
Oracle® Communications Service
Catalog and Design
Design Studio Modeling OSM Processes

Release 8.3
G31709-01
October 2025

Oracle Communications Service Catalog and Design Design Studio Modeling OSM Processes, Release 8.3

G31709-01

Copyright © 2024, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Getting Started with Design Studio for OSM Processes

About Order Modeling Users and Tasks 1

Reviewing Design Studio Sample Cartridges 3

Creating a Cartridge for Orders That Use Processes 4

2 Defining OSM Preferences

Defining Language Preferences 1

Defining Diagrammer Preferences 2

Defining Order and Service Management General Preferences 3

Defining Orchestration Preferences 6

Defining Web Browser Preferences 6

3 Working with OSM Cartridge Projects

Working with Existing OSM Models 1

About Importing Design Studio Cartridges 1

About Importing Cartridges Created in OSM Administrator 3

About Import Summary Reports 5

Importing Existing OSM Models 6

Working with the Orchestration Model Project 8

Creating the OracleComms_OSM_CommonDataDictionary Model Project 8

Working with XML Catalogs 8

Enabling and Disabling XML Catalogs for a Cartridge Project 9

Specifying XML Catalogs for a Cartridge Project 10

Order and Service Management Project Editor 11

Project Editor Locations Tab 11

Project Editor Manifest Tab 11

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of x

4 Modeling Data in OSM

About Modeling Data in OSM Cartridge Projects 1

About Modeling Control Data 3

About Contributing Task Data to a Cartridge Project 4

About OSM Data in Model Projects 4

About Modeling Data in the Order Template 5

About the Order Template Context Menu 5

About the Task Editor Task Data Context Menu 6

Data Schema Editor OSM Tab 7

Using Masks 8

About Masks 8

Defining Masks for Task Web Client Fields 9

Defining Behaviors at the Data Schema Level 10

5 Working with Roles

Creating New Roles 1

Adding Roles to Multiple Tasks 1

Role Editor Role Tab 2

6 Working with Processes

About the Process Editor 1

Working with Process Editor Menu Controls 1

About Task Controls 2

About Zoom Controls 2

About Layout Controls 3

About Print Controls 3

About Selection Controls 4

Working with the Process Editor Palette 4

About the Process Editor Tool Drawer 5

About the Process Editor Activities Drawer 6

About the Process Editor Flow Drawer 7

About the Process Editor Exception Paths Drawer 8

Creating New Processes 9

Modifying Process Editor Start Properties 9

Process Editor Start Properties General Tab 10

Designing Tasks and Activities 10

Process Editor Activities Properties General Tab 12

Process Editor Task Properties Events Tab 12

Designing Timer Delays and Event Delays 13

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of x

Designing Timer Delays 13

Applying Order Rules to Timer Delays 13

Designing Event Delays 14

Designing Subprocesses 14

Subprocess Properties General Tab 15

Subprocess Properties Process Tab 15

Subprocess Properties Exception Map Tab 17

Designing Workstream Processes 18

Designing Process Sequence and Flow 19

Process Editor Flow Properties General Tab 20

Process Editor Flow Properties Events Tab 20

Designing Exception Paths 21

Exception Path Properties General Tab 22

Exception Path Properties Restrictions Tab 23

Redirect Properties General Tab 23

7 Working with Tasks

About Tasks 1

About Task Extensions and Inheritance 2

About Task States and Statuses 2

About Task Rollback Status 3

About Task Compensation 4

About Task Fallout 5

About Enabling Task Web Client Users to Reassign Tasks 6

Creating New Tasks 6

Defining Task Data 7

Adding Data to a Task 8

Adding a New Data Structure Definition to a Task 9

Adding an Existing Data Structure Definition to a Task 9

Assigning Task States and Statuses 10

Assigning States to Tasks 11

Assigning Statuses to Tasks 11

Assigning Task Permissions 12

Converting Tasks 13

Deleting Unreferenced Tasks 13

Working with Automation Plug-Ins 14

About Automation Plug-ins 14

About Automation Plug-in Types 14

About Automation Plug-in Association 15

About Automation Message Correlation 16

Creating New Custom Automation Plug-ins 17

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of x

Configuring Automation Plug-In Properties 18

Example: Modeling a Basic Automator Plug-In 19

Working with Manual Tasks 22

Defining Manual Task Behaviors 22

Working with Automated Tasks 23

Defining Automated Task Behaviors 23

Adding Automation Plug-ins to Automated Tasks 24

Working with Activation Tasks 25

About Activation Tasks 26

About Service Action Request Mapping 26

About Service Action Response Mapping 27

About State and Status Transition Mapping 28

Modeling Activation Tasks 28

Configuring Service Action Requests 30

Mapping OSM Data to Service Action XML Parameters 32

Configuring Service Action Responses 36

Filtering ASAP Response Data 37

Configuring Service Action Response State and Status Transitions 38

Working with Transformation Tasks 39

Task Editor 39

Task Editor Activation Task Details Tab 40

Task Editor Automation Tab 41

Properties View System Interaction Tab 42

Properties View Details Tab 43

Properties View External Event Receiver Tab 44

Properties View Compensation Tab 47

Properties View Correlation Tab 48

Properties View XQuery Tab 49

Properties View XSLT Tab 50

Properties View Routing Tab 51

Properties View Custom Plug-in Tab 52

Properties View Notes Tab 52

Task Editor Behaviors Tab 52

Task Editor Compensation Tab 53

Task Editor Details Tab 55

Task Editor Events Tab 58

Task Editor Fallouts Tab 58

Task Editor Jeopardy Tab 58

Task Editor Jeopardy Details Tab 59

Task Editor Jeopardy Conditions Tab 59

Task Editor Jeopardy Notify Roles Tab 60

Task Editor Jeopardy Polling Tab 60

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of x

Task Editor Jeopardy Automation Tab 61

Task Editor Jeopardy Notes Tab 61

Task Editor Permissions Tab 62

Task Editor Redo Tab 62

Task Editor Request Data Tab 63

Properties Activation Order Header Binding View 64

Properties Global Parameter Binding View 65

Properties Service Action Binding View 65

Properties Parameter Binding View 66

Task Editor Response Data Tab 67

Properties State/Status Transition View 68

Response Filter Area 68

Task Editor Composite Data View Tab 69

Task Editor States/Statuses Tab 70

Task Editor Task Data Tab 70

Task Data Node Properties View Identification Tab 71

Task Data Node Properties View Dictionary Tab 72

Task Editor Undo Tab 72

8 Working with Order Lifecycle Policies

About Order States and Transactions 1

Creating New Order Lifecycle Policies 2

Configuring Order Lifecycle Policies 3

Order Lifecycle Policy Editor 4

Order Lifecycle Policy Permissions Tab 5

Order Lifecycle Policy Transition Conditions Tab 6

Transition Condition for Checking a Hard Point of No Return 7

Order Lifecycle Policy Editor Grace Periods Tab 9

9 Working with Data Providers

About Data Providers 1

Understanding Built-in Data Provider Types 1

Creating New Data Providers 2

Configuring Data Providers 3

Data Provider Editor 4

Data Provider Editor Settings Tab 4

Data Provider Editor Interface Tab 5

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of x

10

Working with Orders

About Order Extensions and Inheritance 1

About Reference Nodes 2

Creating New Orders 2

Defining Order Data 3

Adding New Data to an Order 4

Adding Existing Data to an Order 4

Adding Reference Data Nodes 5

Adding a New Data Structure Definition to an Order 6

Adding an Existing Data Structure Definition to an Order 7

Renaming Data Elements at the Order Level 7

Defining Order Behaviors 8

Defining Order Details 9

Enabling Order Amendment Processing 10

Defining Order Rules 11

Defining Order Fallout 12

Associating Order Fallouts with Data Nodes 12

Associating Order Fallouts with Fallout Groups 13

Defining Order Data Changed Notifications 14

Assigning Order Permissions 14

Defining Order Jeopardy Notifications 17

Defining Order Event Notifications 17

Order Editor 17

Order Editor Order Template Tab 18

Properties View Order Data Tab 18

Properties View Dictionary Tab 19

Properties View Key Tab 20

Properties View Usage Tab 21

Order Editor Behaviors Tab 21

Order Editor Details Tab 21

Order Editor Amendable Tab 23

Order Editor Rules Tab 24

Properties View Rules Expression Tab 25

Order Editor Fallouts Tab 25

Order Editor Fallout Groups Tab 25

Order Editor Notification Tab 26

Order Editor Notification Details Tab 26

Order Editor Notification Notify Roles Tab 27

Order Editor Notification Data Changed Tab 28

Order Editor Notification Automation Tab 28

Order Editor Notification Notes Tab 29

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vi of x

Order Editor Permissions Tab 29

Order Editor Permissions Details Tab 30

Order Editor Permissions Filters Tab 30

Order Editor Permissions Query Tasks Tab 31

Properties View Filter Expression Tab 32

Order Editor Jeopardy Tab 32

Order Editor Jeopardy Details Tab 33

Order Editor Jeopardy Conditions Tab 33

Order Editor Jeopardy Notify Roles Tab 34

Order Editor Jeopardy Polling Tab 34

Order Editor Jeopardy Automation Tab 35

Order Editor Jeopardy Notes Tab 35

Order Editor Events Tab 35

Order Editor Composite Data View Tab 36

11

Working with Behaviors

About Web Client Behavior Support 1

Creating New Behaviors 2

Defining Behavior Detail Properties 2

Behaviors Properties View Details Tab 3

Defining Behavior Condition Properties 3

About Behavior Condition Properties 4

Behaviors Properties View Conditions Tab 5

Defining Behavior Notes Properties 6

Defining Calculate Behavior Properties 6

About Calculate Behaviors 7

Calculate Behavior Properties View Calculation Tab 8

Defining Constraint Behavior Properties 8

Constraint Behavior Properties View Message Tab 9

Defining Data Instance Behavior Properties 10

About Data Instance Behaviors 11

Data Instance Behavior Properties View Data Tab 12

Defining Event Behavior Properties 14

About Event Behaviors 15

Event Behavior Properties View Event Tab 15

Defining Information Behavior Properties 16

Defining Information Behaviors in Multiple Languages 18

Information Behavior Properties View Labels Tab 19

Information Behavior Properties View Hints Tab 20

Information Behavior Properties View Help Tab 21

Defining Lookup Behavior Properties 21

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vii of x

About Lookup Behaviors 22

Lookup Behavior Properties View Nodeset Tab 23

Lookup Behavior Properties View Value/Name Tab 24

Defining Read Only Behavior Properties 25

About Read Only Behaviors 26

Defining Relevant Behavior Properties 27

About Relevant Behaviors 27

Defining Style Behavior Properties 28

Style Behavior Properties View Appearance Tab 29

Style Behavior Properties View Layout Tab 30

Style Behavior Properties View CSS Style Tab 30

12

Working with Jeopardy and Event Notifications

Working with Jeopardy Notifications 1

Creating Jeopardy Notifications in the Order Jeopardy Editor 1

Creating Jeopardy Notifications in the Task or Order Editor 2

Working with Event Notifications 4

Creating Order Milestone and Task State Automation Event Notifications 5

Creating Process-specific Task Event Notifications 6

Properties Events Detail Tab 7

Properties Events Notify Roles Tab 8

Properties Events Automation Tab 8

Event Properties Notes Tab 9

Creating Task Status-Based Event Notifications 9

Creating Order Data Changed Notifications 10

Order Jeopardy Editor 12

Order Jeopardy Editor Details Tab 13

Order Jeopardy Editor Policy Tab 14

Order Jeopardy Editor Policy Tab Duration Value Subtab 15

Order Jeopardy Editor Policy Tab Offset Subtab 15

Order Jeopardy Editor Policy Tab XQuery Expression Subtab 16

Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab 16

Order Jeopardy Editor Policy Tab Data Path Expression Subtab 17

Order Jeopardy Editor Automation Tab 17

Order Jeopardy Editor Automation Tab Details Subtab 18

Order Jeopardy Editor Automation Tab Script Subtab 19

Order Jeopardy Editor Automation Tab Routing Subtab 19

Order Jeopardy Editor Automation Tab Notes Subtab 20

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page viii of x

13

Packaging and Deploying OSM Cartridges

Packaging Order and Service Management Cartridges 1

Multiple Order Data Inconsistencies 1

Defining Build-and-Deploy Modes for Automation Plug-ins 2

About Build-and-Deploy Modes for Automation Plug-ins 3

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges 4

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges 5

Testing OSM Cartridge Models 6

About Submit Test 6

Submitting Test Orders to Run-time Environments 7

Managing Changes to Deployed Cartridges 8

Managing Orders for Multiple Cartridge Versions 9

Modifying Cartridges After Upgrading OSM Versions 9

Studio Environment Editor 9

Studio Environment Editor Connection Tab 10

Studio Environment Editor SSL Tab 10

Studio Environment Editor Properties Tab 11

Studio Environment Editor Order and Service Management Test Submission URL Area 11

A Automation and Compensation Examples

Predefined Automation Plug-ins A-1

Message Example A-1

Automation Plug-in XQuery Examples A-4

Internal XQuery Sender A-4

External XQuery Automator A-10

External XQuery Sender A-12

Internal XQuery Automator A-13

Automation Plug-in XSLT Examples A-13

Internal XSLT Sender A-13

External XSLT Automator A-19

External XSLT Sender A-22

Internal XSLT Automator A-23

Automation Plug-in Examples for Events, Jeopardies, and Notifications A-23

Event Automators A-23

Jeopardy Automators A-24

Order Notification Automation Plug-ins A-26

Custom Java Automation Plug-ins A-27

Internal Custom Java Automator A-28

Internal Custom Java Sender A-29

External Custom Java Automator that Changes the OSM Task Status A-30

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ix of x

External Custom Java Automator that Updates Order Data A-32

Using OrderDataUpdate Elements to Pass Order Modification Data A-35

Examples of Sending Messages to External Systems A-37

Examples of Handling Responses from External Systems A-39

Compensation XQuery Expressions A-41

Task Re-Evaluation and Rollback XQuery Expressions A-41

In Progress Compensation Include XQuery Expressions A-42

In Progress Compensation Complete XQuery Expressions A-43

In Progress Compensation Grace Period XQuery Expressions A-44

Order Jeopardy Automation XQuery Plug-ins A-45

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page x of x

About This Content

This document contains information about the procedures and tasks that are necessary to
configure and deploy Oracle Communications Order and Service Management (OSM) process
entities and cartridges using Oracle Communications Service Catalog and Design - Design
Studio.

Audience

This guide is intended for business analysts, architects, development managers, developers,
and designers who are responsible for system integration or solution development involving
the Oracle Communications operational support systems applications.

Ideally, you should be knowledgeable about your company's business processes, the
resources you need to model, and any products or services your company offers.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Getting Started with Design Studio for OSM
Processes

When modeling orders, you can use Oracle Communications Service Catalog and Design -
Design Studio to define new order fulfillment processes, tasks, order types, and order policies
that control the order type life cycles. Design Studio enables you to test your Oracle
Communications Order and Service Management (OSM) configurations and resolve
configuration problems.

The OSM provisioning configurations that you create in Design Studio enable you to provision
orders across multiple service and network domains. Design Studio enables you to define, run,
and control service orders for any domain, including Broadband access (for example xDSL,
fixed wireless, WiMAX), IPTV, VoIP, Voice, IP-VPN, Mobile, and emerging services. You create
these configurations in Design Studio by defining and relating objects at different levels of
abstraction.

Note

If you upgrade to Order and Service Management 7.x from a prior version of OSM and
your cartridges were developed with OSM Administrator tool, Oracle recommends that
you migrate your cartridges into Design Studio. Use Design Studio as the tool to
design and deploy OSM 7.x cartridges. The recommended migration procedure,
common migration issues, and issue resolutions are documented in release 7.3.2
Design Studio Order and Service Management Cartridge Migration Guide, which is
available in the Oracle Help Center:

http://docs.oracle.com/en/industries/communications/design-studio/
index.html

See the following topics when getting started with Design Studio for OSM processes:

• About Order Modeling Users and Tasks

• Reviewing Design Studio Sample Cartridges

• Creating a Cartridge for Orders That Use Processes

About Order Modeling Users and Tasks
The following is a list of roles and the tasks each role typically performs in Design Studio for
OSM processes:

Business Analyst Tasks

Business analysts are responsible for describing the features and services associated with
marketing products and communicating this to the users responsible for building these
products. The business analyst may simply name and describe products and pass this product

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

http://docs.oracle.com/en/industries/communications/design-studio/index.html
http://docs.oracle.com/en/industries/communications/design-studio/index.html

description to a configuration modeler, or may perform basic configuration modeling tasks in
Design Studio. This involves the following tasks:

Task For More Information

Configure OSM cartridges "Working with OSM Cartridge Projects"

Model processes "Working with Processes"

"Working with Order Lifecycle Policies"

Model roles "Working with Roles"

Configuration Modeler Tasks

OSM modelers are responsible for creating, modeling, refining, building and deploying an OSM
cartridge. This involves the following tasks:

Task For More Information

Create OSM cartridges "Working with OSM Cartridge Projects"

Model processes "Working with Processes"

"Designing Subprocesses"

"Designing Workstream Processes"

Model roles "Working with Roles"

Model Tasks "Working with Manual Tasks"

"Working with Automated Tasks"

Model Orders "Working with Orders"

"Working with Order Lifecycle Policies"

Refine processes "About Task States and Statuses"

Build, deploy, and undeploy to
and from development
environments

"Packaging and Deploying OSM Cartridges"

Deployment Manager Tasks

Deployment managers are responsible for build management and are usually advanced users
of the version control system. Deployment managers should be familiar with the tools that
Eclipse provides to interface with the version control system and understand how to package
items from source control and build and deploy configurations to OSM environments. Activities
performed by deployment managers in Design Studio include:

Task For More Information

Build, deploy, and undeploy to
and from development
environments

"Packaging and Deploying OSM Cartridges"

Configure the development
environment

"Packaging and Deploying OSM Cartridges"

See the Eclipse documentation for more information about version control.

Cartridge Developer Tasks

Cartridge developers assist OSM configuration modelers in modeling and refining an OSM
cartridge. This involves the following tasks:

Chapter 1
About Order Modeling Users and Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

Task For More Information

Model the Data Dictionary "Modeling Data"

Model Tasks "Working with Manual Tasks"

"Working with Automated Tasks"

Model Orders "Working with Orders"

"Working with Order Lifecycle Policies"

Refine the process "About Task States and Statuses"

Reviewing Design Studio Sample Cartridges
Design Studio includes two OSM sample cartridges intended to provide examples of the type
of configuration that you can model in a Design Studio OSM cartridge project. You can use
these sample cartridges to familiarize yourself with OSM functionality, as a reference aid when
first learning Design Studio, and as a starting point when modeling OSM cartridges. Each
cartridge contains corresponding documentation to describe the cartridge content.

To open and review a sample cartridge:

1. Install the Design Studio Samples feature from your internal update site.

For information about installing features, see the Design Studio Installation Guide.

2. From the File menu, select New, and then select Example.

The New Example dialog box is displayed.

3. Expand the Design Studio Order and Service Management Provisioning Examples
directory.

4. Select a sample cartridge.

There are two OSM sample cartridges. Select one of the following:

• Provisioning Broadband and Order Change Demo

• Provisioning View Framework Demo

5. Click Next.

6. Select the example project to contain the sample cartridge.

Do one of the following:

• For the Provisioning Broadband and Order Change Demo, select bb_ocm_demo.

• Provisioning View Framework Demo, select view_framework_demo.

7. Click Finish.

The project is added to the Studio Projects view. You can expand the project directory to
explore the entities included in the sample cartridge.

8. Access the sample cartridge documentation.

Each cartridge is delivered with a corresponding file that contains documentation to
describe the cartridge functionality. To access the documentation:

a. From the Window menu, select Show View, and then select Package Explorer.

b. In the Package Explore view, expand the sample cartridge project directory.

Chapter 1
Reviewing Design Studio Sample Cartridges

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

For example, expand either the bb_ocm_demo or the view_framework_demo
directory.

c. Expand the doc directory.

d. Double-click the file to open the documentation.

Note

To run view_framework_demo in an OSM environment, you must define your Design
Studio language preference as English (United States) [en-us]. See "Defining
Language Preferences" for more information.

Creating a Cartridge for Orders That Use Processes
The procedure below outlines the basic steps to create an OSM cartridge configuration in
Design Studio.

After you create a cartridge project, you can model the process flow first or define your data
first (see "Modeling Data" for information about defining data). The steps required to create the
cartridge configuration are the same; only the starting points differ. For example, if you elect to
model your process first, you start by creating a new cartridge project, then model the process
in the Process editor. If you want to define data first, you can open the Data Schema editor to
define as much data as necessary.

The following procedure demonstrates how to create an OSM cartridge, modeling the process
first.

To create a cartridge for orders that use processes:

1. Create an OSM cartridge project.

The OSM cartridge project is your working area for the OSM configuration. When you
create a new cartridge project, Design Studio displays the new cartridge project in the
Studio Projects view of the Design perspective. In addition to the newly-generated Project
entity, the project contains entities for an order and for the Data Dictionary. See "Creating
New Cartridge Projects" for more information.

2. Model the process.

A process is a sequence of tasks that runs either consecutively or concurrently to fulfill an
order or part of an order. Using the Process editor as a white board, you can create,
sequence, and link the tasks that are required to implement the process flow. See
"Working with Processes" for more information.

3. Model the roles.

You can permit specific roles access to a standard set of functions in the Task web client.
See "Working with Roles" for more information.

4. Model tasks and task data.

A task is one step in a process. The data that you model for the task includes all of the
data that the task requires to complete.

You can define different types of tasks (manual or automation), create the task data, assign
task states and statuses, add behaviors, and define other parameters as needed. You can
associate the task with an existing OSM order or model a new order (and order template)
for the task. See "Working with Tasks" for more information.

Chapter 1
Creating a Cartridge for Orders That Use Processes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

5. Model the order.

You model the data for the order and add behaviors that affect the manner in which the
data appears in the Task web client or Order Management web client. You can associate a
default process, a creation task, and a life-cycle policy with the order, associate rules with
the order, and permit specific roles access to the order. See "Working with Orders" for
more information.

6. Refine the process.

After reviewing your configuration, you may need to make changes, such as removing
tasks from the process flow, renaming tasks, changing the data required at a task,
updating the Data Dictionary, or adding additional states and statuses.

7. Package the cartridge.

Packaging enables you to control which entities, libraries, and resources will be included in
the cartridge when you deploy the cartridge to the OSM run-time environment. See
"Packaging and Deploying OSM Cartridges" for more information.

8. Deploy and undeploy to and from development environments.

You create an Environment project to contain the information required to connect to your
run-time environment. You can deploy all of the data in your cartridge, or when possible,
deploy only the changes to your cartridge project (using the Optimize Deploy feature). See
"Packaging and Deploying OSM Cartridges" and "Deploying Cartridge Projects with
Optimize Deploy" for more information.

Chapter 1
Creating a Cartridge for Orders That Use Processes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

2
Defining OSM Preferences

When modeling Oracle Communications Order and Service Management (OSM) cartridges in
Design Studio, see the following topics:

• Defining Language Preferences

• Defining Diagrammer Preferences

• Defining Order and Service Management General Preferences

• Defining Orchestration Preferences

• Defining Web Browser Preferences

Defining Language Preferences
Design Studio for OSM supports multiple languages for fields in the Task web client or the
Order Management web client (through the use of the Information behavior). Use the language
preference settings to define the languages that you intend to use in your OSM cartridges, and
the language with which you prefer to work. You define language preferences in the Oracle
Design Studio Preferences dialog box.

To define OSM language preferences:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. Select Oracle Design Studio.

3. Click New.

The Add Language dialog box is displayed.

4. Select a language from the available options.

5. Click OK.

Design Studio adds the language to the Languages group.

6. (Optional) Define the language display priority.

When multiple languages appear in the Languages group, use the Up and Down buttons
to reposition the language display priority. The language display priority controls the order
in which the languages appear in Design Studio language drop-down lists.

7. (Optional) Click Remove to delete a language from the Languages group.

8. In Preferred Language, select the language from your language list in which you prefer to
work.

9. Click OK.

Design Studio saves your language preferences and closes the Preferences dialog box.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 7

Note

If you deploy or import into OSM cartridges that support languages that you have not
included in your language group, the system displays a warning message indicating
that the language is not currently supported. To include that language in your language
list, you can return to the Language Preferences page and add it. Also note that you
must specify the English [en] language setting to use the OSM sample cartridges.

Related Topics

Defining Information Behavior Properties

Defining Information Behaviors in Multiple Languages

Defining OSM Preferences

Defining Diagrammer Preferences
To define OSM diagrammer preferences, from the Window menu, select Preferences, then
expand Oracle Design Studio in the Preferences navigation tree, and then select Order and
Service Management Diagrammer Preferences.

Use the diagram preferences to define aspects of a diagram layout. Offset preferences control
the spacing between elements in the diagram. Segment lengths control aspects of the link
shape. Layout preferences provide control over incremental layout logic. The default settings
will work well in most instances.

Select Incremental Layout if you want the system to consider the current coordinates of the
diagram nodes and links when you click the Layout All Nodes or Layout Selected Nodes
buttons in the Process editor. When enabled, Incremental Layout retains the relative order of
nodes and links and attempts to create a new layout with similar positions.

The system considers the following settings only if you enable the Incremental Layout option:

Field Use

Number of link
crossing sweeps

Define the number of sweeps you want the system to use to remove
instances of link crossing. The system uses a complex algorithm to resolve
link crossings; while the number of sweeps influences the number of resolved
crossings, there is not a direct relationship between the number of sweeps
and the number of resolved link crossings. In some instances, it may be
useful to decrease the number of sweeps to resolve more link crossings.

Link crossing
reduction

Select to reduce the number of crossing links during incremental layout.
When this field is enabled, the system preserves the level structure and
relative order of the nodes but reorders them within the level structure to
avoid link crossings.

Long link crossing
reduction

Select to reduce the number of long crossing links during incremental layout.
When this field is enabled, the system preserves the level structure and the
relative order of the nodes but reroutes link bends to avoid link crossings.

Chapter 2
Defining Diagrammer Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 7

Field Use

Allow node level
repositioning

Select this option if you want the system to consider the original node
positions during incremental layout. A primary objective of incremental layout
is to achieve a balanced diagram. To achieve a balanced diagram, the
system may place nodes far from their original positions. You can enable this
field to ensure that the system places nodes as close to the original position
as possible. This decision, however, can result in an imbalanced layout.

Note: The system does not consider this option if you have enabled either
the Link crossing reduction or Long Link crossing reduction fields. The
Allow node level repositioning and crossing reduction fields are mutually
exclusive.

Level positioning
range

Define the acceptable range (in pixels) from the original node position that
the system can consider when repositioning nodes during incremental layout.

Note: The system considers this option only when you enable the Allow
node level repositioning field.

Level positioning
tendency

Define the percentage of the level positioning range to which the system
should adhere when moving nodes from their original position. Define higher
percentages to ensure that the nodes remain closer to their original positions,
and lower percentages to enable the system more leverage for achieving a
balanced diagram. A position tendency of 0 effectively disables this option.

Note: The system considers this option only when you enable the Level
positioning range field.

Related Topics

Defining Language Preferences

Defining Order and Service Management General Preferences

Defining OSM Preferences

Defining Order and Service Management General Preferences
To define OSM general preferences, from the Window menu, select Preferences, then
expand Oracle Design Studio in the Preferences navigation tree, and then select Order and
Service Management Preferences.

Defining Build-and-Deploy Modes for Automation Plug-ins

This field is only relevant for cartridges targeted to OSM server versions between 7.0.3 and
7.2.4.x. Prior to 7.0.3, only Legacy mode is used. From 7.3 onward, only Optimized mode is
used.

In the Automation plug-in Build and Deploy Mode field, specify whether you want OSM to
process all automation plug-ins in a common (oms.ear) EAR file (by selecting Optimized
(Default)), process each automation plug-in in its own EAR file (by selecting Legacy), or build
the automation components required for OSM to process automation plug-ins in either
Optimized or Legacy mode according to the automation plug-in dispatch mode defined on the
OSM server (by selecting Both (Allow server preference setting to decide)). For more
information on automation plug-in build-and-deploy modes, see "Defining Build-and-Deploy
Modes for Automation Plug-ins".

Chapter 2
Defining Order and Service Management General Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 7

Setting the Problem Marker Severity for Automation Task Name to Plug-in EJB
Discrepancies

In the Automation Plugin EJB Name Compliance Level list, specify whether you want
Design Studio to display an Error or Warning problem marker when there is a discrepancy
between the automation task entity name and an associated external plug-in EJB name. If
such a discrepancy occurs, you can use the Quick Fix option from either the warning or error
problem marker to revert the plug-in EJB name to match the automated task name.

Defining Deploy Properties

When installing Design Studio, you can use the install.bat script to install the Design Studio
features and configure the environment automatically. If you use this script, it will automatically
install the necessary libraries and configure the fields below. See Design Studio Installation
Guide for more information about installing Design Studio and using the script.

If you install Design Studio without using the script, or if you want to change any of the values
after the install, see the information in the table below.

Field Use

WebLogic Home Specify the installation directory for WebLogic (for example,
C:\Oracle\Middleware\wlserver).

If you are using Design Studio on a system that does not already have the
correct version of Oracle Middleware on it, consult the software requirements
in OSM installation Guide for information about the correct version of the
application server to install, and then consult Fusion Middleware Installation
Guide for Oracle WebLogic Server for information on installing the core
WebLogic software. Do not install a WebLogic domain for Design Studio,
which only needs the core software.

Java SDK Home Specify the installation directory for the Java JDK (for example, C:\Program
Files\jdk1.8.0_271). Select the JDK in the WebLogic Server installation.

You must specify the JDK location that is compatible with the OSM server
version where you deploy the cartridges. For example, OSM 7.5.0 supports
Java 1.8, so JDK 1.8 location must be specified for OSM 7.5.0.

OSM SDK Home Specify the installation directory for the OSM SDK (for example,
C:\OSM\SDK).

If you are using Design Studio on a system that does not already have the
correct version of the OSM SDK on it, run the OSM installer on your
machine, selecting Custom Installation and then selecting only the SDK and
(if desired) SDK Samples options when asked to select components to
install. See OSM Installation Guide for more information about running the
installer.

If the OpenAPISDK folder is present in the OSM SDK, the OpenAPI SDK
gets installed and you will be prompted to restart Design Studio for the
changes to take effect. The OpenAPI SDK is automatically updated
whenever the OSM SDK path is changed.

Note: OpenAPI SDK is needed to enable Design Studio to perform feature
configuration for OSM 7.5.0 or newer.

You should specify the location of a version of the SDK that is compatible
with the value for Target Version that you are selecting in your projects. See
"Project Editor Properties Tab" for more information about the Target
Version field.

Chapter 2
Defining Order and Service Management General Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 7

Defining Orphaned Task Reference Preferences

In the Delete Orphaned Task References with Activity field, specify whether you want to
delete related task entities when removing tasks from the Process editor. When you enable this
option and delete tasks in the Process editor, the system checks whether deleted tasks are
referenced elsewhere in the workspace. If no task references exist in the workspace, the
system displays a list from which you can select related entities for removal.

Defining Order Template Inheritance Preferences

When you enable order template inheritance preferences, when an order is extended, the
significance and keys defined on the order are inherited; that is, significance and keys are
included in the information from the base order. In addition to keys and significance defined on
the base order being inherited on the extended order, the significance of an inherited data
element within the order template is also inherited from the OSM entity that contributes to it. If
these preferences are not enabled, the significance of an inherited data element within the
order template is inherited from the data schema rather than from the OSM entity that
contributes to it.

Offering inheritance within the order template for inheriting significance and keys enables a
level of inheritance that is more complete and increases development convenience. As such,
enabling these preferences is recommended for new cartridge development. If you are
upgrading existing cartridges, refer to the discussion on order template inheritance and
upgrade impacts in OSM Installation Guide before enabling these preferences.

To define order template inheritance preferences:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, expand Oracle Design Studio and then select Order
and Service Management Preferences.

3. In the Order Template Inheritance area, define your order template inheritance
preferences.

When an inherited data element in the order template has its significance set as Inherited,
enabling and disabling the preference for significance inheritance from order contributors
works as follows:

• Disabled: Significance is inherited from the data schema.

• Enabled: Significance is inherited from the order template of the data contributor(s).
Note that if the significance of the data contributor is set as Inherited, it inherits its
significance from the data schema.

4. Click Apply and then click OK.

Design Studio saves your preferences.

Related Topics

Defining Language Preferences

Defining Diagrammer Preferences

Defining OSM Preferences

Chapter 2
Defining Order and Service Management General Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 7

Defining Orchestration Preferences
To define OSM orchestration preferences, from the Window menu, select Preferences, then
expand Oracle Design Studio in the Preferences navigation tree, then select Order and
Service Management Preferences, and then select Orchestration Preferences.

Use orchestration preferences to set options related to orchestration.

Field Use

Product Specification Mapping
Folder

Specify the folder in which Design Studio is to store product-
specification-to-fulfillment-pattern mappings.

When you import common model products or OSM orchestration
product specifications, Design Studio creates (in the resources
folder of the cartridge project) a productSpecMapping folder that
contains all product-specification-to-fulfillment-pattern mappings.
You can reference this folder location in XQuery expressions when
you configure the order item properties for the orchestration
fulfillment pattern. If you want to maintain the
productSpecMapping folder at an external location (and reference
the folder using a Data Instance), specify the location of the folder
here. See "About XQuery Expressions for Mapping Product
Specifications and Fulfillment Patterns" for more information.

Prompt To Create Orchestration
Data Dictionary

Specify whether you want to be prompted to create the
OracleComms_OSM_CommonDataDictionary model project in
your workspace; this model project contains a predefined data
schema which is recommended for modeling data structures used
by orchestration. If you select the check box, Design Studio
prompts you to create the model project in your workspace when
you open or create an orchestration entity.

See "About Autogeneration of Order Component Control Data" for
more information about this model project.

Defining Web Browser Preferences
When you submit test orders from Design Studio to a run-time environment, Design Studio
opens a browser window in the Design Studio editor area and displays the Task web client log-
in window. For the Task web client to work correctly from inside Design Studio, you must
configure Design Studio to use a supported external browser.

To specify an external browser:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, select Web Browser.

3. In the Web Browser area, select Use external web browser.

4. In External web browser:, select a supported external browser, such as Internet Explorer.

5. Click OK.

Design Studio saves your preferences.

Related Topics

Submitting Test Orders to Run-time Environments

Chapter 2
Defining Orchestration Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 7

Chapter 2
Defining Web Browser Preferences

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 7

3
Working with OSM Cartridge Projects

An Oracle Communications Order and Service Management (OSM) cartridge defines all of the
entities and system interfaces required to fulfill an order in the OSM run-time environment.

The OSM cartridge is your working area for the OSM configuration. You store all simple data
elements and structured data elements in data schemas. The combined data schemas are
referred to as the Data Dictionary. You use subsets of data from the Data Dictionary to create
order data templates. You use data from the order template to model specific tasks. You
associate tasks with a process required to fulfill incoming customer orders. You can model
different types of tasks, such as automated tasks and manual tasks, and define rules for tasks
at the order level. You package all configured elements and components required for
deployment.

When working with OSM cartridge projects, see the following topics:

• Creating New Cartridge Projects

• Closing Projects

• Opening Projects

• Managing Project Dependencies

• Working with Existing OSM Models

• Working with XML Catalogs

• Order and Service Management Project Editor

Working with Existing OSM Models
If you have existing OSM models, you can import the model into Design Studio as a single file
or as multiple files. When importing models, Design Studio generates a cartridge project and
maps all of the order's data into the equivalent Design Studio directory structure.

When working with existing OSM models, see the following topics:

• About Importing Design Studio Cartridges

• About Importing Cartridges Created in OSM Administrator

• About Import Summary Reports

• Importing Existing OSM Models

About Importing Design Studio Cartridges
You can import into Design Studio existing OSM models. When importing OSM models, Design
Studio generates a new cartridge project and maps the metadata for each order into an
equivalent Design Studio directory structure.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 13

Note

Cartridge dependencies must exist in the workspace before importing a cartridge
project. For example, when importing an OSM project that has a dependency on a
Model project, you must import the Model project first to avoid problem markers during
the project build. Also, when importing cartridges that have specific languages defined
in the OSM model, you must add those languages to your language preferences. See
"Defining Language Preferences" for more information.

Creating Design Studio Projects

When you import XML models into a workspace, Design Studio creates the following projects
to contain the data:

• A common data model project.

The default name is OracleComms_OSM_CommonDataDictionary. This project
contains the data schemas associated with the imported cartridges, as well as behaviors
and data providers defined at the Data Dictionary level.

• An OSM project for the cartridge.

These projects contain orders, processes, tasks, order life cycle policies, custom
automation plug-ins, and data providers.

For example, consider that you are importing an XML model that contains a cartridge called
DSLService. Upon import, Design Studio creates the following projects:

• A Data Dictionary project.

• A cartridge project for DSLService.

Note

Design Studio does not import entities that are defined in the import model but not
associated with any orders. For example, if the import model contains a task that is not
used in any processes or referenced by any of the orders, Design Studio will not
import the task. Additionally, Design Studio does not import entities that are not
supported (such as test categories or rules), even if they are associated with orders.

Design Studio logs all entities it does not import in the Import Summary report.

Importing Data Types

In Design Studio, you can define numeric data elements as type int, double, float, or decimal.
OSM does not directly support these data types. When you deploy a cartridge containing these
data types, OSM converts them to numeric. Conversely, when you import numeric types into
Design Studio, they are converted to decimal.

Note

Importing cartridges originally created in Design Studio, but exported from OSM using
the XML Import/Export application is not supported.

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 13

Improving Design Studio Performance

To improve Design Studio performance during import and during modeling, you can separate
large cartridges into multiple projects that exist in different workspaces. During the first import,
you create the common Data Dictionary that all of the smaller projects will reference and select
a subset of orders to add to the first project. Create a new workspace for subsequent imports
and continue to add subsets of orders. When you are finished, Design Studio will include
multiple projects in multiple workspaces, each sharing the same Data Dictionary, each with
different subsets of orders from the original cartridge. For example, you might include all VoIP
orders in a single workspace, all Internet orders in another, and so forth.

About Importing Cartridges Created in OSM Administrator
Design Studio replaces much of the functionality previously included in the old OSM
Administrator application. OSM administrator functionality, for example managing workgroups,
schedules, and calendars, is provided in the Administration area of the OSM Order
Management web client. For information about migrating cartridges that were created in the
OSM Administrator into Design Studio, see Design Studio Order and Service Management
Cartridge Migration Guide.

The following table describes how entities defined in the Administrator and imported into
Design Studio are mapped into the Design Studio environment:

Entity Considerations

Cartridge Name and Version At import, Design Studio preserves the namespace and
version, using namespace as the project name, and version
as the version number of the cartridge.

You cannot import into Design Studio a cartridge with a name
identical to an existing Design Studio cartridge (even if it is a
different version), per workspace.

Data Dictionary and Master Order
Template

Design Studio does not require that you build a master order
template or explicitly model order data. As you model task
data, the system automatically builds the order template.

Design Studio maps all data elements to a Data Dictionary
that you specify in the Import wizard, and maps order
template elements to the Order editor Order Template tab.

Order Source Design Studio imports the order source. It is visible in the
Order editor Details tab.

Workgroups Design Studio maps workgroups to roles. Permissions are
visible in the Role editor and also in the Order editor and Task
editor Permissions tabs.

Tasks Manual and automated tasks appear as separate task entities
in the project directory.

If you are importing a cartridge that contains a task used by
multiple order types and sources (using different views in
OSM Administrator), Design Studio creates duplicate tasks,
one for each order, and renames each task with the original
task name concatenated with the order type and source.
Design Studio updates all references to the task. If the task
name is referenced in an automation map, Design Studio
creates duplicate entries.

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 13

Entity Considerations

Views In Design Studio, views are not independent entities, but are
implicit in the configuration of data nodes in tasks and order
templates. Upon import, the data associated with an order or
task appear in the Order and Task editors, respectively.

Processes If you associate a process with multiple order type and
sources using rules, Design Studio duplicates the process for
each associated order type and source. On import, the type/
source-to-process mappings are replaced by an equivalent
top-level process and subprocess.

If you are importing a cartridge that contains a process used
by multiple order types and sources (using different views in
OSM Administrator), Design Studio creates duplicate
processes, one for each order, and renames each process
with the original process name concatenated with the order
type and source. Design Studio updates all references to the
process, including any references in the automation map.

Rules, event delays, timer delays, subprocesses, and process
exceptions appear in the Process editor, not as separate
entities.

Behaviors Upon import, Design Studio saves behaviors to the following
editors:

• Behaviors defined at the task level appear in the
Behaviors tab of the Task editor.

• Behaviors defined at the order level appear in the
Behaviors tab of the Order editor.

• Behaviors defined at the data element level appear in the
Data Dictionary's OSM tab for the element definition.

Rules In Design Studio, rules are defined within a specific order.
Upon import, Design Studio determines which rules are used
by an order and adds those rules to the Order editor Rules
tab.

If you are importing text-based rules (SQL rules), Design
Studio imports the text-based rules as separate text files,
using name_of_the_rule.sql as the rule name. Design Studio
saves the rule to the resources folder and displays the rule
with the other rules in the Order editor Rules tab. To modify
text-based rules, click the name of the file to access the rule
in a SQL editor.

Rule expressions defined with order type and source
operands are not supported in Design Studio. On import,
these operands are mapped to an expression with the same
data element on each side. If the order-based operand
matches the imported order, the generated expression
evaluates to true. For example:

/VPN_Name = /VPN_Name

Otherwise, it evaluates to false:

/VPN_Name_Count ! /VPN_Name_Count

Notifications Design Studio imports polled-type notifications as jeopardy
notifications, and all others as event notifications.

Design Studio does not support or import system notifications
(notifications that are not associated with any order, task or
activity) or mixed transition notification types (for example,
notifications are both transitional and polled).

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 13

Entity Considerations

Data Providers Design Studio imports inline, external, and XQuery instances
that are defined as part of an Information rule as a Data
Provider entity type. In Design Studio, you can use a Data
Instance behavior in conjunction with a Data Provider to
retrieve information from an external system.

Process Exceptions Design Studio maps process exceptions to the Process editor
under the following conditions:

• A restriction defined in the OSM Administrator must be
valid in the imported order, and the type and source of
the imported order must match the restriction; otherwise,
it will not be imported.

• The process exception status used in the OSM
Administrator must be available in the Design Studio
process.

• Activities defined for the process exception must be
available in the Design Studio process.

Automation Maps Design Studio generates automation maps automatically,
based on the configurations of automated tasks. If you are
importing a cartridge with custom automation plug-ins, you
can specify which automation maps to include from within the
Import wizard.

Responsibility and Category Design Studio does not support or import Responsibility and
Category entities created in the OSM Administrator.

Entity Names If Design Studio detects entity name conflicts, it automatically
renames the entity. Review the Import Summary report to
acquire a list of all entity name changes made during import.
You may be required to edit references to the affected entity
names in Java code or XSLT files.

Note

Cartridges created in the OSM Administrator are not necessarily valid upon import to
Design Studio. Design Studio performs logical validations to ensure that errors are
detected before deploying a cartridge to an OSM run-time environment. For example,
if you import a cartridge that contains a rule to check values of a specific data node,
Design Studio ensures that the data node exists in the corresponding order data. You
must resolve all cartridge errors before deploying to a run-time environment.

Related Topics

Working with Existing OSM Models

About Importing Design Studio Cartridges

Working with OSM Cartridge Projects

About Import Summary Reports
When you import an existing project into Design Studio, the system generates a summary
report that describes the errors generated and the actions Design Studio took to resolve the
error. Design Studio creates an importReport directory in the project. Then, Design Studio

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 13

uses the name of the cartridge to generate a default file name for the Import Summary report
and saves the report to the importReport directory.

The Import Summary report lists the entities in the model that were not imported, (such as
entities that are not associated with orders) and entities that are not supported in Design
Studio (for example, test category or rule entities, even if they are associated with orders).

Also, if you import a model that includes a task that is used in multiple orders, Design Studio
renames the task and notes in the Import Summary report the original name; the new name;
and the associated order type, source, and view name.

Note

The Import Summary report lists all entity name changes made during import. You
may be required to edit references to the affected entity names in Java code or XSLT
files.

Related Topics

Working with Existing OSM Models

About Importing Design Studio Cartridges

Working with OSM Cartridge Projects

Importing Existing OSM Models
You can import a single order type into a cartridge project, or multiple order types into a
cartridge project. After importing multiple order types into a cartridge project, you can deploy all
or a specified number of the order types to an OSM run-time environment within the context of
a single project.

Note

Cartridge dependencies must exist in the workspace before importing a cartridge
project. For example, when importing an OSM project that has a dependency on a
Data Dictionary project, you must import the Data Dictionary project first to avoid
problem markers during the project build.

For example, if you have defined a project with metadata to support the DSL services Add,
Delete, and Modify for orders that come from two different sources (Siebel and Oracle
Communications Billing and Revenue Management, for example), you can deploy the entire
configuration to a run-time environment with a single deployment.

To import an OSM model into Design Studio:

1. From the Studio menu, select Show Design Perspective.

2. Right-click in the Solution view or Studio Projects view and select Import, then select
Import Order and Service Management Model.

The Import Order and Service Management wizard is displayed.

3. Click Browse.

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 13

An import dialog box opens.

4. Select the file to import.

5. Click OK.

Design Studio returns you to the Import Order and Service Management dialog box.

6. Click Next.

7. Select the cartridge to import from the Source Cartridge list.

If multiple cartridges exist in the XML model, you must select which cartridge to import.

8. In the Target Name field, edit the default project name.

The project name must be unique among project entity types. Two projects cannot share
the same name, even if they are different versions.

9. In the Target Data Dictionary field, select the dictionary to which the data elements will be
added.

You can add the new data elements to a Data Dictionary that is common to all cartridges,
or to a data dictionary defined for a specific cartridge. To create a new dictionary, enter the
name of a new data dictionary in the Target Data Dictionary.

10. Click Next.

11. Select the orders to import.

Select orders in the Available column and use the arrow buttons to move them to the
Selected column.

12. Click Next.

13. Add one or multiple automation maps to the cartridge.

Click Add to navigate to and select one or multiple automation maps. Click Remove to
delete an automation map from the table.

When you configure automation plug-ins in Design Studio, the system automatically
generates an automation map. However, if you are importing cartridges that contain
custom automation plug-ins, you can include in the import the automation maps that define
the configuration for the custom plug-ins. For each plug-in, the automation map defines
whether the plug-in is associated with a task, notification, or data change event, the class
name of the plug-in, and whether the plug-in receives information from OSM or from an
external system.

Design Studio imports external receivers as a list of XML files into the customAutomation
folder, each containing one external receiver XML fragment.

See "Working with Automation Plug-Ins" for more information.

14. Click Finish.

Design Studio imports the cartridge and adds the new project to the Studio Projects view.

Note

If Design Studio detects entity name conflicts on import, it automatically renames the
entity in the imported cartridge. The Import Summary report lists all entity name
changes made during import. You may be required to edit references to the affected
entity names in Java code or XSLT files. See "About Import Summary Reports" for
more information.

Chapter 3
Working with Existing OSM Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 13

Related Topics

About Importing Design Studio Cartridges

About Importing Cartridges Created in OSM Administrator

Creating New Cartridge Projects

Order and Service Management Project Editor

Working with the Orchestration Model Project
The OracleComms_OSM_CommonDataDictionary model project enables auto-generation of
orchestration control data. Use the data elements of this model project to model control data
for order items. See "About Modeling Order Component Control Data" for more information.

Creating the OracleComms_OSM_CommonDataDictionary Model Project
When you open or create an orchestration entity, Design Studio prompts you to create the data
schema of the OracleComms_OSM_CommonDataDictionary model project in your
workspace.

If you choose not to create the data schema in your workspace, dismiss the prompt and select
the Do not show this prompt in the future check box. When you are ready to create the data
schema in your workspace at a later time, see "Defining OSM Preferences" for information on
re-enabling the prompt.

Working with XML Catalogs
In Design Studio, you model behaviors such as business rules that satisfy the business
requirements of order processing. The business rules are often contained in resource files
such as XQuery files, XSLT files, custom JAR files, third-party JAR files, and XML files. There
can be a large quantity of resources, and some of those resources need to reference each
other. Resources in OSM can be referenced through URI locators in your data model.

Because a URI must be a physical location on a server, and because the location of the
resource may change depending on the run-time system to which you deploy your cartridges,
using XML Catalogs in OSM is very useful. XML Catalogs provide a redirection from a URI to
another URI. At run time, when OSM processes a URI you specify as part of the OSM data
model, OSM first attempts to resolve the URI against the XML Catalogs you specified. Based
on the mapping defined in the XML Catalogs, OSM updates the URI to adapt to the
environment by resolving the location of the URI in your data model with the new URI you
mapped for it in the XML Catalogs.

When you specify URIs for resources that will be redirected to other URIs at run time by way of
XML Catalogs, one strategy is to treat the URIs defined in your cartridge design as logical
URIs that are replaceable tokens. Using this strategy, it is useful to have a well-defined naming
convention for these URIs; for example, the URI schema would include your organization
name, project name, type of cartridge, and type of data entity. For more information on
packaging resources when using XML Catalogs, see OSM Developer's Guide.

You can use XML Catalogs for any of the URIs you specify in the Design Studio editors. You
can specify XML Catalogs in your OSM cartridge projects as well as on the OSM server for
different purposes. For detailed information on how to use XML Catalogs in OSM, see the
discussion on XML Catalogs in OSM Developer's Guide.

Chapter 3
Working with the Orchestration Model Project

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 13

Related Topics

Enabling and Disabling XML Catalogs for a Cartridge Project

Specifying XML Catalogs for a Cartridge Project

Enabling and Disabling XML Catalogs for a Cartridge Project
If your target run-time software version is OSM 7.0.3 or later (Target Version field is set to
7.0.3 or higher), XML Catalog support is enabled by default for all cartridge projects and it is
required to be enabled. Do not disable XML Catalog support.

If your target run-time software version is OSM 7.0.2 or earlier (Target Version field is set to
7.0.1 or earlier), enable or disable XML Catalog support for a cartridge in your workspace as
follows:

1. From the Studio menu, select Show Design Perspective.

2. In the Studio Projects view, double-click the cartridge project entity for which you want to
enable or disable XML Catalog support.

The cartridge project opens in the Project editor.

3. Click the Cartridge Management Variables tab.

4. In the Name column, click the XML_CATALOG_SUPPORT variable.

5. In the Default Value column, do one of the following:

• To enable the XML Catalog for this cartridge, enter enable.

• To disable the XML Catalog for this cartridge, enter disable.

6. Click Save.

Note

If your Target Version field is set to 7.0.1 or earlier, you can also enable XML Catalog
support for a cartridge by adding an empty file entitled enableXMLCatalogSupport in
the root directory that contains the cartridge project
cartridgeProject\xmlCatalogs\enableXMLCatalogSupport. If this file is present, and
you have defined the XML_CATALOG_SUPPORT cartridge management variable,
OSM uses the value you configured for the cartridge management variable to disable
XML Catalog support.

For instructions on specifying XML Catalogs for a cartridge, see "Specifying XML Catalogs for
a Cartridge Project".

For more information on how to use the XML Catalog in OSM, including how to specify XML
Catalogs on the OSM server and how to define catalog entries, see OSM Developer's Guide.

Related Topics

Working with XML Catalogs

Specifying XML Catalogs for a Cartridge Project

Chapter 3
Working with XML Catalogs

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 13

Specifying XML Catalogs for a Cartridge Project
To specify XML Catalogs for a cartridge project:

Caution

XML Catalogs are system-wide entities. An XML Catalog specified in one cartridge
project is used when processing requests for orders on other cartridges. Ensure
URI/URL naming conventions are established across cartridges so that OSM resolves
URIs as you require for each cartridge.

1. In the Package Explorer view in Design Studio, navigate to the
cartridgeProject\xmlCatalogs\core\ directory.

2. Copy the XML Catalog template file
cartridgeProject\xmlCatalogs\core\xmlCatalogCoreTemplate.xml into the same
directory.

Note

You can have multiple XML Catalog files within the xmlCatalogs\core directory if
you wish to organize different sets of catalog entries by file.

3. When prompted, rename the file to any filename you want and use the suffix .xml (for
example, catalog.xml).

Note

You must use the file extension .xml. OSM automatically searches for files ending
in .xml within the xmlCatalogs\core directory and loads any such files as XML
Catalogs.

4. Open the file and enter the XML Catalog entries you require.

You can use any standard XML Catalog entry, but the rewriteURI entry is the most
commonly used for OSM. For information on how OSM uses the rewriteURI entry, see the
discussion on rewriteURI entries in OSM Developer's Guide.

Caution

It is important to ensure that resources are always uniquely identifiable to a single
XML Catalog entry to guarantee that the correct resource is located. For
information on how to avoid defining mappings that can be satisfied by more than
one entry, see the discussion on defining rewriteURI entries in OSM Developer's
Guide.

5. Save the file.

Chapter 3
Working with XML Catalogs

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 13

Related Topics

Working with XML Catalogs

Enabling and Disabling XML Catalogs for a Cartridge Project

Order and Service Management Project Editor
Use the Order and Service Management Project editor to configure cartridge projects. As your
required data becomes available, you can configure specifications for packaging and
deploying.

See OSM Developer's Guide for information about the Java perspective, including information
about the Package Explorer view, the resources folder, and the src folder.

To access the Project editor, click any OSM Project entity in the Studio Projects view to display
the Project editor in your workspace.

When you create a cartridge, you collect the OSM XML model, automation plug-ins, task
assignment behaviors, and resource files into a single archive file and deploy the file to the
OSM run-time environment.

When configuring cartridge projects, see the following topics:

• Project Editor Properties Tab

• Project Editor Copyright Tab

• Project Editor Dependency Tab

• Project Editor Tag Tab

• Project Editor Packaging Tab

• Project Editor Locations Tab

• Project Editor Model Variables Tab

• Project Editor Cartridge Management Variables Tab

• Project Editor Manifest Tab

Project Editor Locations Tab
Use the Project editor Locations tab to view the location and folder names of your Java
libraries and resources folders.

Project Editor Manifest Tab
Use the Project editor Manifest tab to manage entity-level dependencies in a cartridge.

Note

Design Studio populates the entity list based on project-level dependencies defined in
the Dependency tab. If you have not defined any project dependencies, the entity list
will be empty. See "Project Editor Dependency Tab" for more information.

Chapter 3
Order and Service Management Project Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 13

The cartridge manifest declares two types of entities:

• Exported entities are available, or visible, to other cartridges. By default, all entities defined
in the cartridge are made public for other cartridges to use. You can remove entities that
you do not want to make public.

• Referenced entities are entities that are provided by other cartridges. By default, all
referenced entities in other cartridges are read-only.

The manifest is used by the deploy and undeploy processes to resolve all required references.
If these dependencies are not resolved, the cartridge cannot be deployed or undeployed.

Exported Entities

Field Use

Entity Type Displays a list of all possible entity types for the cartridge.
Select an entity type to display the entities in the cartridge.

Note: Exported entity types are predefined and cannot be
removed or opened.

Entity List Displays the entities for the selected entity type. If the cartridge
is sealed, the entity list is read-only.

To exclude entities from the list, deselect the Include all from
project check box, then click Select, and then from the
selection list select only those entities that you want to include
in the solution. For example, you may not want to make a
particular manual task available to other cartridges and would
therefore exclude it.

After the list is populated, you can click Remove to remove
entities or Open to open the corresponding editor.

Note: Excluding an entity in the Manifest tab removes it from
the validation process only; packaging is not impacted. If the
entity is referenced in the run-time environment, it is available.

Include all from project By default, the check box is selected. The entity list is
automatically populated with every entity defined in the
cartridge.

To customize the entity list, deselect the check box, and then
click Select to select one or more entities from the selection
list.

Referenced Entities

Field Use

Entity Type Displays a list of all entity types that are referenced by entities
in this cartridge. Select an entity type to display the referenced
entities.

Note: Referenced entity types are predefined and cannot be
removed or opened.

Entity List Displays the referenced entities for the selected entity type.
The list displays in read-only mode.

Right-click an entity type and select Open to open the
corresponding editor.

Related Topics

Order and Service Management Project Editor

Chapter 3
Order and Service Management Project Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 13

Chapter 3
Order and Service Management Project Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 13

4
Modeling Data in OSM

Oracle Communications Order and Service Management (OSM) is a model-driven software
system. The data you model drives the behavior of your overall OSM solution.

You model data for OSM entities, such as tasks and orders, using simple and structured data
elements from the Design Studio Data Dictionary.

When modeling data for OSM entities, see the following topics:

• About Modeling Data in OSM Cartridge Projects

• About Modeling Control Data

• About Contributing Task Data to a Cartridge Project

• About OSM Data in Model Projects

• About Modeling Data in the Order Template

• About the Order Template Context Menu

• About the Task Editor Task Data Context Menu

• Data Schema Editor OSM Tab

• Using Masks

• Defining Behaviors at the Data Schema Level

See "Modeling Data" for general information about modeling data in Design Studio.

About Modeling Data in OSM Cartridge Projects
Modeling data in OSM cartridge projects is the process of defining the order data of your
solution. Order data is data on the incoming sales order, control data used for orchestration,
and any other data used in the order.

You model data in two primary areas:

• Within the data schemas in your workspace

You define data element information in the data schemas of model projects, OSM cartridge
projects, and other Design Studio application feature cartridge projects; for example, in the
data schema of a Design Studio Activation cartridge project.

• Within OSM entities

You model the data elements represented by orders, tasks, products, order components,
and order item specifications in the OSM editors associated with these OSM entities (by
adding data elements from the data schemas).

When you model data in an OSM cartridge project, you first define data element information
within the data schemas of the projects in your workspace and then use that data element
information to model data within OSM entities.

OSM entities can use any data element defined in any data schema in the workspace,
including data schemas for projects defined outside of OSM. For example, OSM entities can
use an atomic action defined in the data schema of a Design Studio Activation cartridge

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

project. The data elements OSM can use are visible in the Data Element view, which displays
data schemas and entity types. You can drag data elements from the Data Element view to
OSM entities.

Data is modeled within OSM entities as follows:

• Orders

You add data elements from the data schema of projects onto the Order editor Order
Template tab. OSM uses the data you model here to drive the fulfillment, provisioning, and
system interactions of the order. The Order Template tab is the hub of modeling data in
context of the order and is the focal point for modeling OSM solution data.

Other OSM entities contribute to data modeled on the Order Template tab of the order.
For example, the order item specification and order components contribute data to the
ControlData structured data element defined on the order.

• Tasks

You add data elements from the data schema of projects or from the Order editor Order
Template tab of orders onto the Task Data area of the Task editor. OSM uses the data you
model here to run tasks.

• Order items

You add data elements from the data schema of projects onto the Order Item Specification
editor Order Template tab for every order item property on the order item specification that
is required for OSM orchestration. The structure you model here is referred to as order
item control data. OSM uses order item control data to add order items into the OSM order
from the customer orders that come from the customer relationship management system;
order item control data serves as the storage area on the order for each order item
property. See "About Modeling Control Data" for more information on order item control
data.

The data schema recommended for modeling order item control data structures is the
predefined data schema of the OracleComms_OSM_CommonDataDictionary model
project. The data schema of this model project includes the base structure for order item
control data (ControlData/OrderItem). See "About the
OracleComms_OSM_CommonDataDictionary Model Project" in the Modeling OSM
Orchestration Help for information on this model project.

• Order components

Design Studio automatically adds data elements onto the Order Component Specification
editor Order Template tab. The structure Design Studio models here is referred to as the
order component control data. Order component control data is automatically generated for
an order component that is associated with an orchestration process and associated to an
orchestration fulfillment pattern that is part of the orchestration plan. Each order
component that is used in orchestration requires order component control data. OSM uses
the order component control data for OSM orchestration; it serves as the storage area for
the order component on the order.

Design Studio automatically adds order component control data to the order component
and the order template of the order. You do not manually add data elements to the Order
Component Specification editor Order Template tab unless you do not use the
OracleComms_OSM_CommonDataDictionary model project. See "About Modeling
Order Component Control Data" for more information.

• Composite cartridge views

You add data elements from the data schema of projects or from the Order editor Order
Template tab onto the Task Data area of the Composite Cartridge view editor. A composite
cartridge view is used when you use composite cartridges to add task data and behaviors

Chapter 4
About Modeling Data in OSM Cartridge Projects

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

to a solution without having to directly modify the existing component cartridges of that
solution. The task data in the composite cartridge view is additive task data to the overall
solution. OSM uses the task data to run tasks for function order components you add to a
solution. See "Working with Composite Cartridge Projects" for more information on
composite cartridge views.

Data structures organized in OSM editors, such as structures represented by orders, tasks,
order components, and so on, and the behaviors you apply to data elements organized in OSM
editors are not available for reuse in the workspace by other (non-OSM) Design Studio
application feature cartridge projects.

The data element information defined in the data schemas of the workspace cannot be
overridden in OSM editors. You can augment data elements after you drag them from data
schemas into OSM editors, but you cannot change them. However, you can configure OSM-
specific extensions to schema data elements by using the OSM tab of the Data Schema editor.
See "Data Schema Editor OSM Tab" for more information.

A data element is typically defined at the root level in its associated data schema. If a data
element is defined within another element in the schema, the path of the data element in the
data schema is upheld as the relative path in the editor of the OSM entity in which the data
element can be organized into any data structure. By defining a data element at the root level
in its data schema and upholding its relative path within OSM entities, you can reuse the data
element in multiple entity types without having to duplicate it in other paths or in other data
schemas.

When you add a data element from a data schema of another Design Studio application
feature cartridge project onto an OSM editor, double-clicking the data element opens the editor
in which the data element is defined. For example, if you are in the Order Template tab of the
Order editor, double-clicking a data element that is part of a service action opens the ASAP
Service Action editor, in which the data element is defined.

Related Topics

About the Order Template Context Menu

About the Task Editor Task Data Context Menu

Design Studio Common Editor Tabs

About Modeling Control Data
Control data is the data OSM requires to perform orchestration. There are two kinds of control
data:

• Order item control data is order items from the customer order that are required in
orchestration

• Order component control data is order components that participate in orchestration

You model order item control data when you configure your order item specification. Design
Studio models order component control data automatically for order components that are
included in the orchestration fulfillment pattern that is part of the orchestration plan.

Control data is data located in the ControlData structure on the order. Control data consists of
data required to perform OSM orchestration. For example, when you model order item control
data for an IP services order, you include the name of the service in the control data but
exclude the port number for the connection to be provisioned. Though the port number must be
on the order for the service to be activated, it is not included in order item control data because
it is not used by the orchestration process.

Chapter 4
About Modeling Control Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

Order item properties and order components are OSM entities that contribute to the
ControlData structure on the order by using the following structures in the data model:

• ControlData/OrderItem/

Order item property control data: Order items from the customer order are stored here and
included in the order.

• ControlData/Functions/

Order component control data: An order component that participates in an orchestration
plan must have control data defined in the order template of the order.

Order component control data requires order item control data. Rather than copying the
order item data to each order component, OSM creates in the order component control
data a reference node back to the ControlData/OrderItem/Order_Item_Property_Name
structure. A reference node back to the original order item keeps the order components
updated with any new order item properties you might add to your order item specification.

You model the control data structure for order item properties (ControlData/OrderItem/
Order_Item_Property_Name) manually in the Order Template tab of the Order Item
Specification editor. See "Modeling Order Item Control Data" for information on modeling order
item control data.

Design Studio automatically models the control data structure for order components
(ControlData/Functions/Order_Component_Name) associated with orchestration orders on
the Order Template tab of the Order Component Specification editor. See "Modeling Order
Component Control Data Automatically" for more information on how Design Studio models the
order component control data.

Data modeled in the Order Template tabs of the Order Component Specification editor and
the Order Item Specification editor contribute to the order template of the order.

When working with composite cartridge projects, control data is deployed to your runtime
environment as part of the OSM composite cartridge. As a result, the complete control data
becomes available to the new tasks that are contributed through the component cartridges of
the composite cartridge. See "Working with Composite Cartridge Projects" for information on
creating composite cartridges.

Related Topics

About Modeling Order Component Control Data

About Modeling Order Item Control Data

About Contributing Task Data to a Cartridge Project
You may want to contribute task data to a cartridge project without directly modifying the
modeled data within it. For example, you cannot directly modify the modeled data in a sealed
cartridge project, but you may want to add task data to the existing tasks within it. You can
contribute task data to a cartridge project without directly modifying it by including it as a
component cartridge within a composite cartridge project. See "Working with Composite
Cartridge Projects" for more information.

About OSM Data in Model Projects
Model projects are collections of data elements that can be referenced by other projects in a
workspace. The data elements you define in a model project represent the foundational data
elements of the entire data model and are product-agnostic (not specific to any one Design

Chapter 4
About Contributing Task Data to a Cartridge Project

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

Studio application feature cartridge project). Although data elements in a model project are
intended to be product-agnostic, you can configure OSM-specific extensions to these data
elements. Doing so defines OSM-specific configuration at the root data element, which allows
the configuration to be inherited into a product-related context. OSM behaviors are an example
of valid extensions to schema data elements in a model project. OSM-specific extensions to
schema data elements are configured in the OSM tab of the Data Schema editor. See "Data
Schema Editor OSM Tab" for more information.

The main benefit of model projects is that they provide a common and centralized repository of
data models across Design Studio application feature cartridge projects, which enables
consistent data typing in message interactions across your Operational Support Systems
(OSS) environment.

When you right-click a model project and select Select Data Structure Definition, you either
select an existing data structure definition or create a new data structure definition. After you
create a data structure definition entity, you open it and define its attributes. Data structure
definitions allow you to model complex data types in OSM. Complex data types, which can
contain child elements, allow for the generic and reusable definition of both abstract
(extendable) and concrete (final) data structures. See "Defining Order Data" for information
about adding data structure definitions to an order.

About Modeling Data in the Order Template
When you model data in the Order Template tab of the Order editor, you add from the Data
Dictionary data elements, including data types such as atomic actions, and organize them in a
way that makes sense in the context of the order.

When you drag a data element from the Data Element view onto a data element in the order
template, all selected nodes of that data element appear in the order template underneath the
data element that was dropped. If a child node of a data element is selected in the Data
Element view, the child node and all its parent nodes up to the root of the data schema are
automatically included.

When you right-click in the order template and select Select from Dictionary, the Select Data
Elements dialog box is displayed. The Select Data Elements dialog box shows all data
elements available in the workspace, unlike the Data Element view, which shows only data
elements and entity types based on the filters you set for the view. For example, based on the
dependencies you defined in the Project editor Dependencies tab. If you add a data element
from the Select Data Elements dialog box onto the order template from a project that is not
defined as a dependency, Design Studio creates a problem marker. See "Managing Project
Dependencies" for information on defining dependencies for a project.

The order template context menu contains actions specific to simple and structured data
elements defined on the order. To access these actions, right-click in the Order Template area
of the Order editor Order Template tab. See "About the Order Template Context Menu" for
information about these actions.

About the Order Template Context Menu
The Order Template context menu contains actions specific to simple and structured data
elements defined on the order. To access these actions, right-click in the Order Template area
of the Order editor Order Template tab. The actions specific to the Order Template are listed
below. For information about the standard data modeling context menu options, see "Modeling
Data Using Context Menus".

Chapter 4
About Modeling Data in the Order Template

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

Field Use

Select Data Structure Definition Select to add an existing data structure definition or create a new
data structure definition. Data structure definitions allow you to
model complex data types in OSM.

If no data structure definitions are displayed in the Matching
items area, you must define the dependency of the data
structure definition to the model project before you add it to the
order template.

Disable Merge Mode/ Enable
Merge Mode

Select Disable Merge Mode when adding a data element from
the Data Dictionary onto an order so that Design Studio does not
merge the data element with a data element that is identical, and
instead, adds the data element as a child of the identical data
element (creating a recursive structure).

This setting stays in effect for all OSM editors in which data
elements are added until you change it.

Add To Tasks/Views... Select to add one or more data elements from the order template
to one or more tasks or one or more views in a single operation.

Use this option for task inheritance and view inheritance of data
elements defined in an order.

Important: Ensure source control is set up. You cannot undo this
action in a single operation. You must individually remove data
elements from each task or view after they are added.

Set Significance Select to set significance on multiple data elements in a single
operation.

Copy Mnemonic Path Select to copy the path of the selected entity to the clipboard.
This path is then available for you to paste.

If the selected OSM entity has derived complex types, you can
copy the path to the derived type.

Open In... Select to open the OSM entity that contributes an inherited data
element. This option is available when you select data elements
that are inherited from different OSM entities (these data
elements are grayed out).

This option provides quick access from the order template tree of
the order to the order template tree of the base entity where the
inherited data element is defined. For example, in orchestration
orders, the order template can have data elements (such as
ControlData) that are contributed from multiple OSM entities
(parent orders, order components (fulfillment functions), order
item specifications, and so on. Using this option, you find out
which entities the data element is inherited from and can quickly
open the order template of those entities.

About the Task Editor Task Data Context Menu
The Task Data context menu contains actions specific to simple and structured data elements
defined on the task. To access these actions, right-click in the Task Data area of the Task editor
Task Data tab. The actions specific to the Task editor are listed below. For information about
the standard data modeling context menu options, see "Modeling Data Using Context Menus".

Chapter 4
About the Task Editor Task Data Context Menu

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

Field Use

Select Data Structure
Definition

Select to add a data structure definition to the task. You can select an
existing data structure definition, or create a new data structure
definition. Data structure definitions allow you to model complex data
types in OSM.

If no data structure definitions are displayed in the Matching items area,
you must define the dependency of the data structure definition to the
model project before you add it to the task.

Disable Merge Mode/
Enable Merge Mode

Select Disable Merge Mode when adding a data element from the Data
Dictionary or order template onto a task so that Design Studio does not
merge the data element with a data element that is identical, and
instead, adds the data element as a child of the identical data element
(creating a recursive structure).

This setting stays in effect for all OSM editors in which data elements are
added until you change it.

Set Read Only Select to set multiple data elements on the task as read only in a single
operation.

You often must make task data elements read only. For example, in a
manual task, you do not want users to update certain data values such
as the account ID.

Set Significance Select to set significance on one or more data elements in a single
operation.

Open In... Select to open the editor from which the data element is inherited.

This option applies when you select an inherited data element that is
contributed through a solution or base order.

Data Schema Editor OSM Tab
Use the Data Schema editor OSM tab to define values for data elements that are associated
with your OSM runtime system. See "Data Schema Editor" for information on the other tabs in
the Data Schema editor.

Field Use

Significant Element Specify whether the OSM server should consider the
corresponding element during amendment processing.
During amendment processing, the OSM system
compensates only for task instances that use significant data
elements as inputs. If an element is not specified as
significant, the system updates the order only with the
changed data (no compensation is required). Data
significance is supported at the Data Dictionary (data
schema), order template, and task-view levels.

Read Only Specify to indicate that the data element is read only. This
option applies only to tasks.

Note: If you are defining an attribute of a data structure
definition element, do not use the Read Only check box to
define the element as read only. Instead, deselect this check
box and use the Behavior field to define a ReadOnly behavior
for the element.

XML Type Specify to indicate that the data structure definition is an XML
data type. Structures defined as XML data types in the data
structure definition can contain XML documents.

Chapter 4
Data Schema Editor OSM Tab

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

Field Use

Maximum Numeric Digits Enter the number of digits you want to allow in the OSM user
interface for the corresponding element. This field is not
available for editing if you define an OSM element mask for
the corresponding field.

For data elements that inherit data from a base type, this field
is read-only.

OSM Element Mask Specify the string of characters used to define the format of
the data in the field of the Task web client. When you create
an OSM element mask, you can restrict user input for a field
to a specific format. Use a mandatory mask character to
create a field where a user must enter information in the
appropriate format to complete the task.

For data elements that inherit data from a base type, this field
is read-only.

See "Using Masks" for more information.

Behaviors Right-click to define behaviors for the corresponding data
element. When you define behaviors at the Data Dictionary
(data schema) level, the behavior can apply to all orders and
tasks in which the data element appears.

Behaviors inherited from a base type are read-only.

See "Defining Behaviors at the Data Schema Level" for more
information.

Related Topics

Using Masks

Defining Behaviors at the Data Schema Level

Design Studio Common Editor Tabs

Using Masks
You use masks in Design Studio to restrict Task web client user input for a field to a specific
format. When using masks, refer to the following topics:

• About Masks

• Defining Masks for Task Web Client Fields

About Masks
Masks enable you to restrict Task web client user input for a field to a specific format. Using the
Data Dictionary editor OSM tab, you can specify the strings of characters used to define the
format of the data in the field and use a mandatory mask character to create a field where a
user must enter information in the appropriate format to complete the task. See the "Data
Schema Editor OSM Tab" for more information.

Use the following mask characters for text fields:

Mask Character Description

Mandatory digit

Chapter 4
Using Masks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

Mask Character Description

9 Optional digit

A Mandatory alphanumeric

a Optional alphanumeric

? Mandatory alpha

z Optional alpha

Mask characters serve as placeholders in Task web client fields. All non-mask characters
appear in text type fields; you cannot edit them. For example, if you enter TEXT in the OSM
Element Mask field, it appears in the Task web client field as TEXT. To use mask characters
as literals, you must enter "\" in front of the character.

Use the following mask characters for numeric fields:

Mask Character Description

9 Optional digit

0 Use to the right of the decimal. Displays 0 if no value is
entered.

. Decimal placeholder

, Numeric placeholder

Note

You must include at least one numeric mask character for the field to be valid. You
cannot use quotation marks (" ") for numeric masks.

The following table illustrates how numeric mask characters defined in the Data Schema editor
would affect data entered into the Task web client:

Mask Defined in Data
Dictionary

Entered into the Web Client Displayed in Web Client

9,999 1234 1,234

99.99 34.12345 34.12

99.00 12 12.00

99.00 34.1256 34.13

Related Topics

Defining Masks for Task Web Client Fields

Data Schema Editor

Defining Masks for Task Web Client Fields
Use masks in Design Studio to restrict Task web client user input for a field to a specific format.

To define a mask for a Task web client field:

Chapter 4
Using Masks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

1. From the Studio menu, select Show Design Perspective.

2. Click the Data Element tab.

3. Select the data schema entity that contains the field for which you want to define the mask.

The entity opens in the Data Schema editor.

4. In the Dictionary area, select the data node for which you want to define the mask.

5. Click the Data Schema editor OSM tab.

See "Data Schema Editor OSM Tab" for more information about the fields on this tab.

6. In the OSM Element Mask field, specify the string of characters used to define the format
of the data in the Task web client field.

Use a mandatory mask character to create a field where a user must enter information in
the appropriate format to complete the task. See "About Masks" for more information.For
elements that inherit data from a base type, this field is read-only. See "Leveraging Existing
Data Information" for more information.

7. Click Save.

Related Topics

Data Schema Editor

Modeling Data

Defining Behaviors at the Data Schema Level
On the "Data Schema Editor OSM Tab", you can define behaviors for data, which enable you
to extend the functionality and appearance of order data. Each behavior type performs an
action; for example, calculating or validating data or displaying fields in read-only mode.

To define behaviors for data:

1. Double-click an element from the Data Element view.

The details for the selected element are displayed in the Data Schema editor.

2. Click the OSM tab.

3. Select the data element for which you will define the behavior.

The Add Behavior dialog box is displayed.

4. In the Behaviors area, right-click and select Add Behavior, and then select the behavior
type.

The newly created behavior appears in the Behaviors list.

5. Select the behavior from the list and click Properties.

The Properties tab opens with the set of properties that you can define for this behavior
type.

See "Working with Behaviors" for information on how to set behavior properties.

Related Topics

Data Schema Editor OSM Tab

Data Schema Editor

Modeling Data

Chapter 4
Defining Behaviors at the Data Schema Level

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

Chapter 4
Defining Behaviors at the Data Schema Level

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

5
Working with Roles

When assigning permissions, you can permit specific roles access to functions in the Oracle
Communications Order and Service Management (OSM) Task web client. When modeling
roles, see the following topics:

• Creating New Roles

• Adding Roles to Multiple Tasks

• Role Editor Role Tab

Creating New Roles
You create roles to permit specific user groups access to functions in the Task web client.

To create a role:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Role.

The Role wizard is displayed.

2. In the Project field, select the OSM project in which to save this entity.

3. In the Name field, enter a name for the role.

The name must be unique among the role entities in the same namespace.

4. (Optional) Select a location for the role.

By default, Design Studio saves the role to your default workspace location. You can enter
a folder name in the Folder field or select a location different from the default. To select a
different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Finish.

Design Studio adds the role to the project in the Studio Projects view.

Related Topics

Role Editor Role Tab

Adding Roles to Multiple Tasks
When you create a task, you assign a role to it. If you create new roles that require access
privileges to existing tasks, you can add the roles to multiple tasks in a single operation.

When you add roles to tasks in a single operation, roles are added with all task permissions
granted. If you add a role to a task where the same role is already added, any task permissions
that are not granted to the existing role remain not granted.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

To add roles to multiple tasks in a single operation:

Note

Ensure source control is set up. This action cannot be undone in a single operation.

1. In the Studio Projects view, select the roles to add to existing tasks.

2. Right-click on the selected roles and select Add Role(s) to Tasks.

The Select Tasks dialog box is displayed.

3. Select the tasks to which you are adding the roles.

4. Click OK.

The roles are added to all tasks that were selected, and the roles are added with all task
permissions granted (Do, Redo, and Undo).

5. For roles that should not have all task permissions granted, open each task to which that
role was added and set task permissions as needed.

To remove a role from a task, use the Permission tab of the Task editor.

Related Topics

Creating New Roles

Role Editor Role Tab

Role Editor Role Tab
You use the Role editor to assign permissions to role entities. To access the Role editor,
double-click any role entity in the Studio Projects view. The Role editor enables you to modify
the name that displays for the role in the Task web client and to assign to the corresponding
role any combination of the following permissions.

Field Use

Create Versioned Orders Enables users to create orders for different versions of cartridges. If not
granted this permission, users can create orders only for the default
version of the cartridge.

Exception Processing Enables users to alter the flow of a process by applying exception
statuses at any time throughout the process.

Online Reports Enables users to view summarized reports on all orders and tasks on
the system.

Order Priority Modification Enables users to modify the priority of a task in an order.

Reference Number
Modification

Enables users to modify the reference number of an order.

Search View Enables users to access the order Query function.

Task Assignment Enables users to assign tasks to others.

Worklist Viewer Enables users to access the Worklist function.

Chapter 5
Role Editor Role Tab

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Related Topics

Creating New Roles

Chapter 5
Role Editor Role Tab

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

6
Working with Processes

An Oracle Communications Order and Service Management (OSM) process is a
representation of the activities, or tasks, required to offer a specific service to a customer. The
process representation includes all of the work that must be performed to complete the order.
Rules that you predefine in Design Studio determine which process an incoming order uses.
OSM may include an unlimited number of processes.

When working with processes, see the following topics:

• About the Process Editor

• Working with Process Editor Menu Controls

• Working with the Process Editor Palette

• Creating New Processes

• Modifying Process Editor Start Properties

• Designing Tasks and Activities

• Designing Timer Delays and Event Delays

• Designing Subprocesses

• Designing Workstream Processes

• Designing Process Sequence and Flow

• Designing Exception Paths

• Process Editor Start Properties General Tab

About the Process Editor
The Process editor is a canvas where you can configure new services quickly and with minimal
data; designing with the Process editor is analogous to capturing your workflow requirements
on a white board. Designers using the Process editor to model new services do not need to
understand the OSM technology behind the processes and integrations. As a designer begins
sketching out the initial processes and tasks in the Process editor, Design Studio
simultaneously builds in the background the corresponding artifacts necessary for deployment
to the OSM system.

You can use the diagrammed representations that you design in the Process editor to
illuminate patterns and identify inefficiencies in processes. Process editor shapes, colors, and
presentation can communicate information about the flows and processes.

Related Topics

Working with Processes

Working with Process Editor Menu Controls
The Process editor context menu provides access to specific actions that enable creation of
OSM processes. Right-click in the Process editor to access the Process editor context menu.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 24

When working with Process editor menu controls, see the following topics:

• About Task Controls

• About Zoom Controls

• About Layout Controls

• About Print Controls

• About Selection Controls

About Task Controls
Use the following context menu options to control the Process editor task-related features:

Field Use

Rename Select to modify the display name that represents the entity in the
Process editor.

Note: You can also press the F2 key to rename an entity in the
Process editor.

Assign Order Select to associate the task with an order.

Clear Activity Reference Select to remove from the task any existing entity associations. The
task activity remains in the Process editor if you clear the reference or
if you delete the referenced entity.

Convert to Select to convert the task to a different task type.

Important: When converting from one type of task to another, the
system displays a prompt if the potential for data loss exists (for
example, when converting from an automated task to a manual task).
Consider your task conversions carefully before implementing.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Zoom Controls
The following zoom tools are available in the Process editor context menu and Process editor
toolbar.

Note

In addition to the menu controls, you can press the Control key and simultaneously
rotate your mouse wheel to zoom in and out of a graphic.

Field Use

Zoom In, Zoom Out Select to magnify and reduce the size of a graphic,
respectively.

Reset Zoom Select to reset the graphic to the original size.

Chapter 6
Working with Process Editor Menu Controls

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 24

Field Use

Fit to Contents Select to increase or decrease the size of a graphic so that it
fills as much of the editor as possible.

Zoom Box Select to magnify a section of the Process editor. Drag a
selection rectangle with the Zoom Box tool, and that part of
the image will be magnified to fill the editor. If the Selection
tool is active, you can activate the Zoom Box tool by pressing
the Control and shift keys simultaneously and dragging a
selection rectangle in the Process editor to magnify that area.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Layout Controls
Use the following context menu options to control the Process editor layout features:

Field Use

Layout All Nodes Select to automatically arrange all nodes in a standard flow chart
format.

Layout Selected Nodes Select to automatically arrange a selection of the process in a
standard flow chart format. Use a drag selection to activate multiple
tasks for selection.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Print Controls
Use the following context menu options to control the Process editor printing features:

Field Use

Print Select to print a diagram or a selection of the diagram.

Note: The first time that you invoke a print function, the system
queries the current status of the installed printer, which may cause an
initial delay.

Print Preview Select to display each page to be printed and their corresponding
page margins. On the Print Preview page, click the Setup button to
access the Page Setup page, where you can scale the selection to fit
a specific number of pages, and modify the layouts, margins, header
and footers, and page order. You can access the page setup
properties from Process editor context menu by selecting Page Setup.

Print Diagram to Image File Select to save the image in JPG or PNG format.

Page Setup Select to scale the selection to fit a specific number of pages, and
modify the layouts, margins, header and footers, and page order.

Chapter 6
Working with Process Editor Menu Controls

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 24

Field Use

Set Print Area Select to print a selection of the diagram. Using the Selection tool,
click and drag over the area you want included in the print.

Clear Print Area Select to clear the selected print area and dismiss the selection.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Selection Controls
Use the following context menu options to control the Process editor selection features:

Field Use

Make Select Active Select to enable the Selection tool.The Selection tool enables you to
make an object active. You can also press the Esc key to activate the
Selection tool when other tools in the Tool drawer are active.

Pan Select to reposition the contents in the process editor. Click the Pan
icon to make the tool active, then drag the graphic into the desired
position. If the Selection tool is active, you can activate the Pan tool by
pressing the Control key and clicking the left mouse button.

Note: The Pan tool remains active for a single use only. When you
release the left mouse button, the Pan tool is deactivated and the
Selection tool becomes active. If you want the Pan tool to remain
active for multiple instances, activate the Sticky Mode tool.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

Working with the Process Editor Palette
In addition to the actions available on the Eclipse Workbench toolbar (for example, New, Save,
Search, External Tools), the Design Studio for OSM Process editor palette provides access to
specific actions that enable modeling of OSM processes. The palette appears as a collapsible
sidebar in the Process editor. If you prefer to access the palette tools from a view, you can
include the Palette view in your perspective.

The Process editor palette contains four drawers. Click a drawer to expand or collapse the
drawer. Click the Pin Open button to pin the drawer into the open position. The tools in the
Process editor palette drawers are grouped by type:

• Tools

• Activities

• Flows

• Exception Paths

Chapter 6
Working with the Process Editor Palette

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 24

Related Topics

Working with Processes

About the Process Editor Tool Drawer

About the Process Editor Activities Drawer

About the Process Editor Flow Drawer

About the Process Editor Exception Paths Drawer

About the Process Editor Tool Drawer
The Tool drawer contains tools for selecting and positioning activities within the Process editor.

Field Use

Selection Tool Select existing components. Click the Selection tool, then click
any activity in the Process editor to make that activity active.
Press the Esc key to activate the Selection tool when other
tools in the Tool drawer are active. This tool is the default cursor
tool.

Pan Tool Select to reposition the contents in the Process editor. To make
the Pan tool active, click the Pan Tool icon in the Process editor
tools palette, then drag the graphic into the desired position. If
the Selection tool is active, you can activate the Pan tool by
pressing the control key and clicking the left mouse button.

Zoom Tool Select to magnify a section of the Process editor. Drag a
selection rectangle with the Zoom tool, and that part of the
image will be magnified to fill the editor. If the Selection tool is
active, you can activate the Zoom tool by pressing the control
key and the shift key simultaneously. To reset the graphic to the
original size, right-click in the Process editor and select Reset
Zoom.
Additionally, you can press the Control key and use a mouse
wheel to zoom in and out of a graphic.

Note: You can magnify and reduce the size of a graphic by
using the Zoom In and Zoom Out buttons in the Process editor
toolbar. Click the Zoom In or Zoom Out button to increase or
decrease the size of the graphic.

Magnify Tool Use to magnify the area of the diagram positioned under the
pointer. Press the Alt key and simultaneously click and hold the
left mouse button to activate the Magnify tool. Release the
mouse button and Alt key to deactivate the tool. While this tool
does not appear in the tools palette, it is available for use in the
Process editor and accessible by the keystroke shortcut noted
above.

Related Topics

Working with Processes

Working with the Process Editor Palette

Chapter 6
Working with the Process Editor Palette

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 24

About the Process Editor Activities Drawer
An activity is a unit of work that the system performs. Activity types include processes,
subprocesses, and tasks.

Field Use

Task A task is an activity that cannot be broken into a finer level of detail.
To place a task activity within the Process editor, click Task, then
click inside of the Process editor. The Create Task wizard appears,
where you can define attributes for a new task or select an existing
task.

Subprocess A subprocess is an activity that is included within a process.
Subprocesses can be broken into a finer level of detail (a process)
through a set of activities. To place a subprocess activity in the
Process editor, click the Subprocess button, then click inside of the
Process editor. Right-clicking the subprocess activity lets you edit
the display name and assign an order.

Rule Rules are tasks that evaluate data to determine if a specified
condition exists. Rule tasks are evaluated by the system and have
completion statuses of true or false.

Note: Before you create a rule task, you must first define the data
elements in the Order editor Order Templates tab.

To place a rule activity in the Process editor, click the Rule button,
then click inside of the Process editor. Right-clicking the rule activity
lets you edit the display name, assign an order, and create an
activity reference.

Timer Delay A timer delay pauses an operation until a specified order rule
evaluates as true.

Timer delays and event delays work identically, but differ in how the
rule evaluation is triggered:

• A timer delay is evaluated at specified time intervals.
• An event delay is evaluated only when the data referenced in

the rule changes.
To place a timer delay activity in the Process editor, click the Timer
Delay button, then click inside of the Process editor. Right-clicking
the timer delay activity lets you edit the display name, assign an
order, or create an activity reference.

By default, timer delays use the null_rule. Oracle recommends
using a custom order rule instead. See "Designing Timer Delays"
for more information.

Note: The frequency at which the OSM server evaluates a delay
rule is determined by your OSM server configuration. See
"Installing OSM in GUI Mode" in OSM Installation Guide for more
information.

Chapter 6
Working with the Process Editor Palette

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 24

Field Use

Event Delay An event delay pauses an operation until a specified order rule
evaluates as true.

Timer delays and event delays work identically, but differ in how the
rule evaluation is triggered:

• A timer delay is evaluated at specified time intervals.
• An event delay is evaluated only when the data referenced in

the rule changes.
To place an event delay activity in the Process editor, click the
Event Delay button, then click inside of the Process editor. Right-
clicking the event delay activity lets you edit the display name,
assign an order, or create an activity reference.

See "Designing Event Delays" for more information about event
delays.

Join Enables you to combine a set of flows into a single flow. The unified
flow can join based on all transitions completing or any one
transition completing.

To place a join activity in the Process editor, click the Join button,
then click inside of the Process editor. Right-clicking the join activity
lets you edit the display name, assign an order, or create an activity
reference.

End An event is an occurrence during the course of a business process.
Events affect the flow of the process and usually have a cause
(trigger) or an impact (result). The end event indicates where a
process will end.

To place an end event in the Process editor, click the End button,
then click inside of the Process editor. Right-clicking the end event
lets you edit the display name, assign an order, or create an activity
reference.

Redirect A redirect activity describes a mechanism used to redirect an
operation to a different process.

To place a redirect activity in the Process editor, click the Redirect
button, then click inside of the Process editor. Right-clicking the
redirect activity lets you edit the display name, assign an order, or
create an activity reference.

Related Topics

Working with Processes

Working with the Process Editor Palette

About the Process Editor Flow Drawer
Flows describe how tasks are completed and determine the order of tasks in the process. To
describe the flow between any two activities in the Process editor, click the appropriate flow
button in the Process editor palette, then click the source activity in the Process editor. A
dynamic flow line appears, enabling you to connect the source activity to any other activity in
the Process editor. Click a destination activity to create the directional flow.

You can use the following options to describe the flow within a process. Each of these flow
options describes a different transition status:

Chapter 6
Working with the Process Editor Palette

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 24

Field Use

Flow Refers to the flow that originates from a start event and continues
through activities via alternative and parallel paths until it ends at an
end event.

True Flow Denotes that the activity processed and completed with a result that
allows the process to continue to the next activity or end.

False Flow Denotes that the activity processed and completed with a result that
prevents the process from continuing to the next activity.

Next Flow Denotes advancement to the next activity.

Back Flow Denotes a return to the previous activity.

Finish Flow Denotes the completion of an operation.

Cancel Flow Denotes the cancellation of an operation.

Success Flow Denotes that an operation completed successfully.

Failure Flow Denotes that an operation did not complete successfully.

Note

Flows are represented in the Process editor by transition arrowheads. When the
Mandatory Check option for a corresponding flow is not enabled, the flow is
represented as a hollow arrowhead. When Mandatory Check is enabled, the flow is
represented as a solid black arrowhead. To ensure that the system verifies that
mandatory fields are present when a task completes, enable the Mandatory Check
option for the corresponding flow in the Properties view. To access the Properties view,
right-click the corresponding flow and select Show Properties, or see "Process Editor
Flow Properties General Tab" for more information.

Related Topics

Working with Processes

Working with the Process Editor Palette

About the Process Editor Exception Paths Drawer
Exception paths are used in conjunction with redirect and end activities to define process
exceptions. Process exceptions let you alter the normal process flow from anywhere within a
process (or subprocess) at any time while running the process. You can also model an
exception with role restrictions, thus allowing only selected roles to throw the exception.

See "Designing Exception Paths" for more information about exception paths.

Related Topics

Working with Processes

Working with the Process Editor Palette

Chapter 6
Working with the Process Editor Palette

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 24

Creating New Processes
You create processes to represent the activities required to offer a specific service to a
customer. The process representation includes all of the work that must be performed to
complete the order.

To create a new process entity:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Process.

2. In the Project field, select the OSM project to which to add the process.

3. In the Order field, associate the process to an order.

If no order exists (the field is blank), you can create the process entity and then later create
an order to associate with the process.

4. In the Name field, enter a name for the process.

Ensure that the process name is unique among the process entity types. Two processes
cannot share the same name.

5. (Optional) Select a location for the process.

By default, Design Studio saves the process to your default workspace location. You can
enter a folder name in the Folder field, or select a location different from the system-
provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio displays the process entity under the selected project in the Studio Projects
view.

Related Topics

Working with Processes

Modifying Process Editor Start Properties
You can define properties at the process level, including the expected duration of the process,
the reference name, and whether it is a workstream process.

To modify Process editor start properties:

1. In the Process editor, right-click the Start node and select Show Properties.

The Properties view opens for the process.

2. For each property, click inside the Value field.

Design Studio displays a list of values for the corresponding property. See "Process Editor
Start Properties General Tab" for more information about the fields and values.

3. Select the desired value.

4. Click Save.

Chapter 6
Creating New Processes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 24

Note

You can double-click the Start entity in the Process editor to open the associated order
in the Order editor.

Related Topics

Working with Processes

Designing Workstream Processes

Working with Orders

Process Editor Start Properties General Tab
Use the Process Editor Start Properties General tab to define properties at the process level,
including the expected duration of the process, the reference name, and whether it is a
workstream process.

Field Use

Duration Define the expected duration of the process in weeks, days, hours,
minutes, and seconds.

Process History Select True if you want this process to appear in the Process History -
Summary Table window in the Task web client. If you do not want this
process to appear in the Process History - Summary Table window in
the Task web client, select False.

Reference Displays the order with which this process is associated. To change the
association, click the Select button to access a list of orders.

Workstream Select True to define the process as a workstream process. See
"Designing Workstream Processes" for more information.

X, Y coordinates Indicates the present X and Y pixel coordinates for the Start entity.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Designing Tasks and Activities
A task is one step in a process. You design process flows with tasks, subprocesses, rules, or
other process information. There are multiple methods for including new tasks and activities
into a Process editor design model.

To add tasks to a process:

1. From the Process editor palette, select Task from the Activities drawer.

2. Click inside the Process editor.

The Create Task wizard is displayed.

3. Select the task to add to the process.

You can create a new task or select an existing task.

Chapter 6
Designing Tasks and Activities

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 24

To create and add a new task to the process, select Create a New Task. See "Creating
New Tasks" for more information.

To select an existing task to add to the process:

a. Select Select an existing Task.

b. Click Select.

The Task Selection dialog box is displayed. To view all available tasks for all projects,
enter an asterisk (*) into the Select an item to open field.

To filter for specific tasks, type any character or string of characters contained in the
task name to display only the tasks containing those characters.

c. Select the desired task and click OK.

The name of the selected task is displayed in the Task field.

4. Click Finish.

The new task appears in the Process editor and under the selected project in the Studio
Projects view.

5. (Optional) Drag existing tasks from the Studio Projects view into your process design.

When you drag existing tasks from the Studio Projects view onto the Process editor, the
system copies to the new process the associated data defined for the existing task.

6. (Optional) Copy existing tasks from a different process design model.

To use an existing task or set of tasks from a different process design model, use the
Select tool in the Process editor palette to select the tasks you want to use, copy those
tasks (select Edit, Copy), then paste the tasks into the new process design model. The
system copies to the new process the associated data defined for the existing task.

7. Click Save.

To include other activity types in a process:

1. From the Process editor palette, select an activity from the Activities drawer.

2. Click inside the Process editor to place the object.

3. Right-click on the activity.

The context menu is displayed. You can edit the display name, assign an order to the
activity, and create or clear an activity reference.

4. (Optional) Double-click subprocess entities to open them in a separate Process editor tab.

In the new tab, edit the display name and model the tasks, activities, and flows associated
with the subprocess.

5. Repeat these steps as appropriate.

6. Click Save.

Related Topics

Designing Subprocesses

Working with Process Editor Menu Controls

Working with the Process Editor Palette

Working with Processes

Working with Tasks

Chapter 6
Designing Tasks and Activities

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 24

Process Editor Activities Properties General Tab
Use the Process editor Properties view General tab to define values for the Activities drawer
entities, including tasks, rules, delays, and join entities.

See "Designing Subprocesses" for information about subprocess properties. See "Designing
Exception Paths" for more information about the redirect entity.

Field Use

Compensation Appears for rule entity properties only.

Define how the OSM run-time environment evaluates the
corresponding entity during compensation. Select Redo if the OSM
server should undo the original operation and re-evaluate it. Select Do
nothing if you do not want to OSM server to re-evaluate the entity
operation.

Condition Appears for delay and rule entity properties only.

Select the predefined rule which must evaluate to true for the rule or
delay entity to transition. For timer delay entities, Oracle recommends
selecting a custom order rule rather than using the default null_rule.

See "Defining Order Rules" for more information about order rules.

Description (Optional) Enter a description or the intended use for the
corresponding task.

Display Name Enter the name of the task that represents how an entity appears in the
Task web client and throughout the Design Studio editors.

Join Type Select All to have the task begin when all transitions flowing to the task
have completed or select Any to have the task begin when any one
transition flowing to the task has completed. Selecting Any will create
one instance of the task for each incoming transition.

Process History Select True if you want this task to appear in the Process History -
Summary Table window in the Task web client. Otherwise, select
False.

Reference Displays the task associated with the selected task entity. To change
the association, click the corresponding ellipsis button to access a list
of Tasks.

X, Y coordinates Indicates the present X and Y pixel coordinates for the task entity.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Process Editor Task Properties Events Tab
Use the Process Editor Task Properties view Events tab to create event notifications for a
single task instance in a specific process that only triggers when the task reaches a specific
state or status and (optionally) if a specific rule evaluates to true. Use the Details sub-tab to
choose the task and transitional events, specify the rule that triggers the event, set the priority
level, enable or disable the event, and specify whether to send the notification by email. Use
the Automation sub-tab to create automation plug-ins to perform the work of the notification.

Chapter 6
Designing Tasks and Activities

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 24

See "Properties Events Detail Tab" for more information about the fields on the Detail sub-tab.
See "Creating Process-specific Task Event Notifications" for information about creating event
notifications at the Process editor level.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Designing Timer Delays and Event Delays
Timer delays and event delays pause an operation until an order rule evaluates as true. Timer
delays and event delays work identically, but the timing for the rule evaluation differs as
follows:

• The order rule on a timer delay is evaluated at specified time intervals. The frequency at
which the OSM server evaluates the timer delay rule is determined by your OSM server
configuration. See OSM Installation Guide for more information.

• The order rule on an event delay is evaluated only when the data referenced in the rule
changes.

Note

Compensation ignores timer delays and event delays when undoing and redoing the
tasks in a process.

See "About the Process Editor Activities Drawer" for information about adding timer delays and
event delays to a process.

Designing Timer Delays
By default, timer delays use the null_rule. To use OSM resources efficiently and minimize
database table entries, Oracle recommends that you define a custom order rule and apply it to
the timer delay. By applying an order rule to the timer delay, you avoid creating a separate
automated task to evaluate the rule.

See "Defining Order Rules" and "Applying Order Rules to Timer Delays" for more information.

Applying Order Rules to Timer Delays
To apply an order rule to a timer delay:

1. In the Process editor, right-click the timer delay.

2. Select Show Properties.

The Properties view for the timer delay opens.

3. Select the Condition property and click inside the Value field.

4. Select a custom order rule for the timer delay.

5. Click Save.

Chapter 6
Designing Timer Delays and Event Delays

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 24

Designing Event Delays
Because event delays can only detect data changes that happen after the event delay starts,
you must model your cartridges so that the event delay starts before the task or process that
triggers the data change.

For example, imagine you have a cartridge project with two parallel processes. Process A
includes an event delay that pauses until Process B updates some order data. If you model the
project so that Process A reaches the event delay before Process B begins, when Process B
updates the data, the event delay detects the data change, evaluates the order rule, and
resumes Process A if the rule evaluates as true.

However, if you model the project so that Process B updates the data before Process A
reaches the event delay, the event delay does not detect the data change, does not evaluate
the order rule, and continues to delay Process A indefinitely.

Designing Subprocesses
A subprocess is a type of task that represents a previously defined process. You can reuse
existing processes by dragging them onto subprocess entities in the Process editor. The
process associated with the subprocess task is triggered by the evaluation of a rule. You can
use a subprocess task within a process or it can be run outside the process, as another
process on its own.

To design a subprocess:

1. From the Studio Projects view, drag one or multiple existing processes onto the
subprocess entity in the Process editor.

2. Right-click the subprocess and select Assign Order.

The Order Selection dialog box is displayed.

3. Select the order type to associate with the subprocess.

4. Click OK.

5. Right-click the subprocess entity and select Show Properties.

6. In the Properties view General tab, define the basic information about the subprocess.

For example, you can define subprocess description and display name. See "Subprocess
Properties General Tab " for more information.

7. In the Properties view Process tab, associate the subprocesses to the rules that trigger
their rules processing.

You define process and rule combinations that determine which process the system
initiates when a rule evaluates to True. The system evaluates each rule in the order that
you specify. When a rule evaluates to True, the system runs the corresponding process
and ignores the remaining processes. See "Subprocess Properties Process Tab " for more
information.

8. In the Properties view Exception Map tab, define how the subprocess task handles
process exceptions.

For example, you can map subprocess exceptions to the completion statuses of the
subprocess task, or to exceptions on the parent process. See "Subprocess Properties
Exception Map Tab " for more information.

9. Click Save.

Chapter 6
Designing Subprocesses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 24

Note

Do not deploy updated process flows (for example, adding additional parallel tasks to
a subprocess) to an OSM run-time environment until all orders submitted to the
process have completed.

Related Topics

Subprocess Properties General Tab

Subprocess Properties Process Tab

Subprocess Properties Exception Map Tab

Designing Exception Paths

Working with Processes

Working with Orders

Subprocess Properties General Tab
You use the Subprocess Properties General tab to define general information about the
subprocess, such as the description and display name.

Field Use

Description Enter a description of a task to help differentiate between tasks used
more than once in the same process flow.

Display Name Enter the name that you want to appear in the subprocess task entity in
the Process editor.

Process History Select True if you want this task to appear in the Process History -
Summary Table window in the Task web client. Otherwise, select False.

X, Y coordinates Coordinates that indicate where in the Process editor the subprocess
task exists.

Related Topics

Designing Subprocesses

Working with Processes

Subprocess Properties Process Tab
When creating a subprocess task, you can associate the subprocess with a list of process and
rule combinations, and sequentially order them. The first rule an order satisfies defines the
process that is used as the subprocess.

Select the Properties view Process tab to define the values for the following:

Chapter 6
Designing Subprocesses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 24

Field Use

Pivot Node Click Select to access the Order Template Selection dialog
box, where you can select the data element on which OSM
will spawn the individual instances. For example, if you have
subprocess that will create an email address for every person
in a list, you might select the node Person as the pivot node,
so that the subprocess repeats, spawning an instance for
each person.

Sequential If you anticipate that a large number of task instances will
appear in the Task web client Worklist, and you prefer that the
system display the instances in the worklist one at a time, you
can specify a sorting option.

Specifying a sorting option here causes OSM to run the task
instances sequentially, instead of in parallel, and to display the
individual instances in the worklist one at a time, in the
specified order. As you complete each task instance, OSM
spawns the next instance.

You can select one of the following sorting methods:

Non Sequential: The subprocess initiates every instance
simultaneously.

No Sorting: The Task web client Worklist displays the
instances of the task in the order that they are spawned.

Ascending: The Task web client Worklist displays the
instances of the task in ascending order, based on the
attribute (date, alpha, or numeric) of the data element that you
select in the Sort Element field.

Descending: The Task web client Worklist displays the
instances of the task in descending order, based on the
attribute (date, alpha, or numeric) of the data element that you
select in the Sort Element field.

Sort Element If you selected a reusable structure as the pivot node, click
Select to identify which of the data elements the system
should use to determine the order in which to display the
individual task instances in the Task web client Worklist. This
option is available only when you sort the task instances in
descending or ascending order.

For example, consider that you have three levels of DSL
service: Regular, Gold, and Platinum. You want to ensure that
customers ordering the Platinum level of service have priority
over the lower two levels. In the Pivot Node field, you might
select the reusable structure called service_type, which
contains the attributes regular, gold, and platinum. In the
Sequential field, you can select ascending, then select the
value platinum in the Sort Element field to ensure that the
orders with the Platinum level of service are initiated first.

Continue if rule failed Select if want the process to continue if none of the rules
associated with the subprocesses equate to True.

Chapter 6
Designing Subprocesses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 24

Field Use

Association The Association table lists the process and rule combinations
that determine which process the system will initiate when a
rule in the table evaluates to True. The system evaluates each
rule in the order that they appear in the Association table.
When a rule evaluates to True, the system runs the
corresponding process and ignores the remaining processes.
You can prioritize the processes listed in the table by using the
Move Up and Move Down buttons.

Click Add to display the Add Rule and Process Association
dialog box. In the dialog box, indicate which rule and process
combination triggers the subprocess. To change the order of
the process rule combinations, highlight a combination and
click the Move Up or Move Down button. Select a process
rule combination and click the Modify button to change the
combination pair, or click the Remove button to delete from
the list.

If you drag a process from the Studio Projects view on to a
subprocess entity, the system automatically adds that process
to the Association table, and uses null_rule as the default rule.
Select the table row and click Modify to change the rule and
process combination.

Note: You can manipulate ordered tables in Design Studio
using keyboard controls. For example, you can launch the Add
Rule and Process Association dialog box by pressing the
Insert key on your keyboard. You can highlight a table row and
press the Delete key to delete a process and rule combination
from the table. Use the Control key in conjunction with the
arrow keys to select one or multiple table rows and move
those rows up or down in the index order.

Related Topics

Designing Subprocesses

Working with Processes

Subprocess Properties Exception Map Tab
When you use a subprocess task in a process, you can define how the subprocess task
handles process exceptions. You can map subprocess exceptions to the completion statuses
of the subprocess task, or to exceptions on the parent process. Using the subprocess
mappings, a parent process can raise a process exception or complete the subprocess task.
Additionally, a parent process can set the exception status, terminate the subprocesses, and
set the process status. The list of subprocess mappings is ordered by priority. If a lower priority
subprocess exception occurs after a higher priority exception, the lower priority exception is
ignored. The subprocess task does not complete until all subprocess tasks are completed or
terminated.

For example, consider that you have a process called create_vpn. Within that process, there is
a subprocess called validate_address. The subprocess validate_address can throw an
exception when an address is invalid. Using the exception mapping functionality, you can
instruct the parent process and subprocesses to take specific actions when the subprocesses
throw exceptions. When validate_address throws the invalid_address exception, you can
instruct it to complete or to raise an exception. If you are creating a VPN for a business that
contains multiple physical locations, you might have multiple instances invoked for the

Chapter 6
Designing Subprocesses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 24

validate_address subprocess. Exception mapping enables you to indicate whether the parent
process create_vpn should terminate all of the invoked instances, terminate only the offending
instance, or ignore the exception altogether.

Use the Properties view Exception Map tab to define values for the following:

Field Use

Process Select the subprocess for which you want to map exceptions. You can
map exceptions to any of the subprocesses included in the Association
table on the Properties view Process tab.

Exception Select an exception to associate with the subprocess. Only those
exceptions defined for the subprocess you selected in the Process
field are available for mapping.

Action Select an option to determine what action the parent process should
take when the subprocess defined in the Process field throws the
exception defined in the Exception field. Select:

• Complete Task to complete the task and indicate normal flow.
• Raise Exception to raise an exception status defined in the parent

process. If you select this option, you must also select an
exception throw value. The values available in the Throw field are
those exception options that are defined at the parent process
level.

Terminate Define how invoked threads should be affected by the exception.
Select from the following options:

• All instances (All): Select to instruct the system to stop all
subprocess threads.

• Excepting instance only (One): Select to instruct the system to
stop the subprocess thread that raised the exception.

• None (Ignore): Select to instruct the system to continue normal
processing.

Related Topics

Designing Subprocesses

Working with Processes

Designing Workstream Processes
A workstream process enables Task web client users to run a series of sequenced order tasks
through a wizard-like interface. When a process, or subprocess, is defined as a workstream,
Task web client users flow from task to task after each transition without being returned to the
worklist to initiate the next transition. Instead, the next task is invoked automatically, eliminating
the need to manually navigate through the worklist to retrieve the next task.

Workstreams are designed by business analysts or process modelers in much the same way
standard processes are designed, using the Process editor. To make a process a workstream
process, right-click the Start node in the Process editor and select Show Properties to display
the Properties view. Then, click the Workstream property and change the value to True.

Related Topics

Working with Processes

Chapter 6
Designing Workstream Processes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 24

Designing Process Sequence and Flow
When you create a process, you can use the Process editor to describe the sequence in which
tasks should complete and the manner in which the process flows from one task to the next.
You create the structure of the process by manually dragging tasks into place, or by using the
Process editor layout tools. To describe the link between tasks, you use the elements from the
Process editor Flows and Exception Path drawers. Flows describe how tasks are completed
and determine the order of tasks in the process.

To sequence tasks:

1. Drag the tasks and activities into the desired order.

When multiple tasks are active, you can move them simultaneously. To make multiple
tasks active, drag a selection rectangle around the tasks that you want to move, then move
the group of task into the new position.

2. (Optional) Click the Layout All Nodes icon, located in the Process editor toolbar.

Alternatively, you can right-click in the Process editor to access Layout All Nodes from the
context menu. The Layout All Nodes feature automatically arranges the process nodes in
a standard flow chart format.

3. (Optional) Select multiple tasks in the Process editor and click the Layout Selected
Nodes icon, located in the Process editor toolbar.

Alternatively, you can right-click in the Process editor to access Layout Selected Nodes
from the context menu. The Layout Selected Nodes feature automatically arranges only a
selected section of the process.

4. Click Save.

To link tasks:

1. In the Process editor palette Flows drawer, click a flow activity.

2. In the Process editor, click the Start node and then click the first task to link the two objects
together.

3. From the palette, use the actions in the Flow and Exception Paths drawers to link all of the
tasks.

Click the Toggle Sticky Tool Mode button to repeatedly link tasks in the Process editor.

4. Right-click a flow and select Status.

Select the task exit status for the flow. The available options include the statuses you
previously defined for the task in the Task editor States/Statuses tab.

5. (Optional) Click the Layout All Nodes button in the Process editor toolbar.

The Layout All Nodes feature automatically displays the process flow in an organized and
neat arrangement.

To arrange only a section of the process, use a drag selection to activate multiple tasks
and click the Layout Selected Nodes button in the Process editor toolbar.

6. Click Save.

Related Topics

Working with Process Editor Menu Controls

Designing Exception Paths

Chapter 6
Designing Process Sequence and Flow

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 24

Working with Processes

Working with Tasks

Process Editor Flow Properties General Tab
Use the Process editor Flow Properties view General tab to define attributes for process
flows.

Field Use

Condition This property applies only to transitions that are part of a workstream
process. You can apply rules to the transition that must evaluate to True for
the transition to occur. Select the Condition row to access all rules defined
in the order.

Note: Selecting a condition in a transition not part of a workstream process
will produce a build warning.

Note: If all of a task's transitions include conditional rules that evaluate to
false during run-time, the OSM server considers the task to be the terminal
task, as there are no additional valid transitions to consider.

Mandatory Check Select True to ensure that the system verifies that mandatory fields are
present when a task completes.

Reporting Status Enter the reporting status that you want to display in the Task web client.
This status is tracked in the client's History. The Reporting Status Value
field is an open text field. In the Value field enter a status name to indicate
how the transition should be reported.

Status Select the task exit status that represents this flow. The available options
include the statuses you previously defined for the task in the Task editor
States/Statuses tab.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Process Editor Flow Properties Events Tab
Use the Properties Events Details tab to create event notifications for a single task transition in
a specific process that only triggers if a specific rule evaluates to true. When defining event
notifications for task transitions in the Process editor Properties Events tab, you can name the
task and transitional events, specify the rule that triggers the event, set the priority level,
enable or disable the event, specify whether to send the notification by email, and create
automation plug-ins to perform the work of the notification. See "Properties Events Detail Tab"
for more information about the fields on the Events Detail tab. See "Creating Task Status-
Based Event Notifications" for information about creating event notifications at the Process
editor level.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Chapter 6
Designing Process Sequence and Flow

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 24

Designing Exception Paths
An exception is a mechanism used to interrupt or stop an order, or to redirect it to a task in the
process to a different process. The choices are defined by the system administrator and
identified by the exception statuses. Exceptions may be used to cancel an in-flight order, to
add supplemental information to an order and redirect the order to an earlier task in the
process, or to take other actions defined in the original process.

Exception statuses are user-defined statuses used to alter a process flow from anywhere in the
process. The exceptions can be defined with restrictions that allow only specified workgroups,
activities, or order type/sources (or combinations of these) to raise the exception.

Note

If you have previously defined a process exception in the OSM Administrator, and
intend to import it into Design Studio, you must ensure that:

• You define (in the OSM Administrator Process Exception Definition tab) the status
used in the process exception in any task that can initiate the exception.

• You create a process exception restriction (in the OSM Administrator Process
Exception Restriction tab) that specifies the tasks that can raise the exception.

Exception paths are used in conjunction with the Redirect and End activities to define process
exceptions:

• The End activity stops the work order from continuing.

• The Redirect activity redirects the work order to another task in the same process or to a
different process.

Note

End and Redirect activities cannot be defined as the source end of a path.

Chapter 6
Designing Exception Paths

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 24

In the Process editor, visual cues enable you to distinguish flow transitions from exception
paths: exception paths are represented by an exception path source marker (lightning bolt
icon) and a dashed line.

Note

You can only configure two or more exception paths with the same status in the same
process if the following conditions are met:

• All the exception paths must start from a task, a rule, or a subprocess.

• All the exception paths terminate on the same redirect or end.

• In the properties of the path, the Reporting Status, Role Restriction, and Order
Restriction must be the same.

To model exception paths in the Process editor

1. To model a Stop exception, draw an exception path from an activity to an End activity.

Linking the path from the Start activity applies the exception to the entire process; linking
from a task within the process applies the exception to that task.

2. To model a Redirect exception, draw an exception path from an activity to a Redirect
activity. The Redirect activity supports both process-level and activity-level redirection.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Exception Path Properties General Tab

Exception Path Properties Restrictions Tab

Redirect Properties General Tab

Designing Subprocesses

Creating Task Status-Based Event Notifications

Working with Processes

Exception Path Properties General Tab
Use the Exception Path Properties General tab to define the reporting status that will display in
the Task web client and the task completion status that initiates the exception.

Field Use

Reporting Status Enter the reporting status that you want to display in the Process Exception
section of the Task web client. This status is tracked in the client's History.
The Reporting Status Value field is an open text field. In the Value field
enter a status name to indicate how the exception should be reported.

Chapter 6
Designing Exception Paths

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 24

Field Use

Status Specify the task completion status that initiates the exception. If the
exception is thrown from the Start activity, the values available include all of
the statuses defined within the process. If the exception is thrown from a
specific activity, the values available include only those statuses defined for
that specific activity.

Related Topics

Designing Exception Paths

Working with Processes

Exception Path Properties Restrictions Tab
Use the Exception Path Properties Restrictions tab to restrict exceptions to specific roles.

Field Use

Role Restriction To restrict the ability to throw an exception to specific roles,
select Allow Restricted Roles, then select those roles from the
Available list and move them into the Selected list using the
arrow buttons.

Available, Selected Move roles between the Available and Selected fields by
highlighting one or multiple roles and clicking the appropriate
arrow button. To move all roles from one column to the other,
use the double arrow buttons.

Related Topics

Designing Exception Paths

Working with Processes

Redirect Properties General Tab
Use the Redirect Properties General tab to define to which process and to which task within
that process you want the order redirected.

Field Use

Reference Select the process to which you want the order redirected. To select
the process, click inside the Value field to access the ellipsis button.
Click the ellipsis button and select a process from the entity list.

Note: After you define the Reference process, you can double-click the
Redirect entity to open the process in the Process editor.

Reference Task Select the task to which you want the order redirected. When you
specify a process in the Reference field, you can also redirect to a
specific starting point within that process. The process will run to
completion from the task that you select here. If you select no task
here, the process will start with the first task.

X, Y coordinates These coordinates indicate where on the Process editor canvas the
Redirect activity exists.

Chapter 6
Designing Exception Paths

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 24

Related Topics

Designing Exception Paths

Working with Processes

Chapter 6
Designing Exception Paths

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 24

7
Working with Tasks

A task is one step in a process (a process is a sequence of tasks that run either consecutively
or concurrently to fulfill an order or part of an order). In Design Studio, you model tasks and the
data necessary to run them. The tasks are processed in an Oracle Communications Order and
Service Management (OSM) run-time environment.

When working with tasks, see the following topics:

• About Tasks

• Creating New Tasks

• Defining Task Data

• Assigning Task States and Statuses

• Assigning Task Permissions

• Converting Tasks

• Deleting Unreferenced Tasks

• Working with Automation Plug-Ins

• Working with Manual Tasks

• Working with Automated Tasks

• Working with Activation Tasks

• Working with Transformation Tasks

• Task Editor

About Tasks
A task is a specific activity that must be carried out to complete the order. OSM has more than
one type of task:

• A manual task requires user intervention, which is performed through the OSM Task web
client. See "Working with Manual Tasks" for more information.

• An automated task is run without manual intervention and is used to handle interaction with
external fulfillment systems. See "Working with Automated Tasks" for more information.

• An activation task is a type of automated task that interacts with Oracle Communications
ASAP or Oracle Communications IP Service Activator. See "Working with Activation Tasks"
for more information.

• A transformation task is a type of automated task that accesses the OSM order
transformation manager. See "Working with Transformation Tasks" for more information.

All types of tasks share many of the same modeling activities, such as defining task data,
details, and compensation. Some configuration steps, however, are specific to each task type.

Related Topics

Creating New Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 73

Task Editor

About Task Extensions and Inheritance
During task creation, you can base new tasks on the functionality of an existing task by using
the extend feature. When you extend a task, the extended task inherits all of the data, rules,
and behaviors of the parent task. For example, if you have multiple tasks that all require the
same data subset, you can create a base task that contains this data, then extend from this
task to create as many new tasks as necessary. You can add new data and behaviors to each
of the new tasks to create unique task and behavior functionality.

You cannot edit task data inherited from a parent task. For example, if you are working with a
task that includes data inherited from a parent task, you cannot remove, rename, or reposition
data elements inherited from the parent task, make changes to inherited behaviors, and so
forth. Nodes inherited from the extended task are represented by a black icon and cannot be
removed from the task. New nodes that you add to the task are represented by a green icon
and can be removed from the task.

Additionally, tasks in a cartridge project can inherit from tasks in a different cartridge project, if
the order with which the task is associated extends the order from the same source cartridge.
For example, a task named Task2 in a cartridge named Cartridge2 can inherit data from a
task named Task1 in a cartridge named Cartridge1, but only when the order (with which the
task is associated) in Cartridge2 extends the order (with which Task1 is associated) in
Cartridge1.

Note

Design Studio does not permit cyclic referencing. For example, if task T2 extends from
task T1, and task T3 extends from task T2, then you cannot extend task T1 from task
T3.

Related Topics

Task Editor

Creating New Tasks

About Task States and Statuses
A task state determines the milestone of a task in a process. The default states are:

• Received: The task has been received in the system and is waiting to be accepted.

• Accepted: The assigned user (or system) has accepted the task. The task is locked so that
it cannot be modified or completed by other users and systems.

• Completed: The task is finished.

• Assigned: (manual tasks only) The task has been assigned to a user.

• Create Activation Work Order Failed: (activation tasks only) The task attempted to create a
work order in the activation system but work order creation failed.

These states are mandatory and cannot be removed. You can define additional states (user-
defined states) to support your business processes. If a task cannot be completed on time, you
can change the task state to Suspended.

Chapter 7
About Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 73

A task status describes how a task was completed and determines the next task in the
process. Several default statuses are given for each task type. For example, the default
statuses for a manual task are Back, Cancel, Finish, and Next. The default statuses for an
automated or transformation task are Failure and Success. The default statuses for activation
tasks are Success, Activation Failed, and Update OSM Order Failed. You can select from
the set of additional predefined statuses (Delete, False, Rollback, Submit, Failed, and True),
and you can also define your own.

Note

A status represents a transition between tasks. The statuses that you define in the
Task editor States/Statuses tab appear as task transition options in the Task web
client. Statuses that you define for a task but fail to use in the process still appear in
the Task web client as transition options. If a user selects one of these unmapped
options, the OSM server terminates the process.

Related Topics

Assigning Task States and Statuses

About Task Rollback Status

Task Editor States/Statuses Tab

About Task Rollback Status
When you run a rollback from within a given task, the system processes an update that
restores the order to the state that the order was in when the previous task finished. The
system accomplishes this by deleting the new nodes, inserting the removed nodes, and
restoring the updated nodes with the data they held before the current state.

If you are within a subprocess, you can roll back only to previous subprocess tasks. You
cannot roll back from the first subprocess task to the previous parent task. This means that if
you want to roll back an entire subprocess task, you must complete the subprocess, proceed
to the next task in the main process, then roll back to the parent process task that spawned the
subprocess in question.

Because the rollback runs when the Task web client user clicks the Back button, the order
advances according to how you define the rollback status in the process.

If a task is at the rollback status, the Mandatory Check option is disabled for that task. See
"Process Editor Flow Properties General Tab" for more information about the Mandatory
Check option.

Related Topics

Working with Manual Tasks

Designing Workstream Processes

About Task States and Statuses

Task Editor States/Statuses Tab

Chapter 7
About Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 73

About Task Compensation
Compensation refers to the changes OSM makes to an order when a customer requests a
change to the order after the service fulfillment process has been initiated or when a failure
occurs during order processing that triggers compensation for fallout management purposes.
OSM manages these in-flight changes, called order amendments, by analyzing the tasks
performed in the process and determining whether data has changed. This analysis, called
Order Change Management, is necessary when, for example:

• A consumer orders high-speed internet access, then calls back midway through the
service fulfillment process to change bandwidth or cancel the order.

• A business customer orders VoIP service for several office locations and then calls back
multiple times to change the feature sets for the various offices as the order is being
processed.

• An error occurs in an in-flight order where a user or an automation plug-in can raise an
exception, trigger fallout, and make changes to compensate for errors that caused the
error.

In Design Studio, you configure the manner in which OSM manages these changes to in-flight
orders by indicating how the run-time environment compensates the task if it is affected by an
amendment.

Note

Compensation ignores timer delays and event delays between tasks while undoing or
redoing the tasks in a process.

Execution Modes

Tasks can run in one of the following possible execution modes:

• Do is the default mode for a task that runs under normal processing.

• Undo reverses the effects of the associated Do operation.

• Redo combines both Undo and Do operations in a single operation.

• Do in Fallout is the mode that a task uses after the task has moved from the Do execution
mode because of a failure condition. You can use this mode to manually investigate and
resolve failure conditions or trigger automation plug-ins set to run in the fallout mode.

• Undo in Fallout is the mode that a task uses after the task has moved from the
compensation Undo execution mode because of a failure condition. You can use this mode
to manually investigate and resolve failure conditions or trigger automation plug-ins set to
run in the fallout mode.

• Redo in Fallout is the mode that a task uses after the task has moved from the
compensation Redo execution mode because of a failure condition. You can use this mode
to manually investigate and resolve failure conditions or trigger automation plug-ins set to
run in the fallout mode.

On the Compensation Strategy tab of the Task editor, you define how the run-time
environment compensates tasks if they are affected by an amendment. Each section on this
tab represents a scenario to consider when determining a compensation strategy for the task.

Chapter 7
About Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 73

You can model a static compensation strategy from the predefined list or a dynamic
compensation strategy based on an XQuery expression that compares data from the revision
order with the results of a comparison between the current order perspective and the historical
order perspective. Dynamic compensation strategies can be useful if you want to model
different compensation types based on revision order data values. For example, you could
model the XQuery to select an Undo then do compensation strategy if the revision order
bandwidth parameter is greater than 50 MB, and only a Redo compensation strategy if the
bandwidth parameter is less than 50 MB.

You can also configure whether a task is included in compensation when it is completed or in
progress, or you can use an XQuery expression that evaluates whether an in progress task
can be included in compensation based on order data. This ability is important for long running
tasks where a response to a request takes hours or even days but still needs to be considered
in compensation. If you specify that a task can be compensated while it is in progress, you can
also specify whether a grace period should be observed before performing the compensation.
In addition, you must use an XQuery expression to evaluate any changes to the compensating
task data to identify when the compensation has completed and the task can enter into normal
do mode again.

For example, some automated plug-ins communicating with workforce management systems
may involve the dispatching of personnel to perform work over several days. In such cases the
automation plug-in sends the dispatch request to the workforce management system, and
remains in progress until such time as the work is completed. If a revision order were to arrive
that changes some aspects of the work required by the dispatched personnel, then the in
progress automation plug-in responsible for sending the original request should be included in
the compensation plan. You can specify an XQuery that evaluates data on the in progress task
communicating to the workforce management system that determines if the task needs to be
compensated. In addition, you can specify whether a wait period should be observed before
starting compensation. You must also write an XQuery that determines when compensation
has completed, for example, when the task receives the response from the new request
indicating the workforce management system has received the new work details and has
begun to processing the request.

See "Compensation XQuery Expressions" for more information about compensation XQuery
expressions.

Note

If you modify the default strategy settings, ensure that you analyze the task within the
context of the entire workflow because modifying strategy settings in one task can
adversely affect subsequent tasks and task data.

Related Topics

Task Editor Compensation Tab

About Task Fallout
Fallout refers to orders that encounter problems during fulfillment and therefore fall out of
normal processing. OSM places these orders in Failed state (you can also manually fail orders
in the Order Management web client).

In the Design Studio Order editor, you associate a fallout name with one or multiple data nodes
whose values you will want to review (in the Order Management web client) when the

Chapter 7
About Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 73

corresponding type of fallout occurs. In the Task editor, you associate tasks with the types of
fallout that can occur for the task.

See "Task Editor Fallouts Tab" when modeling task fallout in Design Studio.

Ensure that the Exception Processing permission is assigned to roles that are assigned to
fallout tasks.

See "Role Editor Role Tab" for information on assigning permissions to role entities.

Related Topics

Defining Order Fallout

Order Editor Fallouts Tab

Order Editor Fallout Groups Tab

About Enabling Task Web Client Users to Reassign Tasks
A Task web client user can reassign a task only after you configure the task for reassignment
in Design Studio for OSM.

Before a Task web client user can reassign a task, you must ensure the following:

• You have added the Assigned state to the task. See ""Assigning Task States and
Statuses" for more information.

• You have added a role to the task that is responsible for reassigning the task. See
"Assigning Task Permissions" for more information.

• You have an Oracle WebLogic Server user account that is a member of the role entity,
using the Administration area of Order Management web client, that has the Task
Assignment permission applied. See "Role Editor Role Tab" for more information.

See OSM Task Web Client User's Guide for information about reassigning a task.

Creating New Tasks
You create tasks to include in processes that represent the activities required to offer a specific
service to a customer. When creating tasks, you can create new tasks with minimal information
or select an existing task upon which to base the new task entity.

To create new tasks:

1. From the Studio menu, select New, then select Order and Service Management, and
then do one of the following:

• Select Order Management, then select Activation Task

• Select Order Management, then select Automated Task

• Select Order Management, then select Manual Task

• Select Order Transformation, then select Transformation Task

2. In the Project field, select the appropriate OSM project for this task.

By default, the project under which the process was created is selected.

3. (Optional) In the Extends field, select an existing task to leverage the task data and extend
the functionality of that existing task.

Chapter 7
Creating New Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 73

Click Select and select a task for the Extends field. If a suitable task does not yet exist,
click New to create the task. See "About Task Extensions and Inheritance" for more
information.

4. (For activation tasks only) In the Activation System field, select the activation system type
that the task will be communicating with.

5. Associate the task with an order, if necessary.

If you are creating a new task from the Design Studio main menu, you must associate the
task with an order, and the Order field appears in the wizard. When you add tasks to the
Process editor using the Task tool from the Activities drawer, the task is already associated
with an order through the Process entity, and the Order field will not appear in the wizard.

Note

If you are planning to use the task for an order (OrderA) and also an order
(OrderB) that is extended from that order, you must select the parent order
(OrderA) here.

6. In the Name field, enter a name for the new task.

The name must be unique among the task entity types. Two tasks cannot share the same
name, even if they are different types of tasks. For example, an automated task and a
manual task cannot share the same name.

7. (Optional) Select a location for the task.

By default, Design Studio saves the task to your default workspace location. You can enter
a folder name in the Folder field, or select a location different from the system-provided
default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

8. (For transformation tasks only) In the Transformation Manager field, select a
transformation manager to be called from the task.

9. (For transformation tasks only) In the Order Component field, select an order component
to be used in the task.

10. Click Finish.

Design Studio displays the new task entity under the selected project in the Studio Projects
view.

Related Topics

Task Editor

About Task Extensions and Inheritance

Defining Task Data
Task data is the data that the task requires for completion. You can add data to a task directly,
or it can be provided on the order data or inherited from a different task. You can model task
data in several ways using the Task Data tab of the Task editor. If you created the task using

Chapter 7
Defining Task Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 73

the Create Task wizard and you specified an existing task to use, that task's data is displayed
in the Task Data area.

When extending the task data, see the following topics:

• Creating Simple Data Elements, Structured Data Elements, and Data Structure Definitions

• Adding Data to a Task

• About the Task Editor Task Data Context Menu

Note

Different tasks can have different default values for the same data element. Because
of this, whenever you add data from the Data Dictionary to a task, the default value
defined in the Data Dictionary will not be inherited by the data element on the task.

Adding Data to a Task
You can add any data defined in the Data Dictionary or the order to the task data.

To add data you have previously created:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab. When
modeling data for activation tasks, navigate to the Task Request Data tab and right-click
in the Task Data area.

2. Select Select from Order Template or Select from Data Schema.

A dialog box is displayed, enabling you to select data elements.

Note

You can alternatively select Open Data Element view and then drag data
elements from the Data Dictionary onto the Task Data area.

3. Select which data you want to add to the task.

Tip

When selecting data to add to the task:

• Press and hold the Shift key to select multiple consecutive elements. Or, press
and hold the Control key to select multiple non-consecutive elements.

• Select a parent node to add all data elements (simple and structured data
elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes. Design
Studio automatically adds parent nodes associated to the child node up to the
root of the data schema.

4. Click OK.

Chapter 7
Defining Task Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 73

Design Studio adds the elements to the Task editor Task Data area.

5. Click Save.

Related Topics

Working with Orders

Task Data Node Properties View Identification Tab

Task Data Node Properties View Dictionary Tab

Task Editor

Adding a New Data Structure Definition to a Task
You can create and add a new data structure definition to a task. See "About OSM Data in
Model Projects" for more information about data structure definitions.

To add a new data structure definition to a task:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab. When
modeling data for activation tasks, navigate to the Task Request Data tab and right-click
in the Task Data area.

2. Select Select Data Structure Definition.

A dialog box is displayed, enabling you to select data structure definitions.

Note

You can alternatively select Open Data Element view and then drag data
elements from the Data Dictionary onto the Task Data area.

3. Select the data that you want to add to the task.

4. Click OK.

Design Studio adds the data structure definitions to the Task editor Task Data area.

5. Click Save.

Related Topics

Working with Orders

Task Editor

Adding an Existing Data Structure Definition to a Task
To add data structure definitions that you have previously created:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab. When
modeling data for activation tasks, navigate to the Task Request Data tab and right-click
in the Task Data area.

2. Select Select Data Structure Definition.

Chapter 7
Defining Task Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 73

A dialog box is displayed, enabling you to select data structure definitions.

Note

If no data structure definitions are displayed in the Matching items area, you must
define the dependency of the data structure definition to the model project before
you add it to the task data. For more information, see "Managing Project
Dependencies".

3. Select the data structure definitions that you want to add to the task.

Tip

When selecting data structure definitions to add to the task:

• Press and hold the Shift key to select multiple consecutive elements. Or, press
and hold the Control key to select multiple non-consecutive elements.

• Select a parent node to add all data elements (simple and structured data
elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes. Design
Studio automatically adds parent nodes associated to the child node up to the
root of the data schema.

4. Click OK.

Design Studio adds the data structure definition, and all its child data elements and
structures, to the Task editor Task Data area.

Note

Derived data structure definitions are not displayed in the Task Data area.

5. Click Save.

Related Topics

Working with Orders

Task Editor

Assigning Task States and Statuses
When you create a task, the system assigns three mandatory processing states, which cannot
be removed, to the task: Accepted, Completed, and Received. You can also select additional
predefined states. Similarly, you assign completion statuses to the task by selecting from a list
of predefined statuses or by adding your own.

When assigning task states and statuses, see the following topics:

• About Task States and Statuses

• About Task Rollback Status

• Assigning States to Tasks

Chapter 7
Assigning Task States and Statuses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 73

• Assigning Statuses to Tasks

Assigning States to Tasks
When you create a task, the system assigns three mandatory processing states, which cannot
be removed, to the task: Accepted, Completed, and Received. You can also assign additional
states to tasks and remove states that are assigned to tasks.

To assign predefined states to tasks:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. In the States area, click the Select button.

The Select a State dialog box is displayed.

3. Select a user-defined state to assign to the task.

See "About Task States and Statuses" for more information about mandatory task states
and user-defined task states.

4. Click OK.

To create a new state and assign it to a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. In the States area, click the corresponding Add button.

The Add State dialog box is displayed.

3. Enter a name and a display name for the new state.

4. Click OK.

To remove a state assignment for a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. Select a state and click Remove to delete a state from the list.

Assigning Statuses to Tasks
You assign completion statuses to the task by selecting from a list of predefined statuses or by
adding your own. You can also remove statuses that are assigned to the task.

To assign statuses to tasks:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. In the Statuses area, click the corresponding Select button.

The Select a Status dialog box is displayed.

3. Select a predefined status to assign to the task.

See "About Task States and Statuses" for more information about statuses.

4. Click OK.

Chapter 7
Assigning Task States and Statuses

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 73

To create a new status and assign it to a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. In the Status area, click the corresponding Add button.

The Add Status dialog box is displayed.

3. Enter a name and a display name for the new status.

4. Select a value for the Constraint field.

All statuses have a corresponding constraint severity level that determines the transition
behavior of the task when a constraint violation occurs. When you add a new status and
select the associated default constraint, the system displays a list of available values.

See "Defining Constraint Behavior Properties" for more information.

5. Click OK.

To remove the status assignment from a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this tab.

2. Select a status and click Remove to delete a status from the list.

Assigning Task Permissions
You assign execution modes to roles for each task to specify which roles can perform the
execution mode. For example, you can restrict a particular role from performing a redo on a
task.

To add a role to the Permissions table:

1. In the Task editor, click the Permissions tab.

2. Select an existing role or create a new role to add to the Task Permissions table.

Do one of the following:

• Click Select to add an existing role to the list.

• Click New to create a new role.

See "Creating New Roles" for more information.

Note

For automated and transformation tasks, Oracle recommends that you select or
create an automation role. Assign the oms-automation user to this role using the
OSM Administration area of the Order Management web client, and assign
permissions for automated tasks to the automation role only. Using an automation
role ensures that only automation plug-ins process automated tasks.

See OSM Order Management Web Client User's Guide for more information about
assigning users to roles.

3. For each role listed in the Role Name column, select or deselect, as appropriate, the Do,
Undo, Redo, Do in Fallout, Undo in Fallout, and Redo in Fallout, check boxes to
enable or disable access to the task execution modes.

Chapter 7
Assigning Task Permissions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 73

See "Task Editor Permissions Tab" for more information about task execution modes.

4. (Optional) To view the permissions defined for a role, select a role and click Open. The
system displays the role in the Role editor, where you can view the permissions assigned
to the role. You assign permissions to a role to give the users in that role access to related
functions in the Task web client.

5. (Optional) To delete a role assignment for a task, select the role and click Remove.

Related Topics

Working with Roles

Working with Manual Tasks

Converting Tasks
Design Studio enables process modelers to create tasks in the absence of detailed design-
level information. Consequently, as you model your tasks, you may need to convert the task
from one type to a different type.

You can convert between manual, automated, activation, and transformation tasks.

Caution

When converting from one type of task to another, Design Studio displays a prompt if
the potential for data loss exists (for example, when converting from an automated
task to a manual task). Consider your task conversions carefully before implementing
them.

To convert a task to a different task type:

1. In the Process editor, right-click a task and select Convert.

2. Select the task type to which you want to convert.

Related Topics

Deleting Unreferenced Tasks

Working with Tasks

Deleting Unreferenced Tasks
When you delete an activity from the Process editor, the system identifies all referenced task
entities. If no other activities reference the task, you can define your OSM system preferences
to delete these orphaned tasks.

To define OSM general preferences to delete unreferenced tasks:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, expand Oracle Design Studio, and then select Order
and Service Management Preferences.

Chapter 7
Converting Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 73

3. In the Delete Orphaned Task References with Activity field, do one of the following:

• If you want the system to automatically delete orphaned tasks, select Always.

• If you want the orphaned tasks to remain in the workspace, select Never.

• If you want the system to display a prompt for the user, select Prompt.

Note

If activities other than the deleted activity reference a task, the system does not
delete the task or display a prompt, because the task is still required elsewhere.

4. Click OK.

Design Studio saves your preferences.

Related Topics

Converting Tasks

Working with Tasks

Working with Automation Plug-Ins
You use automation plug-ins to implement specific business logic automatically. You can create
automation plug-ins to update order data, complete order tasks with appropriate statuses, set
process exceptions, react to system notifications and events, send requests to external
systems, and process responses from external systems.

When working with automation plug-ins, see the following topics:

• About Automation Plug-ins

• Creating New Custom Automation Plug-ins

• Configuring Automation Plug-In Properties

• Example: Modeling a Basic Automator Plug-In

Related Topics

About Tasks

Task Editor

About Automation Plug-ins
When learning about automation plug-ins, see the following topics:

• About Automation Plug-in Types

• About Automation Plug-in Association

• About Automation Message Correlation

About Automation Plug-in Types
There are two basic types of delivered automation plug-ins: Sender and Automator. Each type
can be implemented using XSLT or XQuery, and each type can be defined as an internal event

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 73

receiver (the JMS message that triggers the call to the plug-in is generated by OSM) or as an
external event receiver (the JMS message that triggers the call to the plug-in is generated by
an external system).

• Automator plug-ins receive information from OSM or from an external system, then
perform some work. Depending on how you configure the plug-in, it can also update the
order data. See "Predefined Automation Plug-ins" for sample XQuery and XSLT
automators.

• Sender plug-ins receive information from OSM or from an external system. They perform
some business logic, and they may or may not update an order, depending on your
configuration. Additionally, they can produce outgoing JMS or XML messages to an
external system. When generating JMS messages, you can define JMS messages to
connect to a topic or queue. See "Predefined Automation Plug-ins" for sample XQuery and
XSLT senders.

Note

XQuery automation types cannot be implemented when using releases prior to OSM
7.0.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Task Editor Automation Tab

About Automation Plug-in Association
When you add an automated task to a process, you must associate at least one automation
plug-in for the task. To associate an automation plug-in for a task, you open the automated
task entity in the Automated Task editor, and add the plug-in to the task in the Automation tab.
When you deploy your cartridge to the run-time environment, the OSM server detects a task
that has an automation plug-in associated with it and the server triggers the plug-in to perform
its processing.

An automated task might have only a single automation plug-in associated with it. For
example, you might associate a built-in Automator plug-in with the task to interrogate the task
data, perform some calculation, update the order data, and transition the task. In this example,
as soon as the Automator plug-in has finished processing, it updates the task with an exit
status, and the OSM server moves to the next task.

An automated task can have multiple associated automation plug-ins. For example, you might
want to associate multiple plug-ins with a task to represent conversations with external
systems. You can associate a built-in Sender plug-in to receive the task data and send it to an
external system for processing. That external system might send an acknowledgment back to
a queue, where a second Automator plug-in (one that is defined as an external event receiver:
it receives data from external system queues) consumes the reply and updates the order data
with the response. A third Sender plug-in might send the external system a message to begin
processing, and a fourth Automator plug-in can receive the "processing complete" message
from the external system, update the order, and transition the task.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 73

Task Editor Automation Tab

About Automation Message Correlation
Automation plug-ins defined as external event receivers are designed to process JMS
messages from external systems. JMS messages are asynchronous, therefore external event
receivers provide a method of correlating responses to requests previously delivered to enable
you to map OSM orders to external system orders.

To correlate responses, the plug-in sets a property on the outbound JMS message, with the
name of the value set for the correlation property in the automationmap.xml file and a value
decided by your business logic.

For example, business logic might dictate that you correlate on a reference number. The
external system copies the properties that you defined for the correlation on the request and
includes that data in the response.

You can use the Message Property Selector field to filter messages placed on the queue and
determine which automation to run. You define the Message Property Selector value as a
Boolean expression that is a string with a syntax similar to the where clause of an SQL select
statement. For example, the syntax may be:

"salary>64000 and dept in ('eng','qa')"

When the condition evaluates to true, the message is picked up and processed by the
automation that defined that condition.

In a second example, consider that an external system defines five order types and OSM
defines a different automation to process each order type. Each automation defines a different
value in the Message Property Selector field, such as orderType=1, orderType=2, and so
forth. When a message is sent to the queue by the external system, and the message includes
the order type upon which the condition is based, the automation framework evaluates each
condition until one evaluates to true. If more than one automation defines the same condition,
the first one that evaluates to true is picked up and processed.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 73

Note

When you define only one automation plug-in external event receiver for each
automated task, and you use the Optimized build-and-deploy mode to build and
deploy automation plug-ins, you are not required to enter a selector in the Message
Property Selector field. (For OSM 7.3 servers and later, Optimized is the only build-
and-deploy mode available.) In this case, automated tasks can share the same JMS
queue without a message property selector being set. You must set a message
property selector when you do any of the following:

• Define multiple automation plug-in external event receivers for the same
automated task.

• Set up other applications (besides OSM) to share the same queue that an external
event receiver is listening on.

• Use the Legacy build-and-deploy mode to build and deploy cartridges with
automation plug-ins.

• Use both (Allow server preference to decide) build-and-deploy mode to build and
deploy cartridges with automation plug-ins and configure the OSM server dispatch
mode for the Internal mode.

See "Defining Build-and-Deploy Modes for Automation Plug-ins" for information on
build-and-deploy modes.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Task Editor Automation Tab

Creating New Custom Automation Plug-ins
Automation plug-ins enable you to extend OSM behavior by running specific business logic
when events occur, sending and receiving data to and from external systems, and updating
orders.

Design Studio supports two types of built-in automation plug-ins: Sender and Automator.
Additionally, you can create your custom automation plug-ins using the custom automation
plug-in template. You can, for example, write your own custom code to make CORBA or web
services calls to external systems and register the custom plug-in against an automated task.

To create a custom automation plug-in:

1. From the Studio menu, select New, then select Order and Service Management, and
then select Custom Automation Plug-in.

The Custom Automation Plug-in wizard is displayed.

2. In the Project field, select the project in which to save the new custom plug-in.

3. In the Name field, enter a name for the plug-in.

The name must be unique among the automation entity types within the same namespace.

4. Click Finish.

The Custom Automation Plug-in editor is displayed.

5. Click Select.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 73

The Select Java Class dialog box is displayed. Select from the src folder the Java class
that implements the automation interface. See OSM Developer's Guide for more
information about Java classes and custom plug-ins.

6. Click OK.

7. In the XML template field, enter the XML required for the plug-in's implementation.

8. In the Documentation field, enter information about the plug-in.

Related Topics

Example: Modeling a Basic Automator Plug-In

Working with Automated Tasks

Configuring Automation Plug-In Properties
After you add a plug-in to the Design Studio entity, you define the plug-in properties.

Note

The type of automation (for example, an XSLT Sender) and the automation function
(for example, a task event) determine which tabs appear in the Properties view.

To configure automation plug-ins:

1. From the Studio menu, select Show Design Perspective.

2. In an OSM entity editor Automation subtab, select an automation plug-in. You can
configure automation plug-ins in the following editors:

• The Order editor Jeopardy tab Automation subtab.

• The Order editor Notifications tab Automation subtab.

• The Order editor Events tab Automation area.

• The Manual and Automated Task editor Jeopardy tabs Automation subtabs.

• The Manual and Automated Task editor Events tabs Automation subtabs.

• The Process editor, flow lines with status transition defined in the Properties subtab
Events subtab Automation subtab.

• The Process editor exception path flow lines in the Properties subtab Events subtab
Automation subtab.

• The Process editor Automated and Manual Tasks in the Properties subtab Events
subtab Automation subtab.

3. Click Properties.

The Properties view is displayed showing the automation plug-in properties tabs. If you
selected properties from the process editor properties sub-tab, then the Properties view
displays in a Additional Properties dialog box.

4. Click the Details tab.

In the Details tab, you can name the plug-in and identify the user whose credentials will be
used to run the automation plug-in. See "Properties View Details Tab" for more information.

5. Click the Compensation tab.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 73

Note

This tab is called the Execution Mode tab in the Manual and Automated Task
editor Events tabs Automation subtabs.

6. In the Compensation tab, specify the execution modes in which the plug-in will run when
called.

See "Properties View Compensation Tab" for more information.

7. (For external event receivers only) Click the External Event Receiver tab.

Define the name of the external system from which the plug-in receives messages.
Additionally, you can define whether the plug-in filters for specific properties on the
incoming message header or body. Finally, you can provide specific connection information
if the messages are retrieved from an external system. See "Properties View External
Event Receiver Tab" for more information.

8. (For external event receivers only) Click the Correlation tab.

Map messages from external systems to specific OSM tasks. You can use the
JMSCorrelationID or enter an XPath expression to filter for a specific element in the XML
body of the message. See "Properties View Correlation Tab" for more information.

9. (For XSLT types only) Click the XSLT tab.

Define where the XSLT style sheet is located, caching properties for the style sheet, and
the exit status that the plug-in should use if it throws an exception.

See "Properties View XSLT Tab" for more information.

10. (For XQuery types only) Click the XQuery tab.

Define where the XQuery file is located, caching properties for the file, and the exit status
that the plug-in should use if it throws an exception.

See "Properties View XQuery Tab" for more information.

Note

XQuery automation types cannot be implemented when using releases prior to
OSM 7.0.

11. (For Sender types only) Click the Routing tab.

Define where the automation plug-in should send messages, and where the external
systems should send responses. See "Properties View Routing Tab " for more information.

12. Click the Notes tab.

Document the intended use of the automation plug-in.

13. Click Save.

Example: Modeling a Basic Automator Plug-In
This example demonstrates how to configure an Automator plug-in that receives data from an
internal OSM JMS queue and updates order data using an XSLT style sheet. In the example,
assume that the XSLT style sheet includes conditional logic to apply a level 1 priority to the
order if the order is from a specific customer.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 73

This example demonstrates how to:

1. Create an automated task and add the relevant task data.

2. Add an automation plug-in to the automated task.

3. Configure the automation plug-in properties.

Note

An automated plug-in exists within the context of a Design Studio cartridge project,
order, process, and automated task. For purposes of demonstration, this example
assumes the existence of multiple Design Studio entities. For example, it assumes the
existence of a cartridge project called DSLCartridge, an order called DSLOrder, a
process called DSLProcess, and an XSLT style sheet called check_customer.xslt that
populates default values in the order data. It assumes that the Data Dictionary
includes the two data nodes, customer_name and order_priority. It also assumes that
the new automated task will be added to the DSLProcess entity. The naming
conventions used in this example are for illustrative purposes only.

Step 1: Creating the automated task

1. From the Studio menu, select New, then select Order and Service Management, and
then select Automated Task.

The Automated Task wizard is displayed.

2. In the Automated Task wizard, enter or select the following values:

• In the Project field, enter DSLCartridge.

• In the Order list, select DSLOrder.

• In the Name field, enter Check_Customer.

See "Creating New Tasks" for more information.

3. Click Finish.

The new automated task is displayed in the Automated Task editor.

4. Click the Task Data tab.

In this example, you will update the order_priority field with a default value of 1 if the order
is from a specific customer.

Note

Normally, the task data includes all of the data that the task requires to complete.
To simplify the example, this task includes only the two pertinent fields:
customer_name and order_priority. See "Defining Task Data" for more information.

5. Right-click in the Task Data area and select Select from Data Schema.

The Select Data Elements dialog box is displayed.

6. Select the data nodes customer_name and order_priority.

7. Click OK.

The two data nodes are displayed in the Task Data area.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 73

8. Click the Permissions tab.

On the Permissions tab, you can ensure that only the automation role has permissions for
automated tasks. See the note in "Assigning Task Permissions" for more information.

You are now ready to add a plug-in to the automated task.

Step 2: Adding the automation plug-in to the automated task

1. In the Automated Task editor, click the Automation tab.

2. Click Add.

The Add Automation dialog box is displayed.

3. In the Name field, enter Check_Customer.

4. In the Automation Type field, select XSLT Automator.

5. Click OK.

The Check_Customer plug-in is displayed in the Automation list.

6. From the Automation list, select the Check_Customer plug-in.

7. Click Properties.

The Properties view is displayed showing the automation plug-in properties tabs.

You are now ready to define the automation plug-in properties.

Step 3: Defining automation plug-in properties

1. In the Automated Task editor Properties view Details tab, accept the default value in the
EJB Name field.

2. Ensure that the model variable that defaults to the Run As field points to a user name set
up in the WebLogic Server Administration console. When you deploy the cartridge, the
user in the Run As field is added automatically to the OSM_automation group.

For more information about users and groups, see the discussion of setting up security in
OSM System Administrator's Guide. For more information about model variables, see
"Project Editor Model Variables Tab".

3. Click the XSLT tab.

On the XSLT tab, you define where the XSLT style sheet is located and the status to set if
the automation fails. In this example, you define a location on your local machine where
the XSLT file is stored.

4. Select Absolute Path.

5. In the XSLT field, enter the location of the XSLT file.

For this example, enter
C:\oracle\user_projects\domains\osmdomain\xslt\DSLCartridge\1.0.0\check_custom
er.xslt.

6. In the Exception field, select Failure.

This field represents the exit status that the plug-in should use if it throws an exception.
The options available in this field include any status values you assigned to the task.

7. Select Update Order.

This option ensures that the default values obtained from the XSLT style sheet are saved
to the order data.

8. Click Save.

Chapter 7
Working with Automation Plug-Ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 73

You have completed the basic configuration for an Automator plug-in defined as an internal
event receiver.

Note

Successful automation requires a complete automation build file in the cartridge. If no
automation build file exists, Quick Fix generates one.

Related Topics

Configuring Automation Plug-In Properties

Working with Automated Tasks

Working with Manual Tasks
A manual task is a task that must be performed by a person. For example, a manual task could
involve a technician who travels to a customer's home to install a phone line. The system
displays the description of the manual task in the Task web client worklist and query list.

After you have created a manual task entity using the Manual Task wizard or the Create Task
wizard, you can start modeling the task data and assigning other attributes. When modeling
manual tasks, see "Defining Manual Task Behaviors" for more information.

Related Topics

About Tasks

Task Editor

Defining Manual Task Behaviors
The Manual Task editor Task Data tab enables you to define behaviors at the task level.
Behaviors provide a way to extend the functionality and appearance of task data. Each
behavior type performs an action; for example, calculating or validating data, or displaying
fields in read-only or read-write modes. When you define a behavior at the task level, the
behavior applies only to the task.

When defining behaviors at the task level, you can use the Task editor Task Data tab to create
the behavior, the Properties view for the behavior to refine the behavior information, and the
Task editor Behaviors tab to view all of the behaviors defined for a task.

To define a behavior at the task level:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click the manual task entity for which you are defining the behavior.

Design Studio displays the task in the Manual Task editor.

4. In the Task Data area, select the data node upon which to model the behavior.

See "Task Editor Task Data Tab" for more information about the fields on this tab.

5. Right-click in the Behaviors area and select Add Behavior.

6. Select a behavior from the list.

Chapter 7
Working with Manual Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 73

Note

The Calculation, Event, and Lookup behavior types cannot be defined for
structured data elements. These behaviors are not relevant because structured
data elements do not represent actual data and cannot be acted upon in this way.

Design Studio adds the behavior to the Behaviors area. Each behavior type enables you to
dynamically control a specific aspect of your order data model.

7. In the Behaviors area, click the behavior to open the Properties view.

The Properties view is displayed with the set of properties that you must define for the
corresponding behavior type. See "Working with Behaviors" for more information.

8. Click Save.

Note

After you define the behavior properties, you can click the Task editor Behaviors tab
to review all of the behavior properties information defined for the task. See "Task
Editor Behaviors Tab" for more information.

Working with Automated Tasks
An automated task is completed by an external OSM agent or by automation plug-ins. You can
create an automated task to connect to a database, transform some data, or communicate with
an external system.

When you create an automated task you must also configure at least one automation plug-in to
perform the intended operation. Design Studio provides several built-in automation plug-ins, or
you can develop your own plug-in using a custom template. An automated task might have a
single automation plug-in associated with it (for example, to interrogate the task data, perform
some calculation, and update the order data), or it might have multiple automation plug-ins
associated with it (one to send information to an external system; one to receive replies from
the external system; and another to perform some calculation, update the order, and transition
the task).

After you have created an Automated Task entity using the Automated Task wizard, you can
start modeling the task and configuring the automation plug-ins.

See OSM Developer's Guide for more information about automation.

When modeling automated tasks, see the following topics:

• Adding Automation Plug-ins to Automated Tasks

Related Topics

Working with Automation Plug-Ins

Defining Automated Task Behaviors
The Automated Task editor Task Data tab enables you to define behaviors at the task level.
Behaviors provide a way to extend the functionality and appearance of task data. Each

Chapter 7
Working with Automated Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 73

behavior type performs an action; for example, calculating or validating data, or displaying
fields in read-only or read-write modes. When you define a behavior at the task level, the
behavior applies only to the task.

When defining behaviors at the task level, you can use the Task editor Task Data tab to create
the behavior, the Properties view for the behavior to refine the behavior information, and the
Task editor Behaviors tab to view all of the behaviors defined for a task.

To define a behavior at the task level:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click the automated task entity for which you are defining the behavior.

Design Studio displays the task in the Automated Task editor.

4. In the Task Data area, select the data node upon which to model the behavior.

See "Task Editor Task Data Tab" for more information about the fields on this tab.

5. Right-click in the Behaviors area and select Add Behavior.

6. Select a behavior from the list.

Note

The Calculation, Event, and Lookup behavior types cannot be defined for
structured data elements. These behaviors are not relevant because structured
data elements do not represent actual data and cannot be acted upon in this way.

Design Studio adds the behavior to the Behaviors area. Each behavior type enables you to
dynamically control a specific aspect of your order data model.

7. In the Behaviors area, click the behavior to open the Properties view.

The Properties view is displayed with the set of properties that you must define for the
corresponding behavior type. See "Working with Behaviors" for more information.

8. Click Save.

Note

After you define the behavior properties, you can click the Task editor Behaviors tab
to review all of the behavior properties information defined for the task. See "Task
Editor Behaviors Tab" for more information.

Adding Automation Plug-ins to Automated Tasks
When using automated tasks in a process, you must create the automation plug-ins that
perform the processing for the task. Automation plug-ins enable the system integrator to
extend OSM behavior by running specific business logic when events occur or by sending data
to and receiving data from external systems. Design Studio supports two types of built-in
automation plug-ins: Sender and Automator. See "Working with Automation Plug-Ins" for
information about built-in automation types.

Chapter 7
Working with Automated Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 73

To add an automation plug-in to an automated task:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click an automated task.

Design Studio displays the corresponding automated task in the Automated Task editor.

4. Click the Automation tab.

5. In the Automation tab of the Automated Task editor, click Add.

The Add Automation dialog box is displayed.

6. In the Name field, enter a name for the plug-in.

The name must be unique among the plug-in entity types within the same namespace.

7. Select the plug-in type.

For example, select the Automator type if the plug-in receives data and performs some
work. Select the Sender type if the plug-in receives data, performs some work, and then
sends data to external systems.

8. In the Event Type field, do one of the following:

• If the plug-in receives data from external systems via topics or queues, select External
Event Receiver.

Automations defined as external event receivers receive incoming JMS or XML
messages from external systems and can automatically convert and correlate
message data. Additionally, Sender plug-ins defined as external event receivers can
generate new outbound messages based on received messages.

• If the plug-in receives data from the OSM order, select Internal Event Receiver.

Automations defined as internal event receivers receive messages from an internal
queue to which the automation framework subscribes. Messages sent by OSM to the
internal queue are triggered by internal events.

9. Click OK.

The newly created plug-in is displayed in the Automation list.

10. Select the plug-in from the list and click Properties.

The Properties view is displayed with information that varies by plug-in type (Automator or
Sender) and by event receiver type (Internal or External). See "Configuring Automation
Plug-In Properties" for more information.

Related Topics

Working with Automated Tasks

Working with Activation Tasks
Activation tasks provide integration between OSM and either ASAP or IP Service Activator.
You can model a process flow that includes one or more tasks that activate services in a
network using those systems.

Before modeling activation tasks, you must import at least one ASAP or IP Service Activator
service cartridge, which you use to define relationships between tasks and service actions.
See "Importing Activation Cartridge Projects" for more information.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 73

When you create a first activation task in a workspace, Design Studio creates a data dictionary
project called ActivationOSMIntegrationDataDictionary containing the data schema structure
for ASAP and IP Service Activator. Data elements are annotated on the Notes tab of the Data
Schema editor. The ASAP data schema is called ASAP_OSM. The IP Service Activator data
schema is called IPSA.

When modeling activation tasks, see the following topics:

• About Activation Tasks

• Modeling Activation Tasks

About Activation Tasks
The interaction between OSM and the activation system is established through a service
request and response, which you configure by mapping OSM task data to system parameters.

For ASAP, the OSM data is transformed to an OSS/J or web services order and sent to ASAP
to activate the specified services.

For IP Service Activator, the OSM data is transformed to a web services order that is sent to IP
Service Activator to activate the specified services.

The activation system returns event responses or exceptions, depending on the result of the
activation.

Using the activation task, you can:

• Update OSM orders with data from all events and exceptions returned by the activation
system (either ASAP or IP Service Activator).

• Map OSM data to Activation order headers, global parameters, and service action
parameters.

• Automatically map OSM data to global or service action parameters with the same name.

• Define conditional transition states and statuses for completion events and completion
exceptions returned by the activation system.

• Enter Map and Key security credentials for web services orders.

Mapping OSM data to ASAP and IP Service Activator parameters ensures:

• That OSM sends the data that the activation system requires for service actions (the
request)

• That OSM orders are updated with the right information returned from the activation
system (the response)

• That the OSM activation task transitions properly when the integration is complete

See the following topics for more information on service action requests:

• About Service Action Request Mapping

• About Service Action Response Mapping

• About State and Status Transition Mapping

About Service Action Request Mapping
The service action request is made up of the following data:

• OSM header data: information that applies to the customer or to all line items on the order

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 73

• OSM task data: information that is available to the task and necessary for the task to
complete

The service action is made up of the following data:

• Activation order header data: information that applies to the entire work order

• Service action data: information that is required to activate a service

• Global parameters data: information that you define once and which applies to multiple
service actions

You define parameter values in the Design Studio Properties view. For service action and
global parameters, you can define default mapping information. For activation order header
parameters, you can define either default mapping information or default actions (for example,
the default value for the srqAction parameter is ADD).

Some parameters in the activation order headers are prepopulated with default values,
indicated by a check mark when you first expand the Activation Order Headers in the
Service Actions tree.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

Modeling Activation Tasks

About Service Action Response Mapping
You create data structures in OSM to contain the response information returned from ASAP
and IP Service Activator. For each event and exception returned by the activation system, you
select the parameter values you want to retain, then identify the OSM data structure to which
these parameters are added. When the activation system returns an event or exception, OSM
updates the order data with the parameter values that you selected.

The list of events and exceptions and activation response parameters are different for each
activation system.

The activation response parameters for ASAP can be customized.

The activation response parameters for IP Service Activator cannot be modified and conform
to how IP Service Activator expects to receive response data from OSM.

The infoParm parameter is significantly more complex for IP Service Activator than it is for
ASAP.

When an activation task is configured with IP Service Activator service actions that require an
IP Service Activator transaction to fulfill the activation request, the transaction structure in the
InfoParms structure contains information relating to the IP Service Activator transaction.

When an activation task is configured with IP Service Activator service actions that look up
data (such as for navigation service actions), the return data conforms to the infoParms
structure in the activation response, with one infoParm per service action.

Related Topics

Configuring Service Action Responses

Task Editor Response Data Tab

Modeling Activation Tasks

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 73

About State and Status Transition Mapping
Using the Task editor Response Data tab, you can configure state and status transitions for
completion events and exceptions returned by the activation system. You can define multiple
transitions (each with an XPath expression) to model different scenarios for variations in the
response data. For example, if an ASAP or IP Service Activator parameter returns the value
DSL, you may want the task to transition to a DSL task; when the same parameter returns the
value VOIP, you want the task to transition to a different task.

You can define state transitions for user-defined states only. You cannot define transitions for
system states, such as received, accepted, and completed. You define the condition in the
Properties views. At run time, OSM evaluates the conditions in the order you have defined
them and stops evaluating when a condition evaluates to true.

Completion events and exceptions must include a default transition in the event that all
specified conditions fail. You can change or delete the predefined default values, or you can
create your own. You can change or delete the predefined default values or you can create
your own. If you define no default conditions for the required completion events and exceptions
(no condition is defined with XPath expression true()) Design Studio creates a problem marker.

The following table lists completion events and exceptions that require a default transition
configuration:

Name Activation System Type

orderCompleteEvent ASAP and IP Service Activator Event

orderCreateEvent ASAP only Event

orderEstimateEvent ASAP only Event

orderFailEvent ASAP and IP Service Activator Event

orderNEUnknownEvent ASAP only Event

orderRollbackEvent ASAP only Event

orderSoftErrorEvent ASAP only Event

orderStartupEvent ASAP only Event

orderTimeoutEvent ASAP only Event

orderTimeoutWarningEvent ASAP and IP Service Activator Event

createOrderByValueException ASAP and IP Service Activator Exception

getOrderByKeyException ASAP only Exception

queryManagedEntitiesException ASAP only Exception

Related Topics

Configuring Service Action Response State and Status Transitions

Task Editor Response Data Tab

Modeling Activation Tasks

Modeling Activation Tasks
You model activation tasks to integrate OSM with either and ASAP or IP Service Activator. You
can model a process flow that includes one or more tasks that activate services in a network.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 73

Note

Before modeling activation tasks, ensure that you have defined the Design Studio
preferences for the OSM SDK and WebLogic Server installations. See "Defining Order
and Service Management General Preferences" for more information.

To model an activation task:

1. Import an ASAP or IP Service Activator service cartridge.

See "Importing Activation Cartridge Projects" for more information.

2. Create an Activation Task entity.

You create an Activation Task entity to hold all of the information necessary to send a
request to the activation system, receive the response, update the order, and transition the
task. See "Creating New Tasks" for information about creating tasks, and see "Designing
Tasks and Activities" for information about creating tasks from the Process editor.

Note

The first time that you create an Activation Task entity in a workspace, Design
Studio automatically creates a new project to contain data elements necessary for
integration between OSM and the activation system. This project is sealed and the
data within should not be changed.

3. Model the activation task data.

You select the data that the activation task requires from the order data or from a data
dictionary. See "Defining Task Data" for more information.

4. Configure the mapping information needed to make the service action request to the
activation system.

See "Configuring Service Action Requests" for more information.

5. Configure the mapping information needed to update OSM orders with the response data
returned by the activation system.

See "Configuring Service Action Responses" for more information.

6. Configure state and status transitions for completion events and completion exceptions
returned by the activation system.

See "Configuring Service Action Response State and Status Transitions" for more
information.

7. Configure activation task details.

You define the attributes that enable the activation task to process properly in the
Activation environment. See "Task Editor Details Tab" and "Task Editor Activation Task
Details Tab" for more information.

8. Define activation task compensation strategies.

You specify how to compensate an activation task if the task is affected by amendment
processing. See "Task Editor Redo Tab" and "Task Editor Undo Tab" for more information.

9. Configure activation task states and statuses.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 73

A task state determines the milestone of a task in a process. A task status describes how a
task was completed and determines the next task in the process. See "About Task States
and Statuses" and "Assigning Task States and Statuses" for more information.

10. Configure activation task permissions.

You assign execution modes to roles for each task to specify which roles can perform the
execution mode. See "Assigning Task Permissions" for more information.

11. (Optional) Configure activation task jeopardies.

You can configure conditional jeopardy notifications to alert users or systems that the
activation task may be at risk. See "Task Editor Jeopardy Tab" for more information.

12. (Optional) Configure task state automation events.

You configure state-based event notifications to alert users or systems of changes to the
activation task state. See "Task Editor Events Tab" for more information.

Configuring Service Action Requests
You configure service action requests by mapping OSM order header and task data to
Activation order header, service action, and global parameters. Additionally, you can define
conditional logic to determine when service actions should be added to a work order request.

Note

See "Modeling ASAP Services" and "Defining Service Action Properties" for more
information about creating and configuring service actions.

To configure service action requests:

1. Associate service actions with the activation task:

a. On the Request Data tab, right-click in the Service Actions area and select Add
Service Action.

Note

Service actions for IP Service Activator are available in reference Design
Studio IP Service Activator projects or are generated by Design Studio when a
CTM template is imported into an Activation IPSA project. See "About CTM
Templates" for more information.

b. Right-click the service action to either change the sequence of service actions, open
them in the Service Action editor, or remove them from the task.

2. (Optional) Define new global parameters.

You can define service actions as global parameters to avoid mapping the parameter
multiple times:

a. In the Request Data tab, right-click in the Service Actions area and select Add Global
Parameters.

The Add Global Parameter dialog box is displayed.

b. In the Name field, select the desired parameter, enter the value, and click OK.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 73

3. Map OSM data to Activation order header, service action, and global scalar parameters:

Note

For details about mapping and optionally transforming OSM data to service action
XML parameters, see "Mapping OSM Data to Service Action XML Parameters".

a. In the Request Data tab Task Data area, select Order Header or Task Data.

Depending on your selection, the fixed order header data or the task data defined for
the activation task is displayed in the Task Data area.

b. In the Service Actions area, expand the Activation Order Headers folder, the Global
Parameters folder, or any service action folder to display the parameters.

Required service action parameters are displayed with an asterisk after the parameter
name.

c. Drag an OSM order header or a task data node onto an Activation order header,
service action, or global parameter.

A check mark appears next to the parameter to indicate that it is mapped to OSM data.
Right-click the parameter and select Properties to review the mapping information,
default value, and condition expression, depending on the parameter.

Note

To automatically build XPath expressions, press and hold the Alt key, then
drag OSM data from the Task Data area to the Properties view Binding field.
Constants or default values must be enclosed within apostrophes (' ').

4. (Optional) Automatically map task data to global parameters:

a. In the Request Data tab Task Data area, select Task Data.

b. In the Task Data area, right-click a data structure and select Auto map parameter.

Design Studio automatically maps the data structure, including its child elements, to a
global parameter of the same name (case sensitive).

5. Define conditional logic for service actions and parameters.

You define conditional logic (as an XPath expression) to determine when to include a
service action on a work order request. See "Properties Service Action Binding View" for
more information.

6. Add service action parameters to OSM task data.

You can add all parameters of a service action to a selected OSM data structure. Service
action parameters are not added to the structure if it contains a child element with the
same name as the parameter. See "Task Editor Request Data Tab" for more information.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 73

Note

Design Studio limits the maximum length of service action parameters to 1000
characters when adding them to a structure. If you create data elements for
service action parameter fields manually (using the Data Schema editor), ensure
that you set the maximum length of the new data element equal to the maximum
length defined for the service action parameter.

Related Topics

About Service Action Request Mapping

Task Editor Request Data Tab

Mapping OSM Data to Service Action XML Parameters

Modeling Activation Tasks

Mapping OSM Data to Service Action XML Parameters
The Activation Task editor supports the following ways of mapping OSM data to ASAP and IP
Service Activator service action XML data types:

• Mapping OSM XML data to an ASAP or IP Service Activator XML parameter without
modeling the XML structure using an XPath expression. See "Mapping OSM Data to
Service Action XML Parameters Using XPath" for more information.

• Mapping and optionally transforming OSM XML data structures with child elements to an
ASAP or IP Service Activator XML parameter using an XSLT snippet. See "Mapping OSM
Data to Service Action XML Parameters Using XSLT" for more information.

Related Topics

About Service Action Request Mapping

Task Editor Request Data Tab

Modeling Activation Tasks

Mapping OSM Data to Service Action XML Parameters Using XPath
To map OSM XML data to ASAP or IP Service Activator parameters using an XPath
expression:

1. Open a data schema associated to an OSM project.

The Data Schema editor is displayed.

2. Right-click in the parameter area and select Add Structure (CTRL + ALT + S).

The Create Data Schema Structure dialog box is displayed.

3. Do the following:

a. In the Name field, enter a name for the structure. For example, XMLTypeNoChildren.

b. Click Finish.

The empty structure is displayed in the Data Schema editor parameter area.

4. Open an OSM order that you want to associate the structure to.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 73

The Order editor is displayed.

5. Right-click in the Order Template area and select Select from Dictionary.

The Select Data Elements dialog box is displayed.

6. Select the empty structure.

7. Click OK.

The structure is displayed in the Order Template area.

8. Open an Activation Task that you want to associate the structure to.

The Activation Task editor is displayed.

9. In the Request Data tab Task Data area, select Task Data.

10. Right-click in the Task Data area and select Select from Order Template.

The Select an Order Template Node dialog box is displayed.

11. Select the empty structure.

12. Click OK.

The structure is displayed in the Task Data area.

13. In the Service Actions area, right-click and select Add Service Action.

The Select a Service Action dialog box is displayed.

14. Select a service action that includes the XML parameter you want to map to the empty
OSM structure.

15. Click OK.

The service action is displayed in the Service Actions area.

16. Expand the newly added service action.

All parameters associated to the service action appear.

17. From the Task Data area, drag the empty structure to the corresponding service action
XML parameter in the Service Action area.

A check mark appears next to the parameter to indicate that it is mapped to the OSM
structure.

18. Click the service action parameter. Verify the following fields in the Properties tab:

a. In the Binding Type field, ensure that the XPath expression field is selected.

b. In the Binding field, ensure that the XPath expression references the OSM structure.
For example: osm:XMLTypeNoChildren

Related Topics

Mapping OSM Data to Service Action XML Parameters

Mapping OSM Data to Service Action XML Parameters Using XSLT
To map and optionally transform OSM XML data structures with child elements to an ASAP or
IP Service Activator XML parameter using XSLT snippets:

1. Open a data schema associated to an OSM project.

The Data Schema editor is displayed.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 73

2. Create an OSM structure with any number of child elements and child structures with child
elements.

3. Open an OSM order that you want to associate the structure to.

The Order editor is displayed.

4. Right-click in the Order Template area and select Select from Dictionary.

The Select Data Elements dialog box is displayed.

5. Select the structure.

6. Click OK.

The structure is displayed in the Order Template area.

7. Open an Activation Task that you want to associate the structure to.

The Activation Task editor is displayed.

8. In the Request Data tab Task Data area, select Task Data.

9. Right-click in the Task Data area and select Select from Order Template.

The Select an Order Template Node dialog box is displayed.

10. Select the empty structure and click OK.

The structure is displayed in the Task Data area.

11. Right-click in the Service Actions area and select Add Service Action.

The Select a Service Action dialog box is displayed.

12. Select a service action that includes the XML parameter you want to map to the OSM
structure.

13. Click OK.

The service action is displayed in the Service Actions area.

14. Expand the newly added service action.

All parameters associated with the service action are displayed.

15. From the Task Data area, drag the structure to the corresponding service action XML
parameter in the Service Action area.

A check mark appears next to the parameter to indicate that it is mapped to the OSM
structure.

Note

The OSM structure and children do not map to structures in the Service Actions
area, only to individual parameters.

16. Click the service action parameter. Verify the following fields in the Properties tab:

a. In the Binding Type field, ensure that the XSLT snippet field is selected.

b. In the Binding field, ensure that the XSLT snippet maps the OSM structure to the
ASAP or IP Service Activator structure.

For example:

<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>stuff1</mslv-sa:name>

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 73

 <mslv-sa:xmlValue>
 <ASAPproj:XMLData xmlns:ASAPproj="http://xmlns.oracle.com/
communications/sce/dictionary/ASAPproj/ASAPproj">
 <ASAPproj:data>
 <ASAPproj:Title>
 <xsl:value-of select="osm:XMLData/osm:data/osm:Title"/>
 </ASAPproj:Title>
 <ASAPproj:LineItem>
 <xsl:value-of select="osm:XMLData/osm:data/osm:LineItem"/>
 </ASAPproj:LineItem>
 </ASAPproj:data>
 <ASAPproj:XMLId>
 <xsl:value-of select="osm:XMLData/osm:XMLId"/>
 </ASAPproj:XMLId>
 <ASAPproj:XMLType>
 <xsl:value-of select="osm:XMLData/osm:XMLType"/>
 </ASAPproj:XMLType>
 </ASAPproj:XMLData>
 </mslv-sa:xmlValue>
 <mslv-sa:type>OPTIONAL_XML</mslv-sa:type>
</mslv-sa:serviceValue>

Note

By default, Design Studio assumes that the OSM and Activation parameters
structures are identical. If the parameters are different, modify the default
mapping as described in the next step.

c. (Optional) If the default XSLT expression mapping does not correspond to the ASAP or
IP Service Activator parameter structure, change the parameter mappings within the
<mslv-sa:xmlValue> element.

For example:

<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>stuff1</mslv-sa:name>
 <mslv-sa:xmlValue>
 <ASAPproj:NewValue1 xmlns:ASAPproj="http://xmlns.oracle.com/
communications/sce/dictionary/ASAPproj/ASAPproj">
 <ASAPproj:NewValue2>
 <ASAPproj:NewValue3>
 <xsl:value-of select="osm:XMLData/osm:data/osm:Title"/>
 </ASAPproj:NewValue3>
 <ASAPproj:NewValue4>
 <xsl:value-of select="osm:XMLData/osm:data/osm:LineItem"/>
 </ASAPproj:NewValue4>
 </ASAPproj:NewValue2>
 <ASAPproj:NewValue5>
 <xsl:value-of select="osm:XMLData/osm:XMLId"/>
 </ASAPproj:NewValue5>
 <ASAPproj:NewValue6>
 <xsl:value-of select="osm:XMLData/osm:XMLType"/>
 </ASAPproj:NewValue6>
 </ASAPproj:NewValue1>
 </mslv-sa:xmlValue>
 <mslv-sa:type>OPTIONAL_XML</mslv-sa:type>
</mslv-sa:serviceValue>

where NewValue1 to NewValue6 correspond to the ASAP or IP Service Activator XML
parameters.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 73

Related Topics

Mapping OSM Data to Service Action XML Parameters

Configuring Service Action Responses
You create data structures in OSM to contain the response information returned from ASAP or
IP Service Activator. For each event and exception returned by the activation system, you
select which parameter values to retain, then identify the data structure to which these
parameters are added. When the activation system returns an event or exception, OSM
updates the order data with the selected response parameter values.

To configure service action responses:

1. In the Activation Task editor Response Data tab, select an event or exception from the
Event/Exception area.

All of the data an event or exception returns appears in the Activation Response area.

2. Add an OSM data structure from the order template or from a data dictionary to contain the
information returned by the service action response:

a. Right-click in the Response Data Location area or the OSM Data Binding area and
select Select from Order Template or Select from Data Dictionary.

If you select a structure from a data dictionary, Design Studio automatically adds that
structure to the order template.

b. Select a structure from the dialog box and click OK.

The structure is displayed in the Response Data Location and OSM Data Binding area.

Note

Do not add a data structure that uses a distributed order template. Attempting
to map a response value to a data element in a distributed order template will
cause an error. For more information about distributed order templates, see
OSM Concepts.

3. Do at least one of the following:

• Map fixed activation response structures to task data structures:

a. Click the Set Data Location subtab.

b. In the Activation Response area, check the activation response elements or
structures that you want to map to task data structures.

c. In the Response Data Location area, right-click a task data structure and select
Set as Data Location.

Design Studio adds the data you selected for the event or exception in the
Activation Response area to the structure in the Response Data Location area.
When the event or exception is returned from the activation system, OSM adds the
data values to the OSM structure.

• Bind activation response elements to arbitrary task data elements:

a. Click the Response Data Mapping subtab.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 73

b. In the Activation Response area, drag an activation response data element onto a
task data element in the OSM Data Binding area.

The task data element is checked.

If you select no data in the Activation Response area for an event or exception, OSM
ignores that event or exception when it is returned by the activation system.

4. (Optional; ASAP only) Define conditional mappings for service action response
parameters. See "Filtering ASAP Response Data".

This step enables you to reduce the response data returned to OSM.

Note

The information returned by IP Service Activator infoparms is structured to enable
a detailed mapping of return data back to OSM order data. Therefore, there is no
need to filter the amount of response data.

The ASAP Infoparm is less structured.

5. Right-click the OSM structure and select Open Properties View.

The Properties view for the task data node is displayed.

6. Click the Identification tab.

See "Task Data Node Properties View Identification Tab" for more information.

7. Select Override Data Dictionary Minimum/Maximum.

8. In the Maximum field, select Unbounded.

9. Click Save.

Related Topics

Task Editor Response Data Tab

About Service Action Response Mapping

Modeling Activation Tasks

Filtering ASAP Response Data
The amount of response data returned by an activation system can be very large, while the
needed data might be quite small. Parsing large amounts of response data can affect OSM
performance. If you notice a reduction in OSM performance due to large amounts of response
data, you can specify a condition on specific parameters to limit the response data. You can
create response data limitations for as many events or exceptions as you choose by binding
the activation response data to the desired OSM data.

To limit response data:

1. In the Task editor Response Data tab, select an event or exception from the Event/
Exception field.

2. In the Response Mapping area, click the Set Data Location tab.

3. In the Activation Response area, right-click InfoParm.

The Response Filter Properties view is displayed.

4. Drag a parameter into the Response Filter Condition field.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 73

The XPath representation of the parameter is created in the Condition field.

5. Add the desired condition to the XPath representation.

For example, consider that you only want to update infoParm data in OSM if the serviceId
infoParm parameter from orderCompleteEvent is equal to 2. First, select
orderCompleteEvent in the Event/Exception field. Then click Detailed Parameters and
infoParm in the Activation Response field. Drag serviceId into the Condition field. The
XPath representation of serviceID is as follows:

mslv-sa:serviceId

Now set the desired condition by adding ='2':

mslv-sa:serviceId='2'

6. Click Save.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Modeling Activation Tasks

Response Filter Area

Configuring Service Action Response State and Status Transitions
For completion events and exceptions returned by the activation system, you can configure
state and status transitions.

To configure state and status transitions:

1. In the Activation Task editor Response Data tab, select an event or exception from the
Event/Exception field.

Predefined default states and status transitions appear in the Transition to State and
Status area.

2. Click the Add button.

The State/Status Selection dialog box is displayed.

3. In the Condition Name field, enter a name for the transition.

4. Select the State or Status option.

If you select State, select a user-defined state. If you select Status, select a predefined
task status. See "About Task States and Statuses" and "Assigning Task States and
Statuses" for more information.

5. Click OK.

Design Studio adds the new transition to the table.

6. (Optional) Select a transition row and click Move Up or Move Down to change the order of
the transitions.

The order in which they appear in the table determines the order in which OSM evaluates
the conditions at run time.

7. Select a transition row and click Properties.

The Properties view for the state/status transition is displayed.

Chapter 7
Working with Activation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 73

8. In the Condition field, define an XPath expression to define the conditions under which the
transition occurs.

See "Properties State/Status Transition View" for more information about defining
conditions.

9. Click Save.

Related Topics

About State and Status Transition Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Working with Transformation Tasks
Transformation tasks enable you to access a transformation manager from an OSM process.
These tasks are similar to automated tasks, except that the automation plug-in is prepopulated
when the task is created. However, you are not restricted to using the provided automation
plug-in. All of the plug-in configuration options that are available with automated tasks are also
available with transformation tasks.

Model your order transformation manager entities before you model the transformation task.
For more information about modeling order transformation, see OSM Concepts.

Related Topics

Working with Automated Tasks

Working with Order Item Parameter Bindings

Working with Transformation Sequences

Working with Transformation Managers

Working with Mapping Rules

Task Editor
Use the Task editor to model the tasks you use in your processes to offer a specific service to a
customer. Each task type has its own set of tabs in the Task editor. The following table lists the
Task editor tabs that appear for each task type.

Tab Name Manual Task Automated Task Activation Task Transformation
Task

Task Editor Activation Task Details Tab No No Yes No

Task Editor Automation Tab No Yes No Yes

Task Editor Behaviors Tab Yes Yes No No

Task Editor Compensation Tab Yes Yes No Yes

Task Editor Details Tab Yes Yes Yes Yes

Task Editor Events Tab Yes Yes Yes Yes

Task Editor Fallouts Tab Yes Yes No Yes

Task Editor Jeopardy Tab Yes Yes Yes Yes

Chapter 7
Working with Transformation Tasks

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 73

Tab Name Manual Task Automated Task Activation Task Transformation
Task

Task Editor Permissions Tab Yes Yes Yes Yes

Task Editor Redo Tab No No Yes No

Task Editor Request Data Tab No No Yes No

Task Editor Response Data Tab No No Yes No

Task Editor Composite Data View Tab Yes Yes No Yes

Task Editor States/Statuses Tab Yes Yes Yes Yes

Task Editor Task Data Tab Yes Yes No Yes

Task Editor Undo Tab No No Yes No

The following field is common to multiple tabs in the Task editor:

Field Use

Description Edit the display name of the task.

Task Editor Activation Task Details Tab
The Task editor Activation Task Details tab appears for activation task types.

Use the Activation Task Details tab to define the attributes that enable the activation task to
run properly in the Activation environment. For example, you can associate an activation task
with an order, specify the user to run this task, and provide the details for the response queue
name, maximum cache size, and cache time-out.

Field Use

Activation System Displays the activation system against which the activation task is registered.

Run As Enter the OSM user name (security principal) that can run this task. A password is not
necessary to authenticate this user because only an administrator has the authority to deploy
components into the server.

Ensure that the user is set up in the WebLogic Server console. For more information about
setting up users and groups, see OSM System Administrator's Guide.

Note: Oracle recommends using the DEFAULT_AUTOMATION_USER cartridge model variable
in the Run As field. See "Project Editor Model Variables Tab" for more information.

Maximum Number in
Cache

Specify the maximum number of entries in the cache that are maintained at any one time.

Cache Timeout Specify the number of seconds for which the cache is valid.

Exception Select the exit status to use when an exception occurs during the activation task processing.
Status options include any status values you assigned to the task.

Activation Order ID
Node

Select a data node to store the order ID. The activation order ID is used by the defined
compensation strategy when a task is affected by amendment processing. See "Task Editor
Redo Tab" and "Task Editor Undo Tab" for more information.

OSSJ Enter the location to which OSM sends OSSJ service action requests. Configure this attribute if
you want to connect to an ASAP instance using Java message service (JMS).

Depending on how you set up your cartridge project model variables, you can use the default
values or define your own queue location names. See "Project Editor Model Variables Tab" for
more information.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 73

Field Use

Web services Enter the location to which OSM sends web services service action requests. Configure this
attribute if you want to connect to an activation system instance using web services messages.
You must also configure the Map and Key fields to secure the web services messages.

Depending on how you set up your cartridge project model variables, you can use the default
values or define your own queue location names. See "Project Editor Model Variables Tab" for
more information.

Map and Key for
Activation Credential

ASAP and IP Service Activator secure web services service actions with a web services user
name and password located in the activation system WebLogic server. You must store this user
name and password within the Fusion Middleware Credential Store Framework (CSF) using the
credStoreAdmin.bat tool located in the OSM_home/SDK/XMLImportExport folder, where
OSM_home is the location where the OSM software is installed. The credStoreAdmin.bat tool
creates a map and a key that corresponds to the ASAP Web Services user name and
password. For more information about this tool, see the OSM System Administrator's Guide.

Environment ID Enter the activation system environment ID to which the service action requests are sent.

Note: When you create cartridges, some of the variable information to define may depend on a
specific environment. If you do not have environment specific values for variables that you will
need at run time, you can create tokens for the variables and later define specific variable values
for each environment in which you will use the variable. Tokens are placeholders for
environment-specific values that can be defined at the time of deployment. See "Project Editor
Model Variables Tab" for more information.

Response Queue Enter the JNDI name of the response queue on which this automator listens. If you do not enter
a value, the system uses a default value. Values must be defined in WebLogic Server.

Design Studio populates this field with a default value if service action requests are configured
to be submitted using OSSJ.

When service action requests are configured to be submitted using web services, you must
define a response queue.

JMS topic for events Enter the location to which service action responses are sent. Depending on how you set up
your cartridge project model variables, you can use the default values or define your own topic
location names. See "Project Editor Model Variables Tab" for more information.

If you are using store and forward (SAF) to communicate to an ASAP instance located on a
different WebLogic server, Oracle recommends selecting the Use a queue check box to use a
queue instead of a topic. For more information about SAF, see the OSM Installation Guide.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Task Editor Automation Tab
The Task editor Automation tab appears for automation and transformation task types.

The Automation tab displays a list of automation plug-ins registered against the automated
task. When the OSM server encounters the task during run-time it triggers the plug-ins to begin
the work that they are designed to perform.

When modeling automated tasks in the Automation tab, see the following topics for more
information:

• Properties View Details Tab

• Properties View External Event Receiver Tab

• Properties View Compensation Tab

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 73

• Properties View Correlation Tab

• Properties View XQuery Tab

• Properties View XSLT Tab

• Properties View Routing Tab

• Properties View Custom Plug-in Tab

• Properties View System Interaction Tab

• Properties View Notes Tab

Field Use

Name Displays the name of the automation plug-in. Click the value in the Name column to change or edit the
name.

Note: Design Studio displays the automation plug-ins in the Automation tab alphabetically in
ascending or descending order. The order in which the plug-ins appear does not indicate or affect the
order in which the plug-ins will perform during run time. When you have multiple automation plug-ins
registered against an automated task, you must ensure that the plug-ins are consuming only those
messages that are pertinent to the plug-in operation. See "Properties View External Event Receiver
Tab" for information about how to filter for specific message properties.

Type Displays the automation plug-in type. There are two basic types of built-in automation plug-ins: Sender
and Automator. Each type can be implemented by an XSLT style sheet or by XQuery. Additionally, you
can create your own custom plug-in using the customer plug-in template. See "Working with
Automation Plug-Ins" for more information.

Note: XQuery automation types cannot be implemented when using releases prior to OSM 7.0.

Event Type Displays whether an automation plug-in receives data from an external system queue or from an
internal OSM queue. See "Configuring Automation Plug-In Properties" for more information.

Properties Select an automation plug-in from the Automation table and click Properties to access the
Automation Plug-in Properties tabs. See "Configuring Automation Plug-In Properties" for more
information.

Remove Select an automation plug-in from the Automation table and click Remove to delete the automation
from the list of plug-ins registered against the task.

Add Click to add an automation plug-in to the list of plug-ins registered against the task. See "Adding
Automation Plug-ins to Automated Tasks" for more information.

Properties View System Interaction Tab
Use the Properties view System Interaction tab to view and update automation properties for
System Interaction specifications.

Field Use

Target System Displays the target system defined in the associated Order Component specification.

Response
Message

(Displayed for External Automators only). Lists Event Operation IDs and Endpoint Operation IDs
defined in System Interaction Entity in the associated Order Component Specification.

OpenAPI
Operation

(Displayed for Senders only). Lists Endpoint Operation IDs defined in System Interaction Entity in the
associated Order Component Specification.

For Endpoint Operation IDs, there must be both an internal and an external automation plugin.
That is, when an Endpoint Operation ID is selected on a sender automation, the same
Endpoint Operation ID must also be defined for an external automator.

For Event Operation IDs, only external automator is needed as they are unsolicited events.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 73

System Interaction cannot be defined for internal automators in Automated tasks.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Details Tab
Use the Properties view Detail tab to define information that is common to all types of
automation plug-in and event receiver types.

Field Use

Name Enter a plug-in name. The name must be unique among plug-in entities in the same namespace.

Note: While plug-in names can be any arbitrary name that you assign to the automation, Oracle
recommends that you use a consistent naming pattern for all of the automations that you create.

EJB Name Edit the system-provided default EJB name. The default value with which Design Studio initially populates
this field depends on where the automation is defined:

• If the automation is defined for a task (automated task, task state-based event notification, task
jeopardy notification), the EJB name defaults to TaskName.AutomationName, where TaskName is the
name you provided when defining the task, and AutomationName is the name you provided when
defining the automation.

• If the automation is defined for an order (order milestone-based event notification, order data changed
event notification, order jeopardy notification), the EJB name defaults to
OrderName.AutomationName, where OrderName is the name you provided when defining the order,
and AutomationName is the name you provided when defining the automation.

• If the automation is defined for a process (task state-based event notification, task status-based event
notification), the EJB name defaults to ProcessName.AutomationName, where ProcessName is the
name you provided when defining the task, and AutomationName is the name you provided when
defining the automation.

Note: The EJB name must be unique per OSM server. However, as there is no method for predicting to
which OSM server the cartridge will be deployed, you should ensure uniqueness across all automation
plug-ins defined for a cartridge. The default EJB name guarantees this uniqueness; therefore, Oracle
recommends that you do not change the defaulted EJB name.

See "Working with Jeopardy and Event Notifications" for more information jeopardy and event notifications.

Run As Enter the OSM user name (security principal) whose credentials are used to run this automation plug-in. A
password is not necessary to authenticate this user because only an administrator has the authority to
deploy components into the server.

The value of this field must reflect the user ID that is used to run the automation:

• The user ID must be set up in the WebLogic Server Administration console. See the discussion of
setting up security in OSM System Administrator's Guide for more information.

• The user ID must be defined in the OSM Administration area of the Order Management web client (a
workgroup in OSM Administration is a role in Design Studio). See "Working with Roles" for more
information.

• The user ID must be assigned to the workgroup in the OSM Administration area of the Order
Management web client that corresponds to the role defined on the Permissions tab of the Design
Studio task, order, or process that defines the automation.

Note: Oracle recommends using the DEFAULT_AUTOMATION_USER cartridge model variable in the Run
As field. See "Defining Model Variables" for more information.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 73

Field Use

Event Type This field is enabled only for automations defined for automated tasks. Select one of the following:

• External Event Receiver if the plug-in will receive data from external systems via topics or queues.

Automations defined as external event receivers receive incoming JMS or XML messages from
external systems, and can automatically convert and correlate message data. Additionally, Sender
plug-ins defined as external event receivers can generate new outbound messages based on received
messages.

• Internal Event Receiver if the plug-in receives data from the OSM order data.

Automations defined as internal event receivers receive messages from an internal queue to which
the automation framework subscribes. Messages sent by OSM to the internal queue are triggered by
internal events.

Note: If you intend to secure automations such that different user IDs have access to run different
automations, Oracle recommends that you incorporate these changes after you ensure that the
automations are working successfully.

Changing a plug-in's automation event type may result in the loss of any data that is not common between
the event receiver types.

Fail Task on
Automation
Exception

Select this check-box to fail the task if an exception occurs when running the automation plug-in. The plug-
in can throw any exception and OSM retries the plug-in as many times as configured on the JMS
destination retry. On the last retry attempt OSM fails the task and logs the exception message as the
failure reason.

Related Topics

Example: Modeling a Basic Automator Plug-In

Working with Automated Tasks

Configuring Automation Plug-In Properties

Properties View External Event Receiver Tab
Use the Properties view External Event Receiver tab to define how OSM retrieves and
processes messages placed on the queue by external systems.

The Properties view External Event Receiver tab appears only for Automator and Sender
plug-in types defined as external event receivers. External event receivers listen to external
system queues or topics for JMS messages. To define a plug-in as an external event receiver,
select the External Event Receiver option on the Add Automation dialog box when creating a
new automation entry.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 73

Field Use

JNDI Name Enter the name of the external system from which the plug-in receives messages. JNDI Name is
mandatory and contains a system-supplied default value which you must change to reflect your
own system topology. The JNDI Name must be unique in the workspace.

The default value with which Design Studio initially populates this field depends on where the
automation is defined:

• If automation is defined for a task (automated task, task state-based event notification, task
jeopardy notification), the JNDI name defaults to TaskName.AutomationName.jndiName,
where TaskName is the name you provided when defining the task, and AutomationName is
the name you provided when defining the automation.

• If automation is defined for an order (order milestone-based event notification, order data
changed event notification, order jeopardy notification), the JNDI name defaults to
OrderName.AutomationName.jndiName, where OrderName is the name you provided when
defining the order, and AutomationName.jndiName is the name you provided when defining
the automation.

• If automation is defined for a process (task state-based event notification, task status-based
event notification), the JNDI name defaults to ProcessName.AutomationName.jndiName,
where ProcessName is the name you provided when defining the task, and
AutomationName is the name you provided when defining the automation.

Destination Type Select the type of the response destination. A JMS destination is either a javax.jms.Queue or a
javax.jms.Topic. Topics are generally used when messages are published for general availability
to multiple external systems. Queues are generally used if the sender wants only a single
external system to consume the message.

URL, Initial Context
Factory, Connection
Factory

(Optional) Enter this information to connect to an external application server. Specify the URL
and the InitialContextFactory class for the JNDI provider, and specify the ConnectionFactory
class for the JMS server.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 73

Field Use

Message Property
Selector

Enter a selector based on the message properties applied to the external queue. Using an XPath
expression or query statement in this field enables you to filter incoming messages to only those
messages with specific properties defined at the header level. Using a message property enables
you to interrogate the message on the external queue and determine which plug-in should
perform the processing of this task instance.

When you have multiple plug-ins with identical event receiver types defined for a task, the OSM
server will select the first plug-in whose message property selector evaluates to true. A message
on an external JMS queue can be consumed only once. Consequently, it is critical to ensure that
your plug-ins consume the appropriate messages. Useful properties for selection include source,
type, process, process status, or priority.

For example, for a single task, you might create multiple external event receiver Automator plug-
ins, each defined with a mutually exclusive message property to distinguish between task priority
levels, where one plug-in processes tasks defined as high priority, and a different plug-in
processes tasks defined as low priority.

Note: See the JMS specification for the syntax of this selector expression on the Oracle
Technology Network website at:

http://www.oracle.com/technetwork/java/jms/index.html

Note: When you define only one automation plug-in external event receiver for each automated
task, and you use the Optimized build-and-deploy mode to build and deploy automation plug-ins,
you are not required to enter a selector in the Message Property Selector field. (For OSM 7.3
servers and later, Optimized is the only build-and-deploy mode available.) In this case, automated
tasks can share the same JMS queue without a message property selector being set. You must
set a message property selector when you do either of the following:

• Define multiple automation plug-in external event receivers for the same automated task.
• Use the Legacy build-and-deploy mode to build and deploy cartridges with automation plug-

ins.
• Use both (Allow server preference to decide) build-and-deploy mode to build and deploy

cartridges with automation plug-ins and configure the OSM server dispatch mode for the
Internal mode.

For information on build-and-deploy modes, see "Defining Build-and-Deploy Modes for
Automation Plug-ins."

Note: XPath and XQuery fields are limited to 4000 characters.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 73

http://www.oracle.com/technetwork/java/jms/index.html

Field Use

XML Message Body
Selector

In the Select field, enter an XPath expression to select an element from the XML body content. In
the Compare field, enter the string value of the element to determine the match. Using an XPath
expression in this field enables you to filter incoming messages to only those messages defined
with specific properties in the body of incoming messages.

The XML Message Body Selector function is deprecated, but it is supported for backward
compatibility. Oracle recommends that you use an alternate way of filtering messages such as
message property selector.

For example, the following sample response from the external system includes a <typeOrder>
element that defines the order type:

<orderResponse xmlns="http://xmlns.oracle.com/communications/sce/dictionary/
OsmCentralOMExample/interactionResponse" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <numSalesOrder>1</numSalesOrder>
 <numOrder>3</numOrder>
 <typeOrder>NEW</typeOrder>
 <errorCode>0</errorCode>
 <message>OK</message>
 <status>A</status>
</orderResponse>

For this example response, to consume only the NEW type of order, you can use either of the
following in the Select field:

• For a non-namespace-aware query:

/*[local-name() ='orderResponse']/*[local-name()='typeOrder']/text()

• For a namespace-aware query:

/*[local-name() ='orderResponse' and namespace-uri()=' ://xmlns.oracle.com/
communications/sce/dictionary/OsmCentralOMExample/interactionResponse']/
*[local-name()='typeOrder' and namespace-uri()='://xmlns.oracle.com/
communications/sce/dictionary/OsmCentralOMExample/interactionResponse']/text()

In both cases, you would set the Compare field to NEW. All selected messages that contain a
typeOrder parameter value of NEW (for example, as opposed to Revision, or Follow-On) would
be directed to the automation plug-in.

Note: You can use the XML Message Body Selector with response messages of type
XMLMessage. OSM ignores the selector for other message types, such as TextMessage. If you
need to use the message body selector ensure that messages are of type XMLMessage
message. For non-XMLMessage messages you are restricted to the Message Property
Selector.

Note: XPath and XQuery fields are limited to 4000 characters.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Compensation Tab
Use the Properties view Compensation tab to define the execution modes that automation
plug-in can process. This tab appears only for Automator and Sender plug-in types defined as
an Internal Event Receiver.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 73

Field Use

Execution Mode Specify the execution modes that this plug-in can run when invoked. For more information about
execution modes, see "About Task Compensation."

Select one of the following execution modes from the Normal column for execution modes that occur
when the task is processing normally:

• Select Do to indicate that the automation should run during normal order processing. Deselect
this check box and select Redo or Undo to restrict the automation to compensation processing
only.

Note: If you select no check boxes on this tab, automation processing defaults to the Do
execution mode.

• Select Redo to indicate whether the automation should run again if the automation processed
once but the order has changed since then.

• Select Undo to indicate whether the action taken by an automation should be undone when the
automation processed but the order has changed since then. You can also exclude certain data
structure and elements from being undone on a task by setting the Ignore rollback during undo
check box in the Order editor, Order Template, Properties View Order Data tab (see "Properties
View Order Data Tab").

Select one of the following execution modes from the Fallout column for execution modes that occur
when the task has failed:

• Select Do so that if the task fails when running in the normal Do execution mode, the automation
task can still run plug-ins configured with the Do in fallout mode. Deselect this check box and
select Redo or Undo to restrict the automation to compensation processing only.

• Select Redo so that if the task fails when running in the normal Redo execution mode, the
automation task can still run plug-ins configured with the Redo in fallout mode.

• Select Undo so that if the task fails when running in the normal Redo execution mode, the
automation task can still run plug-ins configured with the Undo in fallout mode. You can also
exclude certain data structure and elements from being undone on a task by setting the Ignore
rollback during undo check box in the Order editor, Order Template, Properties View Order Data
tab (see "Properties View Order Data Tab").

Note: Design Studio has validations in place that prevent you from defining more than one internal
event receiver automation with the same execution mode per automated task or automated
notification. For example, an automated task can not define two internal event receiver automations
that both have Do selected for the execution mode. However, an automated task can define three
internal event receiver automations if each defines a different execution mode (Do, Redo, and Undo).

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Correlation Tab
Use the Correlation tab to specify how an in-bound response from an external system
correlates back to the original outbound message that initiated the communication with the
external system.

The Properties view Correlation tab appears only for Automator and Sender plug-in types
defined as external event receivers. The Correlation parameter is mandatory and defaults to
Message Property, which in turn defaults to JMSCorrelationID.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 73

Field Use

Correlation Select the method for correlating responses from external systems with the originating response:

• Based on a Message Property.

Message property correlation provides the ability to correlate the incoming message with the
appropriate automated task, based on a message property defined in the message header.
Message property correlation is the simplest and most commonly used form of correlation. The
default message property is JMSCorrelationID, which is a JMS-generated number that is placed
in the header of all OSM outbound messages. You have the option to change the message
property to something other than JMSCorrelationID, and be responsible for setting the value on
all outbound messages that expect an in-bound response.

• Based on an element in the XML Body.

XML body correlation provides the ability to correlate a response message based on a message
property defined in the message body, such as particular data field. If used, the XML Body field
is defined as an XPath.

The Correlation parameter is mandatory and defaults to Message Property, and the system sets the
corresponding default value for the Message Property field to JMSCorrelationID.

Message Property
or XML Body

This field is conditional to the selection that you make in the Correlation field. If you selected
Message Property in the Correlation field, the system supplies the standard JMS correlation
property JMSCorrelationID. The OSM order correlates with incoming events from external systems
when the JMSCorrelationID on the order and on the message matches.

If you selected XML Body in the Correlation field, you can enter an XPath expression to point to an
element in the XML body of the message. The value for this element in the OSM order must match
the value for the same element on the incoming message.

Note: XPath and XQuery fields are limited to 4000 characters.

Related Topics

About Automation Message Correlation

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Properties View XQuery Tab
Use the XQuery tab to specify your XQuery file so the predefined automation plug-in can
access it. This tab appears for XQuery type plug-ins only.

Note

XQuery automation types cannot be implemented when using releases prior to OSM
7.0.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 73

Field Use

Script Specify which method to use to retrieve the XQuery file. Select from the following options:

• Bundle in: Select this option, then click the XQuery field Select button to identify the file from
the resources directory. Design Studio will bundle this file with the PAR file during the build.

• Absolute path: Select this option and enter the physical location of the file. At run time, OSM
retrieves the file from the server.

• URL: Specify a URL to access the file.
Note: Oracle recommends that you select Bundle in for production mode, as this mode pulls the
files into the OSM PAR file. As a result, you can deploy the EAR file (which contains the PAR file) to
any server and, at run time, the application can locate the files. If you select Absolute Path or URL
for production mode, you can deploy the EAR file (which contains the PAR file) to any server but are
responsible for ensuring the files reside in specified location on the server.

Conversely, Absolute Path or URL are optimal for testing mode because they do not require a
rebuild and redeploy to pick up changes to the XQuery.

Maximum Number
in Cache

Specify the maximum number of XQuery files that can be maintained in the cache at any one time.

Cache Timeout Enter the number of seconds before the OSM server refreshes the cache.

Exception Select the exit status that the plug-in should use if it throws an exception. Status options include any
status values you assigned to the task.

Note: This field does not apply to an automation plug-in for an order milestone automation event
notification (at the order level); it applies to setting up an automation at the task level.

Update Order Select this option if you want to update (add, change, or delete) the OSM order data with the data
retrieved from an external system. This field appears for Automator automation plug-ins only.

Related Topics

About Automation Message Correlation

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Properties View XSLT Tab
Use the Properties view XSLT tab to specify the location of your XSLT file so the predefined
automation plug-in can access it. This tab appears for all plug-ins except for custom plug-ins.

You can use XSLT to perform some business logic against a task, and determine the exit
status based on the processing results. XSLT enables you to model complex calculations, such
as date-based calculations, mathematical expressions, calls to external systems, and so forth.
Additionally, you can update the order data with the results from your XSLT calculations.
Finally, you can use the XSLT style sheet to transform data when sending and receiving data
from external systems.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 73

Field Use

Script Specify which XSLT style sheet you want to use to transform documents. Select from the following
options:

• Bundle in: Select this option, then click the Select button to identify a style sheet from the
resources directory. Design Studio will bundle this XSLT file with the PAR file during the build.

• Absolute path: Select this option and enter the physical location of the XSLT file. At run time,
OSM retrieves the file from the server.

• URL: Specify a URL to access the file.
Note: Oracle recommends that you select Bundle in for production mode, as this mode pulls the
XSLT files into the OSM PAR file. As a result, you can deploy the EAR file (which contains the PAR
file) to any server and, at run time, the application can locate the XSLT files. If you select Absolute
Path or URL for production mode, you can deploy the EAR file (which contains the PAR file) to any
server but are responsible for ensuring the XSLT files reside in specified location on the server.

Absolute Path or URL are optimal for testing mode because they do not require a rebuild and
redeploy to pick up changes to the XSLT.

Maximum Number
in Cache

Specify the maximum number of XSLT style sheets that can be maintained in the cache at any one
time.

Cache Timeout Enter the number of seconds before the OSM server refreshes the cache.

Exception Select the exit status that the plug-in should use if it throws an exception. Status options include any
status values you assigned to the task.

Note: This field does not apply to an automation plug-in for an order milestone automation event
notification (at the order level); it applies to setting up an automation at the task level.

Transformer
Factory

(Optional) If you have developed a custom TransformerFactory for XSLT transformation, specify the
location. Design Studio provides a default TransformerFactory.

Update Order Select this option if you want to update (add, change, or delete) the OSM order data with the data
retrieved from an external system. This field appears for Automator automation plug-ins only.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Routing Tab
Use the Properties view Routing tab to specify where to send XML messages and where
external systems can deliver responses. The Properties view Routing tab appears for all non-
custom XSLT Sender plug-ins.

On the Routing to subtab you can specify where to send the XML Request message (JMS
Destination). On the Routing Reply to subtab you can specify where the external system can
deliver the XML Response or Exception message.

Field Use

JNDI Name Enter the name of the queue to which the automation plug-in sends messages (on the To tab) or
to which external systems send response (on the Reply To tab). JNDI Name is mandatory. Edit
the system-supplied default value to reflect your own system topology. The JNDI name must be
unique in the workspace.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 73

Field Use

Destination Type Select the type of the message destination. A JMS destination is either a javax.jms.Queue or a
javax.jms.Topic. You might use a topic, for example, if you want to publish messages for general
availability to multiple external systems (on the To tab) or subscribe to a queue with multiple
listeners (on the Reply To tab). You might use queues if you want only a single external system to
consume the message.

URL, Initial Context
Factory, and
Connection Factory

(Optional) Enter this information to connect to an external application server. Specify the URL and
the InitialContextFactory class for the JNDI provider, and specify the ConnectionFactory class for
the JMS server.

Send Null Message Select this option if you want to send a JMS message to an external system even if the message
body is empty.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Custom Plug-in Tab
Use the Properties view Custom Plug-in tab to define a custom automation plug-in entity in
Design Studio. The Custom Automation Plug-in editor associates a Java class representing the
custom automation plug-in to the custom automation plug-in entity.

This tab appears when the selected plug-in is a custom automation plug-in. The value is
initialized with the value of the XML template for the type of custom automation plug-in.

See OSM Developer's Guide for more information about defining the custom automation plug-
in.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Notes Tab
Use the Properties view Notes tab to describe the intended use for the plug-in. The Properties
view Notes tab is common to all types of automation plug-ins and event receiver types.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Task Editor Behaviors Tab
The Task editor Behaviors tab appears for manual and automated task types.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 52 of 73

Use the Behaviors tab to view all of the behaviors defined for the data nodes in a manual task
and an automated task.

The Behaviors table displays the name and type of the task, whether the behavior is enabled,
the inheritance properties, the path name of the data node on which the behavior is defined,
and the task where the behavior was originally defined.

The information on the Behaviors tab is read-only. To change the information that appears on
this tab, select a behavior from the table and click the Properties button to access the
Behaviors Properties tabs. See "Working with Behaviors" for more information about the
defining behavior properties.

Task Editor Compensation Tab
The Task editor Compensation tab appears for manual, automated, and transformation task
types.

Use the Compensation tab to define your compensation strategy for manual and automated
tasks.

Note

Although compensation strategies are defined on an individual task basis, they must
be analyzed within the context of the workflow.

Field Use

When this task
needs to be re-
evaluated,
compensate by:

A task is re-evaluated by the system if it has visibility to order data (data that is defined as significant)
that has changed as a result of an order amendment or as a result of amendment compensation
performed on another task to which the task has visibility. The default option, which is to redo the task,
applies to tasks that are linear in nature and have the same completion status (no branching).

Select Redo (one single operation) to instruct the system to perform Undo and Do operations in a
single operation. This option is recommended, when possible, as it performs the fewest number of Undo
and Do operations necessary for compensation.

Select Undo then do (two separate operations) to undo this task and all successor tasks and roll
back all order changes, then perform the Do operation again. Use this option to rollback all order
changes and re-perform the task from the beginning.

Select Do Nothing to instruct the system to bypass updating the affected task. For example, you might
select this option if a similar task downstream in the process will be compensated, thereby optimizing
the compensation plan.

Select Compensation Expression to create an XQuery expression in the Compensation Expression
field that dynamically selects a compensation strategy (Redo, Undo then do, or Do nothing) based on
revision order data. See "Compensation XQuery Expressions" for more information about compensation
strategy XQuery expressions.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 53 of 73

Field Use

When this task
is no longer
required,
compensate by:

A task or subprocess is no longer required when:

• The order is canceled. When an order is canceled, the system processes an undo on all of the
completed tasks and subprocesses and returns the order to the creation task. The tasks and
subprocesses associated with the order are no longer required because the order has been
canceled.

• A branch becomes obsolete. A branch becomes obsolete when the redo processing of a particular
task or subprocesses causes that task or subprocess to a) exit with a different completion status
and b) start a new branch. Because the tasks and subprocesses in the obsolete branch are no
longer required, they are undone, one task or subprocess at a time, starting with the last completed
task or subprocess in the branch.

• When the task re-evaluate compensation strategy is selected as Undo then do and if this option is
selected as Undo, then all the tasks are undone based on their corresponding compensation
strategy. If this option is selected as Do Nothing, the corresponding tasks are not undone.

In both scenarios, the system rolls back the order changes. The difference between them is the creation
of a compensation undo task. Undoing the task and rolling back order changes creates an undo task;
automatically rolling back order changes does not create an undo task. Undo compensation tasks
created for manual tasks appear in the Task web client Worklists and must be manually acknowledged
in order to be rolled back.

This also applies to a task which has an Undo then do compensation strategy for when the task needs
to be re-evaluated. When the task needs to be undone (as a part of Undo then do), it follows the
compensation strategy for when the task is no longer required (either Do nothing or Undo). When the
task needs to be compensated, it gets undone first and then done. The task does not come into Undo in
the worklist, but only goes to Do (in amending) or Do (in progress).

Select Undo to create an undo read-only task in the Task web client.

Select Do Nothing to instruct the system that no compensation is necessary.

Select Compensation Expression to create an XQuery expression in the Compensation Expression
field that dynamically selects a compensation strategy (Undo or Do nothing) based on revision order
data. See "Compensation XQuery Expressions" for more information about compensation strategy
XQuery expressions.

When an
amendment
occurs this task
will be
compensated if
it is:

Most tasks should only be included in amendment processing after the task has completed. However,
you may want to include in progress tasks in amendment processing when the tasks are long running,
for example when interacting with a workforce management system where task fulfillment can take
hours or even days to complete.

Select Completed to instruct the system to include the task in amendment processing only when the
task is completed.

Select Completed or in progress to instruct the system to include the task in amendment processing
when the task is completed or when the task is in progress. A task is considered to be in progress when
the task is in the Accepted state or in any user-defined state. You can also further refine when an in
progress task is included into amendment processing by specifying the In Progress Compensation
Include Expression and the In Progress Compensation Complete Expression XQuery expressions.

Select In Progress Compensation Include Expression to create an XQuery expression that further
specifies when instances of this in progress task can be included in amendment processing based on
revision order data. For example, the expression may determine that the task only be included in
amendment processing when it includes product A rather than product B. See "Compensation XQuery
Expressions" for more information about compensation strategy XQuery expressions.

Select In Progress Compensation Complete Expression to create an XQuery expression in the
Compensation Expression field that runs whenever data is updated on the task that checks when
compensation has completed based on the order data changes. For example, the order amendment
could specify that the task run in redo mode. The task re-sends a request for a customer service with
changes to an external fulfillment system that returns an acknowledgement response that the XQuery
expression recognizes as completing the compensation for the in progress redo task. The task can then
return to the normal do execution mode and waits for the external system to functionally complete the
task and respond so that the task can be completed. See "Compensation XQuery Expressions" for
more information about compensation strategy XQuery expressions.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 54 of 73

Field Use

When an
amendment
occurs if this
task is in
progress it will:

If amendment processing occurs while a task is in progress, you can specify what kind of grace period
should be enforced before the task can run in the compensation execution mode.

Select Wait for the grace period to instruct the task to run in the compensation execution mode when
the grace period specified on the order-life cycle for the Process Amendment transition.

Select Be excluded from the grace period to instruct the task to run immediately regardless of the
grace period specified on the order-life cycle for the Process Amendment transition.

Select Wait for specified duration to statically configure the grace period for the task by seconds,
minutes, hours, or days.

Select Dynamic Expression to create an XQuery expression that dynamically specified the wait
duration based on revision order data. This expression runs regardless of what option is specified from
the above list. See "Compensation XQuery Expressions" for more information about compensation
strategy XQuery expressions.

Note

If an amendment is received while a task is in a fallout execution mode, the following
will happen:

• If the task is not configured to be compensated if it is in progress, the execution
mode of the task will not change as a result of the amendment order.

• If the task is configured to be compensated if it is in progress, and the amendment
contains changes to significant data:

– If the task is still needed after the changes to the order from the amendment
are considered, it will transition automatically to (normal) Redo mode.

– If the task is no longer needed after the changes to the order from the
amendment are considered, it will transition automatically to (normal) Undo
mode.

In both of these cases, your automation code (for either Redo or Undo execution
mode) should contain both a check to see if the task has been in a fallout
execution mode, and also any code that is needed to resolve any actions that
have been taken in the fallout execution mode. For example, if your automation for
Do in Fallout mode opens a trouble ticket, your Redo automation should check to
see whether it needs to close a trouble ticket.

• If the amendment order contains no changes to significant data, the execution
mode of the task will not change as a result of the amendment order.

Related Topics

About Task Compensation

Working with Tasks

Task Editor Details Tab
The Task editor Details tab appears for manual, automated, activation, and transformation task
types.

Use the Details tab to define attributes that you can use to extend the task definition.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 55 of 73

For all tasks in a process, there are properties that you define in Design Studio that the OSM
server requires to properly run the task. These properties include the order with which the task
is associated, the amount of time in which you expect the task to complete, the group
responsible for completing the task, and the manner in which the tasks are assigned. You
configure these details on the Task editor Details tab. The Details tab also contains properties
that enable you to add or remove a parent task (and its inherited data), and to model the data
node on which a multi-instance process relies to create multiple instances of the task.

Field Use

Extends Select an existing or create a new task to extend this task (the task's data is inherited) by clicking
the Select button. To create a new task that this task would be an extension of, click New. After
you have selected or created an task, click Open to access the Task editor. Click Clear (red X) to
clear the selected value from the field.

Using task inheritance, you can leverage existing task data when building new, similar tasks. See
"About Task Extensions and Inheritance" for more information.

Order The order associated with a task determines the overall data set that will be available to the task
when you model the task data.

Note: If you are planning to use the task for an order (OrderA) and also an order (OrderB) that is
extended from that order, you must select the parent order (OrderA) here.

Pivot Node (Optional) Select the Pivot node for this task. When OSM runs the corresponding task at run-time,
the system generates a separate task instance for each separate value of the pivot node in the
order. For example, if the pivot node is an address field, and three addresses are included in the
order, the system generates three separate task instances when this task occurs in a process.

Note: OSM compensation processing does not support task pivot nodes.

Expected Duration and
Calculate using
Workgroup Calendar

Specify the length of time expected to complete the task. By default, the expected duration of a
task is set to 1 day (system time). You can select any value up to 999 in weeks, days, hours,
minutes, or seconds.

You can also calculate the duration based on your workgroup calendar by selecting Calculate
using Workgroup Calendar. If you have more than one workgroup with different calendars all
responsible for the same task, the calculation is based on the first available workgroup that has
access to the task.

Expected duration can be useful during reporting and jeopardy processing.

Order Priority Offset Select a value between 9 and -9 to differentiate this task's priority within the order. For example, if
the order is created at priority 6, and this task is assigned a priority offset of -2, then this task
would run at priority 4 while other tasks in the order would run at priority 6. Similarly, you could
assign a task a priority offset of +2 which would mean that the task would run at a slightly higher
priority than other tasks in the order.

Responsibility Select which department or team is responsible for this task. The default value is System.

You can select System or enter a value that is meaningful within the context of your system
topology. This field is only visible to the reporting API.

Namespace Based on
Task Name

(Automated, Activation, and Transformation tasks only)

Select this option to use a namespace for the task that is based on the task name.

Transport Select System Interaction to use system interaction in automated tasks. The default value is
Direct JMS.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 56 of 73

Field Use

Assignment Algorithm (Manual tasks only)

(Optional) Select the algorithm to use when automatically assigning tasks to users. OSM provides
two default algorithms: Load Balancing and Round Robin.

The Load Balancing algorithm attempts to distribute tasks based on a user's current workload.
The OSM server assigns tasks after determining which user in the workgroup has the fewest
number of assigned tasks.

The Round Robin algorithm assigns tasks in a predefined order among the users in the
workgroup.

You can add custom assignment algorithms to OSM, using OSM's cartridge management tools.
For custom algorithms, you must manually enter the algorithm name in the Assignment
Algorithm field.

If you do not specify an algorithm in this field, you must manually assign tasks.

JNDI Name (Manual tasks only)

Enter the JNDI name for custom assignment algorithms.

Transformation
Manager

(Transformation tasks only)

Enter the name of the transformation manager to be called when this transformation task is
reached. Do any of the following:

• Click Select to select an existing transformation manager.
• Click New to create a new transformation manager. See "Creating New Transformation

Managers" for more information.
• Click Open to open the selected transformation manager in the Transformation Manager

editor.

Order Component (Transformation tasks only)

Enter the name of the order component that provides context for this transformation task and
assists in order item selection. Do any of the following:

• Click Select to select an existing order component.
• Click New to create a new order component. See "Creating New Order Component

Specifications" for more information.
• Click Open to open the selected order component in the Order Component editor.
If you are not using the default provided automation plug-in for the transformation task, this field
may be optional, depending on the way your automation is written.

Update Order with
Transformation
Response

(Transformation tasks only)

Select this option to enable OSM to persist the transformed order items on the order.

Note

You cannot use pivot nodes to model multiple instances of activation tasks. To model
multiple activation task instances, create a multi-instance subprocess that contains
only the activation task.

Related Topics

Defining Task Data

Working with Tasks

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 57 of 73

Task Editor Events Tab
The Task editor Events tab appears for manual, automated, activation, and transformation task
types.

Use the Events tab to create task state automation event notifications. You select the task
state that triggers the automation, and then configure the automation plug-in that will perform
the work.

Field Use

State The State column displays the states for which you have defined automation events. When the task
reaches the corresponding state, the OSM server triggers the automation event plug-in.

Name In the Automation column, the Name field displays the name of automation plug-in.

Automation Type Displays the automation plug-in type.

See "Working with Automation Plug-Ins" for more information.

Add Click the State column Add button to add a predefined task state to the list. Click Add in the
Automation column to define a new automation plug-in for the corresponding task state.

Remove Select a state or an automation plug-in and click Remove to delete the entity from the list of events.

Properties Select an automation plug-in and click Properties to configure the properties of the new plug-in. See
"Configuring Automation Plug-In Properties" for more information.

The Properties button appears only after you have added at least one automation plug-in to the
table.

Related Topics

Creating Order Milestone and Task State Automation Event Notifications

Working with Event Notifications

Task Editor Fallouts Tab
The Task editor Fallouts tab appears for manual, automated, and transformation task types.

Use the Fallouts tab to specify the types of fallout that can occur for a task.

Click Add to open the Select Fallouts dialog box, where you can select fallouts previously
defined on the Order editor Fallouts tab.

Select any fallout defined in the Name column and click Remove to delete the fallout from the
list.

Select any fallout defined in the Name column and click Open to open the fallout in the Order
editor Fallouts tab.

Related Topics

About Task Fallout

Task Editor Jeopardy Tab
The Task editor Jeopardy tab appears for manual, automated, activation, and transformation
task types.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 58 of 73

Use the Jeopardy tab to create jeopardy notifications when certain conditions arise in a task
and you want to alert users or systems of processes, orders, or tasks that may be at risk.

The Jeopardy tab has the following subtabs:

• Task Editor Jeopardy Details Tab

• Task Editor Jeopardy Conditions Tab

• Task Editor Jeopardy Notify Roles Tab

• Task Editor Jeopardy Polling Tab

• Task Editor Jeopardy Automation Tab

• Task Editor Jeopardy Notes Tab

Task Editor Jeopardy Details Tab
Use the Jeopardy Details tab to name the jeopardy, select the notification rule, set the priority
level, enable or disable the notification, and specify whether to send the notification by email.

Field Use

Name Enter a name to identify the jeopardy.

Rule Select the rule the system should evaluate before generating this jeopardy. This field defaults to the system-
based null_rule.

If you do not change the default value, OSM will always trigger this notification at the specified polling interval.
See "Defining Order Rules" for more information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is evaluated first.

Enabled Select this option to enable this jeopardy notification, or deselect the option if you intend to implement the
notification at a later time.

Email Select this option to send email notifications to all users in the workgroup associated with the specified role.

By default, notifications appear in the Notifications page of the Task web client. However, you can specify that
notifications be sent by email by selecting the Email check box.

When you assign users to a workgroup in the OSM Administration area of the Order Management web client,
you can set up OSM to notify users by email. When a notification occurs, the system sends a notification ID
number through email.

See OSM Order Management Web Client User's Guide for information about configuring email notification
properties for user roles. See OSM Installation Guide for information about configuring the outgoing email
server.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Conditions Tab
Use the Jeopardy Conditions tab to select the conditions under which the jeopardy should be
raised. For example, you can raise a jeopardy when this task exceeds the expected or a given
duration.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 59 of 73

Field Use

Raise a Jeopardy when
Process Duration Exceeds

Raise a jeopardy if the process to which the task is associated has exceeded the Expected
Duration of the order (defined on the Order editor Details tab) or Given Duration,
specified by the time interval defined in the adjacent field.

Raise a Jeopardy when
Task Duration Exceeds

Raise a jeopardy if the task has exceeded the Expected Duration (defined on the Task
editor Details tab) or Given Duration, specified by the time interval defined in the adjacent
field.

Raise a Jeopardy when the
order is received within

Raise a jeopardy if the order has been received and the time interval defined in the adjacent
field has been exceeded.

Multiple events per Task
instance

When a task has multiple instances, select this option if, when a jeopardy notification is
triggered, you want a notification triggered for every task instance.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Notify Roles Tab
Use the Jeopardy Notify Roles tab to select the roles to be notified when the jeopardy occurs.

Select a predefined jeopardy from the list in the left column to activate a list of available roles.
See "Working with Roles" for information about defining roles. Using the directional arrow
buttons, move the roles (those groups to whom you want the notification sent) into the
Selected Column.

If the jeopardy notification is sent to an external system via an automation plug-in, ensure that
you include the role whose credentials are used when running the automation plug-in. See
"Configuring Automation Plug-In Properties" for more information.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Polling Tab
Use the Jeopardy Polling tab to select the interval at which the OSM server evaluates the
condition that triggers the jeopardy notification. You can define the polling so that the system
checks for the condition only once, or you can define the polling at hourly, daily, weekly, or
monthly intervals.

Field Use

Interval Select the interval at which the OSM server evaluates the condition that triggers the jeopardy notification.
Select Once if you want the system to check for the condition only once when the order is received. When
you select Once, the system disregards the Next Start field.

Use the Hours, Days, and Months fields to define a specific interval at which the OSM server evaluates the
condition that triggers the jeopardy notification. For example, if you want the system to check for the condition
every two days, select the Day(s) option and from the drop-down list select 2.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 60 of 73

Field Use

Next Start Select the date and time that you want the notification to begin checking. You can specify a date for any
polling interval. The system uses the current date and time as the default value.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Working with Tasks

Task Editor Jeopardy Automation Tab
Use the Jeopardy Automation tab to configure an automation plug-in that performs the work
or sends data to an external system when the jeopardy notification is triggered. OSM supports
one automation plug-in per Jeopardy.

Field Use

Add Click Add to open the Add Automation dialog box is displayed, where you can define a new
automation plug-in for the jeopardy notification.

Name Enter a name for the automation entry.

Automation Type Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Jeopardy Automation table.

Properties Select any entry in the table and click to define the automation properties. See "Configuring
Automation Plug-In Properties" for more information about defining automation properties in the
Properties view.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Notes Tab
Use the jeopardy Notes tab to denote the intended use of the notification or any additional
information that you want to append to the jeopardy data.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 61 of 73

Task Editor Permissions Tab
The Task editor Permissions tab appears for manual, automated, activation, and
transformation task types.

Use the Permissions tab to assign roles to each of the three possible task execution modes.

Field Use

Do, Redo,
Undo, Do in
Fallout, Redo
in Fallout, and
Undo in Fallout

For each role listed in the Role Name column, select or deselect, as appropriate, the Do, Undo, Redo,
Do in Fallout, Redo in Fallout, and Undo in Fallout check boxes to enable or disable access to the task
execution modes.

These options represent the three possible task execution modes:

• Do is the default mode for a task that runs under normal processing.
• Undo reverses the effects of the associated Do operation.
• Redo combines both Undo and Do operations in a single operation.
• Do in Fallout is the mode for a task that runs when the task fails while running in Do mode.
• Undo in Fallout is the mode for a task that runs when the task fails while running in Undo mode.
• Redo in Fallout is the mode for a task that runs when the task fails while running in Redo mode.

Select Click Select to select a predefined role to add to the permissions list. If no roles have been previously
defined, click New to create a role.

You must define at least one role in the permissions list for every task.

New Click New to open the Role wizard and create a new role to assign to the task. To select a role that was
previously defined, click Select.

You must define at least one role in the permissions list for every task.

Open Select any role in the Role Name column and click Open to open the role in the Role editor.

Remove Select any role in the Role Name column and click Remove to delete the role from the task permissions
list.

Related Topics

Assigning Task Permissions

Task Editor Redo Tab
The Task editor Redo tab appears for activation task types.

Use the Redo tab to define part of your compensation strategy for activation tasks: to redo
tasks that are affected by amendments. Complete the compensation strategy for activation
tasks on the Undo tab. See "Task Editor Undo Tab" for more information.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 62 of 73

Field Use

Compensation
Strategy

Specify the compensation strategy to redo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.
• Select Undo then do to instruct OSM to undo the task and redo the task as two separate

transactions. The task is redone using the same request mapping defined on the Request Data tab.
• Select Redo (amend existing order) to instruct OSM to undo the task and redo the task as a single

transaction, sending the oderByValueRequest parameter with the replace command, replacing the
original order with the new command. The task is redone using the same request mapping defined
on the Request Data tab.

• Select Redo (new order) to instruct OSM to send a new order to the activation system. The new
order can be configured with new request mappings.

Use existing
request
mapping

When Compensation Strategy is set to Redo (new order), the Redo operation uses the same request
mapping settings as the original order.

Re-configure
request
mapping

When Compensation Strategy is set to Redo (new order), you can specify new request mapping
settings for the Redo operation. The Task Data area and Service Actions area behave as they do on the
Request Data tab. See "Task Editor Request Data Tab" for more information.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Task Editor Request Data Tab
The Task editor Request Data tab appears for activation task types.

Use the Request Data tab to configure service action requests by mapping OSM order header
and task data to Activation order header, service action, and global parameters.

See the following topics for more information:

• Properties Activation Order Header Binding View

• Properties Global Parameter Binding View

• Properties Service Action Binding View

• Properties Parameter Binding View

Field Use

Task Data area Select one of the following values:

• Select Order Header to display the standard order header fields request parameters.
• Select Task Data to display the task data request parameters. Right-click a data element in this

view and select Auto map parameter to automatically map the element to a service action
parameter that shares the same name (case insensitive).

See "Configuring Service Action Requests" for information about mapping. See "Defining Task Data" for
information about adding OSM data to the activation task.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 63 of 73

Field Use

Service Action
area

Displays the request parameters to which you can map OSM data. Expand the Activation Order
Headers folder, the Global Parameters folder, or any service action to review the parameters available
for mapping. Check marks indicate which parameters are mapped to OSM data.

Note: Some Activation order header parameters require default values. Before mapping OSM data to
Activation order header parameters, note which parameters are prepopulated with a check mark to
determine those that require default values.

Right-click in the Service Actions area to access the context menu. The Service Actions area context
menu enables you to add service data to a task, define new global parameters, associate additional
service actions to the tasks, remove parameters, and remove mapping information.

Note: When adding service action parameters to OSM task data, you can add all parameters of a
service action to a selected OSM data structure. Service action parameters are not added to the
structure if it contains a child element with the same name as the parameter. Design Studio limits the
maximum length of service action parameters to 1000 when adding them to a structure. If you create
data elements for service action parameter fields manually (using the Data Schema editor), ensure that
you set the maximum length of the new data element equal to the maximum length defined for service
action parameter.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Properties Activation Order Header Binding View
Use the Activation Order Header Binding view to review and edit mapping information
between OSM data and Activation order header parameters.

Field Use

Order Header Displays the parameter label.

Condition Enter the condition that determines whether the parameter is included in the request. If the condition
evaluates to true, the parameter is sent.

Binding Type Select to define the expression path as an XPath Expression or as an XSLT Snippet. For example, you
might define the expression path as an XSLT snippet if you are mapping OSM data to a compound order
header parameter.

Binding Displays the mapping information for an order header parameter.

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are defined
correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to the Java
perspective and click the Package Explorer tab. Each activation task is listed in the Activation directory
in the project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 64 of 73

Modeling Activation Tasks

Properties Global Parameter Binding View
Use the Global Parameter Binding view to review and edit mapping information between
OSM data and global parameters.

Field Use

Parameter Displays the parameter label.

Condition Enter the condition that determines whether the parameter is included in the request. If the condition
evaluates to true, the parameter is sent.

Binding Type Select this option to define the expression path as an XPath Expression or as an XSLT Snippet. For
example, you might define the expression path as an XSLT snippet if you are mapping OSM data to a
compound global parameter.

Binding Displays the mapping information for a global parameter.

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are defined
correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to the Java
perspective and click the Package Explorer tab. Each activation task is listed in the Activation
directory in the project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Properties Service Action Binding View
Use the Service Action Binding view to review and edit mapping information between OSM
data and service action parameters and to define the conditions under which the service is
added to the request.

Field Use

Service Action Displays the service action to which the selected parameter is associated.

View Node Displays the activation system parameter name.

Condition Enter the condition that determines whether the service is included in the request. If the condition
evaluates to true, the parameter is sent.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 65 of 73

Properties Parameter Binding View
Use the Parameter Binding view to review and edit mapping information between OSM data
and service action parameters and to review the default information defined for the service
action.

Field Use

Service Action Displays the service action to which the selected parameter is associated.

Parameter Displays the parameter name.

Default Value Displays the default value defined for a parameter. You define service action parameters in the Service
Action editor.

Condition Enter the condition that determines whether the parameter is included in the request. If the condition
evaluates to true, the parameter is sent.

Binding Type Select this option to define the expression path as an XPath Expression or as an XSLT Snippet. For
example, you might define the expression path as an XSLT snippet if you are mapping OSM data to an
ASAP compound parameter.

Binding Displays the mapping information for a parameter in a service action folder. Consider the following
example, which demonstrates a mapping of OSM data elements dsl, VoIP, and tv to an ASAP
compound parameter. In this example, you would select XSLT Snippet in the Binding Type field and
enter the following:

<xsl:if test="osm:feature/osm:dsl='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>DSL</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

<xsl:if test="osm:feature/osm:VoIP='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>VOIP</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

<xsl:if test="osm:feature/osm:tv='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>TV</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are defined
correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to the Java perspective
and click the Package Explorer tab. Each activation task is listed in the Activation directory in the
project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 66 of 73

Task Editor Response Data Tab
The Task editor Response Data tab appears for activation task types.

Use the Response Data tab to map responses to OSM data structures and configure state
and status transitions for completion events and exceptions returned by the activation system.

Field Use

Event/Exception Select an event or an exception. For each event or exception, you define:

• The response data to use to update the OSM order
• The location in OSM where the response data is to be copied
• A state or status transition
Events and exceptions that include any mapping or transition configuration are represented by a
shaded (green) flag icon. Events and exceptions with no configuration defined are represented by
an empty (or gray) flag icon.

Activation Response Select the data returned from the activation system that updates the OSM order. If you do not
select a data field for an event or exception, OSM ignores that event or exception.

Response Data
Location

Define the OSM data structure to contain the data returned from an event or exception. For each
event or exception, you select an existing data structure from the order template or from the data
dictionary and right-click that data structure to define the data location. See "Configuring Service
Action Responses" for more information.

OSM Data Binding Bind activation response elements to arbitrary task data elements by dragging elements from the
Activation Response area onto OSM data structures.

Note: Do not add an OSM data structure in this field that uses a distributed order template.
Attempting to map a response value to a data element in a distributed order template will cause
an error. For more information about distributed order templates, see OSM Concepts.

Transition to State or
Status

Displays default transitions defined for completion events and exceptions. You can define
additional state transitions for user-defined states and additional transitions for predefined task
statuses using the Add button.

Move Up and Move
Down

Select a state or status transition row in the Transition to State or Status table and click Move
Up and Move Down to change the order in which OSM evaluates the transition conditions at run
time.

Properties Select a state or status transition row in the Transition to State or Status table and click
Properties to define the condition against which OSM evaluates the transition. See "Properties
State/Status Transition View" for more information.

Response Filter Enables you to limit the amount of response data sent to update OSM order data. See
"Response Filter Area" and "Filtering ASAP Response Data" for more information.

Remove Select a state or status transition row in the Transition to State or Status table and click
Remove to delete the transition.

Add Click Add to define a new user-defined state or status transition for a selected event or exception.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Modeling Activation Tasks

Response Filter Area

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 67 of 73

Properties State/Status Transition View
Use the Properties State/Status Transition view to define the condition against which OSM
evaluates (at run time) a state or status transition for a service action response.

Field Use

Condition Name Displays the condition name as defined on the Response Data tab in the Transition to State or
Status table.

State/Status Displays a user-defined state or status transition as defined on the Response Data tab in the
Transition to State or Status table. Click Select to change the state or status.

Condition Define the condition against which OSM evaluates the transition. At run time, OSM evaluates the
conditions in an order you define and stops evaluating when a condition evaluates to true.

For example, consider that you want to define a condition for the orderFailEvent to transition the task
to a suspended state (NEUnknown) because of a network element error. You can define the condition
in the following manner:

contains($osmOrderDocument/osm:GetOrder.Response/osm:_root/osm:ASAPResponse/
osm:EventData/osm:reason[starts-with(.,'orderFailEvent')], 'SARM_MSG:Routing
Error')

Note: The $osmOrderDocument is a variable that represents the OSM order data. Completion events
and exceptions must include a default transition should all specified conditions fail. You can change or
delete the predefined default values, or you can create your own. However, if you define no default
conditions for ASAP completion events and exceptions (no condition is defined with XPath expression
true()) Design Studio creates a problem marker.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Response Filter Area
Use the Response Filter area to display and define conditional mappings for service-action
response parameters and value items. For example, you may want to update order parameters
with response data only when certain infoParms have a certain value. In the Response Filter
area, you can specify an XPath condition which determines whether or not to update OSM
order data with response data.

Field Use

Event/Exception Name Name of the event or exception on which to filter parameters or value items.

Filter on Select the parameters on which to filter. Select from either infoParm or Command History
value item.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 68 of 73

Field Use

Condition Define the conditional mappings of the infoParm or value item parameters by dragging and
dropping the desired parameters or items from the Activation Response area into the Condition
field. When the XPath representation of a parameter is displayed, set the desired condition by
entering an XPath operator.

For example, if you only want to update an order when the serviceId infoParm parameter from
orderCompleteEvent is equal to two. First, select orderCompleteEvent in the Event/Exception
field. Then, in the Activation Response area, click Detailed Parameters and infoParm. Drag
and drop serviceId into the Condition field. The XPath representation of serviceId will appear
as follows:

mslv-sa:serviceId

Now set the desired condition by adding ='2'

mslv-sa:serviceId='2'

Related Topics

Filtering ASAP Response Data

Configuring Service Action Responses

About Service Action Response Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Task Editor Composite Data View Tab
The Task editor Composite Data View tab appears for manual, automated, and transformation
task types.

Use the Composite Data View tab to display all of the data that is available to a task within the
context of an OSM solution. For example, if you added a new fulfillment function to extend a
solution, you would see the additional data nodes required by the function as well as any new
control data. The task data in the Composite Data View tab is read-only. You model the data
in the Task Data tab of the Composite Cartridge View editor.

Tip

The composite data view has at least the same number or more data nodes than its
corresponding task view.

Field Use

Solution Select the solution to display all of the task data associated with the solution.

Task Data Displays all of the data that is available to a task, including additional data that has been contributed within the
context of a solution. You cannot modify any data that appears in the Task Data area.

Behaviors Displays all of the behaviors defined for each data node. Select a data node in the Task Data area to view the
behaviors defined for the node. You cannot modify any behaviors that appear in the Behaviors area.

Related Topics

Working with Composite Cartridge Views

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 69 of 73

Working with Composite Cartridge Projects

Task Editor States/Statuses Tab
The Task editor States/Statuses tab appears for manual, automated, activation, and
transformation task types.

Use the States/Statuses tab to add, remove, and assign predefined states and statuses to
tasks, and to define status severity levels.

Field Use

Name Displays the database name of the entity. Select the value in the column to rename.

Display Name Displays the name of the entity as it will appear in the Task web client. Select the value in the column to
rename.

Note: Design Studio automatically capitalizes display names.

Constraint Sets the Constraint severity level, which determines the transition behavior of a task when a constraint
violation is encountered. The Constraint value represents the highest allowable Constraint behavior
violation value with which the task transition will be allowed to occur. Select one of the following:

• Critical: The transition is allowed for all constraint violations.
• Error: The transition allowed for all constraint violations except Critical.
• Warning: The transition is allowed for all constraint violations except Critical and Error (this is the

default).
• Valid: The transition is allowed only for a Valid constraint violation.
• None: The transition is not allowed for any constraint violations.
See "Defining Constraint Behavior Properties" for more information.

Related Topics

Assigning Task States and Statuses

About Task States and Statuses

Task Editor Task Data Tab
The Task editor Task Data tab appears for manual, automated, and transformation task types.

Use the Task Data tab to define which data is necessary to complete the task. You can drag
data from the Data Element view into the Task Data area, or right-click in the Task Data area to
select data from the Order Template or Data Dictionary dialog boxes.

When modeling task data using the Task Data tab, see the following topics for more
information:

• Task Data Node Properties View Identification Tab

• Task Data Node Properties View Dictionary Tab

Field Use

Task Data Displays the data that the task requires to complete. The order in which the data appears in the Task Data
area is the order in which it appears in the Task web client (or the order in which the data appears in the
XML API if this task is an automated task intended to integrate with an external system).

Select a data node, right-click and select Move Up or Move Down to reposition the node in the task view.

See "About the Task Editor Task Data Context Menu" for descriptions of other actions you can perform in the
Task Data context menu.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 70 of 73

Field Use

Behaviors Displays all of the behaviors defined for each data node. Select a data node in the Task Data area to view
the behaviors defined for the node, or to create new behaviors. When defining behaviors at the task level,
you can use the Task editor Task Data tab to create the behavior, the Behavior Properties tabs to refine the
behavior information, and the Task editor Behaviors tab to quickly view all of the behaviors defined for a
task.

See the following topics for information about defining behaviors:

• Defining Manual Task Behaviors
• Defining Automated Task Behaviors

Related Topics

Defining Task Data

Working with Tasks

Task Data Node Properties View Identification Tab
Use the Task Data Node Properties View Identification tab to edit the information defined for
the corresponding data element at the task level.

Right-click any attribute in the Task editor Task Data tab and select Open Properties View to
edit the data element properties at the task level.

Field Use

Name Displays the name of the element as defined in the Data Dictionary. The name of the node is
not available for edit. You can edit the value in the Display Name field on the Data Schema
editor Details subtab to edit the manner in which the element displays.

Path Displays an XPath expression to define the location of the node in the Data Dictionary.

Default Value Select this option and enter a value to initially populate the field associated with this data
node in the Task web client.

Read Only Select this option to make the field read-only field (for this task only) in the Task web client.

Significance By default, a node inherits significance from its parent. At the task level, you can define the
significance as Not Significant if you do not want to use the node during amendment
processing.

During amendment processing, the OSM system compensates only for task instances that
use significant data elements as inputs. If an element is not specified as significant, the
system updates the order only with the changed data (no compensation is required). Data
significance is supported at the data dictionary, order template, and task view levels.

Override Data Dictionary
Minimum/Maximum

You can define the Minimum and Maximum values at the task level:

In the Minimum field, select the number of times the global element referenced can appear
in an instance document. Select 0 if you want the element to be optional. By default, nodes
are optional at the task level.

In the Maximum field, select the maximum number of times the global element referenced
can appear. Select unbounded to indicate there is no maximum number of occurrences.

Apply To Children Select this option to propagate the Read-Only, Significance, and Override Data
Dictionary fields to all direct children of the selected element. The Confirm Change dialog
box appears. Select Recursive in the Confirm Change dialog box to apply the changes to all
other children of the selected element. All changes are saved immediately upon
confirmation.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 71 of 73

Field Use

Contributor Identifies the task that contributes the data element. For example, consider that you have 2
tasks, Task1 and Task2. Task2 extends Task1 and also contains 1 additional data element,
billing_start_date. The contributor for all of the data elements (except for billing_start_date)
appears as Task1. The contributor for billing_start_date appears as Task2.

Related Topics

Defining Task Data

Working with Tasks

Task Data Node Properties View Dictionary Tab
Use the Task Data Node Properties View Dictionary tab to edit the information defined for the
corresponding data element at the task level.

Right-click any attribute in the Task editor Task Data tab and select Open Properties View to
edit the data element properties at the task level.

Field Use

Name Displays the name of the element as defined in the Data Dictionary. The name of the node is not
available for edit. You can edit the value in the Display Name field on the Data Schema editor
Details subtab to edit the manner in which the element displays.

Display Name Displays the name of the element as it will appear in the Task web client. You can define different
display names for the languages that you support in the Task web client. Only those languages
defined on the Windows, Preferences, Oracle Design Studio dialog box appear as options. See
"Defining OSM Preferences" for more information about defining languages for use in OSM.

Type Displays the data element type. This field is read-only.

Max Length Maximum number of units of length for a string element type. This field is read-only.

Minimum or
Maximum

Displays the Minimum and Maximum field values as defined in the Data Dictionary. See "Task Data
Node Properties View Dictionary Tab" for information about overriding this value.

Path Displays an XPath expression to define the location of the node in the Data Dictionary. This field is
read-only.

Namespace Identifies the namespace in which this cartridge exists, and identifies cartridge version within the
namespace, if applicable.

Related Topics

Defining Task Data

Working with Tasks

Task Editor Undo Tab
The Task editor Undo tab appears for IP Service Activator and ASAP activation tasks. (A new
activation task is designated to be either an IP Service Activator or ASAP activation task when
you choose the Activation System value on the Activation Task Wizard.)

Use the Undo tab to define part of your compensation strategy for activation tasks: to undo
tasks that are affected by amendments. Complete the compensation strategy for activation
tasks on the Redo tab. See "Task Editor Redo Tab" for more information.

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 72 of 73

Field Use

Compensation
Strategy (ASAP only)

Specify the compensation strategy to undo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.

Compensation
Strategy (IP Service
Activator only)

Specify the compensation strategy to undo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.
• Select Undo to instruct OSM to cancel the original task, or to cancel another task.

Cancel original order
(IP Service Activator
only)

When Compensation Strategy is set to Undo, this option cancels the original order id.

Create a new order to
undo (IP Service
Activator only)

When Compensation Strategy is set to Undo, you can configure a new task to undo, by
specifying the data node that contains the Activation order ID. The Activation order ID is
configured on the Activation Task Details tab. See "Task Editor Activation Task Details Tab" for
more information.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Chapter 7
Task Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 73 of 73

8
Working with Order Lifecycle Policies

Every order you model within Design Studio must be associated with an order lifecycle policy.
An order lifecycle policy controls which transactions a role can perform while the order is in a
particular order state. For example, while an order is in the In Progress state, you might want
your Customer Service role to perform the Update Order, Cancel Order, and Suspend Order
transactions, while your Fallout role performs Raise Exception.

When working with order lifecycle policies, see the following topics:

• About Order States and Transactions

• Creating New Order Lifecycle Policies

• Configuring Order Lifecycle Policies

• Order Lifecycle Policy Editor

About Order States and Transactions
An order's progress in an Oracle Communications Order and Service Management (OSM) run-
time environment is tracked by its state at various stages of its life cycle. Transitions from one
order state to another are achieved through transactions. Each order state is associated with a
set of transactions that can be performed while the order is in that particular state. See OSM
Concepts for information about order states and transactions.

Transactions are not enabled until roles are assigned to them. In the Order Lifecycle Policy
editor, enabled transactions are represented by a fully-shaded diamond-shaped icon. Disabled
(unassigned) transactions are represented with a diamond icon that contains no shading. If all
transactions for a particular state are enabled, the state is represented with a fully-shaded
diamond icon; partial-enabling is represented with a half shaded diamond. The following
graphic demonstrates the use of differently shaded icons in the Order Lifecycle Policy editor
left-column state and transaction menu tree, using the delivered default order lifecycle policy,
which contains a minimum set of order state and transaction combinations assigned to all
roles:

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 10

You can create a custom policy with no default transactions and no role assignments, and then
model it using the Order Lifecycle Policy editor. Depending upon your business processes, you
may configure one general policy that supports many different order types, or you may need to
configure a unique policy for each order type.

Related Topics

Working with Order Lifecycle Policies

Working with Orders

Creating New Order Lifecycle Policies
You create new order lifecycle policies to control which transactions a role can perform while
the order is in a particular order state.

To create an order lifecycle policy:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Order Lifecycle Policy.

2. In the Project field, select the OSM project in which to save this entity.

3. In the Name field, enter a name for the policy.

The name must be unique among order lifecycle policy entity types in the same
namespace.

4. (Optional) Select a location for the order lifecycle policy.

By default, Design Studio saves the order lifecycle policy to your default workspace
location. You can enter a folder name in the Folder field, or select a location different from
the system-provided default. To select a different location:

Chapter 8
Creating New Order Lifecycle Policies

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 10

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Next.

6. (Optional) Create the policy with a custom configuration.

You can create custom configuration using the Create default order lifecycle policy for
the selected roles check box. Do one of the following:

• To create the policy with no default transactions and no role assignment, deselect the
check box.

• To create the policy with the default set of transactions but modify the role assignment,
leave the check box selected and move the selected roles to the available roles as
appropriate.

7. Click Finish.

The newly created policy is displayed under the selected project in the Studio Projects
view.

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Configuring Order Lifecycle Policies
You configure order lifecycle policies to control which transactions a role can perform while the
order is in a particular order state.

To configure lifecycle order policies:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any order lifecycle policy entity.

The Order Lifecycle Policy editor opens and displays the lifecycle policy.

4. (Optional) Create permissions for multiple state and transaction combinations.

When creating permissions for multiple state and transaction combinations, do the
following:

a. Click Grant Permission.

The Add Permissions to Transactions dialog box opens.

b. Press and hold the Shift key to select multiple consecutive state and transaction pairs.
Or, press and hold the Control key to select multiple non-consecutive pairs.

c. In the Roles list, select the roles to which you want to add permissions.

d. Click the arrow buttons to move the selected roles from the Available list to the
Selected list.

e. Click OK.

Chapter 8
Configuring Order Lifecycle Policies

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 10

5. In the left-column state and transaction menu tree, expand an order state to see the
related transactions.

6. Select a transaction in the left-column state and transaction menu tree.

If you previously defined permissions for the transaction, the permitted roles are displayed
in the Permissions tab Selected area. The transaction you select here is the transaction for
which you want to define permissions. For example, select the Suspend Order transaction
to permit a specific group of users to suspend orders.

7. Click the Permissions tab Add button.

Design Studio adds a default display name to the Permissions area.

8. Select the default name and rename the permission, as appropriate.

9. Ensure that the new permission is actively selected.

10. In the Roles Available area, select the roles to which you will give transaction permissions.

11. Click the arrow keys to move the selected roles into the Selected area.

12. (Optional) With the new permission actively selected, click the Add button in the Condition
area.

Design Studio adds a condition with a default name Condition and a corresponding XPath
expression with the default value true().

13. (Optional) Modify the default XPath expression for the permission condition.

The XPath expression must evaluate to true before the selected roles are permitted access
to the transaction. See "Order Lifecycle Policy Permissions Tab" for more information.

14. (Optional) Click the Transition Condition tab.

Use the Transition Condition tab to define the conditions that control whether the order
can transition to the transaction. When adding transaction transition conditions:

a. Click the Transition Condition tab Add button.

Design Studio adds a condition with a default name Condition and a corresponding
XPath expression with the default value true().

b. Modify the default XPath expression for the transition condition.

If the condition for a particular transaction transition evaluates to false, then the
transaction is disabled while the order is in the surrounding order state.

See "Order Lifecycle Policy Transition Conditions Tab" for more information.

15. (Optional) Click the Grace Period tab.

The Grace Period tab appears for the Suspend Order, Process Amendment, and Cancel
Order transactions only. You can define grace periods by wait duration and by event
frequency.

16. Click Save.

Order Lifecycle Policy Editor
Use the Order Lifecycle Policy editor to add permissions to order transactions. If you create a
policy based on the default configuration, any roles you have defined within Design Studio are
automatically preselected for the default transactions. You can add permissions to a group of
transactions, or to a single transaction.

The following fields are common among multiple Order Lifecycle Policy editor subtabs.

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 10

Field Use

Display Name Edit the display name for the order lifecycle policy.

State and Transaction menu tree This menu tree (at the left side of the Order Lifecycle Policy
editor) contains a list of the order states and the transactions
that can occur for each order state.

Expand an order state folder to reveal the related transactions.
Select a transaction in this column to configure permissions for
the transaction. Click the Add Permissions button to configure
permissions for multiple transactions simultaneously.

See the following topics when using the Order Lifecycle Policy editor:

• Order Lifecycle Policy Permissions Tab

• Order Lifecycle Policy Transition Conditions Tab

• Order Lifecycle Policy Editor Grace Periods Tab

Order Lifecycle Policy Permissions Tab
Use the Order Lifecycle Policy editor to add permissions to order transactions.

Field Use

Permissions Select a transaction from the left-column order state and
transaction menu tree and click the Permissions field Add
button to add a new permission for the selected transaction.
Select any permission and click Remove to delete the
permission from the list.

Select the default name and rename the permission, as
appropriate. See "Configuring Order Lifecycle Policies" for
information about assigning roles to permissions.

Roles Select a permission in the Permissions field to view the roles
assigned to the permission. All of the roles defined in the
workspace in the Available Column. To permit a role to
perform the transaction associated with the permission, select
a role and click the arrow keys to move roles into the Selected
area.

Click the Create Role button to create and add a new role.
See "Creating New Roles" for more information.

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 10

Field Use

Conditions Define conditions for the permissions.

Select a permission and click the Add button in the Condition
area. Select the default name condition and the default
XPath expression true() to modify the values. Select any
condition and click Remove to delete the condition from the
list.

OSM evaluates the condition for a permission when the
transaction is attempted. If it evaluates to true, the assigned
roles are able to perform the transaction. If it evaluates to
false, the assigned roles are unable to perform the
transaction.

Note: XPath uses path expressions to select data nodes in
XML documents. A path expression with a single dot (.)
represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root
node. XPath and XQuery fields are limited to 4000 characters.

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Order Lifecycle Policy Transition Conditions Tab
Use the Order Lifecycle Policy Transition tab to define conditions for transaction transitions.

Field Use

Conditions Define conditions for the transaction transition.

Click the Add button in the Condition area to add a condition
for the selected transaction in the left-column states and
transactions menu tree. Select the default name condition
and the default XPath expression true() to modify the values.
Select any condition and click Remove to delete the condition
from the list.

OSM evaluates the condition when the order transitions to the
selected transaction. If the condition evaluates to false, then
the transaction is disabled while the order is in the
surrounding order state.

Expression When you add a condition, the default XPath expression
true() is automatically added.

Note: XPath uses path expressions to select data nodes in
XML documents. A path expression with a single dot (.)
represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root
node. XPath and XQuery fields are limited to 4000 characters.

Message Add a human readable message to display in error logs if the
condition evaluates to false.

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 10

Field Use

Display as Add an error severity to associate with a condition that
evaluates to false. Select one of the following:

• VALID:
• WARNING:
• ERROR:
• CRITICAL:

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Transition Condition for Checking a Hard Point of No Return
The following XQuery can be used to check whether a hard point of no return has been
reached, so that an amendment can be rejected if it is received after a hard point of no return.
This XQuery checks to see whether there have been any revisions to significant data for order
items that have reached a hard point of no return. Business considerations will determine what
state/transition combinations will need to check for the point of no return, but at a minimum it
should be defined in the In Progress state for the Submit Amendment transition.

To use this XQuery, follow the standard procedure for updating the lifecycle policy, creating a
new transition condition and using the XQuery below in the Expression box for that condition.
See "Configuring Order Lifecycle Policies" for more information about updating the lifecycle
policy.

declare variable $PONR_NOT_YET := "NOT YET";

(: Checks for Hard Point Of No Return, return = true means no PONR
 has been reached. Raise an error if PONR has been reached. :)
declare function local:allowRevision(
 $taskData as element()) as xs:boolean {
 let $rootData := $taskData/_root
 let $changes := $taskData/RevisionPerspective/Changes
 return
 if (fn:exists($rootData) and fn:exists($changes))
 then (
 let $changedOrderItems as element()* :=
 local:getChangedOrderItems($rootData, $changes)
 let $revisionOrderItemsPastHardPONR as xs:string* :=
 for $orderItem in $changedOrderItems
 return local:getOrderItemsPastHardPONR($orderItem)
 return fn:not(fn:exists($revisionOrderItemsPastHardPONR)))
 else fn:true() };

declare function local:getChangedOrderItems(
 $root as element(),
 $changes as element()) as element()* {
 let $indices := local:getOrderItemIndicesForChecking($changes)
 let $distinctIndicies := fn:distinct-values($indices)
 for $index in $distinctIndicies
 return local:getOrderItem($root, $index) };

declare function local:getOrderItemIndicesForChecking(

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 10

 $changes as element()) as xs:string* {
 for $change in $changes/*[@significant = "true"]
 return local:getOrderItemIndex($change) };

declare function local:getOrderItemIndex(
 $changeNode as element()) as xs:string* {
 let $changeType := local-name($changeNode)
 let $tokens := fn:tokenize($changeNode/@path, "/")
 let $t1 := $tokens[position() = 2]
 let $t2 := $tokens[position() = 3]
 let $t3 := $tokens[position() = 4]
 let $t4 := $tokens[position() = 5]
 return
 if (fn:starts-with($t1, "ControlData")
 and fn:starts-with($t2, "Functions")) then
 (: /ControlData/Functions/*Function/orderItem/... :)
 local:getOrderItemIndexInFunction(
 fn:root($changeNode)/GetOrder.Response/_root,
 (: Functions/@index, if exists :)
 fn:substring-before(fn:substring-after($t2,"'"), "'"),
 (: e.g. SyncCustomerFunction/@index :)
 fn:substring-before(fn:substring-after($t3,"'"), "'"),
 (: e.g. orderItem/@index :)
 fn:substring-before(fn:substring-after($t4,"'"), "'"))
 else
 "" };

declare function local:getOrderItemIndexInFunction(
 $root as element(),
 $functionsIndex as xs:string,
 $functionIndex as xs:string,
 $orderItemIndex as xs:string) as xs:string* {
 if (fn:boolean($functionsIndex)) then
 $root/ControlData/Functions[@index = $functionsIndex]/*[@index =
 $functionIndex]/orderItem[@index =
 $orderItemIndex]/orderItemRef/@referencedIndex
 else
 $root/ControlData/Functions/*[@index = $functionIndex]/orderItem[@index =
 $orderItemIndex]/orderItemRef/@referencedIndex };

declare function local:getOrderItem(
 $root as element(),
 $orderItemIndex as xs:string) as element()* {
 $root/ControlData/OrderItem[@index = $orderItemIndex] };

declare function local:getOrderItemsPastHardPONR(
 $orderItem as element()) as xs:string* {
 let $lineId as xs:string := local:getLineId($orderItem)
 let $pointOfNoReturn as xs:string := local:getPointOfNoReturn($orderItem)
 let $isHardPONRReached := if ($pointOfNoReturn = "HARD")
 then true()
 else false()
 return
 if ($isHardPONRReached)
 then $lineId
 else () };

declare function local:getLineId(
 $orderItem as element()) as xs:string {
 fn:normalize-space($orderItem/LineID/text()) };

declare function local:getPointOfNoReturn(

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 10

 $orderItem as element()) as xs:string {
 let $ponrData := fn:normalize-space($orderItem/PoNR/text())
 let $ponrCode :=
 if (fn:empty($ponrData))
 then $PONR_NOT_YET
 else (
 let $lastPonrValue :=
 fn:normalize-space($orderItem/PoNR[last()]/text())
 return
 (: We are looking for strings with either [xxxx]xxxx or
 xxxx format. Return what is in the [] or the whole string
 if no brackets. :)
 let $hard1 := fn:tokenize($lastPonrValue, "\[|\]")
 return fn:concat($hard1[1] , $hard1[2])
)
 return
 $ponrCode };

(: Detect false revision order. return = true means
 there are significant data changes in the revision order :)
declare function local:doSignificantChangesExist(
 $taskData as element()) as xs:boolean {
 let $dataChanges :=
 $taskData/RevisionPerspective/Changes/*[@significant='true']
 return
 if (fn:exists($dataChanges))
 then true()
 else false() };

(: Only do the complex calculation for a valid revision.:)
let $taskData := fn:root(.)/GetOrder.Response
let $isValidRevision := local:doSignificantChangesExist($taskData)
return if ($isValidRevision)
then
 local:allowRevision($taskData)
else
 fn:true()

Order Lifecycle Policy Editor Grace Periods Tab
Use the Order Lifecycle Policy Editor Grace Periods tab to specify a period of time that the
system should wait before suspending, amending, or canceling an order.

A grace period specifies a period of time to wait for all accepted tasks to complete before
transitioning an order. You can specify a grace period for the Suspend Order, Process
Amendment, and Cancel Order transactions. Grace periods are defined by a wait duration and
an event frequency.

Field Use

Wait Duration Select Indefinitely (the default setting) or specify a time frame using the
minimum and maximum times that the system waits before forcing the
transition.

Event Frequency Specify the frequency at which the system should generate a jeopardy
notification (defined as every hour, by default) while the wait duration
remains unsatisfied.

Related Topics

Configuring Order Lifecycle Policies

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 10

Working with Order Lifecycle Policies

Working with Orders

Chapter 8
Order Lifecycle Policy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 10

9
Working with Data Providers

You use data providers in Oracle Communications Order and Service Management (OSM) in
conjunction with Data Instance behaviors to augment order information by retrieving
information from external systems. When modeling data providers, see the following topics:

• About Data Providers

• Creating New Data Providers

• Data Provider Editor

Related Topics

Working with Behaviors

About Data Providers
You use data providers in conjunction with Data Instance behaviors to augment order
information by retrieving information from external systems. After you've defined a data
provider, you can reuse or extend the configuration for multiple Data Instance behaviors.

For example, consider that you have a task that requires information that is not included in an
order, such as a customer name and address. To obtain this information, you can define in the
Task editor a Data Instance behavior called Customer ID. When you define the properties for
the data instance, you can specify an existing data provider or create a new data provider that
will describe the configuration necessary to retrieve the information from the external CRM
system. If, to attach to the external CRM system, you know that you will need to include a host
value and a password, you can use the Data Provider editor to add host and password as input
parameters and define default values for these parameters, written as an XPath or XQuery
expression.

Related Topics

Understanding Built-in Data Provider Types

Data Provider Editor

Data Provider Editor Settings Tab

Working with Data Providers

Defining Data Instance Behavior Properties

Understanding Built-in Data Provider Types
Design Studio provides several built-in data provider types intended to retrieve external XML
instances from the following sources:

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

Data Provider Description

Objectel Use to invoke an Objectel server extension. The returned XML document is
used as the external instance. This adapter provides a reliable transport call
into Objectel. Although JMS is an asynchronous protocol, the adapter itself is
not. While JMS simplifies transaction management, recovery, offline
capabilities, and security, these benefits are not really of relevance when
considered within the context of a Data Instance rule. The JMS adapter
utilizes additional resources in the application server in the form of temporary
JMS destinations to which Objectel sends the response. These can be
expensive if an order has many adapters being called concurrently. Oracle
does not recommend this adapter in this situation.

Objectel is an inventory tracking application designed to assist
telecommunication and network engineers with the documentation of the
equipment used in providing data and voice communications, with the
creation of facilities, and with the assignment of customer circuits.

Order Use order data from any OSM order as an external instance.

Property File Reads the data instance data values from a property file.

SOAP Invoke SOAP web services using HTTP protocol and utilize the responses.

XML Attachment Use an XML file that has been attached to any OSM order as an external
instance.

XML File Use an XML file accessible from any standard URL as an external instance.
This built-in data provider is useful for integrating external XML data located
in a file system, FTP site, from HTTP, or in a Java .jar file.

XML Validation Use to validate any XML document using a schema. Both the document and
the schema can be either elements or URLs.

JDBC Query any JDBC database, then use the results within a behavior. This built-
in data provider is useful for acquiring information stored in an external
database.

Web Service Use to invoke OSM Web Service operations GetOrder and FindOrder. This
built-in data provider acts as a wrapper around the OSM Web Service API
allowing these operations to be invoked from external instances.

For more information about the built-in data provider parameters, and examples, see OSM
Modeling Guide.

Related Topics

About Data Providers

Working with Data Providers

Creating New Data Providers
You create data providers to use in conjunction with Data Instance behaviors to augment order
information by retrieving information from external systems.

To create a new data provider:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Data Provider.

2. In the Project field, select the project in which to save this entity.

3. In the Name field, enter a name for the data provider.

Chapter 9
Creating New Data Providers

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

The name must be unique among the data provider entity types in the same namespace.

4. (Optional) Select a location for the data provider.

By default, Design Studio saves the data provider to your default workspace location. You
can enter a folder name in the Folder field, or select a location different from the system-
provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. In the Provider Type field, select the provider type for the data provider.

Design Studio provides a list of built-in data providers that you can configure to retrieve
external XML instances. The SOAP provider type is the default setting.

6. Click Finish.

Design Studio adds the data provider to the appropriate project in the Studio Projects view.

Related Topics

About Data Providers

Configuring Data Providers
You configure data providers to define the input and output parameters.

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any data provider entity.

The Data Provider editor opens and displays the data provider.

4. In the Settings tab, configure any values that you would like to change for your
implementation.

If you are configuring a custom data provider, you must enter a value in the Provider
Class field.

5. Click the Interface tab.

If you are using a built-in data provider type, the required parameters for your type have
been included automatically in the Parameter field. Parameters with an asterisk after the
name must be configured with values.

6. For each of the provided parameters, click on the parameter name and do the following:

a. Select either XPATH or XQUERY in the Default Value drop-down list, depending on
the format of the value you are going to provide.

b. Enter the value of the parameter in the Default Value field.

See OSM Modeling Guide for more information about the required parameters for each
data provider type.

7. (Optional) Specify a value in the Results Documents field. If you do not provide an XML
structure, the system will not display the parameters on the Data Instance Behavior
Properties tab.

If you do not provide an XML structure, the system will not display the parameters on the
Data Instance Behavior Properties tab.

Chapter 9
Configuring Data Providers

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

Related Topics

About Data Providers

About Data Instance Behaviors

Data Provider Editor
Use the Data Provider editor to configure the system settings and interface parameters
necessary to retrieve information from external systems. You use data providers in conjunction
with Data Instance behaviors to augment order information by retrieving information from
external systems.

When configuring system settings and interface parameters in the Data Provider editor, see the
following topics:

• Data Provider Editor Settings Tab

• Data Provider Editor Interface Tab

Data Provider Editor Settings Tab
Use the Data Provider editor Settings tab to configure the external system settings for data
providers.

Field Use

Provider Type Select a built-in data provider or a custom data provider that you will
create.

You can switch between one provider type and another. If at least one
parameter value already exists for the provider type you are changing, a
warning message appears indicating that the parameters of the new
provider type will replace the existing provider type parameters.

Provider Class If you select Custom in the Provider Type field, you must provide a class
name.

Scope Specify how OSM should cache external data instances. Select one of the
following cache levels from the Scope field:

• System (the default): The system caches and reuses external data
instances system-wide. Use this scope level if retrieving the external
instance is expensive and performed frequently. The system reuses
the cached instance results only if the actual resolved values of all
parameters are identical and the lookup adapter class is the same.

• Node: The system caches external data instances at the node level.
This level of cache is specific to the user, session, and task. For
example, the system retrieves any given external instance when a
view node on an order is instantiated. The system reuses the external
instance across all instances of the node regardless of how many
instances of that view node exist in the order. Use this setting if it is
moderately expensive to retrieve the external instance and the field
referencing the external instance is a multi-instance node. The system
only re-uses cached instances across multi-instance nodes if the
actual resolved values of all parameters are identical and the lookup
adapter class is the same.

• None: The system retrieves external data instances for each instance
of the field on the order and they are not cached.

Chapter 9
Data Provider Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

Field Use

Maximum Time,
Maximum number cached

If you select System or Node in the Scope field, specify the following
cache settings:

• In Maximum Time, specify the maximum time (in milliseconds) for
which a cached external instance is valid. For example, enter 5000 to
define the <timeout> as 5 seconds.

• In Maximum number cached, specify the maximum number of actual
entries in the cache that is maintained at any one time for this defined
external instance.

For information about building a custom Data Provider, see the OSM Modeling Guide.

Related Topics

Working with Data Providers

Data Provider Editor

Defining Data Instance Behavior Properties

Data Provider Editor Interface Tab
Use the Data Provider editor Interface tab to define the input parameters and default settings
for the external system and specify the provider class and cache settings.

Field Use

Parameters When you create a new data provider, Design Studio displays all of the
mandatory and optional parameters based on the selected provider
type. Mandatory parameters are shown with an asterisk (*) to
differentiate them from optional parameters.

Click Add to add an input parameter, and select the new parameter to
rename it. Input parameters specify named parameters whose values
are used when retrieving an external instance. The value is determined
at run time and is based on the XPath or XQuery expression you
define in the Default Value field.

Default Value Define the content of the associated parameter element as an XPath to
a node or as an XQuery expression.

• XPath supports functions in expressions and provides for a core
library of functions dealing with strings, numbers, Booleans, and
node sets. In addition to the core XPath functions defined by the
XPath standard, a number of extended functions are supported
with OSM. These extended functions provide additional
functionality that is useful to create behaviors but does not
conform to the XPath standard. For more information about XPath
functions, see OSM Developer's Guide.

• XQuery enables the use of sophisticated expressions and XML
transformations. XQuery syntax is backwards compatible with
XPath 1.0 and contains additional syntax elements. You can use
XQuery in situations where a more expressive language or
transformation abilities are needed.

Result Document (Optional) Specify the structure of the XML document. Though this
field is optional, if you do not provide an XML structure, the system will
not display the parameters on the Data Instance Behavior Properties
tab.

Chapter 9
Data Provider Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

Note

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Working with Data Providers

Data Provider Editor

Defining Data Instance Behavior Properties

Chapter 9
Data Provider Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

10
Working with Orders

When you create an Oracle Communications Order and Service Management (OSM) project,
an order entity is automatically generated and placed in your project directory. You can create
additional order entities using the Order wizard.

You model various aspects of the order using the tabs in the Order editor; for example, the
order data, behaviors, rules, properties, and permissions. Every order you create must also be
associated with an order lifecycle policy, which you configure using the Order Lifecycle Policy
editor. See "Working with Order Lifecycle Policies" for more information.

When modeling orders, see the following topics:

• About Order Extensions and Inheritance

• About Reference Nodes

• Creating New Orders

• Defining Order Data

• Defining Order Behaviors

• Defining Order Details

• Enabling Order Amendment Processing

• Defining Order Details

• Defining Order Fallout

• Defining Order Data Changed Notifications

• Assigning Order Permissions

• Defining Order Jeopardy Notifications

• Defining Order Event Notifications

• Order Editor

Related Topics

Modeling Data

About Order Extensions and Inheritance
During order creation, you can base new orders on the functionality of an existing order by
using the extend feature. When you extend an order, the extended order inherits all of the data,
tasks, rules, and behaviors of the parent order. For example, if you have multiple order types
that all require the same subset of processes and tasks, you can create a base order that
contains this data, then extend from this order to create as many new orders as necessary.
You can add new data and behaviors to each of the new orders to create unique order
templates and behavior functionality. To implement changes to the inherited data, you edit the
data in the parent order and Design Studio automatically implements those changes among all
of the extended orders.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 37

You cannot edit order data inherited from a parent order. For example, if you are working in an
order that includes data inherited from a parent order, you cannot remove, rename, or
reposition data elements inherited from the parent order, make changes to inherited behaviors,
and so forth.

The child order does not inherit any configuration details specified in the parent order Details,
Amendable, Notifications, Permissions, Jeopardies, Events, or Composite Data View
tabs. You must manually set these configuration details for each child order.

Note

Design Studio does not permit cyclic referencing. For example, if order O2 extends
from order O1, and order O3 extends from order O2, then you cannot extend order O1
from order O3.

About Reference Nodes
A reference node is a data node that is created by referencing another data node within the
order template. The reference data node has the same data typing and structure of the node
that it is referencing. However, the reference data node is a distinct instance of the data
structure that it references.

Reference data nodes enable you to create information once and reuse it in multiple locations
in your data model. A reference node points back to a single data node location and ensures
that you can efficiently manage and update a node when it is used in multiple locations.

Note

This feature is not available in releases prior to OSM 7.0.

For example, imagine that you create a data structure called customer that includes all of the
information required for a customer profile: the data element customerName, the structure
address, the element phoneNumber, and so forth. Another data structure, called devices,
contains a list of devices, and each device requires the customer profile information. Rather
than remodeling the customer profile data for each device, you can create a reference node to
the customer structure. If the customer information changes (for example, they require a new
type of address), you are not required to change the information at every instance where the
customer profile information is referenced, but only once in the customer structure.

You must set up reference nodes at order creation time as part of coding the automation plug-
ins that call the CreateOrderBySpecification web service operation. For an example of how you
set up reference nodes when you create an order using the CreateOrderBySpecification web
service operation, see the discussion on setting up reference nodes in OSM Developer's
Guide.

You must create a reference node association in the order template. See "Adding Reference
Data Nodes" for information about adding a reference node to an order template.

Creating New Orders
You create orders to configure the data and properties of incoming orders.

Chapter 10
About Reference Nodes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 37

To create orders:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Order.

2. In the Project field, select the OSM project in which to save this entity.

3. (Optional) In the Extends field, select an existing order to leverage the order data and
extend the functionality of that existing order.

Click Select and select an order for the Extends field. If a suitable order does not yet exist,
click New to create the order. When finished, click OK. Your selection populates the
corresponding Extends field in the Order wizard. See "About Order Extensions and
Inheritance" for more information.

4. In the Name field, enter a name for the order.

The name must be unique among order entity types in the same namespace.

5. (Optional) Select a location for the order.

By default, Design Studio saves the order to your default workspace location. You can
enter a folder name in the Folder field or select a location different from the default. To
select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio creates the order entity and saves it to the selected project in the Studio
Projects view.

Related Topics

Working with Orders

Defining Order Data
The data that you define for an order is available to the tasks included in the process
associated with the order. When defining order data, see the following topics:

• Adding New Data to an Order

• Adding Existing Data to an Order

• Adding a New Data Structure Definition to an Order

• Adding an Existing Data Structure Definition to an Order

• Adding Reference Data Nodes

• Renaming Data Elements at the Order Level

• About Modeling Data in the Order Template

Related Topics

Order Editor

Chapter 10
Defining Order Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 37

Adding New Data to an Order
You can create new data in the Data Dictionary and add it to the order.

To create new data:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. Right-click inside the Order editor Order Template tab and select Open Data Element
view.

The Data Element view opens.

5. Right-click inside the Data Element view and select Add Simple Schema Element or Add
Structured Schema Element.

The Create Data Schema Element dialog box or the Create Data Schema Structure dialog
box is displayed.

6. Complete the form and click Finish.

7. Drag the new data from the Data Element view into the Order editor Order Template tab.

Tip

Press and hold the Shift key to select multiple consecutive elements. Press and
hold the Control key to select multiple non-consecutive elements.

Related Topics

Order Editor

Adding Existing Data to an Order
You select data previously created in the data dictionary to add to an order.

To add data you have previously created:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. Right-click inside the Order editor Order Template tab and select Select from Data
Dictionary.

The Select Data Elements dialog box is displayed.

Chapter 10
Defining Order Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 37

Note

You can alternatively select Open Data Element view and then drag and drop
data elements from the Data Dictionary onto the Order Template tab.

5. Select the data you want to add to the order.

Tips

When selecting data to add to the order template:

• Press and hold the Shift key to select multiple consecutive elements. Press
and hold the Control key to select multiple non-consecutive elements.

• Select a parent node to add all data elements (simple and structured data
elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes. Design
Studio automatically adds parent nodes associated to the child node up to the
root of the data schema.

6. Click OK.

Design Studio adds the data to the Order editor Order Template tab.

7. Click Save.

Related Topics

Order Editor

About Modeling Data in the Order Template

Adding Reference Data Nodes
When modeling data in the order template, you can add reference nodes. A reference data
node is a data node that is created by referencing another data node within the order template.
The reference data node has the same data typing and structure of the node that it is
referencing. However, the reference data node is a distinct instance of the data structure that it
references.

For example, OrderItemRef is a reference data node for an order component that references
the orderItem data structure in the order template. The OrderItemRef reference data node is
a distinct instance of orderItem in the order component, but shares the structure of orderItem
- a data node that is already defined and contributed by the Order Item Specification.

Note

This feature is not available in releases prior to OSM 7.0.

To add a reference node:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

Chapter 10
Defining Order Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 37

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. Add a reference node to the root-level of the order template or to a data structure by doing
one of the following:

a. To add a reference node to the root-level of the order template, in the Order editor
Order Template tab, right-click in the tab area and select Add Reference Node.

b. To add a reference node to a data structure, in the Order editor Order Template tab,
right-click on the data structure and select Add Reference Node.

The Reference Node Creation dialog box is displayed.

5. Select the data node to which the reference node will point.

At run time, the reference node will obtain its value from the data node that you select.

6. Click OK.

7. Click Save.

You must set up reference nodes at order creation time in addition to creating the reference
node association in the order template; otherwise, the reference node will be empty at run
time. For an example of how to set up reference nodes when you create an order using the
CreateOrderBySpecification web service operation, see the discussion on setting up reference
nodes in OSM Developer's Guide.

Related Topics

About Reference Nodes

Order Editor

Adding a New Data Structure Definition to an Order
You can create a data structure definition and add it to an order.

To create a data structure definition:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click the existing order to which you want to add a data structure definition.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select Select Data
Structure Definition and click New.

The Data Structure Definition wizard is displayed.

5. Enter a name for the data structure definition.

6. Click Finish.

7. Click Save.

Related Topics

About Modeling Data in the Order Template

Order Editor

Chapter 10
Defining Order Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 37

Adding an Existing Data Structure Definition to an Order
You can add an existing data structure definition to an order.

To add a data structure definition to an order:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click the existing order to which you want to add a data structure definition.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select Select Data
Structure Definition.

5. In Matching items, select a data structure definition.

Note

If no data structure definitions are displayed in the Matching items area, you must
define the dependency of the data structure definition to the model project before
you add it to the order. For more information, see "Managing Project
Dependencies".

6. Click OK.

The data structure definition is added to the order, and all child data elements and
structures of the data structure definition are also added and displayed.

Note

Derived data structure definitions are not displayed in the order template.

7. Click Save.

Related Topics

About Modeling Data in the Order Template

Order Editor

Renaming Data Elements at the Order Level
You rename a data element at the order level by providing an alias for the data element in the
Order editor Order Template tab. When you rename data elements at the order level, Design
Studio automatically updates that data element name in all associated tasks and extended
orders. However, the data element instance in the Data Dictionary is not affected by the
change.

For example, consider that you have a data model that contains two instances of a data
element called EmployeeID: one defined as a string (defined by the employee's name and a
two-digit number), the other defined as an integer (defined by a six-digit number). To avoid

Chapter 10
Defining Order Data

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 37

data type collisions in the run-time environment, you can rename one instance of the
EmployeeID data element at the order level.

To rename data elements at the order level:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click the existing order that contains the data element to rename.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select
Refactoring, and then select Rename.

The Rename Order Template Node dialog box is displayed.

The dialog box displays the current data element node name and the data element node
name as defined in the Data Dictionary. The rename that you make here does not affect
the node name at the Data Dictionary level.

5. In the Name field, enter the new name for the data element.

6. (Optional) Click the Preview button.

The Rename Order Template Node dialog box shows all instances of the data element
defined in related tasks and extended orders that will change after you rename it at the
order level.

If the rename is not allowed, a problem error is displayed. You can check the error log for
information on why the rename failed.

Click Continue to proceed.

7. Click OK.

Design Studio implements the change immediately in the project.

Related Topics

Order Editor

Defining Order Behaviors
Behaviors provide a way to extend the functionality and appearance of order data. Each
behavior type performs an action; for example, calculating or validating data or displaying fields
in read-only or read-write modes. When you define a behavior at the order level, the behavior
applies to all manual tasks in the order model.

To define a behavior at the order level:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. In the Order editor Order Template tab area, select the data node upon which to model
the behavior.

5. Right-click in the Behaviors area and select Add Behavior.

Chapter 10
Defining Order Behaviors

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 37

Each behavior type enables you to dynamically control a specific aspect of your order data
model.

6. Select a behavior type from the list.

Note

You cannot define Calculation, Event, and Lookup behaviors for structured data
elements, because structured data elements do not represent actual data.

Design Studio adds the behavior to the Behaviors area.

7. In the Behaviors area, click the new behavior.

The Behaviors Properties view opens, which includes a set of properties that you must
define for the corresponding behavior type. See "Working with Behaviors" for more
information about defining behavior properties.

8. (Optional) In the Order editor, click the Behaviors tab.

Use the Order editor Behaviors tab to quickly view all of the behaviors defined for the data
nodes in an order. See "Order Editor Behaviors Tab" for more information.

Related Topics

Order Editor

Defining Order Details
Order details define the process, order lifecycle policy, and creation task associated with the
order type. The details also include an execution priority and whether the order type inherits
from and extends another order type.

To define order details:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor Order
Template Tab" for more information.

4. Click the Order editor Details tab.

See "Order Editor Details Tab" for more information about the fields on this tab.

5. In the Extends field, determine whether to inherit order attributes from another order.

Orders can inherit data from other orders, which enables you to leverage order data when
building new, similar orders. See "About Order Extensions and Inheritance" for more
information.

6. In the Subject field, select an order subject.

The order subject can be used to filter the orders in the OSM web clients.

7. In the Lifecycle Policy field, select a lifecycle policy to control which order state and
transaction combinations a role can perform for this order type.

See "Working with Order Lifecycle Policies" for more information.

Chapter 10
Defining Order Details

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 37

8. In the Default Process field, select the process to which this order is submitted. See
"Working with Processes" for more information.

9. In the Creation Task field, select the task that creates and submits the order before the
workflow begins. The creation task defines the data that is required to be present when the
order is created.

10. In the Priority Range field, specify a minimum and maximum priority for the order to
process within.

For example, if you specify a range of 5 to 7 and the order is created with a priority of less
than 5, the priority value will be rounded up to 5. If the order is created with a priority of
more than 7, the priority value will be rounded down to 7.

11. Click Save.

Related Topics

Order Editor

Enabling Order Amendment Processing
To enable OSM to amend in-flight orders, you must configure the order to allow amendment
processing. By default, orders are not amendable.

To enable order amendment processing:

1. From the Studio menu, select Show Design Perspective.

2. Double-click any order in the Solution view or Studio Projects view.

The order opens in the Order editor.

3. Click the Amendable tab.

4. Select the Amendable option.

5. Click the Add button in the Key area.

Design Studio adds a key with a default name key and a corresponding XPath expression
with the default value true().

6. In the Expression field, specify an order key as an XPath to a node that will uniquely
match an amended order to its corresponding OSM order.

For example, you might specify a customer reference ID as an XPath. You can select a
data node from the Data Element view and drag the selected data node into the XPath
Expressions field to define the XPath expression. See "Order Editor Amendable Tab " for
more information about defining order keys.

7. Select one or more events to be published at run time for this order type.

If you select no events, the system publishes no events. See "Order Editor Amendable Tab
" for more information.

8. Specify the version as an XPath to a node that will return a numeric value representing the
version of an amended order.

Amendments with higher versions are considered to be more recent than amendments
with lower versions. If there are multiple queued amended orders for the same original
order, OSM processes only the most recent amendment version.

9. Click Save.

Chapter 10
Enabling Order Amendment Processing

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 37

Related Topics

Working with Event Notifications

Working with Orders

Defining Order Rules
You define rules for orders to evaluate the order contents. Rules are used in process flow
decisions, conditional transitions, subprocess logic, delay activities, jeopardies, and events and
enable you to evaluate against the content of an order by comparing data node to data node or
data node to a fixed value. When you compare data to data, you compare the contents of two
data nodes (of the same type); for example, you might compare a due date with a payment
date, based on some condition. When you compare data to a value, you compare a data node
to a fixed value.

When you first create an order, the system automatically assigns to the order a system-based
null_rule which always evaluates to true. This default configuration ensures that the order will
be submitted to a process. You cannot remove the null_rule or modify its definition; however,
you can define any number of your own custom rules.

To define rules for orders:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

4. Click the Rules tab.

See "Order Editor Rules Tab" for more information about the fields on this tab.

5. In the Rules area, click the corresponding Add button.

The Add Rule dialog box is displayed.

6. In the Name field, enter a name for the new rule.

The name must be unique among rule entity types in the same namespace.

7. Click OK.

The new rule is displayed in the Name column. You can select the rule entity in the Name
column at any time to edit the rule name.

8. In the Name column, select the new rule entity.

9. In the Definition tab, click the Add button.

The Order Template Selection dialog box is displayed.

10. Select the node against which the rule will evaluate.

You can select one node for the rule or select multiple nodes to create multiple rules.

You can right-click a data structure definition node to specify a derived complex type.

11. Click OK.

12. Select the node you just added.

13. Click the Properties button.

Chapter 10
Defining Order Rules

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 37

The Properties view Rules Expressions tab is displayed, where you can define values for
the fields in the remaining steps. See "Properties View Rules Expression Tab" for more
information.

14. In the Data field, enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected data
node into the Data field to define the XPath expression. To drag a data node into the
Properties view Rules Expressions tab, press and hold the Alt key before you select and
drag the data node to the field.

Additionally, you can click the corresponding Select button to select another data node.

15. In the Operator field, select an operator from the list.

The options available in the Operator field depend on the data type used in the Data field.

16. In the Data/Value field, enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected data node
into the Data/Value field to define the XPath expression. To drag a data node into the
Properties view Rules Expressions tab, press and hold the Alt key before you select and
drag the data node to the field.

Additionally, you can click the corresponding Select button to select another data node.

17. In the Order editor Definition tab, click Add to add another expression to the rule.

Each condition is separated by either And or Or (And is the default).

Related Topics

Order Editor

Modeling Data

Defining Order Fallout
Fallout refers to orders that encounter problems during fulfillment and therefore fall out of
normal processing. OSM places these orders in Failed state (you can also manually fail orders
in the Order Management web client).

When defining order fallouts, see the following topics:

• Associating Order Fallouts with Data Nodes

• Associating Order Fallouts with Fallout Groups

Associating Order Fallouts with Data Nodes
In Design Studio, you associate a fallout name with one or multiple data nodes whose values
you will want to review (in the Customer Management web client) when the corresponding type
of fallout occurs.

To associate order fallouts with data nodes:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

Chapter 10
Defining Order Fallout

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 37

4. Click the Fallout tab.

See "Order Editor Fallouts Tab" for more information about the fields on this tab.

5. In the Name area, click the corresponding Add button.

The Add Fallout dialog box is displayed.

6. In the Name field, enter a name for the new order fallout.

The name must be unique among fallout types in the same namespace.

7. Click OK.

The new order fallout is displayed in the Name column. You can select the value in the
Name column at any time to edit the name.

8. Select the new order fallout in the Name column.

9. Enter a display name for the order fallout.

You can associate the display name that appears in the Task web client with a specific
language by using the optional language attribute. Only those languages defined appear
as options. See "Defining Language Preferences" for information about defining languages
for use in OSM.

10. In the Nodes area, click the Add button.

The Order Template Node Selection dialog box is displayed.

11. Select one or multiple data nodes whose values you will want to review (in the Order
Management web client) when this fallout occurs.

You can right-click a data structure definition node to specify a derived complex type.

12. (Optional) In the Nodes area, click the Remove button to delete the association with the
data node.

13. Click Save.

Related Topics

Associating Order Fallouts with Fallout Groups

Order Editor

Associating Order Fallouts with Fallout Groups
You can group similar types of fallouts into groups, enabling you to review multiple fallouts
together in the Order Management web client when the corresponding types of fallout occur.

To associate order fallouts with fallout groups:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

4. Click the Fallout Groups tab.

See "Order Editor Fallout Groups Tab" for more information about the fields on this tab.

5. In the Name area, click the corresponding Add button.

The Add Fallout Group dialog box is displayed.

Chapter 10
Defining Order Fallout

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 37

6. In the Name field, enter a name for the new fallout group.

The name must be unique among fallout group types in the same namespace.

7. Click OK.

The new fallout group is displayed in the Name column. You can select the value in the
Name column at any time to edit the name.

8. In the Name column, select the new fallout group.

9. Enter a display name for the fallout group.

You can associate the display name that appears in the Task web client with a specific
language by using the optional language attribute. Only those languages defined appear
as options. See "Defining Language Preferences" for information about defining languages
for use in OSM.

10. In the Fallouts area, click the Add button.

The Select Fallouts dialog box is displayed.

11. Select one or multiple fallouts to group together.

12. (Optional) In the Fallouts area, click the Remove button to delete the association with the
data node.

13. Click Save.

Related Topics

Associating Order Fallouts with Data Nodes

Order Editor

Defining Order Data Changed Notifications
You define order data changed notifications to update external systems with status updates
when a specific data node in the order data is updated with a new value. Data change
notifications are triggered by changes to order data.

See "Creating Order Data Changed Notifications" for information about creating data change
notifications at the order level.

Note

This feature is not available in releases prior to OSM 7.0.

Related Topics

Working with Orders

Working with Jeopardy and Event Notifications

Assigning Order Permissions
When you assign permissions to orders, you define how specified roles can search for orders
in the Task web client, which fields of data they can see, whether the roles can add additional

Chapter 10
Defining Order Data Changed Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 37

columns of data to their Worklist, Notification, and Query pages, and whether they can create
orders of the associated type.

To assign order permissions:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any order entity.

The order displays in the Order editor.

4. Click the Permissions tab.

See "Order Editor Permissions Tab" for more information about the fields on this tab.

5. Do one of the following:

• To select from existing roles, click Select.

• To create a new role, click New.

See "Creating New Roles" for more information.

6. (Optional) To view permissions for existing roles, select the role and click Open.

The system displays the role in the Role editor, where you can view the permissions
assigned to the role. You assign permissions to a role to give the users in that role access
to related functions in the Task web client. See "Role Editor Role Tab" for more information.

7. (Optional) Select a role and click Remove if you want to delete an associated role from the
task.

8. (Optional) Click the Details tab.

See "Order Editor Permissions Details Tab" for more information about the fields on this
tab. On the Details tab, you can:

• Enable the associated role to create this order type in the Task web client by selecting
Create Orders.

• Define a set of flexible headers for Task web client users.

Flexible headers are additional columns of data that Task web client users can add
(through the preferences settings) to their Worklist, Notification, and Query pages.
Click Add to select the data nodes that represent the flexible header columns. After
adding a data node, select the name or description to edit those values.

Note

If you change the flexible headers and re-deploy the cartridges while users are
logged in to the OSM web clients, users may have to log out and log back in
to see the changes.

9. (Optional) Limit the orders a role can view.

To limit the orders a role can view:

a. Click the Filters tab.

See "Order Editor Permissions Filters Tab" for more information about the fields on this
tab.

b. Click Add.

Chapter 10
Assigning Order Permissions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 37

The Order Template Node Selection dialog box is displayed.

c. Select the data node on which to define the condition that limits the orders the role can
view.

Note

If you apply a filter to a multi-instance data element, the filter will always be
evaluated based on the first instance of the data. It is not possible to specify
another instance of the data element to use.

d. Click the Properties button.

The Filter Expressions tab is displayed, where you can define values for the fields on
the Filters tab. See "Properties View Filter Expression Tab" for more information.

e. In the Data field, enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected
data node into the Data field to define the XPath expression. To drag a data node into
the Filter Expressions tab, press and hold the Alt key before you select and drag the
data node to the field. Click the corresponding Select button to select a different data
node.

f. In the Operator field, select an operator from the list.

The options available in the Operator field depend on the data type used in the Data
field.

g. Select either the Data option button or the Value option button to specify the
expression that the condition evaluates against.

h. In the Order editor Filters tab, click Add to add another expression to the rule.

Each condition is separated by either And or Or (And is the default).

10. Click the Query Task tab.

Use the Query Task tab to select the task that will generate the query view used by Task
web client users.

When selecting query tasks:

• Click New to create a new query task and add the task to the order.

• Click Add to add an existing task to the order.

• Select any task and click Open to review the task in the Task editor.

You can associate multiple query tasks with an order, and define each task as the
Summary view, the Detail view, or the Default view. See "Order Editor Permissions
Query Tasks Tab" for more information about the fields on this tab.

11. Click Save.

Related Topics

Order Editor Permissions Details Tab

Order Editor Permissions Filters Tab

Working with Orders

Chapter 10
Assigning Order Permissions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 37

Defining Order Jeopardy Notifications
You define order jeopardy notifications when you want to alert users or systems that an order
may be at risk. Jeopardy notifications are based on rules that you configure in Design Studio
and which the OSM server evaluates at regular intervals. A jeopardy notification can be sent to
a user group or may be consumed by an automation plug-in.

See "Creating Jeopardy Notifications in the Task or Order Editor" for information about defining
jeopardy notifications at the order level.

Related Topics

Working with Orders

Working with Jeopardy and Event Notifications

Defining Order Event Notifications
You define order event notifications to generate a milestone-based event that works with
automation plug-ins. You select the order milestone that triggers the automation and then
configure the automation plug-in that will perform the work.

See "Creating Order Milestone and Task State Automation Event Notifications" for information
about creating order event notifications.

Related Topics

Working with Orders

Working with Jeopardy and Event Notifications

Order Editor
Use the Order editor to model order attributes, such as the order data, behaviors, rules,
properties, and permissions. Every order you create must also be associated with an order
lifecycle policy. See "Working with Order Lifecycle Policies" for more information.

When working with the Order editor, see the following topics:

• Order Editor Order Template Tab

• Order Editor Behaviors Tab

• Order Editor Details Tab

• Order Editor Amendable Tab

• Order Editor Rules Tab

• Order Editor Fallouts Tab

• Order Editor Fallout Groups Tab

• Order Editor Notification Tab

• Order Editor Permissions Tab

• Order Editor Jeopardy Tab

• Order Editor Events Tab

Chapter 10
Defining Order Jeopardy Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 37

• Order Editor Composite Data View Tab

Order Editor Order Template Tab
Use the Order editor Order Template tab to model all of the data necessary to provision the
order. You can drag data from the Dictionary view into the Order Template area, or right-click in
the Order Template area to select data from the Data Dictionary dialog box. The following table
describes the fields on the Order Editor Order Template tab.

Field Use

Order
Template

Contains all of the data necessary to fulfill or provision an order. This area represents a template from
which you can select the data nodes that tasks require during the fulfillment or provisioning process.

To hide all data elements related to control data (the reserved ControlData area that OSM uses for
executing orchestration), deselect the Show Control Data check box.

See "About the Order Template Context Menu" for descriptions of other actions you can perform in the
Order Template context menu.

Behaviors Displays all of the behaviors defined for each data node in the order template. Select a data node in the
Order Template area to view the behaviors defined by the node, or to create new behaviors. When
defining behaviors at the order level, you can use the Order editor Order Template tab to create the
behavior, the Behavior Properties tabs to refine the behavior information, and the Order editor
Behaviors tab to quickly view all of the behaviors defined for a task. See "Defining Order Behaviors" for
more information.

When modeling order data, see the following topics for additional information:

• Properties View Order Data Tab

• Properties View Dictionary Tab

• Properties View Key Tab

• Properties View Usage Tab

Related Topics

Defining Order Data

Properties View Order Data Tab
Use the Properties view Order Data tab to access and edit the information defined for the
corresponding data element at the order template level. You can right-click any attribute in the
Order editor Order Template field and select Open Properties View to open the Properties
view Order Data tab. The following table describes the fields on the Properties view Order
Data tab.

Field Use

Name The system displays the name of the node as defined in the Data Dictionary. The name of the node is
not available for edit on this tab. You can edit the value in the Display Name field in the Data Schema
editor Details subtab to edit the manner in which the element displays in the Task web client.

Path The system displays an XPath expression to define the location of the node in the Data Dictionary.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 37

Field Use

Contributing
Template

Displays the parent structure when the selected structure has been extended from a base structure.

During order creation, you can base new orders on the functionality of an existing order by using the
extend feature. When you extend an order, the extended order inherits all of the data, tasks, rules, and
behaviors of the parent order.

You can add new data and behaviors to each of the new orders to create unique order templates and
behavior functionality. To implement changes to the inherited data, you edit the data in the parent order,
and Design Studio automatically implements those changes among all of the extended orders.See
"About Order Extensions and Inheritance" for more information.

Additionally, the contributing template can reflect that the data node was contributed by an order
component.

Data Dictionary The system displays the name of the data schema (within the Data Dictionary) in which the node is
defined.

XML Type Select to signify that the structure is an XML data type. Structures defined as XML data types in the
Data Dictionary can contain XML documents.

Note: Before you use XML data types, copy all relevant schema (XSD) files into the cartridge project.
Use the Java perspective Package Explorer view to copy the schema files into the dataDictionary
folder.

Note: This feature is not available in releases prior to OSM 7.0.

See the Eclipse Java Development User Guide for more information about the Java perspective.

Significance By default, a node inherits significance from its parent. At the order level, you can define the
significance as Not Significant if you do not want to use the node during amendment processing.

During amendment processing, the OSM system compensates only for order instances that use
significant data elements as inputs. If an element is not specified as significant, the system updates the
order only with the changed data (no compensation is required). Data significance is supported at the
Data Dictionary, the order template, and the task levels.

Ignore rollback
during undo

There may be data on an order or task that you want to exclude from rollback in cases when the order
or task is running in undo mode. For example, you may want to retain data related to status messages
when a task rolls back during a fallout scenario where the status messages may contain important
troubleshooting information. If you set this value for a structure, all child structures and elements also
ignore rollback during the undo execution mode.

You typically set this value for data generated during order processing, for example, with external
fulfillment state updates, external processing states updates, or status nodes for external response
messages. Oracle recommends that you not set this value for data from the upstream system, for
example, from the original order.

Oracle recommends that when you set this value, you also set the significance value to Not
Significant.

Note: Do not set this value for ControlData fulfillment state and processing state elements because
OSM calculates these elements based on data received from external system where Ignore rollback
during undo is appropriate to set.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Properties View Dictionary Tab
Use the Properties view Dictionary tab to access and edit the information defined for the
corresponding data element at the order template level. You can right-click any attribute in the
Order Template area and select Open Properties View to access and edit the information
defined for the corresponding data element at the order template level. The following table
describes the fields on the Properties view Dictionary tab.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 37

Field Use

Name The system displays the name of the node as defined in the Data Dictionary. The name of the node is not
available for edit. You can edit the value in the Display Name field in the Data Schema editor Details
subtab to edit the manner in which the element displays in the Task web client.

Display
Name

You can associate the display name with a specific language by using the optional language attribute. Only
those languages defined appear as options. See "Defining OSM Preferences" for information about defining
languages for use in OSM.

Type Displays the data element type. This field is read only.

Max Length Specify the maximum number of units of length for a string element type. You must define the maximum
length with a non-negative integer.

Minimum Select the number of times the global element referenced can appear in an instance document. Select 0 if
you want the element to be optional.

Maximum Select the maximum number of times the global element referenced can appear. Select unbounded to
indicate there is no maximum number of occurrences.

Path The system displays an XPath expression to define the location of the node in the Data Dictionary.

Namespace Identifies the namespace in which this cartridge exists, and identifies the cartridge version within the
namespace, if applicable.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Properties View Key Tab
Use the Properties view Key tab to access and edit the key information defined for the
corresponding data element at the order template level. You can right-click any attribute in the
Order Template area and select Open Properties View to access and edit the information
defined for the corresponding data element at the order template level. The following table
describes the fields on the Properties view Key tab.

Field Use

Key
XPath Expression

If this node is a multi-instance data node, you can specify one or more order data keys to uniquely
match the data instance from an revision order to a data instance on the current order data.

The order data key of a node must be an XPath that points to data within its scope. If the node is a
group node, the XPath expression must point to its children nodes; if the node is a value node, it can
only point to itself. If no keys are defined, OSM uses the relative position of the changed data when
comparing the revision order data with the current order data.

You can select a data element from the Order editor Order Template tab and drag the selected data
node into the XPath Expression field to define the XPath expression.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with a
single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A
slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 37

Properties View Usage Tab
Use the Properties View Usage tab to view in which tasks and cartridges the corresponding
data element is defined. You can right-click any attribute in the Order Template area and select
Open Properties View to access and edit the information defined for the corresponding data
element at the order template level.

Select any row in the table and click Open to open the task in the appropriate editor.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Order Editor Behaviors Tab
Click the Order editor Behaviors tab to quickly view all of the behaviors defined for the data
nodes in an order. The Behaviors table displays the name and type of the behavior, whether
the behavior is enabled, the inheritance properties, the path name of the data node on which
the behavior is defined, and the order where the behavior was originally defined.

The information on the Order editor Behaviors tab is read only. To change the information that
appears on this tab, select a behavior from the table and click the Properties button to access
the Behaviors Properties tabs. See "Working with Behaviors" for more information about
defining behavior properties.

Related Topics

Defining Order Behaviors

Working with Orders

Order Editor Details Tab
Use the Order editor Details tab to define the order attributes that you use to associate the
order with other entities, enabling the order to process correctly in the OSM run-time
environment. The following table describes the fields on the Order editor Details tab.

Note

The options in the Amendable tab are disabled if you select TMF Order in the Details
tab.

Field Use

Extends You can select an existing or create a new order to extend this order (the order's data is inherited) by
clicking the Select button. To create a new order that this order would be an extension of, click New. After
you have selected or created an order, click Open to access the Order editor. Click Clear (red X) to clear
the selected value from the field.

Order data extensibility enables you to leverage order data when building new, similar orders.

Lifecycle
Policy

Select an existing or create a new lifecycle policy to control which order state/transaction combinations a
role can perform for this order type. Every order you create within Design Studio must be associated with
an order lifecycle policy.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 37

Field Use

Default
Process

Select an existing or create a new process to which the order is submitted.

When the selected default process is an orchestration process, Design Studio looks for the Data
Dictionary project OracleComms_OSM_CommonDataDictionary, which contains definitions of common
OSM structures such as control data, base order item data elements, base function data elements, and so
on. If the Data Dictionary does not exist, you will be prompted to import it. After the Data Dictionary is
imported, Design Studio automatically attaches base control data such as ControlData/Functions and
ControlData/OrderItem from the imported Data Dictionary to the order.

Order Item Identifies whether an order item specification is associated with the order through the following
relationship: Order > Orchestration Process > Orchestration Sequence > Order Item Specification.

If no process (or a provisioning process) is associated with the order, None is displayed.

If an orchestration process is associated with the order but there is no association with an order item
through the relationship path, No Order Item Configured is displayed.

Creation Task Select an existing or create a new task to create and submit the order before the workflow begins.

The creation task defines which subset of data is required to create the order.

When at the creation task, an order has not been submitted to a process and has had no work completed.
The creation task has two associated states, submit and cancel. Additionally, you can define statuses for
the creation task on the Task editor States/Statuses tab.

You need a creation task for any order creation (manual, automated, etc.). If you want to enable behaviors
when creating an order, select manual tasks as creation tasks for an order.

If the order associated with the creation task is defined as amendable (on the Order editor Amendable
tab), do not include optional fields in the creation task as this can cause unexpected results. When
including optional fields in the creation task, the original order is submitted with all optional fields left
empty. The optional fields are later populated during task execution. When a revision order is submitted
with the optional fields now populated, the system treats the optional fields on the revision as different
instances of the fields from the ones populated on the original order and OSM triggers compensation.

Note: You can automate order creation using the XML API or the web service interface. See OSM
Developer's Guide for more information.

Order Source Enter an order source for the order if you would like it to be different from the order name. In the order
structure, there are separate fields for order source and order type. If you leave this field blank, both fields
on the order will default to the order name when the cartridge is built. If you enter a value in this field, it will
be used for the order source field, and the order name will continue to be used for the order type.

Order Source
Description

Enter a description of the order source if desired. If this value is not entered, it will be defaulted to the
order name when the cartridge is built. This description will be displayed in the Task web client.

Priority Range Specify a minimum and maximum priority for the order to process within. For example, if you specify a
range of 5-7 and the order is created with a priority of less than 5, the priority value will be rounded up to
5. If the order is created with a priority of more than 7, the priority value will be rounded down to 7.

Realizes If this order is a concrete implementation of a Functional Area from the PSR model, click Select to select
the Functional Area.

If a Functional Area has been defined for the order, you can click Open to open the Functional Area.

This association can also be defined in the Functional Area. See "About Functional Areas" for more
information.

TMF Order Select to specify that this order supports TMF.

Hosted
Specification

Select a hosted specification that you want to use.

Related Topics

Defining Order Details

Working with Orders

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 37

Order Editor Amendable Tab
Use the Order editor Amendable tab to configure the order to allow amendment processing.

Note

The options in the Amendable tab are disabled for TMF orders. That is, if you select
TMF Order in the Details tab.

The following table describes the options on the Order editor Amendable tab.

Options Use

Not Amendable Select to indicate that there can be no amendment processing against this order.

Amendable Select to allow amendment processing against this order.

Key Specify an order key as an XPath to a node that will uniquely match an amended order to its
corresponding OSM order.

For example, you might specify a customer reference ID as an XPath using the following expression:

_root/Cust_Ref_ID
Alternatively, you can select a data node from the Data Element view and drag the selected data
node into the XPath Expressions field to define the XPath expression. To drag a data node into the
XPath Expressions field, press and hold the Alt key before you select and drag the data node to the
field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with
a single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A
slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Version Specify the version as an XPath to a node that will return a numeric value representing the version of
an amended order.

Amendments with higher versions are considered to be more recent than amendments with lower
versions. If there are multiple queued amended orders for the same original order, OSM processes
only the most recent amendment version.

You can select and drag a data node from the Data Element view into the XPath Expressions field
to define the XPath expression. To drag a data node into the XPath Expressions field, press and
hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with
a single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A
slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Events Select one or more events to be published at run time for this order type. OSM events are sent to the
JMS destination OrderStateChange.Event queue and are published as topics. External systems
can subscribe to this queue and retrieve the published events.

Amendment
Abandoned

Select to publish this event when multiple amendments have been sent to OSM and an amendment
has rendered an earlier version of amendment unnecessary.

If an amendment is in progress, OSM puts any subsequent amendments in a queue for processing.
If multiple amendments have been sent to OSM, the server processes the next amendment in the
queue by selecting the highest version (optionally defined in the Version field) or the amendment
with the most recent timestamp if no version has been defined. When multiple amendments are
queued, the OSM server processes only the most recent amendment.

Amendment
Completed

Select to publish this event when amendment processing has completed.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 37

Options Use

Amendment
Started

Select to publish this event when amendment processing begins for any revision order.

Amendment
Queued

Select to publish this event when amendment processing for a revision order is queued.

Amendment
Terminating

Select to publish this event when amendment processing for a revision order is in the process of
getting terminated.

Amendment
Terminated

Select to publish this event when amendment processing for a revision order is terminated.

State Change Select to publish this event when the order transitions from one state to another.

Order Created Select to publish this event when the order is created in OSM.

Order Removed Select to publish this event when the order has been deleted.

Order Editor Rules Tab
Use the Order editor Rules tab to create rule definitions at the order level. When modeling
rules, see "Properties View Rules Expression Tab" for more information. The following table
describes the fields on the Order editor Rules Definition tab. The Order editor Rules
Comments tab and the Order editor Rules Notes tab are blank fields.

Field Use

Condition When defining multiple rule expressions, each rule expression is separated by an And or an Or.

And is the default value, and indicates that both the expression before and the expression after And must
evaluate to true if the rule is to evaluate to true. Use Or to indicate that either the expression before or the
expression after Or can evaluate to true if the rule is to evaluate to true.

Data Enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected data node into the Data
field to define the XPath expression. To drag the selected data node into the Data field, press and hold the
Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with a
single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Operator Select an operator from the list.

Note: When selecting an operator from the Operator field of the Order editor Rules tab, all possible
operators are displayed, whether or not they are valid. To ensure only valid operators are displayed, choose
an operator from the Properties view Rules Expression tab. The options available in the Properties view
Rules Expression tab in the Operator field depend on the data type used in the Data field. See
"Properties View Rules Expression Tab" for more information.

Data/Value Enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected data node into the Data/
Value field to define the XPath expression. To drag the selected data node into the Data/Value field, press
and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with a
single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 37

Properties View Rules Expression Tab
Use the Properties view Rules Expression tab to define rule expressions. To access the
Rules Expression tab, select a rule attribute on the Order editor Rules tab Definition tab and
click Properties.

The fields on the Rules Expression tab are identical to those on the Definition tab. However,
the options that are available for the Value field and the Operator lookup list on the Rules
Expression tab change depending on the element type. For example, if you select an element
that is a lookup type, the values that you defined in the Data Dictionary for this element appear
as available options in the list. If you define a datetime element, the options available enable
you to define a system datetime or a calendar datetime.

Related Topics

Defining Order Details

Working with Orders

Order Editor Fallouts Tab
Use the Order editor Fallouts tab to create new order fallouts. You associate data nodes with
the fallout and review the values for those data nodes in the Order Management web client
when the corresponding fallout occurs for an order. The following table describes the fields on
the Order editor Fallouts tab.

Field Use

Display Name You can associate the fallout display name at the order template level to a specific language by using the
optional language attribute. Only those languages defined on the Oracle Design Studio dialog box appear
as options. See "Defining OSM Preferences" for information about defining languages for use in OSM.

Name Click Add to open the Add Fallout dialog box, where you can create a new fallout category to associate
with the order. Select any fallout category defined in the Name column and click Rename to specify a
different fallout name, or click Remove to delete the fallout category from the list.

Nodes Associate the data nodes whose values you will want to review (in the Order Management web client)
when this fallout occurs.

Click the corresponding Add button to open the Order Template Node Selection dialog box, where you
can select one or multiple data nodes to associate with the fallout. Select any data node and click
Remove to delete the node from the list.

Related Topics

Defining Order Fallout

Order Editor Fallout Groups Tab

Order Editor Fallout Groups Tab
Use the Order editor Fallout Groups tab to link similar types of fallouts together. You associate
data nodes with the fallout and review the values for those data nodes in the Order
Management web client when the corresponding fallout occurs for an order. The following table
describes the fields on the Order editor Fallout Groups tab.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 37

Field Use

Display Name You can associate the fallout group display name at the order template level to a specific language by
using the optional language attribute. Only those languages defined on the Oracle Design Studio dialog
box appear as options. See "Defining OSM Preferences" for information about defining languages for use
in OSM.

Name Click Add to open the Add Fallout Group dialog box, where you can create a new fallout group to
associate with the order. Select any fallout group defined in the Name column and click Rename to
specify a different fallout group name, or click Remove to delete the fallout group from the list.

Fallouts Associate the fallout groups whose values you will want to review (in the Order Management web client)
when this fallout occurs.

Click the corresponding Add button to open the Order Select Fallouts dialog box, where you can select
one or multiple data fallouts to associate with the fallout group. Select any fallout and click Remove to
delete the fallout from the list.

Related Topics

Defining Order Fallout

Order Editor Fallouts Tab

Order Editor Notification Tab
Use the Order editor Notification tab to create order data changed notifications. Order data
changed notifications are triggered by changes to order data.

Note

This feature is not available in releases prior to OSM 7.0.

When modeling order data changed notifications, see the following topics:

• Order Editor Notification Details Tab

• Order Editor Notification Notify Roles Tab

• Order Editor Notification Data Changed Tab

• Order Editor Notification Automation Tab

• Order Editor Notification Notes Tab

The above tabs apply to existing event notifications in the list. Until you add an event
notification (by clicking Add), they are not accessible.

Order Editor Notification Details Tab
Use the Order editor Notification Details tab to name the notification, set the priority level,
enable or disable the notification, and specify whether to send the notification by email. The
following table describes the fields on the Order editor Notification tab.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 37

Note

This feature is not available in releases prior to OSM 7.0.

Field Use

Name Enter a name to identify the notification.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is evaluated first.

Enabled Select to enable this notification, or deselect the option if you intend to implement the notification at a later time.

Email Select to send email notifications to all users in the workgroup associated with the specified role.

When you assign users to a workgroup in the OSM Administration area of the Order Management web client,
you can set up OSM to notify users by email when a notification occurs with the notification ID number.

See OSM Order Management Web Client User's Guide for information about configuring email notification
properties for user roles.

Note: Order-data-changed notifications are intended to update external systems with status updates when a
specific data node in the order data is updated with a new value. The OSM server does not send order-data-
changed event notifications to Task web client Notifications pages. When notifying users, the server sends
these notifications to email addresses only.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Notify Roles Tab
Use the Order editor Notification Notify Roles tab to select the roles to be notified when the
notification occurs.

Note

This feature is not available in releases prior to OSM 7.0.

Select a predefined notification from the list in the Available column to activate a list of
available roles. See "Working with Roles" for information about defining roles. Using the
directional arrow buttons, move the roles (those groups to whom you want the notification sent)
into the Selected column.

If the notification is sent to an external system via an automation plug-in, ensure that you
include the role whose credentials are used when running the automation plug-in. See
"Working with Automated Tasks" for more information.

Related Topics

Creating Order Data Changed Notifications

Working with Jeopardy Notifications

Working with Orders

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 37

Order Editor Notification Data Changed Tab
Use the Order editor Notification Data Changed tab to identify the data node for which
changes to the value triggers the data change notification. All of the data nodes visible in the
order template (defined on the Order editor Order Template tab) are available as options.

Click Add to open the Order Template Node Selection dialog box, where you can select the
data node. Select any node defined in the Nodes column and click Remove to delete the node
from the list.

Note

This feature is not available in releases prior to OSM 7.0.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Automation Tab
Use the Notification Automation tab to configure an automation plug-in that performs the
work or sends data to an external system when the notification is triggered. The following table
describes the fields on the Order editor Notification Automation tab.

Note

This feature is not available in releases prior to OSM 7.0.

Field Use

Name Enter a name for the automation plug-in.

Automation
Type

Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Automation table.

View Click an automation, and click Select in the View field to choose a query task to use with the automation.

You must define an OSM user in the automation plug-in Run As field to run the automation plug-in and
configure one or more roles and default query tasks using the Order editor Permissions tab. Associate the
roles with the OSM user using the OSM Administration area of the Order Management web client.

If the Run As OSM user has more than one role, each with a different default query task, then multiple
query task views are available to run the automation plug-in. You can select a query task to allow OSM to
predictably use one query view to run the automation plug-in.

If the query task view has already been selected, click Open to view the query task. To create a new query
task, click New to start the New Studio Entity wizard.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You can deploy
older cartridges with the OSM 7.2 (or later) server, but random selection of query task views may occur if
an OSM user has more than one role, each with a different default query task.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 37

Note

See "Configuring Automation Plug-In Properties" for information about defining
automation properties on the Properties tab.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Notes Tab
Use the Order editor Notification Notes tab to denote the intended use of the notification or any
additional information that you want to append to the notification data.

Note

This feature is not available in releases prior to OSM 7.0.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Permissions Tab
Use the Order editor Permissions tab to assign roles to the order and to customize the role
settings. The following table describes the fields on the Order editor Permissions tab.

Field Use

Roles Add the roles that will have access to this order type in the Task web client. Click Select to select from existing
roles or New to create a new role. To view permissions for existing roles, select the role and click Open. The
system displays the role in the Role editor, where you can view the permissions assigned to the role. Select a role
and click Remove if you want to delete an associated role from the task.

When modeling order permissions, see the following topics for more information:

• Order Editor Permissions Details Tab

• Order Editor Permissions Filters Tab

• Order Editor Permissions Query Tasks Tab

• Properties View Filter Expression Tab

Related Topics

Working with Roles

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 37

Order Editor Permissions Tab

Assigning Order Permissions

Order Editor Permissions Details Tab
You use the Order editor Permissions Details tab to enable roles to create orders of this type
and to define the flexible headers available to Task web client users. The following table
describes the fields on the Order editor Permissions Details tab.

Field Use

Create Orders Select to enable the associated role to create this order type.

Flexible Header Flexible headers are additional columns of data that Task web client users can add (through the
preferences settings) to their Worklist, Notification, and Query view lists.

You define which data nodes the users can add in the Flexible Header field. The roles associated with
the order can add these data nodes to their view lists so that they can view the data without having to
access the corresponding editor.

Click the Add button to access a list of data elements defined in the order template. The Description
name you enter appears in the column header of the Task web client Worklist, Notifications, and Query
views.

Note: If you change the flexible headers and re-deploy the cartridges while users are logged in to the
OSM web clients, users may have to log out and log back in to see the changes.

Note

Flexible headers are displayed as lookup lists or as range fields. If flexible headers are
enumerated by the designer, they are displayed as lookup lists. If they are not
enumerated, they are displayed as range fields.

When entering data into range fields, either enter data only in the From field or enter
data in both the From and To fields. Filling only the From field queries only that exact
data; filling both the From and To fields queries the range entered.

See "Enumerations Tab" and "Settings Tab" for more information about creating lookup
lists and range fields.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Permissions Filters Tab
Use the Order editor Permissions Filters tab to limit the orders a role can view.

Click Add to open the Order Template Node Selection dialog box, where you can select the
data node to filter on. To remove a filter, select any filter node defined in the Filters table and
click Remove to delete the filter node from the list.

To specify filter values for a filter node, select it and click Properties. Modify values in the Filter
Expression editor to configure your filter. For example, if you want a role to view orders only
from Paris, select the data element city from the order template, and click Properties. In the
Filter Expression editor, select the = operator, and enter Paris in the Value field. You can also

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 37

filter using And/Or combinations. For example, if you want a role to view orders from either
Paris or London, add another similar line separated by Or and specify London. The following
table describes the fields on the Order editor Permissions Filters tab.

Field Use

Condition When defining multiple rule expressions, each rule expression is separated by an And or an Or.

Or is the default value, and indicates that either the expression before or the expression after Or can
evaluate to true if the rule is to evaluate to true. Use And to indicate that both the expression before and the
expression after And must evaluate to true if the rule is to evaluate to true.

Data Enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected data node into the Data
field to define the XPath expression. To drag the selected data node into the Data field, press and hold the
Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with a
single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Operator Select an operator from the list. The options available in the Operator field depend on the data type used in
the Data field.

Data/Value Enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected data node into the Data/
Value field to define the XPath expression. To drag the selected data node into the Data/Value fields, press
and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with a
single dot (.) represents the current node. Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Permissions Query Tasks Tab
Use the Order editor Permissions Query Tasks tab to select the task that will generate the
query view used by Task web client users. You can select any manual, automated, or activation
task already defined, or create a new task specifically for the run-time query. The following
table describes the fields on the Order editor Permissions Query tab.

Field Use

Name Select the task that will generate the query view used by Task web client users.

At run time, the OSM server returns a specific set of data when you use the search query functionality in the
Task web client. You determine which data set the OSM server returns by creating or selecting a query task.
The data associated with the task that you select here will be the data returned to you from the run-time query.

You can select a task that you use elsewhere in processes, or you can create a task that is used only for run-
time queries. You can associate multiple query tasks with each order and define each task as the Summary
view, the Detail view, or the Default view.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 37

Field Use

Summary Select to display the corresponding task data set in the Order Management web client Summary tab. The
Summary tab provides a selection of the most important information about the selected order, component, or
item and appears when you open the Order Details page. You can include data from multiple query tasks in
the Summary tab. The Order Management web client displays on the Summary tab all of the data from all of
the tasks for which you specify the Summary option.

Details Select to display the task data set in the Order Management web client Data tab. The tasks for which you
select this option appear as choices in the Order Management web client Data tab View field. You can specify
that multiple tasks appear as options in the View field; each option will present the web client user with a
different view, each containing a specific set of data.

Default Select to specify that the OSM server displays this task data set when returning search queries in the Task
web client.

Select this option when configuring query tasks for cartridges intended for OSM 6.3.1 environments. You can
select only one query task as the default option.

Note: To see an attachment that is created in a previous task, you must have a role that has a query task with
the Default option selected.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Properties View Filter Expression Tab
Use the Order editor Properties view Filter Expression tab to define rule expressions. To
access the Filter Expression tab, select a conditional expression on the Order editor
Permissions Filter tab and click Properties.

The fields on the Filter Expression tab are identical to those on the Order editor Permissions
Filters tab. When you select values on this tab, they appear in the Order editor Permissions
Filter tab. See "Order Editor Permissions Filters Tab" for more information.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Jeopardy Tab
Use the Order editor Jeopardy tab to create jeopardy notifications when certain conditions
arise in an order and you want to alert users or systems of processes, orders, or tasks that
may be at risk.

When modeling jeopardy notifications, see the following topics:

• Order Editor Jeopardy Details Tab

• Order Editor Jeopardy Conditions Tab

• Order Editor Jeopardy Notify Roles Tab

• Order Editor Jeopardy Polling Tab

• Order Editor Jeopardy Automation Tab

• Order Editor Jeopardy Notes Tab

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 37

Order Editor Jeopardy Details Tab
Use the Order editor Jeopardy Details tab to name the jeopardy, select the notification rule,
set the priority level, enable or disable the notification, and specify whether to send the
notification by email. The following table describes the fields on the Order editor Jeopardy
Details tab.

Field Use

Name Enter a name to identify the jeopardy.

Rule Select the rule the system should evaluate before generating this jeopardy. This field defaults to the system-
based null_rule.

If you do not change the default value, OSM will always trigger this notification at the specified polling interval.
See "Defining Order Rules" for more information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is evaluated first.

Enabled Select to enable this jeopardy notification, or deselect the option if you intend to implement the notification at a
later time.

Email Select to send email notifications to all users in the workgroup associated with the specified role.

By default, notifications appear in the Notifications page of the Task web client. However, you can specify that
notifications be sent by email by selecting the Email check box.

When you assign users to a workgroup in the OSM Administration area of the Order Management web client,
you can set up OSM to notify users by email. When a notification occurs, the system sends a notification ID
number through email.

See OSM Order Management Web Client User's Guide for information about configuring email notification
properties for user roles. See OSM Installation Guide for information about configuring the outgoing email
server.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Conditions Tab
Use the Order editor Jeopardy Conditions tab to select the conditions under which the
jeopardy should be raised. For example, you can raise a jeopardy when this order exceeds the
expected or a given duration or when the order is received within a certain number of days.
The following table describes the fields on the Order editor Jeopardy Conditions tab.

Field Use

Order State Select the state that the order must be in before the jeopardy notification is triggered: In
Progress or Completed.

Raise a Jeopardy when the
order is received within

This field is available only when you have selected In Progress in the Order State field. For
orders that are in progress, you can raise a jeopardy if the order has been received and has
exceeded the time interval defined in the adjacent field.

Raise a Jeopardy when the
order is completed within

This field is available only when you have selected Completed in the Order State field. For
orders that are completed, you can raise a jeopardy if the order has been completed and
has exceeded the time interval defined in the adjacent field.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 37

Field Use

Raise a Jeopardy when
Process Duration Exceeds

After selecting this field, select either Expected Duration or Given Duration to raise a
jeopardy if the process to which the order is associated has exceeded the expected duration
of the order (defined on the Order editor Details tab) or given duration, specified by the time
interval defined in the adjacent field.

Order Editor Jeopardy Notify Roles Tab
Use the Order editor Jeopardy Notify Roles tab to select the roles to be notified when the
jeopardy occurs.

Select a predefined jeopardy from the list in the left column to activate a list of available roles.
See "Working with Roles" for information about defining roles. Using the directional arrow
buttons, move the roles (those groups to whom you want the notification sent) from the
Available column into the Selected column.

If the jeopardy notification is sent to an external system via an automation plug-in, ensure that
you include the role whose credentials are used when running the automation plug-in. See
"Configuring Automation Plug-In Properties" for more information.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Polling Tab
Use the Order editor Jeopardy Polling tab to select the interval at which the OSM server
evaluates the condition that triggers the jeopardy notification. You can define the polling so that
the system checks for the condition only once, or you can define the polling at hourly, daily,
weekly, or monthly intervals. The following table describes the fields on the Order editor
Jeopardy Polling tab.

Field Use

Interval Select the interval at which the OSM server evaluates the condition that triggers the jeopardy notification.
Select Once if you want the system to check for the condition only once when the order is received. When
you select Once, the system disregards the Next Start field.

Use the Hours, Days, and Months fields to define a specific interval at which the OSM server evaluates the
condition that triggers the jeopardy notification. For example, if you want the system to check for the condition
every two days, select the Day(s) option and, from the list, select 2.

Next Start Select the date and time that you want the notification to begin checking. You can specify a date for any
polling interval. The system uses the current date and time as the default value.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 37

Order Editor Jeopardy Automation Tab
Use the Order editor Jeopardy Automation tab to configure an automation plug-in that
performs the work or sends data to an external system when the jeopardy notification is
triggered. OSM supports one automation plug-in per jeopardy.

You can also modify the properties of automation plug-ins. See "Configuring Automation Plug-
In Properties" for more information about defining automation properties on the Properties tab.

The following table describes the fields on the Order editor Jeopardy Automation tab.

Field Use

Name Enter a name for the automation entry.

Automation
Type

Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Jeopardy Automation table.

View Click an automation, and click Select in the View field to choose a query task to use with the automation.

You must define an OSM user in the automation plug-in Run As Property field to run the automation plug-in
and configure one or more roles and default query tasks using the Order editor Permissions tab. Associate
the roles with the OSM user using the OSM Administration area of the Order Management web client.

If the Run As OSM user has more than one role, each with a different default query task, then multiple
query task views are available to run the automation plug-in. You can select a query task to allow OSM to
predictably use one query view to run the automation plug-in.

If the query task view has already been selected, click Open to view the query task. To create a new query
task, click New to start the New Studio Entity wizard.

See "Order Editor Permissions Query Tasks Tab" for more information about query tasks.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You can deploy
older cartridges with the OSM 7.2 (or later) server, but random selection of query task views may occur if an
OSM user has more than one role, each with a different default query task.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Notes Tab
Use the Order editor Notes tab to denote the intended use of the notification or any additional
information that you want to append to the jeopardy data.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Events Tab
Use the Order editor Events tab to create order milestone event notifications. You select the
order milestone that triggers the automation and then configure the automation plug-in that will
perform the work.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 37

You can configure the properties of automations. See "Configuring Automation Plug-In
Properties" for more information.

The following table describes the fields on the Order editor Events tab.

Field Use

Milestone The Milestone column displays the milestones for which you have defined automation events. When the
order reaches the corresponding milestone, the OSM server triggers the automation event plug-in.

Name In the Automation column, the Name field displays the name of automation plug-in.

Automation
Type

Displays the automation plug-in type.

See "Working with Automation Plug-Ins" for more information.

View Click an automation, and click Select in the View field to choose a query task to use with the automation.

You must define an OSM user in the automation plug-in Run As Property field to run the automation plug-
in and configure one or more roles and default query tasks using the Order editor Permissions tab.
Associate the roles with the OSM user using the OSM Administration area of the Order Management web
client.

If the Run As OSM user has more than one role, each with a different default query task, then multiple
query task views are available to run the automation plug-in. You can select a query task to allow OSM to
predictably use one query view to run the automation plug-in.

If only one default query task is available in the Order Editor Query Task tab, then this query task is
automatically added to the View field when you create a new automation. See "Order Editor Permissions
Query Tasks Tab" for more information.

If the query task view has already been selected, click Open to view the query task. To create a new query
task, click New to start the New Studio Entity wizard.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You can deploy
older cartridges with the OSM 7.2 (or later) server, but random selection of query task views may occur if
an OSM user has more than one role, each with a different default query task.

Related Topics

Creating Order Milestone and Task State Automation Event Notifications

Working with Event Notifications

Working with Orders

Order Editor Composite Data View Tab
Use the Order editor Composite Data View tab to display all of the data that is available to the
order within the context of an OSM solution. The data in the Composite Data View tab is read
only. The following table describes the fields on the Order editor Composite Data View tab.

Tip

The composite data view may have fewer data nodes than its corresponding order
template view. For example, if a particular function is not included in the solution, its /
ControlData/Functions/Order_Component_Name structure will not be in the
composite data view.

Field Use

Solution Select the solution to display all of the order data associated with the solution.

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 37

Field Use

Order
Template

Displays all of the data necessary to fulfill or provision an order within the context of a
solution. You cannot modify any data that appears in the Order Template area.

Show
Control Data

By default, the check box is selected and all control data is shown. If the default process
in the Details tab is an orchestration process, control data elements are created
automatically and populated to the Order Template and Task Data areas.

Deselect the check box if you do not want to show control data.

Behaviors Displays all of the behaviors assigned to each data node. Select a data node in the
Order Template area to view the behaviors assigned to the node. You cannot modify any
behaviors that appear in the Behaviors area.

Related Topics

Working with Composite Cartridge Views

Working with Composite Cartridge Projects

Chapter 10
Order Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 37

11
Working with Behaviors

Behaviors provide a way to exercise greater control over validation and presentation of order
data to Oracle Communications Order and Service Management (OSM) web client users. Each
behavior type lets you dynamically control a specific aspect of your order data model.

Behaviors can be created for manual tasks only. They can be created at the data element level
(most general), the order level (more specific), or the task level (most specific). After the
behavior is created, you can model the actions you want it to perform through its properties
settings.

When modeling behaviors, see the following topics for more information:

• About Web Client Behavior Support

• Creating New Behaviors

• Defining Behavior Detail Properties

• Defining Behavior Condition Properties

• Defining Behavior Notes Properties

• Defining Calculate Behavior Properties

• Defining Constraint Behavior Properties

• Defining Data Instance Behavior Properties

• Defining Event Behavior Properties

• Defining Information Behavior Properties

• Defining Lookup Behavior Properties

• Defining Read Only Behavior Properties

• Defining Relevant Behavior Properties

• Defining Style Behavior Properties

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

About Web Client Behavior Support
The following table identifies whether the Task web client or the Order Management web client
can display OSM data behavior information.

Behavior Name Task Web Client Support Order Management Web Client
Support

Calculate Behavior Yes Yes

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 31

Behavior Name Task Web Client Support Order Management Web Client
Support

Constraint Behavior Yes No

Data Instance Behavior N/A N/A

Event Behavior Yes No

Information Behavior Yes Yes

Lookup Behavior Yes Yes, partial

Read Only Behavior Yes Yes

Relevant Behavior Yes Yes

Style Behavior Yes Yes, partial

See OSM Concepts for more information about how the web clients use and display OSM data
behavior information.

Related Topics

Working with Behaviors

Creating New Behaviors

Creating New Behaviors
Behaviors can be created for manual and automated tasks. They can be created at the data
element level (most general), the order level (more specific), or the task level (most specific).
See the following topics for information about creating new behaviors:

• See "Defining Behaviors at the Data Schema Level" for information about creating
behaviors at the data schema level.

• See "Defining Manual Task Behaviors" for information about creating manual behaviors at
the task level.

• See "Defining Automated Task Behaviors", for information about creating automated
behaviors at the task level.

• See "Defining Order Behaviors" for information about creating behaviors at the order level.

Defining Behavior Detail Properties
Behavior detail properties are common to all behaviors. You can disable behaviors temporarily,
override the manner in which behaviors are inherited, determine where a behavior was initially
defined, and so forth.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define behavior property details:

Chapter 11
Creating New Behaviors

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 31

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab.

Related Topics

Behaviors Properties View Details Tab

Working with Behaviors

Behaviors Properties View Details Tab
Use the Behaviors Properties View Details tab to enable behaviors and to force local, specific
exceptions to the way behaviors are evaluated for a given node.

The Properties view Details tab is common to all behaviors.

Field Use

Name Displays the name of the behavior. To rename a behavior, from the Behaviors area right-
click the behavior and select Rename.

Note: The name of the behavior can only be changed in the location at which the
behavior is defined.

Type Displays the type of behavior selected.

Path Displays the node context on which the behavior is defined.

Origin Displays where the behavior is defined. The behavior's inheritance properties are
determined by the definition location.

Enabled Deselect to disable the behavior in the run-time environment. If you disable a behavior
and deploy the cartridge, the OSM server will ignore this behavior. For example, you can
disable behaviors during testing. By default, this check box is selected.

Final Select to prevent another behavior of the same type, for the same node, at the same or
more specific level from overriding that behavior.

Override Select to indicate that the behavior takes precedence over any other behavior of the
same type, for the same node, at the same or more general (order) level.

Note: Override does not function if the behavior that you are trying to override has the
Final attribute enabled.

Related Topics

Defining Behavior Detail Properties

Working with Behaviors

Defining Behavior Condition Properties
You can apply conditions to a behavior that determine if it is applied, based on the view data.

Chapter 11
Defining Behavior Condition Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 31

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define behavior conditions:

1. From the Design perspective, right-click a behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Conditions tab.

The Behaviors Properties view Conditions tab is displayed.

3. Click Add.

A new condition is displayed in the Condition field with the default name Condition. The
default XPath expression true() appears in the XPath Expression field.

4. Select the default condition name to change the default name.

5. Select the default XPath expression to replace it or modify it.

6. Click Remove to delete a selected condition.

Related Topics

About Behavior Condition Properties

Behaviors Properties View Conditions Tab

Working with Behaviors

About Behavior Condition Properties
You can apply conditions to any behavior to determine the conditions under which the behavior
should apply. You can add conditions as XPath expressions against which the behavior can
run a Boolean compare. If the Boolean compare returns true, the behavior is applied.

For example, to associate a behavior with a postal code field in a web client to target all
customers in a specific region, you might apply the condition:

../postal_code = '95419'

You can select a data node from the Order Template tab (when working in the Order editor) or
from the Task Data tab (when working in a Task editor) and drag the selected data node into
the XPath Expressions field to define the XPath expression. To drag a data node into the
Properties view Conditions tab, press and hold the Alt key before you select and drag the data
node to the XPath Expressions field.

Chapter 11
Defining Behavior Condition Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 31

Note

XPath uses path expressions to select data nodes in XML documents. A path
expression with a single dot (.) represents the current node. Two dots (..) represents
the parent of the current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

When no condition is defined for the behavior, the OSM server will always apply the behavior.
When you define multiple conditions for the behavior, all conditions must evaluate to true for
the OSM server to apply the behavior.

Defining Constraint Behavior Condition Properties

When defining conditions for Constraint behaviors, you specify the conditions that must be
satisfied to avoid triggering the behavior. If any one of the conditions defined for the Constraint
behavior are not met (those that evaluate to false), the OSM server triggers the constraint and
displays the appropriate message to the user, based on the severity level. If no conditions are
specified, the constraint will not be triggered.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Defining Behavior Condition Properties

Behaviors Properties View Conditions Tab

Working with Behaviors

Behaviors Properties View Conditions Tab
Use the Behaviors Properties View Conditions tab to apply conditions to a behavior to
determine when the behavior should apply.

The Properties view Conditions tab is common to all behaviors.

Field Use

Add Click to apply a new condition to the behavior.

Conditions Displays the list of conditions defined for the corresponding behavior.
Select a condition to rename it.

XPath Expression Displays the XPath Expression that defines the logic of the
corresponding condition. Select the expression to modify or remove it.

To drag a data node into the Properties view Conditions tab, press and
hold the Alt key before you select and drag the data node to the XPath
Expressions field.

XPath and XQuery fields are limited to 4000 characters.

Remove Click to remove the highlighted condition.

Chapter 11
Defining Behavior Condition Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 31

Related Topics

Defining Behavior Condition Properties

About Behavior Condition Properties

Working with Behaviors

Defining Behavior Notes Properties
On the Properties view Notes tab, you can describe the intended use of the behavior. For
example, you might describe the functionality of a complex behavior, or provide instructions for
implementation or testing.

Related Topics

Working with Behaviors

Defining Calculate Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Calculate behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Calculate behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Calculation tab.

3. In the XPath Expression field, enter the calculation as a mathematical expression or as
an XPath expression.

See "Calculate Behavior Properties View Calculation Tab" for more information.

4. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

5. (Optional) Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Calculate behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

6. (Optional) Click the Notes tab.

Chapter 11
Defining Behavior Notes Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 31

Use the Notes tab to describe the functionality or include internal documentation about the
Calculate behavior.

Related Topics

Calculate Behavior Properties View Calculation Tab

About Calculate Behaviors

Working with Behaviors

About Web Client Behavior Support

About Calculate Behaviors
The Calculate behavior enables you to calculate a field's value based on a formula that
references other field values. When defining Calculate behaviors on the Calculation Behaviors
Properties tabs, you can use XPath expressions to support numeric operations and string
concatenations. For example:

XPath Expression Result

../loopback Set the current field equal to the value found in the ../
loopback field.

concat('S',instance('interfacedetail'
)/Port)

Set the current field equal to a concatenation
between the letter S and the value found in the Port
field that is returned by the peinterfacedetails data
provider.

instance('interfacedetail')/portType Set the current field equal to the portType returned
by the interfacedetail data instance provider.

See OSM Concepts for more information about behavior default values, inheritance, and
declarative syntax. For more information about XPath specifications, see the World Wide Web
Consortium (W3C) website at:

http://www.w3.org/TR/xpath20/

Note

XPath uses path expressions to select data nodes in XML documents. A path
expression with a single dot (.) represents the current node. Two dots (..) represents
the parent of the current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Calculate Behavior Properties View Calculation Tab

Defining Calculate Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Chapter 11
Defining Calculate Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 31

http://www.w3.org/TR/xpath20/

Calculate Behavior Properties View Calculation Tab
On the Properties view Calculations tab, you can define the expression that will produce the
calculation.

Field Use

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when working in
the Order editor), or from the Task Data tab (when working in a Task
editor) and drag the selected data node into the XPath Expression field to
define the XPath expression. To drag a data node into the Properties view
Calculation tab, press and hold the Alt key before you select and drag the
data node to the XPath Expressions field.

Note: XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents the current
node. Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Calculate Behavior Properties

About Calculate Behaviors

Working with Behaviors

Defining Constraint Behavior Properties
The Constraint behavior enables you to specify conditions that must be satisfied for a given
data node to be considered valid. If the condition is not satisfied (that is, if it evaluates to false),
messages are displayed to the user.

When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Constraint behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Constraint behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Message tab.

3. In the Language field, select a predefined language in which to display the message to the
web client user.

Chapter 11
Defining Constraint Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 31

See "Defining OSM Preferences" for more information.

4. In the Message field, enter the text that you want to display to the web client user when
the OSM server applies a Constraint behavior.

5. In the Display As field, define the level of severity of the message.

The level of severity in conjunction with the task status severity setting affects how the
OSM server proceeds after a Constraint behavior has been triggered. See "Constraint
Behavior Properties View Message Tab" and "Task Editor States/Statuses Tab" for more
information.

6. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

7. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Constraint behavior.

Note

The OSM server applies Constraint behaviors when any Constraint behavior
conditions evaluate to false. If you define no conditions for the Constraint behavior,
the OSM server will never apply the behavior in the web client.

See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

8. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Constraint behavior.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Constraint Behavior Properties View Message Tab

Working with Behaviors

About Web Client Behavior Support

Constraint Behavior Properties View Message Tab
Use the Properties view Message tab to define the language, content, and severity level of
the message. For data element level Constraint behaviors, the severity level, in conjunction
with the task status severity level, affects whether or not the task is allowed to transition.

Chapter 11
Defining Constraint Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 31

Field Use

Language Select the display language for the message.

Message Enter one or more messages to display when a condition is not
satisfied.

Display as Select the severity level as follows:

• Critical: On save, OSM does not save the order data and displays
the message in bold red text, with the "ERROR" label.

• Error: On save, OSM saves the order data and displays the
message in red text, with the "ERROR" label.

• Warning: On save, OSM saves the order data and displays the
message in yellow text, with the "WARNING" label.

• Valid: On save, OSM saves the order data and displays the
message in green text, with the "INFO" label.

Related Topics

Defining Constraint Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Task Editor States/Statuses Tab

Defining Data Instance Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Data Instance behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define data instance behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Data tab.

3. In the Language field, select a predefined language in which to display the message to the
web client user.

See "Defining OSM Preferences" for more information.

4. Specify whether to use a data provider to retrieve the data from an external system, or to
statically define the data inline.

• To use a data provider to retrieve the information, proceed to step 5.

• To statically define the data inline, select Inline enter the XML information into the
XML field, then skip to step 11.

Chapter 11
Defining Data Instance Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 31

5. In the Data Provider field, click Select.

The Select Data Provider dialog box is displayed.

Alternatively, you can click New to create a new data provider. See "Creating New Data
Providers " for more information about creating new data providers for Data Instance
behaviors.

6. Select a data provider from the list.

7. Click OK.

The input parameters defined for the data provider are displayed in the Parameters field.

8. In the Parameters field, select an input parameter.

9. In the Expression field, define the value for the input parameter that the data provider
requires when retrieving the data from the external system.

The value is evaluated at run-time and is based on the XPath or XQuery expression you
define in the Expression field.

10. (Optional) Select Use Default Expression to use the default expression data defined for
the parameters.

For example, if you were creating a Data Instance behavior to obtain a list of available
ports from inventory, you might define an end point parameter to provide the server
connection information required to connect to the inventory system. You can define (in the
Data Provider editor) the default information defined for the end point parameter, and use
that information for the corresponding Data Instance behavior.

11. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

12. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Data Instance behavior. See
"Defining Behavior Condition Properties" for more information about defining conditions for
behaviors.

13. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Data Instance behavior.

Related Topics

Data Instance Behavior Properties View Data Tab

About Data Instance Behaviors

Working with Behaviors

Working with Data Providers

About Data Instance Behaviors
The Data Instance behavior differs significantly from all other behavior types in that it does not
define any behavior. All other behavior types define some sort of action to be performed; for
example, a calculation or a lookup. You can use a Data Instance behavior to obtain data that is
not included in the order data and make that data available to other behaviors. There are two
methods for obtaining the data for the Data Instance behavior:

Chapter 11
Defining Data Instance Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 31

• You can use a data provider, which is an adapter that can retrieve data in an XML format
from external systems. Design Studio delivers several built-in data provider types intended
to retrieve external XML instances from specific sources, such as an Objectel server
extension or a SOAP web service. Additionally, you can create your own custom data
provider. See "Working with Data Providers" for more information.

• You can statically define data inline in XML format (or create an XQuery statement to
retrieve an XML document) on the Data Instance Behavior Properties Data tab. For
example, consider that you are creating a data instance behavior that will eventually
retrieve a list of available ports from your inventory system. Early in the development cycle,
the API required to connect to the inventory system may not be implemented correctly or
completely. You can use the inline feature to statically define a dummy payload that
represents the data that you anticipate will be returned from the inventory system to test
the behavior functionality.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Data Instance Behavior Properties View Data Tab

Defining Data Instance Behavior Properties

Working with Behaviors

Working with Data Providers

About Web Client Behavior Support

Data Instance Behavior Properties View Data Tab
Use the Properties view Data tab to define the data provider configuration that will interface
with the external system.

Chapter 11
Defining Data Instance Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 31

Field Use

Language You can declare Data Instance behaviors specific to a given
language by using the optional Language attribute. If this
attribute is set, OSM automatically selects the appropriate
instance using the user's language preferences set in the web
browser.

Note: If you declare multiple language-based instances,
consider the following:

• To appear in the Language drop-down list, languages
other than the default must be selected from the Oracle
Design Studio languages group. See "Defining Language
Preferences".

• One Data Instance behavior is created per language
selected.

• In order to differentiate among language-based behaviors,
the system appends (internally) a language code to the
data instance name using the "name of the data
instance"_"language code" pattern. For example:

DataInstanceX_en-ca

The language codes used are from the Oracle Design
Studio languages group.

• If you need to refer to this instance from any other
behavior (for example, Lookup), you must specify the full
value in the behavior's XPath expression. For example:

instance('DataInstanceX_en-ca')/lookupEntry

Data Provider You can reuse an existing data provider configuration for this
Data Instance behavior by clicking the Select button. To create
a new data provider configuration, click New. After you have
selected or created a data provider, click Open to access the
Data Provider editor, where you can define input parameters,
result documents, and cache settings. Click Clear (red X) to
clear the selected value from the field.

Parameters, Expression, Use Default
Expression

Select a parameter to define the value for the input parameter
that the data provider requires when retrieving the data from
the external system. The value is evaluated at runtime and is
based on the XPath or XQuery expression you define in the
Expression field. Select the Use Default Expression option if
you want to use the default values for the input parameters that
you defined using the Data Provider editor Interface tab.

You can select a data node from the Order Template tab
(when working in the Order editor) or from the Task Data tab
(when working in a Task editor) and drag the selected data
node into the Parameters field to define the XPath expression.

Note: To drag a data node into the Properties view Data tab,
press and hold the Alt key before you select and drag the data
node to the XPath Expressions field.

XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents
the current node. Two dots (..) represents the parent of the
current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Chapter 11
Defining Data Instance Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 31

Field Use

Inline Select if you want to make static information available to the
task. This option assumes that the information is not located
on an external system. When you select this option, you can
declare an XML document statically within the XML field.

Note: You can use the Inline option early in development
cycles when you know you want to employ a data provider to
an external system, but you haven't yet built it. Using the Inline
option, you can create a dummy information structure for
testing purposes. You can remove the inline XML static
information and clear the inline option later in the cycle after
you build the data provider configuration. When using the
Inline option, consider that there exists no XML validation in
the static document field.

Related Topics

Defining Data Instance Behavior Properties

About Data Instance Behaviors

Working with Behaviors

Defining Event Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Event behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Event behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Events tab.

3. Specify when the OSM server should apply the Event behavior.

Select:

• Save to apply the event when the user clicks the Task web client Save button.

• Refresh to apply the event immediately after the user leaves the field associated with
the Event behavior.

4. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

Chapter 11
Defining Event Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 31

5. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Event behavior.

See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

6. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Event behavior.

Related Topics

About Event Behaviors

Event Behavior Properties View Event Tab

Working with Behaviors

About Event Behaviors
The Event behavior specifies an action to perform when a given event occurs. Currently, there
is one supported event: value-changed. When data associated with the node for which an
event rule is defined is changed, the event rule signals the OSM server to re-render the view
and return the new results to the Task web client.

For example, you can combine the Event behavior with Relevant Behaviors to display certain
fields in an Task web client based on user selection. Consider that you use a Payment Type
field with Cash and Credit Card as options. You can create an Event behavior for the Payment
Type to re-render the view after the user tabs out of the field. You can create Relevant rules for
Credit Card Number, Expiration, and so forth, so that fields relevant to a credit card payment
appear in an Task web client when a user selects the Payment Type of Credit Card.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Defining Event Behavior Properties

Event Behavior Properties View Event Tab

Working with Behaviors

About Web Client Behavior Support

Event Behavior Properties View Event Tab
On the Properties view Event tab, you can specify how the OSM server should re-render an
Task web client view when an event behavior occurs.

Chapter 11
Defining Event Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 31

Field Use

Save Select to signal the OSM server to re-render the Task web client view only
after the user clicks the Task web client Save button.

Refresh Select to signal the OSM server to re-render the Task web client view
immediately after the user moves out of the field associated with the
behavior.

Related Topics

Defining Event Behavior Properties

About Event Behaviors

Working with Behaviors

Defining Information Behavior Properties
The Information behavior enables you to create labels, hints (tool tips), and help information for
data nodes that appear in a web client. Before you define a behavior's properties, you must
first create the behavior at either the data element level, task level, or order level.

When editing order and task data in an editor, you can right-click a behavior and select Open
Properties View to access the behavior properties. You use the Properties view tabs to model
Information behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Information behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Labels tab.

3. In the Language field, select a predefined language in which to display the label to the
web client user.

See "Defining Language Preferences" for more information about defining and using
languages in Design Studio. See "Defining Information Behaviors in Multiple Languages"
for information about how to change the language in which data fields appear in the web
client.

4. In the XPath Expression field, enter an XPath Expression or enter a literal (enclosed by
single quotes) to describe the label that you want to display to the web client user.

See "Information Behavior Properties View Labels Tab" for more information about
entering XPath expressions.

5. Click the Hints tab.

Chapter 11
Defining Information Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 31

6. In the Language field, select a predefined language in which to display the hint to the web
client user when they scroll over the associated field.

See "Defining OSM Preferences" for more information about defining and using languages
in Design Studio. See "Defining Information Behaviors in Multiple Languages" for
information about how to change the language in which hints are displayed in the web
client.

7. In the XPath Expression field, enter an XPath Expression or enter a literal (enclosed by
single quotes) to describe the hint that you want to display to the web client user.

See "Information Behavior Properties View Hints Tab" for more information about entering
XPath expressions.

8. Click the Help tab.

9. In the Language field, select a predefined language in which to display the help text to the
web client user when they click Help button for the associated field.

See "Defining OSM Preferences" for more information about defining and using languages
in Design Studio.

10. In the Topic field, enter the topic name for this help message.

11. In the Message field, enter the help documentation that will be displayed in the web client
when the user clicks the associated field Help button.

Use valid HTML to enter the help message.

12. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

13. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Information behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

14. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Information behavior.

Note

When you define Information behavior properties for a data element with a range
where the minimum is zero, the Task web client applies the behavior only when you
add a data node. If there are no data nodes, the help or hint does not appear, and the
field uses the Display Name from the Data Dictionary.

See OSM Concepts for more information about behavior default values, inheritance, and
declarative syntax.

Related Topics

Defining Information Behaviors in Multiple Languages

Information Behavior Properties View Labels Tab

Chapter 11
Defining Information Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 31

Information Behavior Properties View Hints Tab

Information Behavior Properties View Help Tab

Working with Behaviors

About Web Client Behavior Support

Defining Information Behaviors in Multiple Languages
You can use Information behaviors to configure web client labels and field level tool tips (called
hints in Design Studio) in multiple languages. The configuration that you complete in Design
Studio can enable a web client to display field labels and hints in a preferred language when a
web client detects changes to Internet browser language preferences.

The following example demonstrates how to define labels in a preferred language. The steps
for defining hints are identical, except that you define the language and XPath expression in
the Information Properties view Hints tab.

To create labels and hints in multiple languages:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences dialog box, click Oracle Design Studio.

The Design Studio Language Preferences options are displayed.

3. Add the language to the group of languages with which you intend to work.

See "Defining OSM Preferences" for more information about adding languages to the
Preferences dialog box.

4. Click OK.

Design Studio closes the Preference dialog box.

5. Determine at which level you will create the Information behavior.

You can create behaviors at the data, order, and task levels. For example, behaviors
defined at the data level apply to the data node in all orders and tasks; behaviors applied
at the order level apply to all tasks in the order; and behaviors defined at the task level
apply to a single task in the order.

• See "Defining Behaviors at the Data Schema Level" for information about creating
behaviors at the data schema level.

• See "Defining Manual Task Behaviors" for information about creating behaviors at the
task level.

• See "Defining Order Behaviors" for information about creating behaviors at the order
level.

6. In the Data Schema, Order, or Task editor, select a data node and create the Information
behavior.

7. Right-click the Information behavior icon and select Open Properties View.

The Information Properties view Labels tab is displayed.

8. In the Information Properties view Labels tab Language field, select the language for
which you want to define a label.

No changes to Language field are necessary if you are defining labels in the default
language.

Chapter 11
Defining Information Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 31

Note

By default, the system uses the Display Name defined for the data node and the
default language defined in the Design Studio Preferences dialog box when
labeling fields in the web client.

9. In the XPath Expression field, enter the text for the new label.

Use single quotes to wrap the text when entering literals in an XPath expression. See
"Information Behavior Properties View Labels Tab" for more information about entering
XPath expressions.

10. Click Save.

11. Clean, build, and deploy your cartridge to the run-time environment.

See "Packaging and Deploying OSM Cartridges" for more information and cleaning,
building, and deploying cartridges.

12. In the web client, navigate to the browser language preferences to select the language in
which you defined your labels and hints.

For example, in Internet Explorer:

a. Select Tools, Internet Options.

b. Click Language.

The Language Preferences dialog box is displayed.

c. Click Add.

The Add Language dialog box is displayed.

d. Select the language in which you created new field labels or hints in Design Studio.

e. Click OK.

f. Select the language, and click Move Up to move the language to the first position.

g. Click OK.

The system displays the new labels in the web client.

Related Topics

Information Behavior Properties View Labels Tab

Information Behavior Properties View Hints Tab

Information Behavior Properties View Help Tab

Working with Behaviors

Information Behavior Properties View Labels Tab
On the Properties view Labels tab, you can create labels by selecting a language and
defining an expression.

Chapter 11
Defining Information Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 31

Field Use

Language You can declare Information behaviors specific to a given language by
using the optional Language attribute. If this attribute is set, OSM
automatically selects the appropriate instance using the user's language
preferences set in the web browser.

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when working in
the Order editor) or from the Task Data tab (when working in a Task editor)
and drag the selected data node into the XPath Expression field to define
the XPath expression. To drag a data node into the Properties view
Labels tab, press and hold the Alt key before you select and drag the data
node to the XPath Expressions field.

XPath uses path expressions to select data nodes in XML documents. A
path expression with a single dot (.) represents the current node. Two dots
(..) represents the parent of the current node. A slash (/) represents the
root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Information Behavior Properties

Working with Behaviors

Information Behavior Properties View Hints Tab
On the Properties view Hints tab, you can create hints (tooltips) in the web client by selecting
a language and defining a message.

Field Use

Language You can declare Information behaviors specific to a given language by
using the optional Language attribute. If this attribute is set, OSM
automatically selects the appropriate instance using the user's language
preferences set in the web browser.

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when working in
the Order editor), or from the Task Data tab (when working in a Task
editor) and drag the selected data node into the XPath Expression field to
define the XPath expression. To drag a data node into the Properties view
Hint tab, press and hold the Alt key before you select and drag the data
node to the XPath Expressions field.

XPath uses path expressions to select data nodes in XML documents. A
path expression with a single dot (.) represents the current node. Two dots
(..) represents the parent of the current node. A slash (/) represents the
root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Information Behavior Properties

Working with Behaviors

Chapter 11
Defining Information Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 31

Information Behavior Properties View Help Tab
On the Properties view Help tab, you can create context-sensitive, online help in the web
client by selecting a language and defining the help topic and text.

Field Use

Language You can declare Information behaviors specific to a given language by
using the optional Language attribute. If this attribute is set, OSM
automatically selects the appropriate instance using the user's language
preferences set in the web browser.

Topic Enter the topic name for this help message.

Message Enter the help documentation that will be displayed in the web client when
the user clicks the associated field Help button.

Note: Use valid HTML to enter the help message.

Related Topics

Defining Information Behavior Properties

Working with Behaviors

Defining Lookup Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Lookup behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Lookup behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Nodeset tab.

3. In the XPath Expression field, enter the XPath expression that selects the set of data
nodes that will comprise the lookup results.

4. Click the Value/Name tab.

A default column, called ValueColumn, is displayed in the Value Name table. The OSM
server uses this value to populate the data node to which the Lookup behavior is attached.

5. (Optional) Click Add.

Design Studio creates an additional column in the drop down list. For example, you can
add a second column to create a label for the data retrieved.

6. Specify the value that OSM server should use for the corresponding data node.

Chapter 11
Defining Lookup Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 31

If you have multiple columns defined in the Value Name table, select the column whose
value you want the OSM server to use for the data node, and click Set as Value.

For example, if you have two columns, a code column and description column, you might
elect to have the user make a selection based on the description field, but identify the code
column as the value that the OSM server should use to update the task.

7. In the Name field, enter a name for the selected column value.

8. In the Node field, enter an XPath expression to define the relative path to the node in the
nodeset.

For example, if the nodeset contains 2 data nodes, you must identify which of the two data
nodes the OSM server should retrieve for the select column.

9. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

10. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Lookup behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

11. Click the Notes.

Use the Notes tab to describe the functionality or include internal documentation about the
Lookup behavior.

Related Topics

Lookup Behavior Properties View Nodeset Tab

Lookup Behavior Properties View Value/Name Tab

About Lookup Behaviors

Working with Behaviors

About Lookup Behaviors
Use the Lookup behavior to specify a set of dynamically generated field value choices to be
included in a drop down list. The Lookup behavior can retrieve data of any type, and can obtain
the data from the task view data or from an external system, (such as Objectel) using a Data
Instance behavior. You can also define the behavior to display multiple columns to the end
user.

You attach Lookup behaviors to simple type data nodes, and define the location of the data
using an XPath expression. When the Lookup behavior retrieves the data, it expects a
repeating XML data structure that it will use to build the list of options.

When configuring Lookup behavior properties, you define where the OSM server should obtain
the information, how much information to present in the drop down list, the order in which the
options should be presented to the user, and the value that the OSM server uses for the data
node (for which the Lookup behavior is defined) when a user makes a selection. For example,
consider that you want a Lookup behavior to retrieve a code and a description of mobile phone
handset color options. You can create a Data Instance behavior to retrieve the available
handset color options from inventory, and display those options to the user with a Lookup
behavior:

Chapter 11
Defining Lookup Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 31

Code Column Value Description Column Value

12HS00B Blue Handset

12HS00S Silver Handset

12HS00R Red Handset

You might elect to display only the description to the user (in a single column) but update the
task data with the code value.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Lookup Behavior Properties View Nodeset Tab

Lookup Behavior Properties View Value/Name Tab

Defining Lookup Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Lookup Behavior Properties View Nodeset Tab
Use the Properties view Nodeset tab to define the XPath expression that selects the set of
nodes that comprise the lookup results. You can enter the expression or drag the desired
nodes into the XPath Expression field.

Field Use

XPath Expression Enter an XPath expression.

You can select a data node from the Order Template tab (when
working in the Order editor), or from the Task Data tab (when working
in a Task editor) and drag the selected data node into the XPath
Expression field to define the XPath expression. To drag a data node
into the Properties view Nodeset tab, press and hold the Alt key
before you select and drag the data node to the XPath Expressions
field.

XPath uses path expressions to select data nodes in XML documents.
A path expression with a single dot (.) represents the current node.
Two dots (..) represents the parent of the current node. A slash (/)
represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Lookup Behavior Properties

Working with Behaviors

Chapter 11
Defining Lookup Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 31

About Lookup Behaviors

Lookup Behavior Properties View Value/Name Tab
Use the Lookup Behavior Properties View Value/Name tab to specify the value that the OSM
server should use for a data node, and to create multiple columns to display in the web client.

Note

You can convert a label to a value by selecting the Set as Value check box. When you
do this, the previous value automatically becomes a label.

Field Use

Set as Value If you have multiple columns defined in the Value Name table,
select the column whose value you want the OSM server to use
for the data node, and click Set as Value. This value will be
stored in the order.

For example, if you have two columns, a code column and
description column, you might elect to have the user make a
selection based on the description field, but identify the code
column as the value that the OSM server should use to update
the task.

Only one column in a lookup behavior can be used for Set as
Value. Use the Hidden field to determine whether the column
used as Set as Value is also used as a display column.

Name Enter a name for the lookup value result.

Hidden Specify whether the column is displayed or not. By default, the
column is displayed.

If more than one column is displayed, the value displayed in the
field will be the value in the first visible column.

Position Define the column's position in the lookup result.

Sort Direction Specify how the column is sorted. Indicate either Ascending or
Descending.

Sort Order Determine how the column is used to sort the lookup. For
example, if this value is 1, it is the primary sort key.

Selection Severity Select how open the field is to users entering data that is not on
the list of values defined in the lookup. Valid values are:

• VALID: A value that is not on the list is valid.
• WARNING: A value that is not on the list generates a

warning but can be saved to the order and the task
transitioned.

• ERROR: A value that is not on the list generates an error
but can be saved to the order. The task cannot be
transitioned until the value that is not on the lookup list is
removed.

• CRITICAL: (default) A value that is not on the list
generates an error and cannot be saved to the order. The
task cannot be transitioned until the value that is not on the
lookup list is removed.

Node (Mandatory) Enter an XPath expression to define the relative
path to the node in the nodeset.

Chapter 11
Defining Lookup Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 31

Field Use

Language Select the display language.

Description Enter a brief description of the layout.

Related Topics

Defining Lookup Behavior Properties

Working with Behaviors

About Lookup Behaviors

Defining Read Only Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Read Only behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Read Only behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

3. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Read Only behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

4. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Read Only behavior.

Related Topics

About Read Only Behaviors

Working with Behaviors

Chapter 11
Defining Read Only Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 31

About Read Only Behaviors
The Read Only behavior enables you to target specific conditions when the OSM server should
make a field read-only in the Task web client. Information is always read-only in the Order
Management web client. You can use the Read Only behavior to make fields read only or read/
write, depending on the content of other fields.

For example, assume that a view has an IP Allocation {static, DHCP}, an IP Address, a Subnet
Mask, and a Default Gateway field. You can create a read-only rule on IP address, Subnet
Mask, and Default Gateway that evaluates to True when the value DHCP is selected for the IP
Allocation field.

See OSM Concepts for more information about behavior default values, inheritance, and
declarative syntax.

Note

If a data node's Read Only behavior evaluates to true, all children of that data node
are read-only.

About Read Only Behaviors and Read Only Task View Options

In Design Studio, you can define a data node as read-only by creating a Read Only behavior,
and by defining the data node as read-only at the task view level:

• Defining a Read Only behavior for a data node enables you to apply specific conditions to
determine when the OSM server should make the associated field in the Task web client
read-only.

• Defining a data node as read-only at the task view level ensures that a field always is
displayed as read-only in the Task web client (in the context of the associated task). See
"Task Data Node Properties View Identification Tab" for information about defining data
nodes as read-only at the task view level.

Note

If a Read Only behavior and a task view read-only option conflict for the same data
node, the OSM server defaults to the Read Only behavior. For example, consider that
you have identified a data node as read-only on the Task Data Node Properties View
Identification tab, and you've also defined a Read Only behavior for that same data
node. If the behavior evaluates to false, the Task web client field associated with the
data node will be editable.

Related Topics

Defining Read Only Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Chapter 11
Defining Read Only Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 31

Defining Relevant Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Relevant behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Relevant behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

3. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Relevant behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

4. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Relevant behavior.

Related Topics

About Relevant Behaviors

Working with Behaviors

About Relevant Behaviors
Use the Relevant behavior to make fields hidden or visible, depending on the content of other
fields. You can apply a Relevant behavior to a group node to hide all of its children when the
behavior evaluates to false.

The Relevant behavior is usually combined with an Event behavior. When you associate a
Relevant behavior to a field, the fields in the web client can only be hidden or revealed upon an
OSM server refresh.

For example, if a user selects the value Check in the Payment Method field, the Credit Card
Number and Type fields become non-relevant, and should be hidden. In this example, you
define an Event behavior to refresh the web client window when the user tabs out of the
Payment Method field. Additionally, you define Relevant behaviors for the Credit Card Number
and Type fields to evaluate to false when the user selects Check as the payment method.

Chapter 11
Defining Relevant Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 31

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Defining Relevant Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Defining Style Behavior Properties
Use the Style behavior to control the appearance of a given node in the web client. You can
apply multiple Style behaviors to a data node, each defined with specific conditions such that
when one condition evaluates to true, the OSM server will apply the corresponding style
behavior. For example, you can specify that the font color for a field in the web client appear
black unless a user enters an invalid value, in which case you specify the font color to change
to red.

OSM applies style behaviors to all compensation strategies: Redo, Undo, and Do Nothing.

When editing order and task data in an editor, you can right-click data node behaviors and
select Open Properties View to access the behavior properties.You use the Properties view
tabs to model Style behaviors.

Note

The level at which you create a behavior (at the data element level, task level, or order
level) determines where you access and configure the behavior's properties. See
"Creating New Behaviors" for more information.

To define Style behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties View.

The Behaviors Properties view is displayed.

2. Click the Appearance tab.

Use the Appearance tab to specify how field options are displayed, whether to include line
breaks after fields, and whether to hide sensitive information in field contents. See "Style
Behavior Properties View Appearance Tab" for more information.

3. Click the Layout tab.

Use the Layout tab to group child nodes into tabs or table columns. These options are
available only for structures that contain child nodes. See "Style Behavior Properties View
Layout Tab" for more information.

4. Click the CSS Style tab.

On the CSS Style tab, you can add HTML formatting to field values and labels in the web
client. Enter HTML directly into the CSS Style Attribute fields for values and labels, or enter

Chapter 11
Defining Style Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 31

a class name to control the formatting for values and labels. See "Style Behavior
Properties View CSS Style Tab" for more information.

5. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and Path field
values are read-only, and cannot be modified on this tab. See "Defining Behavior Detail
Properties" for more information about the options that you can define on this page.

6. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Style behavior. See "Defining
Behavior Condition Properties" for more information about defining conditions for
behaviors.

7. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation about the
Style behavior.

Note

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Style Behavior Properties View Appearance Tab

Style Behavior Properties View Layout Tab

Style Behavior Properties View CSS Style Tab

Working with Behaviors

About Web Client Behavior Support

Style Behavior Properties View Appearance Tab
Use the Properties view Appearance tab to define attributes that control the appearance of a
given node in the web client.

The Appearance tab is rendered differently based on whether the behavior is defined for an
element or a structure. For an element, all fields are enabled except Locate in, which deals
with page layouts for structures. For a structure, all fields are disabled except Locate in.

Field Use

Appearance Select a value to control the appearance of the node based on
one of the following selections:

• Default: Uses the default node appearance
• Compact: A fixed number of choices are rendered, with

scrolling facilities, as needed
• Full: All choices are rendered at all times
• Minimal: A minimum number of choices are rendered, with

the ability to temporarily render additional choices

Locate in Specifies the page on which the group is placed. New Page
locates the group in a newly created page, without a title.

Chapter 11
Defining Style Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 31

Field Use

Place on New Line Select to place the node at the start of a new line and to define
a condition under which the line break is inserted.

Make it a Password Field Select to protect the contents of nodes containing sensitive
information and to define a condition under which the field is
secret.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Style Behavior Properties View Layout Tab
Use the Properties view Layout tab to define attributes that control the appearance of a given
node in the web client.

The Layout tab is rendered differently based on whether the behavior is defined for an element
or a structure. For an element, all fields are disabled because the tab deals with page layouts
for structures. For a structure with child elements, all fields are enabled.

Field Use

None Select to specify no layout. This is the default.

Page Layout Select to specify how to organize a group's child nodes into tabbed
pages. When you select this option, you can also enter a name and
language for the layout, as well as a brief description.

To use this layout, the node must be a complex type. A complex type
element is an element that contains other elements or attributes.

Table Layout Select to place the group in a table format. Child nodes within the
group are represented by columns, and instances of the group are
represented by rows. Columns are displayed from left to right in the
same order that they appear from top to bottom in a view that does not
use the table layout. You can choose to hide a child node so that it
does not appear in the table.

To use this layout, the node must be a complex type and have children.
A complex type element is an element that contains other elements or
attributes.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Style Behavior Properties View CSS Style Tab
Use the Properties view CSS Style tab to define attributes that control the appearance of a
given node in the web client.

Chapter 11
Defining Style Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 31

Note

If you define a CSS Class for a Style behavior, the CSS class must exist when
deploying OSM. Otherwise, WebLogic Server throws an error and the default class is
used.

Field Use

CSS Style Attribute Enter a CSS style attribute to change the field value format of
the data node associated with the style behavior. For example,
to customize the color and background color of the field value,
you might enter:

color:#EE7500;BACKGROUND-COLOR: #FFFFDD

CSS Class Name Enter a CSS class name defined in a customPrint.css or
customScreen.css file to change the field value format of the
data node associated with the style behavior.

Label CSS Style Attribute Enter a CSS style attribute to change the field label format of
the data node associated with the style behavior. For example,
to customize the color and background color of the field label,
you might enter:

color:#EE7500;BACKGROUND-COLOR: #FFFFDD

Label CSS Class Name Enter a CSS class name defined in a customPrint.css or
customScreen.css file to change the field label format of the
data node associated with the style behavior.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Chapter 11
Defining Style Behavior Properties

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 31

12
Working with Jeopardy and Event Notifications

There are two basic types of notifications that you can configure in Design Studio: jeopardy
notifications and event notifications:

• Use jeopardy notifications when certain conditions arise in an order or task and you want
to alert users or systems of processes, orders, or tasks that may be at risk.

• Use event notifications to alert users of changes to order milestones or task states.

When modeling notifications, see the following topics:

• Working with Jeopardy Notifications

• Working with Event Notifications

• Order Jeopardy Editor

Working with Jeopardy Notifications
A jeopardy notification is a message that you can configure in Design Studio to occur under
specific conditions, and to be sent to specific users or systems. You can configure jeopardy
notifications to be sent once, periodically, or when certain conditions arise in an order or task to
alert users or systems of processes, orders, or tasks that may be at risk.

Jeopardies are rule-based. When you create a new jeopardy notification, you select a
predefined rule that must evaluate to true before OSM can trigger the notification.

When working with jeopardy notifications, see the following topics:

• Creating Jeopardy Notifications in the Order Jeopardy Editor

• Creating Jeopardy Notifications in the Task or Order Editor

Creating Jeopardy Notifications in the Order Jeopardy Editor
Create jeopardy notifications using the Order Jeopardy editor when you want the most
flexibility in defining the jeopardy conditions to alert users or systems of orders that may be at
risk.

To create a jeopardy notification:

1. From the Studio menu, select New, select Order and Service Management, select
Order Management, then select Order Jeopardy.

The Order Jeopardy wizard is displayed.

2. In the Project field, select the project in which to save the order jeopardy.

3. In the Name field, enter a name for the order jeopardy.

The name must be unique among order jeopardy entity types within the same namespace.

4. In the Namespace field, select an existing namespace or enter a unique namespace in
which to include the order jeopardy.

Design Studio uses the last saved namespace as the default.

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 20

5. (Optional) Select a location for the order jeopardy.

By default, Design Studio saves the entity to your default workspace location. You can
enter a folder name in the Folder field or select a location different from the system-
provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio adds the new order jeopardy to the Studio Projects view and opens the new
entity in the Order Jeopardy editor.

7. In the Details tab, configure the required fields, which are Target Order and Roles, as
well as any optional fields appropriate for your situation.

For more information about the fields in this tab, see "Order Jeopardy Editor Details Tab".

8. In the Policy tab, configure the conditions under which the jeopardy should be raised.

For more information about the fields in this tab, see "Order Jeopardy Editor Policy Tab".

9. (Optional) In the Automation tab, configure the information about any automation that
should be triggered when the jeopardy notification is raised.

For more information about the fields in this tab, see "Order Jeopardy Editor Automation
Tab".

Related Topics

Order Jeopardy Editor

Creating Jeopardy Notifications in the Task or Order Editor
Create jeopardy notifications when certain conditions arise in an order or task and you want to
alert users or systems of processes, orders, or tasks that may be at risk.

You can also associate rules to jeopardy notifications that can trigger automations.

Note

For order jeopardy notifications, the Order Jeopardy editor provides more functionality
than jeopardy notifications configured in the Order editor. For more information, see
"Creating Jeopardy Notifications in the Order Jeopardy Editor".

To create a jeopardy notification:

1. In the Order editor or Task editor, click the Jeopardy tab.

2. Under the Jeopardy column, click Add.

The Jeopardy wizard is displayed.

3. In the Name field, enter a name for the jeopardy.

The name must be unique among notification entities in the same namespace.

4. In the Rule field, select the rule that must evaluate to true before OSM can trigger this
jeopardy notification.

Chapter 12
Working with Jeopardy Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 20

Design Studio uses the null_rule as the default value. Unless you select a different rule,
OSM triggers this notification at run-time at the specified polling interval whenever the
specified jeopardy conditions are met. See "Defining Order Rules" for more information
about setting up new rules.

5. In the Priority field, select a priority for the notification.

1 is the highest priority. OSM evaluates jeopardies with the highest priority first. For
notifications that are sent to external systems, this field represents the JMS queue priority.

6. Select Enabled.

You can deselect the Enable option if you want to include the rule in the cartridge but
disable the rule at run-time. For example, you might use this feature during design or
testing phases, or if you intend to implement the notification at a later time.

7. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client. However,
you can specify that notifications be sent to a user's email account by selecting the Email
check box. You associate users with email accounts in Administrator.

See OSM Order Management Web Client User's Guide for information about configuring
email notification properties for user roles.

8. Click Next.

9. Specify the conditions under which the jeopardy notification should be triggered.

10. Click Next.

11. Select the roles to be notified when the jeopardy is triggered.

See "Working with Roles" for more information.

12. Click Next.

13. Specify how often the OSM server should re-evaluate the jeopardy condition.

14. Click Finish.

The jeopardy notification is added to the order or task, as appropriate.

You can edit or add any jeopardy notification attributes at any time by navigating to the
Jeopardy subtabs.

15. In the order Jeopardy column, select the jeopardy for which you want to add an automation
plug-in.

16. In the Automation column, click Add.

The Add Automation dialog box is displayed, which enables you to create the automation
plug-in.

17. Enter a name for the automation plug-in, select the appropriate Automation Type from the
available list, and click OK.

The newly created plug-in is displayed in the Automation column.

18. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab. Use the
subtabs to configure the plug-in. The tabs will vary depending on the type of plug-in
selected.

See "Configuring Automation Plug-In Properties" for more information.

19. For Order jeopardy, if the automation plug-in has an OSM user in the automation plug-in
Run As property field with more than one role, click Select from the View field to choose a

Chapter 12
Working with Jeopardy Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 20

query task view to use for the automation plug-in. If only one default query task exists in
the Order editor Permissions tab, then Design Studio automatically associates it with new
automations.

Related Topics

Order Editor Jeopardy Tab

Task Editor Jeopardy Tab

Working with Orders

Working with Tasks

Working with Event Notifications
Event notifications are based on changes to order milestones or task states. The type of the
event notification determines where you configure the notification, whether it can be sent to a
work group, or whether it will be automatically consumed by an automation plug-in. There are
three types of event notifications:

• Task status-based event notifications are triggered by rules that evaluate when a task
transitions to a specific status or exception path within a process. You define task status
event notifications using the Properties Events tab in the Process editor. See "Creating
Task Status-Based Event Notifications" for more information.

• Order milestone and task state automation event notifications are triggered when an order
transitions to a specific milestone or when a task transitions to a specific state. When you
configure a milestone-based or state-based event notification for an order in the Order
editor or for a task in the Task editor, the notification triggers automatically upon reaching
the specified order milestone or task state, and the notification is consumed by an
automation plug-in that performs the work. When you configure a task state-based event
notification for a specific task in the Process editor, you can also include an additional rule
that must evaluate to true before OSM triggers the notification, and you can elect to send
the notification to a work group.

See "Creating Order Milestone and Task State Automation Event Notifications" and
"Creating Process-specific Task Event Notifications" for more information.

• order data changed notifications are triggered by changes made to the order data. You can
configure order data changed notifications to update external systems (such as CRM) with
status updates when a specific data node in the order data is updated with a new value.
You configure order data changed notifications in the Order editor Notifications tab. See
"Creating Order Data Changed Notifications" for more information.

Note

Order data changed notifications are not available when using releases prior to
OSM 7.0.

Related Topics

Working with Jeopardy and Event Notifications

Working with Orders

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 20

Creating Order Milestone and Task State Automation Event Notifications
You create order milestone and task state automation event notifications at the order or task
level. You select the order milestone (in the Order editor Events tab) or the task state (in the
Task editor Events tab) that triggers the automation, and then configure the automation plug-in
that will perform the work.

For example, when a task reaches the Assigned state, you can automate an external lookup
before allowing the workflow to continue.

To create an order milestone or task state automation event notification:

1. Determine the level at which to create the event notification.

For example, if you want the notification to trigger when the order reaches the completion
milestone, define the notification at the order level. To create an event at the order level,
navigate to the Order editor Events tab. To create an event at the task level, navigate to
the Task editor Events tab.

2. From the Order editor or the Task editor Events tab, click Add in the Milestone or State
column, respectively.

A Selection dialog box opens, which lists all of the milestones or states that have been
defined for this order or task.

3. Select a milestone or task from the list of options.

For order events, the milestones include Completion, Creation, Deletion, Exception. For
task events, all of the states that you have defined on the Task editor States/Statuses tab
appear in the list of options.

4. Click OK.

5. In the order event Milestones column or the task event States column, select the milestone
or state for which you want to add an automation plug-in.

6. In the Automation column, click Add.

The Add Automation dialog box is displayed, which enables you to create the automation
plug-in.

7. Enter a name for the automation plug-in, select the appropriate action from the available
list, and click OK.

The newly created plug-in is displayed in the Automation column.

8. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab. Use the
subtabs to configure the plug-in. The tabs will vary depending on the type of plug-in
selected.

See "Configuring Automation Plug-In Properties" for more information.

9. For Order Events, if the automation plug-in has an OSM user in the automation plug-in
Run As property field with more than one role, click Select from the View field to choose a
query task view to use for the automation plug-in. If only one default query task exists in
the Order editor Permissions tab, then Design Studio automatically associates it with new
automations.

Related Topics

Task Editor Events Tab

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 20

Order Editor Events Tab

Working with Event Notifications

Working with Orders

Working with Tasks

Creating Process-specific Task Event Notifications
You can configure task state-based event notifications for all instances of task in a specific
process or for a single instance of a task in the process. When you configure a state-based
event notification for a specific task in the Process editor, you can include rules which must
evaluate to true before the notification is triggered. When the task reaches the specified state,
OSM evaluates the rule to determine whether the event notification is triggered.

To create process-specific task event notifications:

1. From the Process editor, select the task to which the event applies.

The Properties tab for the selected task opens.

2. Click the Events tab.

3. Click Add.

The Event wizard is displayed.

4. In the Name field, enter the mnemonic for the task event.

The name must unique among the notification types within the same namespace.

5. In the Display Name field, enter the name of the task event that should be displayed to
users.

6. In the Rule field, select the rule that must evaluate to true before OSM can trigger this
event notification.

The null_rule is the default value for this field. If you do not change the default value, the
OSM server will always trigger this notification when the corresponding task reaches the
specific state. See "Defining Order Rules" for information about setting up new rules.

7. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

8. Select Enabled.

Deselect this option if you intend to implement the task event notification at a later time.

9. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client. However,
you can specify that notifications be sent to a user's email account by selecting the Email
check box. You associate users with email accounts in Administrator. See OSM Order
Management Web Client User's Guide for information about configuring email notification
properties for user roles. See OSM Installation Guide for information about configuring the
outgoing email server.

10. In the State field, specify the state that the task must be in before OSM evaluates the rule
associated with the event.

The three mandatory states (accepted, completed, received) and all custom states that you
defined on the Task editor States/Statuses tab appear as values.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 20

11. Click Next.

12. Select the roles to be notified when the event is triggered.

See "Working with Roles" for more information.

13. Click Finish.

The event notification is added to the event table.

14. Select the event.

When you select the event, Design Studio activates the Event subtabs. You can add any
undefined elements at any time by using these subtabs. See the following topics for
defining the values in the Events subtabs:

• Properties Events Detail Tab

• Properties Events Notify Roles Tab

• Properties Events Automation Tab

• Event Properties Notes Tab

Related Topics

Working with Event Notifications

Working with Processes

Properties Events Detail Tab
Use the Properties Events Details tab to name task state-based and task status-based event
notifications, specify the rule that triggers the event, set the priority level, enable or disable the
event, and specify whether to send the notification by email.

Field Use

Name Enter the mnemonic for the notification.

Display Name Enter the name to be displayed to the user.

Rule Select the rule the system should evaluate before generating this
notification. This field defaults to the system-based null_rule.

If you do not change the default value, OSM will always trigger this
notification when the task reaches the specified state or when the task
transitions to the specified status. See "Defining Order Rules" for more
information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification
with the highest priority is evaluated first.

Enabled Select to enable this notification, or deselect the option if you intend to
implement the notification at a later time.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 20

Field Use

Email Select to send email notifications to all users in the workgroup
associated with the specified role.

By default, notifications appear in the Notifications page of the Task
web client. However, you can specify that notifications be sent by email
by selecting the Email check box.

When you assign users to a workgroup in the OSM Administration
area of the Order Management web client, you can set up OSM to
notify users by email. When a notification occurs, the system sends a
notification ID number through email.

See OSM Order Management Web Client User's Guide for information
about configuring email notification properties for user roles.

State Appears for task entities only. Select the state to which the task must
be in before OSM evaluates the rule associated with the event.

The three mandatory states (accepted, completed, received) and all
custom states that you defined on the Task editor States/Statuses tab
appear as values.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Properties Events Notify Roles Tab
Use the Properties Events Notify Roles tab to select the roles to be notified when the event
occurs.

Select a predefined notification from the list in the left column to activate a list of available
roles. See "Working with Roles" for information about defining roles. Using the directional
arrow buttons, move the roles (those groups to whom you want the notification sent) into the
Selected Column.

If the notification message will be consumed by an automation plug-in, ensure that you include
the role whose credentials are used when running the automation plug-in. See "Working with
Automated Tasks" for more information.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Properties Events Automation Tab
Use the Properties Events Automation tab to configure an automation plug-in that performs
the work or sends data to an external system when the notification is triggered.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 20

Field Use

Add Click to open the Add Automation dialog box opens.

Name Enter a name for the automation entry.

Action Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Automation table.

Properties Select any entry in the table and click to define the automation
properties.

See "Configuring Automation Plug-In Properties" for information about
defining automation properties on the Properties tab.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Event Properties Notes Tab
Use the Event Properties Notes tab to denote the intended use of the event, or any additional
information that you want to append to the event configuration.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Creating Task Status-Based Event Notifications
Task status-based event notifications are triggered by rules that evaluate when a task moves to
a specific status or exception within a process. For example, you might define a failure status
that prompts an evaluation against a rule that, when evaluating to true, generates a notification
to your fallout specialist. See "Defining Order Fallout" for more information.

You can define task status-based event notifications using the Properties Events tab in the
Process editor. When you create a task status-based event notification, the notification applies
to a single task flow or exception path.

To create a task status-based event notification:

1. From the Process editor, select the flow or exception path to which the event applies.

The Properties tab for the selected transition opens.

2. Click the Events tab.

3. Click Add.

The Event wizard is displayed.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 20

4. In the Name field, enter a name for the task status-based event.

Ensure that the name is unique among the notification entity types. Two notifications
cannot share the same name.

5. In the Rule field, select the rule that must evaluate to true before OSM can trigger this
event notification.

The null_rule is the default value for this field. If you do not change the default value, the
OSM server will always trigger this notification when the task transitions to the specified
status or exception path. See "Defining Order Rules" for more information about setting up
new rules.

6. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

7. Select Enabled.

Deselect this option if you intend to implement the task status-based event notification at a
later time.

8. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client. However,
you can specify that notifications be sent to a user's email account by selecting the Email
check box. You associate users with email accounts in the Administration area of the Order
Management web client. See OSM Order Management Web Client User's Guide for
information about configuring email notification properties for user roles.

9. Click Next.

10. Select the roles to be notified when the event is triggered.

See "Working with Roles" for more information.

11. Click Finish.

The event notification is added to the event table.

12. Select the event.

When you select the event, Design Studio activates the Event subtabs. You can add any
undefined elements at any time by using these subtabs. See the following topics for
defining the values in the Events subtabs:

• Properties Events Detail Tab

• Properties Events Notify Roles Tab

• Properties Events Automation Tab

• Event Properties Notes Tab

Related Topics

Working with Processes

Working with Event Notifications

Creating Order Data Changed Notifications
Order data changed notifications are triggered by changes to the order data. You can configure
order data changed notifications to update external systems (such as CRM) with status
updates when a specific data node in the order data is updated with a new value.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 20

Note

This feature is not available when using releases prior to OSM 7.0.

You can create order data changed notifications at the order level from the Order editor
Notifications tab.

To create order data changed notifications:

1. In the Order editor, click the Notifications tab.

2. Under the Event Notifications column, click Add.

The Event wizard is displayed, where you can select conditions for the notification and the
roles to be notified. You can define this information in the wizard, or later by using the
Notifications subtabs.

3. In the Name field, enter a name for the notification.

Ensure that the name is unique among the notification entity types. Two notifications
cannot share the same name.

4. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

5. Select Enabled.

Deselect this option if you intend to implement the notification at a later time.

6. Specify whether to send the notification to specific email accounts.

You can specify that notifications be sent to a user's email account by selecting the Email
check box. You associate users with email accounts in the Administration area of the OSM
Order Management web client application. See OSM Order Management Web Client
User's Guide for information about configuring email notification properties for user roles.

Note

Order data changed notifications are intended to update external systems with
status updates when a specific data node in the order data is updated with a new
value. The OSM server does not send order data changed event notifications to
Task web client Notifications pages. When notifying users, the server sends these
notifications to email addresses only.

7. Click Next.

8. Select the roles to be notified when the notification is triggered.

See "Working with Roles" for more information.

9. Click Finish.

The notification is added to the order.

You can edit or add any notification attributes at any time by navigating to the Notifications
subtabs.

10. In the Automation column, click Add.

Chapter 12
Working with Event Notifications

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 20

The Add Automation dialog box is displayed, which enables you to create the automation
plug-in.

11. Enter a name for the automation plug-in, select the appropriate Automation Type from the
available list, and click OK.

The newly created plug-in is displayed in the Automation column.

12. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab. Use the
subtabs to configure the plug-in. The tabs will vary depending on the type of plug-in
selected.

See "Configuring Automation Plug-In Properties" for more information.

13. For Order data change notifications, if the automation plug-in has an OSM user in the
automation plug-in Run As property field with more than one role, click Select from the
View field to choose a query task view to use for the automation plug-in. If only one default
query task exists in the Order editor Permissions tab, then Design Studio automatically
associates it with new automations.

14. Click the Data Changed subtab.

15. Click the Add.

The Order Template Node Selection dialog box is displayed.

16. Select a data node that, when updated with a new value, will trigger the notification.

17. Click OK.

The data node is added to the Nodes table.

18. Click Save.

Related Topics

Order Editor Notification Tab

Working with Orders

Working with Automated Tasks

Order Jeopardy Editor
Use the Order Jeopardy editor to model jeopardy conditions.

The following fields are common to all Order Jeopardy editor tabs:

Field Use

Description Edit the display name of the order jeopardy.

Namespace Select an existing namespace or enter a unique namespace in which to
include the order jeopardy. Design Studio uses the last saved
namespace as the default.

When working with the Order Jeopardy editor, see the following topics:

• Order Jeopardy Editor Details Tab

• Order Jeopardy Editor Policy Tab

• Order Jeopardy Editor Automation Tab

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 20

Order Jeopardy Editor Details Tab
Use the Order Jeopardy editor Details tab to define the conditions under which the jeopardy
will be evaluated. The following table describes the fields on the Order Jeopardy editor Details
tab.

Note

See "Order Jeopardy Editor" for information about fields that appear on all of the Order
Jeopardy editor tabs.

Field Use

Operational Select this option to indicate that the primary configuration for this
jeopardy is to be in a file in the system where OSM is running.

When you select this option, you should configure the jeopardy in the
normal manner. However, only the automation information for this
configuration (and the automation plug-in, if any) is deployed to OSM
with your cartridge. For the rest of the configuration, the next time the
cartridge is built, a sample configuration file corresponding to your
configuration of the jeopardy will be generated and placed in the
samples/orderJeopardy folder for your cartridge. You can see this
folder in the Package Explorer view. You can then copy or move the file
to the server where OSM is running. You use the
oracle.communications.ordermanagement.order.OperationalOverr
ideFileURLs parameter in the oms-config.xml file to indicate the
location of the file you have configured. For more information about
configuring operational jeopardy files on the OSM server, see OSM
System Administrator's Guide.

Target Order Click Select next to this field to select the order to which this order
jeopardy will apply.

View Click Select next to this field to select the task view the order jeopardy
will use to obtain data to be used in the configuration.

Rule Click Select next to this field to select a rule to use to limit when this
order jeopardy will be evaluated.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification
with the highest priority is evaluated first.

Enabled Select to enable this jeopardy notification, or deselect if you intend to
implement the notification at a later time.

Roles Select the roles that have permission to respond to this notification. Do
any of the following:

• Click Select to select an existing role.
• Select a role and click Remove to remove the role from the list for

this order jeopardy.
• Click Add to create a new role. See "Creating New Roles" for

more information.
• Select a role and click Open to open the role in the Role editor.

Related Topics

Creating Jeopardy Notifications in the Order Jeopardy Editor

Order Jeopardy Editor

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 20

Order Jeopardy Editor Policy Tab
Use the Order Jeopardy editor Policy tab to define the order states and duration for the timer.
The following table describes the fields on the Order Jeopardy editor Policy tab.

Note

See "Order Jeopardy Editor" for information about fields that appear on all of the Order
Jeopardy editor tabs.

When configuring order jeopardy policy timer duration, see also the following topics:

• Order Jeopardy Editor Policy Tab Duration Value Subtab

• Order Jeopardy Editor Policy Tab Offset Subtab

• Order Jeopardy Editor Policy Tab XQuery Expression Subtab

• Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab

• Order Jeopardy Editor Policy Tab Data Path Expression Subtab

Field Use

Start Condition Specify the order states that, when the order enters one of them,
should start the jeopardy timer.

This should be set if the value being returned in the Timer Duration
area is a duration, rather than a date/time. If this value is not set, OSM
will expect a date/time value to be returned from the configuration in
the Timer Duration area. Since the Specify a Duration Value and Use
the Order Expected Duration options always return a duration, this
value should always be set if either of those options is selected.

Do any of the following:

• Click Select to add one of the available order states to the list of
states.

• Select one of the states in the list and click Remove to remove the
state from the list of states.

• Select one of the states in the list and click Open to open the
Order State editor for that order state.

Pause Timer and Block
Jeopardy

Specify the order states that, when the order enters one of them,
should pause the jeopardy timer. This should not be set if Start
Condition does not have a value. If Start Condition has a value, this
field is optional.

Do any of the following:

• Click Select to add one of the available order states to the list of
states.

• Select one of the states in the list and click Remove to remove the
state from the list of states.

• Select one of the states in the list and click Open to open the
Order State editor for that order state.

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 20

Field Use

Stop Condition Specify the order states that, when the order enters one of them,
should stop the jeopardy timer. This value should always be set.

Do any of the following:

• Click Select to add one of the available order states to the list of
states.

• Select one of the states in the list and click Remove to remove the
state from the list of states.

• Select one of the states in the list and click Open to open the
Order State editor for that order state.

Timer Duration Sets the time after which a jeopardy will be raised. Do one of the
following:

• Select Specify a Duration Value to specify a specific duration
before a jeopardy notification is raised.

• Select Use the Order Expected Duration to use the expected
duration of the order to determine when a jeopardy notification is
raised.

• Select Specify an XQuery Expression to return a duration or
date/time to provide an XQuery expression to determine the
duration before a jeopardy notification is raised. The XQuery
expression can return either a duration or a date/time value.

• Select Specify a Data Path Expression to contain a duration or
date/time to provide the path to a data element on the order that
will contain the duration before a jeopardy notification is raised.
The data path expression can return either a duration or a date/
time value.

Related Topics

Creating Jeopardy Notifications in the Order Jeopardy Editor

Order Jeopardy Editor

Order Jeopardy Editor Policy Tab Duration Value Subtab
Use the Order Jeopardy editor Policy tab, Duration Value subtab to set the details of the
duration timer. This subtab is available if the Specify a Duration Value option is selected in
the Order Jeopardy editor Policy tab, Timer Duration area.

Field Use

Duration Amount Enter the number of duration units to wait before raising a jeopardy on
the order.

Duration Unit Select the appropriate units for the duration value from the list.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Offset Subtab
Use the Order Jeopardy editor Policy tab, Offset subtab to set the details of an offset to the
calculated duration. This subtab is available for all timer duration options.

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 20

Field Use

Apply an offset or use a
percentage of the duration

Select this option to provide an offset using the other fields in this
subtab.

Percentage Select this option to configure the offset in terms of the percentage of
the duration. For example, you could raise a jeopardy when 90% of the
order's expected duration has passed.

Add Select this option to add a fixed amount of time to the duration.

Subtract Select this option to subtract a fixed amount of time from the duration.

Offset/Percentage Amount If you have selected Percentage, enter a number between 1 and 100
to indicate the percentage of the total duration that should elapse
before the jeopardy is raised.

If you have selected Add or Subtract, enter the number of offset units
to add or subtract from the duration.

Offset Unit Set the units for the offset amount. This field is not available when the
Percentage option is selected.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab XQuery Expression Subtab
Use the Order Jeopardy editor Policy tab, XQuery Expression subtab to use an XQuery
expression to determine the duration. This subtab is available if the Specify an XQuery
Expression to evaluate the duration option is selected in the Order Jeopardy editor Policy
tab, Timer Duration area.

Field Use

Expression Enter the XQuery expression to use to determine the duration.

Data Changed area Select Once when the timer starts to evaluate the expression once
only.

Select When any of the following nodes change to evaluate the
expression when the timer starts and also when any of the specified
order nodes change. When this option is selected, you should also
provide a list of data nodes by doing any of the following:

• Click Select to select the data node from a list of available nodes.
• Select a node in the list and click Remove to remove the data

node from the list.
• Select a node in the list and click Open to open the Order

Template tab of the Order editor with the data node selected.
If no data nodes are provided and When any of the following nodes
change option is selected, the expression is only evaluated when the
timer starts.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab
Use the Order Jeopardy editor Policy tab, Unit Type and Default Value subtab to set the unit
type of the duration and a default value if the value is not found. This subtab is available if the

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 20

Specify an Xquery Expression to evaluate the duration option or the Specify a Data Path
Expression to evaluate the duration option is selected in the Order Jeopardy editor Policy
tab, Timer Duration area.

Field Use

Expression Units Select the units of measure used in the returned duration value.

Default Enter the default value to be used if the XQuery expression or data
path do not return a valid value. The value in this field is expressed in
the units selected in the Expression Units field.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Data Path Expression Subtab
Use the Order Jeopardy editor Policy tab, Data Path Expression subtab to set the details of
the duration jeopardy timer. This subtab is available if the Specify a Data Path Expression to
evaluate the duration option is selected in the Order Jeopardy editor Policy tab, Timer
Duration area.

Field Use

Data Path Select the data node that contains the duration. Do any of the
following:

• Click Select to select the data node from a list of available nodes.
• Click Remove to remove the data node from the field.
• Click Open to open the Order Template tab of the Order editor

with the data node selected.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Automation Tab
Use the Order Jeopardy editor Automation tab to configure an automation that is triggered by
the jeopardy. The following table describes the fields on the Order Jeopardy editor Automation
tab.

Note

See "Order Jeopardy Editor" for information about fields that appear on all of the Order
Jeopardy editor tabs.

When configuring order jeopardy automations, see also the following topics:

• Order Jeopardy Editor Automation Tab Details Subtab

• Order Jeopardy Editor Automation Tab Script Subtab

• Order Jeopardy Editor Automation Tab Routing Subtab

• Order Jeopardy Editor Automation Tab Notes Subtab

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 20

Field Use

Trigger Automation when
Jeopardy is Raised

Select this option to cause an automation plug-in to be called when the
order jeopardy is raised.

Automation Type Select the automation plug-in type from the available list.

See "Working with Automation Plug-Ins" for more information about the
different automation types.

Custom Automation Plugin If you selected Custom Automation in the Automation Type field, enter
the name of the custom plug-in.

Related Topics

Order Jeopardy Editor

Working with Automation Plug-Ins

Order Jeopardy Editor Automation Tab Details Subtab
Use the Order Jeopardy editor Automation tab, Details subtab to provide information about
the automation to trigger if the order jeopardy is raised.

Field Use

Name Enter a plug-in name. The name must be unique among plug-in entities
in the same namespace.

Note: While plug-in names can be any arbitrary name that you assign
to the automation, Oracle recommends that you use a consistent
naming pattern for all of the automations that you create.

Run As Enter the OSM user name (security principal) whose credentials are
used to process this automation plug-in. A password is not necessary
to authenticate this user because only an administrator has the
authority to deploy components into the server.

The value of this field must reflect the user ID that is used to run the
automation:

• The user ID must be set up in the WebLogic Server Administration
console. See the discussion of setting up security in OSM System
Administrator's Guide for more information.

• The user ID must be defined in the OSM Administration area of the
Order Management web client (a workgroup in OSM
Administration is a role in Design Studio). See "Working with
Roles" for more information.

• The user ID must be assigned to the workgroup in the OSM
Administration area of the Order Management web client that
corresponds to the role defined on the Permissions tab of the
Design Studio task, order, or process that defines the automation.

Note: Oracle recommends using the DEFAULT_AUTOMATION_USER
cartridge model variable in the Run As field. See "Defining Model
Variables" for more information.

Related Topics

Order Jeopardy Editor Automation Tab

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 20

Order Jeopardy Editor Automation Tab Script Subtab
Use the Order Jeopardy editor Automation tab, Script subtab, to provide information about an
XQuery script to make available to the automation.

Field Use

Script Specify which method to use to retrieve the XQuery file. Select from
the following options:

• Absolute path: Select this option and enter the physical location
of the file. At run time, OSM retrieves the file from the server.

• URL: Specify a URL to access the file.
• Bundle in: Select this option, then click the XQuery field Select

button to identify the file from the resources directory. Design
Studio will bundle this file with the PAR file during the build.

Note: Oracle recommends that you select Bundle in for production
mode, as this mode pulls the files into the OSM PAR file. As a result,
you can deploy the EAR file (which contains the PAR file) to any server
and, at run time, the application can locate the files. If you select
Absolute Path or URL for production mode, you can deploy the EAR
file (which contains the PAR file) to any server but are responsible for
ensuring the files reside in specified location on the server.

Conversely, Absolute Path or URL are optimal for testing mode
because they do not require a rebuild and redeploy to pick up changes
to the XQuery.

For information about the XQuery file referenced here, see "Order
Jeopardy Automation XQuery Plug-ins".

Maximum Number of
Stylesheets in Cache

Specify the maximum number of XQuery style sheets that can be
maintained in the cache at any one time.

Cache Timeout in Seconds Enter the number of seconds before the OSM server refreshes the
cache.

Transformer Factory If you have developed a custom TransformerFactory for XSLT
transformation, specify the location. Design Studio provides a default
TransformerFactory.

Update Order Select this option if you want to update (add, change, or delete) the
OSM order data with the data retrieved from an external system. This
field appears for Automator automation plug-ins only.

Related Topics

Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Automation Tab Routing Subtab
Use the Order Jeopardy editor Automation tab, Routing subtab, to specify where to send
XML messages and where external systems can deliver responses.

In the To area, you can specify where to send the request message. In the Reply To area, you
can specify where the external system can deliver the response or exception message.

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 20

Field Use

JNDI Name Enter the name of the queue to which the automation plug-in sends
messages (on the To tab) or to which external systems send response
(on the Reply To tab). JNDI Name is mandatory. Edit the system-
supplied default value to reflect your own system topology. The JNDI
name must be unique in the workspace.

Destination Type Select the type of the message destination. A JMS destination is either
a javax.jms.Queue or a javax.jms.Topic. You might use a topic, for
example, if you want to publish messages for general availability to
multiple external systems (on the To tab) or subscribe to a queue with
multiple listeners (on the Reply To tab). You might use queues if you
want only a single external system to consume the message.

Initial Context Factory,
Connection Factory, and
URL

Enter this information to connect to an external application server.
Specify the URL and the InitialContextFactory class for the JNDI
provider, and specify the ConnectionFactory class for the JMS server.

Send Null Message Select this option if you want to send a JMS message to an external
system even if the message body is empty.

Related Topics

Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Automation Tab Notes Subtab
Use the Order Jeopardy editor Automation tab, Notes subtab, to provide information to other
Design Studio users about the automation.

Enter the information you wish to provide in the field on this subtab.

Related Topics

Order Jeopardy Editor Automation Tab

Chapter 12
Order Jeopardy Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 20

13
Packaging and Deploying OSM Cartridges

You package Oracle Communications Order and Service Management (OSM) cartridge
projects to control which entities, libraries, and resources to include in the cartridge PAR file.
After packaging cartridge projects, you can deploy them to OSM run-time environments.

When packaging and deploying cartridge projects, see the following topics:

• Packaging Order and Service Management Cartridges

• Defining Build-and-Deploy Modes for Automation Plug-ins

• Deploying Cartridge Projects

• Testing OSM Cartridge Models

• Managing Changes to Deployed Cartridges

Packaging Order and Service Management Cartridges
Before you can deploy to the OSM run-time environment, you must determine which entities,
libraries, and resources to include in the cartridge. Design Studio enables you to model
multiple order types within a single project and deploy those order types to an OSM run-time
environment within the context of a single project. For example, if you have defined a project
with data to support the DSL services Add, Delete, and Modify for orders that come from 2
different sources (Siebel and Portal, for example), you can deploy the entire configuration to a
run-time environment in one deployment cycle.

When packaging OSM cartridge projects, see the following topics:

• Multiple Order Data Inconsistencies

• Building and Packaging Projects

Multiple Order Data Inconsistencies
When you combine multiple orders into a single project and deploy the cartridge to an OSM
run-time environment, the OSM server combines the order data from each order into single
master order template. Consequently, when packaging cartridges that contain multiple order
types, the system automatically detects order data inconsistencies across order types and
creates problem markers to identify the conflict. You must resolve all problem marker errors
before you can deploy the cartridge.

For example, consider that two orders packaged in the same project both contain the ID data
element. In Order 1, the ID data element is defined as a string (intended to be populated by a
customer name and set of digits). In Order 2, the ID data element is defined as an integer
(intended to be populated by a unique set of digits). In the run time environment, the OSM
server has no ability to discern whether to treat the ID data element as a string data type or as
an int data type. In this example, Design Studio would create a problem marker which you
must resolve before deploying the cartridge.

Additionally, it is possible to introduce data inconsistencies when you have included the same
data element in multiple orders, each defined with conflicting behaviors. For example, it is
possible to model in Order 1 a Read Only behavior for the ID data element that evaluates to

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

true when the field value equals 10001, while in Order 2, model a Read Only behavior for the
ID data element that evaluates to true when the field value does not equal 10001. Because the
OSM server is not able to resolve these types of conflicts, Design Studio detects them and
forces you to resolve them prior to deployment.

Related Topics

Packaging and Deploying OSM Cartridges

Defining Build-and-Deploy Modes for Automation Plug-ins

Note

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x releases.
Design Studio uses only the Legacy build-and-deploy mode for releases before OSM
7.0.3, and uses only the Optimized build-and-deploy mode starting in OSM 7.3.

When you deploy cartridges with automation plug-ins to your OSM run-time environment
(automation plug-ins for automation tasks as well as for activation tasks), you can define a
configuration to have Design Studio build and deploy automation plug-ins in a particular way.
Prior to OSM 7.0.3, when you built and deployed a cartridge that included automation plug-ins,
OSM ran each automation plug-in in that cartridge in its own separate EAR file; this method of
building and deploying automation plug-ins is now referred to as the Legacy build-and-deploy
mode. Legacy mode simply refers to the manner in which automation plug-ins were deployed
and processed prior to OSM 7.0.3. As of release OSM 7.0.3, you can build and deploy a
cartridge in Design Studio using the Optimized build-and-deploy mode, the default mode; this
mode improves the performance of processing of automated or activation tasks and improves
the performance of build and deployment of cartridges with such tasks.

Note

The Legacy build-and-deploy mode is deprecated, but it is supported for backward
compatibility in OSM server versions before OSM 7.3.

Note

XML Catalog support is required to be enabled for all cartridges as of release OSM
7.0.3.

Related Topics

About Build-and-Deploy Modes for Automation Plug-ins

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

About Build-and-Deploy Modes for Automation Plug-ins

Note

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x releases.
Design Studio uses only the Legacy build-and-deploy mode for releases before OSM
7.0.3, and uses only the Optimized build-and-deploy mode starting in OSM 7.3.

Build-and-deploy modes for automation plug-ins affect how the plug-ins are processed at run
time. See "Defining Build-and-Deploy Modes for Automation Plug-ins" for introductory
information on build-and-deploy modes. A dispatch mode setting on the OSM server controls
the automation plug-in dispatch mode of the OSM system, which is directly related to the build-
and-deploy mode you configure in Design Studio. The build-and-deploy mode configured in
Design Studio controls building and deploying the automation components required for Legacy
mode or Optimized mode; it can also be configured to build and deploy the automation
components required for both modes.

• The Optimized mode enables the automation plug-ins to be deployed and processed more
efficiently (automation plug-ins can run in a common EAR file).

• The Legacy mode deploys and processes the automation plug-in in a manner consistent
with previous OSM releases (each automation plug-in runs in its own EAR file).

• The mode entitled Both (Allow server preference to decide) indicates the automation
plug-in can run in either Optimized or Legacy mode (Design Studio builds the cartridge
with the automation components required for either mode).

If you build and deploy the automation components required for both modes, OSM processes
the automation plug-in at run time in the mode specified by the dispatch mode setting on the
OSM server. See the discussion on automation plug-in dispatch modes in OSM Developer's
Guide for information on how to define the dispatch mode setting on the OSM server.

The following table summarizes the effective mode OSM uses at run time based on how the
automation plug-in build-and-deploy mode and the server dispatch mode are set as of OSM
7.0.3:

Automation Plug-in Build-and-
Deploy Mode (set in Design Studio)

OSM Server Dispatch Mode Effective Mode Used at Run
Time

Optimized Legacy Optimized

Optimized Internal Optimized

Legacy Legacy Legacy

Legacy Internal Legacy

Both Legacy Legacy

Both Internal Optimized

You can set the automation plug-in build-and-deploy mode in two levels:

• Global preference: Set the mode for all cartridges in the same workspace by setting a
global preference. To specify a build-and-deploy mode for all cartridges in the same
workspace, see "Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges".

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

• Cartridge-level preference: Set the mode for individual cartridges by setting a cartridge
management variable. To specify a build-and-deploy mode for individual cartridges, see
"Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges".

Note

The cartridge-level preference overrides the global preference.

Design Studio uses the following build-and-deploy modes when a cartridge is deployed:

• If the Target Version field is to 7.3 or later, the Design Studio build-and-deploy mode is set
to Optimized and cannot be changed.

• If the Target Version field is set to an OSM release between OSM 7.0.3 and OSM 7.2.4;
for example, set to 7.0.3, Design Studio uses the build-and-deploy mode that you set for
the individual cartridge (the default mode is Optimized) or the mode you set as the global
preference.

• If the Target Version field is set to 7.0.1 or below, the Design Studio build-and-deploy
mode is set to Legacy and cannot be changed.

Note

Optimized mode is not available when using OSM server releases 7.0.2 or earlier.
Legacy mode is not available when using OSM server releases 7.3 or later.

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

Note

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x releases.
Design Studio uses only the Legacy build-and-deploy mode for releases before OSM
7.0.3, and uses only the Optimized build-and-deploy mode starting in OSM 7.3.

You can set the build-and-deploy mode of automation plug-ins for all cartridges in the same
workspace as a global preference.

To set the automation plug-in build-and-deploy mode for all cartridges:

1. From the Window menu, select Preferences, then select Oracle Design Studio, and
then select Order and Service Management Preferences.

2. In the Build and Deploy Mode field, do one of the following:

• To build and deploy cartridges so that automation plug-ins are run in a common EAR
file (deploys and processes automation plug-ins more efficiently), select Optimized.

• To build and deploy cartridges so that each automation plug-in is run in its own EAR
file (deploys and processes the automation plug-in in a manner consistent with
previous OSM releases), select Legacy.

• To build and deploy the automation components for both Optimized and Legacy
modes, select Both (Allow server preference to decide).

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

If you set this option, the automation plug-in can process at run time in either
Optimized mode or Legacy mode because the automation components required for
both are built and deployed. In this case, OSM uses the automation plug-in dispatch
mode defined on the OSM server at run time.

Design Studio builds and deploys all cartridges with the mode you specify as a global
preference.

Note

Cartridges for which you have a set a different build-and-deploy mode at the
cartridge level will build and deploy in that mode.

Note

Oracle recommends using Optimized mode because this mode improves the
performance of building and deploying cartridges that include automation plug-ins.

3. Click OK.

Design Studio saves your deployment preferences and closes the Preferences dialog box.

Related Topics

Defining Build-and-Deploy Modes for Automation Plug-ins

About Build-and-Deploy Modes for Automation Plug-ins

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

Defining Order and Service Management General Preferences

Setting Automation Plug-in Build-and-Deploy Modes for Individual
Cartridges

Note

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x releases.
Design Studio uses only the Legacy build-and-deploy mode for releases before OSM
7.0.3, and uses only the Optimized build-and-deploy mode starting in OSM 7.3.

If your OSM server is a version between OSM 7.0.3 and 7.2.4.x, you can set the build-and-
deploy mode of automation plug-ins for each cartridge in your workspace. Setting the build-
and-deploy mode for an individual cartridge overrides the build-and-deploy mode set as a
global preference; that is, OSM uses the mode you set at the cartridge level at run time. For
OSM 7.3 and later, all cartridges use optimized mode.

To set automation plug-in build-and-deploy mode preferences for a specific cartridge in your
workspace:

1. From the Studio menu, select Show Design Perspective.

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

2. In the Studio Projects view, double-click the Project entity for which you want to set the
build-and-deploy mode preference.

The project opens in the Project editor.

3. Click the Cartridge Management Variables tab.

4. Add the BUILD_DEPLOY_MODE variable.

5. In the Default Value column, do one of the following:

• To build and deploy this cartridge so that automation plug-ins are run in a common
EAR file (deploys and processes automation plug-ins more efficiently), enter
optimized.

• To build and deploy this cartridge so that each automation plug-in is run in its own EAR
file (deploys and processes the automation plug-in in a manner consistent with
previous OSM releases), enter legacy.

• To build and deploy the automation components for both Optimized and Legacy
modes, enter both.

If you set this option, OSM uses the automation plug-in dispatch mode defined on the
OSM server at run time.

6. Click Save.

Related Topics

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

Defining Build-and-Deploy Modes for Automation Plug-ins

About Build-and-Deploy Modes for Automation Plug-ins

Project Editor Cartridge Management Variables Tab

Testing OSM Cartridge Models
Design Studio enables you to make changes to OSM cartridges, deploy them to an
environment, and review the changes without leaving the Design Studio user interface. Using
the Submit Test feature, you can submit sample XML orders to run-time environments for the
purpose of reviewing the cartridge model behavior. Once you have deployed the full cartridge
to an environment, you can use the Optimize Deploy feature in conjunction with Submit Test to
model and test your cartridges efficiently.

When testing OSM cartridge models, see the following topics:

• About Submit Test

• Submitting Test Orders to Run-time Environments

About Submit Test
The Design Studio Submit Test feature enables you to submit a sample XML order to a run-
time environment for the purpose of testing your cartridge model. For example, if you were
creating recognition rules for an orchestration cartridge, you could submit sample orders to
ensure that the OSM server was properly recognizing the input messages for each recognition
rule and directing the order to the right cartridge. Additionally, you could target the sample
order to a specific version of a cartridge, test OSM behaviors, and so forth.

Chapter 13
Testing OSM Cartridge Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

When submitting sample orders to run-time environments, the root level of the sample order
XML document must be either the CreateOrder or the CreateOrderBySpec XML API request.
For example:

<?xml version="1.0" encoding="UTF-16"?>
<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<zeb:order xmlns:zeb="http://www.example.org/zebra" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <zeb:sampleLine>
 <zeb:lineName>newPhoneLine</zeb:lineName>
 <zeb:class>potsService</zeb:class>
 </zeb:sampleLine>
</zeb:order>
</ord:CreateOrder>

You save all sample XML orders in a project samples directory, accessible from the Package
Explorer view.

Submitting Test Orders to Run-time Environments
The Design Studio Submit Test feature enables you to submit a sample XML order to a run-
time environment for the purpose of testing your cartridge model.

To submit test orders to run-time environments:

1. From the Package Explorer view, copy a sample XML order into the project samples
directory.

2. Connect to an environment.

See "Testing Run-Time Environment Connectivity" for more information.

Note

When connecting to the environment, ensure that the account that you use to log-
in is set up properly in WebLogic. To submit tests from Design Studio, user
accounts must be assigned to the OMS_client and OMS_ws_api groups in
WebLogic.

3. If necessary, deploy the full cartridge to the run-time environment.

See "Deploying Cartridge Projects" for more information.

4. From the Studio menu, select Show Design Perspective.

5. In the Studio Projects view, right-click a cartridge and select Submit Test.

If you have successfully connected to an environment, and your project contains a valid
sample order in the project samples directory, Design Studio displays a list of
environments and files available to submit.

6. Select an environment and order combination.

The Console view is displayed, indicating the status of the submitted order. If the
connection is successful, the Console view displays the OSM server response, which
includes the order ID, version number, the cartridge name, and so forth. Design Studio
opens a browser window in the editor area that points to the log-in window for the
environment.

Chapter 13
Testing OSM Cartridge Models

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

Note

For the browser window in the editor area of Design Studio to work with OSM, you
must configure Eclipse to use a supported external browser. See "Defining Web
Browser Preferences" for more information.

Note

Starting with OSM 7.2, order IDs are allocated in blocks. For OSM running on a
standalone database, there is no visible impact. However, if OSM is running on an
Oracle RAC database, Order IDs are assigned from different blocks, one for each
Oracle RAC instance. This means that when orders are submitted, the Order IDs
may not be sequential.

7. Log into the environment.

The web client displays a list of orders submitted to the environment.

8. Locate the table row that contains your sample order.

For example, you might locate the row using the order ID displayed in the Console view.

9. Double-click the sample order to open the order and review the order data in the web client
tabs.

For example, if you were submitting a sample order for an orchestration cartridge, you
could review the information in the Summary tab, Data tab, Orchestration Plan tab, and so
forth.

For information about the fields in the Order Management web client, see OSM Order
Management Web Client User's Guide. For information about the fields in the Task web
client, see OSM Task Web Client User's Guide.

10. (Optional) Update the cartridge with additional changes, save the changes, and use the
optimize deploy feature to deploy only the cartridge metadata changes.

See "Deploying Cartridge Projects with Optimize Deploy" for more information.

11. (Optional) Connect to another environment to test the cartridge model in multiple
environments.

For each environment that you submit tests to, Design Studio opens a separate browser
window. See "Testing Run-Time Environment Connectivity" for more information.

12. (Optional) Clear the environment connection information if you want to submit a sample
order as a different user.

From the Studio Projects view, right-click a cartridge and select Submit Test, then select
an environment, then select Clear Environment Credentials to clear the environment
connection information.

Managing Changes to Deployed Cartridges
You cannot deploy modified versions of existing deployed cartridges with the same name and
version - Design Studio always increments the version number by default. However, if you
have small changes to make that do not include changes to the order template or data
dictionary, you can override the existing cartridge.

Chapter 13
Managing Changes to Deployed Cartridges

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

For larger changes to a cartridge, including introducing new tasks, changing data types, or
adding new orders, you should deploy a new version of the cartridge. Otherwise, you might
encounter errors such as missing or extra nodes when running orders.

If orders are originating in an upstream system, they won't automatically be routed to the new
cartridge. Upstream systems must be modified so that new orders specifically target the new
version of the cartridge.

OSM performance can be impacted if you have many versions of a cartridge deployed at the
same time. For example, you might experience slower Worklist response time. Factors which
contribute to possible performance issues when you have multiple cartridge versions include
the number of versions, the design complexity of your cartridges including the number of tasks
in your orders, the number of OSM users, your hardware and so on.

Managing Orders for Multiple Cartridge Versions
In-progress orders for an existing cartridge are not impacted by the deployment of a new
version of that cartridge, nor are they automatically migrated to the new version of the
cartridge. For new orders to be created by default against the new version of the cartridge, the
Default option (in the Project editor Properties tab) for the cartridge should be selected before it
is deployed. Orders can be targeted to previous versions of a cartridge by specifying the
version numbers in the order. See the discussion of the Project editor Properties Tab in the
OSM Modeling Processes Online help for more details.

It is possible to send a revision order from a newer version of a cartridge against an in-flight
order from an older version of the cartridge. The order will process only data that was
contained in the original cartridge metadata.

XMLIE provides scripts to migrate orders from one cartridge version to another. For details,
see the discussion on migrating orders in OSM System Administrator's Guide.

When an older cartridge version is no longer needed, consider removing it from OSM. You may
wish to back up completed orders associated with the cartridge before undeploying it because
the completed orders may be purged from the system.

To avoid purging orders from an old cartridge, you can create a different cartridge version for
modeling changes, then create and process new orders with the new cartridge namespace and
version. The old orders are processed with the old cartridge version. You can also disable the
creation tasks of the old cartridge to ensure that no new orders are created with the old
cartridge version.

Modifying Cartridges After Upgrading OSM Versions
If the OSM software is upgraded to a new version, all cartridges in use must be rebuilt using
the updated SDK and redeployed. See the discussion on Upgrading OSM in OSM Installation
Guide for details on upgrading cartridges when you upgrade to a new version of OSM.

Studio Environment Editor
Use the Studio Environment editor to define the run-time environment connection information,
to define the Secure Socket Layer (SSL) keystore file location, and to review and edit the
cartridge and model variables defined for the cartridge.

When defining run-time environment connection information, see the following topics:

• Studio Environment Editor Connection Tab

• Studio Environment Editor SSL Tab

Chapter 13
Studio Environment Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

• Studio Environment Editor Properties Tab

Studio Environment Editor Connection Tab
Use the Studio Environment editor Connection tab to define the connection parameter
necessary to connect to the run-time environment.

Field Use

Address Enter the WebLogic IP address (or the fully qualified domain name if
DNS is enabled) and port necessary to connect to the OSM run-time
environment.

During initial OSM installation, the OSM installer program connects to a
running Oracle WebLogic server to automatically deploy the
cartridge_management_ws.ear file, which contains the Cartridge
Management Web Service that enables you to connect to OSM from
Design Studio. In the Studio Environment editor Address field, Design
Studio displays a default destination URL for this Oracle WebLogic
server. However, you must edit the IP address/server name and port
number to match your own server address configuration:

http://IPAddressOrQualifiedDomanName:port/cartridge/
wsapi

where

IPAddressOrQualifiedDomanName is the IP address or server name
of the Oracle WebLogic server that you connected to during installation
and port is the Oracle WebLogic server port number configured to
receive web requests.

Note: If you are deploying to a clustered environment, specify the
proxy server for IPAddressOrQualifiedDomanName.

See OSM Installation Guide for more information about installing OSM
and connecting to Oracle WebLogic servers.

Related Topics

Testing Run-Time Environment Connectivity

Studio Environment Editor

Studio Environment Editor SSL Tab
Use the Studio Environment editor SSL tab to encrypt your cartridge data prior to deployment.

Note

Before you deploy cartridges from Design Studio using an SSL connection, you must
enable SSL in the WebLogic server to ensure that the Cartridge Management Web
Service accepts the SSL connection. See Design Studio System Administrator's Guide
for more information.

Field Use

Keystore Identify the location of your keystore file. The keystore is a file
(encrypted with a password) that contains private keys and trusted
certificates.

Chapter 13
Studio Environment Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

Studio Environment Editor Properties Tab
Use the Studio Environment editor Properties tab to review and edit the model and cartridge
default variables defined for all of the cartridges in the workspace.

Column Use

Name Displays the name of the variable. Design Studio displays all cartridge
model and cartridge management variables that are defined in the
workspace.

Environment Value Displays the default value defined for the variable. You can select this
value to change the default value to an environment-specific value.
Default values are represented by blue diamond-shaped icons.

Source Cartridge Displays the name of the cartridge from which Design Studio has
retrieved the variable and the default value. When a variable is used in
multiple cartridges, the name that appears in this column is the name
of the first cartridge in which Design Studio encounters the variable.

Note: When defining default values for variables, employ the same
default value for a variable across all cartridges in a workspace. If a
variable defined in multiple cartridges does not share the same
variable value, a warning appears in the Problems view.

Related Topics

Project Editor Model Variables Tab

Studio Environment Editor

Studio Environment Editor Order and Service Management Test Submission
URL Area

Use the Studio Environment Editor Order and Service Management Test Submission URL
Area in the Connection Information tab on the Studio Environment Editor to specify URLs to
submit test orders and to connect to the OSM Order Management web client.

Field Use

Order Submission URL Use this to specify the URL for order submission if different from the
default URL specified in Address in the Connection area.

Source Cartridge Use this to specify the URL to log in to the Order Management web
client if different from the default Cluster/Server URL specified in the
Connection area.

Related Topics

Testing Run-Time Environment Connectivity

Studio Environment Editor

Studio Environment Editor Connection Tab

Chapter 13
Studio Environment Editor

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

A
Automation and Compensation Examples

You need to create automation plug-ins to use the Oracle Communications Order and Service
Management (OSM) automation task and automated notification functionality. For information
about the code required for the automation plug-ins, refer to the following topics:

• Predefined Automation Plug-ins

• Custom Java Automation Plug-ins

• Compensation XQuery Expressions

• Order Jeopardy Automation XQuery Plug-ins

Predefined Automation Plug-ins
The following topics provide automation plug-in examples for the predefined automation plug-in
implementations that support XQuery and XSLT automations:

• Message Example

• Automation Plug-in XQuery Examples

• Automation Plug-in XSLT Examples

• Automation Plug-in Examples for Events, Jeopardies, and Notifications

Message Example
The predefined automation plug-in examples presuppose the following sample order:

<?xml version="1.0" encoding="UTF-8"?>
<ws:CreateOrder xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
 <ProcessSalesOrderFulfillmentEBM xmlns="http://xmlns.oracle.com/EnterpriseObjects/
Core/EBO/SalesOrder/V2" xmlns:sord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions">
 <corecom:EBMHeader xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2">
 <corecom:EBMID>2d323736303332343736363930353735</corecom:EBMID>
 <corecom:EBMName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} ProcessSalesOrderFulfillmentEBM</corecom:EBMName>
 <corecom:EBOName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} SalesOrderEBO</corecom:EBOName>
 <corecom:CreationDateTime>2009-03-09T18:46:36-07:00</corecom:CreationDateTime>
 <corecom:VerbCode>process</corecom:VerbCode>
 <corecom:MessageProcessingInstruction>
 <corecom:EnvironmentCode>PRODUCTION</corecom:EnvironmentCode>
 </corecom:MessageProcessingInstruction>
 <corecom:Sender>
 <!-- Information about the sender - for example, a Siebel CRM -->
 </corecom:Sender>
 <corecom:BusinessScope></corecom:BusinessScope>
 <corecom:EBMTracking></corecom:EBMTracking>
 </corecom:EBMHeader>

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-1 of A-46

 <DataArea>
 <corecom:Process xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2"/>
 <ProcessSalesOrderFulfillment>
 <corecom:Identification xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON">34333939373132333239373135353138</corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">ScenarioA2</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">88-2SGSG</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:Revision>
 <corecom:Number>1</corecom:Number>
 </corecom:Revision>
 </corecom:Identification>
 <OrderDateTime>2009-03-09T18:40:21Z</OrderDateTime>
 <RequestedDeliveryDateTime>2009-03-10T00:00:00Z</RequestedDeliveryDateTime>
 <TypeCode>SALES ORDER</TypeCode>
 <FulfillmentPriorityCode>9</FulfillmentPriorityCode>
 <FulfillmentSuccessCode>DEFAULT</FulfillmentSuccessCode>
 <FulfillmentModeCode>DELIVER</FulfillmentModeCode>
 <SalesChannelCode/>
 <ProcessingNumber/>
 <ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2">
 <corecom:Code>OPEN</corecom:Code>
 <corecom:Description/>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID" schemeAgencyID="SEBL_01">0-
R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 <corecom:CustomerPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="COMMON">2d353537333130353233303536343833</corecom:BusinessComponentID>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountName>Adam,10000</
corecom:CustomerPartyAccountName>
 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>
 <corecom:CustomerPartyAccountContactAddressCommunication>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-2 of A-46

 <corecom:AddressCommunication>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:AddressCommunication>
 </corecom:CustomerPartyAccountContactAddressCommunication>
 <corecom:CustomerPartyAccountTypeCode>RESIDENTIAL </
corecom:CustomerPartyAccountTypeCode>
 </corecom:CustomerPartyReference>
 <corecom:PriceListReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:PriceListIdentification>
 <corecom:ID>88-2D1YC</corecom:ID>
 </corecom:PriceListIdentification>
 </corecom:PriceListReference>
 <corecom:ShipToPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:LocationReference>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:LocationReference>
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="COMMON"/>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>
 </corecom:ShipToPartyReference>
 <corecom:ParentSalesOrderReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:SalesOrderIdentification>
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON"/>
 </corecom:SalesOrderIdentification>
 </corecom:ParentSalesOrderReference>
 <corecom:ProjectReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:ProjectIdentfication>
 <corecom:ID schemeID="PROJECT_ID" schemeAgencyID="SEBL_01"/>
 </corecom:ProjectIdentfication>
 </corecom:ProjectReference>
 <corecom:SalespersonPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:PartyIdentification>
 <corecom:ID schemeID="SALESPERSON_PARTYID"
schemeAgencyID="SEBL_01">0-1</corecom:ID>
 </corecom:PartyIdentification>
 </corecom:SalespersonPartyReference>
 <!-- Enter order line items here -->
 </ProcessSalesOrderFulfillment>
 </DataArea>
 </ProcessSalesOrderFulfillmentEBM>
</ws:CreateOrder>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-3 of A-46

Automation Plug-in XQuery Examples
The following topics provide XQuery automation plug-in examples for automation tasks:

• Internal XQuery Sender

• External XQuery Automator

• External XQuery Sender

• Internal XQuery Automator

Internal XQuery Sender
The Automated Task editor internal XQuery automator receives task data from OSM and sends
data to an external system. You can send a message to an external system using whatever
protocol that system requires, such as Telnet, HTTP, CORBA, SOAP, or web services.

The XQuery has the following characteristics:

• XQuery context in prolog: The input document for any automated task automation plug-in
is the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

• Prolog: You must declare ScriptSenderContextInvocation in any internal XQuery automator
which extends ScriptReceiverContextInvocation. Always declare this class along with
the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvo
cation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

You must use the TextMessage class for sending JMS based messages. Always declare
this class along with the $outboundMessage Java binding. You can use JMS text based
messages to send OSM Web Service messages to other OSM systems, such as a service
order from an OSM COM system to an OSM SOM system.

declare namespace outboundMessage = "java:javax.jms.TextMessage";
...
declare variable $outboundMessage external;

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-4 of A-46

Note

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a helper
function implementation that supports the protocol.

• Body: The body for an internal XQuery sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message properties for
web services:

outboundMessage:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"'),

– Use outboundMessage to set up the OSM Web Service URI JMS message property:

outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),

– You can optionally use outboundMessage with the XML API to populate a JMS
property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

outboundMessage:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID),

– You can optionally use outboundMessage to set the JMS Correlation ID for the
automation task before sending the message. This allows OSM to route a return
message with the same corresponding JMS property value to an external XQuery
automator on the same automation task as the original sender automation plug-in. For
example, the following code sets the JMS correlation ID using the original OSM COM
order:

outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM')),

If this code were applied to "Message Example," the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Note

Other correlation scenarios are possible. For example, you may send a
message from an automation task without expecting any response to the
same automation task. In this scenario, another automation task further down
in the process may be dedicated to receiving the response message, in which
case an automation plug-in would be required that would set the correlation ID
expected from the return message for that automated task. See the chapter
about using automation in OSM Developer's Guide for more information about
asynchronous communication scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides access to
all order data passed into the task as a variable that is then used in other variables to
access different parts of the data:

let $order := /oms:GetOrder.Response
let $othervariable := $order/oms:_root/oms:orderid

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-5 of A-46

– Any XQuery logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message. For
example, there could be a choice of two or more messages that could be sent
depending on the order data values, or you might log a message.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected if the plug-in is intended to end
the task. Typically, an automated task would contain an internal XQuery sender plug-in
for sending a message and an external XQuery receiver plug-in for receiving a
message, but you can also create an automation that only sends an order with another
automation that receives the order. This can be useful if the response message takes
a long time to return. If you are expecting the system to respond that you sent the
message to, you must configure the internal XQuery sender with a reply to queue that
listens for a message acknowledgement, whether the response is returned to an
external automator on the same automation task or on another automation task.

The following example provides the code for an XQuery that sends a message from an OSM
system in the COM role to an OSM system in the SOM role using the OSM Web Service
interface and assumes JMS communication over T3S.

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvocati
on";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace to="http://TechnicalOrder";
declare namespace provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";
declare namespace env="http://schemas.xmlsoap.org/soap/envelope/";
declare namespace cord="http://oracle.communications.c2a.model/internal/order";
declare namespace ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $order := /oms:GetOrder.Response
let $technicalActions := $order/oms:_root/oms:TechnicalActions
let $ebm := $order/oms:_root/oms:messageXmlData
let $bi := $order/oms:_root/oms:CaptureInteractionResponse

return(
outboundMessage:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type', 'text/
xml; charset="utf-8"'),
outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),
outboundMessage:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID),
outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-COM')),
log:info($log,concat('Sending Service Order for COM order: ', $order/oms:OrderID)),
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-6 of A-46

 <wsse:Username>demo</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">passw0rd</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}
 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>
 <provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>
 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/cord:Order/

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-7 of A-46

cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/@id,'')} </
corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/text()} </
provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="SEBL_01"
schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/cord:LineOne/
text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/cord:CityName/
text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/cord:StateName/
text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</corecom:Name>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-8 of A-46

 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {
 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/@name,'')} </
corecom:Name>
 <corecom:DataTypeCode>Text</
corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 <corecom:PrimaryClassificationCode>{concat($x/
@name,'')} </corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>
 <provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$x/cord:primaryMapping/
text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$z/text()}</corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 </provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-9 of A-46

External XQuery Automator
The Automated Task editor external XQuery automator receives task data from an external
system and optionally updates OSM order data. The XQuery has the following characteristics:

• XQuery context in prolog: The input document for any automated task automation plug-in
is the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always declare this
class along with the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextIn
vocation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

Another necessary declaration includes the xmlapi namespace, that you can use with the
ScriptReceiverContextInvocation getOrderAsDom method to retrieve the order data for the
task as a variable. This task data variable can be used in an OrderDataUpdate to update
the order data with the data values received in the response message, if an update to the
order data is required. For example:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
let $taskData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response

• Body: The body for an external XQuery automator can contain the following elements:

– Any XQuery logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message, or you
might log a message.

– A setUpdateOrder method statement that indicates whether there is an order data
update. This method should be identical to what you selected in the Design Studio
automation plug-in Properties View XQuery Tab Update Order check box.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected, if the plug-in is intended to end
the task. Since there can be multiple plug-ins within a task, you would only need this
method in the last plug-in listed. For example, the Failed status might transition to a
fallout task, and the Succeed status may transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the information
returned in the response. See "Using OrderDataUpdate Elements to Pass Order
Modification Data" for more information about structuring order update code.

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-10 of A-46

– Indexing: Order data in OSM often includes multiple data instances. For example, an
orchestration order must include the ControlData/OrderItem and ControlData/
Functions multi-instance nodes. Multi-instance nodes in solution cartridges are
possible for any data element where the maximum cardinality of the node is greater
than 1. When updating a multi-instance data node using automations use the node
index to reference the specific node instance you want to update. The node index is
available in the XML API GetOrder.Response. See OSM Developer's Guide for an
example of a GetOrder response message with indexing.

The following example triggers different order data updates based on the status message
returned from an external system. In this case, the external system is another OSM instance
running in the SOM role:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextInvoca
tion";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace su="http://StatusUpdate";
declare namespace so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

let $response := fn:root()/su:StatusUpdate (: fn:root(.) :)
let $items := fn:root()/su:StatusUpdate/su:OrderItem

let $taskData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response
let $component := if (fn:exists($taskData/oms:_root/oms:ControlData/oms:Functions/*/
oms:componentKey)) then $taskData/oms:_root/oms:ControlData/oms:Functions/
*[fn:position()=1] else ()

return (
if($response/su:status/text()='SOM_Completed') then (
 log:info($log,concat('Received SOM Status Update: SOM_Completed; ', $response/
su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"success"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else if($response/su:status/text()='SOM_Failed') then (

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-11 of A-46

 log:info($log,concat('Received SOM Status Update: SOM_Failed; ', $response/su:status/
text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"failure"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else (
 log:info($log,concat('Received SOM Status Update: SOM_InProgress or SOM_Canceled;
', $response/su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
)
)

External XQuery Sender
The Automated Task editor external XQuery sender receives task data from an external
system, then sends the data (after possibly transforming the data) to another external system
or even returns the data back to the original external system. This XQuery combines
characteristics of external XQuery automators and internal XQuery senders. See "External
XQuery Automator" and "Internal XQuery Sender " for more information.

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-12 of A-46

Note

You must declare ScriptSenderContextInvocation in any external XQuery sender
which inherits the ScriptReceiverContextInvocation class and methods used in internal
or external automators.

Internal XQuery Automator
The Automated Task editor internal XQuery automator receives task data from OSM, then
processes the data. For example, such an automation might perform computational actions on
the data or other similar logic. This XQuery combines characteristics of external XQuery
automators and internal XQuery senders. See "External XQuery Automator" and "Internal
XQuery Sender " for more information.

Note

You must declare ScriptReceiverContextInvocation class in an internal XQuery
automator.

Automation Plug-in XSLT Examples
The following topics provide XSLT automation plug-in examples for automation tasks:

• Internal XSLT Sender

• External XSLT Automator

• External XSLT Sender

• Internal XSLT Automator

Internal XSLT Sender
The Automated Task editor internal XSLT automator receives task data from OSM and sends
data to an external system. You can send a message to an external system using whatever
protocol that system requires, such as, Telnet, HTTP, CORBA, SOAP, or web services.

The XSLT has the following characteristics:

• XSLT context: The input document for any automated task automation plug-in is the order
data defined in the Automation Task editor Task Data tab. You can access this data by
declaring the TaskContext OSM Java class. Always declare this class along with the
context java variable. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Initial namespace declarations: You must declare ScriptSenderContextInvocation in any
internal XSLT automator which extends ScriptReceiverContextInvocation. Always declare
this class along with the automator java variable. For example:

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptS
enderContextInvocation"

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-13 of A-46

...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the log java variable.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

You must use the TextMessage class for sending JMS based messages. Always declare
this class along with the outboundMessage Java variable. You can use JMS text based
messages to send OSM Web Service messages to other OSM systems, such as a service
order from an OSM COM system to an OSM SOM system.

xmlns:outboundMessage="java:javax.jms.TextMessage"
...
<xsl:param name="outboundMessage"/>

Note

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a helper
function implementation that supports the protocol.

• Body: The body for an internal XSLT sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message properties for
web services:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"')"/>

– Use outboundMessage to set up the OSM Web Service URI JMS message property:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>

– You can optionally use outboundMessage with the XML API to populate a JMS
property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>

– You can optionally use outboundMessage to set the JMS Correlation ID for the
automation task before sending the message. This allows OSM to route a return
message with the same corresponding JMS property value to an external XQuery
automator on the same automation task as the original sender automation plug-in. For
example, the following code sets the JMS correlation ID using the original OSM COM
order:

<xsl:variable name="void" select="java:setJMSCorrelationID($outboundMessage,
concat($order/oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/
text(),'-COM'))"/>

If this code were applied to "Message Example", the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-14 of A-46

Note

Other correlation scenarios are possible. For example, you may send a
message from automation task without expecting any response to the same
automation task. In this scenario, another automation task further down in the
process may be dedicated to receiving the response message, in which case
an automation plug-in would be required that would set the correlation ID
expected from the return message for that automated task. See the chapter
about using automation in OSM Developer's Guide for more information about
asynchronous communication scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides access to
all order data passed into the task as a variable that is then used in other variables to
access different parts of the data:

 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="othervariable" select="$order/oms:_root/
oms:orderid"/>

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message. For
example, there could be a choice of two or more messages that could be sent
depending on the order data values, or you might log a message.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected if the plug-in is intended to end
the task. Typically, an automated task would contain an internal XSLT sender plug-in
for sending a message and an external XSLT receiver plug-in for receiving a message,
but you can also create an automation that only sends an order with another
automation that receives the order. This can be useful if the response message takes
a long time to return. If you are expecting the system to respond that you sent the
message to, you must configure the internal XSLT sender with a reply to queue that
listens for a message acknowledgement, whether the response is returned to an
external automator on the same automation task or on another automation task.

The following example provides the code for an XSLT that sends a message from an OSM
system in the COM role to an OSM system in the SOM role using the OSM Web Service
interface and assumes JMS communication over T3S.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/OrderDataUpdate"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptSende
rContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:outboundMessage="java:javax.jms.TextMessage"
 xmlns:to="http://TechnicalOrder"
 xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-15 of A-46

 exclude-result-prefixes="xsl java xalan oms com ser soapenv xsi"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>
 <xsl:param name="outboundMessage"/>

 <!-- * -->

 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>
 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="technicalActions" select="$order/oms:_root/
oms:TechnicalActions"/>
 <xsl:variable name="ebm" select="$order/oms:_root/oms:messageXmlData"/>
 <xsl:variable name="bi" select="$order/oms:_root/
oms:CaptureInteractionResponse"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type', 'text/xml;
charset="utf-8"')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>
 <xsl:variable name="void" select="java:setJMSCorrelationID($outboundMessage,
concat($order/oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM'))"/>
 <xsl:variable name="log" select=java:info($log,concat('Sending Service Order for
COM order: ', $order/oms:OrderID))"/>
 <xsl:call-template name="sendSomOrder"/>
 </xsl:template>
 <!-- ==================================
 Create the SOAP message for the sendSomOrder call
 ==================================== -->
 <xsl:template name="sendSomOrder">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">
 <wsse:Username>demo</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">passw0rd</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-16 of A-46

oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}
 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>
 <provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>
 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/cord:Order/
cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/@id,'')} </
corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-17 of A-46

 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/text()} </
provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="SEBL_01"
schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/cord:LineOne/
text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/cord:CityName/
text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/cord:StateName/
text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</corecom:Name>
 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-18 of A-46

 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/@name,'')} </
corecom:Name>
 <corecom:DataTypeCode>Text</
corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 <corecom:PrimaryClassificationCode>{concat($x/
@name,'')} </corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>
 <provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$x/cord:primaryMapping/
text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$z/text()}</corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 </provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>
</xsl:template>
 <!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Automator
The Automated Task editor external XSLT automator receives task data from an external
system and optionally updates OSM order data. The XSLT has the following characteristics:

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-19 of A-46

• XSLT context in prolog: The input document for any automated task automation plug-in is
the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the context java binding. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always declare this
class along with the automator java binding. For example:

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptR
eceiverContextInvocation"
...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

Another necessary declaration includes the xmlapi namespace, that you can use with the
ScriptReceiverContextInvocation getOrderAsDom method to retrieve the order data for the
task as a variable. This task data variable can be used in an OrderDataUpdate to update
the order data with the data values received in the response message, if an update to the
order data is required. For example:

xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
<xsl:variable name="taskData" select="fn:root(java:getOrderAsDOM($automator))/
oms:GetOrder.Response"/>

• Body: The body for an external XSLT automator can contain the following elements:

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message, or you
might log a message.

– A setUpdateOrder method statement that indicates whether there is an order data
update. This method should be identical to what you selected in the Design Studio
automation plug-in Properties View XSLT Tab Update Order check box.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected, if the plug-in is intended to end
the task. Since there can be multiple plug-ins within a task, you would only need this
method in the last plug-in listed. For example, the Failed status might transition to a
fallout task, and the Succeed status may transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the information
returned in the response. See "Using OrderDataUpdate Elements to Pass Order
Modification Data" for more information about structuring order update code.

– Indexing: Order data in OSM often includes multiple data instances. For example, an
orchestration order must include the ControlData/OrderItem and ControlData/
Functions multi-instance nodes. Multi-instance nodes in solution cartridges are
possible for any data element where the maximum cardinality of the node is greater
than 1. When updating a multi-instance data node using automations use the node
index to reference the specific node instance you want to update. The node index is

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-20 of A-46

available in the XML API GetOrder.Response. See OSM Developer's Guide for an
example of a GetOrder response message with indexing.

The following example triggers different order data updates based on the status message
returned from an external system. In this case, the external system is another OSM instance
running in the SOM role:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/OrderDataUpdate"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptRecei
verContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:su="http://StatusUpdate"
 xmlns:so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 exclude-result-prefixes="xsl java xalan oms soapenv xsi">

 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>

 <!-- * -->
 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>

 <xsl:template match="/">
 <xsl:variable name="taskData" select="fn:root(java:getOrderAsDOM($automator))/
oms:GetOrder.Response"/>
 <xsl:variable name="response" select="fn:root()/su:StatusUpdate (: fn:root(.) :)"/>
 <xsl:variable name="items" select="fn:root()/su:StatusUpdate/su:OrderItem"/>
 <xsl:variable name="component" select="if (fn:exists($taskData/oms:_root/
oms:ControlData/oms:Functions/*/oms:componentKey)) then $taskData/oms:_root/
oms:ControlData/oms:Functions/*[fn:position()=1] else ()"/>
 <xsl:apply-templates/>
</xsl:template>

<!-- Match the status SOM_Complete -->
 <xsl:template match="$response[su:status/text()='SOM_Completed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_Completed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-21 of A-46

 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- Match the status SOM_Failed -->
 <xsl:template match="$response[su:status/text()='SOM_Failed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_Failed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 /OrderDataUpdate>
 </xsl:template>

 <xsl:template match="$response[su:status/text()='']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_InProgress or SOM_Canceled; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, false())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Sender
The Automated Task editor external XSLT sender receives task data from an external system,
then sends the data (after possibly transforming the data) to another external system or even

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-22 of A-46

returns the data back to the original external system. This XSLT combines characteristics of
external XSLT automators and internal XSLT senders. See "External XSLT Automator" and
"Internal XSLT Sender " for more information.

Note

You must declare ScriptSenderContextInvocation in any external XSLT sender which
inherits the ScriptReceiverContextInvocation class and methods used in internal or
external automators.

Internal XSLT Automator
The Automated Task editor internal XSLT automator receives task data from OSM, then
processes the data. For example, such an automation might perform computational actions on
the data or other similar logic. This XSLT combines characteristics of external XSLT
automators and internal XSLT senders. See "External XSLT Automator" and "Internal XSLT
Sender " for more information.

Note

You must declare ScriptReceiverContextInvocation class in an internal XSLT
automator.

Automation Plug-in Examples for Events, Jeopardies, and Notifications
The following topics provide XQuery automation plug-in examples for:

• Event Automators

• Jeopardy Automators

• Order Notification Automation Plug-ins

Event Automators
An event automation plug-in can be triggered when an order or a task transitions into a defined
milestone. The automation can be any internal XQuery, XSLT, or custom automation since the
milestone event, by definition, can only be triggered by milestones happening within an order
or a task. For more information about the characteristics for these automations, see
"Automation Plug-in XQuery Examples", "Automation Plug-in XSLT Examples", and "Custom
Java Automation Plug-ins."

Note

For an event automation plug-in you must declare the OrderNotificationContext
instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-23 of A-46

The following example is an internal sender automation plug-in that uses methods available to
the OrderNotificationContext class to get milestone data from the order and sends an
notification message to an external system. Because this sender does not expect a response
message (a fire-and-forget message), you must use the OrderNotificationContext class
ackNotificationOnExit method to clear the JMS correlation ID for the notification. Also, events
do not transition tasks, so you must not specify completeTaskOnExit in a notification.

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace context = "java:com.mslv.oms.automation.OrderNotificationContext";

declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $taskData := fn:root(.)/oms:GetOrder.Response
let $correlationId := $taskData/oms:_root/oms:Id/text()
let $controlDataArea := if (fn:exists($taskData/oms:_root/oms:ControlData))
 then $taskData/oms:_root/oms:ControlData
 else ()

return
(
log:info($log, fn:concat('COMCartridge: Invoking orderCompletionNotification for
order[',$taskData/oms:OrderID/text(),'] with correlation [', $correlationId,']')),
context:ackNotificationOnExit($context),
outboundMessage:setStringProperty($outboundMessage, "COMCorrelationID", $correlationId),
outboundMessage:setStringProperty($outboundMessage, "SUB_FOLDER_NAME", $taskData/
oms:_root/oms:OrderNumber/text()),
outboundMessage:setStringProperty($outboundMessage, "COMMilestone",
"COMOrderCompleteEvent"),
<orderNotification xmlns="http://xmlns.oracle.com/communications/sce/dictionary/
CommonResourcesCartridge/Notifications"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OSMOrderId>{$taskData/oms:OrderID/text()}</OSMOrderId>
 <Id>{$correlationId}</Id>
 <OrderNumber>{$taskData/oms:_root/oms:OrderNumber/text()}</OrderNumber>
 {
 for $serviceInstance in $controlDataArea/oms:OrderItem
 return
 <Instance>
 <InstanceID>{$serviceInstance/oms:instanceID/text()}</InstanceID>
 <OrderLineId>{$serviceInstance/oms:orderLineId/text()}</OrderLineId>
 <Status>{$serviceInstance/oms:status/text()}</Status>
 </Instance>
 }
</orderNotification>
)

Jeopardy Automators
An order jeopardy automation plug-in can be triggered when a particular condition is met, such
as when a task exceeds the expected duration configured for the task or when the process that
the task is a part of exceeds its excepted process duration. The automation can be any internal
XQuery, XSLT, or custom automation since the jeopardy, by definition, can only be triggered by
events happening within the task or the process. For more information about the

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-24 of A-46

characteristics for these automations, see "Automation Plug-in XQuery Examples",
"Automation Plug-in XSLT Examples", and "Custom Java Automation Plug-ins."

Note

For an order level jeopardy automation plug-in you must declare the
OrderNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

For a task level jeopardy automation plug-in, if the task level jeopardy condition
Multiple events per Task instance is set indicating that the task is a multi-instance
task and the event should be triggered for each instance, then you must declare
TaskNotificationContext so that the task data is passed to each instance of the
event. If the task is not a multi-instance task, then OrderNotificationContext should
be declared.

The following example is an internal automator plug-in that uses methods available to the
OrderNotificationContext class to get notification details from the task in combination with the
XML API Notification.Request that logs the jeopardy notification details. Other jeopardy
examples could also send an email or trigger a pager.

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextInvoca
tion";
declare namespace context = "java:com.mslv.oms.automation.OrderNotificationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare option saxon:output "method=xml";
declare option saxon:output "saxon:indent-spaces=2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

declare variable $exitStatus := "success";

let $thisOrderId := context:getOrderId($context)
(: let $taskMnemonic := context:getTaskMnemonic($context) :)
let $notificationName := context:getNotificationName($context)
let $notificationType := context:getNotificationType($context)
let $orderId := fn:root(.)/oms:GetOrder.Response/oms:_root/oms:orderId
let $xmlRequest := '<Notifications.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />'
let $notifications := context:processXMLRequest($context, $xmlRequest)
return (
 log:info($log, fn:concat("XQuery jeopardy: order[", $thisOrderId,
 "], notificationContext [", context:getClass($context),
 "], notificationName[", $notificationName,
 "], notificationType[", $notificationType,
 "], notifications[", $notifications,
 "] entered order ID [", $orderId/text(), "]")),
 <placeholder/>
)

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-25 of A-46

Order Notification Automation Plug-ins
An order notification automation plug-in can be triggered when specified data changes in the
order. For example, you can monitor order status changes using the orchestration data
element ControlData/OrderFulfillmentState or individual order item status changes using
ControlData/OrderItem/OrderItemFulfillmentState so OSM triggers an internal XQuery
sender automation plug-in that sends these status changes to another system, such as from a
SOM OSM system to a COM OSM system, or from a COM OSM system to a CRM.

The automation can be any internal XQuery, XSLT, or custom automation since the notification,
by definition, can only be triggered by a change in the internal order data. For more information
about the characteristics for these automations, see "Automation Plug-in XQuery Examples",
"Automation Plug-in XSLT Examples", and "Custom Java Automation Plug-ins."

Note

For an order notification automation plug-in you must declare the
OrderDataChangeNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";

The following example is an internal XQuery sender that sends any order and order item
fulfillment state changes to another OSM system. It also provides stubs for transforming the
fulfillment states to external system message formats.

declare namespace osm="urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace to="http://TechnicalOrder";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvocati
on";
declare namespace su="http://StatusUpdate";
declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";
declare namespace outboundMessage = "java:javax.jms.TextMessage";

declare variable $log external;
declare variable $outboundMessage external;

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream
:)
declare function local:getUpstreamFulfillmentState($fulfillmentState as xs:string) as
xs:string {
 (: fn:concat('Order_Upstream_' , $fulfillmentState) :)
 fn:concat('' , $fulfillmentState)
};

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream
:)
declare function local:getUpstreamOrderItemFulfillmentState($fulfillmentState as
xs:string) as xs:string {
 (: fn:concat('OrderItem_Upstream_' , $fulfillmentState) :)

Appendix A
Predefined Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-26 of A-46

 fn:concat('' , $fulfillmentState)
};

let $order := ..//osm:GetOrder.Response
let $orderFulfillmentState := $order/osm:_root/osm:ControlData/osm:OrderFulfillmentState
let $mappedUpstreamFulfillmentState := if(exists($orderFulfillmentState)) then
local:getUpstreamFulfillmentState($orderFulfillmentState/text()) else ()

return
(
log:info($log,'Sending Upstream Fulfillment State'),
outboundMessage:setStringProperty($outboundMessage, "SOMTOMCorrelationHeader",
concat($order/osm:_root/osm:messageXmlData/to:TechnicalOrder/to:SOMOrderId/text(),'-
SOM')),
if (fn:count($order/osm:_root/osm:ControlData/osm:OrderItem)=0) then (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>cancelled</status>
</StatusUpdate>
) else (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>{$mappedUpstreamFulfillmentState}</status>
{
 for $orderItem in $order/osm:_root/osm:ControlData/osm:OrderItem
 where exists($orderItem/osm:OrderItemFulfillmentState)
 return
 <OrderItem>
 <LineName>{$orderItem/osm:LineName/text()}</LineName>
 <LineId>{$orderItem/osm:LineId/text()}</LineId>
 <ParentLineId>{$orderItem/osm:ParentLineId/text()}</ParentLineId>
 <SpecificationName>{$orderItem/osm:TypeCode/text()}</SpecificationName>
 <Status>{local:getUpstreamOrderItemFulfillmentState($orderItem/
osm:OrderItemFulfillmentState/text())}</Status>
 </OrderItem>
 }
</StatusUpdate>
)
)

Custom Java Automation Plug-ins
This topic provides common usage examples for custom Java automation plug-ins.

• Internal Custom Java Automator

• Internal Custom Java Sender

• External Custom Java Automator that Changes the OSM Task Status

• External Custom Java Automator that Updates Order Data

• Using OrderDataUpdate Elements to Pass Order Modification Data

• Examples of Sending Messages to External Systems

• Examples of Handling Responses from External Systems

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-27 of A-46

Internal Custom Java Automator
A basic internal custom Java automator has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation framework to
call an internal custom Java automator, the plug-in must extend the AbstractAutomator
class. This class resides in the com.mslv.automation.plugin package. For example:

 public class MyPlugin extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator:

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Add any require business logic.

 this.performAutomation(taskname);

The following example shows the minimal amount of code required for a custom automation
plug-in to run. This example assumes that it is triggered by an automated task.

package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class MyPlugin extends AbstractAutomator {
 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 this.performAutomation(taskname);
 catch(RemoteException ex) {

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-28 of A-46

 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

Internal Custom Java Sender
A basic internal custom Java sender has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractSendAutomator. For the automation
framework to call an internal custom Java sender, the plug-in must extend the
AbstractSendAutomator class. This class resides in the com.mslv.automation.plugin
package. For example:

 public class MyPlugin extends AbstractSendAutomator {

• The required run method, as dictated by the parent class, AbstractSendAutomator

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Sets the text for the outbound message, which is sent to the external message queue
defined by the automation definition. The custom code does not establish a connection to
an external system or send the message; the automation framework handles the
connection and sends the message upon completion of the makeRequest method.

 outboundMessage.setText("Received task event for task = " + taskName);}

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-29 of A-46

Note

OSM provides outboundMessage in the OSM automation framework as a JMS
message with text content. If you require other message formats or protocols, do
not use outboundMessage. You must implement an internal custom java
automator or helper class with the required code.

The following example shows the minimal amount of code required for a custom automation
plug-in that sends data to run. This example assumes that it is triggered by an automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class MyPlugin extends AbstractSendAutomator {
 protected void makeRequest(String inputXML, AutomationContext context,
 TextMessage outboundMessage)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();

 // optional - You can use this code if you want to define your own correlation
ID rather than an autogenerated correlation ID.
 Correlator correlator = getCorrelator(context);
 correlator.add(createCustomCorrelationId(taskContext));

 outboundMessage.setText("Received task event for task = " + taskName);}
 catch(javax.jms.JMSException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException x) {
 throw new AutomationException(x); }
 }

 private String createCustomCorrelationId(TaskContext taskContext) {
 // Create a custom correlation ID using task name and unique order history ID
 // Actual correlation calculation depends on solution logic
 String corrId = taskContext.getTaskMnemonic()
 + "-"
 + String.valueOf(taskContext.getOrderHistoryId());
 return corrId;
 }

 }

External Custom Java Automator that Changes the OSM Task Status
A basic external custom Java automator that changes the OSM task status has the following
characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-30 of A-46

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation framework to
call an external custom Java sender, the plug-in must extend the AbstractAutomator class.
This class resides in the com.mslv.automation.plugin package. The name reflects that this
example is an external event receiver, receiving information from ASAP. For example:

 public class AsapResponseHandler extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator.

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Logs the information regarding the response that the plug-in is handling.
AtmFrameCatalogLogger is available to this example plug-in based on the package in
which the plug-in resides. You must replace this with your own solution logic.

 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

Note

The automation framework keeps track of the order ID and the order history ID of
the task that triggered the automation. There are two ways you can get the Order
History ID:

– By parsing the inputXML

– By calling the TaskContext.getOrderHistoryId method as shown in this
example.

In most cases, these return the same order history ID. However, if you use
automation to handle task events, the order history ID obtained from:

– Parsing the inputXML returns the order history ID as it was when the task was
generated

– Calling the TaskContext.getOrderHistoryID method returns the order history ID
as it is now (current)

• Update the task status by calling a method on the TaskContext object.

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-31 of A-46

 tctx.completeTaskOnExit("activation_successful"); }

The following example shows an external custom automator that updates the OSM task status.
This example assumes that the automation definition is an external event receiver that is
receiving a message from ASAP, and that it is triggered by an automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class AsapResponseHandler extends AbstractAutomator {
 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);
 tctx.completeTaskOnExit("activation_successful"); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

External Custom Java Automator that Updates Order Data
If an automated task sends data to an external system and the external system sends a
response back, you may need to update OSM with the data received from the external system.

The following example shows how to update data in OSM. The code is an example of updating
OSM with data received from Oracle Communications Unified Inventory Management (UIM)
when calling the server extension FRDemo.AssignFacilities.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;
 import java.util.*;
 import java.io.*;
 import java.net.*;
 import org.xml.sax.*;
 import org.w3c.dom.*;
 import javax.xml.parsers.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

 // Using the data returned from UIM, update the OSM order data
 String updateXml = generateOMSUpdateString(inputXML);
 tctx.updateOrderData(updateXml);

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-32 of A-46

 // Complete the OSM task with the correct status
 tctx.completeTaskOnExit("success"); }

 catch(OrderUpdateException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();
 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list = root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

 return omsUpdate.toString();

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-33 of A-46

 }
 }

The following code snippets from this example show:

• How to display where OSM data is updated, using XML input to describe which data nodes
to update.

 tctx.updateOrderData(updateXml);

• How to build the OrderDataUpdate XML string to update the data in OSM using data
garnered by parsing the UIM XML. See "Using OrderDataUpdate Elements to Pass Order
Modification Data" for more information. This differs for every order template and every
external system. This code represents the translation step where you convert the data from
the format of an external system to the format that OSM expects.

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();
 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list = root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-34 of A-46

 return omsUpdate.toString();
 }

The structure of the XML document to update OSM data is as follows:

<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\"
xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"
xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"
targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">
<AddMandatory>true</AddMandatory>
<Add path=\"/service_details/new_number\">98765</Add>
<Update path=\"/customer_details/service_address/street\">55 Updated St</Update>
<Delete path=\"/service_details/current_account_number\"></Delete>
</OrderDataUpdate>

This example illustrates adding a data node (Add path), updating a data node (Update
path), and deleting a data node (Delete path).

• How to specify a mandatory parameter. If set to true, the following rules apply:

 osmUpdate.append("<AddMandatory>true</AddMandatory>");

– If you delete a mandatory node, AddMandatory replaces the node and populates it
with the default value.

– If the update is missing a mandatory node, AddMandatory adds the missing node and
populates it with the default value.

Note

If you add a mandatory field, but do not include a value, AddMandatory will not
add a default value and the request will generate an error-error code 200.

Using OrderDataUpdate Elements to Pass Order Modification Data
You use OrderDataUpdate XML elements to pass data add, modify and delete data nodes in
an order.

OrderDataUpdate elements can be passed as a parameter to updateOrderData(). XSL
translations whose results are passed to setUpdateOrder() must be in OrderDataUpdate
format. See the OSM Javadocs for details on both methods. You can also pass
OrderDataUpdate format elements to the DataChange Web Service (see the SDK schema
OrderManagementWS.xsd) and UpdateOrder.request XML API call (see the SDK schema
oms-xmlapi.xsd).

For update and delete operations on multi-instance nodes, you must specify the order node
index as it exists in the input XML. Specify the order node index as "[@index='index_value']"
where index_value is the order node index.

The following example shows how to specify the addition of an order node with
OrderDataUpdate. The path attribute identifies the parent node under which to add the
element:

<OrderDataUpdate>
 <Add path="/">
 <ProvisioningOrderResponse>
 <OrderInformation>
 <OrderNumber>1238723</OrderNumber>

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-35 of A-46

 </OrderInformation>
 </ProvisioningOrderResponse>
 </Add>
</OrderDataUpdate>

The following example shows a combined update and delete operation on a multi-instance
node using OrderDataUpdate. In Delete attributes, the path attribute identifies the data to
delete. In Update attributes, the path attribute identifies the data to update. Indexes are
required on Update and Delete attributes when modifying multi-instance nodes. Note how the
order node index values are specified in the Update and Delete attributes.

<OrderDataUpdate>
 <Delete path="/client_info/address[@index='80132']/city" />
 <Update path="/client_info/address[@index='76579']/city">Newark</Update>
 <Update path="/customer_details/service_address/street">55 Updated St</Update>"
 <Delete path="/service_details/current_account_number"></Delete>
</OrderDataUpdate>

See "External Custom Java Automator that Updates Order Data" for an example in which
OrderDataUpdate XML data is created dynamically within Java code and passed to
UpdateOrderData().

The schema for OrderDataUpdate is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://
www.metasolv.com/OMS/OrderDataUpdate" xmlns:odu="http://www.metasolv.com/
OMS/OrderDataUpdate" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <element name="OrderDataUpdate">
 <complexType>
 <choice maxOccurs="unbounded">
 <element ref="odu:Add"/>
 <element ref="odu:Delete"/>
 <element ref="odu:Update"/>
 </choice>
 </complexType>
 </element>

 <element name="Add">
 <annotation>
 <documentation>It contains a node to be added. The path attribute identifies the
parent node under which to add the element.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <any/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

 <element name="Delete">
 <annotation>
 <documentation>It contains a node to be deleted. The path attribute identifies the
node to delete.</documentation>
 </annotation>
 <complexType>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-36 of A-46

 <element name="Update">
 <annotation>
 <documentation>It contains a node to update. The path attribute identifies the
node to update.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="path" type="string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
</schema>

Examples of Sending Messages to External Systems
Automation simplifies the process of sending messages to external systems. The automation
framework does the following:

• Assumes the protocol is JMS. The products (Siebel, OSM, UIM, ASAP, IP Service
Activator) all have JMS APIs.

• Takes care of establishing and maintaining the various JMS connections.

• Constructs the JMS messages, setting the required message properties.

• Guarantees delivery of the message and handles any errors or exceptions. It retries until
the message is delivered.

• Automatic message correlation.

• Poison message handling.

An OSM event that is sent to an external system follows this process flow:

1. OSM runs an automation that triggers an automation plug-in.

2. Internally, the automation framework maps the plug-in, using the automationMap.xml
configuration, onto custom business logic and calls the makeRequest method on the
custom automator class.

3. The makeRequest method performs some business logic and sets the content of the
outbound message.

4. The automation framework adds properties to the outbound message to aid in correlating
external system responses to requests.

5. The automation framework uses information from the automationMap.xml to send the
JMS message to the JMS queue representing the external system.

The following example shows a custom automation plug-in that sends data to an external
system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class ObjectelPlugin extends AbstractSendAutomator {

 protected void makeRequest(String inputXML, AutomationContext context, TextMessage

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-37 of A-46

outboundMessage) throws com.mslv.oms.automation.AutomationException {

 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEvent(taskName, taskContext.getOrderId(),
taskContext.getOrderHistoryId(), inputXML);

 //
 // Set the outgoing message
 //
 String xmlRequest = "<Message
type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request xmlns:iLibPlus=\"http://
www.oracle.com/objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</CLLIX><SiteName>XML.CO.1</
SiteName></DS></location><feType>PP</feType><portType>$FEP</
portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</
string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</string><string>189478</
string><string>F-31-OC-48</string></portSelectionAttribValue><portUpdateAttribName/
><portUpdateAttribValue/></iLibPlus:findFunctionalPortOnLocation.Request></Message>";
 outboundMessage.setText(xmlRequest);

 } catch(javax.jms.JMSException x) {
 throw new AutomationException(x);
 } catch(RemoteException ex){
 throw new AutomationException(ex);
 }
 }
 }

The following code snippets from this example show:

• how to generate an output XML string. In this example it is hard coded. In a business case
you would use business logic to transform OSM data into what the external system
expects

 String xmlRequest = "<Message
type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request xmlns:iLibPlus=\"http://
www.oracle.com/objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</
CLLIX><SiteName>XML.CO.1</SiteName></DS></location><feType>PP</
feType><portType>$FEP</portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</
string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</
string><string>189478</string><string>F-31-OC-48</string></
portSelectionAttribValue><portUpdateAttribName/><portUpdateAttribValue/></
iLibPlus:findFunctionalPortOnLocation.Request></Message>";

• how to set the output data:

 outboundMessage.setText(xmlRequest);

• how this code does not establish a connection to an external system or send a message.
After the data is set in the code, the message is automatically sent upon exit of the
makeRequest method.

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-38 of A-46

Examples of Handling Responses from External Systems
In Message Property Correlation, the following steps describe how responses from external
systems are handled.

1. The plug-in populates the message content.

2. The plug-in sets a property on the outbound JMS message, with name of the value set for
correlationproperty in the automationMap.xml file, and a value decided by the business
logic. For example, you could use this to correlate on a reference number.

3. If the value of the correlationproperty in the automationMap.xml file is set to the value
JMSCorrelationID, the plug-in is not required to set the property on the outbound message
(as described in Step 2). The automation framework does this automatically.

4. The automation framework saves the message properties set for each message with the
event information.

5. The automation framework sets the replyTo property on the JMS message.

6. The external system copies the properties on the request message to the response
message.

7. The external system sends the message to the reply queue specified in the
automationMap.xml file.

8. The automation framework uses the configuration in the automationMap.xml file to map
messages from external systems to plug-ins. The plug-ins are automators written by
system integrators. Configuration of an automator for receiving messages from an external
system are defined within Design Studio and saved to the automationMap.xml file.

9. The automation framework uses the message properties of the response, plus the
correlation information saved in step four above, to reload a Context for the response
message.

10. The run method of the external system automator is called and is passed the Context
created in step 9.

11. The automator performs business logic, such as completing the task.

The following example shows a custom automation plug-in that handles and processes
response messages from an external system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

 try {
 TaskContext tctx = (TaskContext)task;

 tctx.completeTaskOnExit("success");

 } catch(RemoteException ex){
 throw new AutomationException(ex);
 } catch(AutomationException x) {
 throw x;

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-39 of A-46

 }
 }
}

This automation plug-in does not need to send JMS messages to any system, so it extends
AbstractAutomator and is intended to process Task automation responses, so it casts the
Context to a TaskContext then completes the task.

The following example shows what the external system is expected to do for the message
property correlation to work.

 public void sendMessage(Message originalMessage) {
 try {
 //
 // Set up the JMS connections
 //
 QueueConnectionFactory connectionFactory =
(QueueConnectionFactory)jndiCtx.lookup(connectionFactoryName);
 QueueConnection queueConnection = connectionFactory.createQueueConnection();
 QueueSession queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
 Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
 QueueSender queueSender = queueSession.createSender(replyQueue);

 //
 // Create the message
 //
 TextMessage textMessage =
queueSession.createTextMessage(((TextMessage)originalMessage).getText());
 textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");
 textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

 //
 // Send the message
 //
 queueSender.send(textMessage, javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY, 1800000);

 } catch(javax.jms.JMSException ex){
 ex.printStackTrace();
 } catch(javax.naming.NamingException ex){
 ex.printStackTrace();
 }
 }

The following code snippets from this example show:

• how the external system chooses which JMS destination to send the reply to.

Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
QueueSender queueSender = queueSession.createSender(replyQueue);

• the external system setting a property that identifies the nature of the JMS message. This
implies that the automation was defined with a message property selector select statement
that matches these parameters.

textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");

• the external system echoing the correlation information onto the reply message. This
implies that the automation was defined to correlate based on JMSCorrelationID.

textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

Appendix A
Custom Java Automation Plug-ins

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-40 of A-46

Compensation XQuery Expressions
The following topics provide information about automation and manual task compensation
XQuery expressions.

• Task Re-Evaluation and Rollback XQuery Expressions

• In Progress Compensation Include XQuery Expressions

• In Progress Compensation Complete XQuery Expressions

• In Progress Compensation Grace Period XQuery Expressions

For general OSM XQuery information, see "General XQuery Information".

Task Re-Evaluation and Rollback XQuery Expressions
You can dynamically assign compensation strategies to tasks by creating XQuery expressions
in the Design Studio Task Editor Compensation tab for re-evaluation compensation
strategies or compensation strategies for when a task is no longer required.

Note

If the XQuery expression is invalid OSM logs the error but does not rollback the
transaction. Instead, OSM uses the static compensation strategy as the default.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for re-evaluation compensation
strategies:

• Context: The context for this XQuery is the current order data. You can get the current
order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information. You must declare the
java:oracle:communications.ordermanagement.compensation. ReevaluationContext OSM
Java package that provides methods that access the contemporary and historical order
perspectives and compares the two. You can use the results of this comparison to
determine what compensation strategy is required for a task based on revision order data.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.ReevaluationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

For more information about the classes in the OSM packages, install the OSM SDK and
extract the OSM Javadocs from the OSM_home/SDK/osm7.w.x.y.z-javadocs.zip file
(where OSM_home is the directory in which the OSM software is installed and w.x.y.z
represents the specific version numbers for OSM). See OSM Installation Guide for more
information about installing the OSM SDK.

• Body: The body must return a valid compensation option.

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-41 of A-46

For example, the following XQuery expression creates variables for the
ReevaluationContext methods. The expression then checks that a specific value exists in
the $value variable and that the value in the $significantValue variable both exists and is
significant. If the value exists and is significant, then the expression sets the compensation
strategy for the task to Undo then Do (undoThenDo in the ReevaluationContext Java
class). If not, then the expression sets the compensation strategy to Redo (redo in the
ReevaluationContext Java class).

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)
let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
let $significantValue := $diffDoc/Changes/Add[@significant='true']/
specification[value='100']
let $currentValue := $ropDoc/ GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']

return if (fn:exists($value) and fn:exists($significantValue))
then
 context:undoThenDo($context)
else
 context:redo($context)

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for when a task is no longer
required. The context, prolog, and body are similar to the XQuery expression for the re-
evaluation strategy, except that the XQuery expression implements the
java:oracle:communications.ordermanagement.compensation.RollbackContext package.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.RollbackContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)

let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
return if (fn:exists($value))
then
 context:undo($context)
else
 context:doNothing($context)

In Progress Compensation Include XQuery Expressions
You can determine if an in progress task should be compensated by writing an XQuery
expression in the Design Studio Task Editor Compensation tab.

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-42 of A-46

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Include Expression XQuery field for
dynamically defining when in progress tasks should be included in compensation. This XQuery
expression runs when OSM first analyzes the task for compensation:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task
requires compensation or false if it does not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, "includeInCompensation")) then
 fn:true()
 else
 fn:false()
)

In Progress Compensation Complete XQuery Expressions
You can determine when the compensation for an in progress task is complete by writing an
XQuery expression in the Design Studio Task Editor Compensation tab.

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Complete Expression XQuery field for

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-43 of A-46

dynamically defining when in progress tasks completes compensation activities. This XQuery
expression runs whenever data changes on the compensating task:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task has
completed all compensation activities or false if it has not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data
return (
 if (fn:contains($value, "compensationDone")) then
 fn:true()
 else
 fn:false()

In Progress Compensation Grace Period XQuery Expressions
You can determine whether a grace period should be observed before starting compensation
for an in progress task by writing an XQuery expression in the Design Studio Task Editor
Compensation tab.

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, When an amendment occurs if this task is in progress it will: tab,
Dynamic Expression XQuery field for dynamically defining the grace period for an in progress
task based on task data. This XQuery expression runs after OSM has determined whether the
in progress task needs to be compensated:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information. You can also declare the $gracePeriod
variable in the XQuery prolog which contains the grace period specified on the order life-
cycle policy.

For example:

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-44 of A-46

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $gracePeriod external;
declare variable $log external;
declare variable $context external;

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of the
expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

For example, this XQuery uses order data to define the specific grace period duration for the
task. The last statement calls the $gracePeriod variable which represents the grace period
duration specified on the order life-cycle policy:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
declare variable $gracePeriod external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, '-immediate-')) then
 xs:duration('PT0S')
 else if (fn:contains($value, '-override-')) then
 xs:duration('PT20S')
 else if (fn:contains($value, '-negative-')) then
 xs:duration('-PT10S')
 else if (fn:contains($value, '-invalidNumber-')) then
 fn:number(0)
 else if (fn:contains($value, '-invalidString-')) then
 xs:string('UNKNOWN')
 else
 xs:duration(fn:concat('PT', $gracePeriod, 'S'))

Order Jeopardy Automation XQuery Plug-ins
This topic provides information about order jeopardy XQuery expressions. These XQuery
expressions apply to order jeopardies configured in the Order Jeopardy editor, not order
jeopardies configured in the Order editor.

For general OSM XQuery information, see "General XQuery Information".

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-45 of A-46

You can configure automations for order jeopardies in the Order Jeopardy editor, Automation
tab. If you choose to use an XQuery automation type, create an XQuery file and reference it in
the Script subtab Script field.

• Context: The context for this XQuery is the Order Jeopardy Notification context.

• Prolog: You should declare the XML namespace for the Order Jeopardy Notification
context, and if you are using a date (rather than a duration) you can declare a namespace
for the date format as well.

For example:

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeopardyNot
ificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

You should then declare the $context variable to contain the actual context:

declare variable $context external;

Then if you want to use order data in your XQuery, you can get the order data into a
variable. For example:

let $orderData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response

You can then access individual data elements on the order. For example:

let $date := $orderData/oms:_root/oms:ojPostponeDate/text()

• Body: There are several calls you can use in the order jeopardy XQuery file in addition to
the normal calls available for notification plug-ins. Following are brief descriptions of the
available calls:

– postponeTimerOnExit(interval): If this call receives a numeric parameter, it postpones
the due date for the number of milliseconds contained in the parameter.

– postponeTimerOnExit(dateTime): If this call receives a date/time parameter, it
postpones the due date to the indicated date/time.

– logAndParkNotificationOnExit(logMessage): This call acknowledges the notification
with the passed-in message, but does not reset/deactivate the notification. It will still be
available in the Order Management web client.

– ackNotificationOnExit: This call acknowledges and resets/deactivates the notification.

– getNotificationAckStatus: This call returns true if the notification has been
acknowledged, and false if it has not.

The following example postpones the jeopardy to a specified date:

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeopardyNot
ificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

declare variable $context external;

let $dateFormat := dateFormat:getDateTimeInstance(3, 3)
let $date := dateFormat:parse($dateFormat, "09/30/15 03:30 PM")
return
 context:postponeTimerOnExit($context, $date)

Appendix A
Compensation XQuery Expressions

Design Studio Modeling OSM Processes
G31709-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-46 of A-46

	Contents
	About This Content
	1 Getting Started with Design Studio for OSM Processes
	About Order Modeling Users and Tasks
	Reviewing Design Studio Sample Cartridges
	Creating a Cartridge for Orders That Use Processes

	2 Defining OSM Preferences
	Defining Language Preferences
	Defining Diagrammer Preferences
	Defining Order and Service Management General Preferences
	Defining Orchestration Preferences
	Defining Web Browser Preferences

	3 Working with OSM Cartridge Projects
	Working with Existing OSM Models
	About Importing Design Studio Cartridges
	About Importing Cartridges Created in OSM Administrator
	About Import Summary Reports
	Importing Existing OSM Models

	Working with the Orchestration Model Project
	Creating the OracleComms_OSM_CommonDataDictionary Model Project

	Working with XML Catalogs
	Enabling and Disabling XML Catalogs for a Cartridge Project
	Specifying XML Catalogs for a Cartridge Project

	Order and Service Management Project Editor
	Project Editor Locations Tab
	Project Editor Manifest Tab

	4 Modeling Data in OSM
	About Modeling Data in OSM Cartridge Projects
	About Modeling Control Data
	About Contributing Task Data to a Cartridge Project
	About OSM Data in Model Projects
	About Modeling Data in the Order Template
	About the Order Template Context Menu
	About the Task Editor Task Data Context Menu
	Data Schema Editor OSM Tab
	Using Masks
	About Masks
	Defining Masks for Task Web Client Fields

	Defining Behaviors at the Data Schema Level

	5 Working with Roles
	Creating New Roles
	Adding Roles to Multiple Tasks
	Role Editor Role Tab

	6 Working with Processes
	About the Process Editor
	Working with Process Editor Menu Controls
	About Task Controls
	About Zoom Controls
	About Layout Controls
	About Print Controls
	About Selection Controls

	Working with the Process Editor Palette
	About the Process Editor Tool Drawer
	About the Process Editor Activities Drawer
	About the Process Editor Flow Drawer
	About the Process Editor Exception Paths Drawer

	Creating New Processes
	Modifying Process Editor Start Properties
	Process Editor Start Properties General Tab

	Designing Tasks and Activities
	Process Editor Activities Properties General Tab
	Process Editor Task Properties Events Tab

	Designing Timer Delays and Event Delays
	Designing Timer Delays
	Applying Order Rules to Timer Delays

	Designing Event Delays

	Designing Subprocesses
	Subprocess Properties General Tab
	Subprocess Properties Process Tab
	Subprocess Properties Exception Map Tab

	Designing Workstream Processes
	Designing Process Sequence and Flow
	Process Editor Flow Properties General Tab
	Process Editor Flow Properties Events Tab

	Designing Exception Paths
	Exception Path Properties General Tab
	Exception Path Properties Restrictions Tab
	Redirect Properties General Tab

	7 Working with Tasks
	About Tasks
	About Task Extensions and Inheritance
	About Task States and Statuses
	About Task Rollback Status
	About Task Compensation
	About Task Fallout
	About Enabling Task Web Client Users to Reassign Tasks

	Creating New Tasks
	Defining Task Data
	Adding Data to a Task
	Adding a New Data Structure Definition to a Task
	Adding an Existing Data Structure Definition to a Task

	Assigning Task States and Statuses
	Assigning States to Tasks
	Assigning Statuses to Tasks

	Assigning Task Permissions
	Converting Tasks
	Deleting Unreferenced Tasks
	Working with Automation Plug-Ins
	About Automation Plug-ins
	About Automation Plug-in Types
	About Automation Plug-in Association
	About Automation Message Correlation

	Creating New Custom Automation Plug-ins
	Configuring Automation Plug-In Properties
	Example: Modeling a Basic Automator Plug-In

	Working with Manual Tasks
	Defining Manual Task Behaviors

	Working with Automated Tasks
	Defining Automated Task Behaviors
	Adding Automation Plug-ins to Automated Tasks

	Working with Activation Tasks
	About Activation Tasks
	About Service Action Request Mapping
	About Service Action Response Mapping
	About State and Status Transition Mapping

	Modeling Activation Tasks
	Configuring Service Action Requests
	Mapping OSM Data to Service Action XML Parameters
	Mapping OSM Data to Service Action XML Parameters Using XPath
	Mapping OSM Data to Service Action XML Parameters Using XSLT

	Configuring Service Action Responses
	Filtering ASAP Response Data
	Configuring Service Action Response State and Status Transitions

	Working with Transformation Tasks
	Task Editor
	Task Editor Activation Task Details Tab
	Task Editor Automation Tab
	Properties View System Interaction Tab
	Properties View Details Tab
	Properties View External Event Receiver Tab
	Properties View Compensation Tab
	Properties View Correlation Tab
	Properties View XQuery Tab
	Properties View XSLT Tab
	Properties View Routing Tab
	Properties View Custom Plug-in Tab
	Properties View Notes Tab

	Task Editor Behaviors Tab
	Task Editor Compensation Tab
	Task Editor Details Tab
	Task Editor Events Tab
	Task Editor Fallouts Tab
	Task Editor Jeopardy Tab
	Task Editor Jeopardy Details Tab
	Task Editor Jeopardy Conditions Tab
	Task Editor Jeopardy Notify Roles Tab
	Task Editor Jeopardy Polling Tab
	Task Editor Jeopardy Automation Tab
	Task Editor Jeopardy Notes Tab

	Task Editor Permissions Tab
	Task Editor Redo Tab
	Task Editor Request Data Tab
	Properties Activation Order Header Binding View
	Properties Global Parameter Binding View
	Properties Service Action Binding View
	Properties Parameter Binding View

	Task Editor Response Data Tab
	Properties State/Status Transition View
	Response Filter Area

	Task Editor Composite Data View Tab
	Task Editor States/Statuses Tab
	Task Editor Task Data Tab
	Task Data Node Properties View Identification Tab
	Task Data Node Properties View Dictionary Tab

	Task Editor Undo Tab

	8 Working with Order Lifecycle Policies
	About Order States and Transactions
	Creating New Order Lifecycle Policies
	Configuring Order Lifecycle Policies
	Order Lifecycle Policy Editor
	Order Lifecycle Policy Permissions Tab
	Order Lifecycle Policy Transition Conditions Tab
	Transition Condition for Checking a Hard Point of No Return

	Order Lifecycle Policy Editor Grace Periods Tab

	9 Working with Data Providers
	About Data Providers
	Understanding Built-in Data Provider Types

	Creating New Data Providers
	Configuring Data Providers
	Data Provider Editor
	Data Provider Editor Settings Tab
	Data Provider Editor Interface Tab

	10 Working with Orders
	About Order Extensions and Inheritance
	About Reference Nodes
	Creating New Orders
	Defining Order Data
	Adding New Data to an Order
	Adding Existing Data to an Order
	Adding Reference Data Nodes
	Adding a New Data Structure Definition to an Order
	Adding an Existing Data Structure Definition to an Order
	Renaming Data Elements at the Order Level

	Defining Order Behaviors
	Defining Order Details
	Enabling Order Amendment Processing
	Defining Order Rules
	Defining Order Fallout
	Associating Order Fallouts with Data Nodes
	Associating Order Fallouts with Fallout Groups

	Defining Order Data Changed Notifications
	Assigning Order Permissions
	Defining Order Jeopardy Notifications
	Defining Order Event Notifications
	Order Editor
	Order Editor Order Template Tab
	Properties View Order Data Tab
	Properties View Dictionary Tab
	Properties View Key Tab
	Properties View Usage Tab

	Order Editor Behaviors Tab
	Order Editor Details Tab
	Order Editor Amendable Tab
	Order Editor Rules Tab
	Properties View Rules Expression Tab

	Order Editor Fallouts Tab
	Order Editor Fallout Groups Tab
	Order Editor Notification Tab
	Order Editor Notification Details Tab
	Order Editor Notification Notify Roles Tab
	Order Editor Notification Data Changed Tab
	Order Editor Notification Automation Tab
	Order Editor Notification Notes Tab

	Order Editor Permissions Tab
	Order Editor Permissions Details Tab
	Order Editor Permissions Filters Tab
	Order Editor Permissions Query Tasks Tab
	Properties View Filter Expression Tab

	Order Editor Jeopardy Tab
	Order Editor Jeopardy Details Tab
	Order Editor Jeopardy Conditions Tab
	Order Editor Jeopardy Notify Roles Tab
	Order Editor Jeopardy Polling Tab
	Order Editor Jeopardy Automation Tab
	Order Editor Jeopardy Notes Tab

	Order Editor Events Tab
	Order Editor Composite Data View Tab

	11 Working with Behaviors
	About Web Client Behavior Support
	Creating New Behaviors
	Defining Behavior Detail Properties
	Behaviors Properties View Details Tab

	Defining Behavior Condition Properties
	About Behavior Condition Properties
	Behaviors Properties View Conditions Tab

	Defining Behavior Notes Properties
	Defining Calculate Behavior Properties
	About Calculate Behaviors
	Calculate Behavior Properties View Calculation Tab

	Defining Constraint Behavior Properties
	Constraint Behavior Properties View Message Tab

	Defining Data Instance Behavior Properties
	About Data Instance Behaviors
	Data Instance Behavior Properties View Data Tab

	Defining Event Behavior Properties
	About Event Behaviors
	Event Behavior Properties View Event Tab

	Defining Information Behavior Properties
	Defining Information Behaviors in Multiple Languages
	Information Behavior Properties View Labels Tab
	Information Behavior Properties View Hints Tab
	Information Behavior Properties View Help Tab

	Defining Lookup Behavior Properties
	About Lookup Behaviors
	Lookup Behavior Properties View Nodeset Tab
	Lookup Behavior Properties View Value/Name Tab

	Defining Read Only Behavior Properties
	About Read Only Behaviors

	Defining Relevant Behavior Properties
	About Relevant Behaviors

	Defining Style Behavior Properties
	Style Behavior Properties View Appearance Tab
	Style Behavior Properties View Layout Tab
	Style Behavior Properties View CSS Style Tab

	12 Working with Jeopardy and Event Notifications
	Working with Jeopardy Notifications
	Creating Jeopardy Notifications in the Order Jeopardy Editor
	Creating Jeopardy Notifications in the Task or Order Editor

	Working with Event Notifications
	Creating Order Milestone and Task State Automation Event Notifications
	Creating Process-specific Task Event Notifications
	Properties Events Detail Tab
	Properties Events Notify Roles Tab
	Properties Events Automation Tab
	Event Properties Notes Tab

	Creating Task Status-Based Event Notifications
	Creating Order Data Changed Notifications

	Order Jeopardy Editor
	Order Jeopardy Editor Details Tab
	Order Jeopardy Editor Policy Tab
	Order Jeopardy Editor Policy Tab Duration Value Subtab
	Order Jeopardy Editor Policy Tab Offset Subtab
	Order Jeopardy Editor Policy Tab XQuery Expression Subtab
	Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab
	Order Jeopardy Editor Policy Tab Data Path Expression Subtab

	Order Jeopardy Editor Automation Tab
	Order Jeopardy Editor Automation Tab Details Subtab
	Order Jeopardy Editor Automation Tab Script Subtab
	Order Jeopardy Editor Automation Tab Routing Subtab
	Order Jeopardy Editor Automation Tab Notes Subtab

	13 Packaging and Deploying OSM Cartridges
	Packaging Order and Service Management Cartridges
	Multiple Order Data Inconsistencies

	Defining Build-and-Deploy Modes for Automation Plug-ins
	About Build-and-Deploy Modes for Automation Plug-ins
	Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges
	Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

	Testing OSM Cartridge Models
	About Submit Test
	Submitting Test Orders to Run-time Environments

	Managing Changes to Deployed Cartridges
	Managing Orders for Multiple Cartridge Versions
	Modifying Cartridges After Upgrading OSM Versions

	Studio Environment Editor
	Studio Environment Editor Connection Tab
	Studio Environment Editor SSL Tab
	Studio Environment Editor Properties Tab
	Studio Environment Editor Order and Service Management Test Submission URL Area

	A Automation and Compensation Examples
	Predefined Automation Plug-ins
	Message Example
	Automation Plug-in XQuery Examples
	Internal XQuery Sender
	External XQuery Automator
	External XQuery Sender
	Internal XQuery Automator

	Automation Plug-in XSLT Examples
	Internal XSLT Sender
	External XSLT Automator
	External XSLT Sender
	Internal XSLT Automator

	Automation Plug-in Examples for Events, Jeopardies, and Notifications
	Event Automators
	Jeopardy Automators
	Order Notification Automation Plug-ins

	Custom Java Automation Plug-ins
	Internal Custom Java Automator
	Internal Custom Java Sender
	External Custom Java Automator that Changes the OSM Task Status
	External Custom Java Automator that Updates Order Data
	Using OrderDataUpdate Elements to Pass Order Modification Data
	Examples of Sending Messages to External Systems
	Examples of Handling Responses from External Systems

	Compensation XQuery Expressions
	Task Re-Evaluation and Rollback XQuery Expressions
	In Progress Compensation Include XQuery Expressions
	In Progress Compensation Complete XQuery Expressions
	In Progress Compensation Grace Period XQuery Expressions
	Order Jeopardy Automation XQuery Plug-ins

