration Item

Topic Information

Name BaseConfigurationManager. referenceEntity (E item,
ConfigurationReferenceEnabled entity)

Description This method refers the input resource to the input service configuration item.
In this example, a custom object is used as the resource for reference.

Pre-Condition The configuration item to allocate the custom object to has been selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration item.

Extensions Not applicable

Tips The input item is the entity configuration item to refer the resource to

(referenceEnabledEntity). In this example, resource is set to the
CustomObject for CO-1.

Example 3-24 Referencing the Resource to a Configuration Item

Fi nder finder = null;
BaseConf i gur ati onManager configMyr = null
Servi ceManager ngr = nul |;

try{
finder = PersistenceHel per. makeFi nder ();

Col | ecti on<Cust onbj ect > cust Chj s =

finder.findByName(Cust onbj ect. cl ass, "CO-1");
Cust onbj ect custbj = custObjs.iterator().next();
mgr = Persi st enceHel per. makeSer vi ceManager () ;

ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();

3-31

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Criterialtemcitem= criteria makeCriterialten();
citem set Val ue(" Service_Test _22");

citem setOperator(CriteriaQperator. EQUALS);
criteria.setNane(citen);

List<Service> list = ngr.findServices(criteria);

Service service = list.get(0);

Li st <Servi ceConfi gurationVersi on> srvConfigurations =
servi ce. get Configurations();

Servi ceConfigurationltemAl | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();

int i = srvConfigurations.get(0).getVersionNunber();

/IWite logic to get the latest ServiceConfigurationVersion of the Service.
/I Process the retrieved service configuration versions,

/I1ooking for one with a configState of | N PROGRESS, DESI GNED or | SSUED.
Servi ceConfigurationVersion | atestConfiguration;

/I Assign the latest ServiceConfigurationVersion
//to the variable |atestConfiguration
Li st <Servi ceConfigurationlten> configltens =

| at est Confi guration. get Configltens();

Servi ceConfigurationltemconfigltem= null;

configMyr = PersistenceHel per. makeConfi gurati onManager
(ServiceConfigurationltenDAQ cl ass);

ConfigurationltenSearchCriteria configltenCriteria =
configMyr. makeConfigurationltenBSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAQ class);
Criterialtemcriterialtem= configltenCriteria. mkeCriterialten();
criterialtemsetValue("itemname");
criterialtemsetQperator(CriteriaCperator. EQUALS);
configltenCriteria.setConfigurationltemNane(criterialtem;

criterialtem= configltenCriteria makeCriterialten();
criterialtem setVal ue(version. getVersi onNunber());
criterialtemsetQperator(CriteriaCperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten;

Li st<InventoryConfigurationltemr configltens =
configMr.findConfigurationltens(configltenCriteria);

configltem= configltens.iterator().next();
if (configltem!= null) {
BaseConf i gurati onManager configurati onManager =
Per si st enceHel per . makeConfi gurati onManager (configltem getd ass());
configurationManager.referenceEntity(configltem referenceEnabl edEntity);

cat ch(Exception e){
/* 1og exception*/

}
finally{
if(finder!=null)
finder.close();
}

3-32

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Example 3-25 Unreferencing the Resource to a Configuration Item

Fi nder finder = null;
BaseConf i gurati onManager configWygr = null;
Servi ceManager ngr = nul |;

try{
finder = PersistenceHel per. makeFi nder();

Col | ecti on<Cust onbj ect > cust Ghj s =

finder.findByName(Cust onbj ect. cl ass, "CO-1");
Cust onbj ect custbj = custObjs.iterator().next();
mgr = Persi st enceHel per. makeSer vi ceManager () ;

ServiceSearchCriteria criteria = ngr.makeServiceSearchCriteria();
Criterialtemcitem= criteria. makeCriterialten();

citem set Val ue(" Service_Test _22");

citem setOperator(CriteriaQOperator. EQUALS);
criteria.setNane(citen;

Li st<Service> list = ngr.findServices(criteria);

Service service = list.get(0);

Li st <Servi ceConfi gurati onVersion> srvConfigurations =
service. get Configurations();

Servi ceConfigurationltemAl | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();

int i = srvConfigurations.get(0).getVersionNunber();

/IWite logic to get the latest ServiceConfigurationVersion of the Service.
/IProcess the retrieved service configuration versions,

/11 ooking for one with a configState of | N PROGRESS, DESI GNED or | SSUED.
Servi ceConfi gurationVersion |atestConfiguration;

/I Assign the latest ServiceConfigurationVersion
/Ito the variable |atestConfiguration
Li st <Servi ceConfigurationlten> configltens =

| at est Confi guration. get Configltens();

Servi ceConfigurationltemconfigltem= null;

configMgr = Persi stenceHel per. makeConfi gurati onManager
(ServiceConfigurationltenDAQ cl ass);

ConfigurationltenSearchCriteria configltenCriteria =
confi gMgr. makeConfigurationltenBSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAQ class);
Criterialtemcriterialtem= configltenCriteria. makeCriterialten();
criterialtemsetValue("itemnane");
criterialtemsetQperator(CriteriaQperator. EQALS);
configltenCriteria.setConfigurationltenNane(criterialtem;

criterialtem= configltenCriteria makeCriterialten();
criterialtem setVal ue(version. get Versi onNunber());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten;

Li st<InventoryConfigurationltem> configltens =
configMr.findConfigurationltens(configltenCriteria);

3-33

Chapter 3
Configuring the Resources for the Service Configuration

if (!Uils.isEnpty(configltens)) {
configMyr. dereferencel nventoryConfigurationltens (configltens);

}

}
cat ch(Exception e){

/* 1og exception*/

}
finally{
i f(finder!=null)
finder.close();
}

About Alternate Flows

The generic service fulfillment scenario assigns a custom object resource to a service
configuration item. An alternate flow to this scenario may be to unassign the resource
from a configuration item.

Additional alternate flows may be to manage consumable resources by creating
reservations and conditions. Reservations are created to prevent a given resource to
be consumed by another service. The reservation can only be redeemed successfully
during resource assignment when the correct token is provided. Also, a reservation
can expire if not redeemed within the expiry time period. Conditions are created to add
informational or blocking codes to a given resource. A blocking condition prevents a
resource from being assigned.

The alternate flows described in this section are:

* Unassigning Resources from a Configuration Item
* Reserving a Custom Object

* Unreserving a Custom Object

» Creating a Blocked Condition for a Custom Object

» Deleting a Blocked Condition for a Custom Object

Unassigning Resources from a Configuration ltem

ORACLE

This section describes the UIM APl method used to unassign the resource from a
configuration item.

Table 3-28 and example code provide information about using the APl method.

Table 3-28 Unassignhing Resources from a Configuration Item

. ___|
Topic Information

Name BaseConfigurationManager.unallocatelnventoryConfigurationltems(jav
a.util.Collection<E> configurationltems)

Description This method unassigns/deallocates resources that were previously
assigned on a configuration item of a service configuration version.

Pre-Condition A service configuration version exists with a custom object assigned to
a configuration item of the version.

Internal Logic Not applicable

3-34

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-28 (Cont.) Unassigning Resources from a Configuration Item
|

Topic Information

Post-Condition The custom object/s has been unassigned.

Extensions Not applicable

Tips In this example the ConsumableResource to be unassiged is custom
object 'CO-1".

Example 3-26 Unassigning Resources from a Configuration Item

BaseConfi gurati onManager bcd =
Per si st enceHel per. makeConfi gur ati onManager (Servi ceConfi gur ati onVer si on. cl ass);
Finder f = PersistenceHel per. makeFi nder ();

Col | ecti on<Cust onbj ect > cust Gbjs = f.findByld(Custonlbject.class, "CO1");
Cust onbj ect custCbj = custObjs.iterator().next();
Col | ecti on<Servi ceConfi gurationVersion> scvList =

f.findByName(ServiceConfigurationVersion.class, "Se_123_2");

Servi ceConfigurationVersion scv =
(ServiceConfigurationVersion)scvList.iterator().next();
Busi nessl nt eracti onManager bi Myr =
Per si st enceHel per. makeBusi nessl nt eract i onManager () ;
bi Myr. swi t chContext (scv, null);

/* Find Service Configuration Item (SCl) by: */

/* 1) Using Finder query by nanme, OR */

[* 2) CGet Service Configuration and iterate to correct SCl */

/1 Col | ection<ServiceConfigurationltenm serviceConfigltems =

[l f.findByName(ServiceConfigurationltemclass, "CO Itenl);

/1 ServiceConfigurationltemsci = serviceConfigltens.iterator().next();

Servi ceConfigurationltemunSci = null;
Col | ection<Servi ceConfigurationltenm scilist = scv.getConfigltens();
for (ServiceConfigurationltemsci : scilist)

{
if (sci.getNanme().equals("CO Ilten') &&
sci . get ConfigAction() == ConfigurationltemAction. ASSI GN &&
sci.getAssignment() !'= null &&
sci . get Assi gnment () instanceof Assignment)
{
Assi gnnment assignment = (Assignment) sci.getAssignnent();
i f (assignment. getResource().equal s(custQbj))
{
unSci = sci;
break;
}
}
}

if (unSci !'= null)

Col | ecti on<Servi ceConfigurationlten> unScilList =
new Arrayli st<ServiceConfigurationltens();
unSci Li st. add(unSci) ;
bcd. unal | ocat el nvent oryConfi gurati onl t ens(unSci Li st);

ORACLE 3-35

ORACLE

Reserving a Custom Object

Chapter 3
Configuring the Resources for the Service Configuration

This section describes the UIM API methods used to make a reservation and to
reserve a custom object using the reservation. To find a custom object to reserve, you
must find or create a custom object. See "Finding the Custom Object to Assign" or
"Creating the Custom Object to Assign".

Table 3-29, Table 3-30, Table 3-31 and example code provide information about using

the API methods.

Table 3-29 Making a Reservation

Topic Information

Name ReservationManager.makeReservation(ConsumableResource
conRes)
In this example, the full signature of the method is included because
there are multiple overloaded makeReservation methods.

Description This method will make an instance of the appropriate Reservation

class based on the type of ConsumableResource. For example, if a
CustomObiject is input, then a CustomObjectReservation will be
returned.

Pre-Condition

Not applicable

Internal Logic

This method will determine the appropriate Reservation class to be
constructed based on the input ConsumableResource.

Post-Condition

The caller has an instance of the appropriate Reservation class. In this
scenario, it will be a CustomObjectReservation.

Extensions

Not applicable

Tips

The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3-30 Reserving a Resource

Topic Information

Name ReservationManager.reserveResource(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition

The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic

The input parameters are validated, and if no errors are detected each
input resource is reserved. The system will generate a new reservation
number. All the input resources will be reserved for this reservation
number.

Post-Condition

The resource (Custom Object CO-1) is reserved.

Extensions

The RESERVATION_EXPIRATION ruleset can be customized to
change the default behavior of setting the expiry date for a resource
reservation. By default, a long term reservation will expire after 30
days and a short term reservation will expire after 10 minutes.

3-36

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-30 (Cont.) Reserving a Resource

Topic

Information

Tips

At least one ConsumableResource must be input. For this scenario, it
will be the CustomObject instance for CO-1.

The Reservation passed to the method must have the following
attributes set:

Optionally, the Reservation.reason can be set. This is free form text.

The startDate, endDate, and expiry can also be set, but for this
example we will allow them to be defaulted by the system.

Reservation.reservedFor

(Free form text identifying the reserver.)
Resevation.reservedForType

(A ReservedForType such as CUSTOMER.)
Reservation.reservationType

(This would be set to ReservationType.LONGTERM for this
scenario.)

You can also add a resource to an existing reservation number by calling the
ReservationManager.addResourceToReservation method using this API method:

Table 3-31 Adding a Resource to a Reservation

Topic Information

Name ReservationManager.addResourceToReservation(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition

The resource exists. In this scenario the resource is Custom Object CO-1.

Internal Logic

The input parameters are validated, and if no errors are detected each input
resource is reserved. The resources will be reserved with an existing
reservation number. The reservedFor and reservedForType values will
always be the same for all resource reservations for the same reservation
number. Other reservation information, such as reason and expiry, can differ
among resource reserved with the same reservation nhumber.

Post-Condition

The resource (Custom Object CO-1) is reserved.

Extensions

The RESERVATION_EXPIRATION ruleset can be customized to change the
default behavior of setting the expiry date for a resource reservation. By
default, a long term reservation will expire after 30 days and a short term
reservation will expire after 10 minutes.

3-37

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-31 (Cont.) Adding a Resource to a Reservation

Topic Information

the CustomObject instance for CO-1.

set:
. Reservation.reservationNumber

An existing resource reservation must already exist with this same
reservation number.

¢ Reservation.reservationType

In the generic service fulfillment scenario, this would be set to
ReservationType.LONGTERM.

the reservationNumber.

The startDate, endDate, and expiry can also be set, but for this scenario,
these dates are defaulted by the system.

Example 3-27 Reserving a Custom Object

Reservati onManager resMyr = Persi stenceHel per. makeReservati onManager () ;
Consumabl eResource cr = (Consumabl eResource) custj;

Li st <Consumabl eResour ce> crlList = new ArrayList<Consunmabl eResource>();
crlist.add(cr);

Reservation reservation = resMyr. makeReservation(cr);
reservation. set Reason("Future reqi urenent");

reservation. set ReservedFor (" Order-333");

reservation. set ReservedFor Type(Reser vedFor Type. ORDER) ;
reservation. set ReservationType(Reservati onType. LONGTERM) ;

resMyr.reserveResource(crList, reservation);

Reservati onManager resMyr = Persi stenceHel per. makeReservati onManager () ;
Consumabl eResource cr = (Consumabl eResource) custj;

Li st <Consumabl eResour ce> crList = new Arrayli st <Consumabl eResour ce>();
crlist.add(cr);

Reservation reservation = resMyr. makeReservation(cr);
reservation. set Reservati onNumber ("111111111");
reservation. set ReservedFor (" Order-333");

reservation. set ReservedFor Type(Reser vedFor Type. ORDER) ;
reservation. set ReservationType(Reservati onType. LONGTERM) ;

resMyr . addResour ceToReservation(crlList, reservation);

Unreserving a Custom Object

ORACLE

This section describes the UIM APl methods used to unreserve a custom object. To
find the custom object to unreserve, you must find the custom object. See "Finding the
Custom Object to Assign".

Table 3-32 and example code provide information about using the APl method.

3-38

Tips At least one ConsumableResource must be input. For this scenario, it will be

The Reservation passed to the method must have the following attributes

If Reservation.reservedForType or Reservation.ReservedFor are populated,
they must match the equivalent values for existing resource reservations for

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-32 Unreserving a Custom Object

- ___|
Topic Information

ReservationManager.unreserveResource(Collection<? extends
ConsumableResource> resources, String redeemer, ReservedForType
redeemerType)

In this example, the full signature of the method is included because there
are multiple overloaded unreserveResource methods.

Name

Description This method will delete the reservation for the input resources.

Pre-Condition The resource exists and is reserved.

The input parameters are validated, and if no errors are detected each input
resource is unreserved. The input redeemer and redeemerType must match
the persisted reservation information for each of the input resources.

Internal Logic

Post-Condition The resource (custom object CO-1) is no longer reserved.

Extensions Not applicable

Tips At least one ConsumableResource must be input. For this scenario, it will be
the CustomObject instance for CO-1.
The redeemer and redeemerType are required.

Example 3-28 Unreserving a Custom Object

Reservati onManager resMgr = InventoryHel per. makeReservati onManager () ;

Consumabl eResource cr = (Consumabl eResource) custj;
Li st <Consumabl eResour ce> crList = new Arrayli st <Consumabl eResour ce>();
crlist.add(cr);

resMyr. unreserveResour ce(crlList, "Order-333", ReservedFor Type. ORDER);

Creating a Blocked Condition for a Custom Object

ORACLE

This section describes the UIM API methods used to create a blocked condition for a custom
object. To find a custom object to create the condition for, you must find or create a custom
object. See "Finding the Custom Object to Assign" or "Creating the Custom Object to Assign".

Table 3-33, Table 3-34 and example code provide information about using the API methods.

Table 3-33 Making a Condition
|

Topic Information

Name ConditionManager.makeCondition(ConsumableResource conRes)
In this example, the full signature of the method is included because there
are multiple overloaded makeCondition methods.

Description This method will make an instance of the appropriate Condition class based

on the type of ConsumableResource. For example, if a CustomObject is
input, then a CustomObjectCondition will be returned.

Pre-Condition Not applicable

This method will determine the appropriate Condition class to be
constructed based on the input ConsumableResource.

Internal Logic

The caller has an instance of the appropriate Condition class. In this
scenario, it will be a CustomObjectCondition.

Post-Condition

3-39

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-33 (Cont.) Making a Condition
|

Topic Information

Extensions Not applicable

Tips The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3-34 Creating Conditions
|

Topic Information

Name ConditionManager.createConditions

Description This method will create a condition on each of the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input Condition instances are validated, and if no errors are

detected a condition is created for each resource specified in the input
Condition collection.

Post-Condition The resource (custom object CO-1) has a blocked condition.

Extensions Not applicable

Tips The Condition passed to the method must have the following attributes
set:

* Condition.resource
This should be set to the CustomObject instance for CO-1.
e Condition.reason
This is free form text describing the reason for the condition. For
example, Under Repair.
e Condition.type
This should be set to ConditionType.BLOCKED.

Optionally, the Condition.validFor can be set with a startDate and
endDate value. If startDate is not specified, it is defaulted to the
current date. If endDate is not specified, it is defaulted to the java max
date value of 18- Jan-2038.

Optionally, the Condition.description can be set. This is free form text.

Example 3-29 Creating a Blocked Condition for a Custom Object

Condi ti onManager conMyr = Persi st enceHel per. makeCondi ti onManager () ;
Col | ecti on<Condi tion> input Cons = new ArrayLi st <Condition>();

Finder f = PersistenceHel per. makeFi nder ();
Col | ecti on<Cust omhj ect > cust Cbjs = f.findByl d(Cust onhj ect.class, "CO1");
Cust ombj ect custChj = custQbjs.iterator().next();

Condi tion con = conMyr. makeCondi tion(cust Cbj);
con. setDescription("Test Failure");

con. set Reason("Under Repair");

con. set Type(Condi ti onType. BLOCKED) ;

Date now = new Date();
Date later = getEndDate(now); /* call to an utility nethod */
con. set Val i dFor (new Ti nePeri od(now, later));

Chapter 3
Configuring the Resources for the Service Configuration

con. set Resour ce(cust Ovj) ;
con. set Master (true);
i nput Cons. add(con);

Col I ection <? extends Condition> cons = conMjr. createConditions(inputCons);

Deleting a Blocked Condition for a Custom Object

This section describes the UIM APl methods used to delete a blocked condition from a
custom object. To find the custom object to delete the blocked condition from, you must find
the custom object. See "Finding the Custom Object to Assign". To delete the condition from
the custom object, you must first find the condition to be deleted using the APl method
described here.

Table 3-35, Table 3-36, Table 3-37 and example code provide information about using the API
methods.

Table 3-35 Making a Condition Search Criteria

Topic Information

Name ConditionManager.makeConditionSearchCriteria

Description This method will make an instance of ConditionSearchCriteria.
Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition The caller has an instance of ConditionSearchCriteria.
Extensions Not applicable

Tips Not applicable

Table 3-36 Finding Conditions

Topic Information

Name ConditionManager.findConditions

Description This method retrieves conditions based on input criteria.

Pre-Condition The custom object to find conditions for has been selected. The desired
condition exists.

Internal Logic The database is queried for conditions meeting the input criteria. Conditions
matching the criteria are returned.

Post-Condition The desired condition has been retrieved.

Extensions Not applicable

Tips In this scenario, the following Criterialtems could be populated on the

ConditionSearchCritiera:
e resource

The CustomObiject instance for CO-1.
© type

ConditionType.BLOCKED

If a list of conditions is returned, the list will need to be iterated to select the
desired condition to be deleted.

ORACLE 3-41

Chapter 3
Setting Characteristic Values for the Service Configuration Item

Table 3-37 Deleting Conditions

Topic Information

Name ConditionManager.deleteConditions

Description This method will delete conditions on resources.

Pre-Condition The condition to be deleted has been selected.

Internal Logic The input Condition instances are validated, and if no errors are
detected the conditions are deleted.

Post-Condition The resource (Custom Object CO-1) no longer has the blocked
condition.

Extensions Not applicable

Tips Not applicable

Example 3-30 Deleting a Blocked Condition from a Custom Object

Finder f = PersistenceHel per. nmakeFi nder ();
Col | ecti on<Cust omhj ect > cust Cbjs = f.findByl d(Cust onthj ect.class, "CO1");
Cust ombj ect custCbj = custCbjs.iterator().next();

Condi ti onManager conMyr = Persi st enceHel per. makeCondi ti onManager () ;
Condi ti onSearchCriteria criteria = conMyr. makeConditionSearchCriteria();

Criterialtemres = criteria.makeCriterialten();
res. setVal ue(cust Qj);
res.setQperator(CriteriaQperator. EQIALS);
criteria.setResource(res);

Criterialtemtype = criteria. makeCriterialtem);

type. set Val ue(Condi ti onType. BLOCKED) ;

type.set Operator (CriteriaQperator. EQUALS | GNORE_CASE) ;
criteria.setType(type);

Col | ection <CustomObj ect Condition> cons = conMyr. findConditions(criteria);
Cust onbj ect Condi tion con = cons.iterator().next();

conMyr. del et eCondi tions(cons);

Setting Characteristic Values for the Service Configuration

ltem

ORACLE

The following APIs are used to set characteristic values on a service configuration
item. The set of allowable characteristic values for a given service configuration item
are defined by the service configuration specification used to create the service
configuration.

The following shows a configuration item hierarchy that has two characteristic values
associated with the Customer Equipment (CE) Router ITEM:

ITEM - Site

e ITEM - Customer Equipment Router

— Specification - Logical Device

3-42

ORACLE

Chapter 3
Setting Characteristic Values for the Service Configuration Item

— Characteristic - Customer
— Instructions - Characteristics
— Additional Information

The Configuration ITEMs are used to create the Service Configuration Item instances.
Characteristics will be related to the Service Configuration Item. Since Service Configuration
Item is a Characteristic Extensible entity, we can use the CharacteristicManager.init API to
initialize the set of characteristic values on the entity. In the example above, the two
Characteristics under the Customer Equipment Router ITEM would create two instances on
the ServiceConfigurationltemCharacteristic, and if there is default values defined, it is also
copied.

Table 3-38 and example code provide information about using the APl method.

Table 3-38 Setting Characteristic Values for the Service Configuration Item

e
Topic Information

Name CharacteristicManager.init(CharacteristicExtensible<CharValue>
characteristicExtensible, Specification spec)

Description This method initializes the CharacteristicExtensible entity. In this case, the
ServiceConfigurationltem). It sets the default value for each characteristic
which has one.

Pre-Condition A service configuration item exists and the InventoryConfigurationSpec is
known.
Internal Logic The InventoryConfigurationSpec is used to get the

CharacteristicSpecUsage, from the CharacteristicSpecUsage to get the
CharacteristicSpecification, so that the default spec value can be retrieved
and set to the CharValue. And the Charvalue will be set to the Service
configuration item.

Post-Condition ServiceConfigurationltem has the default characteristics set.
Extensions Not applicable
Tips Not applicable

< Note:

When creating a Service Configuration Item, call CharacteristicManager.init
(CharacteristicExtensible<CharValue> characteristicExtensible, Specification spec)
method to initiate the default characteristics value.

Example 3-31 Setting Characteristic Values for the Service Configuration Item

Characteri sti cManager characteristicManager =
Per si st enceHel per. makeChar act eri sti cManager () ;

Il Initialize the characteristics to the item
characteristicManager.init((CharacteristicExtensible)childConfigltem
i nvent oryConfi gurationSpec);

/] Get the characteristics fromservice config item
HashSet <Char Val ue> characteristics = serviceConfigltem getCharacteristics();

3-43

Chapter 3
Setting Characteristic Values for the Service Configuration Item

/1 Loop through the HashSet of characteristics and set the value as defined
for (CharValue charValue : characteristics)
{

char Val ue. set Val ue("myVal ue");

char Val ue. set Label (" nyLabel ");

}

Finding Configuration Item and Setting Characteristics

ORACLE

Characteristics can be added to the service configuration items. The service
configuration items are maintained on each service configuration version as a tree, as
specified in Design Studio. This is to make sure the history of the characteristics are
set or unset across the service configuration versions.

These characteristics cannot be added on service configuration version. They can be
added only on the Service Configuration Items. The characteristics added directly
under the Service Configuration Specification tree are added to the top-most item of
the service configuration version, called CONFIG item.

Unlike other entities, characteristics cannot be added to a service configuration item
when it is created, except for the default characteristics.

Example 3-32 Creating Characteristics on Top-most Service Configuration Item

Service service = null;
Finder f = null;

try{

f = PersistenceHel per. makeFi nder();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersi on> configs = service. getConfigurations();

for (ServiceConfigurationVersion config : configs) {

if (config.getAdm nState().equal s(BusinesslnteractionState. I N PROGRESS)) {
version = config; }

}

if(version !'= null){
ServiceConfigurationltemconfigltem=
(ServiceConfigurationltenversion.get ConfiglteniTypeConfig();

HashSet <Char act eri sti cSpecification> char Specs =
new HashSet <Characteri sticSpecification>();
char Specs =

CharacteristicHel per.getCharacteristicSpecifications(configSpec);
if (!charSpecs.isEmpty()) {
Set <Servi ceConfigurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfigurationltenCharacteristic>();
Servi ceConfigurationltenCharacteristic sciChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();

sci Char. set Name(char Spec. get Nane()) ;

i f (charSpec. get Control Type() == Control Type. CALENDAR) {
sci Char. set Val ue("07/ 15/ 2019");

3-44

ORACLE

Chapter 3
Setting Characteristic Values for the Service Configuration Item

}el se if(charSpec. get Control Type() == Control Type. CHECKBOX) {
sci Char.setVal ue("true");

}el se if(charSpec. get Control Type() == Control Type. DROPDOWN_LI ST) {
Set <Characteri sti cSpecVal ue> val ues = char Spec. get Val ues();

sci Char . set Val ue(((Di scret eChar SpecVal ue) val ues.iterator().next()).getValue());
}el se if(charSpec. get Control Type() == Control Type. TEXT_FI ELD) {

i f (char Spec. get Val ueType() == Val ueType. NUVERI C)
sci Char. set Val ue("500");

el se if(charSpec. get Val ueType() == Val ueType. URL)
sci Char. set Val ue("http://oracle.cont);

el se
sci Char. set Val ue(" pi pe testing");

}

sci Char. set Characteri sticSpecification(char Spec);
sci Chars. add(sci Char);
}

configltemsetCharacteristics(sciChars);

}
cat ch(Exception e){
/*1 og exception*/

}
finally{
if(f!=null)
f.close();
}

Example 3-33 Creating Characteristics On Any Level Service Configuration ltem

Service service = null;
Finder f = null;
BaseConf i gur ati onManager configMyr = null;

try{

f = Persi stenceHel per. makeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersi on> configs = service.getConfigurations();

for (ServiceConfigurationVersion config : configs) {

if (config.getAdm nState().equal s(BusinessinteractionState. | N PROGRESS)) {
version = config; }

}

if(version !'= null){
ServiceConfigurationltemconfigltem= null;

configMgr = PersistenceHel per. makeConfi gurati onManager
(ServiceConfigurationltenDAQ cl ass);

ConfigurationltenSearchCriteria configltenCriteria =
confi gMyr. makeConfigurationltenBSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAQ class);

Criterialtemcriterialtem= configltenCriteria. makeCriterialten();
criterialtemsetValue("itemnane");

3-45

ORACLE

Chapter 3
Setting Characteristic Values for the Service Configuration Item

criterialtemsetQperator(CriteriaCperator. EQUALS);
configltenCriteria.setConfigurationltenmNane(criterialtem;

criterialtem= configltenCriteria makeCriterialten();
criterialtem setVal ue(version. getVersi onNunber());
criterialtemsetQOperator(CriteriaCperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten;

Li st<InventoryConfigurationltem configltens =
configMr.findConfigurationltens(configltenCriteria);

if(!Uils.isEmty())
configltem= configltens.iterator.next();
HashSet <Char act eri sti cSpeci fication> char Specs =
new HashSet <Char act eri sticSpecification>();
char Specs =

CharacteristicHel per. getCharacteristicSpecifications(configSpec);
if (!charSpecs.isEmty()) {
Set <Servi ceConfigurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfi gurationltenCharacteristic>();
Servi ceConfigurationltenCharacteristic sciChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();

sci Char. set Name(char Spec. get Nane()) ;

i f (charSpec. get Control Type() == Control Type. CALENDAR) {
sci Char. set Val ue("07/ 15/ 2019");

}el se if(charSpec. get Control Type() == Control Type. CHECKBOX) {
sci Char.setVal ue("true");

}

el se if(charSpec. get Control Type() == Control Type. DROPDOM_LI ST) {
Set <Characteri sti cSpecVal ue> val ues =

char Spec. get Val ues();

sci Char . set Val ue(((Di screteChar SpecVal ue) val ues.iterator().next()).getValue());
}el se if(charSpec. get Control Type() == Control Type. TEXT_FI ELD)

{
i f (char Spec. get Val ueType() == Val ueType. NUVERI C)
sci Char. set Val ue("500");
el se if(charSpec. get Val ueType() == Val ueType. URL)
sci Char. set Val ue("http://oracle.cont);
el se
sci Char. set Val ue(" pi pe testing");
}
sci Char. set Characteri sticSpecification(charSpec);
sci Chars. add(sci Char);
}
configltemsetCharacteristics(sciChars);
}

cat ch(Exception e){
/*| og exception*/

}
finally{
if(f!=null)
f.close();
}

3-46

Chapter 3
Setting Characteristic Values for the Service Configuration Item

Example 3-34 Modifying Characteristics on Service Configuration Item

Service service = null;
Finder f = null;
BaseConf i gurati onManager configMyr = null;

try{

f = Persi stenceHel per. makeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersi on> configs = service. getConfigurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdm nState().equal s(BusinessinteractionState. | N PROGRESS)) {

version = config; }
Yif(version !'= null){ Servi ceConfigurationltemconfigltem= null;configWyr =
Per si st enceHel per . makeConfi gur ati onManager
(ServiceConfigurationltenDAQ cl ass); ConfigurationltenSearchCriteria

configltenCriteria = configMyr.makeConfigurationltenSearchCriteria();
configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAQ class);
Criterialtemcriterialtem= configltenCriteria. makeCriterialtem();
criterialtemsetValue("itemnane");
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationltenNane(criterialteny; criterialtem=
configltenCriteria. makeCriterialten();
criterialtem setVal ue(version. get Versi onNunber ());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialtem;
Li st<InventoryConfigurationltem> configltens =
configMr.findConfigurationltens(configltenCriteria);if(!'Uils.isEnmpty())configltem=

configltens.iterator.next(); HashSet <Char act eri sti cSpeci fi cation> char Specs
= new HashSet <Char act eri sticSpecification>(); char Specs
CharacteristicHel per.getCharacteristicSpecifications(configSpec); if (!
char Specs. i sEnpty()) { Set <Servi ceConfi gurationltenCharacteristic>
sciChars = new

HashSet <Servi ceConfi gurati onl tenCharacteristic>();

Servi ceConfigurationltenCharacteristic sciChar = null; for
(CharacteristicSpecification charSpec : charSpecs) { sci Char =
configltem nakeCharacteristiclnstance(); String charName =

sci Char . set Name(char Spec. get Nane()) ; if

(char Nane. equal s("char_nane_12))

{ sci Char. set Val ue("updat ed_val ued"); }

sci Char. set Charact eri sticSpecification(char Spec);
sci Chars. add(sci Char);
configltem set Characteristics(sci Chars);}catch(Exception e){/*log
exception*/}finally{ if(fl=null) f.close();}

About Alternate Flows

ORACLE

The generic service fulfillment scenario sets characteristic values for the service configuration
item. An alternate flow to this scenario may be to unset characteristic values from the service
configuration item.

The alternate flow described in this section is "Unsetting Characteristic Values for the Service
Configuration Item".

3-47

Chapter 3
Transitioning the Lifecycle Status

Unsetting Characteristic Values for the Service Configuration Item

The following API is to unset characteristic values on a service configuration.

The following example code provides information about using the APl method.

" Note:

From ServiceConfigurationltem, get the characteristics and then delete the
ServiceConfigurationltemCharacteristics to remove the characteristic values.
If only one particular characteristic needs to be deleted for the
ServiceConfigurationltem, then a name match should be compared before
deleting the ServiceConfigurationltemCharacteristic.

Example 3-35 Unsetting Characteristic Values for the Service Configuration

HashSet <Servi ceConfi gurationltenCharacteristic> characteristics =
servi ceConfigltem get Characteristics();

I'terator<ServiceConfigurationltenCharacteristic>itr =
characteristics.iterator();

while (itr.hasNext())
{
ServiceConfigurationltenCharacteristic characteristic = itr.next();
if characteristic.getNane().equal s("nyNane")
itr.remove();}

Transitioning the Lifecycle Status

ORACLE

The transition APIs are used for transitioning the lifecycle status of a given entity which
implements the LifeCycleManaged interface. The state transition rules are defined in
the *-transitions.xml files.

Table 3-39 and example code provide information about using the API method.

Table 3-39 Transitioning the Lifecycle Status
|

Topic Information
Name TransitionManager.transition
Description Transitions a LifeCycleManaged entity by finding the matching

transition definition which has the business action defined and the
object activity defined the same as the input parameters, and which
from business state matches the entity's business state.

Pre-Condition TransitionManager.isValidTransition has successfully validated that the
specified business action can trigger the transition of either the
business state or the object state.

3-48

Chapter 3
Transitioning the Lifecycle Status

Table 3-39 (Cont.) Transitioning the Lifecycle Status

O
Topic Information

Internal Logic Finds a matching transition definition. For a version object it matches
on business action and object activity only. Other objects are matched
from most specific to least specific in the following order:

1. Match businessAction, objectActivity, entity type, and the
specification.

2. Match businessAction, objectActivity, entity type.
3. Match businessAction, objectActivity.

Switches to a Business Interaction context if applicable and updates
the business or object state of the object and its dependents based on
the transition definition.

Post-Condition The object state or business state is updated.

Extensions BusinesslinteractionSpec_TransitionManager_validateBusinessStateTr
ansitions
BusinessinteractionSpec_TransitionManager_validateObjectStateTran
sitions

Tips See UIM Developer's Guide for more information.

Example 3-36 Transitioning the Lifecycle Status

Transi ti onManager transitionManager =
Per si st enceHel per. makeTr ansi ti onManager (service);

bool ean success = fal se;
success = transitionManager.transition(service, ServiceAction. COWPLETE);

Example 3-37 Performing Operations Under Business Interaction Context

To perform operations such as assign, unassign, reference, or unreferenced and set, unset,
or modify characteristics, you need to make sure the business interaction context is set
before executing the code.

Add the following code before executing the code:

Busi nessinteraction currentBl =
(Busi nessl nteraction)User Envi ronnment Fact ory. get Busi nessl nteraction();

if(currentBl == null){Businesslnteraction bi =
(Businesslnteraction)f.findByld(Businessinteraction.class, "bild").iterator().next();
currentBl = bi;

}
Busi nessl nteracti onManager bi Myr = Persi st enceHel per. makeBusi nessl nt eract i onManager () ;

bi Myr. swi tchContext (currentBl, null);

After the operation is complete, block the switch back to the current context by entering the
following code:

currentBl = null;
bi Myr. swi tchContext (currentBl, null);

ORACLE 3-49

Chapter 3
Creating a Property Location

Creating a Property Location

Example 3-38 provides information about creating a property location.
Example 3-38 Creating a Property Location

Fi nder finder = null;
PropertylLocation propertyLocation = null;
PropertyAddress propertyAddress = nul | ;
FeedbackPr ovi der | npl . get FeedbackProvi der().reset();

try {

Locati onManager | ocationManager =
Per si st enceHel per. makeLocat i onManager () ;
finder = PersistenceHel per. makeFi nder();
Busi nessl nt eracti onManager bingr =
Per si st enceHel per. makeBusi nessl nt eracti onManager () ;
bi ngr. swi tchContext ((String)null, null);
String networkLocationCode ="ALLNTX";
PropertyLocation networkLocation =
this.findNetworkEntityLocation(networkLocationCode);
//1f PropertylLocation is not already created then only create it
if (networkLocation == null) {
FeedbackProvi der I npl . get FeedbackProvi der().reset();
propertyAddress = | ocati onManager . makePr opertyAddress();
propertylLocation = | ocati onManager. makePropertylLocation();
propertyAddress. set Street Address("ALLNTX street1");
propertyAddress.setGity("ALLN cityl"));
propertyAddress. set State("TXL");
propertyAddress. set Country("US");
propertyAddress. set|sValidated(true);
propertyAddress. set | sNonVal i dat edAddr essAccept ed(fal se);
propertyAddress. set | sPri maryAddress(true);
Set <Propert yAddress> addressSet =
new HashSet <Propert yAddress>(1);
addr essSet . add(propertyAddress);
propertylocation. set PropertyAddresses(addressSet);
propertylLocation. set Net wor kLocat i onCode(net wor kLocat i onCode) ;
propertylocation. setlLatitude("34");
propertylocation. setLongitude("75");
Col | ection<PropertyLocation> list =
new ArraylLi st <PropertyLocation>(1);
|'ist.add(propertyLocation);
Li st<PropertylLocation> propLocobjects =
| ocati onManager . cr eat ePropertyLocation(list);
networ kLocati on = proplLocobjects. get (0);
net wor kLocat i on. connect () ;
}
Li st <Net wor kEnt i t yCode> networ kEnt it yCodes =
new ArrayLi st <Net wor kEntityCode>();
List<String> NECs = {"0, 1, 2,3,4"};
if (TUtils.isEnpty(NECS)) {
for (String necStr : NECs) {
Net wor KEnt i t yCode exi stingNeC =
this. findNetworkEntityCode(networkLocation, necStr);
if (existingNEC == null) {
Net wor kEnt i t yCode nec =
| ocat i onManager . makeNet wor kEnt i t yCode() ;
nec. set Nane(necStr);

ORACLE 3-50

Chapter 3
About Undo Actions

net wor kEnt i t yCodes. add(nec) ;

}
}
if (!Wils.isEnpty(networkEntityCodes)) {
| ocati onManager . associ at eNet wor kEnt i t yCodeToNet wor kLocat i on(net wor kEnti t yCodes,

net wor kLocati on);

}

Referring Property Location to a Service Configuration Item

A property location can be referenced to service configuration item. It cannot be assigned to
any service configuration item.

See "Referencing the Resource to a Configuration Item" for more information.

About Undo Actions

You can Undo and unassign a resource for a configuration item that is in Pending Unassign
status.

This transition happens when all the following conditions are met:
* The resource is in a pending status in the current configuration.

* The current configuration is in progress.

* The resource belongs to a configuration item in an earlier configuration for the same
service.

* The earlier configuration is also in progress.

Table 3-40 Reallocating a Resource on the Service Configuration Item
|

Topic Information

Name BaseConfigurationManager.reallocateEntityConfigurationltems(Collection<E
> configurationltems)

Description This method reallocates the de-allocated entities on a given configuration
item.

The configuration version cannot be in a completed or cancelled state.

Pre-Condition A service configuration item exists on which an assignment was just
unassigned.

Internal Logic The assignment state on the consumable resource is transitioned back to
ASSIGNED state.

Post-Condition The resource is assigned again.

Extensions Not Applicable

Tips Not Applicable

You can undo the removal of a resource reference for a configuration item that is in Pending
Un-reference status. This transition happens when all the following conditions are met:

* The resource is in a pending status in the current configuration.

ORACLE 3-51

ORACLE

Chapter 3
About Undo Actions

* The resource is in a pending status in the current configuration.

* The resource belongs to a configuration item in an earlier configuration for the
same service.

* The earlier configuration is also in progress.

Table 3-41 Referencing a Resource on the Service Configuration Item

O
Topic Information

Name BaseConfigurationManager.rereferencelnventoryConfigurationltems(C
ollection<E> configurationltems)

Description This method reallocates the de-allocated entities on a given
configuration item.

The configuration version cannot be in a completed or cancelled state.

Pre-Condition A service configuration item exists on which an assignment was just
unreferenced.

Internal Logic The assignment state on the consumable resource is transitioned back
to REFERENCED state.

Post-Condition The resource is referenced again.

Extensions Not Applicable

Tips Not Applicable

Example 3-39 Referencing the Resource to a Configuration Item

Finder f = null;
BaseConfi gurati onManager bcd = null;

try {
f = PersistenceHel per. makeFi nder ();

Per si st enceHel per . makeBusi nessl nt eract i onManager (). swi tchCont ext ((String)nul |, nul
1);
Servi ceConfi gurationVersion configuration =
f.findByName(Servi ceConfigurationVersion.class, configld).iterator().next();
I nvent oryConfigurationltemicToAssign = null;
Col | ection<l nvent oryConfigurationlten> dereferenceList = new
ArraylLi st <l nventoryConfigurationltens();

for (InventoryConfigurationltemic : configuration.getConfigltens()) {
i f (ConfigurationType. CONFI G equal s(ic. getConfigType()))
conti nue;

if(ic.getReference() !'= null){

Per si st enceHel per . makeBusi nessl nt eract i onManager (). swi t chCont ext (confi guration, nu

ADE

i f(ConfigurationReferenceState. PENDI NG_UNREFERENCE. equal s(((Confi gurati onReferen
ce)ic.getReference()).get AdminState()) && ic.getDepChildConfiglten() == null){
deref erenceli st. add(ic);
}
}
}

f.reset();

Cust ombj ect coToAssi gn = f.findByName(Cust onbj ect. cl ass,
"CO2_ASSI GNO009").iterator().next();

3-52

Chapter 3
About Undo Actions

bcd = Persi stenceHel per. makeConfi gur ati onManager (confi guration. getC ass());
bed. rereferencel nvent oryConfi gurationltenms(dereferencelist);

} catch (Throwable t) {
catchThrowabl e(t, ut);
} finally {
if (f '=null) {
f.close();
}
}

ORACLE 3-53

Implementing a Channelized Connectivity
Enablement Scenario

This chapter describes implementing a channelized connectivity enablement scenario using
various Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APIs). You can use this information to gain a better understanding of how the UIM
APIs can be used to implement any channelized connectivity enablement scenario.

About the Channelized Connectivity Enablement Scenario

Figure 4-1 shows the process flow for a channelized connectivity enablement scenario:

Figure 4-1 Process Flow for a Generic Channelized Connectivity Scenario

Create Create Create I Enable
O—r Property » Logical Channelized Channelized —»O
Location Device Connectivity Connectivity
T | | T
| | | |
¥ ¥ ¥ ¥
Associate Associate LD Confiaure Search for
Metwork with Network Ca agci Channelized
Entity Codes Entity Codes pacity Connectivity
1 T
| |
¥ ¥
G";ﬂf‘:m Perform
Termination Gap Analysis
T
|
¥
Add Segments
to Connectivity
Path

This process flow begins with creating a property location and associating network entity
codes with the property location. The network entity codes are used in subsequent steps in
the process flow, such as associating them with logical devices.

ORACLE 4-1

Chapter 4
Creating a Property Location and Associating Network Entity Codes

The process flow continues with creating logical devices with device interfaces that
can terminate on the bearer channelized connectivity, and associating logical devices
with the network entity codes previously created. This involves creating logical device
search criteria to find the required logical device specification.

Next is creating channelized connectivity, which represents bearer channelized
connectivity between two network entity codes that define attributes of technology, rate
code, and channelized connectivity function.

The process flow continues by configuring the capacity for the channelized
connectivity to channelize it, and by optionally terminating them on the device
interfaces of logical devices previously created. This is called auto termination of
device interfaces because it also terminates the sub-device interfaces down the
hierarchy to the channels when the channelized connectivity is terminated
automatically. This represents the bearer channelized connectivity that will be used in
enablement in subsequent steps of the process flow.

The process flow continues with creating channelized connectivity to represent the
rider between two network entity codes that define attributes of technology, rate code,
and channelized connectivity function. For a channelized connectivity entity to be
enabled by a channel, its rate code must match or be compatible with the rate code of
the channel.

Next is enabling channelized connectivity, which can be manually done by searching
for and adding the bearer channelized connectivity's channel. This involves creating
channelized connectivity search criteria to search for the bearer channelized
connectivity and selecting the appropriate channel. Enablement can also be done by
adding bearer channelized connectivity through gap analysis to the rider that involves
creating path analysis criteria to search for the bearer channelized connectivity
between a source/intermediate/target property locations or logical devices.

Now that you have a high-level understanding of the channelized connectivity
enablement scenario process flow, each part of the process flow is further described in
the following sections. Each section includes information about the specific UIM APIs
used to perform each step. Example code is also included for each step.

» Creating a Property Location and Associating Network Entity Codes

» Creating a Logical Device and Associating LD Interfaces with Network Entity
Codes

* Creating Channelized Connectivity

* Enabling Channelized Connectivity

Creating a Property Location and Associating Network Entity

Codes

ORACLE

This section describes the UIM APl methods used to create a property location and to
associate network entity codes with the property location.

Table 4-1, Table 4-2, and example code provide information about using the API
methods to create a property location and to associate network entity codes to the
property location.

4-2

ORACLE

Chapter 4
Creating a Property Location and Associating Network Entity Codes

Table 4-1 Creating a Property Location
|

Topic Information

Name LocationManager.createPropertyLocation (Collection<PropertyLocation>
locations)

Description Creates the Property Location instances with the given inputs. User has to

specify one mandatory Primary address as input with which a property
Location has to be created.

Every property location also has a property address associated with it.

Pre-Condition The locations parameter needs to be prepared with necessary attributes
Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable
Tips * The same method is also used to create Network Location when the

Network Location code is populated in the input. As part of creation of
Network location, the same method also enables users to create
Network entity codes corresponding to the Network Location.

e The Location Identifier which is a concatenated Address format is used
to uniquely identify the Property Location.

e If horizontal/vertical coordinates are given as inputs, the latitude/
longitude coordinates are automatically populated for the created
Property Location and vice versa.

Table 4-2 Associating Network Entity Codes with a Property Location
- ___|

Topic Information

Name LocationManager.associateNetworkEntityCodeToNetworkLocation
(List<NetworkEntityCode> entitycodes, PropertyLocation location)

Description This method is called during the association or creation of the network entity
code in the context of property location.

Pre-Condition The location parameter already exists.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips e Check if the network entity code is unique.

e Check for the length of the network entity code.

Example 4-1 Creating a Property Location and Associating Network Entity Codes
with the Property Location

Finder finder = PersistenceHel per. makeFi nder();

PropertylLocation propertylLocation = | ocationManager. makePropertylLocation();
PropertyAddress propertyAddress = | ocati onManager . makePr opertyAddress();
Locati onManager | ocati onManager = PersistenceHel per. makeLocat i onManager () ;

//Set all necessary attributes needed for Property Address and Property Location
propertyAddress. set Street Address((String) paramvap. get ("street Address"));
propertyAddress. set City((String)paranvap.get("city"));

propertyAddress. set State((String)paramvap. get("state"));

propertyAddress. set Country((String)paranmvap. get("country"));

4-3

Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

propertyAddress. setlsVal i dat ed(Bool ean. val uef

((String)paramvap. get ("isValidated")));
propertyAddress. set | sNonVal i dat edAddr essAccept ed(true);
propertyAddress. set | sPri maryAddress(true);
Set <Propert yAddress> addressSet = new HashSet <Propert yAddress>(1);
addr essSet . add(propertyAddress);
propertylocation. set Propert yAddresses(addressSet);
propertylocation. set Net wor kLocat i onCode(" PLANO');
propertylocation. setlatitude("34");
propertylocation. setLongitude("54");

Col | ection<PropertylLocation> |ist = new ArrayLi st <PropertyLocation>(1);
|'ist.add(propertyLocation);
Li st<PropertylLocation> propLocobjects =

| ocati onManager . createPropertylLocation(list);
networ kLocati on = proplLocobjects. get(0);
Li st <Net wor KEnt i t yCode> networ kEntityCodes = new ArrayLi st <Networ kEntityCode>();
Net wor kEnti t yCode nec = | ocati onManager. makeNet wor kEnt it yCode();
nec. set Nane(necStr);
net wor kEnt i t yCodes. add(nec) ;
if ('Uils.isEnpty(networkEntityCodes))
{

| ocati onManager . associ at eNet wor kEnt i t yCodeToNet wor kLocat i on

(networ kEntityCodes, net workLocati on);

}

Creating a Logical Device and Associating LD Interfaces
with Network Entity Codes

ORACLE

This section describes the UIM APl methods used to create a logical device with
default logical device interfaces, and to associate the logical device interfaces with the
previously created network entity codes.

Table 4-3 and example code provide information about using the APl method to create
a logical device with default logical device interfaces.

Table 4-3 Creating a Logical Device
|

Topic Information

Name LogicalDeviceManager.createLogicalDevice
(Collection<LogicalDevice> logicalDevices)

Description Creates logical device entities and their provided device interfaces and
sub-device interfaces based on the specification.

Pre-Condition Logical device specification with device interfaces is defined and exists
already.

4-4

ORACLE

Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

Table 4-3 (Cont.) Creating a Logical Device

Topic

Information

Internal Logic

Device interfaces can also provide other device interfaces. The
number of device interfaces to be created will be determined by the
minimum value defined in the specification relationships.

The input logical device entities should be sparsely populated with the
specification, hard attributes and characteristics.

The provided device interfaces will be derived based on the
specification. Characteristics will be defaulted based on the
specification. The id of the device interfaces will be generated.

If required characteristics exist for a provided device interface that are
not defaulted, then the logical device will still be created.

Post-Condition

Not applicable

Extensions

Not applicable

Tips

Not applicable

Example 4-2 Creating a Logical Device with Default Logical Device Interfaces

Finder finder = PersistenceHel per. makeFi nder();
Logi cal Devi ceManager | dMgr = Persi st enceHel per. makelLogi cal Devi ceManager () ;

Col | ecti on<Speci fication> specs =
finder.findByName(Specification.class,"|dSpecName");

Logi cal Devi ceSpeci fication | dSpec =
(Logi cal Devi ceSpeci fication)specs.iterator().next();

Logi cal Device |d = | dMyr. makelLogi cal Devi ce();

| d. set Nane("| dName") ;
Id.setld("ldld");

| d. set Specification(ldSpec);
Li st<Logi cal Devi ce> | dLi st = new ArrayLi st <Logi cal Devi ce>();

I dLi st. add(ld):

| dMyr . creat eLogi cal Devi ce(l dList);

The following table and example code provide information about using the API method to
associate a logical device with a network entity code.

Table 4-4 Associating a Logical Device with a Network Entity Code

Topic Information

Name LogicalDeviceManager.updateLogicalDevice (Collection<LogicalDevice>
logicalDevices)

Description This method is intended to update the hard attributes and characteristics of

a logical device.

Pre-Condition

Logical device exists already.

The location of a logical device can only be changed if it does not have any
active consumers or interconnections on the logical device or any of its
device interfaces.

Internal Logic

Not applicable

4-5

Chapter 4
Creating Channelized Connectivity

Table 4-4 (Cont.) Associating a Logical Device with a Network Entity Code

Topic Information

Post-Condition Not applicable
Extensions Not applicable
Tips Not applicable

Example 4-3 Associating a Logical Device with a Network Entity Code

Finder finder = PersistenceHel per. makeFi nder();
Logi cal Devi ceManager | dMgr = Persi st enceHel per. makelLogi cal Devi ceManager () ;
Locati onManager | ocati onManager = PersistenceHel per. makeLocat i onManager () ;

[/ find an existing |ogical device
Logi cal Device |d = finder.findByld(Logical Device. cl ass,
"ldld").iterator().next();

/1 find an existing property location that has network entity code
PropertyLocation pls =

(PropertylLocation)l ocati onManager. fi ndNet wor kKEntityLocation("PLANO');
| d. set PropertylLocation(pls);

Net wor KEnt i t yCodeSearchCriteria criteria =
| ocati onManager . makeNet wor kEnt i t yCodeSearchCriteria();
criteria.setPropertylLocation(pls);

[/find network entity code matching "001"
Li st <Net wor kEnt i t yCode> net wor kEnt it yCodes =

| ocati onManager . fi ndNet wor kEnti tyCodes(criteria);
Net wor kEnt i t yCode networkEntCd = nul | ;

if ('Uils.isEnpty(networkEntityCodes))

{
String networkEntityCod= "001";
for (NetworkEntityCode nec : networkEntityCodes)
if ((pls.getNetworkLocationCode() + "." + networkEntityCode).equals
nec. get Net wor kLocat i onEnt it yCode()))
{
networ KEnt Cd = nec;
}
}
}

| d. set Net wor kEnt i t yCode(net wor KEnt Cd) ;

net wor KEnt Cd. set Logi cal Devi ce(ld);

Li st <Logi cal Devi ce> | dLi st = new ArrayLi st <Logi cal Devi ce>();
| dLi st. add(!d);

| dMyr . updat eLogi cal Devi ce(l dLi st);

Creating Channelized Connectivity

This section describes the UIM APl methods used to:

* Create Channelized Connectivity

» Configure Capacity on the Channelized Connectivity

ORACLE 4-6

Chapter 4

Creating Channelized Connectivity

* Configure Auto Termination on the Channelized Connectivity

Create Channelized Connectivity

ORACLE

Table 4-5 and example code provide information about using the API method to create

channelized connectivity. (You use the same APl method to create the bearer channelized
connectivity and the rider channelized connectivity.)

Table 4-5 Creating Channelized Connectivity

Topic Information

Name ConnectivityManager.createConnectivity(N connectivity, String
aNetworkLocationEntityCode, String zNetworkLocationEntityCode, int
quantity, boolean contiguousSerialAllocation)

Description This method will create channelized connectivity. Valid A Location and Z

Location must be set on the channelized connectivity instance.

Pre-Condition

connectivity already exists.
ora_uim_basetechnologies is already installed.

Two property locations to represent A and Z side of the channelized

Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable
Tips Not applicable

Example 4-4 Creating Channelized Connectivity

String rateCode = "STM,;

String function = "SM)1";

String alLocation = "DALLAS';
String zLocation = "PLANO';

String akEntityCode = "DALLAS. 001";
String zEntityCode = "PLANO 001";
int qtylnt = 1;

bool ean isContiguos = "true";

TDMConnect i vi t yManager manager =
(TDMConnect i vi t yManager) Per si st enceHel per. makeConnecti vi t yManager

Fi nder

(TDMConnectivity. class);

finder = PersistenceHel per. makeFi nder();

Net wor kConnectivity ¢ = manager. makeTDMFaci lity();
Net wor kConnectivity nc = (NetworkConnectivity)c;

String

technol ogy =

finder.findByName(Technol ogy. class, "SDH').iterator().next();
nc. set Technol ogy(technol ogy);

finder.

String

reset();

rateCode =

finder.findByName(Rat eCode. cl ass, "STML").iterator().next();
nc. set Rat eCode(r at eCode) ;

finder.

reset();

4-7

String function

Chapter 4
Creating Channelized Connectivity

finder.findByName(ConnectivityFunction.class,"SM1").iterator().next();

nc. set Connect i vi t yFunction(function);
String alLocationCode = alocati on;
if(!'Wils.isEnmpty(aEntityCode)){

aLocationCode = alocation+"."+aEntityCode;}

String zLocationCode = zLocati on;
if(!Wils.isEnmpty(zEntityCode)){
zLocationCode = zLocation+"."+zEntityCode;}

int tenpQy = qtylnt;

whil e(tempQy >0)

>

99) {
99;}

tempQy;}

Col | ecti on<TDMConnectivity> createdConnectivities =
manager . cr eat eConnectivity(c, alLocationCode, zLocationCode,
gtylnt, isContiguos);

{
if(tempQy
gtyl nt
el sef{
gtyl nt
}

Configure Capacity on the Channelized Connectivity

Table 4-6 and example code provide information about using the API method to
configure capacity on the channelized connectivity.

ORACLE

Table 4-6 Configuring Capacity on the Channelized Connectivity

Topic Information

Name SignalTerminationPointManager.applyCapacityConfiguration
(MultiplexedFacility connectivity, List<RateCode> orderedRateCodes,
String signalAddress)

Description This method configures a connectivity to the required rate code level

and also creates channels at those levels.

Pre-Condition

Not applicable

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

Also call
TDMConnectivityManager.createAndAuto TerminateChannels(M

also adjusted accordingly.

multiplexedFacility, boolean doValidation) to ensure terminations are

Example 4-5 Configuring Capacity on the Channelized Connectivity

Finder finder = PersistenceHel per.makeFi nder();

String connectivityldentifier = "ALLNTXC01 / FRSCTXC01 / STML / SMO1 / 1",
String sourceRateCode = "OMBO";
String destinitionRateCode = "OVB2";

4-8

Chapter 4
Creating Channelized Connectivity

Rat eCode sourceRC =
finder.findByName(Rat eCode. cl ass, sourceRateCode).iterator().next();

Rat eCode destinitionRC =
finder.findByName(Rat eCode. cl ass, destinitionRateCode).iterator().next();

TDMConnect i vi t yManager ngr =
(TDMConnect i vi t yManager) Per si st enceHel per. makeConnecti vi t yManager
(TDVFaci lity.class);

TDMConnectivitySearchCriteria criteria = ngr.makeTDMSearchCriteria();
Criterialtemitem= criteria. mkeCriterialtem);

i tem set Name("connectivityldentifier");

i tem setVal ue("connectivityldentifier);
itemsetQperator(CriteriaQOperator. EQUALS);
criteria.setConnectivityldentifier(item;

TDMFaci lity tdm = mgr.findTDMConnectivities(criteria).iterator().next();

Si gnal Ter ni nat i onPoi nt Manager stpMyr =
Per si st enceHel per. makeSi gnal Ter ni nat i onPoi nt Manager () ;

Li st <Rat eCode> or der edRat eCodes = new Arrayli st <Rat eCode>();
if (sourceRC!= null){

or der edRat eCodes. add(sour ceRC) ; }
if (destinitionRC!= null){

or der edRat eCodes. add(destinitionRC);}

st pMyr . appl yCapaci t yConfi guration(tdm orderedRat eCodes, "");
ngr . cr eat eAndAut oTer mi nat eChannel s(tdm true);

Configure Auto Termination on the Channelized Connectivity

ORACLE

Table 4-7 and example code provide information about using the API method to configure
auto-termination on the channelized connectivity.

Table 4-7 Auto-terminating the Channelized Connectivity

- ___|
Topic Information

Name ConnectivityManager.assignDevicelnterface(E connectivity, Devicelnterface
di, ConnectivityEndpoint endpoint)

Description This method terminates the channelized connectivity with the device
interface at the given end point. Also auto-terminates the channels on the
sub-device interfaces.

Pre-Condition Ensure the capacity is configured at the required level on the channelized
connectivity and the sub-device interfaces are created beforehand until that
level.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-6 Auto-Terminating the Channelized Connectivity

Finder finder = PersistenceHel per.makeFi nder();
String tdmName = "DS3_TDM Tail ";

4-9

Chapter 4
Enabling Channelized Connectivity

String dild = "DS3-1-1";
Connecti vi t yEndpoi nt endPoi nt = Connecti vityEndpoi nt. A ENDPO NT;

Devicelnterface di =
finder.findByld(Devicelnterface.class, dild).iterator().next();
finder.reset();

TDMFaci lity tdm =
finder.findByName(TDMFacility.class, tdmNane).iterator().next();

TDMConnect i vi t yManager manager = (TDMConnecti vit yManager)
Per si st enceHel per. makeConnect i vi t yManager (TDMConnecti vity. cl ass);

tdm = (TDMFaci lity) manager. assi gnDevi celnterface(tdm di, endPoint);

Enabling Channelized Connectivity

This section describes the UIM API methods used to enable channelized connectivity
by:

* Manually Enabling Channelized Connectivity
* Performing Gap Analysis

* Adding Segments To Connectivity Path Based on the Gap Analysis Results

Manually Enabling Channelized Connectivity

ORACLE

Table 4-8 and example code provide information about using the APl method to
manually enable channelized connectivity by manually searching for the channelized
connectivity and adding segments to the connectivity path.

Table 4-8 Manually Enabling Channelized Connectivity

e ___|
Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath(E
connectivityTrail, PipeConfigurationltem connectivityPath,
PipeConfigurationltem gapltem, List<Pipe> bearerList) throws
ValidationException

Description The connectivityTrail parameter is the channelized connectivity that
will be enabled.

The connectivityPath parameter is the PipeConfigurationltem of the
path.

The gapltem parameter is the PipeConfigurationltem of the gap that
will be resolved.

The bearerList parameter contains other connectivities to be added
for enablement.

See Oracle Communications Information Model Reference for
information on PipeConfigurationitem.

Pre-Condition Not applicable
Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable

4-10

Chapter 4
Enabling Channelized Connectivity

Table 4-8 (Cont.) Manually Enabling Channelized Connectivity

O
Topic Information

Tips Not applicable

Example 4-7 Manually Enabling Channelized Connectivity by Searching for the
Connectivity and Adding Segments to the Connectivity Path

String trail Name = "EDI NBURGH 002 / LONDON. 001 / VCl12 / VvCl12 / 1"

[/ want to add connectivities to first path
int pathlndex = "0";

/I Assuming there are other connectivities already added to this path
int gaplndex = "0";

Per si st enceHel per . makeBusi nessl nt eracti onManager (). sw t chCont ext
((String)null, null);

Finder finder = PersistenceHel per.makeFi nder();

Connectivity connectivityTrail =
finder.findByName(Connectivity.class, trailName).iterator().next();

Li st<String> bearers = new ArrayList<String>();

bearers. add(" EDI NBURGH. 001 / EDI NBURGH. 002 / STM4 / SM)4 / 139 1
bearers. add(" EDI NBURGH. 001 / MACHESTER. 001 / STM4 / SM)4 / 139 1
bearers. add("LONDON. 001 / MACHESTER. 001 / STMA / SWD4 / 139 / 1-1-1-2");

")

| 1-1-1-2
| 1-1-1-2")

Li st <Pi pe> bearerList = new ArraylLi st<Pi pe>(bearers.size());
for (String bearerName : bearers)

{
finder.reset();
Pi pe connectivity = finder.findByName
(TDVFaci lity.class, bearerNane).iterator().next();
bearerLi st.add(connectivity);
}

Pi peConfi gurationVersion designVersion =
ConnectivityUtils.getlnProgressDesignVersion((Pipe)connectivityTrail);

Li st <Pi peConfigurationlten> allPaths =
Pi peHel per. get ALl Transport|tens(desi gnVersion);

Pi peConfi gurationltem connectivityPath = al | Paths. get (pat hl ndex) ;

Pi peConfi gurationltem gapltem =
connectivityPath. get Chi | dConfigltens(). get(gapl ndex);

Connectivi tyManager manager = PersistenceHel per. makeConnecti vityManager();
manager . addSegment sToConnect i vi t yPat h
(connectivityTrail, connectivityPath, gapltem bearerlList);

Performing Gap Analysis

ORACLE

Table 4-9 and example code provide information about using the APl method to perform gap
analysis.

4-11

ORACLE

Chapter 4
Enabling Channelized Connectivity

Table 4-9 Performing Gap Analysis

Topic Information

Name List<PathResultSet> findPaths(PipeSpecification enabledPipe,
PathAnalysisCriteria criteria) throws ValidationException

Description The enabledPipe parameter is the channelized connectivity to be

enabled.
The criteria parameter is used in performing gap analysis.

Pre-Condition

Ensure the channelize connectivities that you are expecting the results
are already created, terminated, and their capacity is configured.

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

Not applicable

Example 4-8 Performing Gap Analysis

String sourcelLocati onCode = "EDI NBURGH. 002";
String internediatelLocati onCode = "MACHESTER 001";
String targetLocati onCode = "LONDON. 001";

String rateCodeNane = "VC12";

Locati onManager | ocationManager =
Per si st enceHel per. makeLocat i onManager () ;

Topol ogyQhj ect sour ceNode =

(Topol ogyQhj ect) | ocat i onManager . fi ndNet wor kEnti tyLocati on(sour ceLocati onCode);

Topol ogyQhj ect target Node =

(Topol ogyQhj ect) | ocat i onManager . fi ndNet wor kEnti tyLocati on(target Locati onCode);

Topol ogyQhj ect i nternedi ateNode = nul | ;
if('Uils.isEmty(internediatelLocationCode)){

i nt er nedi at eNode

(Topol ogyQhj ect) | ocati onManager . fi ndNet wor KEnti tyLocati on
(internedi atelLocati onCode);

}

i f(sourceNode ==

|| targetNode == null ||

('Utils.isEnpty(internediatelocationCode) && internediateNode == null)){
throw new ||l egal Argunent Exception("Invalid source/internediate/target");

}

Rat eCode rat eCode

nul |;

Capaci t yManager capacityManager = Persi st enceHel per. makeCapaci t yManager ();
Rat eCodeSearchCriteria rateCodeSC = capacit yManager . makeRat eCodeSear chCriteria();

CriterialtemrateCodeNaneltem = rat eCodeSC. nakeCriterialten();
rat eCodeNarrel t em set Name(r at eCodeNane) ;

rat eCodeNanel t em set Operator (CriteriaCperator. EQUALS);

rat eCodeNarel t em set Val ue(rat eCodeNane) ;

rat eCodeSC. set Nanme(r at eCodeNanelten);

Li st <Rat eCode> rat eCodes = capacit yManager. fi ndRat eCode(r at eCodeSC) ;
if ('Utils.isEnpty(rateCodes)) {

4-12

Chapter 4
Enabling Channelized Connectivity

rat eCode = rateCodes. get(0);

}
i f(rateCode == null){

throw new I |1 egal Argument Exception("Invalid rateCode");
1
Pat hAnal ysisCriteria criteria = new PathAnalysisCriteria();
criteria. set SourceNode(sourceNode);
criteria.setlntermedi at eNode(i nternedi at eNode) ;
criteria.setTarget Node(target Node);
criteria. set RateCode(rateCode);
criteria. setGapAnal ysis(true);

Pat hAnal ysi sManager pat hAnal ysi sManager =
Per si st enceHel per. makePat hAnal ysi sManager () ;

Li st <Pat hResul t Set > pat hs = pat hAnal ysi sManager. findPaths(criteria);

Adding Segments To Connectivity Path Based on the Gap Analysis Results

ORACLE

Table 4-10 and example code provide information about using the API method to add
segments to the connectivity path based on the gap analysis results.

Table 4-10 Adding Segments to Connectivity Path Based on Gap Analysis Results

- ___|
Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath (E connectivityTrail,
PipeConfigurationltem connectivityPath, PipeConfigurationltem gapltem,
PathResultSet path) throws ValidationException;

Description The connectivity Trail parameter is the channelized connectivity that will be
enabled.

The connectivityPath parameter is the PipeConfigurationltem representing
the path to which the segments have to be added.

The gapltem parameter is the PipeConfigurationltem of the gap that will be
resolved.

The path parameter is the results returned from gap analysis. (You can pass
the results retrieved in the previous example. For example, paths.get(0)).

See Oracle Communications Information Model Reference for information
on PipeConfigurationltem.

Pre-Condition Not applicable
Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable
Tips Not applicable

Example 4-9 Adding Segments to Connectivity Path Based on Gap Analysis Results

String trailName = "ED NBURGH. 002 / LONDON. 001 / VC12 / vCi12 /| 1",

/W want to add connectivities to first path
int pathlndex = "0";

/] Assuming there are other connectivities already added to this path
int gaplndex = "0";

4-13

ORACLE

Chapter 4
Enabling Channelized Connectivity

Per si st enceHel per . makeBusi nessl nt eract i onManager (). sw t chCont ext
((String)null, null);

Finder finder = PersistenceHel per.makeFi nder();

Connectivity connectivityTrail =
finder.findByName(Connectivity.class, trailName).iterator().next();

Pi peConfi gurationVersion designVersion =
ConnectivityUils. getlnProgressDesi gnVersion((Pipe)connectivityTrail);

Li st <Pi peConfigurationltenm> allPaths =
Pi peHel per. get ALl Transport|tens(desi gnVersion);

Pi peConfigurationltem connectivityPath = al | Paths. get (pat hl ndex) ;

Pi peConfigurationltem gapltem =
connectivityPath. get Chi | dConfigltens(). get(gapl ndex);

Connectivi tyManager manager = PersistenceHel per. makeConnecti vityManager();
/*Here paths are the path returned by gap anal ysis.
Assuming the first one is the list is selected*/

manager . addSegment sToConnect i vi t yPat h
(connectivityTrail, connectivityPath, gapltem paths.get(0));

4-14

UIM Entity Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) entity manager class names, the package in which they reside, the entities they
manage, and a brief description.

These Java manager classes are found in the uim_managers.jar which is located in the UIM
Software Development Kit (SDK). See UIM Developer's Guide for more information on the
UIM SDK.

Note:

The package references in Table A-1 assume the package prefix of

oracle.communications.inventory.api.

Table A-1 List of UIM Entity Managers
- __________________ |

Manager Name

Package

Managed Entities

Description

ActivityManager

project.activity

Activity
Activityltem
Project

Defines the methods for managing
Activity entities within a Project
along with their Activityltem entities.

AddressRangeManager

place

GeographicAddress

Defines a GeographicAddress
being used as a range.

AssignmentManager

consumer

Assignment

Extends ConsumerManager,
managing Assignment logic.
Assignment such as
PipeAssignment,
EquipmentAssignment.

AttachmentManager

common

Involvement

Administers Attachments and
Involvements, for example
preconfiguring TelephoneNumber
with LogicalDeviceAccount.

BaselnvManager

common

<Base Class>

Provides application-specific
behavior to methods in the
JdoBean. The JdoBean doesn't
know about entities that are specific
to the inventory application.

BOMManager

bom

Activity
Inventory

Defines the methods to support
retrieving Bill of Materials
information as well as populating
additional information on an activity
or resource.

er

BusinesslinteractionManag

businessinteraction

Businesslinteraction

Defines methods for managing

Business Interactions.

ORACLE

A-1

Table A-1 (Cont.) List of UIM Entity Managers
- |

Appendix A

Manager Name Package Managed Entities Description
CapacityManager capacity Capacity Defines the methods for managing
capacity such as
PipeCapacityProvided,
PipeCapacityRequired,
PipeCapacityConsumption.
CharacteristicManager characteristic Characteristics Defines the methods for managing
Characteristics such as
CharacteristicSpecUsage,
CharacteristicSpecValue,
CharacteristicSpecValueUsage.
ConditionManager consumer Condition Extends InventoryManager,
managing Condition logic.
Condition such as PipeCondition,
EquipmentCondition.
ConfigurationManager configuration Configuration Administers a configuration and its
subtypes such as
ServiceConfiguration,
PlaceConfiguration.
ConnectivityManager connectivity Connectivity Defines the methods for managing
Pipe the creation, updates, deletions,
Devicelnterf and retrieving of connectivity data.
eviceinte a.ce This manager references a large
InterConnection number of different entities so the
CrossConnect primary entities are listed here as
the managed entities.
ConsumerManager consumer Assignment Validates resource availability.
Condition
Reservation
CustomNetworkAddressM | custom CustomNetworkAddress Defines the methods for managing
anager CustomNetworkAddress objects.
CustomObjectManager custom CustomObject Defines the methods for managing
CustomObject objects.
EquipmentManager equipment Equipment Defines the methods for managing
EquipmentHolder equipment and provided equipment
PhysicalPort holders, physical ports and physical
ys!ca or connectors of the equipment. This
PhysicalConnector interface also defines the methods
PhysicalDevice for maintaining and finding physical
devices and provided physical ports
and physical connectors of the
physical devices.
FlowldentifierManager networkaddress Flowldentifier Defines the methods for managing
InventoryGroup flow identifiers and relating them to
inventory groups.
InventoryBaseManager inventory InventoryConfigurationltem | Gets and validates inventory
configuration item for configuration.
InventoryGroupManager group InventoryGroup Defines the methods for managing
InvGroupRef inventory groups and related
entities.
ORACLE A-2

Table A-1 (Cont.) List of UIM Entity Managers
- |

Appendix A

Manager Name Package Managed Entities Description

IPAddressManager ip IPAddress Defines the methods for managing
NetworkAddressDomain | P Addresses.

IPNetworkManager ip IPSubnet Defines the methods for creating,
IPAddress deleting, finding, and updating IP
NetworkAddressDomain network objects.

LocationManager location PropertyLocation Defines the methods for managing
PropertyAddress behaviors of property locations.
NetworkEntityCode

LogicalDeviceManager logicaldevice LogicalDevice Defines the methods for managing

Devicelnterface
FlowlInterface

LogicalDevice, Device Interface,
and Flow Interface objects.

LogicalDeviceAccountMan
ager

logicaldevice.accou
nt

LogicalDeviceAccount

Defines the methods for managing
LogicalDeviceAccount objects.

LogicalPhysicalResourceB | resource Contains shared methods and

ase variables for managing logical and
physical resources.

MediaManager media Media Defines the methods for managing

Media objects. Most of the methods
for creating, updating, and deleting
Media objects are deprecated
because the functionality was
replaced in Design Studio.

MediaResourceManager

mediaresource

MediaStream

MediaResourcelLogicalDev
iceRel

Defines the methods for managing
MediaStream objects and its
relationships to LogicalDevice
objects. MediaStream is also a
MediaResource which is an
abstract entity for various types of
media.

MultiplexedConnectivityMa
nager

connectivity

MultiplexedConnectivity
MultiplexedChannel
MultiplexedFacility

Defines the methods for managing
MultiplexedConnectivity objects as
well as creating and retrieving
channels for a facility. This interface
also creates and removes
terminations for a facility.

NetworkAddressBlockMan | networkaddress NetworkAddressBlock Defines methods for managing
ager NetworkAddressBlock objects.
NetworkAddressDomainM | networkaddress NetworkAddressDomain Defines methods for managing
anager NetworkAddressType NetworkAddressDomain objects.
NetworkManager network Network Defines methods for managing
NetworkNode Network, NetworkNode, and
NetworkEdge NetworkEdge objects.
NetworkReconfigurationAc | project.activity Network Defines methods for managing
tivityManager NetworkNode Network, NetworkNode, and
NetworkEd NetworkEdge objects, and their
etworkidge relationships to Activities.
ORACLE

A-3

Appendix A

Table A-1 (Cont.) List of UIM Entity Managers
- |

Manager Name Package Managed Entities Description
NetworkReconfigurationM | network Network Defines methods for managing
anager NetworkNode Network, NetworkNode, and
NetworkEd NetworkEdge objects for Network
etworkidge Configuration scenarios.
PacketConnectivityManag | connectivity NetworkConnectivity Defines the methods for creating
er Packet Network Connectivity
objects.
PartyManager party Party Defines the methods for managing
Party objects.
PathAnalysisManager topology TopologyEdge Defines the methods for finding
ToplogyNode paths of interconnected
TopologyEdge and TopologyNode
objects.
PipeConfigurationManager | connectivity PipeConfigurationVersion | Defines the methods for managing
PipeConfigurationltem Pipe Configurations and their
. related entities.
Pipe
PipeTerminationPoint
PipeManager connectivity Pipe Defines the methods for managing
PipeTerminationPoint Pipe and PipeTerminationPoint
objects.
PlaceConfigurationManag | place PlaceConfiguration Defines the methods for managing
er PlaceConfiguration objects.
PlaceManager place GeographicPlace Defines the methods for maintaining
GeographicAddress GeographicPlace objects and their
. . concrete subclasses.
GeographicLocation
GeographicSite
ProductManager product Product Defines the methods for managing
Product objects.
ProjectManager project Project Defines the methods for managing
Project objects.
ReservationManager consumer Reservation Extends ConsumerManager,
managing Reservation logic.
Reservation such as
PipeReservation,
EquipmentReservation.
RoleManager role Role Defines methods for managing Role
objects.
SecurityManager admin User Defines the methods for managing
Role User, Role, Partition, and
Partition SecurityPolicy objects.
SecurityPolicy
ServiceConfigurationMana | service ServiceConfigurationVersi | This manager is used to configure a
ger on service using configuration versions
ServiceConfigurationltem | and items.

ORACLE

A-4

Table A-1 (Cont.) List of UIM Entity Managers
- |

Appendix A

Manager Name Package Managed Entities Description
ServiceConnectivityManag | connectivity ServiceConnectivity This manager is used to create
er ServiceNetwork service connectivity objects with
ServiceConfi tionVersi and without a
Osrwce onfigurationversi ServiceConfigurationVersion.
ServiceManager service Service Defines the methods for managing

Service objects.

SignalTerminationPointMa
nager

signalterminationp
oint

SignalTerminationPoint
TrailTerminationPoint

ConnectionTerminationPoi
nt

Defines methods for managing
Signal Structure and
SignalTerminationPoint.

SpecManager

specification

Specification

Administers a specification and its
subtypes such as PipeSpecification,
EquipmentSpecification.

TagManager

tag

Tag

Defines the methods for managing
Tag objects.

TDMConnectivityManager

connectivity

TDMChannel
TDMFacility

Defines the methods for managing
TDMChannel and TDMFacility
objects.

TelephoneNumberManage
r

number

TelephoneNumber

Defines the methods for managing
TelephoneNumber objects.

TopologyManager

topology

TopologyEdge
TopologyNode

Defines the methods for managing
TopologyEdge and ToplogyNode
objects.

TransitionManager

common

Transitions an entity's business and
object states by finding the
matching transition definitions with
business action, object activity,
entity type, and specification. If the
definition's from state matches the
entity's state, then the entity's state
is set to the definition's to state.

VirtualNetworkManager

network

Network

NetworkNode
NetworkEdge
FlowlInterface
Flowldentifier

Defines the methods for managing
Virtual Networks, Service Networks,
and Packet Virtual Network objects.

WorkflowManager

businessinteraction

EngineeringWorkOrder
Checklist
Activity

Defines the methods for managing
Engineering Work Orders and
Activities. This manager also
updates Activity properties like
duration and their checklists and,
also transitioning an Activity's
status.

ORACLE

A-5

NFV Orchestration Java Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) NFV Orchestration Java manager names, the package in which they reside, and a brief

description.

These Java manager classes are found in the nso_managers.jar which is located in the UIM

Software Development Kit (SDK). See UIM Developer's Guide for more information on the

UIM SDK.

Table B-1 contains the list of Java managers in alphabetical order by manager name.

< Note:

The package references in Table B-1 assume the package prefix of
oracle.communications.inventory.nso.

Table B-1 List of NFV Orchestration Java Managers

Manager Name

Package

Description

DescriptorManager

api.descriptor

Defines numerous find methods for retrieving the descriptors
and specifications for Network Services, VNFs, PNFs and
orchestration requests.

EMSManager

api.ems

Defines the methods for finding, creating, updating and
deleting EMSs, which perform the typical management
functionality for one or several VNFs.

NetworkServiceDesignManager

api.c2a

Defines the methods for creating, disconnecting and changing
the configuration version for a Network Service.

NetworkServiceManager

api.ns

Defines various methods to instantiate, activate, terminate and
update Network Service entities. This manager also includes
several find methods for Network Services and methods for
Design and Assign of various Network Service entities.

NFVIManager

nfvi

Defines the methods for managing the NFV infrastructure.
This manager includes methods to create, get and delete
objects such as flavors, ports, networks and virtual routers for
the VIM. By default, NFV Orchestration supports integration
with OpenStack, but you can implement this interface to
provide integration to a custom VIM, for instance supporting
VMware vCloud.

NSONotificationManager

api.ns

Defines the methods to process a notification. This manager
provides the mechanism to extend and provide your own
custom required notifications.

ORACLE

B-1

Appendix B

Table B-1 (Cont.) List of NFV Orchestration Java Managers
|

Manager Name

Package

Description

NSOResponseManager

api.ns

Defines the methods to aid in sending a response to a topic in
the WebLogic server. By default, NFV Orchestration includes a
response manager that publishes the status of the VNF and
Network Service life-cycle operations to a topic. You can also
implement this interface to provide a custom response
manager.

PNFManager

api.pnf

Defines the methods to find, create, update, delete, and
manage PNFs.

PNFServiceDesignManager

api.c2a

Defines the methods to process the actions performed during
a PNF addition to a Network Service or termination from a
Network Service.

ResourceOrchestrationManager

api.ro

Defines the methods used to choose a data center based on
the requirement to provision a Network Service. An instance
can be obtained from the NSOHelper class.

SBSytemManager

api.sb

Defines the south-bound system manager providing methods
to manage the VNF, such as reboot, replace, upgrade, scale
and instantiate. You can implement this interface to integrate
NFV Orchestration with a third-party VNF manager or Oracle's
VNF Manager.

SDNController

nfvi

Defines the methods to create, update, and delete network
forwarding paths (NFPs) for VNF forwarding graphs
(VNFFGs). By default, NFV Orchestration supports integration
with OpenStack Neutron Networking-SFC (Service Function
Chaining) using Open vSwitch (OVS) driver, but you can also
implement a custom SDN controller.

VNFCapabilityServiceManager

api.vnf.capabili
ty

Defines the methods to configure a VNF service. This also
contains a designAndAssign() method, as well as the
issueConfigurationVersion() method.

VNFConfigManager

nfvi

Defines the methods to return the configuration files of a VNF
and generates configuration content for VNF configuration.
You can implement this interface to extend the VNF manager
functionality and its configuration files.

VNFConnectionManager

nfvi

Defined the methods to connect and configure a VNF. You can
implement this interface to extend the VNF manager
functionality for these methods.

VNFLifeCycleManager

nfvi

Defines methods to manage the life cycle of a VNF, such as
instantiate, reboot and terminate. You can implement this
interface to extend the VNF manager functionality for these
methods. By default, NFV Orchestration manages the VNF
life-cycle operations by using OpenStack Compute services
(referred to as Nova), but you can also implement and use a
custom VNF life-cycle manager.

VNFMonitoringManager

nfvi

Defines the methods to manage the monitoring of a VNF, such
as create, get and update alarms. By default, NFV
Orchestration supports integration with OpenStack Ceilometer,
but you can also implement and use a custom monitoring
engine.

VNFServiceDesignManager

api.c2a

Defines the methods for creating, disconnecting and changing
the configuration version for a VNF.

ORACLE

B-2

Appendix B

Table B-1 (Cont.) List of NFV Orchestration Java Managers
|

Manager Name

Package

Description

VNFServiceManager api.vnf

Defines various methods to instantiate, activate, terminate and
update VNFs. This manager also includes several find

methods for VNFs.

ORACLE

See UIM NFV Orchestration Implementation Guide for more information on extending the

Java managers.

B-3

Common Utility Code Examples

This appendix provides example code of common utilities that are often used when working
with the Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APIS).

Example C-1 Common Utility Code

public bool ean hasErrors()

{
bool ean hasErrors = fal se;
User Envi ronment user Envi ronment = User Envi ronnment Fact ory. get User Envi ronnment () ;
if (userEnvironnment !'= null)
FeedbackProvi der feedbackProvider = userEnvironnent. get FeedbackProvider();
hasErrors = feedbackProvi der. hasMessages(FeedbackLevel . ERROR) ;
}
return hasErrors;
}

public FeedbackProvi der getFeedbackProvi der ()

{
FeedbackProvi der feedbackProvider = null;
User Envi ronment user Envi ronment = get User Envi ronment () ;
if (userEnvironnment != null)
f eedbackProvi der = userEnvironnent. get FeedbackPr ovi der ();
return feedbackProvider;
}

protected static void comit OrRol | back(User Transaction ut)throws Exception

{
FeedbackProvi der feedbackProvider =
get User Envi ronnent () . get FeedbackPr ovi der () ;
i f (feedbackProvider.hasMessages(FeedbackLevel . ERROR))
{
if (ut '=null && ut.getStatus() == Status.STATUS_ACTI VE)
ut. rol | back();
}
el se
{
if (ut '=null && ut.getStatus() == Status. STATUS_ACTI VE)
ut.comit();
}
}

protected static UserEnvironnent startUserEnvironment()throws Exception

{

User Envi ronnment user Envi ronment = nul | ;

try {
User Envi ronment = get User Envi ronnent () ;

ORACLE C-1

ORACLE

}

Appendix C

if (userEnvironnment != null)

{
/I Reset the User Context in User Environnent.
user Envi ronnent . reset () ;
/1 Begin the UserEnvironnent before it is first used.
user Envi ronment . begi n() ;
/I Reset the Feedback Provider in User Environnent.
user Envi ronment . get FeedbackProvi der (). reset();

}

catch (Exception e) {

}

e.printStackTrace();
throw e;

return userEnvironnent;

protected static void endUser Envi ronnent (User Envi ronnent user Envi ronnent)

{

if (userEnvironment == null)

return,

user Envi ronnent . get FeedbackProvi der (). reset();
user Envi ronment . end() ; }

protected static UserEnvironnent getUserEnvironnent() throws Exception

{

User Envi ronnment user Envi ronment = nul | ;
try {

}

I1Wils is oracle.comunications.platformutil.Uils
Initial Context initialContext = Utils.getlnitial Context();
String jndi ContextNane = "inv";

String userEnvironment Name = "User Envi ronnent";

user Envi ronment = (User Environment)initial Context.|ookup
(j ndi Cont ext Name + "/" + user Envi ronment Nane) ;

initial Context.close();

catch (Exception e) {

}

e.printStackTrace();
throw e;

return userEnvironnent;

C-2

Frequently Used APIs for Design and Assign
Methods

This appendix provides pointers to the design and assign methods of APIs that are frequently
used when working with the Oracle Communications Unified Inventory Management (UIM)
application programming interfaces (APIs).

You can download this technology pack, use the methods, and see code examples for
common business solutions. You can also include this package in your custom solution to
have numerous classes that are available.

Reference UIMTECHPACK Cartridge

Java package: OracleComms_UIM_DesignAndAssign_Common
oracle.communications.inventory.api.dna.ServiceDesigner

Table D-1 oracle.communications.inventory.api.dna.ServiceDesigner

Topic Class/Method

oracle.communications.invent | ServiceDesigner.create(String serviceld, String serviceSpecificationName)

ory.api.dna. ServiceDesigner | pescription: Creates a service with the given service ID and the specification
name.

getParentService ServiceDesigner.getParentService(Service service)

Description: Returns the parent service in which the given service is
assigned.Parent service to child service is not directly between two service entities
like other entities. But it is done using assignment of child services to a
configuration item of a parent service's configuration.

relating child service to a ServiceDesigner.addService(Service parentService, Service newService, String
parent service configltem)

Description: Creates a hew configuration item with the given name in the parent

service active configuration and assigns the new service to it. This is how parent-

child relationship is created between services. This is a typical example of relating
a CFS (Customer Facing Service - parent service) and an RFS (Resource Facing
Service - child service).

relateServiceToParty ServiceDesigner.relateServiceToParty(ServiceConfigurationVersion scv, Party
party,String roleSpec)

Description: This method relates the given party to the given service.

getAssociatedService ServiceDesigner.getAssociatedService (Businessinteraction businessinteraction)

Description: Returns the list of Service Entities associated to the given Business
Interaction via Configuration Version.

ORACLE D-1

Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

getService

ServiceDesigner.getService(String serviceld, String extObijld)

Description: This method gets the service using the service ID. If the service ID is
not specified, the service is retrieved based on the service external object ID.

updateServiceCharacteristic

ServiceDesigner.updateServiceCharacteristic(Service service, String charName,
String charValue);

Description: Finds and creates a new characteristic on the service with the
provided charName and populates the provided value.

getAssignedService

ServiceDesigner.getAssignedService(ConsumableResource resource)
Description: Returns the assigned service for a given consumable resource.

getAssignedServiceConfigVer
sion

ServiceDesigner.getAssignedServiceConfigVersion(ConsumableResource
resource)

Description: Returns the current active configuration in which the given
consumable resource is assigned.

updateConfigltemCharacterist
ic

ServiceDesigner.updateConfigltemCharacteristic(ServiceConfigurationltem
configltem, String charName, String charValue)

Description: Updates the characteristic of the Service Configuration Item.

assignEntity

ConfigurationDesignerimpl.assignEntity(Configurable configurable,
ConsumableResource entity, String config-ltemName)

Description: Assigns a given consumable resource entity to the given
configurable entity (Service, Logical Device, Site, network and so on) and
associates to the provided Configuration Item.

referenceEntity

ConfigurationDesignerimpl.referenceEntity(Configurable configurable,
ConfigurationReferenceEnabled entity, String configltemName)

Description: References a given entity to the given configurable entity (Service,
Logical Device, Site, network and so on) and associates it to the provided
Configuration Item.

getAssociatedVersions

ConfigurationDesignerlmpl.getAssociatedVersions(String bild, String extObijld)

Description: Returns the list of Inventory Configurations associated to the given
Business Interaction. Either bild or extObjld are required.

getAssociatedConfigurableEn
tity

ConfigurationDesignerimpl.getAssociatedConfigurableEntity(Businessinteraction
businessinteraction)

Description: Returns the list of Configurable Entities (Service, Logical Device,
Device Interface, Network and so on) associated to given Business Interaction via
Configuration Version.

getPreviousVersion

ConfigurationDesignerlmpl.getPreviousVersion(InventoryConfigurationVersion
version)

Description: Returns the latest previous completed configuration version.

getBusinesslinteractionltems

ConfigurationDesignerlmpl.getBusinessinteractionltems(Businessinteraction bi)

Description: Returns the list of all Business Interaction Items associated to given
Business Interaction.

getBusinesslinteraction

ConfigurationDesignerlmpl.getBusinessinteraction(String bild, String extObjld)

Description: Returns the Business Interaction for the Business Interaction id or
External Object Id. Either bild or extObjld are required.

ORACLE

D-2

Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

getConfigurationProperty

ConfigurationDesignerimpl.getConfigurationProperty(InventoryConfigurationltem
item, String name)

Description: Returns the value of a characteristic associated to the configuration
item.

getConfigurationltem

ConfigurationDesignerlmpl.getConfigurationltem(InventoryConfigurationVersion
ConfVersion, String name)

Description: Returns a configuration item with the given name associated to the
provided Configuration Version.

isValidConfigltemCharacteristi
c

ConfigurationDesignerlmpl.isValidConfigltemCharacteristic
(InventoryConfigurationltem item, String charName)

Description: Checks if the given characteristic belongs to the given configuration
item.

addChildConfigltem to a given
parentltem

ConfigurationDesignerimpl.addChildConfigltem(InventoryConfigurationVersion
configVersion, InventoryConfigurationltem parentitem, String childitemName)

Description: Creates the child configuration item under the parent configuration
item provided.

getLatestConfigurationVersion
ForState

ConfigurationDesignerlmpl.getLatestConfigurationVersionForState(Configurable
configurable, BusinessinteractionState state)

Description: This method gets the latest configuration version for a given
configurable entity (Service, Logical Device, Network etc.) using the given state as
the criteria.

checkltemAssignedReference
d

ConfigurationDesignerimpl.checkltemAssignedReferenced(InventoryConfiguration
Version configVersion, InventoryConfigurationltem entityConfigltem)

Description: Checks if the configuration item has a assignment or reference.

getConfigurationVersion

ConfigurationDesignerlmpl.getConfigurationVersion(Configurable configurable,
String configSpecName)

Description: This method determines if an in-progress version exists before
creating a new one. If a completed version exists, then it uses that to create the
next version. If neither an in-progress or completed version exists, it uses the
configuration specification to create the first configuration version for the
configurable entity such as a service.

getConfigurationltems of an
assignment object

ConfigurationDesignerimpl.getConfigurationltems(Assignment assignment,
InventoryConfigurationVersion scv)

Description: Returns the configuration items based on the assignment object
provided.

getConfigurationltems of an
reference object

ConfigurationDesignerimpl.getConfigurationltems(InventoryConfigurationVersion
scv, ConfigurationReference reference)

Description: Returns the Configuration Items based on the reference object
provided.

createConfigurationVersion

ConfigurationDesignerimpl.createConfigurationVersion(Configurable configurable,
String configSpec)

Description: This method will use the configuration specification to create the

configuration version for the given configurable entity.

ORACLE

D-3

Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

getConfigltemByNameAndPar
ent

ConfigurationDesignerimpl.getConfigitemByNameAndParent(InventoryConfigurati
onVersion scv, String itemName, String parentName)

Description: Returns the configuration item with the given name.If parentName is
not null the method will make sure that the item is child of parent item before
returning.

setConfigltemCharacteristics

ConfigurationDesignerlmpl.setConfigltemCharacteristics
(InventoryConfigurationltem configltem, String propertyName, String value)

Description: If a Characteristic with this name already exists, then this method will
update the value. Otherwise creates a new characteristic.

referenceEntityToConfiguratio
n

ConfigurationDesignerlmpl.referenceEntityToConfiguration(ConfigurationReferenc
eEnabled resource, InventoryConfigurationVersion config, String configltemName)

Description: Reference a given resource to the configuration item in the given
configuration version.

assignEntityToConfiguration

ConfigurationDesignerlmpl.assignEntityToConfiguration(InventoryConfigurationVer
sion configuration, ConsumableResource consumableResource, String
configltemName, String parentConfigltemName, boolean
switchToConfigurationContext)

Description: Assigns a given resource to the configuration item in the given
configuration version.

switchToConfigurationContext: If set to true, ensures that the assignment is done
under configuration context.

switchToConfigurationContext: If set to false, assignment is done in whichever
context is carried in the UserEnvironment at the time of execution, which may
result in wrong assignment depending on the context. Hence, always set
switchToConfigurationContext to true for the right context.

This method also makes sure to set back the context to current or live after the
assignment is done.

referenceEntityToConfiguratio
n

ConfigurationDesignerlmpl.referenceEntityToConfiguration(InventoryConfiguration
Version configuration, ConfigurationReferenceEnabled entity, String
configltemName, String parentConfigltemName, boolean
switchToConfigurationContext)

Description: References a given resource to the configuration item in the given
configuration version.

getConfigSpecByResourceSp
ec

ConfigurationDesignerlmpl.getConfigSpecByResourceSpec(Specification
resourceSpecification, Specification configurationSpec)

Description: Returns the Configuration Item Specification on which this resource
specification can be assigned or referenced in the given Configuration
specification.

getParentConfigSpec

ConfigurationDesignerimpl.getParentConfigSpec(InventoryConfigurationSpec
childSpec)

Description: Returns the parent configuration item specification for a given child
configuration specification.

getActiveConfigurationVersion

ConfigurationDesignerimpl.getActiveConfigurationVersion

Description: This method gets the latest configuration version for a given
configurable Entity like Service, Logical Device, Network, etc.If there is any in
progress configuration version available it returns it.Otherwise it returns the last
completed configuration version.

ORACLE

D-4

Appendix D
Reference UIMTECHPACK Cartridge

oracle.communications.inventory.api.dna. ConnectivityDesigner

Table D-2 oracle.communications.inventory.api.dna. ConnectivityDesignher

Topic

Class/Method

createServiceConnectivity

ConnectivityDesigner.createServiceConnectivity(String connSpec, String
technology,String function, ServiceNetwork serviceNetwork, int serialNumber,

ServiceConfigurationVersion scv, String aLocationName, String zLocationName,
BigDecimal cir, UnitOfMeasure cirUoM, BigDecimal mir, UnitOfMeasure mirUoM)

Description: Helper method used to create Service Connectivity.

oracle.communications.inventory.api.dna. ConnectivityHelper

Table D-3 oracle.communications.inventory.api.dna. ConnectivityHelper

Topic

Class/Method

getAssignedConnectivities

ConnectivityHelper.getAssignedConnectivities(LogicalDevice device, Specification
specification, RateCode rateCode)

Description: Returns the connectivities assigned to any interface on the provided
logical device for the provided device interface specification and rate code.

getConnectivityFromTermi
nation

ConnectivityHelper.getConnectivityFromTermination(Devicelnterface di)
Description: Get the assigned connectivity given the device interface.

getConnectivityUniN

ConnectivityHelper.getConnectivityUniN(Pipe connectivity, String roleName)

Description: Return the Device Interface based on a specific role name. Checks the
Z side first for the role, then checks the A side. The UNI-N is the interface on SP's
(Service Provider's) side of the UNI. Use a device role to identify it.

getDevicelnterfaceRole

ConnectivityHelper.getDevicelnterfaceRole(Devicelnterface di, String roleName)
Description: Returns true if the device interface has a specific role.

getDevicelnterfaceByAssig
nment

ConnectivityHelper.getDevicelnterfaceByAssignment(List<Assignment> assignments,
String roleName)

Description: Return the device interface for a given assignment and role.

findTransportConnectivity

ConnectivityHelper.findTransportConnectivity(LogicalDevice logicalDevice, String
specName)

Description: Returns the first connectivity assigned to a logical device with a specific
connectivity specification name.

findTransportinterface

ConnectivityHelper.findTransportinterface(LogicalDevice logicalDevice, String
specName)

Description: Returns the first device interface found on the logical device with a
specific connectivity assigned with a specific type of connectivity specification. For
example, inter-network transport to the core has a unique connectivity specification.

getFunction ConnectivityHelper.getFunction(String name)
Description: Return the Connectivity Function entity with a specific name.
getTechnology ConnectivityHelper.getTechnology(String name)
Description: Returns the technology entity for a specific name.
getRateCode ConnectivityHelper.getRateCode(String name)
Description: Return the Rate Code entity for a specific rate code name.
ORACLE

D-5

Appendix D
Reference UIMTECHPACK Cartridge

Table D-3 (Cont.) oracle.communications.inventory.api.dna. ConnectivityHelper

Topic

Class/Method

getConnectivityServicelLoc
ation

ConnectivityHelper.getConnectivityServiceLocation(Connectivity connectivity)

Description: Returns the service location for a given connectivity.Assumes there is
only one and checks the A side location first.

hasValidResourceTerminat
ions

ConnectivityHelper.hasValidResourceTerminations(Connectivity connectivity)

Description: Returns true if the connectivity has any resource terminations. For
example, this method can be used to determine if the connectivity has been
terminated to any device interfaces.

oracle.communications.inventory.api.dna. ResourceHelper

Table D-4 oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

findEntityByName

ResourceHelper.findEntityByName(Class<E> entityClass, String name)
Description: Returns the entity object based on the name and class provided

makeEntityCharacteristic

ResourceHelper.makeEntityCharacteristic(CharacteristicExtensible<T> entity)
Description: Returns new Characteristic Value object for the given entity

setCharacteristic

ResourceHelper.setCharacteristic(CharacteristicExtensible<T> entity,
List<PropertyType> properties)

Description: Sets the characteristic value on the given CharacteristicExtensible entity

getSpecification

ResourceHelper.getSpecification(Class<T> specClass, SpecificationType specType)

Description: Returns the Specification object based on the Specification class and
Specification Type Provided

getAdminState

ResourceHelper.getAdminState(InventoryStateEnum.Enum state)
Description: Returns the Inventory State based on the state provided.

getAssignmentState

ResourceHelper.getAssignmentState(AssignmentStateEnum.Enum state)
Description: Returns the AssignmentState based on the state provided

getSpecification

ResourceHelper.getSpecification(Class specClass, String name)

Description: Returns the specification based on the name and specification class
provided.

findFirstEntityByName

ResourceHelper.findFirstEntityByName(Class<E> klass, String name)

Description: Finds and returns the first entity from the result set matching the given
name.Returns null if none found.

findEntityByld ResourceHelper.findEntityByld(Class<E> entityClass, String id)
Description: Finds and returns the entity by given id and class provided.
findEntitiesByName ResourceHelper.findEntitiesByName(Class<E> klass, String name)
Description: Finds and returns the entity by class and name.
findFirstEntityByld ResourceHelper.findFirstEntityByld(Class<E> klass, String id)
Description: Finds and returns the first entity found by class and id.
findEntitiesByld ResourceHelper.findEntitiesByld(Class<E> klass, String id)
Description: Finds and returns a list of entities by class and id.
ORACLE D-6

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

populateCharacteristics

ResourceHelper.populateCharacteristics(T entity, Set<E> characteristics)

Description: Populates the set of characteristics provided on the
characteristicExtensible entity.

populateCharacteristic

ResourceHelper.populateCharacteristic(T entity, E characteristic)

Description: Populates the characteristic provided on the CharacteristicExtensible
entity.

createCustomInvolvement

ResourceHelper.createCustominvolvement(E fromEntity, T toEntity)

Description: Creates Custom Involvement between the given from Entity and the to
Entity.

deleteCustominvolvement

ResourceHelper.deleteCustominvolvement(E fromEntity, T toEntity)

Description: Deletes the custom involvement between the given two entities.First it
tries with the fromEntity and toEntity and find the involvement.If not found it tries other
way around by setting to entity as from entity and to entity as from entity

associateTolnventoryGrou
p

ResourceHelper.associate TolnventoryGroup(InventoryGroup group,
List<GroupEnabled> entities)

Description: Associate the given list of entities to inventory group.

disassociateFrominventory
Group

ResourceHelper.disassociateFromlInventoryGroup(InventoryGroup group,
List<GroupEnabled> entities)

Description: Disassociates the list of entities from the inventory group.

associateToPlace

ResourceHelper.associateToPlace(GeographicPlace parentPlace, GeographicPlace
childPlace)

Description: Associates the child place to parent place.

associateToPlace
Logical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, LogicalDevice
device)

Description: Associates the given Logical Device to the given place.

associateToPlace

Logical Device Account to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace,
LogicalDeviceAccount account)

Description: Associates given Logical Device Account to the given place.

associateToPlace
Physical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, PhysicalDevice
device)

Description: Associates the given Physical Device to the given place.

associateToPlace
Service to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, Service service)
Description: Associates the given Service to the given place.

associateToPlace
Inventory Group to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, InventoryGroup
group)
Description: Associates the given Inventory Group to the given place.

associateToPlace

PipeTerminationPoint to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace,
PipeTerminationPoint ptp)

Description: Associates the given Pipe Termination Point to the given place.

associateToPlace
NetworkNode to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, NetworkNode
node)

Description: Associates the given Network Node to the given place

ORACLE

D-7

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

disassociateFromPlace

ResourceHelper.disassociateFromPlace(GeographicPlace parentPlace, Persistent
entity)

Description: Disassociates the given Persistent entity from the given place.

findInventoryGroup

ResourceHelper.findinventoryGroup(String inventoryGroupName, String
specificationName)

Description: Finds and returns Inventory Group based on the inventory group name
and specification name provided.

findDevicelnterfaces

ResourceHelper.findDevicelnterfaces(LogicalDevice device, Specification
specification,RateCode rateCode, AssignmentState state)

Description: Finds the Device interfaces based on the logical device, specification,
assignment state and rate code.Not all arguments are mandatory.Only non null values
will be added as search criteria.

findAndValidateSpecificati
on

ResourceHelper.findAndValidateSpecification(String specificationName)
Description: Returns only valid specification based on the given name.

findAndValidateSpecificati
on

ResourceHelper.findAndValidateSpecification(Class specClass, String
specificationName)

Description: Returns only valid specification based on the given name and
specification class.

createParty

ResourceHelper.createParty(PartyType type, String partySpecName, String
roleSpecName)

Description: Creates Party based on the party type and specification.If the role
specification is provided it creates party role too.

createPartyRole

ResourceHelper.createPartyRole(Party party, String roleSpecName)

Description: Creates the party role object based on the party object and role
specification name provided.

makeCharValue

ResourceHelper.makeCharValue(CharacteristicExtensible<CharValue>
characteristicExtensible, String charSpecName, String value)

Description: Creates and returns the char value object based on the provided details
for any entity which is CharacteristicExtensible like inventory configuration item,
logical device, Service.Network etc.

findOrCreateLogicalDevice

ResourceHelper.findOrCreateLogicalDevice(String logicalDeviceld, String name,
String specName)

Description: Finds the logical device based on the ID, name and specification
provided. If not found, creates a logical device and returns.

createlLogicalDevice

ResourceHelper.createLogicalDevice(String logicalDeviceld, String specName)
Description: Creates a logical device.

findLogicalDevice

ResourceHelper.findLogicalDevice(String id, String name, String specName)
Description: Finds the logical device based on the provided details.

findConnectivity

ResourceHelper.findConnectivity(String identifier)
Description: Finds the connectivity object based on the provided identifier.

createPropertyAddress

ResourceHelper.createPropertyAddress(String streetAddress, String city, String state,
String postalCode, String country)

Description: Creates the property address based on the details provided.

ORACLE

D-8

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

createPropertyLocation

ResourceHelper.createPropertyLocation(PropertyAddress address)

Description: Creates the property Location of type Service Location based on the
details provided.

findPropertyLocations

ResourceHelper.findPropertyLocations(PropertyAddress address)
Description: Finds and returns the Property Location based on the address provided.

findOrCreatePropertylLocat
ion

ResourceHelper.findOrCreatePropertyLocation(PropertyAddress address)

Description: Finds the property Location with the given address. If available, returns
the entity. Otherwise, creates a new Property Location.

createCritierialtem

ResourceHelper.createCritierialtem(String itemName, CriteriaOperator operator,
InventorySearchCriteria criteria)

Description: Creates and returns the criteria ltem object.

findCustomObjects

ResourceHelper.findCustomObjects(String specName, String customObjectName)

Description: Finds and returns the custom objects with the given criteria.Either Name
or SpecName is mandatory.

findOrCreateCustomObjec
t

ResourceHelper.findOrCreateCustomObject(String customObjectName, String
specName, Set<CustomObjectCharacteristic> chars)

Description: Finds the Custom Object with the given details. If available, returns the
entity. Otherwise, creates a new Custom Object.

createCustomObject

ResourceHelper.createCustomObject(String customObjectName, String specName,
Set<CustomObjectCharacteristic> chars)

Description: Create a Custom Object.

findCharacteristicByName

ResourceHelper.findCharacteristicByName(CharacteristicExtensible entity, String
itemName)

Description: Finds and returns the characteristic value for a specific entity and
characteristic name.

findLogicalDevice

ResourceHelper.findLogicalDevice(String id, String name)
Description: Finds a logical device by ID and name.

findNetworkLocation

ResourceHelper.findNetworkLocation(String networkLocationCode)
Description: Finds and returns a property location using the network location code.

findNetworkEntityCode

ResourceHelper.findNetworkEntityCode(PropertylLocation propertyLocation, String
networkEntityCode)

Description: Finds and returns the Network Entity Code given a property location
and network entity code name.

createNetworkEntityCode

ResourceHelper.createNetworkEntityCode(PropertyLocation networkLocation, String
networkEntityCode, String networkEntityLocationCode)

Description: Creates a Network Entity Code given a property location, network entity
code and network entity location code.

updateBusinessinteraction
Characteristic

ResourceHelper.updateBusinessinteractionCharacteristic(Businessinteraction bi,
String charName, String charValue)

Description: Updates a Business Interaction Characteristic.

updateNetworkCharacteris
tic

ResourceHelper.updateNetworkCharacteristic(Network network, String charName,
String charValue)

Description: Updates a Networks Characteristics.

ORACLE

D-9

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

getBlParameterValue by
BusinessinteractionltemTy

pe

ResourceHelper. getBlParameterValue(BusinessinteractionltemType item, String
paramName)

Description: Returns the value of parameter provided. It can be used to return the
value from a name/value pairs from the Capturelnteraction Payload given the
Parameter name.

getBlParameterValue by

ResourceHelper.getBlParameterValue(List<oracle.communications.inventory.xmlbean

ParameterType s.ParameterType> parameterList, String paramName)
Description: Returns the value of parameter provided. It can be used to return the
value from a name/value pairs from the Capturelnteraction Payload given the
Parameter name.
ORACLE D-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation

	1 Overview
	2 Working with Transactions, Exceptions, and Logging
	Working with Transactions
	Working with Exceptions
	Working with Logging
	Configuring the Logging Level
	Working with the Log Interface
	About UIM Log Messages
	Defining Custom Log Messages
	Working with the FeedbackProvider Interface

	3 Implementing a Generic Service Fulfillment Scenario
	About the Generic Service Fulfillment Scenario
	Querying for the Specification
	Querying for the Specification Using Finder API
	Creating the Service and Service Configuration
	Creating the Service
	Retrieving the Service Configuration Specification
	Retrieving the Service Configuration Specification Using Finder API
	Creating the Service Configuration
	About Alternate Flows
	Changing the Service
	Disconnecting the Service

	Creating and Associating the Party
	Creating the Party
	Creating the Party Role
	Associating the Party and Party Role with the Service
	About Alternate Flows
	Disassociating the Party and Party Role from the Service
	Deleting the Party
	Deleting the Party Role

	Creating and Associating the Geographic Address with the Service
	Creating the Geographic Place
	Creating the Place Role
	Associating the Geographic Place and Place Role with the Service
	About Alternate Flows
	Disassociating the Geographic Place and Place Role from the Service
	Deleting the Geographic Place
	Deleting the Place Role

	Configuring the Resources for the Service Configuration
	Finding the Service
	Finding the Service by ID Using Finder API
	Finding the Current Service Configuration Version
	Finding the Service Configuration Item
	Finding the Custom Object to Assign
	Creating the Custom Object to Assign
	Assigning the Resource to a Configuration Item
	Referencing the Resource to a Configuration Item
	About Alternate Flows
	Unassigning Resources from a Configuration Item
	Reserving a Custom Object
	Unreserving a Custom Object
	Creating a Blocked Condition for a Custom Object
	Deleting a Blocked Condition for a Custom Object

	Setting Characteristic Values for the Service Configuration Item
	Finding Configuration Item and Setting Characteristics
	About Alternate Flows
	Unsetting Characteristic Values for the Service Configuration Item

	Transitioning the Lifecycle Status
	Creating a Property Location
	Referring Property Location to a Service Configuration Item

	About Undo Actions

	4 Implementing a Channelized Connectivity Enablement Scenario
	About the Channelized Connectivity Enablement Scenario
	Creating a Property Location and Associating Network Entity Codes
	Creating a Logical Device and Associating LD Interfaces with Network Entity Codes
	Creating Channelized Connectivity
	Create Channelized Connectivity
	Configure Capacity on the Channelized Connectivity
	Configure Auto Termination on the Channelized Connectivity

	Enabling Channelized Connectivity
	Manually Enabling Channelized Connectivity
	Performing Gap Analysis
	Adding Segments To Connectivity Path Based on the Gap Analysis Results

	A UIM Entity Managers
	B NFV Orchestration Java Managers
	C Common Utility Code Examples
	D Frequently Used APIs for Design and Assign Methods
	Reference UIMTECHPACK Cartridge
	oracle.communications.inventory.api.dna.ServiceDesigner
	oracle.communications.inventory.api.dna. ConnectivityDesigner
	oracle.communications.inventory.api.dna. ConnectivityHelper
	oracle.communications.inventory.api.dna. ResourceHelper

