Oracle® Communications Order and
Service Management Cartridges for

Application Integration Architecture
Cartridge Guide

ORACLE"

Oracle Communications Order and Service Management Cartridges for Application Integration Architecture Cartridge
Guide, Release 2.1.2

E79217-02
Copyright © 2010, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xi
Documentation Accessibility Xiii
Diversity and Inclusion Xiii
1 Overview of the Order-to-Activate Cartridges
About the Application Integration Architecture Order-to-Activate Cartridges 1-1
Order-to-Activate Business Process Overview 1-1
Overview of the Order-to-Activate Cartridges 1-3
Order-to-Activate Cartridge Solution Options 1-5
OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution 1-6
Extending the Cartridges 1-6
Time Zones in Order-to-Activate Cartridges 1-7
Order Creation in the Order-to-Activate Cartridges 1-7
Order-to-Activate Emulators 1-8
About Fulfillment Topologies 1-8
Simple Fulfilment Topology 1-9
Typical and Complex Fulfillment Topologies 1-10
2 Performing an Interactive Installation of the Order-to-Activate
Components
Cartridge Installation Overview 2-1
System Requirements 2-1
Order-to-Activate Cartridge Compatibility 2-2
Order-to-Activate Cartridge Pre-Installation Tasks 2-2
Installing the Order-to-Activate Cartridges 2-4
Getting the Installation Package 2-4
Importing the Installation Cartridge and Configuring the Installation Build File 2-4
Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order Solution
Option 2-6
Importing the OSM Order-to-Activate Cartridges for the Solution Option Without
Calculate Service Order 2-7

ORACLE il

Configuring WebLogic Server Resources 2-7
Post-Installation Tasks for Multiple Simultaneous Versions 2-16
Building and Deploying the Order-to-Activate Cartridges 2-17
Testing the Order-to-Activate Cartridges 2-18
Switching Between Live and Emulator Configurations 2-19
Configuring a Workspace Without Configuring WebLogic Server 2-20
Uninstalling Order-to-Activate Components 2-21

Undeploying Cartridges 2-21

Deleting the Oracle AIA Emulator 2-21

Removing the Inventory and Technical Order Management Emulators 2-22

3 Performing a Silent Installation of the Order-to-Activate Cartridges
Cartridge Installation Overview 3-1
Directory Placeholders Used in This Chapter 3-1
System Requirements 3-2

Order-to-Activate Cartridge Compatibility 3-2
Setting Up the Installation Environment 3-2

Getting the Installation Package 3-2

Setting Up Files and Directories 3-3

Encrypting the Passwords Used by the Silent Installer 3-4

Encrypting the WebLogic Server Administrator Password for Connecting to
WebLogic 3-4
Encrypting the WebLogic Server Administrator Password for Use with XML Import/
Export 3-5
Encrypting Passwords for the Standard Order-to-Activate User Accounts 3-5
Encrypting the UIM Application User Password 3-6
Encrypting the Technical Order Management Application User Password 3-6
Encrypting the Password for Deploying the Cartridges 3-6
Encrypting the Oracle AIA JMS Connection Password 3-7
Encrypting the UIM JMS Connection Password 3-7
Encrypting the Technical Order Management JMS Connection Password 3-8
Configuring the build.properties File 3-8

Configuring Software Path Settings 3-9

Configuring Solution Import Settings 3-9

Configuring WebLogic Server Settings 3-10

Configuring Solution Configuration Settings 3-11

Configuring Oracle AIA Connection Settings 3-13

Configuring UIM Connection Settings 3-14

Configuring Technical Order Management Connection Settings 3-15
Performing the Silent Installation 3-17

Building the Solution Cartridges 3-17

Building the Solution Cartridges and Configuring the WebLogic Server Resources 3-17

ORACLE

Deploying the Cartridges 3-17

Testing the Order-to-Activate Cartridges 3-18
Switching Between Live and Emulator Configurations 3-18
Configuring a Workspace Without Configuring WebLogic Server 3-18
Uninstalling Order-to-Activate Components 3-18

4 Order-to-Activate Cartridge Contents

Cartridge Overview 4-1
Common Order Management Cartridges 4-1
Central Order Management Cartridges 4-2

Common Central Order Management Cartridges 4-2

Central Order Management Cartridges for the Calculate Service Order Solution

Option 4-2

Central Order Management Cartridges for the Solution Option Without Calculate

Service Order 4-4
Service Order Management Cartridges 4-5

Service Order Management Cartridges for the Calculate Service Order Solution

Option 4-5

Service Order Management Cartridges for the Solution Option Without Calculate

Service Order 4-7
Conceptual Model Projects 4-7

Common Conceptual Model Projects 4-7

Conceptual Model Projects for Central Order Management 4-8

Conceptual Model Projects for Service Order Management 4-9

Common Order Management Cartridges 4-9
OracleComms_OSM_CommonDataDictionary 4-9
OracleComms_OSM_0O2A_AIAEBMDataDictionary 4-9
OracleComms_OSM_02A_CommonUtility 4-9
OracleComms_OSM_0O2A ControlMap 4-11

Configuring Breakpoints for Central Order Management and for Service Order
Management Without Calculate Service Order 4-12

Configuring Breakpoints for Service Order Management with Calculate Service
Order 4-13
Controlling Point of No Return 4-14
Controlling Fault Simulation 4-14
Controlling Order Updates 4-18
Controlling Processing Granularity for FulfillBillingFunction 4-18
OracleComms_OSM_0O2A_RecognitionFallout 4-19
OracleComms_OSM_0O2A_SystemAdmin 4-20
How the Inbound Message Recovery MDB Works 4-20
Recovering from Inbound Message Errors Due to Suspended Orders 4-21
Recovering from Inbound Message Errors Due to Resource Issues 4-21
Common Central Order Management Cartridges 4-22

ORACLE

OracleComms_OSM_0O2A COM_Base 4-22

Order Events 4-23
Processing Granularity Rules 4-23
Abstract Orchestration Entities 4-24
Order Lifecycle Manager Configuration 4-25
XQuery Modules in the OracleComms_OSM_0O2A_COM_Base Cartridge 4-26
Automation Modules in the OracleComms_OSM_0O2A_COM_Base Cartridge 4-29
External Fulfillment States 4-30
OracleComms_OSM_0O2A COM_SalesOrderFulfillment 4-31
OracleComms_OSM_0O2A_COM_Billing 4-32
SyncCustomerFunction 4-33
InitiateBillingFunction 4-36
FulfillBillingFunction 4-39
Billing Dates for Billing Patterns 4-41
OracleComms_OSM_0O2A_COM_Provisioning 4-42
OracleComms_OSM_0O2A COM_Shipping_Sample 4-44
OracleComms_OSM_O2A_COM_Install_Sample 4-45
OracleComms_OSM_0O2A_COM_Recognition_Sample 4-46
Revision Number Update for Canceled Orders 4-46
Central Order Management Cartridges for the Calculate Service Order Solution Option 4-46
OracleComms_OSM_0O2A COM_CSO_Base 4-46
OracleComms_OSM_0O2A COM_CSO_Broadband_Internet_Access CFS 4-47
OracleComms_OSM_0O2A COM_CSO_Email_CFS 4-47
OracleComms_OSM_02A COM_CSO_FulfillmentPattern 4-47
OracleComms_OSM_02A COM_CSO_FulfillmentStateMap 4-47
OracleComms_OSM_0O2A COM_CSO_Internet_Media_CFS 4-47
OracleComms_OSM_0O2A COM_CSO_IP_Fax_CFS 4-47
OracleComms_OSM_0O2A COM_CSO_Model_Container 4-47
OracleComms_OSM_0O2A_COM_CSO_Provisioning 4-48
External Fulfillment States 4-48
OracleComms_OSM_0O2A COM_CSO_SalesOrders 4-49
OracleComms_OSM_0O2A COM_CSO_Solution 4-50
OracleComms_OSM_0O2A COM_CSO_Topology 4-51
OracleComms_OSM_0O2A COM_CSO_VolP_Access_CFS 4-51
OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS 4-52
OracleComms_OSM_02A_ COM_FulfillmentPattern 4-52
OracleComms_OSM_02A COM_FulfillmentStateMap_Sample 4-52
OracleComms_OSM_0O2A_COMSOM_CSO_Recognition 4-54
Revision Number Update for Canceled Orders 4-54
OracleComms_OSM_0O2A COMSOM_CSO_Solution 4-54
Central Order Management Cartridges for the Solution Option Without Calculate Service
Order 4-55

ORACLE Vi

OracleComms_OSM_0O2A BBVolP_FP_NP_Danube_Sample 4-55

OracleComms_OSM_0O2A BBVolP_FP_NP_Nile_Sample 4-56
OracleComms_OSM_0O2A _COM_NCSO_Base 4-56
OracleComms_OSM_0O2A COM_NCSO_Provisioning 4-56
OracleComms_OSM_O2A_COM_Simple_NP_Soln 4-57
OracleComms_OSM_0O2A COM_Typical _NP_Soln 4-58
OracleComms_OSM_02A COMSOM_Recognition_Sample 4-58
Revision Number Update for Canceled Orders 4-58
OracleComms_OSM_02A_ COMSOM_Simple_NP_Soln 4-58
OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln 4-59
OracleComms_OSM_0O2A_FulfillmentPatternMap_Sample 4-59
OracleComms_OSM_0O2A SalesOrders_NP_Sample 4-61
OracleComms_OSM_0O2A_SimpleTopology Sample 4-63
OracleComms_OSM_O2A_TypicalTopology Sample 4-64
Service Order Management Cartridges for the Calculate Service Order Solution Option 4-64
OracleComms_OSM_0O2A SOM_CSO_Base 4-64
Order Events 4-65
Order Lifecycle Manager Configuration 4-65
XQuery Modules in the OracleComms_OSM_0O2A_SOM_CSO_Base Cartridge 4-65
Automation Modules in the OracleComms_OSM_0O2A_SOM_CSO_Base Cartridge 4-66
OracleComms_OSM_0O2A _SOM_CSO_Broadband_Internet_Access CFS 4-67
OracleComms_OSM_02A SOM_CSO_Common 4-67
OracleComms_OSM_O2A_SOM_CSO_CompleteProvisioning 4-67
OracleComms_OSM_0O2A _SOM_CSO_DeliverOrder 4-67
OracleComms_OSM_02A_SOM_CSO_DesignService 4-67
OracleComms_OSM_0O2A SOM_CSO_Email_CFS 4-67
OracleComms_OSM_02A _SOM_CSO_FulfillmentPattern 4-68
OracleComms_OSM_02A SOM_CSO_FulfillmentStateMap 4-68
OracleComms_OSM_0O2A SOM_CSO_Internet_Media CFS 4-69
OracleComms_OSM_0O2A _SOM_CSO_IP_Fax_CFS 4-69
OracleComms_OSM_02A SOM_CSO_ModelContainer 4-69
OracleComms_OSM_0O2A_SOM_CSO_PlanDelivery 4-69
OracleComms_OSM_0O2A SOM_CSO_Recognition 4-69
Revision Number Update for Canceled Orders 4-70
OracleComms_OSM_0O2A SOM_CSO_Solution 4-70
OracleComms_OSM_0O2A SOM_CSO_Topology 4-70
OracleComms_OSM_0O2A SOM_CSO_VolP_Access _CFS 4-70
OracleComms_OSM_0O2A _SOM_CSO_Web_Conferencing_CFS 4-70
Service Order Management Cartridges for the Solution Option Without Calculate Service
Order 4-70
OracleComms_OSM_0O2A SOM_Base 4-70
Order Events 4-70
ORACLE

Vii

Processing Granularity Rules 4-71
XQuery Modules in the OracleComms_OSM_0O2A_SOM_Base Cartridge 4-71
Automation Modules in the OracleComms_OSM_0O2A_SOM_Base Cartridge 4-73
OracleComms_OSM_0O2A_SOM_Provisioning 4-73
OracleComms_OSM_0O2A SOM_Solution 4-75
OracleComms_OSM_0O2A SOM_Recognition_Sample 4-75
Revision Number Update for Canceled Orders 4-76
OracleComms_OSM_O2A_SomBBVolP_FP_NP_Sample 4-76
OracleComms_OSM_0O2A_ SomProvisionBroadband_Sample 4-76
OracleComms_OSM_0O2A SomProvisionVolP_Sample 4-78
Common Conceptual Model Projects 4-79
OracleComms_Model_Base 4-79
OracleComms_Model _BaseCatalog 4-79
OracleComms_Model_Common 4-79
OracleComms_Model_O2A Broadband_Internet_Access CFS 4-79
OracleComms_Model _O2A Broadband_Internet Access_SA 4-80
OracleComms_Model_O2A Broadband_Internet_DataModel 4-80
OracleComms_Model_O2A Email CFS 4-80
OracleComms_Model_O2A Email_DataModel 4-80
OracleComms_Model_O2A Email_SA 4-80
OracleComms_Model _O2A Internet_Media_ CFS 4-81
OracleComms_Model_O2A Internet_Media_DataModel 4-81
OracleComms_Model_O2A Internet_Media_SA 4-81
OracleComms_Model _O2A VolP_Access CFS 4-81
OracleComms_Model_O2A VolP_Access_SA 4-82
OracleComms_Model_O2A VolP_DataModel 4-82
Conceptual Model Projects for Central Order Management 4-82
OracleComms_Model_O2A_Billing_PS 4-82
OracleComms_Model_O2A Broadband_Internet_Access_PS 4-83
OracleComms_Model_O2A Email_PS 4-83
OracleComms_Model_O2A Install_PS 4-83
OracleComms_Model_O2A Internet_Media_ PS 4-83
OracleComms_Model O2A VolP_PS 4-84
Conceptual Model Projects for Service Order Management 4-84
OracleComms_Model_O2A _SOM_PS 4-84
Oracle AIA Emulators 4-85
5 Extending Order-to-Activate Cartridges

Adding Custom Data Elements 5-1
Adding Custom Order Item Properties 5-1
Changing Durations for Order Components 5-3

ORACLE

viii

Adding a New Fulfillment Function
Planning the Addition of a New Fulfillment Function
Response Patterns in System Interactions
Single Response Pattern
Multiple Response Pattern
Entities to Create, Modify, or Reuse
Data Dictionary and Order Templates
About Creation Tasks
About Query Tasks
About Subprocesses
Fulfilment Function Extension Point Interface
Fulfillment Function Extension Point Overview
COMPONENT-START Extension Point
COMPONENT-COMPLETE Extension Point
COMPONENT-UPDATE Extension Point
CREATE-EBM Extension Point for do Execution Mode
CREATE-EBM Extension Point for redo Execution Mode
CREATE-EBM Extension Point for undo Execution Mode
CREATE-EBM-CUSTOM Extension Point
CREATE-EBM-ALL-ORDERITEMS Extension Point
CREATE-EBM-ORDERITEM Extension Point for do Execution Mode
CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode
CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode
CREATE-EBM-ORDERITEM-CUSTOM Extension Point
CREATE-EBM-PRIORORDERITEM Extension Point
CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point
VALIDATE-RESPONSE-EBM Extension Point
COMPONENT-RESPONSE-UPDATE Extension Point
ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point
About Fallout
Fallout Customization
Failure During Revision
Adding a New Fulfillment Function for a New Service Offering
Adding a New Fulfillment Provider
Adding a New Fulfilment Mode
Adding a New Product Specification
Mapping Product Specifications to Order-to-Activate Sample Fulfillment Patterns
Creating a New Product
Creating a New Fulfillment Pattern
Customizing Mapping Rules
Importing the New Product Specification
Changing Processing Granularity

ORACLE

5-12
5-12
5-13
5-15
5-17
5-19
5-22
5-26
5-30
5-32
5-36
5-39
5-43
5-46
5-48
5-50
5-52
5-53
5-55
5-59
5-59
5-60
5-61
5-63
5-64
5-65
5-65
5-66
5-67
5-68
5-69
5-70

Configuring a New Processing Granularity Rule 5-70
Changing Fulfilment Function Dependencies 5-72
Setting a Point of No Return 5-72

Modeling a PoONR 5-73
Configuring Fulfillment States 5-74

External Fulfillment States 5-75

Fulfillment State Extension Point Interface 5-75

Fulfillment State Extension Point Overview 5-76
ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point 5-77
ORDER_FULFILLMENT_STATE_UPDATED Extension Point 5-79
ORDER_STATUS Extension Point 5-82
ORDER_STATUSCONTEXT Extension Point 5-83
ORDERITEM_MILESTONE Extension Point 5-86
ORDERITEM_STATUSCONTEXT Extension Point 5-88
REPORT_ORDERITEM_STATUS Extension Point 5-91
REPORT_ORDERITEM_MILESTONE Extension Point 5-92
REPORT_ORDERITEM_STATUSCONTEXT Extension Point 5-94
Adding a New Service for the Calculate Service Order Solution Option 5-95
Adding a New Service for the Service Option Without Calculate Service Order 5-98
Customizing Service Order Management 5-101

Service Order Management Extension Point Overview 5-101

SOM-CREATE-SOAP-REQUEST Extension Point 5-102

SOM-DETECT-FAULT Extension Point 5-103

SOM-GET-FAULT-DATA Extension Point 5-103

SOM-CHECK-IS-LAST-RESPONSE Extension Point 5-104

SOM-GET-UPDATE-DATA Extension Point 5-105

SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point 5-105

SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension Point 5-106

SOM-GET-NEW-CORRELATION-ID Extension Point 5-107
Extending XQuery Modules 5-108
Sending Enriched Data to the CRM System 5-109
Considerations When Integrating with Oracle AIA 5-109
Security Considerations When Communicating with External Systems 5-111

6 Performing Order-to-Activate Cartridge Operations
Troubleshooting Order-to-Activate Cartridges 6-1
Updating the JMS Redelivery Configuration Settings 6-1
Setting Cartridge Breakpoints 6-1

ORACLE

7 Prior Versions of Order-to-Activate Cartridges

Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM
Changes from Order-to-Activate 2.1.1 to Version 2.1.2
Removed Support for Asset Processing
Processes Changed to Use a Single Task for Sending and Receiving
Central Order Management Fulfillment Functions
Service Order Management Fulfillment Functions
Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1
Support for Asset Processing
Support for Order Lifecycle Management User Interface
Support for Processing States
Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2
Changes to Fulfillment Function Extension Points
New Extension Points
Extension Points Added to the Billing Components
Changes to Action Code Mappings
New XML-type Parameter Added to Contain Custom Order Iltem Properties
Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1
New Silent Installation Option
Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0
Support for Calculate Service Order
Two Solution Options: With and Without Calculate Service Order
The Calculate Service Order Solution Option

New Service Order Management Cartridges for the Calculate Service Order Solution
Option

Inclusion of Conceptual Model Projects

Large Order Support

Support for Sharing Groups
Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1

Release Number Changes and Packaging Changes

Support for Multiple Price Lists

Support for Importing Product Classes Directly from Oracle Product Hub
Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

Cartridge Re-Factoring Overview

Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2

ORACLE

7-1
7-1
7-1
7-1
7-1
7-2

7-3
7-3
7-4
7-4

7-4
7-4
7-5
7-5

7-5
7-5
7-5
7-5

7-7
7-7
7-7
7-7
7-7
7-8

7-8
7-8
7-9
7-9

Xi

Preface

Preface

Audience

ORACLE

Oracle Communications Order and Service Management (OSM) delivers pre-built cartridges
supporting the Order-to-Activate business process to be used with the Oracle Communications
Order to Cash Integration Pack for Oracle Communications Order and Service Management.
This guide provides information about the OSM Order-to-Activate cartridges for the Oracle
Communications Order to Cash Integration Pack for Oracle Communications Order and
Service Management. It explains how to install and deploy the cartridges and provides detailed
information and best practices on how to extend them for your own implementation.

Note:

The Oracle Application Integration Architecture Order-to-Activate Process Integration
Pack is renamed to Oracle Communications Order to Cash Integration Pack for
Oracle Communications Order and Service Management. The OSM cartridges are
referred to as Order-to-Activate cartridges in all OSM documentation because they
support the Order-to-Activate business sub-process within the overall Order to Cash
business process for service providers. See "Order-to-Activate Business Process
Overview" for a description of the Order-to-Activate business sub-process.

The term Oracle Communications Order to Cash Integration Pack for Oracle
Communications Order and Service Management and the term Order to Cash
Integration Pack for OSM are used synonymously in OSM documentation.

For more information about the Oracle Communications Order to Cash Integration Pack for
Oracle Communications Order and Service Management, see Oracle Application Integration
Architecture Oracle Communications Order to Cash Integration Pack Implementation Guide for
Siebel CRM, Oracle Communications Order and Service Management, and Oracle
Communications Billing and Revenue Management in the Oracle Application Integration
Architecture documentation.

This document is intended for programmers who have a working knowledge of:

e System interfaces

* Java development

» Java Messaging Service (JMS)

* XML Technologies (including XQuery and XPath)

This document assumes that you have read OSM Concepts, and have a conceptual
understanding of:

e Cartridges

e Topologies

Xli

Preface

e Orders
e Order states
e Tasks

* Task states

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Overview of the Order-to-Activate Cartridges

This chapter describes how to use the Oracle Communications Order and Service
Management (OSM) Order-to-Activate cartridges for the Oracle Communications Order to
Cash Integration Pack for Oracle Communications Order and Service Management (Order to
Cash Integration Pack for OSM).

About the Application Integration Architecture Order-to-Activate
Cartridges

The Order-to-Activate cartridges are pre-built OSM cartridges that support the Oracle Order-to-
Activate business process to be used with the Order to Cash Integration Pack for OSM. See
"Order-to-Activate Business Process Overview" for a discussion of the Order-to-Activate
business process.

Oracle Application Integration Architecture (Oracle AlA) integrates Oracle applications, such as
OSM, Siebel Customer Relationship Management (Siebel CRM), Oracle Configure, Price, and
Quote Cloud (Oracle CPQ Cloud), and Oracle Communications Billing and Revenue
Management (BRM). External systems, such as workforce management applications, can also
be included in the solution.

In the Order-to-Activate cartridges:

* OSM performs central order management by orchestrating the fulfillment of customer
orders coming from Oracle AlA.

* OSM performs service order management by orchestrating service orders sent to
fulfillment systems.

See OSM Concepts for more details.

Order-to-Activate Business Process Qverview

ORACLE

The Oracle Order-to-Activate business process is at the core of business and operational
support systems for any Communications Service Provider (CSP). The process extends from
the time a quote or order is created to the time when the goods and services are delivered and
properly billed. The Order-to-Activate cartridges can be used in an architecture that has Siebel
CRM, Oracle CPQ Cloud, or both together.

The following are the steps for the functional flow of the Order-to-Activate business process for
orders coming from Siebel CRM:

1. A customer order is captured in Siebel CRM. For some orders, the order may require
technical qualification, such as validating that the network has enough capacity to offer the
purchased products. After an order capture is complete and the order is validated in Siebel
CRM, the system submits it to OSM in the central order management role for delivery.

2. Customer orders (both Qualify and Deliver request types) received in OSM in the central
order management role are first recognized (as Oracle AlA customer orders), mapped to
fulfillment patterns, and enriched with fulfillment metadata.

1-1

ORACLE

Chapter 1
Order-to-Activate Business Process Overview

OSM in the central order management role decomposes (and transforms, if the calculate
service order solution option is used) the customer order, dividing it into suborders, called
order components, which have cross-order components, cross-order lines, and cross-order
dependencies that reflect the specific demands of the CSP.

The outcome is an order orchestration plan that is uniquely generated to match the
fulfillment needs of that order. The fulfillment flow that is produced orchestrates fulfillment
requests to different fulfillment providers (such as fulfilment system instances or stacks)
using preconfigured fulfillment functions, like sync customer, initiate and fulfill billing, and
provision order. OSM Order-to-Activate cartridges provide out of the box ready-to-use
automatic integration to Oracle AIA web services. When the BRM pre-built integration
option is in use, it takes the billing related requests (Sync Customer, Initiate and Fulfill
Billing) made by OSM in the central order management role to Oracle AlA, from Oracle AIA
to BRM. The Sync Customer Oracle AlA process integration also uses the Siebel CRM
pre-built integration option to get customer account details.

OSM in the central order management role manages Order Lifecycle Management (OLM)
events. For cancel and revision requests, OSM generates and executes compensation
plans to efficiently match a change. OLM manages order data and status updates, and
order fallout.

Throughout the fulfillment process, OSM in the central order management role maps
fulfillment function responses to common statuses, which are then aggregated into order
line statuses and order header status values. The status management capability updates
Siebel CRM with relevant customer status and milestone values. OSM updates Siebel
CRM when order lines reach their point-of-no-return (PoONR) to prevent the submission of
new revisions. It also updates Siebel CRM with any enrichment to order lines that may
have occurred during fulfilment. Errors may occur for many reasons. Oracle AIA reports
such errors to OSM for fallout management. Additionally, validation logic in OSM may raise
fallout incidents.

OSM detects, reports, and resolves order fulfillment fallout incidents such as system,
validation, and fulfillment errors. The Oracle approach creates trouble tickets in Siebel
CRM to take advantage of the rich natification, reporting, and management capabilities of
Siebel CRM.

The following are the steps for the functional flow of the Order-to-Activate business process for
orders coming from Oracle CPQ Cloud:

1.

A customer order is captured in Oracle CPQ Cloud. After an order capture is complete and
the order is validated in Oracle CPQ Cloud, the system submits it to OSM in the central
order management role for delivery.

Customer orders received in OSM in the central order management role are first
recognized (as Oracle AIA customer orders), mapped to fulfilment patterns, and enriched
with fulfillment metadata.

OSM in the central order management role decomposes (and transforms, if the calculate
service order solution option is used) the customer order, dividing it into suborders, called
order components, which have cross-order components, cross-order lines, and cross-order
dependencies that reflect the specific demands of the CSP.

The outcome is an order orchestration plan that is uniquely generated to match the
fulfillment needs of that order. The fulfillment flow that is produced orchestrates fulfillment
requests to different fulfillment providers (such as fulfilment system instances or stacks)
using preconfigured fulfillment functions, like sync customer, initiate and fulfill billing, and
provision order. OSM Order-to-Activate cartridges provide out of the box ready-to-use
automatic integration to Oracle AIA web services. When the BRM pre-built integration
option is in use, it takes the billing related requests (Sync Customer, Initiate and Fulfill
Billing) made by OSM in the central order management role to Oracle AlA, from Oracle AIA

1-2

Chapter 1
Overview of the Order-to-Activate Cartridges

to BRM. The Sync Customer Oracle AlA process integration also uses the OSM Account
Manager pre-built integration option to get customer account details.

5. OSM in the central order management role manages Order Lifecycle Management (OLM)
events. For cancel and revision requests, OSM generates and executes compensation
plans to efficiently match a change. OLM manages order data and status updates, and
order fallout.

6. Throughout the fulfillment process, OSM in the central order management role maps
fulfillment function responses to common statuses, which are then aggregated into order
line statuses and order header status values. The status management capability updates
Oracle CPQ Cloud with relevant customer status and milestone values. OSM updates
Oracle CPQ Cloud when order lines reach their point-of-no-return (PoNR) to prevent the
submission of new revisions. It also updates Oracle CPQ Cloud with any enrichment to
order lines that may have occurred during fulfillment. Errors may occur for many reasons.
Oracle AIA reports such errors to OSM for fallout management. Additionally, validation
logic in OSM may raise fallout incidents.

The Order-to-Activate business process is a sub-process within the Order to Cash business
process. The Order to Cash Integration Pack for OSM pre-built integration provides CSPs
deployment and integration accelerators that build on forward-looking industry methodology
and best practices. The Order to Cash Integration Pack for OSM automates Business Support
Systems (BSS) Concept to Launch and BSS Order-to-Activate processes across Siebel CRM,
Oracle CPQ Cloud, OSM, BRM, and Oracle Product Hub for Communications. For more
information about the Order to Cash business process see Oracle Application Integration
Architecture Oracle Communications Order to Cash Integration Pack Implementation Guide for
Siebel CRM, Oracle Communications Order and Service Management, and Oracle
Communications Billing and Revenue Management in the Oracle Application Integration
Architecture documentation.

Overview of the Order-to-Activate Cartridges

ORACLE

The Order to Cash Integration Pack for OSM solution integrates several Oracle applications
that play particular roles in order processing:

e Siebel CRM for order capture and trouble ticketing
e Oracle CPQ Cloud for cloud-based order capture
e OSM for order processing and service fulfillment

e Oracle Communications Design Studio for product specification definition including
fulfilment metadata and order line to fulfillment pattern mapping

e BRM for rating, billing, and revenue management
e Oracle AIA Error handling Framework for Fallout management

The order is captured by Siebel CRM or Oracle CPQ Cloud and is sent to OSM (in its central
order management role) for processing. Using the recognition rules and other entities provided
by the OSM cartridges in the Order to Cash Integration Pack for OSM solution, OSM
decomposes the order and dynamically generates an orchestration plan that is used to
manage the fulfillment of the customer's order across other enterprise systems.

To manage service fulfillment, OSM in the central order management role creates service
orders that it sends to OSM in the service order management role. Depending on the order,
recognition rules can be used again to process the order. Each service order is decomposed
into processes and tasks that handle the order fulfillment.

1-3

ORACLE

Chapter 1
Overview of the Order-to-Activate Cartridges

In the Oracle AlA solution, OSM does not directly interact with billing, CRM, or Provisioning
systems. It interacts with Oracle AIA which in turn uses BRM Application Business Connector
Service (ABCS) for billing and CRM ABCS for Siebel CRM.

For more details on Oracle AIA, Siebel CRM, Oracle CPQ Cloud and Oracle AlA interactions,
see OSM Concepts and Oracle Application Integration Architecture Oracle Communications
Order to Cash Integration Pack Implementation Guide for Siebel CRM, Oracle
Communications Order and Service Management, and Oracle Communications Billing and
Revenue Management.

Figure 1-1 illustrates the integration between the systems. The integration includes the
following:

Customer order submission from Siebel CRM and Oracle CPQ Cloud to OSM and updates
from OSM to Siebel CRM and Oracle CPQ Cloud

Siebel CRM or Oracle CPQ Cloud creates or updates customer assets internally in
response to status messages from OSM

Customer data synchronization and order billing from OSM to BRM

Service provisioning from OSM central order management to OSM service order
management

Trouble ticket logging for fallout from OSM to Siebel CRM

1-4

ORACLE

Chapter 1

Order-to-Activate Cartridge Solution Options

Figure 1-1 Order-to-Activate Cartridges System Interactions Flow

= Capturs Ordar
5 Subwmit new, Create or Update Create or
= revision, ar update order and update
2 ferllow-on trouble slalls ™ customer
E.?_; ardar tickets assats
L
b= Capture Order
5 Creale or
5 Submit Update update
o LIGHTML mSw order and §--
%] order gtalus customer
% i aszals
¥ 2
Circhastrate Crder I
Transfarm Dacampase
and enrich and Manage Manage
; orchastrata fallaut order status
arder
ardar
s ‘:*
8 Llpl:i te
: ata
% S};E:rnrﬂ:rw f_’_’_’_’_’_’_’_’_’_’ff o Initiate r:ullmg? order
ustome : i ional
o {oplicnal) Update
: 'f H 'f 4 order and
Initiate Praowision -
killing - Fulfill billing Y
. arder
{optional)
L L J L J
E Synchronize |I1-I|:I.F.|.1E Fulfill billing
o customer billing
Provision Ordar
Transfarm
= and enrich
% arder
= I Manage
% | ordar slatus
Decompose |
arder |
| I
| .
]
g * ! * Cracke AlA | i
2 Design I _ DremrinmeeEen
g sEervice | Custom integration
£ I +
} Flow within a productirols -
¥
=
% Activate APT'IITMH Fulfillment
2z senvice ac :l'__f:" o functions

The Order-to-Activate cartridge solution has two options.

Order-to-Activate Cartridge Solution Options

Calculate Service Order: This solution option includes conceptual model entities, the order
transformation manager, and Calculate Service Order. It provides access to the latest

1-5

Chapter 1
OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution

improvements in OSM and enhances the functionality of the solution. For more information
about the order transformation manager and Calculate Service Order, see OSM Concepts.

* Non-Calculate Service Order: This solution option does not include the order
transformation manager or Calculate Service Order. It is like the pre-2.1.0 versions of the
Order-to-Activate cartridges, but it also includes the conceptual model entities that were
not available before.

For more information about the conceptual model, see Design Studio Concepts.

The two options cannot be used together, so you must use the central order management
cartridges and service order management cartridges from the same option.

OSM Cartridge Types Supporting the Order to Cash Integration
Pack for OSM Solution

There are two categories of cartridges that support the Order to Cash Integration Pack for
OSM solution in OSM: productized cartridges and demonstration cartridges.

Productized cartridges are customized cartridges supplied by Oracle. They support integration
with other applications.

Demonstration cartridges demonstrate the capabilities of OSM and are preconfigured with
fulfillment patterns either in Simple or Typical topologies. See "About Fulfillment Topologies" for
more details on topologies.

Demonstration cartridges complement productized cartridges to provide a working end-to-end
sample set of product specifications and fulfillment patterns. See "Extending the Cartridges" for
more details.

OSM central order management orchestrates the fulfillment of customer orders by mapping
them to the product specifications of the demonstration cartridges.

OSM entities (recognition rules, tasks, roles, decomposition sequences, and others) play a vital
role in the Order to Cash Integration Pack for OSM solution. For more information on an entity
in a cartridge, open the entity in Design Studio and click the Information icon.

The cartridges are subclassified into central order management cartridges, or service order
management cartridges depending on the fulfillment functions they perform.

Extending the Cartridges

ORACLE

Using Design Studio, OSM enables you to extend the functionality of a productized cartridge to
have required functionality.

You can consider a demonstration cartridge as a starting point to understand the capabilities it
can offer and then plan to extend the productized cartridge according to your requirements.
You can extend a productized cartridge by adding product specifications, inheriting from
existing specifications, fulfillment patterns, decomposition sequences, and modifying other
entities.

See "Extending Order-to-Activate Cartridges " for more information on extending cartridges.

Example

If you have productized cartridges and demonstration cartridges in different namespaces with
corresponding product specification type entities, you can create a customized product
specification. To do this you can modify the product specification type entity in the

1-6

Chapter 1
Time Zones in Order-to-Activate Cartridges

demonstration cartridge and mapp it to the appropriate product specification type entity in the
productized cartridge.

To facilitate this customization, OSM derives the ProductSpec name from the property
ProductSpecMappingProperty of the OrderltemSpecifcation entity. You can then map it to
the appropriate entity in the productized cartridge under the same namespace.

Note:

A namespace is a unique qualifier that logically binds related entities, cartridges, and
specifications. To view the namespace and other details about an entity, open the
entity in Design Studio and click the Information icon.

Time Zones in Order-to-Activate Cartridges

OSM supports orders and users in multiple time zones. The time zone used by OSM is
configured on the server at system installation, and is used to time-stamp incoming and
outgoing orders and to schedule work for groups. See OSM Installation Guide for more details.

When OSM uses Order-to-Activate cartridges, the OSM server accepts and processes only
those orders that have time stamps in the Coordinated Universal Time (UTC) in the GMT time
zone (also called the Z convention). For example, 2010-03-12 08:23Z.

The Order-to-Activate cartridges support only Z convention-based fields, except for the
RequestedDeliveryDateTime field.

The RequestedDeliveryDateTime field on the ProcessSalesOrderFulfilmentEBM (incoming
customer order) is mapped to the web service API's date time field for initial order creation.
This field allows the use of the +/-hh:mm convention along with the Z convention.

The other Oracle AlA-relevant date and time fields that follow the Z convention are:

e ActualDeliveryDateTime

* ExpectedDeliveryDateTime

e EarliestDeliveryDateTime

e StartDateTime

e EndDateTime

e ServiceUsageStartDateTime
e PurchaseDate

e CycleStartDateTime

Order Creation in the Order-to-Activate Cartridges

ORACLE

In the course of processing a customer order that has been received and created by the Order-
to-Activate cartridges, the following additional orders are created automatically, in this order:

1. CloseCreationFailedTroubleTicketOrder: An order of this type is created when the
customer order is created. It determines whether there are any open trouble tickets for
previous revisions of this order. If it finds any open trouble tickets for the order, it closes
them. This order is then closed automatically.

1-7

Chapter 1
Order-to-Activate Emulators

2. ResumePendinglnBoundMessage: An order of this type is created when the customer
order transitions to the In Progress state. This order checks to see whether any messages
are waiting for the order that might have been received when the order was temporarily in
a Suspended state. If any such messages are found, they are rerouted to the normal
message queue for the provisioning order. This order is then closed automatically.

3. CloseCreationFailedTroubleTicketOrder: Another order of this type is created when a
customer order is completed successfully. It determines whether there are any open
trouble tickets for the customer order (for example, if someone has recovered from fallout
manually and not closed the trouble ticket manually). If it finds any open trouble tickets for
the order, it closes them. This order is then closed automatically.

Order-to-Activate Emulators

Emulators are included with the Order-to-Activate cartridges. These emulators enable you to
perform testing before all of the solution components are connected. An Ant build file is used to
build and deploy emulators, which are enterprise applications built and deployed into
WebLogic for central order management and service order management. There are different
sets of emulators available with the Order-to-Activate cartridges:

e The Oracle AIA emulators emulate responses from Oracle AIA when a central order
management cartridge is used in a standalone (without integration with other applications)
environment.

e The Inventory emulators emulate responses from the Unified Order Management (UIM)
software. These responses are used when service order management is used without a
connection to a live UIM system for inventory requests.

e The technical order management emulators emulate responses from a technical order
management system, such as responses to activation commands. These responses are
used when service order management is used without a connection to a live technical
order management system.

About Fulfillment Topologies

ORACLE

A fulfillment topology defines the arrangement of various network elements, processes,
systems, and software that are used to perform a complete service. The Order to Cash
Integration Pack for OSM solution comes with three sample fulfillment topology definitions:

« Simple fulfillment topology: This topology, available for both versions of the Order-to-
Activate solution supports a single instance of each fulfillment system.

* Typical fulfillment topology: This topology supports one Siebel CRM or Oracle CPQ
Cloud system, three BRM system instances, and three provisioning system instances. See
"Order-to-Activate Cartridge Solution Options” for more information about solution types.

* Complex fulfillment topology: This topology supports multiple instances of all fulfillment
systems. See "Order-to-Activate Cartridge Solution Options” for more information about
solution types.

You can use the sample fulfillment topologies as examples for configuring your own topologies
for providing order fulfillment services. You can build your own topologies depending on the
systems and instances required. Generally your fulfillment topology includes all of the systems
that participate in the order capture and order fulfillment.

OSM uses fulfillment patterns named Danube and Nile (code names for sample fulfillment
patterns), for Simple and Typical topologies, respectively. These fulfilment patterns:

1-8

Chapter 1
About Fulfillment Topologies

e Match the number of fulfillment system types used in each of the fulfilment topology
scenarios

e Stay agnostic to the number and domain of fulfillment providers, that is, the fulfillment
pattern is independent of the number of system instances participating (For instance, even
if there are three billing system instances, the fulfillment pattern for each product
specification remains the same)

« Provide fulfilment pattern variations that collectively provide significant coverage of
requirements

See OSM Concepts for more details on topologies.

Simple Fulfillment Topology

ORACLE

The Simple fulfillment topology uses one Siebel CRM or Oracle CPQ Cloud system, one BRM
system, and one provisioning system in the process of fulfilling an order.

The sample demonstration cartridge adopts the Simple fulfillment topology and Danube
fulfillment pattern in fulfilling an order. That is, in Simple fulfilment topology, the relationship
between Siebel CRM or Oracle CPQ Cloud, BRM, and central order management is set to
support communication using the Danube fulfillment pattern in fulfilling an order.

The Danube Fulfillment Pattern

The Danube fulfillment pattern is used with the Simple fulfillment topology in the OSM
fulfillment process. Figure 1-2 illustrates a smaller portion of a sample Danube fulfillment
pattern.

Figure 1-2 Danube Fulfillment Pattern

InitisteBilli ERM-ALL
Dm Top of e Waril Brcacioanc-WolP Al
WolP Sando= Pzn (&)

WolP Basic (Al
WodP Wodcamall (A
WolP Callar 10 AN '|II

[
| P rvision Order [ALL]

~OMSLETED

Infamat Samdice (5]

| Hlgh Spead kternetSasic (4]

Infarnat Seoure Fmwal (4]
Inferret amal (4] ::"-':'-=_|'E:'_
Irkmrreat acnall (A3 _'_'_'__r'"_
Irfarcet Madlke (&)
SOMEETED Irfarneh Cochant on Demand [A)
Irkmrrest Wiceo on Dermard CA]
e Mocam (4]

Wirsdess Router (&)

* The main fulfillment functions in Figure 1-2 are represented in a box and are indicated by

the bold item underlined. The activity name is followed by the target fulfilment system
instance in square brackets. For example, InitiateBilling[BRM-ALL].

e The arrows between the fulfillment functions and the fulfillment pattern represent the

dependency for starting the activity at the arrowhead end on the indicated milestone. For
example, COMPLETED.

1-9

Chapter 1
About Fulfillment Topologies

Note:

Milestones track the progress of the order fulfillment process. You can configure
the milestones for each fulfillment pattern in various topologies. OSM sends the
status updates to Siebel CRM or Oracle CPQ Cloud that include the details of the
last reached milestone for each order line item.

Dependencies are established at the order line level. For readability purposes, Figure 1-2

combines all dependencies between two order components into a single arrow.

SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add (MA) fulfillment
functions.

Note:

Each customer order line in the incoming customer order has an action code.
Some fulfillment functions process order lines only with specific action codes.

For example, SyncCustomer processes UPDATE order lines only when there are
significant updates (certain fields have updated values). The following are some
of the action codes:

Add: Adds a new instance
Update: Updates the current instance with the revised details

Move-Add: Adds a new instance after moving existing customer details to a
new location. For example, you can add a new service to an existing
customer after moving its details.

Delete: Deletes the current instance
Resume: Resumes the current instance
Suspend: Suspends the current instance

Move-Delete: Deletes an instance as part of moving the existing customer
details.

e The relevant order line item actions indicated in Figure 1-2 are a property of the fulfillment
function and not the fulfillment pattern.

Typical and Complex Fulfillment Topologies

The Typical fulfilment topology uses one Siebel CRM or Oracle CPQ Cloud system, three
BRM system instances, and three provisioning system instances in the process of fulfilling an

ORACLE

order.

The Complex fulfillment topology allows for multiple instances of any external system.

To fulfill an order in a Typical fulfilment topology, the Nile fulfillment pattern is used.

The Complex topology is similar to the Typical topology, and has one or more instance of each
type of external system, depending on options selected while installing the Order-to-Activate

cartridges.

1-10

Chapter 1
About Fulfillment Topologies

The Nile Fulfillment Pattern

The Nile fulfillment pattern is used with the Typical and Complex fulfillment topologies in the
OSM fulfillment process. The exact systems included depend on the options selected when

installing the Order-to-Activate cartridges. Figure 1-3 depicts a smaller portion of the actual
fulfillment pattern for the Typical topology.

Figure 1-3 Nile Fulfillment Pattern

ProvisionCrder [DS L] Shi er | In House
Internet Sarvice | A = Dymex Modami{ 8

High Spe=d Intern=t Basic (£) / Wirdss m{-"s' ,_,_,-.—_j__:____h
Interret Secure Fravell () f

Interret emal (4 DEFIGNED \
Internat emsil (4 — \,_‘_ InstallCrder [All]
Irerret Mediz (4 \ I-ﬁrg;dﬁ 'el:lErEt
Internet Content on Demend { & d
Interret Video on Demand (&) COMPLETED \

Doz Modam (4
Wiraless Router { 8)

g

InitiateBilling [BRIM-REZBDB]
On Top of The Waorld Broadhand-VolP (4

The main fulfillment functions in Figure 1-3 are represented in a box and are indicated by
the bold item underlined. The activity name is followed by the target fulfillment system
instance in brackets. For example, SyncCustomer[BRM-REZBDB].

The arrows between the fulfilment functions and the fulfillment pattern represent the

dependency for starting the activity at the arrowhead end on the indicated milestone. For
example, COMPLETED.

Dependencies are established at the order line item level. For readability purposes,
Figure 1-3 combines all dependencies between two order components into a single arrow.

Service Bundle (FulfillBilling processing granularity) is set to Wholeltem FulfillBilling and
OSM produces a single invocation in this case.

SyncCustomer accepts all line items, and ProvisionOrder accepts all line items except
billing-only line items.

SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add(MA) fulfillment
functions.

The relevant order line actions indicated in Figure 1-3 are a property of the fulfillment
function and not the fulfillment pattern.

For Initiate - Fulfill billing fulfilment patterns, OSM fulfillment patterns are required to

compute the new and prior values for the Start Cycle Date, Start Usage Date, and
Purchase Date.

ORACLE L1

Performing an Interactive Installation of the
Order-to-Activate Components

This chapter contains information about installing the Oracle Communications Order and
Service Management (OSM) Order-to-Activate cartridges in an OSM environment using the
interactive installer. It also provides information about uninstalling the cartridges.

Cartridge Installation Overview

The Order-to-Activate cartridges are installed into Oracle Communications Design Studio and
deployed from there onto the OSM server. For the cartridges to work properly, various entities
must be created in Oracle WebLogic Server in the server that contains OSM. An Ant script is
provided to create these entities.

The general process for installing the OSM Order-to-Activate cartridges is:

Ensure that the system requirements are met. See "System Requirements."

Perform the pre-installation tasks, which set up the Design Studio workspace in Eclipse for
the Order-to-Activate cartridges. See "Order-to-Activate Cartridge Pre-Installation Tasks."

Install the Order-to-Activate cartridges. See "Installing the Order-to-Activate Cartridges."
This activity includes:

— Importing the installation cartridge and using it to import the other Order-to-Activate
cartridges

— Configuring the WebLogic Server resources, which includes adding users and setting
up communications for OSM

If you intend to have two versions of the Order-to-Activate cartridges deployed to the same
instance, you must ensure that the appropriate version handles any new orders. See
"Post-Installation Tasks for Multiple Simultaneous Versions."

Build the cartridges and deploy them to the OSM servers. See "Building and Deploying the
Order-to-Activate Cartridges."

(Optional) Run one or more test orders to validate that the installation was successful. See
"Testing the Order-to-Activate Cartridges."

System Requirements

To install the Order-to-Activate cartridges successfully, ensure that you have the following
software installed on your local Windows system:

ORACLE

The supported version of WebLogic Server and Application Development Framework
(ADF). (See OSM Installation Guide for more information.)

OSM Software Development Kit (SDK) components.

Java JDK: Use the version of Java that matches the one being used by the OSM server.
See the discussion of software requirements in OSM Installation Guide.

2-1

Chapter 2
Order-to-Activate Cartridge Pre-Installation Tasks

Eclipse with Design Studio plug-ins: See Design Studio Installation Guide for information
about installing Design Studio plug-ins.

You must also have the following installed, either on your local Windows system or on a remote
system:

OSM server installed into the supported version of a WebLogic Server domain.

Order-to-Activate Cartridge Compatibility

To install or upgrade the Order-to-Activate cartridges, you must ensure compatibility between
the following:

The OSM software version and the Order-to-Activate cartridge version. OSM is compatible
with all cartridges developed in the same release or a previous release, including Order-to-
Activate cartridges. For information about updating Order-to-Activate cartridges from a
previous release, see "Updating Prior Versions of the Cartridges to Work with Newer
Versions of OSM."

The OSM Order-to-Activate cartridge version and the Oracle Application Integration
Architecture (Oracle AlA) Order to Cash Integration Pack for OSM version

For Order-to-Activate cartridge compatibility information see Order-to-Activate Cartridge
Product Compatibility Matrix (in the OSM Cartridges for Oracle Application Integration
Architecture section of the OSM documentation) on the Oracle Help Center website: http://
docs.oracle.com/en/industries/communications/order-service-management/index.html

Order-to-Activate Cartridge Pre-Installation Tasks

Before you install the Order-to-Activate cartridges, you must set Design Studio preferences.
The preferences settings ensure proper installation of the cartridges and the correct mapping
of applications such as WebLogic Server, Java SDK, and OSM.

ORACLE

< Note:

Be careful to set the Design Studio preferences to the correct values. If they are set
to the incorrect values, you will have to fix the values and then perform many of the
installation steps again.

To set Design Studio preferences:

1
2
3.
4

Start Design Studio.
From the Window menu, select Preferences. The Preferences dialog box is displayed.
In the Preferences navigation tree, expand Oracle Designh Studio.

Select Order and Service Management Preferences. The Order and Service
Management Preferences page includes the Deploy Properties section in which you can
provide home directories for various tools.

In the WebLogic Home field, enter or browse to the directory in which WebLogic Server is
installed, for example C:\Oracle Middleware\wlserver.

In the Java SDK Home field, enter or browse to the directory in which you have installed
the JDK for the version of Java that matches the version of Java on your OSM server, for
example, C:\Oracle Middleware\Java\jdk180_66.

2-2

http://docs.oracle.com/en/industries/communications/order-service-management/index.html
http://docs.oracle.com/en/industries/communications/order-service-management/index.html

10.

11.

12.
13.

Chapter 2
Order-to-Activate Cartridge Pre-Installation Tasks

In the OSM SDK Home field, enter or browse to the directory in which you have installed
the OSM SDK, for example, C:\Oracle Communications\OSM7\SDK.

Select Inherit significance from order contributors and Inherit keys from order
contributors.

Expand Order and Service Management Preferences and select Application
Integration Architecture (AlA) Preferences.

In the Oracle Middleware Home field, enter the directory in which you have installed
Oracle Middleware products, for example, C:\Oracle Middleware.

In the Preferences navigation tree, expand Java and select Compiler. Ensure that
Compiler compliance level is set to the appropriate value for your version of Java. For
example, if you are using Java 8, set this value to 1.8.

Under Java, select Installed JREs.

If the Java directory that you entered for Java SDK Home in step 6 is not displayed, add it
and ensure that it is selected, as shown in Figure 2-1.

Figure 2-1 Installed JREs Page (Partial)

=
type filter text Installed JREs
- Install/Updat
S Add, remove or edit JRE definitions. By default, the checked JRE is added tc
L of newly created Java projects.
. Appearance
. Build Path Installed JRE=:
. Code Styl]
oeE .t}re Mame Location Type L
. Compiler =
. Debug r =i jdkl.7.0_51 C\Program Files\Javalj... Standard VM
. Editar V| =4 jdkl.7.0_65 (d.. C\Program Files\Java\... Standard ..
. Installed JREs
IUnit
Properties Files Edite N
. Java EE L
. Java Persistence
. JawaScript
[b
F] T 3

14. Click OK.

15. From the Project menu, deselect Build Automatically.

16. If you are using WebLogic in Production mode and have a WebLogic cluster, you must
perform this step. In the domain directory on each computer containing managed servers
for your domain, create the following directories for each managed server located on that
computer:

* O2A_SAF_managedServerName
ORACLE

2-3

Chapter 2
Installing the Order-to-Activate Cartridges

* O2A_UIM_SAF_managedServerName
e O2A_TOM_SAF_managedServerName

For example, if the current computer contains the first two managed servers, which are
named osm_ms01 and osm_ms02, you would add the following directories in that domain
directory:

e O2A_SAF_osm_ms01

« O2A_UIM_SAF_osm_ms01
* O2A_TOM_SAF_osm_ms01
e O2A_SAF_osm_ms02

* O2A_UIM_SAF_osm_ms02
* O2A_TOM_SAF_osm_ms02

Then, if managed servers osm_ms03 and osm_ms04 were located on another computer,
you would go to the domain directory on that computer and add directories for osm_ms03
and osm_msO04 there.

Installing the Order-to-Activate Cartridges

This section describes how to install the Order-to-Activate cartridges.

Before installing the Order-to-Activate cartridges, read the following sections:

Cartridge Installation Overview
System Requirements

Order-to-Activate Cartridge Pre-Installation Tasks

Getting the Installation Package

To get the Order-to-Activate installation package:

1.

Go to the Oracle software delivery website:
https://edelivery.oracle.com/

In the Product field, select Oracle Communications Order and Service Management
Cartridge for Provisioning Fulfillment and select your platform.

Download the installer file for the Oracle Communications Order and Service
Management Cartridges for Application Integration Architecture.

Unzip the downloaded file into a directory on your Windows system. The
OracleComms_OSM_O2A_Cartridgesinstaller_byyyymmdd.zip file is created.

Unzip OracleComms_OSM_O2A_Cartridgesinstaller_byyyymmdd.zip. The OSM.PIP
directory containing the OracleComms_OSM_O2A_Install.zip file is created.

Continue with the "Importing the Installation Cartridge and Configuring the Installation Build
File" procedure.

Importing the Installation Cartridge and Configuring the Installation Build File

To import the installation cartridge and configure the installation build file:

1.

ORACLE

Start Design Studio.

2-4

https://edelivery.oracle.com/

10.
11.

12.
13.

14.
15.

Chapter 2
Installing the Order-to-Activate Cartridges

From the Studio menu, select Show Design Perspective.

From the Window menu, select Show View, and then select Other.

The Show View window is displayed.

Expand Ant and select Ant from below it. Click OK.

The Ant view opens.

From the File menu, select Import Studio Project.

The Import Projects dialog box is displayed.

Select Select archive file and click Browse.

Browse to the OSM.PIP directory and select OracleComms_OSM_O2A _Install.zip.
Click Open.

The OracleComms_OSM_O2A _Install project is displayed and selected in the Projects
field.

Click Finish.

The OracleComms_OSM_O2A _Install project is imported.

Open the Ant view.

Right-click in the Ant view and select Add Buildfiles.

The Buildfile Selection dialog box is displayed.

Expand OracleComms_OSM_O2A _Install and select OSM.O2A.Installation.xml.
Click OK.

The OSM.O2A.Installation item is displayed in the Ant view.

Right-click OSM.O2A.Installation and select Run As.

Select Ant Build... (not Ant Build), as shown in Figure 2-2.

Figure 2-2 Run As Menu

&, Overview 0= Outline & Progress #§ Ant i3 o o 8 QO ¥ g2 = B
- |48 OSM.02A Installation [OracleComms OSM_O02A_Install/OSM.02A Installation smil]
Open With k

ORACLE

Add Buildfiles...

Rernowve Buildfile
Rernowve All Buildfiles
Refresh Buildfiles

Profile As k

Debug As 3

Run As r BE 1 Run on Server Alt+5hift+X, R
Validate s 2 Ant Build Alt+5Shift+X, Q
Open Javadoc Wizard... % 3 Anﬁuild...

Team " External Tools Configurations...

e Al .

2-5

16.
17.

18.
19.
20.

Chapter 2
Installing the Order-to-Activate Cartridges

The Edit Configuration dialog box is displayed.
Click the Build tab and deselect Build before launch.

Click the Properties tab and deselect Use global properties as specified in the Ant
runtime preferences.

Click the JRE tab and select Run in the same JRE as the Workspace.
Click Close and click Yes.

Continue with the appropriate procedure to import the cartridges. The Order-to-Activate
cartridge solution has two options: one includes the order transformation manager and
Calculate Service Order. The other option does not include the order transformation
manager or Calculate Service Order. You must decide which version you want to use
before importing any cartridges. See "Order-to-Activate Cartridge Solution Options" for
more information about the solution types.

* To use the version of the Order-to-Activate cartridges that include the order
transformation manager and Calculate Service Order, continue with the "Importing the
OSM Order-to-Activate Cartridges for the Calculate Service Order Solution Option"
procedure.

* To use the version of the Order-to-Activate cartridges that does not include the order
transformation manager and Calculate Service Order, continue with the "Importing the
OSM Order-to-Activate Cartridges for the Solution Option Without Calculate Service
Order" procedure.

Importing the OSM Order-to-Activate Cartridges for the Calculate Service
Order Solution Option

ORACLE

To import the OSM Order-to-Activate cartridges for the Calculate Service Order solution option:

1
2
3.
4

Ensure that Design Studio is running.

In the Ant view, expand OSM.O2A.Installation and double-click import_Solution.
In the first Ant Input Request window, enter y and click OK.

In the second Ant Input Request window, do one of the following:

e To import the central order management cartridges to the current workspace, enter ¢
and click OK.

e To import the service order management cartridges to the current workspace, enter s
and click OK.

e To import both the central order management and service order management
cartridges to the current workspace, enter a and click OK.

The cartridges appropriate for the settings you selected are imported into the workspace.
This may take a few minutes.

Note:

If you configure central order management and service order management on
different OSM instances, make sure you configure AlA to use both endpoints
appropriately.

2-6

5.

6.

Chapter 2
Installing the Order-to-Activate Cartridges

If you see a message indicating that the Python interpreter is not configured, do one of the
following:

« If you do not need to use Python for your custom configuration, click Don't ask again.
You do not need to configure this for the Order-to-Activate configuration.

* If you need to use Python for your custom configuration, click Manual config and
configure Python according to your needs and environment.

Continue with the "Configuring WebLogic Server Resources" procedure.

Importing the OSM Order-to-Activate Cartridges for the Solution Option
Without Calculate Service Order

To import the OSM Order-to-Activate cartridges for the solution option without Calculate
Service Order:

1
2
3.
4

6.

Ensure that Design Studio is running.

In the Ant view, expand OSM.O2A.Installation and double-click import_Solution.
In the first Ant Input Request window, enter n and click OK.

In the second Ant Input Request window, do one of the following:

e To import central order management cartridges to the current workspace, enter ¢ and
click OK.

e To import service order management cartridges to the current workspace, enter s and
click OK.

e To import both central order management and service order management cartridges to
the current workspace, enter a and click OK.

Note:

If you configure central order management and service order management on
different OSM instances, make sure you configure AlA to use both endpoints
appropriately.

In the third Ant Input Request window, do one of the following:

* To import cartridges for the Complex topology, enter ¢ and click OK.
e To import cartridges for the Typical topology, enter t and click OK.

* To import cartridges for the Simple topology, enter s and click OK.

The cartridges appropriate for the settings you selected are imported into the workspace.
This may take a few minutes.

Continue with the "Configuring WebLogic Server Resources" procedure.

Configuring WebLogic Server Resources

This section describes how to configure the WebLogic Server resources, which also configures
the metadata for the composite cartridge.

ORACLE

2-7

Chapter 2
Installing the Order-to-Activate Cartridges

Note:

This procedure must be performed on each workspace you are using for the solution.
Because of this, if you have central order management and service order
management in separate workspaces, you must perform this procedure twice: once
for each of these workspaces.

To configure the WebLogic Server resources:

1. Ensure that Design Studio is running.
2. Open the Ant view.

3. Find the one row in Table 2-1 that matches whether you want to use calculate service
order; whether your current workspace is for central order management (COM), service
order management (SOM), or both; and your desired topology. For the cartridge listed in
the corresponding "Cartridge containing SolutionConfig.xml" column of the table:

a. Right-click in the Ant view and select Add Buildfiles.
The Buildfile Selection dialog box is displayed.

b. Expand the appropriate cartridge from Table 2-1 and click on the SolutionConfig.xml
file.

c. Click OK.

Table 2-1 Solution Configurations and Corresponding Cartridge Containing SolutionConfig.xml

Using Calculate Current Workspace | Topology Cartridge Containing SolutionConfig.xml

Service Order Is for:

Option?

Yes COM only All OracleComms_OSM_02A COM_CSO_Solution

Yes SOM only All OracleComms_OSM_02A SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_02A COMSOM_CSO_Solution

No COM only Simple OracleComms_OSM_0O2A_COM_Simple_NP_Soln

No COM only Typical or OracleComms_OSM_O2A COM_Typical_NP_Soln
Complex

No SOM only All OracleComms_OSM_0O2A _SOM_NP_Soln

No COM and SOM Simple OracleComms_OSM_0O2A_COMSOM_Simple_NP_Soln

No COM and SOM Typical or OracleComms_OSM_0O2A_COMSOM_Typical_NP_Soln
Complex

ORACLE

The XML file is displayed in the Ant view. The SolutionConfig.xml file is listed as the
name of the cartridge it was added from. For example, if you added the

SolutionConfig.xml file from OracleComms_OSM_0O2A_COMSOM_SimpleSolution, it

is listed in the Ant view as OracleComms_OSM_O2A_COMSOM_SimpleSolution.

Configure the build file for the SolutionConfig.xml file you have added:

a. Inthe Ant view, right-click the name of the cartridge for the SolutionConfig.xml file
and select Run As.

b. Select Ant Build... (not Ant Build).

The Edit Configuration dialog box is displayed.

Chapter 2
Installing the Order-to-Activate Cartridges

Click the Build tab and deselect Build before launch.

Click the Properties tab and deselect Use global properties as specified in the Ant
runtime preferences.

Click the JRE tab and select Run in the same JRE as the Workspace.
Click Close and click Yes.

Right-click the name of the cartridge for the SolutionConfig.xml file and select Run
As again.

Select Ant Build... (not Ant Build).
The Edit Configuration dialog box is displayed.

Note:

It is necessary to close and reopen the Edit Configuration dialog box
because after you have deselected the Use global properties... check box,
Eclipse prevents you from changing the properties until you close and re-
open the Edit Configuration dialog box.

Click the Properties tab and set the property values according to Table 2-2.

Note:

Do not change any properties that are not listed in Table 2-2.

Table 2-2 Configuration Properties in the Properties Tab

Property Name

Description Notes

aia.emulator.serverName

Name of the cluster or server within WebLogic | Always set this property if you are
Server to which you want to deploy the installing the Oracle AIA emulators.
emulators. Set this to one of the following:

* If OSMis installed to a cluster, set this
value to the name of the cluster.

* If OSMis installed to the administration
server, set this to the name of the
administration server.

* If OSMis installed to a single managed
server, set this value to the managed
server name.

If both central order management and service

order management are in the same OSM

server instance, set this to the name of the
cluster or server for the single OSM instance.

If central order management and service order
management are in different OSM server
instances, set this to the name of the cluster or
server for central order management in the
central order management build file or to the
name of the cluster or server for service order
management in the service order management
build file.

ORACLE

2-9

Table 2-2 (Cont.) Configuration Properties in the Properties Tab

Property Name

Description

Chapter 2
Installing the Order-to-Activate Cartridges

Notes

cf.adminServerListenAddress

Host name of the system where WebLogic
Server for central order management is
running. If you are in a clustered environment,
set this to the server where the administration
server is located.

Set this if the name of the cartridge
associated with the build file contains
COM or COMSOM.

cf.adminServerListenPort

Port on which WebLogic Server for central
order management is listening. For a clustered
environment, set this to the port on which the
administration server is listening.

Set this if the name of the cartridge
associated with the build file contains
COM or COMSOM.

cf.clusterName

Name of the cluster for central order
management, exactly as it is shown in the
WebLogic Server Administration Console.

Set this if the name of the cartridge
associated with the build file contains
COM or COMSOM and you are in a
clustered WebLogic environment.

cf.userName

Name of a user with administrative privileges
on the WebLogic Server for listening on the
port specified by
cf.adminServerListenAddress and
cf.adminServerListenPort.

Set this if the name of the cartridge
associated with the build file contains
COM or COMSOM.

If.adminServerListenAddress

Host name of the system where WebLogic
Server for service order management is
running. If you are in a clustered environment,
set this to the server where the administration
server is located.

Set this if the name of the cartridge
associated with the build file contains
SOM.

If.adminServerListenPort

Port on which WebLogic Server for service
order management is listening. For a clustered
environment, set this to the port on which the
administration server is listening.

Set this if the name of the cartridge
associated with the build file contains
SOM.

If.clusterName

Name of the cluster for service order
management, exactly as it is shown in the
WebLogic Server Administration Console.

Set this if the name of the cartridge
associated with the build file contains
SOM and you are in a clustered
WebLogic environment.

If.userName

Name of a user with administrative privileges
on the WebLogic Server listening on the port
specified by If.adminServerListenAddress
and If.adminServerListenPort.

Set this if the name of the cartridge
associated with the build file contains
SOM.

j- Click Close and click Yes.

5. Inthe Ant view, expand the name of the cartridge you are configuring and double-click the
config_All target.

6. The first Ant Input Request window requests the WebLogic administrator user password.
Enter the password for the user you entered in cf.userName or If.userName (whichever
value you configured for the build file you are running). Click OK.

7. Inthe second Ant Input Request window, enter y to use the same password for all of the
users being created or enter n to use a different password for each user. Click OK.

8. Enter the passwords requested for the Order-to-Activate users by doing the following:

ORACLE

2-10

ORACLE

10.

11.

12.

Chapter 2
Installing the Order-to-Activate Cartridges

Note:

Ensure that the passwords you enter meet the security requirements of your
WebLogic Server domain. By default, the WebLogic Server requires passwords
of at least eight characters, with at least one numeric or special character.
However, the requirements for your domain may be different.

e Ifyou entered y in step 7 to use the same passwords for all users, enter the common
password for the Order-to-Activate users and click OK.

e If you entered n in step 7 to use different passwords for each user, you are prompted
for passwords for the following users: COM user (the username in the WebLogic
Administration Console is osm), COM Order Event user (osmoe), COM Data Change
Event user (osmde), COM Fallout user (osmfallout), SOM user (osmif), SOM Order
Event user (osmoelf), and SOM Order Abort user (osmlfaop). Enter the passwords
and click OK after each entry.

After you have entered all passwords, the system creates the users in the WebLogic
domain. This may take a few minutes.

Note:

Although config_All has now created users in the WebLogic Server domain, it is
still possible to cancel config_All at a later point and rerun it. If config_All finds
the users are already present in the domain, it will skip adding them again and
will continue with the rest of the configuration process.

In the next Ant Input Request window, enter s if you are using a standalone WebLogic
Server environment for OSM or enter c if you are using a clustered environment for OSM.
Click OK.

In the next Ant Input Request window, specify whether you intend to connect to Oracle
AlA. Enter d (for development environment) if you do not intend to connect to Oracle AIA
or enter p (for production environment) if you intend to connect to Oracle AlA. Click OK.

Queues are created in the WebLogic Server. This may take several minutes.

If you selected d in step 10, in the next Ant Input Request window, enter d to deploy
emulators or enter n to skip deploying the emulators. Click OK and go to step 13.

Internal changes are implemented. This may take a few minutes.
If you selected p in step 10, do the following:
a. Inthe next Ant Input Request window, do one of the following:

If Oracle AIA is deployed to the administration server, enter the host name and port of
the administration server for Oracle AlA.

If Oracle AlA is deployed to a single managed server, enter the host name and port of
the managed server for Oracle AlA.

If Oracle AlA is deployed to a cluster, enter the host names and ports of all of the
managed servers in the Oracle AlA cluster in the following format:

hostname:port,hostname:port, hostname:port

For example:

2-11

ORACLE

Chapter 2
Installing the Order-to-Activate Cartridges

serverl.host.com:7101, serverl.host.com:7201, server2.host.com:7101
Click OK.

In the next Ant Input Request window, enter the user name that OSM (in the role you
are currently configuring: central order management if the current build file contains
COM or COMSOM, or service order management if the current build file contains
SOM) uses to connect to Oracle AIA, and click OK. This user name is the one that is
used to make the JMS connection to Oracle AlA.

In the next Ant Input Request window, enter the password for the user name you
entered in step 12.c, and click OK.

Note:

If you want to change this user name or password later, go into the WebLogic
Server Administration console, access the JMS Module oms_jms_module,
click O2A_RemoteSAFContext, and modify the user name and password
there.

In the next Ant Input Request window, do one of the following to specify the server to
contain the SAF agent for Oracle AlA:

If OSM (in the role you are currently configuring: central order management if the
current build file contains COM or COMSOM, or service order management if the
current build file contains SOM) is deployed to the administration server, enter the
name of the administration server for OSM.

If OSM is deployed to a single managed server, enter the name of the managed server
for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

Internal changes are implemented. This may take a few minutes.

13. If the name of the cartridge associated with the current build file contains SOM (but not
COMSOM), and you are using the option without calculate service order, go to step 19.

14.

15.

If the name of the cartridge associated with the current build file contains COM or
COMSOM, you are using the option without calculate service order, and you are using
Simple topology, go to step 17.

If the name of the cartridge associated with the current build file contains COM or
COMSOM, you are using the option without calculate service order, and you are using
either Typical or Complex topology, do the following:

a.

In the next Ant Input Request window, enter t to use Typical topology or enter ¢ to use
Complex topology, and click OK.

If you entered t for Typical topology, go to step 17.
If you entered ¢ for Complex topology, do one of the following and click OK:

Enter s to use a topology that has multiple billing and provisioning systems and one
each of install and shipping systems.

Enter m to use a topology that has multiple billing, provisioning, install, and shipping
systems.

Enter n to use a topology that has multiple billing, provisioning, and shipping systems
and one install system.

2-12

ORACLE

d.

Chapter 2
Installing the Order-to-Activate Cartridges

Enter p to use a topology that has multiple billing, provisioning, and install systems and
one shipping system.

Go to step 17.

16. If the name of the cartridge associated with the current build file contains COM or
COMSOM and you are using the calculate service order option, do the following:

a.

In the next Ant Input Request window, enter s to use Simple topology, enter t to use
Typical topology, or enter ¢ to use Complex topology, and click OK.

If you entered s for Simple topology or t for Typical topology, go to step 19.

If you entered ¢ for Complex topology, do one of the following in the next Ant Input
Request window and click OK:

Enter s to use a topology that has multiple billing and provisioning systems and one
each of install and shipping systems.

Enter m to use a topology that has multiple billing, provisioning, install, and shipping
systems.

Enter n to use a topology that has multiple billing, provisioning, and shipping systems
and one install system.

Enter p to use a topology that has multiple billing, provisioning, and install systems and
one shipping system.

17. If the name of the cartridge associated with the current build file contains COM (but not
COMSOM), or if you are using the option without calculate service order, go to step 19.

18. If the name of the cartridge associated with the current build file contains SOM or
COMSOM, and you are using the calculate service order option, do the following.

Note:

In any of the steps below, "OSM" refers to the instance of OSM related to the
buildfile you are configuring: service order management if the current build file
contains SOM, or a combined central order management and service order
management environment if the current build file contains COMSOM.

In the next Ant Input Request window, enter s if you are using a standalone WebLogic
Server environment for OSM or enter ¢ if you are using a clustered environment for
OSM. The answer you give here should always be the same as the answer you gave
in step 9, because you are referring to the same OSM environment. Click OK.

In the next Ant Input Request window, do one of the following, and click OK:

Enter | (the lower-case letter L) if you want a development environment without
installing the Oracle Communications Unified Inventory Management (UIM) (inventory)
emulator.

Enter d if you want a development environment and you want to deploy the UIM
emulator.

Enter p (for production environment) if you intend to connect to UIM.

Enter x if the connection to UIM is going to be installed by the Oracle Communications
Rapid Service Design and Order Delivery (RSDOD) installer.

In the next Ant Input Request window, enter the name of the UIM application user. If
you intend to connect to a live instance of UIM, use a user name that is (or will be) also

2-13

Chapter 2
Installing the Order-to-Activate Cartridges

configured as a user for the UIM product (see the UIM documentation for more
information). Click OK.

d. Inthe next Ant Input Request window, enter the password for the UIM application user,
and click OK.

Note:

If you want to change this user name or password later, use the available
WebLogic Server tools to change the appropriate entry in the credential
store.

e. Ifyou selected |, d, or x in step 18.b, go to step 18.].

f. If you selected p in step 18.b, in the next Ant Input Request window, do one of the
following to specify the server to contain the SAF agent for UIM/inventory:

If OSM is deployed to the administration server, enter the name of the administration
server for OSM.

If OSM is deployed to a single managed server, enter the name of the managed server
for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

g. Ifyou selected p in step 18.b, in the next Ant Input Request window, do one of the
following:

If UIM is deployed to the administration server, enter the host name and port of the
administration server for UIM.

If UIM is deployed to a single managed server, enter the host name and port of the
managed server for UIM.

If UIM is deployed to a cluster, enter the host names and ports of all of the managed
servers in the UIM cluster in the following format:

hostname:port,hostname:port, hostname:port

For example:
serverl.host.com:7101,serverl.host.com:7201,server2.host.com:7101

h. If you selected p in step 18.b, in the next Ant Input Request window, enter the user
name that OSM uses to connect to UIM, and click OK. This user name is the one that
is used to make the JMS connection to UIM.

i. Ifyou selected p in step 18.b, in the next Ant Input Request window, enter the
password for the user name you entered in step 18.h, and click OK.

Note:

If you want to change this user name or password later, go into the WebLogic
Server Administration console, access the JMS Module oms_jms_module,
click O2A_UIM_RemoteSAFContext, and modify the user name and
password there.

j- Inthe next Ant Input Request window, enter s if you are using a standalone WebLogic
Server environment for OSM or enter c if you are using a clustered environment for

ORACLE 514

ORACLE

Chapter 2
Installing the Order-to-Activate Cartridges

OSM. The answer you give here should always be the same as the answer you gave
in step 9, because you are referring to the same OSM environment. Click OK.

In the next Ant Input Request window, do one of the following, and click OK:

Enter I (the lower-case letter L) if you want a development environment without
installing the technical order management (activation) emulator.

Enter d if you want a development environment and you want to deploy the technical
order management emulator.

Enter p (for production environment) if you intend to connect to the technical order
management system.

Enter x if the connection to technical order management is going to be installed by the
RSDOD installer.

In the next Ant Input Request window, enter the name of the technical order
management application user. If you intend to connect to a live instance of a technical
order management system, use a user name that is (or will be) also configured as a
user for the technical order management system. Click OK.

In the next Ant Input Request window, enter the password for the technical order
management application user, and click OK.

Note:

If you want to change this user name or password later, use the available
WebLogic Server tools to change the appropriate entry in the credential
store.

If you selected I, d, or x in step 18.k, go to step 19.

If you selected p in step 18.k, in the next Ant Input Request window, do one of the
following to specify the server to contain the SAF agent for technical order
management:

If OSM is deployed to the administration server, enter the name of the administration
server for OSM.

If OSM is deployed to a single managed server, enter the name of the managed server
for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

If you selected p in step 18.k, in the next Ant Input Request window, do one of the
following:

If technical order management is deployed to the administration server, enter the host
name and port of the administration server for technical order management.

If technical order management is deployed to a single managed server, enter the host
name and port of the managed server for technical order management.

If technical order management is deployed to a cluster, enter the host names and ports
of all of the managed servers in the technical order management cluster in the
following format:

hostname:port,hostname:port, hostname:port

For example:

serverl.host.com:7101,serverl.host.com:7201,server2.host.com:7101

2-15

Chapter 2
Post-Installation Tasks for Multiple Simultaneous Versions

g. If you selected p in step 18.k, in the next Ant Input Request window, enter the user
name that OSM uses to connect to technical order management, and click OK. This
user name is the one that is used to make the JMS connection to technical order
management.

r. If you selected p in step 18.k, in the next Ant Input Request window, enter the
password for the user name you entered in step 18.q, and click OK.

Note:

If you want to change this user name or password later, go into the WebLogic
Server Administration console, access the JMS Module oms_jms_module,
click O2A_TOM_RemoteSAFContext, and modify the user name and
password there.

19. Wait while the system configures the rest of the WebLogic resources. This may take a few
minutes.

< Note:

There is no further configuration needed for the SAF communication to work.
Some previous versions of the Order-to-Activate cartridges required further
external configuration, but this is no longer required.

20. When the config_All process is finished, shut down any affected WebLogic domains and
restart them.

Note:

If you have made a mistake setting the Design Studio preferences and it causes this
procedure to fail, the Console view in Design Studio will display "BUILD FAILED."
First, correct the preferences using the instructions in "Order-to-Activate Cartridge
Pre-Installation Tasks." Next, go to the Properties tab of the Edit Configuration dialog
box, select Use global properties as specified in the Ant runtime preferences to
update the values, and then deselect Use global properties as specified in the Ant
runtime preferences again. Then, select Clean from the Project menu and clean
and build the OracleComms_OSM_0O2A _Install project. Exit and restart Design
Studio, and then begin the procedure for configuring the WebLogic Server resources
again.

Post-Installation Tasks for Multiple Simultaneous Versions

ORACLE

If you intend to have multiple versions of the Order-to-Activate cartridges deployed to the same
OSM instance, you must change the relevancy of the recognition rules that you want to use to
handle new orders.

The recognition rules that are provided with the Order-to-Activate cartridges depend on the
type of installation you have chosen. Table 2-3 provides links to more information about the
cartridges containing the provided recognition rules:

2-16

Chapter 2
Building and Deploying the Order-to-Activate Cartridges

Table 2-3 Recognition Rule Cartridges

Cartridge

Deployment Configuration

e

OracleComms_OSM_O2A_COM_Recognition_Sampl | Central-order-management-only OSM instance, with or without

Calculate Service Order

tion

OracleComms_OSM_0O2A COMSOM_CSO_Recogni | Central order management and service order management on the

same OSM instance, with Calculate Service Order

ample

OracleComms_OSM_O2A COMSOM_Recognition_S | Central order management and service order management on the

same OSM instance, without Calculate Service Order

OracleComms_OSM_0O2A_SOM_CSO_Recognition | Service-order-management-only OSM instance, with Calculate

Service Order

e

OracleComms_OSM_0O2A SOM_Recognition_Sampl | Service-order-management-only OSM instance, without Calculate

Service Order

You must increase the value of the Relevancy field in all of the recognition rules in the relevant
cartridge for the version of the Order-to-Activate cartridges you wish to use to process new
orders. For more information about the Relevancy field, see the discussion of the Order
Recognition Rule editor in the Design Studio Modeling OSM Orchestration Help.

Building and Deploying the Order-to-Activate Cartridges

ORACLE

Note:

The WebLogic Server resources must be configured in the target environment before
you can build and deploy the Order-to-Activate cartridges. See "Configuring
WebLogic Server Resources."

To build and deploy the Order-to-Activate cartridges:

1.
2.
3.

Start Design Studio.

In the Project menu, ensure that Build Automatically is deselected.
From the Project menu, select Clean.

The Clean window is displayed.

Ensure that Clean all projects, Start a build immediately, and Build the entire
workspace are all selected, and click OK.

Ensure that all of the cartridges have built successfully by looking for "BUILD
SUCCESSFUL" in the Console view and ensuring that there are no error markers for the
cartridges in the Problems view.

Create a new Studio environment project and a new Studio environment. See the Design
Studio Help for details on creating a Studio Environment project and a Studio environment.

2-17

Chapter 2
Testing the Order-to-Activate Cartridges

Note:

to the central order management cluster or standalone server and the other
pointing to the service order management cluster or standalone server.

If you are deploying central order management and service order management to
different OSM server instances, you need two environment entities: one pointing

If you are connecting to a WebLogic Server cluster, use the proxy port in the connection

address in the Studio Environment editor.
7. From the Studio menu, select Show Environment Perspective.

8. Open the Design Studio environment in which the cartridges are to be deployed.

The Cartridge Management section is displayed and shows a list of available cartridges.

9. Find the one or more rows in Table 2-4 that match whether you want to use calculate

service order; whether your current workspace is for central order management (COM),
service order management (SOM), or both; and your desired topology. For the cartridge

listed in the corresponding "Cartridge to Deploy from Workspace" column of the table,
Deploy.

If you have central order management and service order management the same
workspace, you should deploy the cartridges for both central order management and
service order management to the same OSM instance. If you have central order

click

management and service order management in different workspaces, you can deploy them

to either separate OSM instances or the same OSM instance.

Table 2-4 Solution Configurations and Corresponding Cartridge to Deploy

Using Calculate Current Workspace | Topology Cartridge to Deploy from Workspace

Service Order Is for:

Option?

Yes COM only All OracleComms_OSM_0O2A _COM_CSO_Solution

Yes SOM only All OracleComms_OSM_0O2A_SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_0O2A_COMSOM_CSO_Solution

No COM only Simple OracleComms_OSM_0O2A_COM_Simple_NP_Soln

No COM only Typical or OracleComms_OSM_O2A_COM_Typical_NP_Soln
Complex

No SOM only All OracleComms_OSM_02A SOM_NP_Soln

No COM and SOM Simple OracleComms_OSM_0O2A_COMSOM_Simple_NP_Soln

No COM and SOM Typical or OracleComms_OSM_0O2A_COMSOM_Typical_NP_Soln
Complex

When the cartridges have finished deploying, a confirmation dialog box is displayed.

See the Design Studio Help for more details on deploying cartridges.

Testing the Order-to-Activate Cartridges

ORACLE

To test the Order-to-Activate cartridges:

1. Open Design Studio in the Cartridge or Package Explorer view.

2-18

Switching

ORACLE

Chapter 2
Switching Between Live and Emulator Configurations

If you have already connected to the environment with a user other than osm, do the
following:

a. Right-click the cartridge containing the sales orders for your solution:

For the calculate service order solution option:
OracleComms_OSM_0O2A_COM_CSO_SalesOrders

For the service option without calculate service order:
OracleComms_OSM_O2A_SalesOrders_NP_Sample

b. Select Submit Test, then select the Studio environment for your central order
management instance, and then select Clear Environment Credentials.

Then submit the test order by doing the following:
a. Right-click the cartridge containing the sales orders for your solution:

For the calculate service order solution option:
OracleComms_OSM_0O2A_COM_CSO_SalesOrders

For the service option without calculate service order:
OracleComms_OSM_O2A_SalesOrders_NP_Sample

b. Select Submit Test, then select the Studio environment for your central order
management instance, and then select the order that you would like to submit.

The Test Environment Connection dialog box is displayed.

For information about the test orders, see
"OracleComms_OSM_0O2A COM_CSO_SalesOrders" or
"OracleComms_OSM_0O2A SalesOrders_NP_Sample."

In the User Name field, enter osm.
In the Password field, enter the password for the osm user.

If the test is successful, the order is submitted and the OSM Order Management web client
is launched in Design Studio.

Log in to the Order Management web client with your OSM user credentials.

The Orchestration plan, order summary, and other details are displayed.

Between Live and Emulator Configurations

If you initially configured your system to connect to emulators and would like to change to
using live configurations, or vice versa, remove the existing queues and create new queues
using the following procedure.

To switch between live and emulator configurations:

1.

Start Design Studio with the workspace from which you deployed the Order-to-Activate
cartridges.

Open the Ant view.

In the Ant view, expand the SolutionConfig.xml build file for your workspace. The name
of the build file will be the name of the cartridge it was added from, as indicated in
Table 2-1.

If necessary, configure any build file properties that might have changed since the
cartridges were deployed. For example, a password might have changed. See step 4 in
"Configuring WebLogic Server Resources” for more information about configuring the build
file.

2-19

5.

Chapter 2
Configuring a Workspace Without Configuring WebLogic Server

Double-click the unconfig_Resource target for the build file.

Note:

The values you enter in this step should be the values that are currently
configured for the solution, not any values you want to use in the future. The
unconfig_Resource target is requesting information about what it should
remove.

In the first Ant Input Request window, enter the password for the WebLogic administrator
user name specified by the cf.userName or If.userName (whichever value you configured
for the build file you are running) property in the build file configuration. Click OK.

In the second Ant Input Request window, enter s if you are using a standalone WebLogic
Server environment or enter ¢ if you are using a clustered environment. Click OK.

In the next Ant Input Request window, specify whether you intend to connect to Oracle
AlA. Enter d (for development environment) if you do not intend to connect to Oracle AIA
or enter p (for production environment) if you intend to connect to Oracle AIA. Click OK.

The system removes WebLogic queue configuration. This may take a few minutes.

Perform the steps in "Configuring WebLogic Server Resources." When you are prompted
for information about whether you want to use emulators or connect to a live system, select
the options you would like to use going forward. Existing WebLogic Server users will not be
removed or re-created in this process.

Configuring a Workspace Without Configuring WebLogic Server

You can configure a workspace to contain the Order-to-Activate cartridges without configuring
a WebLogic Server domain. You might do this if more than one person will be using Design
Studio with the same instance of OSM. To do this, first follow the instructions located in these
sections:

ORACLE

Getting the Installation Package
Importing the Installation Cartridge and Configuring the Installation Build File

Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order Solution
Option

or

Importing the OSM Order-to-Activate Cartridges for the Solution Option Without Calculate
Service Order

Then, do the following:

1.

In the Ant view, expand the name of the cartridge you are configuring and double-click the
config_Metadata_And_ModelVariable target.

* If you are using the solution option without calculate service order, the target runs
without any prompts and the process is complete.

» If you are using the calculate service order solution option, continue with the rest of the
steps in this procedure.

In the first Ant Input Request window, enter s to use Simple topology, enter t to use Typical
topology, or enter ¢ to use Complex topology, and click OK.

2-20

3.

Chapter 2
Uninstalling Order-to-Activate Components

« If you selected the Simple or Typical topology, the target runs without any further
prompts and the process is complete.

* If you selected Complex topology, continue with the rest of the steps in this procedure.

If you entered ¢ for Complex topology, do one of the following in the next Ant Input
Request window and click OK:

* Enter s to use a topology that has multiple billing and provisioning systems and one
each of install and shipping systems.

* Enter m to use a topology that has multiple billing, provisioning, install, and shipping
systems.

« Enter n to use a topology that has multiple billing, provisioning, and shipping systems
and one install system.

* Enter p to use a topology that has multiple billing, provisioning, and install systems and
one shipping system.

The target runs without any further prompts and the process is complete.

Uninstalling Order-to-Activate Components

You can uninstall the Order-to-Activate components that are no longer needed by undeploying
the cartridges and deleting the Oracle AIA emulators.

Undeploying Cartridges

You can undeploy an individual cartridge that is not required. See the Design Studio Modeling
OSM Processes Help for information about how to undeploy individual cartridges.

To undeploy all of the cartridges, undeploy any composite cartridges that you have in your
workspace. The composite cartridges provided as part of the Order-to-Activate cartridges are
listed below.

OracleComms_OSM_0O2A COM_CSO_Solution
OracleComms_OSM_0O2A_COM_SimpleSolution
OracleComms_OSM_O2A_COM_TypicalSolution
OracleComms_OSM_0O2A_COMSOM_SimpleSolution
OracleComms_OSM_0O2A_COMSOM_TypicalSolution
OracleComms_OSM_0O2A SOM_CSO_Solution
OracleComms_OSM_0O2A SOM_Solution

Deleting the Oracle AIA Emulator

To delete an Oracle AIA emulator:

ORACLE

1.
2.
3.

Ensure that the WebLogic Server is running.

Open the WebLogic Server Administration Console.
Click the Deployments link.

The Summary of Deployments page is displayed.

From the Deployments table, select the emulator to delete.

2-21

Chapter 2
Uninstalling Order-to-Activate Components

5. Click Stop.
6. Click Delete.

A confirmation dialog box is displayed.
7. Click OK.

Removing the Inventory and Technical Order Management Emulators

To undeploy the inventory and technical order management emulators:

1. Ensure that Design Studio is running and that you are in the workspace that contains the
service order management cartridges.

2. Inthe Ant view, expand the cartridge name and double-click
unconfig_inv_tom_MDBs_Emulators.

The inventory and technical order management queues will be removed and the inventory
and technical order management emulators will be undeployed.

ORACLE 599

Performing a Silent Installation of the Order-to-
Activate Cartridges

This chapter contains information about installing and deploying the Oracle Communications
Order and Service Management (OSM) Order-to-Activate cartridges in an OSM environment
without running the interactive installers.

Cartridge Installation Overview

The Order-to-Activate cartridges are installed into Oracle Communications Design Studio and
deployed from there onto the OSM server. For the cartridges to work properly, various entities
must be created in Oracle WebLogic Server in the server that contains OSM. An Ant script is

provided to create these entities.

The general process for installing the OSM Order-to-Activate cartridges is:

* Ensure that the system requirements are met. See "System Requirements."

* Perform the pre-installation tasks, which set up the environment for running the silent
installation. See "Setting Up the Installation Environment."

» Configure the build.properties file. See "Configuring the build.properties File."

* Build the cartridges and deploy them to the OSM servers. See "Performing the Silent
Installation.”

* (Optional) Run one or more test orders to validate that the installation was successful. See
"Testing the Order-to-Activate Cartridges."

Directory Placeholders Used in This Chapter

ORACLE

Table 3-1 contains the placeholders that are used in this chapter.

Table 3-1 Placeholders Used in This Chapter

Placeholder Directory Description

MW_home The location where Oracle Fusion Middleware components are installed. This
directory contains the base directory for WebLogic Server and the
oracle_common directory, among other files and directories.

domain_home The directory that contains the configuration for the domain into which OSM is
installed. The default is MW_home/user_projects/domains/domain_name
(where domain_name is the name of the OSM domain), but it is frequently set to
some other directory at installation.

silent_install_dir The headlessBuild directory under the directory into which you have extracted
the Order-to-Activate software; for example C:\O2Al\install\headlessBuild.

3-1

Chapter 3
System Requirements

System Requirements

To install the Order-to-Activate cartridges successfully, ensure that you have the following
software installed on your local Windows system:

e The supported version of WebLogic Server and Application Development Framework
(ADF). (See OSM Installation Guide for more information.)

e OSM Software Development Kit (SDK) components.

e Java JDK: Use the version of Java that matches the one being used by the OSM server.
See the discussion of software requirements in OSM Installation Guide.

e Apache Ant version 1.8.4 or later. Ensure that you have installed it properly according to
the Ant documentation, including setting or updating the ANT_HOME, Path, and
JAVA HOME environment variables. The JAVA_HOME environment variable should point
to a JDK, rather than a JRE.

e Eclipse with Design Studio plug-ins: See Design Studio Installation Guide for information
about installing Design Studio plug-ins. You do not need to run the GUI for this application
during the silent installation, but it must present on your system so that the silent installer
can access the libraries.

You must also have the following installed, either on your local Windows system or on a remote
system:

* OSM server installed into the supported version of a WebLogic Server domain.

Order-to-Activate Cartridge Compatibility

To install or upgrade the Order-to-Activate cartridges, you must ensure compatibility between
the following:

* The OSM software version and the Order-to-Activate cartridge version. OSM is compatible
with all cartridges developed in the same release or a previous release, including Order-to-
Activate cartridges. For information about updating Order-to-Activate cartridges from a
previous release, see "Updating Prior Versions of the Cartridges to Work with Newer
Versions of OSM."

* The OSM Order-to-Activate cartridge version and the Oracle Application Integration
Architecture (Oracle AlA) Order to Cash Integration Pack for OSM version

For Order-to-Activate cartridge compatibility information see Order-to-Activate Cartridge
Product Compatibility Matrix (in the OSM Cartridges for Oracle Application Integration
Architecture section of the OSM documentation) on the Oracle Help Center website: http://
docs.oracle.com/en/industries/communications/order-service-management/index.html

Setting Up the Installation Environment

Before you can perform a silent installation of the Order-to-Activate cartridges, you must set up
the installation environment.

Getting the Installation Package

To get the Order-to-Activate installation package:

1. Go to the Oracle software delivery website:

ORACLE -

http://docs.oracle.com/en/industries/communications/order-service-management/index.html
http://docs.oracle.com/en/industries/communications/order-service-management/index.html

Chapter 3
Setting Up the Installation Environment

https://edelivery.oracle.com/

In the Product field, select Oracle Communications Order and Service Management
Cartridge for Provisioning Fulfillment and select your platform.

Download the installer file for the Oracle Communications Order and Service
Management Cartridges for Application Integration Architecture.

Unzip the downloaded file into a directory on your Windows system. The
OracleComms_OSM_O2A_Cartridgesinstaller_byyyymmdd.zip file is created.

Unzip OracleComms_OSM_O2A_Cartridgeslinstaller_byyyymmdd.zip. The
headlessBuild directory containing files needed for the silent installation is created. This
directory will be referred to in this chapter as silent_install_dir. The OSM.PIP directory
containing the OracleComms_OSM_O2A _Install.zip file, which is also used by the silent
installation, is also created.

Setting Up Files and Directories

ORACLE

To set up the files and directories:

Back up and edit the silent_install_dirlbuild.properties file.

In the file, edit the value of the osm.sdk.home parameter so that it points to your local
copy of the OSM SDK.

Note:

Use (forward) slashes in the path, rather than the backward slash usually used in
Windows paths.

You do not need to edit any other properties in the file at this time.
Save and close the file.
Create the silent_install_dirlsecurity directory.

If you are using WebLogic in Production mode and have a WebLogic cluster, you must
perform this step. In the domain directory on each computer containing managed servers
for your domain, create the following directories for each managed server located on that
computer:

* O2A_SAF_managedServerName
* O2A_UIM_SAF_managedServerName
* O2A_TOM_SAF_managedServerName

For example, if the current computer contains the first two managed servers, which are
named osm_ms01 and osm_ms02, you would add the following directories in that domain
directory:

e O2A_SAF_osm_ms01

* O2A_UIM_SAF_osm_ms01
* O2A_TOM_SAF_osm_ms01
e 0O2A_SAF_osm_ms02

« O2A_UIM_SAF_osm_ms02

3-3

https://edelivery.oracle.com/

Chapter 3
Setting Up the Installation Environment

* O2A_TOM_SAF_osm_ms02

Then, if managed servers osm_ms03 and osm_ms04 were located on another computer,
you would go to the domain directory on that computer and add directories for osm_ms03
and osm_msO04 there.

Encrypting the Passwords Used by the Silent Installer

There are several passwords you will need for the silent installer. For security reasons, these
passwords must all be encrypted.

Encrypting the WebLogic Server Administrator Password for Connecting to WebLogic

This password is always needed when running the silent installer. Configure it by running
WebLogic Scripting Tool (WLST).

To encrypt the WebLogic Server administrator password for connecting to WebLogic:

1.

ORACLE

In a command shell on the Windows system, change to the MW _homeloracle_common/
common/bin directory.

Run the wist.cmd command.
Enter the following command:

connect ('username', 'password', 'protocol://hostname:port")

where:

* username is the name of the WebLogic Server user that belongs to the Administrators
group

e password is the clear-text password for that user

e protocol is t3s if connecting to an SSL port on WebLogic Server, otherwise it is t3.

e hostname is the IP address or name of the system on which the WebLogic Server
domain for OSM is running

e portis a port on which the administration server is listening
for example:

connect ('weblogic', 'passwordl', 't3://hostl.example.com: 7001")
Enter the following command:

storeUserConfig('configFilePath/ConfigFile.secure', 'keyFilePath/KeyFile.secure')

where:

e configFilePath is the path, formatted for WLST, to store the configuration file. This path
can be any directory to which you have write access, but the files will eventually need
to be located in the silent_install_dir, so you may want to enter that directory here now.

Note:

For WLST, use a (forward) slash in the path, rather than the backward
slashes usually used in Windows paths.

3-4

Chapter 3
Setting Up the Installation Environment

» keytFilePath is the path, formatted for WLST, to store the key file. This path can be any
directory to which you have write access, but the files will eventually need to be
located in the silent _install_dir, so you may want to enter that directory here now.

for example:

storeUserConfig('C:/02A/install/headlessBuild/ConfigFile.secure', 'C:/02A/install/
headlessBuild/KeyFile.secure')

Exit WLST using the following command:
exit()

If you saved the files to a different location than silent_install_dir, copy the files to the
silent_install_dir directory now.

Encrypting the WebLogic Server Administrator Password for Use with XML Import/

Export

This password is always needed when running the silent installer. Configure it by running Ant.

To encrypt the WebLogic Server administrator password for use with XML Import/Export:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:
ant create-osm-admin-server-xmlie-encrypted-password-properties-file

When prompted to enter the user name, enter the name of a WebLogic Server user that
belongs to the Administrators group.

When prompted to enter the password, enter the plain-text password for the user.

When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent _install_dirlsecurity directory:
e 0osm_admin_server.xmlie.password.salt.store

e 0osm_admin_server.xmlie.properties

Encrypting Passwords for the Standard Order-to-Activate User Accounts

ORACLE

These passwords are always needed when running the silent installer. Configure them by
running Ant.

To encrypt the passwords for the standard Order-to-Activate user accounts:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:

ant create-comsom-encrypted-password-properties-file

When prompted, enter and reenter the passwords for the Order-to-Activate users.

The script will finish and create the following files in the silent_install_dirlsecurity directory:
e osm.password.salt.store

e osmde.password.salt.store

e osmfallout.password.salt.store

e osmlf.password.salt.store

3-5

Chapter 3
Setting Up the Installation Environment

* osmlfaop.password.salt.store

e 0smoe.password.salt.store

e osmoelf.password.salt.store

e userConfig.properties

Encrypting the UIM Application User Password

The Unified Inventory Manager (UIM) password is needed when running the silent installer to
configure Order-to-Activate for the service order management role. Configure it by running Ant.

To encrypt the UIM application user password:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:
ant create-uim-encrypted-password-properties-file

When prompted to enter the user name, enter the name of a user defined to the UIM
application. If you intend to use UIM emulators, you can enter any value that is validly
formatted for a user name here.

When prompted to enter the password, enter the plain-text password for the user.

When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent _install_dirlsecurity directory:
e uim.password.salt.store

* uimUserConfig.properties

Encrypting the Technical Order Management Application User Password

This password is needed when running the silent installer to configure Order-to-Activate for the
service order management role. Configure it by running Ant.

To encrypt the technical order management application user password:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:
ant create-tom-encrypted-password-properties-file

When prompted to enter the user name, enter the name of a user defined to the technical
order management application. If you intend to use technical order management
emulators, you can enter any value that is validly formatted for a user name here.

When prompted to enter the password, enter the plain-text password for the user.

When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dirlsecurity directory:
e tom.password.salt.store

e tomUserConfig.properties

Encrypting the Password for Deploying the Cartridges

This password is always needed when running the silent installer. Configure it by running Ant.

ORACLE

3-6

Chapter 3
Setting Up the Installation Environment

To encrypt the password for deploying the cartridges:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:
ant create-cmt-encrypted-password-properties-file

When prompted to enter the user name, enter the name of a WebLogic Server user that is
a member of the Cartridge_Management_WebService group.

When prompted to enter the password, enter the plain-text password for the user.

When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dirlsecurity directory:
e cmt.admin.password.salt.store

e cmtUserConfig.properties

Encrypting the Oracle AIA JMS Connection Password

This password is needed when running the silent installer if you are connecting to a live
instance of Oracle AIA. Configure it using the WebLogic Server utility
weblogic.security.Encrypt.

To encrypt the Oracle AIA JMS connection password:

1.

On the system where the OSM server is installed (as opposed to the Windows system on
which you are performing the silent installation, if they are different systems), open a
command shell and change to the domain_homelbin directory.

Do one of the following:

* On UNIX or Linux, source the setbomainEnv.sh file, for example:
. setDomainEnv.sh

* On Windows, run the setDomainEnv.cmd file.

Enter the following command:

java weblogic.security.Encrypt password

where password is the plain-text password for the Oracle AIA JMS connection.

Copy the resulting value and save it for later to paste it as the value for the
solution.saf.password parameter in the build.properties file.

Encrypting the UIM JMS Connection Password

ORACLE

This password is needed when running the silent installer to configure Order-to-Activate for the
service order management role if you are using a live connection to UIM. Configure it using the
WebLogic Server utility weblogic.security.Encrypt.

To encrypt the UIM JMS connection password:

1.

On the system where the OSM server is installed (as opposed to the Windows system on
which you are performing the silent installation, if they are different systems), open a
command shell and change to the domain_homelbin directory.

Do one of the following:

e On UNIX or Linux, source the setDomainEnv.sh file, for example:

3-7

Chapter 3
Configuring the build.properties File

. setDomainEnv.sh
e On Windows, run the setDomainEnv.cmd file.
3. Enter the following command:

java weblogic.security.Encrypt password

where password is the plain-text password for the UIM JMS connection.

4. Copy the resulting value and save it for later to paste it as the value for the
solution.uim.saf.password parameter in the build.properties file.

Encrypting the Technical Order Management JMS Connection Password

This password is needed when running the silent installer to configure Order-to-Activate for the
service order management role if you are using a live connection to technical order
management. Configure it using the WebLogic Server utility weblogic.security.Encrypt.

To encrypt the technical order management JMS connection password:

1. On the system where the OSM server is installed (as opposed to the Windows system on
which you are performing the silent installation, if they are different systems), open a
command shell and change to the domain_homelbin directory.

2. Do one of the following:
e On UNIX or Linux, source the setDomainEnv.sh file, for example:
. setDomainEnv.sh
* On Windows, run the setDomainEnv.cmd file.
3. Enter the following command:

java weblogic.security.Encrypt password

where password is the plain-text password for the technical order management JMS
connection.

4. Copy the resulting value and save it for later to paste it as the value for the
solution.tom.saf.password parameter in the build.properties file.

Configuring the build.properties File

This section describes how to configure the build.properties file for the Order-to-Activate
cartridge silent installation.

Note:

Every parameter in this file must have a value. In some situations, you will not need
to set a specific value for a particular parameter, but in that case, leave the sample
value provided in the file. Do not remove the value and leave it blank.

The build.properties file is located in the silent_install_dir directory. Edit the file using any
standard text editor.

ORACLE -

Configuring Software Path Settings

The software path settings, listed in Table 3-2, must be configured in all situations when
performing a silent installation.

Note:

Chapter 3
Configuring the build.properties File

You may want to ensure that the products below are installed into paths that do not
have spaces in them. However, if your path does contain a space, enclose the whole

path in double quotation marks.

Table 3-2 Software Path Settings in the build.properties File

Parameter Name

Sample Value

Description

osm.sdk.home

C:/OSM/SDK

Set this value to the directory on the local system that
contains the OSM SDK.

Note: Use (forward) slashes in the path, rather than the
backward slashes usually used in Windows paths.

jdk.home

"C:/Program Files/Java/
jdk1.7.0_80"

Set this value to the directory on the local system
containing the same release of the JDK that the OSM
server is using.

Note: Use (forward) slashes in the path, rather than the
backward slashes usually used in Windows paths.

weblogic.home

C:/Oracle/Middleware/wlserver

Set this value to MW_home/wlserver on the local system,
the base directory for the WebLogic Server core files.

Note: Use (forward) slashes in the path, rather than the
backward slashes usually used in Windows paths.

oracle.middleware.home

C:/Oracle/Middleware

Set this value to MW_home on the local system, the
location where Oracle Fusion Middleware components are
installed

Note: Use (forward) slashes in the path, rather than the
backward slashes usually used in Windows paths.

studio.home

C:\\Eclipse\\Luna

Set this value to the location of an instance on the local
system of Eclipse with Design Studio installed into it.

Note: For this path, use double backward slashes rather
than the single backward slashes usually used in Windows
paths.

ant.home

C:/Ant/apache-ant

Set this value to the local standalone installation of Ant.

Note: Use (forward) slashes in the path, rather than the
backward slashes usually used in Windows paths.

Configuring Solution Import Settings

The solution import settings, listed in Table 3-3, must be configured in all situations when
performing a silent installation.

ORACLE

3-9

Chapter 3
Configuring the build.properties File

Table 3-3 Solution Import Settings in the build.properties File

Parameter Name

Sample Value

Description

02a.cso.type y Set this to one of the following values:
ey toimport the calculate service order solution option
* ntoimport the solution option without calculate
service order
02a.solution.type y.t.a Used for the calculate service order solution only.

If you are using the service option without calculate
service order, the value of this parameter does not matter,
so leave it with the original value set in the file or set it to
any of the values below.

Set this to one of the following values:

e y.t.atoimport both central order management and
service order management

e y.t.c to import central order management only

e y.t.s to import service order management only

Note: If you configure central order management and
service order management on different OSM instances,
make sure you configure AlA to use both endpoints
appropriately.

e

o2a.topology.deployment.typ |c.c

Do not change the value of this parameter.

duct.type

02a.topology.deployment.pro | a.t.n

Used for the option without calculate service order only.

If you are using the calculate service order solution option,

the value of this parameter does not matter, so leave it

with the original value set in the file or set it to any of the

values below.

Set this to one of the following values:

e a.s.n toimport both central order management and
service order management with simple topology

* a.t.n toimport both central order management and
service order management with typical or complex
topology

* c.S.nto import central order management only with
simple topology

e c.t.n to import central order management only with
typical or complex topology

° s.s.nto import service order management only

Note: If you configure central order management and

service order management on different OSM instances,

make sure you configure AlA to use both endpoints

appropriately.

Configuring WebLogic Server Settings

ORACLE

The WebLogic Server settings, listed in Table 3-4, must be configured in all situations when

performing a silent installation.

3-10

Chapter 3
Configuring the build.properties File

Table 3-4 WebLogic Server Settings in the build.properties File

Parameter Name

Sample Value

Description

weblogic.admin.user.name

ConfigFile.secure

This value refers to a file that is created in the "Encrypting
the WebLogic Server Administrator Password for
Connecting to WebLogic" section.

Set this value to the name of the first file you created in
the storeUserConfig command. This file must be located
in silent_install_dir.

weblogic.admin.user.passwor
d

KeyFile.secure

This value refers to a file that is created in the "Encrypting
the WebLogic Server Administrator Password for
Connecting to WebLogic" section.

Set this value to the name of the second file you created
in the storeUserConfig command. This file must be
located in silent_install_dir.

weblogic.admin.server.host

hostl.example.com

Set this value to the host name or IP address of the
WebLogic Server on which you want to create WebLogic
Server resources. If OSM is deployed to a cluster, use the
server on which the administration server is located.

weblogic.admin.server.port | 7001 Set this value to the port of the WebLogic Server on which
you want to create WebLogic Server resources. If OSM is
deployed to a cluster, use the port on which the
administration server is listening.

osm.server.name clusterl Do one of the following:

e If OSM is deployed to a single managed server, set
this to the name of the managed server.

« If OSM is deployed to a cluster, set this to the name
of the cluster.

e If OSMis deployed to a single administration server,
set this to the name of the administration server.

Configuring Solution Configuration Settings

The solution configuration settings, listed in Table 3-5, must be configured in all situations

when performing a silent installation.

Table 3-5 Solution Configuration Settings in the build.properties File

Parameter Name

Sample Value

Description

o2a.release.version

2.1.0

Do not change the value of this parameter.

ORACLE

3-11

Chapter 3
Configuring the build.properties File

Table 3-5 (Cont.) Solution Configuration Settings in the build.properties File

Parameter Name Sample Value

Description

o2a.architecture.bridge.type |s.n

Set this to one of the following values:

* s.nif OSM is in a standalone environment and you
would like to set up local queues for Oracle AlA (for
example, if you are using the Oracle AIA emulators)

e c.nif OSMis in a clustered environment and you
would like to set up local queues for Oracle AlA (for
example, if you are using the Oracle AIA emulators)

¢ s.sif OSMis in a standalone environment and you
would like to set up a Store-and-forward (SAF) agent
to connect to a live Oracle AlA instance

e c¢.sifOSMisin a clustered environment and you
would like to set up a SAF agent to connect to a live
Oracle AlA instance

o2a.deploy.emulators.mode |d

Set this to one of the following values:

e d to deploy the Oracle AIA emulators
* n notto deploy the Oracle AIA emulators

topology.type c

If you are using the service option without calculate

service order, the value of this parameter does not matter,

so leave it with the original value set in the file or set it to

any of the values below.

If you are using the calculate service order solution option,

set this to one of the following values:

e s to configure the solution to use the simple topology

e tto configure the solution to use the typical topology

e ¢ to configure the solution to use the complex
topology

complex.topology.options X

Set this to one of the following values:

e xif you are using the service option without calculate
service order. Also set the value to x if you are using
the calculate service order solution option and you
have entered s or t for the topology.type parameter.

e s to use atopology that has multiple billing and
provisioning systems and one each of install and
shipping systems

* m to use a topology that has multiple billing,
provisioning, install, and shipping systems

* nto use atopology that has multiple billing,
provisioning, and shipping systems and one install
system

* p to use atopology that has multiple billing,
provisioning, and install systems and one shipping
system

osm.deployment.server.host | hostl.example.com

Set this value to the host name or IP address of the
WebLogic Server to which you will deploy the cartridges. If
OSM is deployed to a cluster, use the server on which the
proxy server is located.

osm.deployment.server.port | 7001

Set this value to the port of the WebLogic Server to which
you will deploy the cartridges. If OSM is deployed to a
cluster, use the server on which the proxy server is
located.

solution.com.saf.serverURLs | N/A

Do not change the value of this parameter.

ORACLE

3-12

Chapter 3
Configuring the build.properties File

Table 3-5 (Cont.) Solution Configuration Settings in the build.properties File

Parameter Name

Sample Value

Description

et

solution.som.saf.serverURLs | N/A Do not change the value of this parameter.
bea.aia.user N/A Do not change the value of this parameter.
bea.aia.password N/A Do not change the value of this parameter.
bea.aia.host N/A Do not change the value of this parameter.
bea.aia.port N/A Do not change the value of this parameter.
aia.server.name N/A Do not change the value of this parameter.
solution.com.saf.password N/A Do not change the value of this parameter.
solution.som.saf.password N/A Do not change the value of this parameter.
solution.com.deploymentTarg | clusterl If you are configuring an environment for service order
et management only, do not change the value of this
parameter.
If you are configuring an environment for both central
order management and service order management or for
central order management only, do one of the following:
* If OSMis deployed to a single managed server, set
this to the name of the managed server.
« If OSM is deployed to a cluster, set this to the name
of the cluster.
e If OSM is deployed to a single administration server,
set this to the name of the administration server.
solution.som.deploymentTarg | cluster2 If you are configuring an environment for both central

order management and service order management or for

central order management only, do not change the value

of this parameter.

If you are configuring an environment for service order

management only, do one of the following:

« If OSMis deployed to a single managed server, set
this to the name of the managed server.

e If OSMis deployed to a cluster, set this to the name
of the cluster.

e If OSM is deployed to a single administration server,
set this to the name of the administration server.

Configuring Oracle AIA Connection Settings

The Oracle AlA connection settings, listed in Table 3-6, must be configured if you intend to

connect to a live instance of Oracle AlA.

Table 3-6 Oracle AIA Connection Settings in the build.properties File

Parameter Name

Sample Value

Description

solution.saf.userName

aiauser

Set this value to the name of the user for opening a JIMS
connection to Oracle AlA.

solution.saf.password

{AES}sw97PfpHIOUCIpGYIXHD
AYivSH03iBTDX3tsIkPR1xA=

Set this to the value generated in the "Encrypting the
Oracle AIA JMS Connection Password" section.

ORACLE

3-13

Chapter 3
Configuring the build.properties File

Table 3-6 (Cont.) Oracle AIA Connection Settings in the build.properties File

Parameter Name Sample Value

Description

solution.saf.serverURLs hostl.example.com

If Oracle AlA is deployed to the administration server,
enter the host name and port of the administration server
for Oracle AIA.

If Oracle AlA is deployed to a single managed server,
enter the host name and port of the managed server for
Oracle AlA.

If Oracle AlA is deployed to a cluster, enter the host
names and ports of all of the managed servers in the
Oracle AlA cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

serverl.host.com:7101, serverl.host.com:7201, serve
r2.host.com:7101

Configuring UIM Connection Settings

The UIM connection settings, listed in Table 3-7, must be configured if you intend to connect to
a live instance of UIM and are configuring both central order management and service order
management or service order management only.

Table 3-7 UIM Connection Settings in the build.properties File

Parameter Name Sample Value Description
02a.som.cso.inv.architecture. | s.n Note: The first character in this value must match the first
bridge.type character of the value of 02a.architecture.bridge.type.

Set this to one of the following values:

¢ s.nif OSMis in a standalone environment and you
would like to set up local queues for UIM (for
example, if you are using the UIM emulator)

e c.nif OSMis in a clustered environment and you
would like to set up local queues for UIM (for
example, if you are using the UIM emulator)

¢ s.sif OSMis in a standalone environment and you
would like to set up a SAF agent to connect to a live
UIM instance

¢ c¢.sifOSMisin a clustered environment and you
would like to set up a SAF agent to connect to a live
UIM instance

¢ s.xif OSMis in a standalone environment and you
would not like to set up any queues for UIM

e c¢.xifOSMisin a clustered environment and you
would not like to set up any queues for UIM

ORACLE

3-14

Chapter 3
Configuring the build.properties File

Table 3-7 (Cont.) UIM Connection Settings in the build.properties File

Parameter Name Sample Value

Description

02a.som.cso.inv.mdb.mode d

Set this value to n if
o2a.som.cso.inv.architecture.bridge.type is s.s, c.s,
S.X, Of C.X.

If o2a.som.cso.inv.architecture.bridge.type is s.n or
c.n, set to d to deploy the emulators, or set to n if you
want to create the local queues and not deploy the
emulators.

solution.uim.saf.userName uimuser

Set this value to the name of the user for opening a JMS
connection to UIM.

solution.uim.saf.password {AES}sw97PfpHIOUCrpGYIXHD
AYivSHo3iBTDX3tsIkPR1xA=

Set this to the value generated in the "Encrypting the UIM
JMS Connection Password" section.

solution.uim.saf.serverURLs | hostl.example.com

If UIM is deployed to the administration server, enter the
host name and port of the administration server for UIM.

If UIM is deployed to a single managed server, enter the
host name and port of the managed server for UIM.

If UIM is deployed to a cluster, enter the host names and
ports of all of the managed servers in the UIM cluster in
the following format:

hostname:port,hostname:port,hostname:port

For example:

serverl.host.com:7101, serverl.host.com:7201, serve
r2.host.com:7101

Configuring Technical Order Management Connection Settings

The technical order management connection settings, listed in Table 3-8, must be configured if
you intend to connect to a live instance of technical order management and are configuring
both central order management and service order management or service order management

only.

ORACLE

3-15

Chapter 3
Configuring the build.properties File

Table 3-8 Technical Order Management Connection Settings in the build.properties File

Parameter Name

Sample Value

Description

02a.som.cso.tom.architectur |s.n Note: The first character in this value must match the first
e.bridge.type character of the value of o2a.architecture.bridge.type.

Set this to one of the following values:

¢ s.nif OSMis in a standalone environment and you
would like to set up local queues for technical order
management (for example, if you are using the
technical order management emulator)

* c¢.nif OSMis in a clustered environment and you
would like to set up local queues for technical order
management (for example, if you are using the
technical order management emulator)

¢ s.sif OSMis in a standalone environment and you
would like to set up a SAF agent to connect to a live
technical order management instance

e c.sifOSMis in a clustered environment and you
would like to set up a SAF agent to connect to a live
technical order management instance

¢ s.x if OSMis in a standalone environment and you
would not like to set up any queues for technical order
management

e c¢.x ifOSMisin a clustered environment and you
would not like to set up any queues for technical order
management

02a.som.cso.tom.mdb.mode |d Set this value to n if

o02a.som.cso.tom.architecture.bridge.typeis s.s, c.s,

S.X, Of C.X.

If o2a.som.cso.tom.architecture.bridge.typeis s.n or

c.n, set to d to deploy the emulators, or set to n if you

want to create the local queues and not deploy the

emulators.
solution.tom.saf.userName tomuser Set this value to the name of the user for opening a JMS

connection to technical order management.

solution.tom.saf.password

{AES}sw97PfpHIOUCrpGYIXHD
AYivSH03iBTDX3tsIkPR1xA=

Set this to the value generated in the "Encrypting the
Technical Order Management JMS Connection Password"
section.

solution.tom.saf.serverURLs

hostl.example.com

If technical order management is deployed to the
administration server, enter the host name and port of the
administration server for technical order management.

If technical order management is deployed to a single
managed server, enter the host name and port of the
managed server for technical order management.

If technical order management is deployed to a cluster,
enter the host names and ports of all of the managed
servers in the technical order management cluster in the
following format:

hostname:port,hostname:port,hostname:port

For example:

serverl.host.com:7101, serverl.host.com:7201, serve
r2.host.com:7101

ORACLE

3-16

Chapter 3
Performing the Silent Installation

Performing the Silent Installation

To build and deploy the Order-to-Activate cartridges you run Ant scripts that build the solution
cartridges, configure the WebLogic Server resources, and deploy the cartridges.

Building the Solution Cartridges

If you have not yet configured the WebLogic Server queues, resources, and users in the OSM
domain, do not perform this procedure, but instead see "Building the Solution Cartridges and
Configuring the WebLogic Server Resources." You build the cartridges by running Ant.

To build the solution cartridges:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:

ant headless.build.deploy

The script will finish and create a file in the silent_install_dirlworkspacel
solution_cart_namelcartridgeBuild directory, where solution_cart_name is the name of
the composite cartridge corresponding to the settings you have selected. See Table 2-1 for
a list of the composite cartridges and the situations to which they apply. The file that is
created is named solution_cart_name.par.

Building the Solution Cartridges and Configuring the WebLogic Server

Resources

You must build the solution cartridges and configure the WebLogic Server resources before
you can use the Order-to-Activate cartridges. If you have already configured the WebLogic
Server queues, resources, and users in the OSM domain, do not perform this procedure, but
instead see "Building the Solution Cartridges." You build the cartridges and configure the
WebLogic Server resources by running Ant.

To build the solution cartridges and configure the WebLogic Server resources:

1.
2.

In a command shell on the Windows system, change to the silent_install_dir directory.
Enter the following command:

ant headless.build.resource.deploy

The script will finish after a few minutes and in addition to creating resources in the
WebLogic Server domain, will create a file in the silent_install_dirlworkspace/
solution_cart_namelcartridgeBuild directory, where solution_cart_name is the name of
the composite cartridge corresponding to the settings you have selected. See Table 2-1 for
a list of the composite cartridges and the situations to which they apply. The file that is
created is named solution_cart_name.par.

Deploying the Cartridges

You deploy the Order-to-Activate cartridges by running Ant.

ORACLE

To deploy the cartridges:

1.

In a command shell on the Windows system, change to the silent_install_dir directory.

3-17

Chapter 3
Testing the Order-to-Activate Cartridges

2. Enter the following command:

ant headless.deploy

Testing the Order-to-Activate Cartridges

To test the Order-to-Activate cartridges, you must open Design Studio. For information about
how to do this, see "Testing the Order-to-Activate Cartridges."

Switching Between Live and Emulator Configurations

Using the interactive installer, you can change your configuration between connecting to
emulators and connecting to live systems. For information about how to do this, see "Switching
Between Live and Emulator Configurations."

Configuring a Workspace Without Configuring WebLogic Server

Using the interactive installer, you can configure a workspace to contain the Order-to-Activate
cartridges without configuring a WebLogic Server domain. This operation cannot be performed
silently. For information about how to do this, see "Configuring a Workspace Without
Configuring WebLogic Server."

Uninstalling Order-to-Activate Components

You can uninstall the Order-to-Activate components that are no longer needed by undeploying
the cartridges and deleting the Oracle AIA emulators. For information about how to do this, see
"Uninstalling Order-to-Activate Components."

ORACLE 3.18

Order-to-Activate Cartridge Contents

This chapter describes the various Order-to-Activate cartridges, their entities, and how these
entities can be extended.

Note:

In the Oracle Communications Order to Cash solution, Oracle Communications Order
and Service Management (OSM) does not directly interact with Oracle
Communications Billing and Revenue Management (BRM), Siebel Customer
Relationship Management (Siebel CRM), or provisioning systems. OSM uses Oracle
Application Integration Architecture (Oracle AlA), which in turn uses BRM Application
Business Connector Service (ABCS) for billing and CRM ABCS for Siebel CRM.

Cartridge Overview

Following is an overview of the cartridges. You should not modify productized cartridges, but
demonstration cartridges are sample cartridges provided so that you can modify them to meet
your needs.

Common Order Management Cartridges

Common order management cartridges contain data and entities that are available in all
solution options and topologies.

Table 4-1 lists and describes the common order management cartridges.

Table 4-1 Common Order Management Cartridges
|

Cartridge Name Description

OracleComms_OSM_CommonDataDictionary Productized cartridge. Orchestration Common ControlData
dictionary (core Oracle Communications Design Studio product
cartridge)

OracleComms_OSM_O2A_AIAEBMDataDictionary Productized cartridge. This data dictionary cartridge contains

the data schema that defines the data elements from the Oracle
AlA Enterprise Business Message (EBM) schema.

OracleComms_OSM_02A_CommonUtility Productized cartridge. This data dictionary cartridge contains
the data schema that defines the data elements for modeling
orchestration entities in OSM.

OracleComms_OSM_O2A_ControlMap Productized cartridge. This cartridge provides testing utilities
including breakpoints, point of no return disabling, and support
for fault simulation.

OracleComms_OSM_O2A _RecognitionFallout Productized cartridge. This cartridge generates Oracle AIA
trouble ticket creation request messages for unrecognizable
customer order messages.

ORACLE i1

Chapter 4
Cartridge Overview

Table 4-1 (Cont.) Common Order Management Cartridges

Cartridge Name

Description

OracleComms_OSM_O2A_SystemAdmin

Productized cartridge. This cartridge works in conjunction with
the Inbound Message Recovery message-driven bean (MDB) to
create fallout tasks that help you recover from inbound message
processing errors.

Central Order Management Cartridges

Central order management cartridges contain the processes for the central order management
functionality and also the Oracle AlA interaction mechanism which in turn interacts with Siebel
CRM, BRM, and OSM in its service order management role.

Some central order management cartridges are common to both the solution option that uses
calculate service order and the solution option that does not. Other cartridges are specific to

one solution option or the other.

Common Central Order Management Cartridges

Table 4-2 lists the central order management cartridges that are used by both the calculate
service order solution option and the service option without calculate service order.

Table 4-2 Common Central Order Management Cartridges

Cartridge Name

Description

OracleComms_OSM_0O2A COM_Base

Productized cartridge. This cartridge supports the orchestration
of customer orders from Oracle AlA.

OracleComms_OSM_O2A_COM_SalesOrderFulfillment

Productized cartridge. This cartridge supports the
communications between central order management and
fulfillment systems.

OracleComms_OSM_0O2A_COM_Billing

Productized cartridge. This cartridge supports billing fulfillment
functions.

OracleComms_OSM_O2A_COM_Provisioning

Productized cartridge. This cartridge supports provisioning
fulfillment functions.

OracleComms_OSM_O2A_COM_Shipping_Sample

Demonstration cartridge. This cartridge supports shipping
fulfillment functions.

OracleComms_OSM_O2A_COM_Install_Sample

Demonstration cartridge. This cartridge supports installation
fulfillment functions.

OracleComms_OSM_O2A_COM_Recognition_Sample

Demonstration cartridge. This cartridge recognizes a customer
order from Oracle AlA and triggers the creation of a
COM_SalesOrderFulfillment order. It is used for both solution
options when the workspace contains only central order
management.

Central Order Management Cartridges for the Calculate Service Order Solution

Option

Table 4-3 lists and describes the central order management cartridges for the Calculate

Service Order solution option.

ORACLE

4-2

Chapter 4
Cartridge Overview

Table 4-3 Central Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name

Description

OracleComms_OSM_0O2A COM_CSO_Base

Productized cartridge. This cartridge contains entities, like
orchestration processes, order items, and transformation
sequences, that support the orchestration of orders for the
calculate service order solution option.

OracleComms_OSM_0O2A COM_CSO_Broadband_Inter
net_Access_CFS

Demonstration cartridge. This cartridge contains the mapping
rules and order item parameter bindings associated with the
customer facing service for broadband internet access.

OracleComms_OSM_0O2A COM_CSO_Email CFS

Demonstration cartridge. This cartridge contains the mapping
rules and order item parameter bindings associated with the
customer facing service for email service.

OracleComms_OSM_02A COM_CSO_FulfillmentPatter
n

Productized cartridge. This cartridge contains fulfillment patterns
and orchestration dependencies for the calculate service order
solution option.

OracleComms_OSM_02A COM_CSO_FulfillmentState
Map

Productized cartridge. This cartridge contains fulfillment state
maps and transformed order item fulfillment state composition
rule sets specific to the calculate service order solution option.

OracleComms_OSM_02A _COM_CSO_Internet_Media_
CFS

Productized cartridge. This cartridge contains the mapping rules
and order item parameter bindings associated with the customer
facing service for Internet media service.

OracleComms_OSM_0O2A_COM_CSO_IP_Fax_CFS

Productized cartridge. This cartridge contains the mapping rules
and order item parameter bindings associated with the customer
facing service for IP fax service.

OracleComms_OSM_0O2A_COM_CSO_Model_Containe
r

Demonstration cartridge. This cartridge defines the common
model projects that contain elements that might need to be
included in the deployment and contains the transformation
manager for the calculate service order solution option.

OracleComms_OSM_0O2A_COM_CSO_Provisioning

Demonstration cartridge. This cartridge contains order
components for provisioning that are specific to the calculate
service order solution option.

OracleComms_OSM_0O2A_COM_CSO_SalesOrders

Demonstration cartridge. This cartridge contains sample
customer orders for use with the calculate service order solution
option.

OracleComms_OSM_0O2A_COM_CSO_Solution

Demonstration composite cartridge. This cartridge references all
cartridges required when the calculate service order solution
option is used and the current workspace is for central order
management only.

OracleComms_OSM_0O2A_COM_CSO_Topology

Productized cartridge. This cartridge contains decomposition
rules and order components for the topology you selected when
installing the Order-to-Activate cartridges.

OracleComms_OSM_0O2A COM_CSO_VolP_Access C
FS

Demonstration cartridge. This cartridge contains the mapping
rules and order item parameter bindings associated with the
customer facing service for Voice over Internet Protocol (VoIP)
access.

OracleComms_OSM_0O2A COM_CSO_Web_Conferenci
ng_CFS

Productized cartridge. This cartridge contains the mapping rules
and order item parameter bindings associated with the customer
facing service for web conferencing service.

OracleComms_OSM_0O2A COM_FulfillmentPattern

Productized cartridge. This cartridge contains the base
fulfillment pattern from which other fulfillment patterns can
inherit.

ORACLE

4-3

Chapter 4
Cartridge Overview

Table 4-3 (Cont.) Central Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name

Description

OracleComms_OSM_O2A_COM_FulfilmentStateMap_S
ample

Demonstration cartridge. This cartridge contains fulfillment state
entities used by the solution.

OracleComms_OSM_0O2A_COMSOM_CSO_Recognitio
n

Demonstration cartridge. This cartridge recognizes a customer
order from Oracle AlA and triggers the creation of a
COM_SalesOrderFulfillment order. It is used when the current
workspace includes both central order management and service
order management.

OracleComms_OSM_0O2A COMSOM_CSO_Solution

Demonstration composite cartridge. This cartridge references all
cartridges required when the calculate service order solution
option is used and the current workspace is for both central
order management and service order management.

Central Order Management Cartridges for the Solution Option Without Calculate

Service Order

Table 4-4 lists and describes the central order management cartridges for the solution option

without Calculate Service Order.

Table 4-4 Central Order Management Cartridges for the Solution Option Without Calculate Service

Order

Cartridge Name

Description

OracleComms_OSM_O2A BBVolP_FP_NP_Danube_Sa
mple

Demonstration cartridge. This cartridge contains fulfillment
patterns and orchestration dependencies for the Simple

topology.

OracleComms_OSM_0O2A_BBVoIP_FP_NP_Nile_Sampl
e

Demonstration cartridge. This cartridge contains fulfillment
patterns and orchestration dependencies for the Typical or
Complex topologies.

OracleComms_OSM_0O2A COM_NCSO_Base

Productized cartridge. This cartridge supports the orchestration
of customer orders from Oracle AlA.

OracleComms_OSM_0O2A_COM_NCSO_Provisioning

Productized cartridge. This cartridge supports provisioning
fulfillment functions.

OracleComms_OSM_0O2A_COM_Simple_NP_Soln

Demonstration composite cartridge. This cartridge references all
cartridges required for the Simple topology for central order
management.

OracleComms_OSM_O2A_COM_Typical_NP_Soln

Demonstration composite cartridge. This cartridge references all
cartridges required for the Typical or Complex topologies for
central order management.

OracleComms_OSM_0O2A_COMSOM_Recognition_Sam
ple

Demonstration cartridge. This cartridge recognizes a customer
order from Oracle AlA and triggers the creation of a
COM_SalesOrderFulfillment order. It is used when the current
workspace includes both central order management and service
order management.

OracleComms_OSM_0O2A_COMSOM_Simple_NP_Soln

Demonstration composite cartridge. This cartridge references all
cartridges required for the Simple topology. It is used when the
current workspace includes both central order management and
service order management.

ORACLE

4-4

Chapter 4
Cartridge Overview

Table 4-4 (Cont.) Central Order Management Cartridges for the Solution Option Without Calculate

Service Order

Cartridge Name

Description

OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln

Demonstration composite cartridge. This cartridge references all
cartridges required for the Typical or Complex topologies. It is
used when the current workspace includes both central order
management and service order management.

OracleComms_OSM_O2A_FulfillmentPatternMap_Sampl
e

Demonstration cartridge. This cartridge contains the mappings
between product specifications and fulfillment patterns.

OracleComms_OSM_O2A_SalesOrders_NP_Sample

Demonstration cartridge. This cartridge contains sample
customer orders.

OracleComms_OSM_O2A_SimpleTopology_Sample

Demonstration cartridge. This cartridge contains decomposition
rules and order components for the Simple topology.

OracleComms_OSM_O2A_TypicalTopology Sample

Demonstration cartridge. This cartridge contains decomposition
rules and order components for the Typical or Complex topology

Note:

on topologies.

Danube and Nile are the names for the process fulfillment patterns in the Simple and
Typical topologies, respectively. See "About Fulfillment Topologies" for more details

Service Order Management Cartridges

Service order management cartridges contain the OSM functionality that handles a
provisioning request as a service order from central order management and completes the
predetermined tasks to fulfill the service order.

Service order management cartridges are specific to either the solution option that uses
calculate service order or the solution option that does not.

Service Order Management Cartridges for the Calculate Service Order Solution

Option

Table 4-5 lists and describes the service order management cartridges for the Calculate

Service Order solution option.

Table 4-5 Service Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name

Description

OracleComms_OSM_0O2A_SOM_CSO_Base

Productized cartridge. This cartridge supports the orchestration
of service orders.

OracleComms_OSM_0O2A_SOM_CSO_Broadband_Inter
net_Access_CFS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for broadband internet access.

ORACLE

4-5

Chapter 4
Cartridge Overview

Table 4-5 (Cont.) Service Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name

Description

OracleComms_OSM_02A SOM_CSO_Common

Productized cartridge. This cartridge contains data elements
and fulfillment modes for service order management with the
calculate service order solution option.

OracleComms_OSM_0O2A_SOM_CSO_CompleteProvisi
oning

Demonstration cartridge. This cartridge supports provisioning
fulfillment functions for service order management.

OracleComms_OSM_0O2A SOM_CSO_DeliverOrder

Demonstration cartridge. This cartridge supports order delivery
fulfillment functions for service order management.

OracleComms_OSM_0O2A_SOM_CSO_DesignService

Demonstration cartridge. This cartridge supports service design
functions for service order management.

OracleComms_OSM_0O2A_SOM_CSO_Email_CFS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for email service.

OracleComms_OSM_02A_SOM_CSO_FulfillmentPatter
n

Productized cartridge. This cartridge contains fulfillment patterns
for service order management.

OracleComms_OSM_02A_SOM_CSO_FulfillmentState
Map

Productized cartridge. This cartridge contains fulfillment state
entities for service order management.

OracleComms_OSM_02A_SOM_CSO_Internet_Media_
CFS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for Internet media service.

OracleComms_OSM_0O2A_SOM_CSO_IP_Fax_CFS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for IP fax service.

OracleComms_OSM_02A_SOM_CSO_ModelContainer

Demonstration cartridge. This cartridge defines the common
model projects that contain elements that might need to be
included in the deployment.

OracleComms_OSM_0O2A_SOM_CSO_PlanDelivery

Demonstration cartridge. This cartridge supports delivery
planning functions for service order management.

OracleComms_OSM_O2A_SOM_CSO_Recognition

Demonstration cartridge. This cartridge recognizes a service
order from central order management and triggers the creation
of a SOM_ProvisionServiceOrderFulfillment order. Catches all
in-bound messages not recognized by any other provisioning
recognition rules.

OracleComms_OSM_0O2A SOM_CSO_Solution

Demonstration composite cartridge. This cartridge references all
cartridges required when the calculate service order solution
option is used and the current workspace is for service order
management only.

OracleComms_OSM_O2A_SOM_CSO_Topology

Productized cartridge. This cartridge contains entities, such as
decomposition rules and order components, for service order
management.

OracleComms_OSM_0O2A SOM_CSO_VolP_Access C
FS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for VoIP access.

OracleComms_OSM_0O2A _SOM_CSO_Web_Conferenci
ng_CFS

Demonstration cartridge. This cartridge contains the order item
parameter bindings associated with the customer facing service
for web conferencing service.

ORACLE

4-6

Chapter 4
Cartridge Overview

Service Order Management Cartridges for the Solution Option Without Calculate
Service Order

Table 4-6 lists and describes the service order management cartridges for the solution option
without Calculate Service Order.

Table 4-6 Service Order Management Cartridges for the Solution Option Without Calculate Service
Order

Cartridge Name Description

OracleComms_OSM_O2A_SOM_Base Productized cartridge. This cartridge supports the orchestration
of service orders, including handling status and data updates
from fulfillment requests back to central order management.

OracleComms_OSM_O2A_SOM_Provisioning Productized cartridge. This cartridge supports provisioning
fulfillment functions in service order management.

OracleComms_OSM_0O2A SOM_Solution Demonstration composite cartridge. This cartridge references all
cartridges required for service order management.

OracleComms_OSM_0O2A_SOM_Recognition_Sample | Demonstration cartridge. This cartridge recognizes a service
order from central order management and triggers the creation
of a SOM_ProvisionServiceOrderFulfillment order. Catches all
in-bound messages not recognized by any other provisioning
recognition rules.

OracleComms_OSM_02A_SomBBVoIP_FP_NP_Sampl | Demonstration cartridge. This cartridge contains fulfillment
e patterns, decomposition rules, and order components for service
order management functions.

OracleComms_OSM_0O2A_SomProvisionBroadband_Sa | Demonstration cartridge. This cartridge supports service orders
mple for broadband services.

OracleComms_OSM_O2A_SomProvisionVolP_Sample | Demonstration cartridge. This cartridge supports service orders
for VolIP services.

Conceptual Model Projects

Conceptual model projects contain the relationships between your commercial products, the
services that they represent, and the resources that are required to implement the services.
These projects are not deployed, but the information in them that is needed for deployment is
deployed with the OracleComms_OSM_02A COM_CSO_Model_Container cartridge.

For more information about the conceptual model, see Design Studio Concepts.

Common Conceptual Model Projects

Table 4-7 lists the conceptual model projects that are present in both central order
management and service order management workspaces.

Table 4-7 Common Conceptual Model Projects

Cartridge Name Description
OracleComms_Model_Base Productized cartridge. This cartridge contains entities, like
provider functions and functional areas, that support conceptual
modeling.
ORACLE

4-7

Chapter 4
Cartridge Overview

Table 4-7 (Cont.) Common Conceptual Model Projects

Cartridge Name

Description

OracleComms_Model_BaseCatalog

Productized cartridge. This cartridge contains conceptual model
fulfillment patterns.

OracleComms_Model_Common

Productized cartridge. This cartridge contains a data schema
with common data element definitions.

OracleComms_Model _O2A Broadband_Internet_Access
_CFS

Productized cartridge. This cartridge contains the customer
facing services for broadband Internet access.

OracleComms_Model_O2A_ Broadband_Internet_Access
_SA

Productized cartridge. This cartridge contains the actions for
broadband Internet access.

OracleComms_Model_O2A_Broadband_Internet_DataM
odel

Productized cartridge. This cartridge contains a data schema for
data specific to broadband Internet access.

OracleComms_Model_O2A_Email_CFS

Productized cartridge. This cartridge contains the customer
facing services for email.

OracleComms_Model_O2A_Email_DataModel

Productized cartridge. This cartridge contains a data schema for
data specific to email.

OracleComms_Model_O2A_Email_SA

Productized cartridge. This cartridge contains the actions for
email.

OracleComms_Model_O2A_Internet_Media_CFS

Productized cartridge. This cartridge contains the customer
facing services for Internet media.

OracleComms_Model_O2A_Internet_Media_DataModel

Productized cartridge. This cartridge contains a data schema for
data specific to Internet media.

OracleComms_Model_O2A_Internet_Media_SA

Productized cartridge. This cartridge contains the actions for
Internet media.

OracleComms_Model_O2A_VolP_Access_CFS

Productized cartridge. This cartridge contains the customer
facing services for VoIP.

OracleComms_Model O2A VolP_Access_SA

Productized cartridge. This cartridge contains the actions for
VolP.

OracleComms_Model_O2A VolP_DataModel

Productized cartridge. This cartridge contains a data schema for
data specific to VolIP.

Conceptual Model Projects for Central Order Management

Table 4-8 lists the conceptual model projects that are only present in workspaces with central

order management installed.

Table 4-8 Conceptual Model Projects for Central Order Management

Cartridge Name

Description

OracleComms_Model_O2A_Billing_PS

Productized cartridge. This cartridge contains the domains and
products for billing services.

OracleComms_Model O2A Broadband_Internet PS

Productized cartridge. This cartridge contains the domains and
products for broadband Internet access services.

OracleComms_Model_O2A Email_PS

Productized cartridge. This cartridge contains the domains and
products for email services.

OracleComms_Model_O2A _Install_PS

Productized cartridge. This cartridge contains the domains and
products for installation services.

ORACLE

4-8

Chapter 4
Common Order Management Cartridges

Table 4-8 (Cont.) Conceptual Model Projects for Central Order Management

e
Cartridge Name Description

OracleComms_Model_O2A Internet_Media_PS Productized cartridge. This cartridge contains the domains and
products for Internet media services.

OracleComms_Model _O2A VolP_PS Productized cartridge. This cartridge contains the domains and
products for VoIP services.

Conceptual Model Projects for Service Order Management

Table 4-9 lists the conceptual model projects that are only present in workspaces with service
order management installed.

Table 4-9 Conceptual Model Projects for Service Order Management

Cartridge Name Description

OracleComms_Model_O2A SOM_PS Productized cartridge. This cartridge contains the products for
service order management. This cartridge is only present when
the service option without calculate service order is used.

Common Order Management Cartridges

The following cartridges provide common data dictionary elements that are used by or
referenced by other Order-to-Activate cartridges.

OracleComms_OSM_CommonDataDictionary

The OracleComms_OSM_CommonDataDictionary cartridge is a productized data dictionary
cartridge. It contains the data schema that defines the data elements for modeling
orchestration entities in OSM.

This cartridge is referenced by many other cartridges, including
OracleComms_OSM_0O2A COM_Base, OracleComms_OSM_0O2A SOM_CSO_Base, and
OracleComms_OSM_0O2A SOM_Base.

OracleComms_OSM_0O2A AIAEBMDataDictionary

The OracleComms_OSM_02A_AIAEBMDataDictionary cartridge is a productized data
dictionary cartridge that is part of the core OSM product. It contains the data schema that
defines the data elements from the Oracle AIA EBM schema. Cartridges that must include data
elements from Oracle AIA EBM can reuse the elements defined in this cartridge.

This cartridge is referenced by the OracleComms_OSM_O2A_COM_Base cartridge.

OracleComms_OSM_02A CommonUltility

The OracleComms_OSM_0O2A_CommonUltility cartridge is a productized component cartridge.
It contains the data schema that defines the data elements for Order-to-Activate cartridges.
Cartridges that extend Order-to-Activate cartridges can reuse the elements defined in this
cartridge.

ORACLE 49

Chapter 4
Common Order Management Cartridges

This cartridge is referenced by many other cartridges, including
OracleComms_OSM_0O2A COM_Base, OracleComms_OSM_0O2A_SOM_CSO_Base, and

OracleComms_OSM_0O2A_SOM_Base.

Table 4-10 describes the data schema elements that can be reused when extending Order-to-

Activate cartridges:

Table 4-10 OracleComms_OSM_O2A_CommonUtility Extensible Data Dictionary Elements

Data Dictionary Element

Extension

Order Component

New fulfillment functions should use this data dictionary element or its extended type as
the base fulfillment function type.

Table 4-11 describes the XQuery modules in the cartridge.

Table 4-11 OracleComms_OSM_02A_CommonUtility XQuery Modules

XQuery Module Extendable Description

AIAEBMUTtilityModule No Provides utilities for manipulating Oracle AIA EBM.

AlAFaultMsgEBMUtilityModule No Provides utilities for handling Oracle AlA fault messages.

BreakpointControlModule No Provides services related to breakpoint control in Order-to-
Activate. Please refer to the
OracleComms_OSM_O2A_ControlMap cartridge for an
extensible way to control breakpoints.

ComponentDataManagementModule No Manipulates data structures for fulfillment functions.

ExtensionPointModule No Defines XQuery extension points for fulfillment functions.

ExtensionPointSelector No Sets the order of the fulfillment function's extension points
based on priority.

FalloutLifecycleModule No Provides services related to message fallout and trouble
ticket tracking.

FalloutSimulationModule No Simulates fallout.

FulfillmentOrderEventModule No Manages the fulfillment request's events in central order
management and service order management.

FulfillmentOrderLifecycle- No Provides services related to the fulfillment request's order

ManagementModule lifecycle management.

LogModule No Provides logging facility for Order-to-Activate cartridges.

OrderComponentMetadataBuilder No Provides an internal framework for data discrepancy
detection.

OrderExtensionPointModule No Provides support for order event extension points.

OrderExtensionPointSelector No Provides support for order event extension point selection.

OrderLifecycleModule No Provides services related to the fulfillment request's external
fulfillment state, milestone tracking, upstream order status
map, and status context calculation.

OSMEBMUtilityModule No Provides utilities for manipulating EBM in central order
management.

OsmWebServiceModule No Provides services for OSM web service requests.

PerspectiveModule No Provides utilities for retrieving historical perspectives.

ProductClassToFulfillmentPatternModule No Provides utilities for order line retrieval for both fulfillment

request and service order.

ORACLE

4-10

Chapter 4
Common Order Management Cartridges

Table 4-11 (Cont.) OracleComms_OSM_0O2A_CommonUtility XQuery Modules
|

XQuery Module Extendable Description

ProductClassToProductSpec Yes Provides services related to the mapping between product
specifications and fulfillment patterns.

ProvisionOrderLifecycle-ManagementModule | No Provides services related to service order management-to-
fulfillment request lifecycle management.

ServiceActionCodeModule No Provides services related to service action calculation.

SOMEBMUtilityModule No Provides utilities for manipulating the EBM in service order
management.

SomProductClassToProductSpec Yes Provides services related to the mapping between product
specifications and fulfillment patterns in SOM.

SystemConfigModule No Provides constants and utilities for the calculate service
order solution option.

SystemInteractionModule No Provides services related to message sequencing and
generation and order locking.

TargetMapping No Returns the target system name for a given active
interaction ID during fallout handling.

TargetSystemManagementModule No Provides services related to target system information such
as target system identifier and code.

Topology No Calculates the system topology for the calculate service
order solution option.

TroubleTicket No Provides utilities for trouble ticketing during fallout handling.

UpdateServiceOrderStatusFunctionsModule | No Provides services to create EBM message for the service

provisioning order to update the service order management
order.

OracleComms_OSM_0O2A ControlMap

The OracleComms_OSM_0O2A_ControlMap cartridge is a productized cartridge that provides

the ability to:

e Stop at a breakpoint when OSM executes central order management tasks

e Disable a point of no return

e Simulate a fallout scenario

e Configure the processing granularity of billing fulfilment functions dynamically

e Manage the frequency of order updates to the upstream system for debugging

To use these functions:

1. Create a control file in XML, using the parameters listed in the following sections. The
same control file can contain more than one control function.

2. Validate your control file against the BFPMap.xsd schema located in
OracleComms_OSM_O2A_ControlMap\resource.

You must validate your control file against the schema because OSM will not validate
control files and report errors during order processing. If the file is not a valid XML file, the
entire file will be ignored by OSM. If a file contains an invalid element or value, the control
function containing the invalid element or value will be ignored.

ORACLE

4-11

Chapter 4
Common Order Management Cartridges

3. Put your control file into the OracleComms_OSM_O2A_ControlMap\resource directory.

4. When you want to use the control file for an order, preface the order number with the name
of the control file inside square brackets and without the .xml extension. For example, if
you have a control file named control001.xml in the
OracleComms_OSM_O2A_ControlMap\resource directory, and you want to use it with
an order numbered VOIPO01, send the order in with the orderID [control001]VOIPO1.

Configuring Breakpoints for Central Order Management and for Service Order
Management Without Calculate Service Order

ORACLE

This section applies to configuring breakpoints for central order management for both the
calculate service order solution option and the service option without calculate service order
and configuring breakpoints for service order management for the solution option without
calculate service order. For information about configuring breakpoints for service order
management with the calculate service order solution option, see "Configuring Breakpoints for
Service Order Management with Calculate Service Order."

If you enable breakpoint control, you can set a breakpoint in the order process to cause the
order to go through a particular manual task or a special automated task before or after an
interaction with an external system. This enables you to do things like check status and define
data.

A breakpoint task for central order management or for service order management for the
solution option without calculate service order is defined by:

* BreakComponent: This is an order component name; for example,
SyncCustomerFunction

» ExecutionMode: do, redo, undo, and amend_do

* Event: Component_PRESTART (before the component has started), only applicable to
FulfillBillingFunction), Component_START (after the component has started), and
Component_ COMPLETE (after the component has completed)

e TargetSystem: ANY, or a particular target system such as BRM-ALL

Example 4-1 contains a control file to configure a breakpoint before FulfillBillingFunction starts.

Example 4-1 Control File to Configure a Breakpoint in FulfillBillingFunction

<?xml version="1.0" encoding="UTF-8"?2>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
<oms:BreakPointControlMap>
<oms:BreakComponent>FulfillBillingFunction</oms:BreakComponent>
<oms:ExecutionMode>do</oms:ExecutionMode>
<Event>Component PRESTART</Event>
<TargetSystem>ANY</TargetSystem>
</oms:BreakPointControlMap>
</oms:ControlMap>

The valid component names for central order management are:
e SyncCustomerFunction

* InitiateBillingFunction

e ProvisionOrderFunction

* FulfilBillingFunction

4-12

Chapter 4
Common Order Management Cartridges

The valid component names for service order management for the solution option without
calculate service order are:

e SomProvisionOrderFunction

Configuring Breakpoints for Service Order Management with Calculate Service Order

This section applies to configuring breakpoints for service order management for the calculate
service order solution option. For information about configuring breakpoints for other situations,
see "Configuring Breakpoints for Central Order Management and for Service Order
Management Without Calculate Service Order."

If you enable breakpoint control, you can set a breakpoint in the order process to cause the
order to go through a particular manual task or a special automated task before or after an
interaction with an external system. This enables you to do things like check status and define
data.

A breakpoint task for service order management for the calculate service order solution option
is defined by:

e BreakComponent: This is an order component name; for example,
DesignServiceFunction

* ExecutionMode: do, redo, undo, and amend_do
e Event: The task name in the sub-process of the component
e TargetSystem: ANY, or a particular target system such as SOM_DeliverySystem

Table 4-12 describes the components and events used for breakpoints for service order
management with the calculate service order option.

Table 4-12 Breakpoint Events for Service Order Management with the Calculate
Service Order Solution Option

. ___|
Component Name Events

DesignServiceFunction CaptureBITask
ProcessBITask
ApproveBITask

PlanDeliveryFunction IssueBITask
CalculateTechnicalActionsTask

DeliverOrderFunction CreateTechnicalOrderTask
QueryBITask
CompleteProvisioningFunction CompleteBITask

Example 4-2 contains a control file to configure a breakpoint before FulfillBillingFunction starts.
Example 4-2 Control File to Configure a Breakpoint in DesignServiceFunction

<?xml version="1.0" encoding="UTF-8"?>

<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"

xmlns="urn:com:metasolv:oms:xmlapi:1"

xmlns:oms="urn:com:metasolv:oms:xmlapi:1">

<oms:BreakPointControlMap>

<oms:BreakComponent>DesignServiceFunction</oms:BreakComponent>
<oms:ExecutionMode>do</oms:ExecutionMode>
<Event>CaptureBITask</Event>

ORACLE 413

Chapter 4
Common Order Management Cartridges

<TargetSystem>ANY</TargetSystem>
</oms:BreakPointControlMap>
</oms:ControlMap>

Controlling Point of No Return

During testing, a user may want to disable OSM's ability to set or check for points of no return.
This allows the user to submit an amendment order successfully in situations that would not be
allowed under normal circumstances.

You can disable point of no return processing either for all order components or selectively
using the following field:

« PONRComponent: This can contain any of the following
— Order Component Name - For example, SyncCustomerFunction
— ALL - Disable point of no return setting and checking for all order components

— CONFIG - Disable point of no return checking for all order components when an order
amendment is received

Example 4-3 contains a control file that disables point of no return setting and checking for all
order components.

Example 4-3 Control File to Disable Points of No Return

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">

<oms:PONRControlMap>

<oms : PONRComponent>ALL</oms : PONRComponent>

</oms: PONRControlMap>

</oms:ControlMap>

Controlling Fault Simulation

ORACLE

If you are using the Oracle AIA emulators included with the Order-to-Activate cartridges, you
can simulate fallout scenarios using control files.

There are two ways to trigger the emulator to generate a fault response rather than a
successful response:

» Using the VerbCode field in the EBM
e Using a control file

Both methods are discussed in the following sections.

Simulating Faults in Central Order Management

To simulate a fault in central order management using the VerbCode field in the EBM, populate
the following XPath location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

Table 4-13 lists the valid values to put in the field and their descriptions.

4-14

ORACLE

Chapter 4
Common Order Management Cartridges

Table 4-13 VerbCode Values for Central Order Management

VerbCode Value

Description

SIMULATE_FAIL_SYNCCUST_FAUL
T

The SyncCustomer emulator generates a fault to the AIA error
handler.

SIMULATE_FAIL_SYNCCUST_RESP

The SyncCustomer emulator sends back an invalid response.

SIMULATE_FAIL_SYNCCUST_NOTI
E

The SyncCustomer emulator sends back a response with a fault
indicator.

SIMULATE_FAIL_INITBILL_FAULT

The InitiateBilling emulator generates a fault to the AIA error
handler.

SIMULATE_FAIL_INITBILL_RESP

The InitiateBilling emulator sends back an invalid response.

SIMULATE_FAIL_INITBILL_NOTIF

The InitiateBilling emulator sends back a response with a fault
indicator.

SIMULATE_FAIL_FULFILLBILL_FAU
LT

The FulfillBilling emulator generates a fault to the AlA error
handler.

SIMULATE_FAIL_FULFILLBILL_RES
p

The FulfillBilling emulator sends back an invalid response.

SIMULATE_FAIL_FULFILLBILL_NOT
IF

The FulfillBilling emulator sends back a response with a fault
indicator.

SIMULATE_FAIL_PROV_FAULT

The ProvisionOrder emulator generates a fault to the AlA error
handler.

SIMULATE_FAIL_PROV_RESP

The ProvisionOrder emulator sends back an invalid response.

SIMULATE_FAIL_PROV_NOTIF

The ProvisionOrder emulator sends back a response with a fault
indicator.

To create a control file to simulate fault situations in central order management, use the

following parameters:

e FaultComponent: this is an order component name, for example, SyncCustomerFunction

* ExecutionMode: do, redo, undo, and amend_do

* FaultMode:

— Fault: generate a fault to the AIA error handler

— InvalidRESP: send back an invalid response

— FailNotification: send back a response with a fault indicator

Example 4-4 contains a control file that simulates an invalid response for

SyncCustomerFunction.

Example 4-4 Control File to Simulate a Fault in Central Order Management

<?xml version="1.0" encoding="UTF-8"?>

<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">

<oms:FaultControlMap>

<oms:FaultComponent>SyncCustomerFunction</oms:FaultComponent>
<oms:ExecutionMode>do</oms:ExecutionMode>
<FaultMode>InvalidRESP</FaultMode>

</oms:FaultControlMap>
</oms:ControlMap>

4-15

ORACLE

Chapter 4
Common Order Management Cartridges

Simulating Faults in Service Order Management Without Calculate Service Order

To simulate a fault in service order management without the calculate service order solution
option using the VerbCode field in the EBM, populate the following XPath location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

Table 4-14 lists the valid values to put in the field and their descriptions.

Table 4-14 VerbCode Values for Service Order Management Without Calculate Service
Order

VerbCode Value Description

SIMULATE_FAIL_BRD_SERVICEBU | Service order management generates a fault to the AIA error
NDLE_FAULT handler during broadband service bundle provisioning.
SIMULATE_FAIL_BRD_EMAILSERVI | Service order management generates a fault to the AIA error
CEBUNDLE_FAULT handler during broadband email service provisioning.
SIMULATE_FAIL_BRD_MEDIASERVI | Service order management generates a fault to the AIA error
CEBUNDLE_FAULT handler during broadband media service provisioning.

SIMULATE_FAIL_BRD_CPE_FAULT | Service order management generates a fault to the AlA error
handler during broadband customer premise equipment

provisioning.
SIMULATE_FAIL_VOIP_SERVICEBU | Service order management generates a fault to the AIA error
NDLE_FAULT handler during VolIP service bundle provisioning.

SIMULATE_FAIL_VOIP_CPE_FAULT | Service order management generates a fault to the AIA error
handler during VoIP customer premise equipment provisioning.

To create a control file to simulate fault situations in service order management without the
calculate service order solution option, use the following parameters:

* ExecutionMode: do, redo, undo, and amend_do
* VerbCode: This can contain any of the values in Table 4-14.

Example 4-5 contains a control file that simulates a failure in provisioning broadband customer
premise equipment in execution mode redo.

Example 4-5 Control File to Simulate a Fault in Service Order Management Without
Calculate Service Order

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
<oms:LF FaultControlMap>
<oms:ExecutionMode>redo</oms:ExecutionMode>
<VerbCode>SIMULATE FAIL BRD CPE_FAULT</VerbCode>
</oms:LF FaultControlMap>
</oms:ControlMap>

Simulating Faults in Service Order Management With Calculate Service Order

To simulate a fault in service order management with the calculate service order solution option
using the VerbCode field in the EBM, populate the following XPath location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

4-16

ORACLE

Chapter 4
Common Order Management Cartridges

Table 4-15 lists the valid values to put in the field and their descriptions.

Table 4-15 VerbCode Values for Service Order Management With Calculate Service
Order

- _____________________________________|
VerbCode Value Description

SIMULATE_FAIL_CAPTURE_BI_RE | The CaptureBIl emulator generates a SOAP fault response
SP message.

SIMULATE_FAIL_CAPTURE_BI_NO | The CaptureBl emulator generates a normal response message
TIF with missing mandatory data.

SIMULATE_FAIL_PROCESS_BI_RE | The ProcessBl emulator generates a SOAP fault response
SP message.

SIMULATE_FAIL_PROCESS_BI_NO | The ProcessBI emulator generates a normal response message
TIF with missing mandatory data.

SIMULATE_FAIL_APPROVE_BI_RE | The ApproveBl emulator generates a SOAP fault response
SP message.

SIMULATE_FAIL_APPROVE_BI_NO | The ApproveBl emulator generates a normal response message

TIF with missing mandatory data.
SIMULATE_FAIL_ISSUE_BI_RESP | The IssueBl emulator generates a SOAP fault response
message.

SIMULATE_FAIL_ISSUE_BI_NOTIF | The IssueBl emulator generates a normal response message
with missing mandatory data.

SIMULATE_FAIL_CALCULATE_TA_R | The CalculateTA emulator generates a SOAP fault response
ESP message.

SIMULATE_FAIL_CALCULATE_TA_N | The CalculateTA emulator generates a normal response
OTIF message with missing mandatory data.

SIMULATE_FAIL_CREATE_TO_RES | The CreateTO emulator generates a SOAP fault response
P message.

SIMULATE_FAIL_CREATE_TO_NOTI | The CreateTO emulator generates a normal response message
F with missing mandatory data.

SIMULATE_FAIL_COMPLETE_BI_R | The CompleteBl emulator generates a SOAP fault response
ESP message.

SIMULATE_FAIL_COMPLETE_BI_N | The CompleteBl emulator generates a hormal response

OTIF message with missing mandatory data.

To create a control file to simulate fault situations in service order management with the
calculate service order solution option, use the following parameters:

» ExecutionMode: do, redo, undo, and amend_do
* VerbCode: This can contain any of the values in Table 4-15.

Example 4-6 contains a control file that simulates a failure in provisioning broadband customer
premise equipment in execution mode redo.

Example 4-6 Control File to Simulate a Fault in Service Order Management Without
Calculate Service Order

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">

<oms:LF FaultControlMap>

4-17

Chapter 4
Common Order Management Cartridges

<oms:ExecutionMode>redo</oms:ExecutionMode>
<VerbCode>SIMULATE FAI L_CAPTURE_BI_RESP</VerbCode>
</oms:LF FaultControlMap>
</oms:ControlMap>

Controlling Order Updates

In Order-to-Activate, order updates are sent by central order management to upstream
systems at every milestone update on the order, unless the order is in the Canceling state. The
milestones are defined in OracleComms_OSM_0O2A_Configuration\solution-
config\ComponentMilestoneMap.xml. You can use a control file to disable the order updates
for one or more specific milestones.

Following are the attributes and elements to use in your control file to disable updates for a
breakpoint:

e system: OracleComms_OSM_0O2A_SystemAdmintarget system name defined in the
<oms:targetSystem> element of the resources/SolutionConfig/TargetSystemMap.xml
file in the Order-to-Activate composite cartridge.

« execMode: do, redo, and amend_do

* ComponentMilestone: COMPONENT-START, COMPONENT-UPDATE, or COMPONENT-
COMPLETE

* Milestone: Milestone defined by external system such as PROVISION DESIGNED. This
field is optional and only applicable to the COMPONENT-UPDATE component milestone.

* UpdateUpstreamSystem: Set this to false to disable the event

Example 4-7 contains a control file that disables the sending of updates for the PROVISION
START milestone.

Example 4-7 Control File to Disable Updates for PROVISION START

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
<oms:MilestoneMap system="OSMPROV" systemName="*" execMode="do">
<oms:ComponentMilestone>COMPONENT-START</oms: ComponentMilestone >
<oms:Milestone>PROVISION START</oms:Milestone>
<oms:UpdateUpstreamSystem>false</oms:UpdateUpstreamSystem>
</oms: MilestoneMap>
</oms:ControlMap>

Controlling Processing Granularity for FulfillBillingFunction

ORACLE

In Order-to-Activate, the granularity decomposition rule for FulfillBillingFunction uses
ServiceBundle granularity by default. If you want to test Order granularity on
FulfillBillingFunction, use a control file.

Following are the elements in the control file to change processing granularity:

e GranularityFunction: Only FulfillBillingFunction is supported for this element. Any other
value is ignored.

e Granularity: Only Order and ServiceBundle are supported for this element. Any other
value is ignored.

Example 4-8 contains a control file that changes the processing granularity to Order:

4-18

Chapter 4
Common Order Management Cartridges

Example 4-8 Control File to Change Processing Granularity

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com:metasolv:oms:xmlapi:1l BFPMap.xsd"
xmlns="urn:com:metasolv:oms:xmlapi:1"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
<oms:GranularityControlMap>
<oms:GranularityFunction>FulfillBillingFunction</oms:GranularityFunction>
<oms:Granularity>Order</oms: Granularity>
</oms:GranularityControlMap>
</oms:ControlMap>

OracleComms_OSM_0O2A RecognitionFallout

The OracleComms_OSM_0O2A RecognitionFallout cartridge is a productized cartridge that
generates Oracle AlA trouble ticket creation request messages for unrecognizable customer
order messages.

Table 4-16 lists entities that are defined in this cartridge.

Table 4-16 OracleComms_OSM_O2A_RecognitionFallout Entities

Entity Name Entity Type Description

ORPFalloutPIPOrder Order The order that is created when an unrecognizable message
is received.

CreationORPFalloutTask Manual Task | Creation task that is used to create an ORPFalloutPIPOrder.

ORPQueryTask Manual Task | Query task used by a manual user to view the fallout order.

ORPFalloutProcessErrorTask Manual Task | Task that handles error when creating a fault message in
service order management or when creating a fulfillment
request for the trouble ticketing system.

ORPFalloutProcess Process and | Fallout process that creates a trouble ticket for Oracle AlA.

tasks
orpfalloutrole Role Role with privileges to create and view fallout orders.

Table 4-17 lists XQuery modules defined in this cartridge.

Table 4-17 OracleComms_OSM_O2A_RecognitionFallout XQuery Modules

XQuery Module

Extendable Description

CreateErrorFault No Used by service order management to create a fault
notification.

CreateORPFalloutTroubleTicket No Creates a trouble ticket EBM for Oracle AIA indicating an
ORP error.

CreateORPFalloutTroubleTicketResponse No Handles responses from the ORP trouble ticket request.

DetectORPFalloutHandlingType No Determines the fallout mode depending on whether this is

used in a central order management or service order
management context. For central order management, the
fallout processing requires creation of a trouble ticket
request to the upstream system. For service order
management, fallout processing requires creation of a fault
notification that is sent to the Oracle AlA error handling
queue.

ORACLE

4-19

Chapter 4
Common Order Management Cartridges

Table 4-18 lists the automation modules (with their associated automated tasks) defined in this
cartridge.

Table 4-18 OracleComms_OSM_O2A_RecognitionFallout Automation Modules

Automation Module Automated Task Description
CreateErrorFaultBean CreateFaultErrorTask Calls the CreateErrorFault XQuery.
CreateORPFalloutTroubleTicketR | CreateORPFalloutTroubleTicket | Calls the CreateORPFalloutTroubleTicket XQuery.
equestBean Task
ORPTTResponseBean CreateORPFalloutTroubleTicket | External event receiver to invoke

Task CreateORPFalloutTroubleTicketResponse XQuery.

ean

DetectORPFalloutHandlingTypeB | DetectORPFalloutHandlingType | Calls the DetectORPFalloutHandlingType XQuery.

Task

OracleComms_OSM_02A SystemAdmin

The OracleComms_OSM_0O2A_SystemAdmin cartridge is a productized cartridge that works in
conjunction with the Inbound Message Recovery MDB to create fallout tasks that help you
recover from inbound message processing errors. The
OracleComms_OSM_0O2A_SystemAdmin cartridge and Inbound Message Recovery MDB
handle errors caused by the following:

e Suspended orders (See "Recovering from Inbound Message Errors Due to Suspended
Orders")

e Order-to-Activate resource issues (See "Recovering from Inbound Message Errors Due to
Resource Issues")

Table 4-19 describes the XQuery modules in the cartridge.

Table 4-19 OracleComms_OSM_O02A_SystemAdmin XQuery Modules

XQuery Module

Extendable Description

InboundMessageHandlerDetection No Utility module for fallout recovery. Used to find out the

handling component type from the response message
based on the EBM type.

InBoundMessageRecovery No Routes the inbound message for recovery to appropriate

target system.
ResumePendinginBoundMessage_OrderDat | No Module used as order data rule when recognizing the
aRule inbound message to create the

ResumePendinginBoundMessage order.

How the Inbound Message Recovery MDB Works

ORACLE

The Inbound Message Recovery MDB works with the
OracleComms_OSM_0O2A_SystemAdmin cartridge to handle inbound message errors. When
the message cannot be delivered to the response queue due to JMS system errors, the
response queue uses the OSM Integration Pack Fallout Queue. The Inbound Message
Recovery MDB listens to the OSM Integration Pack Fallout Queue and does the following:

1. Routes the message (response) to the OSM InBoundMessageRecoveryQueue queue.

2. Produces a request to OSM to create the ResumePendinglnBoundMessage order (using
the OracleComms_OSM_0O2A SystemAdmin cartridge) by doing the following:

4-20

Chapter 4
Common Order Management Cartridges

a. Running a manual task that enables order management personnel to confirm that
resource or XQuery logic errors have been resolved.

This step can be configured to redeliver the inbound message automatically, by setting
the JVM parameter pip.require.ack to NO. The number of automatic redelivery
attempts for inbound messages is configured in the model variable named
IB_MSG_MAX_RETRY in the Order-to-Activate composite cartridge.

b. Running an automated task that moves the message from the recovery queue to the
response queue.

OSM recognizes the ResumePendinginBoundMessage order, and the
OracleComms_OSM_0O2A_ SystemAdmin cartridge begins to process.

Recovering from Inbound Message Errors Due to Suspended Orders

The following steps demonstrate how the Inbound Message Recovery MDB and the
OracleComms_OSM_0O2A_SystemAdmin cartridge recover from an error scenario where an
inbound message is not processed because its associated order is suspended.

1.
2.

OSM sends a message to an external system using an automation task.

Before the automation task receives the inbound response message from the external
system, the order associated with the automation task is suspended.

OSM receives the response message from the external system.
The automation task that receives the inbound response message does the following:
a. Checks the order state while processing the response.

b. If the order state is Suspended, moves the message to the OSM Inbound Message
Recovery Queue (passing required order information such as order ID and
FulfilmentFunction name, etc.).

This logic is implemented in the resource AIAEBMResponse.xqy, which is located in
OracleComms_OSM_O2A_COM_SalesOrderFulfillmentPIP/resources/
Componentinteraction.

When the order state changes from Suspended to In Progress, the order state change
event handler creates the ResumePendinginBoundMessage order (using the
OracleComms_OSM_0O2A_ SystemAdmin cartridge).

The ResumePendinginBoundMessage automation task of the process associated with the
ResumePendinglnBoundMessage order moves the original response message from the
OSM Inbound Message Recovery Queue back to the response queue.

The automation task that could not process the inbound message in the response queue
originally (due to its associated order being suspended) processes the inbound message
successfully.

Recovering from Inbound Message Errors Due to Resource Issues

ORACLE

The following steps demonstrate how the Inbound Message Recovery MDB and the
OracleComms_OSM_0O2A_SystemAdmin cartridge recover from an error scenario where an
inbound message processing error occurs due to a resource issue such as a Global
Transaction Error (GTX) or an incorrect XQuery script.

1.

OSM sends a message to an external system using an automation task and receives a
response back from the external system.

4-21

Chapter 4
Common Central Order Management Cartridges

2. The automation task receives the inbound response message in the response queue but
cannot process the message because a resource required to process the message is
currently locked by another task.

For example, the resource could be locked because of a GTX timeout or because of an
error in the logic of an XQuery script.

3. After a few retries, the automation task raises a fallout.
4. The fallout message goes to the OSM Integration Pack Fallout Queue.

5. The Inbound Message Recovery MDB, listening on the OSM Integration Pack Fallout
Queue, moves the response message to the OSM Inbound Message Recovery Queue.

6. The MDB creates the ResumePendinginBoundMessage order (using the
OracleComms_OSM_0O2A_ SystemAdmin cartridge), and its process begins to run.

7. The order process assigns a manual task (a fallout or confirmation task) to order
management personnel who manage fallout.

8. The fallout task is displayed on the worklist of the Task web client.

Note:

OSM does not raise a fallout notification to inform order management personnel
that a fallout task has been created on the worklist.

9. Order management personnel resolve the resource error. For example, they correct the
XQuery script logic and restart the system.

10. In the worklist, order management personnel click the Confirm button on the task and
(optionally) specify the name of the response queue of the automation task that could not
originally process the inbound message. If the name of the response queue is not
specified, the ResumePendinginBoundMessage automated task uses the EBM type to
detect which queue is the response queue and routes the message accordingly.

11. After the confirmation task completes, the process in the
OracleComms_OSM_0O2A_SystemAdmin cartridge runs the
ResumePendinginBoundMessage automation task, which moves the original response
message back to the response queue.

12. The original automation task that could not process the inbound message in the response
gueue is retried, and the message processes successfully.

Common Central Order Management Cartridges

The following cartridges operate in the central order management role, which coordinates
fulfillment functions across the Business Support Systems (BSS) and Operations Support
Systems (OSS) such as Siebel CRM, BRM, and provisioning.

OracleComms_OSM_02A_COM Base

The OracleComms_OSM_02A COM_Base cartridge is a productized cartridge supporting the
orchestration of customer orders from Oracle AlA. It includes communication to and from
fulfillment providers and handles status and data updates.

ORACLE 455

Order Events

Chapter 4
Common Central Order Management Cartridges

When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4-20, it triggers the listed XQuery module to send an order update to the upstream
system.

Table 4-20 OracleComms_OSM_0O2A_COM_Base Order Events

Order Event

Description

stateChange Calls the OrderStateChangeHandler XQuery module to send an order update to the
Siebel CRM system.
completion Calls the OrderCompletionHandler XQuery module to send the order completion to the

Siebel CRM system.

Processing Granularity Rules

ORACLE

There are four orchestration stages defined in the orchestration sequence to decompose the
order line items. The result of each stage of decomposition is the source for the next stage of
decomposition.

e Inthe first stage, the order line items are decomposed by fulfillment function.
* Inthe second stage, the order line items are decomposed by fulfillment provider.
« Inthe third stage, the order line items are decomposed by granularity rule.

e Inthe fourth stage, depending on the fulfillment function process, central order
management will use the fulfillment function process to determine whether to create an
executable order component with all of the order line items if a significant change is
detected on any order line item.

Granularity rules provide the configuration for the third stage of decomposition. During
orchestration plan generation at run time, the granularity rule takes as input the order line items
that have already been grouped by fulfillment function and subdivided by fulfillment provider.

The behavior of granularity rules varies between design time and run time.

For example, during design time, a granularity rule such as ServiceBundleGranularity or
BundleGranularity is selected per fulfilment function by creating one decomposition rule per
fulfillment function for use in the third stage of decomposition.

During run time, granularity rules group the order line items into one or more fulfillment
requests. Granularity rules group the order line items that are targeted at the same fulfillment
function and are specific to a fulfillment provider.

Table 4-21 lists the processing granularity rules.

4-23

Chapter 4
Common Central Order Management Cartridges

Table 4-21 OracleComms_OSM_O2A_COM_Base Processing Granularity Rules

Name Entity Type Description
BundleGranularity Order This granularity rule selects:
Component |, An order line item that represents a bundle along with
Specification bundle components and related order line items
Nested bundles are considered components of the root
bundle and are processed in the same fulfillment
request. In Siebel CRM, a bundle is referred to as a
Commercial Bundle.
* Order line items of any other root node on the order
along with their related order line items
OfferGranularity Order This granularity rule selects:
Component |, An order line item that represents an offer along with
Specification offer components and Related order line items
In Siebel CRM, an offer is referred to as a promotion.
* Order line items of any other root node on the order
along with their related order line items
OrderGranularity Order This granularity rule selects all lines targeted at the same
Component fulfillment function and specific to a fulfillment provider make
Specification | a single fulfillment request.
ServiceBundleGranularity Order This granularity rule selects:
Component |. Ap order line item that represents a service bundle
Specification along with service bundle components and related
order line items
Nested service bundles and their components make
separate fulfillment requests.
* Order line items of any other root node on the order
along with their related order line items
This granularity rule implements an optimization to group
together offers and non-service billing items into a single
fulfillment request to be fulfilled at the same time
WholeltemGranularity Order This granularity rule selects:
Component |, Ap order line item that represents a whole item along
Specification with whole item components and related order line

items
Nested whole items and their components make
separate fulfillment requests.

e Order line items of any other root node on the order
along with their related order line items

Abstract Orchestration Entities

Table 4-22 lists the orchestration entities that are used as base entities for fulfillment function,
fulfillment system, process granularity rule, and fulfillment function updates.

ORACLE

4-24

Chapter 4
Common Central Order Management Cartridges

Table 4-22 OracleComms_OSM_0O2A_COM_Base Abstract Orchestration Entities
- - -~ |

Name Type Description
COM_FulfillmentFunction Order This order component specification represents the base
Component fulfillment function in central order management. All
Specification | fulfillment functions, such as SyncCustomerFunction, should
extend from it.
This order component also contains the external fulfillment
state definitions.
COM_FulfillmentGranularity Order This order component specification represents the
Component processing granularity rule used in the orchestration stage.
Specification | All processing granularity rules should extend from it.
COM_FulfillmentSystem Order This order component specification represents the base
Component fulfillment system in central order management. All
Specification | fulfilment systems, such as BRM-VOIP, should extend from
it.
COM_FulfillmentSignificantUpdates Order This order component specification represents the base
Component fulfillment function with significant updates in the fourth
Specification | orchestration stage.

Order Lifecycle Manager Configuration

The Order-to-Activate order lifecycle manager is configured with the header values for the
Order Lifecycle Management user interface. It also contains mappings between Order-to-
Activate central order management fulfillment states and standard order lifecycle manager

states.

Table 4-23 displays the mappings that are configured. The high-level fulfillment states are
mapped, which causes the child states to be mapped as well.

Table 4-23 Fulfillment State to Order Lifecycle Manager State Mapping

Fulfillment State

Order Lifecycle Manager State

ORACLE

CANCELLED Canceled

COMPLETE Complete

FAILED Failed

IN_PROGRESS In Progress
Note:

If you have both central order management and service order management in the
same Design Studio workspace, you will see service order management fulfillment
states in the list in the order lifecycle manager. The names of the high-level fulfillment
states for service order management all start with SOM_. The service order
management fulfillment states do not need to be mapped here, because they are
mapped in the order lifecycle manager in the service order management
configuration. See "Order Lifecycle Manager Configuration” for information about
service order management state mappings.

4-25

Chapter 4
Common Central Order Management Cartridges

XQuery Modules in the OracleComms_OSM_02A COM_Base Cartridge

Table 4-24 through Table 4-32 list the different types of XQuery modules in this cartridge.

No table is included for the Order Item Property XQuery modules because none are
extendable and each XQuery module does the same thing: retrieves the specified order item
property from the appropriate location in the order data.

Table 4-24 OracleComms_OSM_O2A_COM_Base XQuery Modules for Constants
- __|

Constants XQuery Module Extendable Description

O2AConstants No Defines overall solution constants.

PromotionGroupConstants No Defines constants for processing promotion groups in
central order management.

QueryViewConstants No Defines constants for querying views in central order

management.

Table 4-25 OracleComms_OSM_0O2A_COM_Base XQuery Modules for Fallout Handling
. ___|

Fallout Handling XQuery Module Extendable Description

AbortOrderRequest No Sends an order termination request for the fulfillment
request through the web service API.

AbortOrderResponse No Receives the response to the order termination request for
the fulfillment request through the web service API.

CFwsResponseHandler No Utility module for providing retrieval and update to central
order management order.

CloseCreationFailedTroubleTickets No Sends a request to the trouble ticketing system to close the
trouble tickets for orders with the same Oracle AIA sales
order key.

CloseTroubleTicket No Creates a request to the trouble ticketing system to close a
trouble ticket.

CreateSlIFalloutTroubleTicket No Creates a trouble ticket for system interaction.

CreateTroubleTicket No Creates a trouble ticket for both system interactions and
Order Request Processor (ORP) errors.

FalloutNotificationRouter No Routes fallout notifications to different fallout process to
handle updating EBM, creating a trouble ticket, and keeping
track of the trouble ticket in the OSM order.

FalloutNotificationToCFTask No Directs fallout notifications to central order management.

FindFulfilmentOrderData No Retrieves the fulfillment request data in fallout.

FindOrderCreationFailedTroubleTickets No Finds an order that failed at creation with the Oracle AIA
sales order key.

GetCreationFailFulfilmentOrder No Retrieves the order data for an order that failed at creation.

GetFulfillmentOrderResponse No Utility module to handle the web service response for the
find order request.

GetTroubleTicketData No Updates trouble ticket data on the OSM order.

OrderAbortPropagation No Sends an order termination request to the service order
through the Oracle AIA provisioning order queue.

ORACLE

4-26

Chapter 4
Common Central Order Management Cartridges

Table 4-25 (Cont.) OracleComms_OSM_0O2A_COM_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

OrderAbortPropagationCheck No Checks the status of the order termination request for the
service order.

OrderAbortPropagationResp No Handles the response of the order termination request to
the service order.

SuspendCFOrder No Suspends a central order management order.

SuspendCFOrderResponse No Utility module to handle the web service response for the
suspend order request.

UpdateCreationFailFulfillmentOrder No Updates the trouble ticket information back to the OSM
order that failed at creation.

UpdateFulfillmentOrder No Updates the trouble ticket data on the OSM order. This is
used by both UpdateCreationFailFulfilmentOrder and
UpdateSIFalloutTroubleTicket XQuery file.

UpdateSIFalloutTroubleTicket No Updates the trouble ticket information back to the OSM
order that has system interaction fallout.

UpdateStatusRequest No Creates an update status EBM to the Siebel CRM system
for fallout.

UpdateTroubleTicket No Creates the trouble ticket payload for the trouble ticketing

system.

Table 4-26 OracleComms_OSM_O2A_COM_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery Module | Extendable Description
FulfillmentModeExpression No Marshals the fulfillment mode code from the customer order.
OrderltemSelector No Selects all order line items from the customer order.

Table 4-27 OracleComms_OSM_O2A_COM_Base Order Data Change XQuery Modules

Order Data Change XQuery Module Extendable Description

CloseFalloutTroubleTicket No Creates a request to close a trouble ticket.

CreateFalloutOrderNotification No Creates a fallout order notification to handle fallout for an
order that failed at creation.

UpdateSalesOrderFalloutStatusRequest No Creates an EBM with order status context being populated

with fallout information.

Table 4-28 OracleComms_OSM_O2A_COM_Base Order Item Hierarchy XQuery Modules

Order Item XQuery Module Extendable Description

InterOrderDependency No Determines the inter-order dependency based on the order
item's dependencies across different orders.

LineldKey No Retrieves the order line item's ID.

ParentLineldKey No Retrieves the parent order line item's ID.

PromotionGroupKey No Retrieves the order line item's promotion group.

PromotionGroupParentKey No Retrieves the parent order line item's promotion group.

ORACLE

Chapter 4
Common Central Order Management Cartridges

Table 4-28 (Cont.) OracleComms_OSM_0O2A_COM_Base Order Item Hierarchy XQuery Modules
|

Order Item XQuery Module Extendable Description
RelatedSalesOrderLineldKey No Retrieves the related sales order line item's ID.
RootParentSalesOrderLineldKey No Retrieves the root order item business component ID.

Table 4-29 OracleComms_OSM_O2A_COM_Base Order Recognition XQuery Modules
|

Order Recognition XQuery Module Extendable Description

AlAOrderData No Transforms the customer order to an OSM order.

AIAOrderPriority No Retrieves the priority of the customer order.

AIAOrderRecognition No Recognizes the customer order.

AlAOrderReference No Adds the -TSQ suffix to order identification if the order is to
be processed in Technical Service Qualification mode. (This
allows the same customer order to be sent later as a
DELIVER order with the same order ID.)

AlAOrderValidation No Validates the customer order.

Table 4-30 OracleComms_OSM_O2A_COM_Base Order State XQuery Modules
|

Order State XQuery Module Extendable Description

OrderAbortedStateHandler No Creates an EBM to update the Siebel CRM order with an
aborted status context.

OrderCancelledStateHandler No Creates an EBM to update the Siebel CRM order with a
canceled status context.

OrderCompletedStateHandler No Creates an EBM to update the Siebel CRM order with a
completed status context.

OrderCompletionHandler No Responds to the central order management order
completion event and triggers the
OrderCompletedStateHandler module.

OrderFailedStateHandler No Creates an EBM to update the Siebel CRM order with a
failed status context.

OrderInProgressStateHandler No Creates an EBM to update the Siebel CRM order with an in-
progress status context.

OrderStateChangeHandler No Responds to the central order management order state
change event and triggers the appropriate
OrderStateHandler according to the order state.

OrderStateUtilityModule No Provides utility functions related to order state.

Table 4-31 OracleComms_OSM_O2A_COM_Base Order Transformation Manager XQuery Modules
- __|

Order Transformation Manager XQuery Extendable Description

Module

OTMMappingModule No Utilities to support the order transformation manager.
ORACLE

4-28

Chapter 4
Common Central Order Management Cartridges

Table 4-32 OracleComms_OSM_O2A_COM_Base Processing Granularity XQuery Modules

Processing Granularity XQuery Module Extendable Description

BundleGranularity No Groups related order items as a bundle for processing.

GranularityModule No Utility module to group order items based on service action
code.

OfferBundleGranularity No Groups related order items as an offer for processing.

OrderGranularity No Groups related order items as an order for processing.

ServiceBundleGranularity No Groups related order items as a service for processing.

WholeltemGranularity No Groups related order items as a whole item for processing.

Automation Modules in the OracleComms_OSM_02A COM_Base Cartridge

Table 4-33 lists the automation modules in the cartridge with their associated automated tasks.

Table 4-33 OracleComms_OSM_0O2A_COM_Base Automation Modules

Automation Module

Automated Task

Description

AbortOrderRequestBean

AbortFulfilmentOrderTask

Calls the AbortOrderRequest XQuery.

CloseOrderCreationFailedTrouble
TicketsBean

CloseCreationFailedTroubleTick
etTask

External event receiver to invoke
CloseCreationFailedTroubleTicket XQuery.

FindOrderCreationFailedTroubleTi
cketsBean

CloseCreationFailedTroubleTick
etTask

Calls the FindOrderCreationFailedTroubleTickets
XQuery.

CreateSlIFalloutTroubleTicketReq
uestBean

CreateSlIFalloutTroubleTicketTas
k

Calls the CreateSlIFalloutTroubleTicket XQuery.

GetSlFalloutTroubleTicketRespon
se

CreateSlFalloutTroubleTicketTas
k

External event receiver to invoke
GetTroubleTicketData XQuery.

FalloutnotificationRouterBean

FalloutNotificationRouterTask

Calls the FalloutNotificationRouter XQuery.

SlFalloutNotificationToCF

FalloutNotificationToCFTask

Internal event receiver to invoke
FalloutNotificationToCFTask XQuery.

GetCreationFailFulfillmentOrderB
ean

GetCreationFailFulfillmentOrder
Task

Internal event receiver to invoke
GetCreationFailFulfillmentOrder XQuery.

GetFulfillmentOrder

GetFulfillmentOrderTask

Calls the FindFulfillmentOrderData XQuery.

GetFulfillmentOrderResponse

GetFulfillmentOrderTask

External event receiver to invoke
CFwsResponseHandler XQuery.

OrderAbortPropagationCheckPlu
gin

OrderAbortPropagationCheck

Calls the OrderAbortPropagationCheck XQuery.

OrderAbortPropagationPlugin

OrderAbortPropagationTask

Calls the OrderAbortPropagation XQuery.

OrderAbortPropagationRespPlugi
n

OrderAbortPropagationTask

External event receiver to invoke
OrderAbortPropagationResp XQuery.

SuspendCFOrderPlugin

SetCFOrderAbortinProgressTas
k

Calls the SuspendCFOrder XQuery.

SuspendCFOrderRespPlugin

SetCFOrderAbortinProgressTas
k

External event receiver to invoke
CFwsResponseHandler XQuery.

UpdateCreationFailFulfillmentOrd
erBean

UpdateCreationFailFulfillmentOr
derTask

Calls the UpdateCreationFailFulfillmentOrder XQuery.

ORACLE

4-29

Chapter 4
Common Central Order Management Cartridges

Table 4-33 (Cont.) OracleComms_OSM_0O2A_COM_Base Automation Modules
|

Automation Module Automated Task Description

UpdateFulfillmentOrderBean UpdateFulfillmentOrderTask Calls the UpdateFulfillmentOrder XQuery.
UpdateSIFalloutTroubleTicketReq | UpdateSIFalloutTroubleTicketTa | Calls the UpdateSIFalloutTroubleTicket XQuery.
uest sk

UpdateStatusRequestBean UpdateStatusToOCRMTask Calls the UpdateStatusRequest XQuery.

External Fulfillment States

External fulfillment states in the OracleComms_OSM_0O2A_ COM_Base cartridge are defined
in the COM_FulfillmentFunction order component specification, representing the base
fulfillment function. All fulfilment functions, such as SyncCustomerFunction, extend from
COM_FulfillmentFunction.

The following external fulfillment states are defined in this cartridge:

ORACLE

OPEN

IN_PROGRESS
IN_PROGRESS-FULFILL_BILLING_START
IN_PROGRESS-INITIATE_BILLING_START
IN_PROGRESS-INSTALL_START
IN_PROGRESS-INSTALL_PLANNED
IN_PROGRESS-INSTALL_COMMITTED
IN_PROGRESS-PROVISION_START
IN_PROGRESS-PROVISION_DESIGNED
IN_PROGRESS-SHIP_ORDER_START
IN_PROGRESS-SHIP_ORDER_PLANNED
IN_PROGRESS-SYNC_CUSTOMER_START
COMPLETE
COMPLETE-FULFILL_BILLING_COMPLETE
COMPLETE-INITIATE_BILLING_COMPLETE
COMPLETE-INSTALL_COMPLETE
COMPLETE-PROVISION_COMPLETE
COMPLETE-SHIP_ORDER_SHIPPED
COMPLETE-SYNC_CUSTOMER_COMPLETE
CANCELLED
CANCELLED-FULFILL_BILLING_COMPLETE
CANCELLED-FULFILL_BILLING_START
CANCELLED-INITIATE_BILLING_COMPLETE
CANCELLED-INITIATE_BILLING_START
CANCELLED-INSTALL_COMMITTED

4-30

CANCELLED-INSTALL_COMPLETE
CANCELLED-INSTALL_PLANNED
CANCELLED-INSTALL_START
CANCELLED-PROVISION_COMPLETE
CANCELLED-PROVISION_DESIGNED
CANCELLED-PROVISION_START
CANCELLED-SHIP_ORDER_PLANNED
CANCELLED-SHIP_ORDER_SHIPPED
CANCELLED-SHIP_ORDER_START
CANCELLED-SYNC_CUSTOMER_COMPLETE
CANCELLED-SYNC_CUSTOMER_START
FAILED
FAILED-FULFILL_BILLING_COMPLETE
FAILED-FULFILL_BILLING_START
FAILED-INITIATE_BILLING_COMPLETE
FAILED-INITIATE_BILLING_START
FAILED-INSTALL_COMMITTED
FAILED-INSTALL_COMPLETE
FAILED-INSTALL_PLANNED
FAILED-INSTALL_START
FAILED-PROVISION_COMPLETE
FAILED-PROVISION_DESIGNED
FAILED-PROVISION_START
FAILED-SHIP_ORDER_PLANNED
FAILED-SHIP_ORDER_SHIPPED
FAILED-SHIP_ORDER_START
FAILED-SYNC_CUSTOMER_COMPLETE
FAILED-SYNC_CUSTOMER_START
TSQ_Passed
TSQ_Passed-PROVISION_DESIGNED
TSQ_Failed
TSQ_Failed-PROVISION_DESIGNED

Chapter 4
Common Central Order Management Cartridges

OracleComms_OSM_02A COM_SalesOrderFulfillment

ORACLE

The OracleComms_OSM_02A COM_SalesOrderFulfillment cartridge is a productized
cartridge supporting the communications between central order management and fulfillment
systems. It includes resources to generate requests to fulfillment providers and consume their
responses and to do validation and condition evaluation.

4-31

Chapter 4
Common Central Order Management Cartridges

Table 4-34 lists the XQuery modules defined in this cartridge.

Table 4-34 OracleComms_OSM_O2A_COM_SalesOrderFulfillment XQuery Modules
|

XQuery Module Extendable Description

AIAEBMRequest_do No Generates Oracle AIA EBM requests to a fulfillment
provider.

AIAEBMRequest_redo No Generates Oracle AIA EBM requests to a fulfillment provider
for redo.

AIAEBMRequest_undo No Generates Oracle AIA EBM requests to a fulfillment provider
for undo.

AIAEBMResponse_ValidationModule No Validates Oracle AIA EBM responses from a fulfillment
provider.

AIAEBMResponse No Consumes Oracle AIA EBM responses from a fulfillment
provider.

DoublePlayComponentDependency No Order component dependency rule used to create the
orchestration plan.

FalseRevision No Utility module to detect a false revision order.

InitiateWaitForProvisioningResponse No Initiates the wait for a provisioning response.

OrderLifecycleManagementModule No Utility module to support order lifecycle management for
order and order line items.

PostSIBreakpoint No Supports breakpoints for the automated task
FunctionPostSIBreakTask during undo.

PreSIBreakpoint No Supports breakpoints for the automated task
FunctionPreSIBreakTask during undo.

SIEntryPoint No Provides lifecycle management for both customer order and
service order. Used by automated task
FunctionEntryPointTask. (This task should be used as the
entry point task for a new fulfillment function.)

SIExitPoint No Module used by automated task FunctionExitPointTask to
simulate order item data updates for the InstallOrder and
ShipOrder fulfillment functions.

SIMilestone_doredo No Simulates milestone updates for the automated task
FunctionPlannedTask for both InstallOrder and ShipOrder
fulfillment function.

SIStartPoint No Module used by automated task FulfillBillingStartTask to
provide a breakpoint before the start of the FulfillBilling
function.

UpdateSalesOrderStatusFunctions No Provides functions for updating customer order’s status.

FulfillmentStateModule No Contains configuration for calculating order and order item
fulfillment state.

PointOfNoReturn No Checks whether an order component or order item has

reached the point of no return.

OracleComms_OSM_02A COM Billing

The OracleComms_OSM_0O2A_COM_Billing cartridge is a productized cartridge that supports
billing fulfillment functions. These functions specify subprocesses to handle delivery of a
relevant subset of order data to the BRM ABCS, and handle responses from BRM ABCS. The

ORACLE

4-32

Chapter 4
Common Central Order Management Cartridges

modeled interaction includes coping with fallout, order change management, and status or data
updates back to the CRM ABCS.
Table 4-35 lists the fulfillment functions defined in the cartridge.

Table 4-35 OracleComms_OSM_0O2A_COM_Billing Fulfillment Functions

. __|
Fulfillment Function Billing Pattern Description

SyncCustomerFunction Single-phase, two-phase Provides the ability to synchronize only accounts from
CRM to Billing as part of an order.
SyncCustomerFunction is used in both single-phase
and two-phase billing patterns. This function is
essential because the pre-existence of a customer
account in the billing provider is assumed before
billing.

InitiateBillingFunction Two-phase Provides the ability to start the usage cycle.
InitiateBillingFunction is the first phase in the two-
phase billing pattern. In two-phase billing patterns,
the first phase invokes InitiateBillingFunction, and the
second phase invokes FulfillBillingFunction.

FulfillBillingFunction Single-phase, two-phase Provides the ability to start the billing cycle.
FulfillBillingFunction is the single phase in the single-
phase billing pattern and the second phase in the
two-phase billing pattern.

Table 4-36 lists the XQuery modules in the cartridge that support component interaction.

Table 4-36 OracleComms_OSM_O2A_COM_Billing Component Interaction XQuery Modules

Component Interaction XQuery Module Extendable Description

BillingPatternModule No Determines the billing pattern based on order item's billing
product type and product specification.

BillinginteractionModule No Creates a fulfillment request (in the format of an Oracle AIA
EBM) to send to the billing system.

SyncCustomerinteractionModule No Provides functions to support SyncCustomerFunction.

InitiateBillingInteractionModule No Provides functions to support InitiateBillingFunction, using

the BillinginteractionModule utility module.

FulfilBillingInteractionModule No Provides functions to support FulfillBillingFunction, using the
BillingInteractionModule utility module.

SyncCustomerFunction

This section provides details of SyncCustomerFunction, one of the three fulfillment functions in
the OracleComms_OSM_0O2A_ COM_BiIlling.

SyncCustomerFunction and Decomposition Rules

For the fulfillment request to be relevant for the billing provider to process, there must be at
least one order line item with a service action that is relevant for the SyncCustomerFunction
function to process. The decomposition rules in Table 4-37 ensure that SyncCustomerFunction
is called only if relevant.

ORACLE 433

Chapter 4
Common Central Order Management Cartridges

Table 4-37 Decomposition Rules for SyncCustomerFunction

Configuration

Cartridge Decomposition Rule

Solution option
without calculate

Topology

service order, Simple

OracleComms_OSM_O2A_SimpleTop | Simple_DetermineSignificantUpdates_For_SyncCustomer
ology_Sample

Solution option
without calculate

service order, Typical
or Complex Topology

OracleComms_OSM_O2A_TypicalTop | Typical_DetermineSignificantUpdates_For_SyncCustomer
ology_Sample

Calculate service

all topologies

order solution option, | O_Topology

OracleComms_OSM_O2A_COM_CS | Typical_DetermineSignificantUpdates_For_SyncCustomer

The decomposition conditions in the rules above return true() if fromOrderComponent (the
order component being decomposed from) has at least one order line item that is relevant for
SyncCustomerFunction to process. An order line item property is initialized to YES if the order
line item is relevant for the billing provider's SyncCustomerFunction to process. By default, the
service actions that are relevant for SyncCustomerFunction to process are:

¢ Order line items with ServiceActionCode=ADD

* SyncCustomer compensation-significant updates: Order line items with
ServiceActionCode=UPDATE or MOVE-ADD with compensation-significant updates as
determined by a comparison of the new and prior values from Siebel CRM in the customer
order

SyncCustomerFunction and Fulfillment Patterns

The SyncCustomerFunction order component for fulfillment mode DELIVER is selected for
each fulfillment pattern that supports the single and two-phase billing patterns. The order
component SyncCustomerFunction is included in the BaseProductSpec fulfillment pattern.
As a result, all fulfillment patterns which inherit from BaseProductSpec include
SyncCustomerFunction as part of their fulfillment flow. This applies to each entity in the
cartridge that configures fulfillment patterns, including any custom cartridge specifying the
COM_SalesOrderFulfillment namespace.

SyncCustomerFunction XQuery Modules

Table 4-38 lists the XQuery modules defined for the SyncCustomerFunction fulfillment function.
Customers can provide their own implementation of the XQuery modules in this fulfillment
function indicated extension points. See "Extending XQuery Modules" for more information
about XQuery extension points.

Table 4-38 SyncCustomerFunction XQuery Modules

XQuery Module

XQuery Extension Point Description

SyncCustomerComplete_Event COMPONENT-COMPLETE Invoked when the SyncCustomerFunction

component is completed.

ORACLE

4-34

Table 4-38 (Cont.) SyncCustomerFunction XQuery Modules

Chapter 4
Common Central Order Management Cartridges

XQuery Module

XQuery Extension Point

Description

SyncCustomerCreateAllOrderltems
EBM_Event

CREATE-EBM-ALL-
ORDERITEMS

Invoked after CREATE-EBM-CUSTOM for the
SyncCustomerFunction component to create all
order items. This should always be invoked unless
you want to create only the order header without
any order items.

SyncCustomerCreateCustomEBM_
Event

CREATE-EBM-CUSTOM

Invoked after CREATE-EBM for the
SyncCustomerFunction component. Invokes
extension logic on the order-level CUSTOM
element.

SyncCustomerCreateEBM_DoEven
t

CREATE-EBM
(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the SyncCustomerFunction
component.

SyncCustomerCreateEBM_ReDoE
vent

CREATE-EBM
(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the SyncCustomerFunction
component.

SyncCustomerCreateEBM_UnDoE
vent

CREATE-EBM
(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the SyncCustomerFunction
component.

SyncCustomerCreateOrderltemCus
tomEBM_Event

CREATE-EBM-ORDERITEM-
CUSTOM

Invoked after CREATE-EBM-ORDERITEM for the
SyncCustomerFunction component. Invokes
extension logic on the order-item-level CUSTOM
element.

SyncCustomerCreateOrderltemEB
M_DoEvent

CREATE-EBM-ORDERITEM
(execution mode: do)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the SyncCustomerFunction component in do
execution mode. Invokes extension logic on the
order item element.

SyncCustomerCreateOrderltemEB
M_ReDoEvent

CREATE-EBM-ORDERITEM
(execution mode: redo)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the SyncCustomerFunction component in redo
execution mode. Invokes extension logic on the
order item element.

SyncCustomerCreateOrderltemEB
M_UnDoEvent

CREATE-EBM-ORDERITEM
(execution mode: undo)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the SyncCustomerFunction component in
undo execution mode. Invokes extension logic on
the order item element.

SyncCustomerCreatePriorOrderlte
mCustomEBM_Event

CREATE-EBM-
PRIORORDERITEM-CUSTOM

Invoked after CREATE-EBM-PRIORORDERITEM
for the SyncCustomerFunction component.
Invokes extension logic on the prior-order-item-
level CUSTOM element.

SyncCustomerCreatePriorOrderlte
mEBM_Event

CREATE-EBM-
PRIORORDERITEM

Invoked after CREATE-EBM-ORDERITEM-
CUSTOM for the SyncCustomerFunction
component. Invokes extension logic on the prior
order item element.

SyncCustomerStart_Event COMPONENT-START Invoked when the SyncCustomerFunction
component is started.
SyncCustomerUpdate_Event COMPONENT-RESPONSE- Invoked when the SyncCustomerFunction updates
UPDATE are received to process order items on the billing

response.

SyncCustomerValidateResponseE
BM_Event

VALIDATE-RESPONSE-EBM

Invoked to validate the EBM response for the
SyncCustomerFunction component.

ORACLE

4-35

Chapter 4
Common Central Order Management Cartridges

SyncCustomerFunction Automation Modules

Table 4-39 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A COM_Billing cartridge for the SyncCustomerFunction fulfillment
function.

Table 4-39 SyncCustomerFunction Automation Modules

Automation Module

Automated Task

Description

SyncCustomerEntryPointBean_d
oredo

SyncCustomerEntryPointTask

Calls the SIEntryPoint XQuery.

SyncCustomerRequestBean_do

SyncCustomerSIiTask

Calls the AIAEBMRequest_do XQuery.

SyncCustomerRequestBean_red | SyncCustomerSiTask Calls the AIAEBMRequest_redo XQuery.
o}
SyncCustomerRequestBean_und | SyncCustomerSITask Calls the AIAEBMRequest_undo XQuery.

(o]

SyncCustomerResponseBean

External event receiver to invoke
AIAEBMResponse XQuery.

SyncCustomerSiTask

InitiateBillingFunction

This section provides details of InitiateBillingFunction, one of the three fulfillment functions in
the OracleComms_OSM_O2A_COM_Billing.

InitiateBillingFunction and Decomposition Rules

For the fulfilment request to be relevant for the billing provider to process, there must be at
least one order line item with a service action that is relevant for the InitiateBillingFunction
function to process. The decomposition rules in Table 4-40 ensure that InitiateBillingFunction is
called only if relevant.

Table 4-40 Decomposition Rules for InitiateBillingFunction

Topology

Cartridge Decomposition Rule

Solution option
without calculate

Topology

service order, Simple

OracleComms_OSM_O2A_SimpleTop
ology_Sample

Simple_DetermineSignificantUpdates_For_InitiateBilling

Solution option
without calculate

OracleComms_OSM_O2A_ TypicalTop
ology_Sample

Typical_DetermineSignificantUpdates_For_InitiateBilling

service order, Typical
or Complex Topology

Calculate service

OracleComms_OSM_0O2A_COM_CS | Typical_DetermineSignificantUpdates_For_InitiateBilling

order solution option, | O_Topology

all topologies
The decomposition conditions in the rules above return true() if fromOrderComponent (the
order component being decomposed from) has at least one order line item that is relevant for
InitiateBillingFunction to process. By default, the service actions that are relevant for
InitiateBillingFunction to process are:
e Order line items with ServiceActionCode=ADD

ORACLE

4-36

Chapter 4
Common Central Order Management Cartridges

InitiateBillingFunction and Fulfillment Patterns

The InitiateBillingFunction order component for fulfillment mode DELIVER is selected for
each fulfillment pattern that supports the two-phase billing pattern. This includes the
OracleComms_OSM_0O2A_BBVolPFulfilmentPatternNileFlow_Sample,
OracleComms_OSM_0O2A_BBVolPFulfilmentPatternDanubeFlow_Sample, or any custom
cartridge specifying the COM_SalesOrderFulfillment namespace.

Some of the sample fulfillment patterns included in the InitiateBillingFunction in the fulfillment
flow are:

e Service.VolP

e Service.CPE.VoIP (The IntiateBillingFunction order component is conditional based on
whether the VoIP CPE is contained in a VoIP service. This condition is included in
decomposition rules InitiateBillingFunction_To_YourSysteminstanceNamel...
InitiateBillingFunction_To_ YourSysteminstanceNameN)

* NonService.Offer (The IntiateBillingFunction order component is conditional based on
whether the Offer contains VoIP services. This condition is included in decomposition rules
InitiateBillingFunction_To_YourSysteminstanceNamel...
InitiateBillingFunction_To_YourSysteminstanceNameN)

* NonService.BillingInitiatedltem

* Non.Service.Billingltem

InitiateBillingFunction XQuery Modules

Table 4-41 lists the XQuery modules defined for the InitiateBillingFunction fulfillment function.
Customers can provide their own implementation of the XQuery modules in this fulfillment
function indicated extension points. See "Extending XQuery Modules" for more information
about XQuery extension points.

Table 4-41 InitiateBillingFunction XQuery Modules

XQuery Module XQuery Extension Point Description

InitiateBillingComplete_Event COMPONENT-COMPLETE Invoked when the InitiateBillingFunction
component is completed.

InitiateBillingCreateAllOrderltemsE | CREATE-EBM-ALL- Invoked after CREATE-EBM-CUSTOM for the

BM_Event ORDERITEMS InitiateBillingFunction component to create all

order items. This should always be invoked unless
you want to create only the order header without
any order items.

InitiateBillingCreateCustomEBM_E | CREATE-EBM-CUSTOM Invoked after CREATE-EBM for the
vent InitiateBillingFunction component. Invokes
extension logic on the order-level CUSTOM
element.
InitiateBillingCreateEBM_DoEvent | CREATE-EBM Invoked when the EBM is created in the do
(execution mode: do) execution mode for the InitiateBillingFunction
component.
InitiateBillingCreateEBM_ReDoEve | CREATE-EBM Invoked when the EBM is created in the redo
nt (execution mode: redo) execution mode for the InitiateBillingFunction
component.
InitiateBillingCreateEBM_UnDoEve | CREATE-EBM Invoked when the EBM is created in the undo
nt (execution mode: undo) execution mode for the InitiateBillingFunction
component.
ORACLE

4-37

Chapter 4
Common Central Order Management Cartridges

Table 4-41 (Cont.) InitiateBillingFunction XQuery Modules
|

XQuery Module XQuery Extension Point Description

InitiateBillingCreateOrderltemCusto | CREATE-EBM-ORDERITEM- Invoked after CREATE-EBM-ORDERITEM for the

mEBM_Event CUSTOM InitiateBillingFunction component. Invokes
extension logic on the order-item-level CUSTOM
element.

InitiateBillingCreateOrderltemEBM_ | CREATE-EBM-ORDERITEM Invoked after CREATE-EBM-ALL-ORDERITEMS

DoEvent (execution mode: do) for the InitiateBillingFunction component in do

execution mode. Invokes extension logic on the
order item element.

InitiateBillingCreateOrderltemEBM_ | CREATE-EBM-ORDERITEM Invoked after CREATE-EBM-ALL-ORDERITEMS
ReDoEvent (execution mode: redo) for the InitiateBillingFunction component in redo
execution mode. Invokes extension logic on the
order item element.

InitiateBillingCreateOrderltemEBM_ | CREATE-EBM-ORDERITEM Invoked after CREATE-EBM-ALL-ORDERITEMS
UnDoEvent (execution mode: undo) for the InitiateBillingFunction component in undo
execution mode. Invokes extension logic on the
order item element.

InitiateBillingCreatePriorOrderltem | CREATE-EBM- Invoked after CREATE-EBM-PRIORORDERITEM
CustomEBM_Event PRIORORDERITEM-CUSTOM for the InitiateBillingFunction component. Invokes
extension logic on the prior-order-item-level
CUSTOM element.

InitiateBillingCreatePriorOrderltem | CREATE-EBM- Invoked after CREATE-EBM-ORDERITEM-
EBM_Event PRIORORDERITEM CUSTOM for the InitiateBillingFunction
component. Invokes extension logic on the prior
order item element.

InitiateBillingStart_Event COMPONENT-START Invoked when the InitiateBillingFunction
component is started.
InitiateBillingUpdate_Event COMPONENT-RESPONSE- Invoked when the InitiateBillingFunction updates
UPDATE are received to process order items on the billing
response.
InitiateBillingValidateResponseEBM | VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
_Event InitiateBillingFunction component.

InitiateBillingFunction Automation Modules

Table 4-42 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A COM_Billing cartridge for the InitiateBillingFunction fulfillment
function.

Table 4-42 InitiateBillingFunction Automation Modules
- _________________________ |

Automation Module Automated Task Description
InitiateBillingEntryPointBean_dore | InitiateBillingEntryPointTask Calls the SIEntryPoint XQuery.
do
InitiateBillingRequestBean_do InitiateBillingSITask Calls the AIAEBMRequest_do XQuery.
InitiateBillingRequestBean_redo | InitiateBillingSITask Calls the AIAEBMRequest_redo XQuery.
InitiateBillingRequestBean_undo | InitiateBillingSITask Calls the AIAEBMRequest_undo XQuery.
InitiateBillingResponseBean InitiateBillingSITask External event receiver to invoke AIAEBMResponse
XQuery.
ORACLE

4-38

Chapter 4
Common Central Order Management Cartridges

FulfillBillingFunction

This section provides details of FulfillBillingFunction, one of the three fulfillment functions in the
OracleComms_OSM_0O2A_COM_Billing.

FulfillBillingFunction and Decomposition Rules

For the fulfilment request to be relevant for the billing provider to process, there must be at
least one order line item with a service action that is relevant for the FulfillBillingFunction
function to process. The decomposition rules in Table 4-43 ensure that FulfillBillingFunction is
called only if relevant.

Table 4-43 Decomposition Rules for FulfillBillingFunction

Topology

Topology Cartridge Decomposition Rule
Solution option OracleComms_OSM_O2A_SimpleTop | Simple_DetermineSignificantUpdates_For_FulfillBilling
without calculate ology_Sample

service order, Simple

Solution option
without calculate

OracleComms_OSM_O2A_TypicalTop
ology_Sample

Typical_DetermineSignificantUpdates_For_FulfillBilling

service order, Typical
or Complex Topology

Calculate service
order solution option,

OracleComms_OSM_02A COM_CS
O_Topology

Typical_DetermineSignificantUpdates_For_FulfillBilling

all topologies

ORACLE

The decomposition conditions in the rules above return true() if fromOrderComponent (the
order component being decomposed from) has at least one order line item that is relevant for
FulfillBillingFunction to process. By default, the service actions that are relevant for
FulfillBillingFunction to process are:

e Order line items with ServiceActionCode=ADD, DELETE, UPDATE, SUSPEND, RESUME,
MOVE-ADD, or MOVE-DELETE

FulfillBillingFunction and Fulfillment Patterns

The order component FulfillBillingFunction is included in the orchestration plan for the
BaseProductSpec fulfillment pattern. This ensures that FulfillBillingFunction is included in the
fulfillment flow for all fulfillment pattern entities that extend from BaseProductSpec. This
includes any cartridge specifying the COM_SalesOrderFulfillment namespace.

All sample fulfillment patterns include FulfillBillingFunction.

Sample fulfillment patterns that include FulfillBillingFunction in a single-phase billing pattern
(without InitiateBillingFunction) in the fulfillment flow are:

e Service.Broadband
 Service.CPE.Broadband

* NonService.Billingltem

FulfillBillingFunction XQuery Modules

Table 4-44 lists the XQuery modules defined for the FulfillBillingFunction fulfillment function.
Customers can provide their own implementation of the XQuery modules in this fulfillment

4-39

Chapter 4
Common Central Order Management Cartridges

function indicated extension points. See "Extending XQuery Modules" for more information
about XQuery extension points.

Table 4-44 FulfillBillingFunction XQuery Modules
|

XQuery Module

XQuery Extension Point

Description

FulfillBillingComplete_Event

COMPONENT-COMPLETE

Invoked when the FulfillBillingFunction component
is completed.

FulfillBillingCreateAllOrderltemsEB
M_Event

CREATE-EBM-ALL-
ORDERITEMS

Invoked after CREATE-EBM-CUSTOM for the
FulfillBillingFunction component to create all order
items. This should always be invoked unless you
want to create only the order header without any
order items.

FulfillBillingCreateCustomEBM_Eve
nt

CREATE-EBM-CUSTOM

Invoked after CREATE-EBM for the
FulfillBillingFunction component. Invokes
extension logic on the order-level CUSTOM
element.

FulfillBillingCreateEBM_DoEvent

CREATE-EBM
(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateEBM_ReDoEvent

CREATE-EBM
(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateEBM_UnDoEvent

CREATE-EBM
(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateOrderltemCusto
mEBM_Event

CREATE-EBM-ORDERITEM-
CUSTOM

Invoked after CREATE-EBM-ORDERITEM for the
FulfillBillingFunction component. Invokes
extension logic on the order-item-level CUSTOM
element.

FulfillBillingCreateOrderltemEBM_
DoEvent

CREATE-EBM-ORDERITEM
(execution mode: do)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the FulfillBillingFunction component in do
execution mode. Invokes extension logic on the
order item element.

FulfillBillingCreateOrderltemEBM_
ReDoEvent

CREATE-EBM-ORDERITEM
(execution mode: redo)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the FulfillBillingFunction component in redo
execution mode. Invokes extension logic on the
order item element.

FulfillBillingCreateOrderltemEBM_
UnDoEvent

CREATE-EBM-ORDERITEM
(execution mode: undo)

Invoked after CREATE-EBM-ALL-ORDERITEMS
for the FulfillBillingFunction component in undo
execution mode. Invokes extension logic on the
order item element.

FulfillBillingCreatePriorOrderltemC
ustomEBM_Event

CREATE-EBM-
PRIORORDERITEM-CUSTOM

Invoked after CREATE-EBM-PRIORORDERITEM
for the FulfillBillingFunction component. Invokes
extension logic on the prior-order-item-level
CUSTOM element.

FulfillBillingCreatePriorOrderltemE
BM_Event

CREATE-EBM-
PRIORORDERITEM

Invoked after CREATE-EBM-ORDERITEM-
CUSTOM for the FulfillBillingFunction component.
Invokes extension logic on the prior order item
element.

FulfillBillingStart_Event

COMPONENT-START

Invoked when the FulfillBillingFunction component
is started.

ORACLE

4-40

Chapter 4
Common Central Order Management Cartridges

Table 4-44 (Cont.) FulfillBillingFunction XQuery Modules
|

XQuery Module XQuery Extension Point Description
FulfillBillingUpdate_Event COMPONENT-RESPONSE- Invoked when the FulfillBillingFunction updates
UPDATE are received to process order items on the billing
response.
FulfillBillingValidateResponseEBM__ | VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
Event FulfillBillingFunction component.

FulfillBillingFunction Automation Modules

Table 4-45 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A COM_Billing cartridge for the FulfillBillingFunction fulfillment
function.

Table 4-45 FulfillBillingFunction Automation Modules

Automation Module Automated Task Description

FulfillBillingEntryPointBean_dored | FulfillBillingEntryPointTask Calls the SIEntryPoint XQuery.

0

FulfillBillingRequestBean_do FulfillBillingSITask Calls the AIAEBMRequest_do XQuery.

FulfillBillingRequestBean_redo FulfillBillingSITask Calls the AIAEBMRequest_redo XQuery.

FulfillBillingRequestBean_undo FulfillBillingSITask Calls the AIAEBMRequest_undo XQuery.

FulfillBillingResponseBean FulfillBillingSITask External event receiver to invoke AIAEBMResponse
XQuery.

FulfillBillingStart FulfillBillingStartTask Calls the SiStartPoint XQuery.

Billing Dates for Billing Patterns

ORACLE

Billing dates are set when usage events start being rated (usage start date time), when cycle
charges start being billed (cycle start date time), and when one time purchase charges should
be billed (purchase start time). This section discusses how billing dates are generated.

Default Billing Dates for Two-Phase Billing Patterns

In a two-phase billing pattern, the billing dates are calculated based on data from the customer
order and the determination of whether the LATENCY or VALIDATION pattern is used.

The billing dates are reset between the two billing phases (InitiateBillingFunction and
FulfillBillingFunction).Billing dates are only set for order line items having the
ServiceActionCode of ADD. The following order item properties are updated with the billing
dates:

e For phase 1, order item properties in ControlData/Functions/IntiateBillingFunction/
orderltem/orderitemRef/WorkLineltemData/SalesOrderSchedule

— ServiceUsageStartDate
— PurchaseDate
— CycleStartDate

4-41

Chapter 4
Common Central Order Management Cartridges

Note:

The three elements above have a data type of DateTime. However the names of
the data elements as defined in the Oracle AIA EBM do not end with DateTime
but Date only. O2A is following the names defined in the Oracle AIA EBM.

e For phase 2, the order item properties from phase 1 are copied into properties with the
same names in ControlData/Functions/FulfillBillingFunction/orderltem/orderltemRef/
WorkPriorLineltemData/SalesOrderSchedule and all three Date fields are re-calculated
as indicated in the Default Billing Dates for Phase 2 column in Table 4-46.

Table 4-46 lists the default date calculations applicable to two-phase billing patterns.

Table 4-46 Two-Phase Billing Pattern Date Calculations
e _____________________________________ |

Billing Pattern Default Billing Dates for Phase 1 Default Billing Dates for Phase 2

LATENCY ServiceUsageStartDate= CycleStartDate = SalesOrderLine/CycleStartDate if
OrderingBaseDateTime populated; otherwise compute as Actual Delivery Date
PurchaseDate = OrderingBaseDateTime Time or Requested Delivery Date Time, whichever is

.) later.

CycleStartDate = OrderingBaseDateTime + ater
1 year

VALIDATION ServiceUsageStartDate= ServiceUsageStartDate = SalesOrderLine/
OrderingBaseDateTime + 1 year ServiceUsageStartDate if populated; otherwise Actual
PurchaseDate=OrderingBaseDateTime + 1 | Delivery Date Time
year PurchaseDate = SalesOrderLine/PurchaseDate if
CycleStartDate = OrderingBaseDateTime + | Populated; otherwise Actual Delivery Date Time
1 year CycleStartDate = SalesOrderLine/ CycleStartDate if

populated; otherwise Actual Delivery Date Time or
Requested Delivery Date Time, whichever is later.

Default Billing Dates for Single-Phase Billing Patterns

In a single-phase billing pattern, the billing dates are calculated based on data from the
customer order.

Billing dates are only set for order line items having the ServiceActionCode of ADD. The
following order item properties are updated with the billing dates:

* Order item properties in ControlData/Functions/IntiateBillingFunction/orderlitem/
orderltemRef/WorkLineltemData/SalesOrderSchedule

— ServiceUsageStartDate: This is set to SalesOrderLine/ ServiceUsageStartDate if
populated; otherwise ActualDeliveryDateTime

— PurchaseDate: This is set to SalesOrderLine/PurchaseDate if populated; otherwise
ActualDeliveryDateTime

— CycleStartDateTime: This is set to SalesOrderLine/CycleStartDateTime if populated;
otherwise Actual Delivery Date Time or Requested Delivery Date Time, whichever is
later.

OracleComms_OSM_0O2A COM_Provisioning

The OracleComms_OSM_0O2A_COM_Provisioning cartridge is a productized cartridge that
supports the provisioning fulfillment functions. These functions specify a subprocess to handle

ORACLE 4o

Chapter 4
Common Central Order Management Cartridges

delivery of a relevant subset of order data to the provisioning ABCS and to handle responses
from the provisioning ABCS.

Table 4-47 lists the XQuery modules in the cartridge that support component interaction.

Table 4-47 OracleComms_OSM_O2A_COM_Provisioning Component Interaction XQuery Modules

|
Component Interaction XQuery Module Extendable Description

ProvisionOrderlInteractionModule No Provides functions to support ProvisionOrderFunction when

the calculate service order solution option is not being used.

ProvisionOrderinteractionModule_base No Provides base functions to support ProvisionOrderFunction
when the calculate service order solution option is being

used.

ProvisionOrderinteractionModule_do No Provides functions to support ProvisionOrderFunction for
the do execution mode when the calculate service order

solution option is being used.

ProvisionOrderinteractionModule_events No Provides event-related functions to support
ProvisionOrderFunction when the calculate service order

solution option is being used.

ProvisionOrderinteractionModule_redo No Provides functions to support ProvisionOrderFunction for
the redo execution mode when the calculate service order

solution option is being used.

ProvisionOrderinteractionModule_undo No Provides functions to support ProvisionOrderFunction for
the undo execution mode when the calculate service order

solution option is being used.

Table 4-48 lists the XQuery modules defined for the ProvisionOrderFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in this
fulfillment function indicated extension points. See "Extending XQuery Modules" for more
information about XQuery extension points.

Table 4-48 ProvisionOrderFunction XQuery Modules

XQuery Module

XQuery Extension Point

Description

ProvisionOrderComplete_Event COMPONENT-COMPLETE Invoked when the ProvisionOrderFunction
component is completed.
ProvisionOrderCreateEBM_DoEve | CREATE-EBM Invoked when the EBM is created in the do

nt

(execution mode: do)

execution mode for the ProvisionOrderFunction
component.

ProvisionOrderCreateEBM_ReDoE
vent

CREATE-EBM
(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the ProvisionOrderFunction
component.

ProvisionOrderCreateEBM_UnDoE
vent

CREATE-EBM
(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the ProvisionOrderFunction
component.

ProvisionOrderStart_Event

COMPONENT-START

Invoked when the ProvisionOrderFunction
component is started.

ProvisionOrderValidateResponseE
BM_Event

VALIDATE-RESPONSE-EBM

Invoked to validate the EBM response for the
ProvisionOrderFunction component.

ProvisionOrderUpdate_Event

COMPONENT-RESPONSE-
UPDATE

Invoked when the EBM response for
ProvisionOrderFunction component is updated.

ORACLE

4-43

Chapter 4
Common Central Order Management Cartridges

Table 4-49 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_02A_ COM_Provisioning cartridge for the ProvisionOrderFunction
fulfillment function.

Table 4-49 ProvisionOrderFunction Automation Modules

Automation Module

Automated Task Description

ProvisionOrderEntryPointBean_d
oredo

ProvisionOrderSIEntryPointTask

Calls the SIEntryPoint XQuery.

ProvisionOrderRequestBean_do

ProvisionOrderSITask

Calls the AIAEBMRequest_do XQuery.

ProvisionOrderRequestBean_red
o]

ProvisionOrderSITask

Calls the AIAEBMRequest_redo XQuery.

ProvisionOrderRequestBean_und

ProvisionOrderSITask

Calls the AIAEBMRequest_undo XQuery.

(o]

ProvisionOrderResponseBean

ProvisionOrderSITask External event receiver to invoke AIAEBMResponse

XQuery.

OracleComms_OSM_02A COM_Shipping_Sample

The OracleComms_OSM_0O2A_COM_Shipping_Sample cartridge is a demonstration cartridge
that supports the shipping fulfillment functions. These functions specify subprocesses to
handle delivery of a relevant subset of order data to supply chain management.

Table 4-50 lists he XQuery modules in the cartridge that support component interaction.

Table 4-50 OracleComms_OSM_0O2A_COM_Shipping_Sample Component Interaction XQuery Modules

Component Interaction XQuery Module

Extendable Description

ShipOrderinteractionModule

Yes Provides functions to support ShipOrderFunction.

Table 4-51 lists the XQuery modules defined for the ShipOrderFunction fulfillment function.
Customers can provide their own implementation of the XQuery modules in this fulfillment
function indicated extension points. See "Extending XQuery Modules" for more information
about XQuery extension points.

Table 4-51 ShipOrderFunction XQuery Modules

XQuery Module

XQuery Extension Point Description

ShipOrderComplete_Event COMPONENT-COMPLETE Invoked when the ShipOrderFunction component
is completed.
ShipOrderStart_Event COMPONENT-START Invoked when the ShipOrderFunction component

is started.

ORACLE

Table 4-52 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_02A COM_Shipping_Sample cartridge for the ShipOrderFunction
fulfillment function.

4-44

Table 4-52 ShipOrderFunction Automation Modules

Chapter 4
Common Central Order Management Cartridges

Automation Module

Automated Task

Description

ShipOrderEntryPointBean

ShipOrderEntryPointTask

Calls the SIEntryPoint XQuery.

ShipOrderPlannedBean

ShipOrderPlannedTask

Calls the SIMilestone_doredo XQuery to return the
SHIP ORDER PLANNED milestone.

ShipOrderExitPointBean

ShipOrderExitPointTask

Calls the SIExitPoint XQuery.

OracleComms_OSM

management.

02A_COM _Install_Sample

The OracleComms_OSM_0O2A COM_Install_Sample cartridge is a demonstration cartridge
that supports the installation fulfillment functions for High-Speed Internet. These functions
specify subprocesses to handle delivery of a relevant subset of order data to supply chain

Table 4-53 lists he XQuery modules in the cartridge that support component interaction.

Table 4-53 OracleComms_OSM_O2A_COM_Install_Sample Component Interaction XQuery Modules

Component Interaction XQuery Module

Extendable

Description

InstallOrderInteractionModule

Yes Provides functions to support InstallOrderFunction.

Table 4-54 lists the XQuery modules defined for the InstallOrderFunction fulfillment function.
Customers can provide their own implementation of the XQuery modules in this fulfillment
function indicated extension points. See "Extending XQuery Modules" for more information
about XQuery extension points.

Table 4-54 InstallOrderFunction XQuery Modules

XQuery Module

XQuery Extension Point

Description

InstallOrderComplete_Event COMPONENT-COMPLETE Invoked when the InstallOrderFunction component
is completed.
InstallOrderStart_Event COMPONENT-START Invoked when the InstallOrderFunction component

is started.

Table 4-55 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A COM _Install_Sample cartridge for the InstallOrderFunction
fulfillment function.

Table 4-55 InstallOrderFunction Automation Modules

Automation Module

Automated Task

Description

InstallOrderEntryPointBean

InstallOrderEntryPointTask

Calls the SIEntryPoint XQuery.

InstallOrderPlannedBean

InstallOrderPlannedTask

Calls the SIMilestone_doredo XQuery to return the
INSTALL PLANNED milestone.

InstallOrderCommittedBean

InstallOrderCommittedTask

Calls the SIMilestone_doredo XQuery to return the
INSTALL COMMITTED milestone.

InstallOrderExitPointBean

InstallOrderExitPointTask

Calls the SIExitPoint XQuery.

ORACLE

4-45

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

OracleComms_OSM_02A COM_Recognition_Sample

The OracleComms_OSM_0O2A COM_Recognition_Sample cartridge is a demonstration
cartridge that recognizes a customer order from Oracle AlA and triggers the creation of a
COM_SalesOrderFulfillment order. In addition, this cartridge recognizes order fallout
notifications, trouble ticket requests, and inbound message errors due to suspended orders or
resource issues. It also catches all unrecognizable messages.

Table 4-56 lists the order recognition rules defined in this cartridge.

Table 4-56 OracleComms_OSM_O2A_COM_Recognition_Sample Order Recognition Rules

Order Recognition Rule Description

COM_CloseTroubleTicketWorkOrder_Recognition Recognizes a request to close an order as a result of a trouble
ticket.

COM_FaultNotificationOrder_Recognition Recognizes order fallout notifications from Oracle AlA.

COM_ORPFallout_CTT_OrderRecognitionRule Recognizes an ORP fallout and triggers creation of a fulfillment

request for a trouble ticketing system.

COM_ResumePendinglbMsg_OrderRecognitionRule Recognizes an inbound message and triggers creation of a

ResumePendinginBoundMessage order.

COM_SalesOrderFulfillment_Recognition Recognizes an Oracle AlA customer order and triggers the

creation of a COM_SalesOrderFulfillment order.

Revision Number Update for Canceled Orders

When AlA receives an order that has a mode of CANCEL, or when an order is received in
which all of the order line items have an action code of NONE, AIA does not update the
revision number. Because OSM will ignore a revision order if its revision number is the same
as on a previously received order revision, the OTA recognition cartridges update the revision
number on orders of this type to 999999999. This ensures that the cancelation is processed.

Central Order Management Cartridges for the Calculate Service
Order Solution Option

The following cartridges operate in the central order management role, which coordinates
fulfillment functions across the Business Support Systems (BSS) and Operations Support
Systems (OSS) such as Siebel CRM, BRM, and provisioning. These cartridges are used in the
calculate service order solution option.

OracleComms_OSM_02A COM_CSO Base

ORACLE

The OracleComms_OSM_02A COM_CSO_Base cartridge is a productized cartridge. It
contains entities that support the orchestration of orders for the calculate service order solution
option. It includes the following entities:

e Order Item Specification: COM_TransformedServiceLine: This order item specification
defines the order item information for transformed order items.

+ Data Schema: OracleComms_OSM_0O2A_COM_CSO_Data: This data schema contains
elements relating to transformed order items.

4-46

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

e Orchestration Process: COM_SalesOrderFulfillmentOrchestrationProcess: This
orchestration process invokes the order transformation manager.

« Transformation Sequence: COM_OTM_Sequence: This orchestration sequence has four
stages. For more information, see the discussion of transformation sequences in OSM
Concepts.

OracleComms_OSM_02A COM_CSO Broadband_Internet Access CFS

The OracleComms_OSM_02A COM_CSO_Broadband_Internet_Access_CFS cartridge is a
demonstration cartridge that contains the mapping rules and order item parameter bindings
associated with the customer facing service for broadband internet access. It also contains
XQuery modules to support the order item parameter bindings.

OracleComms_OSM_02A COM_CSO _Email_CFS

The OracleComms_OSM_02A COM_CSO_Email_CFS cartridge is a demonstration cartridge
that contains the mapping rules and order item parameter bindings associated with the
customer facing service for email service. It also contains XQuery modules to support the order
item parameter bindings.

OracleComms_OSM_02A COM_CSO_FulfillmentPattern

The OracleComms_OSM_02A COM_CSO_FulfilmentPattern cartridge is a productized
cartridge that contains fulfillment patterns and orchestration dependencies for the calculate
service order solution option.

OracleComms_OSM_02A COM_CSO_FulfillmentStateMap

The OracleComms_OSM_02A COM_CSO_FulfilmentStateMap cartridge is a productized
cartridge. It fulfillment state maps and transformed order item fulfillment state composition rule
sets specific to the calculate service order solution option.

OracleComms_OSM_02A COM_CSO _Internet Media_CFS

The OracleComms_OSM_02A COM_CSO_Internet_Media_CFS cartridge is a demonstration
cartridge that contains the mapping rules and order item parameter bindings associated with
the customer facing service for Internet media service. It also contains XQuery modules to
support the order item parameter bindings.

OracleComms_OSM_02A COM_CSO_IP_Fax CFS

The OracleComms_OSM_02A COM_CSO_IP_Fax_CFS cartridge is a demonstration
cartridge that contains the mapping rules and order item parameter bindings associated with
the customer facing service for IP fax service. It also contains XQuery modules to support the
order item parameter bindings.

OracleComms_OSM_02A COM_CSO_Model_Container

The OracleComms_OSM_02A COM_CSO_Model_Container cartridge is a demonstration
cartridge. It defines the common model projects that contain elements that might need to be
included in the deployment and contains the transformation manager for the calculate service
order solution option.

ORACLE A-47

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

To see the common model projects that are contained by this cartridge, open the Properties
tab of the cartridge editor. For more information about the common model projects included
with the Order-to-Activate cartridges, see "Conceptual Model Projects."

OracleComms_OSM_02A COM_CSOQO_Provisioning

The OracleComms_OSM_02A COM_CSO_Provisioning cartridge is a demonstration
cartridge. It contains order components for provisioning that are specific to the calculate
service order solution option.

External Fulfillment States

ORACLE

External fulfillment states in the OracleComms_OSM_02A COM_CSO_Provisioning cartridge
are defined in the ProvisioningOrderFunction order component specification for use withy
the calculate service order solution option.

The following external fulfillment states are defined in this cartridge:

* IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_DESIGNED
* IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_ISSUED
* IN_PROGRESS-VOIPDOMAIN_PROVISION_DESIGNED

* IN_PROGRESS-VOIPDOMAIN_PROVISION_ISSUED

* FAILED-VOIPDOMAIN_PROVISION_FAILED

* FAILED-BROADBANDINTERNETDOMAIN_PROVISION_FAILED

* IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_START

* IN_PROGRESS-VOIPDOMAIN_PROVISION_START

* CANCELLED-VOIPDOMAIN_PROVISION_DESIGNED

* CANCELLED-VOIPDOMAIN_PROVISION_START

« CANCELLED-VOIPDOMAIN_PROVISION_ISSUED

« CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_DESIGNED
« CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_START

« CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_ISSUED

* COMPLETE-VOIPDOMAIN_PROVISION_COMPLETE

* COMPLETE-BROADBANDINTERNETDOMAIN_PROVISION_COMPLETE
* FAILED-BROADBANDINTERNETDOMAIN_PROVISION_AUXILIARY_FAILED
* FAILED-VOIPDOMAIN_PROVISION_AUXILIARY_FAILED

* IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_START

* IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_DESIGNED

* IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_ISSUED

* IN_PROGRESS-EMAILDOMAIN_PROVISION_START

* IN_PROGRESS-EMAILDOMAIN_PROVISION_DESIGNED

* IN_PROGRESS-EMAILDOMAIN_PROVISION_ISSUED

« CANCELLED-EMAILDOMAIN_PROVISION_DESIGNED

« CANCELLED-EMAILDOMAIN_PROVISION_START

4-48

Chapter 4

Central Order Management Cartridges for the Calculate Service Order Solution Option

* CANCELLED-EMAILDOMAIN_PROVISION_ISSUED

* CANCELLED-INTERNETMEDIADOMAIN_PROVISION_DESIGNED

* CANCELLED-INTERNETMEDIADOMAIN_PROVISION_START

* CANCELLED-INTERNETMEDIADOMAIN_PROVISION_ISSUED

* COMPLETE-EMAILDOMAIN_PROVISION_COMPLETE

* COMPLETE-INTERNETMEDIADOMAIN_PROVISION_COMPLETE

* FAILED-EMAILDOMAIN_PROVISION_FAILED

* FAILED-EMAILDOMAIN_PROVISION_AUXILIARY_FAILED

* FAILED-INTERNETMEDIADOMAIN_PROVISION_FAILED

* FAILED-INTERNETMEDIADOMAIN_PROVISION_AUXILIARY_FAILED

OracleComms_OSM_02A COM_CSO_SalesOrders

The OracleComms_OSM_0O2A COM_CSO_SalesOrders cartridge is a demonstration
cartridge that contains sample customer orders for use with the calculate service order solution
option. These orders are in the same format as orders that are received in an integrated
environment with Oracle AlA, Siebel CRM, and CRM ABCS. In a standalone OSM
environment, you can submit them to central order management to generate and execute an
orchestration plan. In a standalone OSM environment, EBMs are placed on OSM JMS queues
for pickup by Oracle AlA.

Note:

Each customer order that you send must contain a unique EBM ID. For example, the
EBM ID of a cancel order request (revision order) cannot be the same as the EBM ID
of the original base order (new order).

Table 4-57 describes the order numbers for new and change orders:

Table 4-57 OracleComms_OSM_O2A_COM_CSO_SalesOrders Order Descriptions
e ___________________________ |

Order ID

Order XML File

Description

testcso-doubleplay-voip-
broadband

testcso-all.xml

Adds all domain services (Broadband, VolP, Email
and Internet Media) and creates all CFS services
lines.

testcso-bandwidth

testcso-bandwidth.xml

Add primary broadband line with auxiliary line that
defines upload/download bandwidth.

testcso-broadband

testcso-broadband.xml

Add primary basic broadband line only.

testcso-cme-voip

testcso-cme-voip_base.xml

Add VoIP feature services.

testcso-cme-voip

testcso-cme-voip_revision.xml

Revision to add extra VoIP services

testcso-doubleplay-voip-delete

testcso-doubleplay-voip-
broadband.xml

Add Broadband and VolP services.

testcso-email

testcso-email.xml

Add Email service.

testcso-firewall

testcso-firewall.xml

Add Firewall service.

TestCSO_InternetMedia_1

testcso-internetmedia.xml

Add Internet Media service.

ORACLE

4-49

Chapter 4

Central Order Management Cartridges for the Calculate Service Order Solution Option

Table 4-57 (Cont.) OracleComms_OSM_O2A_COM_CSO_SalesOrders Order Descriptions
|

Order ID Order XML File Description

TestCSO_IP_FAX testcso-ip-fax.xml Add IP Fax service.

testcso-modem testcso-modem.xml Add Broadband Modem service.

testcso-modem testcso-modem-cancel.xml Cancel Broadband Modem service.

testcso-router testcso-router.xml Add Broadband Router service.

testcso-voip-callerid testcso-voip-callerid.xml Add VolIP Caller ID service via Value Added
Services.

testcso-voip testcso-voip.xml Add VolIP Services.

testcso-web-conference testcso-web-conference.xml Add Web Conference service.

OracleComms_

OSM_02A_COM_CSO_Solution

The OracleComms_OSM_02A COM_CSO_ Solution cartridge is a demonstration composite
cartridge that references all cartridges required for central order management in the topology
you selected when installing the Order-to-Activate cartridges.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

The following table lists the CDT and extension point model variables in the
OracleComms_OSM_02A COM_CSO_Solution cartridge.

Table 4-58 CDT and Extension Point Model Variables in OracleComms_OSM_0O2A_COM_CSO_Solution

Cartridge
. ___ _______ |
Model Variable Description Possible | Default
Values Value

O2A_CDT_ENABLE_F | This variable is used to find out whether the Distributed Template feature [+ enabl |disable
LAG is enabled or not. This is used in the CSO solution. In the CSO O2A e

solution, the model variable would be defined at the solution level. The « disabl

value should be set to enable or disable. If not specified, it will assume e

the default value disable. For the non-CSO solution, the model variable

is not specified in the solution level. Hence, it will assume the value is

disable.
O2A_CSO_ENABLE_F| This variable is used to find out whether the solution is using CSO or not. |« enabl |disable
LAG In the CSO O2A solution, the model varilable is defined at the solution e

level with the value enable. If the model variable is not defined at the o disabl

solution level, it will assume the default value disable. For the NON- e

CSO solution, the model variable is not specified in the solution level.

Hence, it will assume the value is disable.
EXTENSION_POINT_ | This variable is used to find out whether the extension framework is used |+ enabl [enable
OPTIMIZATION_FLAG | or not. By default, for each extension point, there would be a default e

implementation in the solution. If the extension framework is not used, « disabl

then it will use the default implementation. Otherwise, it would use the e

extension framework. If the variable is defined at the solution level with
value disable, then it will use the default implementation. If the variable
is not defined or defined with value enable, then it will use the extension
framework. In a NON-CSO solution, by default, the variable is not defined
at the solution level. Hence, it assumes the value enable and uses the
extension framework.

ORACLE

4-50

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

Table 4-58 (Cont.) CDT and Extension Point Model Variables in
OracleComms_OSM_O2A_COM_CSO_Solution Cartridge

Model Variable Description Possible | Default
Values Value

EXTENSION_POINT_ | This parameter defines how the extension point framework failure should [+ enabl [disable

DEFAULT_ON_ERRO | be handled. It is not used in a NON-CSO solution. e
R e disabl
e

OracleComms_OSM_02A COM_CSO _Topology

The OracleComms_OSM_0O2A COM_CSO_Topology cartridge is a demonstration cartridge
containing decomposition rules and order component specifications to decompose billing,
provisioning, shipping, and install fulfilment functions into the topology you selected when
installing the Order-to-Activate cartridges.

Table 4-59 contains a list of the order component specifications defined in this cartridge.

Table 4-59 OracleComms_OSM_O2A_COM_CSO_Topology Order Component Specifications
e

Order Component Description

Specification

BRM-ALL Represents the billing fulfillment system if there is a single billing system.

BRM-BIZBDB Represents the billing fulfillment system for business broadband customers.

BRM-REZBDB Represents the billing fulfillment system for residential broadband customers.

BRM-VIRTUAL Represents the billing fulfillment system for non-service billing functions.

BRM-VoIP Represents the billing fulfillment system for VolP customers.

Provisioning-ALL Represents the provisioning fulfillment system if there is a single provisioning system.

Provisioning-Broadband Represents the provisioning system for broadband customers.

Provisioning-VolP Represents the provisioning system for VoIP customers.

Shipping-ALL Represents the shipping fulfillment system if there is a single shipping system.

Shipping-InHouse Represents the shipping system for shipments without partner involvement.

Shipping-Partnerinc Represents the shipping system for shipments with partner involvement.

WFM-A Represents the first workflow management fulfillment system if there is more than one
workflow management system.

WFM-ALL Represents the workflow management fulfillment system if there is a single workflow
management system.

WFM-B Represents the second workflow management fulfillment system if there is more than
one workflow management system.

OracleComms_OSM_02A COM_CSO VoIP_Access CFS

The OracleComms_OSM_02A COM_CSO_VolP_Access_CFS cartridge is a demonstration
cartridge that contains the mapping rules and order item parameter bindings associated with
the customer facing service for VoIP access. It also contains XQuery modules to support the
order item parameter bindings.

ORACLE 451

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

OracleComms_OSM_02A COM_CSO Web Conferencing CFS

The OracleComms_OSM_02A COM_CSO_Web_Conferencing_CFS cartridge is a
demonstration cartridge that contains the mapping rules and order item parameter bindings
associated with the customer facing service for web conferencing service. It also contains
XQuery modules to support the order item parameter bindings.

OracleComms_OSM_02A COM_FulfillmentPattern

The OracleComms_OSM_02A COM_FulfillmentPattern cartridge is a productized cartridge. It
contains the base fulfillment pattern, BaseProductSpec, from which other fulfillment patterns
can inherit.

OracleComms_OSM_02A_COM_FulfillmentStateMap_Sample

ORACLE

The OracleComms_OSM_02A COM_FulfilmentStateMap_Sample cartridge is a productized
cartridge that contains fulfillment state entities used by the solution.

This cartridge contains the following common fulfillment state definitions, which are used in
composition rules. Listed under each main fulfillment state are its child states.

« OPEN
* IN_PROGRESS
— IN_PROGRESS-FULFILL_BILLING_START
— IN_PROGRESS-INITIATE_BILLING_START
— IN_PROGRESS-INSTALL_COMMITTED
— IN_PROGRESS-INSTALL_PLANNED
— IN_PROGRESS-INSTALL_START
— IN_PROGRESS-PROVISION_DESIGNED
— IN_PROGRESS-PROVISION_ISSUED
— IN_PROGRESS-PROVISION_START
— IN_PROGRESS-SHIP_ORDER_PLANNED
— IN_PROGRESS-SHIP_ORDER_START
— IN_PROGRESS-SYNC_CUSTOMER_START
« COMPLETE
COMPLETE-FULFILL_BILLING_COMPLETE
COMPLETE-FULFILL_BILLING_START
— COMPLETE-INITIATE_BILLING_COMPLETE
— COMPLETE-INITIATE_BILLING_START
— COMPLETE-INSTALL_COMPLETE
— COMPLETE-INSTALL_START
— COMPLETE-PROVISION_COMPLETE
— COMPLETE-PROVISION_DESIGNED

4-52

ORACLE

Chapter 4

Central Order Management Cartridges for the Calculate Service Order Solution Option

COMPLETE-PROVISION_ISSUED
COMPLETE-PROVISION_START
COMPLETE-SHIP_ORDER_SHIPPED
COMPLETE-SHIP_ORDER_START
COMPLETE-SYNC_CUSTOMER_COMPLETE
COMPLETE-SYNC_CUSTOMER_START

CANCELLED

CANCELLED-FULFILL_BILLING_COMPLETE
CANCELLED-FULFILL_BILLING_START
CANCELLED-INITIATE_BILLING_COMPLETE
CANCELLED-INITIATE_BILLING_START
CANCELLED-INSTALL_COMMITTED
CANCELLED-INSTALL_COMPLETE
CANCELLED-INSTALL_PLANNED
CANCELLED-INSTALL_START
CANCELLED-PROVISION_COMPLETE
CANCELLED-PROVISION_DESIGNED
CANCELLED-PROVISION_ISSUED
CANCELLED-PROVISION_START
CANCELLED-SHIP_ORDER_PLANNED
CANCELLED-SHIP_ORDER_SHIPPED
CANCELLED-SHIP_ORDER_START
CANCELLED-SYNC_CUSTOMER_COMPLETE
CANCELLED-SYNC_CUSTOMER_START

FAILED

FAILED-FULFILL_BILLING_COMPLETE
FAILED-FULFILL_BILLING_START
FAILED-INITIATE_BILLING_COMPLETE
FAILED-INITIATE_BILLING_START
FAILED-INSTALL_COMMITTED
FAILED-INSTALL_COMPLETE
FAILED-INSTALL_PLANNED
FAILED-INSTALL_START
FAILED-PROVISION_AUXILIARY
FAILED-PROVISION_COMPLETE
FAILED-PROVISION_DESIGNED
FAILED-PROVISION_FAILED
FAILED-PROVISION_ISSUED

4-53

Chapter 4
Central Order Management Cartridges for the Calculate Service Order Solution Option

— FAILED-PROVISION_START

— FAILED-SHIP_ORDER_PLANNED

— FAILED-SHIP_ORDER_SHIPPED

— FAILED-SHIP_ORDER_START

— FAILED-SYNC_CUSTOMER_COMPLETE
— FAILED-SYNC_CUSTOMER_START

OracleComms_OSM_02A COMSOM_CSO_Recognition

The OracleComms_OSM_02A COMSOM_CSO_Recognition cartridge is a demonstration
cartridge that recognizes a customer order from Oracle AlA and triggers the creation of a
COM_SalesOrderFulfillment order. In addition, this cartridge recognizes order fallout
notifications, trouble ticket requests, and inbound message errors due to suspended orders or
resource issues. It also catches all unrecognizable messages.

Table 4-60 lists the order recognition rules defined in this cartridge.

Table 4-60 OracleComms_OSM_0O2A_COMSOM_CSO_Recognition Order Recognition Rules

Order Recognition Rule Description

COM_CloseTroubleTicketWorkOrder_Recognition Recognizes a request to close an order as a result of a trouble
ticket.

COM_FaultNotificationOrder_Recognition Recognizes order fallout notifications from Oracle AlA.

COM_ORPFallout_CTT_OrderRecognitionRule Recognizes an ORP fallout and triggers creation of a fulfillment

request for a trouble ticketing system.

COMSOM_CSO_Recognize_AbortPropagationServiceOr | Recognizes a termination request for an order.

der

COMSOM_CSO_RecognizeEBM_ProvisioningOrder Recognizes and EBM provisioning order.

COM_ResumePendinglbMsg_OrderRecognitionRule Recognizes an inbound message and triggers creation of a
ResumePendinginBoundMessage order.

COM_SalesOrderFulfillment_Recognition Recognizes an Oracle AlA customer order and triggers the

creation of a COM_SalesOrderFulfillment order.

Revision Number Update for Canceled Orders

When AIA receives an order that has a mode of CANCEL, or when an order is received in
which all of the order line items have an action code of NONE, AIA does not update the
revision number. Because OSM will ignore a revision order if its revision number is the same
as on a previously received order revision, the OTA recognition cartridges update the revision
number on orders of this type to 999999999. This ensures that the cancelation is processed.

OracleComms_OSM_02A_COMSOM_CSO_Solution

ORACLE

The OracleComms_OSM_02A _COMSOM_CSO_Solution cartridge is a demonstration
composite cartridge that references all cartridges required for central order management and
service order management in the topology you selected when installing the Order-to-Activate
cartridges.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

4-54

Chapter 4

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

The following table lists the CDT and extension point model variables in the
OracleComms_OSM_0O2A_COMSOM_CSO_Solution cartridge.

Table 4-61 CDT and Extension Point Model Variables in
OracleComms_OSM_O2A_COMSOM_CSO_Solution Cartridge

Model Variable Description Possible | Default
Values Value

O2A_CDT_ENABLE_F | This variable is used to find out whether the Distributed Template feature [+ enabl |disable
LAG is enabled or not. This is used in the CSO solution. In the CSO O2A e

solution, the model variable would be defined at the solution level. The « disabl

value should be set to enable or disable. If not specified, it will assume e

the default value disable. For the non-CSO solution, the model variable

is not specified in the solution level. Hence, it will assume the value is

disable.
O2A_CSO_ENABLE_F| This variable is used to find out whether the solution is using CSO or not. |« enabl |disable
LAG In the CSO O2A solution, the model varilable is defined at the solution e

level with the value enable. If the model variable is not defined at the « disabl

solution level, it will assume the default value disable. For the NON- e

CSO solution, the model variable is not specified in the solution level.

Hence, it will assume the value is disable.
EXTENSION_POINT_ [This variable is used to find out whether the extension framework is used [+ enabl |enable
OPTIMIZATION_FLAG | or not. By default, for each extension point, there would be a default e

implementation in the solution. If the extension framework is not used, « disabl

then it will use the default implementation. Otherwise, it would use the e

extension framework. If the variable is defined at the solution level with

value disable, then it will use the default implementation. If the variable

is not defined or defined with value enable, then it will use the extension

framework. In a NON-CSO solution, by default, the variable is not defined

at the solution level. Hence, it assumes the value enable and uses the

extension framework.
EXTENSION_POINT_ | This parameter defines how the extension point framework failure should |+ enabl |disable
DEFAULT_ON_ERRO | be handled. It is not used in a NON-CSO solution. e
R - disabl

e

Central Order Management Cartridges for the Solution Option
Without Calculate Service Order

The following cartridges operate in the central order management role, which coordinates
fulfillment functions across the Business Support Systems (BSS) and Operations Support
Systems (OSS) such as Siebel CRM, BRM, and provisioning. These cartridges are used in the
solution option without calculate service order.

OracleComms_OSM_0O2A BBVolP_FP_NP_Danube Sample

The OracleComms_OSM_0O2A_BBVolP_FP_NP_Danube_Sample cartridge contains
fulfillment patterns and orchestration dependencies for the Simple topology.

The

ORACLE

following fulfillment patterns are configured in this cartridge:

BaseProductSpec — All other fulfillment patterns extend from this.

NonService.Billinglnitiatedltem

4-55

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

NonService.Billingltem
NonService.Offer
Service.Broadband
Service.CPE.Broadband
Service.CPE.VoIP
Service.Install

Service.VolP

OracleComms_OSM_0O2A BBVolP_FP_NP_Nile Sample

The OracleComms_OSM_0O2A_BBVolP_FP_NP_Nile_Sample cartridge contains fulfillment
patterns and orchestration dependencies for the Typical or Complex topologies.

The following fulfillment patterns are configured in this cartridge:

BaseProductSpec — All other fulfillment patterns extend from this.
NonService.Billinglnitiateditem

NonService.Billingltem

NonService.Offer

Service.Broadband

Service.CPE.Broadband

Service.CPE.VoIP

Service.Install

Service.VolP

OracleComms_OSM_02A COM_NCSO Base

The OracleComms_OSM_0O2A_COM_NCSO_Base cartridge is a productized cartridge. It
contains the orchestration process, COM_SalesOrderFulfillmentOrchestrationProcess, that
supports the orchestration of orders for the solution option without calculate service order.

OracleComms_OSM_02A COM_NCSO_Provisioning

The OracleComms_OSM_0O2A_COM_NCSO_Provisioning cartridge is a demonstration
cartridge. It contains an order component for provisioning, ProvisionOrderFunction, that is
specific to the service option without calculate service order.

Table 4-62 lists the XQuery modules defined for the ProvisionOrderFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in this
fulfillment function indicated extension points. See "Extending XQuery Modules" for more
information about XQuery extension points.

Table 4-62 ProvisionOrderFunction XQuery Modules

XQuery Module

XQuery Extension Point Description

ProvisionOrderComplete_Event COMPONENT-COMPLETE Invoked when the ProvisionOrderFunction

component is completed.

ORACLE

4-56

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-62 (Cont.) ProvisionOrderFunction XQuery Modules

XQuery Module XQuery Extension Point Description
ProvisionOrderCreateEBM_DoEve | CREATE-EBM Invoked when the EBM is created in the do
nt (execution mode: do) execution mode for the ProvisionOrderFunction
component.
ProvisionOrderCreateEBM_ReDoE | CREATE-EBM Invoked when the EBM is created in the redo
vent (execution mode: redo) execution mode for the ProvisionOrderFunction
component.
ProvisionOrderCreateEBM_UnDoE | CREATE-EBM Invoked when the EBM is created in the undo
vent (execution mode: undo) execution mode for the ProvisionOrderFunction
component.
ProvisionOrderStart_Event COMPONENT-START Invoked when the ProvisionOrderFunction
component is started.
ProvisionOrderValidateResponseE | VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
BM_Event ProvisionOrderFunction component.
ProvisionOrderUpdate_Event COMPONENT-RESPONSE- Invoked when the EBM response for
UPDATE ProvisionOrderFunction component is updated.

Table 4-63 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A_COM_Provisioning cartridge for the ProvisionOrderFunction
fulfillment function.

Table 4-63 ProvisionOrderFunction Automation Modules

Automation Module Automated Task Description

ProvisionOrderEntryPointBean_d | ProvisionOrderSIEntryPointTask | Calls the SIEntryPoint XQuery.

oredo

ProvisionOrderRequestBean_do | ProvisionOrderSITask Calls the AIAEBMRequest_do XQuery.

ProvisionOrderRequestBean_red | ProvisionOrderSITask Calls the AIAEBMRequest_redo XQuery.

o]

ProvisionOrderRequestBean_und | ProvisionOrderSITask Calls the AIAEBMRequest_undo XQuery.

o

ProvisionOrderResponseBean ProvisionOrderSITask External event receiver to invoke AIAEBMResponse
XQuery.

InitiateWaitforProvisioningRespon | ProvisionOrderSIResponseTask | Calls the InitiateWaitforProvisioningResponse

seBean XQuery.

ProvisioningResponseBean ProvisionOrderSIResponseTask | External event receiver to invoke AIAEBMResponse
XQuery for do, redo and amend-do mode.

OracleComms_OSM_0O2A COM_Simple_NP_Soln

The OracleComms_OSM_02A COM_Simple_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order management in the
Simple topology.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

ORACLE 4-57

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

OracleComms_OSM_02A COM_Typical_NP_Soln

The OracleComms_OSM_0O2A COM_Typical_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order management in the
Typical or Complex topologies.

The OracleComms_OSM_02A COM_Simple_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order management in the
Simple topology.

OracleComms_OSM_02A COMSOM_Recognition_Sample

The OracleComms_OSM_02A COMSOM_Recognition_Sample cartridge is a demonstration
cartridge that is used when central order management and service order management are
deployed together in the same OSM instance. It recognizes a customer order from Oracle AIA
and triggers the creation of a COM_SalesOrderFulfillment order. In addition, this cartridge
recognizes order fallout naotifications, trouble ticket requests, and inbound message errors due
to suspended orders or resource issues. It also catches all unrecognizable messages.

Table 4-64 lists the order recognition rules defined in this cartridge.

Table 4-64 OracleComms_OSM_O2A_COMSOM_Recognition_Sample Order Recognition Rules
|

Order Recognition Rule Description

COMSOM_CloseTroubleTicketWorkOrder Recognizes a request to close an order as a result of a trouble
ticket.

COMSOM_FaultNatificationOrder Recognizes order fallout notifications from Oracle AlA.

COMSOM_LFAbortOrderPropagationOrder Recognizes a termination request for an order.

COMSOM_ORPFallout_CTT_Order Recognizes an ORP fallout and triggers creation of a fulfillment

request for a trouble ticketing system.

COMSOM_ProvisionOrderFulfillment Recognizes a service order that must be executed and creates a

SOM_ProvisionOrderFulfillment order.

COMSOM_ResumePendinglbMsg Recognizes an inbound message and triggers creation of a

ResumePendinglnBoundMessage order.

COMSOM_SalesOrderFulfillment Recognizes an Oracle AlA customer order and triggers the

creation of a COM_SalesOrderFulfillment order.

Revision Number Update for Canceled Orders

For information about special revision number processing for canceled orders, see "Revision
Number Update for Canceled Orders."

OracleComms_OSM_02A COMSOM_Simple _NP_Soln

ORACLE

The OracleComms_OSM_02A COMSOM_Simple_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order management and
service order management in the Simple topology.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

4-58

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

OracleComms_OSM_02A COMSOM_Typical NP_Soln

The OracleComms_OSM_02A _COMSOM_Typical_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order management and
service order management in the Typical or Complex topology.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

OracleComms_OSM_0O2A_FulfillmentPatternMap _Sample

ORACLE

The OracleComms_OSM_02A_FulfillmentPatternMap_Sample cartridge is a demonstration
cartridge. It contains the mappings between product specifications and fulfillment patterns,
where the product specifications are either imported from customer's Siebel CRM system or
manually created. In either case, this cartridge can be extended and can contain custom
product specification information.

This cartridge also contains the following common fulfillment state definitions, which are used
in composition rules. Listed under each main fulfilment state are its child states.

- OPEN
- IN_PROGRESS
— IN_PROGRESS-FULFILL_BILLING_START
— IN_PROGRESS-INITIATE_BILLING_START
— IN_PROGRESS-INSTALL_COMMITTED
— IN_PROGRESS-INSTALL_PLANNED
— IN_PROGRESS-INSTALL_START
— IN_PROGRESS-PROVISION_DESIGNED
— IN_PROGRESS-PROVISION_START
— IN_PROGRESS-SHIP_ORDER_PLANNED
— IN_PROGRESS-SHIP_ORDER_START
— IN_PROGRESS-SYNC_CUSTOMER_START
- COMPLETE
— COMPLETE-FULFILL_BILLING_COMPLETE
— COMPLETE-FULFILL_BILLING_START
— COMPLETE-INITIATE_BILLING_COMPLETE
— COMPLETE-INITIATE_BILLING_START
— COMPLETE-INSTALL_COMPLETE
— COMPLETE-INSTALL_START
— COMPLETE-PROVISION_COMPLETE
— COMPLETE-PROVISION_START
— COMPLETE-SHIP_ORDER_SHIPPED
— COMPLETE-SHIP_ORDER_START
— COMPLETE-SYNC_CUSTOMER_COMPLETE

4-59

ORACLE

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

COMPLETE-SYNC_CUSTOMER_START

CANCELLED

CANCELLED-FULFILL_BILLING_COMPLETE
CANCELLED-FULFILL_BILLING_START
CANCELLED-INITIATE_BILLING_COMPLETE
CANCELLED-INITIATE_BILLING_START
CANCELLED-INSTALL_COMMITTED
CANCELLED-INSTALL_COMPLETE
CANCELLED-INSTALL_PLANNED
CANCELLED-INSTALL_START
CANCELLED-PROVISION_COMPLETE
CANCELLED-PROVISION_DESIGNED
CANCELLED-PROVISION_START
CANCELLED-SHIP_ORDER_PLANNED
CANCELLED-SHIP_ORDER_SHIPPED
CANCELLED-SHIP_ORDER_START
CANCELLED-SYNC_CUSTOMER_COMPLETE
CANCELLED-SYNC_CUSTOMER_START

FAILED

FAILED-FULFILL_BILLING_COMPLETE
FAILED-FULFILL_BILLING_START
FAILED-INITIATE_BILLING_COMPLETE
FAILED-INITIATE_BILLING_START
FAILED-INSTALL_COMMITTED
FAILED-INSTALL_COMPLETE
FAILED-INSTALL_PLANNED
FAILED-INSTALL_START
FAILED-PROVISION_COMPLETE
FAILED-PROVISION_DESIGNED
FAILED-PROVISION_START
FAILED-SHIP_ORDER_PLANNED
FAILED-SHIP_ORDER_SHIPPED
FAILED-SHIP_ORDER_START
FAILED-SYNC_CUSTOMER_COMPLETE
FAILED-SYNC_CUSTOMER_START

4-60

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

OracleComms_OSM_0O2A SalesOrders NP_Sample

The OracleComms_OSM_02A_SalesOrders_NP_Sample cartridge is a demonstration
cartridge that contains sample customer orders. These orders are in the same format as orders
that are received in an integrated environment with Oracle AIA, Siebel CRM, and CRM ABCS.
In a standalone OSM environment, you can submit them to central order management to
generate and execute an orchestration plan. In a standalone OSM environment, EBMs are
placed on OSM JMS queues for pickup by Oracle AlA.

This cartridge contains sample orders in XML files. The names of the XML files use the
following conventions:

* NSalesOrder: Order to add services

e CSalesOrder: Change order, otherwise known as a Move Add Change Delete (MACD)
order

e FSalesOrder: Follow-on order, used to update an order that has passed the point of no
return

* R1, R2, R3, R4: revision order for submission after the original base order with the same
name

e TBO: An order specifying time-based offerings

¢ Cancel: Cancel order

Note:

Each customer order that you send must contain a unique EBM ID. For example, the
EBM ID of a cancel order request (revision order) cannot be the same as the EBM ID
of the original base order (new order).

Table 4-65 describes the order numbers for new and change orders:

Table 4-65 OracleComms_OSM_O2A_SalesOrders_NP_Sample Order Descriptions
|

Order Number Description

Sales Order 10000 Double Play First-Time Purchase

Sales Order 10010 Double Play Promotion change orders for broadband
Sales Order 10020 Double Play Promotion change orders for VolP

Sales Order 10030 Double Play Change Purchased Products

Sales Order 10040 Double Play Update Attributes of a Product

Sales Order 10050 Double Play Suspend Services

Sales Order 10060 Double Play Suspend and Resume on the Same Order
Sales Order 10070 Double Play Move Services to Different Address

Sales Order 10080 Double Play Disconnect Optional Products

Following is a list of the order XML files included in the cartridge:

* NEWPROD_NSalesOrderTBOEBM.xml

ORACLE 46l

ORACLE

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

NEWPROD_CSalesOrderTBOEBM.xml
NEWPROD_GoldFSalesOrder10000F-1FFEBM.xml
NEWPROD_GoldNSalesOrder10000-V2EBM-Predecessor.xml
NEWPROD_GoldNSalesOrder10000-V2EBM-Successor.xml
NEWPROD_GoldNSalesOrder10000-V2EBM.xml
NEWPROD_GoldNSalesOrder10000F-1EBM.xml
NEWPROD_GoldNSalesOrder10000F-1FO1EBM.xml
NEWPROD_GoldNSalesOrder10000WithAdditionalFulfillmentitemCodeEBM.xml
NEWPROD_GoldNSalesOrder10010-V2EBM.xml
NEWPROD_GoldCSalesOrder10010-V2EBM.xml
NEWPROD_GoldCSalesOrder10020-2-1EBM.xml
NEWPROD_GoldCSalesOrder10020-2-1R1EBM.xml
NEWPROD_GoldCSalesOrder10020-V2EBM.xml
NEWPROD_GoldNSalesOrder10020-2-1EBM.xml
NEWPROD_GoldNSalesOrder10020-V2EBM.xml
NEWPROD_GoldNSalesOrder10030-V2EBM.xml
NEWPROD_GoldNSalesOrder10030_2V1EBM.xml
NEWPROD_GoldCSalesOrder10030-V2EBM.xml
NEWPROD_GoldCSalesOrder10030R1_2V1EBM.xml
NEWPROD_GoldCSalesOrder10030R3_2V1EBM.xml
NEWPROD_GoldCSalesOrder10030R4_2V1EBM.xml
NEWPROD_GoldCSalesOrder10030_2V1EBM.xml
NEWPROD_GoldNSalesOrder10040-V2EBM.xml
NEWPROD_GoldNSalesOrder10040_2V1EBM.xml
NEWPROD_GoldCSalesOrder10040-V2EBM.xml
NEWPROD_GoldR1SalesOrder10040-V2EBM.xml
NEWPROD_GoldCSalesOrder10040R2_2V1EBM.xml
NEWPROD_GoldR3SalesOrder10040-V2EBM.xml
NEWPROD_GoldCSalesOrder10040R4_2V1EBM.xml
NEWPROD_GoldCSalesOrder10040_2V1EBM.xml
NEWPROD_GoldNSalesOrder10050-V2EBM.xml
NEWPROD_GoldCSalesOrder10050-V2EBM.xml
NEWPROD_GoldNSalesOrder10060-V2EBM.xml
NEWPROD_GoldCSalesOrder10060-V2EBM.xml
NEWPROD_GoldNSalesOrder10070-V2EBM.xml
NEWPROD_GoldCSalesOrder10070-V2EBM.xml
NEWPROD_GoldCSalesOrder10070R1-V2EBM.xml
NEWPROD_GoldNSalesOrder10080-V2EBM.xml

4-62

Chapter 4
Central Order Management Cartridges for the Solution Option Without Calculate Service Order

* NEWPROD_GoldCSalesOrder10080-V2EBM.xml

* NEWPROD_GoldR1SalesOrder10080-V2EBM.xml

* NEWPROD_GoldR2SalesOrder10080-V2EBM.xml

* NEWPROD_NSalesOrderWirelessProductsEBM.xml
* NEWPROD_SalesOrder10000CancelEBM.xml

* NEWPROD_SalesOrder10000DeliverEBM.xml

Note:

The NEWPROD _testfalloutnotification.xml file is a sample order fallout notification
but not a sample customer order. This XML file is used to send a particular task to
fallout manually by pausing the corresponding queue.

Table 4-66 contains information about the changes included in the specific revision orders
above:

Table 4-66 OracleComms_OSM_O2A_SalesOrders_NP_Sample Order Revision Details

R
Order Number Description

GoldCSalesOrder10030R1_2V1EBM

ADD canceled on revision, DELETE canceled on revision

GoldCSalesOrder10030R3_2V1EBM

ADD modified on revision

GoldCSalesOrder10030R4_2V1EBM

New ADD on revision

GoldR1SalesOrder10040-V2EBM

UPDATE modified on revision

GoldCSalesOrder10040R2_2V1EBM

UPDATE canceled on revision

GoldR3SalesOrder10040-V2EBM

New ADD on revision

GoldCSalesOrder10040R4_2V1EBM

DELETE added on revision

GoldCSalesOrder10070R1-V2EBM

MOVE canceled on revision

GoldR1SalesOrder10080-V2EBM

DELETE modified on revision (future date)

GoldR2SalesOrder10080-V2EBM

UPDATE added on revision

OracleComms_OSM_02A_SimpleTopology Sample

The OracleComms_OSM_02A_SimpleTopology Sample cartridge is a demonstration
cartridge containing decomposition rules and order component specifications to decompose
billing and provisioning fulfillment functions into the Simple topology: a single billing instance
and a single local fulfillment instance.

Table 4-67 contains a list of the order component specifications defined in this cartridge.

Table 4-67 OracleComms_OSM_O2A_SimpleTopology Sample Order Component Specifications

Order Component Description
Specification

BRM-ALL

Represents the billing fulfillment system.

Provisioning-ALL Represents the provisioning fulfillment system.

ORACLE 463

Chapter 4
Service Order Management Cartridges for the Calculate Service Order Solution Option

OracleComms_OSM_0O2A TypicalTopology Sample

The OracleComms_OSM_0O2A_ TypicalTopology _Sample cartridge is a demonstration

cartridge containing decomposition rules and order component specifications to decompose
billing, provisioning, shipping, and install fulfillment functions into the Typical topology: multiple
billing, local fulfillment, supply chain management, and workforce management instances.

Table 4-68 contains a list of the order component specifications defined in this cartridge.

Table 4-68 OracleComms_OSM_O2A_TypicalTopology Sample Order Component Specifications

Order Component
Specification

Description

BRM-ALL Represents the billing fulfillment system if there is a single billing system.
BRM-BIZBDB Represents the billing fulfillment system for business broadband customers.
BRM-REZBDB Represents the billing fulfillment system for residential broadband customers.
BRM-VIRTUAL Represents the billing fulfillment system for non-service billing functions.
BRM-VoIP Represents the billing fulfillment system for VolP customers.

Provisioning-ALL

Represents the provisioning fulfillment system if there is a single provisioning system.

Provisioning-DSL

Represents the provisioning system for DSL customers outside the UK.

Provisioning-UKDSL

Represents the provisioning system for DSL customers inside the UK.

Provisioning-VOIP

Represents the provisioning system for VoIP customers.

Shipping-ALL

Represents the shipping fulfillment system if there is a single shipping system.

Shipping-InHouse

Represents the shipping system for shipments without partner involvement.

Shipping-Partnerinc

Represents the shipping system for shipments with partner involvement.

WEM-A

Represents the first workflow management fulfillment system if there is more than one
workflow management system.

WFM-ALL Represents the workflow management fulfillment system if there is a single workflow
management system.
WFM-B Represents the second workflow management fulfillment system if there is more than

one workflow management system.

Service Order Management Cartridges for the Calculate Service
Order Solution Option

The following cartridges operate in the service order management role, which translates Oracle

AlA service orders into OSM service orders and processes those orders. These cartridges are
used in the calculate service order solution option.

OracleComms_OSM_02A SOM_CSO Base

The OracleComms_OSM_02A SOM_CSO_Base cartridge is a productized cartridge that
supports the provisioning of service orders.

ORACLE

4-64

Order Events

Chapter 4
Service Order Management Cartridges for the Calculate Service Order Solution Option

When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4-69, it triggers the listed XQuery module to send an order update to the upstream
system.

Table 4-69 OracleComms_OSM_0O2A_SOM_CSO_Base Order Events

Order Event

Description

creation Calls the SOMOrderCreationFailure XQuery module to determine if a failure has
occurred. If so, generates a message to central order management through the Oracle
AlIA error handling framework.

completion Calls the SOMCompletionStatusSender XQuery module to send the order completion to

central order management.

Order Lifecycle Manager Configuration

The Order-to-Activate order lifecycle manager is configured with the header values for the
Order Lifecycle Management user interface. It also contains mappings between Order-to-

Activate central order management fulfillment states and standard order lifecycle manager
states.

Table 4-70 displays the mappings that are configured. The high-level fulfillment states are
mapped, which causes the child states to be mapped as well.

Table 4-70 Fulfillment State to Order Lifecycle Manager State Mapping
|

Fulfillment State Order Lifecycle Manager State
SOM_CANCELLED Canceled
SOM_COMPLETE Complete
SOM_FAILED Failed
SOM_INPROGRESS In Progress
< Note:

If you have both central order management and service order management in the
same Design Studio workspace, you will see service order management fulfillment
states in the list in the order lifecycle manager. The names of the high-level fulfillment
states for central order management do not start with SOM_. The central order
management fulfillment states do not need to be mapped here, because they are
mapped in the order lifecycle manager in the central order management
configuration. See "Order Lifecycle Manager Configuration” for information about
central order management state mappings.

XQuery Modules in the OracleComms_OSM_02A SOM_CSO_Base Cartridge

ORACLE

Table 4-71 through Table 4-74 list the different types of XQuery modules in this cartridge.

4-65

Chapter 4
Service Order Management Cartridges for the Calculate Service Order Solution Option

Table 4-71 OracleComms_OSM_O2A_SOM_CSO_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

SendAbortLFOrderFailure No Sends a fulfillment order failure update when the order
termination request failed.

SendAbortLFOrderSuccess No Sends a fulfillment order success update when the order
termination request succeeded.

SomAbortOrder No Sends an order termination request for a given fulfillment
request.

SomFindOrder No Creates a find order request for a fulfilment request with a
given order key.

SomSuspendOrder No Creates a suspend order request for a fulfillment request
with a given order key.

SomWebhServicesResponseHandler No Utility module for providing retrieval and update to service
order.

Table 4-72 OracleComms_OSM_O2A_SOM_CSO_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery Module | Extendable Description

SOM_FulfillmentModeExpression No Marshals the fulfilment mode code from the service order.

SOM_OrderltemSelector No Module to select all order line items from the service order.

Table 4-73 OracleComms_OSM_O2A_SOM_CSO_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

SOM_DataTransform No Transforms the Oracle AlA service order to an OSM service
order.

SOM_DataValidation No Validates the Oracle AIA service order.

Table 4-74 OracleComms_OSM_O2A_SOM_CSO_Base Order State XQuery Modules

Order State XQuery Module Extendable Description

SOM_Reference No Accesses the sales order reference.

Automation Modules in the OracleComms_OSM_02A SOM_CSO Base Cartridge

Table 4-75 lists the automation modules in the cartridge with their associated automated tasks.

Table 4-75 OracleComms_OSM_0O2A_ SOM_CSO_ Base Automation Modules

Automation Module Automated Task Description

AbortSomOrderRequest AbortSomOrderTask Calls the SomAbortOrder XQuery.

AbortSomOrderResponse AbortSomOrderTask External event receiver to invoke
SomWebServicesResponseHandler XQuery.

FindSomOrderRequest FindSomOrderTask Calls the SomFindOrder XQuery.

ORACLE 466

Chapter 4
Service Order Management Cartridges for the Calculate Service Order Solution Option

Table 4-75 (Cont.) OracleComms_OSM_0O2A_SOM_CSO_Base Automation Modules

Automation Module Automated Task Description
FindSomOrderResponse FindSomOrderTask External event receiver to invoke
SomWebServicesResponseHandler XQuery.
SendAbortStatusToUpstream SendAbortStatusToUpstreamTa | Calls the SendAbortLFOrderSuccess XQuery
sk
SuspendSomOrderRequest SuspendSomOrderTask Calls the SomSuspendOrder XQuery.
SuspendSomOrderResponse SuspendSomOrderTask External event receiver to invoke

SomWebServicesResponseHandler XQuery

OracleComms_OSM_02A_SOM_CSO Broadband_Internet_Access CFS

The OracleComms_OSM_0O2A_SOM_CSO_Broadband_Internet_Access_CFS cartridge is a
demonstration cartridge that contains the order item parameter bindings associated with the
customer facing service for broadband Internet access. It also contains XQuery modules to
support the order item parameter bindings.

OracleComms_OSM_02A_SOM_CSO_Common

The OracleComms_OSM_0O2A_SOM_CSO_Common cartridge is a productized cartridge that
contains data elements and fulfillment modes for service order management with the calculate
service order solution option.

The following fulfilment modes are defined in this cartridge:

- SOM_CANCEL
- SOM_DELIVER
- SOM_TSQ

OracleComms_OSM_02A SOM _CSO_CompleteProvisioning

The OracleComms_OSM_02A COM_CSO_Base cartridge is a demonstration cartridge that
supports provisioning fulfillment functions for service order management.

OracleComms_OSM_02A_SOM_CSO_DeliverOrder

The OracleComms_OSM_02A SOM_CSO_DeliverOrder cartridge is a demonstration
cartridge that supports order delivery fulfillment functions for service order management.

OracleComms_OSM_02A SOM_CSO_DesignService

The OracleComms_OSM_0O2A SOM_CSO_DesignService cartridge is a demonstration
cartridge that supports service design fulfillment functions for service order management.

OracleComms_OSM_02A_SOM_CSO _Email_CFS

The OracleComms_OSM_0O2A_SOM_CSO_Email_CFS cartridge is a demonstration cartridge
that contains the order item parameter bindings associated with the customer facing service for
email service. It also contains XQuery modules to support the order item parameter bindings.

ORACLE 4-67

OracleComms_OSM_02A SOM_CSO_FulfillmentPattern

Chapter 4

Service Order Management Cartridges for the Calculate Service Order Solution Option

The OracleComms_OSM_0O2A_SOM_CSO_FulfillmentPattern cartridge is a productized
cartridge that contains service order management fulfillment patterns for the calculate service
order solution option.

OracleComms_OSM_02A SOM_CSO_FulfillmentStateMap

The OracleComms_OSM_02A COM_CSO_Base cartridge is a productized cartridge that

contains fulfillment state entities used by the solution.

This cartridge contains the following common fulfillment state definitions, which are used in

composition rules. Listed under each main fulfillment state are its child states.

ORACLE

SOM_PENDING
SOM_INPROGRESS

IN_PROGRESS-BI_CAPTURED
IN_PROGRESS-BI_ISSUED
IN_PROGRESS-BI_PROCESSED
IN_PROGRESS-TO_CREATE

SOM_COMPLETED

COMPLETE-BI_APPROVED
COMPLETE-BI_COMPLETED
COMPLETE-TA_CALCULATED
COMPLETE-TO_COMPLETED

SOM_CANCELLED

CANCELLED-BI_APPROVED
CANCELLED-BI_CAPTURED
CANCELLED-BI_COMPLETED
CANCELLED-BI_ISSUED
CANCELLED-BI_PROCESSED
CANCELLED-TA_CALCULATED
CANCELLED-TO_COMPLETED
CANCELLED-TO_CREATE

SOM_FAILED

FAILED-BI_APPROVED
FAILED-BI_CAPTURED
FAILED-BI_COMPLETED
FAILED-BI_ISSUED
FAILED-BI_PROCESSED
FAILED-SERVICE

4-68

Chapter 4
Service Order Management Cartridges for the Calculate Service Order Solution Option

— FAILED-TO_COMPLETED
— FAILED-TO_CREATE

OracleComms_OSM_02A SOM_CSO Internet_Media_CFS

The OracleComms_OSM_0O2A SOM_CSO_Internet_Media_CFS cartridge is a demonstration
cartridge that contains the order item parameter bindings associated with the customer facing
service for Internet media service. It also contains XQuery modules to support the order item
parameter bindings.

OracleComms_OSM_02A SOM CSO _IP_Fax _CFS

The OracleComms_OSM_02A COM_CSO_Base cartridge is a demonstration cartridge that
contains the order item parameter bindings associated with the customer facing service for IP
fax service. It also contains XQuery modules to support the order item parameter bindings.

OracleComms_OSM_02A_SOM_CSO_ModelContainer

The OracleComms_OSM_02A SOM_CSO_ModelContainer cartridge defines the common
model projects that contain elements that might need to be included in the deployment.

To see the common model projects that are contained by this cartridge, open the Properties
tab of the cartridge editor. For more information about the common model projects included
with the Order-to-Activate cartridges, see "Conceptual Model Projects."

OracleComms_OSM_0O2A SOM_CSO_PlanDelivery

The OracleComms_OSM_02A COM_CSO_Base cartridge is a demonstration cartridge that
supports delivery planning fulfillment functions for service order management.

OracleComms_OSM_02A SOM_CSO_Recognition

The OracleComms_OSM_0O2A SOM_CSO_Recognition cartridge is a demonstration cartridge
that recognizes a service order and triggers the creation of a SOM_ProvisionOrderFulfillment
order. In addition, this cartridge catches all in-bound messages not recognized by any other
provisioning recognition rules.

Table 4-76 lists the order recognition rules defined in this cartridge.

Table 4-76 OracleComms_OSM_O2A_SOM_CSO_Recognition Recognition Rules
|

Order Recognition Rule Description

Recognize_AbortPropagationServiceOrder Recognizes a termination request for an order.

SOM_ORPFallout_CFM_OrderRecognitionRule Recognizes an ORP fallout to create a fault message to be sent
to Oracle AIA error handling queue.

RecognizeEBM_ProvisioningOrder Recognizes a service order that must be executed and creates a
SOM_ProvisionOrderFulfillment order.

SOM_ResumePendinglbMsg_OrderRecognitionRule Recognizes an inbound message to create a
ResumePendinginBoundMessage order in service order
management.

ORACLE

4-69

Chapter 4
Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Revision Number Update for Canceled Orders

For information about special revision number processing for canceled orders, see "Revision
Number Update for Canceled Orders."

OracleComms_OSM_0O2A SOM_CSO_Solution

The OracleComms_OSM_02A SOM_CSO_Solution cartridge is a demonstration composite
cartridge that references all cartridges required for service order management.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

OracleComms_OSM_02A SOM_CSO_Topology

The OracleComms_OSM_02A SOM_CSO_Topology cartridge is a demonstration cartridge.
This cartridge contains entities, such as decomposition rules and order components, for
service order management.

OracleComms_OSM_02A_SOM_CSO VolP_Access _CFS

The OracleComms_OSM_02A SOM_CSO_VolP_Access_CFS cartridge is a demonstration

cartridge that contains the order item parameter bindings associated with the customer facing
service for VoIP access. It also contains XQuery modules to support the order item parameter
bindings.

OracleComms_OSM_02A SOM _CSO_Webh Conferencing_ CFS

The OracleComms_OSM_0O2A SOM_CSO_Internet_Media_CFS cartridge is a demonstration
cartridge that contains the order item parameter bindings associated with the customer facing
service for web conferencing service. It also contains XQuery modules to support the order
item parameter bindings.

Service Order Management Cartridges for the Solution Option
Without Calculate Service Order

The following cartridges operate in the service order management role, which translates Oracle
AlA service orders into OSM service orders and processes those orders. These cartridges are
used in the solution option without calculate service order.

OracleComms_OSM_02A_SOM Base

The OracleComms_OSM_0O2A_SOM_Base cartridge is a productized cartridge supporting the
orchestration of service orders that have come from Oracle AlA. It includes handling status and
data updates from fulfillment requests back to central order management.

Order Events

When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4-77, it triggers the listed XQuery module to send an order update to the upstream
system.

ORACLE 4-70

Chapter 4
Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-77 OracleComms_OSM_O2A SOM_Base Order Events

Order Event

Description

creation Calls the LFCheckCreationOrderFailure XQuery to determine if a failure has occurred. If
S0, generates a message to central order management through the Oracle AIA error
handling framework.

completion Calls the ProvisionOrderCompleteEventHandler XQuery module to send the order

completion to central order management.

Processing G

ranularity Rules

There are three orchestration stages defined in the orchestration sequence to decompose the
order line items. The result of each stage of decomposition is the source for the next stage of
decomposition.

e Inthe first stage, the order line items are decomposed by fulfillment function.
e Inthe second stage, the order line items are decomposed by fulfillment provider.
e Inthe third stage, the order line items are decomposed by granularity rule.

Granularity rules provide the configuration for the third stage of decomposition. During
orchestration plan generation at run time, the granularity rule takes as input the order line items
that have already been grouped by fulfillment function and subdivided by fulfillment provider.

Table 4-78 lists the processing granularity rule entities.

Table 4-78 OracleComms_OSM_O2A_SOM_Base Processing Granularity Rules

Entity Name

Entity Type Description

ServiceGranularity

Order This granularity rule selects:
Component |, Ap order line item that represents a service along with
Specification service components and related order line items

e Order line items of any other root node on the order
along with their related order line items

XQuery Modules in the OracleComms_OSM_02A SOM_Base Cartridge

Table 4-79 through Table 4-85 list the different types of XQuery modules in this cartridge.

No table is included for the Order Item Property XQuery modules because none are
extendable and each XQuery module does the same thing: retrieves the specified order item
property from the appropriate location in the order data.

Table 4-79 OracleComms_OSM_O2A_SOM_Base XQuery Modules for Constants

Constants XQuery Module Extendable Description
SomQueryViewConstants No Defines constants for querying views in service order
management.
ORACLE

4-71

Chapter 4

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-80 OracleComms_OSM_O2A_SOM_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

AbortLFOrderRequest No Sends an order termination request for the fulfillment
request through the web service API.

FindLFOrder No Creates a find order request for a fulfillment request with a
given order key.

LFAbortOrderPropagation No Sends an order termination request for a given fulfillment
request.

LFAbortOrderPropagationCheck No Checks the status of the order termination request for
fulfillment request.

LFAbortOrderPropagationResp No Handles the response of the order termination request for
the fulfillment request.

LFwsResponseHandler No Utility module for providing retrieval and update to service
order.

SendAbortLFOrderFailure No Sends a fulfillment order failure update when the order
termination request failed.

SendAbortLFOrderSuccess No Sends a fulfillment order success update when the order
termination request succeeded.

SuspendLFOrder No Creates a suspend order request for a fulfillment request

with a given order key.

Table 4-81 OracleComms_OSM_O2A_SOM_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery Module | Extendable Description
FulfillmentModeExpression No Marshals the fulfillment mode code from the service order.
OrderltemSelector No Module to select all order line items from the service order.

Table 4-82 OracleComms_OSM_O2A_SOM_Base Order Data Change XQuery Modules

Order Data Change XQuery Module

Extendable

Description

CreateLFFaultToAIAEH

No

Creates an error message to be sent to the Oracle AlA error
handling queue.

Table 4-83 OracleComms_OSM_O2A_SOM_Base Order Item Hierarchy XQuery Modules

Order Item XQuery Module Extendable Description
LineldKey No Retrieves the order line item's ID.
ParentLineldKey No Retrieves the parent order line item's ID.

Table 4-84 OracleComms_OSM_0O2A_SOM_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

ProvisionOrderData No Transforms the Oracle AlA service order to an OSM service
order.

ProvisionOrderPriority No Retrieves the priority of the Oracle AlA service order.

ORACLE

Chapter 4
Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-84 (Cont.) OracleComms_OSM_0O2A_SOM_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description
ProvisionOrderRecognition No Recognizes the Oracle AlA service order.
ProvisionOrderValidation No Validates the Oracle AIA service order.

Table 4-85 OracleComms_OSM_O2A_SOM_Base Order State XQuery Modules

e __|
Order State XQuery Module Extendable Description

LFCheckCreationOrderFailure No Determines if a failure has occurred. If so, generates an
error message to central order management through the
Oracle AIA error handling framework.

ProvisionOrderCompleteEventHandler No Sends service order status update with COMPLETE status
code back to central order management.

Automation Modules in the OracleComms_OSM_02A SOM_Base Cartridge

Table 4-86 lists the automation modules in the cartridge with their associated automated tasks.

Table 4-86 OracleComms_OSM_0O2A_SOM_Base Automation Modules

Automation Module Automated Task Description
AbortLFOrderPlugin AbortLFOrderTask Calls the AbortLFOrderRequest XQuery.
AbortLFOrderRespPlugin AbortLFOrderTask External event receiver to invoke
LFwsResponseHandler XQuery.
FindLFOrderPlugin GetLFOrderTask Calls the FindLFOrder XQuery.
GetLFOrderDataPlugin GetLFOrderTask External event receiver to invoke
LFwsResponseHandler XQuery.
SendAbortLFOrderFailurePlugin | LFAbortOrderFailureTask Calls the SendAbortLFOrderFailure XQuery.
SendAbortLFOrderSuccessPlugin | LFAbortOrderSuccessTask Calls the SendAbortLFOrderSuccess XQuery.

LFOrderAbortPropagationCheckP | LFOrderAbortPropagationCheck | Internal event receiver to invoke
lugin LFAbortOrderPropagationCheck XQuery.

LFAbortOrderPropagationPlugin | LFOrderAbortPropagationTask | Internal event receiver to invoke
LFAbortOrderPropagation XQuery.

LFAbortOrderPropagationRespP! | LFOrderAbortPropagationTask | External event receiver to invoke

ugin LFAbortOrderPropagationResp XQuery.

SuspendLFOrderPlugin SuspendLFOrderTask Internal event receiver to invoke SuspendLFOrder
XQuery.

SuspendLFOrderRespPlugin SuspendLFOrderTask Calls the LFwsResponseHandler XQuery.

OracleComms_OSM_02A SOM_Provisioning

The OracleComms_OSM_0O2A_ SOM_Provisioning cartridge is a productized cartridge that
supports provisioning fulfillment functions. These functions specify a subprocess to handle
delivery of a relevant subset of order data to the provisioning system and handle responses
from the provisioning system.

ORACLE 473

Chapter 4

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-87 lists he XQuery modules in the cartridge that support component interaction.

Table 4-87 OracleComms_OSM_O2A_SOM_Provisioning Component Interaction XQuery Modules

Component Interaction XQuery Module

Extendable

Description

SomProvisionOrderInteractionModule

Yes

Provides functions to support ProvisionOrderFunction in
service order management.

Table 4-88 lists the XQuery modules defined for the SomProvisionOrderFunction fulfillment

function.

Table 4-88 SomProvisionOrderFunction XQuery Modules

XQuery Module Extendable Description

CreateProvisioningOrderRequest_do No Generates the Oracle AIA EBM requests to the external
provisioning system.

CreateProvisioningOrderRequest_redo No Generates the Oracle AIA EBM requests to the external
provisioning system.

CreateProvisioningOrderRequest_undo No Generates the Oracle AIA EBM requests to external
provisioning system for undo.

CreateProvisioningOrderResponse No Consumes the Oracle AIA EBM response from the external
provisioning system.

InitialSomProvisionOrderSIResponse No Sets the correlation context before consuming Oracle AIA
EBM response from the external provisioning system.

RetryCreateProvisioningOrderResponse No Handles fallout in service order management's provisioning
order by re-creating the response from the external
provisioning system.

SomProvisionOrderSIEntryPoint No Handles extension point COMPONENT-START, updates
order item properties, and reports milestones to lifecycle
management for service order management and then to
central order management.

SomProvisionOrderSIResponse No Consumes the Oracle AIA EBM response from the external
provisioning system.

SomProvisionOrderSIResponseFalloutPrepar | No Handles manual retry process to re-submit EBM to the

e external provisioning system.

UpdateProvisionOrderStatusFunctions No Provides functions to create an EBM that contains the

fulfillment request's update and send the EBM to central
order management.

Table 4-89 lists the automation modules (with their associated automated tasks) defined in the
OracleComms_OSM_0O2A SOM_Provisioning cartridge for the SomProvisionOrderFunction

fulfilment function.

Table 4-89 SomProvisionOrderFunction Automation Modules

Automation Module Automated Task

Description

ean Task

SomProvisionOrderSIEntryPointB | SomProvisionOrderSIEntryPoint | Calls the SomProvisionOrderSIEntryPoint XQuery.

SomProvisionOrderSIResponseF | SomProvisionOrderSIResponse | Calls the
alloutPrepareBean FalloutPrepareTask

SomProvisionOrderSIResponseFalloutPrepare
XQuery.

ORACLE

4-74

Chapter 4
Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-89 (Cont.) SomProvisionOrderFunction Automation Modules

Automation Module

Automated Task

Description

InitialSomProvisionOrderSIRespo
nseBean

SomProvisionOrderSIResponse
Task

Calls the InitialSomProvisionOrderSIResponse
XQuery.

SomProvisionOrderSIResponseB
ean

SomProvisionOrderSIResponse
Task

External event receiver to invoke
SomProvisionOrderSIResponse XQuery.

RetryCreateProvisioningOrderRe
questBean

SomProvisionOrderSIRetryTask

Calls the CreateProvisioningOrderRequest_do
XQuery.

RetryCreateProvisioningOrderRe
sponseBean

SomProvisionOrderSIRetryTask

External event receiver to invoke
RetryCreateProvisoningOrderResponse XQuery.

CreateProvisiongOrderRequestBe
an_do

SomProvisionOrderSITask

Calls the CreateProvisioningOrderRequest_do
XQuery.

CreateProvisiongOrderRequestBe
an_redo

SomProvisionOrderSITask

Calls the CreateProvisioningOrderRequest_redo
XQuery.

CreateProvisiongOrderRequestBe
an_undo

SomProvisionOrderSITask

Calls the CreateProvisioningOrderRequest_undo
XQuery.

CreateProvisioningOrderRespons
eBean

SomProvisionOrderSITask

External event receiver to invoke
CreateProvisoningOrderResponse XQuery.

SomProvisionOrderSIResponseU
ndoBean

SomProvisionOrderSITask

External event receiver to invoke
SomProvisionOrderSIResponse XQuery.

OracleComms_OSM

02A_SOM_Solution

The OracleComms_OSM_02A SOM_Solution cartridge is a demonstration composite
cartridge that references all cartridges required for service order management.

To see the component cartridges referenced in this cartridge for your solution, open the
Dependencies tab in the composite cartridge editor.

OracleComms_OSM_02A SOM_Recognition_Sample

The OracleComms_OSM_0O2A_SOM_Recognition_Sample cartridge is a demonstration
cartridge that recognizes a service order and triggers the creation of a
SOM_ProvisionOrderFulfillment order. In addition, this cartridge catches all in-bound
messages not recognized by any other provisioning recognition rules.

Table 4-90 lists the order recognition rules defined in this cartridge.

Table 4-90 OracleComms_OSM_O2A_SOM_Recognition_Sample Recognition Rules

Order Recognition Rule

Description

SOM_LFAbortOrderPropagationOrder_Recognition

Recognizes a termination request for an order.

SOM_ORPFallout_CFM_OrderRecognitionRule

Recognizes an ORP fallout to create a fault message to be sent
to Oracle AIA error handling queue.

SOM_ProvisionOrderFulfillment_Recognition

Recognizes a service order that must be executed and creates a
SOM_ProvisionOrderFulfillment order.

SOM_ResumePendinglbMsg_OrderRecognitionRule

Recognizes an inbound message to create a
ResumePendinginBoundMessage order in service order
management.

ORACLE

4-75

Chapter 4

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Revision Number Update for Canceled Orders

For information about special revision number processing for canceled orders, see "Revision

Number Update for Canceled Orders."

OracleComms_OSM_02A SomBBVoIP_FP_NP_Sample

The OracleComms_OSM_02A SomBBVoIP_FP_NP_Sample cartridge is a demonstration
cartridge containing fulfillment patterns, each of which configures a fulfillment flow for
provisioning fulfillment functions. The demonstration VolP and Broadband products map to the

fulfillment patterns.

The following fulfillment patterns are configured in this cartridge:

e SOM_Service.Provision — All other fulfillment patterns extend from this.
¢ SOM_Service.Broadband

¢ SOM_Service.CPE.Broadband
e SOM_Service.CPE.VoIP

¢ SOM_Service.VolP

OracleComms_OSM_0O2A SomProvisionBroadband_Sample

The OracleComms_OSM_0O2A_SomProvisionBroadband_Sample cartridge is a demonstration
cartridge supporting service orders for broadband services.

Table 4-91 to Table 4-93 list the entities in the
OracleComms_OSM_0O2A_SomProvisionBroadband_Sample cartridge.

Table 4-91 OracleComms_OSM_0O2A_SomProvisionBroadband_Sample Entities

Name Type Description

OSM_O2A_SomProvisionBroadband_Recog | Order Recognizes a broadband service order and creates an

nition Recognition OracleComms_OSM_O2A_SomProvisionBroadband_Samp
Rule leOrder service order to manage its fulfillment.

OracleComms_OSM_0O2A_SomProvisionBro | Order Local service order structure for managing a service order

adband_SampleOrder for broadband services.

BroadbandProvisioningOrderLifeCycle Lifecycle Defines the security permissions for order transactions.
Policy

BroadbandProvisioningRole Role Role with permissions to create and view

OracleComms_OSM_0O2A_SomProvisionBroadband_Samp
leOrder.

BroadbandServicesProvisioningProcess

Process and
Tasks

Process to handle provisioning of broadband services such
as email, Internet and customer premise equipment.

CreateBroadbandServicesProvisioningOrder
Task

Manual Task

Creation task to create an
OracleComms_OSM_0O2A_SomProvisionBroadband_Samp
leOrder.

OracleComms_OSM_O2A_SomProvisionBro
adband_Sample

Data Schema

Data structures for managing broadband services.

ORACLE

4-76

Chapter 4

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Table 4-92 OracleComms_OSM_O2A_SomProvisionBroadband_Sample XQuery Modules

XQuery Module Extendable Description

ActivityRouterTask Yes Transit to the next task with different task exit status
depending on broadband provisioning service.

BroadbandServiceErrorFault Yes Creates error fault for broadband provisioning service.

BroadbandServiceOrderCompleteEventHand | Yes Sends broadband service order status update with

ler COMPLETE status code back to service order
management.

BroadbandServiceProcessEntryUndoBean Yes Updates the provisioning order and sends broadband
service order status.

BroadbandServiceProvisioningOrderDataRul | Yes Transforms the Oracle AIA service order to an OSM service

e order.

BroadbandServiceUtilityModule Yes Utility module to provide functions to support provisioning
broadband service.

ProvisionTaskComplete Yes Completes a provisioning task.

ProvisionTaskStart Yes Starts a provisioning task.

Table 4-93 OracleComms_OSM_0O2A_SomProvisionBroadband_Sample Automation Modules

Automation Module

Automated Task

Description

ActivityRouterBean

ActivityRouterTask

Calls the ActivityRouterTask XQuery.

BroadbandServiceErrorFaultBean

BroadbandServiceErrorFaultTas

k

Calls the BroadbandServiceErrorFault XQuery.

BroadbandServiceErrorFaultBean
_redo

BroadbandServiceErrorFaultTas

k

Calls the BroadbandServiceErrorFault XQuery for
redo mode.

BroadbandServiceProcessEntryU
ndoBean

BroadbandServiceProcessEntry

Task

Calls the BroadbandServiceProcessEntryUndoBean
XQuery.

BroadbandServiceProcessExitBe
an

BroadbandServiceProcessExitT

ask

Calls the BroadbandServiceProcessExitBean
XQuery.

ProvisionCPEEnNtryPointBean

ProvisionCPEEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisionCPEEXxitPointBean

ProvisionCPEEXxitPointTask

Calls the ProvisionTaskComplete XQuery.

ProvisioninternetEmailServiceBun
dleEntryPointBean

ProvisionInternetEmailServiceB

undleEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisioninternetEmailServiceBun
dleExitPointBean

ProvisionInternetEmailServiceB

undleExitPointTask

Calls the ProvisionTaskComplete XQuery.

ProvisioninternetMediaServiceBu
ndleEntryPointBean

ProvisioninternetMediaServiceB

undleEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisioninternetMediaServiceBu
ndleExitPointBean

ProvisionInternetMediaServiceB

undleExitPointTask

Calls the ProvisionTaskComplete XQuery.

ProvisioninternetServiceBundleE
ntryPointBean

ProvisioninternetServiceBundle

EntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisionInternetServiceBundleEx
itPointBean

ProvisionInternetServiceBundle

ExitPointTask

Calls the ProvisionTaskComplete XQuery.

ORACLE

4-77

Chapter 4

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

OracleComms_OSM_02A SomProvisionVolP_Sample

The OracleComms_OSM_0O2A_SomProvisionVolP_Sample cartridge is a demonstration
cartridge supporting service orders for VoIP services.

Table 4-94 to Table 4-96 list the entities in the
OracleComms_OSM_0O2A_SomProvisionVolP_Sample cartridge.

Table 4-94 OracleComms_OSM_O2A_SomProvisionVolP_Sample Entities

Name Type Description

OSM_O2A_SomProvisionVolP_Recognition | Order Recognizes a VoIP service order and creates an
Recognition OracleComms_OSM_O2A_SomProvisionVolP_SampleOrd
Rule er service order to manage its fulfillment.

OracleComms_OSM_O2A_SomProvisionVol | Order Local service order structure for managing a service order

P_SampleOrder for VoIP services.

VolPProvisioningOrderLifeCycle Lifecycle Defines the security permissions for order transactions.
Policy

VolPProvisioningRole Role Role with permissions to create and view

OracleComms_OSM_O2A_SomProvisionVolP_SampleOrd
er.

VolPServicesProvisioningProcess

Process and
Tasks

Process to handle provisioning of VoIP services such as
VoIP service and customer premise equipment.

CreateVolPServicesProvisioningOrderTask

Manual Task

Creation task to create an
OracleComms_OSM_O2A_SomProvisionVolP_SampleOrd
er.

OracleComms_OSM_0O2A_SomProvisionVol
P_Sample

Data Schema

Data structures for managing VoIP services.

Table 4-95 OracleComms_OSM_O2A_SomProvisionVolP_Sample XQuery Modules

XQuery Module Extendable Description

VolPActivityRouterTask Yes Transit to the next task with different task exit status
depending on VoIP provisioning service.

VolPServiceErrorFault Yes Creates error fault for VoIP provisioning service.

VolPServiceOrderCompleteEventHandler Yes Sends VoIP service order status update with COMPLETE
status code back to service order management.

VolPServiceProcessEntryBean Yes Updates the provisioning order and sends VoIP service
order status.

VolPServiceProvisioningOrderDataRule Yes Transforms the Oracle AlA service order to an OSM service
order.

VolPServiceUtilityModule Yes Utility module to provide functions to support provisioning
VolP service.

VolPProvisionTaskComplete Yes Completes a provisioning task.

VolPProvisionTaskStart Yes Starts a provisioning task.

VolPServiceProcessExitBean Yes Completes a task using a successful status.

ORACLE

4-78

Chapter 4
Common Conceptual Model Projects

Table 4-96 OracleComms_OSM_O2A_SomProvisionVolP_Sample Automation Modules

Automation Module Automated Task Description

VolPActivityRouterBean VolPActivityRouterTask Calls the VolPActivityRouterTask XQuery.

VolPServiceErrorFaultBean VolPServiceErrorFaultTask Calls the VolPServiceErrorFault XQuery.

VolPServiceErrorFaultBean_redo | VolPServiceErrorFaultTask Calls the VolPServiceErrorFault XQuery for redo
mode.

VolPServiceProcessEntryBean VolPServiceProcessEntryTask | Calls the VolPServiceProcessEntryBean XQuery.

VolPServiceProcessExitBean VolPServiceProcessExitTask Calls the VolPServiceProcessExitBean XQuery.

ProvisionVolPCPEEnNtryPointBea | ProvisionVoIPCPEEnNtryPointTas | Calls the VolPProvisionTaskStart XQuery.
n k

ProvisionVolPCPEEXitPointBean | ProvisionVolPCPEEXitPointTask | Calls the VolPProvisionTaskComplete XQuery.

ProvisionVolPServiceBundleEntry | ProvisionVolPServiceBundleEnt | Calls the VolPProvisionTaskStart XQuery.
PointBean ryPointTask

ProvisionVolPServiceBundleExitP | ProvisionVolPServiceBundleExit | Calls the VolPProvisionTaskComplete XQuery.
ointBean PointTask

Common Conceptual Model Projects

The following cartridges provide entities that are used by or referenced by other Order-to-
Activate cartridges.

For more information about the conceptual model, see Design Studio Concepts.

OracleComms_Model Base

The OracleComms_Model_Base project contains entities that are used for multiple services,
including provider functions, functional areas, relationship types, action codes, and units of
measure.

OracleComms_Model BaseCatalog

The OracleComms_Model_BaseCatalog project contains conceptual model fulfillment patterns.
It also contains the data schema that defines the data elements from the Oracle AIA EBM
schema. Cartridges that must include data elements from Oracle AIA EBM can reuse the
elements defined in this cartridge.

OracleComms_Model _Common

The OracleComms_Model_Common project contains common data elements for all of the
services.

OracleComms_Model O2A Broadband_Internet_Access CFS

The OracleComms_Model _O2A_Broadband_Internet_Access_CFS project contains the
customer facing services for broadband Internet access.

The following customer facing services are defined in this project:

e Broadband_Internet_Access CFS

ORACLE 4-79

Chapter 4
Common Conceptual Model Projects

OracleComms_Model_O2A Broadband_Internet Access SA

The OracleComms_Model _O2A_Broadband_Internet_Access_SA project contains the actions
for broadband Internet access.

The following action codes are defined in this project for the customer facing service in the
OracleComms_Model_O2A Broadband_Internet_Access_CFS project:

e Add

* Change

» Disconnect
e Modify

* Move-Add

¢ Move-Delete

* Query

* Remove
* Resume
e Suspend

OracleComms_Model O2A Broadband_Internet_DataModel

The OracleComms_Model_O2A_Broadband_Internet_DataModel project contains the data
schema for data specific to broadband Internet access.

OracleComms_Model O2A Email_CFS

The OracleComms_Model_O2A_Email_CFS project contains the customer facing services for
email service.

The following customer facing services are defined in this project:

e« Email_CFS

OracleComms_Model O2A_Email _DataModel

The OracleComms_Model O2A_Email_CFS project contains the data schema for data
specific to email service.

OracleComms_Model O2A Email SA

ORACLE

The OracleComms_Model O2A_Email_CFS project contains the actions for email service.

The following action codes are defined in this project for the customer facing service in the
OracleComms_Model_O2A_Email_CFS project:

e Add

e Change

» Disconnect
e Modify

4-80

Chapter 4
Common Conceptual Model Projects

* Move-Add

* Move-Delete

* Query

* Remove
* Resume
e Suspend

OracleComms_Model O2A Internet_Media CFS

The OracleComms_Model_O2A_Internet_Media_CFS project contains the customer facing
services for Internet media service.

The following customer facing services are defined in this project:

¢ InternetMedia_CFS

OracleComms_Model O2A Internet_Media_DataModel

The OracleComms_Model_O2A_Internet_Media_DataModel project contains the data schema
for data specific to Internet media service.

OracleComms_Model O2A Internet_ Media_SA

The OracleComms_Model_O2A_Internet_Media_SA project contains the actions for internet
media service.

The following action codes are defined in this project for the customer facing service in the
OracleComms_Model_O2A_Internet_Media_CFS project:

e Add

e Change

« Disconnect
* Modify

* Move-Add

* Move-Delete

* Query

* Remove
* Resume
e Suspend

OracleComms_Model O2A VolP_Access CFS

The OracleComms_Model _O2A_ VolP_Access_CFS project contains the customer facing
services for VoIP access.

The following customer facing services are defined in this project:
e IP_Fax_CFS
* VoIP_Access_CFS

ORACLE 481

Web_Conferencing_CFS

Chapter 4
Conceptual Model Projects for Central Order Management

OracleComms_Model O2A VolP_Access_SA

The OracleComms_Model_O2A_VolP_Access_CFS project contains the actions for VolP
access.

The following action codes are defined in this project for each of the customer facing services
in the OracleComms_Model _O2A_ VolP_Access_CFS project:

Add
Change
Delete
Disconnect
Modify
Move-Add
Move-Delete
None
Query
Remove
Resume
Suspend
Update

OracleComms_Model O2A VolP_DataModel

The OracleComms_Model_O2A_VolP_Access_CFS project contains the data schema for data

specific to VoIP access.

Conceptual Model Projects for Central Order Management

The following cartridges provide entities that are used by or referenced by central order

OracleComms_Model _O2A Billing_PS

ORACLE

management Order-to-Activate cartridges.

For more information about the conceptual model, see Design Studio Concepts.

The OracleComms_Model _O2A_Billing_PS project contains the products for billing services.

The following products are defined in this project:

Broadband_Pricing_Event_PS
Group_Member_PS
Group_Owner_PS
Offer_Sponsorship_PS
Pricing_Event_PS

4-82

Chapter 4
Conceptual Model Projects for Central Order Management

e Promotion_Group_PS
* VolP_Pricing_Event_Billing_Validation_PS
* VolP_Pricing_Event_PS

OracleComms_Model O2A Broadband_Internet Access PS

The OracleComms_Model_O2A_Broadband_Internet_Access_PS project contains the
domains and products for broadband Internet services.

The following domains are defined in this project:

¢ BroadbandinternetDomain

The following products are defined in this project:

e Broadband_Bandwidth_PS

e Broadband_Modem_PS

» Broadband_Offer_Charge_Class
e Broadband_PS

e Broadband_Router_PS

* Firewall_PS

OracleComms_Model O2A Email PS

The OracleComms_Model O2A_Email_PS project contains the domains and products for
email services.

The following domains are defined in this project:

¢ EmailDomain

The following products are defined in this project:

e Email_Service_PS

OracleComms_Model O2A Install PS

The OracleComms_Model_O2A_Install_PS project contains the products for installation
services.

The following products are defined in this project:

e High_Speed_Internet_Installation_PS

OracleComms_Model O2A Internet_Media PS

The OracleComms_Model_O2A_Internet_Media_PS project contains the domains and
products for Internet media services.

The following domains are defined in this project:

e InternetMediaDomain

The following products are defined in this project:

e Internet_Media_PS

ORACLE 493

Chapter 4
Conceptual Model Projects for Service Order Management

OracleComms_Model O2A VolP_PS

The OracleComms_Model _O2A_VolP_PS project contains the domains and products for VolP
services.

The following domains are defined in this project:

 VolPDomain

The following products are defined in this project:

* Value_Added_Features_PS
* VolP_Adaptor_PS

* VolP_Fax_Service_PS

* VolP_Offer_Charge_Class
* VolP_Phone_PS

« VolP_PS

* VolP_Soft_Phone_PS

* VolP_Visual_Voicemail_PS
* VolP_Voicemail_PS

* Web_Conferencing_PS

Conceptual Model Projects for Service Order Management

The following cartridges provide entities that are used by or referenced by service order
management Order-to-Activate cartridges when the service option without calculate service
order is used.

For more information about the conceptual model, see Design Studio Concepts.

OracleComms_Model O2A SOM_PS

The OracleComms_Model O2A_SOM_PS project contains the products for service order
management services when the service option without calculate service order is used.

The following products are defined in this project:
« SOM_Broadband_Bandwidth_PS
e SOM_Broadband_Modem_PS

e SOM_Broadband_PS

e SOM_Broadband_Router_PS

¢ SOM_Email_Service_PS

* SOM_Firewall_PS

¢ SOM._Internet_Media_PS

e SOM_Value_Added_Features_PS
e SOM_VolP_Adaptor_PS

e SOM_VolP_Fax_Service PS

ORACLE Y

e SOM_VolP_Phone_PS

- SOM_VoIP_PS

Chapter 4
Oracle AIA Emulators

* SOM_VolP_Service_Feature_Billing_Validation_PS
* SOM_VolP_Service_Plan_Billing_Validation_PS

- SOM_VoIP_Soft_Phone_PS

* SOM_VolP_Visual_Voicemail_PS

* SOM_VolP_Voicemail_PS

¢ SOM_Web_Conferencing_PS

Oracle AIA Emulators

The Oracle AIA emulators are used in development and testing when Oracle AlA is not

available.

Table 4-97 lists and describes the emulators contained in the
OracleComms_OSM_O2A Install project.

< Note:

Table 4-97 Emulators in OSM

In the Order to Cash solution, OSM interacts with billing, CRM, and Provisioning
systems using Oracle AlA. It does not directly interact with Siebel CRM, BRM, and
provisioning systems.

Name

Description

osm_AIASyncCustomerEmulator

Emulates Oracle AlA billing service (for example, BRM ABCS by
generating response messages in EBM format for requests targeted
at a billing provider to synchronize customer account details.

osm_AlAlnitiateFulfillBillingEmulator

Emulates Oracle AIA billing service by generating response
messages in EBM format for requests targeted at a billing provider
to initiate or fulfill billing.

osm_AlAFalloutNotificationToOrderEmulator

Emulates Oracle AIA error handling by generating order fallout
notification messages for faults targeted at Oracle AlA error
handling. These are error faults generated by the external systems
(such as Provisioning). Error faults are sent to Oracle AIA which
then translate them into fallout notifications and sent to OSM central
order management.

osm_AlATroubleTicketEmulator

Emulates an Oracle AlA trouble ticket Siebel CRM service by
generating response messages in EBM format for requests targeted
at Siebel CRM to create trouble tickets. Note that no trouble ticket
response is generated for Update Trouble ticket EBMs but only for
Create Trouble ticket EBMSs.

osm_CF2LFProvisionOrderCreateEmulator

Emulates an OSM service (for example, OSM ABCS) for service
order creation by wrapping EBM format messages in OSM format
for requests targeted at OSM service order management fulfillment
to process service orders.

ORACLE

4-85

Table 4-97 (Cont.) Emulators in OSM
|

Name

Chapter 4
Oracle AIA Emulators

Description

osm_LF2CFProvisionOrderUpdateEmulator

Emulates an OSM service (for example, OSM ABCS) for order
update by wrapping EBM format messages in OSM format for
messages targeted at OSM central order management fulfillment to
update service orders.

osm_AlIAProvisionOrderEmulator

Emulates Oracle AlA Provisioning service (for example, order
management) fulfillment by generating response messages in EBM
format for requests targeted at OSM service order management
fulfillment to process service orders.

osm_InventoryOrderEmulator

Emulates UIM by setting simulated enriched data from inventory
such as Service ID and MAC Address.

osm_TomOrderEmulator

Emulates a technical order management system by returning a
successful status to requests.

ORACLE

4-86

Extending Order-to-Activate Cartridges

This chapter describes how to extend the Order-to-Activate cartridges for Oracle
Communications Order and Service Management (OSM).

The Order-to-Activate cartridges are provided as a working foundation which you can extend to
design and build a solution. This chapter provides details and guidelines on how to extend the
base model entities.

Adding Custom Data Elements

To add custom data elements to the Order-to-Activate cartridges, please see knowledge article
1514936.1, Data Enrichment - Extending Order to Activate Cartridges, on the Oracle
support website:

https://support.oracle.com

Adding Custom Order Item Properties

You can add custom order item properties to your order template without unsealing any
cartridges. The following XML-type variable is available in the COM_Sales_OrderFulfillment
order template:

ControlData
OrderItem
CustomXmlData

This data element allows the addition of custom properties, but it does not support significance
or revision, and it cannot be used for component wait dependencies.

You can populate custom properties into that element by using the following URI for the
CustomXmlData property in the Order Item Specification editor:

http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/
CustomXmlData.xquery

After installation, the shell for the CustomXmiData.xquery file is located in the
SolutionCartridgelresources/CustomExtensions folder, where SolutionCartridge is the
cartridge for your solution, as listed in Table 5-1:

Table 5-1 Solution Configurations and Corresponding Solution Cartridge Names

Using Calculate Current Workspace | Topology Solution Cartridge

Service Order Is for:

Option?

Yes COM only All OracleComms_OSM_02A COM_CSO_Solution

Yes SOM only All OracleComms_OSM_02A SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_0O2A COMSOM_CSO_Solution
No COM only Simple OracleComms_OSM_0O2A COM_Simple_NP_Soln
ORACLE

5-1

https://support.oracle.com

Chapter 5
Adding Custom Order Item Properties

Table 5-1 (Cont.) Solution Configurations and Corresponding Solution Cartridge Names

Using Calculate Current Workspace | Topology Solution Cartridge
Service Order Is for:
Option?
No COM only Typical or OracleComms_OSM_O2A_COM_Typical_NP_Soln
Complex
No SOM only All OracleComms_OSM_02A SOM_NP_Soln
No COM and SOM Simple OracleComms_OSM_0O2A_COMSOM_Simple_NP_Soln
No COM and SOM Typical or OracleComms_OSM_0O2A_COMSOM_Typical_NP_Soln
Complex
\J
«# Note:
If you edit the CustomXmliData.xquery file, save a copy of the updated file to the
custom-extension folder in the OracleComms_OSM_O2A_Configuration cartridge.
This ensures that your changes will not be overwritten if you reconfigure your
workspace.
Following is a sample of a configured CustomXmiData.xquery file:
Example 5-1 Sample CustomXmiData.xquery File
import module namespace fulfillmentmodecodefn = "http://xmlns.oracle.com/communications/
ordermanagement/o2a/customextensions/fulfillmentmodecodefn" at "http://xmlns.oracle.com/
communications/ordermanagement/o2a/customextensions/FulfillmentModeCode.xqy";
import module namespace fulfillmentcondprovfn = "http://xmlns.oracle.com/communications/
ordermanagement/o2a/customextensions/fulfillmentcondprovfn" at "http://xmlns.oracle.com/
communications/ordermanagement/o2a/customextensions/FulfillmentCondProv.xqy";
import module namespace fulfillmentcondfn = "http://xmlns.oracle.com/communications/
ordermanagement/o2a/customextensions/fulfillmentcondfn" at "http://xmlns.oracle.com/
communications/ordermanagement/o2a/customextensions/FulfillmentCond.xqy";
import module namespace completeshippingfn = "http://xmlns.oracle.com/communications/
ordermanagement/o2a/customextensions/completeshippingfn" at "http://xmlns.oracle.com/
communications/ordermanagement/o2a/customextensions/CompleteShipping.xqy";
declare namespace prop = "COM SalesOrderFulfillment";
declare namespace salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/vV2";
declare variable SinputDoc as document-node() external;
let Sebm := $inputDoc/GetOrder.Response/ root/messageXmlData/
salesord:ProcessSalesOrderFulfillmentEBM
let $line := .
return
(
<prop:CustomProperties>
<prop:CompleteShipping>{completeshippingfn:CompleteShipping($1line, S$ebm) }</
prop:CompleteShipping>
<prop:FulfillmentCond>{fulfillmentcondfn:FulfillmentCond ($line, S$ebm) }</
prop:FulfillmentCond>
ORACLE

5-2

Changing

ORACLE

Chapter 5
Changing Durations for Order Components

<prop:FulfillmentCondProv>{fulfillmentcondprovfn:FulfillmentCondProv ($line, Sebm) }</
prop:FulfillmentCondProv>

<prop:FulfillmentModeCode>{fulfillmentmodecodefn:FulfillmentModeCode ($1ine, Sebm) }</
prop:FulfillmentModeCode>
</prop:CustomProperties>

)

Durations for Order Components

You can change the Optimistic, Most Likely, and Pessimistic order component durations. If you
create custom functional order components, you can change the values in the Order
Component Specification editor, like you would for any non-Order-to-Activate configuration.
However, since the standard Order-to-Activate functional order components are in a sealed
cartridge, you should not edit the order component durations in the normal way, but instead
using the instructions in this section.

Note:

As in non-Order-to-Activate scenarios, the duration settings for fulfillment patterns
override the duration settings for order components. Since Order-to-Activate
fulfillment patterns are not in sealed cartridges, you can edit durations for the
fulfillment patterns in the normal way, using the Fulfillment Pattern editor in Design
Studio. See Design Studio Modeling OSM Orchestration Help for more information
about setting durations for fulfillment patterns.

To change durations for standard Order-to-Activate functional order components:

1. Edit the workspace\OracleComms_OSM_O2A_Configurationisolution-
config\ComponentDurationMap.xml file, where workspace is the directory containing the
files for your Order-to-Activate workspace.

You can edit this file in any text or XML editor or in Eclipse. If you use Eclipse, use the
Package Explorer view to find the file.

2. Find the entry for the order component you would like to modify. The name of the order
component is located in the OrderComponentSpec tag. The example below shows the
element tag for the SyncCustomerFunction functional order component:

<model:orderComponentSpec name="SyncCustomerFunction"
namespace="COM SalesOrderFulfillment">

3. Update the durations you would like to change. The durations are in the standard XML
date/time format:

PnYnMnDTnHnMnS

for example:

POYOMODTOH2MOS

which indicates a duration of two minutes.
The individual elements of the format are:
e P indicates the period

e nY indicates the number of years

5-3

Chapter 5
Adding a New Fulfillment Function

* nM indicates the number of months
e nD indicates the number of days

e T indicates the start of a time section
e nH indicates the number of hours

* nM indicates the number of minutes
e nS indicates the number of seconds

Save and close the workspace\OracleComms_OSM_0O2A_Configuration\solution-
config\ComponentDurationMap.xml file.

In Design Studio, go to the Ant view and look for the SolutionConfig.xml build file you
added when you installed the Order-to-Activate cartridges.

Note:

If you have removed this file from your workspace, see "Configuring WebLogic
Server Resources" and follow steps 1 through 4.

Expand the SolutionConfig.xml build file and double-click the
config_Metadata_And_ModelVariable target.

This updates the metadata so that the system will use the new values you have
configured.

Adding a New Fulfillment Function

A fulfillment function represents an activity, for example billing or provisioning, that must be
performed to process an order item. You can add a new fulfillment function for a new action or
you can extend an existing fulfilment function to add data elements and entities without
unsealing the productized Order-to-Activate cartridges.

Planning the Addition of a New Fulfillment Function

ORACLE

This section contains planning considerations for adding a new fulfillment function to a solution.

Is the new fulfillment function for a system type that is already modeled in the Order-to-
Activate cartridge, or is it for a new system type?

— If the new fulfillment function is for a new system type, you must know the naming
convention configured in Oracle Application Integration Architecture (Oracle AlA)
deployments for logical identifiers of instances of the new system type. See the
coverage of EBMHeader/Sender/ID and EBMHeader/Target/ID elements for the
various system interactions in Fusion Middleware Developer's Guide for Oracle
Application Integration Architecture Foundation Pack. The Sender IDs and Target IDs
in the EBM messages must match the logical identifiers for the system instances
configured in the Oracle AIA deployment. See "Considerations When Integrating with
Oracle AIA."

— Following is a summary of naming conventions for fulfillment functions in Oracle AlA:

* Naming convention used for OSM central order management instances:
OSMCFS_01, OSMCFS_02, and so on.

5-4

ORACLE

Chapter 5
Adding a New Fulfillment Function

* Naming convention used for OSM service order management instances:
OSMPROV_01, OSMPROV_02, and so on.

* Naming convention used for Billing and Revenue Management instances:
BRM_01, BRM_02, and so on.

* Naming convention used for Siebel Customer Relationship Management (Siebel
CRM) instances: SEBL_01, SEBL_02, and so on.

What is the message format for the fulfillment function request and response?

— The fulfillment function request must conform to an Enterprise Business Message
(EBM).

— The fulfillment function response can be either an EBM or an OrderFalloutNotification.
Oracle AlA specifies XML schemas for the EBMs which describe the request and
response format.

What are the INDI names for the source and destination queues that are used to
exchange request and response messages between OSM and Oracle AlA for the new
fulfillment function?

What are the data elements on the order that are compensation-significant for the new
fulfillment function? Compensation-significant data elements trigger compensation if a
revision order contains changes to the values.

What service action codes will apply to the current fulfilment function? The predefined
service action codes include:

— ADD: Add a new service.

— UPDATE: Make a change to an existing service.

— DELETE: Remove a service.

— SUSPEND: Suspend a service.

— RESUME: Resume a suspended service.

— MOVE-ADD: Add service as part of a service location move process.

— MOVE-DELETE: Remove service as part of a service location move process.
— NONE: Make no service change.

What processing is required for the different execution modes? The following execution
modes supported in the existing Order-to-Activate fulfillment function and are mandatory:

— dois required to handle new orders and change orders
— redo is required for amendment processing to fulfill an order revision
— undo is required for order cancellation

What data elements from the fulfillment request XML schema must be included in the
outbound fulfillment request?

— Identify the data elements that must be copied as-is by OSM from the customer order
to the fulfillment request. This data exists in the OSM order data in the
messageXMLData element and does not need to be modeled separately.

— Identify the data that must be generated by OSM and inserted into the fulfillment
request. Consider data generation for all OSM execution modes: do, redo, and undo.

What data elements from the fulfillment response XML schema must be included in data
updates to Siebel CRM or included in subsequent fulfillment function requests? For
example, you might include a service ID returned from provisioning that must be included

5-5

Chapter 5
Adding a New Fulfillment Function

in the fulfillment-data updates to Siebel CRM and in the FulfillBilling request that takes
place after provisioning is complete.

Response Patterns in System Interactions

There are two patterns of handling responses in system interactions, the single-response
pattern and the multiple-response pattern. Single-response patterns receive a single response
in a system interaction with the Oracle AIA billing service, while multiple-response patterns can
receive multiple responses.

Single Response Pattern

The single-response pattern is used in billing functions. Each billing function is transactional. In
a system interaction with the Oracle AlA billing service, a single response is expected which is
either a response EBM or an OrderFalloutNotification created by Oracle AlA error handling
framework, and not both.

If a revision order with compensation-significant updates for the billing function arrives while
the request is in progress in OSM central order management (that is, after an EBM has been
put on the queue for the Oracle AlA billing service to pick up but before the arrival and
processing of a response), the amendment is queued until the response is processed.

In this case, a single automated task in the subprocess for the fulfillment function (such as
SyncCustomerSiTask, InitiateBillingSITask, or FulfillBillingSITask) includes automation to
generate the EBM and put it on a queue in do, redo, and undo execution modes, and the same
automated task also includes automation to correlate and process the response from Oracle
AlA.

Multiple Response Pattern

The multiple-response pattern is used in the ProvisionOrderFunction. In a system interaction
with the Oracle AIA order provisioning service, multiple responses are expected in the form of
a sequence of response EBMs of type ProcessFulfillmentOrderUpdateEBM or an
OrderFalloutNotification created by the Oracle AIA error-handling framework.

If a revision order with compensation-significant updates for the ProvisionOrderFunction
arrives while a request is in progress in OSM central order management (that is, after a
request EBM has been put on the queue for the Oracle AlA provisioning service to pick up but
before the arrival and processing of a response), then a separate request for the revision is
sent to the Oracle AlA order provisioning service.

In this case, a separate automated task, such as ProvisionOrderSIResponseTask, is needed in
the subprocess to correlate and process the responses. The success flow without debugging
breakpoints then becomes:

1. YourFunctionNameEntryPointTask
2. YourFunctionNameSITask

3. YourFunctionNameSIResponseTask

Entities to Create, Modify, or Reuse

Table 5-2 provides an overview of the entities that may be created, modified, or reused in the
creation of a fulfillment function. Further information about many of these entities is provided in
the following sections.

ORACLE -

Chapter 5
Adding a New Fulfillment Function

Table 5-2 Entities to be Created, Modified, or Reused
|

Name Type Remarks
OracleComms_OSM_CommonDataDictionary | Data Dictionary See "Data Dictionary and Order Templates" for
OracleComms OSM O2A AIAEBMDataDictio information about how to make changes for the
nary - -7 new fulfillment function.
COM_SalesOrderFulfillment_CreationTask Manual Task See "About Creation Tasks" for information
about adding to task data for the new
fulfillment function.
COM_SalesOrderFulfillment_OrderDetails Manual Task See "About Query Tasks" for information about
adding to task data for the new fulfillment
function.
FUNCTION/YourSystemTypeFunction extends | Order Component If your system type is an already modeled
FulfillmentFunction Specification system type such as Billing, you reuse the
FUNCTION/YourFunctionNameFunction existing entities, for example: FUNCTION/
extends YourSystemTypeFunction BillingFunction and SYSTEM/BillingSystem
SYSTEM/YourSystemTypeSystem extends Existing GRANULARITY order component

FulfillmentSystem

specifications are reusable for new fulfillment
functions without any modifications.

TASK/

UPDATES/

YourFunctionNameSignificantUpdates extends

SignificantUpdates

SUBPROCESS/ Process See "About Subprocesses."

YourFunctionNameSubProcess

TASK/YourFunctionNameEntryPointTask Automated Task See "About Subprocesses" for automated

TASK/YourFunctionNameS|Task tasks to be created for the new subprocess for
the new fulfillment function.

TASK/YourFunctionNamePreSITask Manual Task See "About Subprocesses" for manual tasks to

TASK/YourFunctionNamePostSITask be created for the new subprocess for the new

TASK/YourFunctionNameFalloutRecoverTask

YourFunctionNameWaitForAmendmentTask

TASK/YourFunctionNameEPQTask extends
TASK/YourFunctionNameEntryPointTask

TASK/YourFunctionNameSIQTask extends
TASK/YourFunctionNameSITask

fulfillment function.

Data Dictionary and Order Templates

ORACLE

Additional data fields for the new fulfillment function can be defined in the cartridge created for
it. All order template entities can be placed in a separate cartridge, in an order that extends
from COM_SalesOrderFulfillment. Orchestration sequences, processes, and tasks for the new
fulfillment function can also be placed in this separate cartridge.

An XML data type element named messageXMLdata is used to store the incoming customer
order data in an XML format inside the OracleComms_OSM_0O2A COM_Base cartridge. This
element is defined in the OracleCgbuCommonDataDictionary data dictionary and is included in
the order template. It should be added to any new tasks that require access to the raw
customer order data. The raw data is used by automated tasks that copy some data as-is to
the fulfillment request.

Model additional fields in the LineltemData structure in the data dictionary. The element
names, types, and sub-structures in LineltemData mimic the structure of the SalesOrderLine

5-7

ORACLE

Chapter 5
Adding a New Fulfillment Function

structure in the Oracle AIA SalesOrderEBM schema. The following sections contain
information about these changes.

Order Change Management Configuration

You may need to model data for order change management configuration including keys and
data significance. Add all data elements from the customer order line that are compensation-
significant for the fulfillment function to the LineltemData structure (if they do not already exist
in the LineltemData structure).

Customize a copy of the BaseLineltemData.xquery XQuery file located in
OracleComms_OSM_O2A_COM_Baselresources/OrderlitemProperties to add code to
copy compensation-significant data for the new fulfillment function from the customer order line
to the order line item property BaseLineltemData.

' Note:

Use XML catalogs to specify the location of XQuery files. Use a uniqgue namespace
prefix to avoid naming conflicts.

Data Required for Sending the Fulfillment Request or Processing the Fulfillment
Request Response

You may need to model data that must be generated by OSM and copied to the fulfillment
request, not including service order identification and service order line identification. Add
these to the LineltemData structure (if they do not already exist in the LineltemData
structure). An example of this is new and prior values for customized billing date calculations to
send to a billing provider.

You may also need to model data that can be updated back to central order management from
the fulfillment system.

Additional Control Data Required for Orchestration Logic

If the new fulfillment function can process order items with a service action code of UPDATE or
MOVE-ADD, add an element such as OrderltemHasY ourFunctionNameUpdates to the
OrderltemControl structure. You can make a copy of
CommunicationsSalesOrderlitemProperties_OrderltemControl.xqy and edit the XQuery to
set the property value for each order item. A value of YES means that this order item has
relevant changes for your fulfillment function to process. A service action code has relevant
changes if it is a service action code that the fulfillment function can process, or in the case of
UPDATE or MOVE-ADD, a service action code with compensation-significant updates.

Add a condition to the decomposition rule that decomposes from YourFunctionNameFunction
to YourFunctionName SignificantUpdates. The condition checks for the existence of at least
one order item in the fromOrderComponent that has
OrderltemHasYourFunctionNameUpdates set to YES. This avoids creating an executable
order component (which avoids generating and sending a fulfillment request) when there are
no order items with relevant changes for the fulfillment function to process.

Data that Must be Modeled in the Order Template
If any additional data must be modeled in the order template:

* Follow the same pattern as for the existing fulfilment functions model ControlData/
Functions/YourFunctionNameFunction

5-8

Chapter 5
Adding a New Fulfillment Function

* Any data that must be generated by OSM and copied to the fulfillment request or data that
can be updated back to central order management from the fulfilment system is added to:

ControlData/Orderltem/WorkLineltemData for OSM-generated new values, or new
values from fulfillment function response

ControlData/Orderltem/WorkPriorLineltemData for OSM-generated prior values
ControlData/Orderltem/BaseLineltemData for significance information for compensation

e Any additional control data required for the orchestration logic

About Creation Tasks

COM_SalesOrderFulfillment_CreationTask is the creation task for the OSM
COM_SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can
add data to this creation task through the task data contribution tab in the Order-to-Activate
composite cartridge for the new fulfillment function.

About Query Tasks

COM_SalesOrderFulfillment_OrderDetails is the query task for the OSM
COM_SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can
add data to this query task through the task data contribution tab in the Order-to-Activate
composite cartridge for the new fulfillment function.

About Subprocesses

ORACLE

A system interaction configured in the OracleComms_OSM_0O2A_COM_Base cartridge
handles the asynchronous communication of service order data to a fulfillment system
instance. A fulfillment system instance is also referred to as a fulfillment provider. The system
interaction should handle the delivery of a relevant subset of service order data to the
fulfillment provider. When triggered, the system interaction also invokes the correct subprocess
which represents the fulfillment function for the order component. Additionally, the system
interaction must handle responses from the fulfillment provider and cope with messaging,
fallout, status and data updates, and order change management.

Model the subprocess following the pattern established for the existing fulfillment functions as
depicted in Figure 5-1. Prefix task names with YourFunctionName. The flow of the process is
described in Table 5-3.

Figure 5-1 Creating Subprocesses

smant § ﬁ 25
i T sustens_debup —nat & = success_debugl
St Enirg PainiT ok PraSiTask . BiTask

SUCLEnS ——mrCass——, — i

PuostSiT sk

—2()i—
=

Ty % f Tavhurg
v |

FalicutRedoier

T e »]'-'u ineh

5-9

Chapter 5
Adding a New Fulfillment Function

The manual tasks YourFunctionNamePreSITask, and YourFunctionNamePostSITask are
optional. They are useful as cartridge breakpoints for a number of purposes including providing
the user the ability to control process flow before and after functions and to examine data in the
process flow for revision testing. Cartridge breakpoints stop at manual tasks in subprocess
flows for system interactions. In a success flow, the process flows distinguish whether to exit
with 'success_debug' status (to include manual tasks in the subprocess flow) or success
status (to skip the manual tasks in the subprocess flow).

Table 5-3 lists the tasks and flows associated with subprocess.

Table 5-3 Flows and Tasks

Flow patterns

Tasks associated

debug breakpoints

Success flow without Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSITask --> End

breakpoints

Success flow with debug | Start --> YourFunctionNameEntryPointTask --> YourFunctionNamePreSITask (manual) -->

YourFunctionNameSITask --> YourFunctionNamePostSITask (manual) --> End

Failure flows Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSI|Task --
>YourFunctionNameFalloutRecoverTask (manual) -->
e Option 1: abort End
e Option 2: wait for amendment YourFunctionNameWaitForAmendmentTask (manual) --> End
e Option 3: retry
Significance must be set in the task data for the nodes in
CreateCommunicationsSalesOrderTask and the tasks in the subprocess for the fulfillment
function YourFunctionName.
The system interaction for the fulfillment function is implemented by a subprocess named
YourFunctionNameSubProcess in the Order-to-Activate cartridges. The automated tasks in the
subprocess accomplish the following:
1. Accept input data from the original EBM message destined for the outbound message and
properties for each of the configurable data elements.
e Input data to pass through from the original message
(ProcessSalesOrderFulfilmentEBM) to the outbound message:
— Reference to the message header (EBMHeader) from the original EBM
— Reference to the customer order header (DataArea/ProcessSalesOrderFulfillment)
from the original EBM
— References to line items from the original EBM destined for the outbound message
The inbound message is expected to conform to the schema
AlAComponents\EnterpriseObjectLibrary\industry\Communications\EBO\SalesO
rder\V2\SalesOrderEBM.xsd
* Input data for the configurable elements of the outbound message:
— EBMHeader/Sender/ID and all EBMHeader/Sender element values
— EBMHeader/Target/ID
2. Automation actions in the automated task YourFunctionNameEntryPointTask update the
order item data required for the fulfillment function system interaction. Copy the
SIEntryPoint.xqy file, and customize it as needed.
Use XML catalogs to specify the location of the XQuery files. Use a unique hamespace
prefix to avoid naming conflicts.
ORACLE

5-10

Chapter 5
Adding a New Fulfillment Function

Table 5-4 lists the XML catalogs.

Table 5-4 XML Catalogs

Automation Action | Execution | Automation |[Event Customize

Modes Type Type
"YourFunctionNameE | do, redo XQuery Internal Customize a copy of the SIEntryPoint.xqy XQuery file to
ntryPointBean_dored Sender add code to update order data before message generation
o' for the new fulfillment function.

* Logic for do and redo execution modes (if applicable) include updating the order data
in ControlData/Functions/YourFunctionName/orderltem/orderltemRef/
WorkLineltemData. Because orderltemRef is a reference, subsequent functions on the
same order line reference the same instance of the data. Any additional data that is
generated by OSM for the fulfillment function request should be updated.

Automation actions YourFunctionNameRequestBean_do,
YourFunctionNameRequestBean_redo, YourFunctionNameRequestBean_undo in
automated task YourFunctionNameSIiTask are configured as internal XQuery Senders to
use the XQuery automation plug-in to construct the payload for the outbound message, in
do, redo, and undo modes, respectively (if applicable).

e Outbound message format: Identify the EBM

e Outbound message schema: Identify the Oracle AIA schema. For example, the
schema for the billing functions is:
AlAComponents\EnterpriseObjectLibrary\industry\Communications\EBO\Fulfillm
entOrder\V1\FulfillmentOrderEBM.xsd.

* Relevant line items: all line items targeted at the same fulfillment provider

Configure automation actions in the automated task YourFunctionNameSITask to generate
messages in the EBM format and send the XML payload over JMS. You must specify the
JNDI name of the JMS destination.

Table 5-5 lists the automation actions and the XQueries to be customized.

Table 5-5 Automation Actions

Automation Action | Execution | Automation | Event Customize
Modes Type Type

YourFunctionNameR | do XQuery Internal Customize a copy of the AIAEBMRequest_do.xqy

equestBean_do Sender XQuery file to add code to update the order data before
message generation for the new fulfillment function.

YourFunctionNameR [redo XQuery Internal Customize a copy of the AIAEBMRequest_redo.xqy

equestBean_redo Sender XQuery file to add code to update the order data before
message generation for the new fulfillment function.

YourFunctionNameR | undo XQuery Internal Customize a copy of the AIAEBMRequest_undo.xqy

equestBean_undo Sender XQuery file to add code to update the order data before
message generation for the new fulfillment function.

ORACLE

Configure automation action YourFunctionNameResponseBean in automated task
YourFunctionNameSITask as an external XQuery Automator to process responses. You
must specify the JNDI name of the JMS source.

Table 5-6 lists the automated XQueries.

5-11

Table 5-6 Automated XQueries

Chapter 5
Adding a New Fulfillment Function

Automation action | Execution | Automation |[Event Customize

Modes Type Type
YourFunctionNameR | N/A XQuery External Customize a copy of the AIAEBMResponse.xqy XQuery
esponseBean Automater file to add code to update the order data before message

generation for the new fulfillment function.

Success response: Recognize and process a successful response. Set the reached
milestone to YOUR FUNCTION NAMECOMPLETE. A successful response is a well-
formed response message, that conforms to the response EBM format, with an empty
or non-existent EBMHeader/FaultNotification and FaultMessage Code.

Failure response: Recognize and process failure responses that OSM expects to be
either a response EBM, or an OrderFalloutNoatification.

No response: In this case OSM expects an OrderFalloutNotification from Oracle AlA.

Fulfillment Function Extension Point Interface

The Order-to-Activate cartridges use XQuery resources to perform functions including setting
order item properties, mapping product specifications to fulfillment patterns, managing
fulfillment function dependencies, and managing the order life cycle. One way to customize

XQueries is to rewrite or add to a provided XQuery module and use the XML catalog to enable
URI reference mapping. Fulfillment function extension points have different input parameters
depending on whether you are using the calculate service order solution option or the solution
option without calculate service order. Both sets of input parameters are provided in the tables
in this section. Extension points are defined for both fulfillment functions and fulfillment states.
This section contains information about the fulfillment function extension points. For
information about the fulfillment state extension points, see "Fulfillment State Extension Point
Interface."

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With the use of
solution cartridges, multiple solutions can be deployed to a single system and coexist with
each other.

Each fulfillment function extension point has one XQuery API except for CREATE-EBM, which
has three: one for each execution mode (do, redo, and undo).

An XQuery extension script must be implemented in a standalone file. The file URI must be
registered to the extension configuration.

Fulfillment Function Extension Point Overview

Table 5-7 lists the XQuery extension points for fulfilment functions in the Order-to-Activate
cartridges.

Table 5-7 Fulfillment Function Extension Points

Fulfillment Function Extension Point Description
COMPONENT-START Fulfillment function start extension point. The extension is expected to return a
list of Orderltem properties to be updated when the fulfillment function is
started.
ORACLE

5-12

Chapter 5
Adding a New Fulfillment Function

Table 5-7 (Cont.) Fulfillment Function Extension Points

Fulfillment Function Extension Point Description

COMPONENT-COMPLETE Fulfillment function complete extension point. The extension is expected to
return a list of Orderltem properties to be updated when the fulfillment function
is completed.

COMPONENT-UPDATE Fulfillment function update extension point. The extension is expected to return
a list of Orderltem properties to be updated when the fulfillment function is
updated.

CREATE-EBM Fulfillment function create payload extension point. The extension is expected

to return the EBM to be sent to the external system in do, redo, or undo mode
operations.

CREATE-EBM-CUSTOM

Fulfillment function create payload extension point with order level Custom XML
element in the EBM.

CREATE-EBM-ALL-ORDERITEMS

Fulfillment function create payload extension point for all order items. The
extension is expected to return the EBM to be sent to the external system.

CREATE-EBM-ORDERITEM

Fulfillment function extension point to create an XML fragment for a single order
item in do, redo, or undo mode operations.

CREATE-EBM-ORDERITEM-CUSTOM

Fulfillment function extension point to create an XML fragment for a single order
item that has an order-item-level Custom XML element in the EBM.

CREATE-EBM-PRIORORDERITEM

Fulfillment function extension point to create an XML fragment for a single prior
order item.

CREATE-EBM-PRIORORDERITEM-
CUSTOM

Fulfillment function extension point to create a payload with prior-order-item-
level Custom XML element in the EBM.

VALIDATE-RESPONSE-EBM

Fulfillment function response validation extension point. The extension is
expected to validate the EBM response coming back from the external system.

COMPONENT-RESPONSE-UPDATE

Fulfillment function response update extension point. The extension is expected
to return a list of Orderltem properties to be updated when a valid EBM
response comes back from the external system.

ORDER-EXTENSION-UPDATE-STATUS-
EBM

Fulfillment function update extension point for status updates from central order
management to the upstream system. The extension is expected to return an
EBM containing sales order status and other information. Other systems can
also listen to the output of this extension point to create or update asset
information.

When a fulfillment function is introduced, you can create an ExtensionPointMap entry for each
applicable fulfillment function extension point (such as Component Start) in the
resources\SolutionConfig\ComponentExtensionPointMap.xml of the Order-to-Activate
composite cartridge. You must create a separate XQuery file for each fulfillment function

extension point.

COMPONENT-START Extension Point

This section describes the XQuery script that implements the logic to handle the
COMPONENT-START extension point.

Table 5-8 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

ORACLE

5-13

Chapter 5
Adding a New Fulfillment Function

Table 5-8 COMPONENT-START Input Parameters for the Calculate Service Order Option
|

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log.

$executionMode Xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskinputData element() External variable Task data XML fragment with the schema for
GetOrder.Response

$component element() External variable XML fragment containing the fulfillment
function data

element() Context node Order item data XML fragment

Table 5-9 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-9 COMPONENT-START Input Parameters for the Option Without Calculate Service Order
|

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log.

$executionMode Xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskinputData element() External variable Task data XML fragment with the schema for
GetOrder.Response

element() Context node Order item data XML fragment

Table 5-10 lists the return parameters for the extension point XQuery.

Table 5-10 COMPONENT-START Return Parameters
]

Output Parameter Type Description

element()*

XML wrapper element that contains all the order item properties to be updated

Example 5-2 is a sample XQuery code fragment for the COMPONENT-START fulfillment

function extension point.

Example 5-2 COMPONENT-START XQuery Code Fragment

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement /pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable SexecutionMode external;
declare variable S$breakpointDebugControl external;
declare variable StaskInputData external;

ORACLE

5-14

Chapter 5
Adding a New Fulfillment Function

(: This function registers to the YourFunctionName/START event.
: It returns a list of elements which are the properties to be updated for
: the given order item. :)
declare function YourFunctionNamefn:onYourFunctionNameStart (
$SexecMode as xs:string,
Slineltem as element(),
StaskData as element (),
$debugControl as element()) as element()*

let $id := $lineltem/oms:BaseLineld
return
<BaselLineId>{ $id/text() }</BaseLineld>,
(: list of order item properties to be updated :)

ti

let $lineltem := .

return

<OrderItem>

{

YourFunctionNamefn:onYourFunctionNameStart ($SexecutionMode, $lineltem, S$taskInputData, Sbr
eakpointDebugControl)

}

</OrderItem>

COMPONENT-COMPLETE Extension Point

This section describes the XQuery script that implements the logic to handle the

COMPONENT-COMPLETE extension point.

Table 5-11 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-11 COMPONENT-COMPLETE Input Parameters for the Calculate Service Order Option
- __|

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$component element() External variable XML fragment containing the fulfillment
function data

$executionMode Xs:string External variable Task execution mode

$orderltemFromResponse element() External variable Order item data from the response message

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$falloutMessage Xs:string External variable The fallout error message of this order item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskinputData element() External variable Task data XML fragment with the schema for
GetOrder.Response

element() Context node Order item data XML fragment

Table 5-12 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

ORACLE

5-15

Chapter 5
Adding a New Fulfillment Function

Table 5-12 COMPONENT-COMPLETE Input Parameters for the Option Without Calculate Service Order

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$executionMode Xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$falloutMessage Xs:string External variable The fallout error message of this order item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskinputData element() External variable Task data XML fragment with the schema for

GetOrder.Response

element() Context node Order item data XML fragment

Table 5-13 lists the return parameters for the extension point XQuery.

Table 5-13 COMPONENT-COMPLETE Return Parameters
|

Output Parameter Type Description

element()*

XML wrapper element which contains all the order item properties to be updated

ORACLE

Example 5-3 is a sample XQuery code fragment for the COMPONENT-COMPLETE fulfillment
function extension point.

Example 5-3 COMPONENT-COMPLETE XQuery Code Fragment

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule™ at "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable ShasFallout external;
declare variable $falloutMessage external;

(: This function register to the YourFunctionName/COMPLETE event.
It return a list of elements that are the properties to be updated for
: the given order item. :)
declare function YourFunctionNamefn:onYourFunctionNameComplete (
Slineltem as element (),
ShasFallout as xs:boolean,
$falloutMessage as xs:string*) as element()*

let $id := $lineltem/oms:BaseLineld
return
<BaselLineId>{ $id/text() }</BaseLineId>,
(: list of order item properties to be updated :)

5-16

let $lineltem := .
return
<OrderItem>

{

Chapter 5
Adding a New Fulfillment Function

YourFunctionNamefn:onYourFunctionNameComplete ($1lineltem, $hasFallout,
pipextensionmodule:unirapStringParameter ($falloutMessage))

}
</OrderItem>

COMPONENT-UPDATE Extension Point

This section describes the XQuery script that implements the logic to handle the

COMPONENT-UPDATE extension point.

Table 5-14 lists the input parameters for the extension point XQuery when you are using the

calculate service order solution option.

Table 5-14 COMPONENT-UPDATE Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$executionMode Xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$falloutMessage Xs:string External variable The fallout error message of this order item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskinputData element() External variable Task data XML fragment with the schema for
GetOrder.Response

$milestoneCode Xs:string External variable Injected milestone code

element() Context node Order item data XML fragment

Table 5-15 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-15 COMPONENT-UPDATE Input Parameters for the Option Without Calculate Service Order

Name

Type Scope

Description

$extensionVersion

Xs:string External variable

Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$executionMode Xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$falloutMessage Xs:string External variable The fallout error message of this order item

$breakpointDebugControl element() External variable Break Point Control XML fragment

ORACLE

5-17

Chapter 5
Adding a New Fulfillment Function

Table 5-15 (Cont.) COMPONENT-UPDATE Input Parameters for the Option Without Calculate Service

Order
R
Name Type Scope Description
$taskinputData element() External variable Task data XML fragment with the schema for

GetOrder.Response

$milestoneCode

Xs:string External variable Injected milestone code

element() Context node Order item data XML fragment

Table 5-16 lists the return parameters for the extension point XQuery.

Table 5-16 COMPONENT-UPDATE Return Parameters

|
Output Parameter Type Description

element()*

XML wrapper element which contains all the order item properties to be updated

ORACLE

Example 5-4 is a sample XQuery code fragment for the COMPONENT-UPDATE fulfillment
function extension point.

Example 5-4 COMPONENT-UPDATE XQuery Code Fragment

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";
import module namespace pipbreakpointfn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipbreakpointmodule" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipbreakpointmodule/BreakpointControlModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare namespace salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/vV2";

declare variable SexecutionMode external;

declare variable S$breakpointDebugControl external;
declare variable StaskInputData external;

declare variable ShasFallout external;

declare variable $falloutMessage external;

declare variable S$milestoneCode external;

declare function YourFunctionNamefn:onYourFunctionNameUpdate (
$execMode as xs:string,
Slineltem as element(),
StaskData as element(),
$debugControl as element(),
$milestoneCode as xs:string) as element()*

let $ponrOverride :=
pipbreakpointfn:checkPONROverride (YourFunctionNamefn, $debugControl)

let SrevisionPermissibleCode := if (SponrOverride=fn:false()) then "HARD" else "NOT
YET"

let SupdateRevisionPermissibleCode := (StaskData/oms: root/oms:CustomerHeaders/
oms:FulfillmentModeCode/text () !="TSQ")

return

5-18

Chapter 5
Adding a New Fulfillment Function

YourFunctionNamefn:onYourFunctionNameUpdate ($execMode, $lineltem, S$taskData, $milestoneCo
de, SupdateRevisionPermissibleCode, $revisionPermissibleCode)

ti

let $lineltem := .

return

<OrderItem>

{

YourFunctionNamefn:onYourFunctionNameUpdate ($executionMode, $lineltem, S$taskInputData, S$b
reakpointDebugControl, $milestoneCode)

}

</OrderItem>

CREATE-EBM Extension Point for do Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM
extension point for do execution mode.

Table 5-17 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-17 CREATE-EBM Input Parameters for do Execution Mode for the Calculate Service Order

Option
___|

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$orderld Xs:string External variable OSM Order ID of the current order

$orderKey Xs:string External variable AIA Order Number

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order lines
belonging to the current fulfillment function

$mappingContext element() External variable XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function

$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function

$customerHeaders element() External variable XML fragment describing the mapping of the
CustomerHeader structure

$component element() External variable XML fragment containing the fulfillment
function data

$targetldentifier element() External variable XML fragment describing the target system

information

ORACLE

5-19

Chapter 5
Adding a New Fulfillment Function

Table 5-17 (Cont.) CREATE-EBM Input Parameters for do Execution Mode for the Calculate Service

Order Option

Name

Type

Scope

Description

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message

$ebmid

Xs:string

External variable

EBM ID to be populated into the EBM request
message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentlID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

xs:string

External variable

Cross-system order number reference

$faultMode

Xs:string

External variable

FaultMode code to control how the emulator
generates the response message: this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string

External variable

FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is sent
to service order management (SOM).

element()

Context node

Fulfillment order header for the SalesOrder
request EBM

Table 5-18 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-18 CREATE-EBM Input Parameters for do Execution Mode for the Option Without Calculate

Service Order

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log.

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function

$component element() External variable XML fragment containing the fulfillment
function data

$targetldentifier element() External variable XML fragment describing the target system

information

ORACLE

5-20

Chapter 5
Adding a New Fulfillment Function

Table 5-18 (Cont.) CREATE-EBM Input Parameters for do Execution Mode for the Option Without

Calculate Service Order

Name

Type

Scope Description

$idMap

element() External variable XML fragment describing the mapping between

the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message

$ebmid

Xs:string External variable EBM ID to be populated into the EBM request

message

$fulfillmentOrderld

Xs:string External variable BusinessComponentlID to be populated into the

EBM request message as the Order ID

$fulfillmentOrderNumber

xs:string External variable Cross-system order number reference

$faultMode

Xs:string External variable FaultMode code to control how the emulator

generates the response message: this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string External variable FaultMode code to control how the service

order management orchestration order
generates the response message. This
element only applies if the request EBM is sent
to service order management (SOM).

element() Context node Fulfillment order header for the SalesOrder

request EBM

Table 5-19 lists the return parameters for the extension point XQuery.

Table 5-19 CREATE-EBM for do Execution Mode Return Parameters
-]

Output Parameter Type

Description

element()? XML wrapper element that contains the EBM: The EBM format depends on external
fulfillment provider requirements.
Example 5-5 is a sample XQuery code fragment for the CREATE-EBM fulfillment function
extension point implementation for the do execution mode.
Example 5-5 CREATE-EBM XQuery Code Fragment for do Execution Mode
import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare variable S$ebmHeader external;
declare variable $salesOrderLine external;
declare variable SpriorSalesOrderLine external;
declare variable Scomponent external;
declare variable StargetIdentifier external;
declare variable $idMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
ORACLE

5-21

Chapter 5
Adding a New Fulfillment Function

declare variable $fulfillmentOrderNumber external;
declare variable S$faultMode external;

let $fulfillmentOrder :

return
<Ebm>
{

YourFunctionNamefn:createDoYourFunctionNamePayload (

}
</Ebm>

SebmHeader,

$fulfillmentOrder,
$salesOrderLine,
SpriorSalesOrderLine,
StargetIdentifier,

$idMap,
SebmId,

$fulfillmentOrderId,
$fulfillmentOrderNumber,

SfaultMode)

CREATE-EBM Extension Point for redo Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM

extension point for the redo execution mode.

Table 5-20 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-20 CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service Order

Option
__|
Name Type Scope Description
$extensionVersion Xs:string External variable Version number of the extension framework
$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log
$orderld Xs:string External variable OSM Order ID of the current order
$orderKey Xs:string External variable AIA Order Number
$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header
$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function
$transformedOrderLines element() External variable XML fragment of all transformed order lines
belonging to the current fulfillment function
$mappingContext element() External variable XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function
$histTransformedOrderLines element() External variable XML fragment of all transformed order items

belonging to the current fulfillment function
before the revision

ORACLE

5-22

Chapter 5
Adding a New Fulfillment Function

Table 5-20 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service

Order Option
___|
Name Type Scope Description
$histMappingContext element() External variable XML fragment describing the pre-revision
mapping context between all sales order items
and transformed order items belonging to the
current fulfillment function
$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function
$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment
$histPriorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function before amendment
$deletedlineltems element() External variable Order lines that were deleted by the
amendment
$deletedTransformedLineltems element() External variable XML fragment of all deleted transformed order
lines belonging to the current fulfillment
function
$deletedpriorlineltems element() External variable Prior order line data that was deleted by the
amendment
$deletedMappingContext element() External variable XML fragment describing the deleted mapping
context for all sales order items and
transformed order items belonging to the
current fulfillment function
$addedlineltems element() External variable Order line data that was added by the
amendment
$component element() External variable XML fragment containing the fulfillment
function data
$histComponent element() External variable XML fragment with the pre-amendment
fulfillment function data
$targetldentifier element() External variable XML fragment describing the target system
information
$idMap element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message
$histidMap element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the BusinessComponentID populated into
the earlier EBM request message
$ebmid Xs:string External variable EBM ID to be populated into the EBM request
message
$fulfillmentOrderld Xs:string External variable BusinessComponentlD to be populated into the
EBM request message as the Order ID
$fulfillmentOrderNumber Xs:string External variable Cross-system order number reference
$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout
ORACLE

5-23

Chapter 5
Adding a New Fulfillment Function

Table 5-20 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service

Order Option

Name

Type

Scope

Description

$faultMode

Xs:string

External variable

FaultMode code to control how the emulator
generates the response message: this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string

External variable

FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is sent
to service order management (SOM).

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

element()

Context node

Fulfillment order header for the SalesOrder
request EBM

Table 5-21 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-21 CREATE-EBM Input Parameters for redo Execution Mode for the Option Without Calculate

Service Order

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function

$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment

$histPriorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function before amendment

$deletedlineltems element() External variable Order lines that were deleted by the
amendment

$deletedpriorlineltems element() External variable Prior order line data that was deleted by the
amendment

$addedlineltems element() External variable Order line data that was added by the
amendment

$component element() External variable XML fragment containing the fulfillment
function data

$histComponent element() External variable XML fragment with the pre-amendment

fulfilment function data

ORACLE

5-24

Chapter 5
Adding a New Fulfillment Function

Table 5-21 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Option Without

Calculate Service Order

Name

Type Scope Description

S$targetldentifier

element() External variable XML fragment describing the target system
information

$idMap

element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentlID to be populated into the
EBM request message

$histldMap

element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the BusinessComponentID populated into
the earlier EBM request message

$ebmid

xs:string External variable EBM ID to be populated into the EBM request
message

$fulfillmentOrderld

Xs:string External variable BusinessComponentlD to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus

Xs:string External variable The child order's current status
(IN_PROGRESS or COMPLETE). This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE.

$faultMode

Xs:string External variable FaultMode code to control how the emulator
generates the response message: this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is sent
to service order management (SOM).

$hasFallout

xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

element() Context node Fulfillment order header for the SalesOrder
request EBM

Table 5-22 lists the return parameters for the extension point XQuery.

Table 5-22 CREATE-EBM for redo Execution Mode Return Parameters
- |

Output Parameter Type

Description

element()?

XML wrapper element that contains the EBM: The EBM format depends on external
fulfillment provider requirements.

ORACLE

5-25

Chapter 5
Adding a New Fulfillment Function

Example 5-6 is a sample XQuery code fragment for the CREATE-EBM fulfillment function
extension point implementation for the redo execution mode.

Example 5-6 CREATE-EBM XQuery Code Fragment for redo Execution Mode

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable SebmHeader external;

declare variable S$salesOrderLine external; (:check null:)
declare variable SpriorSalesOrderLine external; (:check null:)
declare variable ShistSalesOrderLine external; (:check null:)
declare variable ShistPriorSalesOrderLine external; (:check null:)
declare variable S$Sdeletedlineltems external; (:check null:)
declare variable S$deletedpriorlineltems external; (:check null:)
declare variable S$addedlineltems external; (:check null:)
declare variable Scomponent external;

declare variable StargetIdentifier external;

declare variable S$idMap external;

declare variable $histIdMap external;

declare variable SebmId external;

declare variable $fulfillmentOrderId external;

declare variable S$fulfillmentOrderNumber external;

declare variable $faultMode external;

declare variable ShasFallout external;

let $fulfillmentOrder := .
return
<Ebm>
{
YourFunctionNamefn:createRedoYourFunctioNamePayload (
SebmHeader,
$fulfillmentOrder,
pipextensionmodule:unWrapParameter ($salesOrderLine),
pipextensionmodule:uniWrapParameter (SpriorSalesOrderLine),
if (ShasFallout = fn:true()) then () else
pipextensionmodule:unirapParameter (ShistSalesOrderLine),
if (ShasFallout = fn:true()) then () else
pipextensionmodule:unWrapParameter ($deletedlineltems),
StargetIdentifier,
$idMap,
S$histIdMap,
SebmId,
$fulfillmentOrderId,
S$fulfillmentOrderNumber,
$faultMode,
ShasFallout)
}
</Ebm>

CREATE-EBM Extension Point for undo Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM
extension point for the undo execution mode.

ORACLE -

Chapter 5
Adding a New Fulfillment Function

Table 5-23 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-23 CREATE-EBM Input Parameters for undo Execution Mode for the Calculate Service Order

Option
___|
Name Type Scope Description
$extensionVersion Xs:string External variable Version number of the extension framework
$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log
$orderld Xs:string External variable OSM Order ID of the current order
$orderKey Xs:string External variable AIA Order Number
$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header
$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function
$transformedOrderLines element() External variable XML fragment of all transformed order lines
belonging to the current fulfillment function
$mappingContext element() External variable XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function
$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function
$customerHeaders element() External variable XML fragment describing the mapping of the
CustomerHeader structure
$component element() External variable XML fragment containing the fulfillment
function data
$targetldentifier element() External variable XML fragment describing the target system
information
$idMap element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentlID to be populated into the
EBM request message
$ebmld Xs:string External variable EBM ID to be populated into the EBM request
message
$fulfillmentOrderld Xs:string External variable BusinessComponentID to be populated into the
EBM request message as the Order ID
$fulfillmentOrderNumber Xs:string External variable Cross-system order number reference
$fulfillmentOrderStatus Xs:string External variable The child order's current status
(IN_PROGRESS or COMPLETE). This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE
$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout
ORACLE

5-27

Chapter 5
Adding a New Fulfillment Function

Table 5-23 (Cont.) CREATE-EBM Input Parameters for undo Execution Mode for the Calculate Service

Order Option

Name

Type

Scope

Description

$faultMode

Xs:string

External variable

FaultMode code to control how the emulator
generates the response message. this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string

External variable

FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is sent
to service order management (SOM).

$priorFulfillmentOrder

element()

External variable

Prior Fulfillment order header for the
SalesOrder request EBM

element()

Context node

Fulfillment order header for the SalesOrder
request EBM

Table 5-24 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-24 CREATE-EBM Input Parameters for undo Execution Mode for the Option Without Calculate

Service Order

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the current
fulfillment function

$component element() External variable XML fragment containing the fulfillment
function data

$targetldentifier element() External variable XML fragment describing the target system
information

$idMap element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message

$ebmld Xs:string External variable EBM ID to be populated into the EBM request
message

$fulfillmentOrderld Xs:string External variable BusinessComponentID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber Xs:string External variable Cross-system order number reference

ORACLE

5-28

Chapter 5
Adding a New Fulfillment Function

Table 5-24 (Cont.) CREATE-EBM Input Parameters for undo Execution Mode for the Option Without
Calculate Service Order

Name

Type Scope Description

$fulfillmentOrderStatus Xs:string External variable The child order's current status

(IN_PROGRESS or COMPLETE): This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE.

$hasFallout

xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$faultMode

Xs:string External variable FaultMode code to control how the emulator
generates the response message. this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$verbCode

Xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is sent
to service order management (SOM).

$priorFulfilmentOrder element() External variable Prior Fulfillment order header for the

SalesOrder request EBM

element() Context node Fulfillment order header for the SalesOrder
request EBM

Table 5-25 lists the return parameters for the extension point XQuery.

Table 5-25 CREATE-EBM for undo Execution Mode Return Parameters
|

Output Parameter Type Description

element()?

XML wrapper element that contains the EBM: The EBM format depends on external
fulfillment provider requirements.

ORACLE

Example 5-7 is a sample XQuery code fragment for the CREATE-EBM fulfillment function
extension point implementation for the undo execution mode.

Example 5-7 CREATE-EBM XQuery Code Fragment for undo Execution Mode

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule” at "http://xmlns.oracle.com/communications/
ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare variable S$ebmHeader external;
declare variable $salesOrderLine external; (:check null:)

declare variable SpriorSalesOrderLine external; (:check null:)
declare variable Scomponent external;

5-29

declare variable S$targetIdentifier external;

declare variable $idMap external;
declare variable S$SebmId external;

declare variable $fulfillmentOrderId external;

Chapter 5
Adding a New Fulfillment Function

declare variable $fulfillmentOrderNumber external;
declare variable $fulfillmentOrderStatus external;
declare variable S$faultMode external;
declare variable S$ShasFallout external;
declare variable S$verbCode external;

let $fulfillmentOrder :
return

<Ebm>

{

YourFunctionNamefn:createUndoYourFunctionNamePayload (

SebmHeader,

$fulfillmentOrder,

pipextensionmodule
pipextensionmodule

$component,

StargetIdentifier,

$idMap,
SebmId,

$fulfillmentOrderId,
$fulfillmentOrderNumber,

$faultMode,

ShasFallout,

SverbCode)
}
</Ebm>

CREATE-EBM-CUSTOM Extension Point

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-CUSTOM extension point.

:unWrapParameter ($salesOrderLine),
:unWrapParameter ($SpriorSalesOrderLine),

Table 5-26 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the

parameter description.

Table 5-26 CREATE-EBM-CUSTOM Input Parameters

Name Type Scope Description
$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log
$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper
For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:
https://support.oracle.com
$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation. TaskContext
OSM-provided interface into the task. See the
OSM SDK for more information.
ORACLE

5-30

https://support.oracle.com

Table 5-26 (Cont.) CREATE-EBM-CUSTOM Input Parameters

Chapter 5
Adding a New Fulfillment Function

Name Type Scope Description

$orderld Xs:string External variable OSM order ID of the current order

$orderKey Xs:string External variable AIA order number

$componentName Xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the component,
for example, BRM-BIZBDB

$execMode Xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$ebmld Xs:string External variable EBM ID to be populated into the EBM request
message

$customerHeaders element() External variable XML fragment describing the mapping of the
CustomerHeader structure

element() Context node OSM component element

Table 5-27 lists the return parameters for the extension point XQuery.

Table 5-27 CREATE-EBM-CUSTOM Return Parameters
- |

Output Parameter Type

Description

element()?

XML wrapper element that contains the order-level custom EBM fragment

Example 5-8 is a sample XQuery code fragment for the CREATE-EBM-CUSTOM fulfillment
function extension point.

Example 5-8 CREATE-EBM-CUSTOM XQuery Code Fragment

declare
declare
declare
declare
declare
declare

let $fulfillmentOrder := .

return

(

namespace log = "java:org.apache.commons.logging.Log";
variable $log external;
variable SebmHeader external;
variable $component external;
variable SebmlId external;

variable ScustomerHeaders external;

<Ebm>

{

ORACLE

yourFuntionNamefn:createProvisioningOrderCustom (

$log,
SebmHeader,

$fulfillmentOrder,

$component,
SebmId,

ScustomerHeaders)

5-31

</Ebm>

CREATE-EBM-ALL-ORDERITEMS Extension Point

Chapter 5
Adding a New Fulfillment Function

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-ALL-ORDERITEMS extension point.

Table 5-28 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-28 CREATE-EBM-ALL-ORDERITEMS Input Parameters

Name

Type

Scope

Description

$log

Java Object

External variable

Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper

Java Object

External variable

java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper

For more information about this object, see

knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext

Java Object

External variable

Java Type
java:com.mslv.oms.automation. TaskContext

OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld

Xs:string

External variable

OSM order ID of the current order

$orderKey

Xs:string

External variable

AIlA order number

$componentName

Xs:string

External variable

Name of the component from which the
extension point was called.

$systemType

Xs:string

External variable

Name of the target system for the component,
for example, BRM-BIZBDB

$execMode

Xs:string

External variable

Task execution mode

$ebmHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header.

$salesOrderLine

element()

External variable

XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$mappingContext

element()

External variable

XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function (applies to Calculate Service Order

only)

ORACLE

5-32

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

Table 5-28 (Cont.) CREATE-EBM-ALL-ORDERITEMS Input Parameters
|

Name

Type

Scope

Description

$priorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function (has the same value
as $priorLineltems)

$priorLineltems

element()

External variable

All prior order lines belonging to the current
fulfillment function (has the same value
as $priorSalesOrderLine)

$component

element()

External variable

XML fragment containing the fulfillment
function data

S$targetldentifier

element()

External variable

XML fragment describing the target system
information

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentlID to be populated into the
EBM request message

$ebmid

Xs:string

External variable

EBM ID to be populated into the EBM request
message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string

External variable

Cross-system order number reference

$faultMode

Xs:string

External variable

FaultMode code to control how the emulator
generates the response message: This
parameter in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$lfVerbCode

Xs:string

External variable

FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is sent
to service order management (SOM).

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

ORACLE

5-33

Chapter 5
Adding a New Fulfillment Function

Table 5-28 (Cont.) CREATE-EBM-ALL-ORDERITEMS Input Parameters
|

Name

Type Scope Description

$orderMode

Xs:string Internal variable This parameter has the following possible
values:

e In do mode, this parameter has the value
of DELIVER.

* Inredo mode, this parameter has the
value CHANGE if the service order
management order has completed, so the
service order management order is being
revised by sending a change order. It has
the value of REVISE if the service order
management order has not completed, so
the service order management order is
being revised by sending an amendment
order.

¢ In undo mode, this parameter has the
value CANCEL if the action codes are
going to be set to None for the order
items. It has the value of DELIVER if the
action codes are going to be set to
Disconnect for the order items.

$changeMode

Xs:string Internal variable This parameter is used to set action codes
appropriately. It only has a value if the value
of $orderMode is CHANGE. Available values
for this parameter are DO, REDO, and UNDO.

element() Context node Fulfillment order header for the SalesOrder
request EBM

Table 5-29 lists the return parameters for the extension point XQuery.

Table 5-29 CREATE-EBM-ALL-ORDERITEMS Return Parameters
|

Output Parameter Type Description

element()?

XML wrapper element that contains the XML fragment for the all order items EBM. The
EBM format depends on external fulfillment provider requirements.

ORACLE

Example 5-9 is a sample XQuery code fragment for the CREATE-EBM-ALL-ORDERITEMS
fulfillment function extension point.

Example 5-9 CREATE-EBM-ALL-ORDERITEMS XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";

declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";

declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable S$SebmHeader external;
declare variable $salesOrderHeader external;
declare variable S$salesOrderLine external;
declare variable Scomponent external;

5-34

ORACLE

Chapter 5
Adding a New Fulfillment Function

declare variable $idMap external;

declare variable S$fulfillmentOrderId external;
declare variable S$fulfillmentOrder external;
declare variable $fulfillmentOrderNumber external;
declare variable S$SorderId external;

declare variable SorderKey external;

declare variable $log external;

declare variable S$ScustomerHeaders external;
declare variable SaiaEbmHelper external;

declare variable S$transformedOrderLines external;
declare variable S$ShistTransformedOrderlLines external;
declare variable SmappingContext external;

declare variable S$SorderMode external;

declare variable SchangeMode external;

declare variable S$SexecMode external;

declare variable $lineltems external;

declare variable SpriorLineltems external;

let Sinput := .
let $isCSOEnabled := if (solutionconfig:getVariable ("02A CSO_ENABLE FLAG") = "enable")
then fn:true() else fn:false()

return
(
<OrderItemEbm>
{
if ($1isCSOEnabled = fn:true()) then
(

yourFuntionNamefn:createTransformedLines (
$log,
$SaiaEbmHelper,
SorderId,
SorderKey,
SebmHeader,
$salesOrderHeader,
pipextensionmodule:unWrapParameter
pipextensionmodule:unWrapParameter
pipextensionmodule:unWrapParameter
pipextensionmodule:unWrapParameter
$component,
$idMap,
$fulfillmentOrder,
SfulfillmentOrderId,
S$fulfillmentOrderNumber,
ScustomerHeaders,
SexecMode,
SorderMode,
$changeMode)

$salesOrderLine),
StransformedOrderLines),
ShistTransformedOrderLines),
SmappingContext),

)

else

(

yourFuntionNamefn:createNormalLines (

$log,
$SaiaEbmHelper,
SorderId,
SorderKey,
SebmHeader,
$salesOrderHeader,
pipextensionmodule:uniWrapParameter ($lineltems),
pipextensionmodule:unWWrapParameter ($priorLineltems),
$component,
$idMap,

5-35

$fulfillmentOrder,
SfulfillmentOrderId,
S$fulfillmentOrderNumber,
ScustomerHeaders,

SexecMode,

SorderMode,
$changeMode)

)
}
</OrderItemEbm>

Chapter 5
Adding a New Fulfillment Function

CREATE-EBM-ORDERITEM Extension Point for do Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-ORDERITEM extension point for do execution mode.

Table 5-30 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-30 CREATE-EBM-ORDERITEM Input Parameters for do Execution Mode
e

Name

Type

Scope

Description

$log

Java Object

External variable

Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper

Java Object

External variable

java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper

For more information about this object, see

knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext

Java Object

External variable

Java Type
java:com.mslv.oms.automation.TaskContext

OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld

Xs:string

External variable

OSM order ID of the current order

$orderKey

Xs:string

External variable

AIlA order number

$componentName

Xs:string

External variable

Name of the component from which the
extension point was called.

$systemType

Xs:string

External variable

Name of the target system for the component,
for example, BRM-BIZBDB

$execMode

Xs:string

External variable

Task execution mode

$ebmHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header.

$serviceActionCode

element()

External variable

Service action for order item or transformed
order item

ORACLE

5-36

Chapter 5
Adding a New Fulfillment Function

Table 5-30 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for do Execution Mode
|

Name

Type

Scope

Description

$orderltem

element()

External variable

XML fragment for a single order item in the
current Fulfillment function

$lineltem

element()

External variable

Single sales order line in the current fulfillment
function

$salesOrderLine

element()

External variable

XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$mappingContext

element()

External variable

XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$priorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function

$component

element()

External variable

XML fragment containing the fulfillment
function data

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string

External variable

Cross-system order number reference

$fulfillmentOrderStatus

Xs:string

External variable

The child order's current status
(IN_PROGRESS or COMPLETE). This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE.

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

$orderMode

Xs:string

Internal variable

In do mode, this parameter has the value of
DELIVER.

$changeMode

Xs:string

Internal variable

This parameter has no value in do mode.

element()

Context node

Fulfillment order item

Table 5-31 lists the return parameters for the extension point XQuery.

Table 5-31 CREATE-EBM-ORDERITEM for do Execution Mode Return Parameters
- |

Output Parameter Type

Description

element()?

XML wrapper element that contains the XML fragment for single order item.

ORACLE

5-37

ORACLE

Chapter 5
Adding a New Fulfillment Function

Example 5-10 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the do execution mode.

Example 5-10 CREATE-EBM-ORDERITEM XQuery Code Fragment for do Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";

declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";

declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;

declare variable S$fulfillmentOrderId external;
declare variable SorderId external;

declare variable $log external;

declare variable S$StransformedOrderLines external;
declare variable S$StransformedOrderLine external;
declare variable S$serviceActionCode external;
declare variable S$lineltems external;

declare variable $lineltem external;

let Sinput := .
let $isCSOEnabled := if (solutionconfig:getVariable("02A CSO ENABLE FLAG") = "enable")
then fn:true() else fn:false()

return
(
let $tag := myContext:getString("tag")
return
(
<OrderItemEbm>
{
if ($isCSOEnabled = fn:true()) then
(
YourFunctionNamefn:createProvisionOrderLineltemFromTransformLine (
slog,
SorderlId,
Stag,
$fulfillmentOrderId,
Slineltem,
StransformedOrderLines,
StransformedOrderLine,
aiaebmfn:hasParentLine ($lineltems, $lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
SserviceActionCode)
)
else
(
YourFunctionNamefn:createProvisionOrderLineItem (
S$lineltems,
Slineltem,
aiaebmfn:hasParentLine ($lineltems, $lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
S$serviceActionCode,
S$lineltem)

5-38

)
}
</OrderItemEbm>

Chapter 5
Adding a New Fulfillment Function

CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-ORDERITEM extension point for the redo execution mode.

Table 5-32 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-32 CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode
e

Name Type Scope Description

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper
For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:
https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation. TaskContext
OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld Xs:string External variable OSM order ID of the current order

$orderKey Xs:string External variable AlA order number

$componentName Xs:string External variable Name of the component from which the
extension point was called.

$systemType Xs:string External variable Name of the target system for the component,
for example, BRM-BIZBDB

$execMode Xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header.

$orderltem element() External variable XML fragment for a single order item in the
current Fulfillment function

$lineltem element() External variable Single sales order line in the current fulfillment
function

$salesOrderLine element() External variable XML fragment of all order lines belonging to

the current fulfillment function

ORACLE

5-39

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

Table 5-32 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode
|

Name

Type

Scope

Description

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$mappingContext

element()

External variable

XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$histTransformedOrderLines

element()

External variable

XML fragment of all transformed order items
belonging to the current fulfillment function
before the revision (applies to Calculate
Service Order only)

$histMappingContext

element()

External variable

XML fragment describing the pre-revision
mapping context between all sales order items
and transformed order items belonging to the
current fulfillment function (applies to Calculate
Service Order only)

$priorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function

$histSalesOrderLine

element()

External variable

All order lines belonging to the current
fulfillment function before amendment (has the
same value as $histLineltem)

$histLineltem

element()

External variable

All order lines belonging to the current
fulfillment function before amendment (has the
same value as $histSalesOrderLine)

$histPriorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function before amendment

$deletedlineltem

element()

External variable

Deleted order item that is currently being
processed.

$deletedlineltems

element()

External variable

List of the order items that were deleted by the
amendment

$deletedTransformedLineltems

element()

External variable

XML fragment of all deleted transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$deletedMappingContext

element()

External variable

XML fragment describing the deleted mapping
context for all sales order items and
transformed order items belonging to the
current fulfillment function (applies to Calculate
Service Order only)

$deletedpriorlineltems

element()

External variable

Prior order line data that was deleted by the
amendment

$addedlineltems

element()

External variable

Order line data that was added by the
amendment

$component

element()

External variable

XML fragment containing the fulfillment
function data

$histComponent

element()

External variable

XML fragment with the pre-amendment
fulfillment function data

ORACLE

5-40

Chapter 5
Adding a New Fulfillment Function

Table 5-32 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode
|

Name

Type

Scope

Description

S$targetldentifier

element()

External variable

XML fragment describing the target system
information

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentlID to be populated into the
EBM request message

$histldMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID

and the BusinessComponentID populated into

the earlier EBM request message

$ebmid

xs:string

External variable

EBM ID to be populated into the EBM request
message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentlID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string

External variable

Cross-system order number reference

$fulfillmentOrderStatus

Xs:string

External variable

The child order's current status
(IN_PROGRESS or COMPLETE). This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE.

$hasFallout

xs:boolean

External variable

Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$faultMode

Xs:string

External variable

FaultMode code to control how the emulator
generates the response message: this
parameter is in effect only if the request EBM is
sent to an external system emulator rather than
a real system.

$lfVerbCode

Xs:string

External variable

FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is sent
to service order management (SOM).

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

element()

Context node

Fulfillment order item

Table 5-33 lists the return parameters for the extension point XQuery.

Table 5-33 CREATE-EBM-ORDERITEM for redo Execution Mode Return Parameters
- |

Output Parameter Type

Description

element()? XML wrapper element that contains the XML fragment for single order item.
Example 5-11 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the redo execution mode.
ORACLE

5-41

Chapter 5
Adding a New Fulfillment Function

Example 5-11 CREATE-EBM-ORDERITEM XQuery Code Fragment for redo Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";

declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";

declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"jJava:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;

declare variable S$fulfillmentOrderId external;
declare variable SorderId external;

declare variable $log external;

declare variable S$transformedOrderLines external;
declare variable S$StransformedOrderLine external;
declare variable S$serviceActionCode external;
declare variable S$lineltems external;

declare variable $lineltem external;

let $input := .
let $isCSOEnabled := if (solutionconfig:getVariable ("02A CSO ENABLE FLAG") = "enable")
then fn:true() else fn:false()

return
(
let $tag := myContext:getString("tag")
return
(
<OrderItemEbm>
{
if ($1sCSOEnabled = fn:true()) then
(
YourFunctionNamefn:createProvisionOrderLineIltemFromTransformLine (
$log,
SorderId,
$tag,
SfulfillmentOrderId,
Slineltem,
StransformedOrderLines,
StransformedOrderLine,
alaebmfn:hasParentLine ($lineltems, S$lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
SserviceActionCode)
)
else
(
YourFunctionNamefn:createProvisionOrderLineItem (
S$lineltems,
Slineltem,
alaebmfn:hasParentLine ($lineltems, $lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
SserviceActionCode,
Slineltem)

}
</OrderItemEbm>

ORACLE _r

Chapter 5
Adding a New Fulfillment Function

CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-ORDERITEM extension point for the undo execution mode.

Table 5-34 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-34 CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode
- __|

Name

Type

Scope

Description

$log

Java Object

External variable

Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper

Java Object

External variable

java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper

For more information about this object, see

knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext

Java Object

External variable

Java Type
java:com.mslv.oms.automation. TaskContext

OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld

Xs:string

External variable

OSM order ID of the current order

$orderKey

Xs:string

External variable

AIlA order number

$componentName

Xs:string

External variable

Name of the component from which the
extension point was called.

$systemType

Xs:string

External variable

Name of the target system for the component,
for example, BRM-BIZBDB

$execMode

Xs:string

External variable

Task execution mode

$ebmHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$salesOrderHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header.

$priorSalesOrderHeader

element()

External variable

Prior SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

$component

element()

External variable

XML fragment containing the fulfillment
function data

$orderltem

element()

External variable

XML fragment for a single order item in the
current Fulfillment function

$lineltem

element()

External variable

Single sales order line in the current fulfillment
function

ORACLE

5-43

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

Table 5-34 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode
|

Name

Type

Scope

Description

$salesOrderLine

element()

External variable

XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$mappingContext

element()

External variable

XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$priorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function

$targetldentifier

element()

External variable

XML fragment describing the target system
information

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentlD to be populated into the
EBM request message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string

External variable

Cross-system order number reference

$fulfillmentOrderStatus

Xs:string

External variable

The child order's current status
(IN_PROGRESS or COMPLETE). This
element controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child order is
IN_PROGRESS or as a disconnect order if the
child order is COMPLETE.

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

$histComponent

element()

External variable

XML fragment with the pre-amendment
fulfillment function data

$histTransformedOrderLines

element()

External variable

XML fragment of all transformed order items
belonging to the current fulfillment function
before the revision (applies to Calculate
Service Order only)

$histMappingContext

element()

External variable

XML fragment describing the pre-revision
mapping context between all sales order items
and transformed order items belonging to the
current fulfillment function (applies to Calculate
Service Order only)

$histSalesOrderLine

element()

External variable

All order lines belonging to the current
fulfillment function before amendment

$histPriorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function before amendment

ORACLE

5-44

Chapter 5
Adding a New Fulfillment Function

Table 5-34 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode
|

Name

Type Scope Description

$histldMap

element() External variable XML fragment describing the mapping between
the original order line's BusinessComponentID
and the BusinessComponentID populated into
the earlier EBM request message

$deletedlineltems element() External variable Order lines that were deleted by the
amendment
$deletedTransformedLineltems element() External variable XML fragment of all deleted transformed order

lines belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$deletedMappingContext element() External variable XML fragment describing the deleted mapping

context for all sales order items and
transformed order items belonging to the
current fulfillment function (applies to Calculate
Service Order only)

$deletedpriorlineltems element() External variable Prior order line data that was deleted by the
amendment
$addedlineltems element() External variable Order line data that was added by the
amendment
element() Context node Fulfillment order item

Table 5-35 lists the return parameters for the extension point XQuery.

Table 5-35 CREATE-EBM-ORDERITEM for undo Execution Mode Return Parameters
-]

Output Parameter Type Description

element()?

XML wrapper element that contains the XML fragment for single order item.

ORACLE

Example 5-12 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the undo execution mode.

Example 5-12 CREATE-EBM-ORDERITEM XQuery Code Fragment for undo Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";

declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";

declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;

declare variable S$fulfillmentOrderId external;
declare variable SorderId external;

declare variable $log external;

declare variable StransformedOrderLines external;
declare variable StransformedOrderLine external;
declare variable $serviceActionCode external;

5-45

Chapter 5
Adding a New Fulfillment Function

declare variable S$lineltems external;
declare variable $lineltem external;

let Sinput := .
let $isCSOEnabled := if (solutionconfig:getVariable ("02A CSO_ENABLE FLAG") = "enable")
then fn:true() else fn:false()

return
(
let S$tag := myContext:getString("tag")
return
(
<OrderItemEbm>
{
if ($isCSOEnabled = fn:true()) then
(
YourFunctionNamefn:createProvisionOrderLineItemFromTransformLine (
$log,
SorderlId,
Stag,
SfulfillmentOrderId,
Slineltem,
StransformedOrderLines,
StransformedOrderLine,
alaebmfn:hasParentLine ($lineltems, $lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
SserviceActionCode)
)
else
(
YourFunctionNamefn:createProvisionOrderLineItem (
Slineltems,
Slineltem,
alaebmfn:hasParentLine ($lineltems, $lineltem),
aiaebmfn:getRootLineltem($1lineltems, $lineltem),
$idMap,
SserviceActionCode,
SlinelItem)
)
}
</OrderItemEbm>

CREATE-EBM-ORDERITEM-CUSTOM Extension Point

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-ORDERITEM-CUSTOM extension point.

Table 5-36 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-36 CREATE-EBM-ORDERITEM-CUSTOM Input Parameters
e

Name Type Scope Description
$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log
ORACLE

5-46

Chapter 5
Adding a New Fulfillment Function

Table 5-36 (Cont.) CREATE-EBM-ORDERITEM-CUSTOM Input Parameters

Name

Type

Scope

Description

$aiaEbmHelper

Java Object

External variable

java:oracle.communications.ordermanagement
.util.,ebm.AiaEbmHelper

For more information about this object, see

knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext

Java Object

External variable

Java Type
java:com.mslv.oms.automation. TaskContext

OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld

Xs:string

External variable

OSM order ID of the current order

$orderKey

Xs:string

External variable

AIlA order number

$componentName

Xs:string

External variable

Name of the component from which the
extension point was called.

$systemType

Xs:string

External variable

Name of the target system for the component,
for example, BRM-BIZBDB

$execMode

Xs:string

External variable

Task execution mode

$ebmHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$component

element()

External variable

XML fragment containing the fulfillment
function data

$salesOrderLine

element()

External variable

XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

element()

Context node

OSM Component element

Table 5-37 lists the return parameters for the extension point XQuery.

Table 5-37 CREATE-EBM-ORDERITEM-CUSTOM Return Parameters

Output Parameter Type

Description

element()? XML wrapper element that contains the order-item-level custom EBM fragment
Example 5-13 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM-
CUSTOM fulfillment function extension point.
Example 5-13 CREATE-EBM-ORDERITEM-CUSTOM XQuery Code Fragment
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
ORACLE

5-47

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable S$sourcelineltem external;
declare variable S$transformedOrderLine external;

let Sinput := .

let $isCSOEnabled := if (solutionconfig:getVariable ("02A CSO_ENABLE FLAG") = "enable")
then fn:true() else fn:false()
let Sresult :=

if ($isCSOEnabled = fn:true()) then

(

YourFunctionNamefn:createTransformedLineCustom ($sourcelLineltem, StransformedOrderLine)

)

else

(

YourFunctionNamefn:createlLineCustom ($SsourceLineItem)

)

return

(

<result>

{
Sresult

}
</result>

CREATE-EBM-PRIORORDERITEM Extension Point

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-PRIORORDERITEM extension point.

Table 5-38 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-38 CREATE-EBM-PRIORORDERITEM Input Parameters

- ___|
Name Type Scope Description

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanagement
.util.ebm.AiaEbmHelper

For more information about this object, see

knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation. TaskContext

OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld Xs:string External variable OSM order ID of the current order

ORACLE 548

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

Table 5-38 (Cont.) CREATE-EBM-PRIORORDERITEM Input Parameters
|

Name

Type

Scope

Description

$orderkey

Xs:string

External variable

AIlA order number

$componentName

Xs:string

External variable

Name of the component from which the
extension point was called.

$systemType

Xs:string

External variable

Name of the target system for the component,
for example, BRM-BIZBDB

$execMode

xs:string

External variable

Task execution mode

$ebmHeader

element()

External variable

SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$component

element()

External variable

XML fragment containing the fulfillment
function data

$salesOrderLine

element()

External variable

XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$transformedOrderLine

element()

External variable

XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

$mappingContext

element()

External variable

XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function (applies to Calculate Service Order

only)

$priorSalesOrderLine

element()

External variable

All prior order lines belonging to the current
fulfillment function

$idMap

element()

External variable

XML fragment describing the mapping between
the original order line's BusinessComponentID
and the newly generated
BusinessComponentID to be populated into the
EBM request message

$fulfillmentOrderld

Xs:string

External variable

BusinessComponentlID to be populated into the
EBM request message as the Order ID

$fulfillmentOrderNumber

Xs:string

External variable

Cross-system order number reference

$customerHeaders

element()

External variable

XML fragment describing the mapping of the
CustomerHeader structure

element()

Context node

EBM Header

Table 5-39 lists the return parameters for the extension point XQuery.

Table 5-39 CREATE-EBM-PRIORORDERITEM Return Parameters
|

Output Parameter Type

Description

element()?

custom EBM

XML wrapper element that contains the XML fragment for the prior single order item

ORACLE

5-49

Chapter 5
Adding a New Fulfillment Function

Example 5-14 is a sample XQuery code fragment for the CREATE-EBM-PRIORORDERITEM
fulfillment function extension point.

Example 5-14 CREATE-EBM-PRIORORDERITEM XQuery Code Fragment

declare namespace solutionconfig =
"Java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable SpriorSalesOrderLine external;

let $isCSOEnabled := if (solutionconfig:getVariable("02A CSO ENABLE FLAG") = "enable")
then fn:true() else fn:false()

let S$input := .

return

(
<OrderItemEbm>

{
if ($isCSOEnabled = fn:true()) then

(
YourFunctionNamefn:createSingleTransformedLine (
SpriorSalesOrderLine

)

else

(
YourFunctionNamefn:createProvisionOrderLineItem(
SpriorSalesOrderLine

}

</OrderItemEbm>
)

CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point

This section describes the XQuery script that implements the logic to handle the CREATE-
EBM-PRIORORDERITEM-CUSTOM extension point.

Table 5-40 lists the input parameters for the extension point XQuery. If any parameters do not
apply to the solution option without Calculate Service Order, that will be indicated in the
parameter description.

Table 5-40 CREATE-EBM-PRIORORDERITEM-CUSTOM Input Parameters

R
Name Type Scope Description

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanagement
.util.,ebm.AiaEbmHelper
For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

ORACLE - 50

https://support.oracle.com

Chapter 5
Adding a New Fulfillment Function

Table 5-40 (Cont.) CREATE-EBM-PRIORORDERITEM-CUSTOM Input Parameters
T

Name Type Scope Description

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation. TaskContext
OSM-provided interface into the task. See the
OSM SDK for more information.

$orderld Xs:string External variable OSM order ID of the current order

$orderKey Xs:string External variable AIA order number

$componentName Xs:string External variable Name of the component from which the
extension point was called.

$systemType Xs:string External variable Name of the target system for the component,
for example, BRM-BIZBDB

$execMode Xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This element
can be used as a reference to populate the
request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$salesOrderLine element() External variable XML fragment of all order lines belonging to
the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order lines
belonging to the current fulfillment function
(applies to Calculate Service Order only)

element() Context node OSM Component element

Table 5-41 lists the return parameters for the extension point XQuery.

Table 5-41 CREATE-EBM-PRIORORDERITEM-CUSTOM Return Parameters
|

Output Parameter Type

Description

element()?

XML wrapper element that contains the prior-order-item-level custom EBM fragment

Example 5-15 is a sample XQuery code fragment for the CREATE-EBM-PRIORORDERITEM-

CUSTOM fulfillment function extension point.

Example 5-15 CREATE-EBM-PRIORORDERITEM-CUSTOM XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =

"jJava:oracle.communications.ordermanagement.

declare namespace taskExecutionMode =

"java:oracle.communications.ordermanagement.

declare namespace myContext =

"jJava:oracle.communications.ordermanagement.

declare namespace solutionconfig =

"jJava:oracle.communications.ordermanagement.

declare variable S$sourcelineltem external;
declare variable S$StransformedOrderLine external;

let Sinput :

ORACLE

log.LogOrderActivity";
automation.OsmPipTaskConstant";
extensionpoint.XQueryExtensionUtil";

config.OsmPipConfigProvider";

5-51

Chapter 5
Adding a New Fulfillment Function

let $isCSOEnabled := if (solutionconfig:getVariable ("02A CSO_ENABLE FLAG") = "enable")
then fn:true() else fn:false()
let Sresult :=

if ($isCSOEnabled = fn:true()) then

(

YourFunctionNamefn:createTransformedLineCustom ($sourcelLineltem, StransformedOrderLine)

)

else

(

YourFunctionNamefn:createLineCustom (SsourceLineItem)

)

return

(

<result>

{
Sresult

}
</result>

VALIDATE-RESPONSE-EBM Extension Point

This section describes the XQuery script that implements the logic to handle the VALIDATE-
RESPONSE-EBM extension point.

Table 5-42 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-42 VALIDATE-RESPONSE-EBM Input Parameters for the Calculate Service Order Option

- ___|
Name Type Scope Description

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$executionMode Xs:string External variable Task execution mode

element() Context node Response EBM message to be validated

Table 5-43 lists the input parameters for the extension point XQuery when you are using the
solution option without calculate service order.

Table 5-43 VALIDATE-RESPONSE-EBM Input Parameters for the Option Without Calculate Service
Order

|
Name Type Scope Description

element() Context node Response EBM message to be validated

Table 5-44 lists the return parameters for the extension point XQuery.

Table 5-44 VALIDATE-RESPONSE-EBM Return Parameters

e ___|
Output Parameter Type Description

element()? XML wrapper element which contains an empty sequence if no error was found or a list
of XML fragments that describe the validation error if an error was found

ORACLE -

Chapter 5
Adding a New Fulfillment Function

Example 5-16 is a code fragment from OracleComms_OSM_0O2A_COM_Billing/resources/
ExtensionPoint/SyncCustomerValidateResponseEBM_Event.xquery demonstrates the
extension implementation.

Example 5-16 VALIDATE-RESPONSE-EBM XQuery Code Fragment

import module namespace aiaebmvalidationfn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/aiaebmvalidationfn" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/aiaebmvalidationfn/AIAEBMResponse ValidationModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare variable $SYNCCUST RESPONSE EBM :=
"ProcessFulfillmentOrderBillingAccountListResponseEBM";

declare function local:validateSyncCustomerResponse (
Sebm as element () *) as element()
{
if (fn:local-name ($ebm) = $SYNCCUST RESPONSE EBM)
then
<oms:validationReport>
{
aiaebmvalidationfn:validateSyncCustomerResponse ($ebm)
}
</oms:validationReport>
else
<oms:validationReport>{ $aiaebmvalidationfn:NO VALID EBM }</oms:validationReport>
i

let Sebm := .
return
<Validation>
{
local:validateSyncCustomerResponse (Sebm)

}
</Validation>

COMPONENT-RESPONSE-UPDATE Extension Point

This section describes the XQuery script that implements the logic to handle the
COMPONENT-RESPONSE-UPDATE extension point.

Table 5-45 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-45 COMPONENT-RESPONSE-UPDATE Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$orderld Xs:string External variable OSM Order ID of the current order

$orderKey Xs:string External variable AlA Order Number

$component element() External variable XML fragment containing the fulfillment
function data

$executionMode Xs:string External variable Task execution mode

ORACLE

5-53

Chapter 5
Adding a New Fulfillment Function

Table 5-45 (Cont.) COMPONENT-RESPONSE-UPDATE Input Parameters for the Calculate Service Order

Option
R
Name Type Scope Description

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM

request sent to the external system has had
fallout

$falloutMessage Xs:string External variable The fallout error message of this order item
$orderltemFromResponse element() External variable Order item data from the response message
$mappingContext element() External variable XML fragment describing the mapping context
between all sales order items and transformed
order items belonging to the current fulfillment
function
element() Context node The order item data XML fragment

Table 5-46 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-46 COMPONENT-RESPONSE-UPDATE Input Parameters for the Option Without Calculate

Service Order

Name Type Scope Description

$extensionVersion Xs:string External variable Version number of the extension framework

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$executionMode Xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous EBM
request sent to the external system has had
fallout

$orderld Xs:string External variable OSM Order ID of the current order

$orderKey Xs:string External variable AlA Order Number

$falloutMessage Xs:string External variable The fallout error message of this order item

$orderltemFromResponse element() External variable Order item data from the response message

element() Context node The order item data XML fragment

Table 5-47 lists the return parameters for the extension point XQuery.

Table 5-47 COMPONENT-RESPONSE-UPDATE Return Parameters
- |

Output Parameter Type Description

element()*

XML wrapper element that contains all the order item properties to be updated

Example 5-17 is a sample XQuery code fragment for the COMPONENT-RESPONSE-UPDATE
fulfillment function extension point.

Example 5-17 COMPONENT-RESPONSE-UPDATE XQuery Code Fragment

import module namespace YourFunctionNamefn = "http://xmlns.oracle.com/communications/
ordermanagement/pip/YourFunctionNamefn" at "http://xmlns.oracle.com/communications/

ORACLE

5-54

Chapter 5
Adding a New Fulfillment Function

ordermanagement/pip/YourFunctionNamefn/YourFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable S$ShasFallout external;

declare variable $falloutMessage external;

declare variable SorderItemFromResponse external;

declare function YourFunctionNamefn:onYourFunctionNameResponseUpdate (

ti

Slineltem as element (),

SorderItemFromResponse as element()) as element()*

let $id := $lineltem/oms:BaseLineld

return

<BaselineId>{ $id/text()

}</BaselLineId>,

(: list of order item properties to be updated :)

let $lineltem := .
return

<OrderItem>

{

YourFunctionNamefn:onYourFunctionNameResponseUpdate ($1ineltem, SorderItemFromResponse)

}
</OrderItem>

ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point

This section describes the XQuery script that implements the logic to handle the ORDER-
EXTENSION-UPDATE-STATUS-EBM extension point.

Table 5-48 lists the input parameters for the extension point XQuery when you are using the
calculate service order solution option.

Table 5-48 ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Calculate Service

Order Option
e __|
Name Type Scope Description
$controlData element() External variable XML data fragment of the control data from the
current task that calls to this extension point
$taskData element() External variable XML data fragment of the current task that
calls to this extension point
$ebmld Xs:string External variable EBM ID to be populated into the EBM request
message
$ebm element() External variable XML data fragment of the EBM header from
the CRM system
$fulfillmentOrder element() External variable XML data fragment of the Fulfillment Order
from the CRM system
$extensionVersion Xs:string External variable Version number of the extension framework
$orderld Xs:string External variable OSM Order ID of the current order
$sequenceNumber xs:string External variable EBM message unique sequence tracking
number to be populated in the update EBM
ORACLE

5-55

Chapter 5
Adding a New Fulfillment Function

Table 5-48 (Cont.) ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Calculate
Service Order Option

Name Type Scope Description

$changelLinesStatus element()* External variable XML data fragment which contains multiple
order items that must be included in the update
EBM

$hasFalloutFlag xs:boolean External variable Boolean indicator of whether the order is in
Fallout state

$isCancelFlag xs:boolean External variable Boolean indicator for the order is being
cancelled

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$execMode Xs:string External variable Task execution mode

$debugControl element() External variable XML data fragment of the order execution
control for break point and debug

$orderStatusContext Xs:string External variable Order status description to be populated in the
update EBM

$includeActualDelDateTime xs:boolean External variable Boolean indicator for whether to populate the
actual delivery date/time field of the update
EBM

$includeFulfillmentData xs:boolean External variable Boolean indicator for whether to include

detailed order item data in the update EBM

Table 5-49 lists the input parameters for the extension point XQuery when you are using the

solution option without calculate service order.

Table 5-49 ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Option Without
Calculate Service Order

Name Type Scope Description

$controlData element() External variable XML data fragment of the control data from the
current task that calls to this extension point

$taskData element() External variable XML data fragment of the current task that
calls to this extension point

$ebmid Xs:string External variable EBM ID to be populated into the EBM request
message

$ebm element() External variable XML data fragment of the EBM header from
the CRM system

$fulfillmentOrder element() External variable XML data fragment of the Fulfillment Order
from the CRM system

$extensionVersion Xs:string External variable Version number of the extension framework

$orderld Xs:string External variable OSM Order ID of the current order.

$sequenceNumber Xs:string External variable EBM message unique sequence tracking
number to be populated in the update EBM

$changeLinesStatus element()* External variable XML data fragment which contains multiple

order items that must be included in the update
EBM

ORACLE

5-56

Chapter 5
Adding a New Fulfillment Function

Table 5-49 (Cont.) ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Option Without

Calculate Service Order

Name Type Scope Description

$hasFalloutFlag xs:boolean External variable Boolean indicator of whether the order is in a
fallout state

$isCancelFlag xs:boolean External variable Boolean indicator of whether the order is being
cancelled

$log Java Object External variable Java Type org.apache.commons.logging.Log
Logging level related to server log

$execMode Xs:string External variable Task execution mode

$debugControl element() External variable XML data fragment of the order execution
control for break point and debug

$orderStatusContext Xs:string External variable Order status description to be populated in the
update EBM

$includeActualDelDateTime xs:boolean External variable Boolean indicator for whether to populate the
actual delivery date/time field of the update
EBM

$includeFulfillmentData xs:boolean External variable Boolean indicator for whether to include

detailed order item data in the update EBM

Table 5-50 lists the return parameters for the extension point XQuery.

Table 5-50 ORDER-EXTENSION-UPDATE-STATUS-EBM Return Parameters

|
Description

Output Parameter Type

element()?

XML wrapper element that contains the Update Sales Order EBM. The EBM format
depends on external fulfillment provider requirements.

Example 5-18 is a sample XQuery code fragment for the ORDER-EXTENSION-UPDATE-
STATUS-EBM fulfillment function extension point when you are using the calculate service
order solution option.

Example 5-18 ORDER-EXTENSION-UPDATE-STATUS-EBM XQuery Code Fragment for
the Calculate Service Order Option

declare
declare
declare

namespace
namespace
namespace

SalesOrder/V2";

declare

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

ORACLE

namespace

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

log = "java:org.apache.commons.logging.Log";
oms="urn:com:metasolv:oms:xmlapi:1";
salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/

corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";

ScontrolData external;
StaskData external;

SebmId external;

Sebm external;
SfulfillmentOrder external;
SextensionVersion external;
SorderId external;
$sequenceNumber external;
$changeLinesStatus external;
ShasFalloutFlag external;
$isCancelFlag external;

5-57

ORACLE

Chapter 5
Adding a New Fulfillment Function

declare variable $log external;

declare variable S$execMode external;

declare variable $debugControl external;

declare variable SorderStatusContext external;
declare variable $includeActualDelDateTime external;
declare variable $includeFulfillmentData external;

if (SextensionVersion=$pipextensionmodule:EXTENSION VERSION 2) then
(
yourOrderFunctionfn:createUpdateSalesOrderPayloadWithUserProvideOrderStatusContext (
Slog,
SorderId,
Sebm,
$fulfillmentOrder,
SebmId,
$sequenceNumber,
ScontrolData,
SchangelLinesStatus,
ShasFalloutFlag,
$isCancelFlag,
SorderStatusContext,
$includeActualDelDateTime,
SincludeFulfillmentData)
)
else
(
log:warn($log, fn:concat ("UpdateEBM Extension Point V2 is receiving the wrong
version! extensionVersion:[",$extensionVersion,"]"))

)

Example 5-19 is a sample XQuery code fragment for the ORDER-EXTENSION-UPDATE-
STATUS-EBM fulfillment function extension point when you are using the solution option
without calculate service order.

Example 5-19 ORDER-EXTENSION-UPDATE-STATUS-EBM XQuery Code Fragment for
the Calculate Service Order Option

declare namespace log = "java:org.apache.commons.logging.Log";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1l";

declare namespace salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V1";

declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V1";

declare variable ScontrolData external;

declare variable StaskData external;

declare variable SebmId external;

declare variable Sebm external;

declare variable S$fulfillmentOrder external;
declare variable SextensionVersion external;
declare variable SorderId external;

declare variable S$sequenceNumber external;

declare variable S$changelLinesStatus external;
declare variable S$hasFalloutFlag external;

declare variable $isCancelFlag external;

declare variable $log external;

declare variable SexecMode external;

declare variable $debugControl external;

declare variable SorderStatusContext external;
declare variable S$includeActualDelDateTime external;
declare variable S$includeFulfillmentData external;

if ($extensionVersion=$pipextensionmodule:EXTENSION_VERSION_l) then

5-58

Chapter 5
Adding a New Fulfillment Function

yourOrderFunctionfn:createUpdateSalesOrderPayloadWithUserProvideOrderStatusContext (
$log,
SorderId,
Sebm,
$fulfillmentOrder,
SebmId,
$sequenceNumber,
ScontrolData,
SchangelinesStatus,
ShasFalloutFlag,
$isCancelFlag,
SorderStatusContext,
$includeActualDelDateTime,
SincludeFulfillmentData)
)
else
(
log:warn($log, fn:concat ("UpdateEBM Extension Point V1 is receiving the wrong
version! extensionVersion:[", $extensionVersion,"]"))

)

About Fallout

When creating a new fulfillment function, you must consider the fallout handling needed.
Information about the fallout considerations is contained in the following sections.

Fallout Customization

ORACLE

The AlIAResponseEBM.xqy XQuery file is called from automated tasks, for example,
SyncCustomerSiTask and ProvisionOrderSITask. When adding a fulfillment function, you must
customize a copy of this file, located in
OracleComms_OSM_0O2A_COM_SalesOrderFulfillment\resources\Componentinteractio
n, and call it from the automation in the SiTask that processes the response coming from the
Application Business Connector Service (ABCS) for the fulfillment system. The response can
be either a response EBM or an OrderFalloutNotification.

You may need to customize the local:getEbmFromResponse function to extract the response
EBM, depending on the fulfillment function.

The function local:getCFSystem extracts the system name from the value of the
componentKey for the executable order component. Due to the four orchestration stages
defined in the orchestration sequence in the OracleComms_OSM_0O2A_COM_Base cartridge,
the componentKey takes the format:

FunctionName. SystemName.Granularity.FunctionSignificantUpdates

An example of a component key for an executable FulfillBillingFunction Order Component
targeted at the BRM-VoIP billing system using ServiceBundleGranularity processing
granularity, with a base line ID of the service bundle line of
31383732333932333934333332373635 is:

FulfillBillingFunction.BRM-
VOIP.ServiceBundleGranularity.31383732333932333934333332373635/
ServiceBundleGranularity.FulfillBillingSignificantUpdates

Example 5-20 is a sample XQuery code fragment from
OracleComms_OSM_O2A_COM_Baselresources/FalloutHandling/
TargetMapping.xquery.

5-59

Chapter 5
Adding a New Fulfillment Function

Example 5-20 Target System Map XQuery Code Fragment
(2

: Function to return the Target system name that the given ActivelInteractionId is
associate to.
1)
declare function osmmappip:getCFSystem(
SorderData as element()?,
SactivelInteractionId as xs:string) as xs:string?

(: First use the SactivelnteractionId to locate the FulfillmentComponent under root/
FulfillmentOrderManagement :)
let $ffmOrdMgr := SorderData/osm:Data/oms: root/oms:FulfillmentOrderManagement
let $fulfillmentComponent := $ffmOrdMgr/
oms:FulfillmentComponent [oms:FulfillmentOrder/oms:ActiveInteractionId/
text ()=SactivelnteractionId]
return
if (fn:exists($fulfillmentComponent))
then
(
(: FulfillmentComponent found, get the componentKey :)
let $componentKey := $fulfillmentComponent/oms:componentKey/text ()
return
substring-before (substring-after (ScomponentKey, "."), ".")

else ()

i

Failure During Revision

ORACLE

During the OSM fulfillment process, an order may fail due to various reasons like insufficient
data, incorrect data and so on. To correct the failure, you may have to revise the failed order. In
OSM, failure may occur even while revising the failed orders. With the existing functionality of
Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and
Service Management, the following events happen when fallout occurs during revision:

* Initially, an update customer order status message, with Order Header status code
(FAILED) and description "Order will be aborted due to failure during revision, manual
intervention is required”, is sent to Siebel CRM. This message contains the corresponding
OrderLine status code/descriptions.

* The base Central Order Management/Service Order Management orders are put into
Aborted state in OSM, followed by another update customer order status message to
Siebel CRM, with Order Header status code (FAILED and description "Order is aborted".
This message does not include any OrderLine status information.

e After the failure is resolved manually, Siebel CRM can resend the same customer order to
OSM with the correct data.

When there are service order management and Provisioning systems involved in the customer
order processing, the following events happen:

e The aborting request is propagated to all service order management systems and then all
provisioning systems abort all associated service orders.

e The statuses of all associated service order management and provisioning AbortOrder
requests are propagated back to central order management.

* While the order is in AbortinProgress state, incoming revisions are blocked.

* The statuses of the downstream order aborting operations are stored in the central order
management or service order management order for reference.

5-60

Chapter 5
Adding a New Fulfillment Function

It is mandatory that a fault thrown from a provisioning system must contain the service order
state using an AlternateObjectKey element of the sales-order Identification element, where
the ID element should have the attribute schemelD="SERVICE_ORDER_STATE". Otherwise,
the fault is not treated as a fault during revision.

Since the AIA_CreateProvisioningOrderQueue,
AlA_CreateProvisioningOrderResponseQueue, ProcessProvisioningOrderEBM and
UpdateFulfillmentOrderEBM are reused for Abort Order Propagation,

* A new value ABORT in the ProcessProvisioningOrderEBM for the FulfillmentModeCode
is introduced.

* For the AIA_CreateProvisioningOrderResponseQueue, a JMS message property,
CGBUPIPCFFALLOUT, is introduced as: "CGBUPIPCFFALLOUT IS NULL"
"CGBUPIPCFFALLOUT LIKE 'ABORT%" for AbortProvisioningOrderResponse. So it is
mandatory that this IMS message property is not stripped off or changed.

Adding a New Fulfillment Function for a New Service Offering

ORACLE

This procedure describes how to add a new fulfillment function for a new service offering. For
more information about performing the actions in this procedure in Oracle Communications
Design Studio, see the information about adding a new fulfillment function in the section on
extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment function:

1. Create a new OSM project to host the new fulfillment function.

2. Inthe Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution
(rather than as a standalone cartridge).

3. Delete the Order entity.
4. Create a base task for the new function from which all other new tasks will be extended.

5. Create any other tasks required by the new function by extending them from the base task
created in the previous step.

6. Create a process that will execute when fulfilling the new function. You can create an
entirely new process or have the new process extend an existing process.

7. Create the new fulfillment function that either extends from COM_ FulfillmentFunction or its
extended fulfillment function, and specify keys for the order data at the following XPath
location:

e .JcomponentKey for order data/ControlData/Functions/YourFunctionName

« JorderltemRef/Lineld for order data/ControlData/Functions/YourFunctionName/
orderltem

For more information about adding a new fulfillment function, see the information about
adding new functional order components in the Design Studio Modeling OSM
Orchestration Help.

8. If new fulfillment states are to be introduced for the new fulfillment function, add external
fulfilment states for the new fulfillment function in the form of State-
YourFunctionName_Milestone. For example, IN_PROGRESS-YourFunctionName_START.

9. Optionally create a new fulfillment system for the fulfillment function.

5-61

ORACLE

10.

11.

12.

13.

14.
15.

16.

17.

Chapter 5
Adding a New Fulfillment Function

When you introduce a new fulfillment function, you may often also require a new fulfillment
provider.

Create a new decomposition rule (with the COM_SalesOrderLine order item) that maps
from the fulfillment function to the fulfillment provider.

For example, DecompSyncCustomer_To_BRM-VoIP in the
OracleComms_OSM_O2A TypicalTopology Sample cartridge is a decomposition rule that
maps SyncCustomer fulfillment function to the BRM-VolIP fulfillment provider.

Add the following cartridge to the Dependency tab for the new cartridge you created for the
new fulfillment function:

e OracleComms_OSM_O2A_COM_Base

If there are any other cartridges that the new cartridge depends on, add them to the
Dependency tab.

Add the cartridge you created for the new fulfillment function, to the Dependency tab for
the Order-To-Activate composite cartridge.

Create composite cartridge views in the cartridge you created for the new fulfillment
function.

« Create a composite cartridge view that adds data to the sales order creation task
COM_SalesOrderFulfilment_CreationTask for the new fulfillment function. This
composite cartridge view should extend from the base task of the new fulfillment
function.

« Create a composite cartridge view that adds data to the sales order query tasks such
as COM_SalesOrder_StateChangeView and COM_SalesOrder_AggregatedOLMView
for the new fulfillment function.

Add the data for the new tasks you created to the composite cartridge views.

Create a task data contribution to extend the existing sales order creation task with the
following information:

e Order = COM_SalesOrderFulfillment

e Process = COM_SalesOrderFulfillmentOrchestrationProcess

e Task = COM_SalesOrderFulfillment_CreationTask

« Composite Cartridge View = YourCompositeCartridgeViewForCreationTask

Create a query task data contribution to extend the existing sales order query tasks with
the following fields:

e Order = COM_SalesOrderFulfillment

* Role = COM_SalesOrder_AggregatedOLM_Role,
COM_SalesOrder_StateChange_Roles

* Query Task = COM_SalesOrder_AggregatedOLMView,
COM_SalesOrder_StateChangeView

e Composite Cartridge View = YourCompositeCartridge ViewForQueryTask

In the resources/SolutionConfig folder of the Order-to-Activate composite cartridge such
as OracleComms_OSM_0O2A_COMSOM_TypicalSolution:

* Add a new <Component> entry to the ComponentExtensionPointMap.xml file for the
new fulfillment function. For each applicable fulfillment function extension point, create
an XQuery file based on an existing fulfillment function extension point XQuery file, for
example, SyncCustomerComplete_Event.xquery.

5-62

Chapter 5
Adding a New Fulfillment Provider

« Add a new entry of a query task to the ComponentQueryViewMap.xml file for the new
fulfillment function.

* If new milestones are to be introduced for the new fulfillment function:

— add a new <MilestoneMap> entry to the ComponentMilestoneMap.xml file for the
new fulfillment function

— add a new <StatusltemContext> entry for each new milestone to the
OrderltemStatusContextMap.xml file

« |f fallout simulation is needed for the new fulfillment function, add a new
<FaultModeMap> entry to the FaultModeMap.xml file.

* Add a new <StatusMap> entry to the OrderStateMap.xml file for the new fulfillment
function per system type and fulfilment mode.

< If a new fulfillment provider is added, add a new <targetSystem> entry for each new
fulfillment provider instance to the TargetSystemMap.xml file.

* For each automated task in the process of the new fulfillment function, add a new
<TaskExitStatusMap> entry to the TaskExitStatusMap.xml file.

18. Package and deploy the Order-To-Activate composite cartridge.

Adding a New Fulfillment Provider

ORACLE

Oracle AIA has logical identifiers for fulfillment providers (for example, fulfillment instances).
There are naming conventions that must correspond to your Oracle AIA deployment, for
example, fulfillment system type and fulfillment system code. Currently the logical identifiers
and fulfillment system type and application are defined in XML Document
TargetSystemMap.xml, which is deployed with the Order-to-Activate composite cartridge
(such as OracleComms_OSM_02A COMSOM_TypicalSolution). You modify this file when
restructuring the fulfillment topology definition, for example when you add more billing system
instances. The Sender IDs and Target IDs in the EBM messages must match the logical
identifiers for the system instances configured in the Oracle AlIA deployment. The following is
the summary for fulfillment functions for Oracle AlA:

e Naming convention used for OSM central order management instances: OSMCFS_01,
OSMCFS_02, and so on

e Naming convention used for OSM service order management instances: OSMPROV_01,
OSMPROV_02, and so on

« Naming convention used for Billing and Revenue Management instances BRM_01,
BRM_02, and so on

* Naming convention used for Siebel CRM instances: SEBL_01, SEBL_02, and so on

When adding a fulfillment provider, such as a billing system instance, you must customize a
copy of the following files to map the Studio entity name of the system entity to the target ID:

* O2A_CompositeCartridge\resources\SolutionConfig\TargetSystemMap.xml
For example,

OracleComms_OSM_0O2A_COM_CSO_Solution\resources\SolutionConfig\TargetSys
temMap.xml contains all fulfillment providers and their logical identifiers used in the Order-
to-Activate cartridges in the Typical topology.

You can name the Studio entity using the Oracle AIA naming convention such as BRM_01,
BRM_02, to simplify the fulfillment system mapping to be a direct mapping.

5-63

Chapter 5
Adding a New Fulfillment Mode

The following procedure describes how to add a new fulfillment provider. For more information
about performing the actions in this procedure in Design Studio, see the Design Studio
Modeling OSM Orchestration Help.

To add a new fulfillment provider:

1. Inthe topology cartridge such as the OracleComms_OSM_O2A_TypicalTopology_Sample
cartridge, add a new order component specification that extends COM_FulfillmentSystem
with COM_SalesOrderFulfillment namespace to represent the new fulfillment provider, and
ensure the Order Component Executable check box is deselected.

2. Open the decomposition rule in the form of
Topology DetermineProcessingGranularity For_FulfillmentFunction in the
OracleComms_OSM_O2A COM_CSO_Topology,
OracleComms_OSM_O2A_TypicalTopology, or
OracleComms_OSM_O2A_SimpleTopology_Sample cartridge depending on the solution
option and topology.

For example, Typical_DetermineProcessingGranularity For_SyncCustomer is the
decomposition rule for SyncCustomerFunction fulfillment function in the Typical topology.

3. In the Decomposition Rule editor Source/Target tab, select the desired processing
granularity under COM_FulfillmentGranularity in the Target Order Components section.

See "Configuring a New Processing Granularity Rule” for more information on creating a
new processing granularity.

4. (Optional) Add or Change decomposition condition in the Decomposition Rule editor
Conditions tab.

5. If you are using the Calculate Service Order option in your Order-to-Activate cartridges and
you want to add a new fulfillment provider that makes use of the Calculate Service Order
transformation sequence, create an order component that references the Calculate
Service Order provider function. You can use an existing provisioning order component as
an example of the correct way to model this.

6. Package and deploy the Order-to-Activate composite cartridge.

Adding a New Fulfillment Mode

ORACLE

This procedure describes how to add a new fulfillment mode. For more information about
performing the actions in this procedure in Design Studio, see the information about adding a
new fulfilment mode in the section on extending component cartridges in the Design Studio
Modeling OSM Orchestration Help.

To add a new fulfilment mode:

1. Create a new Order and Service Management project to host the new fulfilment mode.

2. Inthe Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution
(rather than as a standalone cartridge with no dependencies).

3. Add a new fulfillment mode with COM_SalesOrderFulfillment namespace for central order
management or SOM_ProvisionOrderFulfillment namespace for service order
management.

4. Modify the order recognition rule's XQuery to recognize the new fulfillment mode.

a. Copy the existing OracleComms_OSM_O2A_COM_Baselresources/
OrderRecognitionRule/AlAOrderRecognition.xquery to the resources folder of the

5-64

10.

11.

Chapter 5
Adding a New Product Specification

new OSM cartridge created in step 1, if the new fulfillment mode is for central order
management. For service order management, copy the existing
OracleComms_OSM_O2A_SOM_Baselresources/OrderRecognitionRule/
ProvisionOrderRecognition.xquery to the resources folder of the new OSM
cartridge.

b. Modify the XQuery to recognize the new fulfillment mode.
c. Create an XML Catalog rewrite rule to override the order recognition rule XQuery.
For example, for central order management's AIAOrderRecognition.xquery

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/
ordermanagement/o2acombase/order recognition/AIAOrderRecognition.xquery"
rewritePrefix="osmmodel:///<New OSM Cartridge>/1.0.0.0.0/resources /
AIAOrderRecognition.xquery"/>

Add the new fulfillment mode to the base fulfillment pattern or to any applicable fulfillment
patterns.

Model the orchestration plan for the new fulfilment mode for all of the affected fulfillment
patterns.

In the Fulfillment State Map editor, create fulfillment state mappings for the new fulfillment
mode. The fulfillment state map to edit is one of the following:

* For the calculate service order option:

In the OracleComms_OSM_0O2A COM_CSO_FulfillmentStateMap cartridge, edit the
COM_CSO_FulfillmentStateMap entity.

* For the solution option without calculate service order:

In the OracleComms_OSM_0O2A_FulfillmentPatternMap cartridge, edit the
COM_FulfillmentStateMap entity.

Add the cartridge you created for the new fulfillment mode, to the Dependency tab for the
Order-to-Activate composite cartridge.

Open the Ant view and select Add Buildfiles to add SolutionConfig.xml in the Order-to-
Activate composite cartridge, for example
OracleComms_OSM_0O2A_COMSOM_TypicalSolution.

In the Ant view, expand the Order-to-Activate composite cartridge and double-click
config_Metadata_And_ModelVariable to ensure that the new fulfilment mode is visible in
the Order-to-Activate composite cartridge.

Package and deploy the Order-to-Activate composite cartridge.

Adding a New Product Specification

This section provides information about adding a new product specification.

Mapping Product Specifications to Order-to-Activate Sample Fulfillment

Patterns

ORACLE

There are two types of product specifications in Design Studio: conceptual model products and

OSM product specifications. You do not create a new product specification in OSM, although
OSM supports existing product specifications that were created in OSM. Instead, to create a
new product, create a new conceptual model Product entity, which will then be mapped to a
conceptual model fulfillment pattern, which is realized into an OSM fulfillment pattern. For more
information about conceptual model products, see Design Studio Concepts.

5-65

Chapter 5
Adding a New Product Specification

Product specification entities can either be imported from a product catalog, such as Oracle
Product Hub, or manually created in Design Studio. If you import products, the result will be
new conceptual model products, not new OSM products as it was in earlier releases of Design
Studio and OSM.

For more information about mapping product specifications to fulfillment patterns in OSM, see
the XQuery appendix in OSM Concepts.

Each product specification can be mapped to an Order-to-Activate sample fulfillment pattern.
Design Studio generates a mapping file in the resources folder of the
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge. In Oracle AlA, a field
called fulfillment item code (FIC) is used to specify the product specification name.

< Note:

In communications industry customer orders in AIAEBM format, ‘fulfillment item code'
is a unique identifier that maps an order line item subject to a Studio recognized
fulfillment pattern entity. By default, this is populated with the product specification
name for product specification mapping.

Alternatively you can use any combination of attribute values on the order template to
drive the mapping of order lines to fulfillment patterns. The value ‘item class name'
determines some business classification of a product and can be used for product
specification mapping. It becomes significant when you adopt a methodology that
aligns commercial product specifications with fulfilment commercial services
(fulfillment patterns).

When new FulfillmentitemCodes are introduced, you must ensure a mapping of the new
FulfilmentitemCode to a fulfillment pattern that exists in the
OracleComms_OSM_O02A_FulfillmentPatternMap_Sample/resources/
productClassMapping/productClassMapping.xml file so that product specification validation
will succeed.

Creating a New Product

This section contains information about creating a new conceptual model product to work with
the Order-to-Activate cartridges. For more information about creating a product in Design
Studio, see the information about adding a new product specification in the section on
extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

A new product is created in the same way as any new conceptual model product in Design
Studio, with the following specifics:

1. If you create a new product that requires a new fulfillment pattern, add a new conceptual
model fulfillment pattern and then add a new OSM fulfillment pattern that realizes the new
conceptual model fulfilment pattern and that extends from the base fulfillment pattern
BaseProductSpec.

ORACLE -

Chapter 5
Adding a New Product Specification

Note:

If you create a new conceptual model cartridge to contain your new conceptual
model entities, you must add that cartridge in the Common Model Entity
Container field in an appropriate cartridge. If you are using the Calculate Service
Order solution option, add the cartridge to the

OracleComms_OSM_0O2A COM_CSO_Model_Container cartridge for a central
order management (or combined central order management and service order
management) environment, or to

OracleComms_OSM_02A SOM_CSO_ModelContainer for an environment that
contains only service order management. If you are using the solution option
without Calculate Service Order, add the cartridge to the recognition cartridge in
your environment or create a new OSM component cartridge to contain the
entries.

2. Specify the location of the external directory containing the fulfilment pattern. From the
Window menu, select Preferences, then expand Oracle Design Studio in the
Preferences navigation tree, then select Order and Service Management Preferences,
and then select Orchestration Preferences. Enter the appropriate directory in the
Product Specification Mapping field. For example, enter
OracleComms_OSM_O2A_COM_FulfillmentPattern/resources/productSpecMapping
if you are using the calculate service order option or
OracleComms_OSM_O02A_FulfillmentPatternMap_Samplelresources/
productSpecMapping if you are using the option without calculate service order.

Creating a New Fulfillment Pattern

ORACLE

This procedure describes how to add a new fulfillment pattern. For more information about
performing the actions in this procedure in Design Studio, see the information about adding a
new fulfillment pattern in the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment pattern:

1. Create a new Order and Service Management project to host the new fulfillment pattern or
optionally use the existing fulfillment pattern sample cartridge to host the new fulfillment
pattern.

2. Inthe Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution
(rather than as a standalone cartridge with no dependencies).

3. Add a new fulfillment pattern that extends from the base fulfillment pattern
BaseProductSpec or its extended fulfillment pattern.

4. Model the orchestration plan for the new fulfillment pattern such as indicating which
fulfillment functions are decomposed for which fulfilment mode.

5. Include the new fulfillment pattern on the appropriate decomposition rules that map order
line items from fulfillment functions to fulfilment providers. For example,
DecompSyncCustomer_To_BRM-VoIP is a decomposition rule that maps order line items
for SyncCustomerFunction to BRM-VolIP fulfillment provider.

6. If you added a new cartridge to host the new fulfillment pattern, add the cartridge to the
Dependency tab for the Order-to-Activate composite cartridge.

7. Package and deploy the Order-to-Activate composite cartridge.

5-67

Chapter 5
Adding a New Product Specification

Customizing Mapping Rules

ORACLE

The following section describes customizing rules for mapping order items to Order-to-Activate
sample fulfillment patterns.

The XQuery function osmpip:getProductSpec() defined in the
OracleComms_OSM_0O2A CommonUtility cartridge provides an API for mapping customer
order items to Order-to-Activate sample fulfillment patterns.

The XQuery function osmpip:getProductSpec() is invoked from the XQuery in the
productSpec order item property in the COM_SalesOrderLine order item specification in the
OracleComms_OSM_O2A COM_Base cartridge. By default, the direct mapping rules map the
Fulfilment Item Code to a fulfillment pattern.

Customize Rules for Mapping Order Items to Fulfillment Patterns

Customize a copy of the OracleComms_OSM_0O2A_COM_Baselresources/
OrderltemProperties/ProductSpec.xquery file to customize the direct mapping rule, such as
to pass as input the Fulfillment Item Code, to adopt a methodology that aligns the commercial
product specifications with the fulfillment patterns when the Fulfillment Item Code is not
populated.

Customize Rules for Mapping Order Items with Product Specifications to Fulfillment
Patterns

Customize a copy of OracleComms_OSM_O2A_CommonUtility/resources/
ProductClassToProductSpec.xquery file to enable the mapping of order items with new
product specifications on the customer order to Order-to-Activate sample fulfillment patterns.
The ProductClassToProductSpec.xquery file also provides access to common XQuery
functions across the central order management cartridges.

Table 5-51 lists the functions found in ProductClassToProductSpec.xquery:

5-68

Chapter 5
Adding a New Product Specification

Table 5-51 Functions in ProductClassToProductSpec.xquery

e _______________________________________|
Name Function Interface Description

getProductSpec This function returns the fulfillment pattern entity as a string based on
the given Fulfillment Item Code of a customer order line. If the input
value is not specified, or no direct mapping is found, the function uses

mapping rules based on data provided on the customer order.

declare function
osmpip:getProductSpec (

$salesOrder as
element (),

$salesOrderLine as The mapping rules, applicable when no direct mapping is found,
element (), should check (in the order listed) whether there is a mapping rule
$productClassName as specific to:

. 1 * . 1
xs:string®) as xs:string 1. Subject of the order line item, if one exists (One of: Discount,

Product, Service Bundle, Offer, SpecialRating, or Unknown).

2. Subject Type (a short way to get couple of other attributes), if
one exists.

3. Unknown (as a last resort, use a default mapping rule that maps
the Order Line Item to a Fulfillment Item Code of a special
Unknown item action).

The default mapping rules achieve the following mappings:

» Service bundle lines having no FulfillmentitemCode and
identified by Servicelnstancelndicator=true, are mapped to a
fulfillment pattern of its child order lines.

* OFFER lines are mapped to fulfillment pattern
‘NonService.Offer".

. DISCOUNT, SPECIAL RATING, and BUNDLE lines having no
FulfillmentitemCode are mapped to fulfillment pattern
‘NonService.Billingltem'.

* When a fulfillment pattern cannot be determined, it is set to
fulfillment pattern 'Service.Unknown'.

getDoublePlayPri q . This function returns the classification code of a customer order line.
e . eclare function O - o ’
maryClassification osmpip:getDoublePlayPrimary The C|§SSI_fIC&1tIOﬂ code is l_Jsed by decomposition rule conditions and
Code ClassificationCode (order line item dependencies.
Sorderline as The classification of order line items is based on the fulfillment
element (), topology definition. For example, for order lines in which the fulfillment
$salesOrder as pattern itself is not sufficient to determine the billing provider (such as
element ()) as xs:string* offer, discount, and bundle lines) order line items are classified into

VoIP only, BroadBand only, or combination Broadband and VoIP,
based on the demonstration Typical fulfillment topology definition to
determine the appropriate billing provider. Offer and bundle lines go
to as many different, unique billing providers as in its child lines in the
customer order. Discount lines, if contained in a service bundle, follow
the service bundle.

getBillingPattern Return the billing pattern of the current customer order line.

declare function

osmpip:getBillingPattern (
Sorderline as

element ()) as xs:string

Importing the New Product Specification

It is possible to query product specifications and transaction attributes into Design Studio
directly from the Oracle Product Hub. Design Studio users use the existing Oracle AIA
interface QueryProductClassAndAttributesSCECommsRegABCSImpl to import product
specifications from both Siebel CRM and the Product Hub. When product specifications are

ORACLE - 69

Chapter 5
Changing Processing Granularity

queried using this interface, the interface API checks for Product Hub implementation in the
solution stack, and if it is there, the product specifications will be imported to Design Studio
from the Product Hub. Otherwise, the product specifications will be imported from Siebel CRM.

Import the new product specifications as described in the Design Studio Help. After importing
the product specifications, follow this procedure:

1. Open the newly imported or modified conceptual model product.

2. Map the new or changed product to the appropriate conceptual model fulfilment pattern.

Changing Processing Granularity

This section provides information on changing the processing granularity for an order item.
To change processing granularity for a fulfillment function:

1. Open the decomposition rule in the form of
Topology DetermineProcessingGranularity For_FulfillmentFunction in the
OracleComms_OSM_0O2A COM_CSO_Topology,
OracleComms_OSM_0O2A_TypicalTopology, or
OracleComms_OSM_0O2A_SimpleTopology_Sample cartridge depending on the solution
option and topology.

For example, Typical_DetermineProcessingGranularity For_SyncCustomer is the
decomposition rule for SyncCustomerFunction fulfilment function if you are using the
calculate service order option.

2. Inthe Decomposition Rule editor SourcelTarget tab, select the desired processing
granularity under COM_FulfillmentGranularity in the Target Order Components section.

See "Configuring a New Processing Granularity Rule" for more information on creating a
new processing granularity.

3. (Optional) Add or Change decomposition condition in the Decomposition Rule editor
Conditions tab.

4. Package and deploy the Order-to-Activate composite cartridge.

Configuring a New Processing Granularity Rule

ORACLE

Begin by creating a new order component specification in Design Studio that extends
COM_FulfillmentGranularity and has the COM_SalesOrderFulfillment namespace and give it a
name such as YourCustomGranularity.

On the Component ID tab of the newly created order component specification, specify an
XQuery condition to return the Componentld of an order line. Order lines with the same
Componentld value are grouped together for the processing of order lines a group at a time. To
construct the XQuery, you can copy the XQuery expression from the Component ID tab of an
existing processing granularity rule, such as BundleGranularity shown in Example 5-21, and in
it replace BundleGranularity with YourCustomGranularity, and replace TypeCode=(BUNDLE)
with the condition that identifies the parent of the group. If you require nested groups to make it
on separate fulfillment requests, also replace [fn:last()] with [1]. There are multiple instances
of index fn:last() in the XQuery expression; the ones to replace are highlighted below.
Otherwise, nested groups are processed on the same fulfillment request.

Example 5-21 Customizable Granularity Configuration XQuery

(: Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved. :)
import module namespace comqueryviewconstants = "http://xmlns.oracle.com/communications/
ordermanagement/o2acombase/comqueryviewconstants" at "http://xmlns.oracle.com/

5-70

ORACLE

Chapter 5
Changing Processing Granularity

communications/ordermanagement/o2acombase/constants/QueryViewConstants.xquery";

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="COM SalesOrderFulfillment";

declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryF
unctions";

let S$Sancestors :=
osmfn:ancestors ($comqueryviewconstants:COM_ORDER ITEN SPEC, Scomqueryviewconstants:COM PAR
ENTCHILD HIER, $comqueryviewconstants:COM ORDER NAMESPACE)
let SrelatedItems :=
osmfn:ancestors ($comqueryviewconstants:COM _ORDER ITEN SPEC, Scomqueryviewconstants:COM REL
ATEDITEM HIER, Scomqueryviewconstants:COM ORDER NAMESPACE)
return
(: to locate the bundle that this order line should be included with on a
fulfillment request, first follow the RelatedSalesOrderLineId references (if any
exist))
if (osm:properties/prop:RelatedSalesOrderLineId/text() != '' and
fn:exists (SrelatedItems))
then
(
let StopmostRelatedItem := SrelatedItems[fn:last()]
let StopmostRelatedItemAncestors :=
osmfn:ancestors ($topmostRelatedItem, Scomqueryviewconstants:COM ORDER ITEN SPEC, Scomqueryv
iewconstants:COM_PARENTCHILD HIER, $comqueryviewconstants:COM ORDER NAMESPACE)
return
if (fn:exists(StopmostRelatedItemAncestors[osm:properties/
prop:TypeCode=("BUNDLE')]))
then
(

(: for the topmost related order line, follow the ParentLineId references to
locate the outermost bundle. This will cause nested bundles to make it on the same
fulfillment request. :)

concat (StopmostRelatedItemAncestors[osm:properties/prop: TypeCode= ('BUNDLE')]
[fn:last()]/osm:properties/prop:BaseLineld/text (), '/BundleGranularity")

)
else
(

(: locate the root node, such that any other root node on the order along
with their related order items makes a separate fulfillment request :)

concat (StopmostRelatedItemAncestors[fn:last()]/osm:properties/
prop:BaseLineId/text (), '/BundleGranularity"')

)
)
else
(
if (fn:exists(Sancestors[osm:properties/prop:TypeCode=('BUNDLE')]))
then
(

(: follow the ParentlLineld references to locate the outermost bundle. This
will cause nested bundles to make it on the same fulfillment request. :)

concat ($Sancestors[osm:properties/prop:TypeCode=('BUNDLE')] [fn:last()]/
osm:properties/prop:BaselLineld/text (), '/BundleGranularity"')

)
else
(

(: locate the root node, such that any other root node on the order along
with their related order items makes a separate fulfillment request :)

concat (Sancestors|[fn:last()]/osm:properties/prop:BaseLineld/text (), "/
BundleGranularity')

5-71

Chapter 5
Changing Fulfillment Function Dependencies

)

Changing Fulfillment Function Dependencies

This procedure describes how to change fulfillment function dependencies. For more
information about performing the actions in this procedure in Design Studio, see the
information about the fulfillment pattern editor in the Design Studio Modeling OSM
Orchestration Help.

To change fulfillment function dependencies:

1. Open the Fulfillment Pattern editor Orchestration Plan tab for the base fulfillment pattern
or any applicable fulfilment pattern for which the dependencies between fulfillment
functions needed to be changed.

2. Select the fulfilment mode, for which the dependencies between fulfilment functions need
to be changed, in the Fulfillment Mode field.

3. Select the Dependencies tab and do one of the following:

* Inthe Dependencies table, select the dependency and change the From Order
Component or To Order Component to update the fulfillment function dependency.

* Inthe Dependencies table, add a new dependency and specify the From Order
Component and To Order Component for the new fulfillment function dependency.

4. Package and deploy the Order-to-Activate composite cartridge.

Setting a Point of No Return

ORACLE

A point of no return (PoNR) is a point during the orchestration process when revisions are no
longer accepted and processed for an order. The Hard PoNR indicates that it is technically
infeasible to amend the order.

A PoNR is realized when a condition is met on an order line item.
The seeded values in the Order-to-Activate cartridges are:

« Avalue of NOT YET indicates that the Soft PONR has been reached for an order line.

e Avalue of HARD indicates that a Hard PONR has been reached for an order line, which
signifies that it is technically infeasible to revise the order beyond this point.

Each fulfillment pattern may have a PoNR set to HARD at a different fulfillment state in the
fulfillment flow.

In the Order-to-Activate cartridge, the value of PONR for each order line item is stored in
ControlData/Orderltem/WorkLineltemData/RevisionPermissibleCode in the order data in the
format [SOFTINOT YET or [HARD]HARD.

A fulfillment state is set before and after each fulfillment function. There may be multiple
fulfillment states during the progress of a fulfillment function, such as IN_PROGRESS-
PROVISION_DESIGNED and COMPLETE-PROVISION_COMPLETE. In this case, the
RevisionPermissibleCode value is returned in the fulfillment data updates from provisioning
and is updated into the order data.

RevisionPermissibleCode must be updated at every fulfillment function transition because
there is no guarantee on the conditions that cause fulfillment functions to be called in a
fulfillment pattern. Update the order data as follows:

5-72

Chapter 5
Setting a Point of No Return

Before every fulfillment function until PONR is reached (if a PONR is non-existent or null,
set RevisionPermissibleCode to NOT YET)

For every function transition after which the HARD PoNR is reached (if a PONR is non-
existent, null, or has the value NOT YET, set RevisionPermissibleCode to HARD)

productSpecl: (NOT YET) FunctionA --> (NOT YET)--> FunctionB--> (HARD) -->
FunctionC

productSpec2: (NOT YET) FunctionA --> (HARD) --> FunctionB --> (HARD) --> FunctionC

A HARD PoNR is set at the FunctionC Start milestone for productSpecl, and at the FunctionB
Start milestone for productSpec2. Assuming that FunctionB may be skipped if a conditional
expression is not met, PONR=HARD must be set between FunctionA and FunctionC: (NOT
YET): FunctionA --> (HARD) --> FunctionC.

For fulfillment functions, these values are implemented in the order data updates in the
automated tasks of the subprocess. For example:

Table 5-52 lists the various hard PoNRs for each fulfillment pattern.

Table 5-52 Hard Points of No Return by Fulfillment Pattern
- ____________________________ |

Product Spec Fulfillment Function HARD | Fulfillment State
PoNR
is set
NonService.BillingInitateditem FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START
NonService.Billingltem FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START
NonService.Offer FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START
Service.Broadband ProvisionOrderFunction Y For solutions that are using the Calculate
Service Order option:
IN_PROGRESS-PROVISION_ISSUED
For solutions that are not using the Calculate
Service Order option:
IN_PROGRESS-PROVISION_DESIGNED
Service.CPE.Broadband ShipOrderFunction Y COMPLETE-SHIP_ORDER_SHIPPED
Service.CPE.VoIP ShipOrderFunction Y COMPLETE-SHIP_ORDER_SHIPPED
Service.Install InstallOrderFunction Y IN_PROGRESS-INSTALL_COMMITTED
Service.VolP FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START

ORACLE

OSM enforces HARD PoNR in the order life-cycle policy by disallowing Submit Amendment if
the PONR value in the order data is found to be HARD (for a revised order line item) when a
revision order arrives.

PoNR (SalesOrderLine/RevisionPermissibleCode) is included in status updates to Siebel
CRM, which occur at every milestone data change. This enables Siebel CRM to enforce the
rule that a revision cannot be submitted beyond HARD PoNR for an order line.

Modeling a PoNR

This section describes the steps to add a point of no return for a fulfillment pattern. For more
information about performing the actions in this procedure in Design Studio, see the
information about configuring points of no return in the Design Studio Modeling OSM
Orchestration Help.

5-73

Chapter 5
Configuring Fulfillment States

To model a point of no return:

1.

In the Fulfillment Pattern editor Orchestration Plan tab, select the fulfillment mode for
which a PoNR will be added for the fulfillment pattern, and also select a fulfillment function
in Order Components section at which the PONR will be set.

Once a fulfillment function is selected, add an entry to the Point of No Return Values box
in the Point of No Return subtab. Either click Select and select an existing PONR value,
or click Add and add a new PoNR value. Then select a fulfillment state that will trigger this
PoNR for the fulfillment flow of the fulfilment pattern.

If you added a new PoNR value rather than selecting an existing value, it will automatically
be added as a hard PoNR. If you would like your new PoNR to be a soft PONR, click the
Details tab in the Fulfillment Pattern editor, select your new PoNR from the Point of No
Return Values box and then deselect Hard Point of No Return in the Details subtab.

Note:

Point-of-no-return enforcement can be disabled for testing purposes when a new
fulfillment function is introduced, or when revision or order cancellation testing is
performed. See "Controlling Point of No Return" for more information.

Configuring Fulfillment States

This section describes the steps for configuring fulfilment states. For more information about
performing the actions in this procedure in Design Studio, see the information about
configuring fulfillment states in the Design Studio Modeling OSM Orchestration Help.

ORACLE

To configure fulfillment states:

1.

If a new fulfillment function is introduced, add external fulfillment states to represent status
information sent to OSM by fulfillment systems in the Order Component Specification
editor External Fulfillment States tab for that order component specification. The external
fulfillment states should be in the form of State-YourFunctionName _Milestone. For
example, IN_PROGRESS-YourFunctionName_START, representing the starting of your
fulfillment function.

In the Fulfillment State Map editor, create fulfilment state mappings for each new external
fulfillment state for any applicable fulfillment mode for the COM_SalesOrderLine order
item. The fulfillment state map to edit is one of the following:

e For the calculate service order option:

In the OracleComms_OSM_0O2A_COM_CSO_FulfillmentStateMap_Sample cartridge,
edit the COM_CSO_FulfillmentStateMap entity.

e For the solution option without calculate service order:

In the OracleComms_OSM_0O2A_FulfillmentPatternMap_Sample cartridge, edit the
COM_FulfillmentStateMap entity.

In the Order Item Fulfillment State Composition Rule Set editor for
COM_OrderltemStateCompositionRule (in the same cartridge as the fulfilment state map),
modify existing composition rules for the BaseProductSpec fulfillment pattern and
COM_SalesOrderLine order item if necessary.

5-74

Chapter 5
Configuring Fulfilment States

4. In the Order Fulfillment State Composition Rule Set editor for
COM_OrderStateCompositionRule (in the same cartridge as the fulfilment state map),
modify existing composition rules for the COM_SalesOrderFulfillment order if necessary.

5. If a new fulfillment state is introduced in addition to the base fulfillment states (that is,
OPEN, IN_PROGRESS, COMPLETE, FAILED and CANCELLED) defined in
COM_FulfillmentStateMap, modify the XQuery implementation for any applicable fulfillment
state extension points. See Table 5-53 for more information about fulfilment state
extension points.

6. If a new fulfillment state is introduced to the solution, ensure that the state is mapped
appropriately in the Order Lifecycle Manager entity in the
OracleComms_OSM_0O2A COM_Base cartridge. If you need to add or change any
mappings, you must first unseal the OracleComms_OSM_0O2A_ COM_Base cartridge.
Oracle recommends resealing the cartridge after you have made your changes. See the
information about the Order Lifecycle Manager entity in the Design Studio Modeling OSM
Processes Help for more information about viewing and changing these mappings.

7. Package and deploy the Order-to-Activate composite cartridge.

External Fulfillment States

In Order-to-Activate cartridges, the following structure in the order template is required for
processing fulfillment states to support revision of orders. The default location for this structure
is in the root level of the order data. The data elements (as opposed to the structure elements)
are indicated in bold below. These values should be populated by the task that handles the
interaction with the external system.

OrderLifeCycleManagement
OrderItemStatus
BaseLineld
LineType
LineName
OrderItemComponentStatus
componentKey
componentType
systemType
MilestoneStatusRecord
StatusTimestamp
ExternalFulfillmentStateCode
MilestoneCode
ExecutionMode
componentId
compensationId
Status
Code
Description

See the information about modeling order template structures for fulfillment states in the OSM
Developer's Guide for more information.

Fulfillment State Extension Point Interface

ORACLE

The Order-to-Activate cartridges use XQuery resources to perform functions including setting
order item properties, mapping product specifications to fulfillment patterns, managing
fulfillment function dependencies, and managing the order life cycle. One way to customize
XQueries is to rewrite or add to the out-of-box XQuery module and use the XML catalog to
enable URI reference mapping. Extension points are defined for both fulfillment functions and
fulfillment states. This section contains information about the fulfillment state extension points.

5-75

Chapter 5
Configuring Fulfillment States

For information about the fulfillment function extension points, see "Fulfillment Function
Extension Point Interface.”

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With the use of
solution cartridges, multiple solutions can be deployed to a single system and coexist with

each other.

An XQuery extension script must be implemented in a standalone file. The file URI must be
registered to the extension configuration.

Fulfillment State Extension Point Overview

Table 5-53 lists the XQuery extension points for fulfilment states in the Order-to-Activate

cartridges.

Table 5-53 Fulfillment State Extension Points

Fulfillment State Extension Point

Description

ORDERITEM_FULFILLMENT_STATE_U
PDATED

ORDERITEM_FULFILLMENT_STATE_UPDATED is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state for an
order item. This extension point overrides the default evaluation of the order item
composite fulfillment state modeled in COM_OrderltemStateCompositionRule to
support an order with no order items (order items had been dropped during
revision), and to support the completion of a cancellation order.

ORDER_FULFILLMENT_STATE_UPDA
TED

ORDER_FULFILLMENT_STATE_UPDATED is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state for an
order. This extension point overrides the default evaluation of the order
composite fulfillment state modeled in COM_OrderStateCompositionRule to
support an order with no order items (order items had been dropped during
revision), and to support the completion of a cancellation order.

ORDER_STATUS

ORDER_STATUS at the order level is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for the order. This
extension point provides order status to the upstream system.

ORDER_STATUS at the order item level is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for an order item.
This extension point provides order item status to the upstream system.

ORDER_STATUSCONTEXT

ORDER_STATUSCONTEXT is triggered when the OSM fulfillment state engine
finishes evaluation of the composite fulfillment state for the order. This extension
point provides order status context to the upstream system.

ORDERITEM_MILESTONE

ORDERITEM_MILESTONE is triggered when the OSM fulfillment state engine
finishes evaluating the composite fulfillment state for an order item. This
extension point calculates the order item milestone, taking order cancellation into
consideration.

ORDERITEM_STATUSCONTEXT

ORDERITEM_STATUSCONTEXT is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order item. This
extension point provides order item status context to the upstream system.

REPORT_ORDERITEM_STATUS

REPORT_ORDERITEM_STATUS is triggered when the OSM fulfillment state
engine finishes calculating the composite fulfillment state for an order item. This
extension point is not currently being used in the Order-to-Activate cartridges.

REPORT_ORDERITEM_MILESTONE

REPORT_ORDERITEM_MILESTONE is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for an order item.
This extension point overrides the default milestone when handling a cancellation
order.

ORACLE

5-76

Chapter 5
Configuring Fulfilment States

Table 5-53 (Cont.) Fulfillment State Extension Points

e ___|
Fulfillment State Extension Point Description

EXT

REPORT_ORDERITEM_STATUSCONT | REPORT_ORDERITEM_STATUSCONTEXT is triggered when the OSM

fulfillment state engine finishes calculating the composite fulfillment state for an
order item. This extension point overrides the default evaluation of the order item
composite fulfillment state modeled in COM_OrderltemStateCompositionRule to
support different order item status contexts for failed order items with different
order fulfillment modes.

Fulfillment state extension points provide a means to handle additional context, such as
fulfilment mode and order types (cancel order, revision order, etc), in Order-to-Activate
cartridges. This enables you to alter the default behavior modeled in both order composition
rules and order item composition rules.

For example, in the ORDER_FULFILLMENT_STATE_UPDATED fulfillment state extension
point, the order fulfillment state is changed from what is configured in the
COM_0OrderStateCompositionRule for the following scenarios:

e If an order has no child order items (because existing lines were dropped in a revision
order), the order fulfillment state should be CANCELLED (fulfilment mode CANCEL) or
COMPLETED (fulfillment mode DELIVER) instead of PENDING.

e If an order is in progress, the order fulfilment state should be IN_ PROGRESS regardless
of whether all of the order items have been completed.

e If an order is completed, the order fulfillment state should be COMPLETE or, if the order's
fulfillment mode is CANCEL, CANCEL COMPLETE.

ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point

This section describes the XQuery script that implements the logic to handle the
ORDERITEM_FULFILLMENT_STATE_UPDATED extension point. The extension point detects
an orphaned order item and sets the fulfillment state value for the orphaned order item. For
example, an order item might have no child order item and may not invoke any components
(possibly because the order itself does not have any lines in its base order, or because existing
lines or components have been removed due to an order amendment). The core fulfillment
state engine will not update the order item's fulfillment state, and the order item fulfillment state
will remain as PENDING (if no order line was present) or IN_PROGRESS (if an order line has
been started but has been removed by an order amendment). In either case, the actual
fulfillment state of this order depends on the type of operation (CANCEL or DELIVER). Ifitis
CANCEL, this script changes the fulfillment state of the orphaned order item to CANCELLED.
If the operation is DELIVER, the script changes the fulfillment state of the orphaned order item
to COMPLETED.

Table 5-54 lists the input parameters for the extension point XQuery.

Table 5-54 ORDERITEM_FULFILLMENT_STATE_UPDATED Input Parameters

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable Order item's current composite fulfillment state

ORACLE

5-77

Chapter 5
Configuring Fulfillment States

Table 5-54 (Cont.) ORDERITEM_FULFILLMENT_STATE_UPDATED Input Parameters
e

Name

Type Scope Description

$orderEventType

Xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the

Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

$hasChildLines

Xxs:boolean External variable True to indicate this order item has children,
otherwise false

$hasComponents

xs:boolean External variable True to indicate this order item is contained in
fulfilment function, otherwise false

element() Context node The OrderLifeCycleManagement/
OrderltemStatus XML fragment for the order
item

Table 5-55 lists the return parameters for the extension point XQuery.

Table 5-55 ORDERITEM_FULFILLMENT_STATE_UPDATED Return Parameters
e

Output Parameter Type Description

xs:string

Calculated fulfillment state to be set for the orphaned order item

ORACLE

Example 5-22 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-
state-extension/OnOrderitemFulfillmentStateUpdated.xquery that demonstrates the
extension implementation.

Example 5-22 ORDERITEM_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

import module namespace osmpiplog = "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog/LogModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant =
"jJava:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateCon
stant";

declare variable S$fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable S$orderOperationType as xs:string external;

5-78

Chapter 5
Configuring Fulfilment States

declare variable ShasChildLines as xs:string external;
declare variable ShasComponents as xs:string external;

declare variable $MODULE NAME := "OnOrderItemFulfillmentStateUpdate";

declare variable $ORDER _EVENT CANCELLED :=
fulfillmeneStateConstant:ORDER_EVENT_CANCELLED();

declare variable $ORDER _EVENT UPDATE := fulfillmeneStateConstant:ORDER EVENT UPDATE();
declare variable $ORDER_EVENT COMPLETE :=
fulfillmeneStateConstant:ORDER_EVENT_COMPLETE();

declare variable SORDER_OPERATION NORMAL :=
fulfillmeneStateConstant:ORDER_OPERATION_NORMAL();
declare variable SORDER_OPERATION CANCEL :=
fulfillmeneStateConstant:ORDER_OPERATION_CANCEL();

declare variable $HAS CHILDS := fulfillmeneStateConstant:HAS CHILDS();
declare variable $HAS_COMPONENT = fulfillmeneStateConstant:HAS_COMPONENTS();

let ScalculatedFulfillmentState :=
if ($hasChildLines != $HAS CHILDS and $hasComponents != $HAS COMPONENT)
then
(

: No current status can be detects from components or children lines, meaning
this line don't invoke any component
: and also no children line exists, set the status to cancelled if this is
cancel order operation or set the status to complete if
: this is not cancel operation
1)
if ($orderEventType = (SORDER EVENT UPDATE, $SORDER _EVENT COMPLETE))
then
(
if (SorderOperationType = SORDER _OPERATION CANCEL)
then $o2acomfulfillmentstate:CANCELLED STATE
else $o2acomfulfillmentstate:COMPLETE STATE
)
else $o2acomfulfillmentstate:CANCELLED STATE
)
else $fulfillmentState
return
$calculatedFulfillmentState

ORDER_FULFILLMENT_STATE_UPDATED Extension Point

ORACLE

This section describes the XQuery script that implements the logic to handle the
ORDER_FULFILLMENT_STATE_UPDATED extension point. This extension point overrides
the default calculation result that is based on the COM_OrderStateCompositionRule defined in
cartridge OracleComms_OSM_O2A_FulfillmentPatternMap_Sample. The
COM_OrderStateCompositionRule only defines the basic aggregation rule that is based on
children order item's fulfilment state and does not consider the current order's operation and
event.

For example, if an order has no child order items, it maybe because the order itself does not
have any base order items, or because the existing order items were dropped during revision.
The server Fulfillment state engine may not update the order level fulfilment state or will
calculate the order level fulfilment state as PENDING (If no line has started) or
IN_PROGRESS (If line has been started but now get dropped). In either case, the actual
fulfillment state of this order should depends on the type of operation (CANCEL or DELIVER)

5-79

Chapter 5
Configuring Fulfillment States

and if is CANCEL then this script will override it to CANCELLED or if it is DELIVER then the
script will override it to COMPLETED.

Given another example where the fulfillment state engine calculates a CANCEL or
COMPLETE state but the order is still in progress state (detected

with $orderEventType=ORDER_EVENT_UPDATE), the override value in this case is
IN_PROGRESS since the order is still in the middle of processing.

ORDER_EVENT_COMPLETE can be due to DELIVER COMPLETE or DELIVER COMPLETE
of a CANCEL order. In this case, operation type is used to detect if it is a normal COMPLETE
or CANCEL COMPLETE.

Table 5-56 lists the input parameters for the extension point XQuery.

Table 5-56 ORDER_FULFILLMENT_STATE_UPDATED Input Parameters

Name

Type

Scope

Description

$fulfillmentMode

Xs:string

External variable

Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState

Xs:string

External variable

Order item's current composite fulfillment state

$orderEventType

Xs:string

External variable

The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType

Xs:string

External variable

ORDER_OPERATION_CANCEL is set if the
Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

$hasChildLines

xs:boolean

External variable

True to indicate this order item has children,
otherwise false

element()

Context node

The OrderLifeCycleManagement XML
fragment

Table 5-57 lists the return parameters for the extension point XQuery.

Table 5-57 ORDER_FULFILLMENT_STATE_UPDATED Return Parameters

Output Parameter Type

Description

Xs:string

Calculated fulfillment state for the order

Example 5-23 is a code fragment from OracleComms_OSM_0O2A_Configuration/fulfillment-
state-extension/OnOrderFulfillmentStateUpdated.xquery that demonstrates the extension
implementation.

Example 5-23 ORDER_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate

"http://xmlns.oracle.com/communications/

ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/

ORACLE

5-80

Chapter 5
Configuring Fulfilment States

FulfillmentStateConstantModule.xquery";

declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateCon
stant";

declare variable S$fulfillmentMode as xs:string external;
declare variable S$fulfillmentState as xs:string external;
declare variable S$fulfillmentState as xs:string external;
declare variable SorderOperationType as xs:string external;
declare variable ShasChildLines as xs:string external;

declare variable $ORDER _EVENT CANCELLED :=
fulfillmeneStateConstant:ORDER_EVENT_CANCELLED();

declare variable $ORDER _EVENT UPDATE := fulfillmeneStateConstant:ORDER EVENT UPDATE();
declare variable $ORDER_EVENT COMPLETE :=
fulfillmeneStateConstant:ORDER_EVENT_COMPLETE();

declare variable SORDER_OPERATION NORMAL :=
fulfillmeneStateConstant:ORDER_OPERATION_NORMAL();

declare variable SORDER_OPERATION CANCEL :=
fulfillmeneStateConstant:ORDER_OPERATION_CANCEL();

declare variable $HAS CHILDS := fulfillmeneStateConstant:HAS CHILDS();

let $calculatedFulfillmentState :=
if (ShasChildLines != $HAS CHILDS)
then
(
(: No child lines detected :)
if (SorderEventType = $ORDER_EVENT UPDATE)
then $o2acomfulfillmentstate:IN PROGRESS STATE
else if (SorderEventType = SORDER _EVENT COMPLETE)
then
(
(: This is an order complete event,
if this is a normal order completion, the status is complete.
if this is a cancel order completion, the status is canceled.
:)
if ($orderOperationType = SORDER _OPERATION NORMAL)
then $o2acomfulfillmentstate:COMPLETE STATE
else $o2acomfulfillmentstate:CANCELLED STATE
)
else $o2acomfulfillmentstate:CANCELLED STATE
)
else if($fulfillmentState =
($So2acomfulfillmentstate:COMPLETE STATE, SoZacomfulfillmentstate:CANCELLED STATE))
then
(
(: Children line exist and all completed or cancelled
However if the event is not an order complete or cancelled even than need
to switch the status back to in progress
1)
if (SorderEventType != SORDER EVENT COMPLETE and $orderEventType !
= SORDER_EVENT CANCELLED)
then $o2acomfulfillmentstate:IN PROGRESS STATE
else $fulfillmentState
)
else
(
if (SorderEventType = $ORDER _EVENT COMPLETE)
then
(
if (SorderOperationType = SORDER_OPERATION CANCEL)
then

ORACLE 5.81

Chapter 5
Configuring Fulfillment States

(
(: An OSM order get cancelled by AIA or Admin then always set the order
status to cancelled :)
$o02acomfulfillmentstate:CANCELLED STATE
)
else (
(: Only set status to complete if it is not failed.
: So OPEN and IN PROGRESS will forced to COMPLETE but FAILED will be
remained.
1)
if ($fulfillmentState != So2acomfulfillmentstate:FAILED STATE)
then So2acomfulfillmentstate:COMPLETE STATE
else $fulfillmentState
)

)
else SfulfillmentState

)
return
ScalculatedFulfillmentState

ORDER_STATUS Extension Point

This section describes the XQuery script that implements the logic to handle the
ORDER_STATUS extension point. This extension point generates the upstream expected
status value for the order or order item. The generated value is based on the current composite
fulfillment state value of the order or order item.

The mapping between the composite fulfillment state and the upstream status is defined in
OracleComms_OSM_O2A_Configuration/solution-config/OrderStatusMap.xml.

Table 5-58 lists the input parameters for the extension point XQuery.

Table 5-58 ORDER_STATUS Input Parameters
- ______________________________ |

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable Current composite fulfillment state of the order
or order item

$componentType Xs:string External variable Should be set to OrderLifecycleManagement

$systemType Xs:string External variable Should be set to CRM

element() Context node OrderLifeCycleManagement/

OrderltemStatus XML fragment if this is
invoked for an order item or
OrderLifeCycleManagement XML fragment if
this is invoked for an order

Table 5-59 lists the return parameters for the extension point XQuery.

Table 5-59 ORDER_STATUS Return Parameters
-]

Output Parameter Type Description
Xs:string Calculated status value
ORACLE

5-82

Chapter 5
Configuring Fulfilment States

Example 5-24 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-
state-extension/OrderStatus.xquery that demonstrates the extension implementation.

Example 5-24 ORDER_STATUS XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule” at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/
OrderAndOrderItemStatueContextModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant =
"jJava:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateCon
stant";

declare variable S$fulfillmentMode as xs:string external;

declare variable $fulfillmentState as xs:string external;

declare variable ScomponentType as xs:string external;

declare variable S$systemType as xs:string external;

statusctxmapmodule:getOrderStatus ($fulfillmentMode, S$fulfillmentState, ScomponentType, $s
ystemType)

ORDER_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the
ORDER_STATUSCONTEXT extension point. This extension point generates the upstream
expected description value to the status for Order. The generated value is based on the current
composite fulfillment state value of the Order.

The status context is defined in OracleComms_OSM_0O2A_Configuration/solution-config/
OrderStatusContextMap.xml.

Table 5-60 lists the input parameters for the extension point XQuery.

Table 5-60 ORDER_STATUSCONTEXT Input Parameters
e

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable The order item's current composite fulfillment
state

$orderEventType Xs:string External variable The event type when this extension is

triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the
Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

ORACLE - g3

Chapter 5
Configuring Fulfillment States

Table 5-60 (Cont.) ORDER_STATUSCONTEXT Input Parameters

Name Type Scope Description
$doubleFailure xs:boolean External variable True to indicate this Order is in Fallout during a
revision
element() Context node The OrderLifeCycleManagement XML
fragment

Table 5-61 lists the return parameters for the extension point XQuery.

Table 5-61 ORDER_STATUSCONTEXT Return Parameters
|

Output Parameter Type Description

Xs:string

Calculated description of the current order status

ORACLE

Example 5-25 is a code fragment from OracleComms_OSM_0O2A_Configuration/fulfillment-
state-extension/OrderStatusContext.xquery that demonstrates the extension
implementation.

Example 5-25 ORDER_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule™ at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/
OrderAndOrderItemStatueContextModule.xquery";

import module namespace osmpiplog = "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog/LogModule.xquery";

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant™ at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateCon
stant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable SorderOperationType as xs:string external;
declare variable S$doubleFailure as xs:string external;

declare variable $IS DOUBLE FAILURE := fulfillmeneStateConstant:DOUBLE FAILURE TRUE () ;
declare variable SORDER _OPERATION CANCEL :=
fulfillmeneStateConstant:0RDER OPERATION CANCEL();

declare variable $ORDER EVENT CANCELLED :=
fulfillmeneStateConstant:ORDER EVENT CANCELLED();

declare variable STRUE := "TRUE";
declare variable SFALSE := "FALSE";
declare variable $MODULE NAME := "OrderStatusContext";

declare function local:hasOrderItemCancelled(
SorderItemsFulfilmentState as element()) as xs:boolean

5-84

Chapter 5
Configuring Fulfillment States

fn:exists (SorderItemsFulfilmentState/
oms:fulfillmentState[text ()=So02acomfulfillmentstate:CANCELLED STATE])

ti

declare function local:isAllOrderItemFailed(
SorderItemsFulfilmentState as element()) as xs:boolean

let S$itemCount := fn:count (SorderItemsFulfilmentState/oms:fulfillmentState)
let S$failCount := fn:count (SorderItemsFulfilmentState/
oms:fulfillmentState[text ()=So02acomfulfillmentstate:FAILED STATE])
return
if (SitemCount = S$failCount)
then fn:true()
else fn:false()
i

let SorderItemsFulfilmentState :=
return
(
let S$statusStatelInfo :=
<oms:StatusStateInfo>
{
if ($fulfillmentState = $o2acomfulfillmentstate:COMPLETE STATE)
then
(
<oms:statusState>
{
if (local:hasOrderItemCancelled(SorderItemsFulfilmentState)=fn:true|()
then fulfillmeneStateConstant:COMPLETE_WITH_CANCELLED()
else fulfillmeneStateConstant:COMPLETE_ALL_COMPLETE()
}
</oms:statusState>
)
else if ($fulfillmentState = $o2acomfulfillmentstate:FAILED STATE)
then
(
<oms:statusState>
{
if ($orderOperationType = SORDER_OPERATION CANCEL or $doubleFailure
= $IS_DOUBLE FAILURE)
then fulfillmeneStateConstant:FAILED_REVISION_FAILED()
else
(
if (local:isAllOrderItemFailed(SorderItemsFulfilmentState)=fn:true())
then fulfillmeneStateConstant:FAILED_ALL_FAILED()
else fulfillmeneStateConstant:FAILED_PARTIAL_FAILED()

}
</oms:statusState>
)
else if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED STATE)
then
(
<oms:statusState>
{
if (SorderEventType = $ORDER_EVENT CANCELLED)
then fulfillmeneStateConstant:CANCELLED_BY_ADMIN()
else fulfillmeneStateConstant:CANCELLED_BY_UPSTREAM()
}
</oms:statusState>,
<oms:hasOrderItems>

ORACLE 5-85

Chapter 5
Configuring Fulfillment States

if (fn:exists(SorderItemsFulfilmentState/oms:fulfillmentState))
then $TRUE
else SFALSE

}

</oms:hasOrderItems>

)

else ()

}
</oms:StatusStateInfo>

return

statusctxmapmodule:getOrderStatusContext ($fulfillmentMode, $fulfillmentState, $statusStat
eInfo)

)

ORDERITEM_MILESTONE Extension Point

This section describes the XQuery script that implements the logic to handle the
ORDERITEM_MILESTONE extension point. This extension point generates the upstream
expected milestone value to the order item. The implementation for this script is to calculate
the milestone value (expected by the upstream CRM system) based on the calculated
fulfillment state value and the last reported milestone. For a fulfilment state value equal to
CANCELLED, the milestone code is the last milestone code before the cancel was applied to
this order item. For other fulfillment states, the milestone code is the current latest milestone
code injected by Order-to-Activate or reported from external system.

Also if none of the components invoked by this order item has started then if fulfillment state
value equals to CANCELLED, the milestone code

is $02acomfulfillmentstate:NOTSTARTED_MILESTONE, and for all other fulfillment state
value, the milestone code is $02acomfulfillmentstate:NO_MILESTONE.

Table 5-62 lists the input parameters for the extension point XQuery.

Table 5-62 ORDERITEM_MILESTONE Input Parameters
e __|

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable The order item's current composite fulfillment
state.

$orderEventType Xs:string External variable The event type when this extension is

triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the
Oracle AlA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

$milestoneCode Xs:string External variable The prior milestone code of the order item

ORACLE -

Chapter 5
Configuring Fulfilment States

Table 5-62 (Cont.) ORDERITEM_MILESTONE Input Parameters
|

Name Type Scope Description
$orderltemComponentfulfillment xs:string External variable The most recent fulfillment state updated from
State the order component
element() Context node The OrderLifeCycleManagement XML
fragment

Table 5-63 lists the return parameters for the extension point XQuery.

Table 5-63 ORDERITEM_MILESTONE Return Parameters
|

Output Parameter Type Description

Xs:string

Calculated milestone value for the current order item

ORACLE

Example 5-26 is a code fragment from OracleComms_OSM_0O2A_Configuration/fulfillment-
state-extension/OrderltemMilestone.xquery that demonstrates the extension
implementation.

Example 5-26 ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

import module namespace osmpiplog = "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog/LogModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable SorderOperationType as xs:string external;

declare variable $MODULE NAME := "OrderItemMilestone";

: Current fulfillment state is not cancelled then calculate the latest milestone of
this line for this time being.
1)
declare function local:getLatestMilestoneFromComponents (
SorderItemStatus as element()?) as xs:string
{
if (fn:exists(SorderItemStatus/oms:OrderItemComponentStatus))
then
(
let $lookupIndex := fn:max(SorderItemStatus/oms:OrderItemComponentStatus/
oms:MilestoneStatusRecord/oms:Status/oms:Code/@index)
let $latestMilestoneStatusRecord := SorderItemStatus/
oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status/oms:Code/
@index=$lookupIndex]
return
SlatestMilestoneStatusRecord/oms:MilestoneCode/text ()
)
else $o2acomfulfillmentstate:NO MILESTONE

5-87

Chapter 5
Configuring Fulfillment States

ti

declare function local:getLastMilestoneCodeBeforeCancel (
SorderItemStatus as element()?) as xs:string
{
if (fn:exists(SorderItemStatus/oms:OrderItemComponentStatus))
then
(
let $lookupIndex := fn:min(SorderItemStatus/oms:OrderItemComponentStatus/
oms:MilestoneStatusRecord/oms:Status/
oms:Code [text ()=$02acomfulfillmentstate:CANCELLED STATE]/@index)
let ScancelledMilestoneStatusRecord := SorderItemStatus/
oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status/oms:Code/
@index=$1lookupIndex]
let SmilestoneStatusRecordBeforeCancelled := ScancelledMilestoneStatusRecord/
preceding-sibling::oms:MilestoneStatusRecord[1]
return
if (fn:exists(SmilestoneStatusRecordBeforeCancelled))
then SmilestoneStatusRecordBeforeCancelled/oms:MilestoneCode/text ()
else $o2acomfulfillmentstate:NOTSTARTED MILESTONE
)
else $o2acomfulfillmentstate:NOTSTARTED MILESTONE
i

let SorderItemStatus := .

return
if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED STATE)
then local:getLastMilestoneCodeBeforeCancel ($SorderItemStatus)
else local:getLatestMilestoneFromComponents ($orderItemStatus)

ORDERITEM_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the
ORDERITEM_STATUSCONTEXT extension point. This extension point generates the
upstream expected description value to the status for order item. The generated value is based
on the current composite fulfillment state value of the order item. The implementation for this
script is to calculate the status context (Description of status) value (expected by the upstream
CRM system) based on the calculated fulfillment state value and the current calculated
milestone (The milestone code calculated by the XQuery registered to extension
ORDERITEM_MILESTONE).

For fulfillment state value equals to FAILED, the status context is the error message map
defined in OracleComms_OSM_0O2A_Configuration/solution-config/OrderMessageMap.xml.

For all other fulfillment state, the status context is the milestone code append with the string
define in OracleComms_OSM_0O2A_Configuration/solution-config/
OrderltemStatusContextMap.xml

Table 5-64 lists the input parameters for the extension point XQuery.

Table 5-64 ORDERITEM_STATUSCONTEXT Input Parameters

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable The order item'’s current composite fulfillment
state

ORACLE

5-88

Chapter 5
Configuring Fulfilment States

Table 5-64 (Cont.) ORDERITEM_STATUSCONTEXT Input Parameters

Name

Type Scope Description

$orderEventType

Xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the

Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is

set.
$milestoneCode Xs:string External variable The current milestone code of the order item
element() Context node The OrderLifeCycleManagement XML
fragment

Table 5-65 lists the return parameters for the extension point XQuery.

Table 5-65 ORDERITEM_STATUSCONTEXT Return Parameters

___|
Output Parameter Type Description

xs:string

Calculated description of the current order item status

ORACLE

Example 5-27 is a code fragment from OracleComms_OSM_0O2A_Configuration/fulfillment-
state-extension/OrderltemStatusContextForDeliver.xquery that demonstrates the
extension implementation.

Example 5-27 ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule” at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/
OrderAndOrderItemStatueContextModule.xquery";

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

import module namespace osmpiplog = "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/
ordermanagement/pip/omspiplog/LogModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare variable S$fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable S$SorderOperationType as xs:string external;

declare variable S$milestoneCode as xs:string external;

declare variable $MODULE_NAME := "OrderItemStatusContextForDeliver";

5-89

Chapter 5
Configuring Fulfillment States

For DELIVER, CANCEL fulfilllmentMode order, only return the last reported lifecycle
if that is failure.

1)
declare function local:getLatestFailedMilestoneStatusRecordsFromComponent (
SorderItemComponentStatus as element()) as element()?

let $lookupIndex := fn:max($SorderItemComponentStatus/oms:MilestoneStatusRecord/
oms:ExternalFulfillmentStateCode/@index)
let $latestMilestoneStatusRecord := SorderItemComponentStatus/
oms:MilestoneStatusRecord[oms:ExternalFulfillmentStateCode/@index=5$1ookupIndex]
return
if (SlatestMilestoneStatusRecord/oms:ExternalFulfillmentStateCode/
text ()=$o2acomfulfillmentstate:FAILED STATE)
then
(
<oms:OrderItemComponentStatus>
<oms:componentKey>{ S$SorderItemComponentStatus/oms:componentKey/text () }</
oms: componentKey>
<oms:componentType>{ $orderItemComponentStatus/oms:componentType/text () }</
oms:componentType>
<oms:systemType>{ SorderItemComponentStatus/oms:systemType/text () }</
oms:systemType>
{
$latestMilestoneStatusRecord
}
</oms:0OrderItemComponentStatus>
)

else ()

Concatenate all translated error message from all components that is currently failed.
1)

declare function local:getStatusContextForFailedFulfillmentState (

SorderItemStatus as element()) as xs:string

if (fn:exists(SorderItemStatus/oms:OrderItemComponentStatus))
then
(
let $allOrderItemComponentStatus := SorderItemStatus/oms:OrderItemComponentStatus
let $allFailedComponent :=
<oms:AllFailedComponents>
{
for SorderItemComponentStatus in $allOrderItemComponentStatus
return
local:getlatestFailedMilestoneStatusRecordsFromComponent ($SorderItemComponentStatus)
}
</oms:AllFailedComponents>
let $allFailedStatusContext :=
<oms:AllFailedStatusContext>
{

for $failedComponent in $allFailedComponent/oms:OrderItemComponentStatus

let $failedRecord := $failedComponent/oms:MilestoneStatusRecord
return
if ($failedRecord/oms:Status/oms:Description/text()!="")
then

(
let SerrorMsg :=
statusctxmapmodule:translateErrorMessage ($failedComponent/oms:componentType/
text (), S$failedComponent/oms:systemType/text (), $failedRecord/oms:Status/oms:Description/

ORACLE 5-90

Chapter 5
Configuring Fulfilment States

text ())
return
<oms:context>{ fn:concat ($failedRecord/oms:MilestoneCode/text(),":
", SerrorMsg) }</oms:context>
)
else ()
}
</oms:AllFailedStatusContext>
return
if (fn:exists($allFailedStatusContext/oms:context))
then fn:string-join($allFailedStatusContext/oms:context/text(), ", ")
else ""

)

else nn
ti

let SorderItemStatus := .
return
if ($fulfillmentState = $o2acomfulfillmentstate:FAILED STATE)
then local:getStatusContextForFailedFulfillmentState (SorderItemStatus)
else
statusctxmapmodule:getOrderItemStatusContext ($fulfillmentMode, S$fulfillmentState, $milest
oneCode)

REPORT_ORDERITEM_STATUS Extension Point

This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_STATUS extension point. This extension point enhances the
upstream expected status value of the given order item. The enhanced value will then be
updated to order item status field.

Table 5-66 lists the input parameters for the extension point XQuery.

Table 5-66 REPORT_ORDERITEM_STATUS Input Parameters
- ______________________ |

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable The order item's current composite fulfillment
state

$orderEventType Xs:string External variable The event type when this extension is

triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the
Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

ORACLE - o1

Chapter 5
Configuring Fulfillment States

Table 5-66 (Cont.) REPORT_ORDERITEM_STATUS Input Parameters
|

Name Type Scope Description
$orderltem Java Object External variable oracle.communications.ordermanagement.fulfil
Imentstatelifecycle.OrderltemFulfillmentStateLif
ecycle
element() Context node The OrderLifeCycleManagement XML
fragment

Table 5-67 lists the return parameters for the extension point XQuery.

Table 5-67 REPORT_ORDERITEM_STATUS Return Parameters
|

Output Parameter Type Description
Xs:string The decorated status value of this order item.

¢ Note:

This extension point is not used in current Order-to-Activate implementation.

REPORT_ORDERITEM_MILESTONE Extension Point

This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_MILESTONE extension point. This extension point enhances the
upstream expected milestone value of the given order item. The enhanced value will then be

updated to order item milestone field.

The implementation for this script is to override the milestone value which is generated by the
XQuery registered to extension ODERITEM_MILESTONE. Due to Oracle AIA requirements, if
the order item's fulfillment state is cancelled then the milestone value set to upstream must be

empty.

Table 5-68 lists the input parameters for the extension point XQuery.

Table 5-68 REPORT_ORDERITEM_MILESTONE Input Parameters
e

Name Type Scope Description

$fulfillmentMode Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState Xs:string External variable The order item's current composite fulfillment
state

ORACLE = 9o

Chapter 5
Configuring Fulfilment States

Table 5-68 (Cont.) REPORT_ORDERITEM_MILESTONE Input Parameters
|

Name Type Scope Description

$orderEventType Xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the
Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

$orderltem Java Object External variable oracle.communications.ordermanagement.fulfil
Imentstatelifecycle.OrderltemFulfillmentStateLif
ecycle

element() Context node The OrderLifeCycleManagement XML

fragment

Table 5-69 lists the return parameters for the extension point XQuery.

Table 5-69 REPORT _ORDERITEM_MILESTONE Return Parameters
|

Output Parameter Type Description

xs:string

The decorated milestone value of this order item.

ORACLE

Example 5-28 is a code fragment from OracleComms_OSM_0O2A_Configuration/fulfillment-
state-extension/OnReportMilestoneDeliver.xquery that demonstrates the extension
implementation.

Example 5-28° REPORT_ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

declare namespace orderitem =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFulfillmen
tStatelLifecycle";

declare variable S$fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable S$SorderOperationType as xs:string external;
declare variable S$orderItem external;

let $fulfillmentState := orderitem:getFulfillmentState (SorderItem)

return
if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED STATE)

5-93

Chapter 5
Configuring Fulfillment States

then nn
else orderitem:getLatestMilestoneCode (SorderItem)

REPORT_ORDERITEM_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_STATUSCONTEXT extension point. This extension point enhances
the upstream expected status context (Description) value of the given order item. The
decorated value will then be updated to order item status context field.

The implementation for this script is to decorate the status context value which is generated by
the XQuery registered to extension ORDERITEM_STATUSCONTEXT.

For DELIVER and CANCEL, if an order item's fulfillment state is FAILED and if the failure is not
by the order item itself (Not fail due to its invoking component) then populate a message to
indicate the failure is caused by its children, otherwise concatenate the milestone value and
the status context value.

Table 5-70 lists the input parameters for the extension point XQuery.

Table 5-70 REPORT_ORDERITEM_STATUSCONTEXT Input Parameters
T

Name

Type Scope Description

$fulfillmentMode

Xs:string External variable Fulfillment mode of the sales order (DELIVER,
CANCEL, or TSQ)

$fulfillmentState

Xs:string External variable The order item's current composite fulfillment
state

$orderEventType

xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE.
ORDER_EVENT_UPDATE is set if this is
triggered within the fulfillment function's Sub-
process's automation task.
ORDER_EVENT_COMPLETE is set if this is
triggered within OSM order complete event
handler.

$orderOperationType Xs:string External variable ORDER_OPERATION_CANCEL is set if the

Oracle AIA order is doing a cancel operation
no matter the cancel is triggered from
upstream or from an OSM web client,
otherwise ORDER_OPERATION_NORMAL is
set.

$orderitem

Java Object External variable oracle.communications.ordermanagement.fulfill
mentstatelifecycle.OrderltemFulfillmentStateLif
ecycle

element() Context node The OrderLifeCycleManagement XML
fragment

Table 5-71 lists the return parameters for the extension point XQuery.

Table 5-71 REPORT_ORDERITEM_STATUSCONTEXT Return Parameters
e

Output Parameter Type Description

Xs:string

The decorated status context value of this order item

ORACLE

5-94

Chapter 5
Adding a New Service for the Calculate Service Order Solution Option

Example 5-29 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-
state-extension/OnReportStatusContextForDeliver.xquery that demonstrates the extension
implementation.

Example 5-29 REPORT_ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/
ordermanagement/o2acom/fulfillmentstate/constant” at "http://xmlns.oracle.com/
communications/ordermanagement/o2acom/fulfillmentstate/constant/
FulfillmentStateConstantModule.xquery";

declare namespace orderItem =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFulfillmen
tStatelLifecycle";

declare variable S$fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable SorderEventType as xs:string external;
declare variable S$SorderOperationType as xs:string external;
declare variable S$orderItem external;

let S$fulfillmentState := orderItem:getFulfillmentState ($orderItem)

let Smilestone := orderItem:getlLatestMilestoneCode (SorderItem)
let $statusContext := orderItem:getStatusContext (SorderItem)
return

if (SfulfillmentState =
(So2acomfulfillmentstate:FAILED STATE, S$o2acomfulfillmentstate:CANCELLED STATE))
then $statusContext
else
(
if (fn:exists(Smilestone) and fn:exists($statusContext) and $milestone != ""
and $statusContext != "")
then fn:concat ($milestone, ": ", S$statusContext)
else ""

Adding a New Service for the Calculate Service Order Solution

Option

ORACLE

This procedure describes how to add a new service such as broadband, VoIP, or TV to an
Order-to-Activate solution cartridge when you are using the calculate service order option. In
this example, the new service would work with new Design Studio elements such as a new
product specification, fulfillment pattern, and fulfillment provider. The procedure uses
techniques and resources discussed throughout this chapter. For more information about
performing the actions in this procedure in Design Studio, see the information about adding a
new service in the section on extending component cartridges in the Design Studio Modeling
OSM Orchestration Help.

To add a new service using Design Studio:

1. Inthe workspace containing the central order management cartridges, create a new model
project to contain the conceptual model entities for your new service.

5-95

ORACLE

Chapter 5
Adding a New Service for the Calculate Service Order Solution Option

Note:

If you create a new conceptual model cartridge to contain your new conceptual
model entities, you must add that cartridge in the Common Model Entity
Container field in an appropriate cartridge. For the Calculate Service Order
solution option, add the cartridge to the

OracleComms_OSM_0O2A COM_CSO_Model_Container cartridge for a central
order management (or combined central order management and service order
management) environment, or to

OracleComms_OSM_02A SOM_CSO_ModelContainer for an environment that
contains only service order management.

Configure new conceptual model entities as appropriate for the service you are adding.
This may include adding a new domain or fulfillment pattern or both, and will include
adding a new customer facing service (with a component to create a new named
relationship) and adding a new product. For more information about the conceptual model,
see Design Studio Concepts.

Map your conceptual model product to the appropriate conceptual model fulfillment
pattern.

In the workspace containing the central order management cartridges, create a new Order
and Service Management project to host the new service.

In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution,
rather than as a standalone cartridge with no dependencies.

If the new service will communicate with one or more new external systems, create new
fulfillment providers for the new systems.

See "Adding a New Fulfillment Provider" for more information about adding a fulfillment
provider.

If a new fulfillment provider is introduced for the new service, add decomposition rules for
the new service in the topology cartridge, for example
OracleComms_OSM_O2A_COM_CSO_Topology.

Alternatively, modify existing decomposition rules such as, for example,
DecompFulfillmentFunction_To_FulfillmentProvider for the new service in the topology
cartridge.

In the resources/SolutionConfig folder of the Order-to-Activate composite cartridge, for
example OracleComms_OSM_0O2A_ COM_CSO_Topology, make the following
modifications:

* If new milestones are to be introduced for the new service for new fulfillment provider,
add a new <MilestoneMap> element to the ComponentMilestoneMap.xml file for the
new service without the PONR portion.

For example:

<oms:MilestoneMap systemType="BRM" systemName="*" execMode="do redo amend do">
<oms:ComponentMilestone>COMPONENT-COMPLETE</oms : ComponentMilestone>
<oms:Milestone>SYNC CUSTOMER COMPLETE</oms:Milestone>

</oms:MilestoneMap>

« If a new fulfilment provider is added for the new service, add a hew <targetSystem>
element for each new fulfillment provider instance to the TargetSystemMap.xml file.

5-96

ORACLE

10.

11.

12.

13.

14.

15.

16.

17.

Chapter 5
Adding a New Service for the Calculate Service Order Solution Option

If you are using order transformation manager for your new service, do the following:

a. If you added a new conceptual model domain for your service, add a transformation
manager for the domain.

b. If you want to use a different transformation sequence than the one provided with the
Order-to-Activate cartridges, add and configure that transformation sequence.

c. Create a mapping rule and create mappings for your new named relationship.

Create order item parameter bindings from your new conceptual model product to the
appropriate order item.

Add a new OSM fulfillment pattern that extends from the base specification
BaseProductSpec (or its extended fulfillment pattern) to represent the new service in
central order management. Ensure that your new fulfillment pattern realizes the
appropriate conceptual model fulfilment pattern.

See "Creating a New Fulfillment Pattern" for more information about adding a fulfillment
pattern.

Specify the location of the external directory containing the fulfillment pattern. From the
Window menu, select Preferences, then expand Oracle Design Studio in the
Preferences navigation tree, then select Order and Service Management Preferences,
and then select Orchestration Preferences. Enter the YourCartridgelresources/
productSpecMapping directory in the Product Specification Mapping field.

Add the new central order management cartridge you created for the new service and
other cartridges on which it has dependencies to the Dependency tab for the Order-to-
Activate composite cartridge, for example
OracleComms_OSM_02A_COM_CSO_Solution.

In the workspace containing the service order management cartridges, create new
conceptual model entities for the service order management services. These should
include:

e All of the entities created for central order management: If central order management
and service order management are in separate workspaces, you may want to export
the cartridge containing the new central order management entities from the central
order management workspace and import it into the service order management
workspace.

» Additional entities for service order management: These may include resource facing
services, resources, and technical actions.

For more information about the conceptual model, see Design Studio Concepts

In the workspace containing the service order management cartridges, in the
OracleComms_OSM_02A SOM_CSO_FulfillmentPattern cartridge, add a new fulfillment
pattern that extends from the base specification SOM_Service.Provision (or its extended
fulfillment pattern) to represent the new service in service order management.

See "Creating a New Fulfillment Pattern" for more information about adding a fulfillment
pattern.

Add decomposition rules for the new service in the
OracleComms_OSM_02A SOM_CSO_Topology cartridge for service order management.

Alternatively, modify existing decomposition rules such as
DecompSomProvisionOrder_To_FulfillmentProvider for the new service in the topology
cartridge.

If the new service will communicate with one or more new external systems, create a new
provisioning cartridge similar to OracleComms_OSM_0O2A SOM_CSO_Email_Mapping to
provision the service.

5-97

Chapter 5
Adding a New Service for the Service Option Without Calculate Service Order

18. Add the cartridge you created for the new service and other cartridges on which it has
dependencies to the Dependency tab for the Order-to-Activate composite cartridge.

19. (Optional) In the appropriate workspace, add a new role for your service if desired. If you
add a new role, you must add an entry to the userConfig.xml file for your composite
cartridge by doing the following:

a. Open the Package Explorer view and expand the package for your solution cartridge,
such as OracleComms_OSM_02A COM_CSO_Solution.

b. Expand the userConfig folder and open the userConfig.xml file.

c. Select the Source tab and scroll to the end. Before the closing the </userConfig>
element, add an entry like the following:

<workgroup name="YourRoleName">
<user>oms-automation</user>
<user>osmlf</user>
</workgroup>

20. Ensure that the appropriate orders, fulfilment patterns, and recognition rules are included
in the manifest for the central order management solution cartridge.

21. Ensure that the appropriate orders, fulfilment patterns, and recognition rules are included
in the manifest for the service order management solution cartridge.

22. Package and deploy the Order-to-Activate composite cartridges for both central order
management and service order management.

Adding a New Service for the Service Option Without Calculate
Service Order

This procedure describes how to add a new service such as broadband, VolIP, or TV to an
Order-to-Activate solution cartridge when you are not using the calculate service order option.
In this example, the new service would work with new Design Studio elements such as a new
product specification, fulfilment pattern, and fulfillment provider. The procedure uses
techniques and resources discussed throughout this chapter. For more information about
performing the actions in this procedure in Design Studio, see the information about adding a
new service in the section on extending component cartridges in the Design Studio Modeling
OSM Orchestration Help.

To add a new service using Design Studio:

1. Inthe workspace containing the central order management cartridges, create a new model
project to contain the conceptual model entities for your new service.

Note:

If you create a new conceptual model cartridge to contain your new conceptual
model entities, you must add that cartridge in the Common Model Entity
Container field in an appropriate cartridge. For the solution option without
Calculate Service Order, add the cartridge to the recognition cartridge in your
environment or create a new OSM component cartridge to contain the entries.

2. Configure new conceptual model entities as appropriate for the service you are adding.
This may include adding a new domain or fulfillment pattern or both, and will include
adding a new customer facing service (with a component to create a new named

ORACLE - o8

ORACLE

10.

11.

Chapter 5
Adding a New Service for the Service Option Without Calculate Service Order

relationship) and adding a new product. For more information about the conceptual model,
see Design Studio Concepts.

Map your conceptual model product to the appropriate conceptual model fulfillment
pattern.

In the workspace containing the central order management cartridges, create a new Order
and Service Management project to host the new service.

In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution,
rather than as a standalone cartridge with no dependencies.

If the new service will communicate with one or more new external systems, create new
fulfillment providers for the new systems.

See "Adding a New Fulfillment Provider" for more information about adding a fulfillment
provider.

If a new fulfillment provider is introduced for the new service, add decomposition rules for
the new service in the topology cartridge, for example,

OracleComms_OSM_0O2A TypicalTopology Sample cartridge for central order
management.

Alternatively, modify existing decomposition rules such as, for example,
DecompFulfillmentFunction_To_FulfillmentProvider for the new service in the topology
cartridge.

In the resources/SolutionConfig folder of the Order-to-Activate composite cartridge, for
example OracleComms_OSM_0O2A_ COMSOM_ TypicalSolution, make the following
modifications:

* If new milestones are to be introduced for the new service for new fulfillment provider,
add a new <MilestoneMap> entry to the ComponentMilestoneMap.xml file for the new
service without the PONR portion.

For example:

<oms:MilestoneMap systemType="BRM" systemName="*" execMode="do redo
amend do">
<oms:ComponentMilestone>COMPONENT-COMPLETE</oms : ComponentMilestone>
<oms:Milestone>SYNC CUSTOMER COMPLETE</oms:Milestone>
</oms:MilestoneMap>

« If a new fulfilment provider is added for the new service, add a new <targetSystem>
entry for each new fulfillment provider instance to the TargetSystemMap.xml file.

Create order item parameter bindings from your new conceptual model product to the
appropriate order item.

Add a new OSM fulfillment pattern that extends from the base specification
BaseProductSpec (or its extended fulfillment pattern) to represent the new service in
central order management. Ensure that your new fulfillment pattern realizes the
appropriate conceptual model fulfillment pattern.

See "Creating a New Fulfillment Pattern" for more information about adding a fulfillment
pattern.

Specify the location of the external directory containing the fulfillment pattern. From the
Window menu, select Preferences, then expand Oracle Design Studio in the
Preferences navigation tree, then select Order and Service Management Preferences,
and then select Orchestration Preferences. Enter the appropriate directory, for example,

5-99

ORACLE

12.

13.

14.

15.

16.

17.

18.

Chapter 5
Adding a New Service for the Service Option Without Calculate Service Order

OracleComms_OSM_O02A_FulfillmentPatternMap_Samplelresources/
productSpecMapping, in the Product Specification Mapping field.

Add the new central order management cartridge you created for the new service and
other cartridges on which it has dependencies to the Dependency tab for the Order-to-
Activate composite cartridge, for example
OracleComms_OSM_0O2A_COMSOM_TypicalSolution.

In the workspace containing the service order management cartridges, create new
conceptual model entities for the service order management services. These should
include:

* All of the entities created for central order management: If central order management
and service order management are in separate workspaces, you may want to export
the cartridge containing the new central order management entities from the central
order management workspace and import it into the service order management
workspace.

* Additional entities for service order management: These may include resource facing
services, resources, and technical actions.

For more information about the conceptual model, see Design Studio Concepts.

In the workspace containing the service order management cartridges, in the fulfillment
pattern cartridge for service order management (for example
OracleComms_OSM_0O2A_SomBBVolP_FP_NP_Sample), add a new fulfillment pattern
that extends from the base specification SOM_Service.Provision (or its extended
fulfillment pattern) to represent the new service in service order management.

See "Creating a New Fulfillment Pattern" for more information about adding a fulfillment
pattern.

Add decomposition rules for the new service in the
OracleComms_OSM_0O2A_SomBBVolPFulfillmentPattern_Sample cartridge for service
order management.

Alternatively, modify existing decomposition rules such as
DecompSomProvisionOrder_To_FulfillmentProvider for the new service in the topology
cartridge.

If the new service will communicate with one or more new external systems, create a new
provisioning cartridge similar to OracleComms_OSM_0O2A_SomProvisionVolP_Sample to
provision the service.

Add the cartridge you created for the new service and other cartridges on which it has
dependencies to the Dependency tab for the Order-to-Activate composite cartridge.

(Optional) In the appropriate workspace, add a new role for your service if desired. If you
add a new role, you must add an entry to the userConfig.xml file for your composite
cartridge by doing the following:

a. Open the Package Explorer view and expand the package for your solution cartridge,
such as OracleComms_OSM_0O2A_COMSOM_TypicalSolution.

b. Expand the userConfig folder and open the userConfig.xml file.

c. Select the Source tab and scroll to the end. Before the closing </userConfig> element,
add an entry like the following:

<workgroup name="YourRoleName">
<user>oms-automation</user>
<user>osmlf</user>
</workgroup>

5-100

Chapter 5
Customizing Service Order Management

19. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are included
in the manifest for the central order management solution cartridge.

20. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are included
in the manifest for the service order management solution cartridge.

21. Package and deploy the Order-to-Activate composite cartridges for both central order
management and service order management.

Customizing Service Order Management

The Order-to-Activate cartridges use XQuery resources to perform functions in service order
management including formatting request messages, processing faults, tracking external
system interactions, and processing external fulfilment states. One way to customize XQueries
is to rewrite or add to the out-of-box XQuery module and use the XML catalog to enable URI
reference mapping. Extension points are defined for both service order management and
central order management. This section contains information about the service order
management extension points. For information about the central order management extension
points, see "Fulfillment Function Extension Point Interface" and "Fulfillment State Extension

Point Interface."

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With the use of
solution cartridges, multiple solutions can be deployed to a single system and coexist with

each other.

An XQuery extension script must be implemented in a standalone file. The file URI must be
registered to the extension configuration.

Service Order Management Extension Point Overview

Table 5-72 lists the XQuery extension points for the service order management Order-to-

Activate cartridges.

Table 5-72 Service Order Management Extension Points

Service Order Management Extension
Point

Description

SOM-CREATE-SOAP-REQUEST

SOM-CREATE-SOAP-REQUEST at the order level is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state for the
order. This extension point provides order status to the upstream system.

ORDER_STATUS at the order item level is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for an order item.
This extension point provides order item status to the upstream system.

SOM-DETECT-FAULT

SOM-DETECT-FAULT is triggered when the OSM fulfillment state engine finishes
evaluation of the composite fulfillment state for the order. This extension point
provides order status context to the upstream system.

SOM-GET-FAULT-DATA

SOM-GET-FAULT-DATA is triggered when the OSM fulfillment state engine
finishes evaluating the composite fulfillment state for an order item. This
extension point provides order item status context to the upstream system.

SOM-CHECK-IS-LAST-RESPONSE

SOM-CHECK-IS-LAST-RESPONSE s triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order item. This
extension point calculates the order item milestone, taking order cancellation into
consideration.

ORACLE

5-101

Chapter 5
Customizing Service Order Management

Table 5-72 (Cont.) Service Order Management Extension Points

Service Order Management Extension
Point

Description

SOM-GET-UPDATE-DATA

SOM-GET-UPDATE-DATA is triggered when the OSM fulfillment state engine
finishes evaluating the composite fulfillment state for an order. This extension
point overrides the default evaluation of the order composite fulfillment state
modeled in COM_OrderStateCompositionRule to support an order with no order
items (order items had been dropped during revision), and to support the
completion of a cancellation order.

SOM-GET-EXTERNAL-FULFILLMENT-
STATE

SOM-GET-EXTERNAL-FULFILLMENT-STATE is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state for an
order item. This extension point overrides the default evaluation of the order item
composite fulfillment state modeled in COM_OrderltemStateCompositionRule to
support an order with no order items (order items had been dropped during
revision), and to support the completion of a cancellation order.

SOM-GET-EXTERNAL-FULFILLMENT-
STATE-AT-FALLOUT

SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT is triggered when
the OSM fulfillment state engine finishes calculating the composite fulfillment
state for an order item. This extension point is not currently being used in the
Order-to-Activate cartridges.

SOM-GET-NEW-CORRELATION-ID

SOM-GET-NEW-CORRELATION-ID is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order item. This
extension point overrides the default milestone when handling a cancellation
order.

When you customize service order management, you can create an ExtensionPointMap entry
for each applicable extension point (such as creating a SOAP request) in the
resources\SolutionConfig\SomComponenExtensionPointMap.xml of the Order-to-Activate
composite cartridge. You must create a separate XQuery file for each extension point.

SOM-CREATE-SOAP-REQUEST Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-
CREATE-SOAP-REQUEST extension point.

Table 5-73 lists the input parameters for the extension point XQuery.

Table 5-73 SOM-CREATE-SOAP-REQUEST Input Parameters
|

Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

$context Java Object External variable Java type
com.mslv.oms.automation.OrderContext
Context of the request

$executionMode Xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName Xs:string External variable Fulfillment function name

$taskName Xs:string External variable Task name

Table 5-74 lists the return parameters for the extension point XQuery.

ORACLE

5-102

Chapter 5
Customizing Service Order Management

Table 5-74 SOM-CREATE-SOAP-REQUEST Return Parameters

e ___|
Output Parameter Type Description

element()* Return XML message/payload to be sent to the external system. The external system
properties (for example, JMS) must be set by the extension point.

SOM-DETECT-FAULT Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-
DETECT-FAULT extension point.

Table 5-75 lists the input parameters for the extension point XQuery.

Table 5-75 SOM-DETECT-FAULT Input Parameters

Name Type Scope Description
$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

$taskinputData element() External variable Task data XML fragment
$executionMode xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName Xs:string External variable Fulfillment function name
$taskName Xs:string External variable Task name

Context node Context node Response message XML fragment

Table 5-76 lists the return parameters for the extension point XQuery.

Table 5-76 SOM-DETECT-FAULT Return Parameters

e ___|
Output Parameter Type Description

element() Return an XML fragment in the following format if a fault is detected:
<oms:FaultCnt><oms:Fault></oms:Fault></oms:FaultCnt>
Return an XML fragment in the following format if a fault is not detected:
<oms:FaultCnt></oms:FaultCnt>

SOM-GET-FAULT-DATA Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-GET-
FAULT-DATA extension point.

Table 5-77 lists the input parameters for the extension point XQuery.

Table 5-77 SOM-GET-FAULT-DATA Input Parameters

e
Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log

Logging level related to server log

ORACLE - 103

Table 5-77 (Cont.) SOM-GET-FAULT-DATA Input Parameters

Chapter 5

Customizing Service Order Management

Name Type Scope Description

$taskinputData element() External variable Task data XML fragment
$executionMode Xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName xs:string External variable Fulfillment function name
$taskName Xs:string External variable Task name

Context node

Context node

Response message XML fragment

Table 5-78 lists the return parameters for the extension point XQuery.

Table 5-78 SOM-GET-FAULT-DATA Return Parameters

Output Parameter Type

Description

element()

Extract, transform, and return fault data from the response message into
OrderDataUpdate.

SOM-CHECK-IS-LAST-RESPONSE Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-CHECK-
IS-LAST-RESPONSE extension point.

Table 5-79 SOM-CHECK-IS-LAST-RESPONSE Input Parameters

Table 5-79 lists the input parameters for the extension point XQuery.

Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

$taskinputData element() External variable Task data XML fragment

$executionMode Xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName Xs:string External variable Fulfillment function name

$taskName Xs:string External variable Task name

Context node

Context node

Response message XML fragment

ORACLE

Table 5-80 lists the return parameters for the extension point XQuery.

5-104

Chapter 5
Customizing Service Order Management

Table 5-80 SOM-CHECK-IS-LAST-RESPONSE Return Parameters

e ___|
Output Parameter Type Description

element() Return an XML fragment in the following format if this is the last response:
<oms:IsLastResponseCnt><oms:LastResponse/></oms:IsLastResponseCnt>
Return an XML fragment in the following format if this is not the last response:
<oms:IsLastResponseCnt/>

SOM-GET-UPDATE-DATA Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-GET-
UPDATE-DATA extension point.

Table 5-81 lists the input parameters for the extension point XQuery.

Table 5-81 SOM-GET-UPDATE-DATA Input Parameters

R
Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

$taskinputData element() External variable Task data XML fragment
$executionMode Xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName Xs:string External variable Fulfillment function name
$taskName Xs:string External variable Task name

Context node Context node Response message XML fragment

Table 5-82 lists the return parameters for the extension point XQuery.

Table 5-82 SOM-GET-UPDATE-DATA Return Parameters

|
Output Parameter Type Description

element() Extract and transform order data from the response message into OrderDataUpdate.

SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-GET-
EXTERNAL-FULFILLMENT-STATE extension point.

Table 5-83 lists the input parameters for the extension point XQuery.

Table 5-83 SOM-GET-EXTERNAL-FULFILLMENT-STATE Input Parameters

e
Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

ORACLE c 105

Chapter 5
Customizing Service Order Management

Table 5-83 (Cont.) SOM-GET-EXTERNAL-FULFILLMENT-STATE Input Parameters
T

Name Type Scope Description
$taskinputData element() External variable Task data XML fragment
$executionMode Xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName xs:string External variable Fulfillment function name
$taskName Xs:string External variable Task name

Context node Context node Response message XML fragment

Table 5-84 lists the return parameters for the extension point XQuery.

Table 5-84 SOM-GET-EXTERNAL-FULFILLMENT-STATE Return Parameters

___|
Output Parameter Type Description

element() Return an XML fragment in the following format to pass back the state value that applies
to all order items:

<oms:ExternalFulfillmentStateCnt>
<oms:ComponentFulfillmentState>$StateValue
</oms:ComponentFulfillmentState>
</oms:ExternalFulfillmentStateCnt>

Return an XML fragment in the following format to pass back the state value for
individual order items:

<oms:ExternalFulfillmentStateCnt>

<oms:lineltem index="123456">
<oms:baseLineId>baseLineld</oms:baseLineId>
<oms:milestoneCode>Milestone</oms:milestoneCode>
<oms:statusCode>Status</oms:statusCode>
<oms:statusContext>Description</oms:statusContext>
<oms:lineType>LINE TYPE NONCSO</oms:lineType>
</oms:lineltem>

</oms:ExternalFulfillmentStateCnt>

SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension
Point

This section describes the XQuery script that implements the logic to handle the SOM-GET-
EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT extension point.

Table 5-85 lists the input parameters for the extension point XQuery.

Table 5-85 SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Input Parameters

e
Name Type Scope Description

$log Java Object External variable Java type org.apache.commons.logging.Log
Logging level related to server log

ORACLE 106

Chapter 5
Customizing Service Order Management

Table 5-85 (Cont.) SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Input Parameters
T

Name Type Scope Description

$taskinputData element() External variable Task data XML fragment
$executionMode Xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName xs:string External variable Fulfillment function name
$taskName Xs:string External variable Task name

Context node

Context node

Response message XML fragment

Table 5-86 lists the return parameters for the extension point XQuery.

Table 5-86 SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Return Parameters
e

Output Parameter Type Description

element()

Return an XML fragment in the following format to pass back the state value that applies
to all order items:

<oms:ExternalFulfillmentStateCnt>
<oms:ComponentFulfillmentState>$StateValue
</oms:ComponentFulfillmentState>
</oms:ExternalFulfillmentStateCnt>

Return an XML fragment in the following format to pass back the state value for
individual order items:

<oms:ExternalFulfillmentStateCnt>

<oms:lineltem index="123456">
<oms:baseLineId>baseLineld</oms:baseLineId>
<oms:milestoneCode>Milestone</oms:milestoneCode>
<oms:statusCode>Status</oms:statusCode>
<oms:statusContext>Description</oms:statusContext>
<oms:lineType>LINE TYPE NONCSO</oms:lineType>
</oms:lineltem>

</oms:ExternalFulfillmentStateCnt>

SOM-GET-NEW-CORRELATION-ID Extension Point

This section describes the XQuery script that implements the logic to handle the SOM-GET-
NEW-CORRELATION-ID extension point.

Table 5-87 lists the input parameters for the extension point XQuery.

Table 5-87 SOM-GET-NEW-CORRELATION-ID Input Parameters

Name

Type Scope

Description

$log

Java Object

External variable Java type org.apache.commons.logging.Log

Logging level related to server log

$taskinputData

element()

External variable Task data XML fragment

ORACLE

5-107

Chapter 5
Extending XQuery Modules

Table 5-87 (Cont.) SOM-GET-NEW-CORRELATION-ID Input Parameters

Name Type Scope Description
$executionMode Xs:string External variable Task execution mode
$breakpointDebugControl element() External variable Debug control XML fragment
$componentName Xs:string External variable Fulfillment function name
$taskName xs:string External variable Task name

Context node Context node Response message XML fragment

Table 5-88 lists the return parameters for the extension point XQuery.

Table 5-88 SOM-GET-NEW-CORRELATION-ID Return Parameters

Output Parameter Type Description

element()

Return an XML fragment in the following format to pass back the ID:
<oms:NewCorrelationIdCnt>S$correlationId</<oms:NewCorrelationIdCnt>

Extending XQuery Modules

This section contains general information about extending XQuery modules.

If it is necessary to extend XQuery modules that reside in a sealed cartridge, you must make a
copy of the XQuery file and extend it to include custom business logic using the XML catalog.

To extend an XQuery module:

1.

ORACLE

In Design Studio, from the Window menu, select Show View and then select Package
Explorer.

Copy the XQuery file that you want to extend and modify the copy to include custom logic.
It's recommended to put the copy of the XQuery files in the Order-to-Activate composite
cartridge.

In the Project Explorer view, open the Order-to-Activate composite cartridge and navigate
to the xmlCatalogs/core directory.

Open the file catalog.xml.

Update the catalog.xml file by adding an entry to override the XQuery implementation.
The new entry should look like this:

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/
ordermanagement/pip/<path>/<XQuery>.xquery" rewritePrefix="osmmodel:///
OracleComms OSM 02A COMSOM TypicalSolution/1.0.0.0.0/resources/<path>/
<XQuery>.xquery"/>

Note:

This entry must appear on a single line in the file.

5-108

Chapter 5
Sending Enriched Data to the CRM System

Sending Enriched Data to the CRM System

Data that was not originally supplied in the order from the CRM system must often be sent up
to Siebel CRM from a downstream system; this data is referred to as enriched data. Enriched
data can be an update to an order header value or an added attribute to a line item that was
originally supplied in the order from the CRM system. Enriched data cannot include new line
items that were not part of the original order from Siebel CRM (only modifications to existing
line items).

In the Order-to-Activate cartridges, downstream systems can send enriched data up to the
CRM system using the SpecificationGroup area of each order line item. SpecificationGroup
is a structure that contains multiple substructures of the order specification. The
Specification.Name and Specification.Value parameters store the enriched data.

The demonstration cartridges OracleComms_OSM_0O2A_SomProvisionBroadband_Sample
and OracleComms_OSM_0O2A_SomProvisionVolP_Sample provide an example of sending
enriched data to the CRM system. These cartridges must populate the EBM type
ProcessProvisioningOrderUpdateEBM and send that data to the
OracleComms_OSM_0O2A_ SOM_Base cartridge. The OracleComms_OSM_O2A_SOM_Base
cartridge in turn creates another EBM type ProcessFulfillmentOrderUpdateEBM that
contains the SpecificationGroup structure and sends that data to the
OracleComms_OSM_0O2A_ COM_Base cartridge. The OracleComms_OSM_0O2A_COM_Base
cartridge in turn creates the EBM type UpdateSalesOrderEBM and sends that data to the
CRM system. The SpecificationGroup structure is defined in all of these EBM types.

For example, when the Provisioning task completes in the
OracleComms_OSM_0O2A_SomProvisionBroadband_Sample cartridge, the service ID is
populated and propagated back to the CRM system, which can now use the service ID to track
the asset.

Considerations When Integrating with Oracle AIA

ORACLE

The following points refer to EBO attributes that use domain value maps in Oracle AIA, and
how to extend the list of seeded values in the OSM cartridges. You update the validation rule in
the OracleComms_OSM_0O2A COM_Base cartridge (either reduce the validation level or
include the new values) and describe the extensibility of each such EBO attribute on a case-
by-case basis.

Consider the following factors when integrating OSM with Oracle AlA:

XML tags - some fields are key fields with enumerated values. These values are hard
coded in the cartridge so they have to match. These are documented in the data dictionary
in the cartridge itself.

* The EBO attribute values can be extended - you can add your own values, but they have
to line up in the data dictionary in the cartridge, in the customized rules in the cartridge, for
instance, where you choose a billing instance based on a value such as BUSINESS vs.
RESIDENTIAL. The value would have to come from ABCS correctly to match. Other
custom rules could be created that switch on this value.

e Consumers of OSM generated EBMs such as OSM in its service order management role,
and ABCS should not make use of the attributes schemelD, and schemeAgencyID in order
identifications, order references, line identifications, and line references. The following are
couple of examples:

<corecom:BusinessComponentID schemeID="SALESORDER ID" schemeAgencyID="COMMON">
<corecom:BusinessComponentID schemeID="SALESORDER LINEID" schemeAgencyID="COMMON">

5-109

Chapter 5

Considerations When Integrating with Oracle AIA

* Queue names have to agree if you add another billing function - you would not have to add
more queues if you were not adding more fulfillment functions. But if you do, the queue
names have to agree with the ABCS.

Table 5-89 lists the summary of JNDI names for WebLogic JMS Queues for system
interactions included in the Order-to-Activate cartridges. In support of system interactions,
OSM central order management and OSM service order management communicate with
the ABCS for the fulfillment systems such as Siebel CRM ABCS and Oracle
Communications Billing and Revenue Management (BRM) ABCS through posting JMS
messages to the queues given below.

In the WebLogic Server Administration console, queues are found by navigating to:
Home /IJMS Modules loms_jms_module.

4

Note:

There must be an alignment of INDI names between OSM and the ABCSs that
communicate with it. You must be aware of this alignment if you add additional

queues for new fulfillment functions.

Table 5-89 WebLogic JNDI Request/Response queues

System interaction request/
response

JNDI name

In-bound/Out-bound

AIA Customer Order support

oracle/communications/ordermanagement/
WebServiceQueue

Siebel CRM ABCS to OSM central
order management

AlIA Service Order support

oracle/communications/ordermanagement/
WebServiceQueue

In-bound to OSM service order
management

SyncCustomer request

oracle/communications/ordermanagement/
WebServiceCreateCustomerQueue

OSM central order management to
BRM ABCS

SyncCustomer response

oracle/communications/ordermanagement/
WebServiceCreateCustomerResponseQueue

BRM ABCS to OSM central order
management

InitiateBilling request

oracle/communications/ordermanagement/
WebServiceCreateBillingOrderQueue

OSM central order management to
BRM ABCS

InitiateBilling response

oracle/communications/ordermanagement/
WebServiceCreateBillingOrderResponseQueue

BRM ABCS to OSM central order
management

FulfillBilling request

oracle/communications/ordermanagement/
WebServiceCreateBillingOrderQueue

OSM central order management to
BRM ABCS

FulfillBilling response

oracle/communications/ordermanagement/
WebServiceCreateBillingOrderResponseQueue

BRM ABCS to OSM central order
management

ProvisionOrder request

oracle/communications/ordermanagement/
WebServiceCreateProvisioningOrderQueue

OSM central order management to
Oracle AlA destined for OSM
service order management

ProvisionOrder response
(ProcessFulfilmentOrderUpda
te)

oracle/communications/ordermanagement/
WebServiceUpdateFulfillmentOrderQueue

OSM service order management to
Oracle AIA destined for OSM
central order management

CancelProvisioningOrder
request

oracle/communications/ordermanagement/
WebServiceCancelProvisioningOrderQueue

OSM central order management to
OSM service order management

UpdateSalesOrder

oracle/communications/ordermanagement/
WebServiceUpdateSalesOrderQueue

OSM central order management to
Siebel CRM ABCS

ORACLE

5-110

Chapter 5

Security Considerations When Communicating with External Systems

Table 5-89 (Cont.) WebLogic JNDI Request/Response queues

System interaction request/
response

JNDI name

In-bound/Out-bound

CreateTroubleTicket request

oracle/communications/ordermanagement/
CreateTroubleTicketRequestQueue

OSM central order management to
Siebel CRM ABCS

CreateTroubleTicket response

oracle/communications/ordermanagement/
CreateTroubleTicketResponseQueue

Siebel CRM ABCS to OSM central
order management

UpdateTroubleTicket request

oracle/communications/ordermanagement/
UpdateTroubleTicketRequestQueue

OSM central order management to
Siebel CRM ABCS

CreateErrorFault

oracle/communications/ordermanagement/
CreateErrorFaultQueue

OSM service order management to
Oracle AIA

Fallout for service order
management response

oracle/communications/ordermanagement/
WebServiceFalloutLFResponseQueue

OSM service order management to
central order management

Abort order response

oracle/communications/ordermanagement/
LFAbortOrderPropagationRespQueue

OSM Provisioning to service order
management

Security Considerations When Communicating with External

Systems

Whenever you are integrating OSM with an external system via JMS, make sure that you have
set up security settings on the JMS module in WebLogic Server. If you use the supplied IMS
module, oms_jms_module, security settings have already been set up. However, if you use a
different IMS module, you must set up appropriate security on it.

ORACLE

5-111

Performing Order-to-Activate Cartridge
Operations

This chapter describes operational procedures that may be needed for the Order-to-Activate
cartridges for Oracle Communications Order and Service Management (OSM).

Troubleshooting Order-to-Activate Cartridges

The following procedures can help you in troubleshooting issues with the Order-to-Activate
cartridges.

Updating the JMS Redelivery Configuration Settings

When the Order-to-Activate cartridges are installed, the Redelivery Delay Override and
Redelivery Limit WebLogic parameters are set during installation to 7000ms and 10,
respectively. However, different values may be more effective for your OSM environment
depending on your usage of the system.

If you encounter timing-related issues for message delivery on JMS queues, there are a
number of WebLogic settings that you can modify to resolve the issue. These values are set on
every JMS queue through the WebLogic Service Console. From Home, select JIMS Modules,
and then select oms_jms_module to modify the following settings:

* Redelivery Delay Override: Delay in milliseconds before rolled back or recovered
messages are redelivered. This value overrides the Redelivery Delay setting.

* Redelivery Limit: The number of times to attempt to redeliver a message.

To find the best values for these parameters, start with initial values less than 7000ms for the
Redelivery Delay Override and 10 for the Redelivery Limit and increase them slightly until
no occurrences of errors are observed. The actual values you finalize on will depend on your
particular implementation of OSM. See the Oracle WebLogic documentation for complete
details on these parameters.

Setting Cartridge Breakpoints

There are process flows in the cartridge with a manual task between each automated task.
With certain input data in the customer order, it causes it to go through the automation and
stop at a particular manual task.

The Order-to-Activate cartridges have been instrumented with control points in the process
flows so that a tester can control the process flow before or after functions, examine data
anywhere in the flow, do revision testing, and do point-of-no-return testing. The flows are
automated, but can be instructed to stop at a manual task before or after normal automated
tasks.

The Siebel Customer Relationship Management (Siebel CRM) sales order number is used to
control the flows by prefixing the number with format [AlATest. Task#.Target#]. Only one
breakpoint can be set.

Table 6-1 lists the task numbers and names.

ORACLE 61

ORACLE

Chapter 6

Troubleshooting Order-to-Activate Cartridges

Table 6-1 Task Number and Task Name

Task # Task Name

0 Any

1 Before SyncCustomer Task

2 Before InitiateBilling Task

3 Before FulfilBilling Task

7 After SyncCustomer Task

8 After InitiateBilling Task

9 After FulfillBilling Task

10 After Provisioning Request Sent Task

11 After Provision Response Received Task

31 Before Provision InternetServiceBundle Task

32 Before Provision InternetMediaServiceBundle Task
33 Before Provision InternetEmailServiceBundle Task
34 Before Provision CPEEntryPointTask

41 Before Provision VolPServiceBundle Task

42 Before Provision VoIPCPE Task

Table 6-2 lists the OSM and Oracle Application Integration Architecture (Oracle AlA) fulfillment

systems.

Table 6-2 OSM and Oracle AlA Targets
|

Target# OSM Fulfillment System Name AlA Logical Fulfillment System ID
0 Any Any

1 BRM-ALL BRM_01

2 BRM-VoIP BRM_02

4 BRM-REZBDB BRM_03

4 BRM-BIZBDB BRM_04

7 Provisioning-ALL OSMPROV_01

8 Provisioning-VolP OSMPROV_02

9 Provisioning-VolP OSMPROV_02

10 Provisioning-BRD OSMPROV_03

It is also possible to disable the PONR per-component level by setting the order key prefix as
[PONRControl.Component#].

Table 6-3 lists the OSM component levels.

Table 6-3 OSM Component levels

Component #

OSM Component Name Example

0

Any [PONRControl.0]

6-2

ORACLE

Table 6-3 (Cont.) OSM Component levels

Chapter 6

Troubleshooting Order-to-Activate Cartridges

Component # OSM Component Name Example
1 SyncCustomerFunction [PONRControl.1]
2 InitiateBillingFunction [PONRControl.2]
3 ProvisionOrderFunction [PONRControl.3]
4 ShipOrderFunction [PONRControl.4]
5 InstallOrderFunction [PONRControl.5]
6 FulfillBillingFunction [PONRControl.6]
7 InstallOrderFunction [PONRControl.7]
ShipOrderFunction
8 ProvisionOrderFunction, [PONRControl.8]
InstallOrderFunction,
ShipOrderFunction

6-3

Prior Versions of Order-to-Activate Cartridges

This chapter provides information about prior versions of Oracle Communications Order and
Service Management (OSM) Order-to-Activate cartridges. It contains information about
updating prior versions of the Order-to-Activate cartridges to work with newer versions of OSM
and describes the changes that were made in recent versions of the cartridges.

Updating Prior Versions of the Cartridges to Work with Newer
Versions of OSM

It is possible to update prior versions of the Order-to-Activate cartridges to work with newer
versions of OSM. To update Order-to-Activate cartridges to work with OSM 7.2 and earlier, see
OSM Cartridge Guide for Oracle Application Integration Architecture for the version of OSM
you want to use. To update Order-to-Activate cartridges to work with OSM 7.2.2 or later, see
OSM Installation Guide for the version of OSM you want to use.

Changes from Order-to-Activate 2.1.1 to Version 2.1.2

This section provides a high-level description of the changes between Order-to-Activate 2.1.1
cartridges and Order-to-Activate 2.1.2 cartridges.

Removed Support for Asset Processing

The changes that were made in version 2.1.1 to the Order-to-Activate cartridges to support
managing assets on orders that come from Oracle Configure, Price, and Quote Cloud (Oracle
CPQ Cloud) have been removed. The corresponding functionality is no longer available in the
OSM product. Oracle recommends that you use corresponding functionality in Oracle
Configure, Price, Quote (CPQ) Cloud for your hybrid cloud solution.

Processes Changed to Use a Single Task for Sending and Receiving

Starting in the Order-to-Activate cartridges version 2.1.2, system interaction processes have
been modified to use a single task to handle both sending a message to an external system
and receiving the response messages. The purpose of this change is to greatly simplify the
process design by allowing the same task to handle all of the normal and exception processing
for the message, and complements functionality introduced in OSM 7.3.

Central Order Management Fulfillment Functions

ORACLE

Following is a summary of the processing for the central order management fulfillment
functions.

* SyncCustomerFunction: The process for this function is SyncCustomerSubProcess.
The tasks are:

— SyncCustomerEntryPointTask: This task sets up the data for the system interaction
task, determines whether there are any open trouble tickets for the current instance of
the function, and if so closes them. It also provides a breakpoint.

7-1

Chapter 7
Changes from Order-to-Activate 2.1.1 to Version 2.1.2

SyncCustomerSITask: This task creates and sends a request to the billing system. If
the billing system has an error, it notifies fallout management directly, and then fallout
management sends a notification to this task, which causes the state of the task to
enter fallout mode and change its state to WaitForFalloutRecovery. You can manually
transition the task from this state to the resolveFailAndRetry state to return to normal
mode and retry the task. Alternatively, an amendment can be received to retry the task
automatically. The task also provides a breakpoint if a successful response ifs
received.

InitiateBillingFunction: The process for this function is InitiateBillingSubProcess. The

tasks are:

InitiateBillingEntryPointTask: This task works like SyncCustomerEntryPointTask.
InitiateBillingSITask: This task works like SyncCustomerSITask.

* FulfillBillingFunction: The process for this function is FulfillBillingSubProcess. The
tasks are:

FulfullBillingStartTask: This task provides the opportunity for an extra breakpoint for
this process.

InitiateBillingEntryPointTask: This task works like SyncCustomerEntryTask.
InitiateBillingSITask: This task works like SyncCustomerSITask.

* ProvisionOrderFunction: The process for this function is ProvisionOrderSubProcess.
The tasks are:

ProvisionOrderEntryPointTask: This task works like SyncCustomerEntryPointTask.

ProvisionOrderSITask: This task works like SyncCustomerSIiTask, except that it
sends the request to the service order management system rather than the billing
system.

Service Order Management Fulfillment Functions

ORACLE

Following is a summary of the processing for the service order management fulfillment
functions. These fulfillment functions are available only with the Calculate Service Order
solution option.

- DesignServiceFunction: The process for this function is DesignServiceProcess. The
tasks are:

CaptureBITask: This task creates and sends the capture business interaction request
to the inventory system. If the inventory system has an error, it returns a failure
response directly to the task, which causes the state of the task to enter fallout mode.
You can manually retry the task by changing the state to received, or you can transition
the task to WaitForFalloutRecovery, which causes a failure message to be sent to the
central order management system. You can manually transition the task from this state
to the resolveFailAndRetry state to return to normal mode and retry the task.
Alternatively, an amendment can be received to retry the task automatically. It also
provides a breakpoint if a successful response ifs received.

ProcessBITask: This task creates and sends the process business interaction request
to the inventory system. If the inventory system has an error, it returns a failure
response directly to the task, which causes the state of the task to enter fallout mode.
You can manually retry the task by changing the state to received, or you can transition
the task to WaitForFalloutRecovery, which causes a failure message to be sent to the
central order management system. You can manually transition the task from this state
to the resolveFailAndRetry state to return to normal mode and retry the task. Or you
can transition the task to clearFallout to ignore the error and complete the task

7-2

Chapter 7
Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1

successfully. Alternatively, an amendment can be received to retry the task
automatically. The task also provides a breakpoint if a successful response ifs
received.

— ApproveBITask: This task works like ApproveBITask, except that it sends the approve
business interaction request.

* PlanDeliveryFunction: The process for this function is PlanDeliveryProcess. The tasks
are:

— IssueBITask: This task works like ApproveBITask, except that it sends the approve
business interaction request.

— CalculateTechnicalActionsTask: This task works like ApproveBITask, except that it
sends the calculate technical actions request.

* DeliverOrderFunction: The process for this function is DeliverOrderProcess. The tasks
are:

— CreateTechnicalOrderTask: This task works like ApproveBITask, except that it sends
the create technical order request to the technical order management system.

— QueryBlITask: This task gets the Service Configuration details from the Inventory
system and updates the service order with the new Service Configuration.

e CompleteProvisioningFunction: The process for this function is
CompleteProvisioningProcess. The tasks are:

— CompleteBITask: This task works like ApproveBITask, except that it sends the
complete business interaction request.

Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1

This section provides a high-level description of the changes between Order-to-Activate 2.1.0.2
cartridges and Order-to-Activate 2.1.1 cartridges.

Support for Asset Processing

Changes have been made to the Order-to-Activate cartridges to support managing assets on
orders that come from Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud). During
installation of the Order-to-Activate cartridges, you can select whether to enable asset
processing using the standard OSM Customer Asset Manager, an external asset manager, or
both. If you decide to use an external asset manager, you can configure the format of the
message.

Support for Order Lifecycle Management User Interface

ORACLE

The Order-to-Activate cartridges have been updated to include an Order Lifecycle Manager
entity in support of the new OSM Order Lifecycle Management user interface.

OSM order components previously included a "Minimum Processing Duration." Now, instead of
one duration, there are three: Optimistic, Most Likely, and Pessimistic Processing Durations.
These processing durations drive information in the Order Lifecycle Manager user interface.
Since the order components for the Order -to-Activate cartridges are in sealed cartridges,
changing these durations in Order Component Specification editor is not recommended. An
XML file is provided to allow changing these durations without needing to unseal the cartridge.
See "Changing Durations for Order Components" for more information on changing durations.

7-3

Chapter 7
Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2

Support for Processing States

Processing states were added in OSM 7.3 at both the order item level and the order
component order item level. The use of processing states provides better visibility into
fulfillment progress, including warnings and errors that occur during the processing of order
items. The Order-to-Activate 2.1.1 cartridges incorporate this new OSM feature.

Changes from Order-to-Activate 2.1.0.1 Cartridges to Version

2.1.0.2

This section provides a high-level description of the changes between Order-to-Activate 2.1.0.1
cartridges and Order-to-Activate 2.1.0.2 cartridges.

Changes to Fulfillment Function Extension Points

This section describes the changes to the fulfillment function extension points for the Order-to-
Activate 2.1.0.2 cartridges.

New Extension Points

The following extension points were added in version 2.1.0.2:

CREATE-EBM-CUSTOM
CREATE-EBM-ALL-ORDERITEMS
CREATE-EBM-ORDERITEM
CREATE-EBM-ORDERITEM-CUSTOM
CREATE-EBM-PRIORORDERITEM
CREATE-EBM-PRIORORDERITEM-CUSTOM

Extension Points Added to the Billing Components

XQuery files for the following extension points have been added in the
OracleComms_OSM_O2A COM_Billing cartridge for the SyncCustomerFunction,
InitiateBillingFunction, and FulfillBillingFunction billing functions:

CREATE-EBM-ALL-ORDERITEMS
CREATE-EBM-CUSTOM
CREATE-EBM-ORDERITEM-CUSTOM
CREATE-EBM-ORDERITEM (execution mode: do)
CREATE-EBM-ORDERITEM (execution mode: redo)
CREATE-EBM-ORDERITEM (execution mode: undo)
CREATE-EBM-PRIORORDERITEM-CUSTOM
CREATE-EBM-PRIORORDERITEM
COMPONENT-RESPONSE-UPDATE

For more information, see "OracleComms_OSM_0O2A_COM_Billing."

ORACLE

7-4

Chapter 7
Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1

Changes to Action Code Mappings

Some action code mappings for solutions using the Calculate Service Order solution option
were changed to support the Oracle Communications Rapid Offer Design and Order Delivery
(RODOD) and Oracle Communications Rapid Service Design and Order Delivery (RSDOD)
solutions. The changes are summarized in the following table:

Table 7-1 Changes to Action Code Mappings for Order-to-Activate 2.1.0.2

Upstream Action Code Action Code Prior to Version Action Code in Version 2.1.0.2
2.1.0.2 and later

Move-Delete Move-Delete [Action is no longer mapped]

Move-Add Move-Add Move

Update Update Change

New XML-type Parameter Added to Contain Custom Order Item Properties

A new XML-type parameter is available in the COM_Sales_OrderFulfillment order template. It
allows you to add custom order item properties to your order template without unsealing any
cartridges. For more information, see "Adding Custom Order Item Properties."

Changes from Order-to-Activate 2.1.0 Cartridges to Version
2.1.0.1

This section provides a high-level description of the changes between Order-to-Activate 2.1.0
cartridges and Order-to-Activate 2.1.0.1 cartridges.

New Silent Installation Option

A new option to install and deploy the Order-to-Activate cartridges in an OSM environment
without running the interactive installers has been added. See "Performing a Silent Installation
of the Order-to-Activate Cartridges" for more information.

Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0

This section provides a high-level description of the changes between Order-to-Activate 2.0.1
cartridges and Order-to-Activate 2.1.0 cartridges.

Support for Calculate Service Order

The order transformation manager was introduced in OSM 7.2.4 to provide a mechanism to
transform order items from transform incoming order items into different order items. The
Order-to-Activate 2.1.0 cartridges provide the option to use this feature.

Two Solution Options: With and Without Calculate Service Order

The Order-to-Activate 2.1.0 cartridges provide two distinct solution options: the calculate
service order solution option and the solution option without calculate service order. Although
most new Order-to-Activate users will want the increased functionality of the calculate service

ORACLE .

Chapter 7
Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0

order solution option, having the solution option without calculate service order enables
existing customers to access the new functionality of Order-to-Activate 2.1.0 without using the
order transformation manager if desired.

Note:

Oracle Communications Order and Service Management Order Transformation
Manager, available in OSM 7.2.4 and later, is a pre-requisite for using the calculate
service order functionality in the Order-to-Activate cartridges.

The same Order-to-Activate cartridge installer contains both the cartridges for the calculate
service order solution option and the solution option without calculate service order. At a high
level, the two options are:

e The calculate service order solution option incudes:

— Central order management: This includes cartridges with support for the calculate
service order implementation of the OSM order transformation manager. It also
includes enhancements like large order support and sharing groups.

— Service order management: This includes new service order management cartridges
designed to work with the central order management cartridges that use calculate
service order. For more information, see "New Service Order Management Cartridges
for the Calculate Service Order Solution Option."

e The solution option without calculate service order includes:

— Central order management: This includes cartridges that do not have support for
calculate service order, but do include other enhancements like large order support
and sharing groups

— Service order management: These cartridges are functionally the same as the service
order management cartridges in the Order-to-Activate 2.0.1.

For more information about the solution options, see "Order-to-Activate Cartridge Solution
Options."

The Calculate Service Order Solution Option

The calculate service order solution option uses the OSM order transformation manager
feature. It is driven by a transformation sequence that is configurable with any number of
transformation stages. Each sequence uses original order items as input, executes simple
transformation logic for each stage, and creates transformed order items as output.

Productized Order-to-Activate cartridges are enhanced to support transformation of customer
order items to service order items using the order transformation manager. The function that
transforms customer order lines to service order lines is referred to as calculate service order.
Calculate service order is a stable and domain-agnostic function that requires few changes
when new products or services are introduced, which reduces the time to market for new
product or service introduction. In the Order-to-Activate 2.1.0 cartridges, the calculate service
order function is added in the central order management layer.

ORACLE .

Chapter 7
Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1

New Service Order Management Cartridges for the Calculate Service Order Solution
Option

New service order management cartridges are added to work with the central order
management calculate service order functionality. Domain-agnostic service order management
cartridges contain features to support different types of orders such as new orders, revision
orders, and change orders. It also has a framework to support fallout and point-of-no-return
processing. It has emulators for inventory and technical order management (typically used for
activation), so that service order management cartridges can be tested independently of
external systems.

For more information about the service order management cartridges for the calculate service
order option, see "Service Order Management Cartridges for the Calculate Service Order
Solution Option."

Inclusion of Conceptual Model Projects

Conceptual model projects were introduced in Oracle Communications Design Studio 7.2.4 to
help you define the relationships between your commercial products, the services that they
represent, and the resources that are required to implement the services. Both of the solution
options include conceptual model projects.

For more information about the conceptual model, see Design Studio Concepts. For more
information about the conceptual model projects included with the Order-to-Activate cartridges,
see "Conceptual Model Projects."

Large Order Support

OSM 7.2.4.1 introduced functionality to support the processing of orders containing thousands
of lines. The Order-to-Activate 2.1.0 cartridges have incorporated this functionality in both of
the solution options (with and without calculate service order).

Support for Sharing Groups

The Sharing Groups feature allows discounts, resources and charges like free minutes to be
shared across multiple accounts. For example, if a group owner is sharing free minutes, a
member is charged for usage, and then discount credits are applied to the member's account
and free minutes are deducted from the group owner.

This feature is introduced in the Oracle Communications Rapid Offer Design and Order
Delivery (RODOD) solution, and the central order management cartridges for both of the
solution options (with and without calculate service order) have been enhanced to support this
feature. For more information about this feature, see the information about promotion groups in
Oracle Application Integration Architecture Oracle Communications Order to Cash Integration
Pack Implementation Guide for Siebel CRM, Oracle Communications Order and Service
Management, and Oracle Communications Billing and Revenue Management, Release 11.4.

Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1

This section provides a high-level description of the changes between Order-to-Activate 7.2
cartridges and Order-to-Activate 2.0.1 cartridges.

ORACLE s

Chapter 7
Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

Release Number Changes and Packaging Changes

This release of the Order-to-Activate cartridges contains changes to the way releases are
numbered and changes to the way the cartridges are packaged.

Through the OSM 7.2 release, the Order-to-Activate cartridges were released at the same time
as the OSM software, and the release numbers for OSM and Order-to-Activate were the same.
Now however, Oracle has decided to separate the OSM and Order-to-Activate releases. The
Order-to-Activate releases are now being aligned toward the Oracle Application Integration
Architecture (Oracle AlA) releases. Because of these changes, the Order-to-Activate cartridges
are being given their own release numbers. Order-to-Activate 2.0.1 is the first in the new
version number series. Release numbers for the older versions of the Order-to-Activate
cartridges are not being updated.

Order-to-Activate cartridges are also separate from the OSM software on the Oracle Software
Delivery website, and patches for the Order-to-Activate cartridges will be released separately
from OSM patches. For more information, see Cartridges for Oracle Application Integration
Architecture Release Notes, Release 2.0.1.

Support for Multiple Price Lists

Previously, the productized integration supported only one default price list, so price list
information was not included on the order. In Order-to-Activate 2.0.1, the price list has been
added to the order so that multiple price lists can be supported.

Price list information is passed from Oracle AIA to the Order-to-Activate cartridges as part of
the ProcessSalesOrderFulfillmentEBM message. the Order-to-Activate cartridges then
populate the order item into the order template. When interacting with the billing system, the
Order-to-Activate cartridges generate a ProcessFulfilmentOrderBillingEBM, which includes the
price list information base on the Oracle AIA EBM schema.

The price list information is populated into the following structure in OSM:

/ControlData/Functions/FunctionName/orderItemRef/orderItem/BaseLineltemData/
SalesOrderSchedule/PriceListReference

Support for Importing Product Classes Directly from Oracle Product Hub

It is possible to query product classes and transaction attributes into Design Studio directly
from the Oracle Product Hub. Design Studio users use the existing Oracle AlA interface
QueryProductClassAndAttributesSCECommsRegABCSImpl to import product classes from
both Siebel Customer Relationship Management (Siebel CRM) and the Product Hub. When
product classes are queried using this interface, the interface API checks for Product Hub
implementation in the Oracle Communications Order to Cash implementation, and if it is there,
the product classes are imported to Design Studio from Product Hub. If Product Hub is not
present in the Order to Cash implementation, the product classes are imported into Design
Studio from Siebel CRM.

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

This section provides a high-level description of the changes between Order-to-Activate 7.0.3
cartridges and Order-to-Activate 7.2 cartridges.

ORACLE .

Chapter 7
Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

Cartridge Re-Factoring Overview

In version 7.2, the Order-to-Activate cartridges have been reorganized to make use of cartridge
extensibility. The changes include:

The cartridges have been renamed with the prefix OracleComms_OSM_O2A _.
Composite cartridges have been introduced.

The base cartridges for central order management and service order management have
been re-factored into multiple cartridges per fulfillment system.

Cartridges that ordinarily should not be modified have been sealed. Cartridges that can be
modified are not sealed and have the suffix _Sample.

Fulfillment states have been implemented.

The order template for a function is now constructed from
OracleComms_OSM_CommonDataDictionary and the local data dictionary
OracleComms_OSM_O2A_COM_Function according to general recommendations for
working with the common data dictionary.

Composite cartridge views have been created to add task data to
COM_SalesOrderFulfillment_CreationTask, COM_SalesOrder_StateChangeView, and
COM_SalesOrder_AggregatedOLMView.

The order component GetCommunicationsServiceConfigurationDetails has been
removed from service order management.

Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate

1.2

Table 7-2 shows the functional mapping between the Order-to-Activate 7.0.3 cartridges and the
Order-to-Activate 7.2 cartridges. See "Cartridge Overview" for descriptions of the Order-to-
Activate 7.2 cartridges.

Table 7-2 7.0.3-to-7.2 Order-to-Activate Cartridge Mapping
- __|

Order-to-Activate 7.0.3 Cartridge Order-to-Activate 7.2 Cartridge

[No equivalent]

OracleComms_OSM_CommonDataDictionary

OracleCgbuOsmAlAinstallation OracleComms_OSM_O2A_Install
OracleCgbuAlAComponentsDataDictionaryPIP OracleComms_OSM_0O2A_AIAEBMDataDictionary
OracleCgbuCommonDataDictionaryPIP OracleComms_OSM_0O2A_CommonUtility
OracleCommSystemAdminOrders OracleComms_OSM_O2A_SystemAdmin
OracleCgbuControlMap OracleComms_OSM_O2A_ControlMap
OracleCgbusSIFalloutPIP [Merged into OracleComms_OSM_O2A_COM_Base]
CommunicationsSalesOrderFulfillmentPIP OracleComms_OSM_02A COM_Base

OracleComms_OSM_0O2A_COM_SalesOrderFulfillment
OracleComms_OSM_O2A_COM_Shipping_Sample
OracleComms_OSM_0O2A_COM_Billing
OracleComms_OSM_O2A_COM_Provisioning
OracleComms_OSM_0O2A_COM_lInstall_Sample

ORACLE

7-9

Chapter 7
Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

Table 7-2 (Cont.) 7.0.3-to-7.2 Order-to-Activate Cartridge Mapping

Order-to-Activate 7.0.3 Cartridge Order-to-Activate 7.2 Cartridge
OracleCgbuProvisioningFallout [Merged into OracleComms_OSM_O2A_SOM_Base]
CommunicationsProvisioningOrderFulfillmentPIP OracleComms_OSM_02A SOM_Base

OracleComms_OSM_0O2A_SOM_Provisioning
OracleComms_OSM_O2A_SomBBVolPFulfillmentPattern_Sample

OracleCgbuCommunicationsORPFalloutPIP OracleComms_OSM_O2A_RecognitionFallout
[Drawn from various base cartridges] OracleComms_OSM_0O2A_COMSOM_Recognition_Sample
[Drawn from various base cartridges] OracleComms_OSM_0O2A COM_Recognition_Sample
[Drawn from various base cartridges] OracleComms_OSM_0O2A_ SOM_Recognition_Sample
OracleCgbuDoublePlayProductMap OracleComms_OSM_O2A_FulfillmentPatternMap_Sample
DoublePlayProductSpecificationNile OracleComms_OSM_0O2A_BBVolPFulfillmentPatternNileFlow_Sa
mple
DoublePlayProductSpecificationDanube OracleComms_OSM_02A_BBVolPFulfillmentPatternDanubeFlow
_Sample
OracleCgbuDoublePlayProductSpecNileTdDcn OracleComms_OSM_0O2A_BBVolPFulfillmentPatternNileFlowDcn
_Sample
TypicalSalesOrderFulfillment OracleComms_OSM_O2A_TypicalTopology_Sample
SimpleSalesOrderFulfillment OracleComms_OSM_O2A_SimpleTopology_Sample
OracleCgbuTypicalSalesOrderFulfillment [Cartridge has been removed, but functionality is duplicated in
OracleComms_OSM_O2A_ControlMap]
BroadbandServicesProvisioning OracleComms_OSM_O2A_SomProvisionBroadband_Sample
VolPServiceProvisioning OracleComms_OSM_O2A_SomProvisionVolP_Sample
SalesOrderSubmission OracleComms_OSM_O2A_SalesOrders_Sample
ORACLE

7-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the Order-to-Activate Cartridges
	About the Application Integration Architecture Order-to-Activate Cartridges
	Order-to-Activate Business Process Overview
	Overview of the Order-to-Activate Cartridges
	Order-to-Activate Cartridge Solution Options
	OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution
	Extending the Cartridges
	Time Zones in Order-to-Activate Cartridges
	Order Creation in the Order-to-Activate Cartridges
	Order-to-Activate Emulators
	About Fulfillment Topologies
	Simple Fulfillment Topology
	Typical and Complex Fulfillment Topologies

	2 Performing an Interactive Installation of the Order-to-Activate Components
	Cartridge Installation Overview
	System Requirements
	Order-to-Activate Cartridge Compatibility

	Order-to-Activate Cartridge Pre-Installation Tasks
	Installing the Order-to-Activate Cartridges
	Getting the Installation Package
	Importing the Installation Cartridge and Configuring the Installation Build File
	Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order Solution Option
	Importing the OSM Order-to-Activate Cartridges for the Solution Option Without Calculate Service Order
	Configuring WebLogic Server Resources

	Post-Installation Tasks for Multiple Simultaneous Versions
	Building and Deploying the Order-to-Activate Cartridges
	Testing the Order-to-Activate Cartridges
	Switching Between Live and Emulator Configurations
	Configuring a Workspace Without Configuring WebLogic Server
	Uninstalling Order-to-Activate Components
	Undeploying Cartridges
	Deleting the Oracle AIA Emulator
	Removing the Inventory and Technical Order Management Emulators

	3 Performing a Silent Installation of the Order-to-Activate Cartridges
	Cartridge Installation Overview
	Directory Placeholders Used in This Chapter
	System Requirements
	Order-to-Activate Cartridge Compatibility

	Setting Up the Installation Environment
	Getting the Installation Package
	Setting Up Files and Directories
	Encrypting the Passwords Used by the Silent Installer
	Encrypting the WebLogic Server Administrator Password for Connecting to WebLogic
	Encrypting the WebLogic Server Administrator Password for Use with XML Import/Export
	Encrypting Passwords for the Standard Order-to-Activate User Accounts
	Encrypting the UIM Application User Password
	Encrypting the Technical Order Management Application User Password
	Encrypting the Password for Deploying the Cartridges
	Encrypting the Oracle AIA JMS Connection Password
	Encrypting the UIM JMS Connection Password
	Encrypting the Technical Order Management JMS Connection Password

	Configuring the build.properties File
	Configuring Software Path Settings
	Configuring Solution Import Settings
	Configuring WebLogic Server Settings
	Configuring Solution Configuration Settings
	Configuring Oracle AIA Connection Settings
	Configuring UIM Connection Settings
	Configuring Technical Order Management Connection Settings

	Performing the Silent Installation
	Building the Solution Cartridges
	Building the Solution Cartridges and Configuring the WebLogic Server Resources
	Deploying the Cartridges

	Testing the Order-to-Activate Cartridges
	Switching Between Live and Emulator Configurations
	Configuring a Workspace Without Configuring WebLogic Server
	Uninstalling Order-to-Activate Components

	4 Order-to-Activate Cartridge Contents
	Cartridge Overview
	Common Order Management Cartridges
	Central Order Management Cartridges
	Common Central Order Management Cartridges
	Central Order Management Cartridges for the Calculate Service Order Solution Option
	Central Order Management Cartridges for the Solution Option Without Calculate Service Order

	Service Order Management Cartridges
	Service Order Management Cartridges for the Calculate Service Order Solution Option
	Service Order Management Cartridges for the Solution Option Without Calculate Service Order

	Conceptual Model Projects
	Common Conceptual Model Projects
	Conceptual Model Projects for Central Order Management
	Conceptual Model Projects for Service Order Management

	Common Order Management Cartridges
	OracleComms_OSM_CommonDataDictionary
	OracleComms_OSM_O2A_AIAEBMDataDictionary
	OracleComms_OSM_O2A_CommonUtility
	OracleComms_OSM_O2A_ControlMap
	Configuring Breakpoints for Central Order Management and for Service Order Management Without Calculate Service Order
	Configuring Breakpoints for Service Order Management with Calculate Service Order
	Controlling Point of No Return
	Controlling Fault Simulation
	Controlling Order Updates
	Controlling Processing Granularity for FulfillBillingFunction

	OracleComms_OSM_O2A_RecognitionFallout
	OracleComms_OSM_O2A_SystemAdmin
	How the Inbound Message Recovery MDB Works
	Recovering from Inbound Message Errors Due to Suspended Orders
	Recovering from Inbound Message Errors Due to Resource Issues

	Common Central Order Management Cartridges
	OracleComms_OSM_O2A_COM_Base
	Order Events
	Processing Granularity Rules
	Abstract Orchestration Entities
	Order Lifecycle Manager Configuration
	XQuery Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
	External Fulfillment States

	OracleComms_OSM_O2A_COM_SalesOrderFulfillment
	OracleComms_OSM_O2A_COM_Billing
	SyncCustomerFunction
	InitiateBillingFunction
	FulfillBillingFunction
	Billing Dates for Billing Patterns

	OracleComms_OSM_O2A_COM_Provisioning
	OracleComms_OSM_O2A_COM_Shipping_Sample
	OracleComms_OSM_O2A_COM_Install_Sample
	OracleComms_OSM_O2A_COM_Recognition_Sample
	Revision Number Update for Canceled Orders

	Central Order Management Cartridges for the Calculate Service Order Solution Option
	OracleComms_OSM_O2A_COM_CSO_Base
	OracleComms_OSM_O2A_COM_CSO_Broadband_Internet_Access_CFS
	OracleComms_OSM_O2A_COM_CSO_Email_CFS
	OracleComms_OSM_O2A_COM_CSO_FulfillmentPattern
	OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap
	OracleComms_OSM_O2A_COM_CSO_Internet_Media_CFS
	OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS
	OracleComms_OSM_O2A_COM_CSO_Model_Container
	OracleComms_OSM_O2A_COM_CSO_Provisioning
	External Fulfillment States

	OracleComms_OSM_O2A_COM_CSO_SalesOrders
	OracleComms_OSM_O2A_COM_CSO_Solution
	OracleComms_OSM_O2A_COM_CSO_Topology
	OracleComms_OSM_O2A_COM_CSO_VoIP_Access_CFS
	OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS
	OracleComms_OSM_O2A_COM_FulfillmentPattern
	OracleComms_OSM_O2A_COM_FulfillmentStateMap_Sample
	OracleComms_OSM_O2A_COMSOM_CSO_Recognition
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_COMSOM_CSO_Solution

	Central Order Management Cartridges for the Solution Option Without Calculate Service Order
	OracleComms_OSM_O2A_BBVoIP_FP_NP_Danube_Sample
	OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_Sample
	OracleComms_OSM_O2A_COM_NCSO_Base
	OracleComms_OSM_O2A_COM_NCSO_Provisioning
	OracleComms_OSM_O2A_COM_Simple_NP_Soln
	OracleComms_OSM_O2A_COM_Typical_NP_Soln
	OracleComms_OSM_O2A_COMSOM_Recognition_Sample
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln
	OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln
	OracleComms_OSM_O2A_FulfillmentPatternMap_Sample
	OracleComms_OSM_O2A_SalesOrders_NP_Sample
	OracleComms_OSM_O2A_SimpleTopology_Sample
	OracleComms_OSM_O2A_TypicalTopology_Sample

	Service Order Management Cartridges for the Calculate Service Order Solution Option
	OracleComms_OSM_O2A_SOM_CSO_Base
	Order Events
	Order Lifecycle Manager Configuration
	XQuery Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge

	OracleComms_OSM_O2A_SOM_CSO_Broadband_Internet_Access_CFS
	OracleComms_OSM_O2A_SOM_CSO_Common
	OracleComms_OSM_O2A_SOM_CSO_CompleteProvisioning
	OracleComms_OSM_O2A_SOM_CSO_DeliverOrder
	OracleComms_OSM_O2A_SOM_CSO_DesignService
	OracleComms_OSM_O2A_SOM_CSO_Email_CFS
	OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern
	OracleComms_OSM_O2A_SOM_CSO_FulfillmentStateMap
	OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS
	OracleComms_OSM_O2A_SOM_CSO_IP_Fax_CFS
	OracleComms_OSM_O2A_SOM_CSO_ModelContainer
	OracleComms_OSM_O2A_SOM_CSO_PlanDelivery
	OracleComms_OSM_O2A_SOM_CSO_Recognition
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_SOM_CSO_Solution
	OracleComms_OSM_O2A_SOM_CSO_Topology
	OracleComms_OSM_O2A_SOM_CSO_VoIP_Access_CFS
	OracleComms_OSM_O2A_SOM_CSO_Web_Conferencing_CFS

	Service Order Management Cartridges for the Solution Option Without Calculate Service Order
	OracleComms_OSM_O2A_SOM_Base
	Order Events
	Processing Granularity Rules
	XQuery Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge

	OracleComms_OSM_O2A_SOM_Provisioning
	OracleComms_OSM_O2A_SOM_Solution
	OracleComms_OSM_O2A_SOM_Recognition_Sample
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample
	OracleComms_OSM_O2A_SomProvisionBroadband_Sample
	OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	Common Conceptual Model Projects
	OracleComms_Model_Base
	OracleComms_Model_BaseCatalog
	OracleComms_Model_Common
	OracleComms_Model_O2A_Broadband_Internet_Access_CFS
	OracleComms_Model_O2A_Broadband_Internet_Access_SA
	OracleComms_Model_O2A_Broadband_Internet_DataModel
	OracleComms_Model_O2A_Email_CFS
	OracleComms_Model_O2A_Email_DataModel
	OracleComms_Model_O2A_Email_SA
	OracleComms_Model_O2A_Internet_Media_CFS
	OracleComms_Model_O2A_Internet_Media_DataModel
	OracleComms_Model_O2A_Internet_Media_SA
	OracleComms_Model_O2A_VoIP_Access_CFS
	OracleComms_Model_O2A_VoIP_Access_SA
	OracleComms_Model_O2A_VoIP_DataModel

	Conceptual Model Projects for Central Order Management
	OracleComms_Model_O2A_Billing_PS
	OracleComms_Model_O2A_Broadband_Internet_Access_PS
	OracleComms_Model_O2A_Email_PS
	OracleComms_Model_O2A_Install_PS
	OracleComms_Model_O2A_Internet_Media_PS
	OracleComms_Model_O2A_VoIP_PS

	Conceptual Model Projects for Service Order Management
	OracleComms_Model_O2A_SOM_PS

	Oracle AIA Emulators

	5 Extending Order-to-Activate Cartridges
	Adding Custom Data Elements
	Adding Custom Order Item Properties
	Changing Durations for Order Components
	Adding a New Fulfillment Function
	Planning the Addition of a New Fulfillment Function
	Response Patterns in System Interactions
	Single Response Pattern
	Multiple Response Pattern

	Entities to Create, Modify, or Reuse
	Data Dictionary and Order Templates
	About Creation Tasks
	About Query Tasks
	About Subprocesses

	Fulfillment Function Extension Point Interface
	Fulfillment Function Extension Point Overview
	COMPONENT-START Extension Point
	COMPONENT-COMPLETE Extension Point
	COMPONENT-UPDATE Extension Point
	CREATE-EBM Extension Point for do Execution Mode
	CREATE-EBM Extension Point for redo Execution Mode
	CREATE-EBM Extension Point for undo Execution Mode
	CREATE-EBM-CUSTOM Extension Point
	CREATE-EBM-ALL-ORDERITEMS Extension Point
	CREATE-EBM-ORDERITEM Extension Point for do Execution Mode
	CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode
	CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode
	CREATE-EBM-ORDERITEM-CUSTOM Extension Point
	CREATE-EBM-PRIORORDERITEM Extension Point
	CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point
	VALIDATE-RESPONSE-EBM Extension Point
	COMPONENT-RESPONSE-UPDATE Extension Point
	ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point

	About Fallout
	Fallout Customization
	Failure During Revision

	Adding a New Fulfillment Function for a New Service Offering

	Adding a New Fulfillment Provider
	Adding a New Fulfillment Mode
	Adding a New Product Specification
	Mapping Product Specifications to Order-to-Activate Sample Fulfillment Patterns
	Creating a New Product
	Creating a New Fulfillment Pattern
	Customizing Mapping Rules

	Importing the New Product Specification

	Changing Processing Granularity
	Configuring a New Processing Granularity Rule

	Changing Fulfillment Function Dependencies
	Setting a Point of No Return
	Modeling a PoNR

	Configuring Fulfillment States
	External Fulfillment States
	Fulfillment State Extension Point Interface
	Fulfillment State Extension Point Overview
	ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point
	ORDER_FULFILLMENT_STATE_UPDATED Extension Point
	ORDER_STATUS Extension Point
	ORDER_STATUSCONTEXT Extension Point
	ORDERITEM_MILESTONE Extension Point
	ORDERITEM_STATUSCONTEXT Extension Point
	REPORT_ORDERITEM_STATUS Extension Point
	REPORT_ORDERITEM_MILESTONE Extension Point
	REPORT_ORDERITEM_STATUSCONTEXT Extension Point

	Adding a New Service for the Calculate Service Order Solution Option
	Adding a New Service for the Service Option Without Calculate Service Order
	Customizing Service Order Management
	Service Order Management Extension Point Overview
	SOM-CREATE-SOAP-REQUEST Extension Point
	SOM-DETECT-FAULT Extension Point
	SOM-GET-FAULT-DATA Extension Point
	SOM-CHECK-IS-LAST-RESPONSE Extension Point
	SOM-GET-UPDATE-DATA Extension Point
	SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point
	SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension Point
	SOM-GET-NEW-CORRELATION-ID Extension Point

	Extending XQuery Modules
	Sending Enriched Data to the CRM System
	Considerations When Integrating with Oracle AIA
	Security Considerations When Communicating with External Systems

	6 Performing Order-to-Activate Cartridge Operations
	Troubleshooting Order-to-Activate Cartridges
	Updating the JMS Redelivery Configuration Settings
	Setting Cartridge Breakpoints

	7 Prior Versions of Order-to-Activate Cartridges
	Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM
	Changes from Order-to-Activate 2.1.1 to Version 2.1.2
	Removed Support for Asset Processing
	Processes Changed to Use a Single Task for Sending and Receiving
	Central Order Management Fulfillment Functions
	Service Order Management Fulfillment Functions

	Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1
	Support for Asset Processing
	Support for Order Lifecycle Management User Interface
	Support for Processing States

	Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2
	Changes to Fulfillment Function Extension Points
	New Extension Points
	Extension Points Added to the Billing Components

	Changes to Action Code Mappings
	New XML-type Parameter Added to Contain Custom Order Item Properties

	Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1
	New Silent Installation Option

	Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0
	Support for Calculate Service Order
	Two Solution Options: With and Without Calculate Service Order
	The Calculate Service Order Solution Option
	New Service Order Management Cartridges for the Calculate Service Order Solution Option
	Inclusion of Conceptual Model Projects

	Large Order Support
	Support for Sharing Groups

	Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1
	Release Number Changes and Packaging Changes
	Support for Multiple Price Lists
	Support for Importing Product Classes Directly from Oracle Product Hub

	Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2
	Cartridge Re-Factoring Overview
	Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2

