Oracle® Communications Order and

Service Management
Modeling Guide

Release 8.0
G37998-01
October 2025

ORACLE"

Oracle Communications Order and Service Management Modeling Guide, Release 8.0
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

About This Content

Part | Modeling OSM Solutions Overview

1 OSM Solution Modeling Overview

About the OSM Solution Modeling Process 1
About Determining the OSM Functionality to Implement 4
Solution Modeling Considerations 6
General Solution Data Modeling Principles 6
Performance Considerations 7
Planning OSM COM Solution Requirements 7
Modeling COM Order and Order Recognition Requirements 7
COM Data Modeling Considerations 8
Modeling COM Orchestration Order Items and Binding Conceptual Model
Parameters 9
Modeling COM Orchestration Order Iltem Decomposition 10
Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes 12
Modeling COM Order Transformation Manager 15
Modeling COM Orchestration Dependencies 18
Modeling COM Processes and Tasks 19
Modeling COM Fallout Scenarios 20
Modeling COM Fulfillment States 21
Modeling COM Processing States 23
Modeling Change Order Management for COM 24
Cartridge Management Considerations for COM 24
Planning OSM SOM Solution Requirements 24
Modeling SOM Order and Order Recognition Requirements 25
SOM Data Modeling Considerations 25
Modeling SOM Orchestration Order Iltems and Bindings Conceptual Model
Parameters 26
Modeling SOM Orchestration Order Item Decomposition 26
Modeling SOM Orchestration Fulfilment Patterns and Fulfillment Modes 27

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page i of xvii

Modeling SOM Orchestration Dependencies 28

Modeling SOM Processes and Tasks 28
Modeling SOM Fallout Scenarios 29
Modeling SOM Fulfillment States 29
Modeling SOM Processing States 30
Modeling Change Order Management for SOM 30
Cartridge Management Considerations for SOM 31
Planning OSM TOM Solution Requirements 31
Modeling TOM Order and Order Recognition Requirements 31
TOM Data Modeling Considerations 32
Modeling TOM Orchestration Order Items and Bindings Conceptual Model
Parameters 33
Modeling TOM Orchestration Order Item Decomposition 33
Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes 34
Modeling TOM Orchestration Dependencies 35
Modeling TOM Processes and Tasks 36
Modeling TOM Fallout Scenarios 36
Modeling TOM Fulfillment States 37
Modeling TOM Processing States 37
Modeling Change Order Management for TOM 37
Cartridge Management Considerations for TOM 38
About the OSM SDK 38

Part Il Implementing an OSM Solution

2 Modeling Orders and Permissions

Modeling OSM Orders 1
About OSM Orders Without Orchestration 3
About OSM Orders With Orchestration 3
Modeling Roles and Setting Permissions 4
About Order Types 6
About Order Updates 7
Using a Job Control Order to Manage Multiple Orders 8
About Job Control Order Operations 11

About Job Control Order Permissions 11

About Job Control Order System Configuration Files 13
Viewing Orders in OSM Web Clients 13
Specifying Which Data to Display in the OSM Web Clients 13
Modeling Query Tasks for OSM Clients 13

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page ii of xvii

3 Modeling Order Life-Cycle Policies

Modeling Order Life-Cycle Policy States and Transitions 1
About Modeling Transition Conditions 1
About Modeling Transition Grace Periods 2
About Modeling Transition Permissions 3
OSM Order States and Transactions 3
About Order State Categories 8
Common Order State Transitions 8
Optional, Mandatory, and Prohibited Transactions 10
About the Aborted Order State 12
About the Amending Order State 13
About the Cancelled Order State 15
About the Cancelling Order State 17
About the Completed Order State 18
About the Failed Order State 19
About the In Progress Order State 21
About the Not Started Order State 23
About the Suspended Order State 24
About the Waiting Order State 26
About the Waiting for Revision Order State 28
About Deleting Orders 29

4 Modeling Order Recognition

About Sending Orders to OSM and Order Recognition 1

Modeling Order Recognition Rules 2

Validating Incoming Order Data 3

Transforming Order Data 3
Modeling the Order Data Rule to Populate the Creation Task 3
Modeling Order Priority 4
Configuring JMS Message Priority on JMS Queue 5

Creating a JMS Destination Key 5

Configuring Destination Key for a JMS resource 5

Creating and Configuring JMS Destination Key in OSM Cloud Native 6

Modeling the Order Reference Number 6

Modeling a Catch-All Recognition Rule 6
Common Order Recognition Errors 6

5 Modeling Orchestration Plans

Orchestration Plan Overview 1

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page iii of xvii

Modeling an Orchestration Plan
About Component Names and Component IDs

About Order Items 6
About Creating Order Items from Customer Order Line Item Node-Sets 10
About Associated Order Items 11
Modeling Order Item Hierarchies 13
About Using a Distributed Order Template 14
About Mapping Order Items to Fulfillment Patterns 15

About Modeling Product Specifications 16

Modeling Fulfillment Modes 17

About the Decomposition of Order Items to Function Order Components 18
About Assigning Order Items to Fulfillment Pattern Function Components 18
About the Function Components Stage 19
About Order Component Control Data 19
About Fulfillment Pattern Conditions for Including Order Items 20
Summary of Order Item to Function Components Decomposition 20

About the Decomposition of Function to Target System Components 20
About Decomposition Rules from Function Components to Target Systems 20
About Decomposition Rule Conditions for Choosing a Target System 21
About the Target Systems Stage 22
Summary of Configuring Target System Components Decomposition 22

About the Decomposition of Target System to Granularity Components 23
About Decomposition Rules from Target System to Granularity Components 23
About Customized Component IDs for Separating Bundled Components 23
About the Granularity Components Stage 24
Summary of Configuring Granularity Components Decomposition 24

About Dependencies 24
About Intra-Order Dependencies 26

Modeling an Order Item Dependency 26
About Order Item Dependency Wait Conditions 27
About Order Item Dependency Wait Conditions Based on Data Changes 28
Modeling a Fulfilment Pattern Dependency 29
Modeling an Order Item Property Correlation Dependency 30
About Inferred Dependencies 30
About Modeling Orchestration Dependencies 31
About Processing Order Iltems Sequentially 32
About Inter-Order Dependencies 32
About Modeling Orchestration Dependencies 34
Using Task States to Manage Orchestration Dependencies 35

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page iv of xvii

6 Modeling the Order Transformation Manager

Understanding the Order Transformation Manager
Order Transformation Manager in Runtime
The Order Transformation Manager and the Conceptual Model
OSM Entities Used in the Order Transformation Manager
Calling the Order Transformation Manager
Using the Distributed Order Template with the Order Transformation Manager
Modeling OTM With Calculate Service Order
Calculate Service Order Design Patterns
About the Calculate Service Order Provider Function
About Calculate Service Order Relationship Types
About the Calculate Service Order Transformation Sequence
User-Created Entities for Calculate Service Order
Modeling OTM Without Calculate Service Order

N N o o oo RNNR R PR

7 Modeling Processes and Tasks

Overview of Processes and Tasks
Modeling Processes
About Process Flows
Adding Process Activities
Configuring Subprocesses
Understanding Parallel Process Flows
About Amendments and Multi-Instance Subprocesses
About Order Rules in Processes and Notifications
Modeling Order Rules in Notifications
Using the System Date in Delays
Process and Task Design and Data Considerations for Compensation
Order Perspectives and Data Elements in Compensation

0 00 NN O 01O O AW R P

Effects of Process Loops on Compensation

=
o

Modeling Tasks Entities Common to All Task Types

=Y
o

Modeling Task States
Modeling Task Permissions and Execution Modes

P
P o

About Normal and Fallout Execution Modes and Task States

H
I

Modeling Task Status Transitions

'—\
N

Specifying the Expected Task Duration

=
6]

Specifying the Task Priority

[EnN
a1

About Extending Tasks

=
(6]

About Task Types

=
6]

Modeling Automated Tasks
About Automation Plug-in and Automated Tasks

[EnN
(o)

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page v of xvii

Completing an Automation Task That Handles Concurrent Status Updates 16

Modeling Manual Tasks 17
Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool 18
Using a Custom Task Algorithm in OSM Cloud Native 21

Modeling Transformation Tasks 21

Modeling Activation Tasks 21
About Service Action Request Mapping 22
About Service Action Response Mapping 22
About Activation Tasks and Amendment Processing 22
About State and Status Transition Mapping for Activation Tasks 23

About Automation Plug-ins 23

Specifying Which Data to Provide to Automation Plug-ins 24
Modeling Query Tasks for Order Automation Plug-ins 24

About Automation Message Correlation 26

Example: Modeling a Basic Automator Plug-in for an Automated Task 27

8 Modeling OSM Data

Data Modeling Overview 1
Modeling Order Data 2
About the Data Dictionary 2
About the Order Template 3
Identifying Data Requirements for Order Payload 3
Adding the Input Message to an Order Recognition Rule 4

Adding the Input Message to the Order Template 5
Modeling Valid Data Keys 7
Modeling Data for Tasks 8
Determine Task Data for Manual and Automated Tasks 8
Determine Task Data for Data Returned from Fulfillment Applications 10
Generating Multiple Task Instances from a Multi-Instance Field 10
Modeling Data for Orchestration 11
About Order Item Control Data 12
About Order Template Data 13
About Order Item Specification Data 14
About ControlData for Order Component Data 14
Modeling Data for Fulfillment States 15
About ControlData for External Fulfillment States 16
About ControlData for Order Fulfillment State 16
About ControlData for Order Item Fulfillment State 16
Fulfilment States and Point of No Return 17
Fulfillment State and Point of No Return Initial Values 17
Sample XQuery for Changing Default Data Locations 17

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page vi of xvii

Modeling Data for Processing States 19

About ControlData for Order Component Order Item Processing States 19
About ControlData for Order Item Processing States 19
Modeling Orders With Data Fields Above 1000 Characters 20
Using XML Types for Data Fields Above 1000 Characters 20
Using Order Remarks for Data Fields Above 1000 Characters 21
Using Attachments for Data Fields Above 1000 Characters 21
Using Data Providers to Retrieve Data 22
About Data Providers and Adapters 22
Data Provider Interface Tab 23
Accessing Data through Data Providers 24
Augmenting or Overriding Data 24
Objectel 25
Order 26
Adding a New Order Data Provider 26
Property File 27
SOAP 27
XML Attachment 30
XML File 31
XML Validation 31
JDBC 31
Web Service 32
Adding a New Web Service Data Provider 32
Sample soap.request XQuery 33
Accessing Data 33
Custom Data Providers 34
Handling Parameters 34

9 Modeling Behaviors

Modeling Behaviors Overview 1
About Behavior Evaluation 3
Evaluating Behavior Levels 4
Evaluating Design Studio Final and Override Options 4
Evaluating Behavior Type Precedence and Sequence 5
About Setting Conditions in Behaviors 9
Using the Calculation Behavior 10
Calculation Behavior XPath Examples 10
Calculation Behavior Overview 10
Using the Constraint Behavior to Validate Data 11
Displaying Constraint Behavior Error Messages 11
Evaluating Constraint Behaviors 12

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page vii of xvii

10

11

Using Task Statuses to Control Process Transitions 12
Task Statuses and Constraint Behavior Violation Severity Levels 13
Constraint Behavior Overview 13
Using the Data Instance Behavior to Retrieve and Store Data 14
Evaluating Data Instance Behaviors 14
Data Instance Behavior XML, XPath, and XQuery Examples 14
Data Instance Behavior Overview 15
Using the Event Behavior to Re-evaluate Data 15
Event Behavior Overview 16
Using the Information Behavior to Display Data and Online Help 17
Information Behavior XPath Examples 17
Information Behavior Overview 18
Using the Lookup Behavior to Display Data Selection Lists 18
Lookup Behavior XPath Example 19
Lookup Behavior Overview 19
Using the Read-Only Behavior 19
Read-Only Behavior Overview 19
Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client 20
Relevant Behavior Overview 21
Using the Style Behavior to Specify How to Display Data in the Task Web Client 22
About Style Behavior Layouts 24
About Style Behavior Password Fields 28
Style Behavior Overview 29
Modeling a TMF Solution (Cloud Native Only)
About Specifications 1
About Cancelling or Revising an Inflight Order 1
Modeling PONR 7
Change Order Support 8
Order Fulfillment Modes 8
Upstream Listener 9
About TMF Order Events For the External Event Listener 9
About Fallout Exception Management 9
Implementing a TMF Solution (Cloud Native Only)
Accessing the Specifications 1
About Extending the Specifications 1
Considerations When Extending the Main Resource 2
About Versioning the Specifications 2
About the "ANY" Schema Type 3

Modeling Guide

G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates.

Page viii of xvii

About anyOf, allOf, and oneOf 6
About TMF Cartridges and Non-TMF Cartridges 7
About Importing the Hosted Order Specification 8
About Fulfillment Modes 9
About TMF Order Lifecycle Policy 9
About Data Dictionary 10
About the Order Template 11

About the Master Order Template 11

About the Order Item Specification Order Template 11

About the Significance of CDT 15
About TMF Orders and Permissions 16

Permissions for Internal Gateway Role 16
About Order Recognition 16
About Updating the TMF Order Item with Downstream Data 19

Updates to Order Item Characteristics 19

Updates to General Order Item Data 23

Updates to External Fulfillment State 23
About TMF Order State 23
About TMF Order Item State 25
About Fulfillment State and Processing State 29

12 Modeling External REST Interactions using System Interaction (Cloud
Native Only)
About Importing the OpenAPI Document into Design Studio 1
TMF APIs for BSS/OSS System Interactions 1
Importing a System Interaction 1

Updating a System Interaction Specification 2
System Interaction and OSM Order Components 2

Determining the Order Component 3
About Array of Arrays Support in System Interactions 5
About the OSM Gateway Functions 7

Support for JSON Patch and Merge-Patch Content Types in System Interaction 7
Considerations for OSM Cloud Native to OSM Cloud Native Integration using System
Interaction 10
Developing Automation Plugins 10
Known Issues and Workarounds 10

Part Ill Modeling Run-time Order Management

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ix of xvii

13 Modeling Changes to Orders

About Amendment Processing and Compensation
About Revising or Canceling Orders by Using the Task Web Client
About Order Keys
About Submitting Multiple Revisions of an Order
About Compensation States
About Revising In-flight Revision Orders
About Insignificant Revision
About Terminating Compensation
Disabling Processing of Revisions on In-flight Revision Orders
Example: Revising an In-flight Revision Order
About Controlling When Amendment Processing Starts
About Compensation
About Order-Level and Task-Level Compensation Analysis
About Order Data Position and Order Data Keys
About Data Significance
About Task Execution Modes
Modeling Compensation for Tasks
Determining Task Compensation Strategy
About Compensating In Progress Tasks
About Task Compensation Strategy XQuery Expressions
About Managing Compensation in the Task Web Client
Modeling Compensation for Rules in Processes
Modeling Compensation for Task Automation Plug-Ins
Compensation Examples
Example 1: Compensation During Provisioning
Example 2: Compensation During Billing
Example 3: Amend Do Compensation
Examples of Changes to Orchestration Plans
Modeling a Point of No Return
Fulfillment Pattern Point of No Return
Life-Cycle Policy Point of No Return
About Modeling Order Change Management
Troubleshooting Order Change Management Modeling
About Order Change Management at the Orchestration Layer
About Compensation and Orchestration
About Point of No Return

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

© © 0 N N -

10
11
11
11
13
14
14
17
18
21
23
23
26
27
29
29
29
30
30
30
31
32
35
35
35
36
37
37
38
39

October 30, 2025
Page x of xvii

14 Modeling Fallout

Overview of Fallout
Understanding Fallout Across OSM Roles
Understanding Fallout Sources
Managing Business Related Fallout Sources
Managing Fallout from Failures in Network or System Resources
Managing Fallout During Order Creation
Managing Fallout in the OSM Web Clients
Modeling Fallout in Tasks
About Failed Tasks and Execution Modes
About Alternate Task Fallout Management Methods
Modeling Task Natifications for Fallout
About Modeling Fallout Exceptions
Managing Fallout Exceptions in the Task Web Client
Simplified Fallout Exception Automation Framework (Cloud Native Only)
Modeling Fallout in Orders
Modeling the Failed Order State
Modeling Order Notifications for Fallout
About Terminating an Order
Managing Fallout in the OSM Order Management Web Client

15 Modeling Fulfillment States and Processing States

© © © 0 0 N O o DN P

L e e i e
N o o0~ AN P

About Fulfillment States, and Processing States
Modeling Fulfillment States

Defining Fulfillment States

Modeling External Fulfillment States

Modeling Fulfillment State Maps

Modeling Fulfillment State Composition Rule Sets
Modeling Processing States

Order Component Order Item Processing States

Order Item Processing States

16 Modeling Jeopardy and Notifications

© 0 Ul A W W PF

=Y
o

Best Practices for Using Notifications for Status Updates
Status Update Strategies
Strategies for Using Notifications
Modeling Notifications
Using Task States and Statuses to Trigger Event Notifications
About Notification Priority

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

N NN PR

October 30, 2025
Page xi of xvii

About Sending Notifications in Email
About Configuring Entities to Support Notifications
About Jeopardy Notifications
About Modeling Jeopardy Notifications
About Jeopardy Notification Triggering
About Jeopardy Notification Conditions
Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor
Specifying Jeopardy Notification Conditions in the Order Editor
Specifying Jeopardy Notification Conditions for a Task
About Event Notifications
About Using Task Transitions to Trigger Event Notifications
About Using Task States and Rules to Trigger Event Notifications

© 00 N O o o O O A W W W N

About Using Task States to Trigger Automated Event Notifications
About Using Order Milestones to Trigger Event Notifications

=
N O

About Using Order Data Changes to Trigger Notifications

=
w

About Enabling Order Life-Cycle Events
Summary of Notification Functionality

=Y
w

17 Modeling Milestone Events

About Milestones and Model-driven Milestones
Usage of Milestone Events
Modeling Model-driven Milestones

18 Modeling Order Scheduling

About Order Item Requested Delivery Date and Order Components
How OSM Decomposes and Processes Order Items in Order Components
About Grouping Order Items in Order Components by Date Range
Modeling Order Component Minimum Processing Duration
About Minimum Processing Duration Inheritance in Fulfillment Patterns
About Minimum Processing Duration Expressions
Calculating the Earliest Order Component Start Date (Order Start Date)
About Calculated Order Component Start Dates
Modeling Order Component Dependencies and Requested Delivery Dates
Modeling Order Iltems Processed by Multiple Dependent Order Components
Revisions of Future-Dated Orders

© © © N N O O W W N -

=
o

Examples of Calculating the Expected Start Date

=
o

Example 1: Calculating Start Dates for Order Components with No Dependencies

=
=

Example 2: Calculating Start Dates for Order Components with Dependencies

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page xii of xvii

Part IV Managing OSM Projects

19 Managing OSM Solution Cartridges

Solution Management Overview 1
About OSM Cartridge Scope 2
Scope of OSM Entities Without Namespaces 3
Design Studio Entities 3
XML Catalogs and Resource Files 3
Scope of OSM Entities with Namespaces 3
Standalone Cartridge Scope 4
XML Catalog Files in Standalone Cartridges 5
Avoiding Namespace Collisions for Design Studio Entities 5
Avoiding Namespace Collisions for Resource and XML Catalog Files 6
Composite Cartridge Scope 8
Special Cases for Scope 10
Order Recognition Rules 10
Fulfillment Patterns 10
Managing Cartridge Versions 12
Making Changes to Existing Cartridge Versions 13
Handling Multiple Cartridge Versions 14
Migrating Orders to a New Version of a Cartridge 15
Designation of the Default Cartridge Among Cartridge Versions 15
Handling Revision Orders When Multiple Cartridge Versions Are Deployed 16
Working with Cartridges in OSM Cloud Native 16
Building and Packaging a Cartridge 17
About Generating OSM Cartridges and Deployment Options 17
About Cartridge Types 18
About Design Studio Editors for OSM Cartridges 18
Organizing Design Studio and Naming Conventions 21
Cartridge Packaging Design 22
Modifying the Build 23
About XML Catalogs 23
Using XML Catalogs in OSM 24
Resource Packaging Considerations for Using XML Catalogs 25
Defining rewriteURI Entries in XML Catalogs 26
Specifying XML Catalogs for OSM 28
Enabling and Disabling XML Catalog Support 29
Examples of Using XML Catalogs 29
Using XML Catalogs to Support Cartridge Versioning 30

Using XML Catalogs to Load Resources from a Development File System
(Traditional OSM Only) 30

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page xiii of xvii

Using XML Catalogs to Insulate Run-Time Environments from Development 31

Cartridge Deployment 32
Cleaning and Rebuilding Cartridges Prior to Deployment 32
Optimizing Cartridge Deployment 32
Deploying Multiple Cartridges 32
Deploying Cartridges with Dependencies 32
Deploying Cartridges to the OSM Database Using XMLIE 33
Building and Deploying Composite Cartridges 36
Setting Cartridge Dependencies 36
Post-Deployment Effect on Numeric Data 36
Post-Deployment Changes to Cartridge 36
Metadata Errors 36

Part V. Working with Capabilities Cartridges

20 Working with Capabilities Cartridges (Cloud Native Only)

About Capabilities Cartridges
About Capabilities Cartridges Restrictions
User Workflow in Design Studio
Capabilities Cartridge Lifecycle
Creating and Delivering the CPAR
Updating and Re-Delivering the Capabilities Cartridge
Retiring a Capabilities Cartridge
Capabilities Cartridge Content
Design Studio Workspace
Capabilities Cartridge Conventions
Fulfilment Model
Order Recognition Rule
XML Catalogs
Automation Concurrency Map
Relationship Types
Provider Function
Description Fields
Fulfilment Pattern Property on the Order Item Specification
Transformed Order Item Properties
Order Component Organization
Configurability Limitations
General Restrictions
Mapping Rules

© 00 00 0 O N N NN OO O OO Oo1 oW WDN R R

Transformation Sequence

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page xiv of xvii

Decomposition and Routing Rules 10

Cartridge Versioning 11
DataTypes for Product and Service Attributes 11
Transformed Order Item Properties 12
Capabilities Cartridge Test Scaffolding 12
Fulfillment Model 12
OSM Enrichment Data 12
Cartridge Guidelines for Test Data 13
OSM Test Content 13
Conceptual Model Test Content 14
Reusable Conceptual Model Content 15
Capabilities Cartridge Build 16
Using the Capabilities Cartridge Wizard 16
About the CPAR File 16
Capabilities Manifest Details 17

A Behaviors Quick Reference

OSM Behavior Type Overview A-1
Common Behavior Elements A-3
Annotation Element A-3
Description Element A-3
Instance Element A-3
Adapter Element [externallnstanceType] A-3
Parameter Element [externallnstanceType] A-3
Cache Element A-4
Expression Element A-4
Declaring Behaviors in OSM XML Model A-4
Data Dictionary Level A-4
Master Order Template Level A-4
View Level A-4
Data Provider Overview A-4
Programmatic Behavior Implementation Overview A-5

B XQuery Examples

General XQuery Information B-1
About Creating XQuery Expressions with Design Studio B-1
OSM XQuery Functions B-2
Referencing Items from a Distributed Order Template in XQuery Expressions B-3

Order Recognition Rule XQuery Expressions B-4
About Recognition Rule XQuery Expressions B-4

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page xv of xvii

About Validation Rule XQuery Expressions B-5

About Order Priority XQuery Expressions B-6
About Order Reference XQuery Expressions B-7
About Order Data Rule XQuery Expressions B-7
Decomposition XQuery Expressions B-9
About Orchestration Sequence XQuery Expressions B-9
About Order Sequence Order Item Selector XQuery Expressions B-9
About Order Sequence Fulfillment Mode XQuery Expressions B-10
About Order Item Specification XQuery Expressions B-10
About Order Item Specification Order Item Property XQuery Expressions B-10
About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns B-12
About Order Item Specification Order Item Hierarchy XQuery Expressions B-14
About Order Item Specification Condition XQuery Expressions B-16
About Fulfillment Pattern Order Component XQuery Expressions B-17
About Fulfillment Pattern Order Component Condition XQuery Expressions B-17
About Associating Order Items Using Property Correlations XQuery Expressions B-17
About Decomposition Rule Condition XQuery Expressions B-20
About Component Specification Custom Component ID XQuery Expressions B-21
Custom Order Component IDs Based on Hierarchy B-22
Custom Component IDs Based on Requested Delivery Date and Duration B-25
Custom Component IDs by Duration and Minimum Separation Duration B-26
Combining Order Item Hierarchy with Duration-Based Groupings B-27
About Component Specification Duration XQuery Expressions B-28
About Fulfillment Pattern Duration XQuery Expressions B-28
About Fulfillment Pattern Component Duration XQuery Expressions B-28
Dependency XQuery Expressions B-29
About Order Item Dependency Property Correlation XQuery Expressions B-29
About Wait Delay Duration XQuery Expressions B-30
About Wait Delay Date and Time XQuery Expressions B-31
About Order Data Change Wait Condition XQuery Expressions B-33
About Order Item Inter-Order Dependency XQuery Expressions B-34
Order Transformation Manager XQuery Expressions B-36
About Transformation Sequence XQuery Expressions B-36
About Order Item Context XQuery Expressions B-36
About Related Order Item Selector XQuery Expressions B-36
About Stage Condition XQuery Expressions B-37
About Mapping Rule XQuery Expressions B-37
About Mapping Condition XQuery Expressions B-38
About Action Mapping XQuery Expressions B-38
About Entity-to-Entity Advanced Mapping XQuery Expressions B-38
About Entity-to-Data-Element Advanced Mapping XQuery Expressions B-39

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page xvi of xvii

About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions B-39

About Reverse Mapping XQuery Expressions B-40
About Multi-Instance XQuery Expressions B-40
About Order Item Parameter Binding XQuery Expressions B-41
About Transformed Order Item Fulfillment State XQuery Expressions B-41

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page xvii of xvii

ORACLE’

About This Content

This guide provides modeling information about Oracle Communications Order and Service
Management (OSM).

Audience
This guide is intended for:

e Business domain experts who make decisions about the order fulfillment process.

e Order management personnel who need to know how OSM works and how orders are
processed.

« Developers who extend OSM to interface with external systems.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Pageiofi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Modeling OSM Solutions Overview

Part | contains the following chapter providing an overview of modeling Oracle
Communications Order and Service Management (OSM) solutions:

¢ OSM Solution Modeling Overview

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 1

OSM Solution Modeling Overview

This chapter provides an overview of an Oracle Communications Order and Service
Management (OSM) solution.

Before reading this chapter, read OSM Concepts to learn about general OSM concepts.

@® Note

In this guide, “traditional OSM” refers to the traditional way of installing and
maintaining an OSM environment and “OSM cloud native” refers to OSM deployed in
a cloud native environment.

About the OSM Solution Modeling Process

An OSM solution is part of a larger operations support system (OSS) and business support
system (BSS) solution. The OSM solution brings together the elements relating to order
processing within an overall OSS and BSS solution. To understand how the OSM solution fits
into this OSS and BSS solution, you must do the following:

Modeling Guide
G37998-01

1.

Scope the solution and perform an initial analysis: This stage is where you decide the
nature of the business change required for the OSS and BSS solution at a high level.
Generally, an OSS and BSS solution falls under the following scope categories:

Solutions that involve adding or changing product offerings with no effect on the
underlying service or IT infrastructure. For example, the marketing department wants
to create a new offering category with new discounts and incentives.

Solutions that involve adding of or changing both product offerings and the underlying
service and IT infrastructure. For example, a company may expand their product
offerings from broadband Internet and email to include a mobile offering. This change
required adding new product categories, offering and bundling possibilities, new
underlying services, and new IT infrastructure requirements.

Solutions that involve adding or changing the network fulfillment infrastructure. For
example, adding new network technology, the upgrade of existing network technology,
the expansion of the company into new geographical locations, and so on.

Solutions that involve additions of or changes to the BSS and OSS service fulfillment
IT infrastructure. For example, the addition of new service fulfillment systems, such as
billing, activation, work force management, or partner gateway systems.

Plan, analyze, and design the solution: You plan, analyze, and design a solution primarily
by creating an Oracle Communications Service Catalog and Design - Design Studio
conceptual model (see Design Studio Concepts for more information). You can use
conceptual model entities to capture the impact of the changes specified in the initial
solution scope. Such entities may include:

Products: Here you capture any changes to simple products, bundles of products, and
offerings, including the data required at this level.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 38

ORACLE

Modeling Guide
G37998-01

Chapter 1
About the OSM Solution Modeling Process

e Customer-facing services (CFSs): A CFS represents the service that the customers
want. Here you capture the impact of any product and resource changes. You need to
determine whether an existing CFS require changes as a result of product-level
change or resource-level change.

* Resource-facing services (RFSs) and resources: An RFS represents the technology
options available to implement a service. Here you capture the technology options
available to fulfill a CFS and the parameters required. For example, a broadband CFS
may have the DOCSIS, GPON, or DSL RFS options available, each of which specifies
one or more resources that represent specific instances and versions of the RFS
technology category.

e Actions: You can model the specific actions available for each CFS and RFS. The
actions represent subsets of CFS and RFS entity data. For example, an add action
may require that all parameters of a CFS be populated, but a change action may
require only a subset of the parameters.

e Location: You can designate which locations support what resources and services.

* Fulfillment patterns: You indicate which conceptual model fulfillment patterns are
involved in processing products, CFSs, RFSs, and resources. For example, products
relating to broadband Internet may require a different fulfillment pattern than products
relating to mobile service or IP TV.

3. Implement the solution: You model OSM application entities and data in Design Studio to
realize the conceptual model entities you created in the planning, designing, and analyzing
phase. Keep in mind that the OSM solution is closely interrelated with other OSS and BSS
solutions, such as billing, activation, service resource management (SRM), workforce
management (WFM), and partner gateway (PGW) solutions.

Figure 1-1 represents a conceptual model that defines all offers, products, CFSs, RFSs,
resources, network targets, and actions that a fictional communications service provider (CSP)
requires to fulfill a sample broadband Internet and email service. The CFS and RFS entities
unify the business and marketing concerns represented by the products and offers with the IT
infrastructure concerns represented by the resources and network targets. The CFS and RFS
entities also decouple the changes that occur in products, offers, from the changes that occur
in resources. For example, for business and marketing, products and offers are changed
frequently. Likewise for IT infrastructure, technology, vendors, and vendor versions are
changed frequently. But the underlying services being offered and the underlying technology
types do not change often.

Figure 1-1 also shows the OSM roles and fulfillment systems involved in fulfilling orders
containing the data defined in the conceptual model for this fictional CSP.

@® Note

Figure 1-1 shows each application as a separate system, however these applications
can also be co-resident.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 38

ORACLE’

Chapter 1
About the OSM Solution Modeling Process

Figure 1-1 Sample Conceptual Model

=
Broadband Service Offer
Offers Basic Infemet Access CRM
Elite Interref Access
Email Service Offer t
J
Broadband Broadband Broadband Fi i Email ggm = Billing
Products roadban Bandwidth Modem irewa Eenru:e
3
Customer
Facing Broadband Internet Email Y
Services Access OsSMm
SOM = SRM
Resource
Facing DOCSIS Email
Services
-
- o M
R (DOCSIS CPE) (Email m:murrtj ?g:: s¢
esources
L
e
SR
Network L Access Node) (:_CPE Mgmt Sys) -{ Email Server ;1 PGW
Targets . i Indicates an Action Like Activation
<> Indicates an Option 7 Add, Change or Delete

Modeling Guide
G37998-01

You can use this sample conceptual model as a basis for modeling data and functions
generated by orders. The following shows the OSM roles that run the functions that fulfill the
sample conceptual model entities:

e Central order management (COM) role

OSM in the COM role manages sales orders sent from a customer relationship
management (CRM) system. The sales orders contains offer and product information.
Functions at this level include:

1. Synchronizing customer account information between the CRM system and the billing
system. Customer account information can be name, address, account details, order
number, billing profile, and so on.

2. Updating service subscription details in the billing system so that the billing system can
begin to collect service usage information.

3. Transforming the products and offers into CFSs and sending them to OSM in the SOM
role as a service order.

4. Billing for usage by updating service subscription details in the billing system after the
provisioning function has completed, and then notifying the CRM system that the sales
order is complete.

e Service order management (SOM) role

OSM in the SOM role manages service orders sent from the provisioning function of OSM
in the COM role. Functions at this level include:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Sending CFS information to an SRM system so that the SRM system can design a
service instance based on the RFS specification, allocate resources to the service
instance, and specify what needs to be configured on the resources to support the
features, qualities, and policies of the service.

Requesting resource actions from the SRM system, which are the actions that need to
be performed by OSM in the TOM role and by the fulfilment systems communicating
with the TOM role.

Sending the technical order containing the resource actions to OSM in the TOM role.
The technical order outlines the work that must be performed to enable the service
design in the network. Some actions impact the WFM system, some the activation
system, and so on.

Completing the service order when OSM in the TOM role completes the technical
order, and updating the OSM instance in the COM role.

Technical order management (TOM) role

OSM in the TOM role manages technical orders sent from OSM in the SOM role. OSM in
the TOM role decomposes each resource in the technical order into the appropriate
functions and target system process. Functions at this level include:

1.

Sending actions to a supply-chain management (SCM) system for selecting, packing,
and shipping physical goods to the destination selected by the customer.

Sending actions to a partner gateway (PGW) used to manage relationships with third-
party suppliers or partners that provide services or infrastructure involved in fulfilling
the order. For example, the last mile of a telecommunication network involved in
service delivery is often owned by a third-party telecommunications company.

Sending actions to an activation system involved in configuring and activating network
resources.

Sending actions to a workforce management (WFM) system to dispatch a technician to
perform work in the field.

Completing the technical order when the fulfilment systems involved with OSM TOM
complete their tasks and updating the OSM instance in the SOM role.

You must also analyze data and function requirements for other order processing scenarios,
such as managing order fallout, managing order changes, tracking fulfillment states and
processing states as orders are processed, managing notifications to upstream systems, and

SO on.

After you have completed this analysis and design stage, you can model entities in OSM
Design Studio projects. You can then generate cartridges from those projects that you can
deploy to OSM servers for development test environments and finally to production
environments.

About Determining the OSM Functionality to Implement

After you have analyzed the information contained in the conceptual model, you must
determine the following functionality to implement in the OSM solution you are planning:

Modeling Guide
G37998-01

What kinds of orders you need to model for OSM roles (COM, SOM, and TOM) and what
kinds of order life-cycle policies the orders need.

See "Modeling Orders and Permissions" and "Modeling Order Life-Cycle Policies" for more
information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 38

ORACLE

Modeling Guide
G37998-01

Chapter 1
About Determining the OSM Functionality to Implement

What kinds of order recognition rules each OSM role requires to capture incoming
customer, service, technical, or revision order types.

See "Modeling Order Recognition"” for more information.

What kinds of order items each OSM role needs to fulfill based on the conceptual model
entities and actions.

See "Modeling Orchestration Plans" for more information.

What kinds of fulfillment modes, fulfillment patterns, order decomposition and
dependencies you require based on the OSS and BSS solution requirements and order
fulfillment flows.

See "Modeling Orchestration Plans" for more information.

What kinds of order item and order component scheduling you need when fulfilling your
orders.

See "Modeling Order Scheduling " for more information.

What kinds of tasks and processes you need to implement for each order component
function, what systems to target, and what order or order item granularity is required when
sending messages to the target systems. For example, do you configure automated tasks
to send all the order items that are decomposed to the function that triggers the process, or
do you generate separate functions that trigger separate processes for each bundle of
order items contained in the order?

See "Modeling Processes and Tasks" for more information.

What kinds of manual tasks you need to implement in the OSM Task web client and what
kinds of behaviors the tasks should exhibit. The goal of any OSM solution is to automate
tasks as much as possible; however, sometimes manual tasks are necessary. For
example, when initially creating a solution, you might want to model all automated tasks as
manual tasks first, and then convert them to automated tasks after you have a better
understanding of what the tasks must do.

See "Modeling Processes and Tasks" and "Modeling Behaviors" for more information.

What kinds of fulfillment states and processing states you need to configure for the
customer, service, technical orders, and order component order items. In addition, you
must determine what messages from eternal systems trigger fulfillment state and
processing state changes.

See "Modeling Fulfillment States and Processing States" for more information.

Whether you need to use the conceptual model Calculate Service Order provider function
with the order transformation manager.

See "Modeling the Order Transformation Manager" for more information.

What kinds of change order management scenarios you expect for COM, SOM, and TOM
orders.

See "Modeling Changes to Orders " for more information.

What kinds of notifications you need to set up that would be specific to the order
component functions and process tasks of each OSM role.

See "Modeling Jeopardy and Notifications" for more information.

What kinds of fallout scenarios to anticipate and how to recover from them.

See "Modeling Fallout" for more information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

The following sections provide details about the different ways you can implement these OSM
functions in general and in COM, SOM, and TOM contexts that are part of an overall BSS and
OSS solution:

Solution Modeling Considerations

Planning OSM COM Solution Requirements

Planning OSM SOM Solution Requirements

Planning OSM TOM Solution Requirements

You implement these functions differently in each OSM role.

Solution Modeling Considerations

It is important to plan your solution implementation before modeling your solution. The
following sections provide some general guidelines for solution modeling.

General Solution Data Modeling Principles

Modeling an OSM solution involves creating orders that contain the data involved in fulfilling
actions such as add, change, delete, modify, move, and so on, on a product, service, or
resource. In general, when you begin to model an OSM solution, you must understand the
following data modeling principles:

Modeling Guide
G37998-01

You must identify where the data you define comes from. For example, most data is
defined in the CRM system in response to a request from a customer, but other data may
be generated by downstream fulfillment systems that OSM interacts with.

You must identify which system is the primary owner of each data structure or element.
This principle is especially important in change order management and fallout
management scenarios, where OSM must update data to modify or correct the fulfillment
of an order.

For example, if the SRM system that interacts with OSM SOM provides faulty network
resource data that generates an error in the activation system that OSM TOM interacts
with, then the SRM system must correct the faulty network resource data. Although it may
be possible to correct the problem directly in the OSM TOM task that communicates with
the activation system, this does not resolve the root problem, which originated in the SRM
system. Allowing OSM TOM to correct the problem also causes the network resource data
to be inconsistent between OSM TOM and the activation system, and between OSM SOM
and the SRM system.

You must understand how the data is propagated throughout OSM systems and service
fulfillment systems. Although OSM should not add, change, or modify data owned by a
fulfillment system, OSM does sort, route, format, and send the data so that other fulfillment
systems can consume the data in the format they require.

The solution that the OSM solution is a part of may contain an integration layer that
determines a canonical format for data and provides standard interfaces to which OSM
must conform. For example, Oracle Application Integration Architecture (Oracle AlA)
integrates Oracle applications, such as OSM, Siebel Customer Relationship Management
(Siebel CRM), and Oracle Communications Billing and Revenue Management (BRM), and
also provides a standard format for message exchanges.

When an OSM solution is not part of a solution with an integration layer OSM must
conform to the data requirements and interfaces of each external fulfillment system.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Use these principles to clearly understand how order data is kept in OSM systems, and how
data is communicated at the interactions between OSM systems and other fulfillment systems
for every fulfillment action performed by the OSM solution.

See "Modeling OSM Data " for more information about modeling data in OSM solutions.

Performance Considerations

When modeling a solution, you should always keep solution performance in mind. The
following factors have an impact on performance:

* Number of tasks in a process.

* Number of concurrently executing automation plug-in instances.
* Number, size, and depth of data elements in the order.

e Order view (query task) size and complexity.

* Number of order line items and complexity in an incoming order.
* Degree of XSLT and XQuery transformation.

« Complexity of the generated orchestration plan.

* Average number of revision orders per base order.

If you have not taken these factors into consideration when modeling your solution, and the
results of system performance testing are unsatisfactory, you may have to change the solution
modeling. For information about other system performance considerations, see OSM System
Administrator's Guide and OSM Installation Guide.

Planning OSM COM Solution Requirements

This section describes OSM modeling entities and functions involved in the OSM COM role. It
includes examples intended to guide you in understanding how you can use these entities and
functions in your OSM COM solution. This information can help you plan your implementation
efforts by exemplifying at a high level the full scope of work involved in modeling a typical COM
solution. Follow the links in each section for specific details about the functions described.

You typically model COM solution changes based on adding and changing new products,
bundles, and offers that reflect purely business and marketing concerns or that also reflect
changes to the SOM and TOM solution, such as when a company introduces a new technology
domain.

Modeling COM Order and Order Recognition Requirements

Modeling Guide
G37998-01

You need to determine what kinds of orders to model in OSM, what order life-cycle states and
state transitions the orders have, what user roles (workgroups) have permissions to perform
tasks in fulfilling the orders, and what data should be visible to each user role (workgroup).

For example, you model customer orders for new orders, whether an in-progress order can be
revised, and fallout orders that are triggered when customer orders or revision orders fail. You
enable various order life-cycle states for each order, such as Not Started, In Progress,
Canceling, Amending, and so on, and what transitions are possible from state to state. You
must determine what personnel or systems have permissions to perform order state transitions
and other functions and tasks involved in fulfilling orders.

You must also specify whether you want the order to use an orchestration or not. Oracle
recommends using orchestration for most solutions. Use non-orchestration processes only
when the order management requirements are simple, well understood, and relatively static.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

You can model a single target order type that can process any type of incoming sales order, or
you can model multiple order types based on product domain groupings. For example, you can
create one order type for broadband, another for mobile, a third for cable, and so on. Using
multiple order types, however, makes it difficult to bundle services and is also costly to
maintain. Oracle recommends using one standard order type that accepts all incoming orders,
and using other order types for only very specific uses, such as a fallout management order
type that can extract information about failed orders.

If you create multiple order types, you also need to create corresponding order recognition
rules that match incoming orders to the target order. Consider the following approaches when
modeling order recognition rules:

« If you have different order source systems, each having its own order format, you can
create multiple order recognition rules that point to the same target order. The order
recognition rules transform the incoming order data into the target order data format.

* If you have multiple target orders based on domain groupings, you must create a separate
order recognition rule for each target order type.

* If you have one OSM instance operating in more than one role (for example, if the same
system is operating in both the SOM and the TOM role) you need to configure an order
recognition rule that points to a corresponding target order for each role.

* If you have one order source system and one OSM instance operating in only one role,
then you need only one order recognition rule that points to one target order.

You must determine what corresponding order recognition rules you need to model in OSM to
recognize, validate, prioritize, and transform order data from sales orders into a matching OSM
target order. You must map incoming order data to the data defined in the creation task of the
target order.

See the following sections for more information:

Modeling Orders and Permissions

« Modeling Order Life-Cycle Policies

Modeling Order Recognition

COM Data Modeling Considerations

Modeling Guide
G37998-01

Answer the following questions to determine what corresponding order data you need to model
on the sales order and the target order in OSM COM:

¢ What data is required to complete an order?

¢ What data do the tasks require? For example, if service provisioning requires the
customer's location, then the order needs to include the customer's location.

* What data does the customer account require?

e What data is not required on the customer order, but is required by the service order that is
derived from the customer order?

* What data do the tasks require when the order is created?

« Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source.

« Which data on the order contain order item information that represents the offers, bundles,
and products on the order?

* What order item parameters represent the name of the order item?

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

« If the order items are hierarchical, what data elements specify the parent and child
relationship between each order item?

« |f the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

* What data element specifies the action that must be performed on the order item during
the fulfillment process (such as add, change, and so on)?

* What data element specifies the overall action of the order, such as deliver, cancel or
technical service qualification (TSQ)?

* What data is required on the sales order for the billing system?

See the following sections for more information:

« Modeling Order Data

* Modeling Orders and Permissions

Modeling Behaviors

Modeling COM Orchestration Order Items and Binding Conceptual Model Parameters

Modeling Guide
G37998-01

You must determine what order data to model as order items (see "COM Data Modeling
Considerations") and what product specification the order items belong. You typically map
order items to product specification by defining an order item property that OSM then uses to
map the order item to specific fulfilment patterns, and so on.

You can also use Design Studio order item parameter bindings to map conceptual model
entities their parameters to OSM order item specifications. This enables you to have strongly
typed parameters that you do not need to model within order item specifications. You map
conceptual model entities and their parameters to OSM order item specifications mainly to
validate incoming order items and their parameters and/or transform the order items and their
data from one type to another (for example, from products to CFSs).

In the OSM COM context, you map conceptual model products and data parameters to the
COM order item specification for the incoming sales order and accompanying products,
bundles, and offers. For example, Figure 1-1 defines the broadband service offer and several
child product offerings such as broadband, bandwidth, firewall, email, and so on. OSM
validates all order items against the corresponding conceptual model entities and their
parameters. If you have configured the order transformation manager, OSM also transforms
the products into CFSs (see "Modeling COM Order Transformation Manager" for more
information).

If you do not need order item parameter bindings for validation or transformation, you must
model parameters in the order item specification. You can designate an order item property to
contain these parameters (typically name-value pairs) and designate the structure as XML
Type in the Order editor Order Template tab, Properties tab, Order Data subtab for the selected
data element. For example, order items at the COM level relating to billing information, such as
promotional offers or recurrent charging information, may not need validation because the
sales catalog is separately synchronized between the CRM and billing systems. In this
scenario, OSM is only required send the order items on the sales order directly to the billing
system. However, all other order items that must go to OSM in the SOM role would typically
require both validation and transformation using the conceptual model.

Validating data against the conceptual model is important because this ensures the data is
consistent across the entire OSS and BSS solution (OSM in COM, SOM, and TOM roles, the
activation system, the SRM system, and so on).

See "Modeling Orchestration Plans" for more information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Modeling COM Orchestration Order Item Decomposition

Modeling Guide
G37998-01

You need to decide what orchestration stages OSM should evaluate when decomposing order
items into order components. These order components typically designate functions, systems,
and granularity options.

Based on the previous sections, you should already have some knowledge of what the order
you are creating contains. Use that knowledge to answer the following questions:

* What systems does OSM communicate with?
* What order items does each system require?
* What are the business functions that each system must perform on the order items?

* How should OSM deliver data for the functions to process? Does the function operate on
the whole order, or does the function require a separate interaction per order item bundle
or per order item?

Based on the answers you provide to these questions, you can begin to model order item
decomposition stages.

Figure 1-2 shows a sample order capture and orchestration process. The process captures
orders with an order recognition rule that maps the order and order data to a target order and
creation task data elements. This order then begins an orchestration process that triggers an
orchestration sequence. The sequence specifies which order node contains the order items,
which order parameter defines the fulfilment mode for the order, and the stages in which the
order items can be evaluated. The orchestration process determines which order components
the order items should decompose to. In Figure 1-2, OSM sequentially evaluates:

e A stage that decomposes order items into order components that define functions.
e A stage that decomposes order items into order components that define systems.

e A stage that decomposes order items into order components that define granularity.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 38

ORACLE’

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

Chapter 1
About Determining the OSM Functionality to Implement

Figure 1-2 Sample Order Capture and Orchestration Process

CRM
OsM COM
Y
ORR ~
Drded . Orchestration
Order Life-Cycle —=
Creation Permissions rovess
Task +
Orchestration
Order ltem - Sg:ijuer:tce
Specification -rder flems I
peciiicatl -Fulfillment Modes = E';::u:l ;r;ent
-Decomposition
l Stages
Function Stage System Stage Granularity Stage
Component Component Cormponent
Component (| Component || Component
Component Component Component

You must determine what high-level tasks are involved in fulfilling customer orders at the OSM
COM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM COM related tasks that
can be modeled as function order components.

You must determine what kinds of BSS fulfillment systems you have at the OSM COM level.
You can define orchestration order components that correspond to these systems. You can
add these system order components to the system stage. As illustrated in Figure 1-1, the
systems that normally interact with OSM COM include

* One or more billing systems: The billing systems manage the initial and recurring charges
applied to the order.

e One or more OSM SOM systems: The OSM SOM system at the OSS level interacts with
inventory systems. The inventory system designs and assigns services with their
corresponding network resources.

OSM COM may need to communicate with different systems based on the location where the
service is requested for.

You must also determine what kind of order granularity you need when fulfilling each function
order components. Does the orchestration plan need to generate a separate function for each
bundle destined for a particular system? Or, can the whole order be sent as one function to
one system? You can define orchestration order components that correspond to the different
levels of granularity you want to define. You can then add the order component to the
granularity stage (see Figure 1-2).

For example, a customer might request an offer that includes the following order items:

October 30, 2025
Page 11 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

BroadBand Service (Offer)
BroadBand (Bundle)
Promotion (Product)
Bandwidth (Product)
Router (Product)
Firewall (Product)
Email (Product)

The broadband service offer is parent to the broadband bundle order item and an email
product order item. The broadband bundle is itself parent to promotion, bandwidth, router, and
firewall product order items. It may be that you want the billing related functions to run
separately for each child order item of the broadband service offer (the broadband bundle
order item with all its children order items and the email product order item). Or you may want
each billing function to run separately for each product order item in the order (email,
promotion, router, bandwidth, and firewall). Finally, you could also send the entire offer with all
bundles and products contained within it.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to. The order components can represent whole order granularity,
bundle granularity, or product order item granularity, and so on. At this point, you are only
defining the order components that OSM can use to decompose order items to. You configure
the actual decomposition behaviors and conditions with other Design Studio orchestration
entities such as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes

Modeling Guide
G37998-01

You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order. You model the actions (such as deliver,
technical service qualification, or cancel) as fulfillment modes. Each fulfillment pattern can
have more than one fulfilment mode. When an order item decomposes to a fulfillment pattern,
the fulfillment pattern generates a different orchestration plan based on the action defined on
the order. The action corresponds to the fulfillment mode associated to the fulfillment pattern.

OSM fulfillment patterns define (among other things) the first stage of order item
decomposition. In fulfilment patterns, you can specify order item decomposition conditions for
whether a specific order item decomposes to an order component. Typically fulfillment patterns
contain all order components that specify functions.

In a conceptual model project, you map conceptual model product specifications which define
offers, bundles, and products to conceptual model fulfilment patterns. OSM fulfillment patterns
realize these conceptual model fulfillment patterns. When you build an OSM cartridge, OSM
generates a sample XML file. The sample XML file contains the product-to-fulfillment pattern
mappings. You can reference those mappings using an order item property from the OSM
order item specification. The order item property defines XQuery logic that determines how
each order item decomposes to a fulfillment pattern.

For example, an order might contain the following order items:

* Five decompose to a broaband fulfillment pattern.
* Four decompose to a VolIP fulfillment pattern.
* One decomposes to an Email fulfillment pattern.

At run-time, OSM evaluates the function decomposition stage first which contains the function
order component. This evaluation determines whether order items decompose to each function
order component based on the conditions (if any exist) specified in the fulfillment pattern.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 38

ORACLE

Modeling Guide
G37998-01

Chapter 1
About Determining the OSM Functionality to Implement

OSM next evaluates how order items decompose to the system and granularity order
components in the system and granularity stages using on orchestration decomposition rules.
These decomposition rules define how order items decompose from function order
components to system order component, and from function order components to granularity
order components. All order decomposition rules relating to system order components in the
system decomposition stage are evaluated. Then those order decomposition rules relating to
the granularity order components in the granularity stage are evaluated.

After OSM evaluates each stage for each order item in the fulfillment patterns they are
associated with, OSM generates run-time order components. These run time order
components are the sum of the order components that each order item decomposes to. For
example, order item A can decomposed to functionA-systemA-granularityA. This sequence of
order components constitutes a single run-time order component.

However, consider a scenario where the order items in an order decompose to more than one
fulfillment pattern. If fulfilment pattern A generates the same run-time order component as
fulfillment pattern B, then OSM generates only one run-time order component. This run-time
order component processes the order items from both fulfillment pattern A and B.

some decomposition sequences of the three different fulfillment patterns end up being
identical, then only one run-time order component is created that runs a process for all order
items.

Figure 1-3 shows an order item decomposition run-time sequence with the BroadBand order
item bundle.

The first stage of order item decomposition uses the broadband fulfillment pattern which
defines decomposition rules for each function order component. The second stage uses
decomposition rules from each function to each system order component. The third stage uses
decomposition rules from each system to each granularity order component. OSM generates
the resulting run-time order components based on this sequence. Each unique decomposition
flow generates a new executable order component.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 38

ORACLE’

Figure 1-3 Sample Run-Time Order Item Decomposition Sequence

Order ltem

Decomposition)

Sequence

Order ltem
And Order

Compaonent 7
Decomposition

Results

Modeling Guide
G37998-01

Chapter 1

About Determining the OSM Functionality to Implement

OSM COM
System

Order Items:
BroadBand Bundle,

Vol P Bundle

Bandwidth, Firewall, Router, Email, and so on

Install, Router, Unlimited Calling, and so on

BroadBand Fulfilment Pattem

(Acts 85 a decompasition rule)

Y

Y Y

!

Syne Customer Initiate Billing Provision Fulfill Billing
Function Function Function Function
Component Componant Companent Cosnpanant
| r ' {
Decomposition L # * * y
rules from Y
each function OSM S0M Billing Systemn Billing System
o a system System Residential Business
Companent Component Component
Decomposition ‘ *—, i
rules from
each system Order Bundle Offer
toa granulantyl Granularity Granularity Granularity
Companent Component Component
I Junk l
SyncCustomerBillingSystem Provisioning/QSMS0M/
Residential/OrderGranularity OrderGranularity
InitiateBilling/BillingSystem
ResidentialOrderGranularity
hid
FulfilBilling/BillingSystem
Residential/BundleGranularity
Yy vYvYvy Y
Billing System Billing System OSM SOM
{Residential) (Business) System

Those generated in Figure 1-3 are:

SyncCustomer/BillingSystemResidential/OrderGranularity

InitiateBilling/BillingSystemResidential/OrderGranularity

Provisioning/OSMSOMSystem/OrderGranularity

FulfillBilling/BillingSystemResidential/BundleGranularity

Function

= Stage

System

"~ Stage

Granularity

= Stage

In this scenario, the decomposition rules to the billing system business component and offer
granularity component rejects all order items. The rejection is based on a condition that

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

specifies that only order items from business customers can be included. All order billing
related components are directed to the billing system residential as opposed to the billing
system business order component.

In addition, the VoIP bundle order items and all its child order items decompose to another
fulfillment pattern not represented in Figure 1-3. It is important to note that an orchestration
plan that contains multiple fulfillment patterns may generate identical run-time order
components if some of the functions, systems, and granularity component decomposition flows
are the same. For example, the broadband internet and VolP fulfilment patterns may each
specify the same SyncCustomer and InitiateBilling functions with the same systems and
granularity components. In such a case, OSM generates only one run-time component to
which the order items from each fulfillment pattern decomposes to. However, it may be that
separate provisioning and billing components are required for each fulfillment pattern. For
example, you may want a separate provisioning component for the broadband order items.
When the provisioning component completes, the billing component runs. The billing system
then begins charging for broadband service immediately. The VoIP related order items might
decompose to separate provisioning and billing order components that only start when the
provisioning component for broadband completes. This decomposition pattern may be
appropriate based on the fact that the VolIP related order items functionally depend on the
broadband order items and also take much longer to fulfill than the broadband order items. In
this scenario, the CSP does not need to wait for the VolP order items to fulfill before beginning
to charge for the broadband service.

Similar decomposition scenarios may be important when considering the date when the
customer wants a particular service fulfilled. For example, a customer may request an IPTV
and VolIP bundle that are normally fulfilled within the same provisioning and billing functions.
But because the customer requests a start date for the IPTV service that is much later than the
one specified for the VoIP service, then these two order item bundles must decompose to
separate provisioning and billing order components.

See the following sections for more information:

Modeling Orchestration Plans

Modeling Order Scheduling

Modeling COM Order Transformation Manager

Modeling Guide
G37998-01

You should determine whether you want to use the order transformation manager (OTM) with
the calculate service order (CSO) conceptual model provider function. OTM with CSO
transforms products, bundles, and offer order items and actions into CFS order items and
actions. The run-time order component creates and sends a service order to OSM SOM or
some other provisioning system. The OTM functionality provides a way to decouple the
commercial layer from the service layer.

Figure 1-4 shows a sample run-time order transformation with the design-time conceptual
model entity associations. This example has the following run-time flow that incorporates
design time data from conceptual model entities:

1. OTM triggers either when the orchestration process begins to design an orchestration plan
or from within the process associated with the provision function in a transformation task.
OTM can process data elements for product entities in the conceptual model. OTM can
process data elements only if order parameter bindings are created. The order parameter
bindings are between product data in the conceptual model and an order item property in
the order item specification. The order item property must be designated as a dynamic
parameter that defines a data structure.

OTM can only process conceptual model product entity data elements on the order if order
parameter bindings (conceptual model association A) have been created between

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 38

ORACLE

Modeling Guide
G37998-01

Chapter 1
About Determining the OSM Functionality to Implement

conceptual model product data and an order item specification order item property
designated as a data structure definition dynamic parameter.

OSM sends the input product order items to OTM. In order for OSM to do this, the
conceptual model CSO provider function must be associated with the provision function
order component at design-time (conceptual model association B).

OTM sends the order data to a transformation sequence. In order for OTM to map to the
appropriate transformation sequence, OTM must also be associated with the conceptual
model CSO provider function and a conceptual model domain (conceptual model
association C). The domain is a repository of all the conceptual model products possible
for the order item. In this case, the domain is the BB Email Domain for broadband and
Email products. Other domains could be VolP, mobile, cable and so on.

The transformation sequence goes through a series of stages. The stages use mapping
rules to map the input order item data to output order item data. The stages also define
whether the data is primary (which creates a new order item) or auxiliary (which augments
the data on a new order item). The mapping rules must also be associated with the same
CSO provider function and domain as OTM (conceptual model association C). For
example:

* Primary Stage: Transforms product order items and actions into transformed order
items and actions. At the primary stage, product order items create new transformed
customer service-facing order items. In this example, the primary product specification
is BB_PS which maps to the BB Internet Access customer-facing service specification.

* Child Stage: Transforms all child order items and actions and any of their child order
items and actions, and so on, into data that augments the order items created in the
primary stage. In this example, the child order items of BB_PS are BB_Bandwidth,
Firewall, and Router.

* Sibling Stage: Transforms all sibling order items and actions into data that augments
the order items created in the primary stage. In this example, a sibling order item of
BB_PS is Email.

* Ancestor Stage: Transforms all ancestor order items and actions and any of their
ancestor order items and actions, and so on, into data that augments the order items
created in the primary stage. In this example, the ancestor order item of BB_PS is
BB_Email_PS.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 38

ORACLE

Chapter 1

About Determining the OSM Functionality to Implement

EE Email Domain
BE_Email_P3 (parameters) — —

BE_PS (parameters) — — — —
EE_Bandwidth {parameters)
Firewall (parameters) — — —
Router (parameters) — — —
Email (parameters) — — — —

Bindings]
R i

| []

|

Parameter |

re—
A—

Provision Function

Figure 1-4 Sample Run-Time Order Transformation with Conceptual Model Associations

Order ltems
BB_Email_P3S (Ancestor)
#=BB_PS (Primary)

THT—*BB_Bandwidth (Child)

™ Firawall (Child)
—®™Router (Child)
He=Email {Sibling)

Transformed Qrder

ltems

BE_Internet Access
-Parameters
-Parameters
-Parameters
=-Parametars
-Parameters

CS0 Provider Function
=Input: Product / Action
Types

=Output: Customer facing
Services ! Action Types
-Named Relationships

Transformation Sequence
-Defines transformation stages
1-Primary stage.
2-Child stage.
3-Sibling stage.

Order Transformation 4-Ancastor.

Manager

Mapping Rules for Each
Product to Customer Facing
Specification

-Input arder item specification
~Output order item specification
-Parameter mappings

5. The transformation sequence includes the resulting order items into the provision function
order component. The provisioning function order component runs a process that creates
and sends a service order to OSM SOM. The service order includes the transformed
service order items. The product order items are not required in the service order because
all necessary data contained in the product order items are now consolidated into the
service order item.

When the input sales order lines are transformed to CFS:

« If the input sales order lines are not mapped to CFS as defined in modeling, CFS pay
load will not be generated.

« If the input sales order line is missing any of the required parameters for mapping, the
missing mandatory parameter will be reported as error and no CFS pay load will be
generated.

In both the cases, the provisioning function process fails and SOM order is not created. A
revision order should be submitted to correct the sales order line data, so that OTM maps
properly, and then CFS payload is generated and the SOM order is created.

See the following sections for more information:
e Modeling the Order Transformation Manager
* Modeling OTM With Calculate Service Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 38

Chapter 1
About Determining the OSM Functionality to Implement

ORACLE’

* Modeling OTM Without Calculate Service Order

Modeling COM Orchestration Dependencies

You need to determine what dependencies exist between executable order components.
These dependencies are called orchestration dependencies. You typically define all
orchestration dependencies using fulfillment patterns for function order components. However,
you can also specify dependencies between other order components using orchestration
dependency rules. In addition, you can specify when order components can start based on
dates provided by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM COM
may need to be fulfilled in the following order (see Figure 1-5):

1. The Sync Customer and Initiate Billing function that are shared between both fulfillment
patterns occur sequentially. Order items from both broadband and VolP fulfillment patterns
decomposed into identical order components. All order items in the Sync Customer
function must complete before the Initiate Billing Function can continue.

2. The Initiate Billing function must complete before the Provision Function can start
processing the broadband order items and the second Provision Function can start
processing the VoIP order items. In addition, the second provision function must wait until
the first provision function completes because VolP is functionally dependent on
broadband and because the VolIP service takes longer to fulfill than the broadband service.

3. The Fulfill Billing function for the broadband order items starts after the Provision function
for the broadband order items completes.

4. The Fulfill Billing function for the VolP order items starts after the Provision function for the
VoIP order items completes.

Figure 1-5 Example Dependency Between Fulfillment Pattern Order Items

Modeling Guide
G37998-01

BroadBand Fulfillment Pattern
(Acts as dependency rules) Provision Fuffill Billing
Function Function
Component Fae| Component
-BroadBand -BroadBand
Order Items Order Items
Sync Customer Initiate Billing
Function Function
| Comgonent Component
-BroadBand BroadBand
—{ Order ltems Order lems
VaolP Order ValP Order Y
ltems ltems Provision Fulfill Billing
Function Function
Component Component
WolP Fulfillment Pattern ;;?:z Order > ;;ﬂ:‘z Order
(Acts as dependency rules)

Having separate Provision functions means that OSM COM sends multiple service orders to
OSM SOM. Other factors can also impact order component creation and dependencies such
as the requested delivery date for each service.

See the following sections for more information:

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025

Page 18 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

* Modeling Orchestration Plans

* Modeling Order Scheduling

Modeling COM Processes and Tasks

Modeling Guide
G37998-01

What process flow of sequential or parallel manual and automated tasks are required when
interacting with target systems for each functional component.

For example, each function may have a few automated tasks that perform different functions,
such as sending messages to an external system, receiving back and processing a response
from external systems, or manipulating data received from previously completed tasks. There
may also be manual tasks where an operator is required to input data directly into the Order
Management Task web client. The manual tasks may also make use of behaviors that effect
how the data is organized, displayed, or retrieved in the OSM Task web client and in the Order
Management web client.

Figure 1-6 shows an OSM process that includes a subprocess with an automated task and
automation plug-in sender. An order level notification updates the status of order items then
notifies the CRM of the status change. The automated task then transitions to another task that
sends a service order to the OSM SOM system. The server order includes all the order items
required to design and assign the products and services that the customer has requested.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 38

ORACLE Chapter 1
About Determining the OSM Functionality to Implement

Figure 1-6 Example Task Processing

Provision Function
Process

Provision Order Order Level

Subprocess Automation Task Motifications
Automation Sendear I

Start -Updates Order Item status to In Progress

End

:

Automation Task Automation Automator

Automation Sender -Receive and Process Response messages as OSM SOM
-Create Service Crder makes progress.

-Send Service Order -Update order items as specified by OSM SOM messages,
-Complete task when OS5k S0M message complates final
order item. This action also complates the companeant.

Order Level
Matifications

See the following sections for more information:

Modeling Processes and Tasks

* Modeling Behaviors

Modeling Data for Tasks

Modeling COM Fallout Scenarios

You must determine:

What fallout management scenarios can be anticipated.

How fallout scenarios can be detected.

e How relevant parties or systems can be notified of problems.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

* What recovery processes can be implemented.

For example, you should anticipate fallout around network connectivity from time to time.
External systems may fail to return responses or fail to accept messages. In such cases you
can configure automated tasks to transition to fallout an execution mode. Failed messages
generated by automation plug-ins can revert to an error queue. You can also configure
jeopardy notifications when messages are taking too long to return. The jeopardy notification
can generate warning messages to fallout personnel so they can manual investigate the
problem on the external fulfillment system or in OSM.

See the following sections for more information:

« Modeling Fallout

 Modeling Behaviors

« Modeling Processes and Tasks

¢ Modeling Jeopardy and Notifications

Modeling COM Fulfillment States

Modeling Guide
G37998-01

You must determine what kind of order and order item fulfillment states you need to configure.
Fulfillment states track the overall status of an order and each order item based on status
messages received from external systems. You also need to consider what notification
messages you want to send to interested parties or systems as the order progresses.

For example, Figure 1-7 shows external fulfillment state change messages from the billing
system and the OSM SOM system returning to the OSM COM system.

The hierarchical structure of the order defined in the order item specification is as follows:

BroadBandOrder (target order)
BroadBand Service (Bundle)
Promotion (Product)
BroadBand (Product)
Bandwidth (Product)
Firewall (Product)
Email (Product)

1. The billing function is a generic order component, but could represent any of the billing
functions listed in "About the OSM Solution Modeling Process” for OSM COM. After the
billing function sends a message to the billing system, the billing system sends three status
messages back to OSM COM as the hilling system processes the Promotion,
Broadband, and Email order item. Two of the external fulfillment state messages, billing
begin and billing in progress, map to the OSM COM in progress billing fulfilment state.
The billing system sends these messages to confirm that it has received the message from
OSM with the order items and then to confirm that it has begun to process the messages.
When the billing system finished processing all order items, it sends the billing end
external fulfillment state that maps to the complete billing fulfillment state.

2. The provision function has a similar exchange of messages with the OSM SOM system for
the broadband, bandwidth, firewall, and email order items.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 38

ORACLE Chapter 1
About Determining the OSM Functionality to Implement

Figure 1-7 Example Fulfillment States

CRM

t

Order Data Change Notification: Sends order state updates as the
composite arder or order item fulfillment state changes.

OSM COM System

r
i Rule 3 Order is In Progress Rule 4 Order is Complete if
Fulfillment
State Rul i any order iterm on the all order items on the order
o LALL order are in progress. are complete.
{BroadBandOrder)
Rule evaluates whenever a root level
composite order item changes state.
Parent Order
Rule 1 Pare!'ll order I_Iem Is Rule 2 Parent order ltem is
P In Progress if any child Complete if all child order item
{Erb?dﬂand F”f“'““s'“* order flem state composite slates are complete.
Service) IS In progress.
If a child order item changes, rule also
evaluates parent order items.
Order Item Fulfillment [Rule 1 Order Item is In Rule 2 Order Itern is Complete
State Rules Progress if it is in anin if all the order item is in a
{BroadBand fulfillment | progress slale in any order complete state in all order
pattern/order Item) component. components.
FYYY)
Rules evaluate mapped order
component fulfillment state changes to
determine order itemn fulfillment states,
Billing Function includes: Provision Function includes:
— -Promotion—e |n H -Broadband— ||
BroadBand— progress || —CTPIete L -Firewall— o __ || Complete
-Email ———= qug Billing = E M] — gre Provision
illing Provigion
-Brandwidth——ps
A A A » ' A
Email and
Broadband
continue
Billing || Billing In || Billing Prow Prow In Prov
Begin Progress || End Begin Progress || End
Billing System OSM S0OM System

3. When the order items first begin processing in the billing function component, Rule 1
evaluates to true when the billing system sends the billing begin and billing in progress
external fulfillment state messages that map to the In Progress Billing fulfillment state for
the billing order component. This causes the order items included in the billing function
component to have a composite fulfillment state of in progress.

4. When the billing system completes and sends the billing end message which maps to the
Complete Billing fulfillment state for the function component, the Broadband and Email

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 22 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

order items continue processing in the provision function order component while the
Promotion order component does not. Promotion did not decompose to the provision
function and is therefore fully complete. Rule 1 still evaluates to true for BroadBand and
Email, but Rule 1 evaluates to false for Promotion. Rule 2 evaluates to true for
Promotion, causing its order item composite fulfilment state to move to Complete.

5. When Rule 1 and Rule 2 make any change to the state in an order item, they also
evaluate the parent order item, which is the BroadBand Service bundle order item.
Although Promotion is now complete, the BroadBand Service remains in the In
Progress state until the other child order items complete.

6. When the remaining order items complete in the provision function, Rule 1 evaluates to
false and Rule 2 evaluates to true for the order component. Rule 2 then changes the
composite order item fulfillment states for all remaining order items to complete. Because
of this change, the parent BroadBand Service order item also changes to complete
because all its child order items are how complete.

7. Because of this change in BroadBand Service, which is a root level order item, the order
fulfillment state Rule 3 evaluates to false because there are no longer any in progress
order items at the root level. Rule 4 evaluates to true because all order items at the root
level are now complete.

8. An order data change natification triggers whenever an order or order item composite
fulfillment state changes that sends messages to the CRM to report the changes.

Figure 1-7 shows only in progress and complete billing states at both the order item and the
order level. Many other external order fulfillment states, order item fulfillment states, and order
states are possible, such as failure states, cancelation states, and so on. Each of these would
also have a corresponding order item fulfillment state composition rule and order fulfillment
state composition rule.

See the following sections for more information:

¢ Modeling Fulfillment States and Processing States

¢ Modeling Jeopardy and Notifications

Modeling COM Processing States

Modeling Guide
G37998-01

Processing states are similar to fulfillment states in that you can configure automated tasks to
trigger order component order item processing states based on messages received from
external fulfillment systems. The main difference is that the order component order item
processing states come from a predefined list that OSM provides. OSM automatically
aggregates order component order item processing states across all order components
processing the order item into a single order item processing state that is visible in the Order
Management web client. OSM also propagates child order item processing states to parent
order items. The only work necessary to model processing states is to map incoming status
message from external fulfillment systems to order component order item processing states.
You can even map the same message to both order component order item processing states
and to external fulfillment states.

For example, the following shows how the Email product is successfully processed in two order
components, but the third order components returns a failure order component order item
processing state, causing the Email product to display the Partially Failed order item
processing state, which in turn caused the parent and grandparent order items (Brilliant
Broadband and Broadband Service) to also display the Partially Failed order item processing
state.

Brilliant Broadband (Offer) ----- Partially Failed
BroadBand Service (Bundle) -- Partially Failed

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 23 of 38

ORACLE Chapter 1
About Determining the OSM Functionality to Implement

Promotion (Product) ----- Completed
BroadBand (Product)------ Completed
Bandwidth (Product)------ Completed
Firewall (Product) ------ Completed
Email (Product) --------- Partially Failed ---- 0COI1 - Completed

---- 0COI2 - Completed
--—- 0COI3 - Failed

The Order Management web client tracks Normal, Warning, and Failure counts of order item
processing states.

See the following sections for more information:

¢ Modeling Fulfillment States and Processing States

* Modeling Jeopardy and Notifications

Modeling Change Order Management for COM

You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want to support.

Do you need a point of no return where the order cannot be changed? For example, you can
configure a point of no return that is tied to the provisioning function that generates a service
order to be enforced whenever that order component receives a fulfilment state update of
Complete (assuming you have configured the order component with such a fulfillment state
update). You can also tie a point of no return directly to the any order life-cycle policy transition
to the Amending state, such as the Submit Amendment transition from the In Progress state to
the Amending state.

If a revision order arrives, what behavior do you want each tasks to exhibit? Do you want the
task to undo, redo, or undo then redo? For example, do you want to configure the automated
task responsible for sending the service order to OSM in the SOM role to trigger an automation
plug-in that sends a revision order to OSM SOM that undoes the previously sent service order
whether it is complete or still in progress? Or do you want the task to redo the previously sent
service order as a revision order and allow SOM to perform change order management
functions?

See the following sections for more information:

« Modeling Changes to Orders

* Modeling Processes and Tasks

Cartridge Management Considerations for COM

What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

Planning OSM SOM Solution Requirements

This section describes OSM modeling entities and functions involved in the OSM SOM role. It
includes examples intended to guide you in understanding how you can use these entities and
functions in your OSM SOM solution. This information can help you plan your implementation
efforts by exemplifying at a high level the full scope of work involved in modeling a typical COM
solution. Follow the links in each section for specific details about the functions described.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

OSM in the SOM role receives CFSs from OSM in the COM role within a service order. OSM
SOM then sends this CFS information to an SRM system that designs the service then assigns
it to resources. The SRM system uses the RFS and resource information defined in the
conceptual model to perform this design and assign task. The SRM also calculates the actions
required to fulfill the services. OSM SOM requests these actions from the SRM system then
sends the actions to OSM in the TOM role.

Modeling SOM Order and Order Recognition Requirements

You must determine what kind of orders you need to model in OSM SOM, what order life-cycle
states and state transitions the orders have, and who has permissions to do various tasks in
fulfilling the order.

At this point, it is important to understand that the SOM order is a child of the COM parent
order and must report back to the COM order component that generated the service order. In
the example provided in "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes", the order component that generated the service order to SOM is a task that is part of
a process triggered by the Provisioning/OSMSOMSystem/OrderGranularity run-time order
component. Any notification from OSM SOM relating to the service order would return back to
this task.

Depending on how you have modeled your COM solution, OSM SOM may receive more than
one service order. For example, you may want to configure OSM COM to send a separate
service order to fulfill the broadband internet CFS. When that service order completes, OSM
COM may send a second service order with a VolP CFS.

You may want to create separate target orders for each CFS or one generic target order that
receives all service orders. In the SOM context, OSM does not generally need separate target
orders because most of the work is accomplished within the SRM system that OSM SOM
communicates with and any dependencies between CFSs are enforced in OSM COM.

Likewise, if you have only one target order at the SOM level, then you need only one order
recognition rule that maps incoming service orders to this target order.

See the following sections for more information:

* Modeling Orders and Permissions

 Modeling Order Life-Cycle Policies

* Modeling Order Recognition

SOM Data Modeling Considerations

Modeling Guide
G37998-01

Answer the following questions to determine what corresponding order data you need to model
on the OSM order to capture the incoming order data:

e What data is required to complete an order?

e What data do the tasks require? For example, what data is required on each interaction
with the SRM system? What format to OSM TOM require for the technical order that OSM
SOM sends?

e What data is not required on the service order, but is required by the technical order that is
derived from the customer order?

» Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source. Typically SOM is only
responsible for passing on CFSs created in COM to the SRM system. However, it is
possible that other data may be required that does not come from the SRM system.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

* Which nodes on the service order contain order item information that represents the CFSs
on the order?

* What order item parameters represent the name of the CFS order item?

« If the order items are hierarchical and what data elements specify the parent child
relationship between each order item? Typically service orders do not require a hierarchy.

* |f the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

* What data element specifies the action that must be performed on the CFS order item
during the fulfillment process? For example, add, change, delete, move, and so on.

* What data element specifies the overall purpose of the order, such as deliver, cancel or
technical service qualification (TSQ)?

See the following sections for more information:

« Modeling Order Data

Modeling Orders and Permissions

Modeling Behaviors

Modeling SOM Orchestration Order Iltems and Bindings Conceptual Model

Parameters

You must determine what nodes in the incoming order you want to designate as order items
containing CFSs. What data in the order items you want to use for specific orchestration
functions, such as the actions you want OSM to perform on those order items, the requested
delivery date when the order item actions need to occur, what CFS the order item represents
that OSM then uses to map the order item to specific fulfillment patterns, and so on.

You can also use order item parameter bindings to bind conceptual model CFSs and the
parameters defined for them to a OSM SOM order item specifications. This allows you to have
strongly typed parameters that you don't need to model within order item specifications. For
example, Figure 1-1 defines the Broadband Internet Access CFS and the Email CFS. You can
use order item parameter bindings to map these conceptual model product entities to order
item specifications by configuring an order item for the order item recognition and an order item
parameter as a dynamic parameter where the parameters are stored.

Order item parameter bindings in OSM SOM are important for validating the incoming CFSs
generated from OSM COM, however OTM is not required in the OSM SOM role because the
SRM system is typically responsible for transforming CFSs into RFSs, resources, and actions.
OSM SOM sends the CFSs to the SRM system and receives back the actions on the
resources. OSM SOM does not need order item parameter bindings on these actions because
OSM TOM is responsible for validating these actions.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Order Item Decomposition

Modeling Guide
G37998-01

You need to decide what orchestration stages you want OSM to evaluate when decomposing
CFS order items into order components. These order components typically designate
functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what the service
order you are creating contains. Using this knowledge, you can provide answers to the
following questions:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

* What are the systems that OSM must communicate with? For example, OSM SOM
typically communicates with an SRM system and OSM in the TOM role.

* What order items do each system require? For example, the SRM system requires CFS
information and OSM in the TOM role requires technical actions.

* What are the business functions that each system must perform on these order items? For
example, sending the CFSs to the SRM system, requesting the actions from the SRM
system, and building the technical order that contains the actions for the OSM TOM
system.

* How should OSM deliver this data for the functions to process? Does the function operate
on the whole order, or does the function require a separate interaction per order item
bundle on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order item
decomposition stages.

Figure 1-1 defines the Broadband Internet Access CFS and the Email CFS. You can
decompose these order items into function, system, and granularity order components in the
same way you do in the COM (see "Modeling COM Orchestration Order Iltem Decomposition").

You must determine what high level tasks are involved in fulfilling customer orders at the OSM
SOM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM SOM related tasks that
can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM SOM level.
You can define orchestration order components that correspond to these systems that you can
then add to the system stage. As illustrated in Figure 1-1, the systems that normally interact
with OSM SOM include one or more SRM systems that interact with inventory systems to
design and assign services with their corresponding network resources.

You must also determine what kind of order granularity you need when fulfilling each function
order components. At the SOM level, OSM typically passes on every CFS order items to the
SRM system because CFSs are typically not hierarchically ordered. However, this all depends
on how you model the overall solution.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to, such as whole order granularity, bundle granularity, or product
order item granularity, and so on. At this point, you are only defining the order components that
OSM can use to decompose order items to during order decomposition. You configure the
actual decomposition behaviors and conditions with other Design Studio orchestration entities
such as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes

Modeling Guide
G37998-01

You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order that you can model as fulfilment modes for the
order, such as deliver, technical service qualification, or cancel.

In a conceptual model project, you map conceptual model CFSs to conceptual model
fulfillment patterns. These conceptual model fulfillment patterns are realized by OSM SOM
fulfillment patterns. When you build an OSM cartridge, OSM generates a sample XML file that
contains all these CFS to fulfillment pattern mappings that you can reference using an OSM
SOM order item specification order item property that defines XQuery logic that determines
how each order item decomposes to what fulfillment pattern during run-time.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 27 of 38

ORACLE Chapter 1
About Determining the OSM Functionality to Implement

For example, OSM SOM may have a Broadband Internet Access CFS order item and the
Email CFS order item that maps to a conceptual model fulfillment patter that is realized by an
OSM SOM fulfillment pattern that specifies a function to send these CFSs to the SRM system
so that the SRM system can perform the design and assign functionality. You can also create
another function that requests the actions that must be included in a technical order, and a
third function that creates, sends the technical order to OSM TOM, and a fourth function that
completes the service order.

At run-time, OSM evaluates the function, system, and granularity stages in a similar way to
OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes"). The function, systems, and granularity stages might generate the following run-time
order components:

* DesigningServiceFunction/SRMsystem/OrderGranularity

* PlanDeliveryFunction/SRMsystem/OrderGranularity

* CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity
e CompleteFunction/SRMsystem/OrderGranularity

Modeling SOM Orchestration Dependencies

You must determine what dependencies exist between executable order components. These
dependencies are called orchestration dependencies. You typically define all orchestration
dependencies using fulfillment patterns for function order components, but you can also
specify dependencies between system order components using orchestration dependency
rules. In addition, you can specify when order components can start based on dates provided
by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM SOM
may require that each function operate in the sequence specified in Figure 1-8.

Figure 1-8 Example Dependency Between Fulfillment Pattern Order Items

SOM Fulfillment Pattern
(Acts as dependency rules)

Design Service Plan Deliveny Create Complete
Function e Function Technical Order Function
Companent Companent Function Companent
Component

Because there is typically only one fulfillment pattern at in OSM SOM for fulfilling service
orders, each component can run one after the other.

See the following sections for more information:

* Modeling Orchestration Plans

* Modeling Order Scheduling

Modeling SOM Processes and Tasks

You must determine what process flow of sequential or parallel manual and automated tasks
are required when interacting with target systems for each functional component.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Tasks in OSM SOM typically involve sending the CFS order items required by the SRM system
and receiving back the action from the SRM system. For example, the design service function
would start a process that triggers an automated tasks with an automation plug-in sender
instance that send builds and sends a message containing the CFS information to the SRM
system in the format required by the SRM system API. When the SRM system completes, it
sends a response back to OSM SOM that OSM SOM correlates back to the automated task to
an automation plug-in automator that is waiting for a response message. The automation plug-
in automator reviews the response message and determines that the SRM system completed
its tasks successfully and then transitions the automated task to the completed state which
also completes the DesigningServiceFunction/SRMsystem/OrderGranularity order component.

Each run-time order components with associated processes and tasks would perform similar
exchanges.

See the following sections for more information:

Modeling Processes and Tasks

* Modeling Behaviors

* Modeling Data for Tasks

Modeling SOM Fallout Scenarios

What fallout management scenarios can be anticipated, determine how they can be detected,
how relevant parties or systems can be notified of the problem, and what recovery processes
can be implemented.

For example, in addition to possible communication issues, you may anticipate the possibility
that fallout may occur because OSM COM sends faulty or incomplete CFS information to OSM
SOM, or the SRM system has somehow provided incorrect data to OSM SOM that may cause
a fallout to occur in OSM TOM. You must carefully analyze when such issues can occur and
develop fallout strategies to recover from such fallouts scenarios. In some cases, manual
intervention may be required while in other cases, you may be able to model automatic fallout
recovery capabilities.

See the following sections for more information:

« Modeling Fallout

* Modeling Behaviors

Modeling Processes and Tasks

* Modeling Jeopardy and Noaotifications

Modeling SOM Fulfillment States

Modeling Guide
G37998-01

What kind of order and order item fulfillment states you need to configure to track the overall
status of an order and each order item based on status messages received from external
systems. You also need to consider what notification messages you want to send to interested
parties or systems as the order progresses.

For example, you can map messages from the SRM system and the OSM TOM system
returning as these systems process messages sent by various order components to external
fulfillment state in the OSM SOM system. These external fulfillment states can represent the
result of various interactions between OSM SOM and these systems on each CFS order item
that OSM SOM then aggregates into order item and order-level fulfillment states based on
order and order item fulfillment sate composition rule sets.

See the following sections for more information:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 29 of 38

ORACLE Chapter 1
About Determining the OSM Functionality to Implement

* Modeling Fulfillment States and Processing States

* Modeling Jeopardy and Noaotifications

Modeling SOM Processing States

You can track the state of order items by mapping responses from the SRM system and OSM
TOM to order item processing states. You must decide what messages correspond to which
predefine order component order item processing state that OSM provides. OSM then
aggregates these order component order item processing states for each order item into an
overall order item processing state. You may decide to use warning and failure order item
processing states to trigger jeopardy notifications from OSM SOM to OSM COM or from OSM
SOM to a fallout personnel. In many cases, you can also use the same messages from
external systems to trigger external fulfillment state changes.

See the following sections for more information:

¢ Modeling Fulfillment States and Processing States

* Modeling Jeopardy and Notifications

Modeling Change Order Management for SOM

You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want OSM SOM to support.

You must consider change order management based on end-to-end scenarios that span OSM
COM, SOM, and TOM. For example, if you enable OSM COM to send a revision order through
to OSM SOM from the OSM COM provision function then you must decide what compensation
OSM SOM must undertake to implement the changes in the revision order. For example, you
might consider some of the following question:

e Is there a point of no return where you do not want OSM SOM to accept any new revision
orders from the OSM COM provision function? For example, you may want to configure a
point of no return that is associated with when the SRM system completes its design and
assign functions based on an external fulfillment state change. This would effectively mean
that OSM TOM should not receive revision orders from OSM SOM stemming from
changes coming from OSM COM service orders. Or you may decide that there should not
be any point of no return configured in OSM SOM.

e It may be that the SRM system that you are communicating with does not have the
capability of accepting revisions to CFSs sent by the original interaction between OSM
SOM and the SRM system, but can only accept cancelation requests. In which case OSM
SOM must configure the automation task to completely undo the original request then redo
it with using the new CFS information.

e It may be that you want to configure OSM TOM to accept revision orders, in which case,
you can configure OSM SOM to redo the task that sends the technical order to OSM TOM
such that is sends a versioned revision order.

See the following sections for more information:

¢ Modeling Changes to Orders

« Modeling Processes and Tasks

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 30 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Cartridge Management Considerations for SOM

What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

Planning OSM TOM Solution Requirements

This section describes OSM modeling entities and functions involved in the OSM TOM role. It
includes examples intended to guide you in understanding how they can use these entities and
functions in your OSM TOM solution. This information can help you plan your implementation
efforts by understanding the full scope of a typical TOM solution. Follow the links in each
section for specific details about the functions described.

The bottom up approach is where you begin to analyze a conceptual model from the
perspective of the network resources and infrastructure in place to fulfill orders.

Modeling TOM Order and Order Recognition Requirements

Modeling Guide
G37998-01

You must determine what kind of orders you need to model in OSM TOM, what order life-cycle
states and state transitions the orders have, and who has permissions to do various tasks in
fulfilling the order.

At this point, it is important to understand that the TOM order is a child of the SOM parent order
and must report back to the SOM order component that generated the technical order. In the
example provided in "Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes",
the order component that generated the service order to TOM is a task that is part of a process
triggered by the CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity run-time
order component. Any notification from OSM TOM relating to the service order would return
back to this task.

Depending on how you have modeled your SOM solution, OSM TOM may receive more than
one technical order. For example, you may want to configure OSM COM to send a separate
service orders to fulfill the broadband internet CFS and another that fulfills a VolP CFS. OSM
SOM would process these orders separately. OSM SOM sends the service order to the SRM
system to generate technical actions that OSM SOM sends to OSM TOM as a technical order.
Therefore, OSM TOM would receive two separate technical orders to fulfill resource actions on
the original sales order sent to OSM COM.

Like OSM COM, you may want to create separate target orders for each technical order based
on the different domains they interact with (broadband, VolP, Mobile, and so on), or one
generic target order that receives all technical orders.

If you create individual order types, you also need to create corresponding order recognition
rules that match incoming orders to the target order. You can consider the following
approaches when modeling order recognition rules for OSM TOM:

e You would typically not have multiple OSM SOM instance interacting with the same OSM
TOM instance using different message format, but usually each OSM SOM instance would
have its own OSM TOM instance. This means it is unlikely that you would need multiple
order recognition rules pointing to the same OSM TOM instance target order.

< If you have multiple order target orders based on domain groupings, you must create a
separate order recognition rule for each target order type.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 31 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

If you have one OSM instance operating in more than one role, for example, if the same
system is operating in both the SOM and the TOM role, you need to configure an order
recognition rule that points to a corresponding target order for each role.

If you have one OSM SOM instance and one OSM TOM instance, then you typically need
only one order recognition rule that points to one target order.

You need to determine what corresponding order recognition rules you need to model in OSM
to recognize, validate, prioritize, and transform order data from sales orders into a matching
OSM target order. You must map incoming order data to the data defined in the creation task of
the target order.

See the following sections for more information:

Modeling Orders and Permissions

Modeling Order Life-Cycle Policies

Modeling Order Recognition

TOM Data Modeling Considerations

Answer the following questions to determine what corresponding order data you need to model
on the OSM order to capture the incoming order data:

What data is required to complete an order?

What data do the tasks require? For example, what data is required on each interaction
with the Activation, the PWG, the WFM, and the SCM systems? What message format do
these interactions require?

Which data is not required on the technical order, but is required by the different fulfillment
systems that OSM TOM interacts with?

Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source.

Which nodes on the service order contain order item information that represents the
actions on the order?

What order item parameters represent the name of the action order item?

If the order items are hierarchical what data elements specify the parent child relationship
between each order item? For example, you may want to specify a hierarchy between an
overall parent action with related child order items, such as CreateDSL_CPE with children
order items that decompose to a shipping component, another to a workforce management
component, and a third for the activation component.

If the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

What data element specifies the action that must be performed on the order item during
the fulfillment process? For example, add, change, delete, move, and so on.

What data element specifies the overall purpose of the order, such as deliver, cancel or
technical service qualification (TSQ)?

See the following sections for more information:

Modeling Guide
G37998-01
Copyright © 2015, 2025

Modeling Order Data

Modeling Orders and Permissions

Modeling Behaviors

October 30, 2025

, Oracle and/or its affiliates. Page 32 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Modeling TOM Orchestration Order Items and Bindings Conceptual Model

Parameters

You must determine what nodes in the incoming order you want to designate as order items
containing actions on resources and RFSs. What data in the order items you want to use for
specific orchestration functions, such as the actions you want OSM to perform on those order
items, the requested delivery date when the order item actions need to occur, what CFS the
order item represents that OSM then uses to map the order item to specific fulfillment patterns,
and so on.

You can also use order item parameter bindings to bind conceptual model resources and RFSs
with their corresponding conceptual model actions and the parameters to a OSM TOM order
item specifications. This allows you to have strongly typed parameters that you don't need to
model within order item specifications. For example, Figure 1-1 defines the DSL resource-
facing service that can optionally be fulfilled using the ADSL or VDSL interface, that also
requires a DSL customer premise equipment (CPE). You can use order item parameter
bindings to map these conceptual model resources, RFS entities, the actions associated with
them and their data to order item specifications by configuring an order item property for the
order item recognition and an order item property as a dynamic parameter where the
parameters are stored.

Order item parameter bindings in OSM TOM are important for validating the incoming resource
and RFS data generated from the SRM system and sent to OSM TOM from OSM SOM.
Transformation is not typically required in OSM TOM because the SRM system that produced
the technical actions should have already used the correct format.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Order Item Decomposition

Modeling Guide
G37998-01

You need to decide what orchestration stages you want OSM to evaluate when decomposing
resources and RFS order items into order components. These order components typically
designate functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what the service
order you are creating contains. Using this knowledge, you can provide answers to the
following questions:

* What are the systems that OSM must communicate with? For example, OSM TOM
typically communicates with shipping, activation, WFM, and SCM systems.

* What order items do each system require? For example, the activation system may require
the DSL RFS, the DSL CPE resource, and the Email account resource, the PGW may
require the local loop resource, and the WFM and SCM systems may require the DSL
CPE.

* What are the business functions that each system must perform on these order items? For
example, the SCM must ship the DSL CPE, the WFM system must dispatch personnel to
install the CPE, the PGW must configure the local loop, and the activation system must
activate the DSL access node, the DSL CPE, and the Email account.

* How should OSM deliver this data for the functions to process? Does the function operate
on the whole order, or does the function require a separate interaction per order item
parent child order item combination on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order item
decomposition stages.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 33 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Figure 1-1 defines the multiple resources and RFS entities. You can decompose these order
items into function, system, and granularity order components in the same way you do in the
COM and SOM (see "Modeling COM Orchestration Order Item Decomposition").

You must determine what high-level tasks are involved in fulfilling customer orders at the OSM
TOM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM TOM related tasks that
can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM TOM level.
You can define orchestration order components that correspond to these systems that you can
then add to the system stage. As illustrated in Figure 1-1, the systems that normally interact
with OSM SOM include activation, PGW, shipping, WFM, and SCM systems.

You must also determine what kind of order granularity you need when fulfilling each function
order components. For example, at the TOM level, you might configure OSM to pass the whole
order to the activation and completion function but requires order item specific granularity for
the shipping, WFM, and SCM related functions.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to, such as whole order granularity or product order item
granularity, and so on. At this point, you are only defining the order components that OSM can
use to decompose order items to during order decomposition. You configure the actual
decomposition behaviors and conditions with other Design Studio orchestration entities such
as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes

Modeling Guide
G37998-01

You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order that you can model as fulfillment modes for the
order, such as deliver, technical service qualification, or cancel.

In a conceptual model project, you map conceptual model resource and RFSs to conceptual
model fulfillment patterns. These resources also specify the conceptual model actions that
fulfill them. For example, the AAA_Account may be associated with the ActivateAAA_Account,
AlterAAA_Acount, and DeactivateAAA_Account actions. In the conceptual model, you must
also specify what realizes these actions. In this case these actions would be realized by an
activation system, such as Oracle Communications ASAP, and more specifically, by ASAP
service actions. Other resources would be realized by other systems and action types in a
similar way. However, the information important to OSM in term of order item decomposition,
are the resources and RFSs that contain these actions.

When you build an OSM cartridge, OSM generates a sample XML file that contains all these
resource and RFS to fulfillment pattern mappings that you can reference using an OSM TOM
order item specification order item property that defines XQuery logic that determines how
each order item decomposes to what fulfillment pattern during run-time.

For example, a technical order to OSM TOM may have an Email_Account resource order item
that maps to a conceptual model fulfillment patter that is realized by an OSM TOM fulfillment
pattern. The OSM TOM fulfillment pattern would in turn decompose the Email_Account order
item into the Activation functions because there is a condition on the activation order
component within the fulfillment pattern that only allows order items to decompose to that order
component that contain an order item property with a value of Activation. All other functions
order components would also have conditions such that only order items destined for the
systems the function order components are associated with can decompose to them.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 34 of 38

ORACLE’

Chapter 1
About Determining the OSM Functionality to Implement

At run-time, OSM evaluates the function, system, and granularity stages in a similar way to
OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes"). The function, systems, and granularity stages might generate the following run-time
order components with associated resource and RFS order items and the actions they contain:

e ShipFunction/SCMsystem/OrderltemGranularity

e InstallFunction/WFMsystem/OrderltemGranularity

e ConfigureLocalLoopFunction/PGWsystem/OrderltemGranularity
e ActivationFunction/Activationsystem/OrderGranularity

e CompleteTechnicalFunction/SRMsystem/OrderGranularity

Modeling TOM Orchestration Dependencies

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

You must determine what dependencies exist between executable order components. These
dependencies are called orchestration dependencies. You typically define all orchestration
dependencies using fulfillment patterns for function order components, but you can also
specify dependencies between system order components using orchestration dependency
rules. In addition, you can specify when order components can start based on dates provided
by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM TOM
may require that each function operate in the sequence specified in Figure 1-9. The ship
function and the install function must complete before the activation function can start. In
addition, the activation function is dependent on the configure local loop function that
communicates with the PGW. The complete function has dependencies to the install and
activation function and does not start until those functions have completed.

Figure 1-9 Example OSM TOM Dependencies

TOM Fulfillment Pattern
(Acts as dependency rules)

Ship Function Install Function | _| E?:&Iigt:
Component Component Component
Y
'I:l:lrl'ﬁgure Local .P'.Cti"."ﬂ?iﬂr'l
Loop Function || Function
Component Component

These dependencies make sense when you understand what each function is doing. For
example, the activation function cannot activate the service until the DSL CPE has been
shipped to the customer and the CPE has been configured properly. In addition, the activation
function requires that the third-party company that owns the local loop configure this resource
for the CSP's customer. It is only after these dependencies have been meet that the activation
function can configure the network resources that deliver the service to the customer.

See the following sections for more information:

October 30, 2025
Page 35 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

* Modeling Orchestration Plans

* Modeling Order Scheduling

Modeling TOM Processes and Tasks

You must determine what process flow of sequential or parallel manual and automated tasks
are required when interacting with target systems for each functional component.

Tasks in OSM TOM typically involve sending resource and RFS order item actions to the SCM,
WFM, PGW, and activation systems and receiving back the responses from these systems.
You must careful analyze the API requirements for the interfaces to each system and model
the data on the tasks to meet these requirements for each interaction with these systems. You
also model automated tasks with automation plug-in senders that build and send messages to
these systems containing the actions each external system is to fulfill. When the systems
complete their work, they send responses back to OSM TOM that OSM TOM correlates back
to the automated task to an automation plug-in automator that is waiting for a response
message. You must develop to so that the automation plug-in automator can review the
response message and determines that the system completed its tasks successfully (or
whether some problem occurred) and then transitions the automated task to the completed
state (or a fallout execution mode) which also completes the order component to the task
belonged to.

OSM also provides a specialized automated task for communicating service requests to Oracle
Communications ASAP product or the Oracle Communications IP Service Activator product.
You can use this task to define the relationship between OSM task data and ASAP and IP
Service Activator service actions.

See the following sections for more information:

« Modeling Processes and Tasks

« Modeling Behaviors

 Modeling Data for Tasks

Modeling TOM Fallout Scenarios

Modeling Guide
G37998-01

What fallout management scenarios can be anticipated, determine how they can be detected,
how relevant parties or systems can be notified of the problem, and what recovery processes
can be implemented.

For example, fallout scenarios may occur within the external fulfilment systems the OSM TOM
communicates for a variety of reasons. For example, there may be an outage in one of the
network elements that the activation system is working with, or a package sent from the SCM
containing the router may have been lost or broken during delivery. Typically, many of these
problems can be resolved directly in the external system, however, you may want the tasks
communicate with these external systems to trigger jeopardy notifications informing upstream
systems of the delay so that the upstream systems can communicate the delay back to the
customer who requested the service. You must carefully analyze as many of these fallout
scenarios as you can and develop fallout strategies to recover from such scenarios. In some
cases, manual intervention may be required while in other cases, you may be able to model
automatic fallout recovery capabilities.

See the following sections for more information:

« Modeling Fallout

* Modeling Behaviors

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 36 of 38

ORACLE

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Processes and Tasks

* Modeling Jeopardy and Noaotifications

Modeling TOM Fulfillment States

What kind of order and order item fulfillment states you need to configure to track the overall
status of an order and each order item based on status messages received from external
systems. You also need to consider what notification messages you want to send to interested
parties or systems as the order progresses.

For example, you can map messages from the SCM, WFM, PGW, and activation systems
returning as these systems process messages sent by various order components to external
fulfillment state in the OSM TOM system. These external fulfillment states can represent the
result of various interactions between OSM TOM and these systems on the actions contained
on each resource and RFS order item that OSM TOM then aggregates into order item and
order-level fulfilment states based on order and order item fulfillment sate composition rule
sets.

See the following sections for more information:

* Modeling Fulfillment States and Processing States

* Modeling Jeopardy and Noaotifications

Modeling TOM Processing States

You can track the state of order items by mapping responses from the SCM, WFM, PGW, and
activation systems to resource and RFS order item processing states. You must decide what
messages correspond to which predefine order component order item processing state that
OSM provides. OSM then aggregates these order component order item processing states for
each order item into an overall order item processing state. You may decide to use warning
and failure order item processing states to trigger jeopardy notifications from OSM TOM to
OSM SOM or from OSM TOM to fallout personnel. In many cases, you can also use the same
messages from external systems to trigger external fulfillment state changes.

See the following sections for more information:

¢ Modeling Fulfillment States and Processing States

* Modeling Jeopardy and Notifications

Modeling Change Order Management for TOM

Modeling Guide
G37998-01

You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want OSM TOM to support.

You must consider change order management based on end-to-end scenarios that span OSM
COM, SOM, and TOM. For example, if you enable OSM SOM to send a revision order through
to OSM TOM from the OSM SOM Create Technical Order function then you must decide what
compensation OSM TOM must undertake to implement the changes in the revision order. For

example, you might consider some of the following question:

e Is there a point of no return where you do not want OSM TOM to accept any new revision
orders from the OSM SOM Create Technical Order function? For example, you may want
to configure a point of no return that is associated with when the activation system
completed the activation functions based on an external fulfillment state change. This
would mean that OSM TOM does not accept revision orders from OSM SOM stemming
from changes coming from OSM COM service orders. Or you may decide that OSM TOM

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 37 of 38

ORACLE Chapter 1
About the OSM SDK

should never accept revision orders, in which case you could disable this functionality on
the target order specification.

* For each automated task that communicates with a different external fulfillment system,

you must determine how the task should behave based on the changes on the technical
order.

See the following sections for more information:

* Modeling Changes to Orders

* Modeling Processes and Tasks

Cartridge Management Considerations for TOM

What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

About the OSM SDK

A number of directories within the SDK are referenced in procedures throughout this guide.

SDK is available as a separately downloadable .Zip file which is common for both OSM cloud
native and OSM traditional.

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 38 of 38

Implementing an OSM Solution

Part Il contains the following chapters providing information about implementing an Oracle
Communications Order and Service Management (OSM) solution:

* Modeling Orders and Permissions

* Modeling Order Life-Cycle Policies

* Modeling Order Recognition

e Modeling Orchestration Plans

* Modeling the Order Transformation Manager

* Modeling Processes and Tasks
e Modeling OSM Data

e Modeling Behaviors

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 1

Modeling Orders and Permissions

This chapter describes how to model orders and permissions in an Oracle Communications
Order and Service Management (OSM) solution.

Modeling OSM Orders

The order specification is the cornerstone model entity in Oracle Communications Service
Catalog and Design - Design Studio; most other specifications among cartridges are tied,
directly or indirectly, to the order specification to control order execution. Figure 2-1 shows the
entities that relate to an order specification and the content you can configure in order
specifications.

Figure 2-1 Order Specification Configuration and Related Entities

Order Recognition Rule -
Order Life Cycle
States Customer Order
Mot Started
In-Progress Target Order Y
Specification Pricrity
Abort
Sl Al L Notifications
Data Behaviors -Data Change Notification
-Calculate -Jeopardy Motifications
Suspended -Constraint -Order Milestone Evenls
~4— | -Data Instance -Order State Change Evenis
Failed e
-Infarmation -
Rules
— Lookup Permissions | |
neceing -Read-Only
-Relavant Fallout Data Amendabla
Canceled -Style Fallout Groups
. Completed |
Waiting . I I
Waiting for
Revision Process Type Creation Task

In the order specifications you can define:

* The order template, which specifies the elements and structures of the order data that
OSM receives from incoming orders and from other fulfillment systems.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE

Modeling Guide
G37998-01

Chapter 2
Modeling OSM Orders

Order priority in conjunction with the priority defined on an order as detected by the order
recognition rule. See "Modeling Order Recognition" for more information about order
priority.

Various order-level notifications. See "Modeling Jeopardy and Notifications" for more
information about notifications you can configure in the order specification.

Whether the order is amendable. See "Modeling Changes to Orders " for more
information.

Fallout data and fallout groups that define data and groupings of data that can potentially
trigger a fallout exception on tasks that are associated with the fallout data or data groups.
Fallout exceptions trigger amendment processing. See "About Modeling Fallout
Exceptions" for more information.

Permissions that associating roles to query tasks. Query tasks define what data can be
displayed to a user associated with a specific role (whether a human user or a user
account associated to automated tasks). See "Modeling Roles and Setting Permissions"
for more information.

Rules that to determine when notifications should run, when various process flow
decisions or actions should occur, within decomposition rule to determine when order items
should decompose to an order component, and so on. You can use rules in various OSM
entities.

In the order specification, you must do the following:

You must designate creation task data that defines the internal OSM order data, elements
and structures that OSM generates as part of order processing (such as control data that
OSM uses to generate orchestration plans), and any elements and structures generated by
external fulfillment systems in response to messages from OSM. A creation task is a
manual task that is not part of a process flow where you define data elements and
structures in the Task Data tab.

You must designate an order life-cycle policy that the order uses to determine valid states
and state transitions for the order. Order states define sequential states through which an
order passes and the transactions it undergoes from the time it is received in OSM until the
time it is completed. For example, an order can be in progress, not started, suspended,
and so on. You can enable multiple states in the order life-cycle policy and define what
transitions can occur between states. For example, you can configure an order to be able
to transition from in progress to cancelled. For more information about order life-cycle
policies, see "Modeling Order Life-Cycle Paolicies".

You must define whether OSM triggers an orchestration process or a standard process. An
orchestration process causes OSM to generate an orchestration plan. An orchestration
plan orchestrates order items into order components that trigger a series of standard
processes. Most OSM orders require orchestration.

You can use the following OSM Web Service operations to submit orders:

CreateOrderBySpec In this operation, you must specify the cartridge and order type so
that OSM understands which Order entity to use to process the order. Also, the incoming
order payload has to be in XML format as defined in the cartridge.

CreateOrder This operation accepts arbitrary payload in XML for the incoming order. You
specify an order recognition rule to recognize the payload, and transform it to the format as
defined in the cartridge. There is no need to specify the cartridge or order type in the
operation.

The target order specification runs if the CreateOrder request includes the
StartOrder=true parameter and value in the order header.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE Chapter 2
Modeling OSM Orders

See OSM Developer's Guide for more information about CreateOrderBySpec and
CreateOrder.

With either operation, when the order is created in OSM, it is tied to the order type in the
cartridge. OSM relies on that cartridge and any the dependent cartridges to determine how to
display and process the order. This means, as long as the order resides in the OSM server and
is not purged, the cartridges must remain in the run-time OSM environment.

You can use Java Message Service (JMS) or HTTP or HTTPS to send orders to OSM. Use
JMS on production systems, because it provides quality-of-service guarantees not available
from HTTP or HTTPS. Use HTTP or HTTPS on development and test systems (see OSM
Installation Guide for more information).

About OSM Orders Without Orchestration

For orders that do not require an orchestration plan for fulfillment (called process-based
orders), the OSM runs a single process and any subprocesses defined within the process,
which includes tasks such as Activate. DSLAM. When a process-based order is submitted to
OSM, the following occurs:

1. OSM starts the process.
2. The process can start subprocesses that run sequentially or in parallel.
3. After the last task has completed, the order transitions to the Completed state.

Figure 2-2 shows the process flow for a process-based order.

Figure 2-2 Process-Based Order

Run single Run Complete

Receive order —» » *
process subprocesses order

About OSM Orders With Orchestration

For orders that require an orchestration plan for fulfillment, (called orchestration-based
orders), OSM runs an Orchestration process. When a orchestration-based order is submitted
to OSM for processing, the following occurs:

1. OSM starts the orchestration process.

2. OSM generates the orchestration plan which includes run time order components that run
processes with tasks.

3. After the last task has within each order component completes, the order component
completes.

4. After the last order component completes, the order transitions to the Completed state.

Figure 2-3 shows the process flow for an orchestration-based order.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 14

ORACLE

Chapter 2
Modeling OSM Orders

Figure 2-3 Orchestration-Based Order

Receive order

Fun Generate Execute Complete
orchestration » orchestration » orchestration > nrn:lper
process plan plan

Modeling Roles and Setting Permissions

You use roles to control what operations can be performed and what data can be viewed by
OSM user that you associated with the roles. You create roles then apply the roles to OSM
entities in Design Studio. For example, roles are used in the following OSM entities:

Order specifications: You define what order data users with specific roles can view in the
OSM web clients by defining this data in query tasks and assigning the query tasks to roles
within orders specifications. The OSM web client uses the query tasks to determine what
data to display to users. The role applied to a query task determines the data that users
associated to the role can retrieve. For more information about query tasks, see "Modeling
Query Tasks for OSM Clients". You also define filters that specify whether orders with
specific values can be displayed to users with the defined roles, and flexible header that
define custom searchable data fields.

Figure 2-4 shows roles defined in an order specification in Design Studio. In this example,
members of BillingUpdateRole are allowed to view orders for customers in the 408 and
510 area codes.

Figure 2-4 Roles Defined in an Order Specification

Roles

Role Settings

DefaultRole

ProvisionRole

ProvisioningUpdateRole

SummaryRole

BillingUpdateRole

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

Condition Filter Mode Operator Value
[CustomerDetails/fareaCode = 408
Or [CustomerDetails/areaCode = 510

Order life-cycle policy: You define what transactions can be performed by users associated
with the roles assigned to each transition. For example, you may want to a standard role to
handle normal order processing from the Not Started state through to Completed state.
You may also want to assign a role for fallout management operations or amendment
processing work. For more information, see "About Modeling Transition Permissions".

Tasks: You define what tasks can be performed by users associated with the roles
assigned to each task. For example, you may want a role that can run normal processing
tasks, another for tasks during amendment processing, and another for tasks during fallout
management. You define what data is available for each role associated to these tasks
functions using query tasks. For more information about query tasks, see "Modeling Query
Tasks for OSM Clients".

Order, task, and process notification: You define what notifications are sent to which group
of users by assigning roles to specific notification instances in the Order editor, a Task
editor, or a process activity or flow.

October 30, 2025
Page 4 of 14

ORACLE

Modeling Guide
G37998-01

Chapter 2
Modeling OSM Orders

Order components: You define what data users with specific roles can view by applying
those roles to query tasks and assigning the query tasks to components. OSM web clients
uses the query tasks to specify which what data to display to users. The role applied to a
query task determines the data that task will retrieve. For example, you may define a
ProvisioningRole for a provisioning order component that allows OSM client users to view
certain data.

Figure 2-5 shows roles used in an order component. In this example, members of
ProvisioningRole can perform queries based on ProvisioningFunctionTask and view the
data in both the summary and detail views in the Order Management web client.

Figure 2-5 Roles Used in an Order Component Specification

Roles Query Tasks
Grdrispla Name Summary Detail
ProvisioningFunctionTask [+ L

automation

Order item specification: You can associate roles with corresponding query tasks from the
Order Item Specification Permissions tab. The method of applying roles in an order item
specification is identical to the method of applying roles in an order component
specification. For more information about query tasks, see "Modeling Query Tasks for OSM
Clients".

In addition to associating roles with OSM entities, you can also configure permissions for
various actions on the roles. Figure 2-6 shows a role defined in Design Studio. In this example,
users assigned to this role can generate online reports, search for orders, and access the Task
web client Worklist display.

Figure 2-6 Role Defined in Design Studio

Role : OrderDisplay D@

Display Name | OrderDisplay

Permissions

[| Create Versioned Orders

[] Exception Processing

Online Reports

[] Order Priority Modification

[] Reference Number Modification
Search View

[[]Task Assignment

Waorklist Viewer

Role

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE’

Chapter 2
About Order Types

Table 2-1 shows the actions that can be assigned to roles in Design Studio.

Table 2-1 Functions Assigned to Roles

Function

Description

Create Versioned

Orders

Enables users to create orders for different versions of cartridges. If not granted this
permission, users can create orders only for the default version of the cartridge.

Exception Processing

Enables users to alter the flow of a process by applying exception statuses at any time
throughout the process.

Online Reports

Enables users to view summarized reports on all orders and tasks on the system.

Order Priority Mo

dification

Enables users to modify the priority of a task in an order.

Modification

Reference Number

Enables users to modify the reference number of an order.

Search View

Enables users to access the order Query function. See "Specifying Which Data to Display in
the OSM Web Clients" for more information.

Task Assignment

Enables users to assign tasks to others.

Worklist Viewer

Enables users to display the worklist in the Task web client.

Because roles are defined globally in OSM, roles specified in one cartridge can be applied to
any other cartridge, and roles used in one order can also be used in any other order. If you
want to further restrict certain operations in an order, you must do so in the Design Studio
entities that the roles are associated with, such as the life-cycle policy transaction or the task
execution modes.

You associate roles with OSM user accounts using the OSM Order Management web client.
Roles are called workgroups in the OSM Order Management web client. Each user account
can belong to as many workgroups as are available on the OSM server. For more information,
see OSM Order Management Web Client User's Guide.

About Order Types

Modeling Guide
G37998-01

Figure 2-7

shows OSM orders in different order processing scenarios and how OSM receives

them. These scenarios include:

* Customer orders, service orders, and technical orders that are sent to OSM systems
running in the central order management (COM), service order management (SOM), and
technical order management (TOM) roles. For more information, see "About Determining
the OSM Functionality to Implement".

* Revision orders sent to change an in-progress order. For more information, see
"Modeling Changes to Orders ".

e Order

update performed either manually through the Task web client or through an

automation task automator plug-in that sends an UpdateOrder request. For more
information, see "About Order Updates".

* Job orders performed either manually through the Order Management web client or
through the OSM CreateOrder Web Service operation. For more information, see "Using a
Job Control Order to Manage Multiple Orders".

See "Modeling OSM Data " for more information about how orders and order items are

structured.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE’

Figure 2-7 Order Types and Order Processing

[Customer Order A Complete | [Job Order Complete |

L A

Customer Order A
Captured and sent

Customer Order A
Modified and re-sent

Job Order to Fix Data
on Qrders B, C, and D

CreateOrder WS CreateOrder WS CreateOrder WS
{Customer Order) {Revision Order) (Job Qrder)
Y
| Order Recognition Rule | OSM COM
. ¥
Crder Processing # Job Order
|Amendment Procesisng] Orders
y - | Status Notification | |g ¢, p l
Required
CreateOrder WS CreateQrder W3 Status Response
{Service Order) {Revision Order) Message
L]
OSM S0OM
| Ordar Recognition Rule
;
Order Processin
Y x 8 | Amendment | Status Notification |
Order A Compensation| Processing [XML AP| Order Update |
Mol Required
CreateCrder W3
(Technical Order) Status Response
Message
L 0SM TOM
| Order Recognition Rule
Y Crder Processing - _
Status Notification |
Order A

About Order Updates

Chapter 2
About Order Types

You can update order data within customer, service, and technical orders that have already
been created in OSM. OSM defines the following contexts where you can update order data:

« Order context: This context defines an overall view of OSM data. Although you can update
order data in this context, doing so may compromise the integrity of order data, especially
if the data you update may be subject to amendment processing. If you know that the data
you want to update in the order context should never trigger amendment processing, you
can mark the data as not significant (see "About Data Significance” for more information).

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 14

ORACLE

Chapter 2
About Order Types

Task context: This context defines a task specific view of OSM data. You typically use
tasks to communicate with external fulfillment systems or manual task users that make
changes to the data define in the task. Updating order data within the task context ensures
the data integrity, especially when the data you update may be subject to amendment
processing. See "About Order-Level and Task-Level Compensation Analysis" for more
information about how tasks ensure data integrity during amendment processing.

You can update order data on orders and tasks in following ways:

XML API UpdateOrder

After receiving a JMS response message from an external system at an automation task
automator plug-in, you can use the XML API UpdateOrder to update data or add any new
data to the order. For example, you can use UpdateOrder to update any status notification
data returned from an external system or another instance of OSM (see Figure 2-7).
Oracle recommends that you run the XML API only from within the task context.

OSM Java APl methods

After receiving a JIMS message from an external system at an automation task automator
plug-in, you can use various OSM Java AP| methods to update data or add any new data
to the order. Oracle recommends that you run these Java API methods from within the task
context.

Web Service UpdateOrder

You can use the OSM Web Service UpdateOrder operation to update order data outside of
the Task web client and the automation framework. However, OSM Web Service
operations can only access the overall order data context and do not have direct access to
the task context. Use caution because doing so can compromise order integrity.

Task web client

Personnel can update task data manually, by opening and editing an order using the Task
web client order query. Changes to task data in the Task web client are within the task
context.

See OSM Developer's Guide for more information about updating order data using the XML
API UpdateOrder, the OSM Web Service UpdateOrder operation, and the OSM Java API
methods. See OSM Task Web Client User's Guide for more information about using the Task
web client to update order data.

Update orders can:

Update a complete order. The existing order is updated (elements are added, changed, or
deleted) to match the supplied order. Order-level order updates are typically sent in the
context of order-level notifications, jeopardy notifications, or event automation automators.
See "Modeling Jeopardy and Notifications" for more information about update order
transactions used in the context of jeopardies, notifications, and events.

Update nodes in an order. Elements can be added or changed. Deleting nodes are not
performed using the update node functionality. The nodes are supplied in the format of the
existing order and are typically sent as part of task-level automation automators.

Add, delete, or change element data values that are typically sent as part of task-level
automation automators.

Using a Job Control Order to Manage Multiple Orders

Job control orders enable you to efficiently apply changes to many orders at the same time.
You can use job control orders to apply the same set of OSM Web Service operations or OSM
Order Management web client actions to multiple orders. For example, you could model a job

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE Chapter 2
About Order Types

control order using a CreateOrder OSM Web Service operation that selects multiple orders,
suspends each of them, updates order data on all the orders, and then resumes each orders.

You can specify how many OSM Web Service operations or Order Management web client
actions OSM can process at the same time. You can specify a failure threshold for job control
order operations that, if crossed, causes the entire job control order to enter the suspended
state. In addition, job control orders support a variety of counters that track job order progress.

To use job control orders:

1. Ensure that the JobControl_Solution portal archive (PAR) file has been deployed on the
OSM server. This PAR file can be deployed either when OSM is first installed or manually.
For manual deployment instructions follow the instructions in the readme file that is in the
OSM_homelProductCartridgesl/install directory. more information about deploying the
job control order cartridge, see OSM Installation Guide. The PAR file packages the
following OSM projects that you can see in the Design Studio Cartridge Management
editor when you query an OSM server for cartridge information:

* BatchJobCommonResources: Contains the job control order system configuration
file that defines default job control order settings.

* JobControl: contains the OSM Design Studio cartridge that enables the job control
order functionality.

* JobControl_Solution: contains the solution cartridge that packages the
BatchJobCommonResources and JobControl cartridges.

® Note

You can only view these cartridges when you query OSM for cartridge information.
Oracle does not provide access to the actual Design Studio projects.

2. Inthe OSM WebLogic server, create a new user account or use an existing user account
and associate it with the OMS_ws_api group.

@ Note

You can also associate the user account to the OMS_client group to give the user
access to Order Management web client and Task web client.

3. Inthe Order Management web client, associate the user account with the JCO_UserRole
or the job control order functionality in the JCO_SuperUserRole workgroups (roles). For
more information, see "About Job Control Order Permissions".

4. Ensure that all orders to be managed by job control orders have roles associated with the
default oms-automation OSM user account.

5. Model job control orders using the CreateOrder OSM web service operation and the
following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<ord:CreateOrder xmIns:ord="http://xmIns.oracle.com/communications/ordermanagement'>
<CreateJob xmIns="http://oracle.communications.ordermanagement.cartridge/job">
<FailureThreshold>t hr eshol d</FailureThreshold>
<ConcurrentOperationsAmongOrdersinJob>degr ee</ConcurrentOperationsAmongOrdersinJob>
<Priority>priority</Priority>
<RequestedDeliveryDate>r equest edDel i ver yDat e</RequestedDeliveryDate>
<Selection>

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE

Chapter 2
About Order Types

byOderCriteria

or

bySel ectionCriteria

</Selection>
<Operations>
operations
</Operations>
</CreateJob>
</ord:CreateOrder>

where:

Modeling Guide
G37998-01

threshold: (Optional) The number of operations that must fail before the job control
order automatically transitions to the Suspended state. Valid values are percentages
from 1% to 99%, absolute values, such as 10, 15, and so on, or 0 which specifies no
threshold. If specified, this value overrides the default value specified in the
batch_job_cfg.properties file (see "About Job Control Order System Configuration
Files").

degree: (Optional) The number of executable components created for each operation
in the job. If specified, this value overrides the default value specified in the
batch_job_cfg.properties file (see "About Job Control Order System Configuration
Files").

priority: (Optional) The priority of the job control order (see "Modeling Order Priority").

requestedDeliveryDate: The date and time when the job control order is to begin (for
example, 2014-08-01T03:10:002). For more information about requested delivery
dates, see "Modeling Order Scheduling ".

byOrderCriteria: The orders to which the job control order operations apply. For
example:

<Orders>
<0rderld>1</Orderld>
<0rderld>2</0Orderld>
etc...

</Orders>

bySelectionCriteria: The selection criteria that OSM uses to match corresponding
orders to. For example:

<ord:SelectBy>
<ord:OrderState>| i f ecycl est at e</ord:OrderState>
<ord:Cartridge>
<ord:Name>cart ri dgename</ord:Name>
<ord:Version>1.0.0.0.0</ord:Version>
</ord:Cartridge>
</ord:SelectBy>

The job control order selection criteria is identical to the SelectBy option of the
FindOrder OSM Web Service operation. See OSM Developer's Guide for more
information. The number of orders returned using the selection criteria is limited by the
FindOrderMaxOrderThreshold oms-config.xml parameter. The default value is 1000.
For information about modifying the default FindOrderMaxOrderThreshold parameter,
see OSM System Administrator's Guide.

operations: One or more OSM Web Service operations listed in "About Job Control
Order Operations" according to the permissions listed in "About Job Control Order
Permissions". For example:

<ord:SuspendOrder>
<ord:Reason>Job Test</ord:Reason>

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE

Chapter 2
About Order Types

</ord:SuspendOrder>
<ord:UpdateOrder>
<ord:View>CreationView</ord:View>
<ord:DataChange>
<ord:Update Path="/account_information/amount_owing'>444</ord:Update>
</ord:DataChange>
</ord:UpdateOrder>

About Job Control Order Operations

You can run combinations of the following web service operations as a part of a job control
order:

e SuspendOrder: Causes OSM to stop all processing on the orders specified in a job
control order. The orders transition from the In Progress or Not Started state to the
Suspended State.

 ResumeOrder: Causes OSM to resume processing all orders specified in a job control
order that are in the Suspended state. The orders transition from the Suspended state to In
Progress state.

e CancelOrder: Causes OSM to cancel all orders specified in the job control order. All
applicable order components and tasks are undone. The orders transition to the Cancelling
state while order components and tasks are running in the undo mode. After all order
components and tasks complete, the order transitions from the Cancelling state to the
Cancelled state.

* AbortOrder: Causes OSM to stop all orders specified in the job control order. The orders
transition to the Aborted state.

e FailOrder: Causes OSM to fail all orders specified in the job control order. The orders
transition to the Failed state.

* ResolveFailure: Causes OSM to revert all orders specified in the job control order to the
previous order state before the orders failed.

e RetryOrder: Causes OSM to retry an order or a collection of order components for a given
order. All failed tasks in the order or within the order components are retried and
transitioned from the failed execution mode back to the normal execution modes such as
do, redo and undo.

e UpdateOrder: Causes OSM to update order data on all orders specified in the job control
order.

Operations run in the sequence they appear in the job control order. You must ensure that the
sequence is logical. For example, you can suspend, update, and then resume an order, but
you cannot resume, suspend, and update an order. You must also ensure that order life-cycle
policies of the orders that the job control order interacts with supports the use of the operations
you want to be available to a job control order.

For more information about the transitions associated with job control order and the roles that
can run these transitions, see "About Job Control Order Permissions". For more information
about OSM Web Service operation syntax, see OSM Developer's Guide.

About Job Control Order Permissions

Modeling Guide
G37998-01

The job control order solution cartridge contains the JCO_UserRole and the
JCO_SuperUserRole workgroups (roles) with different permissions configured for each. You
associate user accounts with workgroups using the Order Management web client. For more
information about associating user accounts with workgroups, see OSM Order Management
Web client User's Guide.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE’

Chapter 2
About Order Types

Table 2-2 shows the permissions available to each role.

Table 2-2 Permissions for JCO_SuperUserRole and JCO_UserRole

Permission

JCO_Super
UserRole

JCO_User
Role

Description

Version Orders

Yes

No

Allows users to create orders for different
versions of cartridges. If not granted this
permission, users can create orders only for the
default version of the cartridge.

Exception Processing

Yes

No

Allows users to alter the flow of a process by
applying exception statuses at any time
throughout the process.

Order Priority Modification

Yes

Yes

Allows users to modify the priority of a task in
an order.

Reference Number Modification

Yes

Yes

Allows users to modify the reference number of
an order.

Task Assignment

Yes

Yes

Allows users to assign tasks to others.

Modifications to configuration parameters in
order data

Yes

Yes

Allows users to modify default configuration
parameters for job control orders.

Modifications to other order data

Yes

No

Allows users to modify order data in operations.

Suspend State Transaction

Yes

Yes

Allows users to suspend or update a job control
order in the In Progress state.

Job control orders automatically enter the
Suspended state when the job control order
passes the jobFailedOperationsThreshold
threshold. Users can also manually suspend a
job control order by sending a SuspendOrder
web service operation.

Resume State Transaction

Yes

Yes

Allows users to resume a suspended order.
When a Suspended order is resumed, it returns
to the state it was in prior to the Suspended
state (for example, In Progress or Not Started).

Abort State Transaction

Yes

No

Allows users to stop an order. All transitions to
the Aborted state occur after the grace period
expires.

Cancel State Transaction

Yes

No

Allows users to Cancel a job control order.
Canceling a job control order stops all further
processing of the job control order. The cancel
order does not reverse job operations that have
already run.

Create Job Control Order

Yes

Yes

Allows users to create a job control order.

Transition to Complete State

Yes

Yes

The job control order enters the Completed
state when all operations on all orders have
completed, whether successfully or
unsuccessfully.

Transition to Failed State

Yes

Yes

The job control order may transition to the
Failed state. However, job control orders do
count all failed operations.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 14

ORACLE Chapter 2
Viewing Orders in OSM Web Clients

About Job Control Order System Configuration Files

Table 2-3 shows the job control order configuration file parameters that manage all job control
orders. Parameter values specified directly in a job control order override the job control order
configuration file parameters.

Table 2-3 Parameters for the batch_job_cfg.properties File

Parameters Description Default
Concurrent Operations among The number of executable components created for each operation in the 1
Orders in Job job.

Failure Threshold The number of operations that must fail before the job control order 0

automatically transitions to the Suspended state. Valid values are
percentages from 1% to 99%, absolute values, such as 10, 15, and so on,
or 0, which specifies no threshold.

Viewing Orders in OSM Web Clients

You can view orders in the following ways:

* You can display the orchestration plan, and the order components and order items
included in it, in the Order Management web client. For more information, see OSM Order
Management Web Client User's Guide.

e You can display current and historical information about tasks in the Task web client. For
more information, see OSM Task Web Client User's Guide.

Specifying Which Data to Display in the OSM Web Clients

You can choose the data to display in the OSM web clients using the following methods:

* Use task data to specify which data to display in the Task web client for manual tasks.

* Use behaviors to specify how OSM displays the task data within a manual task; for
example, to hide or show task data or to make data read only. See "Modeling Behaviors"
for more information.

* Use query tasks to specify which data to display in the Order Management web client
Summary tab and Data tab. Query tasks are manual tasks that specify which data to
display in the Order Management web client when opening an order. A query task is
associated with a role that gives permission to view the order data that the particular role is
allowed to view. For example, some users may only need to view billing related order data,
while others may only need to view provisioning data. Some users may need to view the
entire order. See "Modeling Query Tasks for OSM Clients" for more information.

Modeling Query Tasks for OSM Clients

Order management personnel can display orders in the Task web client and in the Order
Management web client. You can specify which data is displayed by assigning query tasks to
an order. The data that is specified in the query task is the data that is displayed.

You can select any task as the query task. You can also create special tasks whose only
function is to specify which data to display.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE Chapter 2
Viewing Orders in OSM Web Clients

Figure 2-8 shows the Permissions tab in the Design Studio Order editor. The upper
screenshot shows the permissions for the provisioning role, with the provisioning function task
as the query task. The lower screenshot shows the permissions for the billing role, with the
billing function task as the query task.

Figure 2-8 Roles Assigned to Query Tasks

Display Mame| OsmCentralOMExampleOrder

Roles Role Settings

DefaultRole Details | Filters | Query Tasks

ProvisioningUpdateRole Hame Summary Detail Default
SummaryRole ProvisioningFunctionTask v L

BillingUpdateRole

Display Name| OsmCentralOMExampleQrder

Roles Role Settings

DefaultRole Details | Filters | Query Tasks

ProvisionRole

ProvisioningUpdateRole HName Summary Detail Default
SummaryRole BillingFunctionTask v v

BillingUpdateRole

The Order Management web client uses the following types of views to display orders; a
summary view in the Summary tab and a detailed view in the Data tab. When you model a
query task, you can specify which of those views (either or both) to display the query task data
in.

You can use multiple tasks as query tasks for an order. When you do so:

e For the summary view, all the data is displayed in the Order Management web client
Summary tab.

e For the detailed view, the data from the query tasks appears as options in the Order
Management web client Data tab View field; each option presents the OSM user with a
different view, each containing a specific set of data.

You can use multiple query tasks in the Order Management web client when using an
orchestration cartridge. For process-based cartridges, only the default query task is available in
the Order Management web client. To display the query task in the Task web client, select the
Default check box, as shown in Figure 2-8.

In addition to defining the data that can be displayed, you can specify who can see it by using
roles. Each role that is associated with an order can be assigned different query tasks. For
example, if your order management personnel includes a role for billing specialists, you can
create query tasks that show data specific to their activities.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 14

Modeling Order Life-Cycle Policies

This chapter describes how to model order life-cycle policies in an Oracle Communications
Order and Service Management (OSM) solution.

Modeling Order Life-Cycle Policy States and Transitions

Every order has an order state, which indicates the current condition of the order; for example,
In Progress, Amending, or Completed. These OSM order states control the progress of the
order. For example, an OSM user cannot work on tasks while the order is in the Suspended
state, and an order in the Aborted state cannot be restarted.

@® Note

The order state represents the technical processing state of the order in the OSM
system, not the state of the order as defined in a CRM system, or the fulfillment state
defined in a fulfillment system. OSM order states are typically not equivalent to the
states of the order in the CRM system or other order-source system, which might have
different states for the customer order, as well as states for order line items on the
order.

A typical order uses the following states:

1. An order is created in the Not Started state.
2. When processing begins on the order, the state transitions to the In Progress state.
3. When the order is complete, it transitions to the Completed state.

Changes from one order state to another order state are called transitions. Each order state
has a set of allowable transitions. For example, when an order is completed, it transitions from
the In Progress state to the Completed state.

Transitions are controlled by transactions. A transaction is an action taken by the OSM
system. For example, the Suspend Order transaction performs the following actions:

e Stops all processing on the order
e Transitions the order to the Suspended state

Most transactions perform transitions that change the state of the order. However, some
transactions do not perform a transition to another state. For example, the Update Order
transaction can make changes to an order without changing the order's state.

About Modeling Transition Conditions

Modeling Guide
G37998-01

Transition conditions are Boolean expressions that specify if a transition from one state to
another is allowed. For example, for the Submit Amendment state, you can prevent the
Process Amendment transition from occurring until a condition is true.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 29

ORACLE’

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

Figure 3-1 shows the life-cycle policy for the Process Amendment transition. In this case, it
returns true, so it is always allowed to transition.

Figure 3-1 Order Life-Cycle Policy for the Process Amendment Transition

Order Lifecycle Policy

4 < In Progress
&) - Abort Order
4 - Cancel Order
<p - Fail Order
< - Manage Order Fallout
4} - Process Amendment
4 - Raise Exception

m

-

Grant F‘ermission‘

Permissions | Transition Conditions | Grace Period

Condition

4 |[m 3

Expression

true()

Message

A common scenario for configuring permissions is when you set the PONR for amendment
processing. See OSM Concepts for more information.

When specifying conditions, the minimum set of required order states is Not Started, In
Progress, and Completed. The life cycle must allow an order to transition to those states.

OSM uses more transactions than those shown in Oracle Communications Service Catalog
and Design - Design Studio. Design Studio shows only the transactions that you can assign
permissions on and set conditions for. For example, the Complete Task transaction can
transition an order to the Completed state, but that transaction cannot be customized.

About Modeling Transition Grace Periods

The transition grace period specifies the amount of time that OSM should wait before
transitioning the order. For example, if a Suspend Order transaction is run on an In Progress
order, a grace period can allow the order processing to reach a definitive state for all currently
executing tasks before transitioning to the Suspended state. In this case, OSM waits until all
active tasks are in the Received, Completed, or user-defined Suspended task state. (An active
task is a task that is in the Accepted state.) If the grace period expires before all tasks move
out of the Accepted task state, OSM transitions the order state.

During the grace period, the target order state header in the Task web client displays the order
state the order is transitioning to. The target order state is populated only when an order is in

grace period.

You can specify a grace period for certain transactions, such as Suspend Order, Process
Amendment, Cancel Order, and Fail Order. For other transactions, a grace period is
unnecessary or not permitted, such as for Submit Amendment, Update Order, and Abort Order.

You can define the following grace period parameters:

e The length of time to wait (minimum and maximum, or indefinite)

* How often to generate a jeopardy event during the grace period

Figure 3-2 shows how you can customize the order life cycle in Design Studio. In this figure,
the Cancel Order exit transaction for the In Progress order state is selected. A grace period for
transitioning to an order cancellation is set for a minimum of one day, and a maximum of five
days. A jeopardy event is triggered every hour.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-2 Order Life Cycle in Design Studio

Order Lifecycle Policy

Q - Abort Order Wait Duration

0 - Cancel Order

<p - Fail Order ") Indefinitely

O - Manage Order Fallout @ Time frame

4 - Process Amendment Days Hours Minutes seconds
< - Raise Exception Minimum 1 = 0 =0 = 0 =

< - Submit Amendment
4p - Suspend Order
4 - Update Order

p 0 Not Started Event Frequency
<p - Abort Order
4p - Delete Order
4 - Fail Order Bvery 0 51 50 50 &
0 - Suspend Order
< - Update Order

4 < Suspended
4 - Abort Order
0 - Cancel Order =

4 <) InProgress = | | Permissiens | Transition Conditions | Grace Period

Maximum 5 = 0 =0 = 0 =

m

Days Heours Minutes seconds

About Modeling Transition Permissions

You can specify the roles that are allowed to perform a transaction. For example, while an
order is in the In Progress state, your customer service role might need to perform the Update
Order and Cancel Order transactions, whereas your fallout specialist role might perform only
the Raise Exception transaction.

OSM Order States and Transactions

OSM includes a standard set of order states and transactions. You cannot add states or
transactions, but you can control how the order transitions between states.

Table 3-1 shows the OSM order states.

Table 3-1 Order States

Order State Description

Aborted The order has been permanently stopped. This is a final state. An order in the
aborted state cannot transition to another order state.
See "About the Aborted Order State" for more information.

Amending The order is being amended. OSM identifies which tasks are affected by the

amended data and compensates the order as necessary.
See "About the Amending Order State" for more information.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Table 3-1 (Cont.) Order States

Order State

Description

Cancelled

The order has been canceled. All tasks have been undone back to the creation task.

If an order includes an orchestration plan, the Cancelled state is the final state. The
order cannot be resumed.

If the order does not have an orchestration plan, the canceled order is returned to
the creation task for the order. The order can be re-submitted to be run again.

See "About the Cancelled Order State" for more information.

Cancelling

The order is being canceled. At least one task is running to perform amendment
processing for the cancellation. While the order is in the Cancelling state, OSM
undoes all completed tasks to return the order to the creation task. When OSM is
finished, the order transitions to the Cancelled state

See "About the Cancelling Order State" for more information.

Completed

The order has been fulfilled. There are no tasks running and processing is complete.
A completed order can be canceled, updated, or deleted.

See "About the Completed Order State" for more information.

Failed

The order has failed during processing. The Failed state is not a final state; the
order can be resumed when the problem is fixed.

See "About the Failed Order State" for more information.

In Progress

The order is actively running. Future-dated orders have an In Progress state while
they wait for dependencies to be resolved.

See "About the In Progress Order State" for more information.

Not Started

The order has been created but has not started. There are no tasks running.
See "About the Not Started Order State" for more information.

Suspended

The order has been suspended and all processing on the order in OSM has been
halted. No task can be updated or transitioned while the order is in this state.

See "About the Suspended Order State" for more information.

Waiting

The order is not ready to start because it is future-dated or blocked by another order.
See "About the Waiting Order State" for more information.

Waiting for Revision

The order is waiting for a revision. This state is common following compensation to
an order for fallout, when the order is awaiting a revision from the order-source
system to correct something that caused a failure in the originally submitted order.

See "About the Waiting for Revision Order State" for more information.

Table 3-2 shows transactions that are included in the order life-cycle policy and the operations
they perform.

Table 3-2 Order State Transactions

Transaction

Description

Abort Order

Immediately and permanently stops order processing. Transitions the order state to Aborted.

In the Order Management web client and the Task web client, Abort Order transactions are
identified as "Terminate Order".

Cancel Order

Transitions the order to the Cancelling state. After OSM performs the necessary tasks to
cancel the order, the order transitions to the Cancelled state.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Table 3-2 (Cont.) Order State Transactions
|

Transaction

Description

Complete Task

Completes a task and allows the transition to the next task. Completing the last active task
implicitly transitions the order to a Completed state.

This transaction is not configurable in the life-cycle policy.

Copy Order

Copies an order; for example, when you create an order in the Task web client by copying an
order. This transaction does not change the order state. It is not configurable.

Create Order

Creates an instance of an order.
The transaction starts the order in either the Not Started state or the In Progress state.

This transaction is not a configurable transaction in the OSM life-cycle policy. Permissions for
creating an order are not set in the life-cycle policy. Instead you assign an order creation
permission to roles and assign permissions on the orders.

Delete Order

Removes an order from the system.

To delete orders, use the orderPurge command. See OSM System Administrator's Guide for
more information. If the order does not have an orchestration plan, you can delete an order
using the Task web client when the order is at the creation task.

Fail Order

Transitions the order to the Failed state. Processing on the order is stopped.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Fallout Order

Compensates an existing order based on error data identified during provisioning.
This transaction is not configurable in the life-cycle policy.

Manage Order Fallout

Transitions the order to the state it had before it failed. Processing on the order resumes.

This transaction enables Task web client users to locate orders with errors that require manual
intervention, analyze the order to determine the cause of the errors, and take the corrective
action to correct errors allowing the order to continue to process normally.

Process Amendment

Transitions the order to the Amending state. This transaction is always preceded by the
Submit Amendment transaction. See "About the Amending Order State" for more information.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Raise Exception

Raises an exception. The system can be configured to initiate fallout compensation with this
transaction. In this situation the order transitions to the Amending state while it compensates
tasks. From the Amending state, it can transition to the Failed, In Progress, or Waiting for
Revision states.

For backward compatibility this transaction can also trigger a preconfigured exception
process. Exception processes are incompatible with OSM's built-in compensation. An order
for which an exception process is triggered cannot have compensation applied for revisions,
cancellations, or fallout. In this case, the order remains in the In Progress state.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Resume Order

Transitions the order to the In Progress state, typically from the Suspended state.

Submit Amendment

Submits an amendment but does not change the order state. This transaction is followed by
the Process Amendment transaction, which changes the order state to Amending.

See "About the Amending Order State" for more information.

Suspend Order

Transitions the order to the Suspended order state. Processing on the order halts.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 29

ORACLE

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Table 3-2 (Cont.) Order State Transactions

Transaction

Description

Update Order

Allows changes to order data, remarks, and attachments outside the context of a task. The
Update Orders can add new data elements, delete existing data elements, or change existing
data element. Update Orders can be sent from locations such as:

* The Task web client.

e Automation plug-in XSLT or XQuery automators.

* Web Services or XML API requests.

In most situations, Update Order does not allow the state of the task to change; for example,
when updating an order that is in the Aborted state. When an order is in the Not Started state
or the Cancelled state, the Update Order transaction can start or resume the order by running
the creation task.

To use Update Order to start or resume an order, you need to use the startOrder flag in the
Update Order transaction, in an automation plug-in, a web service operation, or through the
Task web client. You cannot specify to start or resume an order by configuring the order life-
cycle policy in Design Studio.

Modeling Guide
G37998-01

Figure 3-3 shows OSM order states and transactions.

The transactions shown are those that perform transitions between order states. Some
transactions, such as Update Order, do not always perform a transition.

In this figure, a Resume Order transaction is shown from the Cancelled state to the In
Progress state. This transaction is only possible for orders that do not have an
orchestration plan. If the order has an orchestration plan, the Cancelled state is a final
state and cannot be resumed.

Some order state transitions are performed internally by OSM, not by running a
transaction.

The transition from Not Started to Completed occurs when an order is submitted for a
revision to an in-flight order. In this case, all that the revision order must do is submit an
amendment. When the revision order is processed, the Submit Amendment transaction
places the revision order in the amendment queue. After doing so, the revision order itself
requires no further processing because compensation happens to the base order, so the
revision order is transitioned directly to the Completed state automatically by OSM, without
going to the In Progress state.

@® Note

Because the transaction from Not Started to Completed for revision orders is
required by OSM and is performed by the system, you cannot define permissions
or conditions for it. Therefore, it is not shown as a transaction from the Not Started
state in Design Studio.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 29

ORACLE’

Figure 3-3 OSM Order States and Transactions

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01

Create/Copy Order Delete
F 5
Open
Submit/Process Amendment Mot Running
Fail Order | ¥ Suspend Order
Mot Started
Maname Resume
i — 1 Updas Order Order
Suspend Order
Fallout | Order Fail P Y L
Il I ! Order Suspend Suspended ru
) Pl Order
- Failed Resum® Sspand® Resume || Carcel
Fail Manage | Fail Manage Order Order | Ovder Order
Order | Order Order
Order
Fallout Fallout Lot A — ATh
Suberiy R, W— W ¥ O Waltmg d
Process SubmitPracess
Amendment] ¥ Amendment n
.] L] r
Wa'"'_"‘-? for —T—TTTT" Canceled LT Th Cancdl
Revision Orda
— LA Ao b Resume Order /
Update Order
F 3 T T
T M PP e o] | [T e
P BTy Ly | W W Wy
— TP T T A Suspend Crdar
Abort el Cancel Order
'::'I'der T ey T, Y it
A At S | Cancel Order
L] [P P |
ST
Closed Cancel Order
SEan Abort Open
1, Aborted Order Running
ADDH .‘JV [| T Y Y
Order Abort
* Qrder In v v [compensatingy
Abor] =T =T Progress - :
Cirde Abort Amending || Canceling
» Order milm
T L
Abort "
Order | Abort Raise -«
1 LTt rer Excaption
Resume Submit
Orde I Process
Completed [ST Amendment Suspend
y 7y Order
—T > Intemal
[I
Ky e T
X Intemal Operation
x Ll)y SubmitProcass Amendmeant
Deleted Complete Task
Cancel Order Cancel Order

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025

Page 7 of 29

ORACLE’

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

About Order State Categories

Order states can be categorized by the overall condition of the order that they apply to; for

example, if the order is open, closed, or running:
e Open - Not Running
— Not Started
— Suspended
— Waiting
— Waiting for Revision
— Canceled
— Failed
e Open - Running
— In Progress
e Open - Running - Compensating
— Amending
— Cancelling
¢ Closed
— Completed
— Aborted

Common Order State Transitions

A typical order processing scenario uses the following order states:

1. The order is submitted to the Not Started state and transitions to the In Progress state. The

order remains in the In Progress state while processing occurs.

2. When the last task has completed, the order transitions to the Completed state.

Figure 3-4 shows the states, state categories, and transactions for a basic order

processing flow.

Figure 3-4 Simple Order Processing Flow

Cpen

Mot running Running Closed
Update Complete
Order Task

Mot Started

In Progress Completed

L
L

The process for revising an order uses the following order states:

1. The base order is submitted and transitions to the In Progress state.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 29

ORACLE’

2
3
4,
5
6

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

The revision order is submitted and transitions to the In Progress state.

The base order transitions to the Amending state.

The revision order, after it has amended the base order, transitions to the Completed state.
After processing the amendment, the base order returns to the In Progress state.

When the last task has completed, the base order transitions to the Completed state.

Figure 3-5 shows the order states used for a revision order.

Figure 3-5 Order States Used When Processing a Revision Order

Open
Not running Running Closed
Update Complete
Mot Started Order » In Progress Task - Completed
Base Submit !
Order Amendment/ Internal
Process transaction
Amendment
kL
Amending
Submit Amendment/Process
Revision Mot Started e v » Completed
Order

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

A follow-on order uses the following order states:

1.
2.

The base order is submitted and transitions to the In Progress state.

The follow-on order is submitted and transitions to the In Progress state, but it must wait
until an order item in the base order completes before it can be processed.

The order item in the base order completes. The base order can continue processing, or it
can complete and transition to the Completed state.

Since the order item in the base order has completed, the dependency has been met and
the follow-on order begins processing.

When the last task in the follow-on order has completed, it transitions to the Completed
state.

A future-dated order uses the following order states:

1.

The order is submitted, but OSM determines that there is a future start date. The order
transitions to the Not Started state.

When the order start date is reached, the order transitions to the In Progress order state.

When the last task has completed, the order transitions to the Completed order state.

October 30, 2025
Page 9 of 29

ORACLE Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Optional, Mandatory, and Prohibited Transactions

Transactions for each order state can be optional, mandatory, or prohibited. Optional
transactions can either be allowed or prohibited based on conditions and permissions defined
in the order life-cycle policy.

Table 3-3 shows the order states and their transactions.

Table 3-3 OSM Order Transactions
]

Order State Mandatory Transactions Prohibited Transactions Optional Transactions
Aborted None e Abort Order * Delete Order
e Cancel Order e Update Order
e Complete Task
e Fail Order
* Manage Order Fallout
e Process Amendment
* Raise Exception
¢ Resume Order
e Submit Amendment
e Suspend Order
Amending None e Cancel Order e Abort Order
e Complete Task * Manage Order Fallout
e Delete Order e Submit Amendment
e Fail Order e Suspend Order
* Raise Exception * Process Amendment
e Resume Order
e Update Order
Canceled None e Complete Task e Abort Order
e Fail Order * Delete Order
¢ Manage Order Fallout * Update Order
* Process Amendment * Cancel Order
* Raise Exception
e Resume Order
e Submit Amendment
e Suspend Order
Canceling None e Cancel Order e Abort Order
e Complete Task e Suspend Order
e Delete Order * Manage Order Fallout
e Fail Order
e Process Amendment
¢ Raise Exception
* Resume Order
e Submit Amendment
e Update Order

Modeling Guide

G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 29

ORACLE’

Table 3-3 (Cont.) OSM Order Transactions

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions
Completed None Abort Order * Delete Order
Complete Task * Update Order
Fail Order e Cancel Order
Process Amendment
Raise Exception
Resume Order
Submit Amendment
Suspend Order
Failed None Complete Task e Abort Order
Delete Order * Cancel Order
Fail Order * Manage Order Fallout
Process Amendment * Submit Amendment
Raise Exception * Update Order
Resume Order
Suspend Order
In Progress Complete Task Delete Order e Abort Order
Resume Order e Cancel Order
e Fail Order
* Manage Order Fallout
* Process Amendment
* Raise Exception
* Submit Amendment
e Suspend Order
e Update Order
Not Started Complete Task Cancel Order e Abort Order
Manage Order Fallout o Delete Order
Process Amendment * Fail Order
Raise Exception e Suspend Order
Resume Order * Update Order
Submit Amendment
Suspended None Complete Task e Abort Order
Delete Order e Cancel Order
Process Amendment * Fail Order
Raise Exception * Manage Order Fallout
Suspend Order * Resume Order
* Submit Amendment
e Update Order
Waiting None Complete Task e Abort Order
Delete Order e Cancel Order
Process Amendment * Fail Order
Raise Exception * Submit Amendment
e Suspend Order
e Update Order

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

ORACLE

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Table 3-3 (Cont.) OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions
Waiting for Revision None e Complete Task e Abort Order
e Delete Order * Cancel Order
e Process Amendment * Fail Order
* Raise Exception * Manage Order Fallout
e Suspend Order * Resume Order
* Submit Amendment
e Update Order

About the Aborted Order State

Modeling Guide
G37998-01

An order can be transitioned to the Aborted order state when an unrecoverable error or
condition has stopped the processing for the order and the order cannot return to a valid
processing state through a revision or fallout management activity within OSM. It can be
considered a last resort to prevent any further execution of an order.

An order can be terminated manually from the Order Management web client or from the Task
web client. (In the web clients, the command Terminate Order moves the order to the Aborted
order state.) You can also transition to the Aborted order state programmatically by using the
OSM Web Service API or by using an automated task.

The Aborted order state is a final state; the order has been permanently stopped. An order in
the Aborted state cannot transition to another state.

Terminated orders may require manual intervention in an OSM web client to compensate for
tasks that have completed or that were in the process of completing. For example, you may be
required to release port assignments, delete accounts in billing systems, and so forth.

The entrance transaction to the Aborted order state is Abort Order. This transaction can be run
from all order states except the Completed order state.

The exit transaction from the Aborted state is Delete Order, which removes the order from the
OSM system.

The Update Order transaction is used when the order is updated manually, outside of the order
processing.

Figure 3-6 shows the order states that can transition to or from the Aborted order state.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-6 Order States that Can Transition to or from the Aborted Order State

L Abort Order Amending
L Abart Order Canceled
Abort Order)
- Canceling
’ Abort Order Eailed
Abort Order
+ In Progress
Aborted
=a"-"~b|:|rt Order Mot Started
1Abnrt Order Suspended
Abart Order Waiting for
__________) Revision
Update i
i Order |
Delete Order Deleted

About the Amending Order State

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

An order in the Amending state is undergoing compensation.

The transactions that cause an order to move to the Amending state are the Submit
Amendment transaction (as a result of a revision order) and the Raise Exception transaction
(as a result of fallout for which compensation is needed). The order can be amended from the
following order states:

* In Progress

* Failed

e Suspended

e Waiting for Revision

To transition an order to the Amending state, OSM uses two transactions: Submit Amendment
and Process Amendment. These transactions work together to make sure that the order is in a
condition that can be amended and that the amendment is allowed.

Each revision to an order uses the Submit Amendment transaction to place the amendment in
a queue. The Submit Amendment transaction does not change the order state. Instead, it
makes sure that the order is ready to be amended and that there are no life-cycle rules that

October 30, 2025
Page 13 of 29

ORACLE

Modeling Guide
G37998-01

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

prevent the order from being amended until a condition is met. For example, although an order
in the Suspended state can receive amendments from the Submit Amendment transaction, the
order must be resumed before it can process the amendments.

When the order is able to process the amendment, the Process Amendment transaction is run
on the latest amendment in the queue, and the transition is made to the Amending state. Not
every order in the queue is processed:

* Arevision for the same order might have been received while the order is queued. In that
case, the later revision is used instead.

* Restrictions in the life-cycle policy might prevent an amendment from being processed by
the Process Amendment transaction.

Unless multiple revisions are common and frequent, the order state transition to Amending will
happen almost immediately after the Submit Amendment transaction.

The configurable exit transactions for the Amending state are:

e Submit Amendment: An order can process a Submit Amendment transaction while the
order is in the Amending state. This can occur because additional revision orders can be
submitted while the order is in the Amending state. In this case, the Submit Amendment
transaction adds the amendment to the amendment queue.

e Suspend Order: Transitions to the Suspended state.
e Abort Order: Transitions to the Aborted state.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

An order can transition from the Amending state to the Waiting for Revision state. However,
there is no transaction required to transition from the Amending state to the Waiting for
Revision state. This transition happens when fallout occurs, and OSM has found that the fallout
is caused by the submitted order. In that case, OSM cannot use further compensation (redo/
undo) to fix the problem. Instead, OSM waits for a revision to be submitted from the upstream
order-source system to fix the problem.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

e RetryOrder and ResolveFailure OSM Web Service operations
e Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-7 shows the order states that can transition to or from the Amending order state.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-7 Order States that Can Transition to or from the Amending Order State

Abort Order
» Aborted
Submit/Process Amendment
- Failed
Internal Operation .
Amending raise Exception In Progress
_Submit’Process Amendment
Suspend Order
Resume Order Suspended
Internal Operation
"| Waiting for
Submit/Process Amendment Revision

About the Cancelled Order State

Modeling Guide
G37998-01

When an order is in the Cancelled state, all tasks have been undone back to the creation task.

The actions allowed when an order is in the Cancelled state are different depending on if the
order has an orchestration plan:

< If an order has an orchestration plan, the Cancelled state is the final state. The order
cannot be resumed.

e If the order does not have an orchestration plan, the order can be resumed at the In
Progress state, either by manually opening the order at the creation task and submitting it
or by programmatically transitioning the order state using the OSM APIs.

The transaction that causes the Cancelled state is the same Cancel Order transaction that was
used for canceling the order.

If the order includes an orchestration plan, the configurable exit transactions are:

« Update Order: Allows the order data to be changed but does not transition the order to
another order state.

e Abort Order: Transitions to the Aborted state.
e Delete Order: Removes the order from the OSM system.

If the order does not have an orchestration plan, the configurable exit transactions are:

e Resume Order: Transitions to the In Progress state.

e Update Order: Allows the order data to be changed. This transaction can also transition the
order to the In Progress state if the startOrder option is used. See the discussion of the
Update Order transaction in Table 3-2 for more information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 29

ORACLE Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

« Abort Order: Transitions to the Aborted state.

e Delete Order: Removes the order from the OSM system.

® Note

When resumed after being canceled, the order begins again at the beginning of the
execution; it is not resumed at the point in the execution it was in when canceled.

Figure 3-8 shows the order states that can transition to or from the Cancelled order state if the
order has an orchestration plan.

Figure 3-8 Order States that Can Transition to or from the Cancelled Order State if the
Order Has an Orchestration Plan

Abort Order J Aborted

Internal Operation)
+ P Canceling

Canceled

Delete Ord
eee e Deleted

Figure 3-9 shows the order states that can transition to or from the Cancelled order state if the
order does not have an orchestration plan.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-9 Order States That Can Transition To Or From the Aborted Order State if the
Order Does Not Have an Orchestration Plan

Abort Ord
o e » Aborted
! Internal Operation Canceling
Canceled
Resume Order/Update Order
» In Progress
Delete Order
» Deleted

About the Cancelling Order State

Modeling Guide
G37998-01

When an order is in the Cancelling state, at least one live task is running in a cancellation
compensation mode. OSM undoes all completed tasks to return the order to the creation task.
When OSM has finished, the order transitions to the Cancelled state

The entrance transaction for the Cancelling order state is the Cancel Order transaction. An
order can be canceled from the following order states:

* In Progress

e Completed

e Suspended

* Waiting

* Waiting for Revision

e Failed

The configurable exit transactions for the Cancelling order state are:
e Suspend Order: Transitions to the Suspended state.

e Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

* RetryOrder and ResolveFailure OSM Web Service operations
* Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 29

ORACLE’

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

Figure 3-10 shows the order states that can transition to or from the Cancelling order state.

Figure 3-10 Order States That Can Transition To Or From the Cancelling Order State

Abort Order

About the Completed Order State

The order has been fulfilled. There are no live tasks and processing is complete.

> Aborted
Internal Operation
- » Canceled
L Cancel Order Failed
Canceling Cancel Order In Progress
Suspend Order
Resume Order Suspended
Cancel Order Waiting for
| Revision
c | Crd
I = Completed

The entrance transaction for the Completed state is the Complete Task transaction. It

transitions from the In Progress state.

The Complete Task transaction is used internally whenever the last task is completed in the
order, which is determined automatically by OSM. Therefore the Complete Task transaction is

not shown as part of the life-cycle policy in Design Studio.

The transition from the Not Started state to the Completed state is specific to revision orders.
When a revision order that has been submitted and accepted transitions to the Completed
state directly, because the compensation for the revision happens on the base order being

revised.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

The configurable exit transactions for the Completed order state are:

Delete Order: Removes the order from the OSM system.

Update Order: Allows the order data to be added, changed, or deleted but does not
transition the order to another order state.

Cancel Order: Allows the order to be canceled.

Figure 3-11 shows the order states that can transition to or from the Completed order state.

Figure 3-11 Order States that Can Transition to or from the Completed Order State

Complete Task
L P In Progress
L Submit/Process Amendment Mot Started
Completed
Cancel Order » Canceling
Delete Order » Deleted

About the Failed Order State

If an order is the Failed state, the order failed during fulfillment, after the order was submitted
by the order-source system or during order recognition when validating the incoming order
data.

The entrance transaction for the Failed order state is the Fail Order transaction. An order can
transition to the Failed state from the following states:

Not Started
In Progress
Suspended

Waiting for Revision

The configurable exit transactions for the Failed order state are:

Modeling Guide
G37998-01

Manage Order Fallout: Transitions back to the state that the order was in when the Fail
Order transaction occurred. For example, if the order was in the Not Started state and then
failed, the Manage Order Fallout transaction returns the order to the Not Started state. It
can exit to the following states:

— Not Started

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

— In Progress
— Waiting for Revision
e Suspend Order: Transitions to the Suspended state.

e Update Order: Allows the order data to be added, changed, or deleted but does not
transition the order to a different order state.

e Submit Amendment/Process Amendment: Submits an amendment and is followed by the
Process Amendment transaction and transitions the order to the Amending state.

e Cancel Order: Transitions to the Cancelling state.
e Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

e RetryOrder and ResolveFailure OSM Web Service operations
e Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-12 shows the order states that can transition to or from the Failed order state.

October 30, 2025
Page 20 of 29

ORACLE Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-12 Order States that Can Transition to or from the Failed Order State

Abort Ord
on o » Aborted
Submit'Process Amendment)
» Amending
Cancel Order)
» Canceling
Manage Order Fallout
Failed Fail Order In Progress
Manage Order Fallout
Fail Order Mot Started
Manage Order Fallout
Fail Order Suspended
Manage Order Fallout
| Waiting far
Fail Order Revision

About the In Progress Order State

An order in the In Progress state is actively running. Future-dated orchestration orders have an
In Progress state while they wait for dependencies to be resolved.

The entrance transactions for the In Progress state are:

e Update Order: Transitions from the Not Started state or Cancelled state when the
startOrder option is used. Programmatic creation of an order typically begins the
execution of the order, transitioning it to the In Progress order state when the startOrder
option is set to true on the CreateOrder or CreateOrderBySpecification OSM Web Service
operation. See the discussion of the Update Order transaction in Table 3-2 for more
information.

e Resume Order: Transitions from the following states:
— Suspended
— Waiting for Revision
— Canceled
Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

@ Tip

The Cancelled state returns the order to the creation task, so the Resume Order
transaction does not resume from the state it was in when canceled. Instead, it
resumes at the beginning of the process.

e Manage Order Fallout: Transitions from the Failed state.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

* Update Order: Allows the order data to be added, changed, or deleted.

* Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

e Suspend Order: Transitions to the Suspended state.
e Cancel Order: Transitions to the Cancelling state.

* Fail Order: Transitions to the Failed state.

e Abort Order: Transitions to the Aborted state.

* Raise Exception: The Raise Exception transaction is a special type of transaction from the
In Progress state. For order fallout scenarios, the Raise Exception transaction can
transition the order to the Amending state to perform compensation for the error. However,
for backward compatibility with orders that use process exceptions, the Raise Exception
transactions starts an exception handling process, but the order remains in the In Progress
state. See the discussion of the Raise Exception transaction in Table 3-2 for more
information.

e Complete Task: Transitions from the In Progress state, but only when the last task in the
order is completed. This transaction is also used internally whenever a task is completed in
the order. It is not shown in the life cycle display in Design Studio.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

e RetryOrder and ResolveFailure OSM Web Service operations
e Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-13 shows the order states that can transition to or from the In Progress order state.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 22 of 29

ORACLE’

Chapter 3

Modeling Order Life-Cycle Policy States and Transitions

Figure 3-13 Order States That Can Transition To Or From the In Progress Order State

In Progress

Abort Order

Submit/Process Amendment

L 4

Aborted

Faise Exception

f 3

Internal Operation

L 4

F 3

Resume Order/Update Order

Amending

Cancel Order

Canceled

Complete Task

¥

Canceling

Fail Order

¥

Completed

Manage Order Fallout

¥

F 9

Update Order

Failed

F 9

Suspend Order

Mot Started

Resume COrder

¥

F 9

Resume Order

Suspended

F 9

About the Not Started Order State

When an order is in the Not Started state, the order has been created but has not started.
There are no live tasks other than the creation task.

Modeling Guide
G37998-01

The entrance transactions for the Not Started state are:

Waiting for
Revision

e Resume Order: Transitions from the Suspended state if the order was in the Not Started

state when it was Suspended.

e Manage Order Fallout: Transitions from the Failed state if the order was in the Not Started
state when the Fail Order transaction occurred.

The exit transactions for the Not Started state are:

« Update Order: Allows the order data to be added, changed, or deleted. Can also transition
the order to the In Progress state if the startOrder option is used. See the discussion of
the Update Order transaction in Table 3-2 for more information.

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Suspend Order: Transitions to the Suspended state.
Fail Order: Transitions to the Failed state.
Abort Order: Transitions to the Aborted state.

Submit/Process Amendment: Transitions to the Completed state. This transition is specific
to revision orders. When a revision order is submitted, if it is accepted it transitions to the
Completed order state directly, because the compensation for the revision happens on the
base order being revised.

Delete Order: Removes the order from the OSM system.

Figure 3-14 shows the order states that can transition to or from the Not Started order state.

Figure 3-14 Order States that Can Transition to or from the Not Started Order State

Abort Order

» Aborted
SubmitProcess Amendment

» Completed
Fail Order
Manage Order Fallout Failed

Mot Started

Update Order

» In Progress
Suspend Order
Resume Order Suspended
Delete Order

Deleted

About the Suspended Order State

In the Suspended state, all processing on the order has been halted. No task can be updated
or transitioned.

The only entrance transaction for the Suspended state is the Suspend Order transaction.
Orders can be suspended from the following order states:

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 29

ORACLE

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Not Started
Failed
Canceling
In Progress

Amending

The exit transactions for the Suspended order state are:

Resume Order: Transitions the order to the state that it was in when it was suspended.

Submit Amendment: Submits an amendment (typically from an external CRM system) to
the amendment queue. Typically, the Submit Amendment transaction is followed by the
Process Amendment transaction, which transitions the order to the Amending state.
However, an order in the Suspended state must be resumed with the Resume Order
transaction before amendments can be processed. After the order is resumed, the Process
Amendment transaction is run on the latest amendment in the queue and the order
transitions to the Amending state.

Update Order: Allows the order data to be added, changed, or deleted.
Cancel Order: Transitions to the Cancelling state.
Fail Order: Transitions to the Failed state.

Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

RetryOrder and ResolveFailure OSM Web Service operations

Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-15 shows the order states that can transition to or from the Suspended order state.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-15 Order States That Can Transition To Or From the Suspended Order State

Abort Order) Aborted

Resume Order

Suspend Order Amending

Cancel Order

Suspend Order Canceling
Suspended

Fail Order .

Manage Order Fallout Failed

Resume Order .

Suspend Order In Progress

Resume Order R

Suspend Order Not Started

About the Waiting Order State

Modeling Guide
G37998-01

This state indicates orders that have been created but are not ready to start. The reasons
orders can enter this state are:

e The order is future-dated
e The order is a follow-on order whose predecessor has not completed
e The order is subject to inter-order dependencies that have not completed

The Waiting order state is usually entered from the Not Started state and transitions to the In
Progress state when the blocking condition listed above has been resolved, for example the
start date for a future-dated order has been reached.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

« Update Order: Allows the order data to be added, changed, or deleted.

* Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

e Suspend Order: Transitions to the Suspended state.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 29

ORACLE

Modeling Guide
G37998-01

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

e Cancel Order: Transitions to the Cancelling state.
« Fail Order: Transitions to the Failed state.
* Abort Order: Transitions to the Aborted state.

* Raise Exception: The Raise Exception transaction is a special type of transaction from the
In Progress state. For order fallout scenarios, the Raise Exception transaction can
transition the order to the Amending state to perform compensation for the error. However,
for backward compatibility with orders that use process exceptions, the Raise Exception
transactions starts an exception handling process, but the order remains in the In Progress
state. See the discussion of the Raise Exception transaction in Table 3-2 for more
information.

e Complete Task: Transitions from the In Progress state, but only when the last task in the
order is completed. This transaction is also used internally whenever a task is completed in
the order. It is not shown in the life cycle display in Design Studio.

The entrance transactions for the Waiting order state are:

e Resume Order: Transitions from the Suspended state.
* Resolve Failure: Transitions from the Failed state.

An order can transition from the Not Started state to the Waiting state when the order is ready
for processing, but is either future-dated or blocked by another order as described earlier in
this section.

The exit transactions for the Waiting order state are:

e Suspend Order: Transitions to the Suspended state.
e Cancel Order: Transitions to the Cancelling state.

e Fail Order: Transitions to the Failed state.

* Abort Order: Transitions to the Aborted state.

An order can transition from the Waiting state to the In Progress state when the future date is
reached or the blocking by another order is resolved.

Figure 3-16 shows the order states that can transition to or from the Waiting order state.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 27 of 29

ORACLE

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Figure 3-16 Order States that Can Transition to or from the Waiting Order State

Abort Order 1 Aborted
Cancel Order
o Canceling
Fail Order -
| Resolve Failure Failed
Wailing
Internal Operation
» N Progress
| Internal Operation Not Startad
Suspend Order
| Resume Order Suspended

About the Waiting for Revision Order State

Modeling Guide
G37998-01

This state is common following compensation to an order for fallout, when the order is awaiting
a revision from the order-source system to correct something that caused a failure in the
originally submitted order.

The entrance transaction for the Waiting for Revision order state is the Manage Order Fallout
transaction, which runs from the Failed state.

An order can transition from the Amending state to the Waiting for Revision state. However,
there is no transaction required to transition from the Amending order state to the Waiting for
Revision order state. This internal transition is triggered by the Raise Exception transaction
and it happens when fallout occurs and OSM has found that the fallout is generated by the
submitted order instead of by a task in the process. Therefore, OSM cannot use compensation
(redo/undo) to fix the problem. Instead, OSM waits for a revision to be submitted from
upstream to fix the problem.

The exit transactions for the Waiting for Revision order state are:

* Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

» Update Order: Allows the order data to be added, changed, or deleted.
e Resume Order: Transitions to the In Progress State

e Cancel Order: Transitions to the Cancelling state.

* Fail Order: Transitions to the Failed state.

* Abort Order: Transitions to the Aborted state.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 28 of 29

ORACLE’

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

e RetryOrder and ResolveFailure OSM Web Service operations
e Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-17 shows the order states that can transition to or from the Waiting for Revision order
state.

Figure 3-17 Order States that Can Transition to or from the Waiting for Revision Order
State

Abort Order J Aborted
Submit’Process Amendment |
Internal O peration Amending
Waiting far | Cancel Order _
i » Canceling
Revision
Fail Order R
Manage Order Fallout Failed
Resume Order
» In Progress

About Deleting Orders

Modeling Guide
G37998-01

You cannot use either of the OSM web clients or any web service operation to delete orders
from the OSM system. Instead, use the orderPurge command. See OSM System

Administrator's Guide for more information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 29 of 29

Modeling Order Recognition

Modeling Guide
G37998-01

This chapter describes how to model order recognition rules to receive incoming orders from
external systems in an Oracle Communications Order and Service Management (OSM)
solution.

About Sending Orders to OSM and Order Recognition

This section describes the order capture and submission process and how OSM recognizes
and resolves various incoming orders from CRM systems to specific order types.

The following process flow is for a new order:

1.

The order data is captured in a CRM system; for example, as a Siebel order. There are
several order types that OSM can process (see "About Order Types" for more information).
Before submitting the order to OSM, the CRM system usually performs validations, such
as validating customer information from its customer database. For some orders, the order
may require technical qualification, such as validating that the network has enough
capacity to offer the purchased products.

The CRM system sends the customer order to OSM by using the OSM CreateOrder Web
Service operation. The CreateOrder operation contains order data that is in the XML
format of the order-source system, which is different from the OSM order format (see
"Modeling OSM Data ").

The OSM Web Service API is the primary API for external clients that you can use to
communicate with OSM (see OSM Developer's Guide for more information).

@ Note

A single OSM instance can receive orders from multiple order-source systems.

The OSM order request processor receives the customer order and evaluates the order
against order recognition rules until the order request processor finds an order recognition
rule that matches the incoming customer order. Then the order request processor uses the
order recognition rules to transform the requests to the OSM internal order format before
creating the order.

After OSM has recognized and validated the incoming customer order, internally, the OSM
recognition rule calls the CreateOrderBySpecification web service operation. This
operation does the following:

e Creates the order in OSM
e Sets the order priority

* Populates the data in the creation task

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

5.

Chapter 4
Modeling Order Recognition Rules

@® Note

You can also send a CreateOrderBySpecification operation directly from external
client systems in the OSM native XML format that would bypass the order
recognition and transformation functionality. The CreateOrderBySpecification
operation references an order specification that you define in Oracle
Communications Service Catalog and Design - Design Studio, and the order
details must conform to that order specification.

If OSM is unable to create the order by using the CreateOrderBySpecification operation,
the inbound order is handled in one of two ways:

If the order type is not valid, a failed order is created with the inbound order attached.

If the order type and source are valid, the inbound order is put on the JMS redelivery
gueue. OSM attempts to receive the order again, up to the receive limit configured for
the queue. When that limit is reached, the failed message is moved to an error queue.

To receive and create orders, you need to do the following:

» Configure your order-source system to output orders in XML format (see "Modeling OSM

Data ").
e Do the following in Design Studio:

— Populate the Data Dictionary with the data elements that the order needs. See
"Modeling OSM Data " for more information.

— Create recognition rules to recognize, validate, and transform the data.

— Create order specifications for the types of orders you need to create in OSM. See

"Modeling Orders and Permissions" for more information.

Incoming orders can use the process layer or the orchestration layer. See "Modeling Orders

and Permissions" for more information.

@® Note

An order can be created without recognition rules and without an orchestration plan.

This is common when the order has a limited set of tasks that do not have
dependencies; for example, an order that only manages service activation.

Modeling Order Recognition Rules

You model order recognition rules to accept, evaluate, and transform OSM Web Service API
CreateOrder requests. The content of every CreateOrder request must match a specific order
recognition rule that associates the incoming order with a target OSM order specification. If you
have more than one version of the target order specification, you can target a specific version

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

of the order specification.

During order recognition, OSM reviews a prioritized list of recognition rules to determine which

rule applies to the inbound order. Each recognition rule is associated with an order

specification. OSM evaluates each order based on how high the relevancy of a particular order
recognition rule is. For example, a recognition rule with a relevancy of 12 evaluates first, then

the rule with the relevancy of 11, then 10, and so on. An order recognition rule with a 0

October 30, 2025

Page 2 of 6

ORACLE’

Chapter 4
Validating Incoming Order Data

relevancy should be modeled as a catch-all recognition rule. See "Modeling a Catch-All
Recognition Rule" for more information.

Validating Incoming Order Data

You can model a validation rule to validate any number of things in the order data. For
example, you can ensure that:

e All mandatory fields are populated on the incoming order.
e Valid characters (numeric or alphanumeric) are used for fields.

e The order has a valid status code, such as Open.

Transforming Order Data

OSM provides the following transformation rules in an order recognition rule:
e order priority rules: define the priority of the order in relation to others.

« order reference rules: define the order reference number.

» order data rules: add to or modify incoming customer order data.

At run time, the OSM server always runs all transformation rules, regardless of the failure of
any transformation rule. Running all transformation rules ensures that the order is populated
with all available data.

If a transformation rule fails, the order is populated with whatever data is available, and the
order is placed in a Failed state with reasons corresponding to the type of transformation rule
that failed:

e Could not set order priority.
e Could not set order header reference.
e Could not create order data.

e Could not store incoming message. Message stored as attachment.

Modeling the Order Data Rule to Populate the Creation Task

Modeling Guide
G37998-01

An internal transformation rule always stores the raw XML input message in an XML data field
as part of the order data (see "Adding the Input Message to an Order Recognition Rule" and
"Adding the Input Message to the Order Template"). However, that data does not populate the
fields in the creation task.

You can use an order data rule to modify data in the order. For example, you can concatenate
the area code and phone number into a single data element.

You can retrieve data from external systems if it does not exist on the incoming customer order
using a data instance behavior associated with the order data rule (see "Evaluating Data
Instance Behaviors"). For example, the incoming customer order might have a customer
address, but you need to add the geographic region to the order, which is not in the input data.
You can use a web service operation, or an SQL call to an external system, to look up the
region, based on the customer's address. You can then add the region code to the order.

When modeling a creation task, create a manual task, even if the order is intended to be
processed automatically. Using manual tasks as creation tasks ensures that task behaviors are
supported at run time if you manually create an order. This can be useful for testing purposes.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 4
Transforming Order Data

Modeling Order Priority

The order priority range specifies the acceptable range of numeric priority (between 0 and 9)
that orders of a single type may use. For example, this could allow you to configure a fixed-line
order type with a lower range (0 to 4) and a mobile order type with a higher priority range (5 to
9), ensuring that mobile orders are prioritized higher than fixed-line orders.

You create an order priority range by specifying a minimum and maximum priority for the order.
OSM rounds priority values up or down to ensure they conform to the order priority range. For
example, if you specify a priority range of 5 to 7 and an order is created with a priority of less
than 5, the system assumes the intent is to provide the lowest priority allowed for the order,
and the priority value of the order is set to 5. Similarly, if a priority higher than 7 is provided for
another order of the same type, the system assumes the intent is to provide the highest priority
allowed for the order, and the priority value of the order is set to 7.

Table 4-1 shows examples of how the order priority is set by using the order priority from the
recognition rule, and the order priority range from the order specification.

Table 4-1 Order Priority Examples

Order Priority Range Recognition Rule Order | Recognition Rule Order | Recognition Rule Order
Priority 1 Priority 5 Priority 9

Order Priority Range 1 - 3 Priority = 1 Priority = 3 Priority = 3

Order Priority Range 3-5 Priority = 3 Priority =5 Priority =5

Order Priority Range 5-9 Priority =5 Priority =5 Priority =9

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

You can set the order priority range in the Design Studio Order editor Details tab.

The order priority value is also considered when an order's tasks are run, so that automated
tasks are run according to order priority. This requires that Java Messaging Service (JMS)
message priority settings are configured for the JMS queues. For information about configuring
JMS message priority on JMS queue, see "Configuring JMS Message Priority on JMS Queue".

You can change the order priority of an in-flight order by using the Order Management web
client. You can specify permissions for which roles can change the priority. See the discussion
of changing order priority in OSM Order Management Web Client User's Guide.

The automation plug-ins are run using JMS. For internal plug-ins, OSM relays Order Priority
into JIMSPriority and thus ensures Order Priority to take effect during the execution of plug-ins.

For external plug-ins, for Order-Priority to take effect during the execution, the external system
needs to update JMSPriority in the JMS message response with the one received in the JIMS
message request.

@® Note

This is an optional activity and is relevant only when the execution of external plug-ins
needs to acknowledge Order-Priority.

October 30, 2025
Page 4 of 6

ORACLE

Chapter 4
Transforming Order Data

Configuring JMS Message Priority on JMS Queue

As messages arrive on a specific destination, by default, they are sorted in FIFO (first-in, first-
out) order, which sorts the messages in the ascending order based on each message's unique
JMSMessagelD. However, you can use a destination key to configure a different sorting
scheme based on other message properties such as JMSPriority and JMSCorrelationID for a
destination. In traditional OSM, the OSM installer creates the
osmDescendingPriorityDestinationKey destination key with IMSPriority as the Property
and Descending as the Sort order. OSM cloud native comes configured with
osmDescendingPriorityDestionationKey.

To configure JMS Message priority on JMS queue, do the following:

Create a JMS Destination Key. See "Creating a JMS Destination Key ".

Configure a destination key for a JMS resource. See "Configuring Destination Key for a
JMS resource ".

Creating a JMS Destination Key

To create a JMS Destination Key:

1.
2.

w

N o g »

®

In the WebLogic Remote Console, click on Edit Tree.
Navigate to JIMS Modules, within Services.

In the IMS Modules table, select the JIMS module that contains the configured resource
and select the Destination Keys.

In the Summary of table, click the New button to create a destination key.
Enter a meaningful name for the key and click Create.
In the Summary of resources table, select the newly created JMS destination key.

Select the Sort key field and specify a message property hame or the name of a message
header field on which to sort messages.

Save the changes.

Click on shopping cart and Commit Changes.

Configuring Destination Key for a JMS resource

To configure destination key for a JMS resource:

1.
2.
3.

Modeling Guide
G37998-01

In the WebLogic Remote Console, click on Edit Tree.
Navigate to JIMS Modules, within Services.

Select the JMS module that contains the configured resource, for example:
osm_jms_module.

Select the required Queues, Topics, Uniform Distributed Queues or Uniform
Distributed Topics where the created destination key needs to be configured.

In the General tab, enter the required destination key exact name(s) in Destination
Key(s) field. Make sure the destination key already exists.

Save the changes.

Click on shopping cart and select Commit Changes.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE Chapter 4
Modeling a Catch-All Recognition Rule

8. Restart the WebLogic server.

Creating and Configuring JMS Destination Key in OSM Cloud Native

You will need to provide the WDT for your OSM instance to provide the appropriate
configuration for a new JMS Destination Key. See "Extending the WebLogic Server Deploy
Tooling (WDT) Model" in OSM Cloud Native Deployment Guide for further details.

Modeling the Order Reference Number

The order reference number is an alphanumeric value supplied by the order-source system. It
is usually unique, but it does not have to be unique. When OSM creates the order, OSM gives
the order an OSM order ID. The original order reference number is stored as well, so the order
reference number is associated with the OSM order ID.

Modeling a Catch-All Recognition Rule

An order that fails to be recognized by any recognition rule is rejected by OSM, and an error is
returned by the web service operation to the order-source system. To make sure that all orders
are entered into OSM, create a catch-all recognition rule that accepts all incoming customer
orders.

To configure this recognition rule:

* Set the relevancy to 0, and set the relevancy for all other recognition rules higher than O,
so they are processed first.

* Include the following recognition rule XQuery:
fn:true()

« Select the Fail Order check box, and enter a reason. For example:
No valid recognition rule found.

Using this lowest-level recognition rule, an invalid order is recognized and then fails during
validation. It then transitions to the Failed state and is kept by OSM.

Common Order Recognition Errors

There are two possible errors during order recognition:

* Arecognition rule fails to run; for example, because of bad syntax. Evaluation of other
rules continues.

e The inbound order is not recognized. If all recognition rules run and fail to find a match,
then no OSM order can be created. This failure generates fallout, which you can view and
manage as an order failure in the Order Management web client.

To avoid this kind of failure, you can create a lowest-relevancy catch-all rule that
recognizes any inbound order and maps it to a default order specification. See "Modeling a
Catch-All Recognition Rule" for more information.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 6

Modeling Orchestration Plans

This chapter describes how to model orchestration plans in an Oracle Communications Order
and Service Management (OSM) solution.

Orchestration Plan Overview

An orchestration plan includes the order items, order components, and dependencies. An
order-specific orchestration plan is generated for each order that requires orchestration.

The orchestration plan for an order specifies the following:

* How order items are grouped into order components for processing
* The dependencies between the order components

In the OSM Order Management web client, you can view graphical representations of an
order's orchestration plan and dependencies. You can use this information as you model
orders to validate that order decomposition and orchestration plan generation is functioning as
intended. The graphical representation shows exactly how an order is fulfilled.

The Order Management web client provides a graphical representation of the orchestration
plan in two views:

e Orchestration plan decomposition

e Orchestration plan order item dependencies

Figure 5-1 shows three orchestration stages, represented in three columns:
* Determine the fulfillment function

* Determine the fulfillment system

» Determine the processing granularity

@® Note

You can model any number of orchestration stages.

At each orchestration stage, the graph shows the order components created by that stage. The
final column on the right shows the order components that are run as part of the orchestration
plan. Each component includes a name, which is based on the orchestration stages.
Components also list their included order items.

The inset in Figure 5-1 shows details for three executable order components, as displayed in
the orchestration plan decomposition.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 35

ORACLE Chapter 5
Orchestration Plan Overview

Figure 5-1 Decomposition Tree

InstallOrder Function[WFM -ALL][Order Granu lar ity]

*High Speed Intemet Installation

Initiate Billing Function[BRM -REZBDB][Order Granular ity]

*0n Top of the Wordd Eroadband-valP

Initiate Billing Function[BRM -VOIP][Order Granularity]
—*0n Top of the Wordd Broadb and-ValP

{—*alP Service Plan

—*Basic VolP

—»yalP Voicem ail

—»olP Caller |D

Figure 5-2 shows the orchestration plan displayed in the Order Management web client
dependency graph. The dependency graph shows the executable order components which are
the components shown in the final stage of the decomposition display. In this case, executable
components are based on three orchestration stages corresponding to fulfillment function,
fulfillment system, and processing granularity. The different colors represent fulfillment
functions, such as InitiateBilling or FulfillBilling. The inset shows a detailed view of two order
components. Even though the two fulfillment functions are targeted to the same system (BRM-

VOIP), processing granularity rules defined for this order require that they take place as two
separate actions.

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 35

ORACLE

Chapter 5
Modeling an Orchestration Plan

Figure 5-2 Dependency Graph

R S

FulfillBillingFunction[BRM-VOIP]

4 [ServiceBundleGranularity]
VolP Phone

Fulfill BillingFunction[BERM-VOIFP]
s [ServiceBundleGranularity]
Yol Adaptor

Both of these representations are useful at design time and when debugging orchestration
plans. For example, you can use the dependency graph to confirm that an order goes to all of
the correct systems in the correct order. Use the decomposition tree to verify that
decomposition happens as expected at a particular stage and that the order was decomposed
into the correct components, each containing the correct order items.

Modeling an Orchestration Plan

To model how orchestration plans are generated, you model several OSM entities in Oracle
Communications Service Catalog and Design - Design Studio.

Orchestration processes. An orchestration process specifies which orchestration sequence
to use for the order.

Orchestration sequences. The orchestration sequence specifies the fulfilment mode (for
example, Deliver or Qualify), the orchestration stages, and selects the customer order line
item node-sets that OSM uses in orchestration.

Order item specification. The order item specification includes the order item properties
that are used for decomposition, including how to retrieve order items from order line
items. Order item properties define data that is used for decomposition; for example, the
fulfillment pattern.

Order components. Order components specify how to organize order items in the
decomposition process.

Orchestration stages. Orchestration stages specify the order components to assign order
items to.

Figure 5-3 shows a generalized process flow for orchestration.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 35

ORACLE’

Figure 5-3 Orchestration Process

Chapter 5

Modeling an Orchestration Plan

Recognition rule identifies
order specification

Order specification
identifies default
orchestration process

Orchestration process
identifies orchestration
sequence

Orchestration sequence
specifies orchestration
stages

Fulfillment function stage:
Product specification
assigns arder items to

function order components

Target system stage:
05M assigns order items to
target system order
components.

Y

Granularity stage:
05M assigns order items to
granularity order
components.

h 4

COSM runs order
components based on
dependencies

The following process flow shows how OSM uses the orchestration entities to create

orchestration plans.

1. After receiving and validating an incoming customer order, OSM creates the order
according to the order specification chosen by the recognition rule. At this point, the
following has been accomplished:

* The order has been populated with the creation task data.

* OSM has used the order item specification to identify order items from the order line
items in the incoming customer order.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

The order specification includes a default process. For an orchestration order, the order
specifies an orchestration process. (If no orchestration is required, you should define a
non-orchestration OSM process. See "Modeling Processes and Tasks" for more
information.)

The orchestration process specifies an orchestration sequence.
The orchestration sequence specifies the following:

e The order item specification to use for the order. The order item specification defines
the order item properties that are used for decomposition and for displaying the order
item in the Order Management web client. See OSM Concepts for more information.

* The order item selector that identifies the customer order line item node-sets to use as
order items.

* The fulfilment mode that the order requires; for example, Deliver or Cancel.

* The orchestration stages that produce the order components. For example, the
orchestration stages might be:

October 30, 2025
Page 4 of 35

ORACLE

Chapter 5
Modeling an Orchestration Plan

Produce function order components. This stage organizes order items into
order components based on the fulfillment functions required for each order item.
Fulfillment functions are the activities that must be performed to process the item,
such as billing, shipping, provisioning, and so on.

Produce target system order components. This stage organizes order items
into order components based on the target fulfilment systems required to perform
the fulfillment functions. For example, this step might determine that certain items
need to be fulfilled by a billing system called BRM_Residential and others by a
BRM_Wholesale system.

Produce granularity order components. This stage organizes order items that
need to be processed together into order components. For example, you might
need to fulfill billing requirements for mobile and fixed services. You can use
different order components to process the billing requirements for those services
separately.

5. [Each orchestration stage produces a set of order components.

6. Based on the default orchestration process, and the orchestration sequence and stages
that are defined, OSM can start the process of assigning order items to order components.
The first step is to find the fulfillment pattern used by each order item.

Each order item belongs to a product specification. A product specification is a group of
related products that share common attributes. For example, the products Broadband
Light, Broadband Medium, and Broadband Ultimate would all belong to the
ServiceBroadBand product specification. OSM maps the product specification to a
fulfillment pattern.

The fulfillment pattern manages the first stage of orchestration. It assigns order items to
function order components in the first stage of orchestration. It also specifies the
dependencies between the function order components. For example, the fulfillment pattern
might specify to process function order components in this order:

a. ProvisioningFunction

b. BillingFunction

c. CollectionsFunction

The fulfillment pattern also specifies the fulfillment mode that the order items can be used
for. See "About Mapping Order ltems to Fulfillment Patterns" for more information.

Provisioning must occur before billing, which must occur before marketing, customer
updates (SyncCustomer), and collections.

Figure 5-4 Dependency Relationships for Order Item Dependency

~1 MarketingFunction

(Service.Mobile)

i ProvisioningFunction ~i_ BillingFunction -~ SyncCustomerFunction

(Service.Mobile)

Modeling Guide
G37998-01

(Service.Mobile) (Service.Mobile)

T

“ CollectionsFunction
(Service.Mobile)

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 35

ORACLE

Chapter 5
About Order ltems

7. After assigning order items to function components, OSM further decomposes the order
into target system order components and granularity order components, following the
specifications defined in the orchestration stages. See "About the Decomposition of
Function to Target System Components " and "About the Decomposition of Target System
to Granularity Components " for more information.

8. While decomposing the order, OSM finds dependencies between order components and
generates an orchestration plan. Dependencies determine the order in which order
components can be processed.

9. After generating the orchestration plan, OSM runs it. Each executable order component
runs a process. Each process includes the tasks that fulfill the order requirements.

Order components are usually modeled by extending order component specifications in Design
Studio. For example, you can create a base order component for all function types and extend
it for individual function types such as bhilling or collections.

About Component Names and Component IDs

Each order component has an order component name and an order component ID. (This
component ID is stored in the order template in ControlData/Functions/OrderComponentName/
componentKey). The component name is specified at design time. The component ID is
generated for each instance of the order component at run time.

The component name is the name of the order component specification; for example,
BillingFunction or BillingSystem. By default, the component ID is a concatenation of the
names of the order components in the orchestration stages. For example, if the component
names are modeled as:

« BillingFunction

* BillingSystem

* Bundle

The component IDs generated at run time are:
* BillingFunction

< BillingFunction.BillingSystem

» BillingFunction.BillingSystem.Bundle

You can use customized order component IDs when assigning order items to order
components. See "About the Decomposition of Target System to Granularity Components " for
more information. For more information about creating valid data keys, see, "Modeling Valid

Data Keys."

About Order Items

Modeling Guide
G37998-01

Prior to generating an orchestration plan, OSM processes each customer order line item in the
incoming customer order and turns it into an order item. The order item properties define the
data that is included from these order items using XQuery expressions.

Order items are individual products, services, and offers that need to be fulfilled as part of an
order. Each item includes the action required to implement it: Add, Suspend, Delete, and so
on. For example, a new order might add a wireless router; the order item created in OSM is
Add Wireless Router.

When you model order items, you do not model every possible order item. Instead, you create
an order item specification, which defines:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 35

ORACLE

Chapter 5
About Order ltems

e The data that each order item can include
e The structure of the data; for example, the hierarchy between order items
« Data needed for orchestration

There must be one order item specification for each type of order received from the order-
source system. When you model an order item specification, you can configure the following:

e Order item properties. Order item properties represent the data that is included in order
items. See OSM Concepts for more information.

* Orchestration conditions. Use orchestration conditions to customize how order items are
added to order components. For example, you can use the region order item property to
assign order items to different target system order components. See "About the
Decomposition of Function to Target System Components " for an example of how
orchestration components are used.

e Order item hierarchies. You use order item hierarchies to model how parent and child
items are identified. For example, you can use line IDs and parent line IDs. See "Modeling
Order Item Hierarchies" for more information.

e Order template. This data is the order item control data, which is used by OSM when
generating an orchestration plan. You can also assign behaviors to order items. See OSM
Concepts for more information.

e Order item dependencies. Use order item dependencies to create inter-order
dependences. See "About Inter-Order Dependencies” for more information.

« Permissions. Use permissions to allow specific roles access to order item search queries
in the Order Management web client and to specify if the query returns summary data or
detailed data. See "Modeling Roles and Setting Permissions" for more information.

Most order items properties must be created in Design Studio and associated with
corresponding customer order element values using XQuery expressions (see "About Order
Item Specification Order Item Property XQuery Expressions"). However, in some cases the
order item property is not provided in the customer order. In this case, you must use an
XQuery expression to derive the missing property value from the existing customer order
element values.

Example 5-1 shows an order line item. This order line item adds a Commercial Fixed Service
order item. In the following example, notice that the items in bold correspond to the order item
properties. However, there are order item properties, such as productSpec and region, that
are not in the order line item. Instead, you specify to create those order item properties by
using XQuery expressions in the order item specification.

Example 5-1 Order Line Item in an Incoming Customer Order

<im:salesOrderLine>
<im:lineld>4</im:lineld>
<im:parentLineReference>
<im:parentLineld>3</im:parentLineld>
<im:hierarchyName>default</im:hierarchyName>
</im:parentLineReference>
<im:rootParentLineld>2</im:rootParentLineld>
<im:promotionalSalesOrderLineReference>1
</im:promotionalSalesOrderLineReference>
<im:serviceld>552131313131</im:serviceld>
<im:requestedDel iveryDate>2001-12-31T12:00:00</im:requestedDel iveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceAddress>
<im:locationType>Street</im:locationType>
<im:nameLocation>0OLoughlin</im:nameLocation>

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 35

ORACLE Chapter 5
About Order Iltems

<im:number>48</im:number>
<im:city>Toronto</im:city>
</im:serviceAddress>
<im:itemReference>
<im:name>Commercial Fixed Service</im:name>
<im:typeCode>PRODUCT</im: typeCode>
<im:primaryClassificationCode>Fixed Service Plan Class</im:primaryClassificationCode>
</im:itemReference>
</im:salesOrderLine>

Figure 5-5 shows all of the order items derived from an order, including the order item shown in
Example 5-1.

Figure 5-5 All Order Items in an Order

=l Order Items
[= Mobie Service Plan [Add]
=l Prepaid Mobie Voice Service [Add]
Prepaid Mobile Service [Add]
=1 Mobie Voice Service Feature [Add]
Mobile Caller ID [Add]
Mobile Cal Watting [Add]
[= Broadband Bundle [Add]
=l Broadband Service [Add]
Velox Premium High Speed Internet 8Mbps [Add]
Speed By Demand [Add]
Triple Play Offer [Add]
[Fixed Bundle [Add]
=l Fixed Service [Add]
Commercial Fixed Service [Add]
Fixed Caller ID [Add]
Fixed Cal Wating [Add]

In Figure 5-5, notice that order items are hierarchical. For example, the Fixed Service order
item shown in Example 5-1 is part of the Fixed Bundle order item. In addition, the Fixed
Service order item includes three more order items: Commercial Fixed Service, Fixed Caller
ID, and Fixed Call Waiting. When you model orchestration, you ensure that the hierarchy in the
incoming customer order is duplicated in the OSM order items. See "Modeling Order Item
Hierarchies" for more information.

The order item specification defines the order item properties that are required for generating
the orchestration plan and the data to display in the Order Management web client. This
typically includes the display name, product specification, line ID, requested delivery date, and
S0 on. By contrast, the order item usually would not include supplementary account and
customer details such as the street address or mailbox size. That type of data is defined in the
task data for each task in the fulfillment data, and in the creation task data when the order is
created.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 35

ORACLE Chapter 5
About Order Iltems

/\ Caution

Order item properties do not represent all of the data in an order. For example, they do
not define creation task data. That data is captured by transformation rules. Order item
properties are a subset of the data and are used for orchestration.

Figure 5-6 shows part of an order input file and how the city field is mapped to the region order
item property in Design Studio. In this example, the <city> element in the XML file is used in
the order item property expression.

See "About the Decomposition of Function to Target System Components " for an example of
how the region order item property is used in orchestration.

Figure 5-6 Order Line and Definition in Order Item Specification

<im:servicenddress>
<im:locationType>Strect</im: locationType>
<im:namelLocation>Jangadeiros</im:namelocation>
<im:number>48</im:number>
<im:typeCompl>floor</im: typeCompl>
<im:numCompl>&</im: numCompl >
<im:district>Ipancema</im:district>
<im:codeLocation>5000</im:codeLocation>
<im:city>Rio de Janeiro</im:city> -
<im:state>RJI</im: state>
<im:referencePoint>Gen. Osorio Square</im:referencePoint>
<im:areaCode>22420-010</im:areaCode>
<im:typedddress>Building</im: typeiddress>

</im:servicerddress>

Order Item Properties Property Expression: region

lineld Location | | ISE|ECt"'I
lineltemMame

linefremPayload ¥Query | Instances| Information

parentLineld (& Expression) Eile) URI

productClass

productSpec declare namespace im="http://xmlns.oracle.com/InputMessage";

fn:normalize-space(im:serviceAddress/im:city/text()) =«—

requestedDeliveryDate

serviceld) ! ;

A single order item specification is used for generating all of the order items that can be
created for an order. This ensures a consistent order item structure. Therefore:

e Order item properties should not be product or service specific. The only product
information you need to include is the product specification, which is a generic value used
for identifying the fulfillment pattern. By not applying order items to a specific product, you
can use the order item specifications for multiple products, and you can support new
products and services and multiple order entry systems.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 35

ORACLE

Chapter 5
About Order ltems

Order item properties should not be specific to any order entry system.

/\ Caution

When defining order item properties, include only the data required by OSM for
orchestration. Performance is impacted by the number and size of order item
properties.

The properties you define for your order items will be different from those pictured in
Figure 5-6. However, this selection provides a good example of the type of order properties
that are commonly configured:

productSpec: This property retrieves the product specification from the incoming
customer order. OSM maps each order item to a fulfillment pattern based on the item's
product specification (defined in the order-source system). The fulfillment pattern specifies
the order components in the first level of decomposition.

fulfillmentPattern: This property stores the fulfilment pattern that the order item uses.
This value is obtained by mapping the productSpec value in a mapping file. See "About
Mapping Order Items to Fulfillment Patterns” for more information.

lineld: This is the line ID of the order line item in the incoming customer order. Each order
line item in the incoming customer order has a unique line ID. This property is used for
determining the hierarchy of the order items. You can determine a hierarchy of order items
based on the linelD order item property and the parentLineld order item property. For
example, an order item with lineld 4 also specifies a parentLineld as 3 which is the lineld of
the parent order item. You can use this function to hierarchically relate various types of
order line items, such as offers, products, and bundles of products, services, and
resources. For example, an order could include a Broadband offer with a High Speed
Internet bundle and an Internet Services service bundle. Both bundles would have the
Broadband offer as parent. You can also use order item hierarchies to aggregate order
item status. See "About the Decomposition of Target System to Granularity Components "
for an example of how this property is used.

lineltemName: This property is the display name used in OSM web clients.
requestedDeliveryDate: This property is the requested completion date for the order item.

parentLineld: This property defines the parent of the order line item in the incoming
customer order. This property is used for determining the hierarchy of the order items. See
"About the Decomposition of Target System to Granularity Components " for an example of
how this property is used.

region: This property is an example of data that can be used to manage decomposition
into target system order components. See "About the Decomposition of Function to Target
System Components " for more information.

serviceld: This property is used to display the service ID in the OSM web clients.

lineltemPayload: This property stores the entire incoming customer order in OSM as an
XML file. This property is typically used in a development environment as an aid to
modeling.

About Creating Order Items from Customer Order Line Item Node-Sets

To create order items from customer order line items, OSM needs to know what nodes in the
incoming customer order include the data to use in order items. OSM creates orchestration
control data from these nodes (see OSM Concepts).

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 35

ORACLE

Chapter 5

About Order ltems

Example 5-2 shows the salesOrderLine node-set in an incoming customer order. You can
specify these node-sets as order items by creating an XQuery expression in the Orchestration
Sequence editor that returns every instance of <salesOrderLine> contained in the customer
order (see "About Order Item Specification Order Item Property XQuery Expressions"). These

<im:salesOrderLine>

<im:lineld>13</im:lineld>
<im:promotionalSalesOrderLineReference>1
</im:promotionalSalesOrderLineReference>
<im:serviceld></im:serviceld>
<im:requestedDeliveryDate>2001-12-31T712:00:00</im:requestedDel iveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:itemReference>

<im:name>Broadband Bundle</im:name>

<im:typeCode>BUNDLE</im:typeCode>

<im:specificationGroup></im:specificationGroup>
</im:itemReference>

</im:salesOrderLine>
<im:salesOrderLine>

<im:lineld>14</im:lineld>
<im:promotionalSalesOrderLineReference>2
</im:promotionalSalesOrderLineReference>
<im:serviceld></im:serviceld>
<im:requestedDeliveryDate>2001-12-31T712:00:00</im:requestedDel iveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:itemReference>

<im:name>Mobile Bundle</im:name>

<im:typeCode>BUNDLE</im:typeCode>

<im:specificationGroup></im:specificationGroup>
</im:itemReference>

</im:salesOrderLine>

About Associated Order Items

Modeling Guide
G37998-01

BillingFunction[BillingSystem][Bundie]

Premium High Speed Internet 8Mbps [Add]
Speed By Demand [Add]

Broadband Bundle [Add]|(assoc)
Broadband Service [Add] (assoc)

Copyright © 2015, 2025, Oracle and/or its affiliates.

node-sets produce the Broadband Bundle and the Mobile Bundle order items. The elements
in these node-sets can then be specified as order item properties in the order item
specification.

Example 5-2 The <salesOrderLine> Element in an Incoming Customer Order

Figure 5-7 shows the associated order items, displayed with (assoc) in the orchestration plan.

Figure 5-7 Associated Order Items Displayed in the Order Management Web Client

October 30, 2025
Page 11 of 35

ORACLE Chapter 5
About Order Iltems

/\ Caution

Associated order items are not considered as part of the decomposition and
dependency calculations when OSM generates an orchestration plan. Therefore, you
cannot reference associated order items in decomposition or dependency rules.

You model order item associations in fulfillment patterns. Figure 5-8 shows an order item
association modeled for the Bundle order component in the Service.Mobile fulfillment pattern.

Figure 5-8 Order Item Associations in a Fulfillment Pattern

% Orchestration Fulfillment Pattern : Service.Mobile

Description Service.Mobile

Mamespace http:/foracle.communications.ordermanagement.unsupported.centralom

Fulfillment Mode | Deliver

Order Components | Dependencies | Duration

Order Components Selected Order Component: Bundle
. - 33
Base Component ’AII Components ,] Order Itern Associ... | Conditions | ™2
Functions ’AII Components v] Order Item Associations
Search 2
% bundle

- [][= Function

- [[= TargetSystem Remove] ’ Add l
4 [][= ProcessingGranularity
WhaleCrd
Dll;r Oﬁ:D ELraEr Selected Order Item Association: @
[& bundle

[= Bundle

@ Fulfillment Pattern
(") Matching Order Component ID
(") Property Correlation

XQuery | Instances | Motes
(@ Expression File LRI

There are three ways to associate order items:

* Fulfillment pattern: This is the default entry. It associates order items by fulfillment pattern,
which is the normal orchestration method.

e Matching Order Component ID: This associates order items by matching component ID.

* Property correlation: This associates order items by using order item properties. See
"About Associating Order Items Using Property Correlations XQuery Expressions” for more
information.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 35

ORACLE

Chapter 5
About Order ltems

Modeling Order Item Hierarchies

Order items can be organized hierarchically based on the content of the original customer
order. You can configure OSM with the following types of order item hierarchies:

Modeling Guide
G37998-01

Physical Hierarchy: The hierarchy can include various types of order line items, such as
offers, products, and bundles of products or services. For example, an order could include
a Broadband-VolP offer with a High Speed Internet bundle, an Internet Services service
bundle, and a Wireless Router product item. OSM maintains the order line item hierarchy
from the customer order in the order item hierarchy.

Composition Hierarchy: You can use composition hierarchies with fulfillment state
composition rule sets to determine the parent/child relationship between order items so
that OSM can determine aggregate fulfillment states for parent order items. See OSM
Concepts for more information.

Dependency Hierarchy: You can specify a dependency hierarchy that OSM uses to
automatically configure dependencies between order items on an order. For more
information, see "About Processing Order Items Sequentially”.

Figure 5-9 shows a physical order item hierarchy that reflects the structure of the original

customer order.

Figure 5-9 Physical Item Hierarchy

=1 On Top of the WWarld Broadband-YaolP

High Speed Internet Firsk Month Free Discounk
=1 High Speed Internet Service
Ly Modemn
High Speed Internet Installation
High Speed Internet Ackivation
Wireless Router
=l Internet Services
Basic High Speed Internet - 1Mbps
=l Inkernet email Service
Intermet email
= Internet Media Service
Internet Yideo on Dermand
Internet Conkent on Demand
Internet Secure Firewall

The hierarchy is defined in the <linelD> and <parentLineld> elements. Figure 5-10 shows the
first part of Figure 5-9, as it appears in an incoming customer order.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 35

ORACLE Chapter 5
About Order Iltems

Figure 5-10 Item Hierarchies in an Incoming Customer Order

<imlineld=1</im:lineld>
<immname>=0n Top of the World Broadband-VaolP<im:name>

<imlineld=2</im:lineld>
— <im:parentLineld=1<im:parantlineld=
<imname>High Speed Internet Flrst Month Free Discount<immname>

<imlineld=3</im:lineld>
— <im:parentlineld=1<im:parantlineld=
<imname>High Speed Internet Service</im:name:=

<imlineld=4</im:lineld>
—— zim:parentlineld =3 <im:parentLineld=
<imname>Dynex Modem</im:name>

<imlineld=5</im:lineld>
—— zim:parentlineld =3 <im:parentLineld=
<imname>High Speed Internet Installation</im:name:

<imlineld=6</im:lineld>
—— zim:parentlineld =3 <im:parentLineld=
<imname>High Speed Internet Activation</im:name:x

Zimdineld=7</im:lineld=
—— «zim:parentlineld =3 <im:parentLineld=
zimname>Wireless Router<fim:name=

To define the order item properties that specify the hierarchy, you configure the order item
hierarchy in the order item specification using an XQuery expression. See "About Order Item
Specification Order Item Hierarchy XQuery Expressions" for more information.

An order item hierarchy is invalid when:

e The hierarchy refers to an non-existent parent or child line ID.
* When the key or parent key XQuery is wrong.

* When the hierarchy specifies a circular relationship. For example, the parent of an order
item is itself, or if order item A is the parent of order item B and order item B is also the
parent of order item A.

OSM does not apply invalid order item hierarchies, but instead runs the order without any
hierarchy.

About Using a Distributed Order Template

The distributed order template is a structure data type that is available only for order item
specifications. It improves performance and also has the following benefits:

* Reduces order node conflicts: Without the distributed order template, data elements in the
data dictionary that have the same name need to have the same definition (type,
description, etc.) regardless of whether they appear in different structures in different
places in the data dictionary. With the distributed order template, this is no longer
necessary.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 35

ORACLE

Chapter 5
About Order ltems

* Allows data changes without having to redeploy the entire solution: Without the distributed
order template, any changes to the data defined for the order (including order item property
updates) requires redeployment of the entire solution. With the distributed order template,
if you change order item properties, you need to deploy only the cartridge containing the
changed order item.

You decide whether to use the distributed order template by selection the appropriate box in
the order item creation wizard or in the Order Item Specification editor in Design Studio. For
more information, see Design Studio Modeling OSM Orchestration Help.

If you use a distributed order template, any references you make to order item data in XQuery
expressions or automation must include a namespace. References to data in data change
notifications and flexible headers do not need to change. For any order item that is not a
transformed order item, the namespace will always be the namespace of the order item
specification. Following is an example of an XQuery reference to the lineltemID property on
the InputOrderltem order item with the namespace http:/lex_input.com:

/ControlData/Orderltem[@type="{http://ex_input.com}InputOrderltem*]/lineltemlID
If you are using the order transformation manager, see "Using the Distributed Order Template

with the Order Transformation Manager" for information about the namespace that will be used
for transformed order items.

About Mapping Order Items to Fulfillment Patterns

Modeling Guide
G37998-01

The first orchestration stage assigns order items to function order components, by using
fulfillment patterns. You need to model how to map order items to fulfillment patterns and
implement the model using an XQuery expression (see "About XQuery Expressions for
Mapping Product Specifications and Fulfillment Patterns” for more information).

Each order item in an order must have an order item property that specifies a value that
represents a product, service, resource, or action. You map the value of the order item property
to a corresponding fulfillment pattern designed to fulfill the order items mapped to them.
Fulfillment patterns organize the functions into which order items decompose, any conditions
that govern when an order item can be included in a function, and any associated order items
that might be included in a function from different fulfilment patterns. Ideally, there ought to be
a many-to-one relationship between order items and fulfillment patterns.

The way order items decompose to fulfilment patterns and further into functions depends on
what kind of order item it is. For example, at the central order management (COM) level, you
might group bundle order items as children of offer order items. The bundle order items would
in turn be parents to product order items. Example 5-3 is a possible hierarchy where each
product order item maps to either an Service.VolP or Service.CPE.VolP fulfillment pattern:

Example 5-3 Sample COM Order Item Hierarchy
1 On Top of the World Broadband-VolP (OFFER)

5 High Speed VolP Service (Bundle)
6-VolP Services (Product) ---> Service.VolP

7-VolP PS (Product) ---> Service.VolP
20-Value Added Features PS (Product) ---> Service.VolP
22-VolP Adaptor PS (Product) ---> Service.CPE.VolP
25-VolP Phone PS (Product) ---> Service.CPE.VolP
26-VolP Soft Phone PS (Product) ---> Service.CPE.VolP
27-VolP Visual Voicemail PS (Product) ---> Service.VolP
28-VolIP Voicemail PS (Product) ---> Service.VolP

Those order items destined to the Service.VolP fulfillment pattern would decompose to the
following functions:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 35

ORACLE

Chapter 5
About Order ltems

* ProvisionOrderFunction
e InitiateBillingFunction

e SyncCustomerFunction
* FulffilBillingFunction

You can configure conditions where an order item might not be included in a specific function.
For example, if a customer decides to move their VoIP service from one residence to another,
you could configure a condition on the InitiateBillingFunction that would block the VoIP service
order items from being included in the InitiateBillingFunction since the customer is already
being billed for the VolIP services.

Sometimes, you need to assign order items to order functions that would not be assigned to
the current fulfillment pattern by their product specification. This requirement can occur when
an interaction with an external system requires a specific context for an order item.

For example, a billing system might need to process billing-related order items in the context of
a bundle, to manage the relationships between balances, discounts, and so on. Billing charges
are often order line items, such as an installation service, that are included in the order outside
of the service billing bundle hierarchy. However, they might need to be associated with the
billing bundle to ensure that the charge is made against the correct service. In that case, you
can associate the billing charges with a bundle order component. By contrast, billing order
items might be sent to the billing system in the context of a whole order. In that case, you do
not need to associate the order items to a bundle, because they are already in context.

About Modeling Product Specifications

Modeling Guide
G37998-01

New product specifications should be imported (which will create conceptual model products)
or created in the conceptual model. If you have an existing configuration, however, you can still
use product specifications (formerly called product classes) that were created in OSM.

You can map multiple product specifications to one fulfillment pattern. This enables you to
introduce new products in existing product specifications without needing to create new
fulfillment patterns or fulfillment flows.

The Design Studio conceptual model functionality helps you model data as part of an end-to-
end solution in an application agnostic way. You create conceptual model projects to:

e Define products.
« Define the services that the products represent.
« Define the resources that implement those services.

« Define service domains, such as broadband (ADSL, VDSL, DOCSIS, and Fiber), VoIP,
email, Mobile, and so on.

« Define actions and relationships between products, services, and resources

Conceptual model items are not built into OSM cartridges or deployed to the OSM server
directly. They are included into OSM by something called realization. Realization refers to
converting the abstract entities in the conceptual model into actual instances in the OSM
configuration. You can use this conceptual model metadata as part of your OSM run-time
solution to help define order item to fulfillment pattern mappings and to give you an
representation of what you need to implement in OSM as part of your overall fulfillment
solution.

See Design Studio Concepts for more information about conceptual model projects. See
"About XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns" for
more information about using conceptual model entities to map order items to fulfillment

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 35

ORACLE’

Chapter 5
Modeling Fulfillment Modes

patterns. See "OSM Solution Modeling Overview" for more information about how OSM can be
modeled in an end-to-end solution.

Modeling Fulfillment Modes

The fulfillment mode is the overall purpose of the order. For example:

* Deliver a service.

e Qualify a service before delivering it. This ensures that a service can be fulfilled before
attempting to fulfill it.

e Cancel an entire order.

Every incoming customer order can specify a fulfillment mode.

OSM can use the fulfilment mode as part of the orchestration process. For example, if OSM
receives two identical incoming customer orders with different fulfilment mode order item
properties, it generates a different orchestration plan for each order. The two plans include
different executable order components with different dependencies among order items.

Fulfilment modes are configured in the following places:

e Fulfillment mode entities: These entities include no data other than a name. They provide
the means to assign fulfillment modes to other entities, such as orchestration sequences
and fulfillment patterns.

e Orchestration sequences define a single fulfillment mode using an XQuery expression
based on a customer order attribute (see "About Order Sequence Fulfilment Mode XQuery

Expressions").

« Fulfillment patterns list the fulfillment modes that the associated order items can be used
with.

Figure 5-11 shows the fulfillment modes defined in a fulfillment pattern. Any order item that
uses this fulfillment pattern can be processed in either the Cancel or Deliver fulfillment
mode.

Figure 5-11 Fulfillment Modes Defined in a Fulfillment Pattern

2a Orchestration Fulfillment Pattern : Service.Mobile & @
Description Service.Mohbile

Mamespace http:/foracle.communications.ordermanagement.unsupported.centralom -
Extends BaseProductSpec H ’ Select...] ’ Mew...] ’ Open
Default Fulfillment State Map [Select...] ’ Mew...] Open

Fulfillment Modes

ﬁCancel
EDeliver

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 35

ORACLE Chapter 5
About the Decomposition of Order Items to Function Order Components

When a fulfillment pattern includes multiple fulfillment modes, you can model a different set of
order components and dependencies for each fulfillment mode.

About the Decomposition of Order Items to Function Order
Components

The following sections describe the decomposition of order items to function order
components.

About Assigning Order Items to Fulfillment Pattern Function Components

The first step in decomposition is to assign order items to function components. To do so, OSM
uses the product specification to find the fulfillment pattern that the order item uses. (See
"About Mapping Order Items to Fulfillment Patterns" for more information.) The fulfillment
pattern defines the order components to add the order item to.

Figure 5-12 shows the function order components selected in the Service.Broadband fulfillment
pattern. In this case, order items that use this fulfillment pattern need all of the functions;
billing, collections, provisioning, and so on.

Figure 5-12 Function Order Components Selected for a Service Fulfillment Pattern

[] [TargetSystem
] |Er ProcessingGranularity
=-[] [= Function
[= BillingFunction
(= CollectionsFunction
[= ProvisioningFunction
[= SyncCustomerFunction
(= MarketingFunction

Figure 5-13 shows how to use a base specification to define the same function order
components as described above. In this case, the base fulfillment pattern selects all of the
function order components except provisioning. The service and non-service fulfillment
patterns inherit the selections. The service fulfillment pattern adds the provisioning function.
The non-service fulfillment pattern does not add it.

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 18 of 35

ORACLE’

Chapter 5
About the Decomposition of Order Items to Function Order Components

Figure 5-13 How to Use a Base Specification to Define Function Components

Base Specification

=[] [= TargetSystem

-] |E|‘ ProcessingGranularity

=[] [* Function

[= BillingFunction

[= CollectionsFunction

1 [# ProvisioningFunction
[% SyncCustomerFunction
[= MarketingFunction

Service Specification

#-[] [% TargetSystem
-] |Er ProcessingGranularity
=[] [% Function
1 [# sillingFunction {Inherited)
] [# collectionsFunction (Inherited)
[= ProvisioningFunction
] [# syncCustomerFunction (Inherited)
] [# MarketingFunction (Inherited)

Non-Service Specification

#-[] [* TargetSystem
#-[] |fr ProcessingGranularity
=[] [# Function
[] [# sillingFunction (Inherited)
[] [# collectionsFunction (Inherited)
[] [ProvisioningFunction
[] [# syncCustomerFunction (Inherited)
[] [# MarketingFunction (Inherited)

About the Function Components Stage

In addition to using the fulfillment pattern to assign order items to function components, you
model an orchestration stage, which specifies to create the function order components to

create.

About Order Component Control Data

When OSM creates the order items and order components, it produces a set of control data.
The control data provides information OSM requires to fulfill the order. OSM uses the control
data to track the status of the entire order and to track the status of the individual order items.
During fulfillment, order component transactions update this control data with system
interaction responses.

Design Studio automatically generates control data for function order components provided
that orchestration entities are preconfigured correctly and you use the
OracleComms_OSM_CommonDataDictionary model project. If you do not use the
OracleComms_OSM_CommonDataDictionary model project, you must manually model
order component control data. See "About Modeling Order Component Control Data" in
Modeling OSM Orchestration for information on how order component control data is
automatically generated or how to manually model it.

See "Modeling OSM Data " for more information on adding function order components to the
order control data.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 35

ORACLE Chapter 5
About the Decomposition of Function to Target System Components

About Fulfillment Pattern Conditions for Including Order ltems

You can use conditions to add order items to an order component only when the XQuery for
the condition evaluates to true. For example, you might include an order item based on an
XQuery that checks the action code (Add or None). This is useful in the case of an update to a
service that changes some features while leaving other features unchanged. See "About Order
Item Specification Condition XQuery Expressions" for more information.

Summary of Order Item to Function Components Decomposition

To summarize this example, to model the decomposition from a order items to a function
component, you model the following:

e The fulfilment pattern order item property so that order items can be mapped to fulfillment
pattern function components.

* Any XQuery expressions that evaluate conditions to include or exclude order items.
e The Order control data for orchestration.

e The orchestration stage that produces the function components

About the Decomposition of Function to Target System
Components

The following sections describe the decomposition of order items from functional components
to target systems.

About Decomposition Rules from Function Components to Target Systems

After the order items have been assigned to function order components, they need to be
further decomposed into target system order components. To do so, you use decomposition
rules.

A decomposition rule specifies a source order component and a target order component.
Figure 5-14 shows a decomposition rule from the billing function component to the billing target
system component.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 35

ORACLE Chapter 5
About the Decomposition of Function to Target System Components

Figure 5-14 Decomposition Rule

i1 Decomposition Rule : BillingToBillingSystem

Description | Billing To Billing System

Namespace | http://oracle.communications.ordermanagement.unsupported. centralom

Source Order Components Target Order Components
Base Component |GUN ity * | Base Component |All Components hd
Functions All Components * | Functions All Components b
Search | | B gearch | | o
Fi B TargetSystem =2-[] B‘ TargetSystem
] [# ProcessingGranularity [[# collectionsSystem
=2-[] E Function L B FixedProvisioningSystem
_ - [= BillingFunction] [MarketingSystem
[] [= cCollectionsFunction] [= MobileProvisioningSystem
] [# ProvisioningFunction] [* DSLProvisioningSystem_Region2
[[# SyncCustomerFunction [[# customerSystem
] [= MarketingFunction [] [# DSLProvisioningSystem_Regionl
(= BillingSystem #——
O [= ProcessingGranularity
] [Function

About Decomposition Rule Conditions for Choosing a Target System

You can use decomposition rules to decompose order items from one function component to
multiple target system components. Figure 5-15 shows the source and target order
components for two decomposition rules:

e Provision to DSL Provisioning System - Regionl
e Provision to DSL Provisioning System - Region2

These two decomposition rules decompose the order items in the ProvisioningFunction order
component into two target system order components based on Region 1 and Region 2.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 35

ORACLE Chapter 5
About the Decomposition of Function to Target System Components

Figure 5-15 Source and Target Order Components for Two Decomposition Rules

Provision To DSL Provisioning System - Region1

#-[] [= TargetSystem =[] [= TargetSystem
#-[] [% ProcessingGranularity] [= collectionsSystem
=[] [% Function [] [FixedProvisioningSystem
] [# BillingFunction] [MarketingSystem
[] [= CollectionsFunction [] [= MmobileProvisioningSystem
|fr ProvisioningFunchion — ———. |fr D5SLProvisioningSystem_Regionl
[] [# SyncCustomerFunction [] [= customerSystem
] [= MarketingFunction [] [# DSLProvisioningSystem_Region2

] [= BillingSystem
=[] [% ProcessingGranularity
+- [[% Function

Provision To DSL Provisioning System - Region2

#-[] [* TargetSystem =[] [* TargetSystem

#-[] [* ProcessingGranularity [] [= CollectionsSystem

=[] [# Function [] [FixedProvisioningSystem
[[= BillingFunction [[= MarketingSystem
[] [= CollectionsFunction [] [= MobileProvisioningSystem

|fr ProvisioningFunction F |fr DSLProvisioningSystem_Regionl
] |Er S}rncCustnmerFunctinn\] |5‘ CustomerSystem
[] [= MarketingFunction (= DSLProvisioningSystem_Region2
] [= BillingSystem
&[] [= ProcessingGranularity
#-[] [= Function

Each of the decomposition rules uses decomposition conditions to specify which target system
to use for a particular order. The target system is selected if the XQuery expression associated
with the condition evaluate to true. In this example, the XQuery expression uses the value of
the region order item property to make this evaluation. If the value of region is Toronto, then
OSM selects the condition and target system for Region 1. If the value of region is New York,
then OSM selects the condition and target system for Region 2. See "About Order Iltem
Specification Condition XQuery Expressions"” for more information about creating an XQuery
condition expression that can be used for with a decomposition rule.

About the Target Systems Stage

In addition to creating the decomposition rules that define the source and target components,
you need to create an orchestration stage that produces the target system order components.

Summary of Configuring Target System Components Decomposition

To summarize, to configure how order items are decomposed from a function order component
to a target system order component, you do the following:

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 22 of 35

ORACLE’

Chapter 5
About the Decomposition of Target System to Granularity Components

» Define an orchestration stage to produce the target system order components.

» Create dependency rules to specify the source order components and target order
components.

« If a function order component decomposes order items to more than one target system
order component, create decomposition conditions. Decomposition conditions depend on
data specific to the order items, so decomposition rules typically use XQuery expressions
to retrieve the data that is used for evaluating the condition.

About the Decomposition of Target System to Granularity
Components

The following sections describe the decomposition of order items from target system
components to granularity components.

About Decomposition Rules from Target System to Granularity Components

After order items have been decomposed into target system order components, the next step
is to decompose them into the granularity order components.

Some examples of the granularity requirements are:

* A billing system might require the entire order in the message to calculate discounts.

* A billing system might require separate bundles for mobile billing and fixed billing, to
handle different completion times (fixed billing typically has more dependencies and takes
longer).

To decompose target system order components items into bundle granularity components you
configure the following:

e Create a decomposition rule, which decomposes the target system order component into
bundle granularity components.

* Create customized component IDs (stored in the componentKey data element in the
control data) that are used to create separate order components for each bundle. See
"About Customized Component IDs for Separating Bundled Components" for more
information. The componentKey data element is used as the data key for the order
component. (See "About Order Data Position and Order Data Keys" for information about
the use of data keys in OSM.)

About Customized Component IDs for Separating Bundled Components

Modeling Guide
G37998-01

You create the customized order component by editing the bundle order component
specification.

You need to configure a decomposition rule and a bundle granularity order component
specification to make sure that order items for a fixed service and a broadband service are
decomposed into separate bundle granularity components, based on their customized
component IDs. The customized component IDs result in separate instances of bundle order
components, with separate component keys. This allows OSM to process the order
components for the fixed service and the broadband service separately. If you do not create
customized component IDs, the order items are processed together in the same order
component.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 23 of 35

ORACLE

Chapter 5
About Dependencies

This customization also ensures that the component ID is the same for order items within the
same granularity (for example, a bundle) but not for order items at a higher granularity.

In addition, you may want to group order items into custom component IDs based on order
item requested delivery date. For example, you might want an order component to process all
order items with a requested delivery date that falls within the first two days of when an order
start, and another order component for the next two days. You can further combine these
grouping by requested delivery date within order item hierarchy groupings.

See "About Component Specification Custom Component ID XQuery Expressions” for more
information about configuring custom order component hierarchies using XQuery.

About the Granularity Components Stage

In addition to creating the decomposition rules that define the source and target components,
you need to create an orchestration stage that produces the granularity order components.

Summary of Configuring Granularity Components Decomposition

To summarize, to model the decomposition from a target system order component to a bundle
order component, you model the following:

e The decomposition rule, which decomposes the target system order component into
bundle granularity components

e The orchestration stage that produces the bundle order component

e The order item hierarchy that the XQuery ancestors function uses in the order item
specification

e The XQuery for the customized order component in the bundle order component
specification

About Dependencies

Modeling Guide
G37998-01

An orchestration plan is based on two main factors: decomposition, which derives the order
components, and dependencies, which dictate when the order components are allowed to run.
OSM calculates order item decomposition first before calculating dependencies.

Dependencies are relationships in which a condition related to one order item must be satisfied
before another item can be processed successfully. For example, a piece of equipment must
be shipped to a location before the action to install it at that location can be taken.

You typically create dependencies between order items in the same order (intra-order
dependencies). You can model the following types of intra-order dependencies using fulfillment
patterns:

* Order Item dependency: A dependency that requires the completion of one type of
fulfillment function for an order item before starting another type of fulfillment function for
the same order item within a single fulfillment pattern. For example, for a single order item
included in a VVolP.Service fulfillment pattern, you can specify that the provision function
order component must process an order item before the bill function order component can
begin processing the same order item.

* Fulfillment pattern dependency: A dependency that requires the completion of a
fulfillment function for an order item in a fulfilment pattern before starting a fulfillment
function for another order item in a different fulfillment pattern. For example, for a single
order item included in a VolP.Service fulfillment pattern, you can specify that the provision

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 35

ORACLE

Chapter 5
About Dependencies

function order component can only process an order item after the provision function order
component on the BroadBand.Service fulfillment pattern has completed.

Order item property dependency: A dependency that requires the completion of one
order item before starting another order item based on order item properties.

Order item hierarchy dependency: You can configure an order item hierarchy that
automatically creates dependencies between predecessor and successor order items
based on order item properties so that order items run sequentially. The successor order
item can only begin after the predecessor order item completes. For example, order item A
would have to complete all functions within its fulfillment pattern before order item B could
begin processing its functions within its own fulfillment pattern. The fulfillment patterns
could be identical or different, but they would have to be run separately for each order item
with the parent child relationship.

For more information, see "About Intra-Order Dependencies".

You can also create dependencies between order items in different orders (Inter-order
dependencies). For example, the order items in a follow-on order for VoIP provisioning might
depend on the execution of the order items in the original order for DSL provisioning. See
"About Inter-Order Dependencies” for more information.

You can model dependencies in two ways in Design Studio:

As order item dependencies. These dependencies are modeled as part of fulfilment
patterns. Most dependencies are modeled in this manner.

As orchestration dependencies. These dependencies are modeled outside of fulfillment
patterns. While not as common as those modeled in fulfillment patterns, orchestration

dependencies are useful in specific circumstances; for example, if you need to define a
generic dependency or want to model one without having to modify a fulfillment pattern.

Figure 5-16 shows order items displayed in the Order Management web client. In this example,
the billing order items for a fixed service can start immediately because they have no
dependencies. The billing order items for high-speed Internet must wait until the provisioning
order items have completed.

Figure 5-16 Dependencies Displayed in the Order Management Web Client

ProvisioningFunction[DSLProvisioning [WholeOrder]

Premium High Speed Interret 8Mbps [Add]

BillingFunction[BillingSystem][Bundle]
Commercial Fxed Service [Add]

Fxed Caller ID [Add]

Fixed Call Waiting [Add]

Fixed Burdle [Add] (assoc)

Rxed Service [Add] (assoc)

BillingFunction[BillingSystem][Bundle]
*Premium High Speed Intermet 8Mbps [Add]

Speed By Demand [Add] rSpeed By Demand [Add]

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 35

ORACLE Chapter 5
About Dependencies

About Intra-Order Dependencies

A dependency requires two order components: the waiting order item and the blocking order
item. The blocking order item is the order item that must complete before the waiting order item
is started.

Dependencies can be based on several different factors, including:

* Completion status. For example, the blocking order item must be complete before the
waiting order item can start or you can specify to start billing only after provisioning has
completed.

* Actual and relative date and time. For example, you may want an order component that
contains order items for an installation to start two days after the completion of the order
component that contains the order items for shipping the equipment.

» Data change. For example, you can specify that shipping must wait until a specified order
item property in the blocking order item has a specified value.

Order items can have combinations of dependencies. For example, an order item for an
installation can depend on a combination of a completion status dependency (item successfully
shipped) and date dependency (wait two days after shipment to schedule installation).

@ Note

You can manage dependencies during amendment processing; for example, when you
submit a revision order. See "Modeling Changes to Orders " for more information.

Although dependencies exist logically between order items, they are managed by order
components. In other words, if any item in a component has a dependency, the component as
a whole cannot be started until the dependency is resolved. In the Order Management web
client, order items include dependency IDs to indicate items whose dependencies are
managed together. See OSM Order Management Web Client User's Guide for more
information.

Modeling an Order Item Dependency

The simplest form of dependency is an order item dependency, configured in a fulfillment
pattern. This type of dependency is based on function order components; for example, the
billing order component cannot start until the provisioning function has completed.

Figure 5-17 shows a dependency relationships. Note the two layers of dependency: billing is
dependent on provisioning, and everything else is dependent on billing.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 35

ORACLE’

Chapter 5
About Dependencies

Figure 5-17 Dependency Relationships for Order Item Dependency

| MarketingFunction
(Service.Mobile)

-

1 ProvisioningFunction 1 BillingFunction - SyncCustomerFunction
(Service.Mobile) (Service.Mobile) (Service.Mobile)

T

" CollectionsFunction
(Service.Mobile)

In addition to defining the function order components, you need to define the conditions that
govern the dependency. The default condition is to wait until the final task associated with the
order item has completed. Figure 5-18 shows a wait condition defined in Design Studio. In this
case, the waiting order item must wait until the blocking order item task has reached the
Completed state. See "About Order Item Dependency Wait Conditions" for more information.

Figure 5-18 Wait Condition in Design Studio

S

Inherited From = From Product = From Component To Component
| [&] ProvisioningFunction {5 BillingFunction
B BillingFunction B MarketingFunction
[BillingFunction [SyncCustomerFunction
[BillingFunction [# collectionsFunction

[>

-~ Selected Dependency - Service.Mobile : ProvisioningFunction - > BillingFunction

From/To Components | Order Item Dependency Wait Condition

Task State

Wait For Condition
(¥) Task State (O Data Change Notification

completed

About Order Item Dependency Wait Conditions

Modeling Guide
G37998-01

Dependency wait conditions specify the condition that the blocking order item must be in
before the waiting order item can start. For example, the default wait condition is to start the
waiting order item when the last task associated with the blocking order item reaches the
Completed state.

You specify wait conditions in fulfillment patterns and orchestration dependencies. You can set
different wait conditions for each dependency. The wait conditions can be:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 27 of 35

ORACLE

Chapter 5
About Dependencies

The task state of the final task associated with the blocking order item

A change in the data for a specified field. See "About Order Item Dependency Wait
Conditions Based on Data Changes" for more information.

A specified duration after the task state or data change condition has been met. You can
specify a value in months, weeks, days, hours, or minutes, or you can specify an XQuery
expression to determine the delay (see "About Wait Delay Duration XQuery Expressions").
For example, you can specify to start the waiting order item two days after the blocking
order item has completed.

A specific date and time based on the result of an XQuery expression (see "About Wait
Delay Date and Time XQuery Expressions"). For example, you can specify to start the To
Component order component on a date specified in an order item property.

The orchestration dependency wait condition options are identical.

About Order Item Dependency Wait Conditions Based on Data Changes

You can base a dependency on a change to data. The data must be included in an order item
property, and it must be in the task data of the task associated with the blocking order item.

To configure the dependency, you define the following:

The order item property that is evaluated. Any change to the data in the order item
property triggers an evaluation of the data to determine if it matches the conditions
required for the dependency.

An XQuery expression that evaluates the data retrieved from the blocking order item. The
expression returns true or false; if true, the dependency has been met.

Figure 5-19 shows a data change dependency in Design Studio.

Figure 5-19 Data Change Dependency in Design Studio

Wait For Condition

(O Task State (¥ Data Change Motification

Order Item | CustomerOrderltemSpecification Select..] [Mew.. l ’ Open

Data Change Motification Property | milestone W

Relative Path

Data Change Condition Expression

¥Query| Instances | Information
) None (%) Expression) File (O URI

declare variable $blockingIndexes as xs:integer® external;
let $expectedMilestoneCode = "PROVISION STARTED"

In Figure 5-19:

Modeling Guide
G37998-01

The Order Item field specifies the order item specification to use.

The order item property that the dependency is based on is milestone.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 28 of 35

ORACLE Chapter 5
About Dependencies

The Relative Path field (not used in this example) is an optional field you can use to
specify a child data element in the order item properties.

e The XQuery expression evaluates the data in the milestone property to determine if the
dependency has been met. See "About Order Data Change Wait Condition XQuery
Expressions" for more information.

Modeling a Fulfillment Pattern Dependency

You can define dependencies across different order items by basing the dependency on the
fulfillment patterns of the order items. For example, you can create a dependency that
specifies to provision fixed services only after broadband services have been provisioned.

Figure 5-20 shows a dependency based on fulfillment pattern. In this example, the dependency
requires that fixed services be provisioned before broadband services. To configure this type of
dependency, you edit the fulfilment pattern of the waiting order item. In the fulfillment pattern,
you provide a list of waiting and blocking order components.

Figure 5-20 Dependency Based on Fulfillment Pattern

&3 Orchestration Fulfillment Pattern : Service.Broadband ¢

Description Service.Broadband

Mamespace http://oracle.communications.ordermanagement.unsupported.centralom

Inherited From From Fulfillrment Pattern From Component
|§ BillingFuncticn
(= BillingFunction

2 Service Fixed |fr ProvisioningFunction

m

-

4 I 3

| Remove || New

* Selected Dependency - Service.Fixed : ProvisioningFunction -> ProvisioningFunction

From/To Components | Order Itern Dependency | Wait Condition
Order Item Dependency @

(") Order Item
@ Fulfillment Pattern

() Property Correlation

Figure 5-21 shows the dependency relationships shown in Figure 5-20. Note that fixed
provisioning is the blocker for broadband provisioning and for fixed billing.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 29 of 35

ORACLE Chapter 5
About Dependencies

Figure 5-21 Dependency Relationships for Fulfillment Pattern Dependency

1 CollectionsFunction

/ | [Service.Fooed)

ey BillingFunction m— SyreCustomerfunction

F‘rqnwnlngFun:lmn

(SeniceFoed) | (Service.Foced) (ervice.Ficed)
\ \ — MarketingFunction
ProvisioningFunction | | (Service.Fied)
(Senrvice.Broadband)

CollectionsFunction

i " (service.Broadband)

i BillingFunction E
- S HyncCustomerFunction
(Service.Broadband) — * | ™ (ServiceBroadband)
* MarketingFunction

= (Service Broadband)

Modeling an Order Item Property Correlation Dependency

Using properties correlation is the most flexible way to configure dependencies. You use this
method to create a dependency on two different order items that share the same order item
property. As with other dependencies, you specify a blocking component (the From
Component field) and a waiting component (the To Component field), but you also enter an
XQuery expression to select the order item property that order items in the To Component
field must share with order items in the From Component field (see "About Order Item
Dependency Property Correlation XQuery Expressions" for more information).

About Inferred Dependencies

OSM is able to create dependencies at run time by inferring dependencies. For example, you
might create this series of dependencies:

Provisioning - Billing - Marketing

If the order item has no billing function, there is an inferred dependency between Provisioning
and Marketing, even though you have not modeled that dependency. Provisioning must
complete before Marketing can start.

Inferred dependencies mean that whenever A is dependent on B and B is dependent on C, A
is dependent on C. This avoids the need to model every dependency that might be possible.

Figure 5-22 shows a sample dependency configuration. Figure 5-23 shows the run-time view
of the same configuration when there is no billing function. In this case, the Order Management
web client shows dependencies from provisioning to marketing, synchronize customer, and
collections.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 30 of 35

ORACLE’

Figure 5-22 Dependency Relationship

1 ProvisioningFunction
(Service.Mobile)

Figure 5-23

ProvisioningFunction[DSLProvisioning] [WholeOrder |

Velox Premium High Speed Internet 8Mbps [Add]
Speed By Demand [Add)

Inferred Dependencies at Run Time

Chapter 5

About Dependencies

| MarketingFunction
(Service.Mobile)

-

1 BillingFunction
(Service.Mobile)

T

- SyncCustomerFunction
(Service.Mobile)

" CollectionsFunction
(Service.Mobile)

MarketingFunction[MarketingSys |[WholeOrder |
Broadband Bund e [Add]
» Broadband Service [Add]
Velox Fremium High Speed Internet 8Mbps [Add]
Speed By Demand [Add]

SyncCustomerFunction[CustomerSys | [WholeOrder]

Broadband Bunde [Add]

» Broadband Service [Add)
velox Premium High Speed Internet 8Mbps [Add]
Speed By Demand [Add)

Broadband Bunde [Add]

« Broadband Service [Add]
Yelox Premium High Speed Internet BMbps [Add]
Speed By Demand [Add]

Inferred dependencies are supported within a fulfillment pattern, but they are not supported
across fulfillment patterns. For example, OSM does not infer a dependency from
ProvisioningFunction(Service.Fixed) to BillingFunction(Service.Broadband). You must
specifically model that dependency.

About Modeling Orchestration Dependencies

You use orchestration dependencies to create dependencies between order components that
are not based on fulfillment patterns. For example, if you need to define a generic dependency
or want to model one without having to modify a fulfilment pattern, you can use an
orchestration dependency specification.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025

Page 31 of 35

ORACLE Chapter 5
About Dependencies

As with dependencies defined in fulfillment patterns, you can specify wait conditions and the
type of order item dependency (for example, order item, fulfillment pattern, and property
correlation).

About Processing Order Items Sequentially

You can enable order items to process sequentially at run-time by setting an order item
dependency hierarchy in the order item specification editor Order Item Hierarchies tab. When
you model order items to run sequentially, avoid creating circular dependencies by ensuring
that you do not include order items with a predecessor successor relationship into the same
order component.

For example, you can ensure that only one order item processes at a time by configuring the
orchestration granularity for a component to process only one order item at a time. Or you
could also set the granularity for a component to process only a bundle of order items at a
time. For example, between a bundle for VolP and another bundle for Broadband. If
parameters designating the successor predecessor relationship always establish a relationship
between order items across two different bundles, then you avoid circular dependencies in this
way as well.

Figure 5-24 shows how order items can be configured to process sequentially based on two
order item properties defined in an order item specification order item hierarchy. You can use
any order item property, so long as you can use the properties to establish the predecessor
and successor relationship.

Figure 5-24 Order Item Processing Sequence

Order ltem Processing Sequence

Fulfillment Pattern Fulfilment Pattern Fulfilment Pattern
Order ltem 1 Order ltem 2 Order Item 3
SequencelD=1 SequencelD=2 SequencelD=3
ParentSequencelD= |—+ ParentSequencelD=1 |—+|r ParentSequencelD=2

See "Modeling Order Item Hierarchies" for more information about modeling order item
hierarchies.

About Inter-Order Dependencies

An inter-order dependency is a dependency between order items in different orders. You
typically configure this type of dependency to manage changes to an order when that order
has passed the PONR and cannot be amended. However, you can also use inter-order
dependencies for other purposes, such as managing fulfillment functions on different systems,
load balancing, and so on.

When using inter-order dependencies, the blocking order is the base order, and the waiting
order is a follow-on order. A typical scenario is:

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 32 of 35

ORACLE

Modeling Guide
G37998-01

Chapter 5
About Dependencies

1. A customer has ordered a broadband service.

2. The next day, while the order is still in-flight but past the PONR, the customer requests a
change to the service bandwidth.

3. Because a revision to the base order cannot be submitted, the customer service
representative creates a follow-on order.

4. The follow-on order is submitted to OSM; however, it does not begin processing until the
base order has completed.

You typically model inter-order dependencies between a base order that has reached its point
of no return (PONR) (where a revision order is no longer possible) and a follow-on order (see
"Modeling a Point of No Return" for more information). A follow on order does not trigger
amendment processing on the original base order, but does have a dependency on one or
more order items on the base order through the an inter-order dependency. You configure the
inter-order dependency on the follow-on order so that it can check that the blocking order items
on the base order have completed so that the waiting order items on the follow-on order can
start processing.

Here are some important points to know about inter-order dependencies:

* Inter-order dependencies are based on order items. After the base order completes the
blocking order item, the follow-on order can start, even though the base order is still in-
flight.

* Inter-order dependencies are sometimes used to manage technical dependencies when a
specific fulfillment requirement cannot be handled by a revision. However, they can also be
based on business reasons, when it is simpler or more efficient to use a follow-on order
than to model revisions.

* Afollow-on order does not perform amendment processing on the base order. A follow-on
order can be used to add, modify, or cancel services, similar to any order. The key feature
is that a follow-on order has a dependency on another order.

You must model the inter-order dependencies into both the base order and the follow-on order.

* The follow-on order must be able to find the base order and be able to recognize if the
blocking order item has completed.

* The base order must contain a reference to allow the follow-on order to find it.

To configure an inter-order dependency, you use the Order Item Dependencies tab. The
configuration typically consists of the name of the dependency and its XQuery or data instance
(see "About Order Item Inter-Order Dependency XQuery Expressions” for more information
about inter order item XQuery expressions).

You can create inter-order dependencies that involve order item hierarchies. For example, you
can specify that the blocking order item include all of the order items in its hierarchy. To do so,
you select the child completion dependency when specifying an order item hierarchy (see
Figure 5-25). For more information about order item hierarchies, see "Modeling Order Item
Hierarchies").

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 33 of 35

ORACLE’

Chapter 5
About Dependencies

Figure 5-25 Use for Child Completion Dependency Selected in Design Studio

=] Order Item Specification : CustomerOrderltemSpecification

Description ICusb:nmErDrderItemSpeciﬁcaﬁnn

Mamespace I http: /ferade. communications. ordermanagement. unsupported. cemtralom

| Order Ttem Hierarchies

Use For Child Completion Dependency

' Key Expression: default
Physical Hierarchy I default

Composition Hierarchy I ¥Query | Instances | Motes |
Dependency Hierarchy I & Expression O File O LR

dedare namespace

im="http: //orade. communications. ordermanagement. unsuppor

About Modeling Orchestration Dependencies

Figure 5-26 shows an orchestration dependency in Design Studio.

Modeling Guide
G37998-01

October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 34 of 35

ORACLE Chapter 5
About Dependencies

Figure 5-26 Orchestration Dependency in Design Studio

Orchestration Dependency : Provision_To_Billing

Description | Provision_To_Billing

Mamespace | http://oracle.communications.ordermanagement.unsupported.centralom

+ Dependency Source Selected Order Component: ProvisioningFunction
Base Component | Function XQuery | Instances | Information
Functions All Components (® None O Expression O File O URI
Search | |

- 0=
1 [= BillingFunction
[] [= collectionsFunction Properties Select Cdit
[= ProvisioningFunction
] [% SyncCustomerFunction
] [# marketingFunction

~ Dependency Target

Base Component | Function

Functions All Components
Search |
= [1[= Function

[= BillingFunction

[] [= collectionsFunction

] [# ProvisioningFunction
] [# syncCustomerFunction
] [= MarketingFunction

Using Task States to Manage Orchestration Dependencies

You can use task states when defining orchestration dependencies. For example, you can
specify to wait until a task has reached a specified state before an order component can be
processed.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 35 of 35

Modeling the Order Transformation Manager

This chapter describes how to model the order transformation manager in an Oracle
Communications Order and Service Management (OSM) solution.

Understanding the Order Transformation Manager

The order transformation manager provides users with the ability to transform order items. For
example, you can use the order transformation manager to transform customer-focused order
items (what the customer bought) to service-focused order items (the services that equate to
what the customer bought). It enables you to set up guidelines for order transformation that do
not need to be changed due to product changes. Instead of writing a lengthy XQuery, users
can model the order transformation in Oracle Communications Service Catalog and Design -
Design Studio. The order transformation manager also provides visibility in the Order
Management web client into service processing, making it easier to see how customer services
are being transformed into the services being processed by OSM. In addition, the order
transformation manager enables you to propagate data upstream and assists in status
consolidation.

Order Transformation Manager in Runtime

In runtime, when the order transformation manager is triggered, OSM initiates the following
process for each domain that has order items associated with it:

1. The appropriate transformation sequence is accessed to determine the appropriate
transformation stages.

2. The transformation stages are run in sequence. For each transformation stage:

a. The stage condition is evaluated to determine whether the stage should be run. If not,
OSM moves to the next stage.

b. The list of source order items is gathered: both context order items (the order items to
be transformed) and related order items (order items that might contribute data to the
transformed order items).

c. The list of mapping rules that apply to the named relationships for the transformation
stage is gathered.

d. The mapping rules are processed, creating transformed order items and mapping
parameters to them.

3. The transformed order items are processed in the same way as original order items, for
example being processed by order components.

The Order Transformation Manager and the Conceptual Model

Modeling Guide
G37998-01

Entities are realized into the OSM cartridges by different means. Following is a description of
how the different entities are realized into OSM or referenced by OSM.

* Provider Functions: Provider functions in the conceptual model are realized into OSM as
transformation managers.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE

Chapter 6

OSM Entities Used in the Order Transformation Manager

* Named Relationships: These entities are realized into OSM when they are referenced by
OSM entities, such as mapping rules.

* Domains: Domains are referenced in OSM by transformation managers and mapping

rules.

* Products and Customer-Facing Services: These entities are realized into OSM when they
are included in relationships that are used by the order transformation manager and when
their parameters are mapped to OSM order items using order item parameter bindings.

e Action Code: These are referenced in OSM as action codes.

Figure 6-1 depicts general relationships between conceptual model entities and OSM entities

that are used by the order transformation manager.

Figure 6-1 Relationships Between Conceptual Model Entities and OSM Entities

Conceptual Model

OsMm

Provider Functions

are realized by

Transformation Managers

Named Relationships

are realized as
Mamed Relationship
Rafarance Modes on

Mapping Rules

Domains

are referenced in
OSM as

Domains

Products, Customer Facing
Services, Resource Facing
Services, and Resources

can be referenced in
an OSM-specific
view using

Order ltem Parameter
Bindings

Action Codes

are referenced in
OSM as

>
>
>
>
>

Action Codes

OSM Entities Used in the Order Transformation Manager

The order transformation manager uses several entities in Design Studio for OSM.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 8

ORACLE

Modeling Guide
G37998-01

Chapter 6
OSM Entities Used in the Order Transformation Manager

Transformation manager: The transformation manager entity enables you to select the
transformation sequences for the service domains within a provider function. This entity is
the entry into the order transformation functionality.

Transformation sequence: The transformation sequence enables you to define the
transformation stages and the logic to be used at each transformation stage.
Transformation stages define the source and target order items and the relationship
between them for each step of the transformation.

Order item specifications: You must define an original (source) order item specification that
defines the structure of the incoming order items and a transformed (target) order item
specification that defines the structure of the output of the order transformation for the
order transformation manager. If the same structure is used for both, the same order item
specification can be defined for both original and transformed order items. See "About
Order Items" for more information about configuring and using order items.

Mapping rules: Mapping rules define the way that original order items are transformed into
transformed order items. You use mapping rules to define how transformed order items are
generated and how their parameters and properties are populated. The data elements you
can use as a source for the mappings are the parameters on the original order item in
addition to the parameters on the actions defined for the order item. There are many
different ways to generate the parameters and properties for the transformed order items.
These methods include:

— You can map parameters from the source order item to the target order item. You can
copy the value from the source to the target, transform the value of the source
parameter or property to a value on the target based on pre-defined value mappings or
on the units of measure for each, and you can write XQuery expressions to do the
value transformation.

— You can map order item instances from the source order item to parameters or
properties on the target order item. You can either set up a specific value to use on the
transformed order item based on the presence of the source order item, or you can
use XQuery to determine the value for the parameter or property on the transformed
order item.

For more information about mapping rule types, see the Design Studio Modeling OSM
Orchestration Help.

Mapping rules also enable you to map actions for the transformed order item either using
the actions defined in the named relationship or defining the actions specifically for the
mapping rule, based on the input, output, and current actions of the order items.

Order Item Parameter Bindings: The order item parameter bindings enable you to bind the
parameters from a conceptual model entity to parameters on an order item. They also
enable you to determine the mapping between the parameters on the conceptual model
entity and the properties on an order item. In addition, they enable you to transform the
parameters from the customer order line before they are added to the conceptual model
entity. One use for this would be to transform name/value-pair-type parameters from the
incoming order into more strongly typed parameters on the conceptual model entity.

Transformation Tasks: If you want to call the order transformation manager from a process
instead of before the orchestration plan is generated, you do this using a transformation
task. See "Calling the Order Transformation Manager" for more information. The
transformation task is very much like an automated task, except that by default it has an
appropriate automation plug-in defined for it and provides the ability to define the
transformation manager to call.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE Chapter 6
Calling the Order Transformation Manager

Calling the Order Transformation Manager

There are two methods for calling the order transformation manager:

e If you want the order transformation manager to run before the orchestration plan is
generated, select Invoke Order Transformation Manager in the Orchestration Process
and select a provider function. This is the recommended practice, as it causes the order
transformation manager to be run in the context of the whole order and with one call.

< If you want to call the order transformation manager at a different place in the order
process, you can include a transformation task in an OSM process. The transformation
task calls a specific transformation manager that you define in the task. This option
provides flexibility in the following ways:

— It enables you to call the order transformation manager multiple times in the process
flow for different provider functions. You should not call the order transformation
manager more than once for the same provider function.

— It provides the option not to persist the results of the transformation to the order
template. This is useful if the order transformation manager results are transient or
going to be passed through directly to a southbound system. Additionally, this gives the
user the flexibility to format any results that are going to be persisted in whichever
structure they want.

— It provides the ability to filter the order items passed into the order transformation
manager. This enables a user to ensure that the order transformation manager only
processes relevant order items.

The order transformation manager works the same regardless of the way it is called.

Using the Distributed Order Template with the Order
Transformation Manager

When you are using the order transformation manager, you must use the distributed order
template for the order item specification that contains transformed order items. For the order
item specification that contains original order items, using the distributed order template is
optional. See "About Using a Distributed Order Template" for general information about the
distributed order template.

The distributed order template uses namespaces to determine the data structure that should
be used. For transformed order items, the namespace depends on the source of the data for
the transformed order item. Data that is defined in the order item specification itself will use the
namespace for the order item specification, the same way that data would be referenced for an
input order item. Following is an example of an XQuery reference to the lineltemID property on
the OutputOrderltem order item with the namespace http:/lex_output.com:

/ControlData/Order Item[@type="{http://ex_output.com}OutputOrderlitem"]/lineltemlID

Data that has been derived from a common model entity, for example an action, will use a
different format. In the following situation:

e Order item namespace: http:/lex_output.com
e Order item name: OutputOrderitem

« Name of the parameter assigned as the Dynamic Parameter Property in the order item
specification: dynamicParams

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE’

Chapter 6
Modeling OTM With Calculate Service Order

e Conceptual model cartridge name: Model_Broadband

e Conceptual model cartridge version: 1.0.0.0.0

« Conceptual model entity (in this case an Action) name: SA_Add_Internet
e Parameter name on SA_Add_Internet: serviceLevel

The reference would look like this:

/ControlData/Orderltem[@type="{http://ex_output.com}OutputOrderlitem]/
dynamicParams[@type="{Model_Broadband/1.0.0.0.0}SA_Add_InternetType"]/servicelLevel

The parameters from the conceptual model entity are contained in the dynamicParams
element on the transformed order item. The type for the parameters contained in the
conceptual model entity has the string "Type" appended to the name of the entity. Thus, the
type contains SA_Add_InternetType rather than just SA_Add_Internet.

Modeling OTM With Calculate Service Order

Calculate Service Order is a specific provider function that is delivered via design patterns in
Design Studio. The Calculate Service Order provider function is the functional module that
transforms customer orders into service orders.

Using Calculate Service Order has two parts. First, you must run the relevant design patterns
to set up the framework, and then you must configure the other required entities that are
specific to your implementation.

Calculate Service Order Design Patterns

Calculate Service Order includes two design patterns:

* The Design Studio core software contains a design pattern (Common Model Base Data)
that sets up the base data for the conceptual model. The following entities that are created
in the conceptual model support Calculate Service Order:

— A Design Studio project to contain the conceptual model entities (optional, an existing
project can be used)

— The Calculate Service Order provider function (see "About the Calculate Service Order
Provider Function")

— The Primary and Auxiliary relationship types (see "About Calculate Service Order
Relationship Types")

For more general information about these entities, see the information about designing
solutions in Design Studio Concepts.

» Design Studio for OSM contains a design pattern (Calculate Service Order) that contains
OSM entities to support Calculate Service Order:

— A Design Studio project to contain the OSM entities (optional, an existing project can
be used)

— The Calculate Service Order transformation sequence (see "About the Calculate
Service Order Transformation Sequence")

About the Calculate Service Order Provider Function

Modeling Guide
G37998-01

The Calculate Service Order provider function is a logical entity that groups all the metadata
required to perform the transformation. It also provides the ability to determine what types of

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 6
Modeling OTM With Calculate Service Order

entities and relationships can be used in the transformation and the method used to realize the
provider function into OSM.

The Calculate Service Order provider function defines the following associations:

e The input (Product) and output (Customer Facing Service and Resource) conceptual
model entities

* The relationship types (Primary and Auxiliary)

About Calculate Service Order Relationship Types

Calculate Service Order also contains the definitions of the following relationship types:

* Primary: In this relationship type, transformed order items are created from original order
items. Action codes are normally transferred to the target without being changed, or you
can define rules to change the action types.

* Auxiliary: In this relationship type, transformed order items are enriched, but no new
transformed order items are created. Action codes are translated based on the action type
of the source item combined with the current action type of the target item. If the target
action type is None, the source action type will be transferred to the target without being
changed. If the source and target action types are both defined to something other than
None, the action code of the target is changed to Modify. Otherwise, the target action code
is unchanged.

These action types are the default for the relationship type. In a mapping rule, you can either
use the default from the relationship type or you can define specific rules for a named
relationship to be used for the mapping rule.

About the Calculate Service Order Transformation Sequence

Modeling Guide
G37998-01

The transformation sequence (CalculateServiceOrder) that is created by the OSM design
pattern for Calculate Service Order contains the following transformation stages. These stages
process order items based on an order item hierarchy. See "Modeling Order Item Hierarchies"
for more information about the way order items can be arranged in hierarchies. You can edit
these stages using Design Studio, if you need the transformation to work differently.

1. ProcessPrimaryRelationships: This stage creates transformed order items from original
order items. Parameters from the original order item are also mapped to parameters on the
transformed order item.

2. ProcessDescendantltems: This stage looks at child order items of the original order items
and uses them to provide auxiliary data on the transformed order items. This can happen
in two ways: the child order item itself may map to a data element on the transformed order
item, or parameters from the child order item may map to parameters on the transformed
order item. The child order items considered in this stage are not only the immediate
children of the original order item, but also their children, to the bottom of the order item
hierarchy.

3. ProcessSiblingltems: This stage is similar to the ProcessDescendantitems stage,
except that the order items that are contributing data to the transformed order item are the
siblings, rather than the descendants, of the original order item. As in the
ProcessDescendantitems stage, the order items can provide auxiliary data by the sibling
order item mapping to a data element on the transformed order item, or by parameters
from the sibling order item mapping to parameters on the transformed order item.

4. ProcessAncestorltems: This stage is also similar to the ProcessDescendantitems
stage. In this stage, the order items considered are the parent order items instead of the
children. As in the ProcessDescendantltems stage, the order items can provide auxiliary

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 6
Modeling OTM Without Calculate Service Order

data by the parent order item mapping to a data element on the transformed order item, or
by parameters from the parent order item mapping to parameters on the transformed order
item. The parent order items considered in this stage are not only the immediate parents of
the original order item, but also their parents, to the top of the order item hierarchy.

User-Created Entities for Calculate Service Order

In addition to the entities created by the design patterns, you must also create entities with
information specific to your implementation. Some of these entities are in the conceptual
model, and some are in OSM.

In the conceptual model, you will need to model at least some of the following:

e Products

e Customer Facing Services
* Resources

* Resource Facing Services
e Actions

e Action Codes

* Data elements

In OSM, you will need to model all of the following:

« Order item specifications for the original (source) and transformed (target) order items
e Transformation manager
* Mapping rules

e Order item parameter bindings: OSM has a design pattern to facilitate creating these
bindings

Modeling OTM Without Calculate Service Order

If the supplied Calculate Service Order order transformation does not transform the order items
the way you need, to such an extent that you do not think that editing the supplied entities
would work for your situation, you have the option of configuring the order transformation
manager from scratch instead.

To configure the order transformation manager if you are not using Calculate Service Order:

1. Model conceptual model entities:
a. Create a provider function.
b. Create relationship types.
c. Create one or more functional areas.
d. Create a domain in the conceptual model.

e. Model customer-facing services in the conceptual model.

=h

Model products in the conceptual model.

Model named relationships in the conceptual model.

S

Add the products to the domain in the conceptual model.

Model a provider function in the conceptual model.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE

Modeling Guide
G37998-01

j-

Chapter 6
Modeling OTM Without Calculate Service Order

Model data in the conceptual model, including keys for conceptual model entities.

For more information, see "Working with Conceptual Models" in Modeling Basics.

Model the order item specifications for the original and transformed order items:

a.

Model the order item recognition. This is usually a parameter on the customer order
line item, such as Fulfillment Item Code.

Model order item properties, including a property for order item recognition, a property
to contain dynamic parameters created by the order item parameter binding, and
properties for the order item ID and action.

Model order item parameter bindings to create typed and named parameters from
parameters that may have been in name/value pairs in the incoming customer order line
item.

Model mapping rules. These rules create order items and order item parameters on
transformed order items based on original order items (that is, the order items and
parameters from the customer order). The following types of mappings are available:

Entity-to-entity mapping: This creates a new transformed order item from an original
order item. For example, you can use this to create a transformed order item
representing a line from an original order item representing a major service.

Attribute-to-attribute mapping: This type of mapping creates new parameters on the
transformed order item based on parameters on the original order item.

Entity-to-attribute mapping: This type of mapping creates new parameters on the
transformed order item based on the presence of particular original order items. For
example, an original order item representing a feature might be mapped to a
parameter for that feature on an order item representing a new line.

Model a transformation sequence. This involves modeling a series of transformation
stages. Each transformation stage includes the following steps:

a.

d.

Identify context order items for the transformation stage. These nodes are the original
order items that will be available for transformation. You can select these nodes either
by selecting an order item property that the original order items will have in common or
by defining an XQuery expression to select them.

Identify related order items for the transformation stage. These order items will be able
to contribute data to the transformed order items. You can select these nodes either by
their relation to the context order items (parent, sibling, child) or using an XQuery
expression. The relationships between the order items will be based on the physical
order item hierarchy defined in the order item specification.

Select the relationship and relationship type that will be available to the transformation
stage. For example, the transformation stage may be set up to include a Primary
relationship between the Broadband product and the BroadbandInternetAccess
customer-facing service.

Determine whether the stage should be conditional, and if so, write a condition for it.

Create a transformation manager that links the service domains and transformation
sequences that you have created.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 8

Modeling Processes and Tasks

This chapter describes how to model process, rules, and tasks in an Oracle Communications
Order and Service Management (OSM) solution.

Overview of Processes and Tasks

The Process editor in Oracle Communications Service Catalog and Design - Design Studio is
where you define the flow of tasks for a particular process. Processes have a single entry point
and one or more exit points. When you create the process structure, you must place the tasks
in the order in which the process is to complete them.

In addition to running tasks and subprocesses, you can control how a process runs; for
example, specify to delay processing a task or create multiple possible transitions from one
task to another based on task status.

Order processes can contain automated tasks, manual tasks, and task status transitions from
one task to another task, as well as other process actions such as task transition delays, joins,
redirects, rules, subprocesses, and end process points.

A task is a specific activity that must be carried out to complete the order; for example, if an
order needs to verify that an ADSL service was activated, you might model a task named
Verify ADSL Service. Tasks can be manual or automated. Manual tasks must be processed by
an order manager, using the Task web client. Automated tasks run automatically with no
manual intervention.

OSM also provides specialized automated task types called the activation task for
communicating with Oracle Communications ASAP and the transformation task for initiating
the order transformation manager functionality from within a process flow.

Modeling Processes

The following sections provide information about modeling processes.

About Process Flows

Process flows define the sequence of tasks that the process performs. You can design flows
for specific scenarios, including:

* Aflow that ends in a successful process completion (Success) or a process failure
(Failure).

* Flows for various activities, such as Cancel, Next, and Back.

Figure 7-1 shows how flows appear in a process in Design Studio. In this figure, flows are
labeled with the task status; for example, route_to_osm.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 29

ORACLE Chapter 7
Modeling Processes

Figure 7-1 Process Flows in Design Studio

Start

Fe O

[routeToFrovisio. .

route to nst

route to expediter

£ |T| &
activationOrder. activatonOrderd.___

= T e

failure
ﬁfﬂilure
ﬁ % failure
next coesde

. S| Completion e
PrnvtsmnlngFaII...J Task End

You can control flows in the following ways:

* You can use an order rule to apply conditions that must be met before the flow can
continue.

* You can ensure that the system verifies that mandatory fields are present when a task
completes. (This option is not available for tasks with a Rollback status.)

* You can specify a reporting status to display in an OSM web client. This status is tracked in
the web client's OSM history.

Figure 7-2 shows flow properties in Design Studio.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 29

ORACLE Chapter 7
Modeling Processes

Figure 7-2 Flow Properties

General TouteToProvisioningTask to activationOrderAdsiRegion2Task

Events Froperty Value
Condition
From routeToProvisioningTask
Mandatory Check True
Reporting Status
Status route_to_osm
To activationOrderAdsIRegion2Task

Adding Process Activities

You use process activities to design how the process runs. Figure 7-3 shows the Activities
options in Design Studio. The example process includes a timer delay between the two tasks.

Figure 7-3 Process Activities Options in Design Studio

Activities &
Start &
O—b ﬁ succeed — Task
Verify Subprocess
Timer|Delay 7 Rule

S Timer Delay

ﬁ ®_ Event Delay
Join

She O End

finizh ‘® Redirect

v

@)

End

In addition to the tasks and subprocesses that the process runs, you can control the process
by using the following:

* Rules

e Timer delays
e Event delays
e Joins

e« Ends

* Redirects

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 29

ORACLE

Chapter 7
Modeling Processes

Rules evaluate a condition and then specify the next step in the process. For example, a rule
task might evaluate the data that describes the geographic region of the order and branch the
process appropriately. Rule tasks perform as follows:

e They typically read and evaluate data to determine what to do.
e They always evaluate to true or false.
e They are always run automatically, with no manual involvement.

Timer delays delay the process until a rule evaluates to true. Timer delays perform as follows:

e The rule is evaluated at specified timed intervals.

* The data evaluated in the rule must be data that is included in the order.
e The rule always evaluates to true or false.

e The delay is always run automatically, with no manual involvement.

Event delays delay the process until a rule evaluates to true. Event delays perform as follows:

* The rule is evaluated only when the data specified in the rule changes.
* The data evaluated in the rule must be data that is included in the order.
e The rule always evaluate to true or false.

* The delay is always run by OSM, with no manual involvement.

Joins combine a set of flows into a single flow. (Process flows define the sequence of tasks
that the process performs. See "About Process Flows" for more information.) The unified flow
can join flows based on all transitions completing or any one transition completing (by selecting
All or selecting Any). Selecting Any will create one instance of the flow for each incoming
transition.

Ends stop the process from continuing.

Redirects redirect the process to another task in the same process or to a different process.

@® Note

Timer and event delays are not used during amendment processing.

Configuring Subprocesses

Modeling Guide
G37998-01

When you model subprocesses, you specify the following properties:

e If you want the associated tasks to appear in the Process History window in the Task web
client.

e The pivot data element on which OSM spawns individual subprocess instances. For
example, if you have subprocess that creates an email address for every person in a list,
you might select the Person data element as the pivot data element, so the subprocess
spawns an instance for each person. See "Generating Multiple Task Instances from a
Multi-Instance Field" for more information.

e How to display the associated tasks in the Task web client. For example, you can display
them sequentially, sorted, or unsorted.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 29

ORACLE

Chapter 7
Modeling Processes

e The process to run, based on rules. The rules in an order control how various actions take
place; for example, when to trigger a jeopardy notification and how delays in the order
process should be handled.

* How the subprocess handles exceptions. For example, you might have a process called
create_vpn. Within that process, there is a subprocess called validate_address. The
subprocess validate_address can throw an exception when an address is invalid. Using
the exception mapping functionality, you can instruct the parent process and subprocesses
to take specific actions when the subprocesses throw exceptions. Exception mapping
enables you to indicate whether the parent process create_vpn should terminate all of the
invoked instances, terminate only the offending instance, or ignore the exception
altogether.

Understanding Parallel Process Flows

There are two ways to model parallel processes:

e Subprocesses branching from a task. This allows multiple tasks to run within the same
time frame. Parallel flows can be rejoined at an appropriate point if needed. Typically, there
are no dependencies defined between parallel flows, but whether these tasks actually run
simultaneously depends on the order data, how order tasks are fulfilled, and other factors.

e Subprocesses running from a pivot data element. Multi-instance subprocesses are
subprocesses that can be instantiated multiple times. When a subprocess has a pivot data
element defined, multiple instances of the subprocess, running in parallel, are created. For
example, if the pivot data element for a subprocess is defined as interested_party, and an
order contains three instances of interested_party, each containing a different person's
name and contact information, OSM creates three separate instances of the subprocess,
one for each set of data.

When planning your order specifications, give careful consideration to which data you make
available to each parallel process. Excessive and unnecessary data can have negative
impacts on performance, and on usability if manual tasks are involved. Also, make sure to flag
data as non-significant if the data is not needed for revision orders. By default, OSM assumes
that all data is significant.

About Amendments and Multi-Instance Subprocesses

An amendment to an order on which some of the data affecting a multi-instance subprocess
has changed can cause all subprocess instances to be redone, instead of only directly affected
subprocesses to be redone. This can result in unneeded processing for the subprocesses with
no data changes.

In amendment processing with multi-instance subprocesses, it is important to contain
compensation to only the subprocess instances that require compensation. This is achieved by
specifying a key. You specify a key in the Key subtab on the Order Template Node editor for
the data element specified as the pivot data element of the subprocess in the order template.
When a key is specified for a subprocess, OSM maps the revised data to the current data
using the key field and redoes only the subprocess that was affected.

About Order Rules in Processes and Notifications

Modeling Guide
G37998-01

Order rules control how various actions take place; for example, when to trigger a jeopardy
notification and how delays in the order process should be handled. Rules are used in process
flow decisions, conditional transitions, subprocess logic, delay activities, jeopardies, and
events.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 29

ORACLE Chapter 7
Modeling Processes

OSM evaluates order rules by comparing data to data, or data to a fixed value. Figure 7-4
shows an order rule in the Design Studio Order editor Rules tab. This rule identifies residential
customers in a specific city. This is an example of a rule that might be used to send a fallout
notification to a regional fallout manager.

Figure 7-4 Example of an Order Rule Defined in Design Studio

Order - OsmCentralOMExampleOrder D@
Display Name| OsmCentralOMExampleCrder |
Rules
Name Definition | Comments | Information
dslRegion1Rule
dsIRegion2Rule Condition Data Operator Data/Value
null rule [CustomerDetails/city = Sao Paulo

And [AccountDetails/category = Residential

lRename] lRefresh]

Modeling Order Rules in Notifications

All jeopardy notifications and most event notifications use order rules to determine if the
notification should be triggered. (Event natifications that are used only for running an
automation plug-in do not use order rules.)

Figure 7-5 shows an example of a rule defined in Design Studio. This rule finds the city that the
customer lives in and the type of account, (Business or Residential). When the jeopardy
notification uses this rule, the notification is sent only if the order came from a residential
customer in Sao Paulo.

Figure 7-5 Rule Example

Order : OsmCentralOMExampleOrder @@
Display Name| OsmCentralOMExampleCrder |
Rules
Name Definition | Comments | Information
dslRegion1Rule
dsiRegion2Rule Condition Data Operator Data/Value
null_rule {CustomerDetails/city = Sao Paulo

And [AccountDetails/category = Residential

lRename] lRefresh]

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 29

ORACLE Chapter 7
Modeling Processes

You can use rules such as the one shown in Figure 7-5 to route notifications to specific roles.
For example, you can combine rules and roles as follows:

Table 7-1 Example Rule and Role Combinations
|

Notification Type Triggered By Rule Specifies Sent to Role
Notification_Residential Expected duration exceeded | Residential account Residential
Notification_Business Expected duration exceeded | Business account Business

In this example, two identical notifications are created, both triggered by the order processing
time exceeding the expected duration. If the order is for a residential account, the notification is
triggered and sent to the role that handles residential accounts.

OSM uses a system-based null_rule. This rule always evaluates to true. Therefore, if you do
not specify a rule for a notification, the null_rule is used; because it is set to true, the
notification is triggered. If you do not specify any conditions to trigger the notification, and the
notification uses the null_rule, the notification is triggered every time it is polled.

@ Note

The polling interval cannot be changed at run time.

See "About Order Rules in Processes and Notifications"” for more information about rules.

Using the System Date in Delays
You can create a rule that uses the system date as part of a condition. For example, you can
create a rule used in a delay that delays a task transition until the system date is at least the

value of a particular order data element of the dateTime data type. Figure 7-6 shows a rule
that triggers when the system date is at least the value of the date when a particular poll is run.

Figure 7-6 Using the System Date in a Rule

Rule Expression

Condition

Diata / Monitoring/MNextPollTime | Select...
Operator < |

Data @ Value g Sysdate + + 0 5 Days 0 Sihours 0 5 minutes 0 [seconds Select

5/22/2014 = 4:15:57 PM

See "Adding Process Activities" for more information about delays in process flows.

Process and Task Design and Data Considerations for Compensation

There are aspects of compensation that you need to consider when you are designing data,
tasks, and processes.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 29

ORACLE

Chapter 7
Modeling Processes

Order Perspectives and Data Elements in Compensation

There are some aspects of compensation that you should consider when designing your
processes. Compensation takes place using the data in the contemporary order perspective,
but must be reconciled with the data in the real-time order perspective. (For more information
about the different order perspectives, see "About Order-Level and Task-Level Compensation

Analysis.")

The issue relates to data elements that have been added in tasks that are later in the process
than the task currently being compensated. The data that has been added is not present in the
contemporary order perspective, since it was not present when the task performed its do
operation. However, it is present in the real-time order perspective. If the redo operation
checks whether the data element exists, it will be checking the contemporary perspective and
will not find it. This will cause the redo operation to attempt to add the data element instead of
updating it, which will cause problems when the data is reconciled with the real-time order
perspective.

To avoid this situation, you should create any needed data elements before executing tasks
that may be compensated. If the data is order-level data, you should initialize the data in the
creation task for the order. If the data is function-level data, initialize the data needed by the
process in a task that is run early in the process, before tasks that may be compensated.

Effects of Process Loops on Compensation

Modeling Guide
G37998-01

When you have loops in your OSM processes that cause your tasks to run multiple times and
the process is compensated, each instance of the task that ran will be compensated. If entire
sub-processes are being looped, this can cause a large number of tasks to require
compensation.

For example, consider the process in Figure 7-7:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 29

ORACLE Chapter 7
Modeling Processes

Figure 7-7 Simple Loop Process

Process : SimpleLoop @@

Display Mame I SimpleLoop

Start
ﬁ:} success —- ﬁ:} 5UDD|3554[>-O
Taski Task? End
failure
Kl _'*IJ

In this very simplified process, Taskl can run multiple times if it fails. In our current example, it
is run four times: three times exiting with failure and once with success, as shown in

Figure 7-8.

Figure 7-8 Example of Initial Simple Loop Process Sequence

Task1 | Task1 | Task1 | Task1

(failure) [*| (failure) | °| (failure) | *| (success) Task2

¥

If the process needs to be compensated, the task will first be run once in redo mode. If this is
successful, it will make the rest of the initial flow obsolete, so the tasks remaining in that flow
would be run in undo mode, as shown in Figure 7-9.

Figure 7-9 Example of Compensation of Simple Loop Process

Task1 - Task1 - Task1 - Task1 - Task2
{redo) "l (undo) "| (undo) "| (undo) "| (undo)
Task1 | Task2
(success) "| (amend-do)

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 29

ORACLE’

Chapter 7
Modeling Tasks Entities Common to All Task Types

Then, in the new branch of the process, Task2 will also be run in amend-do mode.

This example shows that while looping inside a process is supported by OSM, solution
designers must carefully consider the implications of such loops when OSM compensates
them as a result of an amendment. Most solutions include more complicated loops with more
tasks per iteration, so you need to consider the impact that looped processes will have on the
performance of your overall solution.

Modeling Tasks Entities Common to All Task Types

The following sections provide information about modeling task entities common to all task
types.

Modeling Task States

All OSM tasks use states that determine various milestones in the progress of a task. The
default task states are:

* Received: The task has been received in the system and is waiting to be accepted by a
user (normally automatic for automated tasks) or assigned to a user (only in manual tasks).

* Accepted: The assigned user (system user account or a manual operator's user account).
The task is locked so that it cannot be modified or completed by other users.

e Completed: The task is finished.
e Assigned: (Manual tasks only) The task has been assigned to a user.

* Create Activation Work order Failed: (Activation Task only) The task attempted to create a
work order in the activation system but work order creation failed.

These tasks are mandatory and cannot be removed, but you can create custom task states.

Task states are important because they often trigger various functionality. For example,
automation task automation plug-ins only run the task is in the Accepted state. You can
configure task-level events to trigger when a task state is reached.

Modeling Task Permissions and Execution Modes

When you model tasks, you can specify which roles can perform which task execution modes
(Do, Redo, Undo, Failed-Do, Failed-Redo, and Failed-Undo). For example, you may want to
configure a specific role for normal Do, Redo, and Undo execution modes with a second role
for fallout management that also operates in fallout execution modes. OSM users that are part
of the fallout workgroup can work on failed automated and manual tasks. For more information
about task execution modes and change order management, see "About Task Execution
Modes".

Figure 7-10 shows roles used in a task specification.

Figure 7-10 Task Permissions

Task Permission

-~
Role Mame

DefaultRole

ProwvisionRole

Modeling Guide
G37998-01

Do Redo Undo Failed-Do Failed-Reda Failed-Undo
W W v v v v
' ' W

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 29

ORACLE Chapter 7
Modeling Tasks Entities Common to All Task Types

About Normal and Fallout Execution Modes and Task States

OSM provides the following execution mode groups:

* Normal: Task execution modes that run in normal mode include the Do, Undo, Redo, and
Amend-Do modes for normal task processing activities.

« Fallout: Task execution modes that run in the fallout mode include Do in Fallout, Undo in
Fallout, Redo in Fallout, and Amend-Do in Fallout modes for troubleshooting tasks that
have failed.

@® Note

If an amendment is received while a task is in a fallout execution mode, the following
will happen:

» If the task is not configured to be compensated if it is in progress, the execution
mode of the task will not change as a result of the amendment order.

» If the task is configured to be compensated if it is in progress, and the amendment
contains changes to significant data:

— If the task is still needed after the changes to the order from the amendment
are considered, it will transition automatically to (normal) Redo mode.

— If the task is no longer needed after the changes to the order from the
amendment are considered, it will transition automatically to (normal) Undo
mode.

In both of these cases, your automation code (for either Redo or Undo execution
mode) should contain a check to see if the task has been in a fallout execution
mode, and also whatever code is needed to resolve any actions that have been
taken in the fallout execution mode. For example, if your automation for Do in
Fallout mode opens a trouble ticket, your Redo automation should check to see
whether it needs to close a trouble ticket.

« If the amendment order contains no changes to significant data, the execution
mode of the task will not change as a result of the amendment order.

Figure 7-11 shows how OSM transitions tasks to the fallout execution modes and back to
normal execution modes and how these modes relate to task states.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 11 of 29

ORACLE’

Figure 7-11 Normal and Fallout Execution Mode and Task States

Chapter 7

Modeling Tasks Entities Common to All Task Types

Normal Task Modes and States
(do, undo, redo, amend-do)

Assigned |la— | Suspended
T A A
Y Yy
»| Received | »| Accepted » Completed -
f f
Retry Fail task Resolve Failed Task
failed task [To normal state when
failure first oourred)

Fallout Task Modes and States
(do, undo, redo, amend-do)

'y

Received

Assigned Suspended
¢ ‘ If task completes
in fallout mode
< »| Accepted

The following shows how the tasks in Figure 7-11 processes through each state in a Normal
execution mode:

1.
2.

When OSM starts a task, it enters into the Received state in a normal execution mode.

In Manual tasks, an operator can optionally assign the task to themselves or have the task
be assigned to them. When the task is assigned, it enters into the Assigned state.
Automation tasks do not use this state.

When an operator or the system begins working on the manual or automated task, the task
enters into the Accepted state.

While the task is in the Accepted state, the system or the operator can:

* Move the task to a customer defined state like the Suspended state for a business
reason defined for the task. From the Suspended state, the system or the operator
can return the task to the Accepted state or move it to the Assigned state.

* Move the task to the Completed state by completing the task.

e Fail the task. A failed task automatically moves to the Received state in a fallout
execution mode. You can fail a task in the following ways:

— Task web client for manual tasks
— OSM Java API for automated tasks in automation plug-in code.

— OSM XML API for manual and automated tasks in automation plug-in code.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 29

ORACLE

Chapter 7
Modeling Tasks Entities Common to All Task Types

The following shows how the tasks in Figure 7-11 processes through each state in a fallout
execution mode:

1. A task enters a failed execution mode in the Received state from a normal execution
mode in the Accepted state.

2. In Manual tasks, an operator must assign the task to themselves or have the task be
assigned to them. When the task is assigned, it enters into the Assigned state.
Automation tasks do not use this state.

3. When an operator or the system begins working on the manual or automated task, the task
enters into the Accepted state.

4. While the failed task is in the Accepted state, the system or the operator can:

e Move the task to a customer defined state like the Suspended state for a business
reason defined for the task. From the Suspended state, the system or the operator
can return the task to the Accepted state or move it to the Assigned state.

e Move the task to the normal execution mode Completed state to complete the task.

e Retry the failed task. Retrying a task moves the task back to the normal execution
mode to the Received state to retry the task from the beginning. You can retry a failed
task in the following ways:

Task web client for one task or for all tasks on the order

Order Management web client for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot retry a specific task type in bulk across
multiple orders using a job control order.

OSM Java API in automation plug-in code
OSM XML API in automation plug-in code

OSM Web Service API operation for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot retry a specific task type in bulk across
multiple orders using a job control order.

* Resolve the task. Resolving a task moves the task back to the original normal
execution mode and state it had been in before failing. You can resolve a failed task in
the following ways:

Modeling Guide
G37998-01

Task web client for one task or for all tasks on the order

Order Management web client for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot resolve a specific task type in bulk across
multiple orders using a job control order.

OSM Java API in automation plug-in code
OSM XML API in automation plug-in code

OSM Web Service API operation for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot resolve a specific task type in bulk across
multiple orders using a job control order.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 29

ORACLE Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Task Status Transitions

You model task status the define how a task completes and to determine what the next task is
in the process flow. You define the status transitions available to a task in the task editor
Status/Status tab, and then you apply the status transition of process flows you create between
tasks.

You can use the default status transitions defined in manual, automated, activation, and
transformation tasks or you can create new status transitions that may better describe what is
happening during a status transition from one task to another.

The default statuses for a manual task are:

* Back

« Cancel
e Finish
* Next

The default statuses for a automated and transformation task are:
* Failure

e Success

The default statuses for a activation task are:

* Success

* Activation Failed

¢ Updated OSM Order Failed

You can also select from the set of additional predefined statuses (Delete, False, Rollback,
Submit, Failed, and True), and you can also define your own.

You can also use constraint behaviors with status transitions and manual tasks to better control
when an operator can transition from one task to another task. See "Using the Constraint
Behavior to Validate Data".

Specifying the Expected Task Duration

You can specify the expected length of time to complete a task. This information can be used
to trigger jeopardy notifications and for reporting. See "Modeling Jeopardy and Notifications"
for more information. This information is also used by OSM to calculate the order component
duration.

You can specify the length of time in weeks, days, hours, minutes, and seconds. The default is
one day.

You can also calculate the duration based on your workgroup calendars. If you have more than
one workgroup with different calendars all responsible for the same task, the calculation is
based on the first available workgroup that has access to the task. This ensures that a the task
only exceeds it's duration based on the workgroup calendar time.

For example, there might be a task with an expected duration of two hours, and the workgroup
that processes the task only works 9 AM - 5 PM Monday to Friday as indicated on their
workgroup calendar. If such a task is received at 4 PM on Friday, then the expected duration of
the task will expire at 10 AM Monday, as there was only two hours of the workgroup calendar

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 29

ORACLE Chapter 7
About Task Types

time that had elapsed (4-5 PM Friday, then 9-10 AM Monday). This ensures that notifications
and jeopardies are triggered appropriately.

See OSM Task Web Client User's Guide for more information.

Specifying the Task Priority

Task priority is the same as the order priority unless a priority offset is defined. Priority of orders
and their tasks becomes effective when the system is under heavy load, ensuring that high
priority orders and tasks are not starved of resources by lower priority orders and tasks.

You define the task priority as an offset from the priority of the order itself. This specifies the
priority of the task in relation to other tasks in the order.

For example, if the order is created at priority 6, and this task is assigned a priority offset of -2,
then this task would run at priority 4 while tasks in the order with no offset would run at priority
6. Similarly, you could assign a task a priority offset of +2, which would mean that the task
would run at a slightly higher priority than other tasks in the order.

See "Modeling Order Priority" for more information about order priority.

About Extending Tasks

You can create a new task by extending from an existing task. The new task inherits all of the
data, tasks, rules, and behaviors of the base task from which it was extended. Changing
something on the base task is reflected in all tasks extending from it.

For example, if you have multiple tasks that all require the same data subset, you can create a
base task that contains this data, then extend from this task to create as many new tasks as
necessary. You can add new data and behaviors to each of the new tasks to create unique
task and behavior functionality. Extending tasks can significantly reduce duplication and
maintenance.

About Task Types

The following sections provide information about different task types.

Modeling Automated Tasks

You add automated tasks to processes whenever you need a task that can run automation
plug-in instances without user intervention. Automated task automation plug-ins can do various
tasks such as connect to a database to query data, transform data, or communicate with
external fulfillment systems. OSM runs the automation plug-in instances on an automated task
whenever the automated task transitions to the received state in a normal or fallout execution
mode (see "About Normal and Fallout Execution Modes and Task States").

Automation plug-in user task can perform multiple tasks based on the code you write in the
automation plug-ins states. Among the many functions you can implement in the code, you
must also ensure that the automation plug-ins manage task status transitions to complete a
task and move the task to another task on the process (see "Modeling Task Status
Transitions"). You can also specify task execution modes that determine what roles
(workgroups) can perform the task and in what ways (see "About Normal and Fallout Execution
Modes and Task States"). If an automated task does not have any automation plug-ins that can
run in fallout execution modes, and then the automated task runs as a manual task so long as
there are users associated with roles designated to manage the fallout execution modes (see
"Modeling Task Permissions and Execution Modes").

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 29

ORACLE Chapter 7
About Task Types

Automated tasks can also trigger a jeopardy notifications based on the duration of the task and
event notifications based on task state changes (see "Modeling Jeopardy and Notifications").

About Automation Plug-in and Automated Tasks

When you add an automated task to a process, you must associate at least one automation
plug-in for the task. To associate an automation plug-in for a task, you open the automated
task entity in the Automated Task editor, and add the plug-in to the task in the Automation tab.
When you deploy your cartridge to the run-time environment, the OSM server detects a task
that has an automation plug-in associated with it, the server triggers the plug-in to perform its
processing.

An automated task might have only a single automation plug-in associated with it. For
example, you might associate a built-in Automator plug-in with the task to interrogate the task
data, perform some calculation, update the order data, and transition the task. In this example,
as soon as the Automator plug-in has finished processing, it updates the task with an exit
status, and the OSM server moves to the next task.

An automated task can have multiple associated automation plug-ins. For example, you might
want to associate multiple plug-ins with a task to represent conversations with external
systems. You can associate a built-in Sender plug-in to receive the task data and send it to an
external system for processing. That external system might send an acknowledgement back to
a queue, where a second Automator plug-in--one that is defined as an external event receiver
(it receives data from external system queues)--consumes the reply and updates the order
data with the response. A third Sender plug-in might send the external system a message to
begin processing, and a fourth Automator plug-in can receive the "processing complete”
message from the external system, update the order, and transition the task.

See "About Automation Plug-ins" for more information.

Completing an Automation Task That Handles Concurrent Status Updates

An automated task can process multiple responses from external systems. For example, an
activation task might receive the status for each service on the activation request. The
activation task needs this information to determine when the activation has been completed by
the external system, at which point the task can transition to the Completed state.

e The external system can include data that indicates that all of the requests have been
completed. Typically, this is a message indicating that the response is the last response,
and there will be no further messages.

« If the external system cannot report that the last request has been processed, the
automation task must ensure that a response has been received for each request sent to
the external system.

When OSM must determine the last response, there are special considerations for concurrent
status updates. If the automated task needs to track the status of all responses, and multiple
responses are processed concurrently, the automation receiver instances executing
concurrently do not have visibility to status updates from the other receivers. The receiver may
never run with the task data that contains all status updates and so never encounters a
condition where it can complete the task.

This situation can be handled by configuring an automated notification plug-in that monitors the
status fields and creates a notification whenever the data changes.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 29

ORACLE Chapter 7

About Task Types
Figure 7-12 Sequence Diagram for Concurrent Status Update Notification Process
Automation Sender External Automation Receiver Data Change Automation Receiver
i System] Hotification Plug-in | | for notification response

| 1: send message |
with multiple (1 ..0)
| action requests

LA

2 sat correlation for
notlfu::m? response

[

I

I

I

I

L |

- | - I
i

_ 5 Check if all

. 4 update stetus repsonses !

I

I

I

I

I

L T = received
|) ; T

\ T G gend message to
| trigger automation

B

|
. | -

= 7. complete
AN = = task
Set the I
correlatian D far

the data change
notification

The notification plug-in is triggered every time the status field is updated by the automation
receiver. The notification plug-in runs in a separate transaction after each receiver update, and
can check the status responses to determine if all responses have been received for each
action request. When all responses are received, the naotification plug-in can generate a
message to trigger an automation receiver. This receiver is correlated to the original sender by
means of an ID set by the sender specifically for tracking the status updates. The receiver is
then run with the task data that contains all of the status responses and it can complete the
task.

Modeling Manual Tasks

You add manual tasks to processes whenever you need a task that requires direct user
intervention. Users work with manual tasks in the OSM Task web client whenever a manual
task transitions from the received state to the assigned state in a normal or fallout execution
mode (see "About Normal and Fallout Execution Modes and Task States"). You assign manual
tasks to OSM users in the following ways:

e Manually: The task appears in the OSM Task web client in the received state and an
operator has the responsibility to assign the task to a user.

e Automatically (pre-defined in Design Studio): You can optionally chose a round robin task
assignment algorithm that distributes tasks evenly between all users associated with the
role (workgroup) that can work on the task, or load balancing task assignment algorithm
that distributes tasks based on user workload.

e Automatically (customized task assignment algorithm): You can develop a custom task
assignment algorithm using OSM's cartridge management tools. See "Deploying a Custom
Task Algorithm using the OSM Cartridge Management Tool".

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 29

ORACLE

Chapter 7
About Task Types

When an operator is working in a manual task, they must directly update task data in the OSM
Task web client. You can add behaviors to manual task data that perform various function. For
example:

e Performing calculations on humerical task data.

e Adding constraints on task data fields to validate the data that users enter. You can also
use constraints to control whether a user can transition from one task to another.

e Making a field read-only.
e Making a field visible to some users only.

See "Modeling Behaviors" for more information about all behavior options that OSM provides.

Manual tasks user task states to managed the progress of the task (see "Modeling Task
States") and task status transitions to move from one task to another task (see "Modeling Task
Status Transitions™). You can also specify task execution modes that determine what roles
(workgroups) can perform the task and in what ways (see "About Normal and Fallout Execution
Modes and Task States").

Manual tasks can also trigger a jeopardy notifications based on the duration of the task and
event notifications based on task state changes (see "Modeling Jeopardy and Notifications").

Manual tasks are often used when initially developing OSM solutions to better understand the
what needs to happen in various points of an OSM solution. When solution developers have a
better understanding of what a task is doing, they can then consider transforming the task into
an automated task with associated automation plug-ins. In addition, you can insert manual
tasks in a process that function as breakpoints for debugging. This allows you to control a
process when you test it.

Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool

Modeling Guide
G37998-01

The OSM Cartridge Management Tool is only applicable for traditional OSM deployments. To
use the custom task algorithm in OSM cloud native, see "Using a Custom Task Algorithm in
OSM Cloud Native".

In addition to the round robin or load balancing algorithms for assigning workgroups to tasks
provided by OSM, you can create a custom task assignment algorithm that assigns tasks
based on custom business logic. Before you can use OSM CMT to deploy a custom task
assignment algorithm, ensure that:

* You can access and reference a WebLogic Server and ADF installation home directory
from the OSM CMT build files. See OSM Installation Guide for version information.

* You must download and install Ant. See OSM Installation Guide for version information.

* You install the SDK Tools and the SDK Samples components using the OSM installer.
You do not need to install the other options. See OSM Installation Guide for more
information about using the OSM installer.

* You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample for more
information about creating a custom task assignment algorithm.

To deploy a custom task algorithm to an OSM server using OSM CMT:

1. From a Windows command prompt or a UNIX terminal, go to WLS_homelserverllib
(where WLS_home is the location of the base directory for the WebLogic Server core files).

2. Copy the following files required by OSM CMT to the Ant_homellib folder (where
Ant_home is the location of the Ant installation base directory).

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 18 of 29

ORACLE Chapter 7
About Task Types

WLS_homelserverllib/lweblogic.jar

* WLS_homelserverllib/wlthint3client.jar

« WLS_homelmodules/icom.bea.core.descriptor.wl.jar

e SDKldeploytool.jar

* SDK/Automation/automationdeploy_bin/automation_plugins.jar

* SDK/Automation/automationdeploy_bin/xmlparserv2.jar

* SDK/Automation/automationdeploy_bin/commons-logging.jar
3. Set the following environment variables and add them to the command shell's path:

ANT_HOME: The base directory of the Ant installation.

« JAVA_HOME: The base directory of the JDK installation.

For example, for a UNIX or Linux Bash shell:

ANT_HOME=/home/userl1/Middleware/modules/org.apache.ant_1.10.15
JAVA_HOME=/usr/bin/local/jdk-21.0.7

For example, for a Windows command prompt:

set ANT_HOME=c:\path\to\oracle\home\Middleware\modules\org.apache.ant_1.10.15
set JAVA _HOME=c:\path\to\oracle\home\Middleware\jdk-21.0.7

4. Open the SDKISamples/config/samples.properties file.
5. Set the following variables:
* Set osm.root.dir to the OSM installation base directory.
* Set oracle.home to the Oracle Middleware products base directory.
For example, for a UNIX or Linux Bash shell:

/home/oracle/Oracle

For example, for a Windows command prompt:
C:/Oracle

6. Copy the custom task assignment algorithm file you created to SDKISamples/
TaskAssignment/code.

7. Open the SDKISamplesiTaskAssignment/codel/build.properties file.
8. Set the following variables:
* Set weblogic.url to the WebLogic Administration Server URL. The format is:

t3://i p_address:port

where:

— ip_address is the IP address for the WebLogic Administration Server.

— port is the port number for the WebLogic Administration Server.
* Set weblogic.domain.server to the name of the WebLogic Administration Server.
» Set weblogic.username to the WebLogic Administration Server user name.
« Set webLogicLib to the path to the WLS_homelserverllib folder.

» Set ejpbname to the Enterprise Java Bean (EJB) name for the task assignment
behavior.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE Chapter 7
About Task Types

* Set ejbclass to the class name for the task assignment behavior.

* Set jndiname to the Java Naming and Directory Interface (JNDI) bind name for task
assignment behavior.

« Set targetfile to the deploy target file name for a target file that does not contain a
suffix like .ear or .jar.

® Note

ejbname, ejbclass, jndiname, and targetfile are preconfigured to deploy the
SDKI/Samples/TaskAssignment/code/CustomizedTaskAssignment.java
sample task assignment algorithm. Replace these default values with those for the
custom task assignment algorithm.

9. Create and deploy a Design Studio cartridge that includes a manual task that you want to
associate to the custom task assignment algorithm. You can associate the custom task
assignment algorithm in the Details tab of the manual task using the Assignment
Algorithm and JNDI Name fields. See "Task Editor Details Tab" in Modeling OSM
Processes for more information.

@ Note

You can import the sample task assignment cartridge from SDKISamples/
TaskAssignment/datal taskassignment.xml. For more information about
importing an OSM model into Design Studio, see "Working with Existing OSM
Models" Modeling OSM Processes.

10. From the SDK/Samples/TaskAssignment/code directory, at the Windows command
prompt or UNIX shell, type:

ant

The Ant script begins to run.

11. When the ant script reaches Input WebLogic Password for user weblogic ..., enter the
WebLogic Administration Server password.

The ant tool compiles, assembles, and deploys the custom task assignment algorithm to
the OSM WebLogic Server.

@® Note

You can also individually compile, assemble, deploy, or undeploy using the
following Ant commands:

ant compile
ant assemble
ant deploy

ant undeploy

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 29

ORACLE

Chapter 7
About Task Types

Using a Custom Task Algorithm in OSM Cloud Native

To use a custom task algorithm in OSM cloud native, ensure that you have followed these
steps:

You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample for more
information about creating a custom task assignment algorithm.

Traditional deployment mechanisms do not apply in an OSM cloud native environment. To
deploy an application to WebLogic in OSM cloud native, see the "Deploying Entities to an
OSM WebLogic Domain" section in OSM Cloud Native Guide.

Create and deploy a Design Studio cartridge that includes a manual task that you want to
associate to the custom task assignment algorithm. You can associate the custom task
assignment algorithm in the Details tab of the manual task using the Assignment Algorithm
and JNDI Name fields. See Design Studio Help for more information.

@® Note

You can import the sample task assignment cartridge from SDKISamples/
TaskAssignment/datal taskassignment.xml. For more information about importing
an OSM model into Design Studio, see Design Studio Help.

Modeling Transformation Tasks

You can use a transformation task if you want to call the order transformation manager from a
process instead of before the orchestration plan is generated. See "Calling the Order
Transformation Manager" for more information. The transformation task is very much like an

automated task, except that by default it has an appropriate automation plug-in defined for it
and provides the ability to define the transformation manager to call.

Modeling Activation Tasks

Before you can model Activation tasks in Design Studio, you must install the Design Studio for

Order and Service Management Integration feature. This feature includes the Design Studio for
Activation feature for integrating with ASAP and IP Service Activator. To model activation tasks,
you must also install the Design Studio for Activation feature.

1.

OSM transforms order data into an operations support system through Java (OSS/J)
message or a web service message and sends it to ASAP or to IP Service Activator. To
model this, you configure service action request mapping, to map OSM data to ASAP data
or to map OSM data to IP Service Activator data. See "About Service Action Request
Mapping" for more information.

ASAP or IP Service Activator receives the data, activates the service, and returns a
success or failure status to OSM. To allow OSM to handle the returned data, you model
service action response mapping. See "About Service Action Response Mapping" for more
information.

Other elements specific to activation tasks are:

Modeling Guide
G37998-01

You can configure state and status transitions for completion events and exceptions
returned by ASAP or IP Service Activator.

You can configure how to handle amendment processing with activation tasks.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE

Chapter 7
About Task Types

« If you are sending JMS OSS/J messages, Oracle recommends that you configure JMS
store and forward (SAF) queues to manage the connection to ASAP or to manage the
connection to IP Service Activator.

« If you are sending web service messages, Oracle recommends that you configure web
service SAF queues to manage the connection to ASAP or to manage the connection to IP
Service Activator.

About Service Action Request Mapping

You send fulfillment data to ASAP or to IP Service Activator as a service action request. To
model a service action request, you map OSM header data (information that applies to the
customer or to all order line items on the order) and OSM task data to the following service
order activation data:

e Activation order header: Information that applies to the entire work order.
e Service action: Information that is required to activate a service.

e Global parameters: Information that you define once and which applies to multiple service
actions.

About Service Action Response Mapping

After ASAP or IP Service Activator activates a service, it returns information to OSM. You
create data structures in OSM to contain the response information returned from ASAP or IP
Service Activator. For each event and exception returned by ASAP or IP Service Activator, you
select the ASAP or IP Service Activator data that you want to retain, and then identify the OSM
data structure to which that data is added. When ASAP or IP Service Activator returns an
event or exception, OSM updates the order data with the ASAP or IP Service Activator data
that you specified.

@ Tip

The amount of response data from ASAP or IP Service Activator can be very large,
though the data that is needed might be small. Parsing large amounts of ASAP or IP
Service Activator response data can affect OSM performance. If you notice a
reduction in OSM performance due to large amounts of ASAP or IP Service Activator
response data, you can specify a condition on specific parameters to limit the ASAP or
IP Service Activator response data.

About Activation Tasks and Amendment Processing

Modeling Guide
G37998-01

You can configure how to manage an activation task if the associated order undergoes
amendment processing. The options are:

* Intervene manually.
* Do not perform any revision/amendment.
* Have OSM redo the activation task, using the previously defined request mapping.

* Have OSM redo the task, using different request mapping.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 22 of 29

ORACLE Chapter 7
About Automation Plug-ins

About State and Status Transition Mapping for Activation Tasks

You can configure state and status transitions to manage completion events (for example,
activation complete) and errors returned by ASAP or returned by IP Service Activator. You
can define multiple transitions to model different scenarios for variations in the data received
from ASAP or received from IP Service Activator. For example, if an ASAP parameter or IP
Service Activator parameter returns the value DSL, you may want the task to transition to a
DSL task; when the same parameter returns the value VOIP, you want the task to transition to
a different task.

You can define state transitions for user-defined states only; you cannot define transitions for
system states, such as Received, Accepted, and Completed. At run time, OSM evaluates the
conditions in the order and stops evaluating when a condition evaluates to true. Completion
events and errors must include a default transition in case all specified conditions fail.

About Automation Plug-ins

You use automation plug-ins to implement specific business logic automatically. You can create
automation plug-ins to update order data, complete order tasks with appropriate statuses, set
process exceptions, react to system notifications and events, send requests to external
systems, and process responses from external systems.

There are two basic types of delivered automation plug-ins, Sender and Automator. Each type
can be implemented using XSLT or XQuery, and each type can be defined as an internal event
receiver (the JIMS message that triggers the call to the plug-in is generated by OSM), or as an
external event receiver (the JMS message that triggers the call to the plug-in is generated by
an external system).

e Automator plug-ins receive information from OSM or an external system, and then perform
some work. Depending on how you configure the plug-in, it can also update the order data.

e Sender plug-ins receive information from OSM or from an external system. They perform
some business logic, and may or may not update an order, depending on your
configuration. Additionally, they can produce outgoing JMS or XML messages to an
external system. When generating JMS messages, you can define JMS messages to
connect to a topic or queue.

® Note

XQuery automation types cannot be implemented when using releases prior to OSM
7.0.

OSM assigns automated task plug-in instances to a user account specified in the plug-in
Properties subtab Details subtab Run As field. The user account must belong to the
OSM_automation WebLogic group. When you install OSM, the OSM installer automatically
creates the oms-automation user that belongs to the OSM_automation group. You can use this
user account to run automation plug-in instances or create new ones. You can also use the
DEFAULT_AUTOMATION_USER model variable in the Run As field that you define at in the
Oder and Service Management Project editor Model Variable tab or in the Environment editor
Model Variables tab.

When referring to an automation, the following meanings can apply:

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 23 of 29

ORACLE

Chapter 7
About Automation Plug-ins

e The automation plug-in code that you create and associate with an automation task in

Design Studio.

e The instance of an automation plug-in that the OSM run-time server creates in response to

an event that triggers an automation. OSM creates and reuses such instances as required
when processing automated tasks. OSM maintains these plug-in instances even if the
instance is no longer required and only creates additional plug-in instances when the
current pool of instances are insufficient to handle the number of incoming orders. OSM
only destroys automation plug-in instances in the following scenarios:

— When you shut down the OSM server, OSM destroys all plug-in instances.

— When you undeploy a cartridge, OSM destroys all plug-in instances associated with
the undeployed cartridges.

— When OSM detects an error condition in the instance, OSM destroys the instances.

See OSM Developer's Guide for detailed information about automated tasks and automation
plug-ins.

Specifying Which Data to Provide to Automation Plug-ins

The data that is available for each automation plug-in should be the minimum subset of order
data necessary for the plug-in to be performed. You can choose the data to provide to
automation plug-ins using the following methods:

e Use the task data contained in an automation task to specify which data to provide to an
automation plug-in.

« Use query tasks to specify which data to provide to an automation plug-in associated with
order notification, events, and jeopardies. A query task is a manual task that is associated
with a role that has permissions to use some or all order data to run an automation plug-in.
See "Modeling Query Tasks for Order Automation Plug-ins" for more information.

Modeling Query Tasks for Order Automation Plug-ins

Modeling Guide
G37998-01

In automated tasks, the data that is available to automation plug-ins associated with automated
task is already defined in the Task Data tab. However, automation plug-ins used with order
notifications, events, and jeopardies do not have immediate access to this task data, and, as a
result, must reference a manual task called a query task that defines the task data and
behavior data available to the automation plug-in.

You can select any manual task as the query task. You can also create special tasks that are
only used as query tasks. Their only function is to specify which data to provide to an
automation plug-in.

Figure 7-13 shows the Permissions tab in the Design Studio order editor. The upper screen
shows the permissions for the provisioning role, with the provisioning function task as the
query task. For the billing role, the billing function task is assigned as the query task.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 29

ORACLE Chapter 7
About Automation Plug-ins

Figure 7-13 Roles Assignhed to Query Tasks

Display Ma me| OsmCentralOMExampleOrder

Roles Role Settings

DefaultRole Details Fi|tgr5| Query Tasks |

ProvisioningUpdateRole Hame Summary Detail Default
SummaryRole ProvisioningFunctionTask [[¥
BillingUpdateRole

Display Name| OsmCentralOMExampleCrder |

Roles Role Settings

DefaultRole Details Filtersl Query Tasks |

ProvisionRole

ProvisioningUpdateRole HName Summary Detail Default
SummaryRole BillingFunctionTask O ¥ V]

To associate a query task with an automation plug-in, use the Default check box, as shown in
Figure 7-13.

Figure 7-14 shows an event notification with an automation plug-in that uses the
ProvisioningFunctionTask query task that is defined as the default query task for the
provisioning role. This role must be associated with the Run as OSM user that runs the
automation plug-in as shown in the Properties Details tab. For more information about
associating roles to OSM users, see the OSM Order Management Web Client User's Guide.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 29

ORACLE Chapter 7
About Automation Plug-ins

Figure 7-14 Order Event Notification Automation Query Task

*add_ads|_siebel I3
Order : add_adsl_siebel @ ®

Description Add ADSL Siebel

Event Notifications

Details | Notify Roles | Data Changed | Automation | Information

MName Priarity Enabled

I test 1 W | |View ProvisieningFunctionTask b 4 [Select... H Mew...][Open
Name Automation Type
|New Automation *QuerySender I

m

4 m k

Renoe)(pee)

Order Template | Behaviors | Details | Amendable | Rules | Fallouts | Fallout Groups | Motification | Permissions | Jeopardy | Events | Solution View

{j‘._ Problems XRelation Graph | =] Properties &2 = ¥ =0

Automation Plug-in - XQuery Sender

Details |XQuery | Routing | Informationl

Mame Mew Automation

EIBE Mame add_adsl_siebel.order.bb_ocm_demo.Mew_Automation

un As _

About Automation Message Correlation

Automation plug-ins defined as external event receivers are designed to process JMS
messages from external systems. JMS messages are asynchronous, therefore external event
receivers provide a method of correlating responses to requests previously delivered to enable
you to map OSM orders to external system orders.

To correlate responses, the plug-in sets a property on the outbound JMS message, with name
of the value set for correlation property in the automationmap.xml file, and a value decided by
your business logic. For example, business logic might dictate that you correlate on a
reference number. The external system copies the properties that you defined for the
correlation on the request and includes that data in the response.

You can use the Message Property Selector field to filter messages placed on the queue and
determine which automation to run. You define the Message Property Selector value as a
boolean expression that is a String with a syntax similar to the where clause of an SQL select

statement. For example, the syntax may be:
"salary>64000 and dept in (“"eng*,"ga")"

When the condition evaluates to true, the message is picked up and processed by the
automation that defined that condition.

Modeling Guide
October 30, 2025

G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 29

ORACLE Chapter 7
About Automation Plug-ins

In a second example, consider that an external system defines five order types and OSM
defines a different automation to process each order type. Each automation defines a different
Message Property Selector, such as orderType=1, orderType=2, and so forth. When a
message is sent to the queue by the external system, and the message includes the orderType
upon which the condition is based, the automation framework evaluates each condition until
one evaluates to true. If more than one automation defines the same condition, the first one
that evaluates to true is picked up and processed.

® Note

When you define only one automation plug-in external event receiver for each
automation task, you are not required to enter a selector in the Message Property
Selector field. In this case, automation tasks can share the same JMS queue without
a message property selector being set. You must set a message property selector
when you do either of the following:

» Define multiple automation plug-in external event receivers for the same
automation task.

e Use the Legacy build-and-deploy mode to build and deploy cartridges with
automation plug-ins.

* Use the Both (Allow server preference to decide) build-and-deploy mode to build
and deploy cartridges with automation plug-ins and configure the OSM server
dispatch mode for the Internal mode.

For information on build-and-deploy modes, see "About Automation Message
Correlation " in Modeling OSM Processes.

Example: Modeling a Basic Automator Plug-in for an Automated Task

This example demonstrates how to configure an Automator type plug-in that receives data
from an internal OSM JMS queue and updates order data using an XSLT style sheet. In the
example, assume that the XSLT style sheet includes conditional logic to apply a level 1 priority
to the order if the order is from a specific customer.

This example demonstrates how to:

1. Create an automated task and add the relevant task data.
2. Add an automation plug-in to the automated task.

3. Configure the automation plug-in properties.

@® Note

An automated plug-in exists within the context of a Design Studio cartridge project,
order, process, and automated task. For purposes of demonstration, this example
assumes the existence of multiple Design Studio entities. For example, it assumes the
existence of a cartridge project called DSLCartridge, an order called DSLOrder, a
process called DSLProcess, and an XSLT style sheet called check_customer.xslt that
populates default values in the order data. It assumes that the Data Dictionary
includes the two data nodes, customer_name and order_priority. It also assumes that
the new automated task will be added to the DSLProcess entity. The naming
conventions used in this example are for illustrative purposes only.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 27 of 29

ORACLE

Chapter 7
About Automation Plug-ins

Step 1: Creating the automated task

1.

Select Studio, then New, then Order and Service Management, then Order
Management, and then Automated Task.

The Automated Task wizard appears.

In the Automated Task wizard, enter or select the following values:
e Inthe Project field, enter DSLCartridge.

* Inthe Order list, select DSLOrder.

* Inthe Name field, enter Check_Customer.

Click Finish.

The new automated task appears in the Automated Task editor.
Click the Task Data tab.

In this example, you will update the order_priority field with a default value of 1 if the order
is from a specific customer.

@® Note

Normally, the task data includes all of the data that the task requires to complete.
To simplify the example, this task includes only the two pertinent fields:
customer_name and order_priority. See "Modeling Data for Tasks " for more
information.

Right-click in the Task Data area.

The context menu appears.

Select Select from Data Schema.

The Select Data Elements dialog box appears.

Select the data nodes customer_name and order_priority.
Click OK.

The two data nodes appear in the Task Data area.

Click the Permissions tab.

On the Permissions tab, you can ensure that only the automation role has permissions for
automated tasks. See the note in "Modeling Roles and Setting Permissions" for more
information.

You are now ready to add a plug-in to the automated task.

Step 2: Adding the automation plug-in to the automated task

1.
2.

Modeling Guide
G37998-01

In the Automated Task editor, click the Automation tab.
Click Add.

The Add Automation dialog box opens.

In the Name field, enter Check_Customer.

In the Automation Type field, select XSLT Automator.
Click OK.

The Check_Customer plug-in appears in the Automation list.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 28 of 29

ORACLE

Chapter 7
About Automation Plug-ins

In the Automation list, select the Check_Customer plug-in.
Click Properties.
The Automation Plug-in Properties tabs appear.

You are now ready to define the automation plug-in properties.

Step 3: Defining automation plug-in properties

1.

Modeling Guide
G37998-01

In the Automated Task editor Properties View Details tab, accept the default value in
the EJB Name field.

Ensure that the model variable that defaults to the Run As field points to a user name set
up in the Oracle WebLogic console. When you deploy the cartridge, the user in the Run
As field is added automatically to the OSM_automation group.

For more information about users and groups, see the discussion of setting up security in
OSM System Administrator's Guide. For more information about model variables, see the
Design Studio Help.

Click the XSLT tab.

On the XSLT tab, you define where the XSLT style sheet is located and the status to set if
the automation fails. In this example, you'll define a location on your local machine where
the XSLT file is stored.

Select Absolute Path.
In the XSLT field, enter the location of the XSLT file.

For this example, enter
C:\oraclel\user_projects\domains\losmdomain\xsit\DSLCartridge\1.0.0\check_custom
er.xslt.

Do one of the following:
e Inthe Exit Status on Exception field, select Failure.

This field represents the exit status that the plug-in should use if it throws an
exception. The options available in this field include any status values you assigned to
the task. You use this option if you want to transition the task to a fallout task.

e Click the Details tab and select the Fail Task on Automation Exception check box.

This check-box transitions the task to a fallout execution mode if an exception occurs
when running the automation plug-in. Using the option allows you troubleshoot task
failures within the task that generated the failure.

Select Update Order.

This option ensures that the default values obtained from the XSLT style sheet will be
saved to the order data.

Click Save.

You have completed the basic configuration for an Automator-type plug-in defined as an
internal event receiver.

@® Note

Successful automation requires a complete automation build file in the cartridge. If no
automation build file exists, Quick Fix will generate one.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 29 of 29

Modeling OSM Data

This chapter describes how to model OSM data in an Oracle Communications Order and
Service Management (OSM) solution.

Data Modeling Overview

The entity that provides a unified view of all order data relating to various order activities is the
order specification order template. All other entities relating to order processing contain a
subset of the order data you define in the order template.

You can either model data directly in the order template or you can model data in various OSM
entities in Oracle Communications Service Catalog and Design - Design Studio. When you add
data to these other entities, Design Studio automatically adds the data into the order
specification order template.

In general, there are four groups of data that you must model in any OSM solution. These
general groups of data are:

* Incoming order data: You must understand the data structure and contents and decide
what pieces are important to supporting the orchestration process. While there can be a
large amount of data, orchestration is only concerned with modeling and extracting out
information needed to support decomposition and dependency processing. For example,
the orchestration functionality is primarily driven by the elements and structures within the
ControlData structure.

< External fulfillment system data: You must determine what data you need to model in
OSM for tasks that communicate with external systems or communicate order or task
notifications to northbound systems or external users.

« OSM web client user data: You must determine what data you want users to access
when using the OSM Order Management web client to manage orders or when using the
OSM Task web client when managing orders or processing tasks.

In addition to identifying and modeling these order data groups, you must also understand how
the data flows from each point during order processing. In addition, you must understand
whether the data you receive from system A must be transformed or modified before sending it
to system B. For example, system A that sends an order with a requested delivery date and
time for broadband server may use a different date and time format than system B.

Common areas where data transformation occurs are:

* Order recognition rule order data rules: You must use an XQuery to map order data to the
data specified in the creation task of the order. The data defined on the order may be
identical to what is on the creation task, and so the XQuery must map the data into the
corresponding parameters, or the data on the order may be different requiring you to
manipulate the data so that it conforms with the data you have define in the creation task.
See "Modeling the Order Data Rule to Populate the Creation Task" for more information.

e Within Orchestration using the order transformation manager (OTM): OTM provides OSM
the ability to transform order items within the orchestration plan. For more information, see
"Modeling the Order Transformation Manager".

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 37

ORACLE

Chapter 8
Modeling Order Data

* Within orchestration when OSM identifies order items from order data and maps the data
to order item properties. For more information, see "Modeling Orchestration Plans".

* Between tasks: Automated tasks are the primary means that OSM employs for
communicating with external systems. In some cases, the data required by the external
system that Task A communicates with may require different parameters or formats than
those generated by the creation task and those of other tasks communicating with other
systems.

The task of dealing with different message types and formats can be simplified if you use
an integration application such as Oracle Application Integration Architecture (Oracle AlA)
which defines a canonical order structure for communication between OSM and external
fulfillment systems. However, OSM can also directly integrate with external fulfillment
systems and transform data immediately at the task within the automated task automation
plug-in code.

You also use the data you create in OSM for a variety of other purposes. For example:

* You can model OSM to add the input message (the entire order) to the order. The order
recognition rule that receives the message adds the message to an element designated as
XML Type which contains the entire order data. See "Adding the Input Message to the
Order Template" for more information.

* You can use data in the order template to manage orders; for example, you can create
order keys used by amendment processing. See "About Order Keys" for more information.

e You can specify which data in the order template should be considered for amendment
processing (data significance). See "About Data Significance" for more information.

* You can assign behaviors to data in the order template. See "Modeling Behaviors
Overview" for more information.

Modeling Order Data

Consider the following data modeling approaches:

- Data-centric: First model data for a cartridge project and then model the cartridge project
entities using specific data, as needed.

* Entity-centric: First model business processes and entities, and then model the data
specifically required by the entities used by the business process.

About the Data Dictionary

Modeling Guide
G37998-01

Before OSM can receive an order from an order-source system, you need to create the OSM
Data Dictionary.

The Data Dictionary is the repository of data elements used in Design Studio. The Data
Dictionary defines data types and structures that can be used within OSM orders. For example,
you can define a simple type that represents an IP address or a phone number, or more
complex types representing addresses, product attributes and so on.

Data elements in a Data Dictionary are used as building blocks of an OSM order. The data
elements within a Data Dictionary project can be referenced by other projects in a work space.

Design Studio automatically creates a Data Dictionary when you create an OSM cartridge
project. You can use this default Data Dictionary or create multiple data schemas to add data
elements or structure within the same project.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 37

ORACLE Chapter 8
Modeling Order Data

Each data schema includes a set of data relevant to the how that data is used. For example, a
data schema for mobile services could include mobile-related data such as IMSI and MSISDN.

About the Order Template

When you create a new order model in Oracle Communications Service Catalog and Design -
Design Studio, you can base the order on an existing order. When you extend an order
specification, the extended specification inherits all of the data, tasks, rules, and behaviors of
the base specification. You can add new data and behaviors to define unique order
specifications and functionality. When you modify a base order specification, the order
specifications extended from it are also modified. This means that you can make changes in
one place, in the base specification, and those changes apply to the orders that are extended
from the base specification.

For example, you might have three order specifications that share a common set of data. You

can create a base order that includes configurations common to all three orders. You can then
add configurations to each of the three order specifications for the data that is unique to each

order specification.

When defining an order specification that is inherited from a base order specification, you
cannot edit the inherited order data. For example, you cannot remove or rename data
elements inherited from the base order specification. To implement changes to the inherited
data, you must edit the data in the base order specification. Design Studio automatically
implements those changes among all of the extended order specifications.

The data elements that you can use in an order are defined in the Design Studio Data
Dictionary. When you define order data, you can use data elements that already exist in the
Data Dictionary data schemas, or you can create new data elements and add them to the Data
Dictionary. See "About the Data Dictionary" for more information.

In the data dictionary, you can model the same data element in one or more locations, and
assign different type definitions for the elements, such as string or integer, and so on. For
example, you might have a data dictionary that contains two instances of a data element called
EmployeelD: one defined as a string (defined by the employee's name and a two-digit
number), the other defined as an integer (defined by a 6-digit number). Although you can do
this in the data dictionary, you cannot have the same data instance with different type
definitions in the order template.

To avoid such data element conflicts, you can rename the first instance of the parameter after
you import it into an order template using the refactoring function which allows you to rename
an imported parameter at the order template level without changing the data dictionary
instance from which it is derived. This creates an alias for the imported data element and you
can then import the second instance of the data element without any data conflict errors. See
Design Studio Modeling OSM Processes Help for more information about renaming data
elements in the order template.

Identifying Data Requirements for Order Payload

The incoming order data contains important information about the hierarchy of sales item lines,
which can consist of offers, bundles, products, and so on. This data structure information can
be used to manage the data when it is passed between different fulfillment systems.

You must model incoming order data in a Design Studio data dictionary. You can either
manually build the data dictionary for the incoming order data or you can import an XSD file
defined in some other application into Design Studio.

To import the Data Dictionary for the data received in orders, you import the XSD file for that
incoming customer order into OSM. The elements in the XSD file are loaded into the Data

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 37

ORACLE Chapter 8
Modeling Order Data

Dictionary as OSM data elements. Example 8-1 shows part of an XSD file that could be used
for importing customer data.

Example 8-1 Elements in Input Message XSD File

<element name="order" type="im:0rderType"/>

<element maxOccurs="1" minOccurs="1" name="numSalesOrder" type="string">
</element>

<element maxOccurs="1" minOccurs="1" name="typeOrder'>

</element>

For each data element, you specify attributes about the data element; for example, the data
type and display name. Figure 8-1 shows the configuration for a requestedDeliveryDate data
element.

Figure 8-1 Data Element Defined in Design Studio

Element /SalesOrderl ine/requestedDeliveryDate

Details | 0SM | Usage | Information

MName requestedDeliveryDate

Display Name | requestedDeliveryDate [default]
Type dateTime v

Max Length

Minimum 1 * | Maximum| 1 v

Path [SalesOrderLine/requestedDeliveryDate

Mamespace http://xmins.oracle.com/InputMessage

Child XML elements are imported as child data elements. The Path field shows the parent data
elements. In this example, the parent data element of requestedDeliveryDate is
SalesOrderLine.

Adding the Input Message to an Order Recognition Rule

You must add the order data structure of an incoming order to the Input Message area on the
Details tab in an order recognition rule.

Figure 8-2 shows an input message specified in a recognition rule.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 37

ORACLE

Chapter 8
Modeling Order Data

Figure 8-2 Input Message Specified in a Recognition Rule

Input Message

Select an Input Message node below.

- (1

4% numsSalesOrder
4P typeOrder
+ % customerAccount
+ 'Eﬁ; salesOrderLineGroup

The order recognition rule Order Data Rule XQuery transforms order data into the OSM order
format. However, you can also add the input order data to an order by adding the order data to
the order template. For more information, see "Adding the Input Message to the Order

Template".

Adding the Input Message to the Order Template

Modeling Guide
G37998-01

You can model an order template with the incoming order data so that OSM automatically add
the incoming order data to the OSM order in addition to the data generated by an order
recognition rule Order Data Rule Xquery. You should not use the incoming order data for order
processing, but the order data information can be useful for debugging, order tracking. or
reference purposes.

To add the incoming order data to an order you must add the incoming order data to the target
order specification Order Template tab Order Template area.

You must designate the root incoming order data element as an XML Type so OSM can store
the data more efficiently. In addition, you must also add the incoming order data structure to
the creation task so that OSM can add the incoming order data to the OSM order.

Figure 8-3 shows the input order element order with XML Type selected in the Properties tab
Order Data sub-tab.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 37

ORACLE Chapter 8
Modeling Order Data

Figure 8-3 Input Order Data as XML Type

13

Order Template Behawviors E=
Show Control Data

. 72 ControlData
. T2 BillingProfile 5
. T2 Status

ShippingProfile

k
. &t order

> 8 CustomerDetails

L TN (I Y |

Order Template| Eehaviors| Detail5| Amendable| Rules| Fallouts| Fallout Groups

oblems Console Relation Graph [Properties 52 -~ = 0O
Order Template Node - /order

m

»
5

Order Data |Dicticrnar1_.r I Key I Usage I Motes |

Marme order

Path forder

Contributing Temnplate CustomerOrderRecognition
Data Dicticnary InputMessage

XML Type

Significance
(") Inherited @ Mot Significant () Significant Element
Do not rollback during undo”|

For debugging, order tracking, or reference purposes, you can add the incoming order data to
a query task so that operators can view data from the Task web client or the Order
Management web client.

Figure 8-4 shows the input order data in the Order Management web client Data tab with the
OsmCentralOMExampleQueryTask selected in the View field.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 37

ORACLE Chapter 8
Modeling Order Data

Figure 8-4 Order Management Web Client Input Order Data XML Structure

Order ID 2: Order Details Actions = View Tasks | Done
Order Order Ttems Order Components
Timeline Summary Data Orchestration Plan Amendments

OsmCentral OMExampleQueryTask ¥ |

View

OsmCentralOMExampleQueryTask Find Previous | MNext

~|OsmCentral OMExampleQueryTask

*|OrderHeader Actions -
* | CustomerDetails Actions -
* | AccountDetails Actions -
* | ControlData Actions -

<imzorder xmins:im="http://xmins.oracle.com/InputMessage”
wmins:asi="http:/ feenw w3, org/2001/XMLSchema-instance”

order xsi:schemalocation="http://xmins.oracle.com/InputMessage -
JdataDictionary/InputMessage xsd™>
<im:nums5alesOrder=[do:1,1,2,2,2,3,3,3,4,4,4,5,5,5]0rder P
* |breakPointManagement Actions -
¢ | Billing Profile Actions -

Modeling Valid Data Keys

Data keys are elements that identify specific instances of multi-instance nodes. For more
information about the use of data keys, see "About Order Data Position and Order Data Keys."

When modeling a data key, you must follow the following guidelines.

e Data key expressions must always return a value. For example, if you could use the
following expression to return a key value:

-/login/username/text()

However, if either login or username are optional parameters, then this expression might
not return a value. Ensure that you model your data and write your key expressions so that
data in a valid order will always cause the key expression to return a value.

e Ensure that parallel key expressions always evaluate to unique values. That is, all of the
instances of one multi-instance data element must have unique keys.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 37

ORACLE Chapter 8
Modeling Data for Tasks

If a multi-instance data element is inside another multi-instance data element, the child
elements' keys must be unique within each parent element. For example, in the following
data structure, you could use ./hostl/text() as the expression to generate the key for the
location element. This would work because it is unique within each of the email-service
parent elements, even though it is not unique across the whole order.

<email-service>
<address>john.doe@example.com</address>
<name>John Doe</name>
<gquota>5Gh</quota>
<location>
<host>host_a</host>
<operating-system>Linux</operating-system>
</location>
<location>
<host>host_b</host>
<operating-system>Solaris</operating-system>
</location>
</email-service>
<email-service>
<address>jane.doe@example.com</address>
<name>Jane Doe</name>
<gquota>2Gh</quota>
<location>
<host>host_a</host>
<operating-system>Linux</operating-system>
</location>
<location>
<host>host_c</host>
<operating-system>Mac0S</operating-system>
</location>
</email-service>

» Data key expressions must not use children of reference data elements.

Design Studio allows order template elements to be references to elements elsewhere in
the order. For example, this allows more than one order component to refer to the same
order item. In this way, the different order components can see the latest version of the
order item data, while allowing the data to exist (and be updated) in only one place. Data
key expressions that refer to descendants of references are not valid.

* When using descendant data elements in your key expression, consider restricting data
key expressions to refer only to direct child elements.

While it is valid for data key expressions to refer to descendants beyond direct child
elements, it is easier to ensure compliance with the other criteria when only direct child
elements are used.

Modeling Data for Tasks

The following sections describe modeling data requirements for tasks.

Determine Task Data for Manual and Automated Tasks

Each task includes a set of data, which you specify when modeling the task.

The data included in a task is data relevant to the function of the task. Table 8-1 shows some
example tasks and the task data they include.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 37

ORACLE Chapter 8
Modeling Data for Tasks

Table 8-1 Examples of Tasks and Task Data

Task Task Data

Add capacity Bandwidth

Send customer survey Name, phone number, address

Query task (to display data in the Name, phone number, bandwidth, port ID
Task web client)

When you model a task, you assign it to an order. The available task data is limited to the data
that the order requires. At run time, task data can be entered by an OSM user, provided on an
incoming order, or provided from a previous task in the order.

Figure 8-5 shows task data defined in a task in Design Studio and how the data is displayed in
an order in the Task web client.

Figure 8-5 Task Data in a Task Specification and in an Order

Task data defined in Design Studio:

LE?; payment_information
€& payment_method
€% pay_entire_balance

Task data displayed in an
order in the Task Web client:

¥ Payment Information® ¥

Payment Method™ @
O Cash

O Credit Card

O Direct Debit

O Pay Entire Balance

@ Tip

To improve performance, usability, and security, include only the data that is necessary
to perform the task. Unnecessary data is not exposed to the user performing the task,
even though the order may contain much more data.

When modeling orders, it is common to include the entire XML representation of the order in
the order data as an XML data type. If you include the XML data, consider defining smaller

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 37

ORACLE Chapter 8
Modeling Data for Tasks

XML elements for storing sections of a sales order rather than including a single XML data type
that contains the entire sales order. This allows you to map only the parts of the order that are
needed for each task. Including the XML representation is typically done only in the modeling
process as an aid to development.

In addition to defining the data included in each task, you can use behaviors in manual tasks
to manipulate many aspects of how the data is displayed, formatted, and validated. For
example, you can specify if data is read-only, or you can modify the value of the data in a task.
See "Modeling Behaviors Overview" for more information.

Determine Task Data for Data Returned from Fulfillment Applications

You can configure the order template to hold status data returned from external systems.
Figure 8-6 shows an order template structure that holds status data.

Figure 8-6 Status Data in the Order Template

#- T2 ControlData
= %‘3‘ Status
= %?‘ MarketingStatus
42 ErrorCode
4% ErrorMessage
4P ErrorStatus
#- 12 BillingStatus
+ 'E?f CollectionsStatus
5 T8 ProvisioningFixedStatus
#-T2 ProvisioningMobileStatus
5 12 ProvisioningDSLRegionl15tatus
510 ProvisioningD5LRegion25tatus
+ %?f SyncCustomerstatus

Generating Multiple Task Instances from a Multi-Instance Field

Some tasks require multiple task instances to complete. For example, you might need to
create three task instances to retrieve three different address fields. To accomplish this, you
designate a field as a pivot data element for the task. When OSM runs the task at run time,
the system generates a separate task instance for each separate instance of the pivot data
element in the order. The system creates as many instances of the task as there are instances
of the data field or data structure, up to the maximum number defined for the field. This feature
works for a structure of data also. For example, if the address is a structure called Address,
with nested elements of Street, City, and Postal Code, the system generates an instance of a
task for each instance of the structure. The data that is visible to the task instance will be
restricted to data structure that it is for, and that task will not have visibility to the other
instances of the data.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 37

ORACLE Chapter 8
Modeling Data for Orchestration

@® Note

OSM compensation processing does not support task pivot data elements.

Pivot subprocesses are normally "spawned" all at once, meaning that all subprocess
instances are available for execution at the same time. Compensation for this type of
scenario works as expected.

Pivot subprocesses can also be spawned sequentially, meaning that subprocess
instances are only available for execution one-at-a-time, each new instance only
becoming available after the previous one completes. The solution defines the order
via "Sequential" and "Sort Element" attributes of the pivot node in Design Studio. OSM
does not support compensation involving pivot subprocesses that are configured to
execute sequentially. If your solution involves compensation of pivot node
subprocesses, you must not use sequential execution.

Modeling Data for Orchestration

Define the orchestration data on the entity that best reflects its structure, rather than defining
all of the data on the order specification. Design Studio generates the order level order
template by aggregating the order template definitions for the order item specifications and
order components with any data defined at the order level.

You should define data at the level where it is needed:

* Order Item specification: Define ControlData/Orderitem and all of the order item
properties on the order item specification.

The OracleComms_OSM_CommonDataDictionary model project contains predefined
base data elements for control data. It is recommended that you use the data schema of
this model project to add the ControlDatal/Orderltem base data element to the order item
specification Order Template tab.

* Order component: Define ControlData/Functions/OrderComponentName and any other
data needed by the tasks in the process that run this component in the appropriate order
component template.

If you use the OracleComms_OSM_CommonDataDictionary model project
(recommended) and your orchestration entities are preconfigured correctly, Design Studio
automatically generates this structure on the order template of the order component and
the order template of the order.

Using this method supports:

* Encapsulation

* Re-factoring: Modify order template data at the entity level to which it is associated
because this highlights the connection between an entity and its order template data.

* Maintenance: Modifications to order item specification and order component templates
help the designer understand the impact of changes, including possible breaks in
compatibility.

* Traceability: Using this method provides direct traceability from order template data to the
modeling entity to which it is attached.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 11 of 37

ORACLE Chapter 8
Modeling Data for Orchestration

About Order Item Control Data

In addition to defining order item properties in the order item specification, you need to provide
a storage area for the order item properties. You do so by adding control data to the order item
specification Order Template tab. This definition is automatically added to the order's order
template. This makes it easier to track which entity is the master of the data and enables
easier refactoring and maintenance of the overall order specification. Figure 8-7 shows the
order item properties in the control data in an order template.

Figure 8-7 Order Item Properties Included in the Order Template

Order - OsmCentralOMExampleOrder Q@

Display Nam| OsmCentralOMExampleQrder
Order Template

=T ControlData
= T2 Orderltem

€% productClass
42 productSpec
4% lineld
4? lineltemName
4? regquestedDeliveryDate
4? parentLineld
o T
47 typeCode
4P serviceld
T lineltemPayload <XML>

When you define the control data, note the following:

e The name used in the control data must exactly match the spelling and case of the order
item property name.

* Make sure that the Data Dictionary properties are correct for the type of data; for example,
string or number.

» Configure each data element as a multi-instance data element.
— Minimum =0

— Maximum = Unbounded

@ Note

To define data properties, you edit the entry in the data schema, not in the order
item specification.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 37

ORACLE

Chapter 8
Modeling Data for Orchestration

An instance of ControlDatalOrderltem is created for each data element returned by the
order item selector from the orchestration sequence (see "About Creating Order Items from
Customer Order Line Item Node-Sets").

The OracleComms_OSM_CommonDataDictionary model project contains predefined base
data elements for control data. Oracle recommends that you use the data schema of this
model project to add the ControlData/Orderltem structure to the order item specification
Order Template tab.

About Order Template Data

Modeling Guide
G37998-01

The order template includes control data. Control data is used by OSM to generate the
orchestration plan. Control data is used only for orchestration.

There are typically two areas of the order control data:

e ControlData/Orderltem provides the data and structure of order items received in the
incoming customer order.

« ControlData/Functions stores the structure of the function order components generated by
the first level of decomposition. Figure 8-8 shows function components represented in the
order template. The types of functions (BillingFunction, MarketingFunction, and so on)
represent the function-level order components.

Figure 8-8 Functions Data in the Order Template

-t ControlData
+- T2 Orderltem
= %?' Functions
-T2 BillingFunction
4% componentKey
+ %?f orderftem
-T2 MarketingFunction
+ %?' SyncCustomerFunction
+ %? ProvisioningFunction
712 CollectionsFunction

You manually model the order control data of order items in Design Studio. Control data for
function order components is automatically generated by Design Studio. See "About Modeling
Control Data" in Modeling OSM Processes for information on how control data is modeled and
generated.

Orchestration plan generation requires a specific order template structure which you must
model at design time.

ControlData
Orderltem
Functions
Or der Conmponent Nane
componentKey
calculatedStartDate
duration
Orderltem
orderltemRef

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 37

ORACLE Chapter 8
Modeling Data for Orchestration

About Order Item Specification Data

This is a multi-instance node that OSM populates with a set of order items generated off the in-
bound message. The children of this structure must exactly match the set of order item
properties defined on the Order Item specification editor in Design Studio.

The OracleComms_OSM_CommonDataDictionary model project contains predefined base
data elements for control data. It is recommended that you use the data schema of this model
project to add the ControlData/Orderltem data element to the order item specification Order
Template tab.

See "About Modeling Control Data" in Modeling OSM Processes for instructions on modeling
the ControlData/Orderltem structure.

About ControlData for Order Component Data

Order component information is stored in the template in ControlData/Functions/
OrderComponentName. This is a multi-instance node that OSM populates with the set of order
components generated by executing the decomposition rules through an orchestration
sequence. OrderComponentName must be defined for each order component included in a
fulfillment pattern's orchestration plan. This section of the ControlData represents all of the
order components in the orchestration plan. If you use the
OracleComms_OSM_CommonDataDictionary model project, Design Studio automatically
generates data (OrderComponentName) and adds it to the ControlData/Functions structure
for each order component that is associated with the fulfillment pattern that is part of the
orchestration plan.

Each order component is assigned a unique key, called the order component ID, which is
stored in the componentKey element. For information about how the component ID is
determined, see "About Component Names and Component IDs."

OSM populates the calculatedStartDate (dateTime type) and duration (string type) nodes for
each ControlData/Function. With calculatedStartDate and duration per Function, both central
order management and service order management solutions can use these values as the
requested delivery date for the order line in a downstream system. based on the modeling
done in the Order Component Specification entity, the date does affect the runtime behavior of
the order component. If there is a Duration Value associated with a dependency, it is used in
the order component start date calculation since this value is relative value to the orchestration
dependency.

OSM populates the multi-instance orderltem node with the set of order items that have been
decomposed into this order component. The order items are accessed through orderltemRef,
which is a reference node to ControlData/Orderltem. A reference node is used to point to the
actual storage location of the order item so that updates to the order item data are reflected in
all order components the order item is referenced from.

You can also store status data in the order item data and in the function data. Figure 8-9 shows
a structure for storing status data. In this example:

e The LinelD data element provides a reference to the order line item in the incoming
customer order.

* The Systeminteraction data element stores data about status events; for example, a
status code, description, and timestamp.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 37

ORACLE Chapter 8
Modeling Data for Fulfillment States

Figure 8-9 Status Data in Order Item

(= %ﬂ E%tatugmlanage@enté
f=l EEE; ProductStatus
4P LinelD
= Tﬂ SystemInteraction
4P componentKey
= %E', Milestone
4P Code
: {2 Description
. €2 Timestamp
= %ﬁ Faulk
_ €? code
. {2 Description
€2 Timestamp

Figure 8-10 shows a structure for storing status data for functions. In this example:

* The componentKey data element provides a reference to the order component instance.

* The Response data element stores the message from the external system, as well as the
timestamp, description, and status code.

Figure 8-10 Status Data in Functions

= ?ﬂ SystemlInteractionStatusManagement
= %ﬂ SystemInteractionStatus

4P componentKey

= EE?, Response
€» RawResponse
&P Timestamp
&2 Description
€9 Code

Modeling Data for Fulfillment States

Fulfillment state processing requires specific structures and data elements inside the order
template. The specific locations of the data can be changed using XML catalog: the default
locations are presented here. See "About XML Catalogs" for more information about using
XML catalogs in OSM. See "Sample XQuery for Changing Default Data Locations" for more
information about changing the default data locations.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 37

ORACLE Chapter 8
Modeling Data for Fulfillment States

About ControlData for External Fulfillment States

External fulfillment state information is populated for order components.

The default location for external fulfillment state information is ControlData/Functions/
OrderComponentNamelorderitem/ExternalFulfillmentState.

Write the automation code so that it populates the information in the correct place. For
example, the following automation code updates the ExternalFulfillmentState value whenever a
response containing a fail value returns or passes on any other value in the response:

</UpdatedNodes>
{(

for $orderltem in $component/oms:orderltem
let $lineld := $orderltem/oms:orderltemRef/centralom: lineld/text()
return

(

if ($responseRoot/res: lineResponses/res:response[@id=$lineld]/text() = "fail") then

(
<Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderltem[@index="{$orderItem/@index}"]">
<ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFul fil ImentState>
</Update>

)

else

(
<Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderltem[@index="{$orderItem/@index}"]">
<ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFul fil ImentState>
</Update>

)

)
)}
</OrderDataUpdate>

About ControlData for Order Fulfillment State

OSM populates the order fulfillment state based on the configuration in the order fulfillment
state composition rule set.

The default location for OSM to populate the order fulfillment state is ControlData/
OrderFulfillmentState. The Data Dictionary contains a root-level OrderFulfillmentState
element. For cartridges created in a pre-7.2 version of OSM, drag the root-level
OrderFulfillmentState element into the ControlData node on the order. For new cartridges,
the element will get added automatically to the order template as a child of ControlData.

About ControlData for Order Item Fulfillment State

OSM populates the order item fulfillment state based on the configuration in the order item
fulfillment state composition rule set.

The default location for OSM to populate the order item fulfillment state is ControlDatal/
Orderltem/OrderltemFulfillmentState. The Data Dictionary contains a root-level
OrderltemFulfillmentState element. For order items in cartridges created in a pre-7.2 version
of OSM, drag the root-level OrderltemFulfillmentState element into the ControlData/
Orderltem node on the order. For new cartridges and order items, the element will get added
automatically to the order template as a child of ControlData/Orderltem.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 37

ORACLE Chapter 8
Modeling Data for Fulfillment States

Fulfillment States and Point of No Return

If points of no return have been configured using fulfillment states, OSM populates the point of
no return when processing the order item fulfillment state composition rules. For more
information about points of no return, see OSM Concepts.

The default location for OSM to populate the point of no return value is ControlDatal
Orderltem/PointOfNoReturn.

Fulfillment State and Point of No Return Initial Values

You can set initial values for order item fulfillment states and points of no return, so that these
values will appear on the order before any processing takes place. See "Sample XQuery for
Changing Default Data Locations" for more information about setting these values.

Sample XQuery for Changing Default Data Locations

To change the default locations and set initial values for point of no return and order item
fulfillment state, include an XQuery file in the XML catalog. To use the defaults, do not provide
a file.

To include your custom XQuery file in the cartridge, include a line similar to the following in the
XML catalog file for your cartridge:

<rewriteURI uriStartString="cp:oracle/communications/ordermanagement/execution”
rewritePrefix="osmmodel:///CartridgeNane/Cartri dgeVersi on/resources/Directory"/>

For more information about using XML catalogs, see "About XML Catalogs".

If you choose to configure a custom file, you should include all of the functions, even those for
defaults you are not changing. This will clarify the configuration and assist in maintenance
activities. The purpose of each function is indicated in comments in the file. For all values that
specify order template locations (for example /OrderLifeCycleManagement), begin the value
with a forward slash, as shown below.

xquery version "1.0";
module namespace fulfillmentstatemodule = "http://xmlns.oracle.com/communications/
ordermanagement/ful fillmentstatemodule";

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.0rg/1999/XSL/Transform"
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

(: Returns the composite fulfillment state path for an order. :)
declare function fulfillmentstatemodule:getOrderCompositeFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {

""/ControlData/OrderFul fillmentState" };

(: Returns the composite fulfillment state path for an order item. :)

declare function fulfillmentstatemodule:getOrderltemCompositeFulfillmentStatePath

($orderMnemonic as xs:string) as xs:string {
""/ControlData/Orderltem/OrderltemFul fillmentState" };

(: Returns the default order item external fulfillment state path. :)
declare function fulfillmentstatemodule:getOrderltemExternalFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {

"ExternalFulfillmentState" };

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 37

ORACLE

Modeling Guide
G37998-01

Chapter 8
Modeling Data for Fulfillment States

(: Returns the default type of the order item external fulfillment state path.
Valid values are RELATIVE_PATH and ABSOLUTE_PATH. :)
declare function fulfillmentstatemodule:getOrderltemExternalFulfillmentStatePathType
($orderMnemonic as xs:string) as xs:string {
"RELATIVE_PATH" };

(: Returns the point of no return path for an order item. :)
declare function fulfillmentstatemodule:getOrderltemPoNRPath ($orderMnemonic as
xs:string) as xs:string {

""/ControlData/Orderltem/PointOfNoReturn™ };

(: Returns the name of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderInitialFulfillmentStateName
($orderMnemonic as xs:string) as xs:string {

B

(: Returns the namespace of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderlInitialFulfillmentStateNamespace
($orderMnemonic as xs:string) as xs:string {

B

(: Returns the initial point of no return value of an fulfillment state. :)
declare function fulfillmentstatemodule:getOrderltemlnitialPoNR($orderMnemonic as
xs:string) as xs:string {

B

declare function fulfillmentstatemodule:getExternalFulfillmentStates(
$orderData as element()) as element()?
{
let $orderMnemonic :=
if (fn:exists($orderData/OrderType))
then $orderData/OrderType/text()
else "
let $orderltems := $orderData/_root/ControlData/Orderltem
where (fn:exists($orderltems))
return
<oms:ExternalFulfillmentStates>

for $orderltem in $orderltems
let $orderltemlndex := $orderltem/@index
let $components := $orderData/_root/ControlData/Functions/*[orderltem/
order I'temRef/@referencedIndex=$orderltemindex]
let $externalFulfillmentStatePath :=
fulfillmentstatemodule:getOrderltemExternalFul fillmentStatePath($orderMnemonic)
let $externalFulfillmentStatePathExistsCheck :=
fn:concat($externalFulfillmentStatePath, "[text()!=""]1")
let $externalFulfillmentStateExists := fn:exists($components/
order lItem[order ItemRef/@referencedIndex=$orderItemindex]/
saxon:evaluate($external Ful fillmentStatePathExistsCheck))
where (fn:exists($components) and $externalFulfillmentStateExists=fn:true())
return
<oms:OrderltemExternalFulfillmentState index="{$orderltemlndex}">
{
for $component in $components
let $componentKey := fn:normalize-space($component/componentKey/
text())
let $componentld := $component/@index
let $externalFulfillmentStatevValuePath :=
fn:concat($externalFulfillmentStatePath, "[last()]/text()")
let $externalFulfillmentState := fn:normalize-space($component/
order lItem[orderItemRef/@referencedIndex=$orderItemindex]/
saxon:evaluate($externalFulfillmentStateValuePath))

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 18 of 37

ORACLE Chapter 8
Modeling Data for Processing States

where (fn:exists($externalFulfillmentState)
and $externalFulfillmentState 1= "")
return
<oms:OrderltemComponentState componentld="{$componentid}">
<oms : ComponentKey>{$componentKey}</oms:ComponentKey>
<oms:ExternalFulfillmentState>{$externalFul fillmentState}</
oms:ExternalFulfil ImentState>
</oms:0rder ItemComponentState>

</oms:0OrderltemExternalFulfillmentState>

}

</oms:ExternalFulfillmentStates>

}

Modeling Data for Processing States

Processing states requires specific structures and data elements inside the order template.

About ControlData for Order Component Order ltem Processing States

Order component order item processing state information is populated for order components.

The default location for order component order item fulfillment state information is
ControlData/Functions/OrderComponentNamelorderltem/FunctionProcessingState.

Write the automation code so that it populates the information in the correct place. For
example, the following automation code updates the FunctionProcessingState to the
UndoFailed value whenever a response containing a fail value returns or to the Completed
value whenever any other response returns:

</UpdatedNodes>
{(
for $orderltem in $component/oms:orderltem
let $lineld := $orderltem/oms:orderltemRef/centralom: lineld/text()
return

if ($responseRoot/res: lineResponses/res:response[@id=$lineld]/text() = "fail") then

(
<Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderltem[@index="{$orderItem/@index}"]">
<oms:FunctionProcessingState>UndoFai led</oms:FunctionProcessingState>
</Update>
)

else

(
<Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderltem[@index="{$orderItem/@index}"]">
<oms:FunctionProcessingState>Completed</oms:FunctionProcessingState>
</Update>

)
)}
</OrderDataUpdate>

About ControlData for Order Item Processing States

OSM populates the order item processing state based on the order component order item
processing state.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 37

ORACLE Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

The default location for OSM to populate the order item processing state is ControlData/
Orderltem/OrderltemProcessingState.

Modeling Orders With Data Fields Above 1000 Characters

Standard OSM Design Studio data elements and structures can support a maximum of 1000
characters. However, in some cases it may be necessary to model data that exceed this limit.
Before you model order data fields than can contain more than 1000 characters, you must
carefully decide whether these fields are necessary. Unnecessary data within an order can
reduce the order processing performance of OSM.

The following sections describe ways to achieve data length for OSM data above 1000
characters.

Using XML Types for Data Fields Above 1000 Characters

In Design Studio, you can model data dictionary structures as XML types from the Order
specification, Order Template, Properties sub-tab, Order Data sub-tab. The structure must
be empty and contain no children elements or structures for it to be designated as XML type.
Structures defined as XML types in the data dictionary can contain XML documents. You can
also use XML schema files to validate the XML structures in the XML types.

Oracle recommends this option when the data is not human editable or readable in the OSM
user interfaces because the data is represented as XML. For example, the XML data can be
captured as follows, where <largetext> is the name of the structure designated as XML type:

<largetext>
Text to be inserted here
</largetext>

When you have defined the XML type structures in the Order specification Order Template,
then included them as a part of Manual or Automated Task Data, you can access the XML data
using:

* The OSM Task web client Order Editor screen (see OSM Task Web Client User's Guide for
more information).

e XML API GetOrder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

« OSM Web Service GetOrder and UpdateOrder OSM operations (see OSM Developer's
Guide for more information).

e Order access and updates performed using Automated Task automation plug-ins (see
"About Automation Plug-ins" for more information).

This approach has the following limitations:

* You cannot specify XML type data as significant for amendment processing. Changes to
this data does not trigger compensation.

* XML types are not visible in the OSM reporting interface.

To enable XML schema validation:

1. Create schema files for the required XML data type.

2. Use the Java perspective Package Explorer view to copy the schema files into the
cartridge project data dictionary folder where the XML data type has been defined.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 37

ORACLE Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

Using Order Remarks for Data Fields Above 1000 Characters

You can add Remarks that contain text to orders during order processing. Remarks can be
retrieved and updated using:

The OSM Task web client Remarks and Attachments screens (see OSM Task Web Client
User's Guide for more information).

@® Note

The attachments created using the Remark and Attachments screens can be
accessed through the OSM Database.

XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

« OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's Guide
for more information).

e Order access and updates performed using Automated Task automation plug-ins (see
"About Automation Plug-ins" for more information).

This approach has the following limitations:

e Remarks can store up to 4000 bytes of data. Depending upon the character set configured
in your database, the number of characters will vary.

« Remarks associated with orders are only editable for a certain time after you add them.
This time limit is defined by the remark_change_timeout_hours parameter contained in
the oms-config.xml file. You can edit the value associated with this parameter to change
the number of hours that remarks are editable. The default value is 24 hours. See OSM
System Administrator's Guide for more information about working with the oms-config.xml
file.

Using Attachments for Data Fields Above 1000 Characters

You can also add file attachments to remarks. File attachments can contain large amounts of
data and you can store them in different formats. You can access attachments with:

* The OSM Task web client using the Remarks and Attachments screens (see OSM Task
Web Client User's Guide for more information).

@ Note

The attachments created using the Remark and Attachments screens can be
accessed through the OSM Database.

XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

« OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's Guide
for more information).

Attachments are governed by the max_attachment_size parameter in the oms-config.xml
file. You can edit the value associated with this parameter to change the maximum attachment

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 37

ORACLE’

Chapter 8
Using Data Providers to Retrieve Data

size. The default value is 10MB. See OSM System Administrator's Guide for more information
about working with oms-config.xml.

® Note

When the remark change threshold is exceeded (remark_change_timeout_hours),
you can no longer add or delete attachments to the remark.

Using Data Providers to Retrieve Data

This section describes how to use data providers to retrieve data when modeling orders in
OSM.

About Data Providers and Adapters

Modeling Guide
G37998-01

An Oracle Communications Service Catalog and Design - Design Studio data provider is an
instantiation of adapter (which is a Java class) that can retrieve data in an XML format from
external systems. Data Providers are used when defining Data Instance behaviors (see "Using
the Data Instance Behavior to Retrieve and Store Data" for more information). Design Studio
provides several built-in Data Providers to retrieve external XML instances from specific
sources such as an Objectel server extension or a SOAP web service. Additionally, you can
create your own custom Data Provider (see "Custom Data Providers" for more information).

In Design Studio, the Data Provider editor Settings tab (Figure 8-11) allows you to set the Data
Provider type using Provider Type. Types of Data Providers include:

* Objectel

¢ Order

* Property File

+ SOAP

* XML Attachment
XML File

« XML Validation

- JDBC

« Web Service

e Custom Data Providers

When you select any of the above choices other than a custom data provider, the Provider
Class field becomes disabled and is populated with the OSM implementation of the adapter.
When you select Custom, the Provider Class field is enabled because you must supply the
class name of the custom adapter that you write. See "Custom Data Providers" for detailed
information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 22 of 37

ORACLE’

Figure 8-11 Data Provider Settings Tab

Data Provider : Test

Chapter 8
Using Data Providers to Retrieve Data

D@

Display Mame | Testl

Settings

Provider Tvpe Cbjecte

Provider Class

ache Setkings:

Scope Swskem W
Maimurn Time (Milliseconds) | 15000

Maxirum number cached al

L ARE S

Settings Interface

Data Provider Interface Tab

Modeling Guide
G37998-01

Data providers, both built-in and custom, can take parameters as input, as shown in the
Interface tab (Figure 8-12). Parameter names are free-form text, but are dictated by the data
provider's expected input. An asterisk (*) appears next to mandatory parameters, and each
parameter's corresponding value can be specified as either XPath 1.0 or XQuery 1.0. In
addition to the functions provided by the XPath 1.0 or XQuery 1.0 standards, OSM provides a
custom function, instance(string) that allows the output of one data provider to be used as
the input of another. The parameters required by each of the built-in data providers is

documented in the sections that follow.

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 37

ORACLE Chapter 8
Using Data Providers to Retrieve Data

Figure 8-12 Data Provider Interface Tab

Data Provider - Test1 D@

Display Mame | Testl
Input Parameters

Zurrent Param | objectel; extensionMame

Parameters Defaulk Yalue [5PATH w

nbjectel;extensiontame® iLibPus:runStoredQuery”
objectelimsFactory

objectel:queus

objectel; allowErrorResponse

Remove

Result Documents

Settings | Interface

For instructions on how to define these data providers in Design Studio, including field-level
detail, see "Data Provider Editor" in Modeling OSM Processes.

Accessing Data through Data Providers

To use a Data Provider, you include a data element in the order template, define a behavior for
it and use an XPath expression to access the Data Provider and extract the data that you wish
to display in the data element.

For example, the following XPath illustrates how to call a web service provider instance named
"Datalnstance” and return the value of the "my_element" view data element.

instance("Datalnstance")/Data/_root/my_element

For XQuery, you would use vf:instance().

Augmenting or Overriding Data

In most cases, a data provider references order data from an external source, another
behavior, or as static values defined within the data provider. In addition to these options, you
can also add explicit parameter values from within an XQuery or XPath that augment or
override the parameters defined in the OSM data dictionary.

For example, the following variable can be declared with parameters that have not been
defined within the OSM data dictionary from within an XQuery:

declare variable $datalnstanceParams :=
<params>
<oms:url>file://users/bdueck/catalog.xml</oms:url>
<fooParam>barValue</fooParam>
</params>;

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 37

ORACLE

Objectel

Modeling Guide
G37998-01

Chapter 8
Using Data Providers to Retrieve Data

You can call a data instance function using a sequence of parameters declared in the variable
above. For example:

log:info($log, local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1], "Datalnstance”,$datalnstanceParams/*)/*[]))

You can call a data instance function using parameters passed as parameters on the function
one by one. For example:

log:info($log, local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1], "Datalnstance”,<oms:url>file://us/catalog.xml</oms:url>)/*[1])),

You can call a data instance function using parameters passed as parameters on the function

one by one and include two parameters. For example:

log:info($log, local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1], "Datalnstance”,<oms:url>file://us/catalog.xml</oms:url>,<foo>bar</foo>)/

*[11))

This adapter provides a reliable transport call into Objectel. Although JMS is an asynchronous
protocol, the Objectel adapter itself is not. While JIMS simplifies transaction management,
recovery, offline capabilities, and security, these benefits are not relevant when considered
within the context of a behavior. The JMS adapter utilizes additional resources in the
application server in the form of temporary JMS destinations to which Objectel sends the
response. These can be expensive if an order has many adapters being called concurrently. It
is not recommended to use this adapter in this scenario.

Parameters
e objectel:extensionName
Description: the name of the Objectel server extension to call.
Mandatory/Optional: Mandatory
* objectel:jmsFactory
Description: the name of the JMS factory to be used to access Objectel's IMS queue.
Mandatory/Optional: Optional
Default value - com.oracle.objectel . XMLIMS.QueueConnectionFactory
e objectel:queue
Description: The name of the Objectel receive queue.
Mandatory/Optional: Optional
Default value: - com.oracle.objectel .XMLIMS.QueueConnectionFactory
e objectel:allowErrorResponse

Description: an optional Boolean parameter name that if specified controls what happens if
Objectel returns an error response. If this parameter is set to false (default), an error
response from Objectel triggers an exception to be thrown which is in turn displayed as a
constraint violation. If this parameter is set to true, the error response is returned by the
ObjectelAdapter as a valid instance. This allows another Constraint behavior to apply to
that same instance and display an error message accordingly. The benefit of using the
default (false) is that you do not have to write an additional behavior to display a default
error message. The constraint violation message looks like an exception with a stack trace,
but shows the error description returned by Objectel at the top of the message. The benefit

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 37

ORACLE Chapter 8
Using Data Providers to Retrieve Data

of setting this parameter to true is that you have greater control over when the error is
shown, at what severity, and what message is displayed.

— false: If this parameter is set to false (the default), an error response from Objectel
throws an exception, which is then displayed as a constraint violation. By using false
you can avoid writing an additional behavior to display only a default error message.
With this method, the constraint violation message looks like an exception with a stack
trace, but shows the error description returned by Objectel at the top of the message.

— true: If this parameter is set to true, the error response is returned by the
ObjectelAdapter as a valid instance. This allows another Constraint behavior to apply
to that same instance and display an error message accordingly. By setting the
parameter to true, you have greater control over:

* When the error should be shown
* The severity level displayed
* The exact error message to display.

— All other parameters are passed directly as name/value pairs to the server extension.

Order

This adapter lets you use order data from any OSM order as an external instance. This is
useful for using related order data from other orders within OSM.

Parameters

e oms:OrderlID
Description: The order ID of the order to be retrieved.
Mandatory/Optional: Mandatory
° oms:View
Description: The view (query task) to use when retrieving order data.
Mandatory/Optional: This is required if the oms:OrderHistID is not supplied.
e oms:OrderHistID
Description: The order history ID to use when retrieving order data.

Mandatory/Optional: This is required if oms:View is not supplied.

Adding a New Order Data Provider

To add a new Data Provider which uses the Order adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New, then
select Order and Service Management, and then select Data Provider.

2. In the Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Order.

The new Order Data Provider is added to the Design Studio project.
3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab, specify
values for either the oms:View or oms:OrderHistID parameters.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 37

ORACLE

Chapter 8
Using Data Providers to Retrieve Data

5. Set the Default Value to either XQuery or XPath and enter your request code in the
Default Value edit box.

6. Optionally specify the XML structure of the data in the Results Document edit box.

The definition of GetOrderResponse is located in the order management web service
schema at SDK\XMLSchemalGetOrder.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM Processes. Also,
see "Accessing Data through Data Providers".

Property File

SOAP

Modeling Guide
G37998-01

This adapter retrieves an external Java property file with a given name from the classpath. The
format of the XML instance returned by this adapter is specified as:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javalutil/
Properties.html

Parameters

e oms:url

Description: Specifies the file name of the Java property file. The file must be on the
classpath and must be in the format of a Java property file.

Mandatory/Optional: Mandatory

This adapter lets you access web services from OSM or an external web service server, using
the HTTP protocol. You can call SOAP web services from OSM or an external web service
server and use the responses within behaviors.

@ Note

If you need to configure a proxy server to access the internet, add the following
parameters to the OSM WebLogic server startup script:

JAVA_OPTIONS="${JAVA_OPTIONS} -Dhttp.proxyHost=i p_address -Dhttp.proxyPort=port

where ip_address and port are the IP address and port of the proxy server.

For web service calls specific to OSM, use the Web Service adapter. See "Web Service".

For general web services calls, use the SOAP adapter.

Parameters

e soap-endpoint
Description: Specifies the URL to which the SOAP request will be sent.
Mandatory/Optional: Mandatory

e soap.action
Description: Contains the URI that identifies the intent of the message.

Mandatory/Optional: Optional

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 27 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html

ORACLE

Modeling Guide
G37998-01

Chapter 8
Using Data Providers to Retrieve Data

e soap-envelope
Description: Specifies the root element of a SOAP message.
Mandatory/Optional: Mandatory, if the soap.body parameter is not defined.
e soap-body

Description: Contains the SOAP message intended for the endpoint. If the SOAP body
node is not included in the soap.body content, it will be added by the SOAP Adapter.

Mandatory/Optional: Mandatory, if the soap.envelope parameter is not defined.
e soap-header

Description: Contains XML data that affects the way the application-specific content is
processed by the message provider. If the SOAP header node is not included in the
soap.header content, it will be added by the SOAP Adapter.

Mandatory/Optional: Optional

e oms:credentials.username
Description: Specifies an authentication user name.
Mandatory/Optional: Optional

» oms:credentials.password: An optional authentication parameter
Description: Specifies an authentication password.
Mandatory/Optional: Optional

e oms:credentials.scope.host: An optional authentication parameter
Description: Specifies an authentication host parameter.
Mandatory/Optional: Optional

» soap-allowErrorResponse:

Description: When set to true, the adapter returns SOAP fault messages to the calling
behavior; otherwise, the adapter throws an exception when a SOAP fault response is
returned.

Mandatory/Optional: Mandatory

Example of soap.body Parameter

The following is an example of a SOAP body, which would be populated in the soap.body
parameter.

<instance name="us-addr" xsi:type="externallnstanceType'>
<adapter>com.mslv.oms.view.rule.adapter.SOAPAdapter</adapter>

<parameter name="soap.endpoint">"http://ws2.serviceobjects.net/av/AddressValidate._asmx"</
parameter>

<parameter name="soap.body" xsi:type="xqueryType'>

<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlIns:soap="http://schemas._xmlsoap.org/soap/envelope/" xmIns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance'>

<sa:ValidateAddress xmlns:sa="http://www.serviceobjects.com/">

<sa:Address xsi:type="soapenc:string">{ ../street/text() }</sa:Address>

<sa:City xsi:type="'soapenc:string">{ ../city/text() }</sa:City>

<sa:State xsi:type="soapenc:string">{ ../state/text() }</sa:State>

<sa:PostalCode xsi:type="soapenc:string"/>

<sa:LicenseKey xsi:type="soapenc:string">{ ../soap_license_key/text() }</sa:LicenseKey>
</sa:ValidateAddress>

</soap:Body>

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 28 of 37

ORACLE

Modeling Guide
G37998-01

Chapter 8
Using Data Providers to Retrieve Data

</parameter>

</parameter name=''soap.action">"http://www.serviceobjects.com/ValidateAddress"</
parameter>

<cache>

<scope>NODE</scope>

</cache>

</instance>

Example of soap.envelope Parameter

The following is an example of a SOAP envelope, which would be populated in the
soap-envelope parameter.

<?xml version="1.0" encoding="UTF-8"?>
<com:modelEntity xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:adapt="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
xmlns="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
xmlns:com="http://www.mslv.com/studio/core/model/common"
xmlns:prov="http://xmIns.oracle.com/communications/sce/osm/model/provisioning"
xsi:type="adapt:adapterType" name="Send_Order'>
<com:displayName>Send_Order</com:displayName>
<com:saveVersion>49</com:saveVersion>
<com: interface>
<com:inputParameter xsi:type="adapt:xpathlnputParameterType" name='"soap.endpoint'>
<adapt:contentType>XPATH</adapt:contentType>
<adapt:defaultValue>"http://localhost:7001/0sm/wsapi "</adapt:defaultvalue>
</com: inputParameter>
<com: inputParameter xsi:type="adapt:xpathlnputParameterType" name='"soap.envelope'>
<adapt:contentType>XQUERY</adapt:contentType>
<adapt:defaultvValue>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlIns:osm="http://xmlns.oracle.com/communications/ordermanagement'>
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlIns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmlns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd">
<wsse:UsernameToken wsu:ld="UsernameToken-10570647"">
<wsse:Username>user name</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText' " >passwor d</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<osm:CreateOrderBySpecification xmlns:osm="http://xmIns.oracle.com/communications/
ordermanagement" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/
XMLSchema'">
<osm:Specification>
<osm:Cartridge>
<osm:Name>LGT_PSTN_Corp</osm:Name>
<osm:Version>1.0.0</osm:Version>
</osm:Cartridge>
<osm:Type>LGT_PSTN_CorpOrder</osm:Type>
<osm:Source>LGT_PSTN_CorpOrder</osm:Source>
</osm:Specification>

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 29 of 37

ORACLE Chapter 8
Using Data Providers to Retrieve Data

<osm:Reference>Create by WebService</osm:Reference>
<osm:Priority>5</osm:Priority>
<osm:AutoAddMandatoryData>true</osm:AutoAddMandatoryData>
<osm:StartOrder>true</osm:StartOrder>
<osm:Data>
<_root>
<Customer_info>
<Customer_name>Sample_cust</Customer_name>
<Customer_Address>Anytown</Customer_Address>
<Customer_region>1</Customer_region>
<Customer_contact>391-322-1323</Customer_contact>
</Customer_info>
<Order_info>
<Order_ld> 1000006</0Order_ld>
<Order_version>1 </Order_version>
</0rder_info>
<Service_info>
<Service_Type>1</Service_Type>
<Corp_TelephoneNumber>900893322 </Corp_TelephoneNumber>
</Service_info>
</_root>
</osm:Data>
</osm:CreateOrderBySpecification>
</soapenv:Body>
</soapenv:Envelope></adapt:defaultValue>
</com: inputParameter>
<com:inputParameter xsi:type="adapt:xpathlnputParameterType"
name="‘oms:credentials.username">
<adapt:contentType>XPATH</adapt:contentType>
<adapt:defaultValue>"osm"</adapt:defaultValue></com: inputParameter>
<com:inputParameter xsi:type="adapt:xpathlnputParameterType"
name="‘oms:credentials.password">
<adapt:contentType>XPATH</adapt:contentType>
<adapt:defaultValue>"passwor d"</adapt:defaultvValue>
</com: inputParameter>
</com: interface>
<com:implementation xsi:type="adapt:adapterImplementationType'>
<adapt:builtInType>S0AP</adapt:builtinType>
</com: implementation>
<adapt:cache enabled="true">
<adapt:scope>SYSTEM</adapt:scope>
<adapt:timeout>15000</adapt:timeout>
<adapt:maxsize>50</adapt:maxsize>
</adapt:cache>
</com:modelEntity>

XML Attachment

This adapter lets you use an attachment from any OSM order as an external instance. It is
useful for using related-order-data from other orders within OSM.

Parameters

e oms:OrderlID
Description: The order ID of the order to be retrieved.
Mandatory/Optional: Mandatory

e oms:FileName

Description: The name of the attachment to use when retrieving the order data.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 30 of 37

ORACLE

XML File

Chapter 8
Using Data Providers to Retrieve Data

Mandatory/Optional: Mandatory

This adapter lets you use an XML file accessible from any URL as an external instance. It is
useful for integrating external XML data located in a file system, FTP site, from HTTP, or in a
Java JAR file.

Parameters
e oms:url
Description: The URL of the file to retrieve.

Mandatory/Optional: Mandatory

XML Validation

JDBC

Modeling Guide
G37998-01

This adapter validates a provided XML instance document according to a user-defined
schema. The document may be provided either as a URL or as an element. The schema may
also be provided as a URL or as an element. The returned document conforms to the element
specified by http://xmIns.oracle.com/communications/
ordermanagement#ValidationResult.

Parameters

* document
Description: The file name of the XML document to validate.
Mandatory/Optional: Mandatory

e schema
Description: The file name of the XSD used to perform the XML validation.

Mandatory/Optional: Mandatory

This adapter lets OSM query any JDBC database, then use the results within a behavior. This
adapter is particularly useful for acquiring information stored in an external database.

Parameters
e oms:dataSource

Description: The JNDI name of the data source providing the database connection
information. For example <code>"mslv/oms/oms1/internal/jdbc/DataSource”. The data
source must be defined through the WebLogic remote console. To do so, navigate from
Edit Tree to Services. Within Services, open Data Sources.

Mandatory/Optional: Mandatory
e oms:sql

Description: The SQL that is sent to the database. To run a SQL stored procedure, this
parameter must comply with the format specified by:

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/
CallableStatement.html

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 31 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/CallableStatement.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/CallableStatement.html

ORACLE Chapter 8
Using Data Providers to Retrieve Data

Mandatory/Optional: Mandatory
e in:l . . . in:n

Description: 1 to n additional optional input parameters may be supplied that are bound to
parameters defined in the oms:sqgl value.

Mandatory/Optional: Optional
e out:l . . . out:n

Description: 1 to n additional optional output parameters that are used when calling SQL
stored procedures that have output parameters defined. The parameter value specifies the
SQL type name of the parameter, and must be defined at:
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/
Types.html

Mandatory/Optional: Optional

Web Service

This external instance adapter lets you invoke the GetOrder and FindOrder OSM Web Service
operations. The adapter acts as a wrapper around OSM's Web Service API for these two web
service operations, allowing them to be called from external instances.

For other web service calls, use the SOAP adapter. See "SOAP" for more information.

Parameters

e soap.request
Description: Set this parameter to one of the following:

— The contents of what would normally be in the Body element of the web service
request. For example, ord:GetOrder or ord:FindOrder.

— A soap:Envelope element, that is, the entire soap request.
— A soap:Body element, that is, the body element of the soap request.
Mandatory/Optional: Mandatory

See OSM Developer's Guide for more information about GetOrder and FindOrder web service
transactions.

Adding a New Web Service Data Provider

To add a new Data Provider which uses the Web Service adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New, then
select Order and Service Management, and then select Data Provider.

2. Inthe Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Web Service.

The new Web Service Data Provider is added to the Design Studio project.
3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab, select
the soap.request* parameter.

5. Set the Default Value to XQuery and enter the request XQuery code in the Default Value
edit box. See "Sample soap.request XQuery" for an example.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 32 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/Types.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/Types.html

ORACLE

Chapter 8
Using Data Providers to Retrieve Data

You can optionally specify the request as an XPath instance instead by setting the Default
Value to XPath and entering the request XPath code in the Default Value edit box.

6. Optionally specify the XML structure of the data in the Results Document edit box.

Definitions of FindOrderResponse and GetOrderResponse declarations are located in the
order management web service schema at
SDK\WebServicelwsdl\OrderManagementWS.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM Processes.

Sample soap.request XQuery

The following is a soap.request XQuery example for a web services Data Provider. You can
also specify the input as a SOAP envelope or a SOAP Body.

<ord:GetOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement'>
<ord:Orderld>1</ord:Orderld>
<ord:View>review_details_view</ord:View>
<ord:AmendmentFilter>
<ord:LevelOfDetail>AmendmentsSummary</ord:LevelOfDetai 1>
</ord:AmendmentFilter>
<ord:LifecycleEventFilter>
<ord:RetrievelLifecycleEvents>true</ord:RetrieveLifecycleEvents>
</ord:LifecycleEventFilter>

</ord:GetOrder>

Accessing Data

Modeling Guide
G37998-01

To use the Data Provider, include a data element in the order template, define a behavior for it,
and use an XPath expression to access the Data Provider and extract the data to display in the
data element. See "Accessing Data through Data Providers".

Whenever the Web Service adapter is called through a Data Provider, GetOrderRequest is
executed and a response returned. If logging is set to debug for the OrderAdapter, a message
similar to the one below is displayed on the WebLogic Remote Console:

<09-Feb-2012 2:57:57,884 IST PM> <DEBUG> <adapter.OsmWebServiceAdapter> <ExecuteThread:
"10" for queue: "oms.web®> <<GetOrderResponse xmlns="http://xmlns.oracle.com/
communications/ordermanagement'>
<OrderSummary>
<ld>16</1d>
<Specification>
<Cartridge>
<Name>view_framework_demo</Name>
<Version>1.0.0.0.0</Version>
</Cartridge>
<Type>vf_demo_webh</Type>
<Source>vf_demo_web</Source>
</Specification>
<State>open.running.in_progress</State>
<Reference>N1</Reference>
<CreatedDate>2012-02-08T17:55:31.000+05:30</CreatedDate>
<ExpectedDuration>P1D</ExpectedDuration>
<ExpectedOrderCompletionDate>2012-02-09T17:55:37.000+05:30</ExpectedOrderCompletionDate>
<ProcessStatus>n/a</ProcessStatus>
<Priority>5</Priority>
</OrderSummary>
<Data>
<osmc:_root

xmlIns:osmc="urn:oracle:names:ordermanagement:cartridge:view_framework_demo:1.0.0.0.0:view

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 33 of 37

ORACLE

Chapter 8
Using Data Providers to Retrieve Data

zenter_account_information" index="0">
<osmc:account_information index="1328703937231">
<osmc:first_name index="1328703937242">name</osmc:first_name>
<osmc:last_name index="1328703937243">lastname</osmc: last_name>
<osmc:country index="1328703937244">US</osmc:country>
<osmc:address_information index="1328703937233">
<osmc:address_details_us index="1328703937236">
<osmc:validate_address_via_soap index="1328703937238">No</
osmc:validate_address_via_soap>
<osmc:street index="1328703937239">street</osmc:street>
<osmc:city index="1328703937241">city</osmc:city>
<osmc:state index="1328703937240">MI</osmc:state>
<osmc:zip_code index="1328703937237">12323</0osmc:zip_code>
</osmc:address_details_us>
<osmc:address_details_ca index="1328703937234">
<osmc:validate_address_via_soap index="1328703937235">No</
osmc:validate_address_via_soap>
</osmc:address_details_ca>
</osmc:address_information>
</osmc:account_information>
<osmc:info_roopa index="1328703937245">nikhil</osmc:info_roopa>
</osmc:_root>
</Data>
</GetOrderResponse

Custom Data Providers

In addition to the built-in data providers described in previous sections, Design Studio supports
custom data providers. You can develop a custom data provider class in a project in Design
Studio as part of a solution. This provider class must implement the
com.mslv.oms.view.rule.External InstanceAdapter interface. This interface is documented
in the Javadocs distribution found in the OSM SDK.

The implementation class can be made available to the OSM run time system in two ways:

« Package the class into an Java archive (jar file) with an arbitrary name and place the jar
file in the resources directory of the Studio project(s) that define Behaviors referencing the
data provider. The class will be available as soon as the project is deployed

e Add the compiled adapter class to the customization.jar file in the oms.ear file. The class
will be available as soon as the OSM application is redeployed. See OSM Developer's
Guide for information about unpacking, packing, and redeploying the oms.ear file.

The External InstanceAdapter.retrievelnstance(ViewRuleContext, Map) method provides
a Map of name/value pairs of arguments defined in the data provider's Design Studio definition
and their corresponding values for an invocation of an instance of this class. The
com.mslv.oms.view.rule_adapter._AbstractAdapter class provides a number of methods to
assist in extracting properly type cast parameter values from that Map. AbstractAdapter is
included in the automation_plugins.jar archive found in the osmLib directory of a Design
Studio OSM project, as well as in the automation/automationdeploy_bin subdirectory of an
OSM SDK installation.

Handling Parameters

Modeling Guide
G37998-01

Custom data providers, like built-in providers, support input parameters. The following
examples illustrate how to access those parameters.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 34 of 37

ORACLE

Modeling Guide
G37998-01

Chapter 8
Using Data Providers to Retrieve Data

Example 1 (incorrect usage)

String stringParamvalue = (String) parameters.get(MY_STRING_PARAM); The value
returned by parameters.get(...) may not be a String, resulting in a ClassCastException.

Example 2 (incorrect usage)

String stringParamValue = parameters.get(MY_STRING_PARAM).toString(); The
parameters.get() call may return a null value resulting in a null pointer exception. Also, the
value returned may be an XML DOM fragment, requiring a more sophisticated mechanism for
value extraction than simply calling toString().

Example 3 (correct usage)

String stringParamvValue = = getStringParam(parameters, MY_STRING_PARAM); The
getStringParam(Map, String) call automatically performs the appropriate conversion to
coerce a parameter value into a String. This method is intended for extracting a required
parameter value. If a value for MY_STRING_PARAM was not provided, or if the value cannot be
coerced into a String, a BadParameterException is thrown. To retrieve optional parameter
values, use getStringParam(Map, String, String) instead; see Example 4.

Example 4 (correct usage)

String stringParamValue = getStringParam(parameters, MY_STRING_PARAM, "a default
value'); The MY_STRING_PARAM parameter is retrieved as an optional parameter. If a value for
MY_STRING_PARAM is provided, it is returned, otherwise, "a default value" is returned.The
AbstractAdapter class also provides similar methods to extract boolean, numeric, and XML
DOM Node parameter values:

e boolean hooleanParamValue = getBooleanParam(parameters, MY _BOOLEAN_ PARAM);
* int intParamValue = getlIntParam(parameters, MY_NUMBER_PARAM);

e Node nodeParamValue = getNodeParam(parameters, MY _NODE_PARAM);

The following code snippet illustrates a simple custom data provider class:

/*

* Copyright © 1998, 2012, Oracle and/or its affiliates. All rights reserved.
*/

package oracle.communications.ordermanagement._example;

import java.util.Map;
import oracle.communications.ordermanagement.util_xml_XMLHelper;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import com.mslv.oms.view.rule_.External InstanceAdapter;
import com.mslv.oms.view.rule_ViewRuleContext;
import com.mslv.oms.view.rule.adapter._AbstractAdapter;

/**

* <p>

* This class exemplifies a custom Data Provider. In particular, it demonstrates a
provider that returns the familiar "Hello World!™

* example. The data returned by this provider can in turn be used as input to any
Behavior type.

* </p>

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 35 of 37

ORACLE

Modeling Guide
G37998-01

Chapter 8
Using Data Providers to Retrieve Data

* <p>

* Like all data providers, this class implements the {@link ExternallnstanceAdapter}
interface. This interface defines a single method,

* {@link ExternallnstanceAdapter#retrievelnstance(ViewRuleContext, Map)
retrievelnstance(ViewRuleContext, Map)}. The

* {@link ViewRuleContext} argument provides various context hooks to this Data Provider
implementation instance. The <code>Map</code>

* argument contains the name/value pairs of arguments defined in the Data Provider®s
Studio definition and their corresponding values for

* the current invocation of this Data Provider implementation instance. It additionally
extends the {@link AbstractAdapter} class.

* <code>AbstractAdapter</code> provides a number of utility methods for retrieving
properly type-cast parameters from the parameter

* <code>Map</code>.

* </p>

*

* @author Copyright © 1998, 2012, Oracle and/or its affiliates. All rights reserved.
*

*/

public final class ExampleProvider extends AbstractAdapter implements

External InstanceAdapter {

/**
* The name of a parameter that specifies the salutation to return from {@link
#retrievelnstance(ViewRuleContext, Map)}. For example, if
* a value of <code>Goodbye</code> is specified, the message <code>Goodbye World!</
code> will be returned. This example does not require
* this parameter to exist. If it does not, the message <code>Hello World!</code>
will be returned.
*/
public static final String SALUTATION_PARAM NAME = "salutation";

private static final String DEFAULT_SALUTATION = "Hello";

/**
* <p>
* This implementation simply returns the root {@link Element} of a {@link Document}
containing the <code>String "Hello World!"</code>
* in the contents, i.e., the root of the XML:

<pre>
<responseégt;

<message>Hello World!</messageégt;
</responseégt;
</pre>

* ok % ok ok ok o *

</p>
<p>

* The <code>instance("<var>name</var>")</code> Behavior function resolves to the
document root element returned by this method.

* Therefore, the syntax for locating this provider®s message (assuming the Data
Provider associated with this class is named

* <code>ExampleProvider</code>) is <code>instance("ExampleProvider®)/message</code>.

* </p>

*

* @param ctx

* provides various context-specific hooks for use by this instance

* @param params

* <code>Map</code> of name/value pairs, where the key is the parameter
name defined in the Data Provider definition that is

* associated with this class, and the value is the resolved value of

that parameter for a specific invocation of this

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 36 of 37

ORACLE Chapter 8
Using Data Providers to Retrieve Data

* method. This example does not expect or require any parameters.
* @return the root <code>Document Element</code>

*/

@override

public Element retrievelnstance(final ViewRuleContext ctx, final Map<String, Object>
params) throws Exception {
/*
* This demonstrates how to use the utility methods inherited from
AbstractAdapter to return a parameter value, though here the
* "salutation" parameter is not expected to exist.
*/
final String salutation = getStringParam(params, SALUTATION_PARAM_NAME,
DEFAULT_SALUTATION);

/*

* Create the response. An actual provider implementation would likely calculate
or retrieve the response from an external system.

*/

final String response = "<response><message>" + salutation + " World!</message></
response>"";

/*

* The code invoking this method expects a org.w3c.dom.Document root
org.w3c.dom.Element. The XMLHelper utility class provides a

* number of DOM manipulation methods, including various String parsers.

*/

final Document responseDoc = XMLHelper.parseText(response, false);

return responseDoc.getDocumentElement();

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 37 of 37

Modeling Behaviors

This chapter describes how to model behaviors in an Oracle Communications Order and
Service Management (OSM) solution.

Modeling Behaviors Overview

You can use behaviors to specify how OSM manages data. For example:

e You can specify the maximum allowed number of characters for text string data.
e You can add the values of multiple fields and display the sum in another field.

e You can specify the minimum and maximum times that a data element can be used in an
order. For example, an order might require that exactly two IP addresses are added.

You can model behaviors in tasks and in orders. Figure 9-1 shows how behaviors are modeled
in a task that enters payment information. In this figure, the field that shows the payment total
uses two behaviors:

* A Calculation behavior that adds values in multiple other fields to create the total payment
value.

* A Read Only behavior that makes the field read-only in the Task web client.

@ Note

The examples are for illustrative purposes only; OSM is not typically used for payment
handling.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Figure 9-1 Behaviors Used in a Task

Manual Task - enter_payment_information D@

Display Name| Enter Payment Information |

Task Data Behaviors
=t account_information # Calculate2s
4% first_name # ReadOnly29
4¥ last_name

4% amount_owing

o

€¥ current_account_balance

=-18 payment_information

4% payment_method

€% pay_entire_balance

4% payment_amount
%?; credit_card_information
= direct_debit_information

Figure 9-2 shows a behavior modeled in an order. This behavior is used by an order to display
a tool tip for the payment information field.

Figure 9-2 Information Behavior Modeled in Oracle Communications Service Catalog
and Design - Design Studio

Information Behawvior - Information35

Labels | Hints |Help Details | Conditions | Information

Language [default] +

XPath Expression | 'Enter your payment information.’

Table 9-1 lists the OSM behaviors.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 29

ORACLE’

Chapter 9
Modeling Behaviors Overview

Table 9-1 OSM Behaviors
- |

Behavior Name

Descriptions

Calculation Computes the value of a field value based on a formula that references order data.
See "Using the Calculation Behavior" for more information.
Constraint Specifies a condition that must be met for the data to be considered valid.

See "Using the Constraint Behavior to Validate Data" for more information.

Data Instance

Declares an instance that can be used by other behaviors.
See "Using the Data Instance Behavior to Retrieve and Store Data" for more information.

Event Specifies an action that is performed when data is modified.
See "Using the Event Behavior to Re-evaluate Data" for more information.
Information Specifies the label, hint, and help information for the data element instance.
See "Using the Information Behavior to Display Data and Online Help" for more information.
Lookup Specifies a set of dynamically generated choices from which you can select.
See "Using the Lookup Behavior to Display Data Selection Lists" for more information.
Read Only Specifies whether a value can be modified or not.
See "Using the Read-Only Behavior" for more information.
Relevant Specifies whether data is visible or hidden.
See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client"
for more information.
Style Specifies the visual appearance of fields.

See "Using the Style Behavior to Specify How to Display Data in the Task Web Client" for
more information.

About Behavior Evaluation

It is possible that multiple behaviors can be applied to the same data. At run-time, OSM
determines which behavior should be applied by evaluating the conditions defined for
behaviors using a combination of server rules and behavior attributes that you model by using
Design Studio configuration options. The following configuration options affect the manner in
which OSM evaluates behaviors at run-time:

Modeling Guide
G37998-01

The level at which you define the behavior. See "Evaluating Behavior Levels" for more
information.

The manner in which you define the Design Studio Override and Final configuration
options. See "Evaluating Design Studio Final and Override Options" for more information.

The type of behavior defined for the element. See "Evaluating Behavior Type Precedence
and Sequence" for more information.

Whether multiple behaviors of the same type are defined for an element at the same level.

@® Note

The style behavior is the only behavior applied to Redo, Undo, and Do Nothing
compensation strategies and the historical order perspective displayed in the Task
web client. See "Modeling Compensation for Tasks" for more information about
compensation strategies and the historical order perspective.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Evaluating Behavior Levels

In Design Studio, you can create behaviors for data nodes at three levels:

e Data element level (most general)
e Order level (more specific)
e Task level (most specific)

OSM evaluates behaviors from the general level to the specific level. For example, OSM
evaluates behavior conditions defined at the data element level first, and evaluates behaviors
defined for data nodes at the task level last. At run-time, OSM determines which level to use
for a behavior type and data node combination and evaluates rules from that level only.

For example, consider that you create a Calculation behavior at the data element level, and for
the same data node you create a Calculation behavior at the order level. In this scenario, OSM
would never evaluate the conditions defined for the Calculate behavior at the order level
(unless you force evaluation using the Override or Final options), even if all of the conditions
defined for the behavior at the data element level evaluate to false.

OSM does, however, evaluate different types of behaviors defined for a data node at different
levels. For example, if for the same data node you define a Calculation behavior at the data
element level and a Constraint behavior at the order level, OSM evaluates the conditions for
both behaviors at run-time.

® Note

The Constraint behavior is an exception to the way in which behaviors are evaluated.
When the run-time environment evaluates Constraint behaviors, it evaluates all of
them, regardless of the level at which they are declared.

Evaluating Design Studio Final and Override Options

Modeling Guide
G37998-01

You can force local, specific exceptions to the way behaviors are evaluated for a given node by
selecting the Override and Final check boxes on the appropriate Properties view Behaviors
tab Details subtab in Design Studio. You can select the Override attribute to allow the
behavior to take precedence over any other behavior:

e Of the same type
e For the same node
* Declared at the same or more general level

For example, consider that you have a data element called customer that you declare twice: at
the data element level and at the task level. For each occurrence of customer, you create a
behavior called styleBehaviorType. At the specific task level, you select the behavior's
Override check box. At run-time, OSM evaluates the behavior conditions defined at the task
level, as the task-level version of styleBehaviorType overrides the data element-level version of
the same behavior type.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

@® Note

Override does not function if the behavior that you are trying to override has the Final
check box selected.

When selected, the Final check box prevents another behavior of the same type, for the same
node, declared at the same or more specific level, from overriding that behavior.

For example, you define the element customer at the data dictionary level (highest), and add it
at the task level (lowest). For each occurrence of customer, you define a Style behavior. On
the data dictionary level (most general) of the behavior definition, you select the Final check
box. On the task level (lowest) of the behavior definition, you select the Override check box.
When OSM evaluates the behaviors, the selection of the Final check box at the data dictionary
level prevents the task level (lowest) definition of the Style behavior from overriding the data
dictionary level (highest) definition of the behavior.

Evaluating Behavior Type Precedence and Sequence

OSM automatically evaluates behaviors whenever you retrieve, save, or transition an order.
OSM evaluates the behaviors in a specific nested sequence, as outlined below:

1. The system evaluates all behaviors for a given node before moving to the next node in the
order.

The next node in the order is based on a depth first, left-to-right traversal.

Figure 9-3 shows the element selection order.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Figure 9-3 Element Selection

Bahavior Child Grand-child Great-
evaluation elemeant elemeant grand-child
starts element
Element A 1 — 2 » 3 » 4
y
?’ i E i 5
> a8 » 2]
Y
Element B 10 Mo child elemeants
Element C 11 > 12 »> 13 » 14

2. Behaviors within a given node are evaluated based on the following precedence of type:
e 1st: Calculate
e 2nd: Style
e 3rd: Information
* 4th: Relevant
e 5th: Lookup
e 6th: Constraint
e Tth: Read-only
e 8th: Event

® Note

Relevant rules can prevent other rules from being evaluated. For example, if the
Relevant rule of a data node evaluates to false, then rule types with a precedence
lower than the Relevant rule are not evaluated (the Lookup, Constraint, Read-only,
and Event rules). Additionally, if a data node's Relevant rule evaluates to false, no
rule evaluation is done for any descendants of that node.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 29

ORACLE

3.

Chapter 9
Modeling Behaviors Overview

Within an order, within an element, within a specific behavior type, all behaviors defined at
a specific data level are evaluated before moving to the next data level.

The evaluation process prioritizes data levels, which are evaluated in the following order:
* Data dictionary level

e Order level

e Task level

Behaviors defined on a task can override behaviors defined on an order if you have
enabled the behavior's Override option at the task level and if you have disabled the
behavior's Final option at the order level.

® Note

The Constraint behavior is an exception to the way behaviors are evaluated: When
OSM evaluates Constraint behaviors, it evaluates all of them, regardless of the level at
which they are defined.

Evaluation Process

Within an order, within an element, within a behavior type, within a data level, the evaluation
proceeds as follows:

1.

Modeling Guide
G37998-01

Is the behavior enabled?

« If the behavior is enabled, the final and override options are evaluated simultaneously.
e If the behavior is not enabled, the behavior is not applied.

Is the behavior finalized or overridden?

« If the behavior is not finalized and not overridden at a lower level, the condition defined
for the behavior is evaluated.

» If the behavior is finalized and not overridden at a lower level, the behavior is final and
the condition defined for the behavior is evaluated.

» If the behavior is finalized and overridden at a lower level, the override has no affect;
the behavior is final and the condition defined for the behavior is evaluated.

« If the behavior is not finalized and is overridden at a lower level, the condition defined
for the overridden behavior is evaluated (not the condition defined for the behavior that
is currently being evaluated). If the condition is met, the overridden behavior is applied.

» If the behavior is not finalized and is overridden by more than one lower level, the
condition defined for the lowest level overridden behavior is evaluated (not the
condition defined for the behavior that is currently being evaluated). If the condition is
met, the overridden behavior is applied.

Is the condition defined for the behavior met?
* If the condition is met, the behavior is applied.

« If the condition is not met, the behavior is not applied.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

@® Note

If you define two or more behaviors for an element at the same level, to avoid
unpredictable behavior you should define mutually exclusive conditions. OSM
does not guarantee the order of evaluation for the same behavior types
defined at the same level.

4. The evaluation process continues.

e If a condition is met, and a behavior is applied, the evaluation process no longer
checks lower levels; it moves to the next occurrence of the behavior.

e If a condition is not met, the evaluation process continues with the next occurrence of
this behavior type defined at this data level. If there are no more at this level, the
evaluation process moves to the next lower level. If there are no lower levels, the
evaluation process continues with the next occurrence of this behavior type defined at
the highest level, and so on. When there are no more occurrences of the behavior
type, the evaluation process moves to the next behavior type, and so on. When there
are no more behavior types, the evaluation process moves to the next element.

When the evaluation process determines that a behavior is to be applied at a particular level,
some behavior types stop evaluating behaviors of the same type, while others continue
evaluating behaviors of the same type at that level for the same element.

For example, you define three behaviors of the same type on the same data element at the
same level, and all go through the evaluation process ending with the condition being met (the
behavior is applied). For behaviors that stop evaluating, only the first behavior is applied. For
behaviors that continue evaluating, multiple behaviors of the same type may be applied, and
their effect on the Ul is cumulative.

The following behaviors stop evaluating behaviors of the same type after a condition is met
and a behavior of the type is applied:

e Calculation
e Lookup

The following behaviors continue evaluating behaviors of the same type after a condition is met
and a behavior of the type is applied:

e Constraint
e Event

¢ Information

* Read Only
« Relevant
e Style

@ Note

The behaviors in both lists above are presented in alphabetical order, not in behavior
type evaluation order.

For example, if three Constraint behaviors are defined, and all go through the evaluation
process ending with the behavior being applied, all three Constraint violation messages display

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

in OSM. In another example, if three Read Only behaviors are defined, if any of them get
applied, the field is set to read-only (even if prior and/or subsequent Read Only behaviors
evaluate to false). Style and Information behaviors are a bit more complicated in that they have
multiple facets. The end result is the cumulative effect of these facets. For example, you can
define hints and labels with an Information behavior. If one behavior has a hint and another
behavior has a label, the end result is that both are applied. If two behaviors define hints, then
the second behavior's hint is applied.

Evaluating Multiple Behaviors of Similar Type and Level

When modeling behaviors of the same type, at the same level, for the same data node, ensure
that the conditions you define for each behavior are mutually exclusive. When evaluating
behaviors of the same type and defined on the same data node and level, the OSM run-time
server has no ability to guarantee a predicable order of evaluation. When modeling behaviors
for a data node, when it's necessary to define behaviors of the same type at the same level,
ensure that you configure conditions that do not rely on a specific order of evaluation.

Additionally, the OSM server evaluates the conditions of each behavior until the conditions of
one behavior evaluate to true. Subsequently, OSM does not continue to evaluate any
conditions defined for behaviors of the same type and for the same data node.

About Setting Conditions in Behaviors

Modeling Guide
G37998-01

Conditions enable you to specify when a behavior should function. You set a condition by
defining an XPath expression. If the XPath expression evaluates to false at run time, the
condition is not met and the behavior is not applied. If the XPath expression evaluates to true
at run time, the condition is met and the behavior may or may not be applied, depending on the
outcome of evaluation of the behavior at run time.

If no conditions are defined, OSM considers the condition to be met. If multiple conditions are
defined, all conditions must evaluate to true for the condition to be met.

® Note
The Constraint behavior is the only exception to the way conditions are handled.

Constraint behaviors specify a condition that must be met for the data to be
considered valid.

XPath Examples

This section provides XPath examples that are applicable to setting a condition on any
behavior type.

e This example shows a condition that evaluates to true when the value of myNumericField
is less than 100, and evaluates to false when the value of myNumericField is 100 or
greater:

../myNumericField<100

* This example shows a condition that evaluates to true when the value of myTextField is
populated, and evaluates to false when the value of myTextField is an empty String:

../myTextField!=""

e This example shows a condition that evaluates to true when the value of all three fields are
zero, and evaluates to false if any one of three fields are greater than or less than 0:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

../myNumericField1=0 and myNumericField2=0 and myNumericField3=0

Using the Calculation Behavior

You use the Calculation behavior to calculate a field's value based on a formula that references
other field values. You can perform numeric operations and string concatenations.

OSM supports the Calculation behavior in the Task web client and in the Order Management
web client Data tab.

For example, you can use the following expression in a Calculation behavior to calculate the
current balance for a customer:

../amount_owing - sum(../../payment_information/payment_amount)

In this example, the current balance displays the value from the amount_owing field after
subtracting the value from the payment_amount field; the balance = (amount owed) - (amount
paid).

Figure 9-4 shows an XPath expression that combines the first_name field and the last_name
field. The Calculation behavior is applied to a field that contains the card-holder name field,
where the first and last names are combined into a single field value.

Figure 9-4 Calculate Behavior Formula for Combining String Values

Calculation | Details | Conditions | Information
XPath Expression

concat(../../../account_information/first_name,' ',../../../account_information/last_name)

Calculation Behavior XPath Examples

The following examples show how to use XPath statements in the Calculation behavior.

e This example shows how to set a constant value of 100 for a numeric field (whatever
number you specify is the number that displays for the field):

100

e This example shows how to prefix a constant value to a text field (whatever text you define
is the text that displays along with the text value of the field):

append(*‘any text here",../fieldName)

e This example shows how to display a numeric field as a result of adding three other
numeric fields:

../TieldNamel + ._/fieldName2 + ._/fieldName3
e This example shows how to see the user name of the user who accepted a task:

/GetOrder .Response/AcceptedUserName

Calculation Behavior Overview

Table 9-2 shows Calculation behavior attributes.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Table 9-2 Calculation Behavior Attributes

Attributes Value

Order of evaluation 1st

Default value None
Applies to All elements

Parent/child inheritance

Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Constraint Behavior to Validate Data

You can use the Constraint behavior to validate data that is entered in an order. For example:

* Validate the format of a field. For example, 10 digits for a telephone number, 5 digits for a
ZIP code, or an IP address format.

* Validate the range of a field. For example, ensure that a numeric value is between 0 and

100.

¢ Validate the field value is within a valid list.

In addition to specifying how data is validated, you can:

» Configure messages that indicate the results of the validation; for example, a warning or

error message.

» Specify how the order should be processed if the validation fails; for example, stop
processing or continue processing.

For example, you might want to ensure that value in a Payment Amount field is less than the
amount owed and greater than 0. The Constraint behavior would include this condition:

. <= _./._./account_information/amount_owing and . >= 0

The same Constraint behavior would include the following message to display if the behavior

was not met:

concat("Invalid payment amount[",.,"]. Payment must be greater than 0 and less than
amount owing of [*,../../account_information/amount_owing,"]")

OSM supports constraint rules in the Task web client.

Displaying Constraint Behavior Error Messages

OSM only displays a Constraint behavior error message if there is a constraint violation caused
by the failure of a Constraint behavior condition or by an exception that occurred during the
behavior evaluation while you are attempting to either:

e Save an order with invalid field content

e Transition an order with invalid or null values

Otherwise, OSM cues you that a field requires some value by placing a red dot to the left of the

field label.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

@® Note

The red dot behavior does not apply to read-only fields. If an error occurs in a read-
only field (for example, a failed lookup prevents the display of data) OSM always
displays an error message.

The red dot is the same Ul element that OSM uses to alert you that a field is
mandatory, as defined in the order template. If the field fails the constraint condition
and is defined as mandatory, only one red dot appears.

Evaluating Constraint Behaviors

OSM always evaluates Constraint behaviors except when the element or parent element is not
relevant, as defined through the Relevant behavior. OSM does not evaluate the Constraint
behavior when the task to which the Constraint behavior is associated is at the rollback status.
In cases when data is rolled back, it is understood that the Constraint behavior was already
evaluated.

Constraint behavior evaluation is different from that of other behaviors. Constraint behaviors
are evaluated only when one or more specified conditions evaluate to false. All other behaviors
are either:

e Always evaluated
- Evaluated only when one or more specified conditions evaluate to true.

In addition, when OSM does evaluate Constraint behaviors, it always evaluates all of the
Constraint behaviors, regardless of where they are defined. This is different from other types of
behaviors, where only the first instance of each behavior is selected and applied. However, the
Override and Final check boxes give you control over inheritance. See "Evaluating Design
Studio Final and Override Options" for more information.

Using Task Statuses to Control Process Transitions

Modeling Guide
G37998-01

You can use task status Constraint values to determine how Constraint behavior violation
severity return values affect whether or not a process can make a transition to the next task or
activity. Task status Constraint values include:

e Critical

* Error

* Warning
* None

e Valid

The task status Constraint value represents the highest allowable Constraint behavior violation
value with which the task transition will be allowed to occur. When Update is clicked, in the
Task web client Order editor, the transition action taken depends on the task status Constraint
severity value in conjunction with the Constraint behavior violation severity level, if any.

For example, if the task status Constraint value is set to Error, then Error is the highest
allowable Constraint behavior violation value with which the task can be transitioned. The task
is not allowed to transition if a Constraint behavior violation of Critical occurs, but is allowed if
an Error, a Warning, or a Valid Constraint violation occurs.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

The following table explains whether task transition is allowed for all combinations of
Constraint behavior violation severities and task status Constraint values.

Table 9-3 Constraint Behavior Actions

Task status Task transition Task transition Task transition Task transition
Constraint value allowed for allowed for Error | allowed for allowed for Valid
(highest allowable | Critical constraint Warning constraint
constraint constraint violation? constraint violation?
violation): violation? violation?

Critical Yes Yes Yes Yes

Error No Yes Yes Yes

Warning No No Yes Yes

Valid No No No Yes

None No No No No

Task Statuses and Constraint Behavior Violation Severity Levels

You can use task statuses in combination with Constraint behaviors to specify the conditions
under which a process can make a transition to the next task or activity in the process.

You use Constraint behaviors to validate order data. For example, you can validate that a
telephone number has 10 digits or ensure that a numeric value is between 0 and 100.

Constraint behaviors include a Display as violation severity level and a message to be
displayed in the Task web client when a constraint behavior violation occurs. When Save is
clicked in the Task web client Order editor, the save action taken depends on the constraint
behavior violation severity level.

Table 9-4 Constraint Behavior Actions

|
Constraint behavior Message display: When Save is clicked:
violation severity
levels, from highest
severity to lowest

Critical OSM displays the message in bold red | The data is not saved.
text, with the label "ERROR".

Error OSM displays the message in red text, | The data is saved.
with the label "ERROR".

Warning OSM displays the message in yellow | The data is saved.
text, with the label "WARNING".

Valid OSM displays the message in green The data is saved.
text, with the label "INFO".

Constraint Behavior Overview

Modeling Guide
G37998-01

Table 9-5 shows Constraint behavior attributes.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Table 9-5 Constraint Behavior Attributes

Attributes Value

Order of evaluation 6th

Default value True

Applies to All elements and structures

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Data Instance Behavior to Retrieve and Store Data

You can use the Data Instance behavior to get data from external sources. For example, an
order processor using the Task web client can retrieve a set of available ports in real time from
an ADSL inventory system.

This behavior differs from all other behaviors in that it has no affect on the Ul display of the
element for which the behavior is defined. You can think of the Data Instance behavior as a
“supporting” behavior because it provides functionality that can be used with other behaviors.

You can use the Data Instance behavior to:

e Store data from an external system and make it accessible to other behaviors.

e Store data that is defined in-line in an XML or XQuery and make it accessible to other
behaviors.

e Store data from OSM that is housed in multiple fields but commonly referenced collectively
as a single field and make it accessible to other behaviors. For example, the fields
first_name and last_name can be combined in a new data instance customer_name.

When you use the Data Instance behavior, you need to specify the data provider that you get
data from (see "Using Data Providers to Retrieve Data" for more information). OSM supports
several data providers; for example, Oracle Communications Unified Inventory Management
(UIM), XML files, and data in the incoming customer order. You can also configure your own
data provider.

See "About Mapping Order Items to Fulfillment Patterns" for an example of how to use a Data
Instance behavior.

Evaluating Data Instance Behaviors

When a Data Instance behavior is defined for an element, regardless of the data level, the
container is available to the element on all data levels. Because of this:

« The Override and Final check boxes have no effect on the Data Instance behavior.

* The Data Instance behavior is not part of the evaluation process in terms of prioritization of
behavior type, or in terms of prioritization of data level.

Data Instance Behavior XML, XPath, and XQuery Examples

Modeling Guide
G37998-01

This section provides XML, XPath, and XQuery examples that are applicable to defining a Data
Instance behavior.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

This example shows an in-line XML that defines constant values (this could be used to
define the values that appear in a dropdown field):

<bookStore>
<books>
<titles>
<AlgebraForDummies> <price>30</price> </AlgebraForDummies>
<GeometryForDummies> <price>35</price> </GeometryForDummies>
<TrigonometryForDummies> <price>40</price> </TrigonometryForDummies>
</titles>
</books>
</bookStore>

This example shows an XPath expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of titles
with a price greater than $30:

xmlDoc=new ActiveXObject(*'Microsoft.XMLDOM™);
xmlDoc.async=false;

xmlDoc. load(*"books .xmI™);
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

This example shows an XQuery expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of ordered
titles with a price greater than $30. The list is returned in variable x:

for $x in doc("'books.xml")/bookstore/book
where $x/price>30

order by $x/title

return $x/title

Data Instance Behavior Overview

Table 9-6 shows Data Instance behavior attributes.

Table 9-6 Data Instance Behavior Attributes

Attributes Value

Order of evaluation Not applicable. The data instance type is unique in that it doesn't
perform any action. It's just a container for data provider instances.

Default value None

Applies to All elements and structures

Parent/child inheritance Children inherit instances declared on parent

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Event Behavior to Re-evaluate Data

Modeling Guide
G37998-01

You can use the Event behavior to save or refresh data when the data changes. This is useful
when a change in a field can cause a behavior to automatically occur in the same field or in
another field. For example, you might include an Event behavior in the account_information/
country field, that causes the data to refresh. That refreshed data might in turn be used by a
Relevant behavior assigned to the address details fields that display address information
based on the country.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 29

ORACLE’

Chapter 9
Modeling Behaviors Overview

Refreshing causes OSM to re-evaluate all the behaviors associated with the task but does not
save the order. Saving re-evaluates the behaviors and automatically saves the contents of the

order.

Figure 9-5 shows an Event behavior defined in Design Studio. In this figure, the Event behavior
refreshes the data in the account_information/country field.

Figure 9-5 Event Behavior Defined in Design Studio

Order Template

Behaviors

w18 payment_information
=2 account_information
4% first_name
4% last_name
L+ country
%12 address_information

4% current_account_balance

€# amount_owing
4€# payment_total

Behavior

F2 Event17

Event Behawvior - Event17/7

Event | Details | Conditions | Information

Event Behavior

(O save
{*) Refresh

See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client

for more information on the Relevant behavior, and this scenario in particular.

OSM supports the Event behavior in the Task web client.

Event Behavior Overview

Table 9-7 shows Event behavior attributes.

Table 9-7 Event Behavior Attributes
|

Attributes Value

Order of evaluation 8th

Default value None
Applies to All elements

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Table 9-7 (Cont.) Event Behavior Attributes

|
Attributes Value

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Information Behavior to Display Data and Online Help

You can use the Information behavior to specify how data is displayed in the OSM Task web
client. You can do the following:

* Set an alternative label for the field. For example, instead of the standard label State, the
field can be changed to State or Province when processing the type of order that uses
this behavior setting.

* Localize the field label to one or more different languages.
* Setatool tip on a field.
* Provide an online help topic for the field.

In the Order Management web client, any information rule on the first instance of a group node
that uses a table layout style is used to determine the text of the table panel header. The first
instance of each of this group instance's child field nodes are used to determine the column
header text for that field node. Hint text for the group instance row and child field instance cells
are displayed as tooltip text. Help defined for the group can be run with either a menu item in
the table's Actions menu or a row-level context menu and displays help in a modal window in
the page containing the table. The implementation of this help behavior differs from the Task
web client implementation, which uses an icon in each table cell to load the help in a separate
browser window.

OSM triggers information rules when the data element or structure contains data, (for example,
from the incoming order or derived from other data sources). If the data element or structure is
empty, OSM does not display any label, hint, or help topic information behaviors associated
with the empty element or structure. For example, if you defined a label for an element, the
label does not appear when the element does not contain a value. Instead, the OSM uses the
Display Name of the element as defined in the data dictionary.

Information Behavior XPath Examples

Modeling Guide
G37998-01

This section provides XPath examples that are applicable to defining an Information behavior.

e This example shows an Information behavior label that could be used in conjunction with a
Calculation behavior that calculates the current balance based on other fields such as
endingBalance + currentCharges + fees - payments:

"Current Balance"

e This example shows an Information behavior label that displays in place of the existing
label assigned to the element. For example, the existing label “State" can be changed to
display as:

"State or Province"

e This example shows an Information behavior hint that displays when you hover over the
Current Balance data field:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

"The current balance reflects the customer®s ending balance, plus any current
charges and fees, minus any applied payments."

e This example shows an Information behavior hint that displays when you hover over the
Billing Address data field:

"The billing address is the address of the party responsible for payment of account.
The billing address may differ from the service address. For example, the service
address may be a college student"s address, and the billing address may be the
student®s parents address."

Information Behavior Overview

Table 9-8 shows Information behavior attributes.

Table 9-8 Information Behavior Attributes

Attributes Value

Order of evaluation 3rd

Default value None

Applies to All elements and structures

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Lookup Behavior to Display Data Selection Lists

Modeling Guide
G37998-01

You can use the Lookup behavior to display data in a GUI field that users can select from. You
can specify the order of the labels in the list, such as alphabetically.

You can look up data from the following sources:

o Data that is in the incoming customer order.
o Data from an internal source, such as an XML file.
» Data from an external data provider.

Data can be retrieved dynamically based on input. For example, you can look up and populate
a list of phones that cost less than $100, where $100 is a value obtained from another field in
the order.

@® Note

The Task web client supports two types of lookups: simple lookups with single label
value entries, and table lookups, where a single lookup value has multiple associated
labels. This latter lookup type is displayed as a text field with an associated icon that
launches a secondary window which displays a table of label/value relationships.

In the Order Management web client, simple lookups are fully supported, but complex
lookups are rendered as if they were simple: the first-defined label is shown as the
display label. In both cases, the field is displayed as a read-only list of values.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 18 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Lookup Behavior XPath Example

This section provides an XPath examples that is applicable to defining a Lookup behavior.

This example shows an XPath expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of titles with a
price greater than $35:

xmlDoc=new ActiveXObject(''Microsoft_ XMLDOM™);
xmlDoc.async=false;

xmlDoc. load("*books . xmI™);
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

Lookup Behavior Overview

Table 9-9 shows Constraint behavior attributes.

Table 9-9 Lookup Behavior Attributes

Attributes Value
Order of evaluation 5th
Default value The static lookup values (if any) that are specified in the data dictionary.
Applies to Elements of data type:
e Lookup
e Number
o Text
Parent/child inheritance Does not inherit
(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Read-Only Behavior

You can use the Read Only behavior to specify that data displayed in the Task web client is
read only. You can specify that data can be read only based on conditions; for example, data
can be read only depending on other data in the order.

You typically create read-only fields for fields where the value is derived from other fields. For
example, in your order display, you might have two windows: an account window and a
payment window. Both windows might have an Amount Owed field, which displays the same
data. However, you could make the Amount Owed field in the payment window the field where
the data is collected, and the Amount Owed field in the account window read only. In that
case, the field in the account window uses two behaviors:

e A Calculate behavior, to get the data from the payment window.

e A Read Only behavior.

Read-Only Behavior Overview

Table 9-10 shows Read-Only behavior attributes.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Table 9-10 Read-Only Behavior Attributes

Attributes Value

Order of evaluation 7th

Default value The default specified by the static read-only value.

Applies to All elements and structures

Parent/child inheritance If any ancestor evaluates to true, this value is treated as true.

Otherwise, the local value is used.

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Relevant Behavior to Specify if Data Should Be Displayed in the

Web Client

Modeling Guide
G37998-01

You can use the Relevant behavior to specify if data should be displayed in the Task web client
or in the Order Management web Client Data tab, based on specified conditions.

For example, you can use the Relevant behavior to display address-input fields appropriate to
the country that the order applies to. In this example, the Relevant behavior can be used as
follows:

e The data for the customer's country is included in the order's account_information/
country field. This data is displayed in the Task web client in the Country/Region field.

* Based on the data in the account_information/country field, the customer address fields
(address_information) can include different values, depending on the country.

@® Note

The account_information/country field includes an Event behavior, which
refreshes the data in the field, making it available to the Relevant behavior.

Figure 9-6 shows the address fields for the United States (address_details_us) and Canada
(address_details_ca). The Relevant behavior applies to the selected data,
address_details_ca.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Figure 9-6 Address Fields in Design Studio

Order Template Behaviors
2 Relevant

=18 address_details_us
4% street
4¥ validate_address_via_soap
4¥ soap_license_key
4» state
4€¥ zip_code
4¥ city

BN e cetals co
4# validate_address_via_soap
4 spap_license_key
4¥ postal_code
4¥ province_ca i
€ city
4¥ street

[

[£

Figure 9-7 shows the XPath expression that specifies the condition (country = Canada) under
which the Relevant18 behavior is enabled.

Figure 9-7 Relevant Behavior Properties

Behaviar
Relevant Behavior - Relevant

Details | Conditions | Information

This behavior will be triggered if all of the conditions below are met,

Conditions ®Path Expression

If Canadian Address L Jcounkry="C4'

Remove

In the Order Management web client, if a group instance displayed with a table style behavior
is not relevant, then the entire associated table row is omitted. If a particular field is not
relevant, the associated table cell is rendered empty.

Relevant Behavior Overview

Table 9-11 shows Relevant behavior attributes.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

Table 9-11 Relevant Behavior Attributes
|

Attributes Value
Order of evaluation 4th
Default value True

Applies to

All elements and structures

Parent/child inheritance

If any ancestor evaluates to false, this value is treated as false.
Otherwise, the local value is used.

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Style Behavior to Specify How to Display Data in the Task Web

Client

You can use the Style behavior to specify where and how to display data in the Task web

client. You can do the following:

Control the placement of an element on a specific page.

Specify to display data on tabbed pages. You can display data in columns and tables.

Hide or mask sensitive data; for example, passwords or credit-card information. You can
specify who can read passwords, and you can display a history of password changes.
Masked data appears similar to ****+**,

Control the layout of a multi-valued field, such as a list of buttons to choose from.

Apply cascading style sheets (CSS style sheets) to specify how to display data. For
example, you could make the current account balance display in red when the data value

is greater than zero.

® Note

If you define a behavior that contains an apostrophe (') character, OSM will throw an
exception error when loading the data. To prevent this from happening, you must
include the escape character before and after the apostrophe.

Example:

"L*Information De Carte de credit”

should be

"ErLt* " Information De Carte de credit

Figure 9-8 shows how the Style behavior changes the appearance of the Current Account
Balance field in the Task web client.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Figure 9-8 Style Behavior Used in the Current Account Balance Field

¥ Account Information

First Mame Last Name Amount Owing Payment Total

Figure 9-9 shows the condition that determines if the Style behavior should be applied. In this
case, the Style behavior is applied if the account balance is the same as the amount owed.

Figure 9-9 Condition Defined in a Style Behavior

Behavior

Style Behavior - Style

Appearance || Lavout | €55 Style | Details | Conditions | Information

This behavior will be trigoered if all of the conditions below are met,

Conditions #Path Expression

Balance = Owing = 0and notl, = .. /amount_owing)

Remove

Figure 9-10 shows the style definitions to apply to a field.

Figure 9-10 Field Display Colors Defined in a Style Behavior

Behavior

Style Behayior - Style

Appearance || Layout | ©55 Style | Details | Conditions || Information

YWalue
55 Style Attribute | color: #FFASO0;BACKGROUND-COLOR: #FFFFDE

Z55 Zlass Name

Label
55 Style ALtribute | color: #FFASO0;BACKGROUND-COLOR: #FFFFDE

255 Class Name

Figure 9-11 shows how three different conditions can change how the field is displayed. If the
balance is zero, the field is green. If the balance is the same as the amount that the customer
owes, the field is orange. If the balance is less than zero, or greater than the customer owes,
the field is red.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 23 of 29

ORACLE’

Chapter 9
Modeling Behaviors Overview

Figure 9-11 How Style Behavior Conditions Are Used for Determining the Display
Colors

Condition:
=0

Current Account Balance

Condition:
_= 0 and not{. = _famount_owing)

Condition:
= 0or. = _J/amount_owing

Current Account Balance

l

About Style Behavior Layouts

Modeling Guide
G37998-01

This section provides additional information on table layouts, which you can choose to set as
None, Page Layout, or Table Layout.

The Page Layout option gives you the ability to organize structures elements onto separate
pages that you can access directly, through the use of tabs. This is particularly useful for
improving access where there are numerous large structures by eliminating the need to scroll
through a single page to find the required structure.

The Table Layout option displays multi-instance structures in a grid format. By default, Table
Layout displays all of the child elements in the structures. However, you can prevent a given
child element from being used as a column by setting its hidden attribute to true.

Child elements within the structure are represented by columns, and instances of the structure
are represented by rows. Table Layout displays the columns from left to right in the same
order that they appear from top to bottom when displayed without a table layout. If you need to
change the order in which the columns appear, you do so by changing their order in the Design
Studio order template. The table uses the same child element label to form the column header
that it does when displayed without a table layout.

@® Note

If you use an Information behavior to dynamically change the child element labels,
Table Layout uses the label associated with the first data instance it encounters.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 24 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

If you need to hide the value of an individual cell in the resulting table, you can do so by
declaring a Relevant behavior for the corresponding child element. See "Using the Relevant
Behavior to Specify if Data Should Be Displayed in the Web Client."

® Note

Table Layout does not support nested structures in the Task web client but does
support nested structures in the Order Management web client data tab.

In the Order Management web client data tab, multi-instance child values can be
displayed within the corresponding parent value table cell and stacked vertically. You
cannot access data history or behavior help from within the cell, but the information
about the child multi-instance values can be accessed from the data history for the
row. You can access the data history for a row by right clicking on the row and
selecting data history or by selecting data history from the table drop down menu.

OSM uses the first instance of the table group node to determine the CSS style and
class of the header text in the Order Management web client. All other style rule
attributes of the group instances are ignored. CSS style and class rules, appearance
rules, and secret rules are applied to child field (table cell) instances. No other style
rules will be applied.

The following figures illustrate the different types of available layouts for the Task web client.
Each figure shows the same structure with a different layout type:

e Figure 9-12 shows the structure with no layout applied. With this option, the elements in
the structure display within a group box on the original page.

« Figure 9-13 shows the structure with the Page Layout option applied. With this option, the
elements in the structure display within a group box on a new page that is accessed
through a tab on the original page.

e Figure 9-14 shows the structure with the Table Layout option applied. With this option, the
elements in the structure display within a grid on a new page that is accessed through a
tab on the original page.

Figure 9-12 Task with No Layout in the Task Web Client

Fleyw i Winrksl Chaery Repnring M whican s Cipbions

l by Prarsiara] l L sl Pravilarss] (52l Process History | [=t Changs StakSiahs] l El s j [& b Ramac I 4} Excapion j

* Enter Payment Details
&1 vF Cemo b Erser Payment infoematen 5

Relemenced:

~ Astount Information List [1..8) * current: 1 Allgwed ;4
* Account information”

First Marms Larsk Name Amouint Crwing Pyt Tolal

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 25 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

Figure 9-13 Page Layout in the Task Web Client

ﬁpm |&Hm ||_|:|]Pmmmu-,r [B ompiweties || HSee || o s Resak (f} Exceptien

= Entor Paymant Details
dor 10 81 Dvicker Typee - VT Dy Cvdfiee Sowwce Wilnl Proceans. Qb Tarmie: Exsler Paryrient Infaemation Pracnty &

Holeranco @ ;

Fust hasa Lasst Muwvs Asivzent Dty Faynant Tatsl

Figure 9-14 Table Layout in the Task Web Client

| mdwpdes | wondisl || Guen || Reponng | Motissons || Opsons

[Bypresew || ShFuiPrevew | [A Frocesskisiny | [oD Changesussuts | [| 2w | [ssoRemane | [(E) Escestion |

T Enter Paymant Detalls
@ Orcer Typs WF Dipmin Do eod Winh Procesn (Hder Tagk Enlér Pagment nkesmalion Pricrfy §

Rederenca |

Arcoentinkmation(1.5) %
First hlama | Lant Home | Sumzant Charing | Pay=ani Total | Cormntficcownt Balancn |
Banrim e

@ 200 ﬁ

The following figures illustrate the different types of available layouts for the Order
Management web client. Each figure shows the same structure with a different layout type:

e Figure 9-15 shows the structure with no layout applied.
e Figure 9-16 shows the structure with the Table Layout option applied.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 26 of 29

ORACLE Chapter 9

Modeling Behaviors Overview

Figure 9-15 No Layout in the Order Management Web Client

1
h |

_Grder ID 14: Order Details Ba

|
4 Summary :-\]'\Drmestraﬁnn Plan\{ Dependencies\{ Amendments

=l Orderltem List (1..999999999)
El OrderItem

Foint Of Mo Return
OrderItemFulfilmentstate

lineld 2
lineltemMame Fixed Bundle [Add]

El OrderTtem

Point Of Mo Return
OrderltemFulfilmentstate

lineld 3
lineltemMame Fixed Service [Add]

Figure 9-16 Table Layout in the Order Management Web Client

Order ID 15: Order Details \
Summary :| Ihh\K{Jrcheshirtmn Plan\[Dependenues\[Amendments\{ Activity |
Actions » View w I@ | " Detach
|
Row Mo. |lineld lineltemName lineltemPayload productClass f
1 1 Triple Play Offer [... |<im:salesOrderLin. .. f
2 2 Ficed Bundle [Add] | <im:salesOrderLin... f
3 3 Ficed Service [Add] | <im:salesOrderLin... f
4 4 Commerdal Fixed... |<im:salesOrderLin... |Fixed Servigf
5 5 Fixed Caller ID [A... | <im:salesOrderLin... |Fixed Servif
(1 f Fived Call Waiting... | <im:salesOrderLin... |Fixed Se
7 7 Maobile Service Pla... | <im:salesOrderLin...
]] Prepaid Maobile Voi . | <im:salesOrderLin. ..
] g Prepaid Maobile Ser.. | <im:salesOrderLin. .. |Prepaid M
10 10 | Mobile Voice Servi... | <im:salesOrderLin... \
4 1

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

ORACLE Chapter 9
Modeling Behaviors Overview

About Style Behavior Password Fields

Behaviors that define password fields can ensure unauthorized users cannot view the contents
of elements containing sensitive information. For example, by using this feature you can define
a password field in such a way that users in an activation work group can not see the
information, but users in the system administrator's work group can.

How Password Fields Display

If you define a password behavior on a writable field, OSM displays the contents of the field as
specified by the browser, such as a line of asterisks (*) within a text box. If you define this
feature on a read only field, OSM displays the data as specified by the browser, such as line of
eight asterisks next to the field label, but not within a text box.

If you open the data history, OSM displays when and by whom the data was modified. When
this feature is applied to a field, OSM displays the password field values as specified by the
browser, such as a line of eight asterisks.

While you can define a Style behavior on all types of elements, this feature of the Style
behavior has no effect on structures.

Do Not Use Password Field Feature with Boolean and Lookup Fields

Because this feature is designed for use with free form entry fields, as opposed to fields that
force you to select from a limited number of choices, Oracle recommends that you do not use
this feature with Boolean and lookup fields. If you do, you risk exposing confidential information
to unauthorized users. This is because OSM displays the value that was previously set in a
Boolean or lookup field, even if the field defines this feature through a Style behavior.

Displaying the Data History of Password Fields

OSM only evaluates behaviors at the web Ul level, so any password field that you save (that is,
create, update, or delete) through the XML API/Automator is not treated as a password field,
even if it is defined as such. This can introduce some complexity into how OSM displays the
data history for password fields. Use the following general guidelines and examples to
understand how OSM displays password field data history.

General Guidelines

1. OSM displays a line of eight asterisks in the data history for any field that it evaluates as a
password field (providing the field actually contains data; if the field is empty, OSM displays
nothing).

2. If OSM does not evaluate a field as password field, the data history values are shown in
plain text.

3. If OSM evaluates a data field as a password field at the time of saving, and the field is later
deleted, OSM displays a line of eight asterisks in the data history (providing the field
actually contains data; if the field is empty, OSM displays nothing).

4. If OSM evaluates a data field as a non-password field at the time of saving, and the field is
later deleted and evaluated as a non-password field at the time of deletion, the data history
is displayed as plain text.

Examples

1. If you save the value of a password field through OSM, and OSM is still evaluating the field
as a password field when you display the data history, OSM displays the value of the
password field as eight asterisks.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 28 of 29

ORACLE

Chapter 9
Modeling Behaviors Overview

2. If you save the value of a password field through the XML API/Automator, and it is still
present in the order editor (that is, it has not been deleted by the XML API/Automator)
when you display the data history, OSM displays the value as eight asterisks.

3. If you create and delete the password field values through the XML API/Automator, OSM
displays the data history values as plain text.

4. If you enter data in a non-password field through OSM and a user subsequently deletes
the value through OSM or the XML API/Automator (and OSM evaluates the field as a non-
password field at the time of deletion), the history values of this field are displayed as plain

text.

Style Behavior Overview

Table 9-12 shows Style behavior attributes.

Table 9-12 Style Behavior Attributes

Attributes

Value

Order of evaluation

2nd

Default value

Data type specific:
* For Boolean type fields: Compact
e For Lookup type fields: Minimal

Applies to

Elements of data type:

e Boolean

e Lookup

Elements with Lookup behaviors that display only one column.

Parent/child inheritance

Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

Modeling a TMF Solution (Cloud Native Only)

This chapter describes how to model a TMF solution.

Before learning how to model a TMF solution, see the chapter about TMF concepts in OSM
Concepts.

@® Note

TMF solution modeling is supported for OSM cloud native deployments only.

About Specifications

The first consideration when modeling a TMF solution is to define the specification to be used.

The canonical TMF specifications (both 622 and 641) have some shortcomings:
e Orders cannot be suspended or resumed

* Orders cannot be aborted

« Existing orders cannot be revised (amended)

« TMF has no state to indicate fallout

Because of this, it is strongly recommended to start with the OSM extended specifications
which align with OSM's advanced order management capabilities.

Once you have established the base specification, you should determine whether any schema
extensions are needed.

* Does your billing system need extra information that is not found in the existing
billingAccountRef schema?

* Does your productOrder need to track shipment tracking information?

e Are you integrating with an edge system that requires data that does not exist inside the
specification of interest?

These are the types of questions that you need to answer and then modify the schema of the
specification accordingly. See OpenAPI Specification documentation as well.

All schema changes that you make must result in a version increase inside the specification.
The 5th digit of the version is provided for your use.

About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01

The canonical TMF 622 and 641 specifications include support for order cancellations but not
for revisions. When support for revisions is a requirement, then the OSM extended
specifications must be used (either directly or as the base for customer schema extensions).

Cancel and revise are both implemented using the TMF pattern of a task resource. Refer to the
TMF 630 guidelines for further details.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE

Modeling Guide
G37998-01

Chapter 10
About Cancelling or Revising an Inflight Order

Cancel Specific Behavior

Requested cancellation date in the cancel payload is not supported. You cannot request a
future date for cancellation via this field. All requests are processed immediately.

Revise Specific Behavior

Revisions to a future-dated order (that are in a TMF state of Pending) are processed
immediately. The waiting base order would be updated with the revised data.

The task resource representing the revision request will complete, the OSM revision order will
complete and the base order will reflect the amended data and will remain in TMF pending
state (OSM waiting state), until the future-dated date arrives.

Design-time Considerations

For TMF cartridges, cancellations are processed as an amendment with no order lines, which
would trigger undo mode of all completed tasks.

No order level configuration is necessary to support cancels or revisions, including:
* The cancel fulfilment mode does not need to be created in Design Studio.

* Amendment tab configuration for an order (will be read only for TMF orders).

Automation tasks still need to configure the various execution modes.

Runtime Considerations

OSM Gateway exposes endpoints for cancelling or revising a product or service order and all
existing cancel or revise mechanisms (Task Web client, SOAP webservice, and so on) are no
longer permitted.

OSM Gateway rejects cancels or revisions where the base order contains any order item in a
final TMF state (partial, failed, completed).

Order Key

In Freeform cartridges, order key configuration is needed as a way to correctly identify the
base order the revision is applied to. It did not reflect the OSM order id but a piece of data
inside the order payload that could be used as a unique identifier of the base order.

In TMF cartridges, identifying the correct base order is done simply by supplying the base
order id in the request. Both revise and cancel requests contain a reference to the base order
id as shown in the following sample:

REVISE
ReviseProductOrderOSM Create:
required:
- baseOrderRef
- productOrder
type: object
description: OSM extension to create the ReviseProductOrder resource.
This represents an OSM revision request.
properties:
baseOrderRef:
$ref: "#/components/schemas/BaseOrderRefOSM*®
productOrder:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE Chapter 10
About Cancelling or Revising an Inflight Order

$ref: "#/components/schemas/ProductOrder Create”

In the above example, the BaseOrderRefOSM has the id of the targetted base order.

CANCEL
CancelProductOrder_Create:
required:
- productOrder
type: object
properties:
cancel lationReason:
type: string
description: Reason why the order is cancelled.
productOrder:
$ref: "#/components/schemas/ProductOrderRef*

In the example above, the ProductOrderRef has the id of the targetted base order.

Version

Version is still an important piece of the amendment functionality. However, the handling is
different for TMF Orders. Instead of the order carrying the version information inside the
payload, it is passed as the HTTP header "X-VERSION". Providing this header is optional for
cancels, but mandatory for revise operations.

Callers can supply the HTTP header X-VERSION on the create request, but if omitted (as is
generally the case for create), then OSM starts versioning at 1. When a GET is invoked, the
header "X-VERSION" indicating the version of the order currently being processed, is returned
to the caller.

Once the caller has this information, any subsequent requests for revise or cancel can include
an incremented count.

While the mechanism to pass the version information is different for TMF orders, the logic that
dictates acceptance or rejection is the same. Orders with a version higher than the order
currently processing version are accepted and those with a version lower are rejected.

Impact of PONR

When a cancel request is received, OSM Gateway checks if any order items are in a final state
and if so, the request is rejected. This is a form of implicit PONR as TMF states are final
(partial, failed, completed). Therefore, a cancel cannot be performed.

If OSM Gateway accepts the cancel request, there is still a chance for the cartridge to reject it
if the order or order items have reached PONR. See "Modeling PONR" for details about how
the lifecycle policy can reject orders.

Grace Period

A grace period refers to a configurable period of time that OSM will wait for currently
processing tasks to complete, before transitioning an order. In Freeform cartridges, you can
pass a grace value during Web Service API invocation.

TMF orders do not allow you to supply a grace period when invoking the REST APIs. Grace
period must be defined within the cartridge for TMF orders.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE Chapter 10
About Cancelling or Revising an Inflight Order

Events about Cancel and Revise Task Resource

The following events are emitted automatically to the event target system in response to
lifecycle milestones of the task resource.

Table 10-1 Cancel and Revise Task Resource Events

- __________________________|
OSMGW Endpoint Task Resource Events

/cancelProductOrder cancelProductOrderCreateEvent
cancelProductOrderStateChangeEvent

/reviseProductOrder reviseProductOrderCreateEvent
reviseProductOrderStateChangeEvent

/cancelServiceOrder cancelServiceOrderCreateEvent
cancelServiceOrderStateChangeEvent

/reviseServiceOrder reviseServiceOrderCreateEvent
reviseServiceOrderStateChangeEvent

Task Resource Sequence Diagram

The lifecycle of a task resource is different from the main resource. The following diagrams
show how the two lifecycles interact and when events are delivered in relation to the main
resource events.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE’

Chapter 10

About Cancelling or Revising an Inflight Order

Figure 10-1 Cancel Task Resource Event

Cancel Order

[Clientw [OSM] Event Target System
createProductOrder 5 :_. ProductOrder has items L1, L2 lﬁ

ProductOrderCreateEvent -

ProductOrderStateChangeEvent (Pending) g

ProductOrderStateChangeEvent (InProgress) >

ProductOrderAttributeValueChangeEvent (L1 InProgress)

ProductOrderAttributeValueChangeEvent (L2 InProgress) >

| cancelProductOrder
UL — i
CancelProductOrderCreateEvent >
alt [cancellation rejected]
CancelProductOrderStateChangeEvent (TerminatedWithError) - fe‘;':;?g;np%ﬁgdrzggza’de configuration, IT
ProductOrderStateChangeEvent (InProgress)
ProductOrderAitributeValueChangeEvent (L1 InProgress) >
ProductOrderAttributeValueChangeEvent (L2 InProgress)
order continues to process Il|
CancrelPr.ﬂductOrderSlaleChangeEvent (InProgress) >
ProductOrderStateChangeEvent (PendingCancellation)
ProductOrderAttributeValueChangeEvent (L1 PendingCancellation) >
ProductOrderAttributeValueChangeEvent (L2 PendingCancellation)
wait for in-progress tasks to complete or grace expiry
- execute cancellation lﬁ
aly ! / [successful cancellation]

CancelProductOrderStateChangeEvent (Done) >
ProductOrderStateChangeEvent (Cancelled)
ProductOrderAttributeValueChangeEvent (L1 Cancelled) >
ProductOrderAttributeValueChangeEvent (L2 Cancelled)
CancelProductOrderStateChangeEvent (TerminatedWithError) >
ProductOrderStateChangeEvent (Failed)
ProductOrderAttributeValueChangeEvent (L1 Failed) >

ProductOrderAttributeValueChangeEvent (L2 Failed)

-
Chent w Event Target System ‘

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 9

ORACLE’

Figure 10-2 Revise Task Resource Event

Chapter 10
About Cancelling or Revising an Inflight Order

Revise Order
Client [QSM] Event Target System
createProductOrder || ProductOrder has items L1, 12)

1
1
1

.

1| X-VERSION defaults to 1

ProductOrderCreateEvent

ProductOrderStateChangeFvent (Pending) _‘:
ProductOrderStateChangeEvent (InProgress) 1
ProductOrderAttributeValueChangeEvent (L1 InProgress) ‘1
ProductOrderAftributeValueChangeFvent (L2 InProgress) -:
getProductOrder/{id} |
> |
productOrder .X-VERSION:1 N |
reviseProductOrder ' XVERSION:2 by !
— > || - |
201 |
ReviseProductOrderCreateEvent o
alt revision rejected] I

ReviseProductOrderStateChangeEvent (TerminatedwithError) | forbidden by order lifecycle configuration,

> | example PoNR reached
order continues to process N
ReviseProductOrderStateChangeEvent (InProgress) !
wait for in-progress tasks to complete or grace expiry
ProductOrderStateChangeEvent (Amending))
ProductOrderAttributeValueChangeEvent (L1 Amending) ‘:
ProductOrderAttributeValueChangeEvent (L2 Amending) 1
calculate compensation plan
execute compensation plan
11 |
alt J1 [successful compensation] |
ReviseProductOrderStateChangeEvent (Dane) o
ProductOrderStateChangeEvent (InProgress) |
ProductOrderAttributeValueChangeEvent (L1 InProgress) -
ProductOrderAttributeValueChangeEvent (L2 InProgress) !
order continues to process, now as version 2 %
Tfailed c on] T
ReviseProductOrderStateChangeEvent (TerminatedWithError) |
ProductOrderStateChangeEvent (Failed) !
ProductOrderAttributeValueChangeEvent (L1 Failed) N
ProductOrderAttributeValueChangeEvent (L2 Failed) !
. l 1
Client [OSM] Event Target System

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 9

ORACLE

Chapter 10
Modeling PONR

Modeling PONR

Modeling Guide
G37998-01

For TMF orders, the modeling pattern with respect to the Point of No Return of an order or
order item is different.

PONR handling consists of the following main areas:
* PONR detection
« Propagation of the PONR to the upstream system

e Order amendment and cancellation handling for PONR

PONR detection

For PONR detection, Freeform cartridges and TMF cartridges require slightly different
approaches.

e For Freeform cartridges, PONR is configured within a Fulfilment Pattern. An Order
Component is selected, and then a specific fulfillment state value can be chosen as the
PONR.

e TMF cartridges are required to model the PONR as an order item characteristic within the
product model. Population of this field signals PONR has been reached.

In both cases, an automation plugin updates a piece of order data in response to values
received from the edge system. With plugins in the Freeform cartridge, this process is a
mechanical update to the fulfillment state field.

In the case of TMF cartridge plugins, they must be aware of which characteristic needs to be
updated, and also what value from the edge system results in a change to this characteristic.
For example, a field "PONRReached" that takes Y and N values would be set to N on order
creation. At some point during fulfillment, an automation plugin would change this value to "Y"
based on the external fulfillment state received from the edge system.

Propagation of PONR to upstream system

Like PONR detection, PONR propagation is also handled differently for Freeform and TMF
cartridges:

e For Freeform cartridges, Model Driven Milestones (MDM) is the mechanism to propagate
the PONR to upstream systems.

e TMF cartridges rely on the AttributeValueChangeEvent (Product and Service) to inform
upstream systems of a change to the characteristic representing PONR status. Because
attribute events are triggered for changes to ANY characteristic value, it becomes the
responsibility of the event listener to identity the characteristic holding PONR status and
check its value.

Order amendment and cancellation handling for PONR

For both TMF and Freeform cartridges, the handling of amendment and cancellations for
orders and order items that may have reached PONR is the same. In both types of cartridges,
the objective would be to reject cancellation or revision requests when PONR has been
reached. To do this, the order lifecycle policy would have a rule condition defined with a
backing XQuery that is responsible for scanning either the fulfillment state field (Freeform
cartridges) or the characteristic value (TMF cartridges) to either pass or fail the condition.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE

Chapter 10
Change Order Support

Implicit PONR

For TMF cartridges only, there is an implicit PONR. When any order item reaches a final TMF
state, then the entire order can be considered as having reached PONR and cancellations and
amendments would be rejected by OSM Gateway.

Change Order Support

Change orders that make their way through the stack can be modeled in one of two ways:

e The entire order is included in the change request, lines that have changed as well as lines
that have not

« Only the content that has changed is included (and often the necessary parent lines)

Choosing between the two depends on many variables including the product model and
capabilities of the edge systems. Neither TMF nor OSM are prescriptive about which modeling
pattern is used. However, there are some details within the specifications that may influence
which technique is ultimately employed.

Canonical TMF

TMF ordering specifications support action codes on a line item to identify whether it holds a
change. Beyond that, there is no support inherent in the TMF specification for identifying what
the change is. When there is no indicator as to the specific change, the downstream systems
must be idempotent, which implies that those systems own the data and therefore have a view
of the current state of the object. When passed a new set of data, they can determine what the
change is and what action to take. This puts the onus on the systems that OSM talks to, for
determining what data is changed and whether it requires an action or not.

This pattern can be expensive for systems and whether or not external systems in the
ecosystem behave according to the TMF view, cannot be dictated by the Product Ordering
layer.

OSM Extended Specifications

On lines with an action code of "modify", changes are often contained within the characteristic
set - new ones added, characteristics no longer required or simply a change of value on an
existing characteristic. Examples include an upgrade from 5MB to 10MB bandwidth, or an
upgrade to a premium service which results in new characteristics for callWaiting and
callForwarding.

OSM recognizes this and offers optimized handling of characteristic changes via the OSM
extended specification.

OSM schema extensions have been made to provide additional details about a characteristic -
an action code as well as the previous value. This of course relies on the upstream system to
populate this data, but if utilized, it can relieve pressure on the downstream systems to
calculate the exact nature of the change.

See the TMF 622 REST Specification for change order modeling examples.

Order Fulfillment Modes

Modeling Guide
G37998-01

The runtime handling for fulfillment mode is different for TMF orders. With Freeform cartridges,
something in the order data would need to map to the right fulfilment mode. With TMF orders,
the fulfillment mode does not need to be embedded into the payload and for order creation nor

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE’

Chapter 10
Upstream Listener

for order cancellations, The calling system in fact does not need to do anything at all. OSM has
assumed responsibility for mapping these two order operations properly.

If an additional fulfillment mode was modeled in the TMF cartridge (for example, TSQ), then
the calling system would need to supply this value through the HTTP header "X-Fulfillment-
Mode". OSM Gateway would forward the FF mode to OSM and would match against deployed
fulfillment modes.

Upstream Listener

The following restrictions apply to the outbound TMF messaging:

« An Event Target System must be defined on the hosted order specification in Design
Studio.

e Only a single system can be configured. It is expected that this single listener will either
consume the events itself, or serve it to a message broker (for example, Kafka).

e The event target system would be the intended recipient of all events that are emitted. The
upstream system can ignore messages it is not interested in.

Fault tolerance configuration for target systems is available in the toolkit's specification files.
See OSM Cloud Native Deployment Guide for details on configuring target systems.

About TMF Order Events For the External Event Listener

The events for TMF orders run by OSM are listed in the REST API reference guide. See REST
API reference guide for the details of the events offers and the schema of the events.

Additionally, OSM's framework does the following:

* OSM has restricted the changes that will trigger the AtributeValueChange event. Changes
are limited to the order item state or the order item characteristic fields.

e OSM will include multiple updates in a single event. All updates - whether within a single
line item or across multiple line items - will be included in an event, so long as they are all
made within the same orderUpdate call to OSM core.

See the "About TMF Orders" section in OSM Concepts for details about OSM Events
Notification.

About Fallout Exception Management

Modeling Guide
G37998-01

OSM provides a simplified fallout exception management framework for managing fallout
exception. See the OSM Concepts guide for more information.

For TMF orders, use the simplified fallout management framework only.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 9

Implementing a TMF Solution (Cloud Native

Only)

This chapter describes how to implement a TMF solution.

Before reading this chapter, see the chapter about TMF concepts in OSM Concepts.

@® Note

TMF solution modeling is supported for OSM cloud native deployments only.You need
to ensure that the cartridge management variable OSM_RUNTIME_TYPE value is set
to "MultiService".

Accessing the Specifications

The TMF specification files are available in the cloud native SDK download file, in the
TMFSchemas sub-folder. OSM extensions have the suffix -OSM in the filename.

Oracle recommends that you use the specifications with OSM extensions (-OSM sulffix in the
filename) for both Product Order and Service Order. These extensions provide comprehensive
access to OSM's advanced capabilities and have been created in line with the guidelines from
TMF630.

About Extending the Specifications

The OSM extended specifications can be extended further to meet your implementation
requirements by:

Adhering to TMF630 and OpenAPI guidelines on schema extensions.

Adding to the schema of the primary object (ProductOrder or ServiceOrder) in terms of
order data.

Keeping the set of Paths (endpoints) and their contents unchanged.
Keeping the set of Notifications (events) and their contents unchanged.
Keeping the set of Task Resources and their contents unchanged.

Keeping the set of State definitions unchanged (preserve the set of states as-is).

The Hosted Order specification consists of the TMForum specification with OSM schema
extensions, all expressed as an OpenAPI 3.0 document.

See the following topics:

Modeling Guide
G37998-01

Considerations When Extending the Main Resource

About Versioning the Specifications
About the "ANY" Schema Type
About anyOf, allOf, and oneOf

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 29

ORACLE

Chapter 11
About Extending the Specifications

Considerations When Extending the Main Resource

TMF uses a pattern of defining a schema object for the incoming create order payload, that is
different from the main resource. Using TMF 622 as an example, the POST /productOrder
endpoint accepts a payload with a schema type ProductOrder_Create, which is specific to the
creation request. It does not contain some data found in the ProductOrder schema, such as
the id, as this is populated by the application not provided by the caller.

On the OSM side, the TMF order template includes the CDT structure representing the main
resource, which is "ProductOrder" in this case.

The ORR data transormation xquery is responsible for transforming the ProductOrder_Create
into the ProductOrder. You are free to do this translation as you see fit. However, the
documented solution relies on a simple naming convention. See the Order Data Rule section.

This xquery depends on the main resource name to be related to the incoming schema name
in a specific way. When processing the incoming root element, the xquery strips off _Create
and uses the remaining string as the root for the OSM order data. To use this xquery, any
extensions that are made to the main resource must have a schema object for creation that
follows the Resour ce_Create convention.

Example: Incompatible naming

ProductOrder_Create
ProductOrder_CreateOSM

Looking at the above example, if you had named the schema for creation as
ProductOrder_CreateOSM, then the xquery would not have done the transformation correctly
and order submission would fail.

Instead, the extension is called ProductOrderOSM_Create. The xquery determines correctly
that the root resource type is ProductOrder0OSM, which is an extension of the canonical
ProductOrder.

Example: Compatible naming

ProductOrder_Create
ProductOrderOSM_Create

If extensions are made to the main resource (ProductOrder or ServiceOrder), consider this
naming convention.

About Versioning the Specifications

Modeling Guide
G37998-01

When you import a TMF specification into Design Studio, the resulting hosted order
specification will have a 5-digit scheme. This is true even if the canonical is imported and there
were no extensions added. The TMF specification would say "v4". However, this would be
converted to 4.0.0.0.0 for usage inside OSM.

The first three digits are reserved for TMForum as TMF specifications are versioned with a
three-number scheme.

The fourth number is reserved for Oracle OSM to version extensions supported by the
application itself.

The fifth number is available for solution developers to version their additional extensions.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 29

ORACLE

Chapter 11
About Extending the Specifications

Figure 11-1 Versioning the Specification Files

TMF622 Hosted Order Specification

TMForum version for TMF 622 €---------------

Oracle OSM Extension version_..... '

Customer Extension version = ------====-msesoconooonn '

Cartridge developers must maintain the integrity of the versioning by updating the version
(specifically, the fifth number) if changes are made. While it is mandatory to increment the
version when there are non-backward-compatible changes, it is recommended to increment
the version for all changes to the specification

About the "ANY" Schema Type

Modeling Guide
G37998-01

For schemas that refer to "Any" schema, a true "Any" type is not supported because the type of
the object is unknown.

The convention TMF uses is that, with the schema object that refers Any, there must be an
accompanying string to identify the type and this should point to a known type in the schema.
This is more of a dynamic resolution of what will be passed.

Any is used in the canonical specification, for the characteristic value. The accompanying
string to identify its type is valueType.

The following abstract shows characteristic schema from the canonical specification:

schema :
Characteristic:
required:
- name
- value
type: object
properties:
name:
type: string
description: Name of the characteristic
valueType:
type: string
description: Data type of the value of the characteristic

value:
$ref: "#/components/schemas/Any*
"@baseType™:

type: string
description: When sub-classing, this defines the super-class
"@schemalLocation”:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 29

ORACLE

Modeling Guide
G37998-01

Chapter 11
About Extending the Specifications

type: string
description: A URI to a JSON-Schema file that defines additional
attributes
and relationships
format: uri
"Otype”:
type: string
description: When sub-classing, this defines the sub-class entity name
description: Describes a given characteristic of an object or entity
through
a name/value pair.

During the Data Structure Definition (DSD) generation, while importing the hosted specification
for a schema which is of Any type, an additional element of xmIData type will be generated.

For characteristic, valueXml, which is not part of specification, will be generated:

* The valueType field identifies whether the value is of primitive type string (string,
dateTime, date and so on), boolean, nhumeric or object type.

* If valueType is string, boolean, or numeric, the value field would have the value and the
valueXml field would remain blank.

« If valueType is of object type, the value field would be blank and the valueXml field would
have the objects.

« Either the value or valueXml field would be available based on the valueType field.
Examples of JSON to XML Conversions

The following example shows the JSON payload when valueType is string:

{
"productCharacteristic"”: [{
"@type': "Characteristic"”,
"name": "Call Forwarding”,
"valueType": "string"”,
"value": "Y"
|
}

The following example shows the XML payload when valueType is string:

<productCharacteristic xsi:type="Characteristic'">
<_type>Characteristic</_type>
<name>Call Forwarding</name>
<valueType>string</valueType>
<value>Y</value>

</productCharacteristic>

The following example shows the JSON payload when valueType is object:

{

"productCharacteristic": [{
"@type": "Characteristic"”,
"name': "BillingAccount",
"valueType'": "object",

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 29

ORACLE Chapter 11
About Extending the Specifications

"value": {
"@type": "BillingAccountRef",
"idTto 15T
}
H|

The following example shows the XML payload when valueType is object:

<productCharacteristic xsi:type="Characteristic'">
<_type>Characteristic</_type>
<name>Bi Il l ingAccount</name>
<valueType>object</valueType>
<valueXml>
<xmlData>
<object xsi:type="BillingAccountRef">
<_type>BillingAccountRef</ type>
<id>15</id>
</object>
</xmlData>
</valueXml>
</productCharacteristic>

The following example shows the JSON payload when valueType is boolean:

{
"productCharacteristic”: [{
"@type": "Characteristic”,
"name": "AutoRenewal",
"valueType": "boolean",
"value": false
H
}

The following example shows the XML payload when valueType is boolean:

<productCharacteristic xsi:type="Characteristic'>
<_type>Characteristic</_type>
<name>AutoRenewal</name>
<valueType>boolean</valueType>
<value>No</value>

</productCharacteristic>

The following example shows the JSON payload when valueType is humeric:

{
"productCharacteristic": [{
"@type": "Characteristic"”,
"name": "Price",
"valueType": "numeric",
"value'": 100
|
}

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 29

ORACLE Chapter 11
About Extending the Specifications

The following example shows the XML payload when valueType is numeric:

<productCharacteristic xsi:type="Characteristic'">
<_type>Characteristic</_type>
<name>Price</name>
<valueType>numeric</valueType>
<value>100</value>

</productCharacteristic>

About anyOf, allOf, and oneOf

OpenAPI Specification (OAS) describes the various uses of the discriminator object in
conjunction with the allOf, anyOf, and oneOf constructs. For details, see the documentation
at: https://spec.openapis.org/oas/v3.0.1#discriminator-object.

OSM supports only allOf. The OSM schema extensions use allOf and a discriminator is added
to the parent along with propertyName and mapping details. OSM extensions consistently
specify the "@type" field as the discriminator propertyName.

In practice, this means that any JSON payload submitted to OSM Gateway when it is hosting
an OSM hosted specification must include the @type element on schema objects that have
been extended by OSM. You should continue this pattern when making schema extensions
and should remember to populate any extensions with the appropriate @type value.

The following is an example of an OSM extension using allOf:

schema:
CharacteristicOSM:
description: OSM extension to include additional (optional) data on a
product characteristic
all0f:
- $ref: "#/components/schemas/Characteristic”
- type: object
properties:
unitOfMeasure:
type: string
description: Unit of measure of the value associated with a
characteristic. Like MB,GB,Minutes,...
actionCode:
type: string
description: Action taken on a characteristic in a MACD scenario
- is it a new value being introduced - existing indicates no change -
modifiedAttributs changes the value and delete would remove this
characteristic value from the asset
enum:
- new
- existing
- modified
- delete
previousValue:
type: string
description: Value of a characteristic in the original New
Product Order (before this Product Order makes a change to it)
"@baseType":
type: string
description: When sub-classing, this defines the super-class

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 29

https://spec.openapis.org/oas/v3.0.1#discriminator-object

ORACLE Chapter 11
About TMF Cartridges and Non-TMF Cartridges

"@schemalocation”:
type: string
description: A URI to a JSON-Schema file that defines additional
attributes
and relationships
format: uri
"@type”:
type: string
description: When sub-classing, this defines the sub-class entity
name

The following is an example of the parent schema with the discriminator object:

Characteristic:
required:
- nhame
- value
type: object
discriminator:
propertyName: "@type”
mapping:
Characteristic: "#/components/schemas/Characteristic”
CharacteristicOSM: "#/components/schemas/CharacteristicOSM*®

The following shows the correct portion of the order payload with the @type populated:

"productCharacteristic™: [

{
"@type": "CharacteristicOSM™,
"name": "Authorization Code",
"value": "AB1234CD"

H

Including the discriminator object on the parent is optional when using allOf. However, it
makes the schema extensions more readable.

About TMF Cartridges and Non-TMF Cartridges

A TMF Cartridge provides the most support to cartridge developers and system administrators
when OSM operates on TMF orders. A TMF Cartridge is built around exactly one Hosted Order
Specification, and provides the fulfillment logic for that order type (Product Order or Service
Order). The TMF Cartridge is a solution cartridge, and consists of one or more component
cartridges - all deployed as one unit.

Non-TMF cartridges are refered to as Freeform Cartridges. Freeform cartridges include all
cartridges prior to 7.5.0 as well as non-TMF cartridges in 7.5.0. These cartridges are
characterized by a fully open Design-time experience, allowing complete flexibility in all of
OSM's capabilities - order structure, order state behaviour, eventing/notifications, orchestration,
automation, and so on.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 29

ORACLE Chapter 11
About Importing the Hosted Order Specification

Table 11-1 Value for Cartridge Management Variable

Cartridge Type Variable Value
TMF Cartridge OSM_RUNTIME_TYPE MultiService
Non-TMF Cartridge OSM_RUNTIME_TYPE WLS

® Note

It is important to note that these two cartridge types cannot be combined. If you have a
Freeform cartridge, you cannot simply change the order type to TMF. You must start a
TMF cartridge from scratch.

Once the TMF configuration is applied, the cartridge developer can then proceed with the
standard cartridge development process, creating orchestration entities, processes, tasks,
automation plugins, and so on. Building the cartridge results in Design Studio embedding the
Hosted Order Specification into the cartridge par file along with all the other cartridge content.

TMF Cartridge Versioning

The version for auto-generated cartridges is specified during the import process. Once a
solution is out of the development phase, if schema changes are introduced to the
specification, both the specification and the generated OSM cartridge version should be
incremented.

TMF Cartridge Target Version

The target version on all OSM cartridges must be set to 7.5.0.

About Importing the Hosted Order Specification

Access the TMF or OSM extended specifications from the OSM Cloud Native SDK download
file, in the TMFSchema sub folder. It is strongly recommended to use the OSM extended
specification either directly or as a base for custom schema extensions. An OpenAPI parser
with support for version 3.0.1 must be able to parse this file once extensions are made.
Otherwise, it would be rejected during the import process.

Refer to the Service Catalog and Design Design Studio Modeling OSM Orchestration Online
Help for instructions about importing a Hosted Order Specification.

Design Studio parses the YAML file and validates it during the import, resulting in two
cartridges when the import process is complete:

* An OSM cartridge containing some of the entities that are necessary for the TMF
framework.

e A second cartridge would contain a set of Complex Data Types (CDT) created to match the
structure and typing as per the schema for the Product Order or Service Order in the
Hosted Order Specification.

Updating a Hosted Order Specification

Design Studio does not allow an update to the Hosted Order specification via a menu option.
To remove an older version of the Hosted Specification, delete the existing cartridges and re-
import the updated specification. You will need to re-apply any changes you have made to the
lifecycle policy and fulfillment mode. For this reason, it is important to keep the generated

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 29

ORACLE

Chapter 11
About Fulfillment Modes

entities and cartridges free from custom additions as these would get removed during this
process.

Deployment of a Hosted Order Specification

The specification is bundled with the cartridge par file and is the mechanism for getting it into
the database. It is important to note that the specification lifecycle is independent of the
cartridge lifecycle.

When a cartridge is undeployed, the specification is not removed and remains in the database.
If an attempt is made to deploy a TMF cartridge (new deploy or re-deploy) that bundles a
specification of the same version, but with content differences, then the cartridge deploy would
fail as the specification with that version already exists. All specification changes should be
accompanied by a version increase.

About Fulfillment Modes

When a Hosted Order specification is imported, one of the auto-generated entities is a
fulfilment mode named deliver. This fulfilment mode is required for TMF cartridges and
should not be renamed or deleted. It should be modified, however, to ensure that its
namespace matches the other orchestration entities in the cartridge. Refer to the orchestration
process for the correct namespace to be used.

Fulfilment modes for cancel are no longer needed for TMF orders. New fulfillment modes
should only be added to support additional types of fulfilment such as TSQ.

For TMF orders, OSM will automatically set the fulfilment mode of the inbound order. The
fulfillment mode will be defaulted to delivery unless an HTTP header is used to provide an
alternate mode. Because of this new handling by the OSM core, the cartridge configuration
does not need to provide an XQuery to determine the fulfillment mode value. In the
Orchestration Sequence Editor, under the Fulfillment Mode Expression, the XQuery tab can
specify the Expression radio button and provide default in the text area

(: Declare OSM name space :)
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model™;

(: Declare incoming order name space:)
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage";

declare variable $TMF_FULFILLMENT_MODE := "deliver";

declare variable $TMF_FULFILLMENT_NS := "mycompany.tmf.productorder";
let $fulfillmentModeCode := <osm:fulfillmentMode
name="{$TMF_FULFILLMENT_MODE }" namespace="{$TMF_FULFILLMENT_NS }"/>

return $fulfillmentModeCode

About TMF Order Lifecycle Policy

Modeling Guide
G37998-01

A default order lifecycle policy is generated that contains the transitions required for the TMF
framework to function correctly. This entity may be moved to another cartridge to prevent cyclic
dependencies when roles in other cartridges are referenced.

This policy should be modified to add additional transitions for your custom roles, but the
existing configuration for "osm-gateway-internal-role" must be left in place.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 29

ORACLE

Chapter 11
About Data Dictionary

Automation Users and Roles

Automation users should continue to be given permissions needed as they would in Freeform
cartridges.

Fallout Resolution Users and Roles

A role should be created in Design Studio that can be granted the permissions necessary to
perform fallout resolution actions. This workgroup should be distinct and separate from
automation groups. (for example "FalloutResolutionRole"). This role should be given the
required permissions in the order lifecycle policy to enable all fallout resolution actions.

Table 11-2 Required permissions for fallout resolution actions

State Transition Description

InProgress Manage Order This permission is required to enable the Retry Task option in the
Amending Fallout Task Web client (Fallout Exception Actions menu.

Cancelling Not supported for suspended state.

InProgress Abort Order This permission is required to enable the Abort Order option
Suspended (Fallout Exception Actions menu) in the Task Web client.
Amending

Cancelling

InProgress Fail Order This permission is required to enable the Fail Order option (Fallout
Suspended Exception Actions menu) in the Task Web client.

Amending

Cancelling

One fallout resolution action remains that is not permitted through the lifecycle policy. In order
for users in the "FalloutResolutionRole" role to manually complete tasks (Fallout Resolution
Actions menu in Task Web client), the following steps must be taken:

e The user performing the fallout action should be added to the same workgroup as the
automation user. This enables the fallout user to see the correct content in the Task Web
client.

e Any automation task that is capable of raising a fallout exception should have the
"assigned" state available on the task editor state/status tab. This allows users that share
the same workgroup, to re-assign a task to themselves.

e From the Task Web client, the fallout user should re-assign the task to themselves.

e Using the Task Web client Editor view, or by choosing the menu action "Manually Complete
Task", the fallout user can manually complete the task.

About Data Dictionary

Modeling Guide
G37998-01

The import process creates a cartridge containing a set of Complex Data Types (CDT) that
represent the schema of the productOrder or serviceOrder as defined in the specification. This
saves time for cartridge developers who would otherwise have to manually construct the data
model in Design Studio.

CDT content is always significant. The cartridge developer should be aware that a change to
any content within the productOrder will trigger amendment processing, as all of the data is
modeled as CDT.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 29

ORACLE’

About the Order Template

This section describes the following order templates.
e Master Order Template

e Order Item Specification Order Template

About the Master Order Template

Chapter 11
About the Order Template

To the master order template, you should add the CDT representing your order resource -
either ProductOrder or ServiceOrder to the root (outside ControlData). It is important to note
that even if there are extensions to the main resource (ProductOrderOSM), you should not add
these sub-types into the order template. Because the extensions are sub-classed from the
main resource and implemented in OSM as CDTs, the exact typing is handled at runtime.

Figure 11-2 Order Template with ProductOrder Information

Order Template

Show Control Data @

5> T2 ControlData
Sﬁj inputhfessage

“ ProductOrder <=
€% id
&P href
4# cancellationDate
@¥ cancellationReazon
4% category
4% completionDate
4¥ description
&¥ expectedCompletionDate
4% externalld
4% notificationContact

R o

The payload served to OSM Gateway by the calling system includes a '@type' field that
declares the concrete schema type that is populated. The '@type' field should specify the exact

schema extension used.

{
"description": "TMF OSM Product Order",

"category': "salesOrder",
"externalld": "456855",
"@type'": "ProductOrderOSM_Create",

About the Order Item Specification Order Template

The order item specification has an order template that must also be configured properly which

includes:

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

ORACLE

Modeling Guide
G37998-01

Chapter 11
About the Order Template

* An order item property must be created named either "ProductOrderitem" or
"ServiceOrderltem"”

* An XQuery sample for populating this structure follows.

e The CDT representing the order item type from the schema (ProductOrderltem or
ServiceOrderltem) must be added to the order template of the order item specification.

® Note

Design Studio restrictions preventing the addition of a CDT to the order template have
been lifted for cartridges with a target server version of 7.5.0.

(- Sample XQuery to populate the order item specification property -
ProductOrderltem. This XQuery does not retain the hierarchy of order items,
it only returns the incoming data for a single line item :)

declare namespace oms="http://www.metasolv.com/OMS/OrderModel/2002/06/25";
declare namespace tmfbase="%{TMF_CDT_NAMESPACE}";

(: Declare OSM name space :)

declare namespace model="http://xmlns.oracle.com/communications/
ordermanagement/model™;

declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage"’;

declare variable $tmfbase := "%{TMF_CDT_NAMESPACE}";

(: Ensure that incoming order has mentioned name space:)
declare variable $line := if (fn:exists(fn:root(.)/tmf:productOrderltem))
then fn:root(.)/tmf:productOrderltem else .;
declare function local:copyButTrimChildProductOrderItem(
$parentName as xs:string?,
$element as element(),
$first as xs:boolean,
$trim as xs:boolean) as element()*

let $concreteType := fn:data($element/@xsi:type)
let $elementName := local-name($element)
return
if (fn:exists($concreteType)) then (
let $gName :=
if ($first = fn:true()) then (fn:QName($tmfbase,
"ProductOrderltem™))
else (fn:QName($tmfbase, $elementName))
return
if(SelementName = "productOrderltem” and $trim = fn:true())
then
else (
element {$qName}

{

"}, $concreteType) },

attribute { "type" } { fn:concat("{", $tmfbase,

attribute { "xsi:type" }
{ fn:concat(xs:string(‘"tmfbase™),":", $concreteType) },

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 29

ORACLE Chapter 11

About the Order Template
attribute { "tmfbase:type" }
{ fn:concat(xs:string(''tmfbase:"), $concreteType) },
for $child in $element/node()
return
if ($child instance of element())
then
local :copyButTrimChildProductOrder ltem($concreteType, $child, fn:false(),
fn:true())
else $child
}
)
)
else (
if($elementName = "productOrderltem” and $trim = fn:true()) then
0O
else (

element {node-name($element)}

$element/@*,
(
for $child in $element/node()
return
if ($child instance of element())
then

local :copyButTrimChildProductOrderltem((), $child, fn:false(), fn:true())
else $child
)

}

local :copyButTrimChildProductOrderitem((), $line, fn:true(), fn:false())

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 29

ORACLE’

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

Chapter 11
About the Order Template

Figure 11-3 Order Template with Product Order Item Information

Order Template
Show Control Data @)

v %9} ControlData
v %?} Orderltem

48 Action
4% PointOfMoReturn
4# OrderltemFulfillmentState
4 OrderltemProcessingState
4¥ Recognition
T2 dynamicParams

ResponseParameters
4% FulfillmentPattern
4% Lineld
4% LineName
4% ProductOfferingType
4¥ ProductSpecification
48 System
4% Parentlineld
4% RequestedDeliveryDate
4% milestone
& LineXmlData
5> T2 errorMessage
w ProductCOrderltem ¢
€¥ id
48 quantity
4% action

appeintrment

As is the case on the master order template, the CDT structure that should be placed under
ControlData/Orderltem should be the base type from the TMF specification and not any
extended types. The concrete schema will get resolved at runtime by specifying the '@type’
property on the productOrderltem (or serviceOrderltem) on the incoming order payload.

"productOrderltem™: [

{
"@type": "ProductOrderltem<extension>",
"guantity": 1,

The TMF Order Item (ProductOrderltem or ServiceOrderltem) is exposed to fulfillment
functions as a property of the orderltemRef within a function. This allows automation tasks
associated to update the ProductOrderitem or ServiceOrderltem directly.

October 30, 2025
Page 14 of 29

ORACLE Chapter 11
About the Order Template

Figure 11-4 ProductOrderitem within a Function

Order Template

5 T2 Orderltem
4# OrderFulfillmentState
~ T8 Functiens
v%g ShipOrderFunction
€% componentKey
€% calculatedStartDate
4 duration
W %E'} orderltern
v & orderltemRef
&y Action
ey PointOfNoReturn
&y OrderltemFulfillmentState
%y OrderltermnProcessingState
% Recognition
'&; dynamicParams
'&; ResponseParameters
& FulfillmentPattern
& Lineld
& LineMName
&y ProductOfferingType
%y ProductSpecification
&y System
& Parentlineld
&y RequestedDeliveryDate
&y milestone
& LineXmlData

» I&; ProductOrderltemn

e CATelNglFL = dLEC

@¥ FunctionProcessingState
» %E'} transformedOrderltem
= TransformedOrderltem

The data returned when a GET endpoint is invoked consists of all POl or SOl under
ControlData/Orderltem as well as the PO or SO at the root.

About the Significance of CDT

During amendment processing, OSM analyzes the changed data at an element level. Only
changes to data elements that have been marked as significant will trigger amendment
processing. In OSM, CDTs are always considered significant which means that for TMF orders,
a change to any data field within the main resource (ProductOrder or ServiceOrder) will trigger
compensation.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 15 of 29

ORACLE’

Chapter 11
About TMF Orders and Permissions

Cartridge developers that want more control over this process can configure a rule on the order
lifecycle policy (the same functionality as Freeform cartridges) where a more thorough
evaluation can be done. This can result in rejecting orders with changes that are deemed
insignificant to the fulfillment logic of the cartridge.

About TMF Orders and Permissions

The Details tab for an Order has some required details related to TMF.
e The auto-generated lifecycle policy should be referenced.
e The TMF Order checkbox must be selected.

* The hosted order specification must be selected.

This configuration controls the inclusion of mandatory cartridge configuration that can be
produced internally during the design studio build.

Once an order is designated to be a TMF order, the cartridge developer is responsible for
adding the required permissions.

Permissions for Internal Gateway Role

The following are the permissions required for an internal gateway role:

* The osm-internal-gateway-user auto-generated during the import process must be added
to the permissions tab of an order.

e On the details tab, Create Order access must be given.
« A flexible header for ControlData/OrderFulfillmentState must be added.

e A query task with the default settings must also be defined. This view does not need to
follow a specific naming convention, but does need access to everything in the order
template.

Figure 11-5 Internal Gateway Role Configuration

Roles Role Settings
Details Filters Query Tasks
Create Orders @

iosm-gateway-internal-role;

Flexible Header Description
SControlData/OrderFulfillmentState OrderFulfillmentstate

About Order Recognition

Modeling Guide
G37998-01

Recognition Rule

With freeform cartridges, clients send an XML create order request directly to OSM. Cartridge
developers must understand the payload structure and the XML namespace associated with
the order as this information is typically used to identify matching order requests.

When OSM hosts a TMF specification, OSM Gateway creates the actual request to OSM.
While the payload structure is known (defined inside the TMF specification), the XML
namespace carried on the order is crafted by OSM Gateway. As cartridge developers are still

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 29

ORACLE

Modeling Guide
G37998-01

Chapter 11
About Order Recognition

responsible for coding order recognition, they must be made aware of the namespace that will
be used. The incoming document namespace reflects the hosted specification name and
version number. If you open the hosted specification editor in Design Studio, you can verify
both of these values.

The prefix of the document namespace is a constant - http://
oracle.communications.orchestration.com/

The suffix can be formatted from the following information:
host edSpecNanme/<host edSpecVer si on/r esour ceNane/ inputMessage

Cartridge developers should use OSM best practices to capture version information as a model
variable. As the hosted specification is up-versioned through its lifecycle (resulting in a version
change), the model variable must be updated but not the xquery code.

The order recognition xquery provided below can be used in conjunction with a cartridge model
variable that defines 'TMF622_VERSION' to match the hosted specification version.

Recognition
(: Declare TMF name space :)

declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage"’;

(: Ensure that incoming order is found and only one:)
fn:count(//tmf:productOrder)=1

Order Data Rule
This section provides information about model variable and sample xquery.
Model Variable

The auto-generated OSM cartridge contains an auto-generated model variable called
TMF_CDT_NAMESPACE populated with CDTCar t ri dgeNane/CDTCar t ri dgeVer si on.

For example, if the cartridge was called "PO_Base" with version 1.1.1.1.1, then the variable
value would have a value of "PO_Base/1.1.1.1.1"

This variable is necessary in many cartridge XQueries to reference the namespace of the OSM
CDT entities correctly. In the XQuery sample mentioned below, we can see it is needed to set
the namespace on the order data being created and returned to OSM.

XQuery

The following xquery sample will populate the TMF resource anchor root node (i.e /
ProductOrder) in the order template from the TMF Order data submitted at runtime.

OrderDataRule

declare namespace oms="http://www.metasolv.com/OMS/0OrderModel/2002/06/25";

declare namespace tmfbase="%{TMF_CDT_NAMESPACE}";

(: Declare 0OSM name space :)

declare namespace model="http://xmIns.oracle.com/communications/ordermanagement/model";
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage”;

declare variable $tmfbase := "%{TMF_CDT_NAMESPACE}";

(: Ensure that incoming order has mentioned name space:)

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 29

ORACLE Chapter 11
About Order Recognition

declare variable $root := //tmf:productOrder;

declare function local:copyButTrimProductOrderltem(
$element as element(),
$First as xs:boolean) as element()*

let $type := fn:data($element/@xsi:type)
let $elementName := local-name($element)
return
if ($elementName != "productOrderltem™) then (
if (fn:exists($type)) then (
let $gName :=
if ($first = fn:true()) then (fn:QName($tmfbase, "ProductOrder™))
else (fn:QName($tmfbase, $elementName))
let $concreteType :=
if ($first = fn:true()) then (fn:substring-before($type, " Create™))
else ($type)
return
element {$qName}

{
attribute { "type" } { fn:concat("{", $tmfbase,
"}, $concreteType) },

attribute { "xsi:type" }
{ fn:concat(xs:string(""tmfbase™),":", $concreteType) },
attribute { "tmfbase:type" }
{ fn:concat(xs:string(‘"tmfbase:"), $concreteType) },
for $child in $element/node()
return
if ($child instance of element())

then local :copyButTrimProductOrderlItem($child, fn:false())
else $child

}
)
else (
element {node-name($element)}
$element/@*,
for $child in $element/node()
return
if ($child instance of element())
then local :copyButTrimProductOrderItem($child, fn:false())
else $child
)
}
)
)
else O

}

let $description := $root/tmf:description/text()

return
<_root>
{local :copyButTrimProductOrderltem($root, fn:true())}
</_root>
)

Modeling Guide

G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 18 of 29

ORACLE Chapter 11
About Updating the TMF Order Item with Downstream Data

About Updating the TMF Order Item with Downstream Data

TMF Order data is held inside the following areas of the Order Template:
e <resource> (_root/ProductOrder)

* ControlData/Orderltem/<resource>Orderltem (ControlData/Orderltem/ProductOrderitem)

When OSM emits TMF events about the order resource, or when a GET endpoint is invoked,
the data returned comes directly from the TMF data in these two locations. There are some
considerations for cartridge developers to think about, with respect to where downstream data
updates will be stored on the order item.

Is the data update modeled as an order item characteristic that is empty on the incoming
create request, but gets populated based on downstream data and then propagated upstream
(network address)?

OR is the data something fulfillment related, applying equally to all order items regardless of
the product specification (shipment tracking details)?

These different types of data can be modeled in two ways.

Updates to Order Item Characteristics

Updates to a TMF Order Item (ProductOrderltem or ServiceOrderltem) characteristics trigger
the automated <resource>AttributeValueChangeEvent with a pointer to the exact data change.

If a data update is destined for a line item characteristic, then there is a nuance about the OSM
order data that must be considered.

OSM's parameter binding feature will dynamically map the data representing the line attributes
on an incoming create order payload to the dynamicParams area of the control data.

For TMF orders, a CDT representing the entire order item is added to the control data. This
means that the line item characteristics are held in two places in the OSM order data -
ControlData/Orderltem/ProductOrderltem and the OSM mapped parameters inside
dynamicParams as shown in Figure 11-6.

Note that one location is OSM order data and the other is TMF data.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE Chapter 11
About Updating the TMF Order Item with Downstream Data

Figure 11-6 Order Item Characteristics

Order Crcdar Tlems Order Comporienis

Timelre Summary Dot Orchestraton Plan Am=ncments

wiew Product Onder Query Task
PO_QueryTask

| Prodiuct Order Query Task

cpreductOrder sming="hiw: {forade. communications. anchestration, comftmf-
aoiproduciOrdenngiManagemsan L'4.0.0, L LproducOrder fnpuliescags”
mouiMeEssage cming:osi= Tkl v w300 200 1ML Schema-rstancs”
wsi: bpe="ProductlrderSupremo Create”>
“d=sorphion =THF Suprems Product Order < jdesoripbon =

= ControlData
» Orderltem List | 19995950049)

» Orderitem

» Orderitem
= OrderTtem
Acton add
OrderltemPulfilmentState nProgress Line
OrderliemProoessngState In Progress 8

FulfilrentPattern Shipped _Service ProductdHerin

= dymamicFarams [SIHCardPS Type]
l i|-_'l_'::- E910042348 144555057 Phore Mumber 6505067000 PartIn N
I

MSL 310170265624295 Authorization AS123400 IMEL 35175608
Code

= ProductOrderitem {(ProductOrderltemSoprema)
Id OCE-1ZR4VK Canlity 1 hebion Add
= BilingAccount [BilngAcoountRefSupremo)
I OCN-INAFTTY
+ Product (ProdectReflrValueSuprema)
I O-1ZBOML Mame emulabor

= Productt haracterste (CharmcheristicOSH) List (0L 595%5)

Hame Authorization Code Value AB|234CD

* ProductCharacteristic (CharactersticnsM)

+ ProductCharacterstic (CharaclerstiodsM)

Which location should cartridge developers update with their plugin script? The two
characteristic areas should be kept in sync at all times, and to that end OSM uses the
"Reverse Data Propagation" (RDP) feature that is responsible for this.

During PSR modeling, the specific data element that will be populated from downstream
systems, should have the "Supports Reverse Propagation” checkbox selected. This should not
be turned on for all data elements in a PSR entity, but only the ones where the value will
originate downstream.

When checked, OSM will automatically propagate updates to that data element in the
Orderltem/dynamicParams to the correct characteristic within the TMF Order Item.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 29

ORACLE Chapter 11
About Updating the TMF Order Item with Downstream Data

Figure 11-7 Reverse Propagation Configuration

Product: SIMCardPS

Description SIM Card Product

Bataiioment Details | Enumerations | Tags | Transformation | Usage | Notes
€5 Iccip Propagation
€5 IMs|
43 Phone_Number Supports Reverse Propagation @
€% Phane_Number_Type Supports Forward Propagation [
43y Authorization_Code
€% Portln
€5 IMEI

As shown in Figure 11-8, updates made to data elements where the blue arrow is pointing, will
be propagated (when RDP is turned on) to the area pointed to by the green arrow.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE"

Chapter 11
About Updating the TMF Order Item with Downstream Data

Figure 11-8 Data Propagation When RDP is Enabled

Order Templale

Shew Control Data i)

w 1% ControlDats
» T# Qrderitern
T Tarrdurmedrdislem
+ T MappingContext
4F Orgerfutfillmentstate
vt‘.‘ Functions
~ T TmfPravFunctiorfunction
P comporeniKig
4P calculated SariDate
fF duration
W T,".‘ angeritern
4F ExternaFulfillmentitate
4F FunclicePyncisingstale
W crdertemPef
W Brtuon
& Recognition
” PointCHMaReyrn
& OrdertemFullilimeniState
i FuttilmersPatbenn
& Linald
&P LireMame
" ProductSaes ificabon
& RequedtedDalroery Date
& PaentLineld
@ dynemicParams

w o ProductOrderdtem
@

&P questity

& action

W appostmers

* nilingAcoount

il descnption
€} sBundle
i lustomerVisibks
£ neme
£l ondeilate
£} productSenalMurmber
&} startDate
£ temmetion Date
B, sgreemers
B, bilingbecaunt
B, place
B, product
Ba, productChesectenstic
&) neme
i webueType
E_ wakue
& haalype
4% _schemalocabon

G e

4¥ Phoneumberfyoe
4§ Portin

45 Authorzstionods
4 1K

This feature is available only when the TMF Order Item Characteristic is a primitive type.
Characteristics that are objects or arrays are not supported with RDP.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

ORACLE Chapter 11
About TMF Order State

@® Note

If the incoming characteristic name is different than what is modeled in design studio,
then you should be utilizing the "key" feature along with order item parameter
bindings. In this way, the reverse propagation will take into account the key and will be
able to find the correct source characteristic. Do NOT use the parameter binding
xquery to do any such manipulation from one value to another as data will not be able
to be propagated. As an example, if your upstream system will be sending a
Characteristic name with underscores "Authorization_Code" but your PSR entity in
Design Studio has a data element "AuthorizationCode", you should not use the
parameter binding xquery to strip the underscore but rather you should use the "key"
feature which is intended to rectify discrepancies between commercial and technical
naming.

Transformed Order Iltems

For line items that are involved in OTM, updates to a TransformedOrderltem/dynamicParams
can cause OTM to update an Orderltem/dynamicParams. When combined with the RDP for
TMF orders, that will also include propagation to the original source TMF Order Item.

To update the TMF order item characteristic data, cartridge developers only need to focus on
updating the dynamic parameter under the transformedOrderltem.

Updates to General Order Item Data

For updates that are more general in nature (ie. shipment tracking info), it does not make
sense to model that as Characteristics of a product or service. This class of data would be
added under the TMF order item.

General Order Item data such as these examples would be reflected in responses to a GET
endpoint invocation, but do not trigger upstream events. In order for callers to be aware of the
new data, an explicit GET invocation would be required.

Updates to External Fulfillment State

Updates to Functions/<Function>/orderltem/ExternalFulfillmentState to trigger cartridge
defined fulfillment state calculation, may indirectly trigger an update to TMF Orderltem's state
and TMF order state.

About TMF Order State

Calculating and propagating TMF order and order item state are handled internally by OSM.
Changes to the Order state are communicated through StateChangeEvents.

For order processing sequence diagrams showing StateChangeEvents, see "About TMF
Orders (Cloud Native Only)" in OSM Concepts guide.

Figure 11-9 shows the view of state transitions for a TMF Order (ProductOrder or
ServiceOrder). This image includes OSM extensions to the state, meaning a TMF solution
must have imported a specification that uses the OSM extensions to follow this diagram
exactly.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 23 of 29

ORACLE’

Modeling Guide
G37998-01

Chapter 11
About TMF Order State
Figure 11-9 TMF Order (ProductOrder or ServiceOrder) State Transitions
(state machine ProductOrderState [[&] ProductOrderSiate u —
? - T
e LT — s =
T reere— o h Cs | Orde k
=
Start execution ™ -—-—- T~ N

/
! ’

1 /

\ ’

! N
I Jatrems success|

N
Mix of success.
and failed tem

[Partial)

[Completed

[Faile

I
/ :‘
D —
Al tems faied.

a

ta
order.

AN
Cartridge signaled falout sxception
/
/ S
InProgress.Fallout ‘

Cancelin-fight request
approved and cancel
staried for in-progress.

inProgress

I /

Successulretry o
manual completion ~
N

Amending N
) P) ~

s
z
’

Can
approved and cancsl

Assessing
Amendment

Revise in-fight request received for in
progress order and revision started

Successful retry or manual
completion

ariridg
‘ Amending Falllout ‘ exception

started for falout Order

request
received for falout order
and revision starte

PendingCancellation

Al canceliation
activties complete

Successful retry or
manual completion

Cartridge signaled fallout

PendingCancellation.Fallout

Table 11-4 summarizes the states for a TMF Order (ProductOrder or ServiceOrder).

Table 11-3 States of a TMF Order

TMF State Usage OSM Order State
acknowledged Not used NA
rejected Not used NA
Rejected requests are handled
through a synchronous HTTP
response with appropriate HTTP
response code.
pending Initial State. After order is Created
created, but before any task has
started.
Initial State for future dated
orders.
held Not used NA
inProgress Order is executing. InProgress
cancelled Order has finished being Cancelled
cancelled.
completed Order has finished execution with | Completed
no failures.
failed Order has finished execution and | Completed
all order lines have failed.
partial Order has finished execution with | Completed
order lines having a mix of
success and failure.
assessingCancellation Not used. InProgress

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 29

ORACLE’

About TMF Order Item State

Modeling Guide
G37998-01

Table 11-3 (Cont.) States of a TMF Order
|

TMF State

Usage

Chapter 11
About TMF Order Item State

OSM Order State

pendingCancellation

Order is executing a cancellation
request.

Amending

Table 11-4 summarizes the states for a TMF Order (ProductOrder or ServiceOrder).

Table 11-4 States of a TMF Order Extended by OSM
e __________________________ |

TMF State

Usage

OSM Order State

amending

Order is processing a revision
request.

Amending

amending.suspended

Order was processing a revision
request but is currently
suspended.

Amending

amending.fallout

Order was processing a revision
request but is now waiting on
fallout exception resolution.

Amending

amending.fallout.suspended

A revision request was waiting on
fallout exception resolution but is
now suspended.

Amending

pendingCancellation.suspended

Order was executing a
cancellation request but is now
suspended.

Amending

pendingCancellation.fallout

Order was executing a
cancellation request but is now
waiting on fallout exception
resolution.

Amending

pendingCancellation.fallout.susp
ended

A cancellation request was
waiting on fallout exception
resolution but is now suspended.

Amending

inProgress.fallout

Order is executing but is waiting
on fallout exception resolution.

InProgress

inProgress.suspended

Order was executing but is
currently suspended.

InProgress

inProgress.fallout.suspended

An order waiting on fallout
exception resolution but is now
suspended.

InProgress

Implications of TMF Partial and TMF Failed State

In all cases, the TMF Failed state and TMF Partial state are final states. This means that no
further work is done on the entity that has entered this state. For example, if a line item enters
TMF Failed state, no further processing can happen for that line item in the orchestration plan;
if the order enters TMF Failed state, no further activity can occur on the order.

Changes to order item state are communicated through AttributeValueChangeEvents.

Figure 11-10 shows the state transitions for a TMF Order Item (ProductOrderltem or
ServiceOrderltem). This image includes OSM extensions to the state, meaning a TMF solution

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 29

ORACLE’

Modeling Guide
G37998-01

Chapter 11
About TMF Order ltem State

must have imported a specification that uses the OSM extensions to follow this diagram

exactly.

Figure 11-10 TMF Order Item (ProductOrderitem or ServiceOrderltem) State

Transitions

Cancel Order accepted for in-
progress order ftem.

\
\
\
i
\
\

Cancel Order
Accepted for
pending order tem

Pl

/Amend Order accepted for
fallout Order item.

Cancel Order accepted for
__ fallout Order item with
cancel process.

Fallout resolved

\
'

Associated Fulfilment
~ Function fallout during
. cancel
Cancel process
completed without
error
~
~
~

Cancel Order accepted for fallout Order item
without cancel process.

L

state machine ProductOrdertemState [&) PrudunordememStateu
Order tem is in Pending state afer Note: There are no Acknowledged state Associated Fallout resolved for
Order i created unti any Fulfilment for Order em. Fulfilment Function | [order flems of the
Function which the Qrder tem is fallout associated
associated and started or any child , Fulfilment Function
Order tem is not in Pending State. ’
- 7/ -
~ o / P -
-~ -
- / 4 -
= Y ’ s -
Pendin -
(__Pendma 7 P
4 -
/ . ¢
Associated Fulfilment B -
Function started T T T T e m == = =
/ rd
/ 4 - -
— / s -
— 7 nProgress R
- -
_ =
- ;rﬂ{ InProgress.Fallout | . -
- s)
]
Associated Fulfilment 4
function completed without
eror.
- —
. — -
[Amending | Pending! L
-
»
-
-
-
- _ ~
-~ ~
Associated - S
Fulfilment function e - r
completed but [compietea | |~ [Amending.Famowt |~
order tem s not = ~
success. A~ ~
_ ~
-
Fallout resolved [Failed [cancelled ~ S
~
N
~
N
~
Associated
Fulfilment Function
fallout during
O

Table 11-5 summarizes the state transitions for a TMF Orderltem (ProductOrderitem or

ServiceOrderltem).

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 29

ORACLE’

Table 11-5 State Transitions for a TMF Orderltem (ProductOrderitem or

ServiceOrderltem)

Chapter 11

About TMF Order Item State

From Pendin | InProg |InProg | pendin | pendin |amend | amend |failed |compl |cancell
StatelT | g ress ress.fa | gCanc |gCanc |ing ing.fall eted ed
o State llout ellatio | ellatio out
n n.fallo
ut
pendin | NA Associa | NA NA NA NA NA NA Pendin | Cancel
g ted g Order | Order
Fulfillm Iltemis | Accept
ent not ed For
Functio associa | Pendin
n tedto |g Order
Started. any Item.
Fulfillm
ent
Functio
n and
contain
s no
child
order
item.
InProgr | NA NA Associa [Cancel | NA Amend [NA Cartrid | Associa [NA
ess ted Order Order ge ted
Fulfillm | accepte accepte signals | Fulfillm
ent d for d for Order [ent
Functio | InProgr InProgr item is | function
n fallout | ess ess not complet
order order succes |ed
item. item. S. without
error.
InProgr | NA Order |NA Cancel | NA Amend | NA Cartrid | NA Cancel
ess.fall Item Order Order ge Order
out Fallout accepte accepte signals accepte
resolve d for d for Order d for
d and fallout fallout item is fallout
associa Order Order not Order
ted item item succes item
Fulfillm with with S. without
ent cancel amend cancel
Functio activitie ment activitie
n retry. S activitie S.
s
pendin | NA NA NA NA Associa [NA NA Cartrid | NA Cancel
gCanc ted ge process
ellation Fulfillm signals complet
ent Order ed
Functio item is without
n fallout not error.
during succes
cancel. s.

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

ORACLE’

Table 11-5 (Cont.) State Transitions for a TMF Orderltem (ProductOrderitem or

ServiceOrderltem)

Chapter 11

About TMF Order Item State

From Pendin | InProg |InProg | pendin | pendin |amend | amend |failed |compl |cancell
StatelT | g ress ress.fa | gCanc |gCanc |ing ing.fall eted ed
o State llout ellatio | ellatio out
n n.fallo
ut
pendin | NA NA NA Fallout | NA NA NA Cartrid | NA NA
gCanc resolve ge
ellation d for signals
.Fallout cancelli Order
ng item is
order not
item succes
and S.
associa
ted
Fulfillm
ent
Functio
n retry.
amendi | NA Amend [NA NA NA NA Associa | Cartrid | NA NA
ng ment ted ge
complet Fulfillm | signals
ed and ent Order
there Functio | item is
are n fallout | not
remaini during | succes
ng amend |s.
fulfillme ment.
nt
function
to be
execute
d.
amendi | NA NA NA NA NA Fallout | NA Cartrid | NA NA
ng.fallo resolve ge
ut d for signals
amendi Order
ng itemn is
order not
item succes
and S.
associa
ted
Fulfillm
ent
Functio
n retry.
failed | NA NA NA NA NA NA NA NA NA NA
comple | NA NA NA NA NA NA NA NA NA NA
ted
cancell | NA NA NA NA NA NA NA NA NA NA
ed

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 29

ORACLE Chapter 11

About Fulfillment State and Processing State

About Fulfillment State and Processing State

The ControlData/Orderltem/OrderltemFulfillmentState and ControlData/Orderltem/
OrderltemProcessingState fields are now reserved for OSM use, for the calculation of TMF
State. They will hold calculated TMF state values and will be communicated to upstream
systems via the TMF StateChangeEvents.

Cartridges must not update these fields and should not use this field in fulfilment state
mapping.
There are two level of Processing State for an Order Item:

e Order Component Order Item Processing State - Processing State of an Order Item within
an Order Component. The input value of the state here can be optionally driven by external
fulfillment state.

* Order Item Processing State - Processing State of an Order Item aggregated from child
order item's processing state as well as all processing state of itself across all order
component.

OSM Processing State value is different than the TMF product Order item state. Table 11-6
describes the state mapping between OSM Order Item and TMF Product Order Item.

Table 11-6 OSM Order Item and TMF Product Order Item State Mapping

Processing State OSM Order State Processing Product Order Item State
Direction

NotStarted NA NA pending
InProgress in_progress FORWARD InProgress
InProgressWithWarnin | in_progress FORWARD InProgress
gs
InProgressWithFailures | in_progress FORWARD inProgress.fallout
InProgress amending FORWARD amending
InProgressWithWarnin | amending FORWARD amending
gs
InProgressWithFailures | amending FORWARD amending.falllout
Completed in_progress, amending FORWARD completed
CompletedWithWarnin | in_progress, amending FORWARD completed
gs
PartiallyFailed in_progress, amending, FORWARD, partial

cancelling REVERSE
Undoing amending REVERSE amending
UndoingWithWarnings | amending REVERSE amending
UndoingWithFailures amending REVERSE amending.fallout
Undoing cancelling REVERSE pendingCancellation
UndoingWithWarnings | cancelling REVERSE pendingCancellation
UndoingWithFailures cancelling REVERSE pendingCancellation.fallout
UndoCompleted cancelling REVERSE cancelled
UndoCompletedWithW [cancelling REVERSE cancelled
arnings
UndoFailed cancelling REVERSE failed

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

Modeling External REST Interactions using
System Interaction (Cloud Native Only)

This chapter describes how to model external REST interactions using System Interaction.

Before reading this chapter, refer to "About REST APIs and System Interaction (Cloud Native
Only)" in OSM Concepts.

@® Note

System Interaction is supported for OSM cloud native deployments only.

The System Interaction specifications can be TMForum REST APIs used in fulfillment (such as
TMF700 for shipping or TMF 641 for provisioning), but can also be non-TMF APIs expressed
as OpenAPI specifications. Parsing technology is used to validate that the structure and syntax
of imported REST specifications align with the OpenAPI Initiative v3.0.1.

About Importing the OpenAPI Document into Design Studio

The OpenAPI document involved in a system interaction, is owned by and must be provided by
the external application serving the API. The OpenAPI describes the specific capabilities of
that system including available operations, HTTP headers, path parameters, HTTP response
codes, schema, server url and so on. When the document is a TMF OpenAPI it is likely that
extensions have been made by applications. Therefore, care should be taken that the file
imported to Design Studio, reflects the current, up-to-date capabilities and schema supported
by the external system.

Note that the OpenAPI version information is carried in two locations - at the info:version and
as part of the server:url. Design Studio must be able to determine the version number
unambiguously, therefore these numeric values must be an exact match before being imported
to Design Studio.

TMF APIs for BSS/OSS System Interactions

For convenience, OSM cloud native makes available a set of TMF OpenAPI specifications that
would typically be used for system interactions, as a reference. These are in the OSM SDK in
the TMFSchemasiClientSpecifications subfolder.

The samples provided are good for reference and may be used as a development accelerator.
However, before actual integration is attempted, the System Interaction Specification should be
updated to reflect the actual OpenAPI provided by the external system.

Importing a System Interaction

OSM Order Components have a System Interaction tab where cartridge developers can select
the OpenAPI for a particular external system. Design Studio will perform parsing and validation
to align with OpenAPI Initiative 3.0.1.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE’

Chapter 12
System Interaction and OSM Order Components

The system interaction tab of an order component, also provides a field to enter the Target
System. This should be a logical name for the Target System and should describe the function
of the Target System rather than its specific location. For example, a logical name of "Wireless-
Activation" would be appropriate, as opposed to "Test-ASAP", as the latter pins it down to a
specific system. This is important to allow flexibility between cartridge design and solution
deployment design. The cartridge developer can freely reference a logical target system,
leaving it up to the deployment scripts and configuration to allocate an actual target for that
logical system in the form of a specific URL, authentication, and so on.

This logical name should be obtained from or provided to the individual responsible for
maintaining the OSM CNTK deployment scripts. The same value must be defined in the CNTK
project and instance specification files.

OSM does not support some aspects of OpenAPI schema for use in a System Interaction
specification. For more information about these known issues and their workarounds, refer to
"Known Issues and Workarounds."

Updating a System Interaction Specification

System Interaction Specifications are version specific. If an updated version of the OpenAPI is
provided by an external system, the expectation is that the specification will reflect the version
change. The Order Component holding the SI must have the old specification removed and the
new one re-added. A delete and re-import will cause Design Studio to re-generate the
necessary supporting metadata.

If an attempt is made to deploy a cartridge (new deploy or re-deploy) that bundles a System
Interaction Specification of the same version, but with content differences then the cartridge
deploy will fail as the specification with that version already exists. All specification changes
should be accompanied by a version increase.

System Interaction and OSM Order Components

Modeling Guide
G37998-01

When a system interaction specification is imported to Design Studio, the specific operations
and events become available as configuration for automation plugins as shown in the image
below.

Figure 12-1 Sl Operations Dropdown

Automation Plug-in - XQuery Sender

Details Compensation XQuery Routing System Interaction Motes

Target Systemn shipping-emulator
OpendPl| Operation v|
--select--

retrieveShipping Order
unregisterListener
patchShipping Order
listShippingOrder
registerListener
updateShippingOrder

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE Chapter 12

System Interaction and OSM Order Components

In order to populate this list, Design Studio looks at the OSM subprocess that holds this
automation task, and then at the Order Component that contains this subprocess. The System
Interaction registered with that order component provides the list of operations.

In the example below, the ShipOrderFunction holds the System Interaction for the Shipping
System.

The ShipOrderSubProcess is defined on the ShipOrderFunction.

Therefore, all automation tasks found in the ShipOrderSubProcess will have a list of
operations from the System Interaction Specification.

Figure 12-2 ShipOrderSubProcess

[m] Studio Proj... 33 = B | [*ShipOrderFunction I3
i - <& - T N = s
EHE [% Order Component Specification : ShipOrderFunction
Folder Search folder &
Mame Search name & Description Ship Order Function
- E,& NOA_PO_Shipping [osm-cn-prajects master] MNamespace | oracle.communications.tmf.productorder
v ¢ Automated Tasks
v TASK Extends ShipFunction
&% ShipOrdersiTask
» & Composite Cartridge View Process ShipOrderSubProcess
5 [Bu| Data Schemas
> (vf"ti Manual Tasks :
E NOA_PO_Shipping Base Task ShipOrderBaseTask
~ [= Order Component Specifications
v f} FUNCTION Order ltem PO_OrderLineSpecification
=} ShipOrderFunction B Order Component Executable
v 8 Process [T Use Calculated Start Date
» % SUBPROCESS
5 % Roles ~ Applies To Order Component

Determining the Order Component

OSM supports multiple layers of Order Components as part of the orchestration plan. Typically
the layers in sequence are Function, System and Granularity. In case there is only one layer
(which would be the Functional Order Component), apply the System Interaction to that

component. In the example below, the functional order component - ActivateServiceFunction
- has the System Interaction Specification.

Figure 12-3 activationOrchPlan

Legend
ActivateService
DesigiServiceF
NOA_SO_Deteomint Prow sidning
ActivateServiceFenclion
OriginalOrder o 5TM CF5 fadd]
S CFS faukt}- = .
Die s i giniS e r i oo Fuemsotion
50 CF5 Jadd]

Modeling Guide
G37998-01

October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates.

Page 3 of 11

ORACLE’

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

Chapter 12
System Interaction and OSM Order Components

In case there are multiple layers of order components, apply the System Interaction to the
earliest layer such that all subsequent layers (and their fan-out) satisfy these conditions:

e Same target system being contacted,
e With the same REST API version,

* And via the same subprocess.

In the next example, the system and granularity order components for the
ProductProvisioning function (blue boxes) do not deviate from the above conditions,
therefore the System Interaction can be imported to the functional order component -
ProductProvisionOrderFunction.

Figure 12-4 digitaltv

PO_DeterniineFu tillmeniFunctionSrage

PO_DetermineFulfilimentSysiemitage
o

Cateway]
PO_DerermineProcessing Gran ulinnyStage
At ..
| Nt fackf— ==
ProductPraviskonDod eFunction il =
ok iy —+ Hulu ada
- Hulu faga}-— = Nt flix fadcd
=+ Mt fagd)—— = — |- Amazan Prinw-judt] - K
> Amazan Prime-jade- — =5 Praduc SO ity |
[Disney + fadal— — =, = o 1D ALLY 1
A - Amazan Frime [0,
ShipOrderFunction Disney s [l — il
~* yola 5EOe faif - — ShipOrderfunction[Shipping -ALL] P iz
—* Data Roaming fedal— Dk b

= SI0 Card sl — —+Vala 51 0v facf- -

In a final example below, the Provisioning function cannot hold the System Interaction for two
reasons:

e There are multiple target systems.

* The systems use a different version of the TMF 641 specification.

In this case, the System Interaction Specification is imported to the "system" order component.

Figure 12-5 Emulated SOM

[= OSM_SOM [Emulated_SOM 33
[=% Order Component Specification : Emulated_SOM

Description 50OM_Ermulator

Marnespace | oracle.cormmunications.tmf.productorder

Specification File serviceQrdering_w4.1.0.yaml

Yerzion 41.0

Target System som-emulator

October 30, 2025
Page 4 of 11

Chapter 12

ORACLE
About Array of Arrays Support in System Interactions

Figure 12-6 OSM SOM

[= Order Component Specification : OSM_SOM

Description O5M_50M

Marnespace | oracle.communications.trf.productorder

Specification File serviceOrdering_vw4.1.0.7.0.yaml

Yersion 41.0.1.0

Target Systern O5M-501M

About Array of Arrays Support in System Interactions

In the system interaction, all the JSON messages received by OSM must be converted to XML
before they can be processed by OSM at runtime. Additionally, all the XML messages from
OSM must be converted to JSON before they are emitted to an external system.

The following shows the array of objects (technicalServiceClassChar) and array of arrays
(alternativeSupportingResource) as defined in the OpenAPI specification:

TechnicalServiceBase:
type: object
properties:
alternativeSupportingResource:
type: array
items:
$ref: "#/components/schemas/MultipleResource*
technicalServiceClassChar:
type: array
items:
$ref: "#/components/schemas/Characteristic”

MultipleResource:
type: array
items:
$ref: "#/components/schemas/Resource”
Resource:
type: object
properties:
name:
type: string
Characteristic:
type: object
properties:
name:
type: string
valueType:
type: String
value:
type: String

Modeling Guide
October 30, 2025

G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 11

ORACLE

Modeling Guide
G37998-01

Chapter 12
About Array of Arrays Support in System Interactions

Array

For an array data in a JSON document, there is an XML node set equivalent of it. The array of
type primitives or object data in a JSON document is mapped to the repeated XML element.

The following JSON document consists of an array of objects for the
technicalServiceClassChar.

{

"technicalServiceClassChar: [{"name": "charl", "value": "samplel"},{"name": "char2",
"value': "sample2"}]

}

The sample XML for the above JSON document looks as follows:

<TechnicalServiceBase xmlns="http://oracle.communications.orchestration.com/tmf-api/
{apiName}/{apiVersion}/inputMessage"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="TechnicalServiceBase">

<technicalServiceClassChar xsi:type="Characteristic">
<name>charl</name>
<value>samplel</value>

</technicalServiceClassChar>
<technicalServiceClassChar xsi:type="Characteristic">
<name>char2</name>
<value>sample2</value>

</technicalServiceClassChar>

</TechnicalServiceBase>

Nested Arrays

The JSON document supports a multidimensional array but there is no equivalent of it in XML.
To support an array of arrays, intermediate XML elements are generated that denote the
beginning and ending of a nested array.

When receiving a JSON message containing array of arrays, these reserved elements, which
are nestedArray and nestedArrayltems are added into the generated XML to denote the
beginning and ending of a nested array and nested array items. When converting XML
elements back into JSON, the inserted elements are converted into a JSON document with
nested arrays.

The following JSON document consists of an array of arrays for resources.

{

"technicalServiceClassChar': [{"name": "charl", "value": "samplel"},{"name": "char2",
"value": "sample2"}]
"alternativeSupportingResource": [
[
{

"name": "Resourcel"

"name": "Resource2"

3}
{
}

]
]
}

The sample generated XML for the above JSON document looks as follows:

<TechnicalServiceBase xmlns="http://oracle.communications.orchestration.com/tmf-api/
{apiName}/{apiVersion}/inputMessage"

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE

Chapter 12
About the OSM Gateway Functions

xmIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"

xsi:type="TechnicalServiceBase">

<technicalServiceClassChar xsi:type="Characteristic>
<name>charl</name>
<value>samplel</value>
</technicalServiceClassChar>
<technicalServiceClassChar xsi:type="Characteristic'">
<name>char2</name>
<value>sample2</value>
</technicalServiceClassChar>
<alternativeSupportingResource>
<nestedArray>
<nestedArrayltem xsi:type="Resource'>
<name>Resourcel</name>
</nestedArrayltem>
<nestedArrayltem xsi:type="Resource'>
<name>Resource2</name>
</nestedArrayltem>
</nestedArray>
</alternativeSupportingResource>

</TechnicalServiceBase>

About the OSM Gateway Functions

OSM Gateway performs the following functions for interactions with an external system using
REST APls:

With JMS integrations, automation plugin code would be responsible for managing
correlation. When REST interactions are modeled using System Interaction, then OSM
Gateway becomes responsible for managing correlation. A condition of any integration
using System Interaction, is that external systems must honor the HTTP header used by
OSM for correlation. External system sync responses much echo back the HTTP header
X-Correlation-ID that is sent on the request.

In a REST exchange with an external system, OSM Gateway translates the XML payloads
generated by automation plugins, into JSON payloads destined for the endpoint (and vice
versa). Accordingly, System Interaction Specifications are restricted to JSON-based
content types, specifically application/json, application/merge-patch+json, and
applicationl/json-patch+json.

Schema validation on the payload content. Tuning parameters for schema validation can
be found in the CNTK deployment scripts. This controls the Gateway behavior when
unknown data is part of an incoming or outgoing payload.

Resolves the logical target system name on the System Interaction against deployment
artifacts to derive actual system connection details.

If automation plugins have registered for event notifications then OSM Gateway listens for
incoming events and passes them on to the external receiver automation plugin.

Passes hard failures and unresolvable transient failures back to the automation plugin.
New Automation APIs are available to emit fallout exceptions in the event that the order
needs to be flagged in the Order Operations Ul.

Support for JSON Patch and Merge-Patch Content Types in System

Interaction

System Interactions support extended PATCH capabilities by supporting application/merge-
patch+json and application/json-patch+json as valid request body content types, in addition

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE

Modeling Guide
G37998-01

Chapter 12
About the OSM Gateway Functions

to application/json. This enables a standardized, JSON-based patching for precise and
efficient updates when integrating with external systems.

* Merge Patch (application/merge-patch+json): Partially updates a resource by merging
provided fields. Omitted fields remain unchanged, and fields set to null are removed. This
is ideal for straightforward updates where the payload structure matches the target
resource.

* JSON Patch (applicationl/json-patch+json): Applies a sequence of operations (add,
remove, replace, move, copy, test) to modify the resource. Each operation is run in order,
offering fine-grained control for complex updates.

When constructing a PATCH request body in XQuery, you must adhere to the schema defined
in the imported OpenAPI specification. The expected structure depends on the specified
requestBody content type. This will either be application/merge-patch+json for Merge Patch
operations or applicationl/json-patch+json for JSON Patch sequences.

The OSM Gateway automatically sets the Content-Type HTTP header (application/merge-
patch+json or application/json-patch+json) when calling PATCH endpoints on external
systems. The header value is determined from the requestBody content type defined in the
imported OpenAPI specification for the corresponding operationlid.

The following examples illustrate typical usage of the two PATCH request body content types
defined in the OpenAPI specification.

Merge Patch (application/merge-patch+json): updateService

paths:
/service/{id}:
patch:
operationld: updateService
summary: Update a Service using merge-patch
description: >
Updates the Service that matches the specified ID. Update can be
performed using merge-patch.
tags:
- Service
parameters:
- required: true
name: id
in: path
schema:
type: string
description: The ID of the service to update.
- name: designOnly
schema:
type: boolean
in: query
- $ref: "#/components/parameters/fields”
- $ref: "#/components/parameters/depth”
- $ref: "#/components/parameters/expand”
requestBody:
description: >
The service to be updated.....
required: true
content:
application/merge-patch+json:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 12
About the OSM Gateway Functions

schema:
$ref: "#/components/schemas/Service”

The following sample shows the JSON payload for the request type mentioned above:

{

"serviceCharacteristic": [
{
"name": "cpeBrand",
"valueType": "ALPHANUMERIC",
"value": "HUAWEI",
"serviceSpecName": "DataCFS",
"configltemPath": "DataCFS"

}
{

"name": "serialNumber",
"valueType": "ALPHANUMERIC",
"value': "654654654",
"serviceSpecName": "DataCFS",
"configltemPath": "DataCFS"

JSON Patch (application/json-patch+json): patchService

paths:
/service/{id}:
patch:
operationld: patchService
summary: Patch a service using JSON Patch
parameters:
- name: id
in: path
required: true
schema:
type: string
requestBody:
required: true
content:
application/json-patch+json:
schema:
$ref: "#/components/schemas/Service_Update*

The following sample shows the JSON payload for the request type mentioned above:

[
{
"op": "add",
"path": "/config/cpeType",
"value": "ONT"
}s
{

op": "replace",

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE’

]

Chapter 12
Considerations for OSM Cloud Native to OSM Cloud Native Integration using System Interaction

"path": "/serviceType",
"value': "premium”

}

"op": "remove",
"path": "/deprecated"

Considerations for OSM Cloud Native to OSM Cloud Native
Integration using System Interaction

When an OSM instance hosting a TMF specification interacts with another OSM instance that
also hosts a TMF specification, there are some additional considerations for the cartridge
developer. These are:

You should take care to ensure OpenAPI version consistency between the two instances.
The version of the downstream Hosted Specification should also be used for the upstream
System Interaction specification. You cannot successfully integrate with two different
versions.

If a 622 or 641 System Interaction specification is imported, then Design Studio injects
additional HTTP header content in anticipation of an OSMITMF to OSMITMF integration. If
the external system is not an OSM instance, then this information is benign.

The following HTTP Headers are provided for integrations with OSM:

X-VERSION: This is required for revisions. A GET call on the main resource (GET/
serviceOrder) provides the caller with an HTTP header where X-VERSION reflects the
version of the currently processing order. This value can then be incremented for any
revision requests that are sent to downstream OSM.

X-Fulfillment-Mode: If the TMF cartridge in the downstream OSM instance uses a non-
standard fulfilment mode, then plugins should specify the fulfilment pattern name using
this header. This is not required for standard create requests (deliver), cancellations
(cancel) or amendments.

Developing Automation Plugins

For information about developing automation plugins, refer to "Using Automation with a System
Interaction (Cloud Native Only)" in OSM Developer's Guide.

Known Issues and Workarounds

OSM does not support some aspects of OpenAPI schema for use in a System Interaction
specification. This section describes these aspects and offers workarounds:

Modeling Guide
G37998-01

Inline nested schema objects:

While OpenAPI schema allows a nested schema object to be fully defined inline with its
usage, OSM requires this to be done by reference instead. The inline schema must be
extracted as an independent element definition and the nested element should reference
this definition.

Open-ended properties using additionalProperties field:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 12
Known Issues and Workarounds

OpenAPI schema allows for partial specification of child elements by adding the
additionalProperties field. OSM requires all child elements to be enumerated in the
specification. This can be done by extending the OpenAPI schema to include all the child
elements of interest.

* Default value for schema object in specification:

OpenAPI schema can contain default values to use for schema objects if they are not
present in the payload document. OSM does not honour these defaults. The payload
originator must ensure such values are part of the generated payload document if they are
required to be present.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 11 of 11

Modeling Run-time Order Management

Part Il contains the following chapters about modeling run-time functionality in an Oracle
Communications Order and Service Management (OSM) solution:

¢ Modeling Changes to Orders

« Modeling Fallout

¢ Modeling Fulfillment States and Processing States

¢ Modeling Jeopardy and Notifications

¢ Modeling Order Scheduling

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 1

Modeling Changes to Orders

This chapter describes how to model change order management in an Oracle Communications
Order and Service Management (OSM) solution.

About Amendment Processing and Compensation

To revise or cancel in-flight orders, OSM performs amendment processing. Amendment
processing analyzes the requested changes, determines how to make the changes, and
processes them. Amendment processing functions as follows:

1. A base order is submitted and is currently processing; it is not in the Not Started,
Completed, or Aborted state. The upstream system submits a revision or a cancel order.
The new version of the order includes all of the data relevant to the order, not just changed
data. The upstream system does not need to identify the changes to OSM or explicitly
provide the discrepancies; OSM determines the discrepancies during amendment
processing by comparing the new version with the version of the order currently being
processed.

To submit the revision order, the upstream system can use either the CreateOrder web
service operation or the CreateOrderBySpecification web service operation.

The new version of the order can:
e Change existing data
e Remove existing data

 Add new data

@® Note

You can create revision orders by using the Task web client. This is typically used
only for testing or for low-volume order processing.

2. OSM receives the revision order. OSM checks to see if the base order is amendable. You
enable amendment processing on the order specification. If the base order is not
amendable, the order is not a revision order.

@® Note

When you model orders, make sure that orders that are expected to be amended
are configured to be amendable. If not, an order that is sent as a revision order is
instead processed as a new order. This can cause errors during fulfillment
because there are two orders fulfilling the same services for the same customer.

3. OSM checks in-flight orders for a matching value to an order key. For example, you can
specify to use the sales order number as the order key. In that case, when OSM processes
an order, it looks for an in-flight order that has the same sales order number. If OSM finds
an in-flight order with a matching sales order number, OSM treats the new incoming

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 1 of 40

ORACLE

Chapter 13
About Amendment Processing and Compensation

customer order as a revision on the existing order. See "About Order Keys" for more
information.

OSM now has two orders to work with: the revision order and the base order.

® Note

Many types of orders do not require an orchestration plan; for example, some
service orders are created specifically for a simple service provisioning task and
therefore require no dependencies.

4. OSM performs further checks on the base order to determine if the order is allowed to be
amended. OSM does the following:

OSM checks to see if the base order is in a state that can be amended. Orders in the
Not Started, Completed, or Aborted state cannot be amended. You can customize the
allowed transitions to the amending order state by configuring the order life-cycle
policy. See "Modeling Order Life-Cycle Policy States and Transitions" for more
information.

OSM ensures that the base order has not passed the point of no return (PONR). The
PONR is the point in the processing of an order item after which order amendments
are either impossible or incur some penalty. In this case, a revision order might not be
possible. See "Eulfillment Pattern Point of No Return” for information.

OSM checks to see if the incoming customer order has a version identifier. If OSM has
a version identifier, OSM compares the value of the version to the version of the in-
flight order. If the version of the in-flight order is greater than the version of the
incoming customer order, the incoming revision is ignored.

If a revision cannot be processed, or if the order life-cycle has not allowed the revision, the
revision order is set to the Failed state, and the base order continues to be processed.

5. OSM determines whether amendment processing is needed by analyzing order data at the
following levels:

Modeling Guide
G37998-01

OSM compares the revision order data and the base order data (or the revision order
data and the last submitted revision order data) to see if a compensation is needed.
(Compensation defines the actions that need to be taken to perform amendment
processing; for example, undo and redo.) See "About Order-Level and Task-Level
Compensation Analysis" for more information.

During compensation, OSM compares task data for each task in the order process to
further validate the compensation requirements. See "About Order-Level and Task-
Level Compensation Analysis" for more information.

OSM uses the significance of the data to determine if compensation is heeded at both
stages. Data significance enables you to optimize amendment processing in a way
that compensation is considered only for changes to data that is marked as significant.
Data that is not marked significant is updated but does not get included in the
compensation plan if its value is changed. See "About Data Significance" for more
information.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 2 of 40

ORACLE

Modeling Guide
G37998-01

Chapter 13
About Amendment Processing and Compensation

@® Note

If an amendment is received while a task is in a fallout execution mode, OSM
does the following:

— If the task is not configured to be compensated if it is in progress, the
execution mode of the task does not change as a result of the amendment
order.

— If the task is configured to be compensated if it is in progress, and the
amendment contains changes to significant data:

* If the task is still needed after the changes to the order from the
amendment are considered, it transitions automatically to (normal)
Redo mode.

* If the task is no longer needed after the changes to the order from the
amendment are considered, it transitions automatically to (normal)
Undo mode.

In both of these cases, ensure that your automation code (for the Redo or
Undo execution mode) contains a check to see if the task has been in a
fallout execution mode, and also whatever code is needed to resolve any
actions that have been taken in the fallout execution mode. For example,
if your automation for Do in Fallout mode opens a trouble ticket, your
Redo automation should check to see whether it needs to close a trouble
ticket.

— If the amendment order contains no changes to significant data, the
execution mode of the task does not change as a result of the amendment
order.

After determining that amendment processing is needed, OSM transitions the order to the
Amending state.

@® Note

OSM queues orders that need amending. Therefore it is possible for multiple
revisions of the same order to exist in the queue. If amending the order is allowed,
OSM chooses the latest version of the amendments in the queue by comparing
the optional version identifiers (if configured) or, if there is no configured version
identifier, by comparing the dates and times that the amendments were received.

In the Process Amendment state, OSM determines the compensation required. For
example, OSM might redo a task with different values for one or more data elements on
the task data that were used for input into the task.

For process-based orders, the tasks are analyzed to find the impact of the changes. That
impact determines the compensation plan. For example, OSM might need to redo a task
with different data values or undo a task if it is no longer required. The data comparison is
based on the data in the creation task of the base order and the revision order. See OSM
Concepts for information.

For orchestration orders, the order components of the orchestration plan are analyzed to
determine which order components need to be redone, undone, or done for the first time
(amend do). The tasks of the sub-processes run for each of those order components to be
compensated are also analyzed.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 3 of 40

ORACLE Chapter 13
About Amendment Processing and Compensation

7. OSM handles the base order and the revision order as follows:

* For the base order, OSM creates a new orchestration plan that includes the order
components and their dependencies. Any order components with data that has
changed as a result of the revision are redone. Any order components that have been
processed but are no longer required in the revision are undone in reverse
dependency sequence. Any order components that are inserted as new requirements
are fulfilled. The order state is set to Amending.

e For the revision order, OSM transitions it to the Completed state because its only
purpose was to revise the base order.

8. OSM processes the changes according to the compensation plan it calculated and re-
calculates the compensation plan needed after every change. OSM performs the
necessary undo, redo, and amend do operations on order components (for orchestration
orders) and on tasks (for both orchestration orders and process-based orders).

Figure 13-1 shows a simplified amendment processing flow.

Figure 13-1 Amendment Processing

O5SM receives an order and
looks for a matching order
key

¥
OSM finds a matching key
and determines that the
arder is amendable

¥

O5M compares the revised
order with the base order

Is revision
allowed?

h 4

Order is not
revised

O5SM creates a new
orchestration plan

Fevision order is
closed

Order completes

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 4 of 40

ORACLE

Chapter 13
About Amendment Processing and Compensation

@® Note

Messages from external systems can be returned to a task for which the receiver is
temporarily unable to receive a response. This can happen, for example, if an order is
being amended or is suspended. When this happens, OSM saves the returned
message to the database, to wait until the order is ready for the task. This message
will be removed when the message is resent to the receiver or when it becomes
irrelevant (for example, because the order has been purged). This functionality is on
by default, but you can turn it off, for example if your solution already handles
messages of this type in a different way. To turn this feature off, use the
oracle.communications.ordermanagement.AutomationResponseMessageParkin
gEnabled parameter in the oms-config.xml file. See OSM System Administrator's
Guide for more information about this parameter and about the oms-config.xml file.

A simple example of a revision order is as follows:

1.

Modeling Guide
G37998-01

A customer orders a DSL service at 3 MBps. An order is created and sent to OSM.

Figure 13-2 shows the start of the process. In this example, the process begins with the
Verify_ADSL_Service task and then transitions to the Assign_Port task.

Figure 13-2 Amendment Order Example

Start ﬁ.

_"/
Werify ADSL
Service. ..

succeed

v

&

Assign Port

OSM verifies that the 3 MBps service is available and transitions to the next task,
Assign_Port.

While the order is waiting for port assignment, the customer calls back and asks a
customer service representative (CSR) to change the order to 5 MBps. The CSR creates a
revision order in the CRM system with the revised bandwidth value of 5 MBps and submits
the order to OSM.

OSM receives the incoming customer order, and detects that it is a revision to an in-flight
order.

OSM accepts the revision order, calculates the compensation plan, and begins to run it.
OSM knows that compensation is necessary because the data (bandwidth) that was on the
order as input data when this task ran previously has now changed. The revision order
requests that the Verify_ ADSL_Service_Availability task must be redone to ensure that
the 5 MBps service is available.

The value set by the Verify_ ADSL_Service_Availability task is changed.

Figure 13-3 shows the order displayed in the Task web client. In this figure, the
Verify_ADSL_Service_Availability task has an execution mode of Redo. Because the

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 5 of 40

ORACLE’

About Amendment Processing al

Chapter 13
nd Compensation

port has not been assigned yet, the Assign Port task has an execution mode of Do, but it
cannot be worked on until the order completes compensation for the revision.

The task execution mode can be Undo, Redo, Do, Amend Do, Undo in Fallout, Redo in
Fallout, Do in Fallout, and Amend Do in Fallout. (See "About Task Execution Modes" for
more information.)

Figure 13-3 Amendment Displayed in the Task Web Client

_ Order 1D _Drder State_ Type

412 | Amending

412 | Amending

Task Execution Mode State
Add ADEL Siebel|| Az=ign Port D Received
Add ADSL Siebel || Werify ADEL Service Availabilty) Redo Recernad

7. The revision order transitions directly to the Completed state. This is because the revision
order is used only for updating the base order. For revision tracking, OSM maintains a
record of the revision order as part of the order history.

8. After verifying that the revised bandwidth is available, the base order continues processing.

You can monitor revisions in the web clients. Figure 13-4 shows a revision order (Order 7) and
Figure 13-5 shows the base order that it revised (Order 6).

Figure 13-4 Revision Order in the Order Management Web Client

Order ID 7: Order Details

Order Order Items
Summary Data
| General
Order ID
Reference
‘fersion
Priority

Order State
Target Order Stake

Order Creation Date

Modeling Guide
G37998-01

Order Components

Orchestration Plan Amendments

7
Order1433258622976

=

Completed

Mo State

06/02/2015 D&:24:25 AM

Copyright © 2015, 2025, Oracle and/or its affiliates.

Expected Order Completion Date 06/02/2015 08:25:25 AM

Requested Order Delivery Date 12/31/2001 12:00:00 PM

Expected Crder Start Date 06/02/2015 08:24:25 AM
Expected Order Duration

October 30, 2025
Page 6 of 40

ORACLE Chapter 13
About Revising or Canceling Orders by Using the Task Web Client

Figure 13-5 Amended Order in the Order Management Web Client

Order ID 6: Order Details Actions ~
Order Order Items Order Components
Summary Data Orchestration Plan Amendments
w| General
Order ID & Expected Order Completion Date 06/02/2015 08:24:43 AM
Feference Orderi433258622976 Requested Order Delivery Date 123172001 12:00:00 PM
Version O [5/2/2015 8:24 AM] Expected Order Start Date 06022015 08:23:43 AM
Priority 5 Expected Order Duration 1im Os
rder State Amending Amended By 7 [Total 1]

Target Order State No State
Order Creation Date 06/02/2015 08:23:43 AM

About Revising or Canceling Orders by Using the Task Web
Client

In most cases, revision orders are submitted from an order-source system. You can also revise
and cancel orders by using the OSM Task web client; for example, by using the Amend Order
menu command. This is useful for testing revisions and cancellations within OSM, however,
this method is not appropriate for production systems.

You should use the Task web client to submit amendments only when the order was submitted
from the Task web client originally or when the upstream system cannot submit an
amendment. If the upstream system submits an amendment after you manually submit an
amendment, data synchronization errors can occur.

When you use the Task web client to amend an order:

1. OSM creates another order, with a new order ID number, for the revision. The new order
includes all of the creation task data from the in-flight order.

2. The Task web client displays the revision order.

3. You can then change the data required for the revision and submit the revision order.

/\ Caution

If you use revision versioning, increment the revision version.

About Order Keys

When receiving an order flagged as amendable, OSM checks in-flight orders for a matching
value in an order key. (You configure the order key when you model the order specification.)
For example, you can specify to use the sales order number as the order key. In that case,

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 7 of 40

ORACLE Chapter 13
About Submitting Multiple Revisions of an Order

when OSM processes an order, it looks for an existing order that has the same sales order
number and amends that order.

@ Tip

Because OSM must check the order key for all in-flight amendable orders, you should
make orders amendable only if they might need to be amended. That way, OSM does
not need to check for an order key for orders that would not be amended.

You define the order key in the order specification as one or more XPath expressions that
reference one or more data elements in the incoming customer order. If you use multiple data
elements, the values are concatenated in the order key.

OSM generates an order key when the order is created. To assign an order key:

e The order key data elements must be part of the creation task data.

e The order key must be identical between the base order and the revision orders and must
not change.

e The order must be flagged as amendable.

Order key values should not be modified after an order is submitted. For more information
about creating valid order keys, see, "Modeling Valid Data Keys."

About Submitting Multiple Revisions of an Order

In some cases, multiple revisions to a single order are submitted. Each revision is expected to
be a new revision of the in-flight order, not a cumulative comparison of previous revisions. The
latest amendment is assumed to be the most complete revision containing all of the changes
from earlier revisions. Intermediate revisions are not processed by OSM.

You can use versioning in the revision orders to recognize the order of the revisions as OSM
receives them. For example:

« If revisions are received out of sequence, OSM ensures that the latest revision is used. If a
revision is received while a current revision on the same order is being compensated, and
if processing of revising in-flight revision orders is enabled (see "About Revising In-flight
Revision Orders" for more details), OSM initiates the termination of the current revision and
changes the compensation state of the current revision to Terminating and queues the
latest revision. After the current revision reaches a safe point, OSM terminates the current
revision and starts processing the latest revision. If processing of revising in-flight revision
orders is not enabled, OSM completes the compensation for the current revision before
processing the latest version. If a version is received that is earlier than the current revision
being processed, the earlier version is ignored.

« If several revisions are received, OSM discards interim revisions and applies the latest
revision because it represents the latest customer instructions for the order and is a
complete copy of the base order.

To configure revision versioning, you specify a data element on the incoming customer order
that OSM checks when processing revisions for the order. You specify the data element as an
XPath expression in the order specification Amendable tab. For example, if the data element
is <version>, the XPath expression is:

_root/version

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 8 of 40

ORACLE Chapter 13
About Compensation States

About Compensation States

The following diagram shows compensation state transitions and the life-cycle of a revision
order.

Figure 13-6 Compensation State Transitions

Completed

e Accepted: This state indicates that the revision order is accepted by OSM. OSM evaluates
order life cycle policy when the revision order is received before accepting it. This state is a
transitional state until the revision processing on the base order starts.

* In progress: This state indicates that the revision processing has started on the order.
e Completed: This state indicates that the revision processing is complete.
¢ Queued: This state indicates that the revision order is queued.

— OSM gueues the revision on a base order that is in the In-progress state if the Process
Amendment transaction in the order state policy is not enabled. If the Process
Amendment transaction is enabled, OSM re-evaluates the condition on order data
changes and dequeues the revision. See "Disabling Processing of Revisions on In-
flight Revision Orders" for more details.

— OSM gueues the revision order when the base order is in the Amending state.
Revision order remains queued until either the current revision processing is
terminated (default configuration) or revision processing is completed.

« Skipped: This state indicates that the revision order is skipped. This happens on a queued
revision, when it is replaced by a new revision.

* Terminating: This state indicates a transition period before OSM starts processing the
latest revision on the order. During this period, OSM provides support to clean up all
Started compensation tasks by ensuring they reach a known state.

e Terminated: This state indicates that the compensation is terminated safely.

About Revising In-flight Revision Orders

OSM can process a revision order while it is still processing a revision on the same order that it
received earlier, without having to wait for the ongoing revision order to complete. When a
revision on an in-flight revision order is received, OSM initiates the termination of the current

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 9 of 40

ORACLE

Chapter 13
About Revising In-flight Revision Orders

revision and changes the compensation state of the current revision to Terminating and queues
the latest revision. After the current revision reaches a safe point, OSM terminates the current
revision and then starts processing the latest revision.The compensation processing of the
current revision transitions to a new revision safely, at the earliest, instead of waiting for the
completion of the current revision processing. With this functionality, OSM can process order
changes quickly, while reducing the operational expenses by optimizing the work needed to be
done for subsequent order changes, and carries forward pending tasks that were not run in the
previous revisions to the latest revision.

® Note

By default, processing of revisions on in-flight revision orders is enabled for cartridges
with target version 7.4.0.0.0. For information on enabling and disabling processing of
revisions on in-flight revision orders, see "Disabling Processing of Revisions on In-
flight Revision Orders".

OSM processes a revision on an ongoing revision order as follows:

* While amendment processing is still in progress for the revision order, OSM receives
another revision on the order.

OSM initiates the termination of the current revision and changes the compensation state
of the current revision to Terminating and the latest revision is queued. Once the current
revision reaches a safe point, the current revision is terminated. See "About Terminating
Compensation” for details about what happens in the Terminating state and when OSM
terminates in-flight revision processing.

e OSM merges the compensation plan of the new revision order with that of the previous
revision that was terminated.

OSM does the following when it merges the compensation plans:

— OSM carries forward all the Not Started Redo compensation tasks from the terminated
revision.

@® Note

OSM compensates these tasks only if there are significant data changes
compared to their prior execution.

— If there are pivot- sub-processes that have not started prior to the arrival of the new
revision, OSM carries them forward into the latest order revision processing and runs
them in a proper sequence.

About Insignificant Revision

Modeling Guide
G37998-01

When OSM receives a revision that has only insignificant data changes, the changes are
applied immediately, while the processing of the ongoing revision is still in progress. Thus, a
revision with insignificant data is not delayed. Also, it does not interrupt or impact the current
revision processing.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 10 of 40

ORACLE Chapter 13
About Revising In-flight Revision Orders

About Terminating Compensation

When OSM receives a revision order while it is still processing a revision on the same order
that it received earlier, OSM terminates the compensation for the ongoing revision order before
processing the new revision. The Terminating state provides a transitional stage to ensure that
the current compensation plan runs further until it reaches a safe point before starting and
processing the latest revision that is queued. To avoid unnecessary processing, OSM does not
create successors on the redo tasks upon its completion during the Terminating state.

The revision processing of an ongoing revision remains in the Terminating state until the
following conditions are met:

* The compensation remains in the Terminating state until all Undo tasks are processed and
completed.

« If there is a new component/pivot- sub-process in the current revision and it has started
prior to the arrival of the new revision, the compensation of the current revision remains in
the Terminating state until the execution of the new component/pivot sub-process is
completed through the execution of tasks in the Amend-Do execution mode.

* Ifthere is a change in flow during compensation (for example, if a Redo task is completed
at a status that is different from the status that it was run earlier). The compensation of the
current revision remains in the Terminating state until the dead path is rolled back, which is
done by undoing all tasks in the dead path, and the new path is run and completed by
processing the tasks in the Amend-Do mode.

OSM terminates the compensation when it considers the current state of the compensation
has reached a safe point (when the aforementioned conditions are met) and starts processing
the queued revision. OSM merges the terminated compensation plan with the new
compensation plan to ensure that the compensation tasks which were skipped are now run as
part of the processing of the new revision order.

Disabling Processing of Revisions on In-flight Revision Orders

By default, processing of revisions on in-flight revision orders is enabled for cartridges with
target version 7.4.0.0.0.

To disable this functionality, you configure the Process Amendment transaction for the
Amending order state. You configure the Process Amendment transaction for the Amending
order state by removing the permission to the Amending - Process Amendment transaction for
a selected role. For details on removing and granting permissions to transactions, see the topic
about Configuring Order Lifecycle Policies in Design Studio Modeling OSM Processes Online
Help.

Example: Revising an In-flight Revision Order

A simple example of how OSM processes revision on an in-flight revision order is as follows:

1. A customer orders a DSL service with 3 MBps bandwidth. An order is created and sent to
OSM.

Figure 13-7 shows the start of the process. In this example, the process begins with the
Verify_ADSL_Service task and then transitions to the Assign_Port task.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 11 of 40

ORACLE

Modeling Guide
G37998-01

10.

11.

12.

Chapter 13
About Revising In-flight Revision Orders

Figure 13-7 Amendment Order Example

Start 1’§
i VerfyADSLServ...

sSuccess

#

AssignPort

ActivateDSLAM

OSM verifies that the service with 3 MBps is available and transitions to the next task,
Assign_Port.

On availability of a port, it transition to the Activate DSLAM task.

While the Activate DSLAM task is being completed, the customer calls back and requests
to change the bandwidth to 5 MBps.

The CSR creates a revision order in the CRM system with the revised bandwidth value of 5
MBps and submits the order to OSM.

OSM receives the incoming customer order and detects that it is a revision to an in-flight
order.

OSM accepts the revision order, calculates the compensation plan, and begins to run it.
OSM recognizes that compensation is necessary because the data (bandwidth) that was
on the order as input data when this task ran previously has now changed.

The revision order requests that the Verify_ADSL_Service_Availability task be redone to
ensure that the 5 MBps service is available.

The value set by the Verify_ADSL_Service_Availability task is changed. The
Verify_ADSL_Service_Availability task has an execution mode of Redo.

While the order is running the Verifying_ADSL_Service_Availability task, the customer
calls back and requests to change the bandwidth to 10 MBps.

The CSR creates another revision order in the CRM system with the revised bandwidth
value of 10 MBps and submits the order to OSM.

OSM receives the incoming customer order, and detects that it is a revision to an in-flight
revision order.

OSM accepts the revision and initiates the termination of the current revision and queues
the latest revision. You can monitor the amendment in the Amendments tab in the Order
Management Web Client.

On completion of the Verify_ASDL_service_availability compensation task, the current
revision gets Terminated and the Assign_Port compensation task is not started. This task
is carried forward to the latest revision.

OSM carries forward the Not Started Assign_Port compensation task from the terminated
revision.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 12 of 40

ORACLE

Chapter 13
About Controlling When Amendment Processing Starts

@® Note

OSM compensates these tasks only if there are significant data changes
compared to their prior execution.

About Controlling When Amendment Processing Starts

Modeling Guide
G37998-01

You can delay amendment processing for an order. For example, the order might be in the
middle of running an automated task that is executing system interactions with fulfillment
systems, so you want to postpone the processing of the revision until after the tasks complete.
After the system interaction is complete, OSM can begin processing the revision.

During amendment processing, the order is in the Amending state, which prevents normal
processing such as task updates. This allows compensation to deal with one set of data
changes without also needing to carry out normal processing activities at the same time. To
manage the transition to the Amending state, OSM does the following:

1. Checks permissions to allow or postpone the processing of the revision.

2. Checks if a grace period is set to allow all order activity to settle. If so, it waits for the grace
period to end.

3. Transitions the order to the Amending state.

To control when amendment processing starts, you use the order life-cycle policy to control
OSM transactions. A transaction is an action taken by the OSM system. For example, for the
In Progress state, you can prevent the Process Amendment transaction from occurring until a
condition is true.

See "Modeling Order Life-Cycle Policy States and Transitions" for more information about
transactions.

To manage amendment processing, OSM uses two order state transactions, in the following
order:

1. Submit amendment. This transaction occurs when the revision order is submitted. You
can specify conditions that determine if the order can be amended or not. Because the
evaluation of the condition is triggered when the revision order is submitted, the condition
does not need to be based on data, but it can include data as part of the condition.

2. Process amendment. If the revision order is accepted, OSM evaluates this transaction to
determine if the amendment can be processed now, or if it needs to wait for a specified
amount of time, or if it needs to wait until all accepted tasks are completed. This condition
is evaluated based on data in the order. If the condition returns false, the amendment is
gueued. The condition is re-evaluated whenever the data changes. When the condition
evaluates to true, the transition to the Amending state can occur.

A grace period specifies a period of time to wait for all accepted tasks to complete before an
order can transition to a different state. For example, if an automated task has sent a request
to an external system, but the external system has not responded, OSM does not know if the
task has been completed and therefore does not know if the task needs to be compensated. A
grace period set on the Process Amendment order state transaction can allow the order the
opportunity to reach a known state for all current tasks before transitioning to the Amending
state.

Grace periods are defaulted to be indefinite, so OSM waits until all currently accepted tasks
are completed before transitioning to the target state. You can limit the grace period:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 13 of 40

ORACLE

Chapter 13
About Compensation

* You can set the grace period to zero, which specifies that OSM not wait for any accepted
tasks to complete before transitioning to the target state

e You can provide a time limit; for example, one hour (to give all accepted tasks a limited
time to complete before transitioning to the target state).

If an automation response is received for a task after the order has transitioned to the
Amending state, an automation exception is thrown, because the automation plug-in cannot
process the response when the order is in the Amending state. The automation exception is
sent to the JMS response queue and is retried. When the retry limit is reached, the message is
forwarded to an error destination, if one is configured. To manage exceptions that occur during
amendment processing, you can review the errors to determine if the messages can be
resubmitted or handled by fallout.

If there are multiple queued revisions waiting for the grace period to end, OSM selects the
latest version among the queued amendments to process. The other versions are assumed to
be out of date and are ignored. See "About Submitting Multiple Revisions of an Order" and
"Modeling Order Life-Cycle Policy States and Transitions" for more information.

About Compensation

The following sections describe how compensation occurs.

About Order-Level and Task-Level Compensation Analysis

Modeling Guide
G37998-01

When the revision order is received, OSM analyzes the differences between the revision order
data and the base order data (or between this revision order data and the last submitted
revision order data) to see if a compensation is indicated. Changes and updates to order data
can occur in the context of task data views or order data views.

OSM then begins analyzing impacted tasks. OSM provides the following data perspectives for
each individual task which are snapshots of data that OSM uses to calculate whether a task
needs to be compensated. These data perspectives are:

« Historical order perspective (HOP): Specifies the data used when the task last ran in Do
mode and changed to the Completed state (or Redo mode if the task last ran as part of
compensation for a previously submitted revision order).

e Contemporary order perspective (COP): Specifies the unchanged task data from the last
time the task completed in Do or Redo mode (for example, from the tasks run for the base
order or for a previous revision order). COP also shows any new or changed data from the
current revision order and from the tasks triggered from that revision order that
compensated prior in the process flow to the compensation task currently being analyzed.

* Real-time order perspective (ROP): Specifies the last change to a parameter value by
any task or at the order level (for example through order-level updates). This perspective
may be different from the COP because the COP only provides a view of task data for
previously run compensation tasks and revision order data and may not represent the last
change to a parameter value. For example, the COP may include unchanged data from
when the parameter that was originally processed by the Task, but that same data
parameter could have been updated in a later task and so the current data would have a
different value than the one displayed in the COP.

Figure 13-8 describes a process-based order, where a subscriber requests ADSL service with
3MBps speed. The order is submitted to OSM and service fulfillment begins. The subscriber
calls back while the base order is in-flight and has just completed the Activate DSLAM task
and requests the order be changed from 3MBps to 5SMBps speed. In this scenario, the existing
port does not support 5SMBps. The compensation process proceeds as follows:

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 14 of 40

ORACLE Chapter 13
About Compensation
Figure 13-8 Changing a Service Request
Ship Modem
Verify ADSL Service Mode = Do
Availability » (Comp Mode = Do nothing)
Add ADSL Siebel Mode = Do Address Node
Creation Task Tr™1 (Comp Mode = Redo) Result = Succead
Base | | | Address Node r =| Address Node
Order [Primary Phone = II:- F'nmar;:.r_phune = 555-5555
B55-5555 | =1 Bandwidth = 3 MBps
Bandwidth = I Result = Succeed
3 MBps |
I
I
| *r
| Assign Port :ﬂt;tc::a:aD[;S AN
I Mode = Do (Comp Mode = Undo
| (Comp Mode =Redo) [SD}
I g"mar:." pone = 955-5555 | Primary pone = 555-5555 |~ 1
| andwidth = 3 MBps | B i F——
- andwidth = 3 MBps
| Port ID = 35 ._I Port ID = 35 -__:
Order Level : Result = Succeed I Result = Succeed 1
Compensation | I I
Analysis : I :
I I I
I I I
| | Verify ADSL service | :
| | Awvailability | I
| | Mode = Redo | [Assign Port I
| |HOP || Mode = Redo |
L] Address Noda | |HOP i
I-- Primary_phone = 555-5555 IL-' Primary pone = 555-5555 :
-»| Bandwidth = 3 MBps r#| Bandwidth = 3 MBps |
Add ADSL Siebel Ccop = Port D = 35 i
Creation Task Address Node COP I
Revision s Primary_phone = 555-5555 Primary pone = 555-5555 :
Order [T Pimary Phone = L1l | pandwidth = 5 MBps Bandwidth = 5 MBps |
555-5555 ROF ROP |
Bandwidth = Address Node Primary pone = 555-5555 I
3 MBps Primary_phone = 555-5555 | | —| Bandwidth = 5 MBps |
Bandwidih = 5 MBps | Port ID = 45 :
Result = Succeed Result = Succead "
|
I
Task Level :
Compensation Analysis Activate DSLAM I
Mode = Undao then do I
HOP I
Primary pone = 555-5555 [
Bandwidth = 3 MBps !
Port ID = 35 e
COP
Primary pone = 555-3555
= Bandwidth = 5 MBps
L | PortID =45
ROP
Primary pone = 555-5555
Bandwidth = 5 MBps
Port ID = 45
Result = Succeed

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025

Page 15 of 40

ORACLE

Modeling Guide
G37998-01

Chapter 13
About Compensation

1. When OSM receives the revision order, OSM compares the creation task data of the
revision order with the creation task data of the base order to determine if any data
changes have occurred to significant data.

2. Because the bandwidth changed from 3 MBps to 5 MBps and the bandwidth parameter is
designated as significant, OSM begins task-level analysis for the first task in the process.
OSM compares the Verify ADSL Service Availability HOP and COP and determines that
the task must be redone because of the bandwidth change and because the compensation
strategy for that task is redo.

OSM updates the results of the task and any data changes because of redoing the task to
the ROP. The Verify ADSL Service Availability ROP becomes the COP for the Ship
Modem task and the Assign Port task.

3. The compensation mode for Ship Modem is Do Nothing, so no compensation analysis
occurs for that task. The compensation mode for Assign Port is Redo, so compensation
analysis begins for that task. OSM compares the HOP and COP for the Assign Port task
and determines that the task must be redone because of the bandwidth change. OSM
adds the result of redoing the task to the ROP which includes the bandwidth change and a
new port ID because the original port ID could not handle the increased bandwidth
requirement. The ROP becomes the COP for the Activate DSLAM task.

4. The compensation mode for Activate DSLAM is Undo then Do, so compensation analysis
begins for that task. OSM compares the HOP and the COP for the Activate DSLAM task
and determines that the task must be undone then redone because of the new port ID and
the bandwidth changes. OSM adds the results to the ROP. Processing continues normally
after this task.

® Note

In this scenario, Activate DSLAM is the last task; however, if there had been
additional tasks that had completed after Activate DSLAM, OSM would have had
to undo them all prior to undoing Activate DSLAM regardless of the compensation
strategy associated with those subsequent tasks. This scenario only applies to
tasks running in Undo then Do mode.

You can use update order transactions to make changes to order data using automation plug-
ins from the task context (this includes automated task, task event, and task jeopardy
notification automations) and also from the order context (this includes order-level notification,
event, and jeopardy automations). OSM captures any data update made from a task context in
the HOP and COP and are therefore guaranteed to be reflected in any compensation analysis
for that task initiated by new revision orders. Order updates can also be applied to the order-
level data by referencing the view for that order data defined in the query task that you can
associate to an order in the Order Specification editor Permissions tab, Query Task sub tab
(see "Modeling Query Tasks for Order Automation Plug-ins" for more information about query
tasks for order-level data). Updates at the order data level should be done with care because
these updates are not included as part of compensation analysis and do not generate a HOP
or COP. OSM attempts to apply any order-level change to the closest task that has been
created or completed, but these updates are not guaranteed deterministically like the task-level
updates are. For more information about how update orders can be used in automation plug-
ins, see OSM Developer's Guide.

OSM does the following when discrepancies occur between the contemporary order
perspective and the historical order perspective:

e Adds revision order nodes if they do not match nodes of the last submitted order data or
the nodes in the historical task perspective.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 16 of 40

ORACLE

Chapter 13
About Compensation

Changes revision order node values if the nodes do match the values found in the last
submitted order data or the nodes in the historical task perspective.

Deletes nodes if the nodes are in the last submitted order data or in the historical task
perspective but not in the revision order.

In Oracle Communications Service Catalog and Design - Design Studio, you can model
compensation strategies for manual and automated tasks statically from a predefined list or
dynamically from revision order data. If you model the compensation task dynamically, you can
create an XQuery that has access to order data provided in the contemporary and historical
perspectives as well as a comparison between the two. You can use the results of this
comparison to dynamically select an appropriate task-level compensation strategy. For more
information about compensation strategies, see "Modeling Compensation for Tasks".

About Order Data Position and Order Data Keys

OSM compares order data in the following ways:

By comparing the position of the XML nodes of the base order (or last submitted revision
order), with the position of the XML nodes in the current revision order. This is not the
recommended method, since the result of the comparison can be unexpected and cause
compensation to behave in a way you do not want.

By comparing order data keys in the order specification order template tab for specific data
elements. This is the recommended method. When OSM receives a revision order, it
compares the order data keys from the revision order with the order data keys in the base
order (or last submitted revision order). When OSM finds a matching order data key, it
compares the values in each element.

@® Note

OSM uses order data keys to determine order data changes during compensation
and to identify pivot nodes that generate multiple task instances based on multi-
instance data nodes (see "Generating Multiple Task Instances from a Multi-
Instance Field") and should be distinguished from order keys used to match base
orders with revision orders (see "About Order Keys").

To set an order key for a data element value, you must specify the data element as an XPath
expression in the Key subtab on the Order Template Node editor.

Oracle recommends using order data keys for multi-instance data nodes to differentiate
between instances of the same data node, because the results are predictable. For example,
the data structure in Figure 13-9 can be used multiple times to identify different product
specifications. You can associate an order data key to the children nodes of specification to
uniquely identify each instance of a product specification contained in a customer order.

Modeling Guide
G37998-01

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 17 of 40

ORACLE’

Chapter 13
About Compensation

Figure 13-9 Order Data Key Defined in Design Studio

Order Template
Show Control Data

= service
€% name
%g orderltem
€2 id
4 name
%E': specificationGroup
%E': specification
4% serviceActionCode
4¥ name
4% dataTypeCode
@9 value

Order Template | Behaviors | Details | Amendable | Rules | Fallouts | Fz

EL Problems x Relation Graph | | Properties &3
Order Template Node - /service/orderltem/sp¢
| Order Data | Dictionarj,f| Key |Usage IInfDrmation|

Expression

Key
text(]

For example, you could set a key on specification that points to the name child node. For
expression for this key would be:

./name

For more information about creating valid order keys, see, "Modeling Valid Data Keys."

About Data Significance

Modeling Guide
G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

During amendment processing, OSM identifies all tasks in the order that are affected by the
changed order data. It then determines whether the data being changed is flagged as
significant. (When you define orders or tasks, you can mark data as Significant or Not
Significant. By default, all data is flagged significant.) OSM compensates only those tasks that

process significant data.

If any of the data changes are significant, OSM transitions the order to the Amending state and
builds a compensation plan based on all affected tasks, creating redo or undo compensation

tasks as necessary.

October 30, 2025
Page 18 of 40

ORACLE

Modeling Guide
G37998-01

Chapter 13
About Compensation

Changes to non-significant data are updated on the in-flight order. For example, if the
customer's preferred contact method (email or text message) is marked as non-significant, a
revision order that changes only that data does not trigger amendment processing. Instead, the
base order is changed, and the revision order is completed without starting amendment
processing. The next task that uses the changed data uses the updated values.

You can configure data significance at the following levels:

« Data Dictionary
e Order template data
* Task data

Each level can inherit or override the significance flag of its parent level. The Data Dictionary is
at the top parent level. You can also configure significance for data structure definitions, but
they do not participate in inheritance.

In addition to the data significance levels mentioned above, you can access the data in the
order template from the Order Template tabs in the Order Item editor and the Order
Component editor. If you change the significance of data in these tabs, you are actually altering
the data in the order template.

The order template can inherit or override the data significance specified in the Data Dictionary.
This allows one order type to consider the data significant while another order type does not.

The task data can inherit the data significance set in the order template only to override it as
non-significant data. This allows data to be significant in one task and not significant in another.
In that case, a revision with that one data element changed would cause the task that
considers the data element significant to be compensated: the task that does not consider it
significant will not be compensated. The exception to this is that you cannot override the
significance of the following types of data at the task level:

* data elements defined in data structure definitions

* the ControlData/Orderltem element and its children, if you have selected Support
Distributed Order Template in the Order Item Specification editor Property References
tab

It is not possible to specify a data element as not significant at the order level and significant at
the task level.

Figure 13-10 shows how data significance can be inherited and overridden.

October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 19 of 40

ORACLE Chapter 13
About Compensation

Figure 13-10 Data Significance Inheritance

Data dictionary-to-order inheritance

Diata dictionary Significant Mot significant
“““““ I T T T
Order Inherited: Cwerridden: Inherited: Cwerridden:
Significant Mot significant Mot significant Significant

Order-to-tas k inheritance

Order Significant Mot significant
___________ I T B EE
Task Inherited: Overridden: Inherited: Override not
Significant Mot significant Mot significant allowed

Figure 13-11 shows data significance specified in the Data Dictionary. Because this is the top
level, there is nothing to inherit the significance from, so there is no inheritance option.

Figure 13-11 Data Significance Specified in the Data Dictionary

Dictionary Element /AccountDetails/numAccount
Dictionary = TalOMExamp | Details | Enumerations| O5M |L.Isage | Information |
Type All w Significant Element
Search | | ¥ | |
= 'E'; AccountDetails ~ | |
Yo ccoun I
4P status

Figure 13-12 shows data significance specified in the order template. In this example, the
significance is inherited from the Data Dictionary.

Modeling Guide
G37998-01 October 30, 2025

Copyright © 2015, 2025, Oracle and/or its affiliates. Page 20 of 40

ORACLE Chapter 13

About Compensation
Figure 13-12 Data Significance Specified in the Order Template
Order Template Node - /CustomerDetails/areaCode
Order Data | Dictionary | Key Usage | Information
Name
Path [CustomerDetails/areaCode
Contributing Template
Data Dictionary OsmCentralOMExample-Orchestration
[1XML Type
Significance (& Inherited O Not Significant O Significant Element

Figure 13-13 shows significance specified in the task data. Note that the significance is either
inherited, or it is not significant. There is no option for significant: instead, that value is inherited
from the order template.

Figure 13-13 Data Significance Specified in the Task Data

Task Data Node/CustomerDetails/areaCode
Identification | Dictionary

MName areaCode

Path fCustomerDetailsf/areaCode

[] Default value

[l Read Only
Significance (*) Inherited (0 Mot Significant
[] Override Data Dictionary Minimum / Maximum

About Task Execution Modes

Tasks run in the following modes:

« Do. This is the normal execution mode of a task when the order is in the In Progress state.

¢ Undo. This execution mode is used when the task must undo work that has already been
done; for example, to un-assign a port when an order is canceled.

Undoing tasks is performed in reverse order to how they were run. For example, if task B
was completed after task A, then task B is undone before task A is undone.

Undo is used when the order component in the base order has completed, and the revision
order has no corresponding order component. A cancellation order, therefore, can include
no order components. This causes all of the order components in the base order to be
undone. The Orchestration Plan tab in the Order Management web client displays
nothing when this is the case, indicating that the order may have been canceled.

Modeling Guide
G37998-01 October 30, 2025
Copyright © 2015, 2025, Oracle and/or its affiliates. Page 21 of 40

ORACLE

Modeling Guide
G37998-01

Chapter 13
About Compensation

Redo. This execution mode is used when the task must redo work that has already been
done; for example, a port assignment task that needs to be performed again because the
input value of bandwidth is different as a result of the revision order. Redoing tasks is
performed as an optimization of the Undo and Do operations for a task in a single
operation.

The Redo execution mode is used when an order component has completed in the base
order, and the revision order has the same order component, but specifies different order
items or data values.

Amend Do. This execution mode is used when a new task must be performed while the
order is in the Amending state. For example, the revision order might specify to add a
service that was not in the base order. Because normal processing is not allowed during
amendment processing, the Do mode cannot be used; Amend Do is used instead.

The Amend Do execution mode functions like the Do execution mode. When a task runs in
the Amend Do mode, all of the permissions and automation plug-in logic for the Do mode
of that task apply.

See "Example 3: Amend Do Compensation” for an example of how the Amend Do
execution mode is used.

® Note

You can specify which tasks can by amended by the Redo and Undo
compensation modes, but Amend Do is not configurable. This is because OSM
determines when Amend Do is required, and the logic followed is that of the Do
mode.

Do in Fallout. This is the mode for a task that runs when the task fails while running in Do
mode.

Undo in Fallout. This is the mode for a task that runs when the task fails while running in
Undo mode.

Redo in Fallout. This is the mode for a task that runs when the task fails while running in
Redo mode.

Amend Do in Fallout. This is the mode for a task that runs when the task fails while
running in Amend-Do mode.

The Amend Do in Fallout execution mode functions like the Do in Fallout execution mode.
When a task runs in the Amend Do in Fallout mode, all of the permissions and automation
plug-in logic for the Do in Fallout mode of that task apply.

See "Example 3: Amend Do C