
Oracle® Communications Solution Test
Automation Platform
User Operations Guide

Release 1.25.1.0.0
G23299-02
May 2025

Oracle Communications Solution Test Automation Platform User Operations Guide, Release 1.25.1.0.0

G23299-02

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Part I Learning About STAP

1 About Solution Test Automation Platform

Introduction to STAP 1-1

Features of STAP 1-1

Benefits of STAP 1-3

Microservice Architecture 1-3

2 Introduction to STAP Behavior-Driven Development Language

Understanding STAP BDD Language 2-1

BDD Use Case 2-2

JSON Data Processing (Release 1.25.1.1.0 or later) 2-3

3 About BDD Operators

String Operators 3-1

Numeric Operators 3-2

Array Operators 3-5

4 Using Variables

Overview 4-1

Using Array Variables 4-2

Using Dynamic Array Variable 4-4

Using Array Variable Values 4-4

iii

5 BDD Functions

Overview of BDD Functions 5-1

String Functions 5-2

Numeric Functions 5-6

Numeric Function: Evaluate to Process Arithmetic Expressions 5-6

JSON and Response Functions 5-7

Data Type Functions 5-10

Date Type Functions 5-10

Format Number Functions 5-12

6 Using Control Structures in Steps

Overview 6-1

Scenario Execution Flow 6-1

Action Execution 6-2

Using Conditional Cases 6-12

7 STAP Action Plugins

Introduction to STAP Action Plugins 7-1

REST Plugin 7-1

SOAP Plugin 7-13

XML API: Support for Sending Body in x-www-form-urlencoded 7-16

SSH SFTP Plugin 7-18

Process Plugin 7-26

Seagull 7-30

Kafka 7-35

URL Access Validation 7-40

Custom Actions 7-43

Mock Custom Action 7-43

8 Synthetic Data

STAP Synthetic Data Generation 8-1

Plugin with Internal Generators 8-2

Text Generation 8-10

Unique ID Generation 8-20

Fake Data Generation 8-28

Part II Getting Started with STAP UI

iv

9 About STAP UI

Icons in the STAP UI 9-1

Using Keyboard Shortcuts 9-1

10

STAP UI Login Methods

Guidelines for Using STAP UI 10-1

About Authorization Modes 10-1

About Login Page 10-1

Resetting Your Password 10-2

Using IDCS Credentials for OAuth 10-2

About STAP Dashboard 10-2

11

STAP System and Administrator Console

About the User Profile Page 11-1

About Viewing and Editing Profiles 11-1

Changing Passwords 11-2

Viewing OAuth Environment Profiles 11-2

Managing Administrator Environment 11-2

Creating a New User 11-3

Role-based Access 11-3

12

STAP UI Environment Management

About the Environment Page 12-1

Creating a New Environment 12-1

Updating an Existing Environment 12-2

Deleting an Existing Environment 12-2

13

STAP Jobs Management

About Jobs Page 13-1

Creating a New Job 13-1

Updating an Existing Job 13-2

Running a Job 13-2

Deleting a Job 13-2

14

Accessing Previously Run Jobs

Viewing Job History 14-1

Viewing Scenario Details 14-2

v

Viewing the Results of Each Scenario Under a Job 14-2

Viewing the Detailed Report of Scenarios 14-3

15

Viewing Scenarios

16

Viewing Actions

Viewing Action Details 16-1

Part III Automating Using STAP

17

Automating Without Code

Overview 17-1

Automation Components 17-1

Action 17-2

Scenario 17-4

Case 17-5

Step 17-5

Environment 17-6

Project 17-7

Naming Automation Components 17-7

Using Tags to Filter Components 17-8

18

Using the STAP Design Experience Package

Automating Using STAP Design Experience 18-1

19

Creating an Automation Workspace Folder

Configuration Folder 19-1

Environments Folder 19-3

Results Folder 19-3

Context Folder 19-4

Scenarios Folder 19-4

20

Creating Scenarios

Using Multiple Scenarios 20-3

vi

21

Using the Command-Line Interface

Publishing Data using Command Line Interface 21-1

22

Publishing Reports Using Third-Party Web Servers

Viewing Automation Reports Using Tomcat 22-1

Viewing Automation Reports Using NGINX 22-2

Viewing Automation Reports Using Apache HTTP Server 22-3

A Appendix

vii

Preface

This document describes how to implement and use Oracle Communications Solution Testing
Automation Platform.

Audience
This document is intended for anyone who installs, configures, administers, or customizes
Solution Testing Automation Platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Part I
Learning About STAP

Learn about concepts and terms used in Oracle Communications Solution Test Automation
Platform (STAP).

1
About Solution Test Automation Platform

Learn about Oracle Communications Solution Test Automation Platform (STAP), its key
features, benefits, and architecture.

Topics in this chapter:

• Introduction to Solution Test Automation Platform

• Features of STAP

• Benefits of STAP

• Microservice Architecture

Introduction to STAP
STAP is a powerful automation platform that allows users to automate their end-to-end
business use cases without writing a single line of code. By providing a no-code automation
solution, STAP enables users to automate their workflows easily with a built-in Behavior-Driven
Development (BDD) language, without much technical expertise. This makes it an ideal
automation platform for improving efficiency and productivity.

STAP's key feature is Virtual Tenant functionality. Virtual Tenant functionality enables you to
simulate customer-like traffic to measure potential issues with a software application under a
significant real-time volume of load for an extended period of time. This helps test customer
workflows before deploying them in a live environment.

STAP is a highly extensible platform, and comes with several built-in plugins that allows you to
interact with different types of application interfaces, such as REST and SOAP.

Note:

STAP can be used for testing in a lab environment and is licensed to be used only on
test or lab platforms and environments.

Features of STAP
STAP offers a robust suite of features designed specifically for automating testing processes.

Table 1-1 describes the various features of STAP.

Table 1-1 Features of STAP

Feature Description

Extensible plugins Provides a comprehensive set of plugins and frameworks for
automating the end-to-end validation of software applications. It
supports various types of plugins, including web, mobile, and API
testing.

1-1

Table 1-1 (Cont.) Features of STAP

Feature Description

Customer Environment
Simulation or Virtual Tenant

Enables the simulation of customer profiles to test software
applications under real-world conditions. The Virtual Tenant
represents a typical tenant, covering how they run their business and
the various subscriptions and services offered.

Monitoring Monitors application interfaces such as Web or REST endpoints in
real-time and provides insights into the performance and behavior of
the application, allowing users to identify potential issues and
optimize performance.

No-code Automation Allows users to automate tests without code. This feature makes it
easy for all teams to use, including those with no or limited coding
knowledge.

End-to-end Scenario Automation Supports end-to-end scenario automation, which enables users to
test complete workflows. This feature helps ensure that software is
tested in a real-world scenario, providing accurate results.

Customer Environment
Simulation

Allows users to simulate customer environments, making it easier to
test software in different environments. This feature helps to identify
any potential issues that may arise in different environments.

Integration with Other Testing
Tools

Works seamlessly with other testing tools, enabling users to integrate
it into their existing workflows. This feature makes it easier for teams
to adopt STAP without disrupting their current processes.

Virtual Tenant Simulates customer traffic to measure potential problems. This
functionality is not available at the moment but may be supported in
future releases.

Reduce Dependency with Stubs Helps in designing end-to-end tests without access to a service,
prototyping and creating a mock service for runtime.

Data-driven Testing Supports data-driven testing. Data sets are mapped to the tests to
run repeatedly against multiple data sets.

Seed Data Loaders Loads seed data into target systems with configuration and without
any code or scripts.

Swift Issue Detection Helps detect failures swiftly. The screenshot and test execution video
gives a visual replay of the test execution and help in identifying the
error.

Error Handling and Logging Robust error handling and detailed error logging.

Performance and Metrics Logs performance information which can be used to generate metrics
and comparisons with previous runs (builds or releases).

Reports Generates standard reports and supports plugins to generate reports.

Core Functionality as Library Integrates the core engine with any application Integrated
Development Environment (IDE), and enables you to store data in the
file system and include the execution in build systems.

Continuous Integration and
Continuous Delivery or
Deployment. (CI/CD)

The lightweight STAP core engine library enables you to run the
scenarios in CI/CD with ease.

STAP Microservices Robust automation platform which has a web interface and stores the
data in a database.

STAP User Experience Runtime web application enables the users to configure, run, monitor
execution in real-time, and view the results in modern dashboards.

STAP Container A valuable STAP tool for teams looking to streamline their testing
processes and improve the quality and reliability of their software
applications. It provides a flexible and scalable testing environment,
enabling teams to achieve faster and more efficient testing results.

Chapter 1
Features of STAP

1-2

Benefits of STAP
The key benefits of STAP include:

• Improved software quality: STAP helps to improve software quality by automating the
tests and identifying potential issues. It provides accurate results that help to ensure that
software is functioning as expected.

• Time-saving: STAP automates testing, saving time and effort for testing teams. It enables
teams to focus on other critical tasks, such as improving software functionality.

• Scalability: STAP is designed to handle high traffic and growing demands, making it an
ideal automation solution for diverse testing requirements. It supports horizontal scaling,
allowing you to add more servers to distribute the load efficiently.

Microservice Architecture
In addition to its extensive automation capabilities, STAP is designed with a microservice
architecture. Microservices allows the platform to be broken down into smaller, more
manageable components that can work together to deliver the full functionality of the platform.

There are four sub-microservices that make up STAP: the Engine microservice, the execution
microservice, the data microservice, and web application (user experience) microservice.

Figure 1-1 shows the STAP architecture.

Figure 1-1 Microservice Architecture

Chapter 1
Benefits of STAP

1-3

This figure has the following components:

STAP Engine

The STAP Engine microservice is the core of STAP and is responsible for the actual execution
of tests and simulation functionality. It enables you to author and run the test cases which
interact with the system being tested. It is a standalone library that can be used either
independently or as a dependency which enables users to integrate STAP functionality into
their existing testing frameworks.

The Engine microservice provides an automation engine that supports end-to-end scenario
automation, allowing you to test software applications across multiple systems and
components. It helps testing processes achieve faster and more reliable testing results. It is
highly extensible, with a plugin architecture that enables users to customize the engine to
support specific testing requirements.

The Engine microservice also includes advanced simulation functionality, enabling you to
simulate real-world conditions and test applications under a variety of different scenarios. This
includes the ability to simulate network latency, data throttling, and other performance factors.

Execution Service

The Execution Service microservice is responsible for running test cases in STAP. It manages
the execution of test cases and ensures that all necessary resources are available for testing.
The Execution Service can run test cases in parallel, allowing for faster testing and more
efficient use of resources.

Data Service

The Data Service microservice is responsible for managing the data used in STAP. It stores
test case data, test results, and other important information related to testing. The Data Service
is designed to be highly scalable, allowing it to handle large amounts of data without impacting
STAP performance.

STAP UI Service

The UI microservice provides a web-based interface allowing you to interact with the STAP
application. It offers a user-friendly interface for creating environment details for applications
being tested and running test jobs. The service features a dashboard that gives real-time
insights into test execution. The history of executions can be tracked using the History
dashboard, which provides detailed reports of each test scenario and case.

Chapter 1
Microservice Architecture

1-4

2
Introduction to STAP Behavior-Driven
Development Language

Learn about the Oracle Communications Solution Test Automation Platform (STAP) Behavior-
Driven Development (BDD) language and its keywords.

Topics in this chapter:

• Understanding STAP BDD

Understanding STAP BDD Language
STAP BDD is a proprietary language developed by Oracle. It uses a set of special keywords to
structure and give meaning to executable business use-case specifications. This approach
ensures that the use cases are both human-readable and executable by the testing framework.
Each line in a STAP BDD document that is not a blank line has to start with a STAP BDD
keyword. Some keywords are followed by text.

There are two types of keywords in the STAP BDD language.

• Primary keywords are alphabetic words and end with a colon (:).

• Secondary keywords are words and special characters.

Note:

Most lines in a STAP BDD document start with one of the primary or secondary
keywords. Any line that is not a blank line must begin with a STAP BDD keyword.

Table 2-1 lists the primary keywords in the STAP BDD language.

Table 2-1 Primary Keywords

Primary Keywords Description

Scenario Indicates the beginning of a specific situation or use case and is
followed by a name for the scenario.

Description Describes the use case.

Tags Defines elements and structure within a use case.

Case Defines a specific use case.

Data Refers to the information.

Validate Indicates the beginning of the validation conditions for the data.

Save Allows you to specify whether to store the entered or modified data.

Table 2-2 lists the secondary keywords in the STAP BDD language.

2-1

Table 2-2 Secondary Keywords

Secondary Keywords Description

Given Sets up the initial context or state.

When Describes the action or event that triggers the behavior.

Then Specifies the expected outcome or result.

And Adds additional context or actions within Given, When, or Then
steps.

| Used as a separator.

When placed as the first character in a line, used anywhere in the
file to denote a comment. Block comments are currently not
supported.

' ' Used to indicate the bounds of a string value.

. (dot) , (comma) and ; (semi-
colon) -

Step description separators.

The BDD language treats white space in the following ways::

• Indentation: Spaces can be used for indentation and they do not affect the contents.

• Blank Lines: There are no restrictions on using blank lines to separate contents in a BDD
document.

BDD Use Case
This example details the process for verifying that discounted rates are applied to Friends and
Family accounts through the Diameter Gateway. In the integrated ECE, BRM, and PDC
environment, the objective is to ensure that calls between Friends and Family members are
charged at a special discounted rate, while calls involving non-Friends and Family members
are charged at standard rates.

Pricing Structure

• Calls between non-Friends and Family members: $0.05 per minute

• Calls between Friends and Family members: $0.01 per minute

Products Involved

• BRM (Billing and Revenue Management)

• ECE (Elastic Charging Engine)

• PDC (Pricing Design Center)

Use-Case Steps

1. Load Pricing Configurations: Set up pricing configurations, including discounts for
Friends and Family groups.

2. Create Non-Friends and Family Accounts: Create accounts that are not associated with
the Friends and Family group.

3. Generate Usage and Validate Charges: Generate 20 minutes (1200 seconds) of usage
through the Diameter gateway for the standard accounts.

Chapter 2
Understanding STAP BDD Language

2-2

Note:

Ensure that the standard (non-discounted) charge of $0.05 per minute is applied,
resulting in total charges of $1.00.

4. Add Accounts to Friends and Family Group: Add the previously created accounts to the
Friends and Family group.

5. Generate Usage and Validate Discounts: Generate another 20 minutes (1200 seconds)
of usage for these accounts.

Note:

Ensure the Friends and Family discounted rate of $0.01 per minute is applied,
resulting in total charges of $0.20.

JSON Data Processing (Release 1.25.1.1.0 or later)
JSON Data Processing refers to manipulating and transforming JSON data using predefined
actions. These functions help automate the creation, modification, extraction, and saving of
JSON objects to streamline data handling.

The different JSON data processing functions are:

1. Creation and Modification

• CREATE_FROM_JSON: Generates a new entity from JSON data.

• findAndReplace: Replaces specific values within a JSON object.

2. Extraction and Transformation

• addFromJsonArray: Extracts data from an array and creates a new JSON object.

• addFromJson: Extracts specified values from JSON and creates a new JSON object.

• appendFromJsonArray: Adds new data to an existing JSON structure.

3. Saving the Result

• newJson: Stores the final processed JSON object for further use.

These functions provide structured ways to interact with JSON data dynamically, ensuring
efficient data processing without manual intervention.

CREATE_FROM_JSON

The CREATE_FROM_JSON function creates a new entity based on the provided JSON data.
It takes a JSON string as input, uses the JSON data to create a new entity, and performs
necessary validation and processing to ensure successful creation. Use the $json action to
pass the actual JSON string.

The following sample depicts the input syntax:

Data:
| $action | CREATE_FROM_JSON |
| $json | {"data":[{"name":"James Brown","id":"1"},{"name":"Rowan
Blake","id":"2"},{"name":"Nora Miller","id":"3"},{"name":"Lily
John","id":"4"}]} |

Chapter 2
Understanding STAP BDD Language

2-3

The following sample depicts the output from the data provided above:

| myjson | $JSON{todoJson} | {"data":[{"name":"James Brown","id":"1"},
{"name":"Rowan Blake","id":"2"},{"name":"Nora Miller","id":"3"},{"name":"Lily
John","id":"4"}]} |

findAndReplace

Replaces a specified value in the JSON data with a new value.

Syntax: | $findAndReplace | find_value | replace_value |

Description: Searches for occurrences of find_value in the JSON data and replaces them with
replace_value

For example,

| $json | {"id":"2","name":"Emily Brown","description":"Residential
customer","status":"TODO", "Due Date":"INITIAL DATE", "str":{ "Due
Date":"INITIAL DATE2", "str2":{ "str3":{ "Due Date":"INITIAL DATE3", "str4":
{ "Due Date":"INITIAL DATE4" } } } } } |
| $findAndReplace | Due Date, New Date Value|

After update:

$json: {"id":"2","name":"Emily Brown","description":"Residential
customer","status":"TODO", "Due Date":"New Date Value", "str":{ "Due
Date":"New Date Value", "str2":{ "str3":{ "Due Date":"New Date Value", "str4":
{ "Due Date":"New Date Value", } } } } }

addFromJsonArray

Adds data from a JSON array to a new JSON object.

Syntax: | array | $addFromJsonArray($json,selector, key1,key2,...) |
Description: Extracts data from the specified source_array_path in the JSON data and adds it
to a new JSON object. The extracted data is mapped to the corresponding keys (key1, key2,
and so on.) in the new object.

For example,

This JSON array:

{"data":[{"name":"John","age":25},{"name":"Alice","age":30}]}
| array | $addFromJsonArray($json,[*],name) |

You will have the following result:

{"array":[{"name":"John"},{"name":"Alice"}]}

addFromJson

Adds data from a JSON object to a new JSON object.

Chapter 2
Understanding STAP BDD Language

2-4

Syntax: $addFromJson($json,key1,key2,...)
Description: Extracts data from the specified keys (key1, key2, and so on.) in the JSON data
and adds it to a new JSON object. The extracted data is assigned to the corresponding keys in
the new object.

For example,

JSON Object - {"name":"John","age":30,"occupation":"Developer"}

| data | $addFromJson($json,name,name,value,value) |

data Runtime Value - {"data":{"name":"John","value":"Developer"}}

appendFromJsonArray

Appends data from a JSON array to an existing JSON object.

Syntax: $appendFromJsonArray($json,source_array_path,key1,key2,...)
Description: Extracts data from the specified source_array_path in the JSON data and
appends it to an existing JSON object. The extracted data is mapped to the corresponding
keys (key1, key2, and so on.) in the existing object.

For example,

Step:
| array | $addFromJsonArray($json,[*],name,value) |

Runtime Value:

| JsonArray | $newJson | {"array":[{"description":"Purchase Fees (srvc)
(srvc): Supremo Broadband Installation
Service","remainingAmount.value":19.99}]} |

Step:
| array | $appendFromJsonArray($json,[*],description,remainingAmount.value) |

Runtime Value:

| JsonArray | $newJson | {"array":[{"description":"Purchase Fees (srvc)
(srvc): Supremo Broadband Installation
Service","remainingAmount.value":19.99},{"description":"Cycle Forward Fees
(srvc): Supremo Basic Internet Service","remainingAmount.value":12.34}]} |

newJson

Saves the newly created or updated JSON object.

Syntax: $newJson

Chapter 2
Understanding STAP BDD Language

2-5

Description: Saves the resulting JSON object to a variable named newJson.

Save:
| newJson | $newJson |

Chapter 2
Understanding STAP BDD Language

2-6

3
About BDD Operators

Learn about the different operators in Oracle Communications Solution Test Automation
Platform (STAP).

An Operator is a function that takes arguments and returns the result of operation as Passed
or Failed. Behavior-Driven Development (BDD) operators are used in Validation section of the
Test Step.

Topics in this chapter:

• String operators

• Numeric Operators

• Array Operators

String Operators
BDD String Operators use string text as an argument.

The following are the string operators used in BDD:

• STRING_EQUALS

• STARTS_WITH

• ENDS_WITH

• CONTAINS

• MATCHES

Note:

By default (without mentioning operator), BDD uses String Equals as the operator.

BDD Example:

The following example shows how to use a string operator in STAP BDD:

First, set up the variables:

Save:
planType	Premium
emailID	JohnDoe@bills.com
errorLog	Connection Timeout
name	John Doe
connectionStatus	Active
smsContent	Your Bill Number is 1
billEnd	John Doe Your Bill Number is 1

3-1

The following commands get the response, which contains various variables.

Data:
| id | getbill |

The following validation will be successful, given the values set above.

$status	200
planType	Premium
errorLog	%STARTS_WITH(Connection)
name	%ENDS_WITH(Doe)
smsContent	%CONTAINS(Bill Number)
billEnd	%CONCAT(${name}, ${smsContent})
emailID	%MATCHES((.*)@(.*))

Runtime BDD:

The following is the runtime BDD response for the string operator:

Then get mock response, validating bill details
Data:
#| Property | Value | Runtime Value |
 | id | getbill | getbill |
Validate:
#| Property | Value |
Property Value | Runtime Value | Result
|
 | $status | 200 |
200 | SUCCESS | PASSED
|
 | planType | Premium |
Premium | Premium | PASSED
|
 | errorLog | %STARTS_WITH(Connection) |
Connection Timeout | Connection Timeout | PASSED
|
 | name | %ENDS_WITH(Doe) | John
Doe | John Doe | PASSED |
 | smsContent | %CONTAINS(Bill Number) | Your
Bill Number is 1 | Your Bill Number is 1 | PASSED |
 | billEnd | %CONCAT(${name}, ${smsContent}) | John
Doe Your Bill Number is 1 | John Doe Your Bill Number is 1 | PASSED |
 | emailID | %MATCHES((.*)@(.*)) |
JohnDoe@bills.com | JohnDoe@bills.com | PASSED
|

Numeric Operators
Numeric operators use numbers as arguments, such as integer, double, big integer, big
double, or a saved variable representing these numbers.

Instead of spelled out numeric operators, you have the option to use symbol-based operators.

Table 3-1 lists the numeric operators.

Chapter 3
Numeric Operators

3-2

Table 3-1 Operator Symbols

Symbol Text BDD Example Numeric Example

== %EQUALS() ==${amount}

==20.50

123==123

12.45==12.4

12 == 12.0

!= %NOT_EQUAL() !=${value}

!=24

123 != 321

12.34 != 12.3456

> %GREATER_THAN() >123

>${value}

123>120

123.0 > 120

123 > 120.0

< %LESS_THAN() <123

< ${value}

120 < 123

120.0 < 123

120 < 123.0

>= %GREATER_THAN_OR
_EQUAL

>=123

>=${value}

123>=120

123.0 >=120

123 >=120.0

<= %LESS_THAN_OR_EQ
UAL

<=123

<=${value}

120 <=123

120 <=123.0

120.0 <=123

BDD Example:

The following example shows how to use a numeric operator in STAP BDD:

First, set up variables:

Save:
billAmount	2000
discount	10
transactionId	5
creditScore	400
subscriptionFee	200

The following commands get the response, which contains various variables.

Data:
| id | getbill |

Validate:
$status	200
billAmount	== 2000
discount	%EQUAL(10)
transactionId	!= 1
subscriptionFee	%NOT_EQUAL(0)
creditScore	> 200
billAmount	%GREATER_THAN(1500)
discount	< 12
transactionId	%LESS_THAN(6)
creditScore	%GREATER_THAN_OR_EQUAL(${subscriptionFee})

Chapter 3
Numeric Operators

3-3

billAmount	>=2000
discount	%LESS_THAN_OR_EQUAL(10)
subscriptionFee	<= ${creditScore}

The following commands get the response, which validates the bill details:

Then get mock response, validating bill details
Data:
#| Property | Value | Runtime Value |
 | id | getbill | getbill |
Validate:
#| Property | Value |
Property Value | Runtime Value | Result
|
 | $status | 200 |
200 | SUCCESS | PASSED
|
 | billAmount | == 2000 |
2000 | 2000 | PASSED
|
 | discount | %EQUAL(10) |
10 | 10 | PASSED
|
 | transactionId | != 1 |
5 | 5 | PASSED
|
 | subscriptionFee | %NOT_EQUAL(0) |
200 | 200 | PASSED
|
 | creditScore | > 200 |
400 | 400 | PASSED
|
 | billAmount | %GREATER_THAN(1500) |
2000 | 2000 | PASSED
|
 | discount | < 12 |
10 | 10 | PASSED
|
 | transactionId | %LESS_THAN(6) |
5 | 5 | PASSED
|
 | creditScore | %GREATER_THAN_OR_EQUAL(${subscriptionFee}) |
400 | 400 | PASSED
|
 | billAmount | >=2000 |
2000 | 2000 | PASSED
|
 | discount | %LESS_THAN_OR_EQUAL(10) |
10 | 10 | PASSED
|
 | subscriptionFee | <= ${creditScore} |
200 | 200 | PASSED
|

Chapter 3
Numeric Operators

3-4

Array Operators
Array operators are used to compare two arrays. The array operators are:

• General Array Operators

• Array Operators for Quoted Strings

General Array Operators

The following operators compare elements in two arrays. To match, the elements must both
either be inside quotation marks or both be without them.

If you set the following data:

Save:
$ARRAY{bills1}	25.213
$ARRAY{bills1}	30.456
$ARRAY{bills1}	"Bill is complete."

And then you get the response (which contains an array variable called bills):

Data:
| id | getdata |

• The ARRAY_COMPARE operator can compare the bills array from the returned JSON
data to the bills1 array created above:
Validate:
| bills | %ARRAY_COMPARE($ARRAY{bills1}) |
Validation will succeed only if the bills array contains the following values in the following
order:

"bills": [25.213, 30.456, "Bill is complete."]
• The ARRAY_COMPARE_IGNORE_ORDER operator can compare the bills array from the

returned JSON data to the bills1 array created above:
Validate:
| bills | %ARRAY_COMPARE_IGNORE_ORDER($ARRAY{bills1}) |
Validation will succeed if the bills array contains the following values in any order. For
example, the following array will pass validation:

"bills": [30.456, 25.213, "Bill is complete."]
• The ARRAY_IN operator can compare the bills array from the returned JSON data to the

bills1 array created above:
Validate:
| bills | %ARRAY_IN($ARRAY{bills1}) |
Validation will succeed if the bills array contains any selection of elements matching those
in the bills1 array, in any order. For example, the following array will pass validation:

"bills": [30.456, 25.213]

Chapter 3
Array Operators

3-5

Array Operators for Quoted Strings

If you set the following data:

Save:
$ARRAY{products1}	"5G Lite Data Service"
$ARRAY{products1}	"5G Basic Data Service"
$ARRAY{products1}	"123456"
$ARRAY{products1}	"Wireless Bundle"

And then you get the response (which contains an array variable called products):

Data:
| id | getdata |

• The ARRAY_COMPARE_IGNORE_QUOTES operator can compare the products array
from the returned JSON data to the products1 array created above:

• The ARRAY_COMPARE_IGNORE_ORDER_QUOTES operator can compare the
products array from the returned JSON data to the products1 array created above:
Validate:
| products | %ARRAY_COMPARE_IGNORE_ORDER_QUOTES($ARRAY{products1}) |
Validation will succeed if the products array contains the following values in any order,
even though some of the values are not enclosed in quotes. For example, the following
array will pass validation:

"products": [123456, "5G Basic Data Service", "5G Lite Data Service",
"Wireless Bundle"]

• The ARRAY_IN_IGNORE_QUOTES operator can compare the products array from the
returned JSON data to the products1 array created above:
Validate:

| products | %ARRAY_IN_IGNORE_QUOTES($ARRAY{products1}) |
Validation will succeed if the products array contains any selection of elements matching
those in the products1 array, in any order, even though some of the values are not
enclosed in quotes. For example, the following array will pass validation:

"products": [123456, "5G Lite Data Service"]
• (Release 1.25.1.1.0 or later) The ARRAY_IN_IGNORE_ORDER_QUOTES operator can

compare the products array from the returned JSON data to the products1 array created
above:
Validate:
| products | %ARRAY_IN_IGNORE_ORDER_QUOTES($ARRAY{products1}) |
Validation will succeed if the products array contains any selection of elements matching
those in the products1 array, in any order, even though some of the values are not
enclosed in quotes, and disregarding empty strings. For example, the following array will
pass validation:

"products": [123456, "5G Basic Data Service", ""]

Chapter 3
Array Operators

3-6

4
Using Variables

Get an overview of variables and their supported operations in Oracle Communications
Solution Test Automation Platform (STAP) Behavior-Driven Development (BDD) language.

Topics in this chapter:

• Overview

• Using Array Variables

• Using Array Variable Values

• Using Dynamic Array Variable

Overview
Variables refer to pieces of data that are stored and used during the execution of a scenario.
These variables can hold different types of information, such as numbers, text, or other data
types, which are essential for the scenario's logic and flow.

Context refers to the storage of variable values saved during the execution of steps in a
scenario.

• A new context is created (or cleared) at the beginning of each scenario execution.

• If the load context option is enabled in config.properties, the context is loaded for the
scenario. The load context feature is only used at design time and not during the execution
of scenarios in a pipeline.

Variable Lifecycle

• Local variable: Local variables are available only for the duration of a scenario.

• Global variables are prefixed with _ and are available from the time they are created until
the end of the job.

For example, all variables defined using the Save keyword are local variables unless they
begin with an underscore (_).

In the example below, projectId and projectName are the variable values stored in the
context.

Save:
#| Property | Value |
| _projectId | id |
| projectName | name |

projectId which is prefixed with _, is designated as Global variable and the context stores this
variable value from the definition until the job execution completes ie., _projectId can be used
in any scenario/case/step after its definition.

4-1

Note:

If the same variable name is used in the Save section of multiple steps, its value gets
replaced.

To save and load the context, use config.properties context configuration. For more
information, see "Context Folder".

Figure 4-1 shows the variables available during an execution job.

Figure 4-1 Loading Context Configurations

Using Array Variables
An array variable is a type of variable that stores multiple values in a single instance, making it
useful for handling lists of data. When working with JSON path, an array variable helps in
extracting and storing multiple values from a JSON structure.

The supported operations for array variables include:

• Storing multiple values in a single variable.

• Iterating over the array elements.

• Accessing a single value from the array.

The examples below assume that you are starting with the following JSON:

{
 "subscriptions": [
 {
 "id": "1",
 "plan": "Premium",
 "status": "ACTIVE",
 "expiry": "2025-03-15"

Chapter 4
Using Array Variables

4-2

 },
 {
 "id": "2",
 "plan": "Basic",
 "status": "EXPIRED",
 "expiry": "2024-01-01"
 }
]
}

Getting a single value from an array variable

To extract the plan value from the first element of the subscriptions array and append it to the
users.plan array:

Save:
| $ARRAY{users.plan} | subscriptions[0].plan |

In this case, the users.plans array would have one element added to it: Premium.

Getting multiple values from an array variable

The following example shows how to get multiple values from an array variable:

Save:
| $ARRAY{users.plans} | subscriptions[*].plan |

#returns [Premium,Basic]

In this case, the users.plans array would have two elements added to it: Premium and Basic.

Adding a single value to an array variable

The following example shows how to add a single value to an array variable:

When add details, adding new subscription plan
Data:
| plan | Gold |
Validate:
| $status | 200 |
Save:
| $ARRAY{users.plan} | subscriptions[2].plan |

#returns Gold

Adding multiple values to array

The following example shows how to add multiple values to an array:

Then get mock response, read all values that are created above.
Validate:
| $status | 200 |

Chapter 4
Using Array Variables

4-3

Save:
Store a list of plans from the JSONPath *.plan into the array variable
users.plans
| $ARRAY{users.plans} | subscriptions[*].plan |

In the above example , todos.id is the array created to save ids of all the tasks read.

Note:

If the todos.id array is already existing, the *.id array values are replaced. When we
add an array to existing array indicates creating new array.

Using Dynamic Array Variable
Use ${index} to create dynamic array variable names. Only ${index} is allowed as a context
variable or ID in array names.

Dynamic Array Variable Name

To use the index of an array to set the name of a variable:

RepeatTimes:
| $times | 2 |
Data:
| index | ${nextValue} |
| $urlSuffix | /getarray |
Validate:
| $status | 200 |
Save:
| $ARRAY{dynamicVariable_${index}} | subscriptions[?
(@.status=='ACTIVE')].plan |

The following example shows how dynamic values are stored in the test context folder:

dynamicVariable_1=[Premium,Premium,Premium,Premium,Premium,Premium,Premium,Pre
mium,Premium,Premium]
dynamicVariable_0=[Premium,Premium,Premium,Premium,Premium,Premium,Premium,Pre
mium,Premium,Premium]

Using Array Variable Values
Arrays are used in controlled steps. Iteration happens for the number of times equivalent to
length of the array.

To work with the indexes of an array variable,

• Access the array value with index keyword ${index}. Index starts with 0.

• ${nextValue} Gives the next element in the array. ${nextValue} Can be used in Data,
Validate, or Save sections.

Chapter 4
Using Dynamic Array Variable

4-4

The following example shows how to add and read customer bill amounts using array variable
values. First, create the array containing the variables:

Save:
$ARRAY{bills1}	25.213
$ARRAY{bills1}	20.378
$ARRAY{bills1}	21.643
$ARRAY{bills1}	24.211
$ARRAY{bills1}	22.113

Then set the code to iterate over the entire array:

RepeatTimes:
| $times | $ARRAY{bills1} |
Data:
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills1[${index}] | $ARRAY{bills1[${index}]} |

For more information on array variables, see "Controlled actions".

Chapter 4
Using Array Variable Values

4-5

5
BDD Functions

Learn about the different types of Behavior-Driven Development functions in Oracle
Communications Solution Test Automation Platform (STAP).

Topics in this chapter:

• BDD Functions Overview

• String Functions

• Numeric Functions

• Json or Response Functions

• Data Type Functions

• Date Type Functions

• Format Number Functions

Overview of BDD Functions
A BDD function is a pre-defined command set that performs an operation and returns a single
value. These functions are useful while performing mathematical calculations, string
Concatenations (Concat), sub-strings, JSON operations, and so on.

Allowing Commas in Function Data
Function arguments are separated by a comma (,). If the function arguments or variable values
contain a comma, you can escape it using %{,}.

Escape only the values provided for function. If there is a comma in the context values or
JSON property values escape is not required and done internally.

For example, if a comma is in the text for a variable value:

Save:
| subscriptions | Need to purchase 'premium%{,}active plan' from catalog on
Tuesday and 'basic%{,}active plan on Wednesday' |

Or if the argument to the pattern matching function contains a comma:

| secondPlan | %PATTERN_MATCHER(${subscriptions},'basic%{,}(.*?)',0) |

Using Response Properties and Variables in the Functions

Using Data from the Response

5-1

If you want to use a property from the response, you can access it by name if you are not using
it inside a function. For example, you can assign the name property from the response to the
firstName variable like this:

Save:
| firstName | name |

However, when you are using that response property inside a function, you should use a dollar
sign ($) before the name, like this:

Save:
| firstName | %LOWERCASE($name)|

Using Scenario Variables
To use saved scenario variables as function argument, use ${<variable>}. For example,

Save:
| firstName | %LOWERCASE($name)|
| updatedFirstName | %UPPERCASE(${firstName})|

Using functions in Validate property
You can use functions in validating both properties and values.

For example,

Validate:
| %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan) | Premium |
| %SUBSTRING(${notificationText},33) | test@example.com |

Validate:
| plan | %SUBSTRING(${subscriptionPlan},0,7) |
| orderID | %PATTERN_MATCHER(${orderConfirmation},\d+,0) |

The different types of functions available in the STAP BDD language are:

• String Functions

• Numeric Functions

• JSON or Response Functions

• Data Type Functions

• Date Type Functions

• Format Number Functions

String Functions
String functions are used to manipulate and handle string data.

These functions take a string as an input argument and return a modified string:

• Substring

• Pattern matcher

Chapter 5
String Functions

5-2

• Replace

• Replace first

• Concat

• Uppercase and lowercase

SUBSTRING

The SUBSTRING function allows you to retrieve part of a string. You can either the part of a
string that starts at a specified character number, or only a specified number of characters
starting at a specified character. The format of the function is:

%SUBSTRING(string,beginIndex,noChars)

where:

• string is either a text string or a variable

• beginIndex is he number of the character from which to start reading the string. If noChars
is not present, it will read to the end of the string. Set this to 0 to read from the beginning of
the string.

• noChars is optional and specifies the exact number of characters to read.

For example, after the commands below, the emailId variable contains the string
test@example.com.

Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |

Validate:
| emailID | %SUBSTRING(${notificationText},33) |

After the commands below, the plan variable contains Premium.

Save:
| subscriptionPlan | Premium Subscription Activated Successfully |

Validate:
| plan | %SUBSTRING(${subscriptionPlan},0,7) |

PATTERN_MATCHER

A pattern matcher retrieves a substring using a regular expression. In STAP, the regular
expression used by the pattern matcher contains characters that need to be escaped. If these
characters are not escaped, the publish scenario scripts might fail.

The following functions are used to extract specific substrings from a given string:

%PATTERN_MATCHER(<string>,<reg.exp>)
Retrieves a substring which matches the given regular expression pattern.

For example,

When set variable, get the Customer information
Save:
| userMessage | Important Notice : 'Your subscription is expiring soon' |
Validate:

Chapter 5
String Functions

5-3

| extractedNotice | %PATTERN_MATCHER(${userMessage},'(.*?)',0) |

extractedNotice returns 'Your subscription is expiring soon'

%PATTERN_MATCHER(<string>,<reg.exp>,index)
Retrieves a sub string at the index from the set of matches for a regular expression pattern.

For example,

When set variable, get the Customer information
Save:
| orderConfirmation | Order #INV-12345 confirmed for your subscriptionPlan |
Validate:
| orderID | %PATTERN_MATCHER(${orderConfirmation},\d+,0) |

 orderID returns 12345

%PATTERN_MATCHER(<string>,<reg.exp>,index,groupIndex)

• index : index of the match

• groupIndex : Group Index of the match

For example,

When set variable, get the Customer information
Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |
Validate:
| emailDomain | %PATTERN_MATCHER(${notificationText},@([\w-]+)\.com,0,1) |

emailDomain returns example

Replace

The following string manipulation function is used to replace text dynamically:

%REPLACE(<search string>,<replace string>)
Replaces all occurrences of the given search string with replace string.

For example,

When set variable, get the Customer information
Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |

Validate:
| modifiedNotification | %REPLACE($
{notificationText},test@example.com,anonymous@example.com) |

modifiedNotification returns Notification sent at 10:30 AM to
anonymous@example.com

Replace First

The following string manipulation function is used to replace text dynamically:

Chapter 5
String Functions

5-4

%REPLACE_FIRST(<search string>,<replace string>)

Replaces the first occurrence of the given search string with replace string.

For example,

When set variable, get the Customer information
Save:
| orderConfirmation | Order #INV-12345 confirmed for your subscriptionPlan |

Validate:
| modifiedOrder | %REPLACE_FIRST(${orderConfirmation},O,BO) |

modifiedOrder returns Border #INV-12345 confirmed for your subscriptionPlan

Concat

The following string concatenation function is used to join multiple string arguments into a
single string. It helps merge different pieces of text dynamically.

%CONCAT(<arg1>,<arg2>[,<arg3>...]) : Concatenate the given string arguments.

For example,

When set variable, getting Customer information
Save:
| subscriptionPlan | Premium Subscription Activated Successfully |
| billingDetails | Your next billing date is 15-03-2025 |

Validate:
| finalMessage | %CONCAT(${subscriptionPlan} ,${billingDetails}) |

finalMessage returns Premium Subscription Activated Successfully Your next
billing date is 15-03-2025

Uppercase and Lowercase

These functions are used to convert the string into Lowercase or Uppercase.

%LOWERCASE(<string>) :
Converts the given string into lowercase

%UPPERCASE(<string>) :
Converts the given string into uppercase

For example,

When set variable, getting Customer information
Save:
| subscriptionPlan | Premium Subscription Activated Successfully |
| billingDetails | Your next billing date is 15-03-2025 |

Validate:
| planName | %LOWERCASE(${subscriptionPlan}) |
| nextBilling | %UPPERCASE(${billingDetails}) |

Chapter 5
String Functions

5-5

planName returns premium subscription activated successfully
nextBilling returns YOUR NEXT BILLING DATE IS 15-03-2025

Numeric Functions
Numeric functions help perform operations on numbers in various sections, including Data,
Save, and Validate. They assist in rounding numbers and generating random values
dynamically. For supported arithmetic expression, see Numeric Function: Evaluate to Process
Arithmetic Expressions.

Rounding Numbers (%ROUND(<arg1>))

This function rounds the given numeric input to the nearest whole number (long numeric
value).

For example, %ROUND(3.6) - Returns 4.

Refer to the following BDD Example:

When set variables,
Save:
| chocolates | 3.6 |

When buy chocolates,
Data:
| number | %ROUND(${chocolates}) |

Generating Random Numbers (%RANDOM())

This function returns a pseudorandom double greater than or equal to 0.0 and less than 1.0

For example, %RANDOM() - Returns 0.753524282283047

Refer to the following BDD Example:

When buy chocolates,
Data:
| number | %RANDOM() |

Numeric Function: Evaluate to Process Arithmetic Expressions
STAP supports all standard arithmetic operations, such as +,-,*,/. Specify the expression in
reverse polish notation or postfix notation.

STAP requires the postfix operation for its arithmetic operations for the following reasons:

• Postfix notations are easier to parse for compiler

• Rules out the need for left - right association and precedence

• Faster to evaluate (less time for parsing)

• Can be expressed without parenthesis

• No 3rd party library dependency required

Using Arithmetic Operations

Chapter 5
Numeric Functions

5-6

You must use the following format to perform arithmetic operations:

%EVAL(<arithmetic_operations_written_in_reverse_polish_notation>)

each operand and operator should be comma separated
to pass in STAP variables use: ${<variable>}

Example:
(2+1)*3
| name | %EVAL(2,1,+,3,*) |
(arg3+arg5)
| name | %EVAL(${arg3},${arg5},+) |

The following example shows how to evaluate expressions using arithmetic operations:

Case: Evaluate Expressions

When set variable, saving various signal datas into variables
Save:
arg1	10
arg2	9
arg3	4
arg4	2
arg5	14
arg6	20

When set variable, evaluating various communication fields
Save:
#| Property |
Value | Runtime
Value |
 | signalQuality |
%EVAL(2,1,+,3,*) |
9 |
 | transmissionRate | %EVAL(${arg3},$
{arg5},+) | 18 |
 | networkLatency | %EVAL(${arg1},${arg2},+,$
{arg3},*) | 76 |
 | packetDropRate | %EVAL(${arg1},${arg2},${arg3},*,${arg4},${arg5},-,/,$
{arg6},*,+) | -50 |

JSON and Response Functions
JSON functions perform operations on response JSON. These can be used in Validate or
Save blocks. JSON functions include the following:

• Array value

• Array size

• Response header

Array Value:

This function retrieves elements from an array using JSON Path:

Chapter 5
JSON and Response Functions

5-7

• %ARRAY_VALUE(<JSON Path>): Returns the first element in the array resolved by the
JSON Path.

• %ARRAY_VALUE(<JSON Path>, <index>): Returns the index element in the array
resolved by the JSON Path. Index starts from 0.

The following is the response body in JSON format:

{
 "user": "John Doe",
 "email": "john@billing.com",
 "subscriptions": [
 {"plan": "Premium", "status": "ACTIVE", "expiry": "2025-03-15"},
 {"plan": "Basic", "status": "EXPIRED", "expiry": "2024-01-01"}
]
}

The following are some examples of Array Value:

• Get the first email for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].email) returns first@email

• Get the email at index 1 for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].email,1) returns third@email

• Get the value at index 1 for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].value,1) returns 30

The following is a BDD example for an Array Value:

Then get mock response, processing Customer subscribed date and subscription
details
Validate:
| firstPlan | %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan) |
| activePlanExpiry | %ARRAY_VALUE(subscriptions[?
(@.status=='ACTIVE')].expiry,0) |

The following is the runtime BDD response:

Validate:
#| Property | Value | Property Value | Runtime Value | Result |
 | firstPlan | %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan)
Premium | Premium | PASSED |
 | activePlanExpiry | %ARRAY_VALUE(subscriptions[?
(@.status=='ACTIVE')].expiry,0)| 2025-03-15 | 2025-03-15 | PASSED |
 | subscriptionCount | %ARRAY_SIZE(subscriptions) | 2 | 2 | PASSED |

Array Size

This function returns the number of elements in an array.

%ARRAY_SIZE(<JSON Path>) : Returns the size of the array returned by the JSON path

For example,

Validate:
#| Property | Value | Property Value |

Chapter 5
JSON and Response Functions

5-8

Runtime Value | Result |
 | subscriptionCount | %ARRAY_SIZE(subscriptions) | 2 |
2 | PASSED |

Returns: 2 (since there are two subscription entries)

Response Header

This function returns the value for the given header key, if it is present in response headers.

For example,

{
...
"headers" : {
 "transfer-encoding" : "chunked",
 "connection" : "keep-alive",
 "Date" : "Wed, 25 Aug 2021 04:51:40 -0700",
 "Content-Type" : "application/json"
 }
...
}

Get the Date header from response.

%RESPONSE_HEADER(Date) returns "Wed, 25 Aug 2021 04:51:40 -0700"

The following is a BDD example for using %RESPONSE_HEADER() in Save block:

Then get mock response, processing Customer subscription details
Save:
| Date | %RESPONSE_HEADER(Date) |
| Connection | %RESPONSE_HEADER(connection) |

The following is the runtime BDD response for using %RESPONSE_HEADER() in Save block:

Then get mock response, processing Customer subscription details
 Save:
#| Property | Value | Runtime
Value |
| Date | %RESPONSE_HEADER(Date) | Wed, 25 Aug 2021 04:51:36
-0700 |
| Connection | %RESPONSE_HEADER(connection) | keep-
alive |

The following is a BDD example for using %RESPONSE_HEADER() in Validate block:

Then get mock response, processing Customer subscription details
Validate:
| %RESPONSE_HEADER(connection) | ${connection} |

Chapter 5
JSON and Response Functions

5-9

The following is the runtime BDD response for using %RESPONSE_HEADER() in Validate
block:

Then get mock response, processing Customer subscription details
Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
| %RESPONSE_HEADER(connection) | ${connection} | keep-alive
| keep-alive | PASSED |

Data Type Functions
Data Type functions are used in Data block to represent the type of property value. By default,
all data is treated as a string. To convert data to other types, use the appropriate data type
functions.

Table 5-1 describes Data Type functions used in Data block to represent the type of property
value.

Table 5-1 Data Type Functions

Function Description Example: Data

%INT(<int value>) To represent integer values %INT(200) -→ "value": 200

%DOUBLE(<double value>) To represent floating/double
values

%DOUBLE(35.75) -→
"billAmount": 35.75

%BOOLEAN(<boolean value>) To represent boolean values %BOOLEAN(true) →> "created" :
true

Date Type Functions
These functions retrieve, modify, and transform dates in various formats and are useful for
timestamping, scheduling, and handling date-based calculations.

Retrieve Current Date (%NOW())

Returns current date in YYYY-MM-ddTHH:mm:ss.SSSZ format. For example, %NOW() →
"2021-08-25T14:16:28.312Z"
The following is a BDD example for retrieving current date:

When add todo task, for booking appointment

Data: Table 5-2 lists out the values in NOW format.

Table 5-2 NOW format

Property Value Runtime Value

description %NOW() 2021-08-25T14:16:28.312Z

Retrieve Current Date in a Custom Format (%NOW(<format>))

Returns current date in specified format. For example, %NOW(YYYY-MM-dd) → "2021-08-25"
The following is a BDD example for retrieving current date in a custom format:

Chapter 5
Data Type Functions

5-10

When add todo task, for booking appointment

Data: Table 5-3 lists out the values in NOW format.

Table 5-3 NOW format

Property Value Runtime Value

description %NOW(YYYY-MM-dd) 2021-08-25

For more information on formatting the date, see Class SimpleDateFormat in Oracle Java
documentation.

Add or Subtract Time (%NOWADD(<field>, <+/- value>))

Modifies the current date or time by adding or subtracting a specific amount from a time field.

Default format (YYYY-MM-dd'T'HH:mm:ss.SSS'Z')

For example, | dateTime | %NOWADD(5,10) | # Adds 10 units to field 5 | dateTime |
%NOWADD(5,-10) | # Subtracts 10 units from field 5
Custom Format (%NOWADD(<field>, <+/- value>, <output format>))

For example, | dateTime | %NOWADD(5,10,yyyy-MM-dd HH:mm:ss) |
Output:

"2024-05-07 10:10:10"

Modify a Saved Date (%NOWADD(<field>, <+/- value><output format>))

Adds or Subtracts from a date field and returns date in specified format.

Add or Subtract from current time using Custom Format

| dateTime | %NOWADD(5,10,yyyy-MM-dd HH:mm:ss) |

%DATEADD(<field>, <+/- value>)

Add/Subtract from a date field and returns date in default format YYYY-MM-
dd'T'HH:mm:ss.SSS'Z'.

For example, | dateTime | %DATEADD(${datavar},5,5,yyyy-MM-dd HH:mm:ss) |
Advanced example, (%DATEADD(<field>, <+/- value>, <input format>, <output format>):

| dateTime | %DATEADD(2024-05-07 10:10:10,5,-5,yyyy-MM-dd HH:mm:ss,dd-MM-YYYY) |
Transforms: "2024-05-07 10:10:10" → "07-05-2024"
Transform Date Formats (%TRANSFORM(<date1><inputFormat><outputFormat>))

Transforms given date in the input format to specified output format.

The following BDD example uses Transform function to trasnform date in the Save section to
specified format:

When execute mock action, reading the task
Data:
| $request | $arraydata2 |

Chapter 5
Date Type Functions

5-11

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Save:
| dateTime | %TRANSFORM(2024-05-07 10:10:10,YYYY-MM-dd HH:mm:ss,dd-MM-YYY) |

Format Number Functions
The Format Number function formats a numeric value according to a specified pattern,
applying different rounding modes as needed such as FLOOR, CEILING, and ROUND. It
supports various separators, custom decimal places, and string interpolation within the
formatted output.

Table 5-4 describes variants of Format Number Functions.

Table 5-4 Variants and Descriptions

Variant Description

CEILING Rounding mode to round towards positive infinity.

DOWN Rounding mode to round towards zero.

FLOOR Rounding mode to round towards negative infinity.

HALF_DOWN Rounding mode to round towards nearest neighbor
unless both neighbors are equidistant, in which
case you round down instead.

HALF_EVEN Rounding mode to round towards the nearest
neighbor unless both neighbors are equidistant, in
which case, round towards the even neighbor.

HALF_UP Rounding mode to round towards nearest neighbor
unless both neighbors are equidistant, in which
case you round up instead.

UNNECESSARY Rounding mode to assert that the requested
operation has an exact result, hence no rounding is
necessary.

UP Rounding mode to round away from zero.

The following example shows the BDD code to format a number:

Case: Format Number
When set variable, customer bill value is taken as input
Save:
| price | 1234567.89 |
When set variable, to get formatted customer bill details
Save:
formattedBill	%FORMAT_NUMBER(481.195)
decimalBill	%FORMAT_NUMBER(${price},0.0)
roundedBill	%FORMAT_NUMBER(${price},0)
roundedBill2	%FORMAT_NUMBER(${price},#.##,CEILING)
roundedBill3	%FORMAT_NUMBER(${price},#%{,}###.##,CEILING)
roundedBill4	%FORMAT_NUMBER(${price},Amount to be payable is $#%{,}###.#
for this month,CEILING)	
discountedBill	%FORMAT_NUMBER(${price},#,FLOOR)
discountedBill1	%FORMAT_NUMBER(${price},#,HALF_EVEN)
discountedBill2	%FORMAT_NUMBER(${price},#,HALF_UP)
discountedBill3	%FORMAT_NUMBER(${price},#,HALF_DOWN)
Output (Runtime BDD):
When set variable, to get formatted customer bill details

Chapter 5
Format Number Functions

5-12

Save:
#| Property |
Value
 | Runtime Value |
 | price |
1234567.89
 | 1234567.89 |
 | test |
12.053548387096775
 | 12.053548387096775 |
 | formattedBill |
%FORMAT_NUMBER(481.195)
 | 481.20 |
 | decimalBill | %FORMAT_NUMBER($
{price},0.0) |
1234567.9 |
 | roundedBill | %FORMAT_NUMBER($
{price},0) |
1234568 |
 | roundedBill2 | %FORMAT_NUMBER($
{price},#.##,CEILING) |
1234567.89 |
 | roundedBill3 | %FORMAT_NUMBER($
{price},#%{,}###.##,CEILING) |
1,234,567.89 |
 | roundedBill4 | %FORMAT_NUMBER(${price},Amount to be payable
is $#%{,}###.# for this month,CEILING) | Amount to be payable
is $1,234,567.9 for this month |
 | discountedBill | %FORMAT_NUMBER($
{price},#,FLOOR) |
1234567 |
 | discountedBill1 | %FORMAT_NUMBER($
{price},#,HALF_EVEN) |
1234568 |
 | discountedBill2 | %FORMAT_NUMBER($
{price},#,HALF_UP) |
1234568 |
 | discountedBill3 | %FORMAT_NUMBER($
{price},#,HALF_DOWN) |
1234568 |

Format Patterns

DecimalFormat is a concrete subclass of NumberFormat that formats decimal numbers. It has
a variety of features designed to parse and format numbers in any locale, including support for
Western, Arabic, and Indic digits. It also supports different kinds of numbers, including integers
(123), fixed-point numbers (123.4), scientific notation (1.23E4), percentages (12%), and
currency amounts ($123). All of these can be localized.

To obtain a NumberFormat for a specific locale, including the default locale, use one of
NumberFormat's factory methods, such as getInstance(). In general, avoid using the
DecimalFormat constructors directly, since the NumberFormat factory methods may return
subclasses other than DecimalFormat. A DecimalFormat comprises a pattern and a set of
symbols. The pattern may be set directly using applyPattern(), or indirectly using the API
methods. The symbols are stored in a DecimalFormatSymbols object. When using the

Chapter 5
Format Number Functions

5-13

NumberFormat factory methods, the pattern and symbols are read from localized
ResourceBundles. To customize format object, perform the following action:

A DecimalFormat comprises a pattern and a set of symbols. The pattern may be set directly
using applyPattern(), or indirectly using the API methods. The symbols are stored in a
DecimalFormatSymbols object. When using the NumberFormat factory methods, the pattern
and symbols are read from localized ResourceBundles.

Patterns
DecimalFormat patterns have the following syntax:
 Pattern:
 PositivePattern
 PositivePattern ; NegativePattern
 PositivePattern:
 Prefixopt Number Suffixopt
 NegativePattern:
 Prefixopt Number Suffixopt
 Prefix:
 any Unicode characters except \uFFFE, \uFFFF, and special characters
 Suffix:
 any Unicode characters except \uFFFE, \uFFFF, and special characters
 Number:
 Integer Exponentopt
 Integer . Fraction Exponentopt
 Integer:
 MinimumInteger
 #
 # Integer
 # , Integer
 MinimumInteger:
 0
 0 MinimumInteger
 0 , MinimumInteger
 Fraction:
 MinimumFractionopt OptionalFractionopt
 MinimumFraction:
 0 MinimumFractionopt
 OptionalFraction:
 # OptionalFractionopt
 Exponent:
 E MinimumExponent
 MinimumExponent:
 0 MinimumExponentopt

Understanding DecimalFormat Patterns

DecimalFormat patterns help format numerical values for proper display. They define prefixes,
numeric values, and suffixes while handling positive and negative subpatterns, separators, and
formatting symbols.

The following are the key features of DecimalFormat Patterns:

• Contains positive and negative subpatterns (for example, `"#,##0.00;(#,##0.00)"`).

• If no negative subpattern is provided, the positive pattern is prefixed with a localized minus
sign (`'-'` in most locales).

• Customizable prefixes and suffixes can be used for different formatting styles.

Chapter 5
Format Number Functions

5-14

Here is the behavior of positive and negative subpatterns.

• `"0.00"` is equivalent to `"0.00;-0.00"` since the minus sign is automatically applied.

• If a negative subpattern is explicitly defined, only the prefix and suffix change while the
numerical rules remain the same.
For example, `"#,##0.0#;(#)"` behaves exactly the same as `"#,##0.0#;(#,##0.0#)"`.

Formatting Symbols and Separators

Symbols for infinity (`∞`), digits (`0-9`), thousand separators (`,`), and decimal points (`.`) are
fully customizable. Care must be taken to avoid conflicts to ensure:

• Positive and negative prefixes or suffixes are distinct for accurate parsing.

• Decimal separator and thousand separator are unique to prevent errors.

Grouping Separators and their Behavior

Typically used for thousands, though some locales use them for ten-thousands. The grouping
size determines the digit intervals.

For example, `3` for `"100,000,000"` or `4` for `"1,0000,0000"`.

If multiple grouping characters are provided, the last grouping separator before the integer end
is used. For example, `"#,##,###,####"` == `"######,####"` == `"##,####,####"`.

Chapter 5
Format Number Functions

5-15

6
Using Control Structures in Steps

Learn to use different control structures in steps in Oracle Communications Solution Test
Automation Platform (STAP).

Topics in this chapter:

• Overview

• Scenario Execution Flow

Overview
You can use control structures like if, for, and while for steps in the Behavior-Driven
Development (BDD) language. They are the building blocks within each test case and
determine the flow of execution for each step based on specific conditions. Steps dictate the
flow within test cases, while scenario execution flow governs the execution of the entire test
scenario.

Scenario Execution Flow
The Scenario Execution Flow relies on the outcomes of the steps in the scenario. If a step
within a test case fails, it impacts the flow by skipping remaining steps and potentially other test
cases within the scenario.

Figure 6-1 shows the detailed flow of a scenario execution.

Figure 6-1 Scenario Execution Flow

If the scenario execution is successful:

6-1

• Test Scenario Execution: If all the test cases within a scenario are run successfully, the
entire scenario is considered passed.

• Test Case Execution: When all test steps within a test case are run without any errors,
the test case is considered passed.

If the scenario execution fails:

• Test Scenario Execution: If a test case within a scenario fails, all subsequent test cases
in that scenario are skipped, and the entire scenario is marked as failed.

• Test Case Execution: If any test step within a test case fails, the remaining test steps in
that test case are skipped, and the test case is marked as failed.

This detailed flow ensures that the execution process is efficient and that any failures are
quickly identified and addressed, preventing unnecessary execution of subsequent steps or
cases.

Action Execution
There are two types of Action Executions:

• Static Action (Default)

• Controlled Step

Static Action (Default)

Performs the action once (in sequence).

Figure 6-2 shows the detailed flow of a static action.

Chapter 6
Scenario Execution Flow

6-2

Figure 6-2 Static Step

Controlled Step: Dynamic Action

Controlled execution of Step

• Condition: Conditional Execution (IF)

– Perform action when the condition is PASSED.

• repeatTimes (FOR)

– Repeat number of times.

• repeatUntil (UNTIL)

– Repeat until the condition is PASSED.

• repeatWhile (WHILE)

– Repeat while the condition is true.

Conditional Execution

• Perform Action when the condition is successful.

• Support multiple conditions using 'Condition'.

Figure 6-3 shows the detailed flow of a conditional execution.

Chapter 6
Scenario Execution Flow

6-3

Figure 6-3 Conditional Execution

For example,

This block of code checks if the category is Platinum, if yes, then it
changes to Gold through the action file request
When change category, for changing customer category
Condition:
| ${category} | Platinum |
Validate:
| $status | 201 |
| category | Gold |
Save:
| name | name |
| category | category |
RepeatTimes

Repeat Times

Repeatedly perform the action given number of times.

Figure 6-4 shows the flow of repeat times.

Chapter 6
Scenario Execution Flow

6-4

Figure 6-4 Repeat Times

The success of the step depends on each action. If any iteration fails – the step fails even then
continues.

The following are the various ways through which you can specify the repeat number of times:

• n : integer: number of times

• ${variable}: integer variable of times

• ${array}: array of integers. Action is repeated for array length number of times

• ${index}: index value of iteration. Values: 1-n

• ${nextValue} gives next array value.

• $breakOnFailure: YES breaks the loop, Default: NO

Example

Case: RepeatTimesAction
When set variable, create bills list
Save:
| $ARRAY{bills} | 25.213 |
| $ARRAY{bills} | 30.456 |
Then get mock response, repeatedly to send payment reminders of bills
executes this block for variable times - size of array
RepeatTimes:
| $times | $ARRAY{bills} |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills[${index}] | $ARRAY{bills[${index}]} |

Chapter 6
Scenario Execution Flow

6-5

Then get mock response, repeatedly to send payment reminders of bills
#executes this block of code for predefined number of times
RepeatTimes:
| $times | 2 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills[${index}] | $ARRAY{bills[${index}]} |
RepeatUntil

Repeat Until

• Repeatedly perform the action until the given condition is true.

• At least one Condition is mandatory. (?)

• $breakOnFailure : YES breaks the loop on action validation failure. Default: NO.

When set variable, create bills list
Save:
$ARRAY{bills}	25.213
$ARRAY{bills}	30.456
$ARRAY{bills}	28.712
$ARRAY{bills}	26.389
$ARRAY{bills}	31.243
executes this block of code until all the conditions are true
Then get mock response, sending notifications until customer bill equals a
value
RepeatUntil:
| $ARRAY{bills[${index}]} | 30.456 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
Repeat Until with time durations and frequency interval

Repeat Until with Time Durations and Frequency Interval

Figure 6-5 shows the flow of Repeat Until with Time Durations and Frequency Interval.

Chapter 6
Scenario Execution Flow

6-6

Figure 6-5 Repeat Until with Time Durations and Frequency Interval

$startAfter : Optional. Start executing action after this duration of time.
By default, starts immediately.The duration is in seconds.
$endAfter : Mandatory. Break after the completion of this time duration.
$interval: Optional. interval duration to run the action. By default,
executes continuously.
Specify duration in Seconds.
Breaks if the condition is true even before $endAfter.
$breakOnFailure : YES will breaks loop on action validation failure, Default:
NO.

Example scenario:
example

Case: RepeatUntilAction
When set variable, create bills list
Save:
$ARRAY{bills}	25.213
$ARRAY{bills}	30.456
$ARRAY{bills}	28.712
$ARRAY{bills}	26.389
$ARRAY{bills}	31.243
executes this block of code until all the conditions are true

Chapter 6
Scenario Execution Flow

6-7

Then get mock response, sending notifications until customer bill equals a
value
RepeatUntil:
| $ARRAY{bills[${index}]} | 30.456 |
start execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
RepeatWhile

When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:
| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |
RepeatWhile with time durations and interval

Repeat While

• Repeatedly perform the action while the given condition is true.

• $breakOnFailure: YES will break loop on action validation failure, Default: NO.

Repeat While

• Repeatedly perform the action while the given condition is true.

• $breakOnFailure: YES will break loop on action validation failure, Default: NO.

Figure 6-6 shows the flow of 1st iteration.

Chapter 6
Scenario Execution Flow

6-8

Figure 6-6 Repeat While 1st Iteration

Figure 6-7 shows the flow of other iterations.

Chapter 6
Scenario Execution Flow

6-9

Figure 6-7 Repeat While Other Iterations

Case: RepeatWhileAction
When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
starts execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:

Chapter 6
Scenario Execution Flow

6-10

| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |

Repeat While: Examples of Time Durations and Interval

$startAfter : Optional. Start executing action after this duration of time.
By default, starts immediately.
$endAfter : Mandatory. Break after the completion of this time duration.
$interval: Optional. interval duration to run the action. By default,
executes continuously.
Specify duration in Seconds.
Breaks if the condition is true even before $endAfter.
$breakOnFailure : YES breaks a loop on action validation failure. Default: NO.

Case: RepeatWhileAction
When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
starts execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:
| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |

Using multiple test data files in control actions

Action using multiple data
When create product offering, with multiple data sets
repeatTimes: 2
Data:
| $request | $FILE(productOffering_${index}.json) |
(data/product Offering_0.json
data/productOffering_1.json)
| variable | I Value${index}-${UlD} |
Validate:
| statusCode | 201 |
Save :
| $ARRAY{productOfferingId} | id |
(data/productOffering_O.json
data/productOffering_1.json
productQtferingJd Array)

Chapter 6
Scenario Execution Flow

6-11

Action using multiple data sets
When Dummy, save some values
Save:
| $ARRAY{poNames} | VoicePO |
| $ARRAY{poNames} | SMSPO |
| $ARRAY{poNames} I VolPPO |
When create product offering, with multiple data sets
Repeat Times:
| $times | $ARRAY{poNames} I
Data:
| $request |$FILE(productOffering_${nextValue}.json |
(data/productOffering_VoicePO.json
data/productPffering_SMSPO.json
data/productOffering_VolPPO.json)
| variable | Values${nectValue}-${index}-${UID} |
Validate:
| statusCode | 201 |
Save :
| $Array{productOfferinfId} | id |

Using Conditional Cases
Cases to run are mentioned in the scenario.config file. With conditional case execution, you
can specify a set of conditions, and only the cases which satisfy all specified conditions are
run.

Note:

• You mention the conditions after the case name within curly brackets, separated
by a comma. For example, sampleCase {condition1, condition2}.

• If the condition value or condition variable is from a saved variable in any of the
previous cases run, they are to be specified within ${ }.

• Only = or Equals to operation is supported for condition evaluation.

The following are the configurations to set to run conditional cases.

The syntax for scenario.config configuration file:

Header.info
Data.case
MockAction.case
MockAction.case{${executeMockAction}=${value}}
#MockAction.case{${executeMockAction}=true}
MockAction.case{${executeMockAction}=true,${day}=wednesday}

Chapter 6
Scenario Execution Flow

6-12

The following is the syntax for data.case file:

Case: Data creation for conditional execution

When dummy
Save:
value	true
executeMockAction	true
day	wednesday

The following is the syntax for MockAction.case file:

Case: Mock action test

When execute mock action, creating a task
Data:
| id | WeekdayTask-${UID} |
| name | WeekdayTask-${UID} |
Save:
| taskId | id |
| taskName | name |

When execute mock action, reading the task
Data:
| $requestString | {"id":"id"} |
| id | ${taskId} |

Chapter 6
Scenario Execution Flow

6-13

7
STAP Action Plugins

Learn about different Oracle Communications Solution Test Automation Platform (STAP) Action
Plugins and their functions.

Topics in this chapter:

• Introduction to STAP Action Plugins

• REST

• SOAP

• SSH SFTP

• Seagull

• Kafka

• URL Access Validation

• Custom Actions

Introduction to STAP Action Plugins
STAP Action plugins enable automation to interact seamlessly with various product interfaces,
such as REST and SOAP. These plugins enable developers and testers to automate tasks,
ensure consistency, and improve efficiency in managing interactions with diverse systems.
Automation plugins significantly enhance productivity by eliminating manual interventions.

Adding tools like Seagull process execution plugins further broadens the scope of automation,
making it easier to manage diverse and complex workflows. Selecting the right plugin depends
on factors such as the complexity of the task, integration requirements, and the technology
stack in use.

The available automation plugins are:

• REST API

• SOAP API

• SSH/SFTP

• Process

• Kafka

• Seagull (Multi Protocol Traffic Generator)

• URL Validator

REST Plugin
Representational State Transfer (REST) is a widely used interface for web services due to its
simplicity and scalability. The REST plugin facilitates tasks such as making requests, handling
JSON requests/payloads, and validating status and response data.

The key features of the REST plugin are:

7-1

• Payload Management: Simplifies sending and receiving JSON or XML data.

• Request Handling: Includes constructing the payload along with the REST methods such
as GET, POST, PUT, DELETE, and other HTTP methods.

• Authentication Support: Handles OAuth, API keys, and Basic Authentication.

• Response Validation: Supports for assertions on HTTP status codes, headers, and body
content.

The Rest plugin is used to automate the execution of REST API endpoints and to validate the
response.

REST Connection

To use the REST interface, you must first set up the connection environment. An environment
is a setup where applications or integrated solutions operate. A connection serves as an
interface to the application running in the environment, allowing communication with the
application.

Environment configuration includes the settings for these connections. Each STAP plugin has
its own environment connection configuration, and some plugins can have multiple
environment configuration files for different products tested using various scenarios. For more
information, see "Environments Folder"

You can combine REST and SOAP in a single environment, but other types of interfaces each
need to have their own environment:

• Multiple: This includes REST, SOAP

• Single: This includes SSH, KAFKA, URL_VALIDATION, SEAGULL

REST supports two types of authentications:

• Basic

• OAuth

Basic Authentication
Basic Authentication is a straightforward authentication method where the client provides
credentials (username and password).

Following is a sample of an environment.properties file for basic authentication.

Environment name
name=todo
type=REST

hostname=hostname
url=url

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
oauth2/basic
authorization.type=basic

#- BASIC Authorization

Chapter 7
REST Plugin

7-2

basic.username=
basic.password=

OAuth2 Authentication

OAuth2 supports client_credentials and password_credentials grant types.

Following is a sample of an environment.properties file for a client_credentials grant using
OAuth authentication.

#---
Environment name.
#---
name=care
#---
Type of the connection.
#---
type=REST

#---
REST Configuration
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---
#===
=
Authorization Configuration
#===
=
authorization=YES
#---
Authorization Type
One of oauth2/basic
#---
authorization.type=oauth2
#---
OAUTH2 - IDCS Configuration
#---
oauth2.grantType=client_credentials
oauth2.clientId=*****************************
oauth2.clientSecret=*****************************
oauth2.tokenUrl=*****************************
oauth2.scope=****************

Following is a sample of an environment.properties file for a password_credentials grant using
OAuth authentication.

#---
Environment name.
#---

Chapter 7
REST Plugin

7-3

name=care
#---
Type of the connection.
One of api.rest, api.soap or ssh
#---
type=REST

#---
REST Configuration
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---

#===
=
Authorization Configuration
#===
=
authorization=YES
#---
Authorization Type
One of oauth2/basic
#---
authorization.type=oauth2
#---
OAUTH2 - IDCS Configuration
#---
oauth2.grantType=password_credentials
oauth2.clientId=*****************************
oauth2.clientSecret=*****************************
oauth2.tokenUrl=*****************************
oauth2.scope=****************
oauth2.authorization=YES
oauth2.authorization.username=************
oauth2.authorization.password=************

Gateway types

The REST plugin supports two gateway types for constructing URLs dynamically:

default : Resource mentioned in the action file is added to the base URL to construct the final
URL.

fabric : When the base url remains same but during execution, different resource endpoints
need to be tested, connection URLs can be used.

Configuration key: connection.uri.resourceName

URL is constructed by joining the base url, value of the connection uri for the resource
mentioned in action file, and the resource in the action file.

Chapter 7
REST Plugin

7-4

For example,

#---
Environment name. Ref. Supported list above.
#---
name=care
#---
Type of the connection.
One of api.rest, api.soap or ssh
#---
type=REST
#---
REST Configuration
#---
#Hostname
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---
Connection Type : Direct or through Fabric
connectionType=fabric/default
#---
connection.type=fabric
connection.uri.customerBill=customerBillManagement/v4
connection.uri.customerBillOnDemand=customerBillManagement/v4
connection.uri.payment=payment/v4
connection.uri.paymentAllocation=payment/v4
connection.uri.adjustBalance=prepayBalanceManagement/v4
connection.uri.usage=usageManagement/v2
connection.uri.appliedCustomerBillingRate=customerBillManagement/v4
connection.uri.disputeBalance=prepayBalanceManagement/v4
#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=NO
#---

Action Files in REST Plugin

Action files define how API requests are constructed and executed within the REST plugin.

For example, in the following JSON file:

{
"path":"care/customerBill/read-customerBill/read-customerBill-by-id",
"name":"Read customer bill by id",
"bdd":"read customer bill by id",
"description":"Read customer bill by id",
"product":"care",

Chapter 7
REST Plugin

7-5

 "actionType":"REST",
"tags":["customer","bill"],
"resource":"customerBill",
"method":"GET",
"expectedStatusCode":200
}

The final URL for the example is constructed by combining the following elements:

resource : customerBill

Value of connection uri for the resource in action file: customerBillManagement/v4

The supported action types are:

• GET

• POST

• PUT

• PATCH

• DELETE

Method: GET

read-todo-task.action.json

{
"path":"/category/getcategory",
"name":"Read all categories",
"bdd":"read all categories",
"description":"Reading all categories of customer",
"product":"mockserver",
 "actionType":"REST",
"tags":["category","read","all"],
"resource":"getcategory",
"method":"GET",
 "expectedStatusCode":200
}

Method: POST

mockpost.action.json

{
 "path":"/category/postdetails/",
 "name":"add category",
 "bdd":"add category",
 "description":"Adding category",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["add","category"],
 "resource":"mock/postcust",
 "method":"POST",
 "requestType":"FILE",
 "request":"mockpost.request.json",

Chapter 7
REST Plugin

7-6

 "expectedStatusCode":201
 }

Request Json :

add-todo-task.request.json

{
 "name":"John Doe",
 "category":"Platinum",
}

Method: PUT

mockput.action.json

{
 "path":"/category/changedetails/",
 "name":"change details",
 "bdd":"change details",
 "description":"Changing customer details",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["change","details"],
 "resource":"mock/patchcust",
 "method":"PATCH",
 "requestType":"FILE",
 "request":"mockpatch.request.json",
 "expectedStatusCode":200
 }

Request Json :

put-todo-task.request.json

{
 "name" : "John Doe",
 "category" : "Gold"
}

Method: PATCH

mockpatch.action.json

{
 "path":"/category/changedetails/",
 "name":"change details",
 "bdd":"change details",
 "description":"Changing customer details",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["change","details"],
 "resource":"mock/patchcust",
 "method":"PATCH",
 "requestType":"FILE",

Chapter 7
REST Plugin

7-7

 "request":"mockpatch.request.json",
 "expectedStatusCode":200
 }

Request Json :

mockpatch.request.json

{
 "name":"Sam Curran",
 "category":"Platinum"
 }

Method: DELETE

mockdelete.action.json

{
"path":"category/deletecategory",
"name":"Delete category",
"bdd":"delete category",
"description":"Delete category of customer",
"product":"mockserver",
 "actionType":"REST",
"tags":["category","delete"],
"resource":"deletecategory",
"method":"DELETE",
 "expectedStatusCode":202
}

Dynamic Request JSON

Creating a dynamic request JSON file enhances flexibility in API automation by allowing
dynamic data injection at runtime instead of relying on predefined request structures.

To use a dynamic request JSON file instead of the request JSON file mentioned in the action
file:

1. Create a folder named 'data' under the folder for scenario.

2. Create a dynamic request JSON file with the name in the following format:
actualName.dynamicName.request.json, where actualName is the actual name of the
request file up to the first period, and dynamicName is a one-word name for the dynamic
request. , followed by the one word name for dynamic request and ending
with .request.json.

3. In the test step's data section, use $request for the variable name to access the
information, and use dynamicName as the value.

Refer to the following example to see how to use a dynamic request json, replacing predefined
request files for greater flexibility.
If the ordinary request file is named update-one-todo-task.UpdateStatus.request.json, and
you name the dynamic file update-one-todo-task.UpdateTodo.request.json, you access the
data this way:

Data:
| $request | $UpdateTodo |

Chapter 7
REST Plugin

7-8

| id | ${id} |
| description | Arrange meeting for service updates |
Validate:
| $status | 202 |

Query parameters
Query parameters in REST are key-value pairs added to the URL after a ? (question mark).
They are used to filter, sort, or modify a request without changing the resource path.

Query parameters to the endpoint can be configured in the test step using $query for GET and
POST methods.

The following BDD example provides query parameter account.id value in the url to read the
payment details:

Provide direct value in the query parameter value
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=abcde |

#Using saved context variable in query parameter value
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=${accountPoid} |

multiple query parameters
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=${accountPoid}&limit=1 |

Note:

For Patch method use $urlSuffix to send query parameters as part of url.

Using Variables in Query Parameters (Release 1.25.1.1.0 or later)

Query parameters in REST calls can include variables, which are dynamically substituted with
runtime values. For example,

https://api.example.com/resource?searchspec=([Name]="${accountName}")
In this case, ${accountName} will be replaced with its runtime value before the request is
sent.

Refer to the following BDD example:

Scenario: Query Param processor for Variable substitution

Description: Automation for validating correct handling of query parameters containing
multiple equals signs.

Tags: Test, E2E, QueryParamProcessing

Case: Process query params

Chapter 7
REST Plugin

7-9

Given set variable, to set name
Save:
| accountName | Marlan Brando |

Then get query param response, to search for given name
Data:
| id | param |
| $query | searchspec=([Name]="${accountName}") |
Validate:
| $status | 200 |
Save:
| resp | $data |

Custom Headers
Custom header parameters can be passed in the test step.

• To provide a custom value to a request header parameters, prefix the header key with
" $header_ ".

• Custom values for header parameter can be either a string or a variable saved in any of
the previous steps.

• Passing Authorization header :

– If other custom headers are present, but not an authorization header, then a new
access token will be generated depending on the authorization type configured in the
corresponding environment.properties file and will be passed in the authorization
header while executing the step.

– If there is an access token already available, to pass it in the step, use the custom
value $header_Authorization for the access token to be passed with appropriate prefix
(Example: Basic/ Bearer) depending on the authorization type being used.

For example,

When add category, for verifying customer details
Data:
$header_Date	Wed, 17 April 2024 04:51:36 -0700
name	John Doe
category	Platinum

Authorization header : Bearer token
When add category, for verifying customer details
Data:
$header_Authorization	Bearer abcedeeeeeeeee
name	John Doe
category	Platinum

Authorization header : Basictoken
When add category, for verifying customer details
Data:
$header_Authorization	Basic abcedeeeeeeeee
name	John Doe
category	Platinum

Using saved context variables in the header value
When add category, for verifying customer details
Data:

Chapter 7
REST Plugin

7-10

$header_Date	${Date}
$header_Authorization	%CONCAT(Bearer, ,${Token})
name	John Doe
category	Platinum

URL Suffix:

Suffixes to actual url can be added dynamically using $urlSuffix variable

For example,

Data:
| $urlSuffix | /purge |

Using saved context variable in url suffix
Given set variable, dummy step
Save:
| param | /paramValue |

Given post step test, URL Suffix is a saved variable
Data:
| $urlSuffix | ${param} |
Validate:
| $status | 404 |

#
Case: URL Params URL Suffix and URL Id test
Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | MyURLID400 |
Validate:
| $status | 404 |

Url Id with Url suffix
$urlId can be used to add an id value along with url suffix.

For example,

Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | MyURLID400 |
Validate:
| $status | 404 |

#using saved context variable in urlId
Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | ${accountId} |

Chapter 7
REST Plugin

7-11

Validate:
| $status | 404 |

Scenario Example :

TodoAppScenario.json

Scenario: RestAPI Scenarios
Description: Scenario for validating all the RestAPI plugin calls

Tags: RestAPI, Category, Customer

Case: Create a customer profile and view

When add category, for verifying customer details
Data:
| name | John Doe |
| category | Platinum |
Validate:
| $status | 200 |
Save:
firstUser.id	id
firstUser.name	name
firstUser.category	category

Then read category, by id
Data:
| id | ${firstUser.id} |
Validate:
$status	200
name	${firstUser.name}
category	${firstUser.category}

When add category, for buying gold subscription
Data:
| name | John Doe |
| category | Gold |
Validate:
| $status | 200 |

Then read all todo tasks, that are created above.
Validate:
[0].id	1
[0].name	John Doe
[0].category	Platinum
[1].id	2
[1].name	John Doe
[1].category	Gold
Save:	
variable1	%ARRAY_VALUE([?(@.category == 'Platinum')].name)

Chapter 7
REST Plugin

7-12

SOAP Plugin
Simple Object Access Protocol (SOAP) plugin is used to automate the execution of SOAP API
endpoints and to validate their responses. Automation plugins for SOAP focus on handling
XML-based payloads and ensuring Web Services (WS-*) standard compliance.

The following are the key features of SOAP:

• Message Customization: Support for modifying SOAP body.

• Security: Handle WS-Security, SSL, and SAML token integration.

• Assertions: Validate SOAP responses against schemas and expected values.

SOAP Connection supports two types of authentications:

• Basic

• OAuth2

Refer to the following example for a Basic Authorization.

soap-environment.properties

#===
=
BRM SOAP Environment Configuration
#===
=
name=brm
type=SOAP

#SOAP BASE URL
url=url

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=NO

#- BASIC Authorization
basic.username=
basic.password=

connection.uri.read_services_uri=BrmWebServices/BRMReadServices_v2?WSDL
connection.uri.cust_services_uri=BrmWebServices/BRMCustServices_v2?WSDL
connection.uri.payment_services.uri=BrmWebServices/BRMPymtServices_v2?WSDL

Refer to the following example for a Oauth2Authorization.

soap-environment.properties

#===
=

Chapter 7
SOAP Plugin

7-13

BRM SOAP Environment Configuration
#===
=
name=brm
type=SOAP

#SOAP BASE URL
url=url

connection.uri.read_services_uri=BrmWebServices/BRMReadServices_v2?WSDL
connection.uri.cust_services_uri=BrmWebServices/BRMCustServices_v2?WSDL
connection.uri.payment_services.uri=BrmWebServices/BRMPymtServices_v2?WSDL

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
authorization.type=oauth2

OAUTH2 - IDCS Configuration
#oauth2.grantType= password_credentials OR client_credentials

oauth2.grantType=client_credentials
oauth2.clientId=
oauth2.clientSecret=
oauth2.tokenUrl=
oauth2.scope=
#username and password in case of password_credentials grant type
oauth2.authorization.username=
oauth2.authorization.password=

Action Configuration:

Action Configuration involves making SOAP API calls to perform operations such as creating a
customer, updating information, or retrieving data.

Refer to the following example for creating a customer (create-customer.action.json).

{
 "path":"soap/brm/customer/create-customer",
 "name":"create customer",
 "description":"Create customer",
 "product":"brm",
 "actionType":"SOAP",
 "serviceURI":"${cust_services_uri}",
 "bdd":"create customer",
 "tags":["create","account"],
 "requestType":"FILE",
 "request":"create-customer.request.xml",
 "expectedStatusCode":200
}

Custom Headers

Chapter 7
SOAP Plugin

7-14

In Custom Headers, parameters can be passed in the test step.

Note:

1. Prefix the header key with "$header_" to provide a custom value.

2. The custom value can be a string or a variable saved in previous steps.

Refer to the following example.

Then search plan, Search the Plan Poid by Giving the plan name in BRM
Data:
| $header_Date | Wed, 17 April 2024 04:51:36 -0700 |
| planName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoDealPoid | //DEALS/DEAL_OBJ/text()|
| timoPlanPoid | //RESULTS/POID/text() |

Scenario Example :

brm-soap.scenario

Scenario: BRM Scenario steps to create customer for E2E Scenario POC
Description: BRM Scenario steps to create customer for E2E Scenario POC

Case: Creating customer
Then search plan, Search the Plan Poid by Giving the plan name in BRM
Data:
| planName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoDealPoid | //DEALS/DEAL_OBJ/text()|
| timoPlanPoid | //RESULTS/POID/text() |

Then search deal, Search the Deal Poid by Giving the Deal name in BRM
Data:
| dealName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoProductPoid | //PRODUCT_OBJ/text() |

When create customer, Create a subscription account in BRM with the same
account no as Fusion
Data:
productPoid	${timoProductPoid}
dealPoid	${timoDealPoid}
planPoid	${timoPlanPoid}
serviceName	telco/gsm/telephony
accountNo	${subscrAccountNumber}

Chapter 7
SOAP Plugin

7-15

qty	1
firstName	Tony
lastName	Stark
email	no-reply@oracle.com
address	123 Main St
city	San Jose
state	CA
country	US
zip	95110
login	ts${UID}
Validate:	
$status	201
Save:	
accountPoid	//ACCOUNT_OBJ/text()
billingInfoPoid	//BILLINFO_OBJ/text()

XML API: Support for Sending Body in x-www-form-urlencoded
Any data sent in the case file needs to be appended with key_ to indicate that this is a key-
value pair content that needs to be sent in the request body with type as x-www-form-
urlencoded.

Note:

The 'Login to XML API' step is required to obtain the JSession ID from a successful
login response. This ID must be included in the request headers of subsequent calls
as a cookie to maintain the session.

The following are the contents of a case file that contains an XML API test:

Case: XML API Test with URL Encoding Content Type

Given login to XML API, using basic auth credentials

Validate:
| statusCode | 200 |
Save:
| JSESSIONID | %RESPONSE_HEADER(Set-Cookie) |

Given external reference id for getting order id
Data:
| $header_Cookie | ${JSESSIONID} |
| $contentType | URL_ENCODED |
| key_xmlDoc | <Query.Request
xmlns="urn:com:metasolv:oms:xmlapi:1"><Reference>465-119337432</
Reference><OrderType>PO_OrderFulfillment</
OrderType><OrderSource>PO_OrderFulfillment</OrderSource><SingleRow>true</
SingleRow></Query.Request> |
Validate:
| statusCode | 200 |

Chapter 7
SOAP Plugin

7-16

Save:
| order_id | //Orderdata/_order_seq_id/text() |

The following are the contents of an action file that contains XML API:

login.action.json

{
 "path":"soap/xmlAPI/login",
 "name":"login",
 "description":"login",
 "product":"xmlAPI",
 "actionType":"API",
 "apiActionType":"SOAP",
 "serviceURI":"${xmlapi.login}",
 "bdd":"login to XML API",
 "tags":["login","XML API"],
 "expectedStatusCode":200
}

order.action.json

{
 "path":"soap/xmlAPI/xmlAPI",
 "name":"order",
 "description":"order",
 "product":"xmlAPI",
 "actionType":"API",
 "apiActionType":"SOAP",
 "serviceURI":"${xmlapi.order}",
 "bdd":"external reference id for getting order id",
 "tags":["order","reference"],
 "expectedStatusCode":200
}

The following are the contents of properties file that contains XML API:

#===
=
BRM SOAP Environment Configuration
#===
=
name=xmlAPI
type=api.soap
#***s*******
**
Pre Defined Environment Properties
#***
*
\u200B
#SOAP BASE URL
#url= example.com

Chapter 7
SOAP Plugin

7-17

url= example.com
#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
authorization.type=BASIC
\u200B
#- BASIC Authorization
basic.username=omsadmin
basic.password=Osmpass1
\u200B
#***
*
Custom Environment Properties
#***
*
#custom.read_services_uri=BrmWebServices/BRMWSReadServices_V2.wsdl
\u200B
connection.uri.xmlapi.login=login
connection.uri.xmlapi.order=XMLAPI

Figure 7-1 shows a sample of the automation report.

Figure 7-1 Automation Report Sample

SSH SFTP Plugin
Secure Shell (SSH) Plugin is used to run shell commands and SFTP is used to transfer files.
They automate interactions with remote servers, making them invaluable for configuration
management, server monitoring, and deploying applications.

The following are the key features of SSH SFTP Plugin:

• Command Execution: Automate execution of shell commands on remote servers.

Chapter 7
SSH SFTP Plugin

7-18

• File Transfers: Transfer files securely using SCP or SFTP protocols.

• Session Management: Handle multiple sessions with session reusability.

Environment Connection Configuration

SSH SFTP supports two types of authentications:

• Basic

• Key (Public/Private)

Basic Authorization

Basic Authentication supports a straightforward authentication method where the client
provides credentials (username and password).

Refer to the following example for basic authorization.

Environment name
name=tasstest-ssh
type=SSH

#Configuration
hostname=hostname.oracle.com
port=22
#---
Authorization
#---
authorization=YES
authorization.type=basic
username=
password=

Private key Authorization

Supports only RSA private key.

Note:

The key.file has to be present in the user's local system from where the scenario is
performed.

#---

SSH Command Sample Environment Connection Configuration
Using Authentication KEY
#---

name=dx4c-ssh
type=SSH

#Configuration
hostname=123.456.78.9
port=22
#---
Authorization

Chapter 7
SSH SFTP Plugin

7-19

#---
authorization=YES
authorization.type=KEY
key.file=C:/Users/MSHAIK/.ssh/id_rsa
key.user=opc

Action Configuration:

The following are the contents of an action file that contains SSH commands:

{
"path":"SSHCommand/run-ssh-command",
"name":"run SSH command",
"bdd":"run SSH command",
"description":"run SSH command",
"tags":["ssh"],
"product":"ssh-test",
 "actionType":"SSH",
 "subType":"SSHCommandAction",
 "expectedStatusCode":0
}

TestStep

Step: run SSH command

Data parameter: SSH command, environment name

Validation parameters:

• SSH Command exit code using $status

• Response string : Using validation variable : $data

• Error response: Using validation variable : $error

Save parameters:

• Use save variable with value '$data' to save the command response.

• If the command is known to return an error, use $error to save the error response.

Scenario Example :

Then run SSH command, to check the current directory
Data:
| $command | pwd |
| $environment | tasstest-ssh |
Validate:
| $status | 0 |
| $data | %CONTAINS(tenant1) |
Save:
| currentDir | $data |
| homeDir | %SUBSTRING(${currentDir},0,5) |

Then run SSH command, to check the current directory and to check the user
Data:
| $command | pwd;whoami |
| $environment | tasstest-ssh |

Chapter 7
SSH SFTP Plugin

7-20

Validate:
| $status | 0 |
| $data | %CONTAINS(tenant1) |

#command that generates both response and error
Then run SSH command, command generating both response and error
Data:
| $command | pwd;ls -lrt dummy.txt |
| $environment | ssh-test |
Validate:
| $status | 2 |
| $error | %CONTAINS(No such file or directory) |
Save:
| response | $data |
| errorResponse | $error |

Replacing Special Characters

If SSH Command has any of the following special characters, they should be replaced with
keywords, otherwise publish scenario scripts might fail.

Table 7-1 Replacing Special Characters

Character Description Replace with

' Single Quote %{SQUOTE}

" Double Quote %{DQUOTE}

\ Backslash %{BACKSLASH}

, Comma %{COMMA}

For example,

Then run SSH command, update the subscriberIdentifier in the
scenario_params_tmp.csv file
 Data:
 | $command | cd $HOME/enablement/seagull ; awk 'NR==2 {$2="\"${login_details}
\""} 1' FS=";" OFS=";" scenario_params_tmp.csv > temp && mv temp
#scenario_params_tmp.csv |
 | $environment | pdc-ssh |
 Validate:
 | $status | 0 |

SSH command in the example above should be provided as follows.

Then run SSH command, update the subscriberIdentifier in the
scenario_params_tmp.csv file
 Data:
 | $command | cd $HOME/enablement/seagull ; awk %{SQUOTE}NR==2 {$2=%{DQUOTE}%
{DQUOTE}${login_details}%{DQUOTE}%{DQUOTE}} 1%{SQUOTE} FS=%{DQUOTE};%{DQUOTE}
OFS=%{DQUOTE};%{DQUOTE} scenario_params_tmp.csv > temp && mv temp
scenario_params_tmp.csv |
 | $environment | pdc-ssh |
 Validate:
 | $status | 0 |

Chapter 7
SSH SFTP Plugin

7-21

ExitCondition

Commands that do not exit on their own or take a long time to complete can be assigned as an
exit condition.

$exitCondition: A predefined response from the SSH command can be used as an exit
condition. If the SSH command freezes during execution or fails to return control, the response
is checked for this exit condition. If it is detected, the SSH channel is closed by STAP.

$endAfter: When exit condition is present, it is mandatory to provide the end after time, to
avoid indefinite wait time. While checking for the exit condition in the SSH response, if it is not
found even after the end after duration elapses, STAP forcefully closes the SSH
channel. $endAfter is mentioned in seconds.

Note:

The exit status of the SSH command in the above case is set to -1 to indicate forceful
termination.

For example,

#command that does not exit by itself
Then run SSH command, echo command, usage of expected response
Data:
$command	sleep 5;echo done;sleep 20
$exitCondition	%CONTAINS(done)
$endAfter	15
$environment	ssh-test
Validate:	
$status	-1

Chapter 7
SSH SFTP Plugin

7-22

Note:

• Only the SSH command can be passed as a data parameter to "run SSH
command" step.

• More than one command can be passed in a single step, by separating the
commands using semicolon(;).

• Supported validations are:

– Exit code of the command using validation property $status.

– %CONTAINS check for any string that may be a part of the command
response or error.

• In response validation, single string can be passed to the %CONTAINS operator.

• Save variable with value '$data' should be used to save the command response.
If the command generates any errors, it can be saved in $error. Functions can be
operated on these saved variables.

• Both $data and $error can be used in single step. For instance, it is possible that
a command generates some response but there is also an error in response, in
which case both $data and $error can be used to validate and save the response
accordingly.

• Each SSH Step opens a new ssh session with the remote server and hence any
prerequisites needed for the command such as environment variables should
also be set in the command.

Some exit codes and their definitions

• Exitcode 0: Command successfully performed

• Exitcode 1: Catchall for general errors

• Exitcode 99: Problem in the context of the specific program

• Exitcode 126: If a command is found but is not executable

• Exitcode 127: Command not found

SFTP Commands

SSH File Transfer Protocol commands for uploading and downloading files are supported as
shown below.

For example,

Then run SSH command, upload file
 Data:
$command	$sftp:UPLOAD_FILE
$environment	brm-ssh
$source	$FILE(usageFile.csv)
$target	/scratch/ri-user-1/dummy/sample.csv
Validate:	
$status	0

Then run SSH command, download file

Chapter 7
SSH SFTP Plugin

7-23

 Data:
$command	$sftp:DOWNLOAD_FILE
$environment	brm-ssh
$source	/scratch/ri-user-1/dummy/sample.csv
$target	$FILE(usageFile1.csv)
Validate:	
$status	0

Step: run SSH command

Data parameters: SFTP command, environment name, source and target paths for file
transfer.

Validation parameters: SFTP Command exit code.

Commands:

• $sftp:UPLOAD_FILE: Used to transfer file from local system to remote server.
Parameters:

– Source: Name of the local file to be transferred to remote server, where the file name
should be specified as $FILE(filename) and it should be present inside "data" folder.

– Target: The absolute path of the file destination on remote server.

• $sftp:DOWNLOAD_FILE: Used to transfer file from remote server to local system.
Parameters:

– Source: The absolute path of the source file on remote server.

– Target: Name of the local file to which the remote file should be copied, where the file
name should be specified as $FILE(filename).

Note:

• Both the source and target paths are mandatory for file transfer.

• File names should be specified with extension.

SSH Private Key

STAP SSH Command supports only RSA private key.

If you see this error in STAP.

**********--

Running...SSH Command Action
Server : ssh
Action : run SSH command
Error : Failed to run command. Error : invalid privatekey: [B@222a59e6
**********--

Chapter 7
SSH SFTP Plugin

7-24

If your private key appears similar to the example below when viewed in a text editor, you
should convert it to an RSA private key.

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC...
...
...
...MAECAwQF
-----END OPENSSH PRIVATE KEY-----

Use ssh-keygen to convert your private key to RSA private key

ssh-keygen -p -f ~/.ssh/id_rsa -m pem

Note:

Replace the location of private key ~/.ssh/id_rsa

-----BEGIN RSA PRIVATE KEY-----
MIIG4wIBAAK...
...
...
...E428GBDI4
-----END RSA PRIVATE KEY-----

Troubleshooting

If the command is a script execution, ensure any prerequisites needed for it are also set in the
command.

For example,

Then run SSH command and the script for modifying the account's profile (it
calls PCM_OP_CUST_MODIFY_PROFILE internally)
Data:
| $command | sh associateFFmember.sh ${profileObj} |
| $environment | pdc-ssh |
Validate:
| $status | 0 |

Generates an error:

testnap: error while loading shared libraries: libportal.so: cannot open shared
object file: No such file or directory
Here command contains execution of a script associateFFmember.sh that internally runs a
command that needs the proper path set on $LD_LIBRARY_PATH. Since each STAP ssh step
opens a new ssh connection, it is important to make sure path is set properly.

Resolution:

Then run SSH command, run the script for modifying the account's profile (it
calls PCM_OP_CUST_MODIFY_PROFILE internally)

Chapter 7
SSH SFTP Plugin

7-25

Data:
| $command | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/scratch/ri-user-1/opt/
portal/BRM/lib64:/scratch/ri-user-1/opt/portal/BRM/
lib;echo $LD_LIBRARY_PATH;sh associateFFmember.sh ${profileObj} |
| $environment | pdc-ssh |
Validate:
| $status | 0 |

Process Plugin
STAP process plugin is used to run the shell commands locally using java.lang.process.

Action

Command to be run using process plugin is mentioned in the action.json's field 'command'.

Supported Types of commands :

1. Simple shell command

2. Command with variables

3. Command with parameters

1. Simple command:

Example: To run a shell command to fetch current directory :

run-pwd.action.json

{
"path":"process/run-command",
"name":"run pwd command",
"bdd":"run pwd command",
"description":"run pwd command",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,
"command":"sh,-c,pwd"
}

Example: To launch Notepad.exe

launch-notepad.action.json example

{
"path":"process/run-command",
"name":"launch notepad",
"bdd":"launch notepad",
"description":"launch notepad",
"product":"process",
"actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,
"command":"notepad.exe"
}

Chapter 7
Process Plugin

7-26

2.Command with variables

Command can contain the variables whose value is updated from the context during runtime.

Syntax : ${ VariableName }

Note:

The variable name should have been saved in any of the steps that are performed
before the step (action) which has that variable name in the action's command.

For example, in the following action.json, command has a variable : ${messageScript} that
indicates the location of the script file to be run.

process-action.json example

{
"path":"process/run-command",
"name":"run message script",
"bdd":"run message script",
"description":"run message script",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,
"command":"sh,-c,sh ${messageScript}"
}

In the following scenario, the value for variable messageScript is saved in the step: 'set
variable' before the step 'run message script'

So that updated command during execution will be : "sh,-c,sh ProcessPlugin/Message.sh"

message.scenario

#saving scripts paths
When set variable,
Save:
| messageScript | ProcessPlugin/Message.sh |

When run message script,
Validate:
| $status | 0 |

3.Command with parameters

Parameters/arguments in the command can be mentioned in format : %{ ParameterName :
ParameterValue }

'ParameterValue' is the default value to be used. ParameterName is used just to check if value
for it is passed from the Test Step's 'Data' section.

If yes, then data variable's value overrides the default 'ParameterValue' . Final value of the
parameter replaces %{ ParameterName : ParameterValue } in the command.

Chapter 7
Process Plugin

7-27

For example, in the following action.json, command has two parameters : %{FirstName:John}
and %{SecondName:Tribbiani}.

If custom value for parameters FirstName and SecondName are specified from the test
steps's Data section, then those values override the default values John and Tribbiani
respectively.

process-action.json example

{
"path":"process/run-command",
"name":"run test script",
"bdd":"run test script",
"description":"run test script",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
"expectedExitCode":0,
"command":"sh,-c,sh ${testScript} %{FirstName:John} %{SecondName:Tribbiani}"
}

In the following scenario, custom value is provided for parameter 'FirstName' only. Parameter
'SecondName' takes the default value.

So that updated command during execution will be : "sh,-c,sh ProcessPlugin/test.sh Joey
Tribbiani"

test.scenario

When set variable,
Save:
| testScript | ProcessPlugin/test.sh |

When run test script
Data:
#passing custom value for the parameter 'FirstName'
| FirstName | Joey |
Validate:
| $status | 0 |

Test Step:

Data:
 a) Parameters/Arguments for the command to be run.
 b) waitAfter : By default stap process plugin waits for 2 seconds for the
command to finish execution. If a command is known to take more than 2
seconds, then user must specify custom wait time in the Test Step using data
variable 'waitAfter'

Validation:
 a) $status : Expected exit code for the process executing the command.
Multiple comma separated exit codes can be specified.
 b) $data : String to be validated against the entire Response of the process
executing the command.

Chapter 7
Process Plugin

7-28

Save:
a) $data : Entire Response of the process executing the command

Validation:

1. If Validation for exit code is not explicitly given in the Test Step (that is $status), then
expectedExitCode mentioned in the action.json is used to validate if the execution is
successful or not.

2. Only Validation properties supported in Process plugin are $status and $data. Functions
and operators are supported on the $data as shown in below example.

example

When run test script
Data:
| UserName | Joey |
Validate:
| $status | 0 |
| $data | %CONTAINS(Joey) |

Save:

Only Save property supported in Process plugin is $data. Once $data is saved in a variable,
Functions and operators are supported on that variable as shown in below example.

example

When run test script
Data:
| UserName | Joey |
Save:
scriptResponse	$data
scriptResponse2	%UPPERCASE(${scriptResponse})
scriptResponse3	%SUBSTRING(${scriptResponse},0,4)

Scenario Example:

process.scenario

Scenario: Process Plugin Automation Scenario
Description: Process Plugin Automation Scenario

Tags: Test, Process

Case: Process action test

When launch notepad
Validate:
| $status | 1 |

When run pwd command
Validate:
| $status | 0 |

Chapter 7
Process Plugin

7-29

#Multiple exit codes in validation
When run pwd command, multiple validation codes
Validate:
| $status | 0,1,2 |

#saving scripts paths
When set variable,
Save:
| messageScript | ProcessPlugin/Message.sh |
| testScript | ProcessPlugin/processPluginTest.sh |

#variables to be updated in action file's command
When run test script, sending variables to be updated in action file's command
Data:
UserName	Joey
FullName	Joey_Tribbiani
Age	30
Validate:	
$status	0
$data	%CONTAINS(Joey)
#Saving response and operations on response and validation	
Save:	
scriptResponse	$data
scriptResponse2	%UPPERCASE(${scriptResponse})

#specifying waitAfter time
When run message script,
Data:
| message | Hello_Good_morning |
| waitAfter | 2 |
Validate:
| $status | 0 |

Seagull
Seagull is an open-source tool for testing and simulating network protocols. STAP Seagull
plugin is used to run the seagull test scenarios. It can be used to generate the diameter traffic,
provided the scenario and the required configuration files are present.

Key Features:

• Protocol Simulation: Simulate protocols like SIP, Diameter, and HTTP.

• Traffic Generation: Generate high volumes of traffic for stress testing.

• Custom Scenarios: Define custom test scenarios with dynamic parameters.

• Performance Analysis: Measure response times and system behavior under load.

Seagull Connection:

seagull-environment.properties

#===
=
Seagull Connection Configuration
#===
=

Chapter 7
Seagull

7-30

#Fixed fields of seagull connection,do not modify.
name=seagull
type=SEAGULL

User modifiable fields of seagull connection.
#Absolute path of seagull installation directory.
seagull.installationDirectory =
#seagull supported log levels
seagull.logLevel = ETMA
#Absolute path to store seagull execution logs.
seagull.logDirectory =

Action:

Supported action types:

• Creating seagull instance (Fixed action)

• Running seagull scenario

Create seagull instance

Following action.json is used to create seagull instance. The field 'instanceName' is the
default name used to create the instance. This is the fixed action to create seagull instance
and should not be modified. Multiple seagull instances (that is having different config file and
dictionary file) can be created by reusing this same action and saving the instance with
different name using $name save variable in the test step.

create-seagull-instance.action.json

{
"path":"CustomAction/seagull-action",
"name":"Create seagull instance",
"bdd":"create seagull instance",
"description":"create seagull instance",
"product":"seagull",
 "actionType":"SEAGULL",
 "subType":"CREATE_INSTANCE",
"tags":["custom","process"],
"instanceName":"seagull"
}

Running seagull scenario

Depending on the scenario to run, any number of action.json can be created.

Name of the scenario to be performed is specified using the field 'scenario'.

client-scenario-sar.action.json

{
"path":"CustomAction/seagull-action",
"name":"Run client scenario",
"bdd":"run client scenario sar",
"description":"run client scenario",
"product":"seagull",
 "actionType":"SEAGULL",
 "subType":"RUN_SCENARIO",

Chapter 7
Seagull

7-31

"tags":["custom","process"],
"scenario":"sar-saa.client.xml"
}

Test Step:

Creating seagull instance:

Data:
a) $configFile : Name of the config file to be used for creating seagull
instance.
b) $dictionaryFile : Name of the dictionary file to be used for creating
seagull instance.

Save :
a)$name : Custom name for the seagull instance. This name overrides the
instanceName given in action.json.

For example,

create-seagull.case

When create seagull instance,
Data:
| $configFile | conf.client.xml |
| $dictionaryFile | base_cx.xml |
Save:
#
| seagull1 | $name |

Running seagull scenario

Data:

a) $name : Name of the seagull instance to be used for running the scenario.
An instance of this name should have been created before using 'create
seagull instance' step, otherwise execution will result in failure.
b) $externalDataFile : Name of the external data file (CSV format). This
data file is used to change content of the message in seagull scenario before
sending.
c) $params : To send the dynamic values for one or more fields, using these
values, the external data file is updated.

 Syntax : Data types of the field separated by comma ;Values of the fields
separated by comma.
 Example:
 | $params | number;16 |

For example,

Chapter 7
Seagull

7-32

create-seagull.case

When run client scenario sar,
Data:
$name	seagull1
$externalDataFile	external_client_data.csv
$params	number;16

Note:

If the $externalDataFile is specified and $params is not specified, then the external
data file is used as it is during scenario execution. If $params is present, then
contents of external data file is overridden with the value of $params.

You must carefully supply data types and values depending on the seagull scenario
to be run.

Test Step Data:

You should create a folder named 'data' under the same folder where STAP scenario to run
seagull is created. The data files for creating seagull instance such as config.xml and
dictionary.xml , Seagull scenario file scenario.xml and the external data file should be copied to
this 'data' folder.

Figure 7-2 displays the Seagull folder structure:

Figure 7-2 Seagull Folder Structure

Chapter 7
Seagull

7-33

Note:

• In STAP, Seagull is launched in the background mode because otherwise it
expects keyboard input.

• If there are any errors found in the seagull log file, then error is thrown and STAP
execution fails. User needs to have the knowledge of the seagull configurations
(config.xml, dictionary.xml) and the seagull scenarios and should put these
appropriate files under the 'data' folder in order to ensure successful execution of
the STAP scenario.

Scenario Example:

seagullServer.case

Case: Seagull test-Server instance

#instance creation using default name
When create seagull instance,
Data:
| $configFile | conf.server.xml |
| $dictionaryFile | base_cx.xml |

When run server scenario sar,
Data:
| $name | seagull |

seagullClient.case

Case: Seagull client test

When create seagull instance,
Data:
| $configFile | conf.client.xml |
| $dictionaryFile | base_cx.xml |
Save:
| seagull1 | $name |

#scenario execution with external data file
When run client scenario sar,
Data:
$name	seagull1
$externalDataFile	external_client_data.csv
$params	number;16

Report

• configurations hyperlink in the report shows the seagull instance created and used for the
scenario execution.

• seagullLogs hyperlink shows the logs generated by the seagull scenario execution.

Chapter 7
Seagull

7-34

Figure 7-3 displays an example Seagull Plugin Test yScenario Summary Report:

Figure 7-3 Seagull Plugin Test yScenario Summary Report

Kafka
STAP Kafka is a component used within the Kafka Connect framework to integrate Apache
Kafka with various data systems.

Message Queue Interface for Kafka

Automation plugins for message queues enable efficient testing and monitoring of message-
driven systems.

Key Features:

• Message Publishing: Automate sending messages to queues.

• Consumption: Automate message retrieval and processing.

• Serialization Support: Handle Text, JSON and XML formats.

Kafka Connection

#---

Environment name
#---

name=test
type=Kafka

#---

Bootstrap Servers
List of comma separated bootstrap servers
#---

servers=servername

#---

Chapter 7
Kafka

7-35

Authorization
-- Not used in this version --
#---

authorization=NO

Action

The following table lists the action properties:

Table 7-2 Action Properties

Property Mandatory Description Default Value Allowed Values

actionType Yes Kafka Plugin Type Kafka Kafka

subType Yes Kafka action sub
types

GET_TOPIC_LATE
ST_MESSAGE,
PING_SERVER,
SEND_TOPIC_ME
SSAGE,
GET_MESSAGE_
COUNT,
DELETE_TOPIC_
MESSAGES

topic Yes Topic name

commit No Commit message
read

false true, false

Supported Action Types:

• Get Topic Last Message

• Ping Server

• Send Topic Message

• Get Message Count

Get Topic Last Message

{
"path":"Kafka",
"name":"Get Topic Last Message",
"bdd":"get topic last message",
"description":"get topic last message",
"tags":["Kafka,get,topic,message"],
"product":"test",
 "actionType":"Kafka",
 "subType":"GET_TOPIC_LATEST_MESSAGE",
 "topic":"test-topic",
 "commit": false
}

Ping Server

{
"path":"Kafka",

Chapter 7
Kafka

7-36

"name":"Ping Server",
"bdd":"ping server",
"description":"ping server",
"tags":["Kafka,ping,server,test"],
"product":"test",
 "actionType":"Kafka",
 "subType":"PING_SERVER",
 "topic":"test-topic",
 "commit": false
}

Send Topic Message

{
"path":"Kafka",
"name":"Send Topic Message",
"bdd":"send topic message",
"description":"Send Topic Message",
"tags":["Kafka,send,message"],
"product":"test",
 "actionType":"Kafka",
 "subType":"SEND_TOPIC_MESSAGE",
 "topic":"test-topic",
 "commit": false
}

Get Message Count

{
"path":"Kafka",
"name":"Get Message Count",
"bdd":"get message count",
"description":"get number of messages",
"tags":["Kafka,get,message,count"],
"product":"test",
 "actionType":"Kafka",
 "subType":"GET_MESSAGE_COUNT",
 "topic":"test-topic",
 "commit": false
}

Scenario Examples

Read last JSON message

When set variable,
Save:
| name | USER |

When get topic last message, for validating account creation message
Data:
| $messageType | JSON |
Validate:
| $status | SUCCESS |

Chapter 7
Kafka

7-37

name	stap user
%SUBSTRING($name,5)	user
%SUBSTRING($name,5)	%LOWERCASE(${name})
address.residenceNo	100001
Save:	
id	id
name	%SUBSTRING($name,5)
pin	address.pin

Runtime Scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios
#Tags:

#Persona:
Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When get topic last message, for validating account creation message
Data:
#| Property | Value | Runtime Value |
 | $messageType | JSON | null |
Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
 | $status | SUCCESS | SUCCESS |
SUCCESS | PASSED |
 | name | stap user | stap user | stap
user | PASSED |
 | %SUBSTRING($name,5) | user | user |
user | PASSED |
 | %SUBSTRING($name,5) | %LOWERCASE(${name}) | user |
CONDITION: SUCCESS | PASSED |
 | address.residenceNo | 100001 | 100001 |
100001 | PASSED |
Save:
#| Property | Value | Runtime Value |
id	id	532457234857234879594
name	%SUBSTRING($name,5)	user
pin	address.pin	560001

Read Last XML Message

When set variable,
Save:
| name | USER |

When get topic last message, for validating account creation message

Chapter 7
Kafka

7-38

Data:
| $messageType | XML |
Validate:
$status	SUCCESS
//name	stap user
//address/city	Bangalore
%SUBSTRING($//name,5)	user
%SUBSTRING($//name,5)	%LOWERCASE(${name})
%SUBSTRING(${name},1)	SER
Save:	
id	//id
name	%SUBSTRING($//name,5)
pin	//address/pin

Runtime Scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios
#Tags:

#Persona:
Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When get topic last message, for validating account creation message
Data:
#| Property | Value | Runtime Value |
 | $messageType | XML | null |
Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
 | $status | SUCCESS | SUCCESS |
SUCCESS | PASSED |
 | //name | stap user | stap user | stap
user | PASSED |
 | //address/city | Bangalore | Bangalore |
Bangalore | PASSED |
 | %SUBSTRING($//name,5) | user | user |
user | PASSED |
 | %SUBSTRING($//name,5) | %LOWERCASE(${name}) | user |
CONDITION: SUCCESS | PASSED |
 | %SUBSTRING(${name},1) | SER | SER |
SER | PASSED |
Save:
#| Property | Value | Runtime Value |
id	//id	532457234857234879594
name	%SUBSTRING($//name,5)	user
pin	//address/pin	560001

Chapter 7
Kafka

7-39

Runtime Scenario with all cases:

Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios

Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When ping server, checking if kafka is available
Validate:
| $status | SUCCESS |

When send topic message, sending message for a topic
Validate:
| $status | SUCCESS |

When get message count, getting number of messages
Validate:
| $status | SUCCESS |

When get topic last message,
Data:
| $messageType | JSON |
Validate:
$status	SUCCESS
name	stap user
%SUBSTRING($name,5)	user
address.residenceNo	100001
Save:	
id	id
name	%SUBSTRING($name,5)
pin	address.pin

When get message count, getting number of messages
Validate:
| $status | SUCCESS |

URL Access Validation
Accessibility of URLs can be verified from automation using URL Validation actions.

Environment connection:

URLs are specified with prefix "url." and request headers are specified with prefix "header." in
the environment.properties file.

The value given for step's data variable: "url" should match with one of the url names
mentioned in environment.properties file.

Chapter 7
URL Access Validation

7-40

ui-environment.properties

name=test-ui
type=URL_VALIDATION

#UI Urls
url.launch=https://example.oracle.com/
url.care = https://example.oracle.com/
url.billingcare=http://example.oraclecloud.com/
url.pdc=http://example.oraclecloud.com/
url.osm_task=http://example.osm.org/
url.osm_orchestration=http://example.osm.org/
url.siebel=https://example.oracle.com/enu
url.siebel2=https://example.oracle.com/

#Request header configurations
header.Host = example.oraclecloud.com
header.Accept = text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,*/*;q=0.8
header.Accept-Encoding = gzip, deflate
header.Accept-Language = en-US,en;q=0.5
header.Upgrade-Insecure-Requests = 1
#header.User-Agent = Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/
20100101 Firefox/91.0

Action:

Action file structure

{
"path":"CustomAction/url-action",
"name":"Validate URL",
"bdd":"validate URL",
"description":"run URL validation",
"tags":["custom","URL"],
"product":"test-ui",
 "actionType":"URL_VALIDATION",
 "expectedStatusCode":200
}

Request json

{
 "url":"url"
}

Scenario Example :

Case file

Case: Check accessibility of the DX4C UI Urls

Given validate URL, Launch UI
Data:
| url | launch |

Chapter 7
URL Access Validation

7-41

Validate:
| $status | 200 |

Given validate URL, Care UI
Data:
| url | care |
Validate:
| $status | 200 |

Given validate URL, Billing care UI
Data:
| url | billingcare |
Validate:
| $status | 200 |

Given validate URL, PDC UI
Data:
| url | pdc |
Validate:
| $status | 200 |

Given validate URL, osm_task UI
Data:
| url | osm_task |
Validate:
| $status | 200 |

Given validate URL, osm_orchestration UI
Data:
| url | osm_orchestration |
Validate:
| $status | 200 |

Given validate URL, Siebel UI
Data:
| url | siebel |
Validate:
| $status | 200 |

Given validate URL, Siebel UI
Data:
| url | siebel2 |
Validate:
| $status | 200 |

Report:

Note:

The Response section in step result shows the static web page of the URL specified,
if the URL returns HTML content.

Chapter 7
URL Access Validation

7-42

Custom Actions
Following custom actions can be used to generate pass, validation error and general error
cases from the scenarios.

Action

Action file structure

{
"path":"CustomAction/run-custom-action",
"name":"run custom action",
"bdd":"run custom action",
"description":"run custom action",
"tags":"custom",
"product":"custom",
 "actionType":"CUSTOM",
 "customActionType":"CustomTestAction",
 "expectedStatusCode":0
}

Test Step

Data parameters
a) type : Custom action type (PASS / THROW_ERROR / THROW_VALIDATION_ERROR)
b) duration : Duration in milliseconds for which the execution should be paused.
c) error_message : Meaningful error message in case the type passed is THROW_ERROR /
THROW_VALIDATION_ERROR

Scenario Example

Examples

When run custom action, pass case
Data:
| type | PASS |
| duration | 2000 |

When run custom action, validation error case
Data:
type	THROW_ERROR
duration	2000
error_message	Error occurred, please try again

When run custom action, validation error case
Data:
type	THROW_VALIDATION_ERROR
duration	2000
error_message	Validation error occurred

Mock Custom Action
Mock actions are the custom actions mainly used for testing. Test steps using mock actions ,
update the request with dynamic values and context values if present, and return it as
response.

Action

Chapter 7
Custom Actions

7-43

Action file structure

{
"path":"CustomAction/mock-action",
"name":"run mock action",
"bdd":"run mock action",
"description":"run mock action",
"product":"custom",
 "actionType":"CUSTOM",
 "subType":"MockTestAction",
"tags":["custom","mock"],
"requestType":"FILE",
"request":"run-mock-action.request.json",
 "expectedStatusCode":200
}

Request json:

mock-action.request.json

{
 "id": "1",
 "name": "Buy 2L Milk",
 "description": "Buy 2L milk from nandini booth",
 "status": "CREATED"
}

data/tasks/mock-action.request.json

{
"id":"$ReferenceTask[0]",
"description":"$ReferenceTask[0]"
}

Scenario Example

Case file

Case: Mock action test

When run mock action, creating a task
Data:
| id | WeekdayTask-${UID} |
| name | WeekdayTask-${UID} |
Save:
| taskId | id |
| taskName | name |

#Updating request field id with saved taskId
When run mock action, reading the task
Data:
| $requestString | {"id":"id"} |
| id | ${taskId} |

#Saving data in reference object

Chapter 7
Custom Actions

7-44

When run mock action, creating a task
Data:
id	WeekEndTask-${UID}
name	WeekEndTask-${UID}
description	Take a walk in the park
Save:	
$REFERENCE{ReferenceTask}	id
$REFERENCE{ReferenceTask}	name
$REFERENCE{ReferenceTask}	description

When run mock action, creating a task
Data:
id	WeekEndTask2-${UID}
name	WeekEndTask2-${UID}
description	Do yoga and meditation
Save:	
$REFERENCE{ReferenceTask}	id
$REFERENCE{ReferenceTask}	name
$REFERENCE{ReferenceTask}	description

#Using control structure on mock action
When run mock action, reading the task
RepeatTimes:
| $times | 2 |
Data:
| $requestString | {"id":"id","description":"description"} |
#| id | %CONCAT(${taskId},"-",tuesday) |
| id | $REFERENCE{ReferenceTask:WeekEndTask} |
| description | $REFERENCE{ReferenceTask:WeekEndTask} |

#Reference data passed in both request json and Data section of the step.
When run mock action, reading the task
Reference:
| $referenceData | tasks |
| ReferenceTask | WeekEndTask |
Data:
| id | $REFERENCE{ReferenceTask:WeekEndTask2} |
#| description | $REFERENCE{ReferenceTask:WeekEndTask2} |

Runtime Scenario

run-mock-action.runtime.scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Contest Loading Test
Description: Test to validate the context loading
#Tags:

#Persona:
Case: Mock action test

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
 | id | WeekdayTask-${UID} | WeekdayTask-mphAhXsyVrnjuA |

Chapter 7
Custom Actions

7-45

 | name | WeekdayTask-${UID} | WeekdayTask-mphAhXsyVrnjuA |
Save:
#| Property | Value | Runtime Value |
 | taskId | id | WeekdayTask-mphAhXsyVrnjuA |
 | taskName | name | WeekdayTask-mphAhXsyVrnjuA |

When run mock action, reading the task
Data:
#| Property | Value | Runtime Value |
 | $requestString | {"id":"id"} | {"id":"id"} |
 | id | ${taskId} | WeekdayTask-mphAhXsyVrnjuA |

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
id	WeekEndTask-${UID}	WeekEndTask-mphAhXsyVrnjuA
name	WeekEndTask-${UID}	WeekEndTask-mphAhXsyVrnjuA
description	Take a walk in the park	Take a walk in the park
Save:		
#	Property	Value
$REFERENCE{ReferenceTask}	id	WeekEndTask-mphAhXsyVrnjuA
$REFERENCE{ReferenceTask}	name	WeekEndTask-mphAhXsyVrnjuA
$REFERENCE{ReferenceTask}	description	Take a walk in the park

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
id	WeekEndTask2-${UID}	WeekEndTask2-mphAhXsyVrnjuA
name	WeekEndTask2-${UID}	WeekEndTask2-mphAhXsyVrnjuA
description	Do yoga and meditation	Do yoga and meditation
Save:		
#	Property	Value
Value		
$REFERENCE{ReferenceTask}	id	WeekEndTask2-
mphAhXsyVrnjuA		
$REFERENCE{ReferenceTask}	name	WeekEndTask2-
mphAhXsyVrnjuA		
$REFERENCE{ReferenceTask}	description	Do yoga and
meditation |

When run mock action, reading the task
Data:
#| Property | Value | Runtime
Value |
 | $requestString | {"id":"id","description":"description"} |
{"id":"id","description":"description"} |
 | id | $REFERENCE{ReferenceTask:WeekEndTask} |
WeekEndTask-mphAhXsyVrnjuA |
 | description | $REFERENCE{ReferenceTask:WeekEndTask} | Take a
walk in the park |

When run mock action, reading the task

Chapter 7
Custom Actions

7-46

Data:
#| Property | Value | Runtime Value
|
 | id | $REFERENCE{ReferenceTask:WeekEndTask2} |
WeekEndTask2-mphAhXsyVrnjuA |
 | $requestString |
{"id":"$ReferenceTask[0]","description":"$ReferenceTask[0]"} |
{"id":"$ReferenceTask[0]","description":"$ReferenceTask[0]"} |

Chapter 7
Custom Actions

7-47

8
Synthetic Data

Learn about Oracle Communications Solution Test Automation Platform (STAP) Synthetic Data
generation.

Topics in this chapter:

• Synthetic Data Generation

• Number Generation

• Text Generation

• Unique ID Generation

• Fake Data Generation

STAP Synthetic Data Generation
Overview

Synthetic Data Generator is a critical component of a test automation platform, designed to
produce diverse, scalable, and high-quality data for testing applications. It eliminates the
reliance on real-world data by generating customizable data sets that emulate production-like
conditions, ensuring comprehensive test coverage and improving testing efficiency.

STAP offers two types of plugins for synthetic data generation: Internal and External.

• Internal plugins handle various data types, including numeric, alphanumeric, and text.

• External plugins connect with third-party providers, with the currently supported plugin
being the Data Faker plugin, which integrates with Data Faker.

For more information, see https://www.datafaker.net/.

Configuration

Synthetic Data Generation plugins are assigned or configured with attribute data configuration
which are used in STAP BDD automation. To configure and utilize synthetic data generation
plugins within the STAP BDD automation framework, perform the following steps:

1. Configure the attribute home location in config.properties.
Add property in ${WORKSPACE}/config/config.properties file. For more details see,
Configuration Folder.

attributeData.home=${WORKSPACE}/config/attributeData

2. Add attribute data configuration properties files in ${WORKSPACE}/config/attributeData
directory. Each configuration file name should end with "-attributeData.properties".

3. In BDD, use the attribute values in Table 8-1 to retrieve next and current value:

8-1

https://www.datafaker.net/

Table 8-1 Synthetic Data Syntax

Value Description Syntax Example

get Next Value Computes the next value
based on configuration
and generates a new
value

@{<attributeName>}

or

@{<attributeName>.ne
xtValue}

@{mobileNumber}
or
@{mobileNumber.nextV
alue}

get Current Value Retrieves the current
generated value.

@{<attributeName>.curr
entValue}

@{mobileNumber.curre
ntValue}

Plugin with External Generators

For more information on External Generators, refer to Fake Data Plugin.

Plugin with Internal Generators
Number Generation

Table 8-2 describes Unique Number Generation type, its properties, and runtime BDD:

Chapter 8
Plugin with Internal Generators

8-2

Table 8-2 Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_BOUND

number is bound in
range of [startValue,
endValue)

mobileNumber1-
attributeData.properties

Attribute Name
name=customerMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_B
OUND
Persist data to
be used in multiple
executions
Persist YES/NO
#persist=NO
Plugin Properties
for generating data
minValue=9999900000
maxValue=9999990009
increment=1

number_unique_bound.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
customer mobile
numbers
Save:
#| Property |
Value
 |
Runtime Value |
 | name |
@{customerMobile.cur
rentValue} |
9999900000 |
 | name |
@{customerMobile}
 |
9999900001 |
 | name |
@{customerMobile.nex
tValue} |
9999900002 |
 | name |
@{customerMobile.cur
rentValue} |
9999900002 |
 | name |
@{customerMobile}
 |
9999900003 |

Chapter 8
Plugin with Internal Generators

8-3

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_INFINITE

number has startValue
and no endValue. Infinite
values are generated

mobileNumber2-
attributeData.properties

Attribute Name
name=serviceMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_I
NFINITE
Plugin Properties
for generating data
minValue=999990004
increment=1

number_unique_infinite.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
service mobile
numbers
Save:
#| Property |
Value
 |
Runtime Value |
 | name |
@{serviceMobile.curr
entValue} |
999990004 |
 | name |
@{serviceMobile}
 |
999990005 |
 | name |
@{serviceMobile.next
Value} |
999990006 |
 | name |
@{serviceMobile.curr
entValue} |
999990006 |
 | name |
@{serviceMobile}
 |
999990007 |

Chapter 8
Plugin with Internal Generators

8-4

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_DIGITS

number has startValue
and no endValue.
Number of digits in the
value is specified.

mobileNumber3-
attributeData.properties

Attribute Name
name=agentMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_D
IGITS
Plugin Properties
for generating data
minValue=999990009
increment=1
numOfDigits=10

number_unique_digits.scena
rio

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
agent mobile numbers
Save:
#| Property |
Value
 | Runtime
Value |
 | name |
@{agentMobile.curren
tValue} |
999990009 |
 | name |
@{agentMobile}
 |
999990010 |
 | name |
@{agentMobile.nextVa
lue} |
999990011 |
 | name |
@{agentMobile.curren
tValue} |
999990011 |
 | name |
@{agentMobile}
 |
999990012 |

Chapter 8
Plugin with Internal Generators

8-5

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_VALUES

number has startValue
and no endValue.
Number of values
generated is specified.

mobileNumber4-
attributeData.properties

Attribute Name
name=transactionMobi
le
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_V
ALUES
Plugin Properties
for generating data
minValue=9999900014
increment=1
numOfValues=5

number_unique_values.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
transaction mobile
numbers
Save:
#| Property |
Value
 |
Runtime Value |
 | name |
@{transactionMobile.
currentValue} |
9999900014 |
 | name |
@{transactionMobile}
 |
9999900015 |
 | name |
@{transactionMobile.
nextValue} |
9999900016 |
 | name |
@{transactionMobile.
currentValue} |
9999900016 |
 | name |
@{transactionMobile}
 |
9999900017 |

Random Number Generation

Table 8-3 decribes Randome Number Generation types, its properties, and runtime BDD:

Chapter 8
Plugin with Internal Generators

8-6

Table 8-3 Random Number Generation

Type Description Properties Runtime BDD

NUMBER_RANDOM_V
ALUES

random number;
arguments passed are
minimum_value and
maximum_value;
number is bound in
range of
[minimum_value,
maximum_value)

randomNumber1-
attributeData.properties

Attribute Name
name=subscription
ID
Short
description
description=rando
m number
#Plugin
associated with
the attribute
plugin=NumberData
Plugin
type=NUMBER_RANDO
M_VALUES
Plugin
Properties for
generating data
minValue=99999000
00
maxValue=99999900
00

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
RandomNumberGener
ation

When set
variable, for
generating
random
subscription IDs
Save:
#| Property |
Value

| Runtime
Value |
 | name |
@{subscriptionID.
currentValue}
|
9999900000
|
 | name |
@{subscriptionID}

|
9999943495
|
 | name |
@{subscriptionID.
nextValue}
|
9999932406
|
 | name |
@{subscriptionID.
currentValue}
|
9999932406

Chapter 8
Plugin with Internal Generators

8-7

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

|
 | name |
@{subscriptionID}

|
9999980535 |

Chapter 8
Plugin with Internal Generators

8-8

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

NUMBER_RANDOM_DI
GITS

random number;
arguments passed are
minimum_digits and
maximum_digits

randomNumber2-
attributeData.properties

Attribute Name
name=phoneNumber
Short
description
description=rando
m number
#Plugin
associated with
the attribute
plugin=NumberData
Plugin
type=NUMBER_RANDO
M_DIGITS
Plugin
Properties for
generating data
minDigits=5
maxDigits=10

Scenario:
3.AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
RandomNumberGener
ation

When set
variable, for
generating
random phone
numbers
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{phoneNumber.cur
rentValue} |
4713264118
|
 | name |
@{phoneNumber}
 |
9633152371
|
 | name |
@{phoneNumber.nex
tValue} |
8724706855
|
 | name |
@{phoneNumber.cur
rentValue} |
8724706855
|
 | name |
@{phoneNumber}

Chapter 8
Plugin with Internal Generators

8-9

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

 |
6736490057 |

Text Generation
Table 8-4 describes Text Generation types, its properties, and runtime BDD:

Chapter 8
Text Generation

8-10

Table 8-4 Text Generation Table

Type Description Properties Runtime bdd

TEXT_INIT_UPPER Initial letter is
uppercase, remaining
letters are lower case

text1-
attributeData.properties

Attribute Name
name=MessageHeade
r
Short
description
description=rando
m text of
certain/variable
length which
starts with
capital letter
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_INIT_UP
PER
Plugin
Properties for
generating data
minLength=4
maxLength=4

text_init_upper.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random Message
headers
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{MessageHeader.c
urrentValue} |
Vzhn
|
 | name |
@{MessageHeader}
 |
Cebx
|
 | name |
@{MessageHeader.n
extValue} |
Pyjc
|
 | name |
@{MessageHeader.c
urrentValue} |
Pyjc
|
 | name |
@{MessageHeader}

Chapter 8
Text Generation

8-11

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
Vqwl |

Chapter 8
Text Generation

8-12

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_LOWER All letters of the string
are in lowercase

text2-
attributeData.properties

Attribute Name
name=channelId
Short
description
description=rando
m text of
certain/variable
length which has
all letters in
lower case
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_LOWER
Plugin
Properties for
generating data
minLength=5
maxLength=10

text_lower.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random channel
IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{channelId.curre
ntValue} |
wplqxfftdw
|
 | name |
@{channelId}
 |
xnqnjnl
|
 | name |
@{channelId.nextV
alue} |
ouedleyk
|
 | name |
@{channelId.curre
ntValue} |
ouedleyk
|
 | name |
@{channelId}

Chapter 8
Text Generation

8-13

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
hxbhksr |

Chapter 8
Text Generation

8-14

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_UPPER All letters of the string
are in uppercase

ttext3-
attributeData.properties

Attribute Name
name=Transmission
Code
Short
description
description=rando
m text of
certain/variable
length which all
letters are
capital letters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_UPPER
Plugin
Properties for
generating data
minLength=7
maxLength=7

text_upper.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random
Transmission
Codes
Save:
#| Property |
Value

| Runtime
Value |
 | name |
@{TransmissionCod
e.currentValue}
|
QGJPQZM
|
 | name |
@{TransmissionCod
e}
|
GNCDAYG
|
 | name |
@{TransmissionCod
e.nextValue}
|
IIHHWYF
|
 | name |
@{TransmissionCod
e.currentValue}
|

Chapter 8
Text Generation

8-15

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

IIHHWYF
|
 | name |
@{TransmissionCod
e}
|
JVCJIUA |

Chapter 8
Text Generation

8-16

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_ALPHANUMERI
C

Initial character of the
string is a letter,
remaining are
alphanumeric characters

text4-
attributeData.properties

Attribute Name
name=sessionID
Short
description
description=rando
m text of
certain/variable
length; Initial
character of the
string is a
letter,
remaining are
alphanumeric
characters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_ALPHANU
MERIC
Plugin
Properties for
generating data
minLength=5
maxLength=15

text_alphanumeric.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random session
IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{sessionID.curre
ntValue} |
E3GcSGp
|
 | name |
@{sessionID}
 |
llDCNvLmW7C
|
 | name |
@{sessionID.nextV
alue} |
DUTyLGj40su
|
 | name |
@{sessionID.curre
ntValue} |
DUTyLGj40su
|
 | name |
@{sessionID}

Chapter 8
Text Generation

8-17

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
v4qqu70 |

Chapter 8
Text Generation

8-18

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_ALPHANUMERI
C_SPECIAL

Initial character of the
string is a letter,
remaining are
alphanumeric and
special characters

text5-
attributeData.properties

Attribute Name
name=accessKey
Short
description
description=rando
m text of
certain/variable
length; Initial
character of the
string is a
letter,
remaining are
alphanumeric and
special
characters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_ALPHANU
MERIC_SPECIAL
Plugin
Properties for
generating data
minLength=10
maxLength=10

text_alphanumeric_spec
ial.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random access
keys
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{accessKey.curre
ntValue} |
RU-6t60gH!
|
 | name |
@{accessKey}
 |
LP02z8~Uoj
|
 | name |
@{accessKey.nextV
alue} |
r$:K6UW[9Z
|
 | name |
@{accessKey.curre
ntValue} |
r$:K6UW[9Z
|
 | name |
@{accessKey}

Chapter 8
Text Generation

8-19

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
AJK/xg-/|I |

Unique ID Generation
Table 8-5 describes Unique ID Generation type, its properties, and runtime BDD:

Chapter 8
Unique ID Generation

8-20

Table 8-5 Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHABETIC All characters are letters uniqueID1-
attributeData.properties

Attribute Name
name=communicatio
nToken
Short
description
description=Uniqu
e alphabetic
value
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
BETIC
Plugin
Properties for
generating data
length=8

unique_alphabetic.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random
communication
tokens
Save:
#| Property |
Value

 | Runtime
Value |
 | name |
@{communicationTo
ken.currentValue}
 |
poAAeAKL
|
 | name |
@{communicationTo
ken}
 |
LUoeAoAM
|
 | name |
@{communicationTo
ken.nextValue}
 |
peeUoKKN
|
 | name |
@{communicationTo

Chapter 8
Unique ID Generation

8-21

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

ken.currentValue}
 |
peeUoKKN
|
 | name |
@{communicationTo
ken}
 |
fUoAKUKE |

Chapter 8
Unique ID Generation

8-22

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHANUME
RIC

Random no. of letters
and digits in the text;
Initial character is a
letter

uniqueID2-
attributeData.properties

Attribute Name
name=DeviceID
Short
description
description=Uniqu
e alphanumeric
value; first
character is a
letter
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
NUMERIC
Plugin
Properties for
generating data
length=18

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random device IDs
Save:
#| Property |
Value
 |
Runtime
Value |
 | name |
@{DeviceID.curren
tValue} |
p73JD58DW79kjfA0e
0 |
 | name |
@{DeviceID}
 |
L73d3F832HdQ6f0AU
0 |
 | name |
@{DeviceID.nextVa
lue} |
V7N9h5832vTkvBK00
0 |
 | name |
@{DeviceID.curren
tValue} |
V7N9h5832vTkvBK00
0 |
 | name |
@{DeviceID}
 |

Chapter 8
Unique ID Generation

8-23

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

fv39N583279k810AU
A |

Chapter 8
Unique ID Generation

8-24

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHANUME
RIC_SPECIAL

Random no. of letters,
digits and, special
characters in the text;
Initial character is a
letter

uniqueID3-
attributeData.properties

Attribute Name
name=ProductKey
Short
description
description=Uniqu
e alphanumeric
value including
special
characters;
first character
is a letter
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
NUMERIC_SPECIAL
Plugin
Properties for
generating data
length=12

unique_alphanumeric_s
pecial.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random product
keys
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{ProductKey.curr
entValue} | pU!
Uooo!!!0V |
 | name |
@{ProductKey}
 |
L0A00oeK!!0W
|
 | name |
@{ProductKey.next
Value} | L!
Ke0eo!A!0r |
 | name |
@{ProductKey.curr
entValue} | L!
Ke0eo!A!0r |
 | name |
@{ProductKey}

Chapter 8
Unique ID Generation

8-25

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

 |
L!!!!0!0!!Us |

Chapter 8
Unique ID Generation

8-26

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_FIRST_DIGIT
S

First x-characters are
digits, rest are letters

uniqueID4-
attributeData.properties

Attribute Name
name=SerialNo
Short
description
description=Uniqu
e alphanumeric
value; first x-
characters are
digits, rest are
letters
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_FIRST
_DIGITS
Plugin
Properties for
generating data
length=12
numOfDigits=4

unique_first_digits.scena
rio

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random device IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{SerialNo.curren
tValue} |
1000eeAKAoop
|
 | name |
@{SerialNo}
 |
1000UoAoUoeW
|
 | name |
@{SerialNo.nextVa
lue} |
1000AKUUUAAr
|
 | name |
@{SerialNo.curren
tValue} |
1000AKUUUAAr
|
 | name |
@{SerialNo}

Chapter 8
Unique ID Generation

8-27

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

 |
1000KKeAeAUi
|

Fake Data Generation
Datafaker is a library for Java and Kotlin to generate fake data. This is helpful when generating
test data to fill a database, to generate data for a stress test, or anonymize data from
production services.

STAP leverages data faker 2.4.2 (current or latest) and creates a plugin to use it to generate
fake data for automation scenarios. It also supports the output in multiple languages.

For more information on Fake Data Plugin, see Data Faker Resource and Data Faker Github.

Table 8-6 lists the Supported Generator or methods:

Table 8-6 Supported Generator or Methods

Providers Attributes

name fullName, firstName, lastName, femaleFirstName,
malefirstName, nameWithMiddle, prefix, suffix,
title,username

internet emailAddress, domainName, username,
getIpV6Address

address city, streetName, zipCode, buildingNumber,
cityPrefix, citySuffix, country, countryCode,
countyByZipCode, fullAddress, latitude, longitude,
postcode, secondaryAddress, state, stateAbbr,
zipCode, timeZone

number randomNumber, digits, randomDouble,
numberBetween, negative, positive, digit,
randomDigitNotZero

timeAndDate future, past,birthday

phoneNumber phoneNumber, cellPhone, phoneNumberNational,
subscriberNumber, extension

word noun, preposition, conjunction, adverb,
adjective,interjection, verb

text text, lowercaseCharacter, uppercaseCharacter

barcode gtin14

currency name

subscription paymentMethods, paymentTerms,
statuses,subscriptionTerms

unique fetchFromYaml

idNumber idNumber

Chapter 8
Fake Data Generation

8-28

https://www.datafaker.net/
https://github.com/datafaker-net/datafaker

Configuration

To generate fake data, select the provider and corresponding attribute from the Data Faker
Library Documentations mentioned in Table 8-7:

Table 8-7 Data Faker Library Documentations

property key value (eg) description

name fakeData Name of the attribute Data
should be fakeData.

description Fake data generator Any short description.

plugin DataFakerPlugin Plugin name should be
DataFakerPlugin.

type collection Should be the same value for
pluginManager to recognize.

list email,Double,Number,future Enter comma separated custom
named list of all the keys to be
used in the case file for the
scenarios.

<List>

[n1] email

[n2] firstName.

.

.

.

[n n] Double

internet.emailAddress

firstName=name.fullName

Enter each of the keys entered in
the list and in values the
corresponding provider and its
attribute to be used to generate
random data.

Format:

<key_name_provided_in_list
> =
<data_faker_provider>.<dat
a_faker_attribute>(comma_s
eparated_params/
custom_values_to_be_passed
_in_attribute)
For example,

list=Double

Double=number.randomDouble(2
,500,700)

(the configuration is intended to
generate a double upto two
decimal places between 500 to
700)

locale in ,ar The language the output is
expected in.

Ensure the src/main/java/com/oracle/cagbu/stap/data/plugins/datafaker/
validMethods.properties file supports the entry in attributeData.properties configuration. For
more information, see Data Faker Resource .

The following is an example attributeData.properties File:

Attribute Name
name=fakeData
Short description
description=Fake data generator
#Plugin associated with the attribute

Chapter 8
Fake Data Generation

8-29

https://www.datafaker.net/

plugin=DataFakerPlugin
type=collection
enter the list of methods to be used
list=emailAddress,ip,phoneNumber,fullName,discount,billcharge,dataPlan,future,
past,accessKey,networkName,barcode,currency
enter the key as the method for each of the keys from the above list and
corresponding provider and attribute name as per data faker documentation
emailAddress=internet.emailAddress
ip=internet.getIpV6Address
phoneNumber=phoneNumber.phoneNumber
fullName=name.fullName
discount=number.numberBetween(1,5)
billcharge=number.randomDouble(2,500,700)
dataPlan=subscription.subscriptionTerms
future=timeAndDate.future
past=timeAndDate.past
accessKey=text.text(10,26,true,true,true)
networkName=word.noun
barcode=barcode.gtin14
currency=currency.name
language to be used to generate data
locale=in

Fake Data Usage

Refer to the following format to invoke and use data faker plugin in a scenario case files:

| variable | @{$<key_mentioned_in_attributeData.properties_file>.<METHOD>} |

example:

Data:
name	@{$firstName.currentValue}
name	@{$firstName.nextValue}
name	@{$firstName}

Table 8-8 lists the methods supported.

Table 8-8 Methods Supported

METHOD EXPECTED OUTPUT

currentValue outputs the current value

if there is no previously generated value, calls
nextValue

nextValue output is a newly generated value

<empty> defaults to nextValue

Fake Data Generation Example

Example 1:

Chapter 8
Fake Data Generation

8-30

The following example shows how to generate and store random data using a variable-based
approach:

Case: DataFaker

When set variable, generating random email addresses
Save:
emailID1	@{$emailAddress.currentValue}
emailID2	@{$emailAddress.nextValue}
emailID3	@{$emailAddress}

When set variable, generating random ip addresses
Save:
| ipAddress1 | @{$ip.nextValue} |
| ipAddress2 | @{$ip} |

When set variable, generating random phone numbers
Save:
| mobile1 | @{$phoneNumber.nextValue} |
| mobile2 | @{$phoneNumber} |

When set variable, generating random service agent names
Save:
| agentname1 | @{$fullName.nextValue} |
| agentname2 | @{$fullName} |

When set variable, generating random discount percentages
Save:
| discount1 | @{$discount.nextValue} |
| discount2 | @{$discount} |

When set variable, generating random billing charges
Save:
| billing1 | @{$billcharge.nextValue} |
| billing2 | @{$billcharge} |

When set variable, generating random data plans
Save:
| dataplan1 | @{$dataPlan.nextValue} |
| dataplan2 | @{$dataPlan} |

When set variable, generating random expiry dates
Save:
| date1 | @{$future.nextValue} |
| date2 | @{$future} |

When set variable, generating random previous expiry dates
Save:
| expdate1 | @{$past.nextValue} |
| expdate2 | @{$past} |

When set variable, generating random access keys
Save:
| access1 | @{$accessKey.nextValue} |
| access2 | @{$accessKey} |

Chapter 8
Fake Data Generation

8-31

When set variable, generating random network names
Save:
| network1 | @{$networkName.nextValue} |
| network2 | @{$networkName} |

When set variable, generating random bar codes
Save:
| barcode1 | @{$barcode.nextValue} |
| barcode2 | @{$barcode} |

When set variable, generating random currencies
Save:
| currency1 | @{$currency.nextValue} |
| currency2 | @{$currency} |

Saving Synthetic Data into a Variable(Release 1.25.1.1.0 or later)

You can save the synthetic data generated using a data faker into a variable for further use.
For instance, when generating IP addresses dynamically, the next generated IP value can be
stored in a predefined variable for easy reference and reuse.

ipAddress1 = $ip.nextValue
Here, $ip.nextValue represents the next generated IP address, which is then stored in the
variable ipAddress1. This allows the saved value to be used in subsequent operations or
references within the application.

The following example shows how to validate if an account name already exists in Siebel:

And set variable, assign account name value to a variable
Save: | uniqueAccountName | ${accountName} |

And validate account name exists, in Siebel regardless of whether the status
code is 200 or 404
Data: | $query | searchspec=([Name] = "${accountName}") |
Validate: | $status |
$IGNORE_STATUS_VALIDATION |

And validate account name exists, in Siebel and execute the loop until the
status is 200 and
generate account name using Data Faker
RepeatWhile: | ${response.status} | 200 |
Data: | $query | searchspec=([Name] = "${accountName}")
| Validate: | $status | $IGNORE_STATUS_VALIDATION |
Save: | uniqueAccountName | ${accountName} |
| firstName | @{$firstName} | | lastName | @{$lastName} | | accountName |
%CONCAT(${firstName},
,${lastName}) |

And set variable, to save the account name which will be used to create
account in Siebel
Save: | accountName | ${uniqueAccountName} |

Save:
| uniqueAccountName | ${accountName} |
| firstName | @{$firstName} |

Chapter 8
Fake Data Generation

8-32

| lastName | @{$lastName} |
| accountName | %CONCAT(${firstName}, ,${lastName}) |

Chapter 8
Fake Data Generation

8-33

Part II
Getting Started with STAP UI

Learn how to use the Oracle Communications Solution Test Automation Platform (STAP) UI.

9
About STAP UI

Learn about Oracle Communications Solution Test Automation Platform (STAP) UI.

Icons in the STAP UI
Table 9-1 lists all icons present in the STAP UI.

Table 9-1 STAP UI Icons

Icon Description

View

Edit

Delete

Add

Run

Restart

Left Navigation Pane

Expand Row

Collapse Row

More Actions
(Only visible when the screen is zoomed at 90% or
higher)

Using Keyboard Shortcuts
You can use keyboard shortcuts for many actions in Solution Test Automation Platform.

Table 9-2 lists the keyboard shortcuts in STAP user interface.

9-1

Table 9-2 Keyboard Shorcuts

Shortcut Function

F2 Enters or exits Actionable Mode. Enables keyboard
interaction with focusable elements inside an item.

Esc Exits Actionable Mode.

Tab In Actionable Mode: moves to the next focusable
element within the item (loops to the first after the
last).
Outside Actionable Mode: moves to the next
focusable element on page.

Shift + Tab In Actionable Mode: moves to the previous
focusable element within the item (loops to the last
after the first)
Outside Actionable Mode: moves to the previous
focusable element on page.

Arrow Keys Moves focus to the item in the respective direction
(Up, Down, Left, Right).

Enter Selects the current item. Does not deselect.

Space Selects the current item or deselects any
previously selected items.

Ctrl + Space Toggles selection of the current item while
preserving selection of other items.

Delete User Pop-up (Admin Dashboard):

• Focus on the row, Press F2 then Press Enter for the first entry.

• To delete additional users, Search user, Press F2 then Press Enter.

Chapter 9
Using Keyboard Shortcuts

9-2

10
STAP UI Login Methods

Learn about how to get started with Oracle Communications Solution Test Automation Platform
(STAP) UI.

STAP UI is highly extensible and comes with numerous built-in plugins that enable interaction
with various application interfaces, such as REST.

Topics in this chapter:

• Guidelines for Using STAP UI

• About Authorization Modes

• About Login Page

• Resetting Your Password

• Using IDCS Credentials for OAuth

• About STAP Dashboard

Guidelines for Using STAP UI
The STAP user interface is accessible using any modern web browser. When using the UI:

• Do not use browser commands, such as Back, Forward, and Refresh, to avoid losing data.
If you accidentally use a browser command, navigate to the primary link and, if required,
sign in to STAP again.

• Do not open multiple instances of STAP in different browser windows or tabs of the same
browser.

• Ensure that cookies are enabled in your browser.

About Authorization Modes
There are two modes of authentication available:

• Basic Authentication supports a straightforward authentication method where the client
provides credentials (username and password).

• Open Authorization (OAuth) is an open standard authorization framework that enables
users to grant third-party applications access to their data without exposing their
usernames and passwords. Instead of sharing credentials directly, OAuth issues access
tokens to authorize specific resource access.

About Login Page
The login page serves as the primary gateway to access STAP UI. It provides the necessary
fields for authentication, where you enter your username and password.

1. Enter the Username and Password.

2. Click Login.

10-1

The system validates credentials and grants access if they match stored information,
securely logging in the user.

Resetting Your Password
If you forget your password, follow these steps:

1. Click Forgot Password.
This opens the Reset Password page.

2. Enter the user name and email address associated with the UI.

3. Click Reset.
You will receive an email containing instructions for resetting your password.

Using IDCS Credentials for OAuth
For logging in using theOracle Identity Cloud Service (IDCS) environment:

1. Enter your username and password on the login page.

2. Click Sign In.
If successful, you are redirected to the main Dashboard.

About STAP Dashboard
You can monitor real-time job execution details and track automation tasks in the main
Dashboard. Table 10-1 shows the different components of main dashboard.

Table 10-1 STAP Dashboard

Field Description

Scheduled Total number of jobs.

Jobs Total number of jobs scheduled to run at that point in time.

Completed Total number of jobs running at that point in time.

Running Total number of scenarios running.

Scenarios Total number of scenarios.

Active Total number of scheduled jobs that are running.

Monitoring Realtime Jobs

You can select the real-time jobs from the list to monitor. This section displays the fields listed
in Table 10-2.

Table 10-2 Monitoring Realtime Jobs

Field Description

Job Details The Job number, name, environment, build number, and
release.

Progress The percentage of scenarios completed.

Duration Time taken to complete the job.

Result The percentage of passed and failed scenarios.

Chapter 10
Resetting Your Password

10-2

Table 10-2 (Cont.) Monitoring Realtime Jobs

Field Description

Failure Analysis The number of passed and failed scenarios in a pie chart
format.

Viewing the list of Running Jobs

You can view the list of jobs that are in progress/being run in real time. The fields related to the
jobs running are displayed in Table 10-3:

Table 10-3 Fields in Running Jobs

Field Description

Job # Job number (a unique number generated automatically by the
system).

Name Name of the job.

Scenarios Number of scenarios.

Environment The environment in which the jobs are being run.

Start Time The date and time that the job was started.

Progress Indicates the percentage of job execution completion status.

Actions
Displays icons to edit () or delete () the job.

Chapter 10
About STAP Dashboard

10-3

11
STAP System and Administrator Console

Learn about user profiles, creating new users, and managing existing users in Oracle
Communications Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• About the User Profile Page

• About Viewing and Editing Profiles

• Changing Passwords

• Viewing OAuth Environment Profiles

• Managing Administrator Environment

• Creating a New User

• Role-based Access

About the User Profile Page
The profile page allows users to view and update their profile data. In an OAuth environment,
you can only view profile details; you cannot edit or change your password. Admin users have
additional privileges and indicators.

About Viewing and Editing Profiles
You can view key information about a user profile with the following details:

• User Name

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

• Admin Batch Indicator

– Visual cue indicating admin privileges.

• Admin Dashboard Button

– Visible only to admin users.

– Navigates to the Admin Console page.

• Change Password Button

– Update the current password with a new one.

• To edit profile details, click on the edit () icon.

• To save your changes, click Update.

11-1

• To discard the changes done in the current transaction, click Cancel.

Changing Passwords
You can change your password by clicking the Change Password button. This opens a
password change form with the following fields.

Table 11-1 lists the fields and the descriptions on the password change form.

Table 11-1 Change Password

Field Description

Current password Enter the current password.

New password Enter the new password.

Note: The password must be between 6 and 12
characters long and contain only alphanumeric
characters.

Re-enter new password Re-enter the new password.

Actions:

• To save your changes, click Update.

• To discard them, click Cancel.

Viewing OAuth Environment Profiles
You are restricted to viewing profile details only. You cannot edit profile data or change
passwords. Additionally, there is no admin batch indicator, and you do not have access to the
admin dashboard or profile editing features.

Managing Administrator Environment
Administrator environment provides a comprehensive list of all user profiles and facilitates user
management tasks, including viewing, deleting, and creating users. Upon clicking the Admin
Dashboard button, an admin user can view the user profiles in a tabular format with the
following columns:

• User Name

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

• Actions

– Includes a delete () icon to delete a user after confirmation.

Chapter 11
Changing Passwords

11-2

Note:

This feature is accessible only to admin users.

Table 11-2 lists the additional fields on the Admin Dashboard page.

Table 11-2 Additional Fields in the Admin Dashboard

Field Description

Filter Allows searching users based on metadata such
as first name or last name.

Create New User Opens a drawer or modal form with fields to create
a new user.

Cancel Reverts to the admin user profile page and cancels
the operation.

Creating a New User
As a admin user, you can create a new user by clicking the Create New User button on the
Admin Dashboard which opens a drawer or a modal form with the following fields:

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

Click Create.

An email with a temporary password is sent to the new user. The user can use this password
for initial login.

Role-based Access
STAP categorizes its users into two types:

• Admin Users:

– Have full control over user management, including viewing, editing, deleting, and
creating users.

– Granted access to the admin dashboard for administrative tasks.

• OAuth Users:

– Limited to read-only access for profile viewing.

– Restricted from accessing management features.

Chapter 11
Creating a New User

11-3

12
STAP UI Environment Management

Learn about environments, creating a new environment, adding connections, and managing
existing environments in Oracle Communications Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• About the Environment Page

• Creating a New Environment

• Updating an Existing Environment

• Deleting an Existing Environment

About the Environment Page
To access the environments, navigate to the Menu using the navigation panel. Select the
Environments option to view and manage execution environments.

The Environments page displays a list of all configured environments. Each row represents a
unique environment. Table 12-1 lists the columns for the selected unique environment.

Table 12-1 Environment Details

Field Description

Name Environment name.

Connections Number of connections mapped to the
environment.

Release Release number.

Build Build number.

Actions Actions to edit or delete the environment.

Creating a New Environment
You can create new environments with connection mapping for specific testing scenarios. This
is a critical part of STAP automation platform, where you can manage execution environments
used across different jobs. Each environment can have zero or more connections based on the
scope of the test. These environments serve as a base to limit or direct job execution within the
STAP.

Perform the following steps to create a new environment:

1. On the Environments page, click Create Environment.The Create environment page is
displayed.

2. Enter the Name, Release, Build Number, and Description. (Release, Build Number, and
Description are optional parameters)

3. To add connections to the environment, click Add Connection.The Create Connection
pop-up window is displayed.

12-1

4. Enter the connection Name, Description, Product (product or application name), and Type
(for example, REST, SOAP, and Json).

5. Click the add () icon to add one or more Properties. Enter the Property Name and
Value. Click Add Connection.The new connection is created and you are reverted to the
Create Environment page.

6. In the Search connection text box under Connection section, specify the just created
connection ensuring that you have a connection tagged to this environment.

7. Click Create button at the top right corner of the screen to create a new environment with
the required connection details.

8. To attach the connections to the environment, Click Add Connections.You are reverted to
the Create Environment page.

9. Click Create button to create the new environment.

The newly created environment is displayed at the top of the list on the Environments page.

Updating an Existing Environment
To edit an existing environment, perform the following steps:

1. Navigate to the Environments page, you have two ways to open the Edit Environment
page:

a. Click the edit () icon under Actions column on the row corresponding to the
environment you want to modify.

b. Click anywhere in the row of the environment you want to modify, and the Edit
Environment page will open.

This action opens the Edit Environments page, which consists of two sections: Overview and
Connections.

1. Click the edit () icon on each section to edit.

2. In the Overview section, edit the Name, Description, Release, and Build Number as
needed.

3. In the Connections section, View or Delete the existing connection by entering the
connection name in the search box.

4. Click the add () icon to add new connections.

5. Click Update to save the edits made.

6. Click Cancel to abort the changes made.

Deleting an Existing Environment
To delete an existing environment, perform the following steps:

1. Navigate to Environments page, click the delete () icon under Actions column on the
row corresponding to the environment you want to delete.
A confirmation dialog box titled Delete Connection appears.

2. Click Delete.

Chapter 12
Updating an Existing Environment

12-2

13
STAP Jobs Management

Learn about jobs, creating a new job, updating an existing job, and running a job in Oracle
Communications Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• About Jobs Page

• Creating a New Job

• Updating an Existing Job

• Running a Job

• Deleting a Job

About Jobs Page
The term 'job' represents a package dedication unit that combines one or more scenarios (sets
of test steps) to be run against a specific environment. A job is a test suite that is configured
and ready to be run as a single entity.

To access Jobs, navigate to the Menu using the navigation panel. Select the Jobs option to
view and manage jobs. The Jobs page allows you to view and manage all the previously
created jobs in a single tabular format. Each row represents a unique job.

Table 13-1 lists the columns for each unique jobs.

Table 13-1 Job Details

Field Description

Name Name of the job.

Description Brief information about the job.

Scenarios Number of scenarios running within the job.

Environment Linked environment.

Actions Action icons to edit, run, or delete the job.

Creating a New Job
To create a new job, navigate to the Jobs page:

1. Click the Create New Job button on the top right corner of the page. This allows you to
define and configure a new job from scratch. The fields include:

• Name

• Tags (optional)

• Environment

• Description (optional)

13-1

• Scenarios (select one or more from the available list by checking the box against each
scenario)

2. Click Create Job to add the new entry to the jobs table.

Updating an Existing Job
To update an existing job:

1. Click the edit () icon under Actions column on the row corresponding to the job you
want to modify.

a. This opens the Edit Job page with all pre-filled data, allowing you to modify the
following job details:

• Name

• Tags

• Environment

• Description

• Scenarios (to add or delete scenarios, select the check boxes against each scenario)

2. Click Update to save the changes and update the jobs table accordingly.

3. Click Cancel to abort the changes made.

Running a Job
You can run a job in two modes:

• Background

• Run and visit Dashboard (For monitoring realtime execution of the job)

Deleting a Job
To delete an existing job:

1. Navigate to the Jobs page, click the delete () icon under the Actions column on the
row corresponding to the job you want to delete.
A confirmation dialog box appears.

2. Click Delete.

Chapter 13
Updating an Existing Job

13-2

14
Accessing Previously Run Jobs

Learn about accessing the status and details of jobs run in the Oracle Communications
Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• Viewing Job History

• Viewing Scenario Details

Viewing Job History
To manage previously run jobs, navigate to Menu using the navigation panel from the
Dashboard. Select History to view and manage jobs.

All jobs run are listed in the order of their run date, with the most recent job at the top of the
page. The row for each respective job displays the job name, job start date and time in the
deployment server time zone, and the job status: passed or failed. You can also perform

actions within the job row. To view more details about the job run, click on the view icon ().

See "Viewing Scenario Details". To re-run the job, click the restart icon ().

Note:

If your screen is zoomed in at 90% or higher, click on the more actions icon () to
view or restart the job.

You can access the details of a specific job by clicking its respective row. The row expands and
you can view the details listed in Table 14-1:

Table 14-1 Viewing Job Details

Field Description

Name Name of the job run.

Type Type of the job run. The default job type is Instant
Job.

Environment The environment in which the job was run. For
example, test or production.

Start Time The date and time that the job was commenced.

Duration The duration of time for which the job was run, in
seconds and milliseconds.

Result The status of the job: passed or failed.

14-1

Viewing Scenario Details
You can view detailed information about the scenarios run in a previously run job by clicking

the view icon () at the end of the row of the respective job in History.

You can view the details listed in Table 14-2:

Table 14-2 Scenario Status

Field Description

Result Total scenarios run in percentage.

Percentage Scenarios passed in percentage.

Passed Total number of scenarios passed.

Failed Total number of scenarios failed.

Skipped Total number of scenarios skipped.

You can also view an overview of each scenario of the job in visual graphs:

• Job Results shows the number of passed, failed, and skipped scenarios of the job in a pie
chart format.

• Failure Analysis shows the reason for failure in a pie chart format. For example, the
number of scenarios failed due to validation error, the number of scenarios failed due to
configuration error.

• Results by Duration shows the time taken to run each individual scenario of the job in a
graph format.
For more information, see "Viewing the Results of Each Scenario Under a Job".

To restart the job, click on the Restart Job button on the top-right corner.

Viewing the Results of Each Scenario Under a Job
You can view the results of each individual scenario under the selected job under Scenarios
Result.

If you have multiple scenarios, you can search for the title of the scenario that you want to view
details for in the Filter search bar.

Note:

This search bar does not support filter tags.

All scenarios run under the job are listed with the details described in the Table 14-3:

Table 14-3 Scenario Results

Field Description

Name Name of the scenario.

Duration The duration of time for which the scenario was
run, in seconds and milliseconds.

Chapter 14
Viewing Scenario Details

14-2

Table 14-3 (Cont.) Scenario Results

Field Description

Start Time The date and time that the scenario was
commenced.

Result The status of the total number of tasks in the
scenario: number of tasks passed, number of tasks
failed, number of tasks skipped, and number of
tasks containing errors.

Status The final status of the scenario: passed or failed.

To view a detailed report of the scenarios run, click View Detailed Report.

Viewing the Detailed Report of Scenarios
Upon clicking View Detailed Report, you can view each scenario in detail including the tasks
that were passed, failed, or skipped.

The pane on the left lists all the scenarios run. To view details of a particular scenario, click on
its row.

You can view details of each task of the scenario run on the right pane:

1. To expand each task, click on the respective task row. You can also filter tasks by enabling
or disabling the Pass, Fail, and Skip filter tabs. By default, all filter tabs are enabled.

2. Upon clicking on a particular task, you can view a list of all the steps run to perform the
selected task in the scenario.

3. Click on the row of each respective step to view a detailed report of each step run.
This opens a pop-up detailing information about the task run.

Table 14-4 lists the following details about the task run:

Table 14-4 Details

Field Description

Name Name of the task.

Action Action performed in the task.

Type The type of task performed.

Start Time The start date and time of the task, in the time
zone set in your UI.

End Time The end date and time of the task, in the time zone
set in your UI.

Duration The time duration for which the task was run, in
milli seconds.

Data

Displays data configured in the step's BDD. If no data is configured, this section is blank.

Validation

Displays validations created under the step in BDD.

Save

Chapter 14
Viewing Scenario Details

14-3

Displays saved variables and values present in the step.

Log

Displays a detailed report of each action performed listed in Table 14-5.

Table 14-5 Log Details

Field Description

Level The level of the action. You can switch between the
log levels INFO, DEBUG, ERROR, and WARNING
to view detailed logs.

Timestamp The day, date, and time at which the action was
performed.

Message Details of the action performed.

Error Details of an error when the action was performed.
If there is no error, the column is blank.

Chapter 14
Viewing Scenario Details

14-4

15
Viewing Scenarios

Learn about viewing details of scenarios run in Oracle Communications Solution Test
Automation Platform (STAP) UI.

To view the different scenarios run, navigate to Menu using the navigation panel from
Dashboard. Select Scenarios to view scenario library.

All scenarios are listed on the left of the page, with various cases and tasks present in the
selected scenario on the right panel. To search for a specific scenario, use the Search bar. You
can also search using previously set Tags.

To expand details for each case and tasks, click the respective row of the scenario you want to
expand. To expand all cases, click Expand Cases on the top-right. To expand all cases and
tasks, click Expand All. To collapse all cases, click Collapse Cases. To collapse all cases and
tasks, click Collapse All.

Within each task, you can view the following sections:

• Data: Each property and its value.

• Validate: Each property and its validation.

• Save: Each variable and its corresponding value saved.

15-1

16
Viewing Actions

Learn about viewing the details of all actions present in the action library for Oracle
Communications Solution Test Automation Platform (STAP) UI.

Viewing Action Details
To view details of each action, navigate to Menu using the navigation panel from Dashboard.
Select Actions.

The left pane displays a list of all actions present in the action library.

To filter actions by product, select it in the drop-down list under Products. To filter actions by
type, select the action type in the drop-down list under ActionTypes, for example, REST,
SOAP. To view details of an action, select it in the left pane.

Details

You can view the following under the Details section:

• BDD: The behavioral driven development for this action.

• Type: The type of action. For example, REST.

• Method: The action method. For example, GET, PUT, POST, DELETE, PATCH.

• Path: The path to the file containing the request for the action type.

• Request Type: Refers to the type of request.

• Request: The source of the request file. Only applies to PUT, PATCH, and POST requests.

Note:

These properties vary by plug-in type. If an action does not contain a particular
field, it doesn't show under Details.

Request

You can view the request body of the action under Request. The following is an example of a
request body:

 {
 "type": "DEFAULT",
 "name": "subscriber name",
 "region": "default region",
 "category": "default category",
 "offer": "default offer",
 "paymentType": "default payment type"
}

Request Data

16-1

Displays the request input in JSON format.

Validation

Shows the expected status code in the response body if the action is successful. For example,
201.

Chapter 16
Viewing Action Details

16-2

Part III
Automating Using STAP

Learn about automating scenarios using Oracle Communications Solution Test Automation
Platform (STAP).

17
Automating Without Code

This chapter provides an overview of how you can create automation scenarios in Oracle
Communications Solution Test Automation Platform.

Topics in this chapter:

• Overview

• Automation Components

• Naming Automation Components

• Using Tags to Filter Components

• Automating Using STAP Design Experience

Overview
STAP enables users to automate workflows without writing complex lines of code. By
leveraging the Behavior-Driven Development (BDD) language, STAP allows users to define
automation scenarios in a clear, concise, and human-readable format. This approach simplifies
the automation process, making it accessible to technical and non-technical users.

Automation Components
A well-organized project structure is essential for managing automation assets effectively
within STAP.

Figure 17-1 shows a breakdown of the key project directories in STAP and their purposes.

Figure 17-1 Automation Workspace Hierarchy

• Action Folder

– Contains action files required for running automation scenarios. For more information,
see "Action".

17-1

Tip:

Maintain a clear hierarchy by creating subfolders for each product, with all related
actions grouped within their respective product folders.

• Config Folder

– Contains the config.properties file, which stores various configuration settings for
your automation project. For more information, see "Configuration Folder".

* Environment: Contains environment-specific configurations for your automation
tests. For more information, see "Environment".

* Simulation: Contains configurations related to test data simulation.

* Execution: Contains execution configurations that define how automation
scenarios are run.

• Scenarios Folder: Organizes your automation scenarios into a logical folder structure for
improved maintainance and navigation.

• Results Folder: STAP automatically publishes all test execution results to this folder.

• Context Folder: Stores automation context data used to avoid redundant execution of
steps during scenario automation. Refer to Context Folder for a deeper understanding.

Action
The Action component provides all necessary input to the respective plug-in. This input
specifies how and with what data the plug-in should run the action.

Action files contain common information, such as Name, BDD, Type, and Product. For more
information on creating an action for a specific plug-in, see "Action Execution".

The structure of the Action folder is in the following hierarchy:

• Product Folder

• Plug-In Folder

• Path Folder

• Action Folder

Figure 17-2 displays a sample action file structure.

Chapter 17
Automation Components

17-2

Figure 17-2 Sample Action File Structure

Guidelines and Best Practices

Follow these guidelines when creating the Action folder:

• Use lowercase letters with hyphens to separate words in action file names. For example,
create-new-subscription.action.json. File names should be self-descriptive and end with
the .action.json extension.

• Organize actions into sub directories based on logical groupings for better clarity.

Chapter 17
Automation Components

17-3

• Optionally, share actions across automation projects as libraries by storing and publishing
them as JAR files. For instructions on using action library JARs instead of folders, see
"Configuration Folder".

• Structure your actions for easy searching and discovery by users.

• Provide descriptive names and descriptions for your actions.

• Use predefined tags to categorize actions and facilitate searching. Avoid duplicate tags.

• Write a concise BDD statement to describe the action's purpose.

• Always provide a default request/data for the action.

• Include a sample response in the documentation to inform users about the expected
output. For example, for request create-new-subscription.request.json, the response file
may be titled create-new-subscription.response.json.

The following example shows how to create an action using the REST plug-in:

{
"path":"subscription/create-new-subscription",
"name":"Create a new subscription",
"bdd":"create a new subscription",
"description":"Create a new subscription in the billing system",
"product":"billing",
"actionType":"REST",
"tags":["billing","subscription","create","new"],
"resource":"subscription",
"method":"POST",
"requestType":"FILE",
"request":"create-new-subscription.request.json",
 "expectedStatusCode":201
}

Scenario
A scenario outlines the conditions and expected outcomes of a test, focusing on the overall
flow and user interactions. The file extension for a scenario in Solution Test Automation
Platform is .scenario.

You must create a README.md file in each scenario folder. This file should include the
following details:

• Author

• Supported product versions

• Revision history

• Exceptions (cases where the scenario may fail)

• FAQ for troubleshooting failures

• Other relevant notes

For more information about scenarios in STAP and how to create them, see "Creating
Scenarios".

Guidelines and Best Practices

Follow these guidelines when creating Scenarios:

Chapter 17
Automation Components

17-4

• Organize scenarios in a logical folder structure for improved design, execution, and
maintainability.

• Create a hierarchical folder structure to group related scenarios together, making it easier
to navigate, manage, and understand the overall test suite.

• Ensure unique scenario names. Consider adding the use case ID for clarity.

• Write detailed scenario descriptions. Describe the use case or end-to-end scenario
comprehensively.

• Use tags to categorize scenarios for easy identification. For more information, see "Using
Tags to Filter Components".

Case
A case represents a logical grouping of steps within a scenario. Cases allow you to modularize
your automation scripts, improving readability, maintainability, and re-usability. Ideally, each
case should focus on a single product or functionality within a broader scenario.

The file extension for a case is .case. You can break down your scenario into multiple case
files under the scenario folder, ensuring easy distinction between functionalities and their test
results.

Guidelines and Best Practices:

• Break down complex scenarios into smaller, more manageable cases based on the
product or functionality they interact with. You can create single-step cases to enhance
organization.

• Provide a detailed explanation of the case's functionality, including the steps it performs
and the expected outcome.

• Utilize tags to categorize cases for easy identification and filtering based on various
contexts like use case, feature, or functionality. Plan your tagging strategy before starting
automation. For more information, see "Using Tags to Filter Components".

Using Default Cases

You can create a dedicated setup case to define the initial data and global variables required
for the scenario. This improves clarity by centralizing data setup and highlighting the scenario's
dependencies. You use multiple steps within the setup case to logically group variable
assignments.

Note:

If any required global variable is missing, the setup case will fail.

Step
A step is the fundamental building block of a case within the STAP automation framework.
Each step represents a single action or verification within the overall case flow.

Guidelines and Best Practices

• BDD Syntax: Utilize the Given-When-Then structure to clearly define the step's behavior
within the context of the use case.

– Given: Defines the initial state or preconditions.

Chapter 17
Automation Components

17-5

– When: Describes the action being performed.

– Then: Specifies the expected outcome or verification.

Complete the sentence after each keyword (Given, When, Then) with appropriate text
following the comma, period, or semicolon.

• Description: Provide a concise and informative description of the step's purpose and
functionality.

• Tags:

– Inherit tags from the associated action.

– Add additional step-specific tags to further categorize and filter steps. For example,
product, feature, variation.

• Data Usage:

– Avoid hard-coding data within step definitions.

– Utilize variables defined in the setup case to ensure data consistency and re-usability
across the scenario.

• Validation:

– Implement robust validation checks within the step to verify the expected outcome.

– Use clear and concise validation logic to easily identify and debug issues.

• Data Saving:

– Save relevant data from a step's response or result for use in subsequent steps.

– Employ a consistent naming convention for saved variables to prevent conflicts.

Environment
In STAP, environment configuration involves defining and managing the settings and
parameters needed to run automation tests across different environments, such as
development, testing, and production. This ensures that tests run correctly and produce
accurate results across various target systems.

Each environment has it's own environment.properties file. You can have a single test
environment, thereby having just one environment.properties file, or multiple environments,
with multiple environment.properties files.

Guidelines and Best Practices

• Organize environment configurations into distinct folders within the
environment_configurations sub directory. Use descriptive folder names that clearly
identify the environment. For example, dev, qa, prod.

• Name environment files using a standardized format, for example, <product>-<plugin>-
environment.properties. This enhances clarity and helps prevent naming conflicts.

• Designate a single individual as the owner of environment file updates for collaborative
projects. This promotes consistency and reduces the risk of errors.

• The environment file owner should actively communicate any changes made to other team
members.

• Utilize version control systems to track changes to environment files and facilitate
collaboration.

• Conduct periodic reviews of environment configurations to ensure accuracy, completeness,
and alignment with current system settings.

Chapter 17
Automation Components

17-6

Project
The project structure plays a crucial role in organizing and managing automation assets within
the STAP framework. A well-defined structure enhances code readability, maintainability, and
collaboration among team members.

Guidelines and Best Practices

• Adhere to a Consistent Folder Structure:

• Utilize a standardized folder structure within your project to organize automation
components effectively.

• Utilize the STAP reference project as a starting point for your own projects. Analyze the
project structure and coding patterns to gain valuable insights into best practices.

• Regularly review and clean up the project structure to remove unused files and folders.
Keep the project well-organized to facilitate easy navigation and maintainability.

• Employ a version control system to track changes, collaborate effectively, and revert to
previous versions if necessary.

Naming Automation Components
This section outlines the best practices for naming automation components in STAP.

Files

• Use lowercase letters with hyphens to separate words. For example, create-new-
subscription.request.json.

• Avoid special characters except hyphens.

Scenarios

There are two ways we can create Scenario:

• Single File: Simple scenario with less cases/steps. Created in a single .scenario file. For
more information, see Single File Scenario

• Multi-Case Files Scenario (For Big/Complex scenarios): Complex multi product or end-to-
end scenarios. Split the big scenario into multiple .case files and configure them in
scenario.config. For more information, see Multi-Case Files Scenario

Include the use case ID for clarity. Optionally, add the product name. For example, DBE1001-
New-Subscription.

Setup Cases

• Add .setup.case to the filename. For example, 1.set-default-data.setup.case.

• Only create one .setup.case file per scenario, and run it first. This case can be skipped
when using external data configurations.

Cases

• Use a concise and descriptive name that reflects the case's purpose.

• Include a unique identifier derived from the end-to-end use case or product functionality.
This ensures uniqueness within the case library.

• Follow the format <case-name>.product.case to specify the product the case interacts
with. For example, 2.create-new-subscription.billing.case.

Chapter 17
Naming Automation Components

17-7

Variables

• Use lowercase letters with periods to separate words. For example, subscription.id.

• Add Array or List to identify array variables. For example, orderItemArray,
subscriberList.

• Keep variable names concise and descriptive.

• Use periods (.) and hyphens (-) as separators.

• Avoid underscores (_) at the beginning, as these denote global variables.

Using Tags to Filter Components
Tags provide a mechanism for organizing, categorizing, and managing all automation
components within STAP, including Scenarios, Cases, Steps, and Actions. You can plan and
define a consistent set of tags before starting automation development.

You can filter Scenarios for execution based on specific tags. You can also select and run
Cases within a Scenario using tags as criteria. Furthermore, you can generate automation
execution configurations by filtering components based on tag criteria.

The following are some common examples that you can use when setting up Tags:

• Product Name

• Feature Name

• Use Case ID/Name

• Release

• Type (for example, Functional, Regression, Performance)

• Priority (for example, High, Medium, Low)

• Customer

• Topology/Setup/Environment

• Group/Category

Guidelines and Best Practices

• Scenarios: Use high-level tags like release, use case, type, and priority.

• Cases: Utilize product, feature, and priority tags.

• Steps: Apply product, feature, and variation tags.

• Actions: Tag with product, feature, and interface details.

Chapter 17
Using Tags to Filter Components

17-8

18
Using the STAP Design Experience Package

This chapter details how you can use the Oracle Communications Solution Test Automation
Platform Design Experience Package to simplify the end-to-end automation process.

Topics in this document:

• Automating Using STAP Design Experience

Automating Using STAP Design Experience
The STAP Design Experience (DE) package simplifies the automation of end-to-end scenarios
by offering a user-friendly Behavior-Driven Development (BDD) environment for creating,
testing, and deploying automation. It includes streamlined scripts for compiling, running, and
publishing automation, along with a sample workspace featuring diverse examples across
various plugins. Additionally, the package provides ready-to-use environment templates
tailored for specific plugins and environments to accelerate the automation process.

Before using the STAP Design Package, ensure you have set it up on your system. For more
information, see "Setting Up The STAP Design Experience" in Deployment Guide.

The following is an end-to-end process of how to set up and run automation using the STAP
Design Experience Package.

Caution:

Ensure you have securely stored your automation project in a third-party version
control that includes initializing a repository, tracking changes, and collaborating
efficiently.

1. Create an Automation Workspace: Create a dedicated folder within your project to serve
as the automation workspace. STAP offers two ways to configure folder paths:

• Configuration Folder: Create a config folder within the workspace. This folder
contains the primary configuration file config.properties, which STAP run time uses to
load other configurations. For more information, see "Configuration Folder". Create
subfolders within the config to organize other configurations.

• (Optional) Environment Configurations: Create an environments subfolder within
the config. If you have multiple environments, inside each environment folder, create
separate property files for each product API. If you only have one environment, create
all environment property files directly under the environments folder. Update the
config.properties file with the environment configuration location. For more
information, see "Environments Folder".

2. Results Folder: STAP stores execution results in the results folder. The path can be
relative to the workspace or an external location. Execution results are stored in
timestamped folders under <workspace>/results/. You open report.html within each result
folder to view the execution report. Configure the results storage location in
config.properties. For more information, see "Results Folder".

18-1

3. Context Folder: The context folder stores test context data used during scenario
development. Context helps visualize variables and their values used in each step. It
allows executing specific steps while simulating previously run ones using the context.
Configure the context storage location in config.properties. For more information, see
"Context Folder".

4. Scenarios Folder: Define the location of the scenarios folder in config.properties. Each
scenario is stored in a separate folder within this directory. For more information, see
"Creating Scenarios".

5. Compile and Run Automation: Use the Command Line Interface to compile and run
automation. For more information, see "Publishing Data using Command Line Interface".

6. View Reports: You can view the reports of the scenarios run in the Results folder. For
more information, see "Results Folder".

7. Publish Scenarios: Once the automation is complete, you can publish scenarios. For
more information, see "Publishing Data using Command Line Interface".

Chapter 18
Automating Using STAP Design Experience

18-2

19
Creating an Automation Workspace Folder

This chapter describes the various components of the Automation Workspace folder in Oracle
Communications Solution Test Automation Platform.

Topics in this chapter:

• Configuration Folder

• Environments Folder

• Results Folder

• Context Folder

• Scenarios Folder

Configuration Folder
The configuration folder contains the primary configuration file titled config.properties. This
file contains all the configuration required to run STAP.

Note:

Configurations not related to config.properties should be created under the
configuration folder in their respective folders.

The following is the setup for the configuration folder:

#---
--
STAP Environment Configuration
Version 1.2.0
#---
--
Scenarios location
scenarios.home=${WORKSPACE}/scenarios

#---
--
Environment configurations location
environments.home=${WORKSPACE}/config/environments

#---
--
Execution configurations location
execution.Config.file=${WORKSPACE}/config/execution/execution.config.json
#---
--
Actions location

19-1

actions.home=LOAD_FROM_LIBRARY
#
#actions.home=${WORKSPACE}/actions

#---
--
Results storage location
#results=results
results.home=${WORKSPACE}/results
results.publish=NO
#results.publish.file=C:\software\Servers\apache-
Server-1\webapps\STAPReports\reports\SE2EReports\results.js
#---
--
Context Configuration
#---
--
Context Storage Location
context.home=${WORKSPACE}/context
Scenario Context
Load Context for the test case
Default NO
context.load=NO
context.save=NO
Global Context
context.global.load=NO
context.global.save=NO
#---
--
engine.configuration=${WORKSPACE}/config/engine.config.properties
#---
--

#---
--
 # JMeter Configuration

#---
--
 # JMeter threads
 tools.jmeter.thread=4000
 # JMeter rampup(seconds)
 tools.jmeter.rampup=150
 # JMeter result location
 tools.jmeter.results.home=${WORKSPACE}/results/tools/jmeter

#---
--
 # Plugin Configuration : INTERNAL
 # List of Supported Plugins : REST,SOAP,SSH,Kafka

#---
--

Chapter 19
Configuration Folder

19-2

 plugin.internal=REST,SOAP,SSH,Kafka

#---
--
 # Plugin Configuration : CUSTOM
 # Provide plugin configuration in config/plugin folder

#---
--
 #plugin.custom=

#---
--
 # Attribute Home
 # Provide location to load attribute data

#---
--
 attributeData.home=${WORKSPACE}/config/attributeData

Environments Folder
The environments folder contains the various testing environments in STAP. This folder is a
subfolder under the configuration folder. You create the environments folder under the
configuration folder and create folders for each separate environment. Under each
environment folder, create individual files for each product API.

The following is the configuration for adding the environment details in the config.properties
folder:

#---
--
Environment configurations location
#---
--
environments.home=${WORKSPACE}/config/environments

Results Folder
Results of the test run are stored in the results folder. The path to this folder can either be
relative to your workspace or a direct path to store the results outside your workspace.

The results of each test run are created under this folder with its relative timestamp. The format
of this timestamp is $results/<timestamp>. To view the execution report, you open the
report.html file.

The following is the configuration for adding the result details in the config.properties folder:

#---
--
Results storage location
#---

Chapter 19
Configuration Folder

19-3

--
results.home=${WORKSPACE}/results

Context Folder
The context folder stores the data of previous steps, enabling the simulation of scenarios
where only the current step needs execution. This eliminates the need to repeatedly run prior
steps, as the context provides the necessary values for the current step.

You configure the location of the context folder in config.properties.

The following is the configuration for adding the context details in the config.properties folder:

#---
--
Context Configuration
#---
--
Context Storage Location
context.home=${WORKSPACE}/context

#- Local Context. Load context while running. values : YES/NO
context.load=NO
#- Local Context. Save context for a scenario for debug. values : YES/NO
context.save=NO

Global Context. Sharing data across scenarios.
context.global.load=NO
context.global.save=NO

Scenarios Folder
The scenarios folder contains the different scenarios to be run. Each scenario is stored in a
separate folder within this folder.

Figure 19-1 displays the scenarios folder structure.

Chapter 19
Configuration Folder

19-4

Figure 19-1 Scenarios Folder Structure

The following is the configuration for adding the scenario details in the config.properties
folder:

#---
--
Scenarios location
#---
--
scenarios.home=${WORKSPACE}/scenarios

For more information, see Creating Scenarios.

Chapter 19
Configuration Folder

19-5

20
Creating Scenarios

This chapter details how to create scenarios to be tested and automated in Oracle
Communications Solution Test Automation Platform.

Topics in this chapter:

• Single File Scenario

• Multi-Case Files Scenario

• Using Multiple Scenarios

There are two ways to create a scenario:

1. Single File: Created for a simple scenario containing a smaller set of cases and steps. It is
stored in a single .scenario file.

2. Multi-Case File: Created for bigger scenarios containing complex multi-product or end-to-
end scenarios. The scenario is split into multiple .case files and configured in the
scenario.config configuration file.
For more information on the scenario folder, see "Scenario".

Single File Scenario

The following format shows how to create a single file scenario:

Scenario:<<space>><Name of the E2E Scenario>

Description:<<space>><Description of the E2E Scenario>
<Description can be of multiple lines>
<<line space>>
<Description can have empty lines in between.>
<Entire text after Description: keyword till next keyword is considered as
description>
Tags:<<space>><List of tags separated by ','>

Case:<<space>><Case Name> ====> Can have multiple cases in a scenario
Description:<<space>><<Case Description>>
Tags:<<space>><<List of tags separated by ','>
Given/When/Then/And<<space>><Step description>[<.|,|;><more step
description>] ====> can have multiple steps in a case

Data:<<no text after this>>
| name | value |
| name | value |

Validate:<<no text after this>>
| name | value |
| name | value |

Save:<<no text after this>>
| Path | Variable |

20-1

Multi-Case Files Scenario

The following format shows how to create a multi-case file scenario:

1. Header.info: Contains the scenario details in the following format:

Scenario:<<space>><Name of the E2E Scenario>

Description:<<space>><Description of the E2E Scenario>
<Description can be of multiple lines>
<<line space>>
<Description can have empty lines in between.>
<Entire text after Description: keyword till next keyword is considered as
description>
Tags:<<space>><List of tags separated by ','>

2. Case files: Each .case file covers a specific logical step in a scenario. This logical criteria
may be for any product. Use the following format when creating a case file:

Case:<<space>><Case Name> ====> Can have only one case definition
Description:<<space>><<Case Description>>
Tags:<<space>><<List of tags separated by ','>
Given/When/Then/And<<space>><Step description>[<.|,|;><more step
description>] ====> can have multiple steps in a case

Data:<<no text after this>>
| name | value |
| name | value |

Validate:<<no text after this>>
| name | value |
| name | value |

Save:<<no text after this>>
| Path | Variable |

3. scenario.config : Contains the list of files to be merged to create the .scenario file at run
time. Use the following format when creating a scenario configuration file:

#==
Scenario Configuration File
#===
Merges the following scenario files in the specified order to run the
scenario
Header.info
1.Launch.case
2.Buying.case
3.fusionCDM.case
4.BRM.case
5.Care.case

Chapter 20

20-2

Using Multiple Scenarios
Scenarios can be grouped to compile and run based on specific needs. This allows
independent execution of groups, so the failure of one group does not halt the execution of
others. This reduces the dependency of execution failures between independent scenarios.

Each group can be assigned a unique name and configured with a separate execution mode
(serial or parallel). The execution mode dictates how the scenarios within a group are run.

To initiate a run, define at least one group entry. If multiple groups are not required, all
scenarios can be listed under a single "group" keyword. You must define an
execution.config.json file within the Scenarios folder to group scenarios.

The following is the syntax for the execution.config.json file:

{
 name keyword : parameter //optional
 description : parameter //optional
 release : parameter //optional
 milestone : parameter //optional
 build : parameter //optional
 level : parameter //optional
 reportTitle : parameter //optional
 execution keyword : parameter //optional

 group keyword : [
 {
 <<group 1>>
 name keyword : parameter //optional
 execution keyword : parameter //optional
 scenarios keyword : [
 <<folder name>>,
 <<folder name>>
]
 },
 {
 << group 2>>
 name keyword : parameter //optional
 execution keyword : parameter //optional
 group keyword : [
 {
 <<subgroup 1>>
 name keyword : parameter //optional
 execution keyword : parameter //optional
 scenarios keyword : [
 <<folder name>>,
 <<folder name>>
]
 },
 {
 <<subgroup 2>>
 name keyword : parameter //optional
 execution keyword : parameter //optional
 scenarios keyword : [
 <<folder name>>,

Chapter 20
Using Multiple Scenarios

20-3

 <<folder name>>
]
 }
]
 }
]
}

Where:

• Execution (Optional): Execution can be configured as serial or parallel for each group or
subgroup. This parameter is optional, and if not defined, groups will default to serial
execution.

• Group: Groups are defined under the "group" keyword, and each group can contain
subgroups or scenario folder entries. Each group has a unique name and its own
execution mode. At least one "group" entry is required to define the scenario list.

• Name: Groups can be identified by user-entered names, and if no name is provided, a
unique group ID is assigned.

• Scenarios:

– If multiple .scenario files exist in a single folder, only the first .scenario file is run. Each
group contains a scenarios list, which specifies the parent folder names
where .scenario or .scenario.config files reside.

– If .scenario files are located in nested folders, the parent folder names relative to the
scenarios folder should be specified. Each group contains a scenarios list, which
specifies the parent folder names where .scenario or .scenario.config files reside.

– If .scenario files are located in nested folders, the parent folder names relative to the
scenarios folder should be specified. Optional fields include a description, release
version, milestone, build, level, and report title. The default report title is Automation
Report.

The following is an example input for of the execution.config.json file:

{
 "execution" : "parallel",
 "group" : [
 {
 "name" : "groupOne",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation",
 "ToDo-FunctionsAndOperators"
]
 },
 {
 "name" : "groupTwo",
 "execution" : "parallel",

 "group" : [
 {
 "name" : "subGroupOne",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation",

Chapter 20
Using Multiple Scenarios

20-4

 "ToDo-FunctionsAndOperators"
]
 },
 {
 "name" : "subGroupTwo",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation"
]
 }
]
 }
]
}

Chapter 20
Using Multiple Scenarios

20-5

21
Using the Command-Line Interface

This chapter describes how to use Command-Line Interface (CLI) to perform actions in Oracle
Communications Solution Test Automation Platform.

Topics in this chapter:

• Publishing Data using Command Line Interface

Publishing Data using Command Line Interface
Solution Test Automation Platform utilizes the command-line interface to perform various
actions. The help command provides a comprehensive list of all commands within STAP.
Running the help displays each command's name alongside a brief description of its function

To retrieve information on how to run actions in STAP, run the help command:

$./stap --help

The following is the syntax of the output received after running the help command:

$./stap --help
===
Solution Test Automation Platform CLI
Version : 1.25.0
===
Usage: stap --<service> -<command> [<parameters>]

Global Options:

--version Shows the STAP CLI version

--help Shows the STAP CLI command
documentation
 [<service> [<command>]] Print help for module or
command in module

--automation automation client
operations

 -compile Compiles the automation
scenarios
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory
 scenarios one or more scenarios to
compile
 List of values
 Default Value:

21-1

 generate Generate the result files
from compile
 One of the values : [NO,
YES, MERGE]
 config compile configuration
 Valid file path

 -run Run the automation
scenarios
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory
 scenarios one or more scenarios to
run
 List of values
 Default Value: Selects
scenarios as per configuration or tags
 Optional Group : Scenario
Selection
 tags Select scenarios matching
the tags
 List of values
 Optional Group : Scenario
Selection
 caseTags Select cases matching the
tags
 List of values
 Depends on : tags
 config compile configuration
 Valid file path
 Optional Group : Scenario
Selection
 mode Execution mode
 One of the values :
[trail, execute]

--publish publish action

 -action publish
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory

 -environment publish
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory

 -scenario publish
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory

Chapter 21
Publishing Data using Command Line Interface

21-2

--simulation Run simulation

 -run publish
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory

 -compile publish
 workspace STAP workspace location
 Valid folder path
 Default Value: Current
Directory

--secure environment simulation

 -environment publish
 filepath path to the JCEKS file
 Valid folder path
 Mandatory: Yes
 keyfilepath Provide the path to
your .properties file containing the data to be encrypted.
 Valid folder path
 Mandatory: Yes
 keystorepass keystore password.
 Valid folder path
 Mandatory: Yes
 aliasname alias name identifying the
secret key
 Valid folder path
 Mandatory: Yes

The help command provides all the information required to perform various actions in STAP.
For example, to retrieve information about your current STAP version, run the following
command:

$./stap --version
===
Solution Test Automation Platform CLI
Version : 1.25.0

Run the following command to run scenarios:

./stap --automation -run "workspace=<path>"

Alternatively, you can also run the help command to specifically search for command lines for
a particular type of action. For example, to retrieve all commands related to running STAP run
the following command:

$./stap --help secure

Chapter 21
Publishing Data using Command Line Interface

21-3

The following is the example output upon running this command: $./stap --help secure:

Solution Test Automation Platform CLI
Version : 1.25.0.0
===
config/cli/secure.service.properties
Usage: stap --<service> -<command> [<parameters>]

Global Options:

--secure environment simulation

 -environment publish
 filepath path to the JCEKS file
 Valid folder path
 Mandatory: Yes
 keyfilepath Provide the path to your .properties
file containing the data to be encrypted.
 Valid folder path
 Mandatory: Yes
 keystorepass keystore password.
 Valid folder path
 Mandatory: Yes
 aliasname alias name identifying the secret key
 Valid folder path
 Mandatory: Yes

You can use this syntax to run the secure command in your STAP environment. On the basis
of the above response, secure your STAP environment using the following command:

./stap --secure -environment filepath=<path> keyfilepath=<path>
keystorepass=<keystorepass> aliasname=<name>

Upon running this command, you will receive a response similar to the following:

./stap --secure -environment filepath=<path> keyfilepath=<path>
keystorepass=<keystorepass> aliasnam=<name>
[hostname STAP]$./stap --secure -environment keyfilepath=encrypt/env.jceks
filepath=sampleWorkSpace/config/environments/tdaasEnvironment.properties
keystorepass=Welcome@1 aliasname=password
===
STAP Automation Platform CLI
Version : 1.25.1.0.0
===
sampleWorkSpace/config/environments/tdaasEnvironment.properties
basic.password=${SECURE_PWD}
Enter new password for "basic.password":
password
Password updated successfully.
[hostname STAP]$

To publish automation reports to third-party web servers, see "Publishing Reports Using Third-
Party Web Servers".

Chapter 21
Publishing Data using Command Line Interface

21-4

22
Publishing Reports Using Third-Party Web
Servers

This chapter provides information about publishing automation reports to third-party web
servers.

After automating scenarios using the command-line interface, you may want to share
automation reports with other users, or access these reports from a web server for easy
access. You can publish your reports to third-party web servers to perform these actions.

Topics in this document:

• Viewing Automation Reports Using Tomcat

• Viewing Automation Reports Using NGINX

• Viewing Automation Reports Using Apache HTTP Server

Viewing Automation Reports Using Tomcat
To view automation reports using Tomcat, follow these steps:

1. Install Tomcat. For more information, see the Tomcat website:
https://tomcat.apache.org/

Verify that your Tomcat server is running successfully by running the following in the URL
of the Tomcat server:

https://<tomcat-host>:<tomcat-server-port>

2. Navigate to the config.properties folder in your automation workspace, and configure the
path of the results to publish by running the following command:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

3. Navigate to the Tomcat server using the path ${TOMCAT_HOME}/conf/server.xml.

a. Run the following command to configure the STAP-DE automation execution reports:

 <Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"
 maxParameterCount="1000"
 />

 <Connector port="8099" protocol="HTTP/1.1"
 redirectPort="8443" />

22-1

https://tomcat.apache.org/

b. Navigate to the <Content> tag under the <Host> tag and insert the path to where you
run the automation reports:

<Context docBase="${STAP_HOME}/sampleWorkSpace/results/" path="/stap-
reports"
 />

This creates an endpoint titled /stap-reports which stores the automation reports.

4. Restart the Tomcat server.

Automation reports for all scenarios run are now published in the path ${host}:{port}/stap-
reports. To access individual automation execution results, click on the respective link of the
job.

Viewing Automation Reports Using NGINX
To view automation reports using NGINX, follow these steps:

1. Install NGINX. For more information, see the NGINX website:
https://nginx.org/

2. As an administrator, navigate to the command prompt in your system, and start the NGINX
server by running the following command:

start nginx

3. Navigate to the config.properties folder in your automation workspace, and configure the
path of the results to publish by running the following command:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

4. Configure the path for the automation reports in the nginx.conf file by running the
following in the NGINX server:

server {
 listen 80;
 server_name localhost;

 root ${STAP_HOME}/sampleWorkSpace/results;
 index index.html index.htm;

 location / {
 autoindex on;
 try_files $uri $uri/ /index.html;
 }
 }

5. Restart the NGINX server.

Automation reports for all scenarios run are now published in the path ${nginx-host}:{nginx-
server} in your web browser. To access individual automation execution results, click on the
respective link of the job.

Chapter 22
Viewing Automation Reports Using NGINX

22-2

https://nginx.org/

Viewing Automation Reports Using Apache HTTP Server
To publish automation reports using Tomcat, follow these steps:

1. Install and configure the Apache HTTP server. For more information, see the Apache
website:
https://httpd.apache.org/

2. Start the Apache HTTP server. Verify the successful installation by navigating to the port.

3. Navigate to the config.properties folder in your automation workspace, and configure the
path of the results to publish by running the following command:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

4. Configure the path for the automation reports in the httpd.conf file by running the
following:

DocumentRoot "${STAP_HOME}/sampleWorkSpace/results/"
<Directory "${STAP_HOME}/sampleWorkSpace/results/">

5. Restart the Apache HTTP server.

Automation reports for all scenarios run are now published in the path ${host}:{server}. To
access individual automation execution results, click on the respective link of the job.

Chapter 22
Viewing Automation Reports Using Apache HTTP Server

22-3

https://httpd.apache.org/

A
Appendix

Action

An Action's functionality is defined by its constituent action files, enabling the execution of
automated processes.

Action Plug-In

Enables automation to interact seamlessly with various product interfaces, including REST,
SOAP, SSH, SFTP, and so on.

Array

A data structure that can hold multiple values, typically of the same type, in a single variable.
Arrays are useful for organizing and managing collections of data.

Behavioral Development Data (BDD)

A proprietary language developed by Oracle. It uses a set of special keywords to structure and
give meaning to executable business use case specifications.

Case

Represents a logical grouping of steps within a scenario.

Concat

A string function used to combine multiple strings into one. It takes two or more strings as input
and returns a single concatenated string.

Controlled Steps

The way of executing test steps using different control structures such as if, for, and while.

Data-Driven Testing

A software testing methodology where test scripts are performed repeatedly using different
sets of input data.

Environment

An environment refers to the combination of hardware, software, configurations, and settings
required to execute automation tests.

JSON

A lightweight data-interchange format that is easy for humans to read and write, and easy for
machines to parse and generate. JSON is commonly used to transmit data between a server
and a web application, as well as to store configuration settings and other structured data.

A-1

Kafka

A distributed event streaming platform used for building real-time data pipelines and streaming
applications. Kafka is widely used as a message queue to facilitate asynchronous
communication between producers (who send messages) and consumers (who receive
messages).

Microservice

A software development technique where an application is structured as a collection of loosely
coupled, independently deployable services. Each microservice focuses on a specific business
function and communicates with other services through well-defined APIs. This approach
enhances scalability, flexibility, and maintainability, allowing teams to develop, deploy, and
scale parts of an application independently.

Nested Function

A nested function is a function that is defined inside another function. It allows for code
organization, data hiding, and, in some languages, the creation of closures.

Operator

An operator is a function that performs an operation on given arguments and returns a result
as Passed or Failed. BDD operators are used in the Validation section of the Test Step.

Project

A STAP project organizes and manages automation assets within the STAP framework.

Pattern Matcher

A pattern matcher retrieves a substring using a regular expression. In STAP, the regular
expression used by the pattern matcher contains characters that need to be escaped. If these
characters are not escaped, the publish scenario scripts might fail.

REST

A widely used interface for web services due to its simplicity and scalability. Automation plugins
for REST typically facilitate tasks such as making HTTP requests, handling JSON/XML
payloads, and validating responses.

Scenario

Outlines the conditions and expected outcomes of a test, focusing on the overall flow and user
interactions.

Seagull

An open-source tool for testing and simulating network protocols.

Seed Data

An initial set of data that is loaded into a system or database to set it up for use. This data is
typically used to populate the database with essential information that the application needs to
function correctly.

Appendix A

A-2

SFTP

Widely used for secure file transfers between systems. Automation plugins streamline tasks
such as uploading, downloading, and verifying files.

SOAP

A widely used interface for web services due to its simplicity and scalability. Automation plugins
for REST typically facilitate tasks such as making HTTP requests, handling JSON/XML
payloads, and validating responses.

Solution Test Automation Platform (STAP)

Allows users to automate their end-to-end business use cases without writing a single line of
code.

SSH

SSH plugins automate interactions with remote servers, making them invaluable for
configuration management, server monitoring, and application deployment.

STAP Data Service

The Data Service microservice is responsible for managing the data used in STAP. It stores
test case data, test results, and other important information related to testing. The Data Service
is designed to be highly scalable, allowing it to handle large amounts of data without impacting
performance.

Step

Represents a single action or verification within the overall case flow.

String

A sequence of characters used to represent text. Strings can include letters, numbers,
symbols, and spaces.

Substring

Substring refers to a function used to extract a part of a string based on specified indexes. It
takes a string and a starting index as input and returns the portion of the string from the
starting index to the end of the string. The starting index is inclusive, meaning the character at
the starting index is included in the resulting substring.

Synthetic Data

The Synthetic Data Generator is a critical component of a test automation platform, designed
to produce diverse, scalable, and high-quality data for testing applications. It eliminates the
reliance on real-world data by generating customizable datasets that emulate production-like
conditions, ensuring comprehensive test coverage and improving testing efficiency.

Tags

Tags provide a mechanism for organizing, categorizing, and managing all automation
components within STAP, including Scenarios, Cases, Steps, and Actions.

Appendix A

A-3

URL Validator

A tool or function used to ensure that the URLs specified in the configuration file (for example,
environment.properties) are valid and correctly formatted.

Appendix A

A-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Learning About STAP
	1 About Solution Test Automation Platform
	Introduction to STAP
	Features of STAP
	Benefits of STAP
	Microservice Architecture

	2 Introduction to STAP Behavior-Driven Development Language
	Understanding STAP BDD Language
	BDD Use Case
	JSON Data Processing (Release 1.25.1.1.0 or later)

	3 About BDD Operators
	String Operators
	Numeric Operators
	Array Operators

	4 Using Variables
	Overview
	Using Array Variables
	Using Dynamic Array Variable
	Using Array Variable Values

	5 BDD Functions
	Overview of BDD Functions
	String Functions
	Numeric Functions
	Numeric Function: Evaluate to Process Arithmetic Expressions

	JSON and Response Functions
	Data Type Functions
	Date Type Functions
	Format Number Functions

	6 Using Control Structures in Steps
	Overview
	Scenario Execution Flow
	Action Execution
	Using Conditional Cases

	7 STAP Action Plugins
	Introduction to STAP Action Plugins
	REST Plugin
	SOAP Plugin
	XML API: Support for Sending Body in x-www-form-urlencoded

	SSH SFTP Plugin
	Process Plugin
	Seagull
	Kafka
	URL Access Validation
	Custom Actions
	Mock Custom Action

	8 Synthetic Data
	STAP Synthetic Data Generation
	Plugin with Internal Generators
	Text Generation
	Unique ID Generation
	Fake Data Generation

	Part II Getting Started with STAP UI
	9 About STAP UI
	Icons in the STAP UI
	Using Keyboard Shortcuts

	10 STAP UI Login Methods
	Guidelines for Using STAP UI
	About Authorization Modes
	About Login Page
	Resetting Your Password
	Using IDCS Credentials for OAuth
	About STAP Dashboard

	11 STAP System and Administrator Console
	About the User Profile Page
	About Viewing and Editing Profiles
	Changing Passwords
	Viewing OAuth Environment Profiles
	Managing Administrator Environment
	Creating a New User
	Role-based Access

	12 STAP UI Environment Management
	About the Environment Page
	Creating a New Environment
	Updating an Existing Environment
	Deleting an Existing Environment

	13 STAP Jobs Management
	About Jobs Page
	Creating a New Job
	Updating an Existing Job
	Running a Job
	Deleting a Job

	14 Accessing Previously Run Jobs
	Viewing Job History
	Viewing Scenario Details
	Viewing the Results of Each Scenario Under a Job
	Viewing the Detailed Report of Scenarios

	15 Viewing Scenarios
	16 Viewing Actions
	Viewing Action Details

	Part III Automating Using STAP
	17 Automating Without Code
	Overview
	Automation Components
	Action
	Scenario
	Case
	Step
	Environment
	Project

	Naming Automation Components
	Using Tags to Filter Components

	18 Using the STAP Design Experience Package
	Automating Using STAP Design Experience

	19 Creating an Automation Workspace Folder
	Configuration Folder
	Environments Folder
	Results Folder
	Context Folder
	Scenarios Folder

	20 Creating Scenarios
	Using Multiple Scenarios

	21 Using the Command-Line Interface
	Publishing Data using Command Line Interface

	22 Publishing Reports Using Third-Party Web Servers
	Viewing Automation Reports Using Tomcat
	Viewing Automation Reports Using NGINX
	Viewing Automation Reports Using Apache HTTP Server

	A Appendix

