
Oracle® Communications Order and
Service Management
Modeling Guide

Release 8.0
G37998-01
October 2025

Oracle Communications Order and Service Management Modeling Guide, Release 8.0

G37998-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

Part I Modeling OSM Solutions Overview

1 OSM Solution Modeling Overview

About the OSM Solution Modeling Process 1

About Determining the OSM Functionality to Implement 4

Solution Modeling Considerations 6

General Solution Data Modeling Principles 6

Performance Considerations 7

Planning OSM COM Solution Requirements 7

Modeling COM Order and Order Recognition Requirements 7

COM Data Modeling Considerations 8

Modeling COM Orchestration Order Items and Binding Conceptual Model
Parameters 9

Modeling COM Orchestration Order Item Decomposition 10

Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes 12

Modeling COM Order Transformation Manager 15

Modeling COM Orchestration Dependencies 18

Modeling COM Processes and Tasks 19

Modeling COM Fallout Scenarios 20

Modeling COM Fulfillment States 21

Modeling COM Processing States 23

Modeling Change Order Management for COM 24

Cartridge Management Considerations for COM 24

Planning OSM SOM Solution Requirements 24

Modeling SOM Order and Order Recognition Requirements 25

SOM Data Modeling Considerations 25

Modeling SOM Orchestration Order Items and Bindings Conceptual Model
Parameters 26

Modeling SOM Orchestration Order Item Decomposition 26

Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes 27

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of xvii

Modeling SOM Orchestration Dependencies 28

Modeling SOM Processes and Tasks 28

Modeling SOM Fallout Scenarios 29

Modeling SOM Fulfillment States 29

Modeling SOM Processing States 30

Modeling Change Order Management for SOM 30

Cartridge Management Considerations for SOM 31

Planning OSM TOM Solution Requirements 31

Modeling TOM Order and Order Recognition Requirements 31

TOM Data Modeling Considerations 32

Modeling TOM Orchestration Order Items and Bindings Conceptual Model
Parameters 33

Modeling TOM Orchestration Order Item Decomposition 33

Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes 34

Modeling TOM Orchestration Dependencies 35

Modeling TOM Processes and Tasks 36

Modeling TOM Fallout Scenarios 36

Modeling TOM Fulfillment States 37

Modeling TOM Processing States 37

Modeling Change Order Management for TOM 37

Cartridge Management Considerations for TOM 38

About the OSM SDK 38

Part II Implementing an OSM Solution

2 Modeling Orders and Permissions

Modeling OSM Orders 1

About OSM Orders Without Orchestration 3

About OSM Orders With Orchestration 3

Modeling Roles and Setting Permissions 4

About Order Types 6

About Order Updates 7

Using a Job Control Order to Manage Multiple Orders 8

About Job Control Order Operations 11

About Job Control Order Permissions 11

About Job Control Order System Configuration Files 13

Viewing Orders in OSM Web Clients 13

Specifying Which Data to Display in the OSM Web Clients 13

Modeling Query Tasks for OSM Clients 13

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of xvii

3 Modeling Order Life-Cycle Policies

Modeling Order Life-Cycle Policy States and Transitions 1

About Modeling Transition Conditions 1

About Modeling Transition Grace Periods 2

About Modeling Transition Permissions 3

OSM Order States and Transactions 3

About Order State Categories 8

Common Order State Transitions 8

Optional, Mandatory, and Prohibited Transactions 10

About the Aborted Order State 12

About the Amending Order State 13

About the Cancelled Order State 15

About the Cancelling Order State 17

About the Completed Order State 18

About the Failed Order State 19

About the In Progress Order State 21

About the Not Started Order State 23

About the Suspended Order State 24

About the Waiting Order State 26

About the Waiting for Revision Order State 28

About Deleting Orders 29

4 Modeling Order Recognition

About Sending Orders to OSM and Order Recognition 1

Modeling Order Recognition Rules 2

Validating Incoming Order Data 3

Transforming Order Data 3

Modeling the Order Data Rule to Populate the Creation Task 3

Modeling Order Priority 4

Configuring JMS Message Priority on JMS Queue 5

Creating a JMS Destination Key 5

Configuring Destination Key for a JMS resource 5

Creating and Configuring JMS Destination Key in OSM Cloud Native 6

Modeling the Order Reference Number 6

Modeling a Catch-All Recognition Rule 6

Common Order Recognition Errors 6

5 Modeling Orchestration Plans

Orchestration Plan Overview 1

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of xvii

Modeling an Orchestration Plan 3

About Component Names and Component IDs 6

About Order Items 6

About Creating Order Items from Customer Order Line Item Node-Sets 10

About Associated Order Items 11

Modeling Order Item Hierarchies 13

About Using a Distributed Order Template 14

About Mapping Order Items to Fulfillment Patterns 15

About Modeling Product Specifications 16

Modeling Fulfillment Modes 17

About the Decomposition of Order Items to Function Order Components 18

About Assigning Order Items to Fulfillment Pattern Function Components 18

About the Function Components Stage 19

About Order Component Control Data 19

About Fulfillment Pattern Conditions for Including Order Items 20

Summary of Order Item to Function Components Decomposition 20

About the Decomposition of Function to Target System Components 20

About Decomposition Rules from Function Components to Target Systems 20

About Decomposition Rule Conditions for Choosing a Target System 21

About the Target Systems Stage 22

Summary of Configuring Target System Components Decomposition 22

About the Decomposition of Target System to Granularity Components 23

About Decomposition Rules from Target System to Granularity Components 23

About Customized Component IDs for Separating Bundled Components 23

About the Granularity Components Stage 24

Summary of Configuring Granularity Components Decomposition 24

About Dependencies 24

About Intra-Order Dependencies 26

Modeling an Order Item Dependency 26

About Order Item Dependency Wait Conditions 27

About Order Item Dependency Wait Conditions Based on Data Changes 28

Modeling a Fulfillment Pattern Dependency 29

Modeling an Order Item Property Correlation Dependency 30

About Inferred Dependencies 30

About Modeling Orchestration Dependencies 31

About Processing Order Items Sequentially 32

About Inter-Order Dependencies 32

About Modeling Orchestration Dependencies 34

Using Task States to Manage Orchestration Dependencies 35

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of xvii

6 Modeling the Order Transformation Manager

Understanding the Order Transformation Manager 1

Order Transformation Manager in Runtime 1

The Order Transformation Manager and the Conceptual Model 1

OSM Entities Used in the Order Transformation Manager 2

Calling the Order Transformation Manager 4

Using the Distributed Order Template with the Order Transformation Manager 4

Modeling OTM With Calculate Service Order 5

Calculate Service Order Design Patterns 5

About the Calculate Service Order Provider Function 5

About Calculate Service Order Relationship Types 6

About the Calculate Service Order Transformation Sequence 6

User-Created Entities for Calculate Service Order 7

Modeling OTM Without Calculate Service Order 7

7 Modeling Processes and Tasks

Overview of Processes and Tasks 1

Modeling Processes 1

About Process Flows 1

Adding Process Activities 3

Configuring Subprocesses 4

Understanding Parallel Process Flows 5

About Amendments and Multi-Instance Subprocesses 5

About Order Rules in Processes and Notifications 5

Modeling Order Rules in Notifications 6

Using the System Date in Delays 7

Process and Task Design and Data Considerations for Compensation 7

Order Perspectives and Data Elements in Compensation 8

Effects of Process Loops on Compensation 8

Modeling Tasks Entities Common to All Task Types 10

Modeling Task States 10

Modeling Task Permissions and Execution Modes 10

About Normal and Fallout Execution Modes and Task States 11

Modeling Task Status Transitions 14

Specifying the Expected Task Duration 14

Specifying the Task Priority 15

About Extending Tasks 15

About Task Types 15

Modeling Automated Tasks 15

About Automation Plug-in and Automated Tasks 16

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of xvii

Completing an Automation Task That Handles Concurrent Status Updates 16

Modeling Manual Tasks 17

Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool 18

Using a Custom Task Algorithm in OSM Cloud Native 21

Modeling Transformation Tasks 21

Modeling Activation Tasks 21

About Service Action Request Mapping 22

About Service Action Response Mapping 22

About Activation Tasks and Amendment Processing 22

About State and Status Transition Mapping for Activation Tasks 23

About Automation Plug-ins 23

Specifying Which Data to Provide to Automation Plug-ins 24

Modeling Query Tasks for Order Automation Plug-ins 24

About Automation Message Correlation 26

Example: Modeling a Basic Automator Plug-in for an Automated Task 27

8 Modeling OSM Data

Data Modeling Overview 1

Modeling Order Data 2

About the Data Dictionary 2

About the Order Template 3

Identifying Data Requirements for Order Payload 3

Adding the Input Message to an Order Recognition Rule 4

Adding the Input Message to the Order Template 5

Modeling Valid Data Keys 7

Modeling Data for Tasks 8

Determine Task Data for Manual and Automated Tasks 8

Determine Task Data for Data Returned from Fulfillment Applications 10

Generating Multiple Task Instances from a Multi-Instance Field 10

Modeling Data for Orchestration 11

About Order Item Control Data 12

About Order Template Data 13

About Order Item Specification Data 14

About ControlData for Order Component Data 14

Modeling Data for Fulfillment States 15

About ControlData for External Fulfillment States 16

About ControlData for Order Fulfillment State 16

About ControlData for Order Item Fulfillment State 16

Fulfillment States and Point of No Return 17

Fulfillment State and Point of No Return Initial Values 17

Sample XQuery for Changing Default Data Locations 17

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vi of xvii

Modeling Data for Processing States 19

About ControlData for Order Component Order Item Processing States 19

About ControlData for Order Item Processing States 19

Modeling Orders With Data Fields Above 1000 Characters 20

Using XML Types for Data Fields Above 1000 Characters 20

Using Order Remarks for Data Fields Above 1000 Characters 21

Using Attachments for Data Fields Above 1000 Characters 21

Using Data Providers to Retrieve Data 22

About Data Providers and Adapters 22

Data Provider Interface Tab 23

Accessing Data through Data Providers 24

Augmenting or Overriding Data 24

Objectel 25

Order 26

Adding a New Order Data Provider 26

Property File 27

SOAP 27

XML Attachment 30

XML File 31

XML Validation 31

JDBC 31

Web Service 32

Adding a New Web Service Data Provider 32

Sample soap.request XQuery 33

Accessing Data 33

Custom Data Providers 34

Handling Parameters 34

9 Modeling Behaviors

Modeling Behaviors Overview 1

About Behavior Evaluation 3

Evaluating Behavior Levels 4

Evaluating Design Studio Final and Override Options 4

Evaluating Behavior Type Precedence and Sequence 5

About Setting Conditions in Behaviors 9

Using the Calculation Behavior 10

Calculation Behavior XPath Examples 10

Calculation Behavior Overview 10

Using the Constraint Behavior to Validate Data 11

Displaying Constraint Behavior Error Messages 11

Evaluating Constraint Behaviors 12

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vii of xvii

Using Task Statuses to Control Process Transitions 12

Task Statuses and Constraint Behavior Violation Severity Levels 13

Constraint Behavior Overview 13

Using the Data Instance Behavior to Retrieve and Store Data 14

Evaluating Data Instance Behaviors 14

Data Instance Behavior XML, XPath, and XQuery Examples 14

Data Instance Behavior Overview 15

Using the Event Behavior to Re-evaluate Data 15

Event Behavior Overview 16

Using the Information Behavior to Display Data and Online Help 17

Information Behavior XPath Examples 17

Information Behavior Overview 18

Using the Lookup Behavior to Display Data Selection Lists 18

Lookup Behavior XPath Example 19

Lookup Behavior Overview 19

Using the Read-Only Behavior 19

Read-Only Behavior Overview 19

Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client 20

Relevant Behavior Overview 21

Using the Style Behavior to Specify How to Display Data in the Task Web Client 22

About Style Behavior Layouts 24

About Style Behavior Password Fields 28

Style Behavior Overview 29

10

Modeling a TMF Solution (Cloud Native Only)

About Specifications 1

About Cancelling or Revising an Inflight Order 1

Modeling PONR 7

Change Order Support 8

Order Fulfillment Modes 8

Upstream Listener 9

About TMF Order Events For the External Event Listener 9

About Fallout Exception Management 9

11

Implementing a TMF Solution (Cloud Native Only)

Accessing the Specifications 1

About Extending the Specifications 1

Considerations When Extending the Main Resource 2

About Versioning the Specifications 2

About the "ANY" Schema Type 3

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page viii of xvii

About anyOf, allOf, and oneOf 6

About TMF Cartridges and Non-TMF Cartridges 7

About Importing the Hosted Order Specification 8

About Fulfillment Modes 9

About TMF Order Lifecycle Policy 9

About Data Dictionary 10

About the Order Template 11

About the Master Order Template 11

About the Order Item Specification Order Template 11

About the Significance of CDT 15

About TMF Orders and Permissions 16

Permissions for Internal Gateway Role 16

About Order Recognition 16

About Updating the TMF Order Item with Downstream Data 19

Updates to Order Item Characteristics 19

Updates to General Order Item Data 23

Updates to External Fulfillment State 23

About TMF Order State 23

About TMF Order Item State 25

About Fulfillment State and Processing State 29

12

Modeling External REST Interactions using System Interaction (Cloud
Native Only)

About Importing the OpenAPI Document into Design Studio 1

TMF APIs for BSS/OSS System Interactions 1

Importing a System Interaction 1

Updating a System Interaction Specification 2

System Interaction and OSM Order Components 2

Determining the Order Component 3

About Array of Arrays Support in System Interactions 5

About the OSM Gateway Functions 7

Support for JSON Patch and Merge-Patch Content Types in System Interaction 7

Considerations for OSM Cloud Native to OSM Cloud Native Integration using System
Interaction 10

Developing Automation Plugins 10

Known Issues and Workarounds 10

Part III Modeling Run-time Order Management

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ix of xvii

13

Modeling Changes to Orders

About Amendment Processing and Compensation 1

About Revising or Canceling Orders by Using the Task Web Client 7

About Order Keys 7

About Submitting Multiple Revisions of an Order 8

About Compensation States 9

About Revising In-flight Revision Orders 9

About Insignificant Revision 10

About Terminating Compensation 11

Disabling Processing of Revisions on In-flight Revision Orders 11

Example: Revising an In-flight Revision Order 11

About Controlling When Amendment Processing Starts 13

About Compensation 14

About Order-Level and Task-Level Compensation Analysis 14

About Order Data Position and Order Data Keys 17

About Data Significance 18

About Task Execution Modes 21

Modeling Compensation for Tasks 23

Determining Task Compensation Strategy 23

About Compensating In Progress Tasks 26

About Task Compensation Strategy XQuery Expressions 27

About Managing Compensation in the Task Web Client 29

Modeling Compensation for Rules in Processes 29

Modeling Compensation for Task Automation Plug-Ins 29

Compensation Examples 30

Example 1: Compensation During Provisioning 30

Example 2: Compensation During Billing 30

Example 3: Amend Do Compensation 31

Examples of Changes to Orchestration Plans 32

Modeling a Point of No Return 35

Fulfillment Pattern Point of No Return 35

Life-Cycle Policy Point of No Return 35

About Modeling Order Change Management 36

Troubleshooting Order Change Management Modeling 37

About Order Change Management at the Orchestration Layer 37

About Compensation and Orchestration 38

About Point of No Return 39

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page x of xvii

14

Modeling Fallout

Overview of Fallout 1

Understanding Fallout Across OSM Roles 2

Understanding Fallout Sources 4

Managing Business Related Fallout Sources 4

Managing Fallout from Failures in Network or System Resources 5

Managing Fallout During Order Creation 6

Managing Fallout in the OSM Web Clients 7

Modeling Fallout in Tasks 8

About Failed Tasks and Execution Modes 8

About Alternate Task Fallout Management Methods 9

Modeling Task Notifications for Fallout 9

About Modeling Fallout Exceptions 9

Managing Fallout Exceptions in the Task Web Client 11

Simplified Fallout Exception Automation Framework (Cloud Native Only) 12

Modeling Fallout in Orders 14

Modeling the Failed Order State 14

Modeling Order Notifications for Fallout 15

About Terminating an Order 16

Managing Fallout in the OSM Order Management Web Client 17

15

Modeling Fulfillment States and Processing States

About Fulfillment States, and Processing States 1

Modeling Fulfillment States 1

Defining Fulfillment States 3

Modeling External Fulfillment States 3

Modeling Fulfillment State Maps 4

Modeling Fulfillment State Composition Rule Sets 5

Modeling Processing States 8

Order Component Order Item Processing States 9

Order Item Processing States 10

16

Modeling Jeopardy and Notifications

Best Practices for Using Notifications for Status Updates 1

Status Update Strategies 1

Strategies for Using Notifications 1

Modeling Notifications 2

Using Task States and Statuses to Trigger Event Notifications 2

About Notification Priority 2

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xi of xvii

About Sending Notifications in Email 2

About Configuring Entities to Support Notifications 3

About Jeopardy Notifications 3

About Modeling Jeopardy Notifications 3

About Jeopardy Notification Triggering 4

About Jeopardy Notification Conditions 5

Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor 5

Specifying Jeopardy Notification Conditions in the Order Editor 6

Specifying Jeopardy Notification Conditions for a Task 6

About Event Notifications 6

About Using Task Transitions to Trigger Event Notifications 7

About Using Task States and Rules to Trigger Event Notifications 8

About Using Task States to Trigger Automated Event Notifications 9

About Using Order Milestones to Trigger Event Notifications 10

About Using Order Data Changes to Trigger Notifications 12

About Enabling Order Life-Cycle Events 13

Summary of Notification Functionality 13

17

Modeling Milestone Events

About Milestones and Model-driven Milestones 1

Usage of Milestone Events 2

Modeling Model-driven Milestones 3

18

Modeling Order Scheduling

About Order Item Requested Delivery Date and Order Components 1

How OSM Decomposes and Processes Order Items in Order Components 2

About Grouping Order Items in Order Components by Date Range 3

Modeling Order Component Minimum Processing Duration 3

About Minimum Processing Duration Inheritance in Fulfillment Patterns 5

About Minimum Processing Duration Expressions 6

Calculating the Earliest Order Component Start Date (Order Start Date) 7

About Calculated Order Component Start Dates 7

Modeling Order Component Dependencies and Requested Delivery Dates 9

Modeling Order Items Processed by Multiple Dependent Order Components 9

Revisions of Future-Dated Orders 9

Examples of Calculating the Expected Start Date 10

Example 1: Calculating Start Dates for Order Components with No Dependencies 10

Example 2: Calculating Start Dates for Order Components with Dependencies 11

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xii of xvii

Part IV Managing OSM Projects

19

Managing OSM Solution Cartridges

Solution Management Overview 1

About OSM Cartridge Scope 2

Scope of OSM Entities Without Namespaces 3

Design Studio Entities 3

XML Catalogs and Resource Files 3

Scope of OSM Entities with Namespaces 3

Standalone Cartridge Scope 4

XML Catalog Files in Standalone Cartridges 5

Avoiding Namespace Collisions for Design Studio Entities 5

Avoiding Namespace Collisions for Resource and XML Catalog Files 6

Composite Cartridge Scope 8

Special Cases for Scope 10

Order Recognition Rules 10

Fulfillment Patterns 10

Managing Cartridge Versions 12

Making Changes to Existing Cartridge Versions 13

Handling Multiple Cartridge Versions 14

Migrating Orders to a New Version of a Cartridge 15

Designation of the Default Cartridge Among Cartridge Versions 15

Handling Revision Orders When Multiple Cartridge Versions Are Deployed 16

Working with Cartridges in OSM Cloud Native 16

Building and Packaging a Cartridge 17

About Generating OSM Cartridges and Deployment Options 17

About Cartridge Types 18

About Design Studio Editors for OSM Cartridges 18

Organizing Design Studio and Naming Conventions 21

Cartridge Packaging Design 22

Modifying the Build 23

About XML Catalogs 23

Using XML Catalogs in OSM 24

Resource Packaging Considerations for Using XML Catalogs 25

Defining rewriteURI Entries in XML Catalogs 26

Specifying XML Catalogs for OSM 28

Enabling and Disabling XML Catalog Support 29

Examples of Using XML Catalogs 29

Using XML Catalogs to Support Cartridge Versioning 30

Using XML Catalogs to Load Resources from a Development File System
(Traditional OSM Only) 30

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xiii of xvii

Using XML Catalogs to Insulate Run-Time Environments from Development 31

Cartridge Deployment 32

Cleaning and Rebuilding Cartridges Prior to Deployment 32

Optimizing Cartridge Deployment 32

Deploying Multiple Cartridges 32

Deploying Cartridges with Dependencies 32

Deploying Cartridges to the OSM Database Using XMLIE 33

Building and Deploying Composite Cartridges 36

Setting Cartridge Dependencies 36

Post-Deployment Effect on Numeric Data 36

Post-Deployment Changes to Cartridge 36

Metadata Errors 36

Part V Working with Capabilities Cartridges

20

Working with Capabilities Cartridges (Cloud Native Only)

About Capabilities Cartridges 1

About Capabilities Cartridges Restrictions 1

User Workflow in Design Studio 1

Capabilities Cartridge Lifecycle 2

Creating and Delivering the CPAR 3

Updating and Re-Delivering the Capabilities Cartridge 3

Retiring a Capabilities Cartridge 4

Capabilities Cartridge Content 5

Design Studio Workspace 5

Capabilities Cartridge Conventions 5

Fulfillment Model 5

Order Recognition Rule 6

XML Catalogs 6

Automation Concurrency Map 6

Relationship Types 6

Provider Function 7

Description Fields 7

Fulfillment Pattern Property on the Order Item Specification 7

Transformed Order Item Properties 7

Order Component Organization 8

Configurability Limitations 8

General Restrictions 8

Mapping Rules 8

Transformation Sequence 9

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xiv of xvii

Decomposition and Routing Rules 10

Cartridge Versioning 11

DataTypes for Product and Service Attributes 11

Transformed Order Item Properties 12

Capabilities Cartridge Test Scaffolding 12

Fulfillment Model 12

OSM Enrichment Data 12

Cartridge Guidelines for Test Data 13

OSM Test Content 13

Conceptual Model Test Content 14

Reusable Conceptual Model Content 15

Capabilities Cartridge Build 16

Using the Capabilities Cartridge Wizard 16

About the CPAR File 16

Capabilities Manifest Details 17

A Behaviors Quick Reference

OSM Behavior Type Overview A-1

Common Behavior Elements A-3

Annotation Element A-3

Description Element A-3

Instance Element A-3

Adapter Element [externalInstanceType] A-3

Parameter Element [externalInstanceType] A-3

Cache Element A-4

Expression Element A-4

Declaring Behaviors in OSM XML Model A-4

Data Dictionary Level A-4

Master Order Template Level A-4

View Level A-4

Data Provider Overview A-4

Programmatic Behavior Implementation Overview A-5

B XQuery Examples

General XQuery Information B-1

About Creating XQuery Expressions with Design Studio B-1

OSM XQuery Functions B-2

Referencing Items from a Distributed Order Template in XQuery Expressions B-3

Order Recognition Rule XQuery Expressions B-4

About Recognition Rule XQuery Expressions B-4

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xv of xvii

About Validation Rule XQuery Expressions B-5

About Order Priority XQuery Expressions B-6

About Order Reference XQuery Expressions B-7

About Order Data Rule XQuery Expressions B-7

Decomposition XQuery Expressions B-9

About Orchestration Sequence XQuery Expressions B-9

About Order Sequence Order Item Selector XQuery Expressions B-9

About Order Sequence Fulfillment Mode XQuery Expressions B-10

About Order Item Specification XQuery Expressions B-10

About Order Item Specification Order Item Property XQuery Expressions B-10

About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns B-12

About Order Item Specification Order Item Hierarchy XQuery Expressions B-14

About Order Item Specification Condition XQuery Expressions B-16

About Fulfillment Pattern Order Component XQuery Expressions B-17

About Fulfillment Pattern Order Component Condition XQuery Expressions B-17

About Associating Order Items Using Property Correlations XQuery Expressions B-17

About Decomposition Rule Condition XQuery Expressions B-20

About Component Specification Custom Component ID XQuery Expressions B-21

Custom Order Component IDs Based on Hierarchy B-22

Custom Component IDs Based on Requested Delivery Date and Duration B-25

Custom Component IDs by Duration and Minimum Separation Duration B-26

Combining Order Item Hierarchy with Duration-Based Groupings B-27

About Component Specification Duration XQuery Expressions B-28

About Fulfillment Pattern Duration XQuery Expressions B-28

About Fulfillment Pattern Component Duration XQuery Expressions B-28

Dependency XQuery Expressions B-29

About Order Item Dependency Property Correlation XQuery Expressions B-29

About Wait Delay Duration XQuery Expressions B-30

About Wait Delay Date and Time XQuery Expressions B-31

About Order Data Change Wait Condition XQuery Expressions B-33

About Order Item Inter-Order Dependency XQuery Expressions B-34

Order Transformation Manager XQuery Expressions B-36

About Transformation Sequence XQuery Expressions B-36

About Order Item Context XQuery Expressions B-36

About Related Order Item Selector XQuery Expressions B-36

About Stage Condition XQuery Expressions B-37

About Mapping Rule XQuery Expressions B-37

About Mapping Condition XQuery Expressions B-38

About Action Mapping XQuery Expressions B-38

About Entity-to-Entity Advanced Mapping XQuery Expressions B-38

About Entity-to-Data-Element Advanced Mapping XQuery Expressions B-39

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xvi of xvii

About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions B-39

About Reverse Mapping XQuery Expressions B-40

About Multi-Instance XQuery Expressions B-40

About Order Item Parameter Binding XQuery Expressions B-41

About Transformed Order Item Fulfillment State XQuery Expressions B-41

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xvii of xvii

About This Content

This guide provides modeling information about Oracle Communications Order and Service
Management (OSM).

Audience

This guide is intended for:

• Business domain experts who make decisions about the order fulfillment process.

• Order management personnel who need to know how OSM works and how orders are
processed.

• Developers who extend OSM to interface with external systems.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Modeling OSM Solutions Overview

Part I contains the following chapter providing an overview of modeling Oracle
Communications Order and Service Management (OSM) solutions:

• OSM Solution Modeling Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

1
OSM Solution Modeling Overview

This chapter provides an overview of an Oracle Communications Order and Service
Management (OSM) solution.

Before reading this chapter, read OSM Concepts to learn about general OSM concepts.

Note

In this guide, “traditional OSM” refers to the traditional way of installing and
maintaining an OSM environment and “OSM cloud native” refers to OSM deployed in
a cloud native environment.

About the OSM Solution Modeling Process
An OSM solution is part of a larger operations support system (OSS) and business support
system (BSS) solution. The OSM solution brings together the elements relating to order
processing within an overall OSS and BSS solution. To understand how the OSM solution fits
into this OSS and BSS solution, you must do the following:

1. Scope the solution and perform an initial analysis: This stage is where you decide the
nature of the business change required for the OSS and BSS solution at a high level.
Generally, an OSS and BSS solution falls under the following scope categories:

• Solutions that involve adding or changing product offerings with no effect on the
underlying service or IT infrastructure. For example, the marketing department wants
to create a new offering category with new discounts and incentives.

• Solutions that involve adding of or changing both product offerings and the underlying
service and IT infrastructure. For example, a company may expand their product
offerings from broadband Internet and email to include a mobile offering. This change
required adding new product categories, offering and bundling possibilities, new
underlying services, and new IT infrastructure requirements.

• Solutions that involve adding or changing the network fulfillment infrastructure. For
example, adding new network technology, the upgrade of existing network technology,
the expansion of the company into new geographical locations, and so on.

• Solutions that involve additions of or changes to the BSS and OSS service fulfillment
IT infrastructure. For example, the addition of new service fulfillment systems, such as
billing, activation, work force management, or partner gateway systems.

2. Plan, analyze, and design the solution: You plan, analyze, and design a solution primarily
by creating an Oracle Communications Service Catalog and Design - Design Studio
conceptual model (see Design Studio Concepts for more information). You can use
conceptual model entities to capture the impact of the changes specified in the initial
solution scope. Such entities may include:

• Products: Here you capture any changes to simple products, bundles of products, and
offerings, including the data required at this level.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 38

• Customer-facing services (CFSs): A CFS represents the service that the customers
want. Here you capture the impact of any product and resource changes. You need to
determine whether an existing CFS require changes as a result of product-level
change or resource-level change.

• Resource-facing services (RFSs) and resources: An RFS represents the technology
options available to implement a service. Here you capture the technology options
available to fulfill a CFS and the parameters required. For example, a broadband CFS
may have the DOCSIS, GPON, or DSL RFS options available, each of which specifies
one or more resources that represent specific instances and versions of the RFS
technology category.

• Actions: You can model the specific actions available for each CFS and RFS. The
actions represent subsets of CFS and RFS entity data. For example, an add action
may require that all parameters of a CFS be populated, but a change action may
require only a subset of the parameters.

• Location: You can designate which locations support what resources and services.

• Fulfillment patterns: You indicate which conceptual model fulfillment patterns are
involved in processing products, CFSs, RFSs, and resources. For example, products
relating to broadband Internet may require a different fulfillment pattern than products
relating to mobile service or IP TV.

3. Implement the solution: You model OSM application entities and data in Design Studio to
realize the conceptual model entities you created in the planning, designing, and analyzing
phase. Keep in mind that the OSM solution is closely interrelated with other OSS and BSS
solutions, such as billing, activation, service resource management (SRM), workforce
management (WFM), and partner gateway (PGW) solutions.

Figure 1-1 represents a conceptual model that defines all offers, products, CFSs, RFSs,
resources, network targets, and actions that a fictional communications service provider (CSP)
requires to fulfill a sample broadband Internet and email service. The CFS and RFS entities
unify the business and marketing concerns represented by the products and offers with the IT
infrastructure concerns represented by the resources and network targets. The CFS and RFS
entities also decouple the changes that occur in products, offers, from the changes that occur
in resources. For example, for business and marketing, products and offers are changed
frequently. Likewise for IT infrastructure, technology, vendors, and vendor versions are
changed frequently. But the underlying services being offered and the underlying technology
types do not change often.

Figure 1-1 also shows the OSM roles and fulfillment systems involved in fulfilling orders
containing the data defined in the conceptual model for this fictional CSP.

Note

Figure 1-1 shows each application as a separate system, however these applications
can also be co-resident.

Chapter 1
About the OSM Solution Modeling Process

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 38

Figure 1-1 Sample Conceptual Model

You can use this sample conceptual model as a basis for modeling data and functions
generated by orders. The following shows the OSM roles that run the functions that fulfill the
sample conceptual model entities:

• Central order management (COM) role

OSM in the COM role manages sales orders sent from a customer relationship
management (CRM) system. The sales orders contains offer and product information.
Functions at this level include:

1. Synchronizing customer account information between the CRM system and the billing
system. Customer account information can be name, address, account details, order
number, billing profile, and so on.

2. Updating service subscription details in the billing system so that the billing system can
begin to collect service usage information.

3. Transforming the products and offers into CFSs and sending them to OSM in the SOM
role as a service order.

4. Billing for usage by updating service subscription details in the billing system after the
provisioning function has completed, and then notifying the CRM system that the sales
order is complete.

• Service order management (SOM) role

OSM in the SOM role manages service orders sent from the provisioning function of OSM
in the COM role. Functions at this level include:

Chapter 1
About the OSM Solution Modeling Process

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 38

1. Sending CFS information to an SRM system so that the SRM system can design a
service instance based on the RFS specification, allocate resources to the service
instance, and specify what needs to be configured on the resources to support the
features, qualities, and policies of the service.

2. Requesting resource actions from the SRM system, which are the actions that need to
be performed by OSM in the TOM role and by the fulfillment systems communicating
with the TOM role.

3. Sending the technical order containing the resource actions to OSM in the TOM role.
The technical order outlines the work that must be performed to enable the service
design in the network. Some actions impact the WFM system, some the activation
system, and so on.

4. Completing the service order when OSM in the TOM role completes the technical
order, and updating the OSM instance in the COM role.

• Technical order management (TOM) role

OSM in the TOM role manages technical orders sent from OSM in the SOM role. OSM in
the TOM role decomposes each resource in the technical order into the appropriate
functions and target system process. Functions at this level include:

1. Sending actions to a supply-chain management (SCM) system for selecting, packing,
and shipping physical goods to the destination selected by the customer.

2. Sending actions to a partner gateway (PGW) used to manage relationships with third-
party suppliers or partners that provide services or infrastructure involved in fulfilling
the order. For example, the last mile of a telecommunication network involved in
service delivery is often owned by a third-party telecommunications company.

3. Sending actions to an activation system involved in configuring and activating network
resources.

4. Sending actions to a workforce management (WFM) system to dispatch a technician to
perform work in the field.

5. Completing the technical order when the fulfillment systems involved with OSM TOM
complete their tasks and updating the OSM instance in the SOM role.

You must also analyze data and function requirements for other order processing scenarios,
such as managing order fallout, managing order changes, tracking fulfillment states and
processing states as orders are processed, managing notifications to upstream systems, and
so on.

After you have completed this analysis and design stage, you can model entities in OSM
Design Studio projects. You can then generate cartridges from those projects that you can
deploy to OSM servers for development test environments and finally to production
environments.

About Determining the OSM Functionality to Implement
After you have analyzed the information contained in the conceptual model, you must
determine the following functionality to implement in the OSM solution you are planning:

• What kinds of orders you need to model for OSM roles (COM, SOM, and TOM) and what
kinds of order life-cycle policies the orders need.

See "Modeling Orders and Permissions" and "Modeling Order Life-Cycle Policies" for more
information.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 38

• What kinds of order recognition rules each OSM role requires to capture incoming
customer, service, technical, or revision order types.

See "Modeling Order Recognition" for more information.

• What kinds of order items each OSM role needs to fulfill based on the conceptual model
entities and actions.

See "Modeling Orchestration Plans" for more information.

• What kinds of fulfillment modes, fulfillment patterns, order decomposition and
dependencies you require based on the OSS and BSS solution requirements and order
fulfillment flows.

See "Modeling Orchestration Plans" for more information.

• What kinds of order item and order component scheduling you need when fulfilling your
orders.

See "Modeling Order Scheduling " for more information.

• What kinds of tasks and processes you need to implement for each order component
function, what systems to target, and what order or order item granularity is required when
sending messages to the target systems. For example, do you configure automated tasks
to send all the order items that are decomposed to the function that triggers the process, or
do you generate separate functions that trigger separate processes for each bundle of
order items contained in the order?

See "Modeling Processes and Tasks" for more information.

• What kinds of manual tasks you need to implement in the OSM Task web client and what
kinds of behaviors the tasks should exhibit. The goal of any OSM solution is to automate
tasks as much as possible; however, sometimes manual tasks are necessary. For
example, when initially creating a solution, you might want to model all automated tasks as
manual tasks first, and then convert them to automated tasks after you have a better
understanding of what the tasks must do.

See "Modeling Processes and Tasks" and "Modeling Behaviors" for more information.

• What kinds of fulfillment states and processing states you need to configure for the
customer, service, technical orders, and order component order items. In addition, you
must determine what messages from eternal systems trigger fulfillment state and
processing state changes.

See "Modeling Fulfillment States and Processing States" for more information.

• Whether you need to use the conceptual model Calculate Service Order provider function
with the order transformation manager.

See "Modeling the Order Transformation Manager" for more information.

• What kinds of change order management scenarios you expect for COM, SOM, and TOM
orders.

See "Modeling Changes to Orders " for more information.

• What kinds of notifications you need to set up that would be specific to the order
component functions and process tasks of each OSM role.

See "Modeling Jeopardy and Notifications" for more information.

• What kinds of fallout scenarios to anticipate and how to recover from them.

See "Modeling Fallout" for more information.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 38

The following sections provide details about the different ways you can implement these OSM
functions in general and in COM, SOM, and TOM contexts that are part of an overall BSS and
OSS solution:

• Solution Modeling Considerations

• Planning OSM COM Solution Requirements

• Planning OSM SOM Solution Requirements

• Planning OSM TOM Solution Requirements

You implement these functions differently in each OSM role.

Solution Modeling Considerations
It is important to plan your solution implementation before modeling your solution. The
following sections provide some general guidelines for solution modeling.

General Solution Data Modeling Principles
Modeling an OSM solution involves creating orders that contain the data involved in fulfilling
actions such as add, change, delete, modify, move, and so on, on a product, service, or
resource. In general, when you begin to model an OSM solution, you must understand the
following data modeling principles:

• You must identify where the data you define comes from. For example, most data is
defined in the CRM system in response to a request from a customer, but other data may
be generated by downstream fulfillment systems that OSM interacts with.

• You must identify which system is the primary owner of each data structure or element.
This principle is especially important in change order management and fallout
management scenarios, where OSM must update data to modify or correct the fulfillment
of an order.

For example, if the SRM system that interacts with OSM SOM provides faulty network
resource data that generates an error in the activation system that OSM TOM interacts
with, then the SRM system must correct the faulty network resource data. Although it may
be possible to correct the problem directly in the OSM TOM task that communicates with
the activation system, this does not resolve the root problem, which originated in the SRM
system. Allowing OSM TOM to correct the problem also causes the network resource data
to be inconsistent between OSM TOM and the activation system, and between OSM SOM
and the SRM system.

• You must understand how the data is propagated throughout OSM systems and service
fulfillment systems. Although OSM should not add, change, or modify data owned by a
fulfillment system, OSM does sort, route, format, and send the data so that other fulfillment
systems can consume the data in the format they require.

The solution that the OSM solution is a part of may contain an integration layer that
determines a canonical format for data and provides standard interfaces to which OSM
must conform. For example, Oracle Application Integration Architecture (Oracle AIA)
integrates Oracle applications, such as OSM, Siebel Customer Relationship Management
(Siebel CRM), and Oracle Communications Billing and Revenue Management (BRM), and
also provides a standard format for message exchanges.

When an OSM solution is not part of a solution with an integration layer OSM must
conform to the data requirements and interfaces of each external fulfillment system.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 38

Use these principles to clearly understand how order data is kept in OSM systems, and how
data is communicated at the interactions between OSM systems and other fulfillment systems
for every fulfillment action performed by the OSM solution.

See "Modeling OSM Data " for more information about modeling data in OSM solutions.

Performance Considerations
When modeling a solution, you should always keep solution performance in mind. The
following factors have an impact on performance:

• Number of tasks in a process.

• Number of concurrently executing automation plug-in instances.

• Number, size, and depth of data elements in the order.

• Order view (query task) size and complexity.

• Number of order line items and complexity in an incoming order.

• Degree of XSLT and XQuery transformation.

• Complexity of the generated orchestration plan.

• Average number of revision orders per base order.

If you have not taken these factors into consideration when modeling your solution, and the
results of system performance testing are unsatisfactory, you may have to change the solution
modeling. For information about other system performance considerations, see OSM System
Administrator's Guide and OSM Installation Guide.

Planning OSM COM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM COM role. It
includes examples intended to guide you in understanding how you can use these entities and
functions in your OSM COM solution. This information can help you plan your implementation
efforts by exemplifying at a high level the full scope of work involved in modeling a typical COM
solution. Follow the links in each section for specific details about the functions described.

You typically model COM solution changes based on adding and changing new products,
bundles, and offers that reflect purely business and marketing concerns or that also reflect
changes to the SOM and TOM solution, such as when a company introduces a new technology
domain.

Modeling COM Order and Order Recognition Requirements
You need to determine what kinds of orders to model in OSM, what order life-cycle states and
state transitions the orders have, what user roles (workgroups) have permissions to perform
tasks in fulfilling the orders, and what data should be visible to each user role (workgroup).

For example, you model customer orders for new orders, whether an in-progress order can be
revised, and fallout orders that are triggered when customer orders or revision orders fail. You
enable various order life-cycle states for each order, such as Not Started, In Progress,
Canceling, Amending, and so on, and what transitions are possible from state to state. You
must determine what personnel or systems have permissions to perform order state transitions
and other functions and tasks involved in fulfilling orders.

You must also specify whether you want the order to use an orchestration or not. Oracle
recommends using orchestration for most solutions. Use non-orchestration processes only
when the order management requirements are simple, well understood, and relatively static.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 38

You can model a single target order type that can process any type of incoming sales order, or
you can model multiple order types based on product domain groupings. For example, you can
create one order type for broadband, another for mobile, a third for cable, and so on. Using
multiple order types, however, makes it difficult to bundle services and is also costly to
maintain. Oracle recommends using one standard order type that accepts all incoming orders,
and using other order types for only very specific uses, such as a fallout management order
type that can extract information about failed orders.

If you create multiple order types, you also need to create corresponding order recognition
rules that match incoming orders to the target order. Consider the following approaches when
modeling order recognition rules:

• If you have different order source systems, each having its own order format, you can
create multiple order recognition rules that point to the same target order. The order
recognition rules transform the incoming order data into the target order data format.

• If you have multiple target orders based on domain groupings, you must create a separate
order recognition rule for each target order type.

• If you have one OSM instance operating in more than one role (for example, if the same
system is operating in both the SOM and the TOM role) you need to configure an order
recognition rule that points to a corresponding target order for each role.

• If you have one order source system and one OSM instance operating in only one role,
then you need only one order recognition rule that points to one target order.

You must determine what corresponding order recognition rules you need to model in OSM to
recognize, validate, prioritize, and transform order data from sales orders into a matching OSM
target order. You must map incoming order data to the data defined in the creation task of the
target order.

See the following sections for more information:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

COM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need to model
on the sales order and the target order in OSM COM:

• What data is required to complete an order?

• What data do the tasks require? For example, if service provisioning requires the
customer's location, then the order needs to include the customer's location.

• What data does the customer account require?

• What data is not required on the customer order, but is required by the service order that is
derived from the customer order?

• What data do the tasks require when the order is created?

• Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source.

• Which data on the order contain order item information that represents the offers, bundles,
and products on the order?

• What order item parameters represent the name of the order item?

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 38

• If the order items are hierarchical, what data elements specify the parent and child
relationship between each order item?

• If the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

• What data element specifies the action that must be performed on the order item during
the fulfillment process (such as add, change, and so on)?

• What data element specifies the overall action of the order, such as deliver, cancel or
technical service qualification (TSQ)?

• What data is required on the sales order for the billing system?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Modeling COM Orchestration Order Items and Binding Conceptual Model Parameters
You must determine what order data to model as order items (see "COM Data Modeling
Considerations") and what product specification the order items belong. You typically map
order items to product specification by defining an order item property that OSM then uses to
map the order item to specific fulfillment patterns, and so on.

You can also use Design Studio order item parameter bindings to map conceptual model
entities their parameters to OSM order item specifications. This enables you to have strongly
typed parameters that you do not need to model within order item specifications. You map
conceptual model entities and their parameters to OSM order item specifications mainly to
validate incoming order items and their parameters and/or transform the order items and their
data from one type to another (for example, from products to CFSs).

In the OSM COM context, you map conceptual model products and data parameters to the
COM order item specification for the incoming sales order and accompanying products,
bundles, and offers. For example, Figure 1-1 defines the broadband service offer and several
child product offerings such as broadband, bandwidth, firewall, email, and so on. OSM
validates all order items against the corresponding conceptual model entities and their
parameters. If you have configured the order transformation manager, OSM also transforms
the products into CFSs (see "Modeling COM Order Transformation Manager" for more
information).

If you do not need order item parameter bindings for validation or transformation, you must
model parameters in the order item specification. You can designate an order item property to
contain these parameters (typically name-value pairs) and designate the structure as XML
Type in the Order editor Order Template tab, Properties tab, Order Data subtab for the selected
data element. For example, order items at the COM level relating to billing information, such as
promotional offers or recurrent charging information, may not need validation because the
sales catalog is separately synchronized between the CRM and billing systems. In this
scenario, OSM is only required send the order items on the sales order directly to the billing
system. However, all other order items that must go to OSM in the SOM role would typically
require both validation and transformation using the conceptual model.

Validating data against the conceptual model is important because this ensures the data is
consistent across the entire OSS and BSS solution (OSM in COM, SOM, and TOM roles, the
activation system, the SRM system, and so on).

See "Modeling Orchestration Plans" for more information.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 38

Modeling COM Orchestration Order Item Decomposition
You need to decide what orchestration stages OSM should evaluate when decomposing order
items into order components. These order components typically designate functions, systems,
and granularity options.

Based on the previous sections, you should already have some knowledge of what the order
you are creating contains. Use that knowledge to answer the following questions:

• What systems does OSM communicate with?

• What order items does each system require?

• What are the business functions that each system must perform on the order items?

• How should OSM deliver data for the functions to process? Does the function operate on
the whole order, or does the function require a separate interaction per order item bundle
or per order item?

Based on the answers you provide to these questions, you can begin to model order item
decomposition stages.

Figure 1-2 shows a sample order capture and orchestration process. The process captures
orders with an order recognition rule that maps the order and order data to a target order and
creation task data elements. This order then begins an orchestration process that triggers an
orchestration sequence. The sequence specifies which order node contains the order items,
which order parameter defines the fulfillment mode for the order, and the stages in which the
order items can be evaluated. The orchestration process determines which order components
the order items should decompose to. In Figure 1-2, OSM sequentially evaluates:

• A stage that decomposes order items into order components that define functions.

• A stage that decomposes order items into order components that define systems.

• A stage that decomposes order items into order components that define granularity.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 38

Figure 1-2 Sample Order Capture and Orchestration Process

You must determine what high-level tasks are involved in fulfilling customer orders at the OSM
COM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM COM related tasks that
can be modeled as function order components.

You must determine what kinds of BSS fulfillment systems you have at the OSM COM level.
You can define orchestration order components that correspond to these systems. You can
add these system order components to the system stage. As illustrated in Figure 1-1, the
systems that normally interact with OSM COM include

• One or more billing systems: The billing systems manage the initial and recurring charges
applied to the order.

• One or more OSM SOM systems: The OSM SOM system at the OSS level interacts with
inventory systems. The inventory system designs and assigns services with their
corresponding network resources.

OSM COM may need to communicate with different systems based on the location where the
service is requested for.

You must also determine what kind of order granularity you need when fulfilling each function
order components. Does the orchestration plan need to generate a separate function for each
bundle destined for a particular system? Or, can the whole order be sent as one function to
one system? You can define orchestration order components that correspond to the different
levels of granularity you want to define. You can then add the order component to the
granularity stage (see Figure 1-2).

For example, a customer might request an offer that includes the following order items:

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 38

BroadBand Service (Offer)
 BroadBand (Bundle)
 Promotion (Product)
 Bandwidth (Product)
 Router (Product)
 Firewall (Product)
 Email (Product)

The broadband service offer is parent to the broadband bundle order item and an email
product order item. The broadband bundle is itself parent to promotion, bandwidth, router, and
firewall product order items. It may be that you want the billing related functions to run
separately for each child order item of the broadband service offer (the broadband bundle
order item with all its children order items and the email product order item). Or you may want
each billing function to run separately for each product order item in the order (email,
promotion, router, bandwidth, and firewall). Finally, you could also send the entire offer with all
bundles and products contained within it.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to. The order components can represent whole order granularity,
bundle granularity, or product order item granularity, and so on. At this point, you are only
defining the order components that OSM can use to decompose order items to. You configure
the actual decomposition behaviors and conditions with other Design Studio orchestration
entities such as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order. You model the actions (such as deliver,
technical service qualification, or cancel) as fulfillment modes. Each fulfillment pattern can
have more than one fulfillment mode. When an order item decomposes to a fulfillment pattern,
the fulfillment pattern generates a different orchestration plan based on the action defined on
the order. The action corresponds to the fulfillment mode associated to the fulfillment pattern.

OSM fulfillment patterns define (among other things) the first stage of order item
decomposition. In fulfillment patterns, you can specify order item decomposition conditions for
whether a specific order item decomposes to an order component. Typically fulfillment patterns
contain all order components that specify functions.

In a conceptual model project, you map conceptual model product specifications which define
offers, bundles, and products to conceptual model fulfillment patterns. OSM fulfillment patterns
realize these conceptual model fulfillment patterns. When you build an OSM cartridge, OSM
generates a sample XML file. The sample XML file contains the product-to-fulfillment pattern
mappings. You can reference those mappings using an order item property from the OSM
order item specification. The order item property defines XQuery logic that determines how
each order item decomposes to a fulfillment pattern.

For example, an order might contain the following order items:

• Five decompose to a broaband fulfillment pattern.

• Four decompose to a VoIP fulfillment pattern.

• One decomposes to an Email fulfillment pattern.

At run-time, OSM evaluates the function decomposition stage first which contains the function
order component. This evaluation determines whether order items decompose to each function
order component based on the conditions (if any exist) specified in the fulfillment pattern.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 38

OSM next evaluates how order items decompose to the system and granularity order
components in the system and granularity stages using on orchestration decomposition rules.
These decomposition rules define how order items decompose from function order
components to system order component, and from function order components to granularity
order components. All order decomposition rules relating to system order components in the
system decomposition stage are evaluated. Then those order decomposition rules relating to
the granularity order components in the granularity stage are evaluated.

After OSM evaluates each stage for each order item in the fulfillment patterns they are
associated with, OSM generates run-time order components. These run time order
components are the sum of the order components that each order item decomposes to. For
example, order item A can decomposed to functionA-systemA-granularityA. This sequence of
order components constitutes a single run-time order component.

However, consider a scenario where the order items in an order decompose to more than one
fulfillment pattern. If fulfillment pattern A generates the same run-time order component as
fulfillment pattern B, then OSM generates only one run-time order component. This run-time
order component processes the order items from both fulfillment pattern A and B.

some decomposition sequences of the three different fulfillment patterns end up being
identical, then only one run-time order component is created that runs a process for all order
items.

Figure 1-3 shows an order item decomposition run-time sequence with the BroadBand order
item bundle.

The first stage of order item decomposition uses the broadband fulfillment pattern which
defines decomposition rules for each function order component. The second stage uses
decomposition rules from each function to each system order component. The third stage uses
decomposition rules from each system to each granularity order component. OSM generates
the resulting run-time order components based on this sequence. Each unique decomposition
flow generates a new executable order component.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 38

Figure 1-3 Sample Run-Time Order Item Decomposition Sequence

Those generated in Figure 1-3 are:

• SyncCustomer/BillingSystemResidential/OrderGranularity

• InitiateBilling/BillingSystemResidential/OrderGranularity

• Provisioning/OSMSOMSystem/OrderGranularity

• FulfillBilling/BillingSystemResidential/BundleGranularity

In this scenario, the decomposition rules to the billing system business component and offer
granularity component rejects all order items. The rejection is based on a condition that

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 38

specifies that only order items from business customers can be included. All order billing
related components are directed to the billing system residential as opposed to the billing
system business order component.

In addition, the VoIP bundle order items and all its child order items decompose to another
fulfillment pattern not represented in Figure 1-3. It is important to note that an orchestration
plan that contains multiple fulfillment patterns may generate identical run-time order
components if some of the functions, systems, and granularity component decomposition flows
are the same. For example, the broadband internet and VoIP fulfillment patterns may each
specify the same SyncCustomer and InitiateBilling functions with the same systems and
granularity components. In such a case, OSM generates only one run-time component to
which the order items from each fulfillment pattern decomposes to. However, it may be that
separate provisioning and billing components are required for each fulfillment pattern. For
example, you may want a separate provisioning component for the broadband order items.
When the provisioning component completes, the billing component runs. The billing system
then begins charging for broadband service immediately. The VoIP related order items might
decompose to separate provisioning and billing order components that only start when the
provisioning component for broadband completes. This decomposition pattern may be
appropriate based on the fact that the VoIP related order items functionally depend on the
broadband order items and also take much longer to fulfill than the broadband order items. In
this scenario, the CSP does not need to wait for the VoIP order items to fulfill before beginning
to charge for the broadband service.

Similar decomposition scenarios may be important when considering the date when the
customer wants a particular service fulfilled. For example, a customer may request an IPTV
and VoIP bundle that are normally fulfilled within the same provisioning and billing functions.
But because the customer requests a start date for the IPTV service that is much later than the
one specified for the VoIP service, then these two order item bundles must decompose to
separate provisioning and billing order components.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling COM Order Transformation Manager
You should determine whether you want to use the order transformation manager (OTM) with
the calculate service order (CSO) conceptual model provider function. OTM with CSO
transforms products, bundles, and offer order items and actions into CFS order items and
actions. The run-time order component creates and sends a service order to OSM SOM or
some other provisioning system. The OTM functionality provides a way to decouple the
commercial layer from the service layer.

Figure 1-4 shows a sample run-time order transformation with the design-time conceptual
model entity associations. This example has the following run-time flow that incorporates
design time data from conceptual model entities:

1. OTM triggers either when the orchestration process begins to design an orchestration plan
or from within the process associated with the provision function in a transformation task.
OTM can process data elements for product entities in the conceptual model. OTM can
process data elements only if order parameter bindings are created. The order parameter
bindings are between product data in the conceptual model and an order item property in
the order item specification. The order item property must be designated as a dynamic
parameter that defines a data structure.

OTM can only process conceptual model product entity data elements on the order if order
parameter bindings (conceptual model association A) have been created between

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 38

conceptual model product data and an order item specification order item property
designated as a data structure definition dynamic parameter.

2. OSM sends the input product order items to OTM. In order for OSM to do this, the
conceptual model CSO provider function must be associated with the provision function
order component at design-time (conceptual model association B).

3. OTM sends the order data to a transformation sequence. In order for OTM to map to the
appropriate transformation sequence, OTM must also be associated with the conceptual
model CSO provider function and a conceptual model domain (conceptual model
association C). The domain is a repository of all the conceptual model products possible
for the order item. In this case, the domain is the BB Email Domain for broadband and
Email products. Other domains could be VoIP, mobile, cable and so on.

4. The transformation sequence goes through a series of stages. The stages use mapping
rules to map the input order item data to output order item data. The stages also define
whether the data is primary (which creates a new order item) or auxiliary (which augments
the data on a new order item). The mapping rules must also be associated with the same
CSO provider function and domain as OTM (conceptual model association C). For
example:

• Primary Stage: Transforms product order items and actions into transformed order
items and actions. At the primary stage, product order items create new transformed
customer service-facing order items. In this example, the primary product specification
is BB_PS which maps to the BB Internet Access customer-facing service specification.

• Child Stage: Transforms all child order items and actions and any of their child order
items and actions, and so on, into data that augments the order items created in the
primary stage. In this example, the child order items of BB_PS are BB_Bandwidth,
Firewall, and Router.

• Sibling Stage: Transforms all sibling order items and actions into data that augments
the order items created in the primary stage. In this example, a sibling order item of
BB_PS is Email.

• Ancestor Stage: Transforms all ancestor order items and actions and any of their
ancestor order items and actions, and so on, into data that augments the order items
created in the primary stage. In this example, the ancestor order item of BB_PS is
BB_Email_PS.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 38

Figure 1-4 Sample Run-Time Order Transformation with Conceptual Model Associations

5. The transformation sequence includes the resulting order items into the provision function
order component. The provisioning function order component runs a process that creates
and sends a service order to OSM SOM. The service order includes the transformed
service order items. The product order items are not required in the service order because
all necessary data contained in the product order items are now consolidated into the
service order item.

When the input sales order lines are transformed to CFS:

• If the input sales order lines are not mapped to CFS as defined in modeling, CFS pay
load will not be generated.

• If the input sales order line is missing any of the required parameters for mapping, the
missing mandatory parameter will be reported as error and no CFS pay load will be
generated.

In both the cases, the provisioning function process fails and SOM order is not created. A
revision order should be submitted to correct the sales order line data, so that OTM maps
properly, and then CFS payload is generated and the SOM order is created.

See the following sections for more information:

• Modeling the Order Transformation Manager

• Modeling OTM With Calculate Service Order

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 38

• Modeling OTM Without Calculate Service Order

Modeling COM Orchestration Dependencies
You need to determine what dependencies exist between executable order components.
These dependencies are called orchestration dependencies. You typically define all
orchestration dependencies using fulfillment patterns for function order components. However,
you can also specify dependencies between other order components using orchestration
dependency rules. In addition, you can specify when order components can start based on
dates provided by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM COM
may need to be fulfilled in the following order (see Figure 1-5):

1. The Sync Customer and Initiate Billing function that are shared between both fulfillment
patterns occur sequentially. Order items from both broadband and VoIP fulfillment patterns
decomposed into identical order components. All order items in the Sync Customer
function must complete before the Initiate Billing Function can continue.

2. The Initiate Billing function must complete before the Provision Function can start
processing the broadband order items and the second Provision Function can start
processing the VoIP order items. In addition, the second provision function must wait until
the first provision function completes because VoIP is functionally dependent on
broadband and because the VoIP service takes longer to fulfill than the broadband service.

3. The Fulfill Billing function for the broadband order items starts after the Provision function
for the broadband order items completes.

4. The Fulfill Billing function for the VoIP order items starts after the Provision function for the
VoIP order items completes.

Figure 1-5 Example Dependency Between Fulfillment Pattern Order Items

Having separate Provision functions means that OSM COM sends multiple service orders to
OSM SOM. Other factors can also impact order component creation and dependencies such
as the requested delivery date for each service.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 38

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling COM Processes and Tasks
What process flow of sequential or parallel manual and automated tasks are required when
interacting with target systems for each functional component.

For example, each function may have a few automated tasks that perform different functions,
such as sending messages to an external system, receiving back and processing a response
from external systems, or manipulating data received from previously completed tasks. There
may also be manual tasks where an operator is required to input data directly into the Order
Management Task web client. The manual tasks may also make use of behaviors that effect
how the data is organized, displayed, or retrieved in the OSM Task web client and in the Order
Management web client.

Figure 1-6 shows an OSM process that includes a subprocess with an automated task and
automation plug-in sender. An order level notification updates the status of order items then
notifies the CRM of the status change. The automated task then transitions to another task that
sends a service order to the OSM SOM system. The server order includes all the order items
required to design and assign the products and services that the customer has requested.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 38

Figure 1-6 Example Task Processing

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Modeling COM Fallout Scenarios
You must determine:

• What fallout management scenarios can be anticipated.

• How fallout scenarios can be detected.

• How relevant parties or systems can be notified of problems.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 38

• What recovery processes can be implemented.

For example, you should anticipate fallout around network connectivity from time to time.
External systems may fail to return responses or fail to accept messages. In such cases you
can configure automated tasks to transition to fallout an execution mode. Failed messages
generated by automation plug-ins can revert to an error queue. You can also configure
jeopardy notifications when messages are taking too long to return. The jeopardy notification
can generate warning messages to fallout personnel so they can manual investigate the
problem on the external fulfillment system or in OSM.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling COM Fulfillment States
You must determine what kind of order and order item fulfillment states you need to configure.
Fulfillment states track the overall status of an order and each order item based on status
messages received from external systems. You also need to consider what notification
messages you want to send to interested parties or systems as the order progresses.

For example, Figure 1-7 shows external fulfillment state change messages from the billing
system and the OSM SOM system returning to the OSM COM system.

The hierarchical structure of the order defined in the order item specification is as follows:

BroadBandOrder (target order)
 BroadBand Service (Bundle)
 Promotion (Product)
 BroadBand (Product)
 Bandwidth (Product)
 Firewall (Product)
 Email (Product)

1. The billing function is a generic order component, but could represent any of the billing
functions listed in "About the OSM Solution Modeling Process" for OSM COM. After the
billing function sends a message to the billing system, the billing system sends three status
messages back to OSM COM as the billing system processes the Promotion,
Broadband, and Email order item. Two of the external fulfillment state messages, billing
begin and billing in progress, map to the OSM COM in progress billing fulfillment state.
The billing system sends these messages to confirm that it has received the message from
OSM with the order items and then to confirm that it has begun to process the messages.
When the billing system finished processing all order items, it sends the billing end
external fulfillment state that maps to the complete billing fulfillment state.

2. The provision function has a similar exchange of messages with the OSM SOM system for
the broadband, bandwidth, firewall, and email order items.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 38

Figure 1-7 Example Fulfillment States

3. When the order items first begin processing in the billing function component, Rule 1
evaluates to true when the billing system sends the billing begin and billing in progress
external fulfillment state messages that map to the In Progress Billing fulfillment state for
the billing order component. This causes the order items included in the billing function
component to have a composite fulfillment state of in progress.

4. When the billing system completes and sends the billing end message which maps to the
Complete Billing fulfillment state for the function component, the Broadband and Email

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 38

order items continue processing in the provision function order component while the
Promotion order component does not. Promotion did not decompose to the provision
function and is therefore fully complete. Rule 1 still evaluates to true for BroadBand and
Email, but Rule 1 evaluates to false for Promotion. Rule 2 evaluates to true for
Promotion, causing its order item composite fulfillment state to move to Complete.

5. When Rule 1 and Rule 2 make any change to the state in an order item, they also
evaluate the parent order item, which is the BroadBand Service bundle order item.
Although Promotion is now complete, the BroadBand Service remains in the In
Progress state until the other child order items complete.

6. When the remaining order items complete in the provision function, Rule 1 evaluates to
false and Rule 2 evaluates to true for the order component. Rule 2 then changes the
composite order item fulfillment states for all remaining order items to complete. Because
of this change, the parent BroadBand Service order item also changes to complete
because all its child order items are now complete.

7. Because of this change in BroadBand Service, which is a root level order item, the order
fulfillment state Rule 3 evaluates to false because there are no longer any in progress
order items at the root level. Rule 4 evaluates to true because all order items at the root
level are now complete.

8. An order data change notification triggers whenever an order or order item composite
fulfillment state changes that sends messages to the CRM to report the changes.

Figure 1-7 shows only in progress and complete billing states at both the order item and the
order level. Many other external order fulfillment states, order item fulfillment states, and order
states are possible, such as failure states, cancelation states, and so on. Each of these would
also have a corresponding order item fulfillment state composition rule and order fulfillment
state composition rule.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling COM Processing States
Processing states are similar to fulfillment states in that you can configure automated tasks to
trigger order component order item processing states based on messages received from
external fulfillment systems. The main difference is that the order component order item
processing states come from a predefined list that OSM provides. OSM automatically
aggregates order component order item processing states across all order components
processing the order item into a single order item processing state that is visible in the Order
Management web client. OSM also propagates child order item processing states to parent
order items. The only work necessary to model processing states is to map incoming status
message from external fulfillment systems to order component order item processing states.
You can even map the same message to both order component order item processing states
and to external fulfillment states.

For example, the following shows how the Email product is successfully processed in two order
components, but the third order components returns a failure order component order item
processing state, causing the Email product to display the Partially Failed order item
processing state, which in turn caused the parent and grandparent order items (Brilliant
Broadband and Broadband Service) to also display the Partially Failed order item processing
state.

Brilliant Broadband (Offer) ----- Partially Failed
 BroadBand Service (Bundle) -- Partially Failed

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 38

 Promotion (Product) ----- Completed
 BroadBand (Product)------ Completed
 Bandwidth (Product)------ Completed
 Firewall (Product) ------ Completed
 Email (Product) --------- Partially Failed ---- OCOI1 - Completed
 ---- OCOI2 - Completed
 ---- OCOI3 - Failed

The Order Management web client tracks Normal, Warning, and Failure counts of order item
processing states.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for COM
You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want to support.

Do you need a point of no return where the order cannot be changed? For example, you can
configure a point of no return that is tied to the provisioning function that generates a service
order to be enforced whenever that order component receives a fulfillment state update of
Complete (assuming you have configured the order component with such a fulfillment state
update). You can also tie a point of no return directly to the any order life-cycle policy transition
to the Amending state, such as the Submit Amendment transition from the In Progress state to
the Amending state.

If a revision order arrives, what behavior do you want each tasks to exhibit? Do you want the
task to undo, redo, or undo then redo? For example, do you want to configure the automated
task responsible for sending the service order to OSM in the SOM role to trigger an automation
plug-in that sends a revision order to OSM SOM that undoes the previously sent service order
whether it is complete or still in progress? Or do you want the task to redo the previously sent
service order as a revision order and allow SOM to perform change order management
functions?

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Cartridge Management Considerations for COM
What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

Planning OSM SOM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM SOM role. It
includes examples intended to guide you in understanding how you can use these entities and
functions in your OSM SOM solution. This information can help you plan your implementation
efforts by exemplifying at a high level the full scope of work involved in modeling a typical COM
solution. Follow the links in each section for specific details about the functions described.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 38

OSM in the SOM role receives CFSs from OSM in the COM role within a service order. OSM
SOM then sends this CFS information to an SRM system that designs the service then assigns
it to resources. The SRM system uses the RFS and resource information defined in the
conceptual model to perform this design and assign task. The SRM also calculates the actions
required to fulfill the services. OSM SOM requests these actions from the SRM system then
sends the actions to OSM in the TOM role.

Modeling SOM Order and Order Recognition Requirements
You must determine what kind of orders you need to model in OSM SOM, what order life-cycle
states and state transitions the orders have, and who has permissions to do various tasks in
fulfilling the order.

At this point, it is important to understand that the SOM order is a child of the COM parent
order and must report back to the COM order component that generated the service order. In
the example provided in "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes", the order component that generated the service order to SOM is a task that is part of
a process triggered by the Provisioning/OSMSOMSystem/OrderGranularity run-time order
component. Any notification from OSM SOM relating to the service order would return back to
this task.

Depending on how you have modeled your COM solution, OSM SOM may receive more than
one service order. For example, you may want to configure OSM COM to send a separate
service order to fulfill the broadband internet CFS. When that service order completes, OSM
COM may send a second service order with a VoIP CFS.

You may want to create separate target orders for each CFS or one generic target order that
receives all service orders. In the SOM context, OSM does not generally need separate target
orders because most of the work is accomplished within the SRM system that OSM SOM
communicates with and any dependencies between CFSs are enforced in OSM COM.

Likewise, if you have only one target order at the SOM level, then you need only one order
recognition rule that maps incoming service orders to this target order.

See the following sections for more information:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

SOM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need to model
on the OSM order to capture the incoming order data:

• What data is required to complete an order?

• What data do the tasks require? For example, what data is required on each interaction
with the SRM system? What format to OSM TOM require for the technical order that OSM
SOM sends?

• What data is not required on the service order, but is required by the technical order that is
derived from the customer order?

• Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source. Typically SOM is only
responsible for passing on CFSs created in COM to the SRM system. However, it is
possible that other data may be required that does not come from the SRM system.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 38

• Which nodes on the service order contain order item information that represents the CFSs
on the order?

• What order item parameters represent the name of the CFS order item?

• If the order items are hierarchical and what data elements specify the parent child
relationship between each order item? Typically service orders do not require a hierarchy.

• If the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

• What data element specifies the action that must be performed on the CFS order item
during the fulfillment process? For example, add, change, delete, move, and so on.

• What data element specifies the overall purpose of the order, such as deliver, cancel or
technical service qualification (TSQ)?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Modeling SOM Orchestration Order Items and Bindings Conceptual Model
Parameters

You must determine what nodes in the incoming order you want to designate as order items
containing CFSs. What data in the order items you want to use for specific orchestration
functions, such as the actions you want OSM to perform on those order items, the requested
delivery date when the order item actions need to occur, what CFS the order item represents
that OSM then uses to map the order item to specific fulfillment patterns, and so on.

You can also use order item parameter bindings to bind conceptual model CFSs and the
parameters defined for them to a OSM SOM order item specifications. This allows you to have
strongly typed parameters that you don't need to model within order item specifications. For
example, Figure 1-1 defines the Broadband Internet Access CFS and the Email CFS. You can
use order item parameter bindings to map these conceptual model product entities to order
item specifications by configuring an order item for the order item recognition and an order item
parameter as a dynamic parameter where the parameters are stored.

Order item parameter bindings in OSM SOM are important for validating the incoming CFSs
generated from OSM COM, however OTM is not required in the OSM SOM role because the
SRM system is typically responsible for transforming CFSs into RFSs, resources, and actions.
OSM SOM sends the CFSs to the SRM system and receives back the actions on the
resources. OSM SOM does not need order item parameter bindings on these actions because
OSM TOM is responsible for validating these actions.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Order Item Decomposition
You need to decide what orchestration stages you want OSM to evaluate when decomposing
CFS order items into order components. These order components typically designate
functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what the service
order you are creating contains. Using this knowledge, you can provide answers to the
following questions:

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 38

• What are the systems that OSM must communicate with? For example, OSM SOM
typically communicates with an SRM system and OSM in the TOM role.

• What order items do each system require? For example, the SRM system requires CFS
information and OSM in the TOM role requires technical actions.

• What are the business functions that each system must perform on these order items? For
example, sending the CFSs to the SRM system, requesting the actions from the SRM
system, and building the technical order that contains the actions for the OSM TOM
system.

• How should OSM deliver this data for the functions to process? Does the function operate
on the whole order, or does the function require a separate interaction per order item
bundle on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order item
decomposition stages.

Figure 1-1 defines the Broadband Internet Access CFS and the Email CFS. You can
decompose these order items into function, system, and granularity order components in the
same way you do in the COM (see "Modeling COM Orchestration Order Item Decomposition").

You must determine what high level tasks are involved in fulfilling customer orders at the OSM
SOM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM SOM related tasks that
can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM SOM level.
You can define orchestration order components that correspond to these systems that you can
then add to the system stage. As illustrated in Figure 1-1, the systems that normally interact
with OSM SOM include one or more SRM systems that interact with inventory systems to
design and assign services with their corresponding network resources.

You must also determine what kind of order granularity you need when fulfilling each function
order components. At the SOM level, OSM typically passes on every CFS order items to the
SRM system because CFSs are typically not hierarchically ordered. However, this all depends
on how you model the overall solution.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to, such as whole order granularity, bundle granularity, or product
order item granularity, and so on. At this point, you are only defining the order components that
OSM can use to decompose order items to during order decomposition. You configure the
actual decomposition behaviors and conditions with other Design Studio orchestration entities
such as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order that you can model as fulfillment modes for the
order, such as deliver, technical service qualification, or cancel.

In a conceptual model project, you map conceptual model CFSs to conceptual model
fulfillment patterns. These conceptual model fulfillment patterns are realized by OSM SOM
fulfillment patterns. When you build an OSM cartridge, OSM generates a sample XML file that
contains all these CFS to fulfillment pattern mappings that you can reference using an OSM
SOM order item specification order item property that defines XQuery logic that determines
how each order item decomposes to what fulfillment pattern during run-time.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 38

For example, OSM SOM may have a Broadband Internet Access CFS order item and the
Email CFS order item that maps to a conceptual model fulfillment patter that is realized by an
OSM SOM fulfillment pattern that specifies a function to send these CFSs to the SRM system
so that the SRM system can perform the design and assign functionality. You can also create
another function that requests the actions that must be included in a technical order, and a
third function that creates, sends the technical order to OSM TOM, and a fourth function that
completes the service order.

At run-time, OSM evaluates the function, system, and granularity stages in a similar way to
OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes"). The function, systems, and granularity stages might generate the following run-time
order components:

• DesigningServiceFunction/SRMsystem/OrderGranularity

• PlanDeliveryFunction/SRMsystem/OrderGranularity

• CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity

• CompleteFunction/SRMsystem/OrderGranularity

Modeling SOM Orchestration Dependencies
You must determine what dependencies exist between executable order components. These
dependencies are called orchestration dependencies. You typically define all orchestration
dependencies using fulfillment patterns for function order components, but you can also
specify dependencies between system order components using orchestration dependency
rules. In addition, you can specify when order components can start based on dates provided
by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM SOM
may require that each function operate in the sequence specified in Figure 1-8.

Figure 1-8 Example Dependency Between Fulfillment Pattern Order Items

Because there is typically only one fulfillment pattern at in OSM SOM for fulfilling service
orders, each component can run one after the other.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling SOM Processes and Tasks
You must determine what process flow of sequential or parallel manual and automated tasks
are required when interacting with target systems for each functional component.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 38

Tasks in OSM SOM typically involve sending the CFS order items required by the SRM system
and receiving back the action from the SRM system. For example, the design service function
would start a process that triggers an automated tasks with an automation plug-in sender
instance that send builds and sends a message containing the CFS information to the SRM
system in the format required by the SRM system API. When the SRM system completes, it
sends a response back to OSM SOM that OSM SOM correlates back to the automated task to
an automation plug-in automator that is waiting for a response message. The automation plug-
in automator reviews the response message and determines that the SRM system completed
its tasks successfully and then transitions the automated task to the completed state which
also completes the DesigningServiceFunction/SRMsystem/OrderGranularity order component.

Each run-time order components with associated processes and tasks would perform similar
exchanges.

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Modeling SOM Fallout Scenarios
What fallout management scenarios can be anticipated, determine how they can be detected,
how relevant parties or systems can be notified of the problem, and what recovery processes
can be implemented.

For example, in addition to possible communication issues, you may anticipate the possibility
that fallout may occur because OSM COM sends faulty or incomplete CFS information to OSM
SOM, or the SRM system has somehow provided incorrect data to OSM SOM that may cause
a fallout to occur in OSM TOM. You must carefully analyze when such issues can occur and
develop fallout strategies to recover from such fallouts scenarios. In some cases, manual
intervention may be required while in other cases, you may be able to model automatic fallout
recovery capabilities.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling SOM Fulfillment States
What kind of order and order item fulfillment states you need to configure to track the overall
status of an order and each order item based on status messages received from external
systems. You also need to consider what notification messages you want to send to interested
parties or systems as the order progresses.

For example, you can map messages from the SRM system and the OSM TOM system
returning as these systems process messages sent by various order components to external
fulfillment state in the OSM SOM system. These external fulfillment states can represent the
result of various interactions between OSM SOM and these systems on each CFS order item
that OSM SOM then aggregates into order item and order-level fulfillment states based on
order and order item fulfillment sate composition rule sets.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 38

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling SOM Processing States
You can track the state of order items by mapping responses from the SRM system and OSM
TOM to order item processing states. You must decide what messages correspond to which
predefine order component order item processing state that OSM provides. OSM then
aggregates these order component order item processing states for each order item into an
overall order item processing state. You may decide to use warning and failure order item
processing states to trigger jeopardy notifications from OSM SOM to OSM COM or from OSM
SOM to a fallout personnel. In many cases, you can also use the same messages from
external systems to trigger external fulfillment state changes.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for SOM
You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want OSM SOM to support.

You must consider change order management based on end-to-end scenarios that span OSM
COM, SOM, and TOM. For example, if you enable OSM COM to send a revision order through
to OSM SOM from the OSM COM provision function then you must decide what compensation
OSM SOM must undertake to implement the changes in the revision order. For example, you
might consider some of the following question:

• Is there a point of no return where you do not want OSM SOM to accept any new revision
orders from the OSM COM provision function? For example, you may want to configure a
point of no return that is associated with when the SRM system completes its design and
assign functions based on an external fulfillment state change. This would effectively mean
that OSM TOM should not receive revision orders from OSM SOM stemming from
changes coming from OSM COM service orders. Or you may decide that there should not
be any point of no return configured in OSM SOM.

• It may be that the SRM system that you are communicating with does not have the
capability of accepting revisions to CFSs sent by the original interaction between OSM
SOM and the SRM system, but can only accept cancelation requests. In which case OSM
SOM must configure the automation task to completely undo the original request then redo
it with using the new CFS information.

• It may be that you want to configure OSM TOM to accept revision orders, in which case,
you can configure OSM SOM to redo the task that sends the technical order to OSM TOM
such that is sends a versioned revision order.

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 38

Cartridge Management Considerations for SOM
What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

Planning OSM TOM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM TOM role. It
includes examples intended to guide you in understanding how they can use these entities and
functions in your OSM TOM solution. This information can help you plan your implementation
efforts by understanding the full scope of a typical TOM solution. Follow the links in each
section for specific details about the functions described.

The bottom up approach is where you begin to analyze a conceptual model from the
perspective of the network resources and infrastructure in place to fulfill orders.

Modeling TOM Order and Order Recognition Requirements
You must determine what kind of orders you need to model in OSM TOM, what order life-cycle
states and state transitions the orders have, and who has permissions to do various tasks in
fulfilling the order.

At this point, it is important to understand that the TOM order is a child of the SOM parent order
and must report back to the SOM order component that generated the technical order. In the
example provided in "Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes",
the order component that generated the service order to TOM is a task that is part of a process
triggered by the CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity run-time
order component. Any notification from OSM TOM relating to the service order would return
back to this task.

Depending on how you have modeled your SOM solution, OSM TOM may receive more than
one technical order. For example, you may want to configure OSM COM to send a separate
service orders to fulfill the broadband internet CFS and another that fulfills a VoIP CFS. OSM
SOM would process these orders separately. OSM SOM sends the service order to the SRM
system to generate technical actions that OSM SOM sends to OSM TOM as a technical order.
Therefore, OSM TOM would receive two separate technical orders to fulfill resource actions on
the original sales order sent to OSM COM.

Like OSM COM, you may want to create separate target orders for each technical order based
on the different domains they interact with (broadband, VoIP, Mobile, and so on), or one
generic target order that receives all technical orders.

If you create individual order types, you also need to create corresponding order recognition
rules that match incoming orders to the target order. You can consider the following
approaches when modeling order recognition rules for OSM TOM:

• You would typically not have multiple OSM SOM instance interacting with the same OSM
TOM instance using different message format, but usually each OSM SOM instance would
have its own OSM TOM instance. This means it is unlikely that you would need multiple
order recognition rules pointing to the same OSM TOM instance target order.

• If you have multiple order target orders based on domain groupings, you must create a
separate order recognition rule for each target order type.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 38

• If you have one OSM instance operating in more than one role, for example, if the same
system is operating in both the SOM and the TOM role, you need to configure an order
recognition rule that points to a corresponding target order for each role.

• If you have one OSM SOM instance and one OSM TOM instance, then you typically need
only one order recognition rule that points to one target order.

You need to determine what corresponding order recognition rules you need to model in OSM
to recognize, validate, prioritize, and transform order data from sales orders into a matching
OSM target order. You must map incoming order data to the data defined in the creation task of
the target order.

See the following sections for more information:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

TOM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need to model
on the OSM order to capture the incoming order data:

• What data is required to complete an order?

• What data do the tasks require? For example, what data is required on each interaction
with the Activation, the PWG, the WFM, and the SCM systems? What message format do
these interactions require?

• Which data is not required on the technical order, but is required by the different fulfillment
systems that OSM TOM interacts with?

• Does the incoming order include all of the data needed for the order? If not, you can use
data providers in your tasks to get the data from some other source.

• Which nodes on the service order contain order item information that represents the
actions on the order?

• What order item parameters represent the name of the action order item?

• If the order items are hierarchical what data elements specify the parent child relationship
between each order item? For example, you may want to specify a hierarchy between an
overall parent action with related child order items, such as CreateDSL_CPE with children
order items that decompose to a shipping component, another to a workforce management
component, and a third for the activation component.

• If the order items must be delivered at different times and dates, what data element
contains the requested delivery date?

• What data element specifies the action that must be performed on the order item during
the fulfillment process? For example, add, change, delete, move, and so on.

• What data element specifies the overall purpose of the order, such as deliver, cancel or
technical service qualification (TSQ)?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 38

Modeling TOM Orchestration Order Items and Bindings Conceptual Model
Parameters

You must determine what nodes in the incoming order you want to designate as order items
containing actions on resources and RFSs. What data in the order items you want to use for
specific orchestration functions, such as the actions you want OSM to perform on those order
items, the requested delivery date when the order item actions need to occur, what CFS the
order item represents that OSM then uses to map the order item to specific fulfillment patterns,
and so on.

You can also use order item parameter bindings to bind conceptual model resources and RFSs
with their corresponding conceptual model actions and the parameters to a OSM TOM order
item specifications. This allows you to have strongly typed parameters that you don't need to
model within order item specifications. For example, Figure 1-1 defines the DSL resource-
facing service that can optionally be fulfilled using the ADSL or VDSL interface, that also
requires a DSL customer premise equipment (CPE). You can use order item parameter
bindings to map these conceptual model resources, RFS entities, the actions associated with
them and their data to order item specifications by configuring an order item property for the
order item recognition and an order item property as a dynamic parameter where the
parameters are stored.

Order item parameter bindings in OSM TOM are important for validating the incoming resource
and RFS data generated from the SRM system and sent to OSM TOM from OSM SOM.
Transformation is not typically required in OSM TOM because the SRM system that produced
the technical actions should have already used the correct format.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Order Item Decomposition
You need to decide what orchestration stages you want OSM to evaluate when decomposing
resources and RFS order items into order components. These order components typically
designate functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what the service
order you are creating contains. Using this knowledge, you can provide answers to the
following questions:

• What are the systems that OSM must communicate with? For example, OSM TOM
typically communicates with shipping, activation, WFM, and SCM systems.

• What order items do each system require? For example, the activation system may require
the DSL RFS, the DSL CPE resource, and the Email account resource, the PGW may
require the local loop resource, and the WFM and SCM systems may require the DSL
CPE.

• What are the business functions that each system must perform on these order items? For
example, the SCM must ship the DSL CPE, the WFM system must dispatch personnel to
install the CPE, the PGW must configure the local loop, and the activation system must
activate the DSL access node, the DSL CPE, and the Email account.

• How should OSM deliver this data for the functions to process? Does the function operate
on the whole order, or does the function require a separate interaction per order item
parent child order item combination on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order item
decomposition stages.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 38

Figure 1-1 defines the multiple resources and RFS entities. You can decompose these order
items into function, system, and granularity order components in the same way you do in the
COM and SOM (see "Modeling COM Orchestration Order Item Decomposition").

You must determine what high-level tasks are involved in fulfilling customer orders at the OSM
TOM level. You can define orchestration order components that correspond to the functions
performed by these tasks that you can then add to the function stage (see Figure 1-2). See
"About the OSM Solution Modeling Process" for a sample list of OSM TOM related tasks that
can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM TOM level.
You can define orchestration order components that correspond to these systems that you can
then add to the system stage. As illustrated in Figure 1-1, the systems that normally interact
with OSM SOM include activation, PGW, shipping, WFM, and SCM systems.

You must also determine what kind of order granularity you need when fulfilling each function
order components. For example, at the TOM level, you might configure OSM to pass the whole
order to the activation and completion function but requires order item specific granularity for
the shipping, WFM, and SCM related functions.

For each of these options, you need to create an order component that OSM can use to
decompose the order items to, such as whole order granularity or product order item
granularity, and so on. At this point, you are only defining the order components that OSM can
use to decompose order items to during order decomposition. You configure the actual
decomposition behaviors and conditions with other Design Studio orchestration entities such
as fulfillment patterns and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to and what
action you want to specify on the overall order that you can model as fulfillment modes for the
order, such as deliver, technical service qualification, or cancel.

In a conceptual model project, you map conceptual model resource and RFSs to conceptual
model fulfillment patterns. These resources also specify the conceptual model actions that
fulfill them. For example, the AAA_Account may be associated with the ActivateAAA_Account,
AlterAAA_Acount, and DeactivateAAA_Account actions. In the conceptual model, you must
also specify what realizes these actions. In this case these actions would be realized by an
activation system, such as Oracle Communications ASAP, and more specifically, by ASAP
service actions. Other resources would be realized by other systems and action types in a
similar way. However, the information important to OSM in term of order item decomposition,
are the resources and RFSs that contain these actions.

When you build an OSM cartridge, OSM generates a sample XML file that contains all these
resource and RFS to fulfillment pattern mappings that you can reference using an OSM TOM
order item specification order item property that defines XQuery logic that determines how
each order item decomposes to what fulfillment pattern during run-time.

For example, a technical order to OSM TOM may have an Email_Account resource order item
that maps to a conceptual model fulfillment patter that is realized by an OSM TOM fulfillment
pattern. The OSM TOM fulfillment pattern would in turn decompose the Email_Account order
item into the Activation functions because there is a condition on the activation order
component within the fulfillment pattern that only allows order items to decompose to that order
component that contain an order item property with a value of Activation. All other functions
order components would also have conditions such that only order items destined for the
systems the function order components are associated with can decompose to them.

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 38

At run-time, OSM evaluates the function, system, and granularity stages in a similar way to
OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns and Fulfillment
Modes"). The function, systems, and granularity stages might generate the following run-time
order components with associated resource and RFS order items and the actions they contain:

• ShipFunction/SCMsystem/OrderItemGranularity

• InstallFunction/WFMsystem/OrderItemGranularity

• ConfigureLocalLoopFunction/PGWsystem/OrderItemGranularity

• ActivationFunction/Activationsystem/OrderGranularity

• CompleteTechnicalFunction/SRMsystem/OrderGranularity

Modeling TOM Orchestration Dependencies
You must determine what dependencies exist between executable order components. These
dependencies are called orchestration dependencies. You typically define all orchestration
dependencies using fulfillment patterns for function order components, but you can also
specify dependencies between system order components using orchestration dependency
rules. In addition, you can specify when order components can start based on dates provided
by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for OSM TOM
may require that each function operate in the sequence specified in Figure 1-9. The ship
function and the install function must complete before the activation function can start. In
addition, the activation function is dependent on the configure local loop function that
communicates with the PGW. The complete function has dependencies to the install and
activation function and does not start until those functions have completed.

Figure 1-9 Example OSM TOM Dependencies

These dependencies make sense when you understand what each function is doing. For
example, the activation function cannot activate the service until the DSL CPE has been
shipped to the customer and the CPE has been configured properly. In addition, the activation
function requires that the third-party company that owns the local loop configure this resource
for the CSP's customer. It is only after these dependencies have been meet that the activation
function can configure the network resources that deliver the service to the customer.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 38

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling TOM Processes and Tasks
You must determine what process flow of sequential or parallel manual and automated tasks
are required when interacting with target systems for each functional component.

Tasks in OSM TOM typically involve sending resource and RFS order item actions to the SCM,
WFM, PGW, and activation systems and receiving back the responses from these systems.
You must careful analyze the API requirements for the interfaces to each system and model
the data on the tasks to meet these requirements for each interaction with these systems. You
also model automated tasks with automation plug-in senders that build and send messages to
these systems containing the actions each external system is to fulfill. When the systems
complete their work, they send responses back to OSM TOM that OSM TOM correlates back
to the automated task to an automation plug-in automator that is waiting for a response
message. You must develop to so that the automation plug-in automator can review the
response message and determines that the system completed its tasks successfully (or
whether some problem occurred) and then transitions the automated task to the completed
state (or a fallout execution mode) which also completes the order component to the task
belonged to.

OSM also provides a specialized automated task for communicating service requests to Oracle
Communications ASAP product or the Oracle Communications IP Service Activator product.
You can use this task to define the relationship between OSM task data and ASAP and IP
Service Activator service actions.

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Modeling TOM Fallout Scenarios
What fallout management scenarios can be anticipated, determine how they can be detected,
how relevant parties or systems can be notified of the problem, and what recovery processes
can be implemented.

For example, fallout scenarios may occur within the external fulfillment systems the OSM TOM
communicates for a variety of reasons. For example, there may be an outage in one of the
network elements that the activation system is working with, or a package sent from the SCM
containing the router may have been lost or broken during delivery. Typically, many of these
problems can be resolved directly in the external system, however, you may want the tasks
communicate with these external systems to trigger jeopardy notifications informing upstream
systems of the delay so that the upstream systems can communicate the delay back to the
customer who requested the service. You must carefully analyze as many of these fallout
scenarios as you can and develop fallout strategies to recover from such scenarios. In some
cases, manual intervention may be required while in other cases, you may be able to model
automatic fallout recovery capabilities.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 38

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling TOM Fulfillment States
What kind of order and order item fulfillment states you need to configure to track the overall
status of an order and each order item based on status messages received from external
systems. You also need to consider what notification messages you want to send to interested
parties or systems as the order progresses.

For example, you can map messages from the SCM, WFM, PGW, and activation systems
returning as these systems process messages sent by various order components to external
fulfillment state in the OSM TOM system. These external fulfillment states can represent the
result of various interactions between OSM TOM and these systems on the actions contained
on each resource and RFS order item that OSM TOM then aggregates into order item and
order-level fulfillment states based on order and order item fulfillment sate composition rule
sets.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling TOM Processing States
You can track the state of order items by mapping responses from the SCM, WFM, PGW, and
activation systems to resource and RFS order item processing states. You must decide what
messages correspond to which predefine order component order item processing state that
OSM provides. OSM then aggregates these order component order item processing states for
each order item into an overall order item processing state. You may decide to use warning
and failure order item processing states to trigger jeopardy notifications from OSM TOM to
OSM SOM or from OSM TOM to fallout personnel. In many cases, you can also use the same
messages from external systems to trigger external fulfillment state changes.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for TOM
You need to determine if you want to enable change order management, and if you do, what
change order management scenarios you want OSM TOM to support.

You must consider change order management based on end-to-end scenarios that span OSM
COM, SOM, and TOM. For example, if you enable OSM SOM to send a revision order through
to OSM TOM from the OSM SOM Create Technical Order function then you must decide what
compensation OSM TOM must undertake to implement the changes in the revision order. For
example, you might consider some of the following question:

• Is there a point of no return where you do not want OSM TOM to accept any new revision
orders from the OSM SOM Create Technical Order function? For example, you may want
to configure a point of no return that is associated with when the activation system
completed the activation functions based on an external fulfillment state change. This
would mean that OSM TOM does not accept revision orders from OSM SOM stemming
from changes coming from OSM COM service orders. Or you may decide that OSM TOM

Chapter 1
About Determining the OSM Functionality to Implement

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 38

should never accept revision orders, in which case you could disable this functionality on
the target order specification.

• For each automated task that communicates with a different external fulfillment system,
you must determine how the task should behave based on the changes on the technical
order.

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Cartridge Management Considerations for TOM
What kinds of cartridge management scenarios you want to plan for in advance, such as the
impact of upgrading cartridge functionality, how such upgrades impact run-time orders, how
best to structure cartridges to minimize the impact of such changes, and so on.

See "Managing OSM Solution Cartridges" for more information.

About the OSM SDK
A number of directories within the SDK are referenced in procedures throughout this guide.
SDK is available as a separately downloadable .Zip file which is common for both OSM cloud
native and OSM traditional.

Chapter 1
About the OSM SDK

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 38

Part II
Implementing an OSM Solution

Part II contains the following chapters providing information about implementing an Oracle
Communications Order and Service Management (OSM) solution:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

• Modeling Orchestration Plans

• Modeling the Order Transformation Manager

• Modeling Processes and Tasks

• Modeling OSM Data

• Modeling Behaviors

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

2
Modeling Orders and Permissions

This chapter describes how to model orders and permissions in an Oracle Communications
Order and Service Management (OSM) solution.

Modeling OSM Orders
The order specification is the cornerstone model entity in Oracle Communications Service
Catalog and Design - Design Studio; most other specifications among cartridges are tied,
directly or indirectly, to the order specification to control order execution. Figure 2-1 shows the
entities that relate to an order specification and the content you can configure in order
specifications.

Figure 2-1 Order Specification Configuration and Related Entities

In the order specifications you can define:

• The order template, which specifies the elements and structures of the order data that
OSM receives from incoming orders and from other fulfillment systems.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 14

• Order priority in conjunction with the priority defined on an order as detected by the order
recognition rule. See "Modeling Order Recognition" for more information about order
priority.

• Various order-level notifications. See "Modeling Jeopardy and Notifications" for more
information about notifications you can configure in the order specification.

• Whether the order is amendable. See "Modeling Changes to Orders " for more
information.

• Fallout data and fallout groups that define data and groupings of data that can potentially
trigger a fallout exception on tasks that are associated with the fallout data or data groups.
Fallout exceptions trigger amendment processing. See "About Modeling Fallout
Exceptions" for more information.

• Permissions that associating roles to query tasks. Query tasks define what data can be
displayed to a user associated with a specific role (whether a human user or a user
account associated to automated tasks). See "Modeling Roles and Setting Permissions"
for more information.

• Rules that to determine when notifications should run, when various process flow
decisions or actions should occur, within decomposition rule to determine when order items
should decompose to an order component, and so on. You can use rules in various OSM
entities.

In the order specification, you must do the following:

• You must designate creation task data that defines the internal OSM order data, elements
and structures that OSM generates as part of order processing (such as control data that
OSM uses to generate orchestration plans), and any elements and structures generated by
external fulfillment systems in response to messages from OSM. A creation task is a
manual task that is not part of a process flow where you define data elements and
structures in the Task Data tab.

• You must designate an order life-cycle policy that the order uses to determine valid states
and state transitions for the order. Order states define sequential states through which an
order passes and the transactions it undergoes from the time it is received in OSM until the
time it is completed. For example, an order can be in progress, not started, suspended,
and so on. You can enable multiple states in the order life-cycle policy and define what
transitions can occur between states. For example, you can configure an order to be able
to transition from in progress to cancelled. For more information about order life-cycle
policies, see "Modeling Order Life-Cycle Policies".

• You must define whether OSM triggers an orchestration process or a standard process. An
orchestration process causes OSM to generate an orchestration plan. An orchestration
plan orchestrates order items into order components that trigger a series of standard
processes. Most OSM orders require orchestration.

You can use the following OSM Web Service operations to submit orders:

• CreateOrderBySpec In this operation, you must specify the cartridge and order type so
that OSM understands which Order entity to use to process the order. Also, the incoming
order payload has to be in XML format as defined in the cartridge.

• CreateOrder This operation accepts arbitrary payload in XML for the incoming order. You
specify an order recognition rule to recognize the payload, and transform it to the format as
defined in the cartridge. There is no need to specify the cartridge or order type in the
operation.

The target order specification runs if the CreateOrder request includes the
StartOrder=true parameter and value in the order header.

Chapter 2
Modeling OSM Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 14

See OSM Developer's Guide for more information about CreateOrderBySpec and
CreateOrder.

With either operation, when the order is created in OSM, it is tied to the order type in the
cartridge. OSM relies on that cartridge and any the dependent cartridges to determine how to
display and process the order. This means, as long as the order resides in the OSM server and
is not purged, the cartridges must remain in the run-time OSM environment.

You can use Java Message Service (JMS) or HTTP or HTTPS to send orders to OSM. Use
JMS on production systems, because it provides quality-of-service guarantees not available
from HTTP or HTTPS. Use HTTP or HTTPS on development and test systems (see OSM
Installation Guide for more information).

About OSM Orders Without Orchestration
For orders that do not require an orchestration plan for fulfillment (called process-based
orders), the OSM runs a single process and any subprocesses defined within the process,
which includes tasks such as Activate_DSLAM. When a process-based order is submitted to
OSM, the following occurs:

1. OSM starts the process.

2. The process can start subprocesses that run sequentially or in parallel.

3. After the last task has completed, the order transitions to the Completed state.

Figure 2-2 shows the process flow for a process-based order.

Figure 2-2 Process-Based Order

About OSM Orders With Orchestration
For orders that require an orchestration plan for fulfillment, (called orchestration-based
orders), OSM runs an Orchestration process. When a orchestration-based order is submitted
to OSM for processing, the following occurs:

1. OSM starts the orchestration process.

2. OSM generates the orchestration plan which includes run time order components that run
processes with tasks.

3. After the last task has within each order component completes, the order component
completes.

4. After the last order component completes, the order transitions to the Completed state.

Figure 2-3 shows the process flow for an orchestration-based order.

Chapter 2
Modeling OSM Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 14

Figure 2-3 Orchestration-Based Order

Modeling Roles and Setting Permissions
You use roles to control what operations can be performed and what data can be viewed by
OSM user that you associated with the roles. You create roles then apply the roles to OSM
entities in Design Studio. For example, roles are used in the following OSM entities:

• Order specifications: You define what order data users with specific roles can view in the
OSM web clients by defining this data in query tasks and assigning the query tasks to roles
within orders specifications. The OSM web client uses the query tasks to determine what
data to display to users. The role applied to a query task determines the data that users
associated to the role can retrieve. For more information about query tasks, see "Modeling
Query Tasks for OSM Clients". You also define filters that specify whether orders with
specific values can be displayed to users with the defined roles, and flexible header that
define custom searchable data fields.

Figure 2-4 shows roles defined in an order specification in Design Studio. In this example,
members of BillingUpdateRole are allowed to view orders for customers in the 408 and
510 area codes.

Figure 2-4 Roles Defined in an Order Specification

• Order life-cycle policy: You define what transactions can be performed by users associated
with the roles assigned to each transition. For example, you may want to a standard role to
handle normal order processing from the Not Started state through to Completed state.
You may also want to assign a role for fallout management operations or amendment
processing work. For more information, see "About Modeling Transition Permissions".

• Tasks: You define what tasks can be performed by users associated with the roles
assigned to each task. For example, you may want a role that can run normal processing
tasks, another for tasks during amendment processing, and another for tasks during fallout
management. You define what data is available for each role associated to these tasks
functions using query tasks. For more information about query tasks, see "Modeling Query
Tasks for OSM Clients".

• Order, task, and process notification: You define what notifications are sent to which group
of users by assigning roles to specific notification instances in the Order editor, a Task
editor, or a process activity or flow.

Chapter 2
Modeling OSM Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 14

• Order components: You define what data users with specific roles can view by applying
those roles to query tasks and assigning the query tasks to components. OSM web clients
uses the query tasks to specify which what data to display to users. The role applied to a
query task determines the data that task will retrieve. For example, you may define a
ProvisioningRole for a provisioning order component that allows OSM client users to view
certain data.

Figure 2-5 shows roles used in an order component. In this example, members of
ProvisioningRole can perform queries based on ProvisioningFunctionTask and view the
data in both the summary and detail views in the Order Management web client.

Figure 2-5 Roles Used in an Order Component Specification

• Order item specification: You can associate roles with corresponding query tasks from the
Order Item Specification Permissions tab. The method of applying roles in an order item
specification is identical to the method of applying roles in an order component
specification. For more information about query tasks, see "Modeling Query Tasks for OSM
Clients".

In addition to associating roles with OSM entities, you can also configure permissions for
various actions on the roles. Figure 2-6 shows a role defined in Design Studio. In this example,
users assigned to this role can generate online reports, search for orders, and access the Task
web client Worklist display.

Figure 2-6 Role Defined in Design Studio

Chapter 2
Modeling OSM Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 14

Table 2-1 shows the actions that can be assigned to roles in Design Studio.

Table 2-1 Functions Assigned to Roles

Function Description

Create Versioned Orders Enables users to create orders for different versions of cartridges. If not granted this
permission, users can create orders only for the default version of the cartridge.

Exception Processing Enables users to alter the flow of a process by applying exception statuses at any time
throughout the process.

Online Reports Enables users to view summarized reports on all orders and tasks on the system.

Order Priority Modification Enables users to modify the priority of a task in an order.

Reference Number
Modification

Enables users to modify the reference number of an order.

Search View Enables users to access the order Query function. See "Specifying Which Data to Display in
the OSM Web Clients" for more information.

Task Assignment Enables users to assign tasks to others.

Worklist Viewer Enables users to display the worklist in the Task web client.

Because roles are defined globally in OSM, roles specified in one cartridge can be applied to
any other cartridge, and roles used in one order can also be used in any other order. If you
want to further restrict certain operations in an order, you must do so in the Design Studio
entities that the roles are associated with, such as the life-cycle policy transaction or the task
execution modes.

You associate roles with OSM user accounts using the OSM Order Management web client.
Roles are called workgroups in the OSM Order Management web client. Each user account
can belong to as many workgroups as are available on the OSM server. For more information,
see OSM Order Management Web Client User's Guide.

About Order Types
Figure 2-7 shows OSM orders in different order processing scenarios and how OSM receives
them. These scenarios include:

• Customer orders, service orders, and technical orders that are sent to OSM systems
running in the central order management (COM), service order management (SOM), and
technical order management (TOM) roles. For more information, see "About Determining
the OSM Functionality to Implement".

• Revision orders sent to change an in-progress order. For more information, see
"Modeling Changes to Orders ".

• Order update performed either manually through the Task web client or through an
automation task automator plug-in that sends an UpdateOrder request. For more
information, see "About Order Updates".

• Job orders performed either manually through the Order Management web client or
through the OSM CreateOrder Web Service operation. For more information, see "Using a
Job Control Order to Manage Multiple Orders".

See "Modeling OSM Data " for more information about how orders and order items are
structured.

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 14

Figure 2-7 Order Types and Order Processing

About Order Updates
You can update order data within customer, service, and technical orders that have already
been created in OSM. OSM defines the following contexts where you can update order data:

• Order context: This context defines an overall view of OSM data. Although you can update
order data in this context, doing so may compromise the integrity of order data, especially
if the data you update may be subject to amendment processing. If you know that the data
you want to update in the order context should never trigger amendment processing, you
can mark the data as not significant (see "About Data Significance" for more information).

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 14

• Task context: This context defines a task specific view of OSM data. You typically use
tasks to communicate with external fulfillment systems or manual task users that make
changes to the data define in the task. Updating order data within the task context ensures
the data integrity, especially when the data you update may be subject to amendment
processing. See "About Order-Level and Task-Level Compensation Analysis" for more
information about how tasks ensure data integrity during amendment processing.

You can update order data on orders and tasks in following ways:

• XML API UpdateOrder

After receiving a JMS response message from an external system at an automation task
automator plug-in, you can use the XML API UpdateOrder to update data or add any new
data to the order. For example, you can use UpdateOrder to update any status notification
data returned from an external system or another instance of OSM (see Figure 2-7).
Oracle recommends that you run the XML API only from within the task context.

• OSM Java API methods

After receiving a JMS message from an external system at an automation task automator
plug-in, you can use various OSM Java API methods to update data or add any new data
to the order. Oracle recommends that you run these Java API methods from within the task
context.

• Web Service UpdateOrder

You can use the OSM Web Service UpdateOrder operation to update order data outside of
the Task web client and the automation framework. However, OSM Web Service
operations can only access the overall order data context and do not have direct access to
the task context. Use caution because doing so can compromise order integrity.

• Task web client

Personnel can update task data manually, by opening and editing an order using the Task
web client order query. Changes to task data in the Task web client are within the task
context.

See OSM Developer's Guide for more information about updating order data using the XML
API UpdateOrder, the OSM Web Service UpdateOrder operation, and the OSM Java API
methods. See OSM Task Web Client User's Guide for more information about using the Task
web client to update order data.

Update orders can:

• Update a complete order. The existing order is updated (elements are added, changed, or
deleted) to match the supplied order. Order-level order updates are typically sent in the
context of order-level notifications, jeopardy notifications, or event automation automators.
See "Modeling Jeopardy and Notifications" for more information about update order
transactions used in the context of jeopardies, notifications, and events.

• Update nodes in an order. Elements can be added or changed. Deleting nodes are not
performed using the update node functionality. The nodes are supplied in the format of the
existing order and are typically sent as part of task-level automation automators.

• Add, delete, or change element data values that are typically sent as part of task-level
automation automators.

Using a Job Control Order to Manage Multiple Orders
Job control orders enable you to efficiently apply changes to many orders at the same time.
You can use job control orders to apply the same set of OSM Web Service operations or OSM
Order Management web client actions to multiple orders. For example, you could model a job

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 14

control order using a CreateOrder OSM Web Service operation that selects multiple orders,
suspends each of them, updates order data on all the orders, and then resumes each orders.

You can specify how many OSM Web Service operations or Order Management web client
actions OSM can process at the same time. You can specify a failure threshold for job control
order operations that, if crossed, causes the entire job control order to enter the suspended
state. In addition, job control orders support a variety of counters that track job order progress.

To use job control orders:

1. Ensure that the JobControl_Solution portal archive (PAR) file has been deployed on the
OSM server. This PAR file can be deployed either when OSM is first installed or manually.
For manual deployment instructions follow the instructions in the readme file that is in the
OSM_home/ProductCartridges/install directory. more information about deploying the
job control order cartridge, see OSM Installation Guide. The PAR file packages the
following OSM projects that you can see in the Design Studio Cartridge Management
editor when you query an OSM server for cartridge information:

• BatchJobCommonResources: Contains the job control order system configuration
file that defines default job control order settings.

• JobControl: contains the OSM Design Studio cartridge that enables the job control
order functionality.

• JobControl_Solution: contains the solution cartridge that packages the
BatchJobCommonResources and JobControl cartridges.

Note

You can only view these cartridges when you query OSM for cartridge information.
Oracle does not provide access to the actual Design Studio projects.

2. In the OSM WebLogic server, create a new user account or use an existing user account
and associate it with the OMS_ws_api group.

Note

You can also associate the user account to the OMS_client group to give the user
access to Order Management web client and Task web client.

3. In the Order Management web client, associate the user account with the JCO_UserRole
or the job control order functionality in the JCO_SuperUserRole workgroups (roles). For
more information, see "About Job Control Order Permissions".

4. Ensure that all orders to be managed by job control orders have roles associated with the
default oms-automation OSM user account.

5. Model job control orders using the CreateOrder OSM web service operation and the
following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <CreateJob xmlns="http://oracle.communications.ordermanagement.cartridge/job">
 <FailureThreshold>threshold</FailureThreshold>
 <ConcurrentOperationsAmongOrdersInJob>degree</ConcurrentOperationsAmongOrdersInJob>
 <Priority>priority</Priority>
 <RequestedDeliveryDate>requestedDeliveryDate</RequestedDeliveryDate>
 <Selection>

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 14

 byOrderCriteria
 or
 bySelectionCriteria
 </Selection>
 <Operations>
 operations
 </Operations>
 </CreateJob>
</ord:CreateOrder>

where:

• threshold: (Optional) The number of operations that must fail before the job control
order automatically transitions to the Suspended state. Valid values are percentages
from 1% to 99%, absolute values, such as 10, 15, and so on, or 0 which specifies no
threshold. If specified, this value overrides the default value specified in the
batch_job_cfg.properties file (see "About Job Control Order System Configuration
Files").

• degree: (Optional) The number of executable components created for each operation
in the job. If specified, this value overrides the default value specified in the
batch_job_cfg.properties file (see "About Job Control Order System Configuration
Files").

• priority: (Optional) The priority of the job control order (see "Modeling Order Priority").

• requestedDeliveryDate: The date and time when the job control order is to begin (for
example, 2014-08-01T03:10:00Z). For more information about requested delivery
dates, see "Modeling Order Scheduling ".

• byOrderCriteria: The orders to which the job control order operations apply. For
example:

 <Orders>
 <OrderId>1</OrderId>
 <OrderId>2</OrderId>
 etc...
 </Orders>

• bySelectionCriteria: The selection criteria that OSM uses to match corresponding
orders to. For example:

 <ord:SelectBy>
 <ord:OrderState>lifecyclestate</ord:OrderState>
 <ord:Cartridge>
 <ord:Name>cartridgename</ord:Name>
 <ord:Version>1.0.0.0.0</ord:Version>
 </ord:Cartridge>
 </ord:SelectBy>

The job control order selection criteria is identical to the SelectBy option of the
FindOrder OSM Web Service operation. See OSM Developer's Guide for more
information. The number of orders returned using the selection criteria is limited by the
FindOrderMaxOrderThreshold oms-config.xml parameter. The default value is 1000.
For information about modifying the default FindOrderMaxOrderThreshold parameter,
see OSM System Administrator's Guide.

• operations: One or more OSM Web Service operations listed in "About Job Control
Order Operations" according to the permissions listed in "About Job Control Order
Permissions". For example:

 <ord:SuspendOrder>
 <ord:Reason>Job Test</ord:Reason>

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 14

 </ord:SuspendOrder>
 <ord:UpdateOrder>
 <ord:View>CreationView</ord:View>
 <ord:DataChange>
 <ord:Update Path="/account_information/amount_owing">444</ord:Update>
 </ord:DataChange>
 </ord:UpdateOrder>

About Job Control Order Operations
You can run combinations of the following web service operations as a part of a job control
order:

• SuspendOrder: Causes OSM to stop all processing on the orders specified in a job
control order. The orders transition from the In Progress or Not Started state to the
Suspended State.

• ResumeOrder: Causes OSM to resume processing all orders specified in a job control
order that are in the Suspended state. The orders transition from the Suspended state to In
Progress state.

• CancelOrder: Causes OSM to cancel all orders specified in the job control order. All
applicable order components and tasks are undone. The orders transition to the Cancelling
state while order components and tasks are running in the undo mode. After all order
components and tasks complete, the order transitions from the Cancelling state to the
Cancelled state.

• AbortOrder: Causes OSM to stop all orders specified in the job control order. The orders
transition to the Aborted state.

• FailOrder: Causes OSM to fail all orders specified in the job control order. The orders
transition to the Failed state.

• ResolveFailure: Causes OSM to revert all orders specified in the job control order to the
previous order state before the orders failed.

• RetryOrder: Causes OSM to retry an order or a collection of order components for a given
order. All failed tasks in the order or within the order components are retried and
transitioned from the failed execution mode back to the normal execution modes such as
do, redo and undo.

• UpdateOrder: Causes OSM to update order data on all orders specified in the job control
order.

Operations run in the sequence they appear in the job control order. You must ensure that the
sequence is logical. For example, you can suspend, update, and then resume an order, but
you cannot resume, suspend, and update an order. You must also ensure that order life-cycle
policies of the orders that the job control order interacts with supports the use of the operations
you want to be available to a job control order.

For more information about the transitions associated with job control order and the roles that
can run these transitions, see "About Job Control Order Permissions". For more information
about OSM Web Service operation syntax, see OSM Developer's Guide.

About Job Control Order Permissions
The job control order solution cartridge contains the JCO_UserRole and the
JCO_SuperUserRole workgroups (roles) with different permissions configured for each. You
associate user accounts with workgroups using the Order Management web client. For more
information about associating user accounts with workgroups, see OSM Order Management
Web client User's Guide.

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 14

Table 2-2 shows the permissions available to each role.

Table 2-2 Permissions for JCO_SuperUserRole and JCO_UserRole

Permission JCO_Super
UserRole

JCO_User
Role

Description

Version Orders Yes No Allows users to create orders for different
versions of cartridges. If not granted this
permission, users can create orders only for the
default version of the cartridge.

Exception Processing Yes No Allows users to alter the flow of a process by
applying exception statuses at any time
throughout the process.

Order Priority Modification Yes Yes Allows users to modify the priority of a task in
an order.

Reference Number Modification Yes Yes Allows users to modify the reference number of
an order.

Task Assignment Yes Yes Allows users to assign tasks to others.

Modifications to configuration parameters in
order data

Yes Yes Allows users to modify default configuration
parameters for job control orders.

Modifications to other order data Yes No Allows users to modify order data in operations.

Suspend State Transaction Yes Yes Allows users to suspend or update a job control
order in the In Progress state.

Job control orders automatically enter the
Suspended state when the job control order
passes the jobFailedOperationsThreshold
threshold. Users can also manually suspend a
job control order by sending a SuspendOrder
web service operation.

Resume State Transaction Yes Yes Allows users to resume a suspended order.
When a Suspended order is resumed, it returns
to the state it was in prior to the Suspended
state (for example, In Progress or Not Started).

Abort State Transaction Yes No Allows users to stop an order. All transitions to
the Aborted state occur after the grace period
expires.

Cancel State Transaction Yes No Allows users to Cancel a job control order.
Canceling a job control order stops all further
processing of the job control order. The cancel
order does not reverse job operations that have
already run.

Create Job Control Order Yes Yes Allows users to create a job control order.

Transition to Complete State Yes Yes The job control order enters the Completed
state when all operations on all orders have
completed, whether successfully or
unsuccessfully.

Transition to Failed State Yes Yes The job control order may transition to the
Failed state. However, job control orders do
count all failed operations.

Chapter 2
About Order Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 14

About Job Control Order System Configuration Files
Table 2-3 shows the job control order configuration file parameters that manage all job control
orders. Parameter values specified directly in a job control order override the job control order
configuration file parameters.

Table 2-3 Parameters for the batch_job_cfg.properties File

Parameters Description Default

Concurrent Operations among
Orders in Job

The number of executable components created for each operation in the
job.

1

Failure Threshold The number of operations that must fail before the job control order
automatically transitions to the Suspended state. Valid values are
percentages from 1% to 99%, absolute values, such as 10, 15, and so on,
or 0, which specifies no threshold.

0

Viewing Orders in OSM Web Clients
You can view orders in the following ways:

• You can display the orchestration plan, and the order components and order items
included in it, in the Order Management web client. For more information, see OSM Order
Management Web Client User's Guide.

• You can display current and historical information about tasks in the Task web client. For
more information, see OSM Task Web Client User's Guide.

Specifying Which Data to Display in the OSM Web Clients
You can choose the data to display in the OSM web clients using the following methods:

• Use task data to specify which data to display in the Task web client for manual tasks.

• Use behaviors to specify how OSM displays the task data within a manual task; for
example, to hide or show task data or to make data read only. See "Modeling Behaviors"
for more information.

• Use query tasks to specify which data to display in the Order Management web client
Summary tab and Data tab. Query tasks are manual tasks that specify which data to
display in the Order Management web client when opening an order. A query task is
associated with a role that gives permission to view the order data that the particular role is
allowed to view. For example, some users may only need to view billing related order data,
while others may only need to view provisioning data. Some users may need to view the
entire order. See "Modeling Query Tasks for OSM Clients" for more information.

Modeling Query Tasks for OSM Clients
Order management personnel can display orders in the Task web client and in the Order
Management web client. You can specify which data is displayed by assigning query tasks to
an order. The data that is specified in the query task is the data that is displayed.

You can select any task as the query task. You can also create special tasks whose only
function is to specify which data to display.

Chapter 2
Viewing Orders in OSM Web Clients

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 14

Figure 2-8 shows the Permissions tab in the Design Studio Order editor. The upper
screenshot shows the permissions for the provisioning role, with the provisioning function task
as the query task. The lower screenshot shows the permissions for the billing role, with the
billing function task as the query task.

Figure 2-8 Roles Assigned to Query Tasks

The Order Management web client uses the following types of views to display orders; a
summary view in the Summary tab and a detailed view in the Data tab. When you model a
query task, you can specify which of those views (either or both) to display the query task data
in.

You can use multiple tasks as query tasks for an order. When you do so:

• For the summary view, all the data is displayed in the Order Management web client
Summary tab.

• For the detailed view, the data from the query tasks appears as options in the Order
Management web client Data tab View field; each option presents the OSM user with a
different view, each containing a specific set of data.

You can use multiple query tasks in the Order Management web client when using an
orchestration cartridge. For process-based cartridges, only the default query task is available in
the Order Management web client. To display the query task in the Task web client, select the
Default check box, as shown in Figure 2-8.

In addition to defining the data that can be displayed, you can specify who can see it by using
roles. Each role that is associated with an order can be assigned different query tasks. For
example, if your order management personnel includes a role for billing specialists, you can
create query tasks that show data specific to their activities.

Chapter 2
Viewing Orders in OSM Web Clients

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 14

3
Modeling Order Life-Cycle Policies

This chapter describes how to model order life-cycle policies in an Oracle Communications
Order and Service Management (OSM) solution.

Modeling Order Life-Cycle Policy States and Transitions
Every order has an order state, which indicates the current condition of the order; for example,
In Progress, Amending, or Completed. These OSM order states control the progress of the
order. For example, an OSM user cannot work on tasks while the order is in the Suspended
state, and an order in the Aborted state cannot be restarted.

Note

The order state represents the technical processing state of the order in the OSM
system, not the state of the order as defined in a CRM system, or the fulfillment state
defined in a fulfillment system. OSM order states are typically not equivalent to the
states of the order in the CRM system or other order-source system, which might have
different states for the customer order, as well as states for order line items on the
order.

A typical order uses the following states:

1. An order is created in the Not Started state.

2. When processing begins on the order, the state transitions to the In Progress state.

3. When the order is complete, it transitions to the Completed state.

Changes from one order state to another order state are called transitions. Each order state
has a set of allowable transitions. For example, when an order is completed, it transitions from
the In Progress state to the Completed state.

Transitions are controlled by transactions. A transaction is an action taken by the OSM
system. For example, the Suspend Order transaction performs the following actions:

• Stops all processing on the order

• Transitions the order to the Suspended state

Most transactions perform transitions that change the state of the order. However, some
transactions do not perform a transition to another state. For example, the Update Order
transaction can make changes to an order without changing the order's state.

About Modeling Transition Conditions
Transition conditions are Boolean expressions that specify if a transition from one state to
another is allowed. For example, for the Submit Amendment state, you can prevent the
Process Amendment transition from occurring until a condition is true.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 29

Figure 3-1 shows the life-cycle policy for the Process Amendment transition. In this case, it
returns true, so it is always allowed to transition.

Figure 3-1 Order Life-Cycle Policy for the Process Amendment Transition

A common scenario for configuring permissions is when you set the PONR for amendment
processing. See OSM Concepts for more information.

When specifying conditions, the minimum set of required order states is Not Started, In
Progress, and Completed. The life cycle must allow an order to transition to those states.

OSM uses more transactions than those shown in Oracle Communications Service Catalog
and Design - Design Studio. Design Studio shows only the transactions that you can assign
permissions on and set conditions for. For example, the Complete Task transaction can
transition an order to the Completed state, but that transaction cannot be customized.

About Modeling Transition Grace Periods
The transition grace period specifies the amount of time that OSM should wait before
transitioning the order. For example, if a Suspend Order transaction is run on an In Progress
order, a grace period can allow the order processing to reach a definitive state for all currently
executing tasks before transitioning to the Suspended state. In this case, OSM waits until all
active tasks are in the Received, Completed, or user-defined Suspended task state. (An active
task is a task that is in the Accepted state.) If the grace period expires before all tasks move
out of the Accepted task state, OSM transitions the order state.

During the grace period, the target order state header in the Task web client displays the order
state the order is transitioning to. The target order state is populated only when an order is in
grace period.

You can specify a grace period for certain transactions, such as Suspend Order, Process
Amendment, Cancel Order, and Fail Order. For other transactions, a grace period is
unnecessary or not permitted, such as for Submit Amendment, Update Order, and Abort Order.

You can define the following grace period parameters:

• The length of time to wait (minimum and maximum, or indefinite)

• How often to generate a jeopardy event during the grace period

Figure 3-2 shows how you can customize the order life cycle in Design Studio. In this figure,
the Cancel Order exit transaction for the In Progress order state is selected. A grace period for
transitioning to an order cancellation is set for a minimum of one day, and a maximum of five
days. A jeopardy event is triggered every hour.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 29

Figure 3-2 Order Life Cycle in Design Studio

About Modeling Transition Permissions
You can specify the roles that are allowed to perform a transaction. For example, while an
order is in the In Progress state, your customer service role might need to perform the Update
Order and Cancel Order transactions, whereas your fallout specialist role might perform only
the Raise Exception transaction.

OSM Order States and Transactions
OSM includes a standard set of order states and transactions. You cannot add states or
transactions, but you can control how the order transitions between states.

Table 3-1 shows the OSM order states.

Table 3-1 Order States

Order State Description

Aborted The order has been permanently stopped. This is a final state. An order in the
aborted state cannot transition to another order state.

See "About the Aborted Order State" for more information.

Amending The order is being amended. OSM identifies which tasks are affected by the
amended data and compensates the order as necessary.

See "About the Amending Order State" for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 29

Table 3-1 (Cont.) Order States

Order State Description

Cancelled The order has been canceled. All tasks have been undone back to the creation task.

If an order includes an orchestration plan, the Cancelled state is the final state. The
order cannot be resumed.

If the order does not have an orchestration plan, the canceled order is returned to
the creation task for the order. The order can be re-submitted to be run again.

See "About the Cancelled Order State" for more information.

Cancelling The order is being canceled. At least one task is running to perform amendment
processing for the cancellation. While the order is in the Cancelling state, OSM
undoes all completed tasks to return the order to the creation task. When OSM is
finished, the order transitions to the Cancelled state

See "About the Cancelling Order State" for more information.

Completed The order has been fulfilled. There are no tasks running and processing is complete.
A completed order can be canceled, updated, or deleted.

See "About the Completed Order State" for more information.

Failed The order has failed during processing. The Failed state is not a final state; the
order can be resumed when the problem is fixed.

See "About the Failed Order State" for more information.

In Progress The order is actively running. Future-dated orders have an In Progress state while
they wait for dependencies to be resolved.

See "About the In Progress Order State" for more information.

Not Started The order has been created but has not started. There are no tasks running.

See "About the Not Started Order State" for more information.

Suspended The order has been suspended and all processing on the order in OSM has been
halted. No task can be updated or transitioned while the order is in this state.

See "About the Suspended Order State" for more information.

Waiting The order is not ready to start because it is future-dated or blocked by another order.

See "About the Waiting Order State" for more information.

Waiting for Revision The order is waiting for a revision. This state is common following compensation to
an order for fallout, when the order is awaiting a revision from the order-source
system to correct something that caused a failure in the originally submitted order.

See "About the Waiting for Revision Order State" for more information.

Table 3-2 shows transactions that are included in the order life-cycle policy and the operations
they perform.

Table 3-2 Order State Transactions

Transaction Description

Abort Order Immediately and permanently stops order processing. Transitions the order state to Aborted.

In the Order Management web client and the Task web client, Abort Order transactions are
identified as "Terminate Order".

Cancel Order Transitions the order to the Cancelling state. After OSM performs the necessary tasks to
cancel the order, the order transitions to the Cancelled state.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 29

Table 3-2 (Cont.) Order State Transactions

Transaction Description

Complete Task Completes a task and allows the transition to the next task. Completing the last active task
implicitly transitions the order to a Completed state.

This transaction is not configurable in the life-cycle policy.

Copy Order Copies an order; for example, when you create an order in the Task web client by copying an
order. This transaction does not change the order state. It is not configurable.

Create Order Creates an instance of an order.

The transaction starts the order in either the Not Started state or the In Progress state.

This transaction is not a configurable transaction in the OSM life-cycle policy. Permissions for
creating an order are not set in the life-cycle policy. Instead you assign an order creation
permission to roles and assign permissions on the orders.

Delete Order Removes an order from the system.

To delete orders, use the orderPurge command. See OSM System Administrator's Guide for
more information. If the order does not have an orchestration plan, you can delete an order
using the Task web client when the order is at the creation task.

Fail Order Transitions the order to the Failed state. Processing on the order is stopped.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Fallout Order Compensates an existing order based on error data identified during provisioning.

This transaction is not configurable in the life-cycle policy.

Manage Order Fallout Transitions the order to the state it had before it failed. Processing on the order resumes.

This transaction enables Task web client users to locate orders with errors that require manual
intervention, analyze the order to determine the cause of the errors, and take the corrective
action to correct errors allowing the order to continue to process normally.

Process Amendment Transitions the order to the Amending state. This transaction is always preceded by the
Submit Amendment transaction. See "About the Amending Order State" for more information.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Raise Exception Raises an exception. The system can be configured to initiate fallout compensation with this
transaction. In this situation the order transitions to the Amending state while it compensates
tasks. From the Amending state, it can transition to the Failed, In Progress, or Waiting for
Revision states.

For backward compatibility this transaction can also trigger a preconfigured exception
process. Exception processes are incompatible with OSM's built-in compensation. An order
for which an exception process is triggered cannot have compensation applied for revisions,
cancellations, or fallout. In this case, the order remains in the In Progress state.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Resume Order Transitions the order to the In Progress state, typically from the Suspended state.

Submit Amendment Submits an amendment but does not change the order state. This transaction is followed by
the Process Amendment transaction, which changes the order state to Amending.

See "About the Amending Order State" for more information.

Suspend Order Transitions the order to the Suspended order state. Processing on the order halts.

In Design Studio, you can specify a grace period to wait for all accepted tasks to complete
before transitioning the order.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 29

Table 3-2 (Cont.) Order State Transactions

Transaction Description

Update Order Allows changes to order data, remarks, and attachments outside the context of a task. The
Update Orders can add new data elements, delete existing data elements, or change existing
data element. Update Orders can be sent from locations such as:

• The Task web client.
• Automation plug-in XSLT or XQuery automators.
• Web Services or XML API requests.
In most situations, Update Order does not allow the state of the task to change; for example,
when updating an order that is in the Aborted state. When an order is in the Not Started state
or the Cancelled state, the Update Order transaction can start or resume the order by running
the creation task.

To use Update Order to start or resume an order, you need to use the startOrder flag in the
Update Order transaction, in an automation plug-in, a web service operation, or through the
Task web client. You cannot specify to start or resume an order by configuring the order life-
cycle policy in Design Studio.

Figure 3-3 shows OSM order states and transactions.

• The transactions shown are those that perform transitions between order states. Some
transactions, such as Update Order, do not always perform a transition.

• In this figure, a Resume Order transaction is shown from the Cancelled state to the In
Progress state. This transaction is only possible for orders that do not have an
orchestration plan. If the order has an orchestration plan, the Cancelled state is a final
state and cannot be resumed.

• Some order state transitions are performed internally by OSM, not by running a
transaction.

• The transition from Not Started to Completed occurs when an order is submitted for a
revision to an in-flight order. In this case, all that the revision order must do is submit an
amendment. When the revision order is processed, the Submit Amendment transaction
places the revision order in the amendment queue. After doing so, the revision order itself
requires no further processing because compensation happens to the base order, so the
revision order is transitioned directly to the Completed state automatically by OSM, without
going to the In Progress state.

Note

Because the transaction from Not Started to Completed for revision orders is
required by OSM and is performed by the system, you cannot define permissions
or conditions for it. Therefore, it is not shown as a transaction from the Not Started
state in Design Studio.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 29

Figure 3-3 OSM Order States and Transactions

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 29

About Order State Categories
Order states can be categorized by the overall condition of the order that they apply to; for
example, if the order is open, closed, or running:

• Open - Not Running

– Not Started

– Suspended

– Waiting

– Waiting for Revision

– Canceled

– Failed

• Open - Running

– In Progress

• Open - Running - Compensating

– Amending

– Cancelling

• Closed

– Completed

– Aborted

Common Order State Transitions
A typical order processing scenario uses the following order states:

1. The order is submitted to the Not Started state and transitions to the In Progress state. The
order remains in the In Progress state while processing occurs.

2. When the last task has completed, the order transitions to the Completed state.

Figure 3-4 shows the states, state categories, and transactions for a basic order
processing flow.

Figure 3-4 Simple Order Processing Flow

The process for revising an order uses the following order states:

1. The base order is submitted and transitions to the In Progress state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 29

2. The revision order is submitted and transitions to the In Progress state.

3. The base order transitions to the Amending state.

4. The revision order, after it has amended the base order, transitions to the Completed state.

5. After processing the amendment, the base order returns to the In Progress state.

6. When the last task has completed, the base order transitions to the Completed state.

Figure 3-5 shows the order states used for a revision order.

Figure 3-5 Order States Used When Processing a Revision Order

A follow-on order uses the following order states:

1. The base order is submitted and transitions to the In Progress state.

2. The follow-on order is submitted and transitions to the In Progress state, but it must wait
until an order item in the base order completes before it can be processed.

3. The order item in the base order completes. The base order can continue processing, or it
can complete and transition to the Completed state.

4. Since the order item in the base order has completed, the dependency has been met and
the follow-on order begins processing.

5. When the last task in the follow-on order has completed, it transitions to the Completed
state.

A future-dated order uses the following order states:

1. The order is submitted, but OSM determines that there is a future start date. The order
transitions to the Not Started state.

2. When the order start date is reached, the order transitions to the In Progress order state.

3. When the last task has completed, the order transitions to the Completed order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 29

Optional, Mandatory, and Prohibited Transactions
Transactions for each order state can be optional, mandatory, or prohibited. Optional
transactions can either be allowed or prohibited based on conditions and permissions defined
in the order life-cycle policy.

Table 3-3 shows the order states and their transactions.

Table 3-3 OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Aborted None • Abort Order
• Cancel Order
• Complete Task
• Fail Order
• Manage Order Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Delete Order
• Update Order

Amending None • Cancel Order
• Complete Task
• Delete Order
• Fail Order
• Raise Exception
• Resume Order
• Update Order

• Abort Order
• Manage Order Fallout
• Submit Amendment
• Suspend Order
• Process Amendment

Canceled None • Complete Task
• Fail Order
• Manage Order Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Abort Order
• Delete Order
• Update Order
• Cancel Order

Canceling None • Cancel Order
• Complete Task
• Delete Order
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Update Order

• Abort Order
• Suspend Order
• Manage Order Fallout

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 29

Table 3-3 (Cont.) OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Completed None • Abort Order
• Complete Task
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Delete Order
• Update Order
• Cancel Order

Failed None • Complete Task
• Delete Order
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Suspend Order

• Abort Order
• Cancel Order
• Manage Order Fallout
• Submit Amendment
• Update Order

In Progress Complete Task • Delete Order
• Resume Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order Fallout
• Process Amendment
• Raise Exception
• Submit Amendment
• Suspend Order
• Update Order

Not Started Complete Task • Cancel Order
• Manage Order Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment

• Abort Order
• Delete Order
• Fail Order
• Suspend Order
• Update Order

Suspended None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception
• Suspend Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order Fallout
• Resume Order
• Submit Amendment
• Update Order

Waiting None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception

• Abort Order
• Cancel Order
• Fail Order
• Submit Amendment
• Suspend Order
• Update Order

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

Table 3-3 (Cont.) OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Waiting for Revision None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception
• Suspend Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order Fallout
• Resume Order
• Submit Amendment
• Update Order

About the Aborted Order State
An order can be transitioned to the Aborted order state when an unrecoverable error or
condition has stopped the processing for the order and the order cannot return to a valid
processing state through a revision or fallout management activity within OSM. It can be
considered a last resort to prevent any further execution of an order.

An order can be terminated manually from the Order Management web client or from the Task
web client. (In the web clients, the command Terminate Order moves the order to the Aborted
order state.) You can also transition to the Aborted order state programmatically by using the
OSM Web Service API or by using an automated task.

The Aborted order state is a final state; the order has been permanently stopped. An order in
the Aborted state cannot transition to another state.

Terminated orders may require manual intervention in an OSM web client to compensate for
tasks that have completed or that were in the process of completing. For example, you may be
required to release port assignments, delete accounts in billing systems, and so forth.

The entrance transaction to the Aborted order state is Abort Order. This transaction can be run
from all order states except the Completed order state.

The exit transaction from the Aborted state is Delete Order, which removes the order from the
OSM system.

The Update Order transaction is used when the order is updated manually, outside of the order
processing.

Figure 3-6 shows the order states that can transition to or from the Aborted order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 29

Figure 3-6 Order States that Can Transition to or from the Aborted Order State

About the Amending Order State
An order in the Amending state is undergoing compensation.

The transactions that cause an order to move to the Amending state are the Submit
Amendment transaction (as a result of a revision order) and the Raise Exception transaction
(as a result of fallout for which compensation is needed). The order can be amended from the
following order states:

• In Progress

• Failed

• Suspended

• Waiting for Revision

To transition an order to the Amending state, OSM uses two transactions: Submit Amendment
and Process Amendment. These transactions work together to make sure that the order is in a
condition that can be amended and that the amendment is allowed.

Each revision to an order uses the Submit Amendment transaction to place the amendment in
a queue. The Submit Amendment transaction does not change the order state. Instead, it
makes sure that the order is ready to be amended and that there are no life-cycle rules that

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 29

prevent the order from being amended until a condition is met. For example, although an order
in the Suspended state can receive amendments from the Submit Amendment transaction, the
order must be resumed before it can process the amendments.

When the order is able to process the amendment, the Process Amendment transaction is run
on the latest amendment in the queue, and the transition is made to the Amending state. Not
every order in the queue is processed:

• A revision for the same order might have been received while the order is queued. In that
case, the later revision is used instead.

• Restrictions in the life-cycle policy might prevent an amendment from being processed by
the Process Amendment transaction.

Unless multiple revisions are common and frequent, the order state transition to Amending will
happen almost immediately after the Submit Amendment transaction.

The configurable exit transactions for the Amending state are:

• Submit Amendment: An order can process a Submit Amendment transaction while the
order is in the Amending state. This can occur because additional revision orders can be
submitted while the order is in the Amending state. In this case, the Submit Amendment
transaction adds the amendment to the amendment queue.

• Suspend Order: Transitions to the Suspended state.

• Abort Order: Transitions to the Aborted state.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

An order can transition from the Amending state to the Waiting for Revision state. However,
there is no transaction required to transition from the Amending state to the Waiting for
Revision state. This transition happens when fallout occurs, and OSM has found that the fallout
is caused by the submitted order. In that case, OSM cannot use further compensation (redo/
undo) to fix the problem. Instead, OSM waits for a revision to be submitted from the upstream
order-source system to fix the problem.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-7 shows the order states that can transition to or from the Amending order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 29

Figure 3-7 Order States that Can Transition to or from the Amending Order State

About the Cancelled Order State
When an order is in the Cancelled state, all tasks have been undone back to the creation task.

The actions allowed when an order is in the Cancelled state are different depending on if the
order has an orchestration plan:

• If an order has an orchestration plan, the Cancelled state is the final state. The order
cannot be resumed.

• If the order does not have an orchestration plan, the order can be resumed at the In
Progress state, either by manually opening the order at the creation task and submitting it
or by programmatically transitioning the order state using the OSM APIs.

The transaction that causes the Cancelled state is the same Cancel Order transaction that was
used for canceling the order.

If the order includes an orchestration plan, the configurable exit transactions are:

• Update Order: Allows the order data to be changed but does not transition the order to
another order state.

• Abort Order: Transitions to the Aborted state.

• Delete Order: Removes the order from the OSM system.

If the order does not have an orchestration plan, the configurable exit transactions are:

• Resume Order: Transitions to the In Progress state.

• Update Order: Allows the order data to be changed. This transaction can also transition the
order to the In Progress state if the startOrder option is used. See the discussion of the
Update Order transaction in Table 3-2 for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 29

• Abort Order: Transitions to the Aborted state.

• Delete Order: Removes the order from the OSM system.

Note

When resumed after being canceled, the order begins again at the beginning of the
execution; it is not resumed at the point in the execution it was in when canceled.

Figure 3-8 shows the order states that can transition to or from the Cancelled order state if the
order has an orchestration plan.

Figure 3-8 Order States that Can Transition to or from the Cancelled Order State if the
Order Has an Orchestration Plan

Figure 3-9 shows the order states that can transition to or from the Cancelled order state if the
order does not have an orchestration plan.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 29

Figure 3-9 Order States That Can Transition To Or From the Aborted Order State if the
Order Does Not Have an Orchestration Plan

About the Cancelling Order State
When an order is in the Cancelling state, at least one live task is running in a cancellation
compensation mode. OSM undoes all completed tasks to return the order to the creation task.
When OSM has finished, the order transitions to the Cancelled state

The entrance transaction for the Cancelling order state is the Cancel Order transaction. An
order can be canceled from the following order states:

• In Progress

• Completed

• Suspended

• Waiting

• Waiting for Revision

• Failed

The configurable exit transactions for the Cancelling order state are:

• Suspend Order: Transitions to the Suspended state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 29

Figure 3-10 shows the order states that can transition to or from the Cancelling order state.

Figure 3-10 Order States That Can Transition To Or From the Cancelling Order State

About the Completed Order State
The order has been fulfilled. There are no live tasks and processing is complete.

The entrance transaction for the Completed state is the Complete Task transaction. It
transitions from the In Progress state.

The Complete Task transaction is used internally whenever the last task is completed in the
order, which is determined automatically by OSM. Therefore the Complete Task transaction is
not shown as part of the life-cycle policy in Design Studio.

The transition from the Not Started state to the Completed state is specific to revision orders.
When a revision order that has been submitted and accepted transitions to the Completed
state directly, because the compensation for the revision happens on the base order being
revised.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 29

The configurable exit transactions for the Completed order state are:

• Delete Order: Removes the order from the OSM system.

• Update Order: Allows the order data to be added, changed, or deleted but does not
transition the order to another order state.

• Cancel Order: Allows the order to be canceled.

Figure 3-11 shows the order states that can transition to or from the Completed order state.

Figure 3-11 Order States that Can Transition to or from the Completed Order State

About the Failed Order State
If an order is the Failed state, the order failed during fulfillment, after the order was submitted
by the order-source system or during order recognition when validating the incoming order
data.

The entrance transaction for the Failed order state is the Fail Order transaction. An order can
transition to the Failed state from the following states:

• Not Started

• In Progress

• Suspended

• Waiting for Revision

The configurable exit transactions for the Failed order state are:

• Manage Order Fallout: Transitions back to the state that the order was in when the Fail
Order transaction occurred. For example, if the order was in the Not Started state and then
failed, the Manage Order Fallout transaction returns the order to the Not Started state. It
can exit to the following states:

– Not Started

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 29

– In Progress

– Waiting for Revision

• Suspend Order: Transitions to the Suspended state.

• Update Order: Allows the order data to be added, changed, or deleted but does not
transition the order to a different order state.

• Submit Amendment/Process Amendment: Submits an amendment and is followed by the
Process Amendment transaction and transitions the order to the Amending state.

• Cancel Order: Transitions to the Cancelling state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-12 shows the order states that can transition to or from the Failed order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 29

Figure 3-12 Order States that Can Transition to or from the Failed Order State

About the In Progress Order State
An order in the In Progress state is actively running. Future-dated orchestration orders have an
In Progress state while they wait for dependencies to be resolved.

The entrance transactions for the In Progress state are:

• Update Order: Transitions from the Not Started state or Cancelled state when the
startOrder option is used. Programmatic creation of an order typically begins the
execution of the order, transitioning it to the In Progress order state when the startOrder
option is set to true on the CreateOrder or CreateOrderBySpecification OSM Web Service
operation. See the discussion of the Update Order transaction in Table 3-2 for more
information.

• Resume Order: Transitions from the following states:

– Suspended

– Waiting for Revision

– Canceled

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 29

Tip

The Cancelled state returns the order to the creation task, so the Resume Order
transaction does not resume from the state it was in when canceled. Instead, it
resumes at the beginning of the process.

• Manage Order Fallout: Transitions from the Failed state.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

• Update Order: Allows the order data to be added, changed, or deleted.

• Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

• Suspend Order: Transitions to the Suspended state.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Raise Exception: The Raise Exception transaction is a special type of transaction from the
In Progress state. For order fallout scenarios, the Raise Exception transaction can
transition the order to the Amending state to perform compensation for the error. However,
for backward compatibility with orders that use process exceptions, the Raise Exception
transactions starts an exception handling process, but the order remains in the In Progress
state. See the discussion of the Raise Exception transaction in Table 3-2 for more
information.

• Complete Task: Transitions from the In Progress state, but only when the last task in the
order is completed. This transaction is also used internally whenever a task is completed in
the order. It is not shown in the life cycle display in Design Studio.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-13 shows the order states that can transition to or from the In Progress order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

Figure 3-13 Order States That Can Transition To Or From the In Progress Order State

About the Not Started Order State
When an order is in the Not Started state, the order has been created but has not started.
There are no live tasks other than the creation task.

The entrance transactions for the Not Started state are:

• Resume Order: Transitions from the Suspended state if the order was in the Not Started
state when it was Suspended.

• Manage Order Fallout: Transitions from the Failed state if the order was in the Not Started
state when the Fail Order transaction occurred.

The exit transactions for the Not Started state are:

• Update Order: Allows the order data to be added, changed, or deleted. Can also transition
the order to the In Progress state if the startOrder option is used. See the discussion of
the Update Order transaction in Table 3-2 for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 29

• Suspend Order: Transitions to the Suspended state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Submit/Process Amendment: Transitions to the Completed state. This transition is specific
to revision orders. When a revision order is submitted, if it is accepted it transitions to the
Completed order state directly, because the compensation for the revision happens on the
base order being revised.

• Delete Order: Removes the order from the OSM system.

Figure 3-14 shows the order states that can transition to or from the Not Started order state.

Figure 3-14 Order States that Can Transition to or from the Not Started Order State

About the Suspended Order State
In the Suspended state, all processing on the order has been halted. No task can be updated
or transitioned.

The only entrance transaction for the Suspended state is the Suspend Order transaction.
Orders can be suspended from the following order states:

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 29

• Not Started

• Failed

• Canceling

• In Progress

• Amending

The exit transactions for the Suspended order state are:

• Resume Order: Transitions the order to the state that it was in when it was suspended.

• Submit Amendment: Submits an amendment (typically from an external CRM system) to
the amendment queue. Typically, the Submit Amendment transaction is followed by the
Process Amendment transaction, which transitions the order to the Amending state.
However, an order in the Suspended state must be resumed with the Resume Order
transaction before amendments can be processed. After the order is resumed, the Process
Amendment transaction is run on the latest amendment in the queue and the order
transitions to the Amending state.

• Update Order: Allows the order data to be added, changed, or deleted.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-15 shows the order states that can transition to or from the Suspended order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 29

Figure 3-15 Order States That Can Transition To Or From the Suspended Order State

About the Waiting Order State
This state indicates orders that have been created but are not ready to start. The reasons
orders can enter this state are:

• The order is future-dated

• The order is a follow-on order whose predecessor has not completed

• The order is subject to inter-order dependencies that have not completed

The Waiting order state is usually entered from the Not Started state and transitions to the In
Progress state when the blocking condition listed above has been resolved, for example the
start date for a future-dated order has been reached.

An order can transition from the Amending state to the In Progress state, but there is no
transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

• Update Order: Allows the order data to be added, changed, or deleted.

• Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

• Suspend Order: Transitions to the Suspended state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 29

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Raise Exception: The Raise Exception transaction is a special type of transaction from the
In Progress state. For order fallout scenarios, the Raise Exception transaction can
transition the order to the Amending state to perform compensation for the error. However,
for backward compatibility with orders that use process exceptions, the Raise Exception
transactions starts an exception handling process, but the order remains in the In Progress
state. See the discussion of the Raise Exception transaction in Table 3-2 for more
information.

• Complete Task: Transitions from the In Progress state, but only when the last task in the
order is completed. This transaction is also used internally whenever a task is completed in
the order. It is not shown in the life cycle display in Design Studio.

The entrance transactions for the Waiting order state are:

• Resume Order: Transitions from the Suspended state.

• Resolve Failure: Transitions from the Failed state.

An order can transition from the Not Started state to the Waiting state when the order is ready
for processing, but is either future-dated or blocked by another order as described earlier in
this section.

The exit transactions for the Waiting order state are:

• Suspend Order: Transitions to the Suspended state.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

An order can transition from the Waiting state to the In Progress state when the future date is
reached or the blocking by another order is resolved.

Figure 3-16 shows the order states that can transition to or from the Waiting order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

Figure 3-16 Order States that Can Transition to or from the Waiting Order State

About the Waiting for Revision Order State
This state is common following compensation to an order for fallout, when the order is awaiting
a revision from the order-source system to correct something that caused a failure in the
originally submitted order.

The entrance transaction for the Waiting for Revision order state is the Manage Order Fallout
transaction, which runs from the Failed state.

An order can transition from the Amending state to the Waiting for Revision state. However,
there is no transaction required to transition from the Amending order state to the Waiting for
Revision order state. This internal transition is triggered by the Raise Exception transaction
and it happens when fallout occurs and OSM has found that the fallout is generated by the
submitted order instead of by a task in the process. Therefore, OSM cannot use compensation
(redo/undo) to fix the problem. Instead, OSM waits for a revision to be submitted from
upstream to fix the problem.

The exit transactions for the Waiting for Revision order state are:

• Submit Amendment/Process Amendment: Submits an amendment (typically from an
external CRM system) and is followed by the Process Amendment transition. Transitions to
the Amending state.

• Update Order: Allows the order data to be added, changed, or deleted.

• Resume Order: Transitions to the In Progress State

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 29

You can also enable the Manage Order Fallout transaction for this state that controls the
following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and OSM
Task Web Client User's Guide for more information.

Figure 3-17 shows the order states that can transition to or from the Waiting for Revision order
state.

Figure 3-17 Order States that Can Transition to or from the Waiting for Revision Order
State

About Deleting Orders
You cannot use either of the OSM web clients or any web service operation to delete orders
from the OSM system. Instead, use the orderPurge command. See OSM System
Administrator's Guide for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

4
Modeling Order Recognition

This chapter describes how to model order recognition rules to receive incoming orders from
external systems in an Oracle Communications Order and Service Management (OSM)
solution.

About Sending Orders to OSM and Order Recognition
This section describes the order capture and submission process and how OSM recognizes
and resolves various incoming orders from CRM systems to specific order types.

The following process flow is for a new order:

1. The order data is captured in a CRM system; for example, as a Siebel order. There are
several order types that OSM can process (see "About Order Types" for more information).
Before submitting the order to OSM, the CRM system usually performs validations, such
as validating customer information from its customer database. For some orders, the order
may require technical qualification, such as validating that the network has enough
capacity to offer the purchased products.

2. The CRM system sends the customer order to OSM by using the OSM CreateOrder Web
Service operation. The CreateOrder operation contains order data that is in the XML
format of the order-source system, which is different from the OSM order format (see
"Modeling OSM Data ").

The OSM Web Service API is the primary API for external clients that you can use to
communicate with OSM (see OSM Developer's Guide for more information).

Note

A single OSM instance can receive orders from multiple order-source systems.

3. The OSM order request processor receives the customer order and evaluates the order
against order recognition rules until the order request processor finds an order recognition
rule that matches the incoming customer order. Then the order request processor uses the
order recognition rules to transform the requests to the OSM internal order format before
creating the order.

4. After OSM has recognized and validated the incoming customer order, internally, the OSM
recognition rule calls the CreateOrderBySpecification web service operation. This
operation does the following:

• Creates the order in OSM

• Sets the order priority

• Populates the data in the creation task

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

Note

You can also send a CreateOrderBySpecification operation directly from external
client systems in the OSM native XML format that would bypass the order
recognition and transformation functionality. The CreateOrderBySpecification
operation references an order specification that you define in Oracle
Communications Service Catalog and Design - Design Studio, and the order
details must conform to that order specification.

5. If OSM is unable to create the order by using the CreateOrderBySpecification operation,
the inbound order is handled in one of two ways:

• If the order type is not valid, a failed order is created with the inbound order attached.

• If the order type and source are valid, the inbound order is put on the JMS redelivery
queue. OSM attempts to receive the order again, up to the receive limit configured for
the queue. When that limit is reached, the failed message is moved to an error queue.

To receive and create orders, you need to do the following:

• Configure your order-source system to output orders in XML format (see "Modeling OSM
Data ").

• Do the following in Design Studio:

– Populate the Data Dictionary with the data elements that the order needs. See
"Modeling OSM Data " for more information.

– Create recognition rules to recognize, validate, and transform the data.

– Create order specifications for the types of orders you need to create in OSM. See
"Modeling Orders and Permissions" for more information.

Incoming orders can use the process layer or the orchestration layer. See "Modeling Orders
and Permissions" for more information.

Note

An order can be created without recognition rules and without an orchestration plan.
This is common when the order has a limited set of tasks that do not have
dependencies; for example, an order that only manages service activation.

Modeling Order Recognition Rules
You model order recognition rules to accept, evaluate, and transform OSM Web Service API
CreateOrder requests. The content of every CreateOrder request must match a specific order
recognition rule that associates the incoming order with a target OSM order specification. If you
have more than one version of the target order specification, you can target a specific version
of the order specification.

During order recognition, OSM reviews a prioritized list of recognition rules to determine which
rule applies to the inbound order. Each recognition rule is associated with an order
specification. OSM evaluates each order based on how high the relevancy of a particular order
recognition rule is. For example, a recognition rule with a relevancy of 12 evaluates first, then
the rule with the relevancy of 11, then 10, and so on. An order recognition rule with a 0

Chapter 4
Modeling Order Recognition Rules

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

relevancy should be modeled as a catch-all recognition rule. See "Modeling a Catch-All
Recognition Rule" for more information.

Validating Incoming Order Data
You can model a validation rule to validate any number of things in the order data. For
example, you can ensure that:

• All mandatory fields are populated on the incoming order.

• Valid characters (numeric or alphanumeric) are used for fields.

• The order has a valid status code, such as Open.

Transforming Order Data
OSM provides the following transformation rules in an order recognition rule:

• order priority rules: define the priority of the order in relation to others.

• order reference rules: define the order reference number.

• order data rules: add to or modify incoming customer order data.

At run time, the OSM server always runs all transformation rules, regardless of the failure of
any transformation rule. Running all transformation rules ensures that the order is populated
with all available data.

If a transformation rule fails, the order is populated with whatever data is available, and the
order is placed in a Failed state with reasons corresponding to the type of transformation rule
that failed:

• Could not set order priority.

• Could not set order header reference.

• Could not create order data.

• Could not store incoming message. Message stored as attachment.

Modeling the Order Data Rule to Populate the Creation Task
An internal transformation rule always stores the raw XML input message in an XML data field
as part of the order data (see "Adding the Input Message to an Order Recognition Rule" and
"Adding the Input Message to the Order Template"). However, that data does not populate the
fields in the creation task.

You can use an order data rule to modify data in the order. For example, you can concatenate
the area code and phone number into a single data element.

You can retrieve data from external systems if it does not exist on the incoming customer order
using a data instance behavior associated with the order data rule (see "Evaluating Data
Instance Behaviors"). For example, the incoming customer order might have a customer
address, but you need to add the geographic region to the order, which is not in the input data.
You can use a web service operation, or an SQL call to an external system, to look up the
region, based on the customer's address. You can then add the region code to the order.

When modeling a creation task, create a manual task, even if the order is intended to be
processed automatically. Using manual tasks as creation tasks ensures that task behaviors are
supported at run time if you manually create an order. This can be useful for testing purposes.

Chapter 4
Validating Incoming Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

Modeling Order Priority
The order priority range specifies the acceptable range of numeric priority (between 0 and 9)
that orders of a single type may use. For example, this could allow you to configure a fixed-line
order type with a lower range (0 to 4) and a mobile order type with a higher priority range (5 to
9), ensuring that mobile orders are prioritized higher than fixed-line orders.

You create an order priority range by specifying a minimum and maximum priority for the order.
OSM rounds priority values up or down to ensure they conform to the order priority range. For
example, if you specify a priority range of 5 to 7 and an order is created with a priority of less
than 5, the system assumes the intent is to provide the lowest priority allowed for the order,
and the priority value of the order is set to 5. Similarly, if a priority higher than 7 is provided for
another order of the same type, the system assumes the intent is to provide the highest priority
allowed for the order, and the priority value of the order is set to 7.

Table 4-1 shows examples of how the order priority is set by using the order priority from the
recognition rule, and the order priority range from the order specification.

Table 4-1 Order Priority Examples

Order Priority Range Recognition Rule Order
Priority 1

Recognition Rule Order
Priority 5

Recognition Rule Order
Priority 9

Order Priority Range 1 - 3 Priority = 1 Priority = 3 Priority = 3

Order Priority Range 3 - 5 Priority = 3 Priority = 5 Priority = 5

Order Priority Range 5 - 9 Priority = 5 Priority = 5 Priority = 9

You can set the order priority range in the Design Studio Order editor Details tab.

The order priority value is also considered when an order's tasks are run, so that automated
tasks are run according to order priority. This requires that Java Messaging Service (JMS)
message priority settings are configured for the JMS queues. For information about configuring
JMS message priority on JMS queue, see "Configuring JMS Message Priority on JMS Queue".

You can change the order priority of an in-flight order by using the Order Management web
client. You can specify permissions for which roles can change the priority. See the discussion
of changing order priority in OSM Order Management Web Client User's Guide.

The automation plug-ins are run using JMS. For internal plug-ins, OSM relays Order Priority
into JMSPriority and thus ensures Order Priority to take effect during the execution of plug-ins.

For external plug-ins, for Order-Priority to take effect during the execution, the external system
needs to update JMSPriority in the JMS message response with the one received in the JMS
message request.

Note

This is an optional activity and is relevant only when the execution of external plug-ins
needs to acknowledge Order-Priority.

Chapter 4
Transforming Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

Configuring JMS Message Priority on JMS Queue
As messages arrive on a specific destination, by default, they are sorted in FIFO (first-in, first-
out) order, which sorts the messages in the ascending order based on each message's unique
JMSMessageID. However, you can use a destination key to configure a different sorting
scheme based on other message properties such as JMSPriority and JMSCorrelationID for a
destination. In traditional OSM, the OSM installer creates the
osmDescendingPriorityDestinationKey destination key with JMSPriority as the Property
and Descending as the Sort order. OSM cloud native comes configured with
osmDescendingPriorityDestionationKey.

To configure JMS Message priority on JMS queue, do the following:

• Create a JMS Destination Key. See "Creating a JMS Destination Key ".

• Configure a destination key for a JMS resource. See "Configuring Destination Key for a
JMS resource ".

Creating a JMS Destination Key
To create a JMS Destination Key:

1. In the WebLogic Remote Console, click on Edit Tree.

2. Navigate to JMS Modules, within Services.

3. In the JMS Modules table, select the JMS module that contains the configured resource
and select the Destination Keys.

4. In the Summary of table, click the New button to create a destination key.

5. Enter a meaningful name for the key and click Create.

6. In the Summary of resources table, select the newly created JMS destination key.

7. Select the Sort key field and specify a message property name or the name of a message
header field on which to sort messages.

8. Save the changes.

9. Click on shopping cart and Commit Changes.

Configuring Destination Key for a JMS resource
To configure destination key for a JMS resource:

1. In the WebLogic Remote Console, click on Edit Tree.

2. Navigate to JMS Modules, within Services.

3. Select the JMS module that contains the configured resource, for example:
osm_jms_module.

4. Select the required Queues, Topics, Uniform Distributed Queues or Uniform
Distributed Topics where the created destination key needs to be configured.

5. In the General tab, enter the required destination key exact name(s) in Destination
Key(s) field. Make sure the destination key already exists.

6. Save the changes.

7. Click on shopping cart and select Commit Changes.

Chapter 4
Transforming Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

8. Restart the WebLogic server.

Creating and Configuring JMS Destination Key in OSM Cloud Native
You will need to provide the WDT for your OSM instance to provide the appropriate
configuration for a new JMS Destination Key. See "Extending the WebLogic Server Deploy
Tooling (WDT) Model" in OSM Cloud Native Deployment Guide for further details.

Modeling the Order Reference Number
The order reference number is an alphanumeric value supplied by the order-source system. It
is usually unique, but it does not have to be unique. When OSM creates the order, OSM gives
the order an OSM order ID. The original order reference number is stored as well, so the order
reference number is associated with the OSM order ID.

Modeling a Catch-All Recognition Rule
An order that fails to be recognized by any recognition rule is rejected by OSM, and an error is
returned by the web service operation to the order-source system. To make sure that all orders
are entered into OSM, create a catch-all recognition rule that accepts all incoming customer
orders.

To configure this recognition rule:

• Set the relevancy to 0, and set the relevancy for all other recognition rules higher than 0,
so they are processed first.

• Include the following recognition rule XQuery:

fn:true()

• Select the Fail Order check box, and enter a reason. For example:

No valid recognition rule found.

Using this lowest-level recognition rule, an invalid order is recognized and then fails during
validation. It then transitions to the Failed state and is kept by OSM.

Common Order Recognition Errors
There are two possible errors during order recognition:

• A recognition rule fails to run; for example, because of bad syntax. Evaluation of other
rules continues.

• The inbound order is not recognized. If all recognition rules run and fail to find a match,
then no OSM order can be created. This failure generates fallout, which you can view and
manage as an order failure in the Order Management web client.

To avoid this kind of failure, you can create a lowest-relevancy catch-all rule that
recognizes any inbound order and maps it to a default order specification. See "Modeling a
Catch-All Recognition Rule" for more information.

Chapter 4
Modeling a Catch-All Recognition Rule

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

5
Modeling Orchestration Plans

This chapter describes how to model orchestration plans in an Oracle Communications Order
and Service Management (OSM) solution.

Orchestration Plan Overview
An orchestration plan includes the order items, order components, and dependencies. An
order-specific orchestration plan is generated for each order that requires orchestration.

The orchestration plan for an order specifies the following:

• How order items are grouped into order components for processing

• The dependencies between the order components

In the OSM Order Management web client, you can view graphical representations of an
order's orchestration plan and dependencies. You can use this information as you model
orders to validate that order decomposition and orchestration plan generation is functioning as
intended. The graphical representation shows exactly how an order is fulfilled.

The Order Management web client provides a graphical representation of the orchestration
plan in two views:

• Orchestration plan decomposition

• Orchestration plan order item dependencies

Figure 5-1 shows three orchestration stages, represented in three columns:

• Determine the fulfillment function

• Determine the fulfillment system

• Determine the processing granularity

Note

You can model any number of orchestration stages.

At each orchestration stage, the graph shows the order components created by that stage. The
final column on the right shows the order components that are run as part of the orchestration
plan. Each component includes a name, which is based on the orchestration stages.
Components also list their included order items.

The inset in Figure 5-1 shows details for three executable order components, as displayed in
the orchestration plan decomposition.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 35

Figure 5-1 Decomposition Tree

Figure 5-2 shows the orchestration plan displayed in the Order Management web client
dependency graph. The dependency graph shows the executable order components which are
the components shown in the final stage of the decomposition display. In this case, executable
components are based on three orchestration stages corresponding to fulfillment function,
fulfillment system, and processing granularity. The different colors represent fulfillment
functions, such as InitiateBilling or FulfillBilling. The inset shows a detailed view of two order
components. Even though the two fulfillment functions are targeted to the same system (BRM-
VOIP), processing granularity rules defined for this order require that they take place as two
separate actions.

Chapter 5
Orchestration Plan Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 35

Figure 5-2 Dependency Graph

Both of these representations are useful at design time and when debugging orchestration
plans. For example, you can use the dependency graph to confirm that an order goes to all of
the correct systems in the correct order. Use the decomposition tree to verify that
decomposition happens as expected at a particular stage and that the order was decomposed
into the correct components, each containing the correct order items.

Modeling an Orchestration Plan
To model how orchestration plans are generated, you model several OSM entities in Oracle
Communications Service Catalog and Design - Design Studio.

• Orchestration processes. An orchestration process specifies which orchestration sequence
to use for the order.

• Orchestration sequences. The orchestration sequence specifies the fulfillment mode (for
example, Deliver or Qualify), the orchestration stages, and selects the customer order line
item node-sets that OSM uses in orchestration.

• Order item specification. The order item specification includes the order item properties
that are used for decomposition, including how to retrieve order items from order line
items. Order item properties define data that is used for decomposition; for example, the
fulfillment pattern.

• Order components. Order components specify how to organize order items in the
decomposition process.

• Orchestration stages. Orchestration stages specify the order components to assign order
items to.

Figure 5-3 shows a generalized process flow for orchestration.

Chapter 5
Modeling an Orchestration Plan

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 35

Figure 5-3 Orchestration Process

The following process flow shows how OSM uses the orchestration entities to create
orchestration plans.

1. After receiving and validating an incoming customer order, OSM creates the order
according to the order specification chosen by the recognition rule. At this point, the
following has been accomplished:

• The order has been populated with the creation task data.

• OSM has used the order item specification to identify order items from the order line
items in the incoming customer order.

2. The order specification includes a default process. For an orchestration order, the order
specifies an orchestration process. (If no orchestration is required, you should define a
non-orchestration OSM process. See "Modeling Processes and Tasks" for more
information.)

3. The orchestration process specifies an orchestration sequence.

4. The orchestration sequence specifies the following:

• The order item specification to use for the order. The order item specification defines
the order item properties that are used for decomposition and for displaying the order
item in the Order Management web client. See OSM Concepts for more information.

• The order item selector that identifies the customer order line item node-sets to use as
order items.

• The fulfillment mode that the order requires; for example, Deliver or Cancel.

• The orchestration stages that produce the order components. For example, the
orchestration stages might be:

Chapter 5
Modeling an Orchestration Plan

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 35

– Produce function order components. This stage organizes order items into
order components based on the fulfillment functions required for each order item.
Fulfillment functions are the activities that must be performed to process the item,
such as billing, shipping, provisioning, and so on.

– Produce target system order components. This stage organizes order items
into order components based on the target fulfillment systems required to perform
the fulfillment functions. For example, this step might determine that certain items
need to be fulfilled by a billing system called BRM_Residential and others by a
BRM_Wholesale system.

– Produce granularity order components. This stage organizes order items that
need to be processed together into order components. For example, you might
need to fulfill billing requirements for mobile and fixed services. You can use
different order components to process the billing requirements for those services
separately.

5. Each orchestration stage produces a set of order components.

6. Based on the default orchestration process, and the orchestration sequence and stages
that are defined, OSM can start the process of assigning order items to order components.
The first step is to find the fulfillment pattern used by each order item.

Each order item belongs to a product specification. A product specification is a group of
related products that share common attributes. For example, the products Broadband
Light, Broadband Medium, and Broadband Ultimate would all belong to the
ServiceBroadBand product specification. OSM maps the product specification to a
fulfillment pattern.

The fulfillment pattern manages the first stage of orchestration. It assigns order items to
function order components in the first stage of orchestration. It also specifies the
dependencies between the function order components. For example, the fulfillment pattern
might specify to process function order components in this order:

a. ProvisioningFunction

b. BillingFunction

c. CollectionsFunction

The fulfillment pattern also specifies the fulfillment mode that the order items can be used
for. See "About Mapping Order Items to Fulfillment Patterns" for more information.

Provisioning must occur before billing, which must occur before marketing, customer
updates (SyncCustomer), and collections.

Figure 5-4 Dependency Relationships for Order Item Dependency

Chapter 5
Modeling an Orchestration Plan

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 35

7. After assigning order items to function components, OSM further decomposes the order
into target system order components and granularity order components, following the
specifications defined in the orchestration stages. See "About the Decomposition of
Function to Target System Components " and "About the Decomposition of Target System
to Granularity Components " for more information.

8. While decomposing the order, OSM finds dependencies between order components and
generates an orchestration plan. Dependencies determine the order in which order
components can be processed.

9. After generating the orchestration plan, OSM runs it. Each executable order component
runs a process. Each process includes the tasks that fulfill the order requirements.

Order components are usually modeled by extending order component specifications in Design
Studio. For example, you can create a base order component for all function types and extend
it for individual function types such as billing or collections.

About Component Names and Component IDs
Each order component has an order component name and an order component ID. (This
component ID is stored in the order template in ControlData/Functions/OrderComponentName/
componentKey). The component name is specified at design time. The component ID is
generated for each instance of the order component at run time.

The component name is the name of the order component specification; for example,
BillingFunction or BillingSystem. By default, the component ID is a concatenation of the
names of the order components in the orchestration stages. For example, if the component
names are modeled as:

• BillingFunction

• BillingSystem

• Bundle

The component IDs generated at run time are:

• BillingFunction

• BillingFunction.BillingSystem

• BillingFunction.BillingSystem.Bundle

You can use customized order component IDs when assigning order items to order
components. See "About the Decomposition of Target System to Granularity Components " for
more information. For more information about creating valid data keys, see, "Modeling Valid
Data Keys."

About Order Items
Prior to generating an orchestration plan, OSM processes each customer order line item in the
incoming customer order and turns it into an order item. The order item properties define the
data that is included from these order items using XQuery expressions.

Order items are individual products, services, and offers that need to be fulfilled as part of an
order. Each item includes the action required to implement it: Add, Suspend, Delete, and so
on. For example, a new order might add a wireless router; the order item created in OSM is
Add Wireless Router.

When you model order items, you do not model every possible order item. Instead, you create
an order item specification, which defines:

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 35

• The data that each order item can include

• The structure of the data; for example, the hierarchy between order items

• Data needed for orchestration

There must be one order item specification for each type of order received from the order-
source system. When you model an order item specification, you can configure the following:

• Order item properties. Order item properties represent the data that is included in order
items. See OSM Concepts for more information.

• Orchestration conditions. Use orchestration conditions to customize how order items are
added to order components. For example, you can use the region order item property to
assign order items to different target system order components. See "About the
Decomposition of Function to Target System Components " for an example of how
orchestration components are used.

• Order item hierarchies. You use order item hierarchies to model how parent and child
items are identified. For example, you can use line IDs and parent line IDs. See "Modeling
Order Item Hierarchies" for more information.

• Order template. This data is the order item control data, which is used by OSM when
generating an orchestration plan. You can also assign behaviors to order items. See OSM
Concepts for more information.

• Order item dependencies. Use order item dependencies to create inter-order
dependences. See "About Inter-Order Dependencies" for more information.

• Permissions. Use permissions to allow specific roles access to order item search queries
in the Order Management web client and to specify if the query returns summary data or
detailed data. See "Modeling Roles and Setting Permissions" for more information.

Most order items properties must be created in Design Studio and associated with
corresponding customer order element values using XQuery expressions (see "About Order
Item Specification Order Item Property XQuery Expressions"). However, in some cases the
order item property is not provided in the customer order. In this case, you must use an
XQuery expression to derive the missing property value from the existing customer order
element values.

Example 5-1 shows an order line item. This order line item adds a Commercial Fixed Service
order item. In the following example, notice that the items in bold correspond to the order item
properties. However, there are order item properties, such as productSpec and region, that
are not in the order line item. Instead, you specify to create those order item properties by
using XQuery expressions in the order item specification.

Example 5-1 Order Line Item in an Incoming Customer Order

<im:salesOrderLine>
 <im:lineId>4</im:lineId>
 <im:parentLineReference>
 <im:parentLineId>3</im:parentLineId>
 <im:hierarchyName>default</im:hierarchyName>
 </im:parentLineReference>
 <im:rootParentLineId>2</im:rootParentLineId>
 <im:promotionalSalesOrderLineReference>1
</im:promotionalSalesOrderLineReference>
 <im:serviceId>552131313131</im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:nameLocation>OLoughlin</im:nameLocation>

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 35

 <im:number>48</im:number>
 <im:city>Toronto</im:city>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Commercial Fixed Service</im:name>
 <im:typeCode>PRODUCT</im:typeCode>
 <im:primaryClassificationCode>Fixed Service Plan Class</im:primaryClassificationCode>
 </im:itemReference>
</im:salesOrderLine>

Figure 5-5 shows all of the order items derived from an order, including the order item shown in
Example 5-1.

Figure 5-5 All Order Items in an Order

In Figure 5-5, notice that order items are hierarchical. For example, the Fixed Service order
item shown in Example 5-1 is part of the Fixed Bundle order item. In addition, the Fixed
Service order item includes three more order items: Commercial Fixed Service, Fixed Caller
ID, and Fixed Call Waiting. When you model orchestration, you ensure that the hierarchy in the
incoming customer order is duplicated in the OSM order items. See "Modeling Order Item
Hierarchies" for more information.

The order item specification defines the order item properties that are required for generating
the orchestration plan and the data to display in the Order Management web client. This
typically includes the display name, product specification, line ID, requested delivery date, and
so on. By contrast, the order item usually would not include supplementary account and
customer details such as the street address or mailbox size. That type of data is defined in the
task data for each task in the fulfillment data, and in the creation task data when the order is
created.

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 35

Caution

Order item properties do not represent all of the data in an order. For example, they do
not define creation task data. That data is captured by transformation rules. Order item
properties are a subset of the data and are used for orchestration.

Figure 5-6 shows part of an order input file and how the city field is mapped to the region order
item property in Design Studio. In this example, the <city> element in the XML file is used in
the order item property expression.

See "About the Decomposition of Function to Target System Components " for an example of
how the region order item property is used in orchestration.

Figure 5-6 Order Line and Definition in Order Item Specification

A single order item specification is used for generating all of the order items that can be
created for an order. This ensures a consistent order item structure. Therefore:

• Order item properties should not be product or service specific. The only product
information you need to include is the product specification, which is a generic value used
for identifying the fulfillment pattern. By not applying order items to a specific product, you
can use the order item specifications for multiple products, and you can support new
products and services and multiple order entry systems.

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 35

• Order item properties should not be specific to any order entry system.

Caution

When defining order item properties, include only the data required by OSM for
orchestration. Performance is impacted by the number and size of order item
properties.

The properties you define for your order items will be different from those pictured in
Figure 5-6. However, this selection provides a good example of the type of order properties
that are commonly configured:

• productSpec: This property retrieves the product specification from the incoming
customer order. OSM maps each order item to a fulfillment pattern based on the item's
product specification (defined in the order-source system). The fulfillment pattern specifies
the order components in the first level of decomposition.

• fulfillmentPattern: This property stores the fulfillment pattern that the order item uses.
This value is obtained by mapping the productSpec value in a mapping file. See "About
Mapping Order Items to Fulfillment Patterns" for more information.

• lineId: This is the line ID of the order line item in the incoming customer order. Each order
line item in the incoming customer order has a unique line ID. This property is used for
determining the hierarchy of the order items. You can determine a hierarchy of order items
based on the lineID order item property and the parentLineId order item property. For
example, an order item with lineId 4 also specifies a parentLineId as 3 which is the lineId of
the parent order item. You can use this function to hierarchically relate various types of
order line items, such as offers, products, and bundles of products, services, and
resources. For example, an order could include a Broadband offer with a High Speed
Internet bundle and an Internet Services service bundle. Both bundles would have the
Broadband offer as parent. You can also use order item hierarchies to aggregate order
item status. See "About the Decomposition of Target System to Granularity Components "
for an example of how this property is used.

• lineItemName: This property is the display name used in OSM web clients.

• requestedDeliveryDate: This property is the requested completion date for the order item.

• parentLineId: This property defines the parent of the order line item in the incoming
customer order. This property is used for determining the hierarchy of the order items. See
"About the Decomposition of Target System to Granularity Components " for an example of
how this property is used.

• region: This property is an example of data that can be used to manage decomposition
into target system order components. See "About the Decomposition of Function to Target
System Components " for more information.

• serviceId: This property is used to display the service ID in the OSM web clients.

• lineItemPayload: This property stores the entire incoming customer order in OSM as an
XML file. This property is typically used in a development environment as an aid to
modeling.

About Creating Order Items from Customer Order Line Item Node-Sets
To create order items from customer order line items, OSM needs to know what nodes in the
incoming customer order include the data to use in order items. OSM creates orchestration
control data from these nodes (see OSM Concepts).

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 35

Example 5-2 shows the salesOrderLine node-set in an incoming customer order. You can
specify these node-sets as order items by creating an XQuery expression in the Orchestration
Sequence editor that returns every instance of <salesOrderLine> contained in the customer
order (see "About Order Item Specification Order Item Property XQuery Expressions"). These
node-sets produce the Broadband Bundle and the Mobile Bundle order items. The elements
in these node-sets can then be specified as order item properties in the order item
specification.

Example 5-2 The <salesOrderLine> Element in an Incoming Customer Order

<im:salesOrderLine>
 <im:lineId>13</im:lineId>
 <im:promotionalSalesOrderLineReference>1
 </im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Broadband Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup></im:specificationGroup>
 </im:itemReference>
</im:salesOrderLine>
<im:salesOrderLine>
 <im:lineId>14</im:lineId>
 <im:promotionalSalesOrderLineReference>2
 </im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Mobile Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup></im:specificationGroup>
 </im:itemReference>
</im:salesOrderLine>

About Associated Order Items
Figure 5-7 shows the associated order items, displayed with (assoc) in the orchestration plan.

Figure 5-7 Associated Order Items Displayed in the Order Management Web Client

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 35

Caution

Associated order items are not considered as part of the decomposition and
dependency calculations when OSM generates an orchestration plan. Therefore, you
cannot reference associated order items in decomposition or dependency rules.

You model order item associations in fulfillment patterns. Figure 5-8 shows an order item
association modeled for the Bundle order component in the Service.Mobile fulfillment pattern.

Figure 5-8 Order Item Associations in a Fulfillment Pattern

There are three ways to associate order items:

• Fulfillment pattern: This is the default entry. It associates order items by fulfillment pattern,
which is the normal orchestration method.

• Matching Order Component ID: This associates order items by matching component ID.

• Property correlation: This associates order items by using order item properties. See
"About Associating Order Items Using Property Correlations XQuery Expressions" for more
information.

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 35

Modeling Order Item Hierarchies
Order items can be organized hierarchically based on the content of the original customer
order. You can configure OSM with the following types of order item hierarchies:

• Physical Hierarchy: The hierarchy can include various types of order line items, such as
offers, products, and bundles of products or services. For example, an order could include
a Broadband-VoIP offer with a High Speed Internet bundle, an Internet Services service
bundle, and a Wireless Router product item. OSM maintains the order line item hierarchy
from the customer order in the order item hierarchy.

• Composition Hierarchy: You can use composition hierarchies with fulfillment state
composition rule sets to determine the parent/child relationship between order items so
that OSM can determine aggregate fulfillment states for parent order items. See OSM
Concepts for more information.

• Dependency Hierarchy: You can specify a dependency hierarchy that OSM uses to
automatically configure dependencies between order items on an order. For more
information, see "About Processing Order Items Sequentially".

Figure 5-9 shows a physical order item hierarchy that reflects the structure of the original
customer order.

Figure 5-9 Physical Item Hierarchy

The hierarchy is defined in the <lineID> and <parentLineId> elements. Figure 5-10 shows the
first part of Figure 5-9, as it appears in an incoming customer order.

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 35

Figure 5-10 Item Hierarchies in an Incoming Customer Order

To define the order item properties that specify the hierarchy, you configure the order item
hierarchy in the order item specification using an XQuery expression. See "About Order Item
Specification Order Item Hierarchy XQuery Expressions" for more information.

An order item hierarchy is invalid when:

• The hierarchy refers to an non-existent parent or child line ID.

• When the key or parent key XQuery is wrong.

• When the hierarchy specifies a circular relationship. For example, the parent of an order
item is itself, or if order item A is the parent of order item B and order item B is also the
parent of order item A.

OSM does not apply invalid order item hierarchies, but instead runs the order without any
hierarchy.

About Using a Distributed Order Template
The distributed order template is a structure data type that is available only for order item
specifications. It improves performance and also has the following benefits:

• Reduces order node conflicts: Without the distributed order template, data elements in the
data dictionary that have the same name need to have the same definition (type,
description, etc.) regardless of whether they appear in different structures in different
places in the data dictionary. With the distributed order template, this is no longer
necessary.

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 35

• Allows data changes without having to redeploy the entire solution: Without the distributed
order template, any changes to the data defined for the order (including order item property
updates) requires redeployment of the entire solution. With the distributed order template,
if you change order item properties, you need to deploy only the cartridge containing the
changed order item.

You decide whether to use the distributed order template by selection the appropriate box in
the order item creation wizard or in the Order Item Specification editor in Design Studio. For
more information, see Design Studio Modeling OSM Orchestration Help.

If you use a distributed order template, any references you make to order item data in XQuery
expressions or automation must include a namespace. References to data in data change
notifications and flexible headers do not need to change. For any order item that is not a
transformed order item, the namespace will always be the namespace of the order item
specification. Following is an example of an XQuery reference to the lineItemID property on
the InputOrderItem order item with the namespace http://ex_input.com:

/ControlData/OrderItem[@type='{http://ex_input.com}InputOrderItem']/lineItemID

If you are using the order transformation manager, see "Using the Distributed Order Template
with the Order Transformation Manager" for information about the namespace that will be used
for transformed order items.

About Mapping Order Items to Fulfillment Patterns
The first orchestration stage assigns order items to function order components, by using
fulfillment patterns. You need to model how to map order items to fulfillment patterns and
implement the model using an XQuery expression (see "About XQuery Expressions for
Mapping Product Specifications and Fulfillment Patterns" for more information).

Each order item in an order must have an order item property that specifies a value that
represents a product, service, resource, or action. You map the value of the order item property
to a corresponding fulfillment pattern designed to fulfill the order items mapped to them.
Fulfillment patterns organize the functions into which order items decompose, any conditions
that govern when an order item can be included in a function, and any associated order items
that might be included in a function from different fulfillment patterns. Ideally, there ought to be
a many-to-one relationship between order items and fulfillment patterns.

The way order items decompose to fulfillment patterns and further into functions depends on
what kind of order item it is. For example, at the central order management (COM) level, you
might group bundle order items as children of offer order items. The bundle order items would
in turn be parents to product order items. Example 5-3 is a possible hierarchy where each
product order item maps to either an Service.VoIP or Service.CPE.VoIP fulfillment pattern:

Example 5-3 Sample COM Order Item Hierarchy

1 On Top of the World Broadband-VoIP (OFFER)
 5 High Speed VoIP Service (Bundle)
 6-VoIP Services (Product) ---> Service.VoIP
 7-VoIP PS (Product) ---> Service.VoIP
 20-Value Added Features PS (Product) ---> Service.VoIP
 22-VoIP Adaptor PS (Product) ---> Service.CPE.VoIP
 25-VoIP Phone PS (Product) ---> Service.CPE.VoIP
 26-VoIP Soft Phone PS (Product) ---> Service.CPE.VoIP
 27-VoIP Visual Voicemail PS (Product) ---> Service.VoIP
 28-VoIP Voicemail PS (Product) ---> Service.VoIP

Those order items destined to the Service.VoIP fulfillment pattern would decompose to the
following functions:

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 35

• ProvisionOrderFunction

• InitiateBillingFunction

• SyncCustomerFunction

• FulfillBillingFunction

You can configure conditions where an order item might not be included in a specific function.
For example, if a customer decides to move their VoIP service from one residence to another,
you could configure a condition on the InitiateBillingFunction that would block the VoIP service
order items from being included in the InitiateBillingFunction since the customer is already
being billed for the VoIP services.

Sometimes, you need to assign order items to order functions that would not be assigned to
the current fulfillment pattern by their product specification. This requirement can occur when
an interaction with an external system requires a specific context for an order item.

For example, a billing system might need to process billing-related order items in the context of
a bundle, to manage the relationships between balances, discounts, and so on. Billing charges
are often order line items, such as an installation service, that are included in the order outside
of the service billing bundle hierarchy. However, they might need to be associated with the
billing bundle to ensure that the charge is made against the correct service. In that case, you
can associate the billing charges with a bundle order component. By contrast, billing order
items might be sent to the billing system in the context of a whole order. In that case, you do
not need to associate the order items to a bundle, because they are already in context.

About Modeling Product Specifications
New product specifications should be imported (which will create conceptual model products)
or created in the conceptual model. If you have an existing configuration, however, you can still
use product specifications (formerly called product classes) that were created in OSM.

You can map multiple product specifications to one fulfillment pattern. This enables you to
introduce new products in existing product specifications without needing to create new
fulfillment patterns or fulfillment flows.

The Design Studio conceptual model functionality helps you model data as part of an end-to-
end solution in an application agnostic way. You create conceptual model projects to:

• Define products.

• Define the services that the products represent.

• Define the resources that implement those services.

• Define service domains, such as broadband (ADSL, VDSL, DOCSIS, and Fiber), VoIP,
email, Mobile, and so on.

• Define actions and relationships between products, services, and resources

Conceptual model items are not built into OSM cartridges or deployed to the OSM server
directly. They are included into OSM by something called realization. Realization refers to
converting the abstract entities in the conceptual model into actual instances in the OSM
configuration. You can use this conceptual model metadata as part of your OSM run-time
solution to help define order item to fulfillment pattern mappings and to give you an
representation of what you need to implement in OSM as part of your overall fulfillment
solution.

See Design Studio Concepts for more information about conceptual model projects. See
"About XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns" for
more information about using conceptual model entities to map order items to fulfillment

Chapter 5
About Order Items

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 35

patterns. See "OSM Solution Modeling Overview" for more information about how OSM can be
modeled in an end-to-end solution.

Modeling Fulfillment Modes
The fulfillment mode is the overall purpose of the order. For example:

• Deliver a service.

• Qualify a service before delivering it. This ensures that a service can be fulfilled before
attempting to fulfill it.

• Cancel an entire order.

Every incoming customer order can specify a fulfillment mode.

OSM can use the fulfillment mode as part of the orchestration process. For example, if OSM
receives two identical incoming customer orders with different fulfillment mode order item
properties, it generates a different orchestration plan for each order. The two plans include
different executable order components with different dependencies among order items.

Fulfillment modes are configured in the following places:

• Fulfillment mode entities: These entities include no data other than a name. They provide
the means to assign fulfillment modes to other entities, such as orchestration sequences
and fulfillment patterns.

• Orchestration sequences define a single fulfillment mode using an XQuery expression
based on a customer order attribute (see "About Order Sequence Fulfillment Mode XQuery
Expressions").

• Fulfillment patterns list the fulfillment modes that the associated order items can be used
with.

Figure 5-11 shows the fulfillment modes defined in a fulfillment pattern. Any order item that
uses this fulfillment pattern can be processed in either the Cancel or Deliver fulfillment
mode.

Figure 5-11 Fulfillment Modes Defined in a Fulfillment Pattern

Chapter 5
Modeling Fulfillment Modes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 35

When a fulfillment pattern includes multiple fulfillment modes, you can model a different set of
order components and dependencies for each fulfillment mode.

About the Decomposition of Order Items to Function Order
Components

The following sections describe the decomposition of order items to function order
components.

About Assigning Order Items to Fulfillment Pattern Function Components
The first step in decomposition is to assign order items to function components. To do so, OSM
uses the product specification to find the fulfillment pattern that the order item uses. (See
"About Mapping Order Items to Fulfillment Patterns" for more information.) The fulfillment
pattern defines the order components to add the order item to.

Figure 5-12 shows the function order components selected in the Service.Broadband fulfillment
pattern. In this case, order items that use this fulfillment pattern need all of the functions;
billing, collections, provisioning, and so on.

Figure 5-12 Function Order Components Selected for a Service Fulfillment Pattern

Figure 5-13 shows how to use a base specification to define the same function order
components as described above. In this case, the base fulfillment pattern selects all of the
function order components except provisioning. The service and non-service fulfillment
patterns inherit the selections. The service fulfillment pattern adds the provisioning function.
The non-service fulfillment pattern does not add it.

Chapter 5
About the Decomposition of Order Items to Function Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 35

Figure 5-13 How to Use a Base Specification to Define Function Components

About the Function Components Stage
In addition to using the fulfillment pattern to assign order items to function components, you
model an orchestration stage, which specifies to create the function order components to
create.

About Order Component Control Data
When OSM creates the order items and order components, it produces a set of control data.
The control data provides information OSM requires to fulfill the order. OSM uses the control
data to track the status of the entire order and to track the status of the individual order items.
During fulfillment, order component transactions update this control data with system
interaction responses.

Design Studio automatically generates control data for function order components provided
that orchestration entities are preconfigured correctly and you use the
OracleComms_OSM_CommonDataDictionary model project. If you do not use the
OracleComms_OSM_CommonDataDictionary model project, you must manually model
order component control data. See "About Modeling Order Component Control Data" in
Modeling OSM Orchestration for information on how order component control data is
automatically generated or how to manually model it.

See "Modeling OSM Data " for more information on adding function order components to the
order control data.

Chapter 5
About the Decomposition of Order Items to Function Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 35

About Fulfillment Pattern Conditions for Including Order Items
You can use conditions to add order items to an order component only when the XQuery for
the condition evaluates to true. For example, you might include an order item based on an
XQuery that checks the action code (Add or None). This is useful in the case of an update to a
service that changes some features while leaving other features unchanged. See "About Order
Item Specification Condition XQuery Expressions" for more information.

Summary of Order Item to Function Components Decomposition
To summarize this example, to model the decomposition from a order items to a function
component, you model the following:

• The fulfillment pattern order item property so that order items can be mapped to fulfillment
pattern function components.

• Any XQuery expressions that evaluate conditions to include or exclude order items.

• The Order control data for orchestration.

• The orchestration stage that produces the function components

About the Decomposition of Function to Target System
Components

The following sections describe the decomposition of order items from functional components
to target systems.

About Decomposition Rules from Function Components to Target Systems
After the order items have been assigned to function order components, they need to be
further decomposed into target system order components. To do so, you use decomposition
rules.

A decomposition rule specifies a source order component and a target order component.
Figure 5-14 shows a decomposition rule from the billing function component to the billing target
system component.

Chapter 5
About the Decomposition of Function to Target System Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 35

Figure 5-14 Decomposition Rule

About Decomposition Rule Conditions for Choosing a Target System
You can use decomposition rules to decompose order items from one function component to
multiple target system components. Figure 5-15 shows the source and target order
components for two decomposition rules:

• Provision to DSL Provisioning System - Region1

• Provision to DSL Provisioning System - Region2

These two decomposition rules decompose the order items in the ProvisioningFunction order
component into two target system order components based on Region 1 and Region 2.

Chapter 5
About the Decomposition of Function to Target System Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 35

Figure 5-15 Source and Target Order Components for Two Decomposition Rules

Each of the decomposition rules uses decomposition conditions to specify which target system
to use for a particular order. The target system is selected if the XQuery expression associated
with the condition evaluate to true. In this example, the XQuery expression uses the value of
the region order item property to make this evaluation. If the value of region is Toronto, then
OSM selects the condition and target system for Region 1. If the value of region is New York,
then OSM selects the condition and target system for Region 2. See "About Order Item
Specification Condition XQuery Expressions" for more information about creating an XQuery
condition expression that can be used for with a decomposition rule.

About the Target Systems Stage
In addition to creating the decomposition rules that define the source and target components,
you need to create an orchestration stage that produces the target system order components.

Summary of Configuring Target System Components Decomposition
To summarize, to configure how order items are decomposed from a function order component
to a target system order component, you do the following:

Chapter 5
About the Decomposition of Function to Target System Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 35

• Define an orchestration stage to produce the target system order components.

• Create dependency rules to specify the source order components and target order
components.

• If a function order component decomposes order items to more than one target system
order component, create decomposition conditions. Decomposition conditions depend on
data specific to the order items, so decomposition rules typically use XQuery expressions
to retrieve the data that is used for evaluating the condition.

About the Decomposition of Target System to Granularity
Components

The following sections describe the decomposition of order items from target system
components to granularity components.

About Decomposition Rules from Target System to Granularity Components
After order items have been decomposed into target system order components, the next step
is to decompose them into the granularity order components.

Some examples of the granularity requirements are:

• A billing system might require the entire order in the message to calculate discounts.

• A billing system might require separate bundles for mobile billing and fixed billing, to
handle different completion times (fixed billing typically has more dependencies and takes
longer).

To decompose target system order components items into bundle granularity components you
configure the following:

• Create a decomposition rule, which decomposes the target system order component into
bundle granularity components.

• Create customized component IDs (stored in the componentKey data element in the
control data) that are used to create separate order components for each bundle. See
"About Customized Component IDs for Separating Bundled Components" for more
information. The componentKey data element is used as the data key for the order
component. (See "About Order Data Position and Order Data Keys" for information about
the use of data keys in OSM.)

About Customized Component IDs for Separating Bundled Components
You create the customized order component by editing the bundle order component
specification.

You need to configure a decomposition rule and a bundle granularity order component
specification to make sure that order items for a fixed service and a broadband service are
decomposed into separate bundle granularity components, based on their customized
component IDs. The customized component IDs result in separate instances of bundle order
components, with separate component keys. This allows OSM to process the order
components for the fixed service and the broadband service separately. If you do not create
customized component IDs, the order items are processed together in the same order
component.

Chapter 5
About the Decomposition of Target System to Granularity Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 35

This customization also ensures that the component ID is the same for order items within the
same granularity (for example, a bundle) but not for order items at a higher granularity.

In addition, you may want to group order items into custom component IDs based on order
item requested delivery date. For example, you might want an order component to process all
order items with a requested delivery date that falls within the first two days of when an order
start, and another order component for the next two days. You can further combine these
grouping by requested delivery date within order item hierarchy groupings.

See "About Component Specification Custom Component ID XQuery Expressions" for more
information about configuring custom order component hierarchies using XQuery.

About the Granularity Components Stage
In addition to creating the decomposition rules that define the source and target components,
you need to create an orchestration stage that produces the granularity order components.

Summary of Configuring Granularity Components Decomposition
To summarize, to model the decomposition from a target system order component to a bundle
order component, you model the following:

• The decomposition rule, which decomposes the target system order component into
bundle granularity components

• The orchestration stage that produces the bundle order component

• The order item hierarchy that the XQuery ancestors function uses in the order item
specification

• The XQuery for the customized order component in the bundle order component
specification

About Dependencies
An orchestration plan is based on two main factors: decomposition, which derives the order
components, and dependencies, which dictate when the order components are allowed to run.
OSM calculates order item decomposition first before calculating dependencies.

Dependencies are relationships in which a condition related to one order item must be satisfied
before another item can be processed successfully. For example, a piece of equipment must
be shipped to a location before the action to install it at that location can be taken.

You typically create dependencies between order items in the same order (intra-order
dependencies). You can model the following types of intra-order dependencies using fulfillment
patterns:

• Order Item dependency: A dependency that requires the completion of one type of
fulfillment function for an order item before starting another type of fulfillment function for
the same order item within a single fulfillment pattern. For example, for a single order item
included in a VoIP.Service fulfillment pattern, you can specify that the provision function
order component must process an order item before the bill function order component can
begin processing the same order item.

• Fulfillment pattern dependency: A dependency that requires the completion of a
fulfillment function for an order item in a fulfillment pattern before starting a fulfillment
function for another order item in a different fulfillment pattern. For example, for a single
order item included in a VoIP.Service fulfillment pattern, you can specify that the provision

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 35

function order component can only process an order item after the provision function order
component on the BroadBand.Service fulfillment pattern has completed.

• Order item property dependency: A dependency that requires the completion of one
order item before starting another order item based on order item properties.

• Order item hierarchy dependency: You can configure an order item hierarchy that
automatically creates dependencies between predecessor and successor order items
based on order item properties so that order items run sequentially. The successor order
item can only begin after the predecessor order item completes. For example, order item A
would have to complete all functions within its fulfillment pattern before order item B could
begin processing its functions within its own fulfillment pattern. The fulfillment patterns
could be identical or different, but they would have to be run separately for each order item
with the parent child relationship.

For more information, see "About Intra-Order Dependencies".

You can also create dependencies between order items in different orders (Inter-order
dependencies). For example, the order items in a follow-on order for VoIP provisioning might
depend on the execution of the order items in the original order for DSL provisioning. See
"About Inter-Order Dependencies" for more information.

You can model dependencies in two ways in Design Studio:

• As order item dependencies. These dependencies are modeled as part of fulfillment
patterns. Most dependencies are modeled in this manner.

• As orchestration dependencies. These dependencies are modeled outside of fulfillment
patterns. While not as common as those modeled in fulfillment patterns, orchestration
dependencies are useful in specific circumstances; for example, if you need to define a
generic dependency or want to model one without having to modify a fulfillment pattern.

Figure 5-16 shows order items displayed in the Order Management web client. In this example,
the billing order items for a fixed service can start immediately because they have no
dependencies. The billing order items for high-speed Internet must wait until the provisioning
order items have completed.

Figure 5-16 Dependencies Displayed in the Order Management Web Client

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 35

About Intra-Order Dependencies
A dependency requires two order components: the waiting order item and the blocking order
item. The blocking order item is the order item that must complete before the waiting order item
is started.

Dependencies can be based on several different factors, including:

• Completion status. For example, the blocking order item must be complete before the
waiting order item can start or you can specify to start billing only after provisioning has
completed.

• Actual and relative date and time. For example, you may want an order component that
contains order items for an installation to start two days after the completion of the order
component that contains the order items for shipping the equipment.

• Data change. For example, you can specify that shipping must wait until a specified order
item property in the blocking order item has a specified value.

Order items can have combinations of dependencies. For example, an order item for an
installation can depend on a combination of a completion status dependency (item successfully
shipped) and date dependency (wait two days after shipment to schedule installation).

Note

You can manage dependencies during amendment processing; for example, when you
submit a revision order. See "Modeling Changes to Orders " for more information.

Although dependencies exist logically between order items, they are managed by order
components. In other words, if any item in a component has a dependency, the component as
a whole cannot be started until the dependency is resolved. In the Order Management web
client, order items include dependency IDs to indicate items whose dependencies are
managed together. See OSM Order Management Web Client User's Guide for more
information.

Modeling an Order Item Dependency
The simplest form of dependency is an order item dependency, configured in a fulfillment
pattern. This type of dependency is based on function order components; for example, the
billing order component cannot start until the provisioning function has completed.

Figure 5-17 shows a dependency relationships. Note the two layers of dependency: billing is
dependent on provisioning, and everything else is dependent on billing.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 35

Figure 5-17 Dependency Relationships for Order Item Dependency

In addition to defining the function order components, you need to define the conditions that
govern the dependency. The default condition is to wait until the final task associated with the
order item has completed. Figure 5-18 shows a wait condition defined in Design Studio. In this
case, the waiting order item must wait until the blocking order item task has reached the
Completed state. See "About Order Item Dependency Wait Conditions" for more information.

Figure 5-18 Wait Condition in Design Studio

About Order Item Dependency Wait Conditions
Dependency wait conditions specify the condition that the blocking order item must be in
before the waiting order item can start. For example, the default wait condition is to start the
waiting order item when the last task associated with the blocking order item reaches the
Completed state.

You specify wait conditions in fulfillment patterns and orchestration dependencies. You can set
different wait conditions for each dependency. The wait conditions can be:

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 35

• The task state of the final task associated with the blocking order item

• A change in the data for a specified field. See "About Order Item Dependency Wait
Conditions Based on Data Changes" for more information.

• A specified duration after the task state or data change condition has been met. You can
specify a value in months, weeks, days, hours, or minutes, or you can specify an XQuery
expression to determine the delay (see "About Wait Delay Duration XQuery Expressions").
For example, you can specify to start the waiting order item two days after the blocking
order item has completed.

• A specific date and time based on the result of an XQuery expression (see "About Wait
Delay Date and Time XQuery Expressions"). For example, you can specify to start the To
Component order component on a date specified in an order item property.

The orchestration dependency wait condition options are identical.

About Order Item Dependency Wait Conditions Based on Data Changes
You can base a dependency on a change to data. The data must be included in an order item
property, and it must be in the task data of the task associated with the blocking order item.

To configure the dependency, you define the following:

• The order item property that is evaluated. Any change to the data in the order item
property triggers an evaluation of the data to determine if it matches the conditions
required for the dependency.

• An XQuery expression that evaluates the data retrieved from the blocking order item. The
expression returns true or false; if true, the dependency has been met.

Figure 5-19 shows a data change dependency in Design Studio.

Figure 5-19 Data Change Dependency in Design Studio

In Figure 5-19:

• The Order Item field specifies the order item specification to use.

• The order item property that the dependency is based on is milestone.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 35

The Relative Path field (not used in this example) is an optional field you can use to
specify a child data element in the order item properties.

• The XQuery expression evaluates the data in the milestone property to determine if the
dependency has been met. See "About Order Data Change Wait Condition XQuery
Expressions" for more information.

Modeling a Fulfillment Pattern Dependency
You can define dependencies across different order items by basing the dependency on the
fulfillment patterns of the order items. For example, you can create a dependency that
specifies to provision fixed services only after broadband services have been provisioned.

Figure 5-20 shows a dependency based on fulfillment pattern. In this example, the dependency
requires that fixed services be provisioned before broadband services. To configure this type of
dependency, you edit the fulfillment pattern of the waiting order item. In the fulfillment pattern,
you provide a list of waiting and blocking order components.

Figure 5-20 Dependency Based on Fulfillment Pattern

Figure 5-21 shows the dependency relationships shown in Figure 5-20. Note that fixed
provisioning is the blocker for broadband provisioning and for fixed billing.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 35

Figure 5-21 Dependency Relationships for Fulfillment Pattern Dependency

Modeling an Order Item Property Correlation Dependency
Using properties correlation is the most flexible way to configure dependencies. You use this
method to create a dependency on two different order items that share the same order item
property. As with other dependencies, you specify a blocking component (the From
Component field) and a waiting component (the To Component field), but you also enter an
XQuery expression to select the order item property that order items in the To Component
field must share with order items in the From Component field (see "About Order Item
Dependency Property Correlation XQuery Expressions" for more information).

About Inferred Dependencies
OSM is able to create dependencies at run time by inferring dependencies. For example, you
might create this series of dependencies:

Provisioning - Billing - Marketing

If the order item has no billing function, there is an inferred dependency between Provisioning
and Marketing, even though you have not modeled that dependency. Provisioning must
complete before Marketing can start.

Inferred dependencies mean that whenever A is dependent on B and B is dependent on C, A
is dependent on C. This avoids the need to model every dependency that might be possible.

Figure 5-22 shows a sample dependency configuration. Figure 5-23 shows the run-time view
of the same configuration when there is no billing function. In this case, the Order Management
web client shows dependencies from provisioning to marketing, synchronize customer, and
collections.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 35

Figure 5-22 Dependency Relationship

Figure 5-23 Inferred Dependencies at Run Time

Inferred dependencies are supported within a fulfillment pattern, but they are not supported
across fulfillment patterns. For example, OSM does not infer a dependency from
ProvisioningFunction(Service.Fixed) to BillingFunction(Service.Broadband). You must
specifically model that dependency.

About Modeling Orchestration Dependencies
You use orchestration dependencies to create dependencies between order components that
are not based on fulfillment patterns. For example, if you need to define a generic dependency
or want to model one without having to modify a fulfillment pattern, you can use an
orchestration dependency specification.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 35

As with dependencies defined in fulfillment patterns, you can specify wait conditions and the
type of order item dependency (for example, order item, fulfillment pattern, and property
correlation).

About Processing Order Items Sequentially
You can enable order items to process sequentially at run-time by setting an order item
dependency hierarchy in the order item specification editor Order Item Hierarchies tab. When
you model order items to run sequentially, avoid creating circular dependencies by ensuring
that you do not include order items with a predecessor successor relationship into the same
order component.

For example, you can ensure that only one order item processes at a time by configuring the
orchestration granularity for a component to process only one order item at a time. Or you
could also set the granularity for a component to process only a bundle of order items at a
time. For example, between a bundle for VoIP and another bundle for Broadband. If
parameters designating the successor predecessor relationship always establish a relationship
between order items across two different bundles, then you avoid circular dependencies in this
way as well.

Figure 5-24 shows how order items can be configured to process sequentially based on two
order item properties defined in an order item specification order item hierarchy. You can use
any order item property, so long as you can use the properties to establish the predecessor
and successor relationship.

Figure 5-24 Order Item Processing Sequence

See "Modeling Order Item Hierarchies" for more information about modeling order item
hierarchies.

About Inter-Order Dependencies
An inter-order dependency is a dependency between order items in different orders. You
typically configure this type of dependency to manage changes to an order when that order
has passed the PONR and cannot be amended. However, you can also use inter-order
dependencies for other purposes, such as managing fulfillment functions on different systems,
load balancing, and so on.

When using inter-order dependencies, the blocking order is the base order, and the waiting
order is a follow-on order. A typical scenario is:

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 35

1. A customer has ordered a broadband service.

2. The next day, while the order is still in-flight but past the PONR, the customer requests a
change to the service bandwidth.

3. Because a revision to the base order cannot be submitted, the customer service
representative creates a follow-on order.

4. The follow-on order is submitted to OSM; however, it does not begin processing until the
base order has completed.

You typically model inter-order dependencies between a base order that has reached its point
of no return (PoNR) (where a revision order is no longer possible) and a follow-on order (see
"Modeling a Point of No Return" for more information). A follow on order does not trigger
amendment processing on the original base order, but does have a dependency on one or
more order items on the base order through the an inter-order dependency. You configure the
inter-order dependency on the follow-on order so that it can check that the blocking order items
on the base order have completed so that the waiting order items on the follow-on order can
start processing.

Here are some important points to know about inter-order dependencies:

• Inter-order dependencies are based on order items. After the base order completes the
blocking order item, the follow-on order can start, even though the base order is still in-
flight.

• Inter-order dependencies are sometimes used to manage technical dependencies when a
specific fulfillment requirement cannot be handled by a revision. However, they can also be
based on business reasons, when it is simpler or more efficient to use a follow-on order
than to model revisions.

• A follow-on order does not perform amendment processing on the base order. A follow-on
order can be used to add, modify, or cancel services, similar to any order. The key feature
is that a follow-on order has a dependency on another order.

You must model the inter-order dependencies into both the base order and the follow-on order.

• The follow-on order must be able to find the base order and be able to recognize if the
blocking order item has completed.

• The base order must contain a reference to allow the follow-on order to find it.

To configure an inter-order dependency, you use the Order Item Dependencies tab. The
configuration typically consists of the name of the dependency and its XQuery or data instance
(see "About Order Item Inter-Order Dependency XQuery Expressions" for more information
about inter order item XQuery expressions).

You can create inter-order dependencies that involve order item hierarchies. For example, you
can specify that the blocking order item include all of the order items in its hierarchy. To do so,
you select the child completion dependency when specifying an order item hierarchy (see
Figure 5-25). For more information about order item hierarchies, see "Modeling Order Item
Hierarchies").

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 35

Figure 5-25 Use for Child Completion Dependency Selected in Design Studio

About Modeling Orchestration Dependencies
Figure 5-26 shows an orchestration dependency in Design Studio.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 35

Figure 5-26 Orchestration Dependency in Design Studio

Using Task States to Manage Orchestration Dependencies
You can use task states when defining orchestration dependencies. For example, you can
specify to wait until a task has reached a specified state before an order component can be
processed.

Chapter 5
About Dependencies

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 35

6
Modeling the Order Transformation Manager

This chapter describes how to model the order transformation manager in an Oracle
Communications Order and Service Management (OSM) solution.

Understanding the Order Transformation Manager
The order transformation manager provides users with the ability to transform order items. For
example, you can use the order transformation manager to transform customer-focused order
items (what the customer bought) to service-focused order items (the services that equate to
what the customer bought). It enables you to set up guidelines for order transformation that do
not need to be changed due to product changes. Instead of writing a lengthy XQuery, users
can model the order transformation in Oracle Communications Service Catalog and Design -
Design Studio. The order transformation manager also provides visibility in the Order
Management web client into service processing, making it easier to see how customer services
are being transformed into the services being processed by OSM. In addition, the order
transformation manager enables you to propagate data upstream and assists in status
consolidation.

Order Transformation Manager in Runtime
In runtime, when the order transformation manager is triggered, OSM initiates the following
process for each domain that has order items associated with it:

1. The appropriate transformation sequence is accessed to determine the appropriate
transformation stages.

2. The transformation stages are run in sequence. For each transformation stage:

a. The stage condition is evaluated to determine whether the stage should be run. If not,
OSM moves to the next stage.

b. The list of source order items is gathered: both context order items (the order items to
be transformed) and related order items (order items that might contribute data to the
transformed order items).

c. The list of mapping rules that apply to the named relationships for the transformation
stage is gathered.

d. The mapping rules are processed, creating transformed order items and mapping
parameters to them.

3. The transformed order items are processed in the same way as original order items, for
example being processed by order components.

The Order Transformation Manager and the Conceptual Model
Entities are realized into the OSM cartridges by different means. Following is a description of
how the different entities are realized into OSM or referenced by OSM.

• Provider Functions: Provider functions in the conceptual model are realized into OSM as
transformation managers.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 8

• Named Relationships: These entities are realized into OSM when they are referenced by
OSM entities, such as mapping rules.

• Domains: Domains are referenced in OSM by transformation managers and mapping
rules.

• Products and Customer-Facing Services: These entities are realized into OSM when they
are included in relationships that are used by the order transformation manager and when
their parameters are mapped to OSM order items using order item parameter bindings.

• Action Code: These are referenced in OSM as action codes.

Figure 6-1 depicts general relationships between conceptual model entities and OSM entities
that are used by the order transformation manager.

Figure 6-1 Relationships Between Conceptual Model Entities and OSM Entities

OSM Entities Used in the Order Transformation Manager
The order transformation manager uses several entities in Design Studio for OSM.

Chapter 6
OSM Entities Used in the Order Transformation Manager

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 8

• Transformation manager: The transformation manager entity enables you to select the
transformation sequences for the service domains within a provider function. This entity is
the entry into the order transformation functionality.

• Transformation sequence: The transformation sequence enables you to define the
transformation stages and the logic to be used at each transformation stage.
Transformation stages define the source and target order items and the relationship
between them for each step of the transformation.

• Order item specifications: You must define an original (source) order item specification that
defines the structure of the incoming order items and a transformed (target) order item
specification that defines the structure of the output of the order transformation for the
order transformation manager. If the same structure is used for both, the same order item
specification can be defined for both original and transformed order items. See "About
Order Items" for more information about configuring and using order items.

• Mapping rules: Mapping rules define the way that original order items are transformed into
transformed order items. You use mapping rules to define how transformed order items are
generated and how their parameters and properties are populated. The data elements you
can use as a source for the mappings are the parameters on the original order item in
addition to the parameters on the actions defined for the order item. There are many
different ways to generate the parameters and properties for the transformed order items.
These methods include:

– You can map parameters from the source order item to the target order item. You can
copy the value from the source to the target, transform the value of the source
parameter or property to a value on the target based on pre-defined value mappings or
on the units of measure for each, and you can write XQuery expressions to do the
value transformation.

– You can map order item instances from the source order item to parameters or
properties on the target order item. You can either set up a specific value to use on the
transformed order item based on the presence of the source order item, or you can
use XQuery to determine the value for the parameter or property on the transformed
order item.

For more information about mapping rule types, see the Design Studio Modeling OSM
Orchestration Help.

Mapping rules also enable you to map actions for the transformed order item either using
the actions defined in the named relationship or defining the actions specifically for the
mapping rule, based on the input, output, and current actions of the order items.

• Order Item Parameter Bindings: The order item parameter bindings enable you to bind the
parameters from a conceptual model entity to parameters on an order item. They also
enable you to determine the mapping between the parameters on the conceptual model
entity and the properties on an order item. In addition, they enable you to transform the
parameters from the customer order line before they are added to the conceptual model
entity. One use for this would be to transform name/value-pair-type parameters from the
incoming order into more strongly typed parameters on the conceptual model entity.

• Transformation Tasks: If you want to call the order transformation manager from a process
instead of before the orchestration plan is generated, you do this using a transformation
task. See "Calling the Order Transformation Manager" for more information. The
transformation task is very much like an automated task, except that by default it has an
appropriate automation plug-in defined for it and provides the ability to define the
transformation manager to call.

Chapter 6
OSM Entities Used in the Order Transformation Manager

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 8

Calling the Order Transformation Manager
There are two methods for calling the order transformation manager:

• If you want the order transformation manager to run before the orchestration plan is
generated, select Invoke Order Transformation Manager in the Orchestration Process
and select a provider function. This is the recommended practice, as it causes the order
transformation manager to be run in the context of the whole order and with one call.

• If you want to call the order transformation manager at a different place in the order
process, you can include a transformation task in an OSM process. The transformation
task calls a specific transformation manager that you define in the task. This option
provides flexibility in the following ways:

– It enables you to call the order transformation manager multiple times in the process
flow for different provider functions. You should not call the order transformation
manager more than once for the same provider function.

– It provides the option not to persist the results of the transformation to the order
template. This is useful if the order transformation manager results are transient or
going to be passed through directly to a southbound system. Additionally, this gives the
user the flexibility to format any results that are going to be persisted in whichever
structure they want.

– It provides the ability to filter the order items passed into the order transformation
manager. This enables a user to ensure that the order transformation manager only
processes relevant order items.

The order transformation manager works the same regardless of the way it is called.

Using the Distributed Order Template with the Order
Transformation Manager

When you are using the order transformation manager, you must use the distributed order
template for the order item specification that contains transformed order items. For the order
item specification that contains original order items, using the distributed order template is
optional. See "About Using a Distributed Order Template" for general information about the
distributed order template.

The distributed order template uses namespaces to determine the data structure that should
be used. For transformed order items, the namespace depends on the source of the data for
the transformed order item. Data that is defined in the order item specification itself will use the
namespace for the order item specification, the same way that data would be referenced for an
input order item. Following is an example of an XQuery reference to the lineItemID property on
the OutputOrderItem order item with the namespace http://ex_output.com:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/lineItemID

Data that has been derived from a common model entity, for example an action, will use a
different format. In the following situation:

• Order item namespace: http://ex_output.com

• Order item name: OutputOrderItem

• Name of the parameter assigned as the Dynamic Parameter Property in the order item
specification: dynamicParams

Chapter 6
Calling the Order Transformation Manager

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 8

• Conceptual model cartridge name: Model_Broadband

• Conceptual model cartridge version: 1.0.0.0.0

• Conceptual model entity (in this case an Action) name: SA_Add_Internet

• Parameter name on SA_Add_Internet: serviceLevel

The reference would look like this:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/
dynamicParams[@type='{Model_Broadband/1.0.0.0.0}SA_Add_InternetType']/serviceLevel

The parameters from the conceptual model entity are contained in the dynamicParams
element on the transformed order item. The type for the parameters contained in the
conceptual model entity has the string "Type" appended to the name of the entity. Thus, the
type contains SA_Add_InternetType rather than just SA_Add_Internet.

Modeling OTM With Calculate Service Order
Calculate Service Order is a specific provider function that is delivered via design patterns in
Design Studio. The Calculate Service Order provider function is the functional module that
transforms customer orders into service orders.

Using Calculate Service Order has two parts. First, you must run the relevant design patterns
to set up the framework, and then you must configure the other required entities that are
specific to your implementation.

Calculate Service Order Design Patterns
Calculate Service Order includes two design patterns:

• The Design Studio core software contains a design pattern (Common Model Base Data)
that sets up the base data for the conceptual model. The following entities that are created
in the conceptual model support Calculate Service Order:

– A Design Studio project to contain the conceptual model entities (optional, an existing
project can be used)

– The Calculate Service Order provider function (see "About the Calculate Service Order
Provider Function")

– The Primary and Auxiliary relationship types (see "About Calculate Service Order
Relationship Types")

For more general information about these entities, see the information about designing
solutions in Design Studio Concepts.

• Design Studio for OSM contains a design pattern (Calculate Service Order) that contains
OSM entities to support Calculate Service Order:

– A Design Studio project to contain the OSM entities (optional, an existing project can
be used)

– The Calculate Service Order transformation sequence (see "About the Calculate
Service Order Transformation Sequence")

About the Calculate Service Order Provider Function
The Calculate Service Order provider function is a logical entity that groups all the metadata
required to perform the transformation. It also provides the ability to determine what types of

Chapter 6
Modeling OTM With Calculate Service Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 8

entities and relationships can be used in the transformation and the method used to realize the
provider function into OSM.

The Calculate Service Order provider function defines the following associations:

• The input (Product) and output (Customer Facing Service and Resource) conceptual
model entities

• The relationship types (Primary and Auxiliary)

About Calculate Service Order Relationship Types
Calculate Service Order also contains the definitions of the following relationship types:

• Primary: In this relationship type, transformed order items are created from original order
items. Action codes are normally transferred to the target without being changed, or you
can define rules to change the action types.

• Auxiliary: In this relationship type, transformed order items are enriched, but no new
transformed order items are created. Action codes are translated based on the action type
of the source item combined with the current action type of the target item. If the target
action type is None, the source action type will be transferred to the target without being
changed. If the source and target action types are both defined to something other than
None, the action code of the target is changed to Modify. Otherwise, the target action code
is unchanged.

These action types are the default for the relationship type. In a mapping rule, you can either
use the default from the relationship type or you can define specific rules for a named
relationship to be used for the mapping rule.

About the Calculate Service Order Transformation Sequence
The transformation sequence (CalculateServiceOrder) that is created by the OSM design
pattern for Calculate Service Order contains the following transformation stages. These stages
process order items based on an order item hierarchy. See "Modeling Order Item Hierarchies"
for more information about the way order items can be arranged in hierarchies. You can edit
these stages using Design Studio, if you need the transformation to work differently.

1. ProcessPrimaryRelationships: This stage creates transformed order items from original
order items. Parameters from the original order item are also mapped to parameters on the
transformed order item.

2. ProcessDescendantItems: This stage looks at child order items of the original order items
and uses them to provide auxiliary data on the transformed order items. This can happen
in two ways: the child order item itself may map to a data element on the transformed order
item, or parameters from the child order item may map to parameters on the transformed
order item. The child order items considered in this stage are not only the immediate
children of the original order item, but also their children, to the bottom of the order item
hierarchy.

3. ProcessSiblingItems: This stage is similar to the ProcessDescendantItems stage,
except that the order items that are contributing data to the transformed order item are the
siblings, rather than the descendants, of the original order item. As in the
ProcessDescendantItems stage, the order items can provide auxiliary data by the sibling
order item mapping to a data element on the transformed order item, or by parameters
from the sibling order item mapping to parameters on the transformed order item.

4. ProcessAncestorItems: This stage is also similar to the ProcessDescendantItems
stage. In this stage, the order items considered are the parent order items instead of the
children. As in the ProcessDescendantItems stage, the order items can provide auxiliary

Chapter 6
Modeling OTM With Calculate Service Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 8

data by the parent order item mapping to a data element on the transformed order item, or
by parameters from the parent order item mapping to parameters on the transformed order
item. The parent order items considered in this stage are not only the immediate parents of
the original order item, but also their parents, to the top of the order item hierarchy.

User-Created Entities for Calculate Service Order
In addition to the entities created by the design patterns, you must also create entities with
information specific to your implementation. Some of these entities are in the conceptual
model, and some are in OSM.

In the conceptual model, you will need to model at least some of the following:

• Products

• Customer Facing Services

• Resources

• Resource Facing Services

• Actions

• Action Codes

• Data elements

In OSM, you will need to model all of the following:

• Order item specifications for the original (source) and transformed (target) order items

• Transformation manager

• Mapping rules

• Order item parameter bindings: OSM has a design pattern to facilitate creating these
bindings

Modeling OTM Without Calculate Service Order
If the supplied Calculate Service Order order transformation does not transform the order items
the way you need, to such an extent that you do not think that editing the supplied entities
would work for your situation, you have the option of configuring the order transformation
manager from scratch instead.

To configure the order transformation manager if you are not using Calculate Service Order:

1. Model conceptual model entities:

a. Create a provider function.

b. Create relationship types.

c. Create one or more functional areas.

d. Create a domain in the conceptual model.

e. Model customer-facing services in the conceptual model.

f. Model products in the conceptual model.

g. Model named relationships in the conceptual model.

h. Add the products to the domain in the conceptual model.

i. Model a provider function in the conceptual model.

Chapter 6
Modeling OTM Without Calculate Service Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 8

j. Model data in the conceptual model, including keys for conceptual model entities.

For more information, see "Working with Conceptual Models" in Modeling Basics.

2. Model the order item specifications for the original and transformed order items:

a. Model the order item recognition. This is usually a parameter on the customer order
line item, such as Fulfillment Item Code.

b. Model order item properties, including a property for order item recognition, a property
to contain dynamic parameters created by the order item parameter binding, and
properties for the order item ID and action.

3. Model order item parameter bindings to create typed and named parameters from
parameters that may have been in name/value pairs in the incoming customer order line
item.

4. Model mapping rules. These rules create order items and order item parameters on
transformed order items based on original order items (that is, the order items and
parameters from the customer order). The following types of mappings are available:

• Entity-to-entity mapping: This creates a new transformed order item from an original
order item. For example, you can use this to create a transformed order item
representing a line from an original order item representing a major service.

• Attribute-to-attribute mapping: This type of mapping creates new parameters on the
transformed order item based on parameters on the original order item.

• Entity-to-attribute mapping: This type of mapping creates new parameters on the
transformed order item based on the presence of particular original order items. For
example, an original order item representing a feature might be mapped to a
parameter for that feature on an order item representing a new line.

5. Model a transformation sequence. This involves modeling a series of transformation
stages. Each transformation stage includes the following steps:

a. Identify context order items for the transformation stage. These nodes are the original
order items that will be available for transformation. You can select these nodes either
by selecting an order item property that the original order items will have in common or
by defining an XQuery expression to select them.

b. Identify related order items for the transformation stage. These order items will be able
to contribute data to the transformed order items. You can select these nodes either by
their relation to the context order items (parent, sibling, child) or using an XQuery
expression. The relationships between the order items will be based on the physical
order item hierarchy defined in the order item specification.

c. Select the relationship and relationship type that will be available to the transformation
stage. For example, the transformation stage may be set up to include a Primary
relationship between the Broadband product and the BroadbandInternetAccess
customer-facing service.

d. Determine whether the stage should be conditional, and if so, write a condition for it.

6. Create a transformation manager that links the service domains and transformation
sequences that you have created.

Chapter 6
Modeling OTM Without Calculate Service Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 8

7
Modeling Processes and Tasks

This chapter describes how to model process, rules, and tasks in an Oracle Communications
Order and Service Management (OSM) solution.

Overview of Processes and Tasks
The Process editor in Oracle Communications Service Catalog and Design - Design Studio is
where you define the flow of tasks for a particular process. Processes have a single entry point
and one or more exit points. When you create the process structure, you must place the tasks
in the order in which the process is to complete them.

In addition to running tasks and subprocesses, you can control how a process runs; for
example, specify to delay processing a task or create multiple possible transitions from one
task to another based on task status.

Order processes can contain automated tasks, manual tasks, and task status transitions from
one task to another task, as well as other process actions such as task transition delays, joins,
redirects, rules, subprocesses, and end process points.

A task is a specific activity that must be carried out to complete the order; for example, if an
order needs to verify that an ADSL service was activated, you might model a task named
Verify ADSL Service. Tasks can be manual or automated. Manual tasks must be processed by
an order manager, using the Task web client. Automated tasks run automatically with no
manual intervention.

OSM also provides specialized automated task types called the activation task for
communicating with Oracle Communications ASAP and the transformation task for initiating
the order transformation manager functionality from within a process flow.

Modeling Processes
The following sections provide information about modeling processes.

About Process Flows
Process flows define the sequence of tasks that the process performs. You can design flows
for specific scenarios, including:

• A flow that ends in a successful process completion (Success) or a process failure
(Failure).

• Flows for various activities, such as Cancel, Next, and Back.

Figure 7-1 shows how flows appear in a process in Design Studio. In this figure, flows are
labeled with the task status; for example, route_to_osm.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 29

Figure 7-1 Process Flows in Design Studio

You can control flows in the following ways:

• You can use an order rule to apply conditions that must be met before the flow can
continue.

• You can ensure that the system verifies that mandatory fields are present when a task
completes. (This option is not available for tasks with a Rollback status.)

• You can specify a reporting status to display in an OSM web client. This status is tracked in
the web client's OSM history.

Figure 7-2 shows flow properties in Design Studio.

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 29

Figure 7-2 Flow Properties

Adding Process Activities
You use process activities to design how the process runs. Figure 7-3 shows the Activities
options in Design Studio. The example process includes a timer delay between the two tasks.

Figure 7-3 Process Activities Options in Design Studio

In addition to the tasks and subprocesses that the process runs, you can control the process
by using the following:

• Rules

• Timer delays

• Event delays

• Joins

• Ends

• Redirects

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 29

Rules evaluate a condition and then specify the next step in the process. For example, a rule
task might evaluate the data that describes the geographic region of the order and branch the
process appropriately. Rule tasks perform as follows:

• They typically read and evaluate data to determine what to do.

• They always evaluate to true or false.

• They are always run automatically, with no manual involvement.

Timer delays delay the process until a rule evaluates to true. Timer delays perform as follows:

• The rule is evaluated at specified timed intervals.

• The data evaluated in the rule must be data that is included in the order.

• The rule always evaluates to true or false.

• The delay is always run automatically, with no manual involvement.

Event delays delay the process until a rule evaluates to true. Event delays perform as follows:

• The rule is evaluated only when the data specified in the rule changes.

• The data evaluated in the rule must be data that is included in the order.

• The rule always evaluate to true or false.

• The delay is always run by OSM, with no manual involvement.

Joins combine a set of flows into a single flow. (Process flows define the sequence of tasks
that the process performs. See "About Process Flows" for more information.) The unified flow
can join flows based on all transitions completing or any one transition completing (by selecting
All or selecting Any). Selecting Any will create one instance of the flow for each incoming
transition.

Ends stop the process from continuing.

Redirects redirect the process to another task in the same process or to a different process.

Note

Timer and event delays are not used during amendment processing.

Configuring Subprocesses
When you model subprocesses, you specify the following properties:

• If you want the associated tasks to appear in the Process History window in the Task web
client.

• The pivot data element on which OSM spawns individual subprocess instances. For
example, if you have subprocess that creates an email address for every person in a list,
you might select the Person data element as the pivot data element, so the subprocess
spawns an instance for each person. See "Generating Multiple Task Instances from a
Multi-Instance Field" for more information.

• How to display the associated tasks in the Task web client. For example, you can display
them sequentially, sorted, or unsorted.

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 29

• The process to run, based on rules. The rules in an order control how various actions take
place; for example, when to trigger a jeopardy notification and how delays in the order
process should be handled.

• How the subprocess handles exceptions. For example, you might have a process called
create_vpn. Within that process, there is a subprocess called validate_address. The
subprocess validate_address can throw an exception when an address is invalid. Using
the exception mapping functionality, you can instruct the parent process and subprocesses
to take specific actions when the subprocesses throw exceptions. Exception mapping
enables you to indicate whether the parent process create_vpn should terminate all of the
invoked instances, terminate only the offending instance, or ignore the exception
altogether.

Understanding Parallel Process Flows
There are two ways to model parallel processes:

• Subprocesses branching from a task. This allows multiple tasks to run within the same
time frame. Parallel flows can be rejoined at an appropriate point if needed. Typically, there
are no dependencies defined between parallel flows, but whether these tasks actually run
simultaneously depends on the order data, how order tasks are fulfilled, and other factors.

• Subprocesses running from a pivot data element. Multi-instance subprocesses are
subprocesses that can be instantiated multiple times. When a subprocess has a pivot data
element defined, multiple instances of the subprocess, running in parallel, are created. For
example, if the pivot data element for a subprocess is defined as interested_party, and an
order contains three instances of interested_party, each containing a different person's
name and contact information, OSM creates three separate instances of the subprocess,
one for each set of data.

When planning your order specifications, give careful consideration to which data you make
available to each parallel process. Excessive and unnecessary data can have negative
impacts on performance, and on usability if manual tasks are involved. Also, make sure to flag
data as non-significant if the data is not needed for revision orders. By default, OSM assumes
that all data is significant.

About Amendments and Multi-Instance Subprocesses
An amendment to an order on which some of the data affecting a multi-instance subprocess
has changed can cause all subprocess instances to be redone, instead of only directly affected
subprocesses to be redone. This can result in unneeded processing for the subprocesses with
no data changes.

In amendment processing with multi-instance subprocesses, it is important to contain
compensation to only the subprocess instances that require compensation. This is achieved by
specifying a key. You specify a key in the Key subtab on the Order Template Node editor for
the data element specified as the pivot data element of the subprocess in the order template.
When a key is specified for a subprocess, OSM maps the revised data to the current data
using the key field and redoes only the subprocess that was affected.

About Order Rules in Processes and Notifications
Order rules control how various actions take place; for example, when to trigger a jeopardy
notification and how delays in the order process should be handled. Rules are used in process
flow decisions, conditional transitions, subprocess logic, delay activities, jeopardies, and
events.

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 29

OSM evaluates order rules by comparing data to data, or data to a fixed value. Figure 7-4
shows an order rule in the Design Studio Order editor Rules tab. This rule identifies residential
customers in a specific city. This is an example of a rule that might be used to send a fallout
notification to a regional fallout manager.

Figure 7-4 Example of an Order Rule Defined in Design Studio

Modeling Order Rules in Notifications
All jeopardy notifications and most event notifications use order rules to determine if the
notification should be triggered. (Event notifications that are used only for running an
automation plug-in do not use order rules.)

Figure 7-5 shows an example of a rule defined in Design Studio. This rule finds the city that the
customer lives in and the type of account, (Business or Residential). When the jeopardy
notification uses this rule, the notification is sent only if the order came from a residential
customer in Sao Paulo.

Figure 7-5 Rule Example

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 29

You can use rules such as the one shown in Figure 7-5 to route notifications to specific roles.
For example, you can combine rules and roles as follows:

Table 7-1 Example Rule and Role Combinations

Notification Type Triggered By Rule Specifies Sent to Role

Notification_Residential Expected duration exceeded Residential account Residential

Notification_Business Expected duration exceeded Business account Business

In this example, two identical notifications are created, both triggered by the order processing
time exceeding the expected duration. If the order is for a residential account, the notification is
triggered and sent to the role that handles residential accounts.

OSM uses a system-based null_rule. This rule always evaluates to true. Therefore, if you do
not specify a rule for a notification, the null_rule is used; because it is set to true, the
notification is triggered. If you do not specify any conditions to trigger the notification, and the
notification uses the null_rule, the notification is triggered every time it is polled.

Note

The polling interval cannot be changed at run time.

See "About Order Rules in Processes and Notifications" for more information about rules.

Using the System Date in Delays
You can create a rule that uses the system date as part of a condition. For example, you can
create a rule used in a delay that delays a task transition until the system date is at least the
value of a particular order data element of the dateTime data type. Figure 7-6 shows a rule
that triggers when the system date is at least the value of the date when a particular poll is run.

Figure 7-6 Using the System Date in a Rule

See "Adding Process Activities" for more information about delays in process flows.

Process and Task Design and Data Considerations for Compensation
There are aspects of compensation that you need to consider when you are designing data,
tasks, and processes.

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 29

Order Perspectives and Data Elements in Compensation
There are some aspects of compensation that you should consider when designing your
processes. Compensation takes place using the data in the contemporary order perspective,
but must be reconciled with the data in the real-time order perspective. (For more information
about the different order perspectives, see "About Order-Level and Task-Level Compensation
Analysis.")

The issue relates to data elements that have been added in tasks that are later in the process
than the task currently being compensated. The data that has been added is not present in the
contemporary order perspective, since it was not present when the task performed its do
operation. However, it is present in the real-time order perspective. If the redo operation
checks whether the data element exists, it will be checking the contemporary perspective and
will not find it. This will cause the redo operation to attempt to add the data element instead of
updating it, which will cause problems when the data is reconciled with the real-time order
perspective.

To avoid this situation, you should create any needed data elements before executing tasks
that may be compensated. If the data is order-level data, you should initialize the data in the
creation task for the order. If the data is function-level data, initialize the data needed by the
process in a task that is run early in the process, before tasks that may be compensated.

Effects of Process Loops on Compensation
When you have loops in your OSM processes that cause your tasks to run multiple times and
the process is compensated, each instance of the task that ran will be compensated. If entire
sub-processes are being looped, this can cause a large number of tasks to require
compensation.

For example, consider the process in Figure 7-7:

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 29

Figure 7-7 Simple Loop Process

In this very simplified process, Task1 can run multiple times if it fails. In our current example, it
is run four times: three times exiting with failure and once with success, as shown in
Figure 7-8.

Figure 7-8 Example of Initial Simple Loop Process Sequence

If the process needs to be compensated, the task will first be run once in redo mode. If this is
successful, it will make the rest of the initial flow obsolete, so the tasks remaining in that flow
would be run in undo mode, as shown in Figure 7-9.

Figure 7-9 Example of Compensation of Simple Loop Process

Chapter 7
Modeling Processes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 29

Then, in the new branch of the process, Task2 will also be run in amend-do mode.

This example shows that while looping inside a process is supported by OSM, solution
designers must carefully consider the implications of such loops when OSM compensates
them as a result of an amendment. Most solutions include more complicated loops with more
tasks per iteration, so you need to consider the impact that looped processes will have on the
performance of your overall solution.

Modeling Tasks Entities Common to All Task Types
The following sections provide information about modeling task entities common to all task
types.

Modeling Task States
All OSM tasks use states that determine various milestones in the progress of a task. The
default task states are:

• Received: The task has been received in the system and is waiting to be accepted by a
user (normally automatic for automated tasks) or assigned to a user (only in manual tasks).

• Accepted: The assigned user (system user account or a manual operator's user account).
The task is locked so that it cannot be modified or completed by other users.

• Completed: The task is finished.

• Assigned: (Manual tasks only) The task has been assigned to a user.

• Create Activation Work order Failed: (Activation Task only) The task attempted to create a
work order in the activation system but work order creation failed.

These tasks are mandatory and cannot be removed, but you can create custom task states.

Task states are important because they often trigger various functionality. For example,
automation task automation plug-ins only run the task is in the Accepted state. You can
configure task-level events to trigger when a task state is reached.

Modeling Task Permissions and Execution Modes
When you model tasks, you can specify which roles can perform which task execution modes
(Do, Redo, Undo, Failed-Do, Failed-Redo, and Failed-Undo). For example, you may want to
configure a specific role for normal Do, Redo, and Undo execution modes with a second role
for fallout management that also operates in fallout execution modes. OSM users that are part
of the fallout workgroup can work on failed automated and manual tasks. For more information
about task execution modes and change order management, see "About Task Execution
Modes".

Figure 7-10 shows roles used in a task specification.

Figure 7-10 Task Permissions

Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 29

About Normal and Fallout Execution Modes and Task States
OSM provides the following execution mode groups:

• Normal: Task execution modes that run in normal mode include the Do, Undo, Redo, and
Amend-Do modes for normal task processing activities.

• Fallout: Task execution modes that run in the fallout mode include Do in Fallout, Undo in
Fallout, Redo in Fallout, and Amend-Do in Fallout modes for troubleshooting tasks that
have failed.

Note

If an amendment is received while a task is in a fallout execution mode, the following
will happen:

• If the task is not configured to be compensated if it is in progress, the execution
mode of the task will not change as a result of the amendment order.

• If the task is configured to be compensated if it is in progress, and the amendment
contains changes to significant data:

– If the task is still needed after the changes to the order from the amendment
are considered, it will transition automatically to (normal) Redo mode.

– If the task is no longer needed after the changes to the order from the
amendment are considered, it will transition automatically to (normal) Undo
mode.

In both of these cases, your automation code (for either Redo or Undo execution
mode) should contain a check to see if the task has been in a fallout execution
mode, and also whatever code is needed to resolve any actions that have been
taken in the fallout execution mode. For example, if your automation for Do in
Fallout mode opens a trouble ticket, your Redo automation should check to see
whether it needs to close a trouble ticket.

• If the amendment order contains no changes to significant data, the execution
mode of the task will not change as a result of the amendment order.

Figure 7-11 shows how OSM transitions tasks to the fallout execution modes and back to
normal execution modes and how these modes relate to task states.

Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

Figure 7-11 Normal and Fallout Execution Mode and Task States

The following shows how the tasks in Figure 7-11 processes through each state in a Normal
execution mode:

1. When OSM starts a task, it enters into the Received state in a normal execution mode.

2. In Manual tasks, an operator can optionally assign the task to themselves or have the task
be assigned to them. When the task is assigned, it enters into the Assigned state.
Automation tasks do not use this state.

3. When an operator or the system begins working on the manual or automated task, the task
enters into the Accepted state.

4. While the task is in the Accepted state, the system or the operator can:

• Move the task to a customer defined state like the Suspended state for a business
reason defined for the task. From the Suspended state, the system or the operator
can return the task to the Accepted state or move it to the Assigned state.

• Move the task to the Completed state by completing the task.

• Fail the task. A failed task automatically moves to the Received state in a fallout
execution mode. You can fail a task in the following ways:

– Task web client for manual tasks

– OSM Java API for automated tasks in automation plug-in code.

– OSM XML API for manual and automated tasks in automation plug-in code.

Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 29

The following shows how the tasks in Figure 7-11 processes through each state in a fallout
execution mode:

1. A task enters a failed execution mode in the Received state from a normal execution
mode in the Accepted state.

2. In Manual tasks, an operator must assign the task to themselves or have the task be
assigned to them. When the task is assigned, it enters into the Assigned state.
Automation tasks do not use this state.

3. When an operator or the system begins working on the manual or automated task, the task
enters into the Accepted state.

4. While the failed task is in the Accepted state, the system or the operator can:

• Move the task to a customer defined state like the Suspended state for a business
reason defined for the task. From the Suspended state, the system or the operator
can return the task to the Accepted state or move it to the Assigned state.

• Move the task to the normal execution mode Completed state to complete the task.

• Retry the failed task. Retrying a task moves the task back to the normal execution
mode to the Received state to retry the task from the beginning. You can retry a failed
task in the following ways:

– Task web client for one task or for all tasks on the order

– Order Management web client for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot retry a specific task type in bulk across
multiple orders using a job control order.

– OSM Java API in automation plug-in code

– OSM XML API in automation plug-in code

– OSM Web Service API operation for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot retry a specific task type in bulk across
multiple orders using a job control order.

• Resolve the task. Resolving a task moves the task back to the original normal
execution mode and state it had been in before failing. You can resolve a failed task in
the following ways:

– Task web client for one task or for all tasks on the order

– Order Management web client for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot resolve a specific task type in bulk across
multiple orders using a job control order.

– OSM Java API in automation plug-in code

– OSM XML API in automation plug-in code

– OSM Web Service API operation for all failed tasks on a specific order component
within an order, for all failed tasks on each order, or for all failed tasks of many
orders as a job control order. You cannot resolve a specific task type in bulk across
multiple orders using a job control order.

Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 29

Modeling Task Status Transitions
You model task status the define how a task completes and to determine what the next task is
in the process flow. You define the status transitions available to a task in the task editor
Status/Status tab, and then you apply the status transition of process flows you create between
tasks.

You can use the default status transitions defined in manual, automated, activation, and
transformation tasks or you can create new status transitions that may better describe what is
happening during a status transition from one task to another.

The default statuses for a manual task are:

• Back

• Cancel

• Finish

• Next

The default statuses for a automated and transformation task are:

• Failure

• Success

The default statuses for a activation task are:

• Success

• Activation Failed

• Updated OSM Order Failed

You can also select from the set of additional predefined statuses (Delete, False, Rollback,
Submit, Failed, and True), and you can also define your own.

You can also use constraint behaviors with status transitions and manual tasks to better control
when an operator can transition from one task to another task. See "Using the Constraint
Behavior to Validate Data".

Specifying the Expected Task Duration
You can specify the expected length of time to complete a task. This information can be used
to trigger jeopardy notifications and for reporting. See "Modeling Jeopardy and Notifications"
for more information. This information is also used by OSM to calculate the order component
duration.

You can specify the length of time in weeks, days, hours, minutes, and seconds. The default is
one day.

You can also calculate the duration based on your workgroup calendars. If you have more than
one workgroup with different calendars all responsible for the same task, the calculation is
based on the first available workgroup that has access to the task. This ensures that a the task
only exceeds it's duration based on the workgroup calendar time.

For example, there might be a task with an expected duration of two hours, and the workgroup
that processes the task only works 9 AM - 5 PM Monday to Friday as indicated on their
workgroup calendar. If such a task is received at 4 PM on Friday, then the expected duration of
the task will expire at 10 AM Monday, as there was only two hours of the workgroup calendar

Chapter 7
Modeling Tasks Entities Common to All Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 29

time that had elapsed (4-5 PM Friday, then 9-10 AM Monday). This ensures that notifications
and jeopardies are triggered appropriately.

See OSM Task Web Client User's Guide for more information.

Specifying the Task Priority
Task priority is the same as the order priority unless a priority offset is defined. Priority of orders
and their tasks becomes effective when the system is under heavy load, ensuring that high
priority orders and tasks are not starved of resources by lower priority orders and tasks.

You define the task priority as an offset from the priority of the order itself. This specifies the
priority of the task in relation to other tasks in the order.

For example, if the order is created at priority 6, and this task is assigned a priority offset of -2,
then this task would run at priority 4 while tasks in the order with no offset would run at priority
6. Similarly, you could assign a task a priority offset of +2, which would mean that the task
would run at a slightly higher priority than other tasks in the order.

See "Modeling Order Priority" for more information about order priority.

About Extending Tasks
You can create a new task by extending from an existing task. The new task inherits all of the
data, tasks, rules, and behaviors of the base task from which it was extended. Changing
something on the base task is reflected in all tasks extending from it.

For example, if you have multiple tasks that all require the same data subset, you can create a
base task that contains this data, then extend from this task to create as many new tasks as
necessary. You can add new data and behaviors to each of the new tasks to create unique
task and behavior functionality. Extending tasks can significantly reduce duplication and
maintenance.

About Task Types
The following sections provide information about different task types.

Modeling Automated Tasks
You add automated tasks to processes whenever you need a task that can run automation
plug-in instances without user intervention. Automated task automation plug-ins can do various
tasks such as connect to a database to query data, transform data, or communicate with
external fulfillment systems. OSM runs the automation plug-in instances on an automated task
whenever the automated task transitions to the received state in a normal or fallout execution
mode (see "About Normal and Fallout Execution Modes and Task States").

Automation plug-in user task can perform multiple tasks based on the code you write in the
automation plug-ins states. Among the many functions you can implement in the code, you
must also ensure that the automation plug-ins manage task status transitions to complete a
task and move the task to another task on the process (see "Modeling Task Status
Transitions"). You can also specify task execution modes that determine what roles
(workgroups) can perform the task and in what ways (see "About Normal and Fallout Execution
Modes and Task States"). If an automated task does not have any automation plug-ins that can
run in fallout execution modes, and then the automated task runs as a manual task so long as
there are users associated with roles designated to manage the fallout execution modes (see
"Modeling Task Permissions and Execution Modes").

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 29

Automated tasks can also trigger a jeopardy notifications based on the duration of the task and
event notifications based on task state changes (see "Modeling Jeopardy and Notifications").

About Automation Plug-in and Automated Tasks
When you add an automated task to a process, you must associate at least one automation
plug-in for the task. To associate an automation plug-in for a task, you open the automated
task entity in the Automated Task editor, and add the plug-in to the task in the Automation tab.
When you deploy your cartridge to the run-time environment, the OSM server detects a task
that has an automation plug-in associated with it, the server triggers the plug-in to perform its
processing.

An automated task might have only a single automation plug-in associated with it. For
example, you might associate a built-in Automator plug-in with the task to interrogate the task
data, perform some calculation, update the order data, and transition the task. In this example,
as soon as the Automator plug-in has finished processing, it updates the task with an exit
status, and the OSM server moves to the next task.

An automated task can have multiple associated automation plug-ins. For example, you might
want to associate multiple plug-ins with a task to represent conversations with external
systems. You can associate a built-in Sender plug-in to receive the task data and send it to an
external system for processing. That external system might send an acknowledgement back to
a queue, where a second Automator plug-in--one that is defined as an external event receiver
(it receives data from external system queues)--consumes the reply and updates the order
data with the response. A third Sender plug-in might send the external system a message to
begin processing, and a fourth Automator plug-in can receive the "processing complete"
message from the external system, update the order, and transition the task.

See "About Automation Plug-ins" for more information.

Completing an Automation Task That Handles Concurrent Status Updates
An automated task can process multiple responses from external systems. For example, an
activation task might receive the status for each service on the activation request. The
activation task needs this information to determine when the activation has been completed by
the external system, at which point the task can transition to the Completed state.

• The external system can include data that indicates that all of the requests have been
completed. Typically, this is a message indicating that the response is the last response,
and there will be no further messages.

• If the external system cannot report that the last request has been processed, the
automation task must ensure that a response has been received for each request sent to
the external system.

When OSM must determine the last response, there are special considerations for concurrent
status updates. If the automated task needs to track the status of all responses, and multiple
responses are processed concurrently, the automation receiver instances executing
concurrently do not have visibility to status updates from the other receivers. The receiver may
never run with the task data that contains all status updates and so never encounters a
condition where it can complete the task.

This situation can be handled by configuring an automated notification plug-in that monitors the
status fields and creates a notification whenever the data changes.

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 29

Figure 7-12 Sequence Diagram for Concurrent Status Update Notification Process

The notification plug-in is triggered every time the status field is updated by the automation
receiver. The notification plug-in runs in a separate transaction after each receiver update, and
can check the status responses to determine if all responses have been received for each
action request. When all responses are received, the notification plug-in can generate a
message to trigger an automation receiver. This receiver is correlated to the original sender by
means of an ID set by the sender specifically for tracking the status updates. The receiver is
then run with the task data that contains all of the status responses and it can complete the
task.

Modeling Manual Tasks
You add manual tasks to processes whenever you need a task that requires direct user
intervention. Users work with manual tasks in the OSM Task web client whenever a manual
task transitions from the received state to the assigned state in a normal or fallout execution
mode (see "About Normal and Fallout Execution Modes and Task States"). You assign manual
tasks to OSM users in the following ways:

• Manually: The task appears in the OSM Task web client in the received state and an
operator has the responsibility to assign the task to a user.

• Automatically (pre-defined in Design Studio): You can optionally chose a round robin task
assignment algorithm that distributes tasks evenly between all users associated with the
role (workgroup) that can work on the task, or load balancing task assignment algorithm
that distributes tasks based on user workload.

• Automatically (customized task assignment algorithm): You can develop a custom task
assignment algorithm using OSM's cartridge management tools. See "Deploying a Custom
Task Algorithm using the OSM Cartridge Management Tool".

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 29

When an operator is working in a manual task, they must directly update task data in the OSM
Task web client. You can add behaviors to manual task data that perform various function. For
example:

• Performing calculations on numerical task data.

• Adding constraints on task data fields to validate the data that users enter. You can also
use constraints to control whether a user can transition from one task to another.

• Making a field read-only.

• Making a field visible to some users only.

See "Modeling Behaviors" for more information about all behavior options that OSM provides.

Manual tasks user task states to managed the progress of the task (see "Modeling Task
States") and task status transitions to move from one task to another task (see "Modeling Task
Status Transitions"). You can also specify task execution modes that determine what roles
(workgroups) can perform the task and in what ways (see "About Normal and Fallout Execution
Modes and Task States").

Manual tasks can also trigger a jeopardy notifications based on the duration of the task and
event notifications based on task state changes (see "Modeling Jeopardy and Notifications").

Manual tasks are often used when initially developing OSM solutions to better understand the
what needs to happen in various points of an OSM solution. When solution developers have a
better understanding of what a task is doing, they can then consider transforming the task into
an automated task with associated automation plug-ins. In addition, you can insert manual
tasks in a process that function as breakpoints for debugging. This allows you to control a
process when you test it.

Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool
The OSM Cartridge Management Tool is only applicable for traditional OSM deployments. To
use the custom task algorithm in OSM cloud native, see "Using a Custom Task Algorithm in
OSM Cloud Native".

In addition to the round robin or load balancing algorithms for assigning workgroups to tasks
provided by OSM, you can create a custom task assignment algorithm that assigns tasks
based on custom business logic. Before you can use OSM CMT to deploy a custom task
assignment algorithm, ensure that:

• You can access and reference a WebLogic Server and ADF installation home directory
from the OSM CMT build files. See OSM Installation Guide for version information.

• You must download and install Ant. See OSM Installation Guide for version information.

• You install the SDK Tools and the SDK Samples components using the OSM installer.
You do not need to install the other options. See OSM Installation Guide for more
information about using the OSM installer.

• You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample for more
information about creating a custom task assignment algorithm.

To deploy a custom task algorithm to an OSM server using OSM CMT:

1. From a Windows command prompt or a UNIX terminal, go to WLS_home/server/lib
(where WLS_home is the location of the base directory for the WebLogic Server core files).

2. Copy the following files required by OSM CMT to the Ant_home/lib folder (where
Ant_home is the location of the Ant installation base directory).

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 29

• WLS_home/server/lib/weblogic.jar

• WLS_home/server/lib/wlthint3client.jar

• WLS_home/modules/com.bea.core.descriptor.wl.jar

• SDK/deploytool.jar

• SDK/Automation/automationdeploy_bin/automation_plugins.jar

• SDK/Automation/automationdeploy_bin/xmlparserv2.jar

• SDK/Automation/automationdeploy_bin/commons-logging.jar

3. Set the following environment variables and add them to the command shell's path:

• ANT_HOME: The base directory of the Ant installation.

• JAVA_HOME: The base directory of the JDK installation.

For example, for a UNIX or Linux Bash shell:

ANT_HOME=/home/user1/Middleware/modules/org.apache.ant_1.10.15
JAVA_HOME=/usr/bin/local/jdk-21.0.7

For example, for a Windows command prompt:

set ANT_HOME=c:\path\to\oracle\home\Middleware\modules\org.apache.ant_1.10.15
set JAVA_HOME=c:\path\to\oracle\home\Middleware\jdk-21.0.7

4. Open the SDK/Samples/config/samples.properties file.

5. Set the following variables:

• Set osm.root.dir to the OSM installation base directory.

• Set oracle.home to the Oracle Middleware products base directory.

For example, for a UNIX or Linux Bash shell:

/home/oracle/Oracle

For example, for a Windows command prompt:

C:/Oracle

6. Copy the custom task assignment algorithm file you created to SDK/Samples/
TaskAssignment/code.

7. Open the SDK/Samples/TaskAssignment/code/build.properties file.

8. Set the following variables:

• Set weblogic.url to the WebLogic Administration Server URL. The format is:

t3://ip_address:port

where:

– ip_address is the IP address for the WebLogic Administration Server.

– port is the port number for the WebLogic Administration Server.

• Set weblogic.domain.server to the name of the WebLogic Administration Server.

• Set weblogic.username to the WebLogic Administration Server user name.

• Set webLogicLib to the path to the WLS_home/server/lib folder.

• Set ejbname to the Enterprise Java Bean (EJB) name for the task assignment
behavior.

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 29

• Set ejbclass to the class name for the task assignment behavior.

• Set jndiname to the Java Naming and Directory Interface (JNDI) bind name for task
assignment behavior.

• Set targetfile to the deploy target file name for a target file that does not contain a
suffix like .ear or .jar.

Note

ejbname, ejbclass, jndiname, and targetfile are preconfigured to deploy the
SDK/Samples/TaskAssignment/code/CustomizedTaskAssignment.java
sample task assignment algorithm. Replace these default values with those for the
custom task assignment algorithm.

9. Create and deploy a Design Studio cartridge that includes a manual task that you want to
associate to the custom task assignment algorithm. You can associate the custom task
assignment algorithm in the Details tab of the manual task using the Assignment
Algorithm and JNDI Name fields. See "Task Editor Details Tab" in Modeling OSM
Processes for more information.

Note

You can import the sample task assignment cartridge from SDK/Samples/
TaskAssignment/data/ taskassignment.xml. For more information about
importing an OSM model into Design Studio, see "Working with Existing OSM
Models" Modeling OSM Processes.

10. From the SDK/Samples/TaskAssignment/code directory, at the Windows command
prompt or UNIX shell, type:

ant

The Ant script begins to run.

11. When the ant script reaches Input WebLogic Password for user weblogic ..., enter the
WebLogic Administration Server password.

The ant tool compiles, assembles, and deploys the custom task assignment algorithm to
the OSM WebLogic Server.

Note

You can also individually compile, assemble, deploy, or undeploy using the
following Ant commands:

ant compile
ant assemble
ant deploy
ant undeploy

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 29

Using a Custom Task Algorithm in OSM Cloud Native
To use a custom task algorithm in OSM cloud native, ensure that you have followed these
steps:

• You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample for more
information about creating a custom task assignment algorithm.

• Traditional deployment mechanisms do not apply in an OSM cloud native environment. To
deploy an application to WebLogic in OSM cloud native, see the "Deploying Entities to an
OSM WebLogic Domain" section in OSM Cloud Native Guide.

• Create and deploy a Design Studio cartridge that includes a manual task that you want to
associate to the custom task assignment algorithm. You can associate the custom task
assignment algorithm in the Details tab of the manual task using the Assignment Algorithm
and JNDI Name fields. See Design Studio Help for more information.

Note

You can import the sample task assignment cartridge from SDK/Samples/
TaskAssignment/data/ taskassignment.xml. For more information about importing
an OSM model into Design Studio, see Design Studio Help.

Modeling Transformation Tasks
You can use a transformation task if you want to call the order transformation manager from a
process instead of before the orchestration plan is generated. See "Calling the Order
Transformation Manager" for more information. The transformation task is very much like an
automated task, except that by default it has an appropriate automation plug-in defined for it
and provides the ability to define the transformation manager to call.

Modeling Activation Tasks
Before you can model Activation tasks in Design Studio, you must install the Design Studio for
Order and Service Management Integration feature. This feature includes the Design Studio for
Activation feature for integrating with ASAP and IP Service Activator. To model activation tasks,
you must also install the Design Studio for Activation feature.

1. OSM transforms order data into an operations support system through Java (OSS/J)
message or a web service message and sends it to ASAP or to IP Service Activator. To
model this, you configure service action request mapping, to map OSM data to ASAP data
or to map OSM data to IP Service Activator data. See "About Service Action Request
Mapping" for more information.

2. ASAP or IP Service Activator receives the data, activates the service, and returns a
success or failure status to OSM. To allow OSM to handle the returned data, you model
service action response mapping. See "About Service Action Response Mapping" for more
information.

Other elements specific to activation tasks are:

• You can configure state and status transitions for completion events and exceptions
returned by ASAP or IP Service Activator.

• You can configure how to handle amendment processing with activation tasks.

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 29

• If you are sending JMS OSS/J messages, Oracle recommends that you configure JMS
store and forward (SAF) queues to manage the connection to ASAP or to manage the
connection to IP Service Activator.

• If you are sending web service messages, Oracle recommends that you configure web
service SAF queues to manage the connection to ASAP or to manage the connection to IP
Service Activator.

About Service Action Request Mapping
You send fulfillment data to ASAP or to IP Service Activator as a service action request. To
model a service action request, you map OSM header data (information that applies to the
customer or to all order line items on the order) and OSM task data to the following service
order activation data:

• Activation order header: Information that applies to the entire work order.

• Service action: Information that is required to activate a service.

• Global parameters: Information that you define once and which applies to multiple service
actions.

About Service Action Response Mapping
After ASAP or IP Service Activator activates a service, it returns information to OSM. You
create data structures in OSM to contain the response information returned from ASAP or IP
Service Activator. For each event and exception returned by ASAP or IP Service Activator, you
select the ASAP or IP Service Activator data that you want to retain, and then identify the OSM
data structure to which that data is added. When ASAP or IP Service Activator returns an
event or exception, OSM updates the order data with the ASAP or IP Service Activator data
that you specified.

Tip

The amount of response data from ASAP or IP Service Activator can be very large,
though the data that is needed might be small. Parsing large amounts of ASAP or IP
Service Activator response data can affect OSM performance. If you notice a
reduction in OSM performance due to large amounts of ASAP or IP Service Activator
response data, you can specify a condition on specific parameters to limit the ASAP or
IP Service Activator response data.

About Activation Tasks and Amendment Processing
You can configure how to manage an activation task if the associated order undergoes
amendment processing. The options are:

• Intervene manually.

• Do not perform any revision/amendment.

• Have OSM redo the activation task, using the previously defined request mapping.

• Have OSM redo the task, using different request mapping.

Chapter 7
About Task Types

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

About State and Status Transition Mapping for Activation Tasks
You can configure state and status transitions to manage completion events (for example,
activation complete) and errors returned by ASAP or returned by IP Service Activator. You
can define multiple transitions to model different scenarios for variations in the data received
from ASAP or received from IP Service Activator. For example, if an ASAP parameter or IP
Service Activator parameter returns the value DSL, you may want the task to transition to a
DSL task; when the same parameter returns the value VOIP, you want the task to transition to
a different task.

You can define state transitions for user-defined states only; you cannot define transitions for
system states, such as Received, Accepted, and Completed. At run time, OSM evaluates the
conditions in the order and stops evaluating when a condition evaluates to true. Completion
events and errors must include a default transition in case all specified conditions fail.

About Automation Plug-ins
You use automation plug-ins to implement specific business logic automatically. You can create
automation plug-ins to update order data, complete order tasks with appropriate statuses, set
process exceptions, react to system notifications and events, send requests to external
systems, and process responses from external systems.

There are two basic types of delivered automation plug-ins, Sender and Automator. Each type
can be implemented using XSLT or XQuery, and each type can be defined as an internal event
receiver (the JMS message that triggers the call to the plug-in is generated by OSM), or as an
external event receiver (the JMS message that triggers the call to the plug-in is generated by
an external system).

• Automator plug-ins receive information from OSM or an external system, and then perform
some work. Depending on how you configure the plug-in, it can also update the order data.

• Sender plug-ins receive information from OSM or from an external system. They perform
some business logic, and may or may not update an order, depending on your
configuration. Additionally, they can produce outgoing JMS or XML messages to an
external system. When generating JMS messages, you can define JMS messages to
connect to a topic or queue.

Note

XQuery automation types cannot be implemented when using releases prior to OSM
7.0.

OSM assigns automated task plug-in instances to a user account specified in the plug-in
Properties subtab Details subtab Run As field. The user account must belong to the
OSM_automation WebLogic group. When you install OSM, the OSM installer automatically
creates the oms-automation user that belongs to the OSM_automation group. You can use this
user account to run automation plug-in instances or create new ones. You can also use the
DEFAULT_AUTOMATION_USER model variable in the Run As field that you define at in the
Oder and Service Management Project editor Model Variable tab or in the Environment editor
Model Variables tab.

When referring to an automation, the following meanings can apply:

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 29

• The automation plug-in code that you create and associate with an automation task in
Design Studio.

• The instance of an automation plug-in that the OSM run-time server creates in response to
an event that triggers an automation. OSM creates and reuses such instances as required
when processing automated tasks. OSM maintains these plug-in instances even if the
instance is no longer required and only creates additional plug-in instances when the
current pool of instances are insufficient to handle the number of incoming orders. OSM
only destroys automation plug-in instances in the following scenarios:

– When you shut down the OSM server, OSM destroys all plug-in instances.

– When you undeploy a cartridge, OSM destroys all plug-in instances associated with
the undeployed cartridges.

– When OSM detects an error condition in the instance, OSM destroys the instances.

See OSM Developer's Guide for detailed information about automated tasks and automation
plug-ins.

Specifying Which Data to Provide to Automation Plug-ins
The data that is available for each automation plug-in should be the minimum subset of order
data necessary for the plug-in to be performed. You can choose the data to provide to
automation plug-ins using the following methods:

• Use the task data contained in an automation task to specify which data to provide to an
automation plug-in.

• Use query tasks to specify which data to provide to an automation plug-in associated with
order notification, events, and jeopardies. A query task is a manual task that is associated
with a role that has permissions to use some or all order data to run an automation plug-in.
See "Modeling Query Tasks for Order Automation Plug-ins" for more information.

Modeling Query Tasks for Order Automation Plug-ins
In automated tasks, the data that is available to automation plug-ins associated with automated
task is already defined in the Task Data tab. However, automation plug-ins used with order
notifications, events, and jeopardies do not have immediate access to this task data, and, as a
result, must reference a manual task called a query task that defines the task data and
behavior data available to the automation plug-in.

You can select any manual task as the query task. You can also create special tasks that are
only used as query tasks. Their only function is to specify which data to provide to an
automation plug-in.

Figure 7-13 shows the Permissions tab in the Design Studio order editor. The upper screen
shows the permissions for the provisioning role, with the provisioning function task as the
query task. For the billing role, the billing function task is assigned as the query task.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 29

Figure 7-13 Roles Assigned to Query Tasks

To associate a query task with an automation plug-in, use the Default check box, as shown in
Figure 7-13.

Figure 7-14 shows an event notification with an automation plug-in that uses the
ProvisioningFunctionTask query task that is defined as the default query task for the
provisioning role. This role must be associated with the Run as OSM user that runs the
automation plug-in as shown in the Properties Details tab. For more information about
associating roles to OSM users, see the OSM Order Management Web Client User's Guide.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 29

Figure 7-14 Order Event Notification Automation Query Task

About Automation Message Correlation
Automation plug-ins defined as external event receivers are designed to process JMS
messages from external systems. JMS messages are asynchronous, therefore external event
receivers provide a method of correlating responses to requests previously delivered to enable
you to map OSM orders to external system orders.

To correlate responses, the plug-in sets a property on the outbound JMS message, with name
of the value set for correlation property in the automationmap.xml file, and a value decided by
your business logic. For example, business logic might dictate that you correlate on a
reference number. The external system copies the properties that you defined for the
correlation on the request and includes that data in the response.

You can use the Message Property Selector field to filter messages placed on the queue and
determine which automation to run. You define the Message Property Selector value as a
boolean expression that is a String with a syntax similar to the where clause of an SQL select
statement. For example, the syntax may be:

"salary>64000 and dept in ('eng','qa')"

When the condition evaluates to true, the message is picked up and processed by the
automation that defined that condition.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 29

In a second example, consider that an external system defines five order types and OSM
defines a different automation to process each order type. Each automation defines a different
Message Property Selector, such as orderType=1, orderType=2, and so forth. When a
message is sent to the queue by the external system, and the message includes the orderType
upon which the condition is based, the automation framework evaluates each condition until
one evaluates to true. If more than one automation defines the same condition, the first one
that evaluates to true is picked up and processed.

Note

When you define only one automation plug-in external event receiver for each
automation task, you are not required to enter a selector in the Message Property
Selector field. In this case, automation tasks can share the same JMS queue without
a message property selector being set. You must set a message property selector
when you do either of the following:

• Define multiple automation plug-in external event receivers for the same
automation task.

• Use the Legacy build-and-deploy mode to build and deploy cartridges with
automation plug-ins.

• Use the Both (Allow server preference to decide) build-and-deploy mode to build
and deploy cartridges with automation plug-ins and configure the OSM server
dispatch mode for the Internal mode.

For information on build-and-deploy modes, see "About Automation Message
Correlation " in Modeling OSM Processes.

Example: Modeling a Basic Automator Plug-in for an Automated Task
This example demonstrates how to configure an Automator type plug-in that receives data
from an internal OSM JMS queue and updates order data using an XSLT style sheet. In the
example, assume that the XSLT style sheet includes conditional logic to apply a level 1 priority
to the order if the order is from a specific customer.

This example demonstrates how to:

1. Create an automated task and add the relevant task data.

2. Add an automation plug-in to the automated task.

3. Configure the automation plug-in properties.

Note

An automated plug-in exists within the context of a Design Studio cartridge project,
order, process, and automated task. For purposes of demonstration, this example
assumes the existence of multiple Design Studio entities. For example, it assumes the
existence of a cartridge project called DSLCartridge, an order called DSLOrder, a
process called DSLProcess, and an XSLT style sheet called check_customer.xslt that
populates default values in the order data. It assumes that the Data Dictionary
includes the two data nodes, customer_name and order_priority. It also assumes that
the new automated task will be added to the DSLProcess entity. The naming
conventions used in this example are for illustrative purposes only.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

Step 1: Creating the automated task

1. Select Studio, then New, then Order and Service Management, then Order
Management, and then Automated Task.

The Automated Task wizard appears.

2. In the Automated Task wizard, enter or select the following values:

• In the Project field, enter DSLCartridge.

• In the Order list, select DSLOrder.

• In the Name field, enter Check_Customer.

3. Click Finish.

The new automated task appears in the Automated Task editor.

4. Click the Task Data tab.

In this example, you will update the order_priority field with a default value of 1 if the order
is from a specific customer.

Note

Normally, the task data includes all of the data that the task requires to complete.
To simplify the example, this task includes only the two pertinent fields:
customer_name and order_priority. See "Modeling Data for Tasks " for more
information.

5. Right-click in the Task Data area.

The context menu appears.

6. Select Select from Data Schema.

The Select Data Elements dialog box appears.

7. Select the data nodes customer_name and order_priority.

8. Click OK.

The two data nodes appear in the Task Data area.

9. Click the Permissions tab.

On the Permissions tab, you can ensure that only the automation role has permissions for
automated tasks. See the note in "Modeling Roles and Setting Permissions" for more
information.

You are now ready to add a plug-in to the automated task.

Step 2: Adding the automation plug-in to the automated task

1. In the Automated Task editor, click the Automation tab.

2. Click Add.

The Add Automation dialog box opens.

3. In the Name field, enter Check_Customer.

4. In the Automation Type field, select XSLT Automator.

5. Click OK.

The Check_Customer plug-in appears in the Automation list.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 29

6. In the Automation list, select the Check_Customer plug-in.

7. Click Properties.

The Automation Plug-in Properties tabs appear.

You are now ready to define the automation plug-in properties.

Step 3: Defining automation plug-in properties

1. In the Automated Task editor Properties View Details tab, accept the default value in
the EJB Name field.

2. Ensure that the model variable that defaults to the Run As field points to a user name set
up in the Oracle WebLogic console. When you deploy the cartridge, the user in the Run
As field is added automatically to the OSM_automation group.

For more information about users and groups, see the discussion of setting up security in
OSM System Administrator's Guide. For more information about model variables, see the
Design Studio Help.

3. Click the XSLT tab.

On the XSLT tab, you define where the XSLT style sheet is located and the status to set if
the automation fails. In this example, you'll define a location on your local machine where
the XSLT file is stored.

4. Select Absolute Path.

5. In the XSLT field, enter the location of the XSLT file.

For this example, enter
C:\oracle\user_projects\domains\osmdomain\xslt\DSLCartridge\1.0.0\check_custom
er.xslt.

6. Do one of the following:

• In the Exit Status on Exception field, select Failure.

This field represents the exit status that the plug-in should use if it throws an
exception. The options available in this field include any status values you assigned to
the task. You use this option if you want to transition the task to a fallout task.

• Click the Details tab and select the Fail Task on Automation Exception check box.

This check-box transitions the task to a fallout execution mode if an exception occurs
when running the automation plug-in. Using the option allows you troubleshoot task
failures within the task that generated the failure.

7. Select Update Order.

This option ensures that the default values obtained from the XSLT style sheet will be
saved to the order data.

8. Click Save.

You have completed the basic configuration for an Automator-type plug-in defined as an
internal event receiver.

Note

Successful automation requires a complete automation build file in the cartridge. If no
automation build file exists, Quick Fix will generate one.

Chapter 7
About Automation Plug-ins

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

8
Modeling OSM Data

This chapter describes how to model OSM data in an Oracle Communications Order and
Service Management (OSM) solution.

Data Modeling Overview
The entity that provides a unified view of all order data relating to various order activities is the
order specification order template. All other entities relating to order processing contain a
subset of the order data you define in the order template.

You can either model data directly in the order template or you can model data in various OSM
entities in Oracle Communications Service Catalog and Design - Design Studio. When you add
data to these other entities, Design Studio automatically adds the data into the order
specification order template.

In general, there are four groups of data that you must model in any OSM solution. These
general groups of data are:

• Incoming order data: You must understand the data structure and contents and decide
what pieces are important to supporting the orchestration process. While there can be a
large amount of data, orchestration is only concerned with modeling and extracting out
information needed to support decomposition and dependency processing. For example,
the orchestration functionality is primarily driven by the elements and structures within the
ControlData structure.

• External fulfillment system data: You must determine what data you need to model in
OSM for tasks that communicate with external systems or communicate order or task
notifications to northbound systems or external users.

• OSM web client user data: You must determine what data you want users to access
when using the OSM Order Management web client to manage orders or when using the
OSM Task web client when managing orders or processing tasks.

In addition to identifying and modeling these order data groups, you must also understand how
the data flows from each point during order processing. In addition, you must understand
whether the data you receive from system A must be transformed or modified before sending it
to system B. For example, system A that sends an order with a requested delivery date and
time for broadband server may use a different date and time format than system B.

Common areas where data transformation occurs are:

• Order recognition rule order data rules: You must use an XQuery to map order data to the
data specified in the creation task of the order. The data defined on the order may be
identical to what is on the creation task, and so the XQuery must map the data into the
corresponding parameters, or the data on the order may be different requiring you to
manipulate the data so that it conforms with the data you have define in the creation task.
See "Modeling the Order Data Rule to Populate the Creation Task" for more information.

• Within Orchestration using the order transformation manager (OTM): OTM provides OSM
the ability to transform order items within the orchestration plan. For more information, see
"Modeling the Order Transformation Manager".

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 37

• Within orchestration when OSM identifies order items from order data and maps the data
to order item properties. For more information, see "Modeling Orchestration Plans".

• Between tasks: Automated tasks are the primary means that OSM employs for
communicating with external systems. In some cases, the data required by the external
system that Task A communicates with may require different parameters or formats than
those generated by the creation task and those of other tasks communicating with other
systems.

The task of dealing with different message types and formats can be simplified if you use
an integration application such as Oracle Application Integration Architecture (Oracle AIA)
which defines a canonical order structure for communication between OSM and external
fulfillment systems. However, OSM can also directly integrate with external fulfillment
systems and transform data immediately at the task within the automated task automation
plug-in code.

You also use the data you create in OSM for a variety of other purposes. For example:

• You can model OSM to add the input message (the entire order) to the order. The order
recognition rule that receives the message adds the message to an element designated as
XML Type which contains the entire order data. See "Adding the Input Message to the
Order Template" for more information.

• You can use data in the order template to manage orders; for example, you can create
order keys used by amendment processing. See "About Order Keys" for more information.

• You can specify which data in the order template should be considered for amendment
processing (data significance). See "About Data Significance" for more information.

• You can assign behaviors to data in the order template. See "Modeling Behaviors
Overview" for more information.

Modeling Order Data
Consider the following data modeling approaches:

• Data-centric: First model data for a cartridge project and then model the cartridge project
entities using specific data, as needed.

• Entity-centric: First model business processes and entities, and then model the data
specifically required by the entities used by the business process.

About the Data Dictionary
Before OSM can receive an order from an order-source system, you need to create the OSM
Data Dictionary.

The Data Dictionary is the repository of data elements used in Design Studio. The Data
Dictionary defines data types and structures that can be used within OSM orders. For example,
you can define a simple type that represents an IP address or a phone number, or more
complex types representing addresses, product attributes and so on.

Data elements in a Data Dictionary are used as building blocks of an OSM order. The data
elements within a Data Dictionary project can be referenced by other projects in a work space.

Design Studio automatically creates a Data Dictionary when you create an OSM cartridge
project. You can use this default Data Dictionary or create multiple data schemas to add data
elements or structure within the same project.

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 37

Each data schema includes a set of data relevant to the how that data is used. For example, a
data schema for mobile services could include mobile-related data such as IMSI and MSISDN.

About the Order Template
When you create a new order model in Oracle Communications Service Catalog and Design -
Design Studio, you can base the order on an existing order. When you extend an order
specification, the extended specification inherits all of the data, tasks, rules, and behaviors of
the base specification. You can add new data and behaviors to define unique order
specifications and functionality. When you modify a base order specification, the order
specifications extended from it are also modified. This means that you can make changes in
one place, in the base specification, and those changes apply to the orders that are extended
from the base specification.

For example, you might have three order specifications that share a common set of data. You
can create a base order that includes configurations common to all three orders. You can then
add configurations to each of the three order specifications for the data that is unique to each
order specification.

When defining an order specification that is inherited from a base order specification, you
cannot edit the inherited order data. For example, you cannot remove or rename data
elements inherited from the base order specification. To implement changes to the inherited
data, you must edit the data in the base order specification. Design Studio automatically
implements those changes among all of the extended order specifications.

The data elements that you can use in an order are defined in the Design Studio Data
Dictionary. When you define order data, you can use data elements that already exist in the
Data Dictionary data schemas, or you can create new data elements and add them to the Data
Dictionary. See "About the Data Dictionary" for more information.

In the data dictionary, you can model the same data element in one or more locations, and
assign different type definitions for the elements, such as string or integer, and so on. For
example, you might have a data dictionary that contains two instances of a data element called
EmployeeID: one defined as a string (defined by the employee's name and a two-digit
number), the other defined as an integer (defined by a 6-digit number). Although you can do
this in the data dictionary, you cannot have the same data instance with different type
definitions in the order template.

To avoid such data element conflicts, you can rename the first instance of the parameter after
you import it into an order template using the refactoring function which allows you to rename
an imported parameter at the order template level without changing the data dictionary
instance from which it is derived. This creates an alias for the imported data element and you
can then import the second instance of the data element without any data conflict errors. See
Design Studio Modeling OSM Processes Help for more information about renaming data
elements in the order template.

Identifying Data Requirements for Order Payload
The incoming order data contains important information about the hierarchy of sales item lines,
which can consist of offers, bundles, products, and so on. This data structure information can
be used to manage the data when it is passed between different fulfillment systems.

You must model incoming order data in a Design Studio data dictionary. You can either
manually build the data dictionary for the incoming order data or you can import an XSD file
defined in some other application into Design Studio.

To import the Data Dictionary for the data received in orders, you import the XSD file for that
incoming customer order into OSM. The elements in the XSD file are loaded into the Data

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 37

Dictionary as OSM data elements. Example 8-1 shows part of an XSD file that could be used
for importing customer data.

Example 8-1 Elements in Input Message XSD File

<element name="order" type="im:OrderType"/>
<element maxOccurs="1" minOccurs="1" name="numSalesOrder" type="string">
</element>
<element maxOccurs="1" minOccurs="1" name="typeOrder">
</element>

For each data element, you specify attributes about the data element; for example, the data
type and display name. Figure 8-1 shows the configuration for a requestedDeliveryDate data
element.

Figure 8-1 Data Element Defined in Design Studio

Child XML elements are imported as child data elements. The Path field shows the parent data
elements. In this example, the parent data element of requestedDeliveryDate is
SalesOrderLine.

Adding the Input Message to an Order Recognition Rule
You must add the order data structure of an incoming order to the Input Message area on the
Details tab in an order recognition rule.

Figure 8-2 shows an input message specified in a recognition rule.

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 37

Figure 8-2 Input Message Specified in a Recognition Rule

The order recognition rule Order Data Rule XQuery transforms order data into the OSM order
format. However, you can also add the input order data to an order by adding the order data to
the order template. For more information, see "Adding the Input Message to the Order
Template".

Adding the Input Message to the Order Template
You can model an order template with the incoming order data so that OSM automatically add
the incoming order data to the OSM order in addition to the data generated by an order
recognition rule Order Data Rule Xquery. You should not use the incoming order data for order
processing, but the order data information can be useful for debugging, order tracking. or
reference purposes.

To add the incoming order data to an order you must add the incoming order data to the target
order specification Order Template tab Order Template area.

You must designate the root incoming order data element as an XML Type so OSM can store
the data more efficiently. In addition, you must also add the incoming order data structure to
the creation task so that OSM can add the incoming order data to the OSM order.

Figure 8-3 shows the input order element order with XML Type selected in the Properties tab
Order Data sub-tab.

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 37

Figure 8-3 Input Order Data as XML Type

For debugging, order tracking, or reference purposes, you can add the incoming order data to
a query task so that operators can view data from the Task web client or the Order
Management web client.

Figure 8-4 shows the input order data in the Order Management web client Data tab with the
OsmCentralOMExampleQueryTask selected in the View field.

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 37

Figure 8-4 Order Management Web Client Input Order Data XML Structure

Modeling Valid Data Keys
Data keys are elements that identify specific instances of multi-instance nodes. For more
information about the use of data keys, see "About Order Data Position and Order Data Keys."

When modeling a data key, you must follow the following guidelines.

• Data key expressions must always return a value. For example, if you could use the
following expression to return a key value:

./login/username/text()

However, if either login or username are optional parameters, then this expression might
not return a value. Ensure that you model your data and write your key expressions so that
data in a valid order will always cause the key expression to return a value.

• Ensure that parallel key expressions always evaluate to unique values. That is, all of the
instances of one multi-instance data element must have unique keys.

Chapter 8
Modeling Order Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 37

If a multi-instance data element is inside another multi-instance data element, the child
elements' keys must be unique within each parent element. For example, in the following
data structure, you could use ./host/text() as the expression to generate the key for the
location element. This would work because it is unique within each of the email-service
parent elements, even though it is not unique across the whole order.

<email-service>
 <address>john.doe@example.com</address>
 <name>John Doe</name>
 <quota>5Gb</quota>
 <location>
 <host>host_a</host>
 <operating-system>Linux</operating-system>
 </location>
 <location>
 <host>host_b</host>
 <operating-system>Solaris</operating-system>
 </location>
</email-service>
<email-service>
 <address>jane.doe@example.com</address>
 <name>Jane Doe</name>
 <quota>2Gb</quota>
 <location>
 <host>host_a</host>
 <operating-system>Linux</operating-system>
 </location>
 <location>
 <host>host_c</host>
 <operating-system>MacOS</operating-system>
 </location>
</email-service>

• Data key expressions must not use children of reference data elements.

Design Studio allows order template elements to be references to elements elsewhere in
the order. For example, this allows more than one order component to refer to the same
order item. In this way, the different order components can see the latest version of the
order item data, while allowing the data to exist (and be updated) in only one place. Data
key expressions that refer to descendants of references are not valid.

• When using descendant data elements in your key expression, consider restricting data
key expressions to refer only to direct child elements.

While it is valid for data key expressions to refer to descendants beyond direct child
elements, it is easier to ensure compliance with the other criteria when only direct child
elements are used.

Modeling Data for Tasks
The following sections describe modeling data requirements for tasks.

Determine Task Data for Manual and Automated Tasks
Each task includes a set of data, which you specify when modeling the task.

The data included in a task is data relevant to the function of the task. Table 8-1 shows some
example tasks and the task data they include.

Chapter 8
Modeling Data for Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 37

Table 8-1 Examples of Tasks and Task Data

Task Task Data

Add capacity Bandwidth

Send customer survey Name, phone number, address

Query task (to display data in the
Task web client)

Name, phone number, bandwidth, port ID

When you model a task, you assign it to an order. The available task data is limited to the data
that the order requires. At run time, task data can be entered by an OSM user, provided on an
incoming order, or provided from a previous task in the order.

Figure 8-5 shows task data defined in a task in Design Studio and how the data is displayed in
an order in the Task web client.

Figure 8-5 Task Data in a Task Specification and in an Order

Tip

To improve performance, usability, and security, include only the data that is necessary
to perform the task. Unnecessary data is not exposed to the user performing the task,
even though the order may contain much more data.

When modeling orders, it is common to include the entire XML representation of the order in
the order data as an XML data type. If you include the XML data, consider defining smaller

Chapter 8
Modeling Data for Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 37

XML elements for storing sections of a sales order rather than including a single XML data type
that contains the entire sales order. This allows you to map only the parts of the order that are
needed for each task. Including the XML representation is typically done only in the modeling
process as an aid to development.

In addition to defining the data included in each task, you can use behaviors in manual tasks
to manipulate many aspects of how the data is displayed, formatted, and validated. For
example, you can specify if data is read-only, or you can modify the value of the data in a task.
See "Modeling Behaviors Overview" for more information.

Determine Task Data for Data Returned from Fulfillment Applications
You can configure the order template to hold status data returned from external systems.
Figure 8-6 shows an order template structure that holds status data.

Figure 8-6 Status Data in the Order Template

Generating Multiple Task Instances from a Multi-Instance Field
Some tasks require multiple task instances to complete. For example, you might need to
create three task instances to retrieve three different address fields. To accomplish this, you
designate a field as a pivot data element for the task. When OSM runs the task at run time,
the system generates a separate task instance for each separate instance of the pivot data
element in the order. The system creates as many instances of the task as there are instances
of the data field or data structure, up to the maximum number defined for the field. This feature
works for a structure of data also. For example, if the address is a structure called Address,
with nested elements of Street, City, and Postal Code, the system generates an instance of a
task for each instance of the structure. The data that is visible to the task instance will be
restricted to data structure that it is for, and that task will not have visibility to the other
instances of the data.

Chapter 8
Modeling Data for Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 37

Note

OSM compensation processing does not support task pivot data elements.

Pivot subprocesses are normally "spawned" all at once, meaning that all subprocess
instances are available for execution at the same time. Compensation for this type of
scenario works as expected.

Pivot subprocesses can also be spawned sequentially, meaning that subprocess
instances are only available for execution one-at-a-time, each new instance only
becoming available after the previous one completes. The solution defines the order
via "Sequential" and "Sort Element" attributes of the pivot node in Design Studio. OSM
does not support compensation involving pivot subprocesses that are configured to
execute sequentially. If your solution involves compensation of pivot node
subprocesses, you must not use sequential execution.

Modeling Data for Orchestration
Define the orchestration data on the entity that best reflects its structure, rather than defining
all of the data on the order specification. Design Studio generates the order level order
template by aggregating the order template definitions for the order item specifications and
order components with any data defined at the order level.

You should define data at the level where it is needed:

• Order Item specification: Define ControlData/OrderItem and all of the order item
properties on the order item specification.

The OracleComms_OSM_CommonDataDictionary model project contains predefined
base data elements for control data. It is recommended that you use the data schema of
this model project to add the ControlData/OrderItem base data element to the order item
specification Order Template tab.

• Order component: Define ControlData/Functions/OrderComponentName and any other
data needed by the tasks in the process that run this component in the appropriate order
component template.

If you use the OracleComms_OSM_CommonDataDictionary model project
(recommended) and your orchestration entities are preconfigured correctly, Design Studio
automatically generates this structure on the order template of the order component and
the order template of the order.

Using this method supports:

• Encapsulation

• Re-factoring: Modify order template data at the entity level to which it is associated
because this highlights the connection between an entity and its order template data.

• Maintenance: Modifications to order item specification and order component templates
help the designer understand the impact of changes, including possible breaks in
compatibility.

• Traceability: Using this method provides direct traceability from order template data to the
modeling entity to which it is attached.

Chapter 8
Modeling Data for Orchestration

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 37

About Order Item Control Data
In addition to defining order item properties in the order item specification, you need to provide
a storage area for the order item properties. You do so by adding control data to the order item
specification Order Template tab. This definition is automatically added to the order's order
template. This makes it easier to track which entity is the master of the data and enables
easier refactoring and maintenance of the overall order specification. Figure 8-7 shows the
order item properties in the control data in an order template.

Figure 8-7 Order Item Properties Included in the Order Template

When you define the control data, note the following:

• The name used in the control data must exactly match the spelling and case of the order
item property name.

• Make sure that the Data Dictionary properties are correct for the type of data; for example,
string or number.

• Configure each data element as a multi-instance data element.

– Minimum = 0

– Maximum = Unbounded

Note

To define data properties, you edit the entry in the data schema, not in the order
item specification.

Chapter 8
Modeling Data for Orchestration

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 37

An instance of ControlData/OrderItem is created for each data element returned by the
order item selector from the orchestration sequence (see "About Creating Order Items from
Customer Order Line Item Node-Sets").

The OracleComms_OSM_CommonDataDictionary model project contains predefined base
data elements for control data. Oracle recommends that you use the data schema of this
model project to add the ControlData/OrderItem structure to the order item specification
Order Template tab.

About Order Template Data
The order template includes control data. Control data is used by OSM to generate the
orchestration plan. Control data is used only for orchestration.

There are typically two areas of the order control data:

• ControlData/OrderItem provides the data and structure of order items received in the
incoming customer order.

• ControlData/Functions stores the structure of the function order components generated by
the first level of decomposition. Figure 8-8 shows function components represented in the
order template. The types of functions (BillingFunction, MarketingFunction, and so on)
represent the function-level order components.

Figure 8-8 Functions Data in the Order Template

You manually model the order control data of order items in Design Studio. Control data for
function order components is automatically generated by Design Studio. See "About Modeling
Control Data" in Modeling OSM Processes for information on how control data is modeled and
generated.

Orchestration plan generation requires a specific order template structure which you must
model at design time.

ControlData
 OrderItem
 Functions
 OrderComponentName
 componentKey
 calculatedStartDate
 duration
 OrderItem
 orderItemRef

Chapter 8
Modeling Data for Orchestration

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 37

About Order Item Specification Data
This is a multi-instance node that OSM populates with a set of order items generated off the in-
bound message. The children of this structure must exactly match the set of order item
properties defined on the Order Item specification editor in Design Studio.

The OracleComms_OSM_CommonDataDictionary model project contains predefined base
data elements for control data. It is recommended that you use the data schema of this model
project to add the ControlData/OrderItem data element to the order item specification Order
Template tab.

See "About Modeling Control Data" in Modeling OSM Processes for instructions on modeling
the ControlData/OrderItem structure.

About ControlData for Order Component Data
Order component information is stored in the template in ControlData/Functions/
OrderComponentName. This is a multi-instance node that OSM populates with the set of order
components generated by executing the decomposition rules through an orchestration
sequence. OrderComponentName must be defined for each order component included in a
fulfillment pattern's orchestration plan. This section of the ControlData represents all of the
order components in the orchestration plan. If you use the
OracleComms_OSM_CommonDataDictionary model project, Design Studio automatically
generates data (OrderComponentName) and adds it to the ControlData/Functions structure
for each order component that is associated with the fulfillment pattern that is part of the
orchestration plan.

Each order component is assigned a unique key, called the order component ID, which is
stored in the componentKey element. For information about how the component ID is
determined, see "About Component Names and Component IDs."

OSM populates the calculatedStartDate (dateTime type) and duration (string type) nodes for
each ControlData/Function. With calculatedStartDate and duration per Function, both central
order management and service order management solutions can use these values as the
requested delivery date for the order line in a downstream system. based on the modeling
done in the Order Component Specification entity, the date does affect the runtime behavior of
the order component. If there is a Duration Value associated with a dependency, it is used in
the order component start date calculation since this value is relative value to the orchestration
dependency.

OSM populates the multi-instance orderItem node with the set of order items that have been
decomposed into this order component. The order items are accessed through orderItemRef,
which is a reference node to ControlData/OrderItem. A reference node is used to point to the
actual storage location of the order item so that updates to the order item data are reflected in
all order components the order item is referenced from.

You can also store status data in the order item data and in the function data. Figure 8-9 shows
a structure for storing status data. In this example:

• The LineID data element provides a reference to the order line item in the incoming
customer order.

• The SystemInteraction data element stores data about status events; for example, a
status code, description, and timestamp.

Chapter 8
Modeling Data for Orchestration

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 37

Figure 8-9 Status Data in Order Item

Figure 8-10 shows a structure for storing status data for functions. In this example:

• The componentKey data element provides a reference to the order component instance.

• The Response data element stores the message from the external system, as well as the
timestamp, description, and status code.

Figure 8-10 Status Data in Functions

Modeling Data for Fulfillment States
Fulfillment state processing requires specific structures and data elements inside the order
template. The specific locations of the data can be changed using XML catalog: the default
locations are presented here. See "About XML Catalogs" for more information about using
XML catalogs in OSM. See "Sample XQuery for Changing Default Data Locations" for more
information about changing the default data locations.

Chapter 8
Modeling Data for Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 37

About ControlData for External Fulfillment States
External fulfillment state information is populated for order components.

The default location for external fulfillment state information is ControlData/Functions/
OrderComponentName/orderItem/ExternalFulfillmentState.

Write the automation code so that it populates the information in the correct place. For
example, the following automation code updates the ExternalFulfillmentState value whenever a
response containing a fail value returns or passes on any other value in the response:

</UpdatedNodes>
 {(
 for $orderItem in $component/oms:orderItem
 let $lineId := $orderItem/oms:orderItemRef/centralom:lineId/text()
 return
 (
 if ($responseRoot/res:lineResponses/res:response[@id=$lineId]/text() = 'fail') then
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFulfillmentState>
 </Update>
)
 else
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFulfillmentState>
 </Update>
)
)
)}
</OrderDataUpdate>

About ControlData for Order Fulfillment State
OSM populates the order fulfillment state based on the configuration in the order fulfillment
state composition rule set.

The default location for OSM to populate the order fulfillment state is ControlData/
OrderFulfillmentState. The Data Dictionary contains a root-level OrderFulfillmentState
element. For cartridges created in a pre-7.2 version of OSM, drag the root-level
OrderFulfillmentState element into the ControlData node on the order. For new cartridges,
the element will get added automatically to the order template as a child of ControlData.

About ControlData for Order Item Fulfillment State
OSM populates the order item fulfillment state based on the configuration in the order item
fulfillment state composition rule set.

The default location for OSM to populate the order item fulfillment state is ControlData/
OrderItem/OrderItemFulfillmentState. The Data Dictionary contains a root-level
OrderItemFulfillmentState element. For order items in cartridges created in a pre-7.2 version
of OSM, drag the root-level OrderItemFulfillmentState element into the ControlData/
OrderItem node on the order. For new cartridges and order items, the element will get added
automatically to the order template as a child of ControlData/OrderItem.

Chapter 8
Modeling Data for Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 37

Fulfillment States and Point of No Return
If points of no return have been configured using fulfillment states, OSM populates the point of
no return when processing the order item fulfillment state composition rules. For more
information about points of no return, see OSM Concepts.

The default location for OSM to populate the point of no return value is ControlData/
OrderItem/PointOfNoReturn.

Fulfillment State and Point of No Return Initial Values
You can set initial values for order item fulfillment states and points of no return, so that these
values will appear on the order before any processing takes place. See "Sample XQuery for
Changing Default Data Locations" for more information about setting these values.

Sample XQuery for Changing Default Data Locations
To change the default locations and set initial values for point of no return and order item
fulfillment state, include an XQuery file in the XML catalog. To use the defaults, do not provide
a file.

To include your custom XQuery file in the cartridge, include a line similar to the following in the
XML catalog file for your cartridge:

<rewriteURI uriStartString="cp:oracle/communications/ordermanagement/execution"
rewritePrefix="osmmodel:///CartridgeName/CartridgeVersion/resources/Directory"/>

For more information about using XML catalogs, see "About XML Catalogs".

If you choose to configure a custom file, you should include all of the functions, even those for
defaults you are not changing. This will clarify the configuration and assist in maintenance
activities. The purpose of each function is indicated in comments in the file. For all values that
specify order template locations (for example /OrderLifeCycleManagement), begin the value
with a forward slash, as shown below.

xquery version "1.0";
module namespace fulfillmentstatemodule = "http://xmlns.oracle.com/communications/
ordermanagement/fulfillmentstatemodule";

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform"
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

(: Returns the composite fulfillment state path for an order. :)
declare function fulfillmentstatemodule:getOrderCompositeFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {
 "/ControlData/OrderFulfillmentState" };

(: Returns the composite fulfillment state path for an order item. :)
declare function fulfillmentstatemodule:getOrderItemCompositeFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {
 "/ControlData/OrderItem/OrderItemFulfillmentState" };

(: Returns the default order item external fulfillment state path. :)
declare function fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {
 "ExternalFulfillmentState" };

Chapter 8
Modeling Data for Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 37

(: Returns the default type of the order item external fulfillment state path.
 Valid values are RELATIVE_PATH and ABSOLUTE_PATH. :)
declare function fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePathType
($orderMnemonic as xs:string) as xs:string {
 "RELATIVE_PATH" };

(: Returns the point of no return path for an order item. :)
declare function fulfillmentstatemodule:getOrderItemPoNRPath ($orderMnemonic as
xs:string) as xs:string {
 "/ControlData/OrderItem/PointOfNoReturn" };

(: Returns the name of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderInitialFulfillmentStateName
($orderMnemonic as xs:string) as xs:string {
 "" };

(: Returns the namespace of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderInitialFulfillmentStateNamespace
($orderMnemonic as xs:string) as xs:string {
 "" };

(: Returns the initial point of no return value of an fulfillment state. :)
declare function fulfillmentstatemodule:getOrderItemInitialPoNR($orderMnemonic as
xs:string) as xs:string {
 "" };

declare function fulfillmentstatemodule:getExternalFulfillmentStates(
 $orderData as element()) as element()?
{
 let $orderMnemonic :=
 if (fn:exists($orderData/OrderType))
 then $orderData/OrderType/text()
 else ""
 let $orderItems := $orderData/_root/ControlData/OrderItem
 where (fn:exists($orderItems))
 return
 <oms:ExternalFulfillmentStates>
 {
 for $orderItem in $orderItems
 let $orderItemIndex := $orderItem/@index
 let $components := $orderData/_root/ControlData/Functions/*[orderItem/
orderItemRef/@referencedIndex=$orderItemIndex]
 let $externalFulfillmentStatePath :=
fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePath($orderMnemonic)
 let $externalFulfillmentStatePathExistsCheck :=
fn:concat($externalFulfillmentStatePath, "[text()!='']")
 let $externalFulfillmentStateExists := fn:exists($components/
orderItem[orderItemRef/@referencedIndex=$orderItemIndex]/
saxon:evaluate($externalFulfillmentStatePathExistsCheck))
 where (fn:exists($components) and $externalFulfillmentStateExists=fn:true())
 return
 <oms:OrderItemExternalFulfillmentState index="{$orderItemIndex}">
 {
 for $component in $components
 let $componentKey := fn:normalize-space($component/componentKey/
text())
 let $componentId := $component/@index
 let $externalFulfillmentStateValuePath :=
fn:concat($externalFulfillmentStatePath, "[last()]/text()")
 let $externalFulfillmentState := fn:normalize-space($component/
orderItem[orderItemRef/@referencedIndex=$orderItemIndex]/
saxon:evaluate($externalFulfillmentStateValuePath))

Chapter 8
Modeling Data for Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 37

 where (fn:exists($externalFulfillmentState)
and $externalFulfillmentState != "")
 return
 <oms:OrderItemComponentState componentId="{$componentId}">
 <oms:ComponentKey>{$componentKey}</oms:ComponentKey>
 <oms:ExternalFulfillmentState>{$externalFulfillmentState}</
oms:ExternalFulfillmentState>
 </oms:OrderItemComponentState>
 }
 </oms:OrderItemExternalFulfillmentState>
 }
 </oms:ExternalFulfillmentStates>
};

Modeling Data for Processing States
Processing states requires specific structures and data elements inside the order template.

About ControlData for Order Component Order Item Processing States
Order component order item processing state information is populated for order components.

The default location for order component order item fulfillment state information is
ControlData/Functions/OrderComponentName/orderItem/FunctionProcessingState.

Write the automation code so that it populates the information in the correct place. For
example, the following automation code updates the FunctionProcessingState to the
UndoFailed value whenever a response containing a fail value returns or to the Completed
value whenever any other response returns:

</UpdatedNodes>
 {(
 for $orderItem in $component/oms:orderItem
 let $lineId := $orderItem/oms:orderItemRef/centralom:lineId/text()
 return
 (
 if ($responseRoot/res:lineResponses/res:response[@id=$lineId]/text() = 'fail') then
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <oms:FunctionProcessingState>UndoFailed</oms:FunctionProcessingState>
 </Update>
)
 else
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <oms:FunctionProcessingState>Completed</oms:FunctionProcessingState>
 </Update>
)
)
)}
</OrderDataUpdate>

About ControlData for Order Item Processing States
OSM populates the order item processing state based on the order component order item
processing state.

Chapter 8
Modeling Data for Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 37

The default location for OSM to populate the order item processing state is ControlData/
OrderItem/OrderItemProcessingState.

Modeling Orders With Data Fields Above 1000 Characters
Standard OSM Design Studio data elements and structures can support a maximum of 1000
characters. However, in some cases it may be necessary to model data that exceed this limit.
Before you model order data fields than can contain more than 1000 characters, you must
carefully decide whether these fields are necessary. Unnecessary data within an order can
reduce the order processing performance of OSM.

The following sections describe ways to achieve data length for OSM data above 1000
characters.

Using XML Types for Data Fields Above 1000 Characters
In Design Studio, you can model data dictionary structures as XML types from the Order
specification, Order Template, Properties sub-tab, Order Data sub-tab. The structure must
be empty and contain no children elements or structures for it to be designated as XML type.
Structures defined as XML types in the data dictionary can contain XML documents. You can
also use XML schema files to validate the XML structures in the XML types.

Oracle recommends this option when the data is not human editable or readable in the OSM
user interfaces because the data is represented as XML. For example, the XML data can be
captured as follows, where <largetext> is the name of the structure designated as XML type:

<largetext>
Text to be inserted here
</largetext>

When you have defined the XML type structures in the Order specification Order Template,
then included them as a part of Manual or Automated Task Data, you can access the XML data
using:

• The OSM Task web client Order Editor screen (see OSM Task Web Client User's Guide for
more information).

• XML API GetOrder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

• OSM Web Service GetOrder and UpdateOrder OSM operations (see OSM Developer's
Guide for more information).

• Order access and updates performed using Automated Task automation plug-ins (see
"About Automation Plug-ins" for more information).

This approach has the following limitations:

• You cannot specify XML type data as significant for amendment processing. Changes to
this data does not trigger compensation.

• XML types are not visible in the OSM reporting interface.

To enable XML schema validation:

1. Create schema files for the required XML data type.

2. Use the Java perspective Package Explorer view to copy the schema files into the
cartridge project data dictionary folder where the XML data type has been defined.

Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 37

Using Order Remarks for Data Fields Above 1000 Characters
You can add Remarks that contain text to orders during order processing. Remarks can be
retrieved and updated using:

• The OSM Task web client Remarks and Attachments screens (see OSM Task Web Client
User's Guide for more information).

Note

The attachments created using the Remark and Attachments screens can be
accessed through the OSM Database.

• XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

• OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's Guide
for more information).

• Order access and updates performed using Automated Task automation plug-ins (see
"About Automation Plug-ins" for more information).

This approach has the following limitations:

• Remarks can store up to 4000 bytes of data. Depending upon the character set configured
in your database, the number of characters will vary.

• Remarks associated with orders are only editable for a certain time after you add them.
This time limit is defined by the remark_change_timeout_hours parameter contained in
the oms-config.xml file. You can edit the value associated with this parameter to change
the number of hours that remarks are editable. The default value is 24 hours. See OSM
System Administrator's Guide for more information about working with the oms-config.xml
file.

Using Attachments for Data Fields Above 1000 Characters
You can also add file attachments to remarks. File attachments can contain large amounts of
data and you can store them in different formats. You can access attachments with:

• The OSM Task web client using the Remarks and Attachments screens (see OSM Task
Web Client User's Guide for more information).

Note

The attachments created using the Remark and Attachments screens can be
accessed through the OSM Database.

• XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for more
information).

• OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's Guide
for more information).

Attachments are governed by the max_attachment_size parameter in the oms-config.xml
file. You can edit the value associated with this parameter to change the maximum attachment

Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 37

size. The default value is 10MB. See OSM System Administrator's Guide for more information
about working with oms-config.xml.

Note

When the remark change threshold is exceeded (remark_change_timeout_hours),
you can no longer add or delete attachments to the remark.

Using Data Providers to Retrieve Data
This section describes how to use data providers to retrieve data when modeling orders in
OSM.

About Data Providers and Adapters
An Oracle Communications Service Catalog and Design - Design Studio data provider is an
instantiation of adapter (which is a Java class) that can retrieve data in an XML format from
external systems. Data Providers are used when defining Data Instance behaviors (see "Using
the Data Instance Behavior to Retrieve and Store Data" for more information). Design Studio
provides several built-in Data Providers to retrieve external XML instances from specific
sources such as an Objectel server extension or a SOAP web service. Additionally, you can
create your own custom Data Provider (see "Custom Data Providers" for more information).

In Design Studio, the Data Provider editor Settings tab (Figure 8-11) allows you to set the Data
Provider type using Provider Type. Types of Data Providers include:

• Objectel

• Order

• Property File

• SOAP

• XML Attachment

• XML File

• XML Validation

• JDBC

• Web Service

• Custom Data Providers

When you select any of the above choices other than a custom data provider, the Provider
Class field becomes disabled and is populated with the OSM implementation of the adapter.
When you select Custom, the Provider Class field is enabled because you must supply the
class name of the custom adapter that you write. See "Custom Data Providers" for detailed
information.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 37

Figure 8-11 Data Provider Settings Tab

Data Provider Interface Tab
Data providers, both built-in and custom, can take parameters as input, as shown in the
Interface tab (Figure 8-12). Parameter names are free-form text, but are dictated by the data
provider's expected input. An asterisk (*) appears next to mandatory parameters, and each
parameter's corresponding value can be specified as either XPath 1.0 or XQuery 1.0. In
addition to the functions provided by the XPath 1.0 or XQuery 1.0 standards, OSM provides a
custom function, instance(string) that allows the output of one data provider to be used as
the input of another. The parameters required by each of the built-in data providers is
documented in the sections that follow.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 37

Figure 8-12 Data Provider Interface Tab

For instructions on how to define these data providers in Design Studio, including field-level
detail, see "Data Provider Editor" in Modeling OSM Processes.

Accessing Data through Data Providers
To use a Data Provider, you include a data element in the order template, define a behavior for
it and use an XPath expression to access the Data Provider and extract the data that you wish
to display in the data element.

For example, the following XPath illustrates how to call a web service provider instance named
"DataInstance" and return the value of the "my_element" view data element.

instance('DataInstance')/Data/_root/my_element

For XQuery, you would use vf:instance().

Augmenting or Overriding Data
In most cases, a data provider references order data from an external source, another
behavior, or as static values defined within the data provider. In addition to these options, you
can also add explicit parameter values from within an XQuery or XPath that augment or
override the parameters defined in the OSM data dictionary.

For example, the following variable can be declared with parameters that have not been
defined within the OSM data dictionary from within an XQuery:

declare variable $dataInstanceParams :=
 <params>
 <oms:url>file://users/bdueck/catalog.xml</oms:url>
 <fooParam>barValue</fooParam>
 </params>;

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 37

You can call a data instance function using a sequence of parameters declared in the variable
above. For example:

log:info($log,local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',$dataInstanceParams/*)/*[]))

You can call a data instance function using parameters passed as parameters on the function
one by one. For example:

log:info($log,local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',<oms:url>file://us/catalog.xml</oms:url>)/*[1])),

You can call a data instance function using parameters passed as parameters on the function
one by one and include two parameters. For example:

log:info($log, local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',<oms:url>file://us/catalog.xml</oms:url>,<foo>bar</foo>)/
*[1]))

Objectel
This adapter provides a reliable transport call into Objectel. Although JMS is an asynchronous
protocol, the Objectel adapter itself is not. While JMS simplifies transaction management,
recovery, offline capabilities, and security, these benefits are not relevant when considered
within the context of a behavior. The JMS adapter utilizes additional resources in the
application server in the form of temporary JMS destinations to which Objectel sends the
response. These can be expensive if an order has many adapters being called concurrently. It
is not recommended to use this adapter in this scenario.

Parameters

• objectel:extensionName

Description: the name of the Objectel server extension to call.

Mandatory/Optional: Mandatory

• objectel:jmsFactory

Description: the name of the JMS factory to be used to access Objectel's JMS queue.

Mandatory/Optional: Optional

Default value - com.oracle.objectel.XMLJMS.QueueConnectionFactory

• objectel:queue

Description: The name of the Objectel receive queue.

Mandatory/Optional: Optional

Default value: - com.oracle.objectel.XMLJMS.QueueConnectionFactory

• objectel:allowErrorResponse

Description: an optional Boolean parameter name that if specified controls what happens if
Objectel returns an error response. If this parameter is set to false (default), an error
response from Objectel triggers an exception to be thrown which is in turn displayed as a
constraint violation. If this parameter is set to true, the error response is returned by the
ObjectelAdapter as a valid instance. This allows another Constraint behavior to apply to
that same instance and display an error message accordingly. The benefit of using the
default (false) is that you do not have to write an additional behavior to display a default
error message. The constraint violation message looks like an exception with a stack trace,
but shows the error description returned by Objectel at the top of the message. The benefit

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 37

of setting this parameter to true is that you have greater control over when the error is
shown, at what severity, and what message is displayed.

– false: If this parameter is set to false (the default), an error response from Objectel
throws an exception, which is then displayed as a constraint violation. By using false
you can avoid writing an additional behavior to display only a default error message.
With this method, the constraint violation message looks like an exception with a stack
trace, but shows the error description returned by Objectel at the top of the message.

– true: If this parameter is set to true, the error response is returned by the
ObjectelAdapter as a valid instance. This allows another Constraint behavior to apply
to that same instance and display an error message accordingly. By setting the
parameter to true, you have greater control over:

* When the error should be shown

* The severity level displayed

* The exact error message to display.

– All other parameters are passed directly as name/value pairs to the server extension.

Order
This adapter lets you use order data from any OSM order as an external instance. This is
useful for using related order data from other orders within OSM.

Parameters

• oms:OrderID

Description: The order ID of the order to be retrieved.

Mandatory/Optional: Mandatory

• oms:View

Description: The view (query task) to use when retrieving order data.

Mandatory/Optional: This is required if the oms:OrderHistID is not supplied.

• oms:OrderHistID

Description: The order history ID to use when retrieving order data.

Mandatory/Optional: This is required if oms:View is not supplied.

Adding a New Order Data Provider
To add a new Data Provider which uses the Order adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New, then
select Order and Service Management, and then select Data Provider.

2. In the Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Order.

The new Order Data Provider is added to the Design Studio project.

3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab, specify
values for either the oms:View or oms:OrderHistID parameters.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 37

5. Set the Default Value to either XQuery or XPath and enter your request code in the
Default Value edit box.

6. Optionally specify the XML structure of the data in the Results Document edit box.

The definition of GetOrderResponse is located in the order management web service
schema at SDK\XMLSchema\GetOrder.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM Processes. Also,
see "Accessing Data through Data Providers".

Property File
This adapter retrieves an external Java property file with a given name from the classpath. The
format of the XML instance returned by this adapter is specified as:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/
Properties.html

Parameters

• oms:url

Description: Specifies the file name of the Java property file. The file must be on the
classpath and must be in the format of a Java property file.

Mandatory/Optional: Mandatory

SOAP
This adapter lets you access web services from OSM or an external web service server, using
the HTTP protocol. You can call SOAP web services from OSM or an external web service
server and use the responses within behaviors.

Note

If you need to configure a proxy server to access the internet, add the following
parameters to the OSM WebLogic server startup script:

JAVA_OPTIONS="${JAVA_OPTIONS} -Dhttp.proxyHost=ip_address -Dhttp.proxyPort=port

where ip_address and port are the IP address and port of the proxy server.

For web service calls specific to OSM, use the Web Service adapter. See "Web Service".

For general web services calls, use the SOAP adapter.

Parameters

• soap.endpoint

Description: Specifies the URL to which the SOAP request will be sent.

Mandatory/Optional: Mandatory

• soap.action

Description: Contains the URI that identifies the intent of the message.

Mandatory/Optional: Optional

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html

• soap.envelope

Description: Specifies the root element of a SOAP message.

Mandatory/Optional: Mandatory, if the soap.body parameter is not defined.

• soap.body

Description: Contains the SOAP message intended for the endpoint. If the SOAP body
node is not included in the soap.body content, it will be added by the SOAP Adapter.

Mandatory/Optional: Mandatory, if the soap.envelope parameter is not defined.

• soap.header

Description: Contains XML data that affects the way the application-specific content is
processed by the message provider. If the SOAP header node is not included in the
soap.header content, it will be added by the SOAP Adapter.

Mandatory/Optional: Optional

• oms:credentials.username

Description: Specifies an authentication user name.

Mandatory/Optional: Optional

• oms:credentials.password: An optional authentication parameter

Description: Specifies an authentication password.

Mandatory/Optional: Optional

• oms:credentials.scope.host: An optional authentication parameter

Description: Specifies an authentication host parameter.

Mandatory/Optional: Optional

• soap.allowErrorResponse:

Description: When set to true, the adapter returns SOAP fault messages to the calling
behavior; otherwise, the adapter throws an exception when a SOAP fault response is
returned.

Mandatory/Optional: Mandatory

Example of soap.body Parameter

The following is an example of a SOAP body, which would be populated in the soap.body
parameter.

<instance name="us-addr" xsi:type="externalInstanceType">
<adapter>com.mslv.oms.view.rule.adapter.SOAPAdapter</adapter>
<parameter name="soap.endpoint">'http://ws2.serviceobjects.net/av/AddressValidate.asmx'</
parameter>
<parameter name="soap.body" xsi:type="xqueryType">
<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<sa:ValidateAddress xmlns:sa="http://www.serviceobjects.com/">
<sa:Address xsi:type="soapenc:string">{ ../street/text() }</sa:Address>
<sa:City xsi:type="soapenc:string">{ ../city/text() }</sa:City>
<sa:State xsi:type="soapenc:string">{ ../state/text() }</sa:State>
<sa:PostalCode xsi:type="soapenc:string"/>
<sa:LicenseKey xsi:type="soapenc:string">{ ../soap_license_key/text() }</sa:LicenseKey>
</sa:ValidateAddress>
</soap:Body>

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 37

</parameter>
</parameter name="soap.action">'http://www.serviceobjects.com/ValidateAddress'</
parameter>
<cache>
<scope>NODE</scope>
</cache>
</instance>

Example of soap.envelope Parameter

The following is an example of a SOAP envelope, which would be populated in the
soap.envelope parameter.

<?xml version="1.0" encoding="UTF-8"?>
<com:modelEntity xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adapt="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
 xmlns="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
 xmlns:com="http://www.mslv.com/studio/core/model/common"
 xmlns:prov="http://xmlns.oracle.com/communications/sce/osm/model/provisioning"
 xsi:type="adapt:adapterType" name="Send_Order">
 <com:displayName>Send_Order</com:displayName>
 <com:saveVersion>49</com:saveVersion>
 <com:interface>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType" name="soap.endpoint">
<adapt:contentType>XPATH</adapt:contentType>
<adapt:defaultValue>'http://localhost:7001/osm/wsapi'</adapt:defaultValue>
</com:inputParameter>
<com:inputParameter xsi:type="adapt:xpathInputParameterType" name="soap.envelope">
 <adapt:contentType>XQUERY</adapt:contentType>
 <adapt:defaultValue>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-10570647">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <osm:CreateOrderBySpecification xmlns:osm="http://xmlns.oracle.com/communications/
ordermanagement" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <osm:Specification>
 <osm:Cartridge>
 <osm:Name>LGT_PSTN_Corp</osm:Name>
 <osm:Version>1.0.0</osm:Version>
 </osm:Cartridge>
 <osm:Type>LGT_PSTN_CorpOrder</osm:Type>
 <osm:Source>LGT_PSTN_CorpOrder</osm:Source>
 </osm:Specification>

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 37

 <osm:Reference>Create by WebService</osm:Reference>
 <osm:Priority>5</osm:Priority>
 <osm:AutoAddMandatoryData>true</osm:AutoAddMandatoryData>
 <osm:StartOrder>true</osm:StartOrder>
 <osm:Data>
 <_root>
 <Customer_info>
 <Customer_name>Sample_cust</Customer_name>
 <Customer_Address>Anytown</Customer_Address>
 <Customer_region>1</Customer_region>
 <Customer_contact>391-322-1323</Customer_contact>
 </Customer_info>
 <Order_info>
 <Order_Id> 1000006</Order_Id>
 <Order_version>1 </Order_version>
 </Order_info>
 <Service_info>
 <Service_Type>1</Service_Type>
 <Corp_TelephoneNumber>900893322 </Corp_TelephoneNumber>
 </Service_info>
 </_root>
 </osm:Data>
 </osm:CreateOrderBySpecification>
 </soapenv:Body>
 </soapenv:Envelope></adapt:defaultValue>
</com:inputParameter>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="oms:credentials.username">
 <adapt:contentType>XPATH</adapt:contentType>
 <adapt:defaultValue>'osm'</adapt:defaultValue></com:inputParameter>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="oms:credentials.password">
 <adapt:contentType>XPATH</adapt:contentType>
 <adapt:defaultValue>'password'</adapt:defaultValue>
 </com:inputParameter>
 </com:interface>
 <com:implementation xsi:type="adapt:adapterImplementationType">
 <adapt:builtInType>SOAP</adapt:builtInType>
 </com:implementation>
 <adapt:cache enabled="true">
 <adapt:scope>SYSTEM</adapt:scope>
 <adapt:timeout>15000</adapt:timeout>
 <adapt:maxsize>50</adapt:maxsize>
 </adapt:cache>
</com:modelEntity>

XML Attachment
This adapter lets you use an attachment from any OSM order as an external instance. It is
useful for using related-order-data from other orders within OSM.

Parameters

• oms:OrderID

Description: The order ID of the order to be retrieved.

Mandatory/Optional: Mandatory

• oms:FileName

Description: The name of the attachment to use when retrieving the order data.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 37

Mandatory/Optional: Mandatory

XML File
This adapter lets you use an XML file accessible from any URL as an external instance. It is
useful for integrating external XML data located in a file system, FTP site, from HTTP, or in a
Java JAR file.

Parameters

• oms:url

Description: The URL of the file to retrieve.

Mandatory/Optional: Mandatory

XML Validation
This adapter validates a provided XML instance document according to a user-defined
schema. The document may be provided either as a URL or as an element. The schema may
also be provided as a URL or as an element. The returned document conforms to the element
specified by http://xmlns.oracle.com/communications/
ordermanagement#ValidationResult.

Parameters

• document

Description: The file name of the XML document to validate.

Mandatory/Optional: Mandatory

• schema

Description: The file name of the XSD used to perform the XML validation.

Mandatory/Optional: Mandatory

JDBC
This adapter lets OSM query any JDBC database, then use the results within a behavior. This
adapter is particularly useful for acquiring information stored in an external database.

Parameters

• oms:dataSource

Description: The JNDI name of the data source providing the database connection
information. For example <code>'mslv/oms/oms1/internal/jdbc/DataSource'. The data
source must be defined through the WebLogic remote console. To do so, navigate from
Edit Tree to Services. Within Services, open Data Sources.

Mandatory/Optional: Mandatory

• oms:sql

Description: The SQL that is sent to the database. To run a SQL stored procedure, this
parameter must comply with the format specified by:

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/
CallableStatement.html

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/CallableStatement.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/CallableStatement.html

Mandatory/Optional: Mandatory

• in:1 . . . in:n

Description: 1 to n additional optional input parameters may be supplied that are bound to
parameters defined in the oms:sql value.

Mandatory/Optional: Optional

• out:1 . . . out:n

Description: 1 to n additional optional output parameters that are used when calling SQL
stored procedures that have output parameters defined. The parameter value specifies the
SQL type name of the parameter, and must be defined at:

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/
Types.html

Mandatory/Optional: Optional

Web Service
This external instance adapter lets you invoke the GetOrder and FindOrder OSM Web Service
operations. The adapter acts as a wrapper around OSM's Web Service API for these two web
service operations, allowing them to be called from external instances.

For other web service calls, use the SOAP adapter. See "SOAP" for more information.

Parameters

• soap.request

Description: Set this parameter to one of the following:

– The contents of what would normally be in the Body element of the web service
request. For example, ord:GetOrder or ord:FindOrder.

– A soap:Envelope element, that is, the entire soap request.

– A soap:Body element, that is, the body element of the soap request.

Mandatory/Optional: Mandatory

See OSM Developer's Guide for more information about GetOrder and FindOrder web service
transactions.

Adding a New Web Service Data Provider
To add a new Data Provider which uses the Web Service adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New, then
select Order and Service Management, and then select Data Provider.

2. In the Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Web Service.

The new Web Service Data Provider is added to the Design Studio project.

3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab, select
the soap.request* parameter.

5. Set the Default Value to XQuery and enter the request XQuery code in the Default Value
edit box. See "Sample soap.request XQuery" for an example.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 37

https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/Types.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/Types.html

You can optionally specify the request as an XPath instance instead by setting the Default
Value to XPath and entering the request XPath code in the Default Value edit box.

6. Optionally specify the XML structure of the data in the Results Document edit box.

Definitions of FindOrderResponse and GetOrderResponse declarations are located in the
order management web service schema at
SDK\WebService\wsdl\OrderManagementWS.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM Processes.

Sample soap.request XQuery
The following is a soap.request XQuery example for a web services Data Provider. You can
also specify the input as a SOAP envelope or a SOAP Body.

<ord:GetOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <ord:OrderId>1</ord:OrderId>
 <ord:View>review_details_view</ord:View>
 <ord:AmendmentFilter>
 <ord:LevelOfDetail>AmendmentsSummary</ord:LevelOfDetail>
 </ord:AmendmentFilter>
 <ord:LifecycleEventFilter>
 <ord:RetrieveLifecycleEvents>true</ord:RetrieveLifecycleEvents>
 </ord:LifecycleEventFilter>
</ord:GetOrder>

Accessing Data
To use the Data Provider, include a data element in the order template, define a behavior for it,
and use an XPath expression to access the Data Provider and extract the data to display in the
data element. See "Accessing Data through Data Providers".

Whenever the Web Service adapter is called through a Data Provider, GetOrderRequest is
executed and a response returned. If logging is set to debug for the OrderAdapter, a message
similar to the one below is displayed on the WebLogic Remote Console:

<09-Feb-2012 2:57:57,884 IST PM> <DEBUG> <adapter.OsmWebServiceAdapter> <ExecuteThread:
'10' for queue: 'oms.web'> <<GetOrderResponse xmlns="http://xmlns.oracle.com/
communications/ordermanagement">
 <OrderSummary>
 <Id>16</Id>
 <Specification>
 <Cartridge>
 <Name>view_framework_demo</Name>
 <Version>1.0.0.0.0</Version>
 </Cartridge>
 <Type>vf_demo_web</Type>
 <Source>vf_demo_web</Source>
 </Specification>
 <State>open.running.in_progress</State>
 <Reference>N1</Reference>
 <CreatedDate>2012-02-08T17:55:31.000+05:30</CreatedDate>
 <ExpectedDuration>P1D</ExpectedDuration>
<ExpectedOrderCompletionDate>2012-02-09T17:55:37.000+05:30</ExpectedOrderCompletionDate>
 <ProcessStatus>n/a</ProcessStatus>
 <Priority>5</Priority>
 </OrderSummary>
 <Data>
 <osmc:_root

xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:view_framework_demo:1.0.0.0.0:view

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 37

:enter_account_information" index="0">
 <osmc:account_information index="1328703937231">
 <osmc:first_name index="1328703937242">name</osmc:first_name>
 <osmc:last_name index="1328703937243">lastname</osmc:last_name>
 <osmc:country index="1328703937244">US</osmc:country>
 <osmc:address_information index="1328703937233">
 <osmc:address_details_us index="1328703937236">
 <osmc:validate_address_via_soap index="1328703937238">No</
osmc:validate_address_via_soap>
 <osmc:street index="1328703937239">street</osmc:street>
 <osmc:city index="1328703937241">city</osmc:city>
 <osmc:state index="1328703937240">MI</osmc:state>
 <osmc:zip_code index="1328703937237">12323</osmc:zip_code>
 </osmc:address_details_us>
 <osmc:address_details_ca index="1328703937234">
 <osmc:validate_address_via_soap index="1328703937235">No</
osmc:validate_address_via_soap>
 </osmc:address_details_ca>
 </osmc:address_information>
 </osmc:account_information>
 <osmc:info_roopa index="1328703937245">nikhil</osmc:info_roopa>
 </osmc:_root>
 </Data>
</GetOrderResponse

Custom Data Providers
In addition to the built-in data providers described in previous sections, Design Studio supports
custom data providers. You can develop a custom data provider class in a project in Design
Studio as part of a solution. This provider class must implement the
com.mslv.oms.view.rule.ExternalInstanceAdapter interface. This interface is documented
in the Javadocs distribution found in the OSM SDK.

The implementation class can be made available to the OSM run time system in two ways:

• Package the class into an Java archive (jar file) with an arbitrary name and place the jar
file in the resources directory of the Studio project(s) that define Behaviors referencing the
data provider. The class will be available as soon as the project is deployed

• Add the compiled adapter class to the customization.jar file in the oms.ear file. The class
will be available as soon as the OSM application is redeployed. See OSM Developer's
Guide for information about unpacking, packing, and redeploying the oms.ear file.

The ExternalInstanceAdapter.retrieveInstance(ViewRuleContext, Map) method provides
a Map of name/value pairs of arguments defined in the data provider's Design Studio definition
and their corresponding values for an invocation of an instance of this class. The
com.mslv.oms.view.rule.adapter.AbstractAdapter class provides a number of methods to
assist in extracting properly type cast parameter values from that Map. AbstractAdapter is
included in the automation_plugins.jar archive found in the osmLib directory of a Design
Studio OSM project, as well as in the automation/automationdeploy_bin subdirectory of an
OSM SDK installation.

Handling Parameters
Custom data providers, like built-in providers, support input parameters. The following
examples illustrate how to access those parameters.

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 37

Example 1 (incorrect usage)

String stringParamValue = (String) parameters.get(MY_STRING_PARAM); The value
returned by parameters.get(...) may not be a String, resulting in a ClassCastException.

Example 2 (incorrect usage)

String stringParamValue = parameters.get(MY_STRING_PARAM).toString(); The
parameters.get() call may return a null value resulting in a null pointer exception. Also, the
value returned may be an XML DOM fragment, requiring a more sophisticated mechanism for
value extraction than simply calling toString().

Example 3 (correct usage)

String stringParamValue = = getStringParam(parameters, MY_STRING_PARAM); The
getStringParam(Map, String) call automatically performs the appropriate conversion to
coerce a parameter value into a String. This method is intended for extracting a required
parameter value. If a value for MY_STRING_PARAM was not provided, or if the value cannot be
coerced into a String, a BadParameterException is thrown. To retrieve optional parameter
values, use getStringParam(Map, String, String) instead; see Example 4.

Example 4 (correct usage)

String stringParamValue = getStringParam(parameters, MY_STRING_PARAM, "a default
value"); The MY_STRING_PARAM parameter is retrieved as an optional parameter. If a value for
MY_STRING_PARAM is provided, it is returned, otherwise, "a default value" is returned.The
AbstractAdapter class also provides similar methods to extract boolean, numeric, and XML
DOM Node parameter values:

• boolean booleanParamValue = getBooleanParam(parameters, MY_BOOLEAN_PARAM);

• int intParamValue = getIntParam(parameters, MY_NUMBER_PARAM);

• Node nodeParamValue = getNodeParam(parameters, MY_NODE_PARAM);

The following code snippet illustrates a simple custom data provider class:

/*
 * Copyright © 1998, 2012, Oracle and/or its affiliates. All rights reserved.
*/
package oracle.communications.ordermanagement.example;

import java.util.Map;

import oracle.communications.ordermanagement.util.xml.XMLHelper;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import com.mslv.oms.view.rule.ExternalInstanceAdapter;
import com.mslv.oms.view.rule.ViewRuleContext;
import com.mslv.oms.view.rule.adapter.AbstractAdapter;

/**
 * <p>
 * This class exemplifies a custom Data Provider. In particular, it demonstrates a
provider that returns the familiar "Hello World!"
 * example. The data returned by this provider can in turn be used as input to any
Behavior type.
 * </p>

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 37

 * <p>
 * Like all data providers, this class implements the {@link ExternalInstanceAdapter}
interface. This interface defines a single method,
 * {@link ExternalInstanceAdapter#retrieveInstance(ViewRuleContext, Map)
retrieveInstance(ViewRuleContext, Map)}. The
 * {@link ViewRuleContext} argument provides various context hooks to this Data Provider
implementation instance. The <code>Map</code>
 * argument contains the name/value pairs of arguments defined in the Data Provider's
Studio definition and their corresponding values for
 * the current invocation of this Data Provider implementation instance. It additionally
extends the {@link AbstractAdapter} class.
 * <code>AbstractAdapter</code> provides a number of utility methods for retrieving
properly type-cast parameters from the parameter
 * <code>Map</code>.
 * </p>
 *
 * @author Copyright © 1998, 2012, Oracle and/or its affiliates. All rights reserved.
 *
 */
public final class ExampleProvider extends AbstractAdapter implements
ExternalInstanceAdapter {

 /**
 * The name of a parameter that specifies the salutation to return from {@link
#retrieveInstance(ViewRuleContext, Map)}. For example, if
 * a value of <code>Goodbye</code> is specified, the message <code>Goodbye World!</
code> will be returned. This example does not require
 * this parameter to exist. If it does not, the message <code>Hello World!</code>
will be returned.
 */
 public static final String SALUTATION_PARAM_NAME = "salutation";

 private static final String DEFAULT_SALUTATION = "Hello";

 /**
 * <p>
 * This implementation simply returns the root {@link Element} of a {@link Document}
containing the <code>String "Hello World!"</code>
 * in the contents, i.e., the root of the XML:
 *
 * <pre>
 * <response>
 * <message>Hello World!</message>
 * </response>
 * </pre>
 *
 * </p>
 * <p>
 * The <code>instance('<var>name</var>')</code> Behavior function resolves to the
document root element returned by this method.
 * Therefore, the syntax for locating this provider's message (assuming the Data
Provider associated with this class is named
 * <code>ExampleProvider</code>) is <code>instance('ExampleProvider')/message</code>.
 * </p>
 *
 * @param ctx
 * provides various context-specific hooks for use by this instance
 * @param params
 * <code>Map</code> of name/value pairs, where the key is the parameter
name defined in the Data Provider definition that is
 * associated with this class, and the value is the resolved value of
that parameter for a specific invocation of this

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 37

 * method. This example does not expect or require any parameters.
 * @return the root <code>Document Element</code>
 */
 @Override
 public Element retrieveInstance(final ViewRuleContext ctx, final Map<String, Object>
params) throws Exception {
 /*
 * This demonstrates how to use the utility methods inherited from
AbstractAdapter to return a parameter value, though here the
 * "salutation" parameter is not expected to exist.
 */
 final String salutation = getStringParam(params, SALUTATION_PARAM_NAME,
DEFAULT_SALUTATION);

 /*
 * Create the response. An actual provider implementation would likely calculate
or retrieve the response from an external system.
 */
 final String response = "<response><message>" + salutation + " World!</message></
response>";

 /*
 * The code invoking this method expects a org.w3c.dom.Document root
org.w3c.dom.Element. The XMLHelper utility class provides a
 * number of DOM manipulation methods, including various String parsers.
 */
 final Document responseDoc = XMLHelper.parseText(response, false);
 return responseDoc.getDocumentElement();
 }
}

Chapter 8
Using Data Providers to Retrieve Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 37

9
Modeling Behaviors

This chapter describes how to model behaviors in an Oracle Communications Order and
Service Management (OSM) solution.

Modeling Behaviors Overview
You can use behaviors to specify how OSM manages data. For example:

• You can specify the maximum allowed number of characters for text string data.

• You can add the values of multiple fields and display the sum in another field.

• You can specify the minimum and maximum times that a data element can be used in an
order. For example, an order might require that exactly two IP addresses are added.

You can model behaviors in tasks and in orders. Figure 9-1 shows how behaviors are modeled
in a task that enters payment information. In this figure, the field that shows the payment total
uses two behaviors:

• A Calculation behavior that adds values in multiple other fields to create the total payment
value.

• A Read Only behavior that makes the field read-only in the Task web client.

Note

The examples are for illustrative purposes only; OSM is not typically used for payment
handling.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 29

Figure 9-1 Behaviors Used in a Task

Figure 9-2 shows a behavior modeled in an order. This behavior is used by an order to display
a tool tip for the payment information field.

Figure 9-2 Information Behavior Modeled in Oracle Communications Service Catalog
and Design - Design Studio

Table 9-1 lists the OSM behaviors.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 29

Table 9-1 OSM Behaviors

Behavior Name Descriptions

Calculation Computes the value of a field value based on a formula that references order data.

See "Using the Calculation Behavior" for more information.

Constraint Specifies a condition that must be met for the data to be considered valid.

See "Using the Constraint Behavior to Validate Data" for more information.

Data Instance Declares an instance that can be used by other behaviors.

See "Using the Data Instance Behavior to Retrieve and Store Data" for more information.

Event Specifies an action that is performed when data is modified.

See "Using the Event Behavior to Re-evaluate Data" for more information.

Information Specifies the label, hint, and help information for the data element instance.

See "Using the Information Behavior to Display Data and Online Help" for more information.

Lookup Specifies a set of dynamically generated choices from which you can select.

See "Using the Lookup Behavior to Display Data Selection Lists" for more information.

Read Only Specifies whether a value can be modified or not.

See "Using the Read-Only Behavior" for more information.

Relevant Specifies whether data is visible or hidden.

See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client"
for more information.

Style Specifies the visual appearance of fields.

See "Using the Style Behavior to Specify How to Display Data in the Task Web Client" for
more information.

About Behavior Evaluation
It is possible that multiple behaviors can be applied to the same data. At run-time, OSM
determines which behavior should be applied by evaluating the conditions defined for
behaviors using a combination of server rules and behavior attributes that you model by using
Design Studio configuration options. The following configuration options affect the manner in
which OSM evaluates behaviors at run-time:

• The level at which you define the behavior. See "Evaluating Behavior Levels" for more
information.

• The manner in which you define the Design Studio Override and Final configuration
options. See "Evaluating Design Studio Final and Override Options" for more information.

• The type of behavior defined for the element. See "Evaluating Behavior Type Precedence
and Sequence" for more information.

• Whether multiple behaviors of the same type are defined for an element at the same level.

Note

The style behavior is the only behavior applied to Redo, Undo, and Do Nothing
compensation strategies and the historical order perspective displayed in the Task
web client. See "Modeling Compensation for Tasks" for more information about
compensation strategies and the historical order perspective.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 29

Evaluating Behavior Levels
In Design Studio, you can create behaviors for data nodes at three levels:

• Data element level (most general)

• Order level (more specific)

• Task level (most specific)

OSM evaluates behaviors from the general level to the specific level. For example, OSM
evaluates behavior conditions defined at the data element level first, and evaluates behaviors
defined for data nodes at the task level last. At run-time, OSM determines which level to use
for a behavior type and data node combination and evaluates rules from that level only.

For example, consider that you create a Calculation behavior at the data element level, and for
the same data node you create a Calculation behavior at the order level. In this scenario, OSM
would never evaluate the conditions defined for the Calculate behavior at the order level
(unless you force evaluation using the Override or Final options), even if all of the conditions
defined for the behavior at the data element level evaluate to false.

OSM does, however, evaluate different types of behaviors defined for a data node at different
levels. For example, if for the same data node you define a Calculation behavior at the data
element level and a Constraint behavior at the order level, OSM evaluates the conditions for
both behaviors at run-time.

Note

The Constraint behavior is an exception to the way in which behaviors are evaluated.
When the run-time environment evaluates Constraint behaviors, it evaluates all of
them, regardless of the level at which they are declared.

Evaluating Design Studio Final and Override Options
You can force local, specific exceptions to the way behaviors are evaluated for a given node by
selecting the Override and Final check boxes on the appropriate Properties view Behaviors
tab Details subtab in Design Studio. You can select the Override attribute to allow the
behavior to take precedence over any other behavior:

• Of the same type

• For the same node

• Declared at the same or more general level

For example, consider that you have a data element called customer that you declare twice: at
the data element level and at the task level. For each occurrence of customer, you create a
behavior called styleBehaviorType. At the specific task level, you select the behavior's
Override check box. At run-time, OSM evaluates the behavior conditions defined at the task
level, as the task-level version of styleBehaviorType overrides the data element-level version of
the same behavior type.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 29

Note

Override does not function if the behavior that you are trying to override has the Final
check box selected.

When selected, the Final check box prevents another behavior of the same type, for the same
node, declared at the same or more specific level, from overriding that behavior.

For example, you define the element customer at the data dictionary level (highest), and add it
at the task level (lowest). For each occurrence of customer, you define a Style behavior. On
the data dictionary level (most general) of the behavior definition, you select the Final check
box. On the task level (lowest) of the behavior definition, you select the Override check box.
When OSM evaluates the behaviors, the selection of the Final check box at the data dictionary
level prevents the task level (lowest) definition of the Style behavior from overriding the data
dictionary level (highest) definition of the behavior.

Evaluating Behavior Type Precedence and Sequence
OSM automatically evaluates behaviors whenever you retrieve, save, or transition an order.
OSM evaluates the behaviors in a specific nested sequence, as outlined below:

1. The system evaluates all behaviors for a given node before moving to the next node in the
order.

The next node in the order is based on a depth first, left-to-right traversal.

Figure 9-3 shows the element selection order.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 29

Figure 9-3 Element Selection

2. Behaviors within a given node are evaluated based on the following precedence of type:

• 1st: Calculate

• 2nd: Style

• 3rd: Information

• 4th: Relevant

• 5th: Lookup

• 6th: Constraint

• 7th: Read-only

• 8th: Event

Note

Relevant rules can prevent other rules from being evaluated. For example, if the
Relevant rule of a data node evaluates to false, then rule types with a precedence
lower than the Relevant rule are not evaluated (the Lookup, Constraint, Read-only,
and Event rules). Additionally, if a data node's Relevant rule evaluates to false, no
rule evaluation is done for any descendants of that node.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 29

3. Within an order, within an element, within a specific behavior type, all behaviors defined at
a specific data level are evaluated before moving to the next data level.

The evaluation process prioritizes data levels, which are evaluated in the following order:

• Data dictionary level

• Order level

• Task level

Behaviors defined on a task can override behaviors defined on an order if you have
enabled the behavior's Override option at the task level and if you have disabled the
behavior's Final option at the order level.

Note

The Constraint behavior is an exception to the way behaviors are evaluated: When
OSM evaluates Constraint behaviors, it evaluates all of them, regardless of the level at
which they are defined.

Evaluation Process
Within an order, within an element, within a behavior type, within a data level, the evaluation
proceeds as follows:

1. Is the behavior enabled?

• If the behavior is enabled, the final and override options are evaluated simultaneously.

• If the behavior is not enabled, the behavior is not applied.

2. Is the behavior finalized or overridden?

• If the behavior is not finalized and not overridden at a lower level, the condition defined
for the behavior is evaluated.

• If the behavior is finalized and not overridden at a lower level, the behavior is final and
the condition defined for the behavior is evaluated.

• If the behavior is finalized and overridden at a lower level, the override has no affect;
the behavior is final and the condition defined for the behavior is evaluated.

• If the behavior is not finalized and is overridden at a lower level, the condition defined
for the overridden behavior is evaluated (not the condition defined for the behavior that
is currently being evaluated). If the condition is met, the overridden behavior is applied.

• If the behavior is not finalized and is overridden by more than one lower level, the
condition defined for the lowest level overridden behavior is evaluated (not the
condition defined for the behavior that is currently being evaluated). If the condition is
met, the overridden behavior is applied.

3. Is the condition defined for the behavior met?

• If the condition is met, the behavior is applied.

• If the condition is not met, the behavior is not applied.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 29

Note

If you define two or more behaviors for an element at the same level, to avoid
unpredictable behavior you should define mutually exclusive conditions. OSM
does not guarantee the order of evaluation for the same behavior types
defined at the same level.

4. The evaluation process continues.

• If a condition is met, and a behavior is applied, the evaluation process no longer
checks lower levels; it moves to the next occurrence of the behavior.

• If a condition is not met, the evaluation process continues with the next occurrence of
this behavior type defined at this data level. If there are no more at this level, the
evaluation process moves to the next lower level. If there are no lower levels, the
evaluation process continues with the next occurrence of this behavior type defined at
the highest level, and so on. When there are no more occurrences of the behavior
type, the evaluation process moves to the next behavior type, and so on. When there
are no more behavior types, the evaluation process moves to the next element.

When the evaluation process determines that a behavior is to be applied at a particular level,
some behavior types stop evaluating behaviors of the same type, while others continue
evaluating behaviors of the same type at that level for the same element.

For example, you define three behaviors of the same type on the same data element at the
same level, and all go through the evaluation process ending with the condition being met (the
behavior is applied). For behaviors that stop evaluating, only the first behavior is applied. For
behaviors that continue evaluating, multiple behaviors of the same type may be applied, and
their effect on the UI is cumulative.

The following behaviors stop evaluating behaviors of the same type after a condition is met
and a behavior of the type is applied:

• Calculation

• Lookup

The following behaviors continue evaluating behaviors of the same type after a condition is met
and a behavior of the type is applied:

• Constraint

• Event

• Information

• Read Only

• Relevant

• Style

Note

The behaviors in both lists above are presented in alphabetical order, not in behavior
type evaluation order.

For example, if three Constraint behaviors are defined, and all go through the evaluation
process ending with the behavior being applied, all three Constraint violation messages display

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 29

in OSM. In another example, if three Read Only behaviors are defined, if any of them get
applied, the field is set to read-only (even if prior and/or subsequent Read Only behaviors
evaluate to false). Style and Information behaviors are a bit more complicated in that they have
multiple facets. The end result is the cumulative effect of these facets. For example, you can
define hints and labels with an Information behavior. If one behavior has a hint and another
behavior has a label, the end result is that both are applied. If two behaviors define hints, then
the second behavior's hint is applied.

Evaluating Multiple Behaviors of Similar Type and Level
When modeling behaviors of the same type, at the same level, for the same data node, ensure
that the conditions you define for each behavior are mutually exclusive. When evaluating
behaviors of the same type and defined on the same data node and level, the OSM run-time
server has no ability to guarantee a predicable order of evaluation. When modeling behaviors
for a data node, when it's necessary to define behaviors of the same type at the same level,
ensure that you configure conditions that do not rely on a specific order of evaluation.

Additionally, the OSM server evaluates the conditions of each behavior until the conditions of
one behavior evaluate to true. Subsequently, OSM does not continue to evaluate any
conditions defined for behaviors of the same type and for the same data node.

About Setting Conditions in Behaviors
Conditions enable you to specify when a behavior should function. You set a condition by
defining an XPath expression. If the XPath expression evaluates to false at run time, the
condition is not met and the behavior is not applied. If the XPath expression evaluates to true
at run time, the condition is met and the behavior may or may not be applied, depending on the
outcome of evaluation of the behavior at run time.

If no conditions are defined, OSM considers the condition to be met. If multiple conditions are
defined, all conditions must evaluate to true for the condition to be met.

Note

The Constraint behavior is the only exception to the way conditions are handled.

Constraint behaviors specify a condition that must be met for the data to be
considered valid.

XPath Examples

This section provides XPath examples that are applicable to setting a condition on any
behavior type.

• This example shows a condition that evaluates to true when the value of myNumericField
is less than 100, and evaluates to false when the value of myNumericField is 100 or
greater:

../myNumericField<100

• This example shows a condition that evaluates to true when the value of myTextField is
populated, and evaluates to false when the value of myTextField is an empty String:

../myTextField!=""

• This example shows a condition that evaluates to true when the value of all three fields are
zero, and evaluates to false if any one of three fields are greater than or less than 0:

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 29

../myNumericField1=0 and myNumericField2=0 and myNumericField3=0

Using the Calculation Behavior
You use the Calculation behavior to calculate a field's value based on a formula that references
other field values. You can perform numeric operations and string concatenations.

OSM supports the Calculation behavior in the Task web client and in the Order Management
web client Data tab.

For example, you can use the following expression in a Calculation behavior to calculate the
current balance for a customer:

../amount_owing - sum(../../payment_information/payment_amount)

In this example, the current balance displays the value from the amount_owing field after
subtracting the value from the payment_amount field; the balance = (amount owed) - (amount
paid).

Figure 9-4 shows an XPath expression that combines the first_name field and the last_name
field. The Calculation behavior is applied to a field that contains the card-holder name field,
where the first and last names are combined into a single field value.

Figure 9-4 Calculate Behavior Formula for Combining String Values

Calculation Behavior XPath Examples
The following examples show how to use XPath statements in the Calculation behavior.

• This example shows how to set a constant value of 100 for a numeric field (whatever
number you specify is the number that displays for the field):

100

• This example shows how to prefix a constant value to a text field (whatever text you define
is the text that displays along with the text value of the field):

append("any text here",../fieldName)

• This example shows how to display a numeric field as a result of adding three other
numeric fields:

../fieldName1 + ../fieldName2 + ../fieldName3

• This example shows how to see the user name of the user who accepted a task:

/GetOrder.Response/AcceptedUserName

Calculation Behavior Overview
Table 9-2 shows Calculation behavior attributes.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 29

Table 9-2 Calculation Behavior Attributes

Attributes Value

Order of evaluation 1st

Default value None

Applies to All elements

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Constraint Behavior to Validate Data
You can use the Constraint behavior to validate data that is entered in an order. For example:

• Validate the format of a field. For example, 10 digits for a telephone number, 5 digits for a
ZIP code, or an IP address format.

• Validate the range of a field. For example, ensure that a numeric value is between 0 and
100.

• Validate the field value is within a valid list.

In addition to specifying how data is validated, you can:

• Configure messages that indicate the results of the validation; for example, a warning or
error message.

• Specify how the order should be processed if the validation fails; for example, stop
processing or continue processing.

For example, you might want to ensure that value in a Payment Amount field is less than the
amount owed and greater than 0. The Constraint behavior would include this condition:

. <= ../../account_information/amount_owing and . >= 0

The same Constraint behavior would include the following message to display if the behavior
was not met:

concat('Invalid payment amount[',.,']. Payment must be greater than 0 and less than
amount owing of [',../../account_information/amount_owing,']')

OSM supports constraint rules in the Task web client.

Displaying Constraint Behavior Error Messages
OSM only displays a Constraint behavior error message if there is a constraint violation caused
by the failure of a Constraint behavior condition or by an exception that occurred during the
behavior evaluation while you are attempting to either:

• Save an order with invalid field content

• Transition an order with invalid or null values

Otherwise, OSM cues you that a field requires some value by placing a red dot to the left of the
field label.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

Note

The red dot behavior does not apply to read-only fields. If an error occurs in a read-
only field (for example, a failed lookup prevents the display of data) OSM always
displays an error message.

The red dot is the same UI element that OSM uses to alert you that a field is
mandatory, as defined in the order template. If the field fails the constraint condition
and is defined as mandatory, only one red dot appears.

Evaluating Constraint Behaviors
OSM always evaluates Constraint behaviors except when the element or parent element is not
relevant, as defined through the Relevant behavior. OSM does not evaluate the Constraint
behavior when the task to which the Constraint behavior is associated is at the rollback status.
In cases when data is rolled back, it is understood that the Constraint behavior was already
evaluated.

Constraint behavior evaluation is different from that of other behaviors. Constraint behaviors
are evaluated only when one or more specified conditions evaluate to false. All other behaviors
are either:

• Always evaluated

• Evaluated only when one or more specified conditions evaluate to true.

In addition, when OSM does evaluate Constraint behaviors, it always evaluates all of the
Constraint behaviors, regardless of where they are defined. This is different from other types of
behaviors, where only the first instance of each behavior is selected and applied. However, the
Override and Final check boxes give you control over inheritance. See "Evaluating Design
Studio Final and Override Options" for more information.

Using Task Statuses to Control Process Transitions
You can use task status Constraint values to determine how Constraint behavior violation
severity return values affect whether or not a process can make a transition to the next task or
activity. Task status Constraint values include:

• Critical

• Error

• Warning

• None

• Valid

The task status Constraint value represents the highest allowable Constraint behavior violation
value with which the task transition will be allowed to occur. When Update is clicked, in the
Task web client Order editor, the transition action taken depends on the task status Constraint
severity value in conjunction with the Constraint behavior violation severity level, if any.

For example, if the task status Constraint value is set to Error, then Error is the highest
allowable Constraint behavior violation value with which the task can be transitioned. The task
is not allowed to transition if a Constraint behavior violation of Critical occurs, but is allowed if
an Error, a Warning, or a Valid Constraint violation occurs.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 29

The following table explains whether task transition is allowed for all combinations of
Constraint behavior violation severities and task status Constraint values.

Table 9-3 Constraint Behavior Actions

Task status
Constraint value
(highest allowable
constraint
violation):

Task transition
allowed for
Critical
constraint
violation?

Task transition
allowed for Error
constraint
violation?

Task transition
allowed for
Warning
constraint
violation?

Task transition
allowed for Valid
constraint
violation?

Critical Yes Yes Yes Yes

Error No Yes Yes Yes

Warning No No Yes Yes

Valid No No No Yes

None No No No No

Task Statuses and Constraint Behavior Violation Severity Levels
You can use task statuses in combination with Constraint behaviors to specify the conditions
under which a process can make a transition to the next task or activity in the process.

You use Constraint behaviors to validate order data. For example, you can validate that a
telephone number has 10 digits or ensure that a numeric value is between 0 and 100.

Constraint behaviors include a Display as violation severity level and a message to be
displayed in the Task web client when a constraint behavior violation occurs. When Save is
clicked in the Task web client Order editor, the save action taken depends on the constraint
behavior violation severity level.

Table 9-4 Constraint Behavior Actions

Constraint behavior
violation severity
levels, from highest
severity to lowest

Message display: When Save is clicked:

Critical OSM displays the message in bold red
text, with the label "ERROR".

The data is not saved.

Error OSM displays the message in red text,
with the label "ERROR".

The data is saved.

Warning OSM displays the message in yellow
text, with the label "WARNING".

The data is saved.

Valid OSM displays the message in green
text, with the label "INFO".

The data is saved.

Constraint Behavior Overview
Table 9-5 shows Constraint behavior attributes.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 29

Table 9-5 Constraint Behavior Attributes

Attributes Value

Order of evaluation 6th

Default value True

Applies to All elements and structures

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Data Instance Behavior to Retrieve and Store Data
You can use the Data Instance behavior to get data from external sources. For example, an
order processor using the Task web client can retrieve a set of available ports in real time from
an ADSL inventory system.

This behavior differs from all other behaviors in that it has no affect on the UI display of the
element for which the behavior is defined. You can think of the Data Instance behavior as a
“supporting" behavior because it provides functionality that can be used with other behaviors.

You can use the Data Instance behavior to:

• Store data from an external system and make it accessible to other behaviors.

• Store data that is defined in-line in an XML or XQuery and make it accessible to other
behaviors.

• Store data from OSM that is housed in multiple fields but commonly referenced collectively
as a single field and make it accessible to other behaviors. For example, the fields
first_name and last_name can be combined in a new data instance customer_name.

When you use the Data Instance behavior, you need to specify the data provider that you get
data from (see "Using Data Providers to Retrieve Data" for more information). OSM supports
several data providers; for example, Oracle Communications Unified Inventory Management
(UIM), XML files, and data in the incoming customer order. You can also configure your own
data provider.

See "About Mapping Order Items to Fulfillment Patterns" for an example of how to use a Data
Instance behavior.

Evaluating Data Instance Behaviors
When a Data Instance behavior is defined for an element, regardless of the data level, the
container is available to the element on all data levels. Because of this:

• The Override and Final check boxes have no effect on the Data Instance behavior.

• The Data Instance behavior is not part of the evaluation process in terms of prioritization of
behavior type, or in terms of prioritization of data level.

Data Instance Behavior XML, XPath, and XQuery Examples
This section provides XML, XPath, and XQuery examples that are applicable to defining a Data
Instance behavior.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 29

• This example shows an in-line XML that defines constant values (this could be used to
define the values that appear in a dropdown field):

<bookStore>
 <books>
 <titles>
 <AlgebraForDummies> <price>30</price> </AlgebraForDummies>
 <GeometryForDummies> <price>35</price> </GeometryForDummies>
 <TrigonometryForDummies> <price>40</price> </TrigonometryForDummies>
 </titles>
 </books>
</bookStore>

• This example shows an XPath expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of titles
with a price greater than $30:

xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=false;
xmlDoc.load("books.xml");
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

• This example shows an XQuery expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of ordered
titles with a price greater than $30. The list is returned in variable x:

for $x in doc("books.xml")/bookstore/book
where $x/price>30
order by $x/title
return $x/title

Data Instance Behavior Overview
Table 9-6 shows Data Instance behavior attributes.

Table 9-6 Data Instance Behavior Attributes

Attributes Value

Order of evaluation Not applicable. The data instance type is unique in that it doesn't
perform any action. It's just a container for data provider instances.

Default value None

Applies to All elements and structures

Parent/child inheritance Children inherit instances declared on parent

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Event Behavior to Re-evaluate Data
You can use the Event behavior to save or refresh data when the data changes. This is useful
when a change in a field can cause a behavior to automatically occur in the same field or in
another field. For example, you might include an Event behavior in the account_information/
country field, that causes the data to refresh. That refreshed data might in turn be used by a
Relevant behavior assigned to the address details fields that display address information
based on the country.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 29

Refreshing causes OSM to re-evaluate all the behaviors associated with the task but does not
save the order. Saving re-evaluates the behaviors and automatically saves the contents of the
order.

Figure 9-5 shows an Event behavior defined in Design Studio. In this figure, the Event behavior
refreshes the data in the account_information/country field.

Figure 9-5 Event Behavior Defined in Design Studio

See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client"
for more information on the Relevant behavior, and this scenario in particular.

OSM supports the Event behavior in the Task web client.

Event Behavior Overview
Table 9-7 shows Event behavior attributes.

Table 9-7 Event Behavior Attributes

Attributes Value

Order of evaluation 8th

Default value None

Applies to All elements

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 29

Table 9-7 (Cont.) Event Behavior Attributes

Attributes Value

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Information Behavior to Display Data and Online Help
You can use the Information behavior to specify how data is displayed in the OSM Task web
client. You can do the following:

• Set an alternative label for the field. For example, instead of the standard label State, the
field can be changed to State or Province when processing the type of order that uses
this behavior setting.

• Localize the field label to one or more different languages.

• Set a tool tip on a field.

• Provide an online help topic for the field.

In the Order Management web client, any information rule on the first instance of a group node
that uses a table layout style is used to determine the text of the table panel header. The first
instance of each of this group instance's child field nodes are used to determine the column
header text for that field node. Hint text for the group instance row and child field instance cells
are displayed as tooltip text. Help defined for the group can be run with either a menu item in
the table's Actions menu or a row-level context menu and displays help in a modal window in
the page containing the table. The implementation of this help behavior differs from the Task
web client implementation, which uses an icon in each table cell to load the help in a separate
browser window.

OSM triggers information rules when the data element or structure contains data, (for example,
from the incoming order or derived from other data sources). If the data element or structure is
empty, OSM does not display any label, hint, or help topic information behaviors associated
with the empty element or structure. For example, if you defined a label for an element, the
label does not appear when the element does not contain a value. Instead, the OSM uses the
Display Name of the element as defined in the data dictionary.

Information Behavior XPath Examples
This section provides XPath examples that are applicable to defining an Information behavior.

• This example shows an Information behavior label that could be used in conjunction with a
Calculation behavior that calculates the current balance based on other fields such as
endingBalance + currentCharges + fees - payments:

"Current Balance"

• This example shows an Information behavior label that displays in place of the existing
label assigned to the element. For example, the existing label “State" can be changed to
display as:

"State or Province"

• This example shows an Information behavior hint that displays when you hover over the
Current Balance data field:

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 29

"The current balance reflects the customer's ending balance, plus any current
charges and fees, minus any applied payments."

• This example shows an Information behavior hint that displays when you hover over the
Billing Address data field:

"The billing address is the address of the party responsible for payment of account.
The billing address may differ from the service address. For example, the service
address may be a college student's address, and the billing address may be the
student's parents address."

Information Behavior Overview
Table 9-8 shows Information behavior attributes.

Table 9-8 Information Behavior Attributes

Attributes Value

Order of evaluation 3rd

Default value None

Applies to All elements and structures

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Lookup Behavior to Display Data Selection Lists
You can use the Lookup behavior to display data in a GUI field that users can select from. You
can specify the order of the labels in the list, such as alphabetically.

You can look up data from the following sources:

• Data that is in the incoming customer order.

• Data from an internal source, such as an XML file.

• Data from an external data provider.

Data can be retrieved dynamically based on input. For example, you can look up and populate
a list of phones that cost less than $100, where $100 is a value obtained from another field in
the order.

Note

The Task web client supports two types of lookups: simple lookups with single label
value entries, and table lookups, where a single lookup value has multiple associated
labels. This latter lookup type is displayed as a text field with an associated icon that
launches a secondary window which displays a table of label/value relationships.

In the Order Management web client, simple lookups are fully supported, but complex
lookups are rendered as if they were simple: the first-defined label is shown as the
display label. In both cases, the field is displayed as a read-only list of values.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 29

Lookup Behavior XPath Example
This section provides an XPath examples that is applicable to defining a Lookup behavior.

This example shows an XPath expression that selects data from an XML file that defines
elements (nodes) of bookstore, book, price, and title. This example returns a list of titles with a
price greater than $35:

xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=false;
xmlDoc.load("books.xml");
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

Lookup Behavior Overview
Table 9-9 shows Constraint behavior attributes.

Table 9-9 Lookup Behavior Attributes

Attributes Value

Order of evaluation 5th

Default value The static lookup values (if any) that are specified in the data dictionary.

Applies to Elements of data type:

• Lookup
• Number
• Text

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Using the Read-Only Behavior
You can use the Read Only behavior to specify that data displayed in the Task web client is
read only. You can specify that data can be read only based on conditions; for example, data
can be read only depending on other data in the order.

You typically create read-only fields for fields where the value is derived from other fields. For
example, in your order display, you might have two windows: an account window and a
payment window. Both windows might have an Amount Owed field, which displays the same
data. However, you could make the Amount Owed field in the payment window the field where
the data is collected, and the Amount Owed field in the account window read only. In that
case, the field in the account window uses two behaviors:

• A Calculate behavior, to get the data from the payment window.

• A Read Only behavior.

Read-Only Behavior Overview
Table 9-10 shows Read-Only behavior attributes.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 29

Table 9-10 Read-Only Behavior Attributes

Attributes Value

Order of evaluation 7th

Default value The default specified by the static read-only value.

Applies to All elements and structures

Parent/child inheritance If any ancestor evaluates to true, this value is treated as true.
Otherwise, the local value is used.

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Relevant Behavior to Specify if Data Should Be Displayed in the
Web Client

You can use the Relevant behavior to specify if data should be displayed in the Task web client
or in the Order Management web Client Data tab, based on specified conditions.

For example, you can use the Relevant behavior to display address-input fields appropriate to
the country that the order applies to. In this example, the Relevant behavior can be used as
follows:

• The data for the customer's country is included in the order's account_information/
country field. This data is displayed in the Task web client in the Country/Region field.

• Based on the data in the account_information/country field, the customer address fields
(address_information) can include different values, depending on the country.

Note

The account_information/country field includes an Event behavior, which
refreshes the data in the field, making it available to the Relevant behavior.

Figure 9-6 shows the address fields for the United States (address_details_us) and Canada
(address_details_ca). The Relevant behavior applies to the selected data,
address_details_ca.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 29

Figure 9-6 Address Fields in Design Studio

Figure 9-7 shows the XPath expression that specifies the condition (country = Canada) under
which the Relevant18 behavior is enabled.

Figure 9-7 Relevant Behavior Properties

In the Order Management web client, if a group instance displayed with a table style behavior
is not relevant, then the entire associated table row is omitted. If a particular field is not
relevant, the associated table cell is rendered empty.

Relevant Behavior Overview
Table 9-11 shows Relevant behavior attributes.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 29

Table 9-11 Relevant Behavior Attributes

Attributes Value

Order of evaluation 4th

Default value True

Applies to All elements and structures

Parent/child inheritance If any ancestor evaluates to false, this value is treated as false.
Otherwise, the local value is used.

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data
dictionary, order, and task levels.)

Using the Style Behavior to Specify How to Display Data in the Task Web
Client

You can use the Style behavior to specify where and how to display data in the Task web
client. You can do the following:

• Control the placement of an element on a specific page.

• Specify to display data on tabbed pages. You can display data in columns and tables.

• Hide or mask sensitive data; for example, passwords or credit-card information. You can
specify who can read passwords, and you can display a history of password changes.
Masked data appears similar to *******.

• Control the layout of a multi-valued field, such as a list of buttons to choose from.

• Apply cascading style sheets (CSS style sheets) to specify how to display data. For
example, you could make the current account balance display in red when the data value
is greater than zero.

Note

If you define a behavior that contains an apostrophe (') character, OSM will throw an
exception error when loading the data. To prevent this from happening, you must
include the escape character before and after the apostrophe.

Example:

'L'Information De Carte de credit'

should be

"'"L"'"Information De Carte de credit"'"

Figure 9-8 shows how the Style behavior changes the appearance of the Current Account
Balance field in the Task web client.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

Figure 9-8 Style Behavior Used in the Current Account Balance Field

Figure 9-9 shows the condition that determines if the Style behavior should be applied. In this
case, the Style behavior is applied if the account balance is the same as the amount owed.

Figure 9-9 Condition Defined in a Style Behavior

Figure 9-10 shows the style definitions to apply to a field.

Figure 9-10 Field Display Colors Defined in a Style Behavior

Figure 9-11 shows how three different conditions can change how the field is displayed. If the
balance is zero, the field is green. If the balance is the same as the amount that the customer
owes, the field is orange. If the balance is less than zero, or greater than the customer owes,
the field is red.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 29

Figure 9-11 How Style Behavior Conditions Are Used for Determining the Display
Colors

About Style Behavior Layouts
This section provides additional information on table layouts, which you can choose to set as
None, Page Layout, or Table Layout.

The Page Layout option gives you the ability to organize structures elements onto separate
pages that you can access directly, through the use of tabs. This is particularly useful for
improving access where there are numerous large structures by eliminating the need to scroll
through a single page to find the required structure.

The Table Layout option displays multi-instance structures in a grid format. By default, Table
Layout displays all of the child elements in the structures. However, you can prevent a given
child element from being used as a column by setting its hidden attribute to true.

Child elements within the structure are represented by columns, and instances of the structure
are represented by rows. Table Layout displays the columns from left to right in the same
order that they appear from top to bottom when displayed without a table layout. If you need to
change the order in which the columns appear, you do so by changing their order in the Design
Studio order template. The table uses the same child element label to form the column header
that it does when displayed without a table layout.

Note

If you use an Information behavior to dynamically change the child element labels,
Table Layout uses the label associated with the first data instance it encounters.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 29

If you need to hide the value of an individual cell in the resulting table, you can do so by
declaring a Relevant behavior for the corresponding child element. See "Using the Relevant
Behavior to Specify if Data Should Be Displayed in the Web Client."

Note

Table Layout does not support nested structures in the Task web client but does
support nested structures in the Order Management web client data tab.

In the Order Management web client data tab, multi-instance child values can be
displayed within the corresponding parent value table cell and stacked vertically. You
cannot access data history or behavior help from within the cell, but the information
about the child multi-instance values can be accessed from the data history for the
row. You can access the data history for a row by right clicking on the row and
selecting data history or by selecting data history from the table drop down menu.

OSM uses the first instance of the table group node to determine the CSS style and
class of the header text in the Order Management web client. All other style rule
attributes of the group instances are ignored. CSS style and class rules, appearance
rules, and secret rules are applied to child field (table cell) instances. No other style
rules will be applied.

The following figures illustrate the different types of available layouts for the Task web client.
Each figure shows the same structure with a different layout type:

• Figure 9-12 shows the structure with no layout applied. With this option, the elements in
the structure display within a group box on the original page.

• Figure 9-13 shows the structure with the Page Layout option applied. With this option, the
elements in the structure display within a group box on a new page that is accessed
through a tab on the original page.

• Figure 9-14 shows the structure with the Table Layout option applied. With this option, the
elements in the structure display within a grid on a new page that is accessed through a
tab on the original page.

Figure 9-12 Task with No Layout in the Task Web Client

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 29

Figure 9-13 Page Layout in the Task Web Client

Figure 9-14 Table Layout in the Task Web Client

The following figures illustrate the different types of available layouts for the Order
Management web client. Each figure shows the same structure with a different layout type:

• Figure 9-15 shows the structure with no layout applied.

• Figure 9-16 shows the structure with the Table Layout option applied.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 29

Figure 9-15 No Layout in the Order Management Web Client

Figure 9-16 Table Layout in the Order Management Web Client

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

About Style Behavior Password Fields
Behaviors that define password fields can ensure unauthorized users cannot view the contents
of elements containing sensitive information. For example, by using this feature you can define
a password field in such a way that users in an activation work group can not see the
information, but users in the system administrator's work group can.

How Password Fields Display

If you define a password behavior on a writable field, OSM displays the contents of the field as
specified by the browser, such as a line of asterisks (*) within a text box. If you define this
feature on a read only field, OSM displays the data as specified by the browser, such as line of
eight asterisks next to the field label, but not within a text box.

If you open the data history, OSM displays when and by whom the data was modified. When
this feature is applied to a field, OSM displays the password field values as specified by the
browser, such as a line of eight asterisks.

While you can define a Style behavior on all types of elements, this feature of the Style
behavior has no effect on structures.

Do Not Use Password Field Feature with Boolean and Lookup Fields

Because this feature is designed for use with free form entry fields, as opposed to fields that
force you to select from a limited number of choices, Oracle recommends that you do not use
this feature with Boolean and lookup fields. If you do, you risk exposing confidential information
to unauthorized users. This is because OSM displays the value that was previously set in a
Boolean or lookup field, even if the field defines this feature through a Style behavior.

Displaying the Data History of Password Fields

OSM only evaluates behaviors at the web UI level, so any password field that you save (that is,
create, update, or delete) through the XML API/Automator is not treated as a password field,
even if it is defined as such. This can introduce some complexity into how OSM displays the
data history for password fields. Use the following general guidelines and examples to
understand how OSM displays password field data history.

General Guidelines

1. OSM displays a line of eight asterisks in the data history for any field that it evaluates as a
password field (providing the field actually contains data; if the field is empty, OSM displays
nothing).

2. If OSM does not evaluate a field as password field, the data history values are shown in
plain text.

3. If OSM evaluates a data field as a password field at the time of saving, and the field is later
deleted, OSM displays a line of eight asterisks in the data history (providing the field
actually contains data; if the field is empty, OSM displays nothing).

4. If OSM evaluates a data field as a non-password field at the time of saving, and the field is
later deleted and evaluated as a non-password field at the time of deletion, the data history
is displayed as plain text.

Examples

1. If you save the value of a password field through OSM, and OSM is still evaluating the field
as a password field when you display the data history, OSM displays the value of the
password field as eight asterisks.

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 29

2. If you save the value of a password field through the XML API/Automator, and it is still
present in the order editor (that is, it has not been deleted by the XML API/Automator)
when you display the data history, OSM displays the value as eight asterisks.

3. If you create and delete the password field values through the XML API/Automator, OSM
displays the data history values as plain text.

4. If you enter data in a non-password field through OSM and a user subsequently deletes
the value through OSM or the XML API/Automator (and OSM evaluates the field as a non-
password field at the time of deletion), the history values of this field are displayed as plain
text.

Style Behavior Overview
Table 9-12 shows Style behavior attributes.

Table 9-12 Style Behavior Attributes

Attributes Value

Order of evaluation 2nd

Default value Data type specific:

• For Boolean type fields: Compact
• For Lookup type fields: Minimal

Applies to Elements of data type:

• Boolean
• Lookup
Elements with Lookup behaviors that display only one column.

Parent/child inheritance Does not inherit

(This applies to element relationships within a structure, which is
different than the inheritance of behaviors between the data dictionary,
order, and task levels.)

Chapter 9
Modeling Behaviors Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

10
Modeling a TMF Solution (Cloud Native Only)

This chapter describes how to model a TMF solution.

Before learning how to model a TMF solution, see the chapter about TMF concepts in OSM
Concepts.

Note

TMF solution modeling is supported for OSM cloud native deployments only.

About Specifications
The first consideration when modeling a TMF solution is to define the specification to be used.

The canonical TMF specifications (both 622 and 641) have some shortcomings:

• Orders cannot be suspended or resumed

• Orders cannot be aborted

• Existing orders cannot be revised (amended)

• TMF has no state to indicate fallout

Because of this, it is strongly recommended to start with the OSM extended specifications
which align with OSM's advanced order management capabilities.

Once you have established the base specification, you should determine whether any schema
extensions are needed.

• Does your billing system need extra information that is not found in the existing
billingAccountRef schema?

• Does your productOrder need to track shipment tracking information?

• Are you integrating with an edge system that requires data that does not exist inside the
specification of interest?

These are the types of questions that you need to answer and then modify the schema of the
specification accordingly. See OpenAPI Specification documentation as well.

All schema changes that you make must result in a version increase inside the specification.
The 5th digit of the version is provided for your use.

About Cancelling or Revising an Inflight Order
The canonical TMF 622 and 641 specifications include support for order cancellations but not
for revisions. When support for revisions is a requirement, then the OSM extended
specifications must be used (either directly or as the base for customer schema extensions).

Cancel and revise are both implemented using the TMF pattern of a task resource. Refer to the
TMF 630 guidelines for further details.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 9

Cancel Specific Behavior

Requested cancellation date in the cancel payload is not supported. You cannot request a
future date for cancellation via this field. All requests are processed immediately.

Revise Specific Behavior

Revisions to a future-dated order (that are in a TMF state of Pending) are processed
immediately. The waiting base order would be updated with the revised data.

The task resource representing the revision request will complete, the OSM revision order will
complete and the base order will reflect the amended data and will remain in TMF pending
state (OSM waiting state), until the future-dated date arrives.

Design-time Considerations

For TMF cartridges, cancellations are processed as an amendment with no order lines, which
would trigger undo mode of all completed tasks.

No order level configuration is necessary to support cancels or revisions, including:

• The cancel fulfillment mode does not need to be created in Design Studio.

• Amendment tab configuration for an order (will be read only for TMF orders).

Automation tasks still need to configure the various execution modes.

Runtime Considerations

OSM Gateway exposes endpoints for cancelling or revising a product or service order and all
existing cancel or revise mechanisms (Task Web client, SOAP webservice, and so on) are no
longer permitted.

OSM Gateway rejects cancels or revisions where the base order contains any order item in a
final TMF state (partial, failed, completed).

Order Key

In Freeform cartridges, order key configuration is needed as a way to correctly identify the
base order the revision is applied to. It did not reflect the OSM order id but a piece of data
inside the order payload that could be used as a unique identifier of the base order.

In TMF cartridges, identifying the correct base order is done simply by supplying the base
order id in the request. Both revise and cancel requests contain a reference to the base order
id as shown in the following sample:

REVISE
 ReviseProductOrderOSM_Create:
 required:
 - baseOrderRef
 - productOrder
 type: object
 description: OSM extension to create the ReviseProductOrder resource.
This represents an OSM revision request.
 properties:
 baseOrderRef:
 $ref: '#/components/schemas/BaseOrderRefOSM'
 productOrder:

Chapter 10
About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 9

 $ref: '#/components/schemas/ProductOrder_Create'
.......

In the above example, the BaseOrderRefOSM has the id of the targetted base order.

CANCEL
 CancelProductOrder_Create:
 required:
 - productOrder
 type: object
 properties:
 cancellationReason:
 type: string
 description: Reason why the order is cancelled.
 productOrder:
 $ref: '#/components/schemas/ProductOrderRef'

In the example above, the ProductOrderRef has the id of the targetted base order.

Version

Version is still an important piece of the amendment functionality. However, the handling is
different for TMF Orders. Instead of the order carrying the version information inside the
payload, it is passed as the HTTP header "X-VERSION". Providing this header is optional for
cancels, but mandatory for revise operations.

Callers can supply the HTTP header X-VERSION on the create request, but if omitted (as is
generally the case for create), then OSM starts versioning at 1. When a GET is invoked, the
header "X-VERSION" indicating the version of the order currently being processed, is returned
to the caller.

Once the caller has this information, any subsequent requests for revise or cancel can include
an incremented count.

While the mechanism to pass the version information is different for TMF orders, the logic that
dictates acceptance or rejection is the same. Orders with a version higher than the order
currently processing version are accepted and those with a version lower are rejected.

Impact of PONR

When a cancel request is received, OSM Gateway checks if any order items are in a final state
and if so, the request is rejected. This is a form of implicit PONR as TMF states are final
(partial, failed, completed). Therefore, a cancel cannot be performed.

If OSM Gateway accepts the cancel request, there is still a chance for the cartridge to reject it
if the order or order items have reached PONR. See "Modeling PONR" for details about how
the lifecycle policy can reject orders.

Grace Period

A grace period refers to a configurable period of time that OSM will wait for currently
processing tasks to complete, before transitioning an order. In Freeform cartridges, you can
pass a grace value during Web Service API invocation.

TMF orders do not allow you to supply a grace period when invoking the REST APIs. Grace
period must be defined within the cartridge for TMF orders.

Chapter 10
About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 9

Events about Cancel and Revise Task Resource

The following events are emitted automatically to the event target system in response to
lifecycle milestones of the task resource.

Table 10-1 Cancel and Revise Task Resource Events

OSMGW Endpoint Task Resource Events

/cancelProductOrder cancelProductOrderCreateEvent

cancelProductOrderStateChangeEvent

/reviseProductOrder reviseProductOrderCreateEvent

reviseProductOrderStateChangeEvent

/cancelServiceOrder cancelServiceOrderCreateEvent

cancelServiceOrderStateChangeEvent

/reviseServiceOrder reviseServiceOrderCreateEvent

reviseServiceOrderStateChangeEvent

Task Resource Sequence Diagram

The lifecycle of a task resource is different from the main resource. The following diagrams
show how the two lifecycles interact and when events are delivered in relation to the main
resource events.

Chapter 10
About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 9

Figure 10-1 Cancel Task Resource Event

Chapter 10
About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 9

Figure 10-2 Revise Task Resource Event

Chapter 10
About Cancelling or Revising an Inflight Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 9

Modeling PONR
For TMF orders, the modeling pattern with respect to the Point of No Return of an order or
order item is different.

PONR handling consists of the following main areas:

• PONR detection

• Propagation of the PONR to the upstream system

• Order amendment and cancellation handling for PONR

PONR detection

For PONR detection, Freeform cartridges and TMF cartridges require slightly different
approaches.

• For Freeform cartridges, PONR is configured within a Fulfillment Pattern. An Order
Component is selected, and then a specific fulfillment state value can be chosen as the
PONR.

• TMF cartridges are required to model the PONR as an order item characteristic within the
product model. Population of this field signals PONR has been reached.

In both cases, an automation plugin updates a piece of order data in response to values
received from the edge system. With plugins in the Freeform cartridge, this process is a
mechanical update to the fulfillment state field.

In the case of TMF cartridge plugins, they must be aware of which characteristic needs to be
updated, and also what value from the edge system results in a change to this characteristic.
For example, a field "PONRReached" that takes Y and N values would be set to N on order
creation. At some point during fulfillment, an automation plugin would change this value to "Y"
based on the external fulfillment state received from the edge system.

Propagation of PONR to upstream system

Like PONR detection, PONR propagation is also handled differently for Freeform and TMF
cartridges:

• For Freeform cartridges, Model Driven Milestones (MDM) is the mechanism to propagate
the PONR to upstream systems.

• TMF cartridges rely on the AttributeValueChangeEvent (Product and Service) to inform
upstream systems of a change to the characteristic representing PONR status. Because
attribute events are triggered for changes to ANY characteristic value, it becomes the
responsibility of the event listener to identity the characteristic holding PONR status and
check its value.

Order amendment and cancellation handling for PONR

For both TMF and Freeform cartridges, the handling of amendment and cancellations for
orders and order items that may have reached PONR is the same. In both types of cartridges,
the objective would be to reject cancellation or revision requests when PONR has been
reached. To do this, the order lifecycle policy would have a rule condition defined with a
backing XQuery that is responsible for scanning either the fulfillment state field (Freeform
cartridges) or the characteristic value (TMF cartridges) to either pass or fail the condition.

Chapter 10
Modeling PONR

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 9

Implicit PONR

For TMF cartridges only, there is an implicit PONR. When any order item reaches a final TMF
state, then the entire order can be considered as having reached PONR and cancellations and
amendments would be rejected by OSM Gateway.

Change Order Support
Change orders that make their way through the stack can be modeled in one of two ways:

• The entire order is included in the change request, lines that have changed as well as lines
that have not

• Only the content that has changed is included (and often the necessary parent lines)

Choosing between the two depends on many variables including the product model and
capabilities of the edge systems. Neither TMF nor OSM are prescriptive about which modeling
pattern is used. However, there are some details within the specifications that may influence
which technique is ultimately employed.

Canonical TMF

TMF ordering specifications support action codes on a line item to identify whether it holds a
change. Beyond that, there is no support inherent in the TMF specification for identifying what
the change is. When there is no indicator as to the specific change, the downstream systems
must be idempotent, which implies that those systems own the data and therefore have a view
of the current state of the object. When passed a new set of data, they can determine what the
change is and what action to take. This puts the onus on the systems that OSM talks to, for
determining what data is changed and whether it requires an action or not.

This pattern can be expensive for systems and whether or not external systems in the
ecosystem behave according to the TMF view, cannot be dictated by the Product Ordering
layer.

OSM Extended Specifications

On lines with an action code of "modify", changes are often contained within the characteristic
set - new ones added, characteristics no longer required or simply a change of value on an
existing characteristic. Examples include an upgrade from 5MB to 10MB bandwidth, or an
upgrade to a premium service which results in new characteristics for callWaiting and
callForwarding.

OSM recognizes this and offers optimized handling of characteristic changes via the OSM
extended specification.

OSM schema extensions have been made to provide additional details about a characteristic -
an action code as well as the previous value. This of course relies on the upstream system to
populate this data, but if utilized, it can relieve pressure on the downstream systems to
calculate the exact nature of the change.

See the TMF 622 REST Specification for change order modeling examples.

Order Fulfillment Modes
The runtime handling for fulfillment mode is different for TMF orders. With Freeform cartridges,
something in the order data would need to map to the right fulfillment mode. With TMF orders,
the fulfillment mode does not need to be embedded into the payload and for order creation nor

Chapter 10
Change Order Support

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 9

for order cancellations, The calling system in fact does not need to do anything at all. OSM has
assumed responsibility for mapping these two order operations properly.

If an additional fulfillment mode was modeled in the TMF cartridge (for example, TSQ), then
the calling system would need to supply this value through the HTTP header "X-Fulfillment-
Mode". OSM Gateway would forward the FF mode to OSM and would match against deployed
fulfillment modes.

Upstream Listener
The following restrictions apply to the outbound TMF messaging:

• An Event Target System must be defined on the hosted order specification in Design
Studio.

• Only a single system can be configured. It is expected that this single listener will either
consume the events itself, or serve it to a message broker (for example, Kafka).

• The event target system would be the intended recipient of all events that are emitted. The
upstream system can ignore messages it is not interested in.

Fault tolerance configuration for target systems is available in the toolkit's specification files.
See OSM Cloud Native Deployment Guide for details on configuring target systems.

About TMF Order Events For the External Event Listener
The events for TMF orders run by OSM are listed in the REST API reference guide. See REST
API reference guide for the details of the events offers and the schema of the events.

Additionally, OSM's framework does the following:

• OSM has restricted the changes that will trigger the AtributeValueChange event. Changes
are limited to the order item state or the order item characteristic fields.

• OSM will include multiple updates in a single event. All updates - whether within a single
line item or across multiple line items - will be included in an event, so long as they are all
made within the same orderUpdate call to OSM core.

See the "About TMF Orders" section in OSM Concepts for details about OSM Events
Notification.

About Fallout Exception Management
OSM provides a simplified fallout exception management framework for managing fallout
exception. See the OSM Concepts guide for more information.

For TMF orders, use the simplified fallout management framework only.

Chapter 10
Upstream Listener

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 9

11
Implementing a TMF Solution (Cloud Native
Only)

This chapter describes how to implement a TMF solution.

Before reading this chapter, see the chapter about TMF concepts in OSM Concepts.

Note

TMF solution modeling is supported for OSM cloud native deployments only.You need
to ensure that the cartridge management variable OSM_RUNTIME_TYPE value is set
to "MultiService".

Accessing the Specifications
The TMF specification files are available in the cloud native SDK download file, in the
TMFSchemas sub-folder. OSM extensions have the suffix -OSM in the filename.

Oracle recommends that you use the specifications with OSM extensions (-OSM suffix in the
filename) for both Product Order and Service Order. These extensions provide comprehensive
access to OSM's advanced capabilities and have been created in line with the guidelines from
TMF630.

About Extending the Specifications
The OSM extended specifications can be extended further to meet your implementation
requirements by:

• Adhering to TMF630 and OpenAPI guidelines on schema extensions.

• Adding to the schema of the primary object (ProductOrder or ServiceOrder) in terms of
order data.

• Keeping the set of Paths (endpoints) and their contents unchanged.

• Keeping the set of Notifications (events) and their contents unchanged.

• Keeping the set of Task Resources and their contents unchanged.

• Keeping the set of State definitions unchanged (preserve the set of states as-is).

The Hosted Order specification consists of the TMForum specification with OSM schema
extensions, all expressed as an OpenAPI 3.0 document.

See the following topics:

• Considerations When Extending the Main Resource

• About Versioning the Specifications

• About the "ANY" Schema Type

• About anyOf, allOf, and oneOf

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 29

Considerations When Extending the Main Resource
TMF uses a pattern of defining a schema object for the incoming create order payload, that is
different from the main resource. Using TMF 622 as an example, the POST /productOrder
endpoint accepts a payload with a schema type ProductOrder_Create, which is specific to the
creation request. It does not contain some data found in the ProductOrder schema, such as
the id, as this is populated by the application not provided by the caller.

On the OSM side, the TMF order template includes the CDT structure representing the main
resource, which is "ProductOrder" in this case.

The ORR data transormation xquery is responsible for transforming the ProductOrder_Create
into the ProductOrder. You are free to do this translation as you see fit. However, the
documented solution relies on a simple naming convention. See the Order Data Rule section.

This xquery depends on the main resource name to be related to the incoming schema name
in a specific way. When processing the incoming root element, the xquery strips off _Create
and uses the remaining string as the root for the OSM order data. To use this xquery, any
extensions that are made to the main resource must have a schema object for creation that
follows the Resource_Create convention.

Example: Incompatible naming

ProductOrder_Create
ProductOrder_CreateOSM

Looking at the above example, if you had named the schema for creation as
ProductOrder_CreateOSM, then the xquery would not have done the transformation correctly
and order submission would fail.

Instead, the extension is called ProductOrderOSM_Create. The xquery determines correctly
that the root resource type is ProductOrderOSM, which is an extension of the canonical
ProductOrder.

Example: Compatible naming

ProductOrder_Create
ProductOrderOSM_Create

If extensions are made to the main resource (ProductOrder or ServiceOrder), consider this
naming convention.

About Versioning the Specifications
When you import a TMF specification into Design Studio, the resulting hosted order
specification will have a 5-digit scheme. This is true even if the canonical is imported and there
were no extensions added. The TMF specification would say "v4". However, this would be
converted to 4.0.0.0.0 for usage inside OSM.

The first three digits are reserved for TMForum as TMF specifications are versioned with a
three-number scheme.

The fourth number is reserved for Oracle OSM to version extensions supported by the
application itself.

The fifth number is available for solution developers to version their additional extensions.

Chapter 11
About Extending the Specifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 29

Figure 11-1 Versioning the Specification Files

Cartridge developers must maintain the integrity of the versioning by updating the version
(specifically, the fifth number) if changes are made. While it is mandatory to increment the
version when there are non-backward-compatible changes, it is recommended to increment
the version for all changes to the specification.

About the "ANY" Schema Type
For schemas that refer to "Any" schema, a true "Any" type is not supported because the type of
the object is unknown.

The convention TMF uses is that, with the schema object that refers Any, there must be an
accompanying string to identify the type and this should point to a known type in the schema.
This is more of a dynamic resolution of what will be passed.

Any is used in the canonical specification, for the characteristic value. The accompanying
string to identify its type is valueType.

The following abstract shows characteristic schema from the canonical specification:

schema :
 Characteristic:
 required:
 - name
 - value
 type: object
 properties:
 name:
 type: string
 description: Name of the characteristic
 valueType:
 type: string
 description: Data type of the value of the characteristic
 value:
 $ref: '#/components/schemas/Any'
 '@baseType':
 type: string
 description: When sub-classing, this defines the super-class
 '@schemaLocation':

Chapter 11
About Extending the Specifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 29

 type: string
 description: A URI to a JSON-Schema file that defines additional
attributes
 and relationships
 format: uri
 '@type':
 type: string
 description: When sub-classing, this defines the sub-class entity name
 description: Describes a given characteristic of an object or entity
through
 a name/value pair.

During the Data Structure Definition (DSD) generation, while importing the hosted specification
for a schema which is of Any type, an additional element of xmlData type will be generated.

For characteristic, valueXml, which is not part of specification, will be generated:

• The valueType field identifies whether the value is of primitive type string (string,
dateTime, date and so on), boolean, numeric or object type.

• If valueType is string, boolean, or numeric, the value field would have the value and the
valueXml field would remain blank.

• If valueType is of object type, the value field would be blank and the valueXml field would
have the objects.

• Either the value or valueXml field would be available based on the valueType field.

Examples of JSON to XML Conversions

The following example shows the JSON payload when valueType is string:

{
 "productCharacteristic": [{
 "@type": "Characteristic",
 "name": "Call Forwarding",
 "valueType": "string",
 "value": "Y"
 }]
}

The following example shows the XML payload when valueType is string:

<productCharacteristic xsi:type="Characteristic">
 <_type>Characteristic</_type>
 <name>Call Forwarding</name>
 <valueType>string</valueType>
 <value>Y</value>
</productCharacteristic>

The following example shows the JSON payload when valueType is object:

{
 "productCharacteristic": [{
 "@type": "Characteristic",
 "name": "BillingAccount",
 "valueType": "object",

Chapter 11
About Extending the Specifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 29

 "value": {
 "@type": "BillingAccountRef",
 "id": "15"
 }
 }]
}

The following example shows the XML payload when valueType is object:

<productCharacteristic xsi:type="Characteristic">
 <_type>Characteristic</_type>
 <name>BillingAccount</name>
 <valueType>object</valueType>
 <valueXml>
 <xmlData>
 <object xsi:type="BillingAccountRef">
 <_type>BillingAccountRef</_type>
 <id>15</id>
 </object>
 </xmlData>
 </valueXml>
</productCharacteristic>

The following example shows the JSON payload when valueType is boolean:

{
 "productCharacteristic": [{
 "@type": "Characteristic",
 "name": "AutoRenewal",
 "valueType": "boolean",
 "value": false
 }]
}

The following example shows the XML payload when valueType is boolean:

<productCharacteristic xsi:type="Characteristic">
 <_type>Characteristic</_type>
 <name>AutoRenewal</name>
 <valueType>boolean</valueType>
 <value>No</value>
</productCharacteristic>

The following example shows the JSON payload when valueType is numeric:

{
 "productCharacteristic": [{
 "@type": "Characteristic",
 "name": "Price",
 "valueType": "numeric",
 "value": 100
 }]
}

Chapter 11
About Extending the Specifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 29

The following example shows the XML payload when valueType is numeric:

<productCharacteristic xsi:type="Characteristic">
 <_type>Characteristic</_type>
 <name>Price</name>
 <valueType>numeric</valueType>
 <value>100</value>
</productCharacteristic>

About anyOf, allOf, and oneOf
OpenAPI Specification (OAS) describes the various uses of the discriminator object in
conjunction with the allOf, anyOf, and oneOf constructs. For details, see the documentation
at: https://spec.openapis.org/oas/v3.0.1#discriminator-object.

OSM supports only allOf. The OSM schema extensions use allOf and a discriminator is added
to the parent along with propertyName and mapping details. OSM extensions consistently
specify the "@type" field as the discriminator propertyName.

In practice, this means that any JSON payload submitted to OSM Gateway when it is hosting
an OSM hosted specification must include the @type element on schema objects that have
been extended by OSM. You should continue this pattern when making schema extensions
and should remember to populate any extensions with the appropriate @type value.

The following is an example of an OSM extension using allOf:

schema:
 CharacteristicOSM:
 description: OSM extension to include additional (optional) data on a
product characteristic
 allOf:
 - $ref: '#/components/schemas/Characteristic'
 - type: object
 properties:
 unitOfMeasure:
 type: string
 description: Unit of measure of the value associated with a
characteristic. Like MB,GB,Minutes,...
 actionCode:
 type: string
 description: Action taken on a characteristic in a MACD scenario
- is it a new value being introduced - existing indicates no change -
modifiedAttributs changes the value and delete would remove this
characteristic value from the asset
 enum:
 - new
 - existing
 - modified
 - delete
 previousValue:
 type: string
 description: Value of a characteristic in the original New
Product Order (before this Product Order makes a change to it)
 '@baseType':
 type: string
 description: When sub-classing, this defines the super-class

Chapter 11
About Extending the Specifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 29

https://spec.openapis.org/oas/v3.0.1#discriminator-object

 '@schemaLocation':
 type: string
 description: A URI to a JSON-Schema file that defines additional
attributes
 and relationships
 format: uri
 '@type':
 type: string
 description: When sub-classing, this defines the sub-class entity
name

The following is an example of the parent schema with the discriminator object:

 Characteristic:
 required:
 - name
 - value
 type: object
 discriminator:
 propertyName: '@type'
 mapping:
 Characteristic: '#/components/schemas/Characteristic'
 CharacteristicOSM: '#/components/schemas/CharacteristicOSM'

The following shows the correct portion of the order payload with the @type populated:

 "productCharacteristic": [
 {
 "@type": "CharacteristicOSM",
 "name": "Authorization Code",
 "value": "AB1234CD"
 }]

Including the discriminator object on the parent is optional when using allOf. However, it
makes the schema extensions more readable.

About TMF Cartridges and Non-TMF Cartridges
A TMF Cartridge provides the most support to cartridge developers and system administrators
when OSM operates on TMF orders. A TMF Cartridge is built around exactly one Hosted Order
Specification, and provides the fulfillment logic for that order type (Product Order or Service
Order). The TMF Cartridge is a solution cartridge, and consists of one or more component
cartridges - all deployed as one unit.

Non-TMF cartridges are refered to as Freeform Cartridges. Freeform cartridges include all
cartridges prior to 7.5.0 as well as non-TMF cartridges in 7.5.0. These cartridges are
characterized by a fully open Design-time experience, allowing complete flexibility in all of
OSM's capabilities - order structure, order state behaviour, eventing/notifications, orchestration,
automation, and so on.

Chapter 11
About TMF Cartridges and Non-TMF Cartridges

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 29

Table 11-1 Value for Cartridge Management Variable

Cartridge Type Variable Value

TMF Cartridge OSM_RUNTIME_TYPE MultiService

Non-TMF Cartridge OSM_RUNTIME_TYPE WLS

Note

It is important to note that these two cartridge types cannot be combined. If you have a
Freeform cartridge, you cannot simply change the order type to TMF. You must start a
TMF cartridge from scratch.

Once the TMF configuration is applied, the cartridge developer can then proceed with the
standard cartridge development process, creating orchestration entities, processes, tasks,
automation plugins, and so on. Building the cartridge results in Design Studio embedding the
Hosted Order Specification into the cartridge par file along with all the other cartridge content.

TMF Cartridge Versioning

The version for auto-generated cartridges is specified during the import process. Once a
solution is out of the development phase, if schema changes are introduced to the
specification, both the specification and the generated OSM cartridge version should be
incremented.

TMF Cartridge Target Version

The target version on all OSM cartridges must be set to 7.5.0.

About Importing the Hosted Order Specification
Access the TMF or OSM extended specifications from the OSM Cloud Native SDK download
file, in the TMFSchema sub folder. It is strongly recommended to use the OSM extended
specification either directly or as a base for custom schema extensions. An OpenAPI parser
with support for version 3.0.1 must be able to parse this file once extensions are made.
Otherwise, it would be rejected during the import process.

Refer to the Service Catalog and Design Design Studio Modeling OSM Orchestration Online
Help for instructions about importing a Hosted Order Specification.

Design Studio parses the YAML file and validates it during the import, resulting in two
cartridges when the import process is complete:

• An OSM cartridge containing some of the entities that are necessary for the TMF
framework.

• A second cartridge would contain a set of Complex Data Types (CDT) created to match the
structure and typing as per the schema for the Product Order or Service Order in the
Hosted Order Specification.

Updating a Hosted Order Specification

Design Studio does not allow an update to the Hosted Order specification via a menu option.
To remove an older version of the Hosted Specification, delete the existing cartridges and re-
import the updated specification. You will need to re-apply any changes you have made to the
lifecycle policy and fulfillment mode. For this reason, it is important to keep the generated

Chapter 11
About Importing the Hosted Order Specification

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 29

entities and cartridges free from custom additions as these would get removed during this
process.

Deployment of a Hosted Order Specification

The specification is bundled with the cartridge par file and is the mechanism for getting it into
the database. It is important to note that the specification lifecycle is independent of the
cartridge lifecycle.

When a cartridge is undeployed, the specification is not removed and remains in the database.
If an attempt is made to deploy a TMF cartridge (new deploy or re-deploy) that bundles a
specification of the same version, but with content differences, then the cartridge deploy would
fail as the specification with that version already exists. All specification changes should be
accompanied by a version increase.

About Fulfillment Modes
When a Hosted Order specification is imported, one of the auto-generated entities is a
fulfillment mode named deliver. This fulfillment mode is required for TMF cartridges and
should not be renamed or deleted. It should be modified, however, to ensure that its
namespace matches the other orchestration entities in the cartridge. Refer to the orchestration
process for the correct namespace to be used.

Fulfillment modes for cancel are no longer needed for TMF orders. New fulfillment modes
should only be added to support additional types of fulfillment such as TSQ.

For TMF orders, OSM will automatically set the fulfillment mode of the inbound order. The
fulfillment mode will be defaulted to delivery unless an HTTP header is used to provide an
alternate mode. Because of this new handling by the OSM core, the cartridge configuration
does not need to provide an XQuery to determine the fulfillment mode value. In the
Orchestration Sequence Editor, under the Fulfillment Mode Expression, the XQuery tab can
specify the Expression radio button and provide default in the text area

(: Declare OSM name space :)
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";

(: Declare incoming order name space:)
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage";

declare variable $TMF_FULFILLMENT_MODE := "deliver";
declare variable $TMF_FULFILLMENT_NS := "mycompany.tmf.productorder";
let $fulfillmentModeCode := <osm:fulfillmentMode
name="{$TMF_FULFILLMENT_MODE }" namespace="{$TMF_FULFILLMENT_NS }"/>

return $fulfillmentModeCode

About TMF Order Lifecycle Policy
A default order lifecycle policy is generated that contains the transitions required for the TMF
framework to function correctly. This entity may be moved to another cartridge to prevent cyclic
dependencies when roles in other cartridges are referenced.

This policy should be modified to add additional transitions for your custom roles, but the
existing configuration for "osm-gateway-internal-role" must be left in place.

Chapter 11
About Fulfillment Modes

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 29

Automation Users and Roles

Automation users should continue to be given permissions needed as they would in Freeform
cartridges.

Fallout Resolution Users and Roles

A role should be created in Design Studio that can be granted the permissions necessary to
perform fallout resolution actions. This workgroup should be distinct and separate from
automation groups. (for example "FalloutResolutionRole"). This role should be given the
required permissions in the order lifecycle policy to enable all fallout resolution actions.

Table 11-2 Required permissions for fallout resolution actions

State Transition Description

InProgress

Amending

Cancelling

Manage Order
Fallout

This permission is required to enable the Retry Task option in the
Task Web client (Fallout Exception Actions menu.

Not supported for suspended state.

InProgress

Suspended

Amending

Cancelling

Abort Order This permission is required to enable the Abort Order option
(Fallout Exception Actions menu) in the Task Web client.

InProgress

Suspended

Amending

Cancelling

Fail Order This permission is required to enable the Fail Order option (Fallout
Exception Actions menu) in the Task Web client.

One fallout resolution action remains that is not permitted through the lifecycle policy. In order
for users in the "FalloutResolutionRole" role to manually complete tasks (Fallout Resolution
Actions menu in Task Web client), the following steps must be taken:

• The user performing the fallout action should be added to the same workgroup as the
automation user. This enables the fallout user to see the correct content in the Task Web
client.

• Any automation task that is capable of raising a fallout exception should have the
"assigned" state available on the task editor state/status tab. This allows users that share
the same workgroup, to re-assign a task to themselves.

• From the Task Web client, the fallout user should re-assign the task to themselves.

• Using the Task Web client Editor view, or by choosing the menu action "Manually Complete
Task", the fallout user can manually complete the task.

About Data Dictionary
The import process creates a cartridge containing a set of Complex Data Types (CDT) that
represent the schema of the productOrder or serviceOrder as defined in the specification. This
saves time for cartridge developers who would otherwise have to manually construct the data
model in Design Studio.

CDT content is always significant. The cartridge developer should be aware that a change to
any content within the productOrder will trigger amendment processing, as all of the data is
modeled as CDT.

Chapter 11
About Data Dictionary

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 29

About the Order Template
This section describes the following order templates.

• Master Order Template

• Order Item Specification Order Template

About the Master Order Template
To the master order template, you should add the CDT representing your order resource -
either ProductOrder or ServiceOrder to the root (outside ControlData). It is important to note
that even if there are extensions to the main resource (ProductOrderOSM), you should not add
these sub-types into the order template. Because the extensions are sub-classed from the
main resource and implemented in OSM as CDTs, the exact typing is handled at runtime.

Figure 11-2 Order Template with ProductOrder Information

The payload served to OSM Gateway by the calling system includes a '@type' field that
declares the concrete schema type that is populated. The '@type' field should specify the exact
schema extension used.

{
 "description": "TMF OSM Product Order",
 "category": "salesOrder",
 "externalId": "456855",
 "@type": "ProductOrderOSM_Create",
.......

About the Order Item Specification Order Template
The order item specification has an order template that must also be configured properly which
includes:

Chapter 11
About the Order Template

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 29

• An order item property must be created named either "ProductOrderItem" or
"ServiceOrderItem"

• An XQuery sample for populating this structure follows.

• The CDT representing the order item type from the schema (ProductOrderItem or
ServiceOrderItem) must be added to the order template of the order item specification.

Note

Design Studio restrictions preventing the addition of a CDT to the order template have
been lifted for cartridges with a target server version of 7.5.0.

(: Sample XQuery to populate the order item specification property -
ProductOrderItem. This XQuery does not retain the hierarchy of order items,
it only returns the incoming data for a single line item :)
declare namespace oms="http://www.metasolv.com/OMS/OrderModel/2002/06/25";
declare namespace tmfbase="%{TMF_CDT_NAMESPACE}";

(: Declare OSM name space :)
declare namespace model="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage";

declare variable $tmfbase := "%{TMF_CDT_NAMESPACE}";

(: Ensure that incoming order has mentioned name space:)
declare variable $line := if (fn:exists(fn:root(.)/tmf:productOrderItem))
then fn:root(.)/tmf:productOrderItem else .;

declare function local:copyButTrimChildProductOrderItem(
 $parentName as xs:string?,
 $element as element(),
 $first as xs:boolean,
 $trim as xs:boolean) as element()*
{
 let $concreteType := fn:data($element/@xsi:type)
 let $elementName := local-name($element)
 return
 if (fn:exists($concreteType)) then (
 let $qName :=
 if ($first = fn:true()) then (fn:QName($tmfbase,
"ProductOrderItem"))
 else (fn:QName($tmfbase, $elementName))
 return
 if($elementName = "productOrderItem" and $trim = fn:true())
then ()
 else (
 element {$qName}
 {
 attribute { "type" } { fn:concat("{", $tmfbase,
"}", $concreteType) },
 attribute { "xsi:type" }
{ fn:concat(xs:string("tmfbase"),":", $concreteType) },

Chapter 11
About the Order Template

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 29

 attribute { "tmfbase:type" }
{ fn:concat(xs:string("tmfbase:"), $concreteType) },
 for $child in $element/node()
 return
 if ($child instance of element())
 then
local:copyButTrimChildProductOrderItem($concreteType, $child, fn:false(),
fn:true())
 else $child
 }
)
)
 else (
 if($elementName = "productOrderItem" and $trim = fn:true()) then
()
 else (
 element {node-name($element)}
 {
 $element/@*,
 (
 for $child in $element/node()
 return
 if ($child instance of element())
 then
local:copyButTrimChildProductOrderItem((), $child, fn:false(), fn:true())
 else $child
)
 }
)
)
};

local:copyButTrimChildProductOrderItem((), $line, fn:true(), fn:false())

Chapter 11
About the Order Template

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 29

Figure 11-3 Order Template with Product Order Item Information

As is the case on the master order template, the CDT structure that should be placed under
ControlData/OrderItem should be the base type from the TMF specification and not any
extended types. The concrete schema will get resolved at runtime by specifying the '@type'
property on the productOrderItem (or serviceOrderItem) on the incoming order payload.

"productOrderItem": [
 {
 "@type": "ProductOrderItem<extension>",
 "quantity": 1,

The TMF Order Item (ProductOrderItem or ServiceOrderItem) is exposed to fulfillment
functions as a property of the orderItemRef within a function. This allows automation tasks
associated to update the ProductOrderItem or ServiceOrderItem directly.

Chapter 11
About the Order Template

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 29

Figure 11-4 ProductOrderItem within a Function

The data returned when a GET endpoint is invoked consists of all POI or SOI under
ControlData/OrderItem as well as the PO or SO at the root.

About the Significance of CDT
During amendment processing, OSM analyzes the changed data at an element level. Only
changes to data elements that have been marked as significant will trigger amendment
processing. In OSM, CDTs are always considered significant which means that for TMF orders,
a change to any data field within the main resource (ProductOrder or ServiceOrder) will trigger
compensation.

Chapter 11
About the Order Template

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 29

Cartridge developers that want more control over this process can configure a rule on the order
lifecycle policy (the same functionality as Freeform cartridges) where a more thorough
evaluation can be done. This can result in rejecting orders with changes that are deemed
insignificant to the fulfillment logic of the cartridge.

About TMF Orders and Permissions
The Details tab for an Order has some required details related to TMF.

• The auto-generated lifecycle policy should be referenced.

• The TMF Order checkbox must be selected.

• The hosted order specification must be selected.

This configuration controls the inclusion of mandatory cartridge configuration that can be
produced internally during the design studio build.

Once an order is designated to be a TMF order, the cartridge developer is responsible for
adding the required permissions.

Permissions for Internal Gateway Role
The following are the permissions required for an internal gateway role:

• The osm-internal-gateway-user auto-generated during the import process must be added
to the permissions tab of an order.

• On the details tab, Create Order access must be given.

• A flexible header for ControlData/OrderFulfillmentState must be added.

• A query task with the default settings must also be defined. This view does not need to
follow a specific naming convention, but does need access to everything in the order
template.

Figure 11-5 Internal Gateway Role Configuration

About Order Recognition
Recognition Rule

With freeform cartridges, clients send an XML create order request directly to OSM. Cartridge
developers must understand the payload structure and the XML namespace associated with
the order as this information is typically used to identify matching order requests.

When OSM hosts a TMF specification, OSM Gateway creates the actual request to OSM.
While the payload structure is known (defined inside the TMF specification), the XML
namespace carried on the order is crafted by OSM Gateway. As cartridge developers are still

Chapter 11
About TMF Orders and Permissions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 29

responsible for coding order recognition, they must be made aware of the namespace that will
be used. The incoming document namespace reflects the hosted specification name and
version number. If you open the hosted specification editor in Design Studio, you can verify
both of these values.

The prefix of the document namespace is a constant - http://
oracle.communications.orchestration.com/

The suffix can be formatted from the following information:

hostedSpecName/<hostedSpecVersion/resourceName/inputMessage

Cartridge developers should use OSM best practices to capture version information as a model
variable. As the hosted specification is up-versioned through its lifecycle (resulting in a version
change), the model variable must be updated but not the xquery code.

The order recognition xquery provided below can be used in conjunction with a cartridge model
variable that defines 'TMF622_VERSION' to match the hosted specification version.

Recognition

(: Declare TMF name space :)
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage";

(: Ensure that incoming order is found and only one:)
fn:count(//tmf:productOrder)=1

Order Data Rule

This section provides information about model variable and sample xquery.

Model Variable

The auto-generated OSM cartridge contains an auto-generated model variable called
TMF_CDT_NAMESPACE populated with CDTCartridgeName/CDTCartridgeVersion.

For example, if the cartridge was called "PO_Base" with version 1.1.1.1.1, then the variable
value would have a value of "PO_Base/1.1.1.1.1"

This variable is necessary in many cartridge XQueries to reference the namespace of the OSM
CDT entities correctly. In the XQuery sample mentioned below, we can see it is needed to set
the namespace on the order data being created and returned to OSM.

XQuery

The following xquery sample will populate the TMF resource anchor root node (i.e /
ProductOrder) in the order template from the TMF Order data submitted at runtime.

OrderDataRule

declare namespace oms="http://www.metasolv.com/OMS/OrderModel/2002/06/25";
declare namespace tmfbase="%{TMF_CDT_NAMESPACE}";
(: Declare OSM name space :)
declare namespace model="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace tmf="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/inputMessage";

declare variable $tmfbase := "%{TMF_CDT_NAMESPACE}";

(: Ensure that incoming order has mentioned name space:)

Chapter 11
About Order Recognition

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 29

declare variable $root := //tmf:productOrder;

declare function local:copyButTrimProductOrderItem(
 $element as element(),
 $first as xs:boolean) as element()*
{
 let $type := fn:data($element/@xsi:type)
 let $elementName := local-name($element)
 return
 if ($elementName != "productOrderItem") then (
 if (fn:exists($type)) then (
 let $qName :=
 if ($first = fn:true()) then (fn:QName($tmfbase, "ProductOrder"))
 else (fn:QName($tmfbase, $elementName))
 let $concreteType :=
 if ($first = fn:true()) then (fn:substring-before($type, "_Create"))
 else ($type)
 return
 element {$qName}
 {
 attribute { "type" } { fn:concat("{", $tmfbase,
"}", $concreteType) },
 attribute { "xsi:type" }
{ fn:concat(xs:string("tmfbase"),":", $concreteType) },
 attribute { "tmfbase:type" }
{ fn:concat(xs:string("tmfbase:"), $concreteType) },
 for $child in $element/node()
 return
 if ($child instance of element())
 then local:copyButTrimProductOrderItem($child, fn:false())
 else $child
 }
)
 else (
 element {node-name($element)}
 {
 $element/@*,
 (
 for $child in $element/node()
 return
 if ($child instance of element())
 then local:copyButTrimProductOrderItem($child, fn:false())
 else $child
)
 }
)
)
 else ()
};

let $description := $root/tmf:description/text()

return

 <_root>
 {local:copyButTrimProductOrderItem($root, fn:true())}
 </_root>

)

Chapter 11
About Order Recognition

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 29

About Updating the TMF Order Item with Downstream Data
TMF Order data is held inside the following areas of the Order Template:

• <resource> (_root/ProductOrder)

• ControlData/OrderItem/<resource>OrderItem (ControlData/OrderItem/ProductOrderItem)

When OSM emits TMF events about the order resource, or when a GET endpoint is invoked,
the data returned comes directly from the TMF data in these two locations. There are some
considerations for cartridge developers to think about, with respect to where downstream data
updates will be stored on the order item.

Is the data update modeled as an order item characteristic that is empty on the incoming
create request, but gets populated based on downstream data and then propagated upstream
(network address)?

OR is the data something fulfillment related, applying equally to all order items regardless of
the product specification (shipment tracking details)?

These different types of data can be modeled in two ways.

Updates to Order Item Characteristics
Updates to a TMF Order Item (ProductOrderItem or ServiceOrderItem) characteristics trigger
the automated <resource>AttributeValueChangeEvent with a pointer to the exact data change.

If a data update is destined for a line item characteristic, then there is a nuance about the OSM
order data that must be considered.

OSM's parameter binding feature will dynamically map the data representing the line attributes
on an incoming create order payload to the dynamicParams area of the control data.

For TMF orders, a CDT representing the entire order item is added to the control data. This
means that the line item characteristics are held in two places in the OSM order data -
ControlData/OrderItem/ProductOrderItem and the OSM mapped parameters inside
dynamicParams as shown in Figure 11-6.

Note that one location is OSM order data and the other is TMF data.

Chapter 11
About Updating the TMF Order Item with Downstream Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 29

Figure 11-6 Order Item Characteristics

Which location should cartridge developers update with their plugin script? The two
characteristic areas should be kept in sync at all times, and to that end OSM uses the
"Reverse Data Propagation" (RDP) feature that is responsible for this.

During PSR modeling, the specific data element that will be populated from downstream
systems, should have the "Supports Reverse Propagation" checkbox selected. This should not
be turned on for all data elements in a PSR entity, but only the ones where the value will
originate downstream.

When checked, OSM will automatically propagate updates to that data element in the
OrderItem/dynamicParams to the correct characteristic within the TMF Order Item.

Chapter 11
About Updating the TMF Order Item with Downstream Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 29

Figure 11-7 Reverse Propagation Configuration

As shown in Figure 11-8, updates made to data elements where the blue arrow is pointing, will
be propagated (when RDP is turned on) to the area pointed to by the green arrow.

Chapter 11
About Updating the TMF Order Item with Downstream Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 29

Figure 11-8 Data Propagation When RDP is Enabled

This feature is available only when the TMF Order Item Characteristic is a primitive type.
Characteristics that are objects or arrays are not supported with RDP.

Chapter 11
About Updating the TMF Order Item with Downstream Data

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 29

Note

If the incoming characteristic name is different than what is modeled in design studio,
then you should be utilizing the "key" feature along with order item parameter
bindings. In this way, the reverse propagation will take into account the key and will be
able to find the correct source characteristic. Do NOT use the parameter binding
xquery to do any such manipulation from one value to another as data will not be able
to be propagated. As an example, if your upstream system will be sending a
Characteristic name with underscores "Authorization_Code" but your PSR entity in
Design Studio has a data element "AuthorizationCode", you should not use the
parameter binding xquery to strip the underscore but rather you should use the "key"
feature which is intended to rectify discrepancies between commercial and technical
naming.

Transformed Order Items

For line items that are involved in OTM, updates to a TransformedOrderItem/dynamicParams
can cause OTM to update an OrderItem/dynamicParams. When combined with the RDP for
TMF orders, that will also include propagation to the original source TMF Order Item.

To update the TMF order item characteristic data, cartridge developers only need to focus on
updating the dynamic parameter under the transformedOrderItem.

Updates to General Order Item Data
For updates that are more general in nature (ie. shipment tracking info), it does not make
sense to model that as Characteristics of a product or service. This class of data would be
added under the TMF order item.

General Order Item data such as these examples would be reflected in responses to a GET
endpoint invocation, but do not trigger upstream events. In order for callers to be aware of the
new data, an explicit GET invocation would be required.

Updates to External Fulfillment State
Updates to Functions/<Function>/orderItem/ExternalFulfillmentState to trigger cartridge
defined fulfillment state calculation, may indirectly trigger an update to TMF OrderItem's state
and TMF order state.

About TMF Order State
Calculating and propagating TMF order and order item state are handled internally by OSM.

Changes to the Order state are communicated through StateChangeEvents.

For order processing sequence diagrams showing StateChangeEvents, see "About TMF
Orders (Cloud Native Only)" in OSM Concepts guide.

Figure 11-9 shows the view of state transitions for a TMF Order (ProductOrder or
ServiceOrder). This image includes OSM extensions to the state, meaning a TMF solution
must have imported a specification that uses the OSM extensions to follow this diagram
exactly.

Chapter 11
About TMF Order State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 29

Figure 11-9 TMF Order (ProductOrder or ServiceOrder) State Transitions

Table 11-4 summarizes the states for a TMF Order (ProductOrder or ServiceOrder).

Table 11-3 States of a TMF Order

TMF State Usage OSM Order State

acknowledged Not used NA

rejected Not used

Rejected requests are handled
through a synchronous HTTP
response with appropriate HTTP
response code.

NA

pending Initial State. After order is
created, but before any task has
started.

Initial State for future dated
orders.

Created

held Not used NA

inProgress Order is executing. InProgress

cancelled Order has finished being
cancelled.

Cancelled

completed Order has finished execution with
no failures.

Completed

failed Order has finished execution and
all order lines have failed.

Completed

partial Order has finished execution with
order lines having a mix of
success and failure.

Completed

assessingCancellation Not used. InProgress

Chapter 11
About TMF Order State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 29

Table 11-3 (Cont.) States of a TMF Order

TMF State Usage OSM Order State

pendingCancellation Order is executing a cancellation
request.

Amending

Table 11-4 summarizes the states for a TMF Order (ProductOrder or ServiceOrder).

Table 11-4 States of a TMF Order Extended by OSM

TMF State Usage OSM Order State

amending Order is processing a revision
request.

Amending

amending.suspended Order was processing a revision
request but is currently
suspended.

Amending

amending.fallout Order was processing a revision
request but is now waiting on
fallout exception resolution.

Amending

amending.fallout.suspended A revision request was waiting on
fallout exception resolution but is
now suspended.

Amending

pendingCancellation.suspended Order was executing a
cancellation request but is now
suspended.

Amending

pendingCancellation.fallout Order was executing a
cancellation request but is now
waiting on fallout exception
resolution.

Amending

pendingCancellation.fallout.susp
ended

A cancellation request was
waiting on fallout exception
resolution but is now suspended.

Amending

inProgress.fallout Order is executing but is waiting
on fallout exception resolution.

InProgress

inProgress.suspended Order was executing but is
currently suspended.

InProgress

inProgress.fallout.suspended An order waiting on fallout
exception resolution but is now
suspended.

InProgress

Implications of TMF Partial and TMF Failed State

In all cases, the TMF Failed state and TMF Partial state are final states. This means that no
further work is done on the entity that has entered this state. For example, if a line item enters
TMF Failed state, no further processing can happen for that line item in the orchestration plan;
if the order enters TMF Failed state, no further activity can occur on the order.

About TMF Order Item State
Changes to order item state are communicated through AttributeValueChangeEvents.

Figure 11-10 shows the state transitions for a TMF Order Item (ProductOrderItem or
ServiceOrderItem). This image includes OSM extensions to the state, meaning a TMF solution

Chapter 11
About TMF Order Item State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 29

must have imported a specification that uses the OSM extensions to follow this diagram
exactly.

Figure 11-10 TMF Order Item (ProductOrderItem or ServiceOrderItem) State
Transitions

Table 11-5 summarizes the state transitions for a TMF OrderItem (ProductOrderItem or
ServiceOrderItem).

Chapter 11
About TMF Order Item State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 29

Table 11-5 State Transitions for a TMF OrderItem (ProductOrderItem or
ServiceOrderItem)

From
State/T
o State

Pendin
g

InProg
ress

InProg
ress.fa
llout

pendin
gCanc
ellatio
n

pendin
gCanc
ellatio
n.fallo
ut

amend
ing

amend
ing.fall
out

failed compl
eted

cancell
ed

pendin
g

NA Associa
ted
Fulfillm
ent
Functio
n
Started.

NA NA NA NA NA NA Pendin
g Order
Item is
not
associa
ted to
any
Fulfillm
ent
Functio
n and
contain
s no
child
order
item.

Cancel
Order
Accept
ed For
Pendin
g Order
Item.

InProgr
ess

NA NA Associa
ted
Fulfillm
ent
Functio
n fallout

Cancel
Order
accepte
d for
InProgr
ess
order
item.

NA Amend
Order
accepte
d for
InProgr
ess
order
item.

NA Cartrid
ge
signals
Order
item is
not
succes
s.

Associa
ted
Fulfillm
ent
function
complet
ed
without
error.

NA

InProgr
ess.fall
out

NA Order
Item
Fallout
resolve
d and
associa
ted
Fulfillm
ent
Functio
n retry.

NA Cancel
Order
accepte
d for
fallout
Order
item
with
cancel
activitie
s

NA Amend
Order
accepte
d for
fallout
Order
item
with
amend
ment
activitie
s

NA Cartrid
ge
signals
Order
item is
not
succes
s.

NA Cancel
Order
accepte
d for
fallout
Order
item
without
cancel
activitie
s.

pendin
gCanc
ellation

NA NA NA NA Associa
ted
Fulfillm
ent
Functio
n fallout
during
cancel.

NA NA Cartrid
ge
signals
Order
item is
not
succes
s.

NA Cancel
process
complet
ed
without
error.

Chapter 11
About TMF Order Item State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 29

Table 11-5 (Cont.) State Transitions for a TMF OrderItem (ProductOrderItem or
ServiceOrderItem)

From
State/T
o State

Pendin
g

InProg
ress

InProg
ress.fa
llout

pendin
gCanc
ellatio
n

pendin
gCanc
ellatio
n.fallo
ut

amend
ing

amend
ing.fall
out

failed compl
eted

cancell
ed

pendin
gCanc
ellation
.Fallout

NA NA NA Fallout
resolve
d for
cancelli
ng
order
item
and
associa
ted
Fulfillm
ent
Functio
n retry.

NA NA NA Cartrid
ge
signals
Order
item is
not
succes
s.

NA NA

amendi
ng

NA Amend
ment
complet
ed and
there
are
remaini
ng
fulfillme
nt
function
to be
execute
d.

NA NA NA NA Associa
ted
Fulfillm
ent
Functio
n fallout
during
amend
ment.

Cartrid
ge
signals
Order
item is
not
succes
s.

NA NA

amendi
ng.fallo
ut

NA NA NA NA NA Fallout
resolve
d for
amendi
ng
order
item
and
associa
ted
Fulfillm
ent
Functio
n retry.

NA Cartrid
ge
signals
Order
item is
not
succes
s.

NA NA

failed NA NA NA NA NA NA NA NA NA NA

comple
ted

NA NA NA NA NA NA NA NA NA NA

cancell
ed

NA NA NA NA NA NA NA NA NA NA

Chapter 11
About TMF Order Item State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 29

About Fulfillment State and Processing State
The ControlData/OrderItem/OrderItemFulfillmentState and ControlData/OrderItem/
OrderItemProcessingState fields are now reserved for OSM use, for the calculation of TMF
State. They will hold calculated TMF state values and will be communicated to upstream
systems via the TMF StateChangeEvents.

Cartridges must not update these fields and should not use this field in fulfillment state
mapping.

There are two level of Processing State for an Order Item:

• Order Component Order Item Processing State - Processing State of an Order Item within
an Order Component. The input value of the state here can be optionally driven by external
fulfillment state.

• Order Item Processing State - Processing State of an Order Item aggregated from child
order item's processing state as well as all processing state of itself across all order
component.

OSM Processing State value is different than the TMF product Order item state. Table 11-6
describes the state mapping between OSM Order Item and TMF Product Order Item.

Table 11-6 OSM Order Item and TMF Product Order Item State Mapping

Processing State OSM Order State Processing
Direction

Product Order Item State

NotStarted NA NA pending

InProgress in_progress FORWARD InProgress

InProgressWithWarnin
gs

in_progress FORWARD InProgress

InProgressWithFailures in_progress FORWARD inProgress.fallout

InProgress amending FORWARD amending

InProgressWithWarnin
gs

amending FORWARD amending

InProgressWithFailures amending FORWARD amending.falllout

Completed in_progress, amending FORWARD completed

CompletedWithWarnin
gs

in_progress, amending FORWARD completed

PartiallyFailed in_progress, amending,
cancelling

FORWARD,
REVERSE

partial

Undoing amending REVERSE amending

UndoingWithWarnings amending REVERSE amending

UndoingWithFailures amending REVERSE amending.fallout

Undoing cancelling REVERSE pendingCancellation

UndoingWithWarnings cancelling REVERSE pendingCancellation

UndoingWithFailures cancelling REVERSE pendingCancellation.fallout

UndoCompleted cancelling REVERSE cancelled

UndoCompletedWithW
arnings

cancelling REVERSE cancelled

UndoFailed cancelling REVERSE failed

Chapter 11
About Fulfillment State and Processing State

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 29

12
Modeling External REST Interactions using
System Interaction (Cloud Native Only)

This chapter describes how to model external REST interactions using System Interaction.

Before reading this chapter, refer to "About REST APIs and System Interaction (Cloud Native
Only)" in OSM Concepts.

Note

System Interaction is supported for OSM cloud native deployments only.

The System Interaction specifications can be TMForum REST APIs used in fulfillment (such as
TMF700 for shipping or TMF 641 for provisioning), but can also be non-TMF APIs expressed
as OpenAPI specifications. Parsing technology is used to validate that the structure and syntax
of imported REST specifications align with the OpenAPI Initiative v3.0.1.

About Importing the OpenAPI Document into Design Studio
The OpenAPI document involved in a system interaction, is owned by and must be provided by
the external application serving the API. The OpenAPI describes the specific capabilities of
that system including available operations, HTTP headers, path parameters, HTTP response
codes, schema, server url and so on. When the document is a TMF OpenAPI it is likely that
extensions have been made by applications. Therefore, care should be taken that the file
imported to Design Studio, reflects the current, up-to-date capabilities and schema supported
by the external system.

Note that the OpenAPI version information is carried in two locations - at the info:version and
as part of the server:url. Design Studio must be able to determine the version number
unambiguously, therefore these numeric values must be an exact match before being imported
to Design Studio.

TMF APIs for BSS/OSS System Interactions
For convenience, OSM cloud native makes available a set of TMF OpenAPI specifications that
would typically be used for system interactions, as a reference. These are in the OSM SDK in
the TMFSchemas/ClientSpecifications subfolder.

The samples provided are good for reference and may be used as a development accelerator.
However, before actual integration is attempted, the System Interaction Specification should be
updated to reflect the actual OpenAPI provided by the external system.

Importing a System Interaction
OSM Order Components have a System Interaction tab where cartridge developers can select
the OpenAPI for a particular external system. Design Studio will perform parsing and validation
to align with OpenAPI Initiative 3.0.1.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

The system interaction tab of an order component, also provides a field to enter the Target
System. This should be a logical name for the Target System and should describe the function
of the Target System rather than its specific location. For example, a logical name of "Wireless-
Activation" would be appropriate, as opposed to "Test-ASAP", as the latter pins it down to a
specific system. This is important to allow flexibility between cartridge design and solution
deployment design. The cartridge developer can freely reference a logical target system,
leaving it up to the deployment scripts and configuration to allocate an actual target for that
logical system in the form of a specific URL, authentication, and so on.

This logical name should be obtained from or provided to the individual responsible for
maintaining the OSM CNTK deployment scripts. The same value must be defined in the CNTK
project and instance specification files.

OSM does not support some aspects of OpenAPI schema for use in a System Interaction
specification. For more information about these known issues and their workarounds, refer to
"Known Issues and Workarounds."

Updating a System Interaction Specification
System Interaction Specifications are version specific. If an updated version of the OpenAPI is
provided by an external system, the expectation is that the specification will reflect the version
change. The Order Component holding the SI must have the old specification removed and the
new one re-added. A delete and re-import will cause Design Studio to re-generate the
necessary supporting metadata.

If an attempt is made to deploy a cartridge (new deploy or re-deploy) that bundles a System
Interaction Specification of the same version, but with content differences then the cartridge
deploy will fail as the specification with that version already exists. All specification changes
should be accompanied by a version increase.

System Interaction and OSM Order Components
When a system interaction specification is imported to Design Studio, the specific operations
and events become available as configuration for automation plugins as shown in the image
below.

Figure 12-1 SI Operations Dropdown

Chapter 12
System Interaction and OSM Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

In order to populate this list, Design Studio looks at the OSM subprocess that holds this
automation task, and then at the Order Component that contains this subprocess. The System
Interaction registered with that order component provides the list of operations.

In the example below, the ShipOrderFunction holds the System Interaction for the Shipping
System.

The ShipOrderSubProcess is defined on the ShipOrderFunction.

Therefore, all automation tasks found in the ShipOrderSubProcess will have a list of
operations from the System Interaction Specification.

Figure 12-2 ShipOrderSubProcess

Determining the Order Component
OSM supports multiple layers of Order Components as part of the orchestration plan. Typically
the layers in sequence are Function, System and Granularity. In case there is only one layer
(which would be the Functional Order Component), apply the System Interaction to that
component. In the example below, the functional order component - ActivateServiceFunction
- has the System Interaction Specification.

Figure 12-3 activationOrchPlan

Chapter 12
System Interaction and OSM Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

In case there are multiple layers of order components, apply the System Interaction to the
earliest layer such that all subsequent layers (and their fan-out) satisfy these conditions:

• Same target system being contacted,

• With the same REST API version,

• And via the same subprocess.

In the next example, the system and granularity order components for the
ProductProvisioning function (blue boxes) do not deviate from the above conditions,
therefore the System Interaction can be imported to the functional order component -
ProductProvisionOrderFunction.

Figure 12-4 digitaltv

In a final example below, the Provisioning function cannot hold the System Interaction for two
reasons:

• There are multiple target systems.

• The systems use a different version of the TMF 641 specification.

In this case, the System Interaction Specification is imported to the "system" order component.

Figure 12-5 Emulated SOM

Chapter 12
System Interaction and OSM Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

Figure 12-6 OSM SOM

About Array of Arrays Support in System Interactions
In the system interaction, all the JSON messages received by OSM must be converted to XML
before they can be processed by OSM at runtime. Additionally, all the XML messages from
OSM must be converted to JSON before they are emitted to an external system.

The following shows the array of objects (technicalServiceClassChar) and array of arrays
(alternativeSupportingResource) as defined in the OpenAPI specification:

TechnicalServiceBase:
 type: object
 properties:
 alternativeSupportingResource:
 type: array
 items:
 $ref: '#/components/schemas/MultipleResource'
 technicalServiceClassChar:
 type: array
 items:
 $ref: '#/components/schemas/Characteristic'

MultipleResource:
 type: array
 items:
 $ref: '#/components/schemas/Resource'
Resource:
 type: object
 properties:
 name:
 type: string
Characteristic:
 type: object
 properties:
 name:
 type: string
 valueType:
 type: String
 value:
 type: String

Chapter 12
About Array of Arrays Support in System Interactions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

Array

For an array data in a JSON document, there is an XML node set equivalent of it. The array of
type primitives or object data in a JSON document is mapped to the repeated XML element.

The following JSON document consists of an array of objects for the
technicalServiceClassChar.

{
 "technicalServiceClassChar": [{"name": "char1", "value": "sample1"},{"name": "char2",
"value": "sample2"}]
}

The sample XML for the above JSON document looks as follows:

<TechnicalServiceBase xmlns="http://oracle.communications.orchestration.com/tmf-api/
{apiName}/{apiVersion}/inputMessage"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TechnicalServiceBase">

 <technicalServiceClassChar xsi:type="Characteristic">
 <name>char1</name>
 <value>sample1</value>
 </technicalServiceClassChar>
 <technicalServiceClassChar xsi:type="Characteristic">
 <name>char2</name>
 <value>sample2</value>
 </technicalServiceClassChar>
</TechnicalServiceBase>

Nested Arrays

The JSON document supports a multidimensional array but there is no equivalent of it in XML.
To support an array of arrays, intermediate XML elements are generated that denote the
beginning and ending of a nested array.

When receiving a JSON message containing array of arrays, these reserved elements, which
are nestedArray and nestedArrayItems are added into the generated XML to denote the
beginning and ending of a nested array and nested array items. When converting XML
elements back into JSON, the inserted elements are converted into a JSON document with
nested arrays.

The following JSON document consists of an array of arrays for resources.

{
 "technicalServiceClassChar": [{"name": "char1", "value": "sample1"},{"name": "char2",
"value": "sample2"}]
 "alternativeSupportingResource": [
 [
 {
 "name": "Resource1"
 },
 {
 "name": "Resource2"
 }
]
]
}

The sample generated XML for the above JSON document looks as follows:

<TechnicalServiceBase xmlns="http://oracle.communications.orchestration.com/tmf-api/
{apiName}/{apiVersion}/inputMessage"

Chapter 12
About Array of Arrays Support in System Interactions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TechnicalServiceBase">
 <technicalServiceClassChar xsi:type="Characteristic">
 <name>char1</name>
 <value>sample1</value>
 </technicalServiceClassChar>
 <technicalServiceClassChar xsi:type="Characteristic">
 <name>char2</name>
 <value>sample2</value>
 </technicalServiceClassChar>
 <alternativeSupportingResource>
 <nestedArray>
 <nestedArrayItem xsi:type="Resource">
 <name>Resource1</name>
 </nestedArrayItem>
 <nestedArrayItem xsi:type="Resource">
 <name>Resource2</name>
 </nestedArrayItem>
 </nestedArray>
 </alternativeSupportingResource>
</TechnicalServiceBase>

About the OSM Gateway Functions
OSM Gateway performs the following functions for interactions with an external system using
REST APIs:

• With JMS integrations, automation plugin code would be responsible for managing
correlation. When REST interactions are modeled using System Interaction, then OSM
Gateway becomes responsible for managing correlation. A condition of any integration
using System Interaction, is that external systems must honor the HTTP header used by
OSM for correlation. External system sync responses much echo back the HTTP header
X-Correlation-ID that is sent on the request.

• In a REST exchange with an external system, OSM Gateway translates the XML payloads
generated by automation plugins, into JSON payloads destined for the endpoint (and vice
versa). Accordingly, System Interaction Specifications are restricted to JSON-based
content types, specifically application/json, application/merge-patch+json, and
application/json-patch+json.

• Schema validation on the payload content. Tuning parameters for schema validation can
be found in the CNTK deployment scripts. This controls the Gateway behavior when
unknown data is part of an incoming or outgoing payload.

• Resolves the logical target system name on the System Interaction against deployment
artifacts to derive actual system connection details.

• If automation plugins have registered for event notifications then OSM Gateway listens for
incoming events and passes them on to the external receiver automation plugin.

• Passes hard failures and unresolvable transient failures back to the automation plugin.
New Automation APIs are available to emit fallout exceptions in the event that the order
needs to be flagged in the Order Operations UI.

Support for JSON Patch and Merge-Patch Content Types in System
Interaction

System Interactions support extended PATCH capabilities by supporting application/merge-
patch+json and application/json-patch+json as valid request body content types, in addition

Chapter 12
About the OSM Gateway Functions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

to application/json. This enables a standardized, JSON-based patching for precise and
efficient updates when integrating with external systems.

• Merge Patch (application/merge-patch+json): Partially updates a resource by merging
provided fields. Omitted fields remain unchanged, and fields set to null are removed. This
is ideal for straightforward updates where the payload structure matches the target
resource.

• JSON Patch (application/json-patch+json): Applies a sequence of operations (add,
remove, replace, move, copy, test) to modify the resource. Each operation is run in order,
offering fine-grained control for complex updates.

When constructing a PATCH request body in XQuery, you must adhere to the schema defined
in the imported OpenAPI specification. The expected structure depends on the specified
requestBody content type. This will either be application/merge-patch+json for Merge Patch
operations or application/json-patch+json for JSON Patch sequences.

The OSM Gateway automatically sets the Content-Type HTTP header (application/merge-
patch+json or application/json-patch+json) when calling PATCH endpoints on external
systems. The header value is determined from the requestBody content type defined in the
imported OpenAPI specification for the corresponding operationId.

The following examples illustrate typical usage of the two PATCH request body content types
defined in the OpenAPI specification.

Merge Patch (application/merge-patch+json): updateService

paths:
 /service/{id}:
 patch:
 operationId: updateService
 summary: Update a Service using merge-patch
 description: >
 Updates the Service that matches the specified ID. Update can be
 performed using merge-patch.
 tags:
 - Service
 parameters:
 - required: true
 name: id
 in: path
 schema:
 type: string
 description: The ID of the service to update.
 - name: designOnly
 schema:
 type: boolean
 in: query
 - $ref: '#/components/parameters/fields'
 - $ref: '#/components/parameters/depth'
 - $ref: '#/components/parameters/expand'
 requestBody:
 description: >
 The service to be updated.....
 required: true
 content:
 application/merge-patch+json:

Chapter 12
About the OSM Gateway Functions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

 schema:
 $ref: '#/components/schemas/Service'

The following sample shows the JSON payload for the request type mentioned above:

{
 "serviceCharacteristic": [
 {
 "name": "cpeBrand",
 "valueType": "ALPHANUMERIC",
 "value": "HUAWEI",
 "serviceSpecName": "DataCFS",
 "configItemPath": "DataCFS"
 },
 {
 "name": "serialNumber",
 "valueType": "ALPHANUMERIC",
 "value": "654654654",
 "serviceSpecName": "DataCFS",
 "configItemPath": "DataCFS"
 }
]
}

JSON Patch (application/json-patch+json): patchService

paths:
 /service/{id}:
 patch:
 operationId: patchService
 summary: Patch a service using JSON Patch
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: string
 requestBody:
 required: true
 content:
 application/json-patch+json:
 schema:
 $ref: '#/components/schemas/Service_Update'

The following sample shows the JSON payload for the request type mentioned above:

[
 {
 "op": "add",
 "path": "/config/cpeType",
 "value": "ONT"
 },
 {
 "op": "replace",

Chapter 12
About the OSM Gateway Functions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

 "path": "/serviceType",
 "value": "premium"
 },
 {
 "op": "remove",
 "path": "/deprecated"
 }
]

Considerations for OSM Cloud Native to OSM Cloud Native
Integration using System Interaction

When an OSM instance hosting a TMF specification interacts with another OSM instance that
also hosts a TMF specification, there are some additional considerations for the cartridge
developer. These are:

• You should take care to ensure OpenAPI version consistency between the two instances.
The version of the downstream Hosted Specification should also be used for the upstream
System Interaction specification. You cannot successfully integrate with two different
versions.

• If a 622 or 641 System Interaction specification is imported, then Design Studio injects
additional HTTP header content in anticipation of an OSM/TMF to OSM/TMF integration. If
the external system is not an OSM instance, then this information is benign.

The following HTTP Headers are provided for integrations with OSM:

• X-VERSION: This is required for revisions. A GET call on the main resource (GET/
serviceOrder) provides the caller with an HTTP header where X-VERSION reflects the
version of the currently processing order. This value can then be incremented for any
revision requests that are sent to downstream OSM.

• X-Fulfillment-Mode: If the TMF cartridge in the downstream OSM instance uses a non-
standard fulfillment mode, then plugins should specify the fulfillment pattern name using
this header. This is not required for standard create requests (deliver), cancellations
(cancel) or amendments.

Developing Automation Plugins
For information about developing automation plugins, refer to "Using Automation with a System
Interaction (Cloud Native Only)" in OSM Developer's Guide.

Known Issues and Workarounds
OSM does not support some aspects of OpenAPI schema for use in a System Interaction
specification. This section describes these aspects and offers workarounds:

• Inline nested schema objects:

While OpenAPI schema allows a nested schema object to be fully defined inline with its
usage, OSM requires this to be done by reference instead. The inline schema must be
extracted as an independent element definition and the nested element should reference
this definition.

• Open-ended properties using additionalProperties field:

Chapter 12
Considerations for OSM Cloud Native to OSM Cloud Native Integration using System Interaction

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

OpenAPI schema allows for partial specification of child elements by adding the
additionalProperties field. OSM requires all child elements to be enumerated in the
specification. This can be done by extending the OpenAPI schema to include all the child
elements of interest.

• Default value for schema object in specification:

OpenAPI schema can contain default values to use for schema objects if they are not
present in the payload document. OSM does not honour these defaults. The payload
originator must ensure such values are part of the generated payload document if they are
required to be present.

Chapter 12
Known Issues and Workarounds

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

Part III
Modeling Run-time Order Management

Part III contains the following chapters about modeling run-time functionality in an Oracle
Communications Order and Service Management (OSM) solution:

• Modeling Changes to Orders

• Modeling Fallout

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

• Modeling Order Scheduling

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

13
Modeling Changes to Orders

This chapter describes how to model change order management in an Oracle Communications
Order and Service Management (OSM) solution.

About Amendment Processing and Compensation
To revise or cancel in-flight orders, OSM performs amendment processing. Amendment
processing analyzes the requested changes, determines how to make the changes, and
processes them. Amendment processing functions as follows:

1. A base order is submitted and is currently processing; it is not in the Not Started,
Completed, or Aborted state. The upstream system submits a revision or a cancel order.
The new version of the order includes all of the data relevant to the order, not just changed
data. The upstream system does not need to identify the changes to OSM or explicitly
provide the discrepancies; OSM determines the discrepancies during amendment
processing by comparing the new version with the version of the order currently being
processed.

To submit the revision order, the upstream system can use either the CreateOrder web
service operation or the CreateOrderBySpecification web service operation.

The new version of the order can:

• Change existing data

• Remove existing data

• Add new data

Note

You can create revision orders by using the Task web client. This is typically used
only for testing or for low-volume order processing.

2. OSM receives the revision order. OSM checks to see if the base order is amendable. You
enable amendment processing on the order specification. If the base order is not
amendable, the order is not a revision order.

Note

When you model orders, make sure that orders that are expected to be amended
are configured to be amendable. If not, an order that is sent as a revision order is
instead processed as a new order. This can cause errors during fulfillment
because there are two orders fulfilling the same services for the same customer.

3. OSM checks in-flight orders for a matching value to an order key. For example, you can
specify to use the sales order number as the order key. In that case, when OSM processes
an order, it looks for an in-flight order that has the same sales order number. If OSM finds
an in-flight order with a matching sales order number, OSM treats the new incoming

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 40

customer order as a revision on the existing order. See "About Order Keys" for more
information.

OSM now has two orders to work with: the revision order and the base order.

Note

Many types of orders do not require an orchestration plan; for example, some
service orders are created specifically for a simple service provisioning task and
therefore require no dependencies.

4. OSM performs further checks on the base order to determine if the order is allowed to be
amended. OSM does the following:

• OSM checks to see if the base order is in a state that can be amended. Orders in the
Not Started, Completed, or Aborted state cannot be amended. You can customize the
allowed transitions to the amending order state by configuring the order life-cycle
policy. See "Modeling Order Life-Cycle Policy States and Transitions" for more
information.

• OSM ensures that the base order has not passed the point of no return (PONR). The
PONR is the point in the processing of an order item after which order amendments
are either impossible or incur some penalty. In this case, a revision order might not be
possible. See "Fulfillment Pattern Point of No Return" for information.

• OSM checks to see if the incoming customer order has a version identifier. If OSM has
a version identifier, OSM compares the value of the version to the version of the in-
flight order. If the version of the in-flight order is greater than the version of the
incoming customer order, the incoming revision is ignored.

If a revision cannot be processed, or if the order life-cycle has not allowed the revision, the
revision order is set to the Failed state, and the base order continues to be processed.

5. OSM determines whether amendment processing is needed by analyzing order data at the
following levels:

• OSM compares the revision order data and the base order data (or the revision order
data and the last submitted revision order data) to see if a compensation is needed.
(Compensation defines the actions that need to be taken to perform amendment
processing; for example, undo and redo.) See "About Order-Level and Task-Level
Compensation Analysis" for more information.

• During compensation, OSM compares task data for each task in the order process to
further validate the compensation requirements. See "About Order-Level and Task-
Level Compensation Analysis" for more information.

• OSM uses the significance of the data to determine if compensation is needed at both
stages. Data significance enables you to optimize amendment processing in a way
that compensation is considered only for changes to data that is marked as significant.
Data that is not marked significant is updated but does not get included in the
compensation plan if its value is changed. See "About Data Significance" for more
information.

Chapter 13
About Amendment Processing and Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 40

Note

If an amendment is received while a task is in a fallout execution mode, OSM
does the following:

– If the task is not configured to be compensated if it is in progress, the
execution mode of the task does not change as a result of the amendment
order.

– If the task is configured to be compensated if it is in progress, and the
amendment contains changes to significant data:

* If the task is still needed after the changes to the order from the
amendment are considered, it transitions automatically to (normal)
Redo mode.

* If the task is no longer needed after the changes to the order from the
amendment are considered, it transitions automatically to (normal)
Undo mode.

In both of these cases, ensure that your automation code (for the Redo or
Undo execution mode) contains a check to see if the task has been in a
fallout execution mode, and also whatever code is needed to resolve any
actions that have been taken in the fallout execution mode. For example,
if your automation for Do in Fallout mode opens a trouble ticket, your
Redo automation should check to see whether it needs to close a trouble
ticket.

– If the amendment order contains no changes to significant data, the
execution mode of the task does not change as a result of the amendment
order.

6. After determining that amendment processing is needed, OSM transitions the order to the
Amending state.

Note

OSM queues orders that need amending. Therefore it is possible for multiple
revisions of the same order to exist in the queue. If amending the order is allowed,
OSM chooses the latest version of the amendments in the queue by comparing
the optional version identifiers (if configured) or, if there is no configured version
identifier, by comparing the dates and times that the amendments were received.

In the Process Amendment state, OSM determines the compensation required. For
example, OSM might redo a task with different values for one or more data elements on
the task data that were used for input into the task.

For process-based orders, the tasks are analyzed to find the impact of the changes. That
impact determines the compensation plan. For example, OSM might need to redo a task
with different data values or undo a task if it is no longer required. The data comparison is
based on the data in the creation task of the base order and the revision order. See OSM
Concepts for information.

For orchestration orders, the order components of the orchestration plan are analyzed to
determine which order components need to be redone, undone, or done for the first time
(amend do). The tasks of the sub-processes run for each of those order components to be
compensated are also analyzed.

Chapter 13
About Amendment Processing and Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 40

7. OSM handles the base order and the revision order as follows:

• For the base order, OSM creates a new orchestration plan that includes the order
components and their dependencies. Any order components with data that has
changed as a result of the revision are redone. Any order components that have been
processed but are no longer required in the revision are undone in reverse
dependency sequence. Any order components that are inserted as new requirements
are fulfilled. The order state is set to Amending.

• For the revision order, OSM transitions it to the Completed state because its only
purpose was to revise the base order.

8. OSM processes the changes according to the compensation plan it calculated and re-
calculates the compensation plan needed after every change. OSM performs the
necessary undo, redo, and amend do operations on order components (for orchestration
orders) and on tasks (for both orchestration orders and process-based orders).

Figure 13-1 shows a simplified amendment processing flow.

Figure 13-1 Amendment Processing

Chapter 13
About Amendment Processing and Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 40

Note

Messages from external systems can be returned to a task for which the receiver is
temporarily unable to receive a response. This can happen, for example, if an order is
being amended or is suspended. When this happens, OSM saves the returned
message to the database, to wait until the order is ready for the task. This message
will be removed when the message is resent to the receiver or when it becomes
irrelevant (for example, because the order has been purged). This functionality is on
by default, but you can turn it off, for example if your solution already handles
messages of this type in a different way. To turn this feature off, use the
oracle.communications.ordermanagement.AutomationResponseMessageParkin
gEnabled parameter in the oms-config.xml file. See OSM System Administrator's
Guide for more information about this parameter and about the oms-config.xml file.

A simple example of a revision order is as follows:

1. A customer orders a DSL service at 3 MBps. An order is created and sent to OSM.

Figure 13-2 shows the start of the process. In this example, the process begins with the
Verify_ADSL_Service task and then transitions to the Assign_Port task.

Figure 13-2 Amendment Order Example

2. OSM verifies that the 3 MBps service is available and transitions to the next task,
Assign_Port.

3. While the order is waiting for port assignment, the customer calls back and asks a
customer service representative (CSR) to change the order to 5 MBps. The CSR creates a
revision order in the CRM system with the revised bandwidth value of 5 MBps and submits
the order to OSM.

4. OSM receives the incoming customer order, and detects that it is a revision to an in-flight
order.

5. OSM accepts the revision order, calculates the compensation plan, and begins to run it.
OSM knows that compensation is necessary because the data (bandwidth) that was on the
order as input data when this task ran previously has now changed. The revision order
requests that the Verify_ADSL_Service_Availability task must be redone to ensure that
the 5 MBps service is available.

6. The value set by the Verify_ADSL_Service_Availability task is changed.

Figure 13-3 shows the order displayed in the Task web client. In this figure, the
Verify_ADSL_Service_Availability task has an execution mode of Redo. Because the

Chapter 13
About Amendment Processing and Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 40

port has not been assigned yet, the Assign Port task has an execution mode of Do, but it
cannot be worked on until the order completes compensation for the revision.

The task execution mode can be Undo, Redo, Do, Amend Do, Undo in Fallout, Redo in
Fallout, Do in Fallout, and Amend Do in Fallout. (See "About Task Execution Modes" for
more information.)

Figure 13-3 Amendment Displayed in the Task Web Client

7. The revision order transitions directly to the Completed state. This is because the revision
order is used only for updating the base order. For revision tracking, OSM maintains a
record of the revision order as part of the order history.

8. After verifying that the revised bandwidth is available, the base order continues processing.

You can monitor revisions in the web clients. Figure 13-4 shows a revision order (Order 7) and
Figure 13-5 shows the base order that it revised (Order 6).

Figure 13-4 Revision Order in the Order Management Web Client

Chapter 13
About Amendment Processing and Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 40

Figure 13-5 Amended Order in the Order Management Web Client

About Revising or Canceling Orders by Using the Task Web
Client

In most cases, revision orders are submitted from an order-source system. You can also revise
and cancel orders by using the OSM Task web client; for example, by using the Amend Order
menu command. This is useful for testing revisions and cancellations within OSM, however,
this method is not appropriate for production systems.

You should use the Task web client to submit amendments only when the order was submitted
from the Task web client originally or when the upstream system cannot submit an
amendment. If the upstream system submits an amendment after you manually submit an
amendment, data synchronization errors can occur.

When you use the Task web client to amend an order:

1. OSM creates another order, with a new order ID number, for the revision. The new order
includes all of the creation task data from the in-flight order.

2. The Task web client displays the revision order.

3. You can then change the data required for the revision and submit the revision order.

Caution

If you use revision versioning, increment the revision version.

About Order Keys
When receiving an order flagged as amendable, OSM checks in-flight orders for a matching
value in an order key. (You configure the order key when you model the order specification.)
For example, you can specify to use the sales order number as the order key. In that case,

Chapter 13
About Revising or Canceling Orders by Using the Task Web Client

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 40

when OSM processes an order, it looks for an existing order that has the same sales order
number and amends that order.

Tip

Because OSM must check the order key for all in-flight amendable orders, you should
make orders amendable only if they might need to be amended. That way, OSM does
not need to check for an order key for orders that would not be amended.

You define the order key in the order specification as one or more XPath expressions that
reference one or more data elements in the incoming customer order. If you use multiple data
elements, the values are concatenated in the order key.

OSM generates an order key when the order is created. To assign an order key:

• The order key data elements must be part of the creation task data.

• The order key must be identical between the base order and the revision orders and must
not change.

• The order must be flagged as amendable.

Order key values should not be modified after an order is submitted. For more information
about creating valid order keys, see, "Modeling Valid Data Keys."

About Submitting Multiple Revisions of an Order
In some cases, multiple revisions to a single order are submitted. Each revision is expected to
be a new revision of the in-flight order, not a cumulative comparison of previous revisions. The
latest amendment is assumed to be the most complete revision containing all of the changes
from earlier revisions. Intermediate revisions are not processed by OSM.

You can use versioning in the revision orders to recognize the order of the revisions as OSM
receives them. For example:

• If revisions are received out of sequence, OSM ensures that the latest revision is used. If a
revision is received while a current revision on the same order is being compensated, and
if processing of revising in-flight revision orders is enabled (see "About Revising In-flight
Revision Orders" for more details), OSM initiates the termination of the current revision and
changes the compensation state of the current revision to Terminating and queues the
latest revision. After the current revision reaches a safe point, OSM terminates the current
revision and starts processing the latest revision. If processing of revising in-flight revision
orders is not enabled, OSM completes the compensation for the current revision before
processing the latest version. If a version is received that is earlier than the current revision
being processed, the earlier version is ignored.

• If several revisions are received, OSM discards interim revisions and applies the latest
revision because it represents the latest customer instructions for the order and is a
complete copy of the base order.

To configure revision versioning, you specify a data element on the incoming customer order
that OSM checks when processing revisions for the order. You specify the data element as an
XPath expression in the order specification Amendable tab. For example, if the data element
is <version>, the XPath expression is:

_root/version

Chapter 13
About Submitting Multiple Revisions of an Order

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 40

About Compensation States
The following diagram shows compensation state transitions and the life-cycle of a revision
order.

Figure 13-6 Compensation State Transitions

• Accepted: This state indicates that the revision order is accepted by OSM. OSM evaluates
order life cycle policy when the revision order is received before accepting it. This state is a
transitional state until the revision processing on the base order starts.

• In progress: This state indicates that the revision processing has started on the order.

• Completed: This state indicates that the revision processing is complete.

• Queued: This state indicates that the revision order is queued.

– OSM queues the revision on a base order that is in the In-progress state if the Process
Amendment transaction in the order state policy is not enabled. If the Process
Amendment transaction is enabled, OSM re-evaluates the condition on order data
changes and dequeues the revision. See "Disabling Processing of Revisions on In-
flight Revision Orders" for more details.

– OSM queues the revision order when the base order is in the Amending state.
Revision order remains queued until either the current revision processing is
terminated (default configuration) or revision processing is completed.

• Skipped: This state indicates that the revision order is skipped. This happens on a queued
revision, when it is replaced by a new revision.

• Terminating: This state indicates a transition period before OSM starts processing the
latest revision on the order. During this period, OSM provides support to clean up all
Started compensation tasks by ensuring they reach a known state.

• Terminated: This state indicates that the compensation is terminated safely.

About Revising In-flight Revision Orders
OSM can process a revision order while it is still processing a revision on the same order that it
received earlier, without having to wait for the ongoing revision order to complete. When a
revision on an in-flight revision order is received, OSM initiates the termination of the current

Chapter 13
About Compensation States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 40

revision and changes the compensation state of the current revision to Terminating and queues
the latest revision. After the current revision reaches a safe point, OSM terminates the current
revision and then starts processing the latest revision.The compensation processing of the
current revision transitions to a new revision safely, at the earliest, instead of waiting for the
completion of the current revision processing. With this functionality, OSM can process order
changes quickly, while reducing the operational expenses by optimizing the work needed to be
done for subsequent order changes, and carries forward pending tasks that were not run in the
previous revisions to the latest revision.

Note

By default, processing of revisions on in-flight revision orders is enabled for cartridges
with target version 7.4.0.0.0. For information on enabling and disabling processing of
revisions on in-flight revision orders, see "Disabling Processing of Revisions on In-
flight Revision Orders".

OSM processes a revision on an ongoing revision order as follows:

• While amendment processing is still in progress for the revision order, OSM receives
another revision on the order.

OSM initiates the termination of the current revision and changes the compensation state
of the current revision to Terminating and the latest revision is queued. Once the current
revision reaches a safe point, the current revision is terminated. See "About Terminating
Compensation" for details about what happens in the Terminating state and when OSM
terminates in-flight revision processing.

• OSM merges the compensation plan of the new revision order with that of the previous
revision that was terminated.

OSM does the following when it merges the compensation plans:

– OSM carries forward all the Not Started Redo compensation tasks from the terminated
revision.

Note

OSM compensates these tasks only if there are significant data changes
compared to their prior execution.

– If there are pivot- sub-processes that have not started prior to the arrival of the new
revision, OSM carries them forward into the latest order revision processing and runs
them in a proper sequence.

About Insignificant Revision
When OSM receives a revision that has only insignificant data changes, the changes are
applied immediately, while the processing of the ongoing revision is still in progress. Thus, a
revision with insignificant data is not delayed. Also, it does not interrupt or impact the current
revision processing.

Chapter 13
About Revising In-flight Revision Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 40

About Terminating Compensation
When OSM receives a revision order while it is still processing a revision on the same order
that it received earlier, OSM terminates the compensation for the ongoing revision order before
processing the new revision. The Terminating state provides a transitional stage to ensure that
the current compensation plan runs further until it reaches a safe point before starting and
processing the latest revision that is queued. To avoid unnecessary processing, OSM does not
create successors on the redo tasks upon its completion during the Terminating state.

The revision processing of an ongoing revision remains in the Terminating state until the
following conditions are met:

• The compensation remains in the Terminating state until all Undo tasks are processed and
completed.

• If there is a new component/pivot- sub-process in the current revision and it has started
prior to the arrival of the new revision, the compensation of the current revision remains in
the Terminating state until the execution of the new component/pivot sub-process is
completed through the execution of tasks in the Amend-Do execution mode.

• If there is a change in flow during compensation (for example, if a Redo task is completed
at a status that is different from the status that it was run earlier). The compensation of the
current revision remains in the Terminating state until the dead path is rolled back, which is
done by undoing all tasks in the dead path, and the new path is run and completed by
processing the tasks in the Amend-Do mode.

OSM terminates the compensation when it considers the current state of the compensation
has reached a safe point (when the aforementioned conditions are met) and starts processing
the queued revision. OSM merges the terminated compensation plan with the new
compensation plan to ensure that the compensation tasks which were skipped are now run as
part of the processing of the new revision order.

Disabling Processing of Revisions on In-flight Revision Orders
By default, processing of revisions on in-flight revision orders is enabled for cartridges with
target version 7.4.0.0.0.

To disable this functionality, you configure the Process Amendment transaction for the
Amending order state. You configure the Process Amendment transaction for the Amending
order state by removing the permission to the Amending - Process Amendment transaction for
a selected role. For details on removing and granting permissions to transactions, see the topic
about Configuring Order Lifecycle Policies in Design Studio Modeling OSM Processes Online
Help.

Example: Revising an In-flight Revision Order
A simple example of how OSM processes revision on an in-flight revision order is as follows:

1. A customer orders a DSL service with 3 MBps bandwidth. An order is created and sent to
OSM.

Figure 13-7 shows the start of the process. In this example, the process begins with the
Verify_ADSL_Service task and then transitions to the Assign_Port task.

Chapter 13
About Revising In-flight Revision Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 40

Figure 13-7 Amendment Order Example

2. OSM verifies that the service with 3 MBps is available and transitions to the next task,
Assign_Port.

3. On availability of a port, it transition to the Activate DSLAM task.

4. While the Activate DSLAM task is being completed, the customer calls back and requests
to change the bandwidth to 5 MBps.

The CSR creates a revision order in the CRM system with the revised bandwidth value of 5
MBps and submits the order to OSM.

5. OSM receives the incoming customer order and detects that it is a revision to an in-flight
order.

6. OSM accepts the revision order, calculates the compensation plan, and begins to run it.
OSM recognizes that compensation is necessary because the data (bandwidth) that was
on the order as input data when this task ran previously has now changed.

7. The revision order requests that the Verify_ADSL_Service_Availability task be redone to
ensure that the 5 MBps service is available.

The value set by the Verify_ADSL_Service_Availability task is changed. The
Verify_ADSL_Service_Availability task has an execution mode of Redo.

8. While the order is running the Verifying_ADSL_Service_Availability task, the customer
calls back and requests to change the bandwidth to 10 MBps.

The CSR creates another revision order in the CRM system with the revised bandwidth
value of 10 MBps and submits the order to OSM.

9. OSM receives the incoming customer order, and detects that it is a revision to an in-flight
revision order.

10. OSM accepts the revision and initiates the termination of the current revision and queues
the latest revision. You can monitor the amendment in the Amendments tab in the Order
Management Web Client.

11. On completion of the Verify_ASDL_service_availability compensation task, the current
revision gets Terminated and the Assign_Port compensation task is not started. This task
is carried forward to the latest revision.

12. OSM carries forward the Not Started Assign_Port compensation task from the terminated
revision.

Chapter 13
About Revising In-flight Revision Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 40

Note

OSM compensates these tasks only if there are significant data changes
compared to their prior execution.

About Controlling When Amendment Processing Starts
You can delay amendment processing for an order. For example, the order might be in the
middle of running an automated task that is executing system interactions with fulfillment
systems, so you want to postpone the processing of the revision until after the tasks complete.
After the system interaction is complete, OSM can begin processing the revision.

During amendment processing, the order is in the Amending state, which prevents normal
processing such as task updates. This allows compensation to deal with one set of data
changes without also needing to carry out normal processing activities at the same time. To
manage the transition to the Amending state, OSM does the following:

1. Checks permissions to allow or postpone the processing of the revision.

2. Checks if a grace period is set to allow all order activity to settle. If so, it waits for the grace
period to end.

3. Transitions the order to the Amending state.

To control when amendment processing starts, you use the order life-cycle policy to control
OSM transactions. A transaction is an action taken by the OSM system. For example, for the
In Progress state, you can prevent the Process Amendment transaction from occurring until a
condition is true.

See "Modeling Order Life-Cycle Policy States and Transitions" for more information about
transactions.

To manage amendment processing, OSM uses two order state transactions, in the following
order:

1. Submit amendment. This transaction occurs when the revision order is submitted. You
can specify conditions that determine if the order can be amended or not. Because the
evaluation of the condition is triggered when the revision order is submitted, the condition
does not need to be based on data, but it can include data as part of the condition.

2. Process amendment. If the revision order is accepted, OSM evaluates this transaction to
determine if the amendment can be processed now, or if it needs to wait for a specified
amount of time, or if it needs to wait until all accepted tasks are completed. This condition
is evaluated based on data in the order. If the condition returns false, the amendment is
queued. The condition is re-evaluated whenever the data changes. When the condition
evaluates to true, the transition to the Amending state can occur.

A grace period specifies a period of time to wait for all accepted tasks to complete before an
order can transition to a different state. For example, if an automated task has sent a request
to an external system, but the external system has not responded, OSM does not know if the
task has been completed and therefore does not know if the task needs to be compensated. A
grace period set on the Process Amendment order state transaction can allow the order the
opportunity to reach a known state for all current tasks before transitioning to the Amending
state.

Grace periods are defaulted to be indefinite, so OSM waits until all currently accepted tasks
are completed before transitioning to the target state. You can limit the grace period:

Chapter 13
About Controlling When Amendment Processing Starts

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 40

• You can set the grace period to zero, which specifies that OSM not wait for any accepted
tasks to complete before transitioning to the target state

• You can provide a time limit; for example, one hour (to give all accepted tasks a limited
time to complete before transitioning to the target state).

If an automation response is received for a task after the order has transitioned to the
Amending state, an automation exception is thrown, because the automation plug-in cannot
process the response when the order is in the Amending state. The automation exception is
sent to the JMS response queue and is retried. When the retry limit is reached, the message is
forwarded to an error destination, if one is configured. To manage exceptions that occur during
amendment processing, you can review the errors to determine if the messages can be
resubmitted or handled by fallout.

If there are multiple queued revisions waiting for the grace period to end, OSM selects the
latest version among the queued amendments to process. The other versions are assumed to
be out of date and are ignored. See "About Submitting Multiple Revisions of an Order" and
"Modeling Order Life-Cycle Policy States and Transitions" for more information.

About Compensation
The following sections describe how compensation occurs.

About Order-Level and Task-Level Compensation Analysis
When the revision order is received, OSM analyzes the differences between the revision order
data and the base order data (or between this revision order data and the last submitted
revision order data) to see if a compensation is indicated. Changes and updates to order data
can occur in the context of task data views or order data views.

OSM then begins analyzing impacted tasks. OSM provides the following data perspectives for
each individual task which are snapshots of data that OSM uses to calculate whether a task
needs to be compensated. These data perspectives are:

• Historical order perspective (HOP): Specifies the data used when the task last ran in Do
mode and changed to the Completed state (or Redo mode if the task last ran as part of
compensation for a previously submitted revision order).

• Contemporary order perspective (COP): Specifies the unchanged task data from the last
time the task completed in Do or Redo mode (for example, from the tasks run for the base
order or for a previous revision order). COP also shows any new or changed data from the
current revision order and from the tasks triggered from that revision order that
compensated prior in the process flow to the compensation task currently being analyzed.

• Real-time order perspective (ROP): Specifies the last change to a parameter value by
any task or at the order level (for example through order-level updates). This perspective
may be different from the COP because the COP only provides a view of task data for
previously run compensation tasks and revision order data and may not represent the last
change to a parameter value. For example, the COP may include unchanged data from
when the parameter that was originally processed by the Task, but that same data
parameter could have been updated in a later task and so the current data would have a
different value than the one displayed in the COP.

Figure 13-8 describes a process-based order, where a subscriber requests ADSL service with
3MBps speed. The order is submitted to OSM and service fulfillment begins. The subscriber
calls back while the base order is in-flight and has just completed the Activate DSLAM task
and requests the order be changed from 3MBps to 5MBps speed. In this scenario, the existing
port does not support 5MBps. The compensation process proceeds as follows:

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 40

Figure 13-8 Changing a Service Request

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 40

1. When OSM receives the revision order, OSM compares the creation task data of the
revision order with the creation task data of the base order to determine if any data
changes have occurred to significant data.

2. Because the bandwidth changed from 3 MBps to 5 MBps and the bandwidth parameter is
designated as significant, OSM begins task-level analysis for the first task in the process.
OSM compares the Verify ADSL Service Availability HOP and COP and determines that
the task must be redone because of the bandwidth change and because the compensation
strategy for that task is redo.

OSM updates the results of the task and any data changes because of redoing the task to
the ROP. The Verify ADSL Service Availability ROP becomes the COP for the Ship
Modem task and the Assign Port task.

3. The compensation mode for Ship Modem is Do Nothing, so no compensation analysis
occurs for that task. The compensation mode for Assign Port is Redo, so compensation
analysis begins for that task. OSM compares the HOP and COP for the Assign Port task
and determines that the task must be redone because of the bandwidth change. OSM
adds the result of redoing the task to the ROP which includes the bandwidth change and a
new port ID because the original port ID could not handle the increased bandwidth
requirement. The ROP becomes the COP for the Activate DSLAM task.

4. The compensation mode for Activate DSLAM is Undo then Do, so compensation analysis
begins for that task. OSM compares the HOP and the COP for the Activate DSLAM task
and determines that the task must be undone then redone because of the new port ID and
the bandwidth changes. OSM adds the results to the ROP. Processing continues normally
after this task.

Note

In this scenario, Activate DSLAM is the last task; however, if there had been
additional tasks that had completed after Activate DSLAM, OSM would have had
to undo them all prior to undoing Activate DSLAM regardless of the compensation
strategy associated with those subsequent tasks. This scenario only applies to
tasks running in Undo then Do mode.

You can use update order transactions to make changes to order data using automation plug-
ins from the task context (this includes automated task, task event, and task jeopardy
notification automations) and also from the order context (this includes order-level notification,
event, and jeopardy automations). OSM captures any data update made from a task context in
the HOP and COP and are therefore guaranteed to be reflected in any compensation analysis
for that task initiated by new revision orders. Order updates can also be applied to the order-
level data by referencing the view for that order data defined in the query task that you can
associate to an order in the Order Specification editor Permissions tab, Query Task sub tab
(see "Modeling Query Tasks for Order Automation Plug-ins" for more information about query
tasks for order-level data). Updates at the order data level should be done with care because
these updates are not included as part of compensation analysis and do not generate a HOP
or COP. OSM attempts to apply any order-level change to the closest task that has been
created or completed, but these updates are not guaranteed deterministically like the task-level
updates are. For more information about how update orders can be used in automation plug-
ins, see OSM Developer's Guide.

OSM does the following when discrepancies occur between the contemporary order
perspective and the historical order perspective:

• Adds revision order nodes if they do not match nodes of the last submitted order data or
the nodes in the historical task perspective.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 40

• Changes revision order node values if the nodes do match the values found in the last
submitted order data or the nodes in the historical task perspective.

• Deletes nodes if the nodes are in the last submitted order data or in the historical task
perspective but not in the revision order.

In Oracle Communications Service Catalog and Design - Design Studio, you can model
compensation strategies for manual and automated tasks statically from a predefined list or
dynamically from revision order data. If you model the compensation task dynamically, you can
create an XQuery that has access to order data provided in the contemporary and historical
perspectives as well as a comparison between the two. You can use the results of this
comparison to dynamically select an appropriate task-level compensation strategy. For more
information about compensation strategies, see "Modeling Compensation for Tasks".

About Order Data Position and Order Data Keys
OSM compares order data in the following ways:

• By comparing the position of the XML nodes of the base order (or last submitted revision
order), with the position of the XML nodes in the current revision order. This is not the
recommended method, since the result of the comparison can be unexpected and cause
compensation to behave in a way you do not want.

• By comparing order data keys in the order specification order template tab for specific data
elements. This is the recommended method. When OSM receives a revision order, it
compares the order data keys from the revision order with the order data keys in the base
order (or last submitted revision order). When OSM finds a matching order data key, it
compares the values in each element.

Note

OSM uses order data keys to determine order data changes during compensation
and to identify pivot nodes that generate multiple task instances based on multi-
instance data nodes (see "Generating Multiple Task Instances from a Multi-
Instance Field") and should be distinguished from order keys used to match base
orders with revision orders (see "About Order Keys").

To set an order key for a data element value, you must specify the data element as an XPath
expression in the Key subtab on the Order Template Node editor.

Oracle recommends using order data keys for multi-instance data nodes to differentiate
between instances of the same data node, because the results are predictable. For example,
the data structure in Figure 13-9 can be used multiple times to identify different product
specifications. You can associate an order data key to the children nodes of specification to
uniquely identify each instance of a product specification contained in a customer order.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 40

Figure 13-9 Order Data Key Defined in Design Studio

For example, you could set a key on specification that points to the name child node. For
expression for this key would be:

./name

For more information about creating valid order keys, see, "Modeling Valid Data Keys."

About Data Significance
During amendment processing, OSM identifies all tasks in the order that are affected by the
changed order data. It then determines whether the data being changed is flagged as
significant. (When you define orders or tasks, you can mark data as Significant or Not
Significant. By default, all data is flagged significant.) OSM compensates only those tasks that
process significant data.

If any of the data changes are significant, OSM transitions the order to the Amending state and
builds a compensation plan based on all affected tasks, creating redo or undo compensation
tasks as necessary.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 40

Changes to non-significant data are updated on the in-flight order. For example, if the
customer's preferred contact method (email or text message) is marked as non-significant, a
revision order that changes only that data does not trigger amendment processing. Instead, the
base order is changed, and the revision order is completed without starting amendment
processing. The next task that uses the changed data uses the updated values.

You can configure data significance at the following levels:

• Data Dictionary

• Order template data

• Task data

Each level can inherit or override the significance flag of its parent level. The Data Dictionary is
at the top parent level. You can also configure significance for data structure definitions, but
they do not participate in inheritance.

In addition to the data significance levels mentioned above, you can access the data in the
order template from the Order Template tabs in the Order Item editor and the Order
Component editor. If you change the significance of data in these tabs, you are actually altering
the data in the order template.

The order template can inherit or override the data significance specified in the Data Dictionary.
This allows one order type to consider the data significant while another order type does not.

The task data can inherit the data significance set in the order template only to override it as
non-significant data. This allows data to be significant in one task and not significant in another.
In that case, a revision with that one data element changed would cause the task that
considers the data element significant to be compensated: the task that does not consider it
significant will not be compensated. The exception to this is that you cannot override the
significance of the following types of data at the task level:

• data elements defined in data structure definitions

• the ControlData/OrderItem element and its children, if you have selected Support
Distributed Order Template in the Order Item Specification editor Property References
tab

It is not possible to specify a data element as not significant at the order level and significant at
the task level.

Figure 13-10 shows how data significance can be inherited and overridden.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 40

Figure 13-10 Data Significance Inheritance

Figure 13-11 shows data significance specified in the Data Dictionary. Because this is the top
level, there is nothing to inherit the significance from, so there is no inheritance option.

Figure 13-11 Data Significance Specified in the Data Dictionary

Figure 13-12 shows data significance specified in the order template. In this example, the
significance is inherited from the Data Dictionary.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 40

Figure 13-12 Data Significance Specified in the Order Template

Figure 13-13 shows significance specified in the task data. Note that the significance is either
inherited, or it is not significant. There is no option for significant: instead, that value is inherited
from the order template.

Figure 13-13 Data Significance Specified in the Task Data

About Task Execution Modes
Tasks run in the following modes:

• Do. This is the normal execution mode of a task when the order is in the In Progress state.

• Undo. This execution mode is used when the task must undo work that has already been
done; for example, to un-assign a port when an order is canceled.

Undoing tasks is performed in reverse order to how they were run. For example, if task B
was completed after task A, then task B is undone before task A is undone.

Undo is used when the order component in the base order has completed, and the revision
order has no corresponding order component. A cancellation order, therefore, can include
no order components. This causes all of the order components in the base order to be
undone. The Orchestration Plan tab in the Order Management web client displays
nothing when this is the case, indicating that the order may have been canceled.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 40

• Redo. This execution mode is used when the task must redo work that has already been
done; for example, a port assignment task that needs to be performed again because the
input value of bandwidth is different as a result of the revision order. Redoing tasks is
performed as an optimization of the Undo and Do operations for a task in a single
operation.

The Redo execution mode is used when an order component has completed in the base
order, and the revision order has the same order component, but specifies different order
items or data values.

• Amend Do. This execution mode is used when a new task must be performed while the
order is in the Amending state. For example, the revision order might specify to add a
service that was not in the base order. Because normal processing is not allowed during
amendment processing, the Do mode cannot be used; Amend Do is used instead.

The Amend Do execution mode functions like the Do execution mode. When a task runs in
the Amend Do mode, all of the permissions and automation plug-in logic for the Do mode
of that task apply.

See "Example 3: Amend Do Compensation" for an example of how the Amend Do
execution mode is used.

Note

You can specify which tasks can by amended by the Redo and Undo
compensation modes, but Amend Do is not configurable. This is because OSM
determines when Amend Do is required, and the logic followed is that of the Do
mode.

• Do in Fallout. This is the mode for a task that runs when the task fails while running in Do
mode.

• Undo in Fallout. This is the mode for a task that runs when the task fails while running in
Undo mode.

• Redo in Fallout. This is the mode for a task that runs when the task fails while running in
Redo mode.

• Amend Do in Fallout. This is the mode for a task that runs when the task fails while
running in Amend-Do mode.

The Amend Do in Fallout execution mode functions like the Do in Fallout execution mode.
When a task runs in the Amend Do in Fallout mode, all of the permissions and automation
plug-in logic for the Do in Fallout mode of that task apply.

See "Example 3: Amend Do Compensation" for an example of how the Amend Do
execution mode is used.

Note

You can specify which tasks can by amended by the Redo in Fallout and Undo in
Fallout compensation modes, but Amend Do in Fallout is not configurable. This is
because OSM determines when Amend Do in Fallout is required, and the logic
followed is that of the Do in Fallout mode.

Table 13-1 summarizes the possible combinations and the required compensation for a
revision order.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 40

Table 13-1 Compensation Types

Base Order Component Revision Order Component Compensation Type

Exists Does not exist Undo or Undo in Fallout

Does not exist Exists Do or do in Fallout (run after
compensation is complete) or
Amend Do or Amend Do in
Fallout (while the order is in the
Amending state.

Exists Exists, no changes found No compensation required

Exists Exists, changes found Redo or Redo in Fallout

Exists Exists, changes found that also
causes process flow changes
during compensation

Redo or Redo in Fallout for the
impacted tasks that do not
require a new process flow.

Undo or Undo in Fallout for tasks
in a process flow that are
undone.

Amend Do or Amend Do in
Fallout for completely new
process flows.

Modeling Compensation for Tasks
To perform compensation, OSM must identify the tasks that need to be compensated and then
do, undo, or redo them in the appropriate sequence. OSM applies these compensation
execution modes regardless of whether the task is running in normal mode or in failed mode.

A task needs to be compensated if it was completed and a change to at least one significant
data element in the task's data has been made. Tasks in the Received, Accepted, Assigned, or
a user-defined state can also be compensated.

Note

When a task is compensated, all its successors must be compensated, whether or not
they have significant changes.

Determining Task Compensation Strategy
In the Design Studio Task Editor Compensation tab (see Figure 13-14), you can model:

• Static amendment processing compensation strategies for manual and automated tasks
using a predefined list. Static compensation strategies are appropriate when the
compensation requirements for a task are invariable.

• Dynamic amendment processing compensation strategies for manual and automated tasks
based on revision order data using an XQuery expression. Dynamic compensation
strategies are appropriate when more than one compensation strategy is required for a
task. For example, you could model the XQuery expression to select an Undo then do
compensation strategy if the revision order bandwidth parameter is greater than 50 MB,
and only a redo compensation strategy if the bandwidth parameter is less than 50 MB. For

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 40

more information about dynamically modeling amendment processing compensation
strategies, see "About Task Compensation Strategy XQuery Expressions".

Figure 13-14 Task Compensation Options

As shown in Figure 13-14, there are two scenarios that need to be compensated:

• The task needs to be re-evaluated. This means that the task includes significant data and
needs to be compensated.

The static amendment processing compensation options are:

– Redo in one operation. This option is recommended because it performs the fewest
number of Undo and Do operations necessary for compensation.

In the case of a manual task, the task will appear in the worklist in Redo mode, and the
user can display the historical perspective and the contemporary perspective of the
task data (from the last time the task was run) in two separate tabs. The user updates
the data on the Contemporary Perspective tab and completes the task.

– Undo and Redo in two operations. Use this option when you need to roll back all order
changes and perform the task again from the beginning. This option is useful when
interacting with an external system that has no redo action but can process equivalent
do and undo actions (for example, in the external system, implement and cancel).

Note

When this option is used, it forces all completed tasks subsequent to this task
to be undone in reverse sequence prior to executing the undo and then do of
this task. To redo the task, you need to roll back all subsequent tasks first,
then undo the task and redo it.

– Do nothing. Use this option if redoing the task is not necessary. For example, a task
that sends a customer survey email would not need to be redone, even if it includes
significant data.

In addition, you can select the Compensation Expression check box and enter an
XQuery that dynamically selects an amendment processing compensation option at run

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 40

time based on order data. The dynamic compensation takes precedence over the static
compensation unless there is an error in the XQuery itself. If there is an XQuery error, then
OSM reverts to the compensation selected with the static radio buttons.

• The task is no longer required. This occurs when an order is canceled or when a branch of
completed tasks in a process becomes obsolete due to a revision.

Figure 13-15 shows a process that has two potential paths. In this example, the base order
followed the path from Task_1 to Task_2_1. The revision caused the path to change to
follow Task_1 to Task_2_2. This means that Task_2_1, Task_3_1, and Task_4_1 do not
need any compensation, because they are no longer on the path required to fulfill the
order.

Figure 13-15 Process with Two Paths

The static amendment processing compensation options are:

– Undo. This option rolls back the task by executing the task in Undo mode to perform
the roll-back operation. In the case of a manual task, this requires that the rollback be
acknowledged manually in the Task web client. You cannot update the task data for an
undo of a manual task in the Task web client, because the system will automatically
put the data back to what it was prior to the task executing.

– Do nothing. This option rolls back the task automatically, without creating an undo
task.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 40

In addition, you can select the Compensation Expression check box and enter an
XQuery that dynamically selects an amendment processing compensation option at run
time based on order data. The dynamic compensation takes precedence over the static
compensation unless there is an error in the XQuery itself. If there is an XQuery error, then
OSM reverts to the compensation selected with the static radio buttons.

About Compensating In Progress Tasks
You can configure whether a task is included in compensation when it is completed or in
progress, or you can use an XQuery expression that evaluates whether an in progress task
can be included in compensation based on order data. Compensating in progress tasks is
important for long running tasks where a response to a request takes hours or even days to
return but the task still needs to be compensated. If you specify that a task can be
compensated while it is in progress, you can also specify whether a grace period should be
observed before performing the compensation. In addition, you must use an XQuery
expression to evaluate any changes to the compensating task data to identify when the
compensation has completed and the task can enter into normal do mode again.

For example, some automated plug-ins communicating with workforce management systems
may involve the dispatching of personnel to perform work over several days. In such cases the
automation plug-in sends the dispatch request to the workforce management system, and
remains in progress until such time as the work completes. If a revision order were to arrive
that changes some aspects of the work, then the in progress automation plug-in responsible
for sending the original request should be included in the compensation plan. You can specify
an XQuery that evaluates data on the in progress task communicating to the work force
management system that determines if the task needs to be compensated. In addition, you can
specify whether a wait period should be observed before starting compensation. You must also
write an XQuery that determines when compensation has completed, for example, when the
task receives the response from the new request indicating the workforce management system
has received the new work details and has begun to processing the request.

Figure 13-16 shows the configuration options for determining when compensation should occur
on an in progress task, whether a grace period should be observed before starting task
compensation, and when compensation should complete.

Figure 13-16 In Progress Task Compensation Options

In the When an amendment occurs this task will be compensated if it is: area, you can
select:

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 40

• Completed: OSM only considered the task in compensation if it is in the completed state.

• Completed or In Progress: OSM considers the task in compensation if it is in the
completed state and also if it is in progress (for example, in the received, assigned,
accepted, or a custom states.)

• In Progress Compensation Include Expression: You can specify an XQuery that uses
task data to determine whether the in progress task should be compensated. This XQuery
expression overrides the Completed and Completed or In Progress options except when
the XQuery is invalid.

• In Progress Compensation Complete Expression: You can specify an XQuery
expression that uses task data to determine whether the in progress task should be
compensated.

In the When an amendment occurs if this task is in progress it will: area, you can specify
what grace period should be observed before beginning task compensation on the in progress
task:

• Wait for the grace period: OSM observes the grace period specified on the order-life
cycle for the Process Amendment transition.

• Be excluded from the grace period: OSM does not observe a grace period.

• Wait for specified duration: OSM observes the grace period statically configured for the
task in seconds, minutes, hours, or days.

• Dynamic Expression: OSM uses an XQuery expression that dynamically specifies the
wait duration based on revision order data. This XQuery expression overrides the other
options except when the XQuery is invalid. For more information about compensation
strategy XQuery expressions, see "Compensation XQuery Expression".

About Task Compensation Strategy XQuery Expressions
You can dynamically assign compensation strategies to tasks by creating XQuery expressions
in the Design Studio Task Editor Compensation tab for re-evaluation compensation
strategies or compensation strategies for when a task is no longer required.

Note

If the XQuery expression is invalid OSM logs the error but does not rollback the
transaction. Instead, OSM uses the static compensation strategy as the default.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for re-evaluation compensation
strategies:

• Context: The context for this XQuery is the current order data. You can get the current
order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information. You must declare the
java:oracle:communications.ordermanagement.compensation. ReevaluationContext OSM
Java package that provides methods that access the contemporary and historical order
perspectives and compares the two. You can use the results of this comparison to
determine what compensation strategy is required for a task based on revision order data.

For example:

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 40

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle:communications.ordermanagement.compensation.ReevaluationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

For more information about the classes in the OSM packages, install the OSM SDK and
extract the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip file (where w.x.y.z
represents the specific version numbers for OSM). See OSM Installation Guide for more
information about installing the OSM SDK.

• Body: The body must return a valid compensation option.

For example, the following XQuery expression creates variables for the
ReevaluationContext methods. The expression then checks that a specific value exists in
the $value variable and that the value in the $significantValue variable both exists and is
significant. If the value exists and is significant, then the expression sets the compensation
strategy for the task to Undo then Do (undoThenDo in the ReevaluationContext Java
class). If not, then the expression sets the compensation strategy to Redo (redo in the
ReevaluationContext Java class).

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)
let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
let $significantValue := $diffDoc/Changes/Add[@significant='true']/
specification[value='100']
let $currentValue := $ropDoc/ GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']

return if (fn:exists($value) and fn:exists($significantValue))
then
 context:undoThenDo($context)
else
 context:redo($context)

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for when a task is no longer
required. The context, prolog, and body are similar to the XQuery expression for the re-
evaluation strategy, except that the XQuery expression implements the
java:oracle:communications.ordermanagement.compensation.RollbackContext package.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle:communications.ordermanagement.compensation.RollbackContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)

let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 40

return if (fn:exists($value))
then
 context:undo($context)
else
 context:doNothing($context)

About Managing Compensation in the Task Web Client
When an automated task is redone, it is redone automatically. When a manual task is redone,
the Task web client displays the task with an execution mode of Redo. The manual task must
be processed in the Task web client.

To manage compensation in the Task web client, you can do the following:

• Perform manual undo and redo operations.

• Display the execution mode under which the tasks is running (Do, Redo, or Undo).

• Display the order state; for example, Amending.

• Display the historical data (the data as it was when the task last run) in the historical order
perspective when editing a task.

Note

You can assign roles in Design Studio to specify who can redo and undo tasks in the
Task web client. OSM also supports the ability to assign the different execution modes
of a task to different roles. This is useful because OSM can compensate using both
manual and automated tasks. For example, the regular processing of a task in Do
mode could be automated, and the Undo and Redo modes for the same task could be
set to a special role to be done manually.

See OSM Task Web Client User's Guide for more information.

Modeling Compensation for Rules in Processes
You can specify to redo a rule in a process, or to do nothing. Because rules only evaluate data,
and therefore do not modify data or interact with other systems, there is no undo necessary for
a rule.

Modeling Compensation for Task Automation Plug-Ins
An automated task can include multiple automation plug-ins; for example, senders and
receivers. Each automation plug-in can be associated with one or more execution modes. For
example, if you create an automated task to activate a service, you can use the same logic to
handle the initial activation request and the redo compensation for the activation request.

Each automated task can have separate plug-ins for each of the three modes; Do, Redo, and
Undo. When an automated task runs in Redo or Undo mode, OSM provides information about
the task data that was present when the task was last ran. For redo tasks, the Automation
framework provides the historical data, the contemporary data, and the delta to the automation
plug-in for use in the plug-in logic you write. See OSM Developer's Guide for more information.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 40

Compensation Examples
The following examples show different compensation scenarios.

Example 1: Compensation During Provisioning
Figure 13-17 shows a compensation scenario for an orchestration order. In this example, OSM
is running in the central order management role, fulfilling multiple functions.

1. The base order requires provisioning, billing, and customer account order components
(sync customer).

2. A revision order is submitted while the order is carrying out provisioning tasks. The revision
order replaces a medium-capacity service (3 MBps) with a high-capacity service (8 MBps).
In this case, the content of the order components has changed in the revision order's
orchestration plan, but the order components it contains and their dependencies remain
the same.

3. Because the revision order was received during the base order provisioning, the
compensation specifies that the provisioning order component must be redone, after which
the order returns to the In Progress state, and the billing and sync customer components
are then run with no compensation required.

Figure 13-17 Example of Compensation that Occurs During Provisioning

Example 2: Compensation During Billing
Figure 13-18 shows a compensation scenario for billing:

1. The base order includes provisioning order components for a fixed-line service and a cable
broadband service.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 40

2. A revision order is received after the provisioning order components are complete but while
the billing order components are being processed. The revision order cancels the fixed-line
service.

3. The compensation plan specifies to undo the fixed-line service and to redo the billing order
components. The cable broadband service requires no compensation. Following the redo
of the billing order components, the order resumes normal processing.

Figure 13-18 Compensation for Removing a Service

Example 3: Amend Do Compensation
Figure 13-19 shows a scenario for Amend Do compensation:

1. The base order includes provisioning order components for a broadband service.

2. A revision order is submitted while billing order components are being processed. The
revision order adds a fixed-line service.

3. The compensation plan creates a new dependency between the fixed-line service and the
broadband service. Therefore, OSM must use Amend Do to first perform the new task and
then process the broadband service order components. The billing order components are
redone, and processing continues normally.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 40

Figure 13-19 Compensation for Adding a Service

Examples of Changes to Orchestration Plans
You can use the OSM Order Management web client to see how compensation affects an
order's orchestration plan.

Figure 13-20 shows how an orchestration plan changes when a single service attribute
changes. In this example, the connection speed changes from 8 MBps to 16 MBps. The order
components remain the same, but the value of the connection speed changes in the
provisioning component and in the billing component.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 40

Figure 13-20 Orchestration Change Due to Revision: Change Service Attribute

Figure 13-21 shows how an orchestration plan changes when a revision order removes a
service from the base order. In the example, the Fixed service was ordered in the base order,
but it was removed in the revision order. The provisioning and billing components are removed,
and the DSL provisioning component no longer has a dependency on the Fixed order
component.

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 40

Figure 13-21 Orchestration Change Due to Revision: Remove Service From Order

Figure 13-22 shows how an orchestration plan changes when a service is added by a revision
order. In this example, the Fixed service is added. This creates a new dependency for the DSL
provisioning component.

Figure 13-22 Orchestration Change Due to Revision: Add Service to Order

Chapter 13
About Compensation

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 40

Modeling a Point of No Return
The following sections describe how to model a point of no return on an order where a revision
order is no longer possible.

Fulfillment Pattern Point of No Return
There are two ways to set a point of no return. The first, only available for orchestration orders,
is to set it on the fulfillment pattern using fulfillment states. The second is to write an
expression in the order life-cycle policy.

When you use the fulfillment pattern to set a point of no return, the point of no return rules set a
point of no return value for that order component. Order life-cycle policy conditions can then
leverage this point of no return value for restricting order amendments. See "Life-Cycle Policy
Point of No Return" for more information.

When you create a point of no return, model the following in Design Studio:

• Define fulfillment states. These are required before configuring a point of no return on the
fulfillment pattern. See "Modeling Fulfillment States and Processing States" for more
information.

• Define a point of no return value list in the fulfillment pattern. Create a name for your point
of no return and indicate whether it is a hard point of no return or not. Alternatively, you can
create a point of no return value on the fulfillment pattern extended by your fulfillment
pattern and allow the point of no return values to be inherited.

• Define point of no return rules for the point of no return values you created. Point of no
return rules are specified at the order component level. Point of no return rules involve
selecting one or more fulfillment states to map to the specified point of no return value.
Additionally, because order component definitions are hierarchical, a sub-component of the
order component associated with the orchestration plan inherits the point of no return rules
defined on the orchestration plan order component. This sub-component may also specify
its own additional point of no return rules.

• Define one or more transition conditions in the Order Lifecycle Policy to check the point of
no return value.

Life-Cycle Policy Point of No Return
When you use life-cycle policies to set a point of no return, you define the point of no return as
an expression in the order life-cycle policy, by setting conditions on the Submit Amendment
transaction.

The following example shows a simple point of no return expression:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";

let $taskData := fn:root(.)/GetOrder.Response
let $rootData := $taskData/_root

return
 if (($rootData/PoNR/text() = "HARD"))
 then (
 true()
) else (

Chapter 13
Modeling a Point of No Return

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 40

 false()
)

When a revision order is received, OSM checks the life-cycle policy to see if there are any
point of no return conditions preventing the transition to the Amending order status. If OSM
finds any point of no return conditions that are met, the order is not allowed to be amended. In
the example above, if the broadband service is billed before the fixed-line service is
provisioned, the order has passed the point of no return, even though the fixed-line service has
not passed its point of no return.

If the life-cycle policy determines that the revision is not allowed, an
OrderTransactionNotAllowedFault message is returned to the order-source that submitted the
revision order.

About Modeling Order Change Management
When you model order change management, you configure the following OSM entities:

• Data dictionary. When you create data elements, you can assign them significance. If data
is significant, it is considered for amending. See "About Data Significance" for more
information.

• Order specification. When you create an order specification, you configure the following:

– Data significance at the order level. You can inherit significance from the Data
Dictionary, or you can define order-specific significance. See "About Data Significance"
for more information.

– If the order is amendable or not.

– The order key. See "About Order Keys" for more information.

– The data element that defines the order version. See "About Submitting Multiple
Revisions of an Order" for more information.

– Whether or not to publish order events about amendment processing. You can choose
to publish events when an amendment is started, completed, queued, being
terminated, terminated or abandoned. An amendment can be abandoned when it is
queued for processing and a subsequent amendment supersedes it. See "Modeling
Order Life-Cycle Policy States and Transitions" for more information.

• Tasks. You can configure the following:

– Data significance at the task level. See "About Data Significance" for more information.

– How the tasks should be compensated. See "Modeling Compensation for Tasks" for
more information.

– The roles that can redo and undo tasks.

– If automated, the automation plug-ins for redo and undo modes of tasks.

• Rules in processes. You can configure if the rule should be redone or not. See "Modeling
Compensation for Rules in Processes" for more information.

• Order life-cycle policy. You configure the conditions that allow an order to be amended.
See "About Controlling When Amendment Processing Starts" and "Life-Cycle Policy Point
of No Return" for more information. See "Modeling Order Life-Cycle Policy States and
Transitions" for information about order states.

Chapter 13
About Modeling Order Change Management

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 40

Troubleshooting Order Change Management Modeling
You can use the following methods to troubleshoot your order change management modeling:

• You can use the following OrderManagementDiag.wsdl web service operations:

– GetOrderCompensations: Returns a list of compensations against a given order.

– GetOrderProcessHistory: Returns multiple process history perspectives.

– GetCompensationPlan: Returns a set of compensation tasks and the dependencies
between them.

• See the PONR_OrderID.xml file. This file is generated when a Submit Amendment
transaction is called.

About Order Change Management at the Orchestration Layer
To manage changes to an orchestration order, OSM uses order compensation. OSM
analyzes the required order changes and their impact on everything that has already been
completed by the in-flight order including manual updates from Task web client users and order
updates from automated tasks. OSM then creates a compensation plan to define the actions
that need to be carried out to amend the in-flight order. After compensation has ended, the in-
flight order will have incorporated the required order changes and continues executing
normally. You can recognize when compensation is happening to an orchestration order when
the order is in the Amending state or the Cancelling state.

Note

If you submit a revision order that uses a different cartridge version from the one that
the original base order was created with, OSM uses the original base order cartridge
version to run any required compensation tasks and not the cartridge version used to
create the revision order.

Triggering amendment processing using revision orders is the most efficient way to manage
changes made to in-flight orders. OSM automatically detects the revisions that must be made
and changes the orchestration plan as necessary. No manual work is required to find changes
that need to be made.

A revision order is sometimes called a supplemental order. This order contains all the relevant
data for the order, including the updated requirements. During the amendment processing
phase, OSM compares the data in the revision order with the data in the base order and
makes the changes as required (a single revision order can make multiple changes to an
order). This allows the base order to continue processing with, and compensating for, the
customer's new order requirements provided in the revision order. The customer does not have
to wait for the base order to be completed or canceled before changing it. A revision order can
also be used to correct a failed order.

When you model orders and tasks, you can control the amendment processing that is allowed
for the order. For example:

• If the order is allowed to be amended

• At which point in the order processing the order is no longer allowed to be amended (the
PONR)

Chapter 13
About Order Change Management at the Orchestration Layer

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 40

• Who can manage revision orders in the Task web client

• Which data needs to be compensated, and which does not

For more information about amendment processing and compensation, see "About
Compensation and Orchestration".

About Compensation and Orchestration
OSM performs compensation on both process-based orders and orchestration orders. When
compensating an order that has an orchestration plan, the compensation can change the
orchestration plan.

Each orchestration order has its own unique orchestration plan, generated specifically for that
order. Therefore, to manage a revision order for the base order, OSM must generate a new
orchestration plan for the revision order. The orchestration plan for the revision order can be
different from the orchestration plan for the base order; for example, it might include different
order components, with different dependencies and different order items.

By contrast, a process-based order has a predefined process; the process is not generated
when the order is created. The tasks that make up that process and the flow of those tasks in
the process do not change. The data values for those tasks change as a result of a revision,
and the path through the predefined process may change as a result of compensation, but the
overall process remains the same.

To manage compensation for an orchestration plan, OSM needs to recognize and account for
dependencies between the order components in the order that is being amended. The
compensation required depends on whether components exist in one or both orders' (revision
order and base) orchestration plans and on whether changes to the contents of those order
components (such as different order items) exist.

Redoing an order component in an orchestration plan is performed by redoing the tasks run by
the order component. In redoing order components, OSM follows the sequence of
dependencies in the orchestration plan. OSM takes into account the dependencies from the
revised orchestration plan, unless a successor component has previously started in the original
base order, in which case the dependency is considered resolved.

If a cartridge is built with its target OSM version set to 7.5.0 or newer, additional logic comes
into play with respect to data change dependencies during revision. For such cartridges, these
dependencies are re-evaluated afresh in the context of the revised orchestration plan. This
contrasts with the approach for cartridges built with older target OSM version, where if a data
change dependency had been satisfied in the base order, it is automatically deemed satisfied
in the revision order.

OSM analyzes the order component compensation type and component dependencies to
determine the sequence of component compensation. OSM performs order component
compensations in the following stages:

• Reverse compensation: In this stage, OSM performs only undo compensation tasks for
order components. OSM performs undo tasks for order components in the reverse order of
dependencies that existed between the components in the original.

For example, OSM performs undo tasks for order component B before performing any
undo task for order component A if B was dependent upon A in the base order.

• Forward compensation: In this stage, OSM fulfills order components that have changed
(redo) or been introduced (amend do) based on the order of dependencies, which is
derived after taking into account dependencies from the revised orchestration plan.

Chapter 13
About Order Change Management at the Orchestration Layer

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 40

The revised orchestration plan may include new components to be completed using
Amend Do and Redo compensation types.

Note

When switching from reverse to forward compensation, OSM identifies the new
order components that need to be completed using the Amend Do compensation
type. These components participate in the compensation plan as compensation
items. This facilitates appropriate compensation sequencing for compensation
tasks of existing downstream order components or other components that require
amend do compensation.

All processing not related to compensation is suspended for an orchestration plan until
compensation is complete. After compensation is complete, the order is restored from the
Amending state to an In Progress state and normal processing continues.

About Point of No Return
In some cases, there may be a point in the order process after which it becomes impossible or
undesirable to make changes to an order. This is called a point of no return.

There are two types of points of no return in OSM.

• A hard point of no return indicates that amendments to the relevant part of the order are
either impossible or undesirable. In the case of a hard point of no return, a revision order is
not possible. Instead, you can create a follow-on order. See "About Inter-Order
Dependencies" for more information about follow-on orders.

Note

A follow-on order is not a change to an in-flight order but is an alternative when
revising the in-flight order is not possible. Follow-on orders are used to make
changes to items on an order that have not yet been completed but are past the
point of no return. OSM manages follow-on orders to ensure they do not run until
the order items upon which they depend are completed.

• A soft point of no return indicates that order amendment processing is still possible, but
there are consequences for the customer. For example, you can specify to bill a customer
for an extra charge if the order is revised after the soft point of no return has been reached.

You can define multiple point of no return milestones in an order's fulfillment flow. For example:

• For a fixed-line service, a point of no return after provisioning.

• For a broadband service, a point of no return after billing.

All soft or hard points of no return depend on the order life cycle policy conditions which control
whether orders can transition from the In Progress state to the Amending state. See "Modeling
Order Life-Cycle Policies" for more information. A point of no return value that the order life
cycle policy evaluates is typically set at the order item level. This allows order components with
varying processing durations to run, instead of stopping the entire order at the first order item
with a point of no return. You can also set the point of no return to a fulfillment state which
provides aggregated states for a group of order items and for the overall order. See "Modeling
Fulfillment States" for more information.

Chapter 13
About Order Change Management at the Orchestration Layer

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 40

Figure 13-23 shows two different point of no return scenarios.

Figure 13-23 Point of No Return for Different Services

Chapter 13
About Order Change Management at the Orchestration Layer

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 40

14
Modeling Fallout

This chapter describes order fallout modeling best practices in an Oracle Communications
Order and Service Management (OSM) solution.

Overview of Fallout
Modeling fallout involves considerations in the following areas:

• Prevention: Identify possible sources of errors in the solution and model entities to prevent
the error from occurring.

• Detection: Identify ways in which you can configure OSM modeling entities to detect
failures on orders or tasks within orders. For example:

– OSM receives an error message from a downstream system at an automation plug-in
that transitions the task to a fallout execution mode.

– An OSM operator working on a manual task uses the Task web client to transition a
task to a fallout execution mode when progress on the manual task is no longer
possible.

– OSM detects a failure at order creation. For example, an order recognition rule
recognizes an order but the order fails because of a validation error.

• Inform/Investigate: Identify ways in which you can configure OSM modeling entities to
provide information to fallout specialists so they can investigate the problem. For example:

– When an automated task transitions to a fallout execution mode because of an error
message returned from a downstream system, you can also configure the task to
update the order item processing state that the task was processing that also changes
the order item processing states of parent order items, and so on up the order item
hierarchy. Fallout specialists can search for and view orders, order items, and tasks
based on order item processing states or based on task execution mode.

– Depending on the error or order processing state change, you might need to notify
other systems or fallout specialists that a problem occurred and why.

For example, the customer relationship management (CRM) system must know if an
order has failed because of incorrect data. You can configure OSM to send email
notifications to fallout managers or to notify an external trouble-ticketing application. Or
if a task on an order or the order itself is taking too long to complete, you can configure
a jeopardy notification.

– Order management personnel can monitor the progress of orders and tasks in the
Task web client or in the Order Management web client. You can configure OSM to
send failed tasks and orders to specific personnel associated with fallout workgroups.
You can search for orders with failure and warning indicators on them.

• Resolution: You can model OSM to automatically fix problems and then resume or restart
the order or tasks within the order or you can model OSM to notify fallout specialists so
they can manually investigate and resolve problems.

You can recover from order and task failures in various ways. For example:

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 18

– A revision order can be submitted with corrected data. A revision order may be
required between CRM systems and OSM in the central order management (COM)
role, for example, if the original order contained faulty data.

– Order management personnel can edit faulty order data in the Task web client and
resume processing of the order by retrying and resolving the order or tasks.

– Order management personnel can use a job control order to perform several functions
in sequence such as updating faulty data on multiple orders and tasks and then
retrying or resolving failed tasks in each order.

– The order can be terminated and a new order submitted.

• Escalation: If a particular instance of OSM is unable to resolve an issue and must
escalate the problem to the upstream order and system, such as between OSM technical
order management (TOM) and service order management (SOM), OSM SOM and COM,
or between COM and the originating CRM system. For example, OSM TOM receives a
technical order with incorrect inventory data from OSM SOM. When OSM TOM tries to use
the data in activation, OSM TOM receives an error and must escalate the problem back to
OSM SOM.

Understanding Fallout Across OSM Roles
Figure 14-1 shows how OSM in the COM, SOM, and TOM roles processes a single sales order
from a CRM system. The sales order generates the following hierarchically related orders:

• One customer order in the OSM COM role. The customer order contains three order items
that decompose into two fulfillment patterns. The customer order is the parent order of all
other orders sent to OSM in the SOM role.

• Two service orders in the OSM SOM role. The two fulfillment patterns from the COM role
generate the two service orders that OSM in the SOM role processes. These two orders
are sibling orders, typically related to each other through reference number. The service
orders are the parent orders of all other orders sent to OSM in the TOM role.

• Two technical orders in the OSM TOM role. SOM sends two separate technical orders to
OSM in the TOM role also related to one another by reference number.

Chapter 14
Understanding Fallout Across OSM Roles

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 18

Figure 14-1 Order Processing Across OSM Roles

The total number of orders generated from the one CRM sales order is five. Ancestor orders
are completed when descendant orders are complete. Customer orders are always the first
orders created and the last orders to be completed.

Chapter 14
Understanding Fallout Across OSM Roles

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 18

Order fallout can occur in any one of these COM, SOM, and TOM orders and in any one order
item being processed by an order component instance for an order. Failures can occur in
system communication between OSM and the following systems:

• The billing system

• The service resource management (SRM) system

• The workforce management (WFM) system

• The supply chain management (SCM) system

• The activation system

• The partner gateway (PGW) system

You can use order item processing states to help keep track of the processing state of each
order item within each COM, SOM, and TOM order that the OSM solution produces. You can
configure automation plug-ins and manual tasks to update order processing states when error
messages return from external fulfillment systems or when an error condition occurs when
personnel are processing manual tasks. See "Modeling Processing States" for more
information.

You can use various notification mechanisms, such as order data change notifications, to send
fulfillment state changes about child orders up to parent orders. For example, between TOM
and SOM orders, between SOM and COM orders, and all the way up to the CRM system as a
trouble ticket if there is a fallout situation that requires changes to the original sales order. See
"Modeling Jeopardy and Notifications" for more information.

If at all possible, it is important to try and resolve errors within the same order and order item
hierarchy where the error occurred. However, there are cases where errors can originate from
data introduced in other instances of OSM. In such scenarios, it is important to correct faulty
data that caused the error at the source. For example, inaccurate inventory data may have
been introduced at the SOM level from the SRM system that created a failure at the TOM level
on the order component and automation task communicating with the activation system.
Although the error can be manually corrected directly on the task communicating with the
activation system, allowing the order to continue making progress, this would cause a data
inconsistency issue between OSM SOM and the SRM system and OSM TOM and the
activation system. In such a case, it is important to define which instance of OSM and related
fulfillment systems own the faulty data that causes the fallout in the other OSM instances.

Understanding Fallout Sources
The following sections define typical areas where OSM can experience fallout scenarios.

Managing Business Related Fallout Sources
Business errors can cause problems with downstream systems in the following ways:

• A business error in data generated by OSM such as insufficient or incorrect data can lead
to OSM sending an invalid message request to an external system. For example the SRM
system generates network information that does not represent the resources in the actual
network such as assigning a port that is already in use.

• A business error in the downstream system may occur. For example, an account might be
incorrect in the billing system that OSM is communicating with.

The following actions are possible when business errors occur in downstream systems:

Chapter 14
Understanding Fallout Sources

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 18

– The personnel responsible for the external fulfillment system must notify OSM
personnel that the configuration error has been corrected so that the OSM personnel
can resolve or retry the task.

– The personnel responsible for the external fulfillment system can resolved the
configuration error and can also complete the work that OSM wanted accomplished. In
this scenario, the OSM personnel, after having been notified that the work has been
completed on the external fulfillment system, can then transition the task to the
complete state.

In both these scenarios, OSM personnel are responsible for manually updating any
required OSM task data from the fulfillment system if any.

To inform fallout management personnel about a failure in a downstream system, set the failed
task to a fallout execution mode. See "About Failed Tasks and Execution Modes" for more
information.

Managing Fallout from Failures in Network or System Resources
OSM typically detects network or system resource problems when automated task plug-ins
send messages to external fulfillment systems and receive responses back. Network and
system resource problems have to do with software or hardware infrastructure issues
unrelated to business configuration or data errors. For example, a power outage may render
certain system resources unavailable or the network on which OSM transmits message may
experience a failure.

Figure 14-2 shows a normal synchronous message exchange between OSM and an external
system. The following lists typical locations where fallout can occur in this exchange:

• The message generated by automation plug-in A-1 may fail to reach the external message
queue. This can occur because of a network failure or a middleware failure. In this
scenario, OSM performs a rollback of Task A and the failure message returns to the
oms_events queue. Oms_events retries Task A up to a predefined limit. When oms_events
exceeds the retry limit, oms_events forwards the failure message to the omsErrorQueue.
You can configure OSM to automatically transitions the task to a fallout execution mode
when an automation plug-in receives a failure exception by selecting the Fail Task on
Automation Exception check box in the automation plug-in Details tab. See "About Failed
Tasks and Execution Modes" for more information.

Note

The default settings for oms_events are 15 retries with a 10 second delay between
attempts. Do not change these queue settings because OSM relies on this queue
for internal order processing. For more information about the oms_events queue,
see OSM Developer's Guide.

• The message generated by automation plug-in A-1 reaches the external system, but the
external system does not respond. This can occur because of a middleware failure,
because the external system is unavailable, or because the external system is too busy to
respond. To deal with such scenarios, you can configure jeopardy notifications on the
automated task to trigger after a specific duration. The jeopardy can run an automation
plug-in that can perform a variety of tasks such as transitioning the task to a fallout
execution mode, sending a notification to a fallout specialist to manually investigate the
problem on the external system, retrying the task, and so on.

• The message generated by automation plug-in A-1 eventually produces a response from
the external system. Although the process may be delayed, such problems can be ignored

Chapter 14
Understanding Fallout Sources

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 18

unless the problem occurs on a regular basis causing performance issues. At this point,
further investigation is required on the external system to determine the cause of the delay.

Figure 14-2 Automation Flow: Simple Synchronous

Managing Fallout During Order Creation
The following failure scenarios can occur when using the CreateOrder web service operation:

• Failure to recognize the order. To resolve order recognition failures, model a catch all order
recognition rule for such orders.

An order that fails to be recognized by any recognition rule is rejected by OSM and lost. No
record of it is sent to the order-source system. To make sure that all orders are captured in
OSM, create a recognition rule that accepts all incoming customer orders. Prioritize it at
the lowest level (0) and prioritize all other recognition rules higher so they are processed
first. Using this lowest-level recognition rule, an invalid order is recognized, and then it fails
during validation. It then transitions to the Failed state and is kept by OSM.

• Recognition rules are global entities. An incoming customer order could be recognized by
a recognition rule deployed in the system that you did not intend to be matched if you are
not careful with the relevancy settings and the recognition rule.

Chapter 14
Understanding Fallout Sources

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 18

• The order recognition rule accepts the order but a validation rule error occurs. For
example, a missing field on the order. The order fails, and the original incoming customer
order is attached. You can publish an event based on order failure.

In the case of validation errors, revise the order request and resubmit it.

• The order recognition rule accepts the order but a transformation rule error occurs. For
example, where the data you are transforming does not match the creation task. In the
case of transformation errors, troubleshoot and fix the transformation logic, and resubmit
the order.

• Failure due to incorrect authentication credentials. In such cases, verify that the credentials
are still valid and the account has not been locked out.

• Failure to create the correct control data for the orchestration plan. In such cases, verify
how the cartridge is modeled and the XQuery expressions involved in generating an
orchestration plan.

• Failure when the CreateOrderBySpecification web service operation is used, usually
because the input data is not valid or permissions are not correctly set. The error response
can be:

– InvalidOrderSpecificationFault

– InvalidOrderDataFault

The error response includes error details.

If either of these two faults is returned, revise the order and resubmit it.

• The order is a revision order, and the point of no return based on order state transition has
been reached on the base order. In this case, TransactionNotAllowedFault is returned. If
you have configured a follow-on order for this scenario, you can submit the follow-on order.
Otherwise, you can submit a new order.

You can specify to display a message in the Task web client and the Order Management web
client if an order fails during order recognition rule validation and transformation. To do so,
specify the fail-order reason when you model the recognition rule in Oracle Communications
Service Catalog and Design - Design Studio. In addition, you can configure any validation rule
error (returns a non-true response) in the Order Management web Client.

OSM sends an exception response to the sender if an order creation failure occurs.

Managing Fallout in the OSM Web Clients
You can use both the Order Management web client and the Task web client to manage order
fallout.

• You typically use the Order Management web client to search for orders with warning and
failure order item processing state, failed tasks, or failed orders. You suspend, resume,
cancel, retry, resolve, fail, or terminate an order in the Order Management web client. You
can also run these operations as job control orders for groups of orders. See "Managing
Fallout in the OSM Order Management Web Client".

• You typically use the Task web client to run fallout management operations within tasks
running in a fallout execution mode. You can fail, resolve, retry, and raise exceptions on
manual tasks in the Task web client. You can also suspend, resume cancel, retry, resolve,
fail, or terminate an order in the Task web client.

Both clients can be used for fallout management, but the primary differences are:

• You use the Order Management web client to search for orders, order items, and tasks that
have failed based on order item processing states, fulfillment states, and failed task

Chapter 14
Managing Fallout in the OSM Web Clients

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 18

execution modes. The View Faults search page is particularly useful in this regard. You
can view the problem that is causing the order to fail, but you cannot resolve the order
failure by changing order data in the Order Management web client.

• You use the Task web client to manage problems with tasks and processes; for example,
you can manage failed orders by working on tasks running in a fallout execution mode.
You can change order data that may resolve the order failure. You can manually trigger a
fallout exception.

Each client can launch the other client when required. To learn more about navigating between
the clients so you can quickly access the orchestration view and task-level view of an
orchestration order, see the getting-started discussions in each web client's user guide.

Modeling Fallout in Tasks
The following sections describe how to model order fallout in tasks.

About Failed Tasks and Execution Modes
OSM manual and automated tasks include execution modes for normal forward processing
operations and change order management operations. OSM manual and automated tasks also
include these operations in fallout execution modes that you can assign to fallout workgroups
with responsibilities for troubleshooting failed tasks.

Fallout execution modes allow:

• Separate fallout workgroup (roles) can be associated with a task that has failed. Fallout
users associated with the fallout workgroups can then receive and be assigned to the
failed tasks. This is important, for example, if you have a dedicated team of fallout
specialists who constantly monitor orders and tasks for fallout. Having a fallout workgroup
associated with the task that failed means that these fallout specialists have direct access
to the task that generated the failure.

• Visibility of failed tasks in the OSM Order Management web client and the OSM Task web
client.

• Avoid additional modeling. Although you can create separate fallout tasks to handle fallout
scenarios, modeling fallout on the original task using fallout execution modes helps you
avoid additional modeling.

• Run recovery operations in the OSM Clients, such as Retry Order, Resolve Order, Retry
Task, and Resolve Task and corresponding OSM Web Service API and XML API. You can
also run many of these recovery operations as job control orders to correct failures in bulk.

• Failures that occur in amending states can be detected and managed. For example, a
failure during cancelation can be corrected so that the cancelation process can continue or
a failure during revision can also be corrected so that the revision process can continue.

• You can specify query tasks and roles to specify the data available to fallout managers.

• Automation plug-ins to run on tasks that have failed if they are configured to run in the
corresponding fallout execution mode.

You can model automated tasks to transition to a fallout execution mode based on error
messages received from downstream systems by using the OSM Java API
TaskContext.failTask or TaskContext.failTaskOnExit methods in the automation plug-in
code. You can also use the Task web client to fail manual tasks causing the manual tasks to
transition to a fallout execution mode. See OSM Task Web Client User's Guide for more
information.

Chapter 14
Modeling Fallout in Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 18

About Alternate Task Fallout Management Methods
Alternate fallout management methods that OSM supports for backward compatibility include:

• Set the task to a user-defined failed state. The order remains in the In Progress state, and
other tasks can still be carried out while the recovery is managed. To correct the problem,
you can manually complete the task or reset the state of the task to Received, which
retries the task.

This method requires additional modeling of task states and when the task is in the failed
state, the other states cannot be used at the same time. This means that plug-ins cannot
run against tasks that have failed, users cannot be assigned to failed tasks, and there
cannot be a separate fallout workgroup associated with the task in the user defined failed
state.

• Transition the task to a manual fallout recovery task using a task status transition. This
provides a specific set of data that applies to redoing the task. You can then use a status
transition from the recovery task to the failed task to retry the failed task. This option can
cause data consistency issues because it requires the order manager to maintain data
integrity within OSM instead of allowing OSM to handle the data changes through
compensation.

This method requires additional modeling so that every task that can have a failure
requires a status transition from the failed task to a recovery task. In addition, when
compensation scenarios occur, the recovery tasks may be included in the compensation
plan even though the recovery task is no longer required.

Note

Oracle recommends using fallout execution modes instead of these alternative task
fallout methods. For more information, see "About Failed Tasks and Execution
Modes".

Modeling Task Notifications for Fallout
Within the Design Studio automated or manual task editors, you can model jeopardy
notifications that send email, display jeopardy notifications in the Task web client, and trigger
automation plug-ins when the order is exceeding a specified duration or pass rules that
evaluate them. For example, you can configure a jeopardy to run an automation plug-in when
there is a problem in the network or system resource that OSM is communicating with and no
response has returned within the specified time. See "About Jeopardy Notifications" for more
information about task jeopardy notifications.

About Modeling Fallout Exceptions
You can designate parameters that can potentially contain problematic or inconsistent data as
fallout data that you can use to trigger a fallout exception in the Task web client. This
functionality causes compensation to occur from the point where the data was introduced. This
functionality should only be used from well-known points where such problematic data can be
generated.

For example, data received from an SRM system can sometimes be faulty and not reflect what
is in the network. In this case, the data received from the SRM system can be designated as
having the potential to trigger a fallout exception. When a task attempts to use the data to send

Chapter 14
Modeling Fallout in Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 18

an activation request to an activation system, the activation system returns an error message
that causes the task to raise the fallout exception. OSM then calculates what compensation is
required up to the point where the data was introduced at the SRM system. As part of the
compensation, the task that originally communicated with the SRM system runs in the redo
execution mode and the SRM system returns corrected data. All tasks between the task that
communicated with the SRM system and the one that sent the faulty data to the activation
system are compensated accordingly.

A similar scenario may involve OSM in the SOM and TOM roles as illustrated in Figure 14-1. In
this scenario, the faulty data may have been introduced by the SRM system to OSM in the
SOM role, but the data only triggers a fallout exception in OSM in the TOM role. In this case,
OSM TOM traces the fallout exception back to the creation task of the TOM order. OSM
transitions the TOM order to the Waiting for Revision state. At this point, the problem must be
escalated back to the OSM SOM system and the parent service order that generated the
technical order.

In addition to these data-centric examples, you can also use fallout exceptions in well-defined
points during order processing where errors can occur, although the errors are not tied to
specific data and the resolution could involve reverting back to a specific point in order
processing. For example, you could designate a parameter called point A at task A as fallout
data that would allow you to trigger compensation back to task A from any task after task A
that contains the parameter point A. It is not the data on point A that causes the error, but you
can use point A to revert back to task A.

You can configure fallout entities in Design Studio to specify the data that you want to display
in the Order Management web client. To do so, when modeling an order, create a fallout entity
and include it in the order model. A fallout entity includes one or more data elements that you
want the Order Management web client to display.

Figure 14-3 shows a fallout configured in OSM. In this example, the fallout is named
PortAlreadyAssigned. It is used when a task for activating a service fails because a port was
assigned that is not available. The data element is asdl_service_details/port_id.

Figure 14-3 Fallout Defined in an Order

After you configure fallouts in the order specification, you can assign those fallouts to manual
tasks that need them. This association enables OSM to identify the task that generated the
error, transition the order to the Amending state, and initiate amendment processing.

Chapter 14
Modeling Fallout in Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 18

To resolve fallout, OSM follows the same process as when it performs amendment processing:
It builds a compensation plan, and then applies the required changes.

Fallout can be triggered based on a single incorrect field in a single task. Because fallout can
be mapped to one or more data elements, it is possible to have multiple errors in a single task
view.

You can also create fallout groups to simplify assigning fallout data to orders. A fallout group is
a group of fallout specifications, each of which includes a set of data to display in the Order
Management web client. This enables you to review multiple fallouts together in the Order
Management web client when the corresponding types of fallout occur.

To trigger fallout in an automated task, use the XML API FalloutTask.Request through
com.mslv.oms.automation.OrderContext.processXMLRequest.

Managing Fallout Exceptions in the Task Web Client
You can initiate fallout in the Task web client by raising an exception. An exception is a
mechanism used to interrupt or stop an order or to redirect it to any task in the same process
or any other process. You can use two types of exceptions: process exceptions and fallout
exceptions.

You can use a fallout exception to initiate fallout to correct an error. A fallout exception allows
you to initiate fallout from a particular task to correct an error caused by a previous task. When
you raise a fallout exception, the system identifies the task that generated the error, transitions
the order to the Amending state, and initiates amendment processing.

To recover from order fallout, the order might require a revision order to redo some of the order
processing. Figure 14-4 shows how the system manages compensation tasks due to fallout.

In this scenario, Task B is responsible for the error and Tasks C and D include the error data.
The fallout exception is raised at Task G.

Figure 14-4 Order Fallout Corrected by a Revision Order

In this figure:

1. An order is processed using the above workflow following the path A, B, C, D, G.

Chapter 14
Modeling Fallout in Tasks

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 18

2. A fallout exception is raised at Task G.

3. OSM determines that Task B first output the error and initiates amendment processing as
follows:

• Same branch: If, during the redo processing of Task B, the task completes with the
same completion status as it did in normal processing, subsequent Tasks C and D are
also redone and the flow is complete.

• Different branch: If, during the redo processing of Task B, the task completes with a
different completion status causing Task E to be the next task, the obsolete branch of
Tasks C and D must be undone and the new branch of Tasks E and F must be done
while still in the Amending state.

Note

If the error data was generated by the creation task, the order transitions to the
Waiting For Revision state. No compensation tasks are created and the order must be
corrected through a revision order.

You can use a process exception to stop or redirect an order. Process exceptions are
typically part of the configured order flow and can be used to manage the order manually.

Note

Process exceptions is deprecated. Exception processes are incompatible with OSM's
built-in compensation functionality. An order for which an exception process is
configured cannot accept revisions, cancellations, or fallout.

Simplified Fallout Exception Automation Framework (Cloud
Native Only)

The OSM automation framework provides cartridge automation plugins with an interface to
raise fallout exceptions. OSM enriches fallout exception to include execution context (OSM
Order Id, histId, run time task instance identifier, order component key, and so on). The
interface provides generic APIs for the cartridge's automation plugin to create fallout
exceptions and enrich them with any additional data available to the cartridge via "fallout
exception attributes".

Note

Automation tasks that can throw fallout exception should have the Assigned state
enabled.

Using FalloutContext API in XQuery Plugin

Chapter 14
Simplified Fallout Exception Automation Framework (Cloud Native Only)

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 18

Fallout Context is created by OSM Automation and is bound to scripted plugins such as the
XQuery plugin via OrderContext. The following snippet shows how XQuery plugin uses the
FalloutContext interface to create and shape up a fallout exception:

declare namespace affectedLines="java:java.util.HashSet";
declare namespace throwable="java:java.lang.Exception";
declare variable $cause := throwable:new();
context:createFalloutException($context, 'Detailed fallout message example',
'test','test', $cause),
context:emitFalloutException($context)

Note

The FalloutContext Java object lifecycle is limited to the duration of the script
execution. Fallout Exception is created in memory and used when the automation
framework is triggered to emit the fallout exception. Only one fallout exception can be
created via a single execution of a plugin. Hence, calling on the
createFalloutException method repeatedly only replaces the previously created
object.

Fallout Exception Attributes and Emit-fallout context class interface

The methods for adding custom attributes to the fallout exception are as follows:

 /**
 * Allows scripted plugin to create Fallout Exception.
 * <p>
 * Example usage in XQuery:
 *
 * <pre>
 * declare namespace affectedLines="java:java.util.HashSet";
 * declare namespace throwable="java:java.lang.Exception";
 * declare variable $cause := throwable:new();
 * context:createFalloutException($context, 'Detailed fallout message
example', 'test','test', $cause),
 * context:emitFalloutException($context),
 * </pre>
 *
 * @param message
 * @param location
 * @param category
 * @param cause
 * @since OSM 7.4.2
 */
 default void createFalloutException(final String message, final String
location, final String category,
 @Nullable final Exception cause) {

 }
 /**
 * Emits the fallout exception that has been created via FalloutContext
when automator execution is complete.
 */
 default void emitFalloutException() throws AutomationException{

Chapter 14
Simplified Fallout Exception Automation Framework (Cloud Native Only)

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 18

 }

}

where:

• The createFalloutException method is designed for creating a custom exception related
to fallout exceptions. This method allows you to construct and throw an exception specific
to fallout situations with the ability to provide detailed information about the event. The
method is void, meaning it does not return a value, but is responsible for raising the
exception with the provided details.

• message represents a message or text that provides information about the fallout situation.
It could be a description of what is happening, any instructions, warnings, or any other
relevant details. For example, "System is not active at the moment" could be a message
that informs someone about the fallout.

• location is a free form field which contains details about the source of the fallout. For
example, Billing System or SOM.

• category is used to categorize or classify the type of fallout exception. It helps provide
context about the nature of the situation. For example "inventory issue", "activation error".
A developer uses the appropriate one for each fallout exception they want to raise.

For details about the Fallout Exception Management REST API, see REST API Reference for
Oracle Communications Order and Service Management Cloud Native.

Modeling Fallout in Orders
The following sections describe how to model order fallout in orders.

Modeling the Failed Order State
When an order fails and you want no further progress to occur on the order, the Fail Order
transaction transitions the order to the Failed state. You can then resolve the problem in the
downstream system. When the problem is corrected, reset the status of the order to In
Progress by using the ResolveFailure web service operation.

This method should only be used when no further processing is possible on the order and
failing a task to a fallout execution mode is not sufficient to correct the problem. Solution
developers must consider that large orders with many concurrent order components and tasks
completely stop.

You can trigger an order transition to the Failed state from the following states:

• Not Started

• In Progress

• Waiting for Revision

• Suspended

• Waiting

When the problem is fixed, the order can be moved out of the Failed state as follows:

Chapter 14
Modeling Fallout in Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 18

• If the order was failed from the Not Started, In Progress, Waiting, or Waiting for Revision
states, the Manage Order Fallout transaction moves the order back to the state it was in
before being failed.

• If the order was failed from the Suspended state, the order is transitioned back to the
Suspended state.

If the order needs a revision to be fixed, the Submit Amendment transaction places the order in
the amendment queue, after which the Process Amendment transaction transitions the order to
the Amending state. A revision can come from two sources:

• The originating order-source system can enter a revision order.

• A process exception, which includes redo and undo operations, can run.

If the order must be restarted, the Cancel Order transaction transitions the order to the
Cancelling state, and then to the Cancelled state. This operation undoes all changes and
returns the order to the creation task.

If the order has an orchestration plan, it cannot be restarted after being canceled. The
Cancelled state is a final state for orders that have an orchestration plan.

See "Modeling Order Life-Cycle Policy States and Transitions" for more information.

Modeling Order Notifications for Fallout
Within the Design Studio Order editor, you can model jeopardy notifications that send email,
display jeopardy notifications in the Task web client, and trigger automation plug-ins when the
order is exceeding a specified duration or pass rules that evaluate them. For example, you can
configure a jeopardy to run an automation plug-in when the order is taking too long to
complete. See "About Jeopardy Notifications" for more information about task jeopardy
notifications.

You can create automated fallout messages based on the exception order milestone in the
Order editor, Events tab. The exception milestone is triggered when an order moves from the
In Progress state to the Amending state using the Raise Exception transition. The Raise
Exception transition is triggered whenever an operator initiates a fallout exception from a
manual task or whenever an automation plug-in triggers a fallout exception. See "About Using
Order Milestones to Trigger Event Notifications" for more information.

Figure 14-5 shows an automation plug-in configured to run when the exception order milestone
occurs.

Chapter 14
Modeling Fallout in Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 18

Figure 14-5 Exception Order Milestone that Triggers Fallout Automation Message

In addition, you can use order data change notifications in the Order editor Notifications tab to
generate messages to users that are members of specific workgroups (roles), display the
messages in the Task web client, and trigger automation plug-ins whenever a specific data
field changes. For example, you can configure OSM to communicate order fulfillment state or
processing state changes of each order that is part of the order fulfillment process running in
COM, SOM, and TOM OSM roles including order item failure and warning states. Whenever a
TOM order item fulfillment state or processing state changes, you can use an order data
change notification to communicate the change to the OSM SOM instance that generated the
TOM order. See "About Using Order Data Changes to Trigger Notifications" for more
information.

About Terminating an Order
If the order fallout cannot be resolved by any other means, the Abort Order OSM Web Service
operation transitions the order to the Aborted state. In addition, you can terminate an order
from the Order Management web client which also transitions the order to the Aborted state.

After terminating the order, you can resubmit the order from the order-source system. Only use
this method when all other approaches are impossible.

Chapter 14
Modeling Fallout in Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 18

Managing Fallout in the OSM Order Management Web Client
In the Order Management web client, you can search for faults using the View Faults search
page. You can search for failed orders based on the location of the source of the fault. Fault
source types can be:

• On the Order when an order transitions to the failed state.

• On an order item when the order item transitions to a failed order item processing state.

• On a task when a task transitions to a fallout execution mode.

From the View Fault search page Results area, you can:

• Select the failed order to view order and order item details in the Order Details Order,
Order Items, and Order Components tabs.

• Select tasks running in a fallout execution mode to view and troubleshoot the task in the
Task web client.

From the Manage Orders search page and results area, you can:

• Find orders based on whether they have a failure at the task or order level, whether they
are running in the failed state, whether order tasks are running in a fallout execution mode,
and so on.

• Run operations such as retry and resolve failed orders to retry or resolve all failed tasks
within the order.

• Run operations on multiple orders as a job control order.

• View details about individual failed order to determine why it failed.

From within the Order Details page, you can also run actions on an individual order and on the
Order Details Order Component tab, you can run retry and resolve actions on all tasks within
individual order components. In addition, in the Order Details page Order Components tab,
Running & Failed Tasks subtab, you can view all failed tasks and retry or resolve each task
individually.

To correct the error that caused the failure, you often must use the OSM Task web client to
work on tasks in fallout execution modes. You might also need to work with external systems.
There is no functionality in the Order Management web client to manually edit tasks.

Note

If the order failed because of a recognition rule failure or after reaching its point of no
return, it cannot be resolved. Also, the ability to suspend, cancel, or terminate an order
depends on its life-cycle policy.

If you cannot resolve the order or task failure, you can use the Order Management web client
to cancel or terminate the order:

• Canceling an order immediately stops its processing and sets the order state to Canceled.
Any tasks that have already completed for the order are rolled back. If the order has an
orchestration plan, the order cannot be resumed. If the order does not have an
orchestration plan, it can be resumed.

Chapter 14
Modeling Fallout in Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 18

• Terminating an order immediately stops its processing and sets the order state to Aborted.
The order cannot be resumed. Unlike canceling an order, terminating an order does not roll
back any tasks that have already completed. As a result, clean-up may be required.

Note

Consider the impact on other systems of canceling or terminating orders. Depending
on how your solution is configured, upstream systems may not be aware that an order
has been canceled or terminated.

You can also use the Order Management web client to fail an order manually. Failing an order
stops its processing and sets its state to Failed. It is not possible to change the state of a failed
order or to make other changes until you resolve the order failure. Orders you fail manually are
treated the same way as orders that are failed automatically by the system. They are
considered fallout.

Note

In most environments, fallout-handling rules detect processing problems and
automatically fail orders. Manually failing orders is not normally required. There may
be some situations and environments when it is necessary to manually fail orders,
however.

Make sure you understand how other systems in your order processing solution
handle failed orders. Depending on how your solution is implemented, upstream
systems may not be aware that an order has been manually failed.

Chapter 14
Modeling Fallout in Orders

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 18

15
Modeling Fulfillment States and Processing
States

This chapter describes how to model fulfillment states and processing states in an Oracle
Communications Order and Service Management (OSM) solution.

About Fulfillment States, and Processing States
You can associate the predefined order component order item (OCOI) processing states to
messages from external fulfillment systems or to events that occur within OSM to generate an
aggregate order item processing state as an order processes. OSM then uses these OCOI
processing states to calculate You can also define fulfillment states for orders and order items
to report on different business scenarios.

Table 15-1 compares processing states with fulfillment states.

Table 15-1 Comparing Processing States with Fulfillment States

Features Processing States Fulfillment States

Auto-configured and predefined Yes No

Manually configured and defined No Yes

Tracked as normal, warnings, or failures counts in the Order
Management web client Order tab, Summary subtab.

Yes No

Tracked as warning or failure counts in the Order Management web
client Order Items tab.

Yes No

Failure states in the Order Management web client can be traced:

• From the order item
• To the order components processing the order item
• To the tasks processing the order items in each order component.

Identifying when a task generates a failure state is easier when the
task also transitions to a fallout execution mode.

Yes Yes

Updated for each order item in the Order Management web client
Order Items tab.

Yes Yes

States reflected up the order item hierarchy Yes Yes

States reflected on orders based on order item hierarchy states No Yes

Modeling Fulfillment States
Figure 15-1 is a detailed depiction of fulfillment state processing for a small part of a sample
implementation. It shows the way multiple external responses can be translated into a single
fulfillment state for the order.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 12

Figure 15-1 Fulfillment State Composition

At run time, OSM maps the external fulfillment states to mapped fulfillment states on an order
item. Order item fulfillment states are composed using the immediate children of the order
item, and order fulfillment states are composed using the root-level order items.

Whenever one of the input fulfillment states for an order item changes, the fulfillment state of
that order item (and all of its parents, including the order) is recalculated. For example, if the
mapped fulfillment state of "leaf" order item A changes, the composite fulfillment state of order
item A is recalculated. If the composite fulfillment state for order item A changes and it has a
parent, order item B, order item B's fulfillment state is recalculated as well. If the composite
fulfillment state of order item A does not change, the fulfillment state for order item B is not
recalculated.

In the figure:

1. The external billing system sends a status of OK, which is used directly as the external
fulfillment state for OrderComponent_Billing.

2. The external fulfillment state of OK is mapped to Complete for both the order items that are
fulfilled by that order component (OrderItem_VoIP and OrderItem_Mobile) using the
fulfillment state mappings.

3. The activation system has sent a complex message indicating the statuses of different
parts of the fulfillment request. That message is translated by the custom code in the
automation to the external fulfillment state of MOBILE_FAIL.

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 12

4. The fulfillment state mappings are configured to map MOBILE_FAIL for this order
component to mean that OrderItem_Mobile has failed and OrderItem_VoIP has
succeeded.

5. The fulfillment state composition rules for the OrderItem_VoIP order item then look at the
mapped fulfillment states for OrderItem_VoIP for each order component
(OrderComponent_Billing and OrderComponent_Activation) that fulfills that order item.
Because the mapped fulfillment states for both of the order components are Complete, the
composite fulfillment state for the order item is also set to Completed.

6. The fulfillment state composition rules for the OrderItem_Mobile order item then look at the
mapped fulfillment states for OrderItem_Mobile for each order component
(OrderComponent_Billing and OrderComponent_Activation) that fulfills that order item.
Because the mapped fulfillment states for one of the order items is Complete and for the
other order item is Fail, the composite fulfillment state for the order item is set to Failed.

7. The fulfillment state composition rules for the order then take the composite fulfillment
state of the highest-level parent order items to determine the fulfillment state of the order.
In many cases, the failure of any part of an order might be configured as a failure of the
order as a whole. However in this example, fulfillment states have been configured that,
because part of the order (VoIP) is ready for customer use, the composite fulfillment state
is set to Part_Success.

Defining Fulfillment States
Fulfillment states are configured in Oracle Communications Service Catalog and Design -
Design Studio. At a high level, configuration of fulfillment state management has the following
main steps:

1. Define external fulfillment states for order components: Create a list of values for the order
component that matches the statuses returned by the external systems or automations. An
external fulfillment state is available on the order component where it is defined and on any
order component that extends that order component. See "Modeling External Fulfillment
States" for more information.

2. Create and configure fulfillment state maps: Create one or more lists of values for the
common fulfillment states and create mappings to translate external fulfillment states into
mapped fulfillment states. Common fulfillment states are used as mapped fulfillment
states and as composite fulfillment states. Fulfillment state mappings provide the
evaluation and normalization of the external system's states into mapped fulfillment states.
Common fulfillment states and fulfillment state mappings are available for the entire
workspace. See "Modeling Fulfillment State Maps" for more information.

3. Create and configure order item fulfillment state composition rule sets and order fulfillment
state composition rule sets: Create the composition rule sets to determine the fulfillment
state of an order or order item from the fulfillment state of its child items. Composition rule
sets are based on the order item and order hierarchy, and compose fulfillment states into
composite fulfillment states that reflect the state of entire order items or orders. See
"Modeling Fulfillment State Composition Rule Sets" for more information.

The external fulfillment states, order item fulfillment states, and order fulfilment are stored in
the ControlData for the order. See "Modeling Data for Fulfillment States " for more information.
Mapped fulfillment states are not stored on the order.

Modeling External Fulfillment States
External fulfillment states consist of a list of responses expected by an order component and
any order components that extend the order component. When an external fulfillment state is
defined, it can be used in a fulfillment state mapping.

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 12

Modeling Fulfillment State Maps
You use fulfillment state maps to configure common fulfillment states and fulfillment state
mappings. Fulfillment state mappings are the entities that contain the actual mapping
information, and fulfillment state maps are containers for the information. Functionally, it does
not matter whether you have one or many fulfillment state maps. Each common fulfillment
state is available to all of the fulfillment state mappings, regardless of which fulfillment state
map it is configured in. This means that each common fulfillment state needs to be unique in
the workspace. There are optional default common fulfillment states that can be used. See
Design Studio Modeling OSM Orchestration Help for more information about the default states.

Common fulfillment states have two functions:

• They are used as the result of the fulfillment state mappings. When they are used this way,
they are referred to as mapped fulfillment states.

• They are used as the result of the composition rules. When they are used this way, they
are referred to as composite fulfillment states. If these fulfillment states are to be sent to an
upstream system, you configure these values to match what the upstream system expects.
(For more information about composition rules, see "Modeling Fulfillment State
Composition Rule Sets".)

Common fulfillment states, used as either mapped or composite fulfillment states, are
configured in a single list in the States tab of the Fulfillment State Map editor. You do not need
to assign the common fulfillment state as either a mapped fulfillment state or a composite
fulfillment state when you configure it. The same common fulfillment state can be used for both
purposes at the same time. Figure 15-2 shows the common fulfillment states configured in a
fulfillment state map.

Figure 15-2 Detail from Fulfillment State Map Editor States Tab

After the fulfillment states have been created, you create the mappings in the Mappings tab of
the Fulfillment State Map editor.

A fulfillment state mapping maps an external fulfillment state to a common fulfillment state.
When defining a fulfillment state mapping, you must define when that particular mapping will
be used. Each mapping must specify a single fulfillment pattern, order item, and orchestration

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 12

sequence, with a single set of orchestration stage and order component combinations. There
may be a large number of mappings because wild cards cannot be used.

These criteria are defined in Design Studio and should be specified in the order given. Some of
the entries later on the list cannot be set until the earlier ones have been entered.

1. Fulfillment pattern: The fulfillment pattern value restricts the fulfillment state mapping to
apply only to order components defined on orchestration plans associated with the
specified fulfillment pattern. For example, the fulfillment state mappings might be very
different between mobile and IP services.

2. Order item: The selected value restricts the fulfillment state mapping to apply only to order
components responsible for processing the specified order item.

3. Orchestration sequence: The available orchestration sequences are those related to the
specified order item. The selected value restricts the orchestration stages to which the
mapping can apply.

4. Orchestration stage: One or more orchestration stages must be specified for the
mapping. Any of the orchestration stages in the orchestration sequence can be specified.
Use only one orchestration stage per mapping, if possible. Using only one orchestration
stage facilitates maintenance of the solution because your decomposition rules may
change over time.

5. Order component: One order component must be specified for each specified
orchestration stage.

You can further restrict the application of the mapping by specifying any of the following:

• Fulfillment mode: If specified, the fulfillment mode value, combined with the fulfillment
state mapping's fulfillment pattern value, determines the orchestration plan to which the
fulfillment state mapping applies. The fulfillment state mapping is evaluated for order
components associated only with the identified orchestration plan. The fulfillment state
mapping returned for an item with Cancel fulfillment mode could be very different than that
for an item with Deliver fulfillment mode.

• Properties/property value combinations: After the order item is selected, one or more
order item property value criteria values may be specified. The set of order item properties
available for selection are those properties that are defined on the fulfillment state
mapping's selected order item specification. For example, you might have a property called
LineType and have different mappings based on whether the value was VoIP Phone or soft
phone.

• Current Fulfillment State: If a current fulfillment state is specified, the fulfillment state
mapping is evaluated only for those order components where the current fulfillment state of
the item on the component matches the specified value. This current fulfillment state is
taken from the list of common fulfillment states, meaning that it is the target fulfillment state
of another fulfillment state mapping or the result of composition rules. You might use this to
set a mapped fulfillment state of Failed if that is the current state; if the current state is
In_Progress, the new state might be Complete.

Modeling Fulfillment State Composition Rule Sets
Orders contain one or more order items. Order items can in turn be fulfilled by one or more
order components and also contain other order items using the order item hierarchy. See
"Modeling Order Item Hierarchies" for more information.

There is a fulfillment state assigned to the order and order item as a whole that takes into
account all of the fulfillment states of its immediate children. This is referred to as a composite
fulfillment state.

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 12

Fulfillment state composition rules for the order item are defined in order item fulfillment state
composition rule sets. These rules aggregate the mapped fulfillment states for any order
components that fulfill the order item and also the fulfillment states of any child order items of
the order item.

Fulfillment state composition rules for the order are defined in order composition rule sets.
These rule sets aggregate the composite fulfillment states of the root-level order items.

Note

To use fulfillment states, you must configure composition rule sets both for orders and
for order items.

The configuration processes for order fulfillment state composition rule sets and order item
fulfillment state rule sets are similar.

A fulfillment state composition rule set contains rules, which in turn contain conditions, as
shown in Figure 15-3.

Figure 15-3 Detail from Order Fulfillment State Composition Rule Set Editor

You use composition rules to specify the fulfillment state for the order or order item when all of
the conditions are met (logical AND). If there are separate situations that can result in the
same fulfillment state (logical OR), create separate rules that evaluate to the same fulfillment
state.

For example, say that you have one condition that specifies that all of the input fulfillment
states must be FAILED, and another condition that specifies that all of the input fulfillment
states must be CANCELLED. Both of these conditions should result in a fulfillment state of
NOT_DONE. You also have another condition that allows a mixture of FAILED and

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 12

CANCELLED states that should result in a fulfillment state of CHECK_STATUS. In this case
you would need three separate rules. The last condition requires its own rule because it results
in a different fulfillment state. The other two conditions each require their own separate rule
because it would never be possible for both of those conditions to be met at the same time.

The fulfillment state condition based on the input fulfillment states is the same for both order
item composition rule sets and order composition rule sets. It allows the inclusion (or
exclusion) of one or more fulfillment states according to whether any, all, or none of the input
fulfillment states are in a selected list of fulfillment states. Figure 15-4 shows the details for a
condition.

Figure 15-4 Fulfillment States Section of Condition Details Subtab

The fulfillment states selected in the condition are constrained by a conjunction that must be
true for the condition to evaluate to true. The available conjunctions are:

• Any: The condition requires at least one of the input fulfillment states to match one of the
selected fulfillment states.

• All: The condition requires all of the input fulfillment states to match the selected fulfillment
states.

• None: The condition requires that none of the input fulfillment states match any of the
selected fulfillment states.

The list of fulfillment states that can be assigned as mapped fulfillment states and the list that
can be assigned as composite fulfillment states is the same list. The common fulfillment states
created in the Fulfillment State Map editor States tab apply to both the mapped and composite
fulfillment states. Therefore, when you are generating a composite fulfillment state, the list of
fulfillment states that you can choose in this condition is the list of common fulfillment states.
(See "Modeling Fulfillment State Maps" for more information about this list.)

Order Item Fulfillment State Composition Rule Sets

In addition to the fulfillment state conditions discussed above, in order item fulfillment state
composition rule sets you can set order item property values that must be present for the

Chapter 15
Modeling Fulfillment States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 12

composition rule to evaluate to true. If both Any/All/None and property values are defined, both
must be true for the composition rule to evaluate to true.

Order Fulfillment State Composition Rule Sets

In addition to the common fulfillment state-related criteria discussed above, in order fulfillment
state composition rule sets you can also specify an XQuery expression that must evaluate to
true for the condition as a whole to evaluate to true. For example:

/GetOrder.Response/_root/OrderHeader/AccountIdentifier > 0

This XQuery expression provides the same functionality available to XQuery expressions
exposed elsewhere in Design Studio, including access to order data, access to behavior
instances, and external configuration.

Modeling Processing States
Order item processing states are a predefined set of states that an order item can enter that
derive from a predefined sets of OCOI processing states. Because OSM can process an order
item in more than one order component, OSM then aggregates the OCOI values returned from
external systems in each order component to determine the overall processing state of the
effected order item. You can apply OCOI processing states based on values in response
messages from external systems that OSM receives in automated task automation plug-ins or
based on direct operator input in manual tasks.

In addition, because order items can be arranged hierarchically, when a child order item
processing states changes, OSM also evaluates whether the parent order item should change,
and in the same way, if the parent order item is itself the child of another parent order item,
OSM evaluates the parent order item when its child order item changes. This process
continues up the hierarchy.

The following example shows the Brilliant BroadBand offer and all its descendant order items
including their processing states.

Brilliant BroadBand [Add] InProgressWithFailures
 BroadBand Service [Add] InProgressWithFailures
 Basic Internet Access [Add] In Progress
 Internet Media Service [Add] InProgressWithFailures
 Content on Demand [Add] InProgressWithFailures <--A1=Failed OCOI
 Video on Demand [Add] Not Started
 E-Mail Service [Add] In Progress
 Internet 100% TBO [Add] In Progress
 Firewall [Add] In Progress
 Customer Broadband Model In Progress
 Wireless Router In Progress
 Broadband Installation Fee In Progress
 Broadband Activation Fee In Progress

As this order progresses, one of the order components processing the Content on Demand
order item receives a response message at automation plug-in instance A1. Based on a value
within the response message, the A1 updates the automation task data with a Failed OCOI
processing state. This change automatically causes OSM to evaluate all other order
components involved in processing the Content on Demand order item and based on this
evaluation, assigns the Content on Demand order item with the InProgressWithFailures order
item processing state.

For more information about OCOI processing states and how OSM aggregates OCOI
processing states, see "Order Component Order Item Processing States".

Chapter 15
Modeling Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 12

The change in the processing state of the Content on Demand order item causes OSM to
evaluate whether Content on Demand's parent order item, Internet Media Service, also
requires an order item processing state change. OSM determines the processing state of the
Internet Media Service order item based on its children order items: Content on Demand and
Video on Demand. When OSM determines that the Internet Media Service order item also
requires an order item processing state change, this causes OSM to further evaluate
BroadBand Service and its children (Basic Internet Access, Internet Media Service, E-mail
Service, and so on). Likewise, a change in the Broadband Service order item also causes
OSM to evaluate Brilliant Broadband based on the processing states of all of its children.

For more information about order item processing states and how OSM aggregates order item
processing state changes across an order item hierarchy, see "Order Item Processing States".

Order Component Order Item Processing States
You can apply OCOI processing states from automated or manual tasks that fall into the
normal, warning, or failed categories. These categories impact the overall processing state of
an order item (see "Order Item Processing States" for more information about these
categories).

Table 15-2 shows the OCOI processing states and the categories they are included in.

Table 15-2 OCOI Processing States

OCOI Processing State Category Description

NotStarted Normal Apply the NotStarted OCOI processing state to order items that have not
begun processing in an order component. For example, you could create
an automated task in the first order component that OSM runs for an
order that updates all order items being processed on an order with the
NotStarted OCOI processing state.

InProgress Normal Apply the InProgress OCOI processing state when the first task in an
order component process begins or when tasks within a process resume
normal processing, for example, after resolving a failure in a task.

Completed Normal Apply the Completed OCOI processing state to indicate that the final task
has completed successfully within the order component process. For
example, in an automation plug-in, you can update the Completed OCOI
processing state in conjunction with the completeTaskOnExit method that
completes the final task of the order component process.

Failed Failure Apply the failed OCOI processing state to indicate that a failure has
occurred in order processing and fallout intervention is required to correct
the error. For example, the Failed OCOI processing state could be used in
conjunction with the failTaskOnExit method that transitions the task state
to the failed-Do execution mode so that an operator can manually
troubleshoot the task. A failed OCOI Processing state causes the Failure
count to increase by one.

FailedContinue Warning Apply the FailedContinue OCOI processing state to indicate a failure
condition that does not require fallout intervention to correct the error. The
FailedContinue OCOI Processing state causes the Warning count to
increase by one.

Undoing Normal Apply the Undoing OCOI processing state the entire OCOI is being
undone as a result of a revision order or as a result of a fallout exception
that triggers order amendment.

UndoCompleted Normal Apply the UndoCompleted OCOI processing state when the OCOI is
undone.

Chapter 15
Modeling Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 12

Table 15-2 (Cont.) OCOI Processing States

OCOI Processing State Category Description

UndoFailedContinue Warning Apply the UndoFailedContinue OCOI processing state to indicate a failure
condition that does not require fallout intervention to correct the error. The
FailedContinue OCOI Processing state causes the Warning count to
increase by one.

UndoFailed Failure Apply the UndoFailed OCOI processing state to indicate that a failure has
occurred in order processing while undoing the OCOI and fallout
intervention is required to correct the error. For example, the UndoFailed
OCOI processing state could be used during compensation in conjunction
with the failTaskOnExit method that transitions the task state to the failed-
Redo execution mode so that an operator can manually troubleshoot the
task. An UndoFailed OCOI Processing state causes the Failure count to
increase by one.

DownstreamCorrectionRequired Warning The downstream system returns a message to an OSM automated task
that the downstream system has experienced a failure and is currently
working to resolve the problem. This OCOI processing state remains until
another response message returns from the downstream system
indicating that the problem has been resolved causing the manual or
automated task to update the OCOI processing state to Completed or
InProgress.

None Normal OSM assigns this state automatically if no OCOI processing state has
been assigned. You cannot directly use this processing state.

You must write automation plug-in code to map status response values to order component
order item processing states. OSM stores order component order item processing state values
in the ControlData element. See "About ControlData for Order Component Order Item
Processing States " for more information.

Order Item Processing States
OSM evaluates order item processing states differently depending on order item processing
directions. If an order item is being fulfilled by OSM, then the order item is operating in the
forward direction. If an order item has been removed, for example, in a revision order or
because the order itself has been canceled, then the order item is operating in reverse
direction.

Chapter 15
Modeling Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 12

OSM keeps an overall count of the following processing state categories:

• Normal: An order item has a normal category order item processing state when all OCOI
processing states from order components processing the order item belong to the normal
category or when all the descendant order items of a parent order item belong to a normal
category. See Table 15-2 for OCOI processing state categories. The normal count
increments by 1 when an order item is processing normally.

• Warning: An order item has a warning category order item processing state when one or
more OCOI processing states from order components processing the order item belong to
the warning category or when one or more of the descendant order items of a parent order
item belong to a warning category. See Table 15-2 for OCOI processing state categories.
The warning count increments by 1 when an order item contains warnings.

• Failure: An order item has a Failure category order item processing state when one or
more OCOI processing states from order components processing the order item belong to
the failure category or when one or more of the descendant order items of a parent order
item belong to a failure category. See Table 15-2 for OCOI processing state categories.
The warning count increments by 1 when an order item contains failures.

Table 15-3 shows order item processing states, and the direction and categories they are
included in.

Table 15-3 Order Item Processing States

Order Item Processing State Direction Category Description

NotStarted Forward Normal The order item has not begun to process in any order
component.

InProgress Forward Normal The order item has begun processing in one or more order
components.

InProgressWithWarnings Forward Warning The order item has begun processing within one or more
order components, however, one or more of the order
components or descendant order items have a processing
state from the Warning category.

Chapter 15
Modeling Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 12

Table 15-3 (Cont.) Order Item Processing States

Order Item Processing State Direction Category Description

InProgressWithFailures Forward Failure The order item has begun processing within one or more
order components, however, one or more of the order
components or descendant order items have a processing
state from the Failure category.

Completed Forward Normal The order components processing the order item have
completed all tasks associated with the order item. All order
components processing the order item or all descendant
order items or an order item have updated their processing
states to Completed.

CompletedWithWarnings Forward Warning The order components processing the order item have
completed all tasks associated with the order item; however,
one or more of the order components processing the order
item or descendant order items have a processing state from
the Warning category.

PartiallyFailed Forward Failure All order components processing the order item or
descendant order items have returned processing state
results, however, one or more have a processing state from
the Failure category.

Undoing Reverse Normal The order item has begun processing in the reverse direction
in one or more order components.

UndoingWithFailures Reverse Failure The order item has begun processing in the reverse direction
within one or more order components, however, one or more
of the order components have an OCOI processing state
from the Failure category.

UndoingWithWarnings Reverse Warning The order item has begun processing in the reverse direction
within one or more order components, however, one or more
of the order components have an OCOI processing state
from the Warning category.

UndoFailed Reverse Failure One or more order components processing the order item in
reverse direction has a failed task that requires fallout
intervention to correct.

UndoCompleted Reverse Normal The order components processing the order item in reverse
direction have completed all tasks associated with the order
item.

UndoCompleteWithWarnings Reverse Warning The order components processing the order item in the
reverse direction have completed all tasks associated with
the order item; however, one or more of the order
components processing the order item or descendant order
items have a processing state from the Warning category.

None Reverse Normal OSM assigns this state automatically if no OCOI processing
state has been assigned. You cannot directly use this
processing state.

OSM stores order item processing state values in the ControlData element. See "About
ControlData for Order Item Processing States" for more information.

Chapter 15
Modeling Processing States

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 12

16
Modeling Jeopardy and Notifications

This chapter describes how to model jeopardy and notifications in an Oracle Communications
Order and Service Management (OSM) solution.

Best Practices for Using Notifications for Status Updates
Status values for an order item and for the whole order often need to be sent to the upstream
system that submitted the original request. There are a number of ways to achieve this.

Status Update Strategies
Some common strategies for updating order status are:

• Use an event notification triggered by a change to order data, or when an order reaches an
order milestone; for example, completed. The notification runs an automation plug-in that
sends a status message to the upstream system. The automation plug-in should have all
of the values for status data defined in its view, in order to calculate an aggregated status
value.

Be aware that there can be race conditions if multiple status updates are run in parallel.
Since each update is taking a snapshot at a particular moment, it is possible that none of
the status updates will have a snapshot that includes all of the final values. This strategy is
better used when there are no multiple concurrent status updates.

You also can use this strategy in conjunction with fulfillment state or processing states.
However, for these two options, the calculation of the aggregated status value is handled
by OSM before the event notification is triggered. The event notification can be configured
against the order level fulfillment state or order item processing state. In this case there is
no race condition as the event is only triggered on the top most data element when it is
changed.

• Configure an automation plug-in to generate a status message whenever the order
changes state. Because order state changes are generally less frequent than data
changes, this may provide better performance.

• It is possible to configure status update functions as order components and make them
first-class members of the orchestration plan. However, it is not desirable to do this in most
circumstances, because this can quickly lead to a large increase in the number of tasks in
the cartridge. If used, this option will work only if status updates are sent at a specific point
in the orchestration plan, for example as the last function after provisioning and billing.

Strategies for Using Notifications
Some common uses for notifications are:

• In general, jeopardy notifications are used for alerting order management personnel about
something that should have happened but did not happen. By contrast, event notifications
are based on events that have happened, and they are used more for communicating
status information and for directing the order fulfillment process to the next step.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 13

• Communication with external systems is usually handled by automation plug-ins run by
event notifications. For example, the progress of an order is typically monitored in external
systems by tracking which parts of the order have been completed. To communicate that,
you typically configure event notifications based on a change to order data or a change to
task status.

• Notifications intended for an internal audience (OSM users) are typically created using a
notification type that, by default, sends a notification to the Task web client. The only
notification types that do not are event notifications based on order data change and task
state change notifications that run an automation plug-in. See "About Using Task States
and Rules to Trigger Event Notifications" for more information.

Modeling Notifications
The following sections provides information about modeling notifications.

Using Task States and Statuses to Trigger Event Notifications
You can use task states and task statuses to trigger event notifications. For example, changing
to the Failure status can trigger a notification to a fallout specialist. See "About Event
Notifications" for more information.

About Notification Priority
You can specify a priority for most types of notifications. For example:

• Notifications can be prioritized to control how they are sorted in the Task web client. You
should prioritize jeopardy notifications higher than information messages.

• Prioritizing notifications sent to external systems helps those systems process the more
important notifications first.

OSM evaluates notifications with the highest priority first (1 is the highest priority). For
notifications that are sent to external systems, the notification priority represents the JMS
queue priority.

About Sending Notifications in Email
You can deliver notifications in email. The email message consists of the same information that
is displayed in the Notifications window in the Task web client. You cannot customize the
message or add information to it. The message template is:

You have a notification for Order ID ID number and notification ID
 notification ID. Use the following URL to connect to the notification details:
url

For most types of notifications, you specify to send email by selecting a check box in the
notification configuration. For event notifications that are used only for running an automation
plug-in, you configure the automation plug-in to send the email. See OSM Developer's Guide
for information about automation.

To specify who to send the email to, you do the following:

• When configuring the notification in Oracle Communications Service Catalog and Design -
Design Studio, or in your automation plug-in, specify the roles that receive the notification.

• Configure the email recipients for the roles by using the OSM Order Management web
client. (Roles are called workgroups in OSM Administrator.)

Chapter 16
Modeling Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 13

About Configuring Entities to Support Notifications
Before you configure notifications, you need to configure the following entities:

• You must create the roles to assign notifications to.

• To trigger notifications based on a change to order data, you must first model the data. See
"About Using Order Data Changes to Trigger Notifications" for information.

You can model automation plug-ins as you define notifications, but modeling automation plug-
ins before you configure notifications is more efficient.

About Jeopardy Notifications
A jeopardy notification is a message that is sent to OSM users or users on other systems (for
example, to return status to a CRM system). Jeopardy notifications are not event-driven; they
use polling at specified intervals to identify processes or tasks in jeopardy.

OSM uses three methods to deliver jeopardy notifications:

• By displaying a notification in the Task web client.

• By sending email to users.

• By using an automation plug-in to notify an external system. Each order jeopardy
notification can map to one automation plug-in.

Jeopardy notifications can be defined for an order using the Order Jeopardy editor or the Order
editor, or for a task using the Task editor. Many of the jeopardy properties are the same for
orders and tasks; for example, you can specify the roles to notify and the rule to trigger the
notification. However, defining a jeopardy notification for an order or a task allows you to use
the order or task properties. For example:

• You can trigger a notification based on the state of the order.

• You can trigger a notification if a task has exceeded its expected duration.

You can use two methods to trigger a jeopardy notification:

• Conditions; for example, if the order processing time has exceeded the expected duration.

• Order rules; for example, you can define an order jeopardy notification based on a rule that
evaluates a data condition where an order milestone is not equal to the Complete state
and has a due date that is greater than the value specified in the condition. For example:

orderMilestone <>completion and dueDate>SpecifiedDate.

This checks to see if there are any orders that are not completed but that are supposed to
be completed by today.

About Modeling Jeopardy Notifications
You can model jeopardy notifications for tasks and for orders. The following list describes
where in Design Studio you can model jeopardy notifications:

• Task editor: The Task editor Jeopardy tab is the only place to model task jeopardy
notifications. For more information, see the topic on working with tasks in the Design
Studio Modeling OSM Processes Help.

• Order Jeopardy editor alone: The Order Jeopardy editor enables you to define detailed
jeopardy conditions based on order states, including multiple states to be used as start and

Chapter 16
About Jeopardy Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 13

end states for the order jeopardy notification timer. The Order Jeopard editor also enables
you to define order states during which the timer will pause. Although these order jeopardy
notifications are not defined in the Order editor, they are still defined for a specific order.
For more information, see the topic on working with jeopardy and event notifications in the
Design Studio Modeling OSM Processes Help.

• Order Jeopardy editor and operational jeopardy file: When you define an order
jeopardy notification in the Order Jeopardy editor, you can choose to make that order
jeopardy notification an operational order jeopardy notification. This means that you can
define the order jeopardy in Design Studio, but the details of the order jeopardy notification
can be changed at run-time without having to redeploy any cartridges. You can change the
details of operational order jeopardy notifications by editing text files on the OSM system.
You specify the names of the text files in the oms-config.xml file. For more information
about the Order Jeopardy editor, see the topic on working with jeopardy and event
notifications in the Design Studio Modeling OSM Processes Help. For more information
about using the text file to define operational order jeopardy notifications, see the
information about configuring OSM with the oms-config.xml file in OSM System
Administrator's Guide.

• Order editor: The Order editor Jeopardy tab provides simple order jeopardy modeling
capabilities and works in basically the same way as the task jeopardy notification
configuration. For more information, see the topic on working with orders in the Design
Studio Modeling OSM Processes Help.

About Jeopardy Notification Triggering
OSM triggers jeopardy notifications in one of two ways, depending on where you modeled the
order jeopardy notification.

If the order jeopardy notification has been modeled using the Order Jeopardy editor, either with
the configuration defined in Design Studio or with an operational jeopardy defined in a text file,
OSM triggers the notification using the following process:

1. When the timer starts for an order, OSM adds the notification to an internal list, sorted by
the due date of the notification. The system frequently polls this list and retrieves the items
that have come due.

Because this is a server-wide, internal, automatically generated list, you do not have to
configure polling intervals for order jeopardy notifications defined in the Order Jeopardy
editor.

2. OSM checks whether there are any rules that might restrict the notification from being
triggered. For example, you might configure two jeopardy notifications, one that is triggered
for orders from only business accounts and one that is triggered for orders from only
residential accounts. Each notification might have a different email recipient, so the
notification is only triggered for the correct recipient. The rule is checked after the
conditions have been met to ensure that the latest version of the order data is used in the
evaluation.

3. If a rule evaluates to true, the notification is triggered.

If the order jeopardy notification has been modeled using the Order editor or using the Task
editor, OSM triggers the notification using the following process:

1. OSM polls in-flight orders and tasks to determine if a condition has been met. For example,
the condition might be that a task has been in progress for longer than one hour. If the
condition is met, OSM begins to process the notification.

You can specify how often OSM should poll to reevaluate the jeopardy condition. You can
specify a polling interval in hours, days, weeks, or months. You can specify the day of the

Chapter 16
About Jeopardy Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 13

week (for example, Monday), or the day of the month (for example, the first day of the
month). You can specify a date and time for OSM to begin polling. The default is the
current date.

Tip

When configuring notifications in the Order editor or the Task editor, consider the
performance impact from polling for jeopardy notifications. For example, a
configuration that polls every minute on one million orders has a much greater
performance impact than polling every hour on one thousand orders.

2. OSM checks whether there are any rules that might restrict the notification from being
triggered. For example, you might configure two jeopardy notifications, one that is triggered
for orders from only business accounts and one that is triggered for orders from only
residential accounts. Each notification might have a different email recipient, so the
notification is only triggered for the correct recipient. The rule is checked after the
conditions have been met to ensure that the latest version of the order data is used in the
evaluation.

3. If a rule evaluates to true, the notification is triggered.

About Jeopardy Notification Conditions
You can trigger jeopardy notifications based on an order or task condition. For example, you
can specify to send a jeopardy notification if a task has exceeded its expected duration.

The conditions you can use depend on whether you define the jeopardy notification in the
Order Jeopardy editor, the Order editor, or the Task editor.

Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor
When you define a jeopardy notification for an order using the Order Jeopardy editor, you can
specify to trigger the notification based on the following:

• The amount of time that an order has spent in one or more states. You can specify lists of
order states that can do the following:

– start the timer

– stop and reset the timer

– pause the timer

For example, you can trigger a notification because an order entered the In Progress state
30 days ago, without counting any time the order spent in the Suspended state, and has
not yet entered the Completed or Aborted states.

You can set the expected duration in one of the following ways:

– Setting a specific duration value

– Using the expected duration for the order

– Using an XQuery expression to set the value

– Using the value of a field on the order

• Whether the order has reached a certain date without having reached one of a list of
specified end states.

You can set the expected date in one of the following ways:

Chapter 16
About Jeopardy Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 13

– Using an XQuery expression to set the value

– Using the value of a field on the order

Specifying Jeopardy Notification Conditions in the Order Editor
When you define an order, you can specify to trigger a jeopardy notification based on the
following:

• The amount of time that an order has been in the In Progress state. For example, you can
trigger a notification if the order has been in the In Progress state for longer than 30 days.

• The amount of time that an order has been in the Completed state. For example, you can
trigger a notification if the order has been in the Completed state for longer than 30 days.

• If the process duration has exceeded the expected duration. The value is based on
elapsed time, regardless of the order states that the order might transition in and out of.

• If the process duration has exceeded a duration that you define; for example, five days.
This duration value starts at the creation task.

To determine the duration that the order has been in any of these conditions, OSM polls the
system at an interval that you define.

Specifying Jeopardy Notification Conditions for a Task
When you define a task, you can specify to trigger a jeopardy notification based on the
following:

• If the process that the task is associated with has exceeded the expected duration.

• If the process that the task is associated with has exceeded a duration that you define.
This duration is measured starting with the creation task.

• If the task has exceeded the expected duration.

• If the task has exceeded a duration that you define.

• If the order has exceeded a specified amount of time past when it was received (when the
order is created in OSM).

To determine the duration that the order has been in any of these conditions, OSM polls the
system at an interval that you define.

When you define a jeopardy notification in a task, and the task can have multiple instances,
you can specify if the notification should be triggered for every task instance.

About Event Notifications
Event notifications are triggered by events. You do not specify polling intervals for event
notifications. You can configure them to occur in the following cases:

• When a task transitions through a task status. For example, you might trigger an event
notification when a task transitions to the Failed status.

Event notifications triggered by transitions can be sent to a workgroup. See "About Using
Task Transitions to Trigger Event Notifications" for more information.

• When a task reaches a specified state. You can use two methods:

– You can use the task state to trigger an automated event notification. In this case, only
the task state is evaluated (no rules are applied to evaluate a condition), and the
notification runs an automation plug-in that handles the notification actions. For

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 13

example, when a task reaches the Assigned state, you can automate an external
lookup before allowing the workflow to continue. You do not specify roles or email
delivery for the notification. See "About Using Task States to Trigger Automated Event
Notifications" for more information.

– You can use the task state in combination with rules to trigger the event notification. In
this case, you can specify a rule to evaluate conditions, the priority, if the notification
can be delivered by using email, and the workgroups that receive the notification. See
"About Using Task States and Rules to Trigger Event Notifications" for more
information.

When you use the task state to trigger an automated event notification, the notification is
run from all processes that include the task. When you configure a notification based on a
task state change in a process, the notification is applicable only to the task within the
process in which it is defined.

• You can trigger an event notification when an order passes an order milestone. You use
this type of notification to trigger an automation plug-in that handles the notification actions.
You do not specify roles or email delivery for the notification. See "About Using Order
Milestones to Trigger Event Notifications" for more information.

• You can trigger an event notification when a change is made to order data. You typically
use these notifications to update external systems (such as a CRM) with information about
the progress of the order when a specific data element in the order data is changed. See
"About Using Order Data Changes to Trigger Notifications" for more information.

• You can trigger an event notification based on order life-cycle changes. OSM posts the
these notifications to a pre-defined JMS queue. See "About Enabling Order Life-Cycle
Events" for more information.

About Using Task Transitions to Trigger Event Notifications
An event notification based on a task transition does not apply to all instances of the task. It
applies to a task only as it is used in a specific process. Therefore, to configure an event
notification based on a task transition, you edit the process that includes the transition and
apply the event notification to the transition. Figure 16-1 shows the configuration for a success
transition in Design Studio. In this figure, the success transition is selected, and the event
notification properties are defined below the process window.

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 13

Figure 16-1 Event Notification Based on Task Transition

The event notification for a status change works as follows:

1. When the task status changes to the status that you define for the notification, the
notification runs a rule to evaluate if the conditions are true.

2. If the conditions are true, the event notification is triggered.

When you use a task transition to trigger an event notification, you can specify an automation
plug-in that the notification runs; however, an automation plug-in is not required.

About Using Task States and Rules to Trigger Event Notifications
An event notification triggered by a task state change and rules works as follows:

1. When the task state changes to the state that you define for the notification, the notification
runs a rule to evaluate if the conditions are true.

2. If the conditions are true, the event notification is triggered.

For example, you can specify that when the Completed task state is reached, a rule evaluates
if the billing address is in California.

This type of notification does not apply to all instances of the task. It applies to a task only as it
is used in a specific process. Therefore, you create this type of notification when you create
processes in Design Studio. Figure 16-2 shows how to assign an event notification to a task in
a process. In this figure, the EnterAccountInformation task is selected, and the rule and state
are defined in the Properties window Events tab below.

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 13

Figure 16-2 Notification Based on Task State and Rule

You can specify an automation plug-in that the notification runs; however, an automation plug-
in is not required.

About Using Task States to Trigger Automated Event Notifications
You can use a task state to trigger an automated event notification. In this case, only the task
state is evaluated (no rules are applied to evaluate a condition), and the notification triggers an
automation plug-in which handles the notification actions. This type of notification runs for
every instance of the task, independent of the process that it is in. Event notifications triggered
by task states are not displayed in the Task web client.

For example, you can define an automated notification that sends a notification when the task
reaches the Assigned state. The event notification works as follows:

1. When the task reaches the Assigned state, a notification is created.

2. When the notification is created, the automation plug-ins run.

Figure 16-3 shows an event notification configured in Design Studio. Any time this task runs,
the event notification is triggered when the task reaches the Completed state.

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 13

Figure 16-3 Event Notification Based on Task Status

About Using Order Milestones to Trigger Event Notifications
You can use an order milestone to trigger an event notifications. Figure 16-4 shows an event
notification based on an order milestone.

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 13

Figure 16-4 Event Notification Based on an Order Milestone

Only the order milestone is evaluated (no rules are applied to evaluate a condition), and the
notification triggers an automation plug-in that handles the notification actions. Each event
notification maps to one or more automation plug-ins. For more information about automation
plugins, see "About Automation Plug-ins".

For example, you can define an event notification that specifies the Completion milestone. The
event notification works as follows:

1. After all tasks within a process successfully complete for an order, the order Completion
milestone is reached and a notification is created.

2. When the notification is created, the automation plug-ins run.

Note

You cannot define custom order milestones. Order milestones are based on order
states; for example, the Completion milestone occurs when the order transitions to the
Completed state.

When you create event notification that is triggered by an order milestone, you specify the
order milestone that triggers the notification. You can use the following order milestones:

• Creation: The order was created in the OSM system.

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 13

• Completion: The final task in the order has completed, and the order transitioned to the
Completed state.

• Deletion: The order was removed from the OSM system by transitioning to the Deleted
state.

• Exception: A process exception or fallout was initiated.

• State change: The order transitioned to a different state.

About Using Order Data Changes to Trigger Notifications
You define event notifications based on order data changes when you create orders in Design
Studio. For example, you can define an event notification that sends a notification when a
telephone number is entered. Event notifications triggered by data changes are shown in the
Task web client.

When you create an event notification based on order data changes, you can specify the data
field that triggers the notification when the data is changed. Any change to the field causes the
notification to trigger. However, this value is not evaluated for content. To trigger the notification
based on the value of the data, you must configure a rule to evaluate it.

For example, to trigger a rule when the billing address is changed to California, you specify the
billing address field as the field that triggers the notification and run a rule that evaluates if the
address was changed to California.

You can specify an automation plug-in that the notification runs; however, an automation plug-
in is not required.

Figure 16-5 shows an event notification based on data change in an order. In this example,
when a credit card number changes, the notification is triggered.

Figure 16-5 Event Notification Based on Data Change in an Order

Chapter 16
About Event Notifications

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 13

About Enabling Order Life-Cycle Events
You can configure orders to publish events when any of the following occurs:

• The order is created.

• The order is removed.

• The order state changes.

• Amendment processing starts.

• Amendment processing is queued.

• Amendment processing completes.

• Amendment processing is terminating.

• Amendment processing is terminated.

• Amendment processing is abandoned.

Order life-cycle events are published to the oms_order_events queue as Java Message
Service (JMS) messages containing order identification and state information. You can
configure which life-cycle events you want to be generated for an order type in Design Studio.

Summary of Notification Functionality
Table 16-1 shows a summary of notification functionality.

Table 16-1 Summary of Notification Functionality

Notification Type Sends Email Displays in
Task Web
Client

Can Be
Evaluated By
a Rule

Can Be Sent
to Different
Roles

Runs
Automation
Plug-in

Has a Priority

Jeopardy - Task
editor

Yes Yes Yes Yes Optional Yes

Jeopardy - Order
Jeopardy editor

Yes Yes Yes Yes Optional Yes

Jeopardy - Order
editor

Yes Yes Yes Yes Optional Yes

Event - Task status Yes No Yes Yes Optional No

Event - Task state,
automation

Sent by
automation
plug-in only

No No Defined by
automation
plug-in only

Mandatory Yes

Event - Task state,
in a process

Yes No Yes Yes Optional Yes

Event - Order
milestone

Sent by
automation
plug-in only

No No Defined by
automation
plug-in only

Mandatory No

Event - Order data
change

Yes Yes No Yes Optional Yes

Chapter 16
Summary of Notification Functionality

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 13

17
Modeling Milestone Events

This chapter describes how to model milestone events in an Oracle Communications Order
and Service Management (OSM) solution.

Before reading this chapter, read the following to learn about general OSM concepts:

• OSM Solution Modeling Overview

• Modeling Fulfillment States and Processing States

See the following topics for details about Model-driven Milestones:

• About Milestones and Model-driven Milestones

• Usage of Milestone Events

• Modeling Model-driven Milestones

About Milestones and Model-driven Milestones
For order fulfillment, milestone represents an achievement of the process being reached. While
an order state mainly represents the fixed operation state of the order such as in-progress,
completed, cancelled, amending and so on, it does not represent the complexity and the
variation of order fulfillment in different business domains. OSM uses fulfillment states that
provide flexible modeling to define the order fulfillment achievement for a domain. Fulfillment
state is a mechanical evaluation of the order fulfillment process as it relates to an order item or
to the whole order.

Model-driven Milestone considers a specific fulfillment state for a specific order item or order,
or the external fulfillment state that triggers the fulfillment state evaluation to declare that as a
business-specific checkpoint being reached during order fulfillment. Milestones have meaning
to the overall solution as they provide a progress report on an order that is consumable by
human users and external systems. Milestones are propagated from downstream system,
when an order item reaches PONR or a specific fulfillment state, or when a whole order
reaches a specific fulfillment state.

Figure 17-1 illustrates an example of a sequence of five milestones propagated from OSM
COM to an upstream system (CRM).

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 4

Figure 17-1 Milestone Interaction

Usage of Milestone Events
Milestone propagation from OSM to upstream system allows upstream systems (such as a
CRM system) to keep track of the order fulfillment progress. The current milestone of a
fulfillment order may trigger interaction between an upstream system and other edge systems
or customer interaction. Upstream systems also rely on milestones to decide the type of
orchestration action that can be submitted to alter the orchestration process. These
orchestration actions include cancel order, amendment order and follow-on order.

For example, when an upstream system is required to amend an in-progress order fulfillment,
the milestone will be used to decide whether an in-flight amendment should be sent (if PONR
is not reached) or a follow-on order should be sent (if PONR is reached). For cancelling, the
same PONR milestone may be used to decide whether an in-flight cancel order should be sent
(if PONR is not reached) or a disconnect order is needed (if PONR is reached). The upstream
system creates a new version of assets after receiving a milestone with details of the product
which may also be enriched with network resource.

Without Model Driven Milestones, the milestone declaration, detection and propagation have to
be implemented by cartridge code, which runs within the automation plugin. For example, the
receiver plugin needs to check the response data from the downstream system to scan for an
expected external fulfillment state value. Such external fulfillment state value may be hard
coded or stored in a freeform metadata outside of OSM. The detected milestone is then sent to
the upstream system by the same automation plugin that processes the response message.

Chapter 17
Usage of Milestone Events

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 4

The implementation of detection and propagation is usually added on top or combined with the
normal processing logic of the automation plugin, resulting in a more complicated code.

Note

Message propagation should always be executed in the same transaction of the
automation plugin so the current order data reflects the snapshot of this time. Using
the data changed or the notification event that is executed in a new transaction is not
recommended, since additional data may be updated by the other transaction that is
committed prior to the new transaction.

Model-Driven Milestones provide the following:

• A design-time milestone declaration

• A design-time milestone detection

• A design-time milestone propagation and configuration

This allows all implementation related to the milestone activities to be excluded from the
automation plugin. If an existing milestone defined is not valid for a new order fulfillment
pattern, then disabling, removing or updating the configuration of the milestone can be
managed efficiently.

Modeling Model-driven Milestones
A model driven milestone configuration consists of:

• Milestone detection

• Order data associated with the milestone

• Message routing configuration

Milestone Detection
For milestone detection, OSM uses the external fulfillment state, order item fulfillment state,
order fulfillment state and order item PONR as the valid data element to trigger the milestone.
If update to the state mentioned early and the value matches the configuration, then the
milestone propagation process is triggered.

For example, consider automation plugin updating an external fulfillment state value as
"Provision Design" with the following path:

/ControlData/Functions/ProvisionOrderFunction/orderItem/
ExternalFulfillmentState

Milestone propagation is triggered if model-driven milestone is defined for the following:

• For external fulfillment state with Provision Design" and for fulfillment function with
"ProvisionOrderFunction".

• For fulfillment state with "Design" for order Item under fulfillment function with
"ProvisionOrderFunction", and the external fulfillment state map with "Provision Design" to
fulfillment state with "Design".

• For order item PONR for fulfillment pattern which invokes fulfillment function
"ProvisionOrderFunction", the PONR is reached and fulfillment state "Design" is reached.

Order data associated with the milestone

Chapter 17
Modeling Model-driven Milestones

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 4

The milestone propagation process creates a payload that describes the details of the
milestone. The content is driven by the order data. To support that, the configuration for the
second item consists of an xquery or xslt script, which is executed by the milestone
propagation process with the order data supplied by an order view. The xquery or xlst script is
responsible to create the data payload sent to an upstream system. The implementation details
of the xquery or xlst script are the same as automation. For more details, see the "Using
Automation" section in the OSM Developer's Guide.

Message routing configuration
Message routing configuration contains the target system's JMS queue name. The milestone
propagation process delivers the milestone message into this JMS queue.

Chapter 17
Modeling Model-driven Milestones

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 4

18
Modeling Order Scheduling

This chapter describes how to model order scheduling entities in an Oracle Communications
Order and Service Management (OSM) solution.

About Order Item Requested Delivery Date and Order
Components

OSM can process orders at different times. In many cases, a customer wants an order to be
completed as soon as possible, in which case OSM can start processing the order
immediately. However, in some cases, the start date of an order should be delayed until a
future date. For example:

• A customer might request that a new VoIP service be added at the beginning of the next
month, when their current service expires.

• A customer might request the disconnect of an existing service at the end of the current
month.

In addition, there may be groups of order items within an order that need to be fulfilled at
different times. For example, an order might contain three services, such as internet, IPTV, and
VoIP. The internet and IPTV services might have an immediate requested delivery date, but the
VoIP service might only be required at the end of the month, after the customer's current phone
service plan has expired. In this case, you can enable OSM to calculate a time to start fulfilling
the VoIP service at a future date that would allow the service to be activated by the requested
delivery date: at the end of the month.

Different groups of order items may have orchestration dependencies configured that have an
impact on when a service gets fulfilled. For example, the internet service might be required
before you can activate an IPTV or VoIP service. These dependency scenarios are fixed and
take precedence over honoring requested delivery dates. In other words, OSM will only honor
a requested delivery date for a service if there is enough time to fulfill that service given the
time it takes to perform the fulfillment tasks and any dependencies that might exist between
one service and another. In such a scenario, the order completion date will be later than the
delivery date requested by the customer.

To accurately calculate when an order should start so that it can meet a requested delivery
date, you must determine how long it takes to perform certain tasks contained in the order and
you must know when a customer wants a service.

Note

Orders must have an orchestration plan to be able to calculate the order completion
date.

When viewing an entire order in the Order Management web client Summary tab General
area, you see the following fields:

• Order Creation Date: The date when the order is created in OSM.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 12

• Expected Order Start Date: The date when the order is expected to start being
processed.

• Expected Order Completion Date: The date when the order is expected to be completed.

• Requested Order Delivery Date: The date by which the customer requests the order be
delivered.

• Expected Order Duration: The amount of time the order is expected to take to complete
processing.

These fields are used in, or derived from, an orchestration plan algorithm. This algorithm, at its
highest level, uses the Order Creation Date (for orders that start immediately) or the
Expected Order Start Date (for future dated orders) in conjunction with the Expected Order
Duration to determine whether there is enough time to achieve the Requested Order
Delivery date. If there is enough time, then the Expected Order Completion Date is the
same date as the Requested Order Delivery Date. If there is not enough time, then the
Expected Order Completion Date is later than the Requested Order Delivery Date.

When viewing a specific order item in the Order Management web client Summary tab
General area, you see the following fields:

• Expected Order Component Start Date: The date when the order component that
processes the order item is expected to start.

• Expected Order Item Start Date: The date when the order item is expected to start. This
is always the same date as the first Order Component Start Date to start processing the
order item.

• Expected Order Item Completion Date: The date when the order item is expected to be
complete. In some scenarios, an order item may require processing from more than one
order component. For example, one order component may provision the service while
another performs the billing function. And so the order item completion date must take into
account the total time it takes to complete these two order components.

The following sections describe the design-time and run-time elements that you must model so
that the orchestration plan algorithm can generate an order fulfillment timeline.

How OSM Decomposes and Processes Order Items in Order Components
You can model the decomposition of order items into order components that typically share the
same function, are destined for the same fulfillment system, and share the same processing
granularity. The entity that ultimately processes order items is an executable order component
that is linked to a process that contains a sequence of manual and automated tasks that fulfill
every order item in the order component.

OSM calculates the order component start dates based on the requested delivery date for
order line items in customer orders. This requested delivery date order line item value must be
mapped to an order item specification requestedDeliveryDate order item property in Oracle
Communications Service Catalog and Design - Design Studio.

For example, a group of six order items might be gathered in an executable component that is
linked to a process that contains an automated task that generates and sends a service
request to an activation system. The service request that the automated task builds would
contain all the information from the six order items that the activation system requires to
activate services that correspond to the order items in the network.

When OSM has determined the order component start date, all order items in the order
component begin processing immediately (regardless of their requested delivery date).
Although this can mean that some order items might be delivered early, it ensures that no order
items are delivered late.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 12

About Grouping Order Items in Order Components by Date Range
If order items belong to the same function and go to the same fulfillment system need to be
fulfilled on substantially different dates, you can model different order components in Design
Studio that run at different stages or within the same stage, but that have different start dates.

In addition, OSM provides Java functions that can be used along with order item hierarchies to
further delineate and group order component IDs based on order item requested delivery date.
For more information about creating custom component IDs using Java function, see "About
Component Specification Custom Component ID XQuery Expressions".

Modeling Order Component Minimum Processing Duration
When you model orders in Design Studio, you need to provide OSM with enough information
to be able to meet the order item requested delivery dates with as much accuracy as possible.
To do so, you specify a minimum processing duration value that defines how long it typically
takes to fulfill all order item within an executable order component. You can model this value at
the order component level (see Figure 18-1) or at the fulfillment pattern order component level
(see Figure 18-2). OSM always uses the larger of the two values. This duration should take
into account the total duration of any manual or automated tasks involved in completing the
process. For example, if you know that it takes one week to ship a telephone, you specify one
week for the minimum processing duration for an order component that is used for shipping a
telephone.

You can specify a different minimum processing duration for each fulfillment mode in the
fulfillment pattern. For example, the Deliver fulfillment mode can have a different duration than
the Cancel fulfillment mode.

Figure 18-1 shows the duration defined for an order component.

Figure 18-1 Processing Duration Defined for an Order Component

Figure 18-2 shows the processing duration assigned to an order component when it is used in
a fulfillment pattern Order Components tab, Selected Order Components sub-tab.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 12

Note

The Duration tab displayed beside the Order Components tab and Dependencies tab
in Figure 18-2 is no longer used. This tab still appears in Design Studio to support
OSM cartridges that target pre-OSM 7.2.2 servers.

Figure 18-2 Processing Duration Defined for an Order Component as Used in a Fulfillment Pattern

The minimum processing duration of an order may vary greatly depending on a number of
factors:

• The kinds of products or services. Orders for mobile services typically have a very short
processing duration, whereas a complex business-to-business order might take weeks.

• What must be done to fulfill the actions on the product or service, such as shipping or
installation work.

• Any dependencies within and between the products and services. For example, PSTN
provisioning must complete before ADSL provisioning starts.

Because a single order can have multiple values for the minimum processing duration, defined
in multiple order components and at the order level, OSM compares all of them (if they are
defined) to find the longest processing duration for the order:

1. OSM compares the two possible values of the minimum duration for an order component:

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 12

• The duration specified in the order component itself.

• The duration assigned to the order component in its fulfillment pattern.

OSM uses the larger of the two values as the order component minimum processing
duration.

2. OSM adds the calculated durations for all of the order components in the order. OSM takes
into consideration dependencies between order components. For example, if the order
component that provisions a service depends on the order component that processes
billing, the minimum processing duration for both components must be used.

3. OSM calculates the order duration based on the expected order completion date minus the
start date.

About Minimum Processing Duration Inheritance in Fulfillment Patterns
For the minimum processing duration that is assigned to an order component by a fulfillment
pattern, the minimum processing duration for the order component is inherited in fulfillment
patterns extended from the parent fulfillment pattern. For example:

1. In the BaseProductSpec fulfillment pattern, the BillingFunction order component is
assigned a duration of 2 days.

2. The Service.Fixed fulfillment pattern is extended from the BaseProductSpec fulfillment
pattern. Therefore, if you do not specify a duration for the BillingFunction order component
in the Service.Fixed fulfillment pattern, it inherits the duration of 2 days from the
BaseProductSpec fulfillment pattern.

Figure 18-3 shows how the duration is inherited from a parent fulfillment pattern.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 12

Figure 18-3 Minimum Processing Duration for an Order Component Inherited in a Fulfillment Pattern

About Minimum Processing Duration Expressions
In addition to specifying a fixed amount of time as the duration, you can use an XQuery
expression. The following expression returns a duration of three hours:

PT3H0M0S

You typically use a duration expression if you have an external system that keeps track of
processing duration and the load levels of systems. You can write a duration expression that
uses this information dynamically. For example, the calculation can take into account peak
activity periods.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 12

Calculating the Earliest Order Component Start Date (Order Start Date)
The first order component to start processing can contain one or more order items. OSM uses
the order item with the earliest requested delivery date to calculate the order component start
date. If there were only one level of order component decomposition in the orchestration plan
and there were no dependencies between order components, OSM would calculate the order
component start date by taking the earliest order item requested delivery date and subtracting
the configured minimum processing duration for the order component. This calculated start
date would also be the order start date.

In the scenario, the following order component start dates are possible:

• If the component start date (also the order start date) is in the future, OSM does not start
the order component until the future date. In the Order Management web client, you would
see:

– The expected order start date would be later than the order creation date.

– The order component Expected Start Date would be the same as the expected order
start date.

– The expected order item start date for all order items in the order component would be
the same as the order component Expected Start Date.

– The expected order completion date and the requested order delivery date would be
identical.

• If the component start date is in the past, OSM starts the order immediately. In the Order
Management web client, you would see:

– The order component Expected Start Date would be the same as the expected order
start date.

– The expected order item start date for all order items in the order component would be
the same as the order component Expected Start Date.

– The requested order completion date would be before the expected order delivery
date.

• If no minimum processing duration was configured for the order component, then the order
component would start on the same day as the requested delivery date, assuming that day
was a future date. In the Order Management web client, you would see:

– The expected order start date would be later than the order creation date.

– The order component Expected Start Date would be the same as the expected order
start date.

– The expected order item start date for all order items in the order component would be
the same as the order component Expected Start Date.

– The requested order completion date would be on the same date as the expected
order delivery date.

• If the order item contained no value for the requested delivery date property, then OSM
starts the order immediately.

About Calculated Order Component Start Dates
The first order component in an order and any initial order component that does not depend on
another order component always uses a calculated start date based on order item requested

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 12

delivery date values. If the order items do not have values for the requested delivery date, then
the order begins processing immediately.

Dependent order items start in the following ways:

• Any dependent order components start immediately after the first or initial order
component completes and all dependencies are resolved. This is the default behavior for
order components.

• You can enable calculated start dates for dependent order components by selecting the
Use Calculated Start Date check box in the Order Component Specification (see
Figure 18-4). Dependent order components use the calculated start date based on the
earliest order item requested delivery date in the order component, minus the order
component duration. See "Modeling Order Component Dependencies and Requested
Delivery Dates" for more information about configuring dependent order component
calculated start dates.

Figure 18-4 Enabling Order Component Calculated Start Dates

For a three stage orchestration cartridge with function, system, and granularity
components, you can enable calculated start dates at the function level if you wanted all
components related to that function to use a calculated start date. Or you can enable
calculated start dates at the system level. In this second scenario, one function might
decompose to more than one system level component and a calculated start date might
only be required for one of them.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 12

Modeling Order Component Dependencies and Requested Delivery Dates
An OSM orchestration cartridge can have several order components with dependencies
configured between them. OSM always honors any order component dependency wait
condition before starting a new order component. You can configure dependent order
components to start immediately after the blocking order component is complete and all
dependencies have been met, or you can use the calculated start date. See "About Calculated
Order Component Start Dates" for more information.

This scenario assumes that the dependency between the order component order items are
between different order items. For example, order item 1 is only processed by order
component A (the blocking order component) and order item 2, which is dependent on order
item 1, is only processed by order component B (the waiting order component).

The following dependent calculated order component start date scenarios are possible:

• If the component start date is in the future, and the blocking order component is complete
with all dependencies met, then OSM does not start the order component until the
calculated start date arrives.

• If the component start date is calculated to a date before the blocking order component is
complete and all blocking order component dependencies are met, then OSM ignores the
calculated start date. The order component begins immediately after the blocking order
component completes and all dependencies are resolved.

• If the order item contained no value for the requested delivery date parameter, then OSM
starts the order immediately.

Modeling Order Items Processed by Multiple Dependent Order Components
If OSM processes an order item in more than one executable order component, and there is a
dependency between these executable order components, then OSM calculates the order
component start dates for the first order component by subtracting the duration from the
longest chain of order component durations involved in processing the order item from the
earliest order item requested delivery date. This ensures that all order components can be
delivered by the requested delivery date. All dependent order components in this scenario
would start immediately after the previous order component was resolved. For example, if
order item 1 is processed by order component A, B, and C, and B and C depend on A, then the
order component start date for A would be the requested delivery date for order item 1 minus
the duration of either order components B or C (whichever was longer) and A. Or, if B was
dependent on A, and C was dependent on B, then OSM would subtract the total duration of A,
B, and C from the requested order delivery date of order item 1 to determine the start date for
order component A.

Revisions of Future-Dated Orders
You can submit revision orders to future-dated orders. The revision order can have a different
requested delivery date than the base order or the same requested delivery date. In either
case, OSM re-calculates the start date for the revision order based on its requested delivery
date and on the minimum processing durations of the revised order components.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 12

Note

Future-dated orders that cancel a future-dated base order are special cases. In this
situation, the base order is canceled immediately, regardless of the requested delivery
dates.

You can submit a future-dated revision order for an order that has already started processing.
Only order components that have not started can have new calculated start dates applied. The
new requested delivery date will trigger a compensation only if the order item specification
requestedDeliveryDate order item property is marked as significant. Any task compensation
required (for example, in previous completed order components) also happens immediately.

As a result of changing a significant order item requested delivery date, OSM calculates a new
orchestration plan. Order components that have compensation tasks set with undo, redo, or
amend do compensation strategies are processed based on the dependency graph of the
revised base order orchestration plan. The order item requested delivery date modification may
change the calculated start date of the order component that is processing the order item and,
by extension, may also change the expected order completion date.

Examples of Calculating the Expected Start Date
The following examples show scenarios for calculating the expected start date for an order and
order components.

Example 1: Calculating Start Dates for Order Components with No Dependencies
In this example:

• A billing function order component has a duration of 2 days and processes order item 1
with a requested delivery date of January 3rd.

• A provisioning function order component has a duration of 3 days and processes order
item 2 with a requested delivery date of January 5th.

• There are no dependencies between order components.

The start date for each order component is calculated as follows:

1. The calculated start date for the Billing order component is calculated using the following
logic:

• Order item 1 requested delivery date January 3th

• Minus Billing order component duration 2 days

• The Billing order component start date is January 1st.

Because there are no dependencies between the order components, OSM calculates the
start date for each order component separately.

2. The calculated start date for the Provisioning order component is calculated using the
following logic:

• Order item 1 requested delivery date January 5th

• Minus Provisioning order component duration 3 days

• The Provisioning order component start date is January 2nd.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 12

Example 2: Calculating Start Dates for Order Components with Dependencies
OSM always uses the final set of order components for in an orchestration plan to determine
the start date for the order component. A final order component has no successor order
components. For example, Figure 18-5 shows the order component processing flow for three
order items. Order components C and E are final order components.

Figure 18-5 Order Component and Order Item Processing Flow

OSM calculates start dates for each order component starting with the requested delivery date
of the final order components minus the order duration and any dependency condition wait
delay duration. In this example:

• Order component C processes order item 1 and 2. Order item 1 has a requested delivery
date of January 8, while order item 2 has a requested delivery date of January 10. OSM
always uses the earliest requested delivery date to calculate the start date for the order
component, which means the January 8 date is used. Because order component C is
configured with a duration of 2 days, then order component C starts on January 6th.

• Order component E processes order item 3 that has a requested delivery date of January
18. Because order component E is configured with a duration of 2 days, then order
component E would start on January 16th.

OSM calculates the start date of order component B by subtracting the configured duration
for order component B (2 days) minus the start date for order component C (January 6th)
resulting in a start date for order component B of January 4th.

OSM uses order component C instead of order component E to calculate the start date for
order component B because order component C is a final order component with an order
item that has the earliest requested delivery date. OSM does this to ensure that all order items
being processed by an order component are not started late, even though they may start early.
In other words, those order items being processed in order component B complete earlier
than order component E needs them, but those order items destined for order component C
complete with sufficient time for order component C to meet order item 1's requested delivery
date of January 8th.

Finally, OSM calculates the start dates for order components A and D. Order component A
has a configured duration of 3 days minus the start date for order component B (January 4th)

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 12

resulting in a start date of January 1st. Order component D has a configured duration of 2
days resulting in a start date of January 2nd.

The order start date is the earliest of all starting order components. In this example, the earliest
order component start date is January 1st for order component A.

Chapter 18
About Order Item Requested Delivery Date and Order Components

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 12

Part IV
Managing OSM Projects

Part IV contains the following chapter about managing OSM projects in an Oracle
Communications Order and Service Management (OSM) solution:

• Managing OSM Solution Cartridges

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

19
Managing OSM Solution Cartridges

This chapter describes managing cartridges in an Oracle Communications Order and Service
Management (OSM) solution.

Solution Management Overview
Cartridges are an important part of every OSM solution. OSM is a metadata-driven system that
includes model entities necessary for order management functions. OSM model entities
include tasks, processes, data elements, data structures, orchestration stages and sequences,
decomposition rules, roles, order life cycle policies, and so on. You define how you want to use
and extend OSM to meet your business needs by creating these model entities in Oracle
Communications Service Catalog and Design - Design Studio. Design Studio is a client
application with editors that allows you to configure the OSM model and model entities. In
addition to the model entities, you can create and include artifacts such as automation plug-ins,
XQuery and XSLT scripts, XML Catalog, and other resource files in a cartridge. You must
package these entities and artifacts and deploy them to the OSM system as cartridges.

Creating and modeling cartridges in Design Studio is a design-time activity. You do not use
Design Studio to manage a run-time environment. Once you have created cartridges in Design
Studio, you can build the cartridges and then deploy them into a run-time OSM environment.
Deploying is the act of installing a packaged cartridge to the run-time environment, which is
where orders are processed, and where end users login and use the OSM Order Management
web client or Task web client to view and manage orders and tasks. The run-time environment
could be an OSM server that is installed on the local computer of a developer along with
Design Studio, or could be a dedicated OSM environment setup with some server hardware.
You do not require an OSM run-time environment to use Design Studio to model and build
cartridges, but you do require an OSM run-time environment to deploy and test cartridges with
test orders.

An OSM solution is typically made up of multiple cartridges. Each cartridge is a building block
that specifies an aspect of the OSM solution. For example, some cartridges may define how
OSM interacts with particular fulfillment systems. Other cartridges may define data dictionaries
common across applications, and shared across other OSS applications such as Oracle
Communications Unified Inventory Management (UIM) or Oracle Communications ASAP.
Some cartridges are more foundational to an OSM implementation, such as those that specify
how orders are represented and how order decomposition and orchestration occur. Together,
they contain the directives of the OSM implementation for a particular deployment such as
OSM running in the central order management (COM), service order management (SOM), and
technical order management (TOM) roles.

Cartridges allow you to decouple solution behavior from the core OSM system that the
cartridges run on. This decoupling allows you to upgrade to a newer versions of OSM to take
advantage of improvements without needing to make extensive changes to the solution
cartridges.

Cartridges can also help you manage development cycles. You can use cartridges to divide
OSM development work into logical pieces among development team members contributing to
the implementation. For example in Figure 19-1, OSM developer 1, 2, and 3 work in parallel on
different component cartridges in the solution. You can also port cartridges between OSM

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 37

environments. This is useful for sharing between developer team members, promoting
cartridges from development to test environments, or from test to production.

Figure 19-1 Cartridge Portability in Development, Test, and Production Systems

About OSM Cartridge Scope
Cartridge scope refers to which entities an OSM order has access to. If a particular OSM entity
is considered in scope for an order, that entity can be used to influence how that order is
processed.

The scoping mechanism of OSM has evolved over the years. For information about the history
of scoping in different releases of OSM, see knowledge article 2077384.1, Cartridge
Management and Versioning, on the Oracle support website:

https://support.oracle.com

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 37

https://support.oracle.com

Scope of OSM Entities Without Namespaces
Some OSM entities, such as orders, processes, tasks, composite cartridge views, and
resource files, do not have namespaces defined for them.

Design Studio Entities
Design Studio entities that do not have namespaces have visibility only to other entities
contained within the same cartridge. At run time, they cannot be referenced by an entity that
resides in another cartridge or another version of the same cartridge.

However, at design time (in Design Studio), you can reference entities across cartridges even if
those entities do not have namespaces. For example, when designing a process flow, you can
include a task from another cartridge. When you do this, Design Studio includes the referenced
entity in the cartridge when it is built, so that it will be available at run time.

XML Catalogs and Resource Files
In addition to specific entities in Design studio, an OSM implementation typically contains other
resource files in the cartridges. XQuery and XSLT files are the most common types of resource
files, but there can also be other types of files such as Java files or other XML configuration
files. In addition, there my be XML catalog files. The scoping of these resource files is the
same as with other entities that do not have namespaces:

• For standalone cartridges, the resource entities belong to a local or global pool, depending
on the configuration of the FullScopeAccess parameter in the oms-config.xml file. For
more information about this setting, see "Standalone Cartridge Scope."

• For solutions using composite cartridges, the scope of resource files is defined by the
contents of the composite cartridge.

Scope of OSM Entities with Namespaces
For orchestration entities such as order component specifications, order item specifications,
and order recognition rules, there is an explicit namespace attribute that you can specify in
Design Studio.

Entities with namespaces are referenced by their fully qualified names. The fully qualified
name is the combination of:

• Entity type – for example, Order Component Specification

• Entity name – for example, TargetSystem

• Entity namespace – for example, http://oracle.centralom.topology

Figure 19-2 is a simple example of how an entity with a namespace is referenced by another
entity. Referencing by fully qualified name occurs automatically when the cartridges are
packaged at build time, as long as you provide appropriate entity namespace values in Design
Studio.

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 37

Figure 19-2 Referencing an Orchestration Entity by Fully Qualified Name

The cartridge name (OsmCentralOMExample-Topology) is not part of the fully qualified name.
Entities can freely reference entities of other cartridges as long as the fully qualified name is
unique in the run-time environment.

Standalone Cartridge Scope
Scope considerations are different depending on whether your cartridges are standalone or
grouped using composite cartridges. For more information about the different cartridge types,
see "About Cartridge Types."

OSM builds a resource pool for each cartridge that contains an order when it is loaded. The
contents of this pool are determined by the
oracle.communications.ordermanagement.resource.FullScopeAccess parameter in the
oms-config.xml file. By default, this parameter is set to restrict the resource pool to only the
resources in the cartridge. You can also set it to enable either all cartridges or specific
cartridges to access all of the resources in your solution. For more information about this
parameter, see the discussion of oms-config.xml in OSM System Administrator's Guide, or
see knowledge article 1568944.1, Cartridge Resources Not Picked Up Correctly for
Multiple Cartridge Versions, on the Oracle support website.

For cartridges that have access to all resources, resources in this pool are accessed according
to three levels of priority:

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 37

1. Resources in the local cartridge version

2. Resources in other cartridge versions with the same cartridge namespace (with no
determined order between versions)

3. Resources in all other cartridges (again, with no determined order)

The different access priorities in the pool mean that it is more likely that the OSM server will
find the correct copy of an entity with a namespace, but does not completely eliminate the
potential for namespace collisions.

XML Catalog Files in Standalone Cartridges
If you are using standalone cartridges, it is important to locate the XML catalog files in the
same cartridge as the entities that call them, or the wrong file can be picked up, meaning that
the wrong namespace translation will take place, and therefore the wrong resources will be
selected.

Avoiding Namespace Collisions for Design Studio Entities
A namespace collision may occur when multiple entities with namespaces have the same fully
qualified name in a run-time environment. This is not unusual when multiple versions of the
same cartridge are deployed. For example, in Figure 19-3, the TargetSystem order component
has the same fully qualified name in both versions 1.0 and 1.1.

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 37

Figure 19-3 Namespace Collision of an Orchestration Entity

In the event of namespace collision, it is not possible to predict which version will be used. In
the example, it is unknown whether version 1.0 or 1.1 of TargetSystem will be loaded by OSM,
but both versions 1.0 and 1.1 of the OsmCentralOMExample-Orchestration cartridge will use
the same version of TargetSystem, which means one of them is using the wrong version.

To avoid namespace collision across cartridge versions, you can include the cartridge version
in the entity namespace. In the example above, the namespace can be specified as http://
oracle.centralom.topology/1.0.0.0.0. The best way to do this is using an XML catalog, which
you can use to translate the namespaces of entities so that they include the cartridge version.
See "Using XML Catalogs to Support Cartridge Versioning" for details.

Avoiding Namespace Collisions for Resource and XML Catalog Files
In the same way as for other entities without namespaces, if you are using standalone
cartridges, it is possible for your solution to reference an unintended version of a resource file
when multiple cartridge versions exist. You can avoid this problem for XQuery files if you locate
them using a URI that is mapped to a cartridge-version specific location using the XML
Catalog.

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 37

Figure 19-4 contains an example where the OsmCentralOMExample-Orchestration cartridge
references an XQuery file located in a centralized resource cartridge
OsmCentralOsmResources, and that two versions, 1.0 and 1.1, have been deployed:

Figure 19-4 XML Catalog Conflict

If the XQuery file is referenced using a URI like the following:

http://oracle.centralom/base/xquery/updateOrderFS.xqy,

and the XML Catalog for cartridge version 1.0 has a rewriteURI entry like this:

http://oracle.centralom/base -> osmmodel:///OsmCentralOsmResources/1.0.0.0.0/resources

and the XML Catalog for cartridge version 1.1 has rewriteURI entry like this:

http://oracle.centralom/base -> osmmodel:///OsmCentralOsmResources/1.1.0.0.0/resources

then there is no ambiguity when locating the XQuery file. Entities in the
OsmCentralOMExample-Orchestration cartridge version 1.0 will find the XQuery resource in
version 1.0 of the OsmCentralOsmResources cartridge, because the URI of the XQuery file will
be resolved to:

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 37

osmmodel:///OsmCentralOsmResources/1.0.0.0.0/resources//updateOrderFS.xqy

Composite Cartridge Scope
A composite cartridge is a special type of cartridge that does not directly contain any OSM
entities at design-time. Instead, it contains references to other cartridges (referred to as
component cartridges) that make up an OSM service or solution. The composite cartridge has
its own 5-segment version number that you can manage, and contains a list of component
cartridges that make up the composite cartridge. For more information about composite
cartridges, see Design Studio Modeling OSM Orchestration Help. Oracle recommends that you
use composite cartridges in your solution, as they help reduce versioning problems and
namespace collisions.

The composite cartridge provides solution-level scoping boundaries that are appropriate for
running concurrent cartridge versions of an OSM implementation. When the composite
cartridge is built, all of the entities without namespaces from the component cartridges are
aggregated to become one new deployable cartridge. This run-time cartridge has a
namespace that is the name of the composite cartridge. However, all of the entities with
namespaces are built into their respective component cartridges as usual.

For XML catalog files in composite cartridges, unlike in standalone cartridges, it is only
necessary to ensure that the XML catalog is located somewhere with the scope of the
composite cartridge to ensure that the correct version will be used.

Figure 19-5 is an example of a composite cartridge having two component cartridges (a base
cartridge and a billing cartridge), and how the run-time cartridges will be generated by the build
process:

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 37

Figure 19-5 The Use of Composite Cartridges in Design Time and Run Time

In this example, a run-time cartridge named COMExample-Soln is generated to contain all of
the entities without namespaces, such as orders, processes and tasks. The component
cartridges, COMExample-Base and COMExample-Billing, still contain their entities with
namespaces. When the composite cartridge is deployed, all of the design-time component
cartridges and the generated component cartridge are deployed to the run-time environment.
When an incoming order is handled by an order entity in this composite cartridge version, it is
given the namespace of the generated cartridge, which is the name of the composite cartridge,
COMExample-Soln.

Because all of the entities without namespaces are aggregated into a single cartridge, there is
no ambiguity about which entity is referenced. Even if multiple versions of the cartridge are
present in OSM, only one version of the cartridge would be included in the composite cartridge.
In our example, if cartridge COMExample-Billing version 1.0 and 1.1 are deployed, the
BillingFunctionTask task from the COMExample-Billing cartridge version 1.0 will be used by
orders that are tied to COMExample-Soln version 1.0, since the order and the task are now
confined to a single cartridge and version.

Composite cartridges also address the problem of namespace collision for entities with
namespaces. The composite cartridge establishes a manifest that explicitly specifies the
component cartridge version whenever an entity dependency is established across cartridges
in the solution. Entities and resource files in the component cartridge version are confined to
the OSM solution defined by the composite cartridge. So, in the example, if the COMExample-
Billing version 1.0 and 1.1 cartridges are both deployed, orders tied to COMExample-Soln 1.0

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 37

will use entities from version 1.0 of COMExample-Billing instead of version 1.1, even when the
same fully qualified name exists in both, because the. This means that, when you use
composite cartridges, you do not need to include the cartridge version in the namespace of
entities to avoid namespace collisions.

Special Cases for Scope
Some entities are special cases with regards to scope. First, there is the order recognition rule.
Since the order recognition rule is evaluated before the order is selected, its scope cannot be
based on the cartridge in which it is located. Also there is the fulfillment pattern, which works
differently because the namespace used is based on the order item.

Order Recognition Rules
Order recognition rules (ORRs) are a special case for scoping. When the CreateOrder API is
called, OSM does not know the version or namespace of the incoming order. The purpose of
ORRs is to be able to determine the kind of order contained in an inbound message. Even
though an ORR has a namespace field, its scope is system-wide: all ORRs in the OSM run-
time environment are used to recognize the contents of the CreateOrder message, regardless
of which cartridge contains the ORR. This is true for ORRs regardless of whether they are in
standalone cartridges or component cartridges contained by a composite cartridge. Essentially,
ORRs ignore both cartridge version and namespace.

So if you have two versions of an ORR that are both deployed and will pick up the same order
type, there is a non-namespace way to configure which ORR will pick up new orders of the
relevant type. The Relevancy setting in Design Studio determines the order in which the
ORRs are evaluated. OSM will run ORRs on an inbound message from highest to lowest
relevancy until an ORR recognizes the order. If two ORRs have the same relevancy, it is not
predictable which one will be evaluated first. Once an ORR is matched, the incoming order is
tied to the target order type (and thus its cartridge namespace) that the ORR designates, and
further rules are not evaluated.

Fulfillment Patterns
Fulfillment patterns are responsible for determining the fulfillment of an order item in the
generated orchestration plan. Fulfillment patterns have a namespace. However, finding the
fulfillment pattern of an order item is a unique case in scoping. In Design Studio, the order item
is mapped to a fulfillment pattern using the value in the Fulfillment Pattern Mapping Property
field, which contains a string to map to a fulfillment pattern name. OSM finds the Fulfillment
Pattern by fully qualified name (not just the string contained in the property field), using the
namespace of the order item to determine what namespace to look for in a fulfillment pattern.
Because of this, it is important to use the same namespace for both order items and their
related fulfillment patterns in your OSM solution. Otherwise, OSM cannot find the fulfillment
patterns for the order items.

Fulfillment Patterns in Standalone Cartridges

In the same way that there can be scoping issues with regular entities in standalone cartridges,
there can be scoping issues for fulfillment patterns as well. The example depicted in
Figure 19-6 shows what happens if the version number is not included in the namespace of an
order item in a standalone cartridges. The COMExample-FulfillPattern version 1.0 cartridge
contains the Service.Broadband, Service.Fixed, and Service.Mobile fulfillment patterns. The
COMExample-FulfillPattern version 2.0 cartridge introduces the new Service.VOIP fulfillment
pattern as well as making changes to existing fulfillment patterns. If the namespaces do not
contain cartridge versions, finding Service.Broadband results in matching whichever of the

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 37

fulfillment patterns was in the version of the cartridge that happens to have been deployed
most recently. This results in unpredictable behavior in orchestration plan generation.

Figure 19-6 Fulfillment Patterns in Standalone Cartridges

Fulfillment Patterns with Composite Cartridges

In contrast, with the use of composite cartridges, OSM matches only fulfillment patterns that
are encapsulated in the same composite cartridge. In the example in Figure 19-7, for orders in
cartridge version 1.0, only Service.Broadband in COMExample-FulfillPattern1.0 is matched.

Chapter 19
About OSM Cartridge Scope

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 37

Figure 19-7 Fulfillment Patterns Encapsulated in Composite Cartridges

Managing Cartridge Versions
To distinguish changes in a cartridge over time, each cartridge has a cartridge version. As your
OSM implementation evolves to keep up with business, you can either introduce cartridge
changes by overwriting the existing cartridge version, or by deploying as a new cartridge
version. The longer the order lifetime is, the greater the likelihood that you will need multiple
cartridge versions deployed at the same time.

Changes can be made to cartridges for different reasons, including fixing implementation
details and enhancing the cartridge to meet new requirements. Often, the changes that need to
be made in a cartridge are not compatible with the way the cartridge currently works, or may
be disruptive to the in-progress orders that are running in the current version of the cartridge.
This is the primary reason to introduce a new version: deploying a new version of a cartridge
allows new orders to use the new cartridge, while in-flight orders can continue without
disruption using the version of the cartridge that they started with.

One consideration to keep in mind when planning solution maintenance is the order lifetime.
The time needed to fulfill orders for a service provider varies among different domains of
products and services. For example, consumer orders for mobile services may be seconds or
minutes to complete, while consumer orders for fixed line services may take minutes to days,
particularly if those orders require human interactions such as physical equipment adjustments
or shipments. Business services may take days, weeks, or even months to complete, where an
order can encapsulate the services of multi-site network with lots of equipment, off-net
components, cabling, and so on.

In OSM, existing orders that are running in the system will continue to run against the existing
cartridge version that they were using. For example, if order 123 is in progress using cartridge
A version 1, and then cartridge A version 2 is deployed to the run-time system, then order 123

Chapter 19
Managing Cartridge Versions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 37

will continue to run to completion using cartridge A version 1. This is also true for existing
future-dated orders for cartridge A version 1even if the start date has not arrived.

Making Changes to Existing Cartridge Versions
If you have very short-lived orders, it is possible to avoid having different versions of cartridges
at the same time, by deploying changes to the cartridges without changing the version. To do
this without breaking existing orders, a possible strategy is to allow OSM to complete the
fulfillment of all orders, followed by an order purge operation that removes them from the
environment (since, once the new cartridge is deployed, OSM may not be able to understand
the old orders). However, there are several drawbacks to this strategy:

• It does not allow you to keep completed orders in the system for troubleshooting, auditing,
and reporting purposes.

• It limits your implementation's ability to handle inter-order dependencies, because you
cannot guarantee that the parent orders are still in the system.

• There are also operational complications that can arise, because there will be some orders
that take longer to complete than others, and there may be order fallout that needs to be
handled. This would mean that at least some order fallout would need to be handled
outside of OSM, rather than managing it using the order fallout capabilities of OSM.

Aside from the scenario mentioned above, where you have only very short-lived orders, you
should always plan to use cartridge versioning in your production environment.

However, even if you are using cartridge versioning in your solution, you do not need to
introduce a new cartridge version every time you make a change. There are cases where it is
better to make changes to an existing cartridge version and redeploy it, instead of creating a
new cartridge version, such as:

• If you have critical bug fixes that should affect existing orders, and the fixes would not
make the cartridge incompatible with existing orders, it may make sense to deploy the fix
to the same cartridge version that causes the problem.

• If you have changes need to become effective immediately, applying to existing in-
progress orders, you may want to deploy the changes in the existing cartridge version. For
example, if there is an interface change in a downstream system, and it no longer supports
the original version of the interface, that would require OSM to adapt to the new interface
across all cartridge versions.

Generally speaking, the longer that orders take to complete, the more business pressure there
is to make changes that existing orders can use.

When when you need to make changes to existing cartridge versions, it is important that you
ensure that all in-progress orders can continue to be run against the cartridge after the
changes are made. For technical and best practice guidance towards safely making changes
to existing cartridge versions, see knowledge article 2077384.1, Cartridge Management and
Versioning, on the Oracle support website.

Making changes to existing cartridge versions is inherently risky, and so adequate test
coverage is an essential part of the process, to ensure that all in-progress order scenarios are
not impacted (for example, do not stop processing) by the changes to the cartridges.

In general, it is important to minimize the number of cartridge versions that you introduce for
performance reasons. See the discussion of cartridge management strategy in OSM System
Administrator's Guide for more information about removing old versions of cartridges when
they are no longer necessary.

Chapter 19
Managing Cartridge Versions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 37

Handling Multiple Cartridge Versions
The Cartridge and Composite Cartridge editors in Design Studio contain several fields that
make up the version number. There are five fields that you set to indicate the version of a
cartridge: Major Version Number, Minor Version Number, Maintenance Pack, Generic
Patch, and Customer Patch. These constitute a 5-digit version number, for example,
1.0.0.0.0. In addition to the cartridge version, there is a read-only Build Number field that is
automatically incremented by Design Studio each time a cartridge is built. It is not reset when
the cartridge version is changed.

To deploy a new cartridge version, change the value of the version fields and deploy the
cartridge. Multiple cartridge versions can be deployed in an OSM environment at the same
time, with orders running against each version.

Some additional configuration is necessary to deploy multiple versions of a cartridge to an
OSM environment. All of the following considerations should be taken into account when
implementing multiple cartridge versions:

• The DEFAULT_CARTRIDGE cartridge management variable:

Ideally, only one version of a cartridge should be set as the default version of the cartridge.
For example, if you have versions 1.0.0.0.0 and 2.0.0.0.0 of an OSM cartridge deployed,
only one of them should be set as default. For more information, see "Designation of the
Default Cartridge Among Cartridge Versions."

• Composite and component cartridge versions:

When you update a component of a composite cartridge, you do not always need to
update the version of the composite cartridge as well.

For example, if CompositeCartridge version 1.0 references ComponentCartridgeA version
1.0 and ComponentCartridgeB version 1.0, when you update ComponentCartridgeA to
version 1.2, the composite cartridge and ComponentCartridgeB can both remain at version
1.0.

• Cartridge versioning using the XML Catalog:

In standalone cartridges, the XML Catalog should be used to allow multiple cartridge
versions to refer to their own set of resources using the cartridge model variable
CARTRIDGE_VERSION.

If a rewriteURI entry in the XML catalog contains a version-specific portion in the URI such
as “1.0.0.0.0" in the following:

<rewriteURI uriStartString="http://example.com/" rewritePrefix="osmmodel:///
MyCartridge-Resources/1.0.0.0.0/resources"/>

the version-specific portion of the rewriteURI entry must be updated to point to the correct
cartridge version.

See "Using XML Catalogs to Support Cartridge Versioning" for more information.

• Automation – External Event Receiver:

When there are multiple versions of automation external event receivers listening to the
same JMS Source, OSM uses the JMSCorrelationID to ensure that the message is
consumed by the correct receiver, as long as the external automation receiver is named
using the format taskName.automatorName, and there is only one external automation
receiver associated with the task.

If your receiver does not have the name format taskName.automatorName, or there is
more than one external automation receiver associated with the task, the message

Chapter 19
Managing Cartridge Versions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 37

listening filter criteria of your automation plug-in must guarantee not to pick up a message
that should have been picked up by another cartridge version. This may happen if, for
example, your system has asynchronous interaction with an external system that takes
days to fulfill your request and you have modeled the correlated response to return to a
different task than the one that sent the message, or it might happen if you have an old
(pre-OSM 7.0.3.1) cartridge that you have not updated.

See "Properties View External Event Receiver Tab" in Modeling OSM Processes for the
External Event Receiver sub-tab of the properties view in the automated task editor
Automation tab for more information.

• Order recognition rule:

When there are multiple versions of a cartridge with orchestration entities, order
recognition rules should be modeled to recognize a specific version of the order instead of
the default version. To recognize a specific version of the order, the Target Order Version of
the order recognition rule should be set to the version of the cartridge where the specific
version of the order resides.

When an order recognition rule is used in a composite cartridge and there are multiple
versions of the composite cartridge, the Target Order Version of the order recognition rule
should be set to the version of the composite cartridge that contains the target order as
part of the solution. For example, you might have version 1.0.0.0.0 of the
OsmCentralOMExample-Solution composite cartridge with the following dependent
cartridges:

– OsmCentralOMExample-Orchestration version 1.2.0.0.0 –
OsmCentralOMExampleOrder is defined here

– OsmCentralOMExample-ProductSpec version 2.0.0.0.0

– OsmCentralOMExample-FulfillmentPattern version 2.0.0.0.0

– OsmCentralOMExample-Topology version 1.1.0.0.0

The target order version of the order recognition rule should be set to 1.0.0.0.0, because
that is the version of the composite cartridge.

Migrating Orders to a New Version of a Cartridge
Only orders that are in the Not Started order state can be migrated to another cartridge or
cartridge version. All running orders (in any order state other than Not Started), including
future-dated orders, must continue to run to completion against the version of the cartridge in
which they were created.

It is possible to mimic migrating orders to a new cartridge version by re-submitting in-flight
orders as new orders to the new cartridge version. This requires either the in-progress
fulfillment flow to be manually cleaned up in the various external systems before the order is
resubmitted, or the flow itself to be configured so that past activities can be repeated without
needing to be undone (for example, so that you can resend a message to a downstream
system without having to undo any previous commands). This is not a recommended option,
but can be a possibility, depending on the specifics of your OSM implementation.

Designation of the Default Cartridge Among Cartridge Versions
If there are multiple versions of the same cartridge deployed, you must designate which
version is to be used for to an inbound order. It is possible (but not required) to specify the
cartridge version in the CreateOrderbySpec request. In the CreateOrder request, the target
version cannot be specified as input parameter, but can optionally be defined by the matched
ORR. Alternatively, you can configure the ORR to use the default version of the cartridge. In

Chapter 19
Managing Cartridge Versions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 37

any case, there must be a way to determine which version of the cartridge should handle the
order if the cartridge version is not defined on the order or set by the order recognition rule.

For standalone cartridges, the default designation is configured using the
DEFAULT_CARTRIDGE cartridge management variable. This variable should be set to true
for the version that should handle new orders, typically the latest cartridge version. For
instance, if version 1 of cartridge A is already deployed and has orders running against it, and
version 2 of cartridge A is deployed as the new default version, then new orders created in the
run-time system for cartridge A will run against version 2, and any changes made for version 2
will be effective for those new orders.

For composite cartridges, the default is set in the same way, only it is set on the composite
cartridge. When the DEFAULT_CARTRIDGE cartridge management variable is set to true, all
the composite cartridge's component cartridges are considered the default versions. The
default settings of the component cartridges do not have an effect, only the setting of the
composite cartridge.

For both standalone and composite cartridges, the OSM server always recognizes exactly one
version as the default for each cartridge namespace. When multiple cartridge versions are
deployed that have the default flag set to true, the OSM run-time environment will make the
last deployed of these versions the default cartridge. Because of this, special attention is
required when redeploying an old cartridge version. When you create a new cartridge or
composite cartridge in OSM, by default, the DEFAULT_CARTRIDGE cartridge management
variable is set to true. When you deploy the versions in numeric order, the latest version will be
the default. However, if you redeploy an earlier version after a later version, you must ensure
that you have set the DEFAULT_CARTRIDGE cartridge management variable to false for that
earlier version. There is no warning in Design Studio or on the run-time server that there is an
older version of a cartridge being deployed as the default, so you must take care to set the
value properly.

Handling Revision Orders When Multiple Cartridge Versions Are Deployed
OSM always creates revision orders with the same cartridge version as the base order. This is
because otherwise, generating and executing compensation can cause errors because entities
in the new version are not available in the original cartridge version. The detection of order
revision and the choosing of cartridge version are handled automatically by the OSM server.

For example, order 123 is created against cartridge A version 1.0, and is currently in an In
Progress state. Next, version 1.1 of cartridge A is deployed and is now the default version of
the cartridge, and all new orders for cartridge A will be run against version 1.1. Then a revision
for order 123 is submitted to the system. When OSM detects that this is a revision of order
123, and that order 123 is running against version 1.0 of cartridge A, it creates the revision
order for version 1.0 of cartridge A, then proceeds with the amendment process.

This means that all subsequent revisions of the order will be created against the same
cartridge version as the original order. There is no way to override this behavior. Regardless of
any information set on the order or by the ORR, revision orders will use the same cartridge
version as the original order.

Working with Cartridges in OSM Cloud Native
For cartridge considerations in an OSM cloud native environment, see "Preparing Cartridges
for OSM Cloud Native" in OSM Cloud Native Deployment Guide.

Chapter 19
Working with Cartridges in OSM Cloud Native

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 37

Building and Packaging a Cartridge
Use Design Studio to package a cartridge by specifying entities to include in the cartridge. By
default, all entities created within the cartridge are included unless otherwise specified on the
Order and Service Management Cartridge editor Packaging tab.

To build cartridges:

• From the Project menu, select Build.

Oracle recommends that you periodically clean the project prior to a build (see "Cleaning
and Rebuilding Cartridges Prior to Deployment.")

For instructions on how to package and build a cartridge, see "Packaging and Deploying OSM
Cartridges" in Modeling OSM Processes.

About Generating OSM Cartridges and Deployment Options
When you build OSM cartridges, Design Studio generates a portal archive (PAR) file for each
cartridge, which is a ZIP file packaged to contain the metadata interpretable by the OSM run-
time environment. This PAR file has the .par file extension, and is the artifact sent to the OSM
server when deploying a cartridge. The name you choose for the cartridge becomes the name
of the PAR file. Design Studio saves the PAR file to the cartridgeName/cartridgeBin directory,
that you can view from the Java perspective Package Explorer.

Both the design-time project files in Design Studio and the deployable PAR file stored on the
OSM run-time environment are referred to as cartridges. Often, the context of the discussion
clarifies which artifact is being referred to.

You can deploy OSM cartridges using either of the following tools:

• Design Studio environment perspective: Typically, developers and testers managing
their own run-time environments use Design Studio to deploy cartridges. Developers may
perform build, deploy, and test cycles many times a day. You can deploy cartridges from
Design Studio using the Studio Environment Perspective. See Design Studio Concepts for
more information about deploying cartridges using the Design Studio environment
perspective.

• Design Studio cartridge management tool (CMT) (Traditional OSM Only): Oracle
recommends CMT (packaged with Design Studio) for deploying cartridges to production,
pre-production, or automated testing environments. The cartridge management tool is a
set of ANT scripts for deploying and un-deploying cartridges to a run-time environment.
Script-based deployment is important for run-time environments that are under strict
operational control and require an automated, repeatable way to build, deploy and un-
deploy cartridges. See Design Studio Developer's Guide for more information about CMT.

• OSM DB Installer: OSM cloud native uses a different mechanism for deploying cartridges.
See "Deploying Cartridges Using the OSM DB Installer" in OSM Cloud Native Deployment
Guide for more details.

Both tools connect to the OSM server using the Cartridge Management Web Service (CMWS)
deployed in WebLogic.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 37

Note

The XML Import/Export (XMLIE) application is a legacy client that can manage
cartridges. It does not connect over CMWS. Do not use XMLIE to deploy cartridges
unless you are supporting an OSM 6.x implementation. See OSM System
Administrator's Guide for more information about XMLIE.

You can configure how orders are fulfilled by deploying cartridges in different ways. For
example:

• You can deploy different cartridges on different instances of OSM. For example, you can
deploy a specific set of cartridges on an instance of OSM that is dedicated to central order
management.

• You can make changes to a cartridge after the cartridge has been deployed to the OSM
server by making changes to the original cartridge in Design Studio and then redeploying
the cartridge.

• You can fulfill orders differently by using functionality deployed by different cartridges.

• You can fulfill orders differently based on functionality deployed by different versions of the
same cartridge.

For instructions on how to create a cartridge in Design Studio, see "Packaging and Deploying
OSM Cartridges" in Modeling OSM Processes.

About Cartridge Types
You can create the following OSM cartridge types using Design Studio:

• Component cartridge: Component cartridges contain a part of the OSM model entities in
an overall OSM solution. For example, some component cartridges may define OSM
model entities for interacting with particular fulfillment systems, such as a shipping system,
or a billing and revenue management system, or OSM system running in a different role.
Other component cartridges may define data dictionaries common across OSS or BSS
applications.

• Composite cartridge: Composite cartridges designate an OSM solution by referencing a
collection of component cartridges. The composite cartridge does not contain any OSM
model entities itself but acts as a container that includes the component cartridges it
references. For this reason, composite cartridges are also called solution cartridges.
When you deploy a composite cartridge, all the included component cartridges are also
deployed, effectively deploying the entire OSM solution in a single action. Oracle
recommends using composite cartridge to manage the component cartridges of an OSM
implementation in the production environment. Composite cartridge projects may contain
any number of component cartridges, but not other composite cartridges.

• Standalone cartridge: Standalone cartridges are component cartridges that are not part
of a composite cartridge solution. Standalone cartridges can have dependencies to other
standalone cartridges, but cannot be dependent on any component cartridge within a
composite cartridge solution.

About Design Studio Editors for OSM Cartridges
Figure 19-8 shows an example of a cartridge, named myCartridge, as it appears in the Design
perspective Cartridge view (left side). The corresponding Order and Service Management
Cartridge editor is also shown (right side).

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 37

Figure 19-8 Cartridge View of a Cartridge

Expand the cartridge in the Cartridge explorer pane (on the left in Figure 19-8) to see the
contents created with each cartridge. For a component cartridge, this includes a default order
based on the name of the cartridge. When you initially create a new OSM component
cartridge, errors are always present because the default order requires you to define:

• A creation task

• A default process

• A role that grants creation permissions

• An order life-cycle policy

• An order template

• Order permissions

A composite cartridge does not require these entities, so there are no errors when it is initially
created. For a component cartridge, after these entities are defined for the order, the errors are
resolved, but the graphic will still show the presence of an error by placing a small red "x" box
on the lower left corner of the icons in the Cartridge explorer pane. This is because the graphic
shows what is present when the cartridge is created. When the errors are resolved, the pane
reflects the additional entities of a process and a life-cycle policy that are not part of cartridge
creation.

Switching to the Java perspective Package Explorer view and expanding the cartridge displays
the file types of the contents created with each cartridge.

Figure 19-9 shows an example of a cartridge, named myCartridge, as it appears in the Java
perspective Package Explorer view. The corresponding Order and Service Management
Cartridge editor is also shown.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 37

Figure 19-9 Package Explorer View of a Cartridge

In the example, myCartridge was entered in the Project name field when creating the
cartridge. As a result, the Java perspective Package Explorer view shows:

• myCartridge: The Design Studio Order and Service Management Cartridge project.

• myCartridge/dataDictionary/myCartridge.xsd: The schema file used internally by
Design Studio.

• myCartridge/model/myCartridgeOrder.order: The Order editor.

• myCartridge/myCartridge.osmCartridge: The Order and Service Management Cartridge
editor shown on the right side of Figure 19-9.

After creating the cartridge, an immediate build of the project creates additional directories and
files in the cartridge, as shown in Figure 19-10. The directories include, among others:

• cartridgeBin

This directory contains the myCartridge.par file, which contains the Design Studio entity
files and is deployed to the OSM server.

• customAutomation

This directory is created with the cartridge, but the automationMap.xsd and
databasePlugin.xsd files are pulled into the cartridge with the build.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 37

Figure 19-10 Package Explorer View of a Cartridge After a Build

Note

If working with automation plug-ins, the directories and files listed below are important:

• src directory

• Referenced Libraries/automation_plugins.jar

• cartridgeBin/cartridgeName.par

• customAutomation/automationMap.xsd

• customAutomation/databasePlugin.xsd

• resources directory

For more information, see "About Automation Plug-ins."

Organizing Design Studio and Naming Conventions
Oracle recommends that you determine a set of naming conventions for the Design Studio
entities being created and a directory structure to contain those elements that is appropriate to
your implementation. Following is an example set of naming conventions for selected

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 37

configuration elements within Design Studio. However, each project team should determine
what conventions are suitable for a particular project.

Table 19-1 Suggested Design Studio Naming Conventions

Metadata Element Naming Convention Sample

Order recognition rules Use the convention of
OrderTypeORR

SalesOrderORR

ProvisioningOrderORR

Order item specifications Use the convention of
OrderItemTypeItemSpec

CentralOrderItemSpec

Fulfillment patterns Use a name that indicates the
fulfillment flow being supported.

For example:
PS_FulfillmentType_SpecType

PS_Service_Broadband

Fulfillment modes Use names that clearly identify the
type of action to be taken

DELIVER

QUALIFY

QUOTE

Order component
specifications: Fulfillment
actions

Use names that indicate the
function of the fulfillment action; for
example, Billing, or Shipping.

ResidentialBillingFunction

EnterpriseBillingFunction

ProvisioningFunction

Order component
specifications: Fulfillment
target systems

Use names that indicate the
function of the target system; for
example, Billing, or Shipping.

BillingSystem

CRMSystem

ServiceManagementSystem

Order component
specifications: Processing
Granularity

Use names that correspond to the
order structure defined in the
product catalog; for example, Item,
Bundle, and Order.

ItemBased

BundleBased

OrderBased

Orchestration stages Use names that describe the
stages.

DetermineFulfillmentFunctionStag
e

DetermineFulfillmentSystemStage

DetermineProcessingGranularitySt
age

Orchestration sequences Use the convention
CartridgeNameSequence

SalesOrderFulfillmentSequence

Decomposition rules Use the naming convention
DR_FunctionName_To_SystemNa
me for system decomposition rules

Use the naming convention
DR_DetermineGranularity_For_Fu
nctionName for granularity
decomposition rules

DR_BillingFunction_To_ResBRM

DR_DetermineGranularity_For_Bill
ingFunction

Cartridge Packaging Design
When you model OSM entities, you can define separate cartridges and combine them in a
single solution. This allows you to create individual cartridges for specific purposes, and to
create a library of cartridges which can be shared across multiple solutions. This approach can
result in lower maintenance, better performance, and easier collaboration within the
implementation team.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 37

While each deployment has its own specific considerations, Oracle recommends that you
consider the following guidelines:

• Build separate cartridges based on function. For example, build separate cartridges for
COM, SOM, and TOM roles.

• Put configuration elements that are more commonly changed into a separate cartridge for
ease of maintenance.

• If a component has distinct notification and status management requirements, use a
separate cartridge and pass the data to this "sub-order" from the main order. For example,
if the process of shipping a piece of equipment involves interactions with three to four
systems and multiple notifications to other systems, consider creating a "Shipping order
management cartridge" to handle this requirement.

• For a given cartridge, limit the total number of sub-processes and the number of tasks per
sub-process for ease of maintenance. Consider limiting both to ten or fewer, although in
some situations more might be required.

• Consider defining a cartridge which contains only a data dictionary with data nodes and
structures that are specific to a technology or service or space. Other cartridges can then
reference this data.

Modifying the Build
If you need to modify the build performed by Eclipse, you can modify the build files that are
provided with the creation of each cartridge. Common modifications include adding logic to the
build file for the generation of Java code and the creation of JAR files. The build file for each
cartridge is:

• CartridgeName/src/build.xml

The CartridgeName/src/build.xml file can be customized to add files to the lib directory. For
example, you may want to get a JAR file from another project as part of the build or do some
other custom staging activity. Nothing in the lib directory goes on the classpath automatically.
You can do this manually as well.

About XML Catalogs
XML Catalogs are logical structures that act like address books or directories. XML Catalogs
contain entries that indicate a placeholder location and then provide the path to the location to
be used. At run time, when OSM processes a URI you specify as part of the OSM data model,
OSM first attempts to resolve the URI against the XML Catalogs you specified. Based on the
mapping defined in the XML Catalogs, OSM can update the URI to adapt to different
environments by resolving the location of the URI in your data model with the location it is
mapped to in the XML Catalog. For example:

• OSM resolves a URI against a test server in a test environment and resolves that URI
against a different server in a development environment.

• OSM resolves the location of files in a developer's local workspace to the location of
equivalent files available to the OSM server at a generic URI. You might use XML Catalogs
in this way for XQuery module import statements that at design time need to refer to files in
your local workspace but at run time need to refer to files within the resources directory of
a deployed cartridge.

• Your OSM model might reference a resource located on the Internet. If your server
deployment runs behind a firewall with no Internet access, you can load the resource
behind the firewall and use an XML Catalog to redirect the URI of the Internet location to
the location of the resource behind the firewall.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 37

For more information on XML Catalogs and valid XML Catalog entries, see the OASIS web
page:

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

See "Using XML Catalogs in OSM" for information on how you can use XML Catalogs in your
OSM development.

Using XML Catalogs in OSM
In Design Studio, you model behaviors such as business rules and other model components,
which OSM uses at run time to satisfy your business requirements for order processing. The
model components used at run time to manage and fulfill orders are referred to as OSM
resources and are often contained in resource files. Examples of resource files include XQuery
files, XSLT files, custom JAR files, third-party JAR files, and XML files such as a product class
mapping file. There can be a large quantity of resources and some of those resources must
reference each other. Resources in OSM can be referenced through URI locators in your data
model.

A resource must reside on some physical location on a system. Each system has its own
unique directory structure. If you use static values or constants to indicate the location of a
resource when defining the URI locator for that resource in your data model, the resource will
not be accessible if you deploy your cartridge to other systems where the resource is in a
different directory. Thus, using static values to indicate the location of a resource limits the
portability of your cartridge solution to other systems or run-time environments. XML Catalogs
solve this problem by redirecting the URI defined in your data model to the URI where the
resource actually resides in whichever run-time environment you deploy your cartridge. XML
Catalogs provide a redirection from a URI to another URI. By redirecting the resource URI
locators, XML Catalogs serve to insulate your cartridge solution from environment
configuration.

At run time, when OSM processes a URI you specify as part of the OSM data model, OSM first
attempts to resolve the URI against the XML Catalogs you specified. Based on the mapping
defined in the XML Catalogs, OSM updates the URI to adapt to the environment by resolving
the location of the URI in your data model with the new URI you mapped for it in the XML
Catalogs.

OSM processes XML Catalogs in the order you specify them, as follows:

• Specified in your OSM cartridge projects

XML Catalogs specified in your OSM cartridge projects are packaged as part of the
cartridges and deployed to the OSM server. The XML Catalog manages only the resource
files in the resources folder of your cartridge project. When you deploy a cartridge with
XML Catalog support enabled, the contents of the resources folder are loaded into a virtual
file system. Those resources are available through URI redirection to any other deployed
cartridges. XML Catalogs can be defined in any cartridge, and those defined in one
cartridge can reference resources in other cartridges. All of the XML Catalogs deployed on
the OSM server are stored in memory and rebuilt each time the metadata refreshes. If
there are conflicting XML Catalog entries, the latest entry loaded overwrites the earlier
entry. See "Defining rewriteURI Entries in XML Catalogs" for information on how to avoid
conflicting entries.

• Specified on the OSM server

XML Catalogs specified on the OSM server are defined in the oms-config.xml file and are
loaded ahead of the XML Catalogs specified in OSM cartridge projects. XML Catalogs
defined on the server are global in scope, applying to all cartridges. XML Catalogs
specified on the OSM server override the URI mapping of XML Catalogs in cartridge

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 37

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

projects. URIs mapped in oms-config.xml are resolved for each specific environment. For
example, a cartridge developer can specify an XML Catalog in oms-config.xml to point
certain URIs defined in the data model to her own local Design Studio workspace, allowing
her to change the contents of the resources locally and test the changes without having to
redeploy the entire cartridge. Because OSM uses XML Catalogs that are specified on the
OSM server to resolve URIs to be environment specific, XML Catalogs specified in OSM
cartridge projects should not reference URI locations that are environment specific (such
as drive letters).

Following are some examples of data OSM looks up from resource files at run time that you
could use the XML catalog to redefine:

• Automation logic: You can configure XQuery and XSLT automators with the XML Catalog
to specify the XQuery/XSLT file that drives the automation logic.

• Data from a data provider: A data instance provider can use the XML Catalog to specify a
resource for providing the data loaded by the provider.

• Order item properties (for orchestration orders): Order item properties can be configured to
be loaded through a URI locator. You can configure the XML Catalog to redirect the URI to
specify the XQuery file that implements determining the property value.

• Decomposition rules (for orchestration orders): Decomposition rules can be configured to
be loaded through a URI locator. You can configure the XML Catalog to redirect the URI to
specify the XQuery file that implements determining the decomposition condition.

See "Specifying XML Catalogs for OSM" for instructions on how to specify XML Catalogs.

You can use the XML Catalog as a tool to perform cartridge versioning, to shorten
development cycles, to allow for cartridge extensibility, and to insulate test and production
environments from development-specific environments. See "Examples of Using XML
Catalogs" for examples of these uses of the XML Catalog.

You can specify a common resources cartridge project that contains all of the shared resources
across multiple cartridge projects. Defining the XML Catalog in this common resources
cartridge consolidates the XML Catalog entries in one file which makes it easy to identify and
eliminate conflicting catalog entries. See "Resource Packaging Considerations for Using XML
Catalogs" for information on how you can package your resources when using XML Catalogs.

You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI entry is the
most useful for OSM. See "Defining rewriteURI Entries in XML Catalogs" for information on
defining rewriteURI entries for OSM.

Resource Packaging Considerations for Using XML Catalogs
You can specify a common resources cartridge project that contains all of the shared resources
across multiple cartridge projects. Defining the XML Catalog in this common resources
cartridge consolidates the XML Catalog entries in one file which makes it easy to identify and
eliminate conflicting catalog entries. When you specify a common resources cartridge project
in this way, other projects with model entities that reference the shared resources do not need
to have an XML Catalog defined.

When you define resource properties in Design Studio, you can indicate to retrieve the
resource by expression, file, or URI. XML Catalogs apply only to the URI option.

Consider the following when making your decision on which option to choose:

• Select Expression when the XQuery expression is short (only a few lines in length) and is
not shared by other resources.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 37

• Select File, also referred to as Bundle In, when the XQuery configuration is longer (more
than a few lines in length) and is not shared by other resources. Use this method for
resources that are not expected to change. You will not be able to access the resource
except in the physical location specified. In addition, a resource referenced through File or
Bundle In must exist in the same project as the entity referencing it.

• Select URI when the XQuery configuration is shared by multiple configurations and is
located in a remote URI location to be accessed through the specified URI. If the XQuery
configuration requires frequent changes, even though it is only used in one cartridge, you
may want to use the URI option and also package the XQuery in a separate cartridge. That
way, you can modify and redeploy the resource without having to compile and redeploy the
possibly larger cartridge that uses it.

Figure 19-11 shows the Expression, File, and URI options in the XQuery tab of a Design
Studio editor:

Figure 19-11 URI Option for Defining Resource Properties

Oracle recommends you package resources in the following ways:

• Package resources to be used by a single cartridge in the cartridge itself. Select File or
Bundle in when you define the resource properties in Design Studio.

• Package resources to be used by multiple cartridges into a shared or common resources
cartridge and do the following:

– Configure the resources to be retrieved by a URI. Select URI when you define the
resource properties in the XQuery and XSLT tabs of the Design Studio editor.

– Configure OSM to access the resources inside of the deployed common resources
cartridge through a URI locator.

Another reason to package resources in a common resource cartridge is when you need to
change those resources frequently and they are used by a large cartridge that has
automation and model entities that take a long time to build, package, and deploy. By
packaging resources that change frequently in a common resources cartridge, you avoid
having to rebuild the larger cartridge each time you change the resources.

Defining rewriteURI Entries in XML Catalogs
This section describes how to define a rewriteURI entry in the XML Catalog for OSM. See
"Using XML Catalogs in OSM" for general information about XML Catalogs and how they work
with OSM.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 37

You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI entry is the
most commonly used entry for OSM. OSM uses the rewriteURI entry to replace the starting
string of a URI (such as a URL) with an alternative string. For example, OSM could replace
http://somewhere.org/something at run time with http://myhost/something.

During data modeling, you can define a URI locator (such as a URL) to access a resource as
part of the OSM data model by using the XQuery and XSLT tabs of various Design Studio
editors. For example, in the Order Recognition Rule editor you specify a URI to denote that the
XQuery configuration for the recognition rule is hosted in a remote URI location such as http://
osm_server/AIARecognitionRule.xqy. You can use the XML Catalog for any of the URIs you
specify in the Design Studio editors. OSM uses the rewriteURI entry of the XML Catalog to
update URIs you defined in your data model to adapt to different environments.

OSM replaces the starting string of a URI/URL with an alternative string as specified by the
rewriteURI entry in the XML Catalog. For example, for this rewriteURI entry:

<rewriteURI uriStartString="http://example.org/somewhere" rewritePrefix="http://
192.0.2.0/foo"/>

when OSM processes a URI that starts with http://example.org/somewhere, it replaces that
starting string with http://192.0.2.0/foo. A URI you define in Design Studio as http://
example.org/somewhere/myfolder/myfile.txt resolves as http://192.0.2.0/foo/myfolder/
myfile.txt at run time.

Note

The uriStartString and the rewritePrefix attributes can be any valid URI: they do not
have to be an IP address or host name.

uriStartString is set to the start of the resource URI you defined in Design Studio and
rewritePrefix is set to the string OSM replaces uriStartString with after you deploy the cartridge.

To reference resources packaged inside of an OSM cartridge, you can use the OSM model
scheme ("osmmodel") rather than the traditional URI schemes (HTTP, FTP, and so on) to
define the URI. For example, for this rewriteURI entry:

<rewriteURI uriStartString="http://example.org/somewhere" rewritePrefix="osmmodel:///
MyCartridge/1.0.0/resources"/>

when OSM processes a URI that starts with http://example.org/somewhere, it replaces that
starting string with osmmodel:///MyCartridge/1.0.0/resources. A URI you defined in Design
Studio as http://example.org/somewhere/myfolder/myfile.txt is resolved as osmmodel:///
MyCartridge/1.0.0/resources/myfolder/myfile.txt.

This allows you to leverage the contents of the resources directory in each OSM cartridge at
run time.

The format of an OSM model schema URI is:

osmmodel:///CartridgeName/CartridgeVersion/resources

where:

• osmmodel indicates a location inside of a deployed OSM cartridge

• CartridgeName is the name of your cartridge

• CartridgeVersion is the version of the cartridge (specified in the cartridge editor)

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 37

The default cartridge version uses the value default.

Note

See "Using XML Catalogs to Support Cartridge Versioning" for more information on
cartridge versioning.

To enable cartridges to refer to resources contained in other cartridges in a non-version
specific way, you refer to the default cartridge version. To refer to the default cartridge version,
use the OSM model schema URI:

osmmodel:///cartridge_name/default/resources

See "Using XML Catalogs to Support Cartridge Versioning" for information on how the XML
Catalog supports cartridge versioning.

Caution

To guarantee the correct resource is located, ensure that resources are always
uniquely identifiable to a single catalog entry.

When defining XML Catalog entries, do not define mappings that can be satisfied by more than
one entry. The following example shows two rewriteURI entries that can be used by OSM at
run time to resolve the same URI locator in two different ways:

<rewriteURI uriStartString="http://
oracle.communications.ordermanagement.sample.centralom.resources/com"
rewritePrefix="osmmodel:///CommonResourcesCartridge/1.0.0/resources/com"/>
<rewriteURI uriStartString="http://
oracle.communications.ordermanagement.sample.centralom.resources"
rewritePrefix="osmmodel:///CommonResourcesCartridge/1.0.0/resources/comMapping"/>

Using the preceding rewriteURI entries, OSM can resolve the URI locator http://
oracle.communications.ordermanagement.sample.centralom.resources/com/foo.xml as:

osmmodel:///CommonResourcesCartridge/1.0.0/resources/com/foo.xml

or

osmmodel:///CommonResourcesCartridge/1.0.0/resources/comMapping /com/foo.xml.

Specifying XML Catalogs for OSM
You specify XML Catalogs for an OSM cartridge project in the
cartridgeProject\xmlCatalogs\core\ directory (where cartridgeProject is the root of the project
directory). In this directory, you create your XML Catalog file (you can use any filename such
as core.xml or catalog.xml) and define your catalog entries within it. Design Studio
automatically generates a template XML Catalog file
cartridgeProject\xmlCatalogs\core\xmlCatalogCoreTemplate.xml.

You specify XML Catalogs on the OSM server in the OSM configuration entry
oracle.communications.ordermanagement.util.net.CatalogUriResolver.DefaultXmlCatalo
gsUris. By specifying XML Catalog files on the OSM server, you can operationally modify how
OSM resolves URIs without changing the contents of a cartridge. See "Using XML Catalogs in

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 37

OSM" for information on how OSM resolves URIs based on the XML Catalogs you specify on
the OSM server.

To specify XML Catalogs on the OSM server:

1. Add or modify a configuration entry for
oracle.communications.ordermanagement.util.net.CatalogUriResolver.DefaultXmlCa
talogsUris in the oms-config.xml file.

See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's
Guide for detailed instructions on accessing and modifying the oms-config.xml file.

2. Enter the XML Catalog entries you require.

• Multiple XML Catalogs can be specified separated by a semicolon (;).

• Use any standard XML Catalog entry. The rewriteURI entry is the most commonly
used for OSM. See "Defining rewriteURI Entries in XML Catalogs" for information on
defining rewriteURI entries.

Note

The XML Catalog entries you specify are applied system wide. Ensure that
resources are uniquely identifiable to a single catalog entry so that the correct
resource can be located.

Note

This configuration defines the XML Catalog entries inline in the oms-config.xml
configuration file.

3. Save the file.

Enabling and Disabling XML Catalog Support
XML Catalog support is enabled by default for all cartridges and is required to be enabled.

If your target run-time software version is OSM 7.0.2 or earlier, you can disable XML Catalog
support for a cartridge (or re-enable it) by using the cartridge model variable
XML_CATALOG_SUPPORT. For information on disabling or re-enabling XML Catalog support
for a cartridge, see "Enabling and Disabling XML Catalogs for a Cartridge Project" in Modeling
OSM Processes.

Examples of Using XML Catalogs
This section provides the following examples of how you can use the XML Catalog:

• Using XML Catalogs to Support Cartridge Versioning

• Using XML Catalogs to Load Resources from a Development File System (Traditional
OSM Only)

• Using XML Catalogs to Insulate Run-Time Environments from Development

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 37

Using XML Catalogs to Support Cartridge Versioning
Cartridge versioning requires multiple versions of cartridges to reference their own versioned
set of resources. For example, if you have version 1.0 and version 2.0 of an OSM cartridge
deployed, you might have version-specific XQuery or JAR files that need to be used depending
on which cartridge you are using. XML Catalogs ensure that the cartridges reference the
correct resources.

To use XML Catalogs to support cartridge versioning:

1. In Design Studio, on the Model Variables tab of the cartridge editor, set the
CARTRIDGE_VERSION model variable to the version number of the cartridge.

For more information about model variables, see "Working with Model Variables" in
Modeling Basics.

2. In the parts of your model where you need OSM to substitute the version number, use %
{CARTRIDGE_VERSION}. For example:

 http://example.com/%{CARTRIDGE_VERSION}/xquery/myFile.xqy

3. In the XML Catalog, define the rewriteURI entries as follows:

• If the cartridge is a component of a composite cartridge, use the
CARTRIDGE_VERSION model variable. For example:

<rewriteURI uriStartString="http://example.com/%{CARTRIDGE_VERSION}"
rewritePrefix="osmmodel:///MyCartridge-Resources/%{CARTRIDGE_VERSION}/
resources"/>

• If the cartridge is not a component of a composite cartridge, use the specific cartridge
version number. Do not use a model variable. For example:

<rewriteURI uriStartString="http://example.com/1.0" rewritePrefix="osmmodel:///
MyCartridge-Resources/1.0/resources"/>

When you deploy the cartridge, OSM replaces all instances of %{CARTRDIGE_VERSION}
with the value that you set on the cartridge editor Model Variables tab.

4. When you create a new version of a cartridge, update the CARTRIDGE_VERSION model
variable with the new version number.

5. In the XML Catalog, update the rewriteURI entries as follows:

• If the cartridge is a component of a composite cartridge, no further updates are
required. Because you used the model variable in the rewriteURI entries, OSM
automatically replaces the model variable with the new version number when you
deploy the cartridge.

• If the cartridge is not a component of a composite cartridge, update the cartridge
version number in each rewriteURI. For example:

<rewriteURI uriStartString="http://example.com/1.5" rewritePrefix="osmmodel:///
MyCartridge-Resources/1.5/resources"/>

Using XML Catalogs to Load Resources from a Development File System (Traditional
OSM Only)

To shorten development cycle times that involve numerous coding, building, deployment, and
test cycles, you can use the XML Catalog to load resources from a development file system.
By using the XML Catalog in this way, you can test changes to resources located within the
cartridge without needing to rebuild and repackage the cartridge. Rebuilding and repackaging

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 37

can be slow and CPU intensive because Design Studio needs to rebuild the deployment EAR
file before any changes can be tested. By redirecting the URIs to a local resource, you can
change XQuery, XSLT, XML, or Java code and immediately test the changes without having to
rebuild, repackage, and redeploy (Java code would still need to be rebuilt but not repackaged
and redeployed).

For example, use the XML Catalog to instruct OSM to load resources:

• From the development file system during development

• From the cartridge PAR file after testing

Locate resources on the file system instead of from within the cartridge PAR file so that
configuration changes made to a resource are picked up by the run-time environment without
having to rebuild and redeploy the cartridge. After testing is complete, the URI is redirected to
load resources from the cartridge PAR file.

To redirect the URI so that OSM loads resources from the development file system:

1. In the Package Explorer view in Design Studio, navigate to the cartridgeProject/
xmlCatalogs/core/ directory.

2. Create or edit the catalog.xml file. You can create the file by renaming a copy of
xmlCatalogCoreTemplate.xml.

3. Create the XML Catalog entry:

<rewriteURI uriStartString="http://example.org/somewhere" rewritePrefix="file://
localhost/dev/env1/mycartridge/resources"/>

OSM loads all resources that start with http://example.org/somewhere from the file
system located on localhost at /dev/env1/mycartridge/resources.

To redirect the URI so that OSM loads resources from the cartridge PAR file after testing is
complete, change the preceding configuration to:

<rewriteURI uriStartString="http://example.org/somewhere" rewritePrefix="osmmodel:///
MyCartridge/1.0.0/resources"/>

OSM loads all resources that start with http://example.org/somewhere from the cartridge
PAR file.

The XML Catalog supports resource extensibility in a cartridge solution because URIs can be
easily rewritten to change the location from which resources are loaded. The XML Catalog
allows you to redirect the cartridge solution to use customized resources different from the
ones that were originally provided by the cartridge solution.

Using XML Catalogs to Insulate Run-Time Environments from Development
To insulate test and production environments from development-specific environments, you
can use the XML Catalog. When you develop your code, you can set your XML Catalog to
point to local resources on your file system on your laptop (not applicable for OSM cloud
native). Assume you have an automated test environment that runs daily tests on certain
cartridges that use resources on the testing box. In production, you would use the XML
Catalog to point resources to your production systems. Note that in this example the resources
are not bundled inside of the cartridges.

Chapter 19
Building and Packaging a Cartridge

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 37

Cartridge Deployment
Design Studio allows you to deploy cartridges to an OSM environment. For more information
about creating environment entities and deploying cartridges, see "Deploying Cartridge
Projects" in Modeling Basics.

Cleaning and Rebuilding Cartridges Prior to Deployment
Cleaning and rebuilding a cartridge is not included as a deployment step because it is not
required for a successful deployment. However, Oracle recommends that you periodically
clean and rebuild a cartridge prior to deployment because multiple people can work in the
same cartridge; cleaning and rebuilding the cartridge picks up these changes, ensuring that the
cartridge is in its current state.

Optimizing Cartridge Deployment
During the development process, you can save time by redeploying your changes only, rather
than redeploying the entire application. For more information about this option, see "Managing
Changes to Deployed Cartridges" in Modeling OSM Processes.

Deploying Multiple Cartridges
You can simultaneously deploy multiple cartridges when deploying from the Environment
perspective Cartridge Management view. When you select multiple cartridges for deployment,
the system deploys the cartridges individually based on any existing cartridge dependencies.
The system prevents you from deploying cartridges independently of those cartridges upon
which they depend. For more information, see "Deploying Cartridges with Dependencies."

Deploying Cartridges with Dependencies
A cartridge can be dependent upon information defined in another cartridge. When
dependencies exist between cartridges, the build of the cartridge with the dependency extracts
the dependent information from the built cartridge upon which it depends and copies the
information to the cartridge being built. As a result, the cartridges can be deployed
independently from each other.

For example, CartridgeA is created and defines phoneNumber as a data element in a data
schema. CartridgeB is then created, and phoneNumber is added to a CartridgeB order
template. This causes CartridgeB to be dependent upon CartridgeA. CartridgeA is built first.
When CartridgeB is built, the phoneNumber data element is extracted from CartridgeA and
copied to cartridgeB. As a result, cartridgeB can be deployed even if CartridgeA is not
deployed.

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 37

Caution

Cartridges should not be circularly dependent upon each other (CartridgeA depends
on CartridgeB and CartridgeB is depends on CartridgeA). If you define cartridges with
a circular dependency, the cartridge build will fail, with an error like, "CartridgeA
Cartridge Model Dependency Error – Cyclic dependency exists: CartridgeA <-
CartridgeB." If there is a composite cartridge that refers to cartridgeX or cartridgeY, the
composite cartridge build will also fail, as a result of the component cartridge builds
failing.

Deploying Cartridges to the OSM Database Using XMLIE
You can deploy cartridges to the OSM DB directly using XMLIE. This approach is strongly
recommended for controlled environments such as production, pre-production or UAT, and for
environments managed using a CI/CD pipeline. It is also the preferred approach for semi-
formal environments, such as test systems.

Offline Cartridge Deployment
You can deploy cartridges to the OSM DB directly using XMLIE while OSM is shut down.

To deploy a cartridge in offline mode using XMLIE:

1. Ensure that all managed servers are stopped. Shutting down the admin server is optional.
See OSM System Administrator's Guide for details on stopping managed servers.

2. Build the cartridge PAR file using Design Studio.

3. Do the following to deploy the cartridge PAR file with XMLIE:

a. Change the directory to the directory where XMLIE is installed. For example, cd /opt/
osm_sdk/SDK/XMLImportExport.

b. Copy the config_sample.xml file located at $XMLImportExport/config to the
config.xml file and edit it to specify the OSM DB schema connection information.

c. Run the EncryptPasswords.sh script to encrypt the password of the OSM DB
schema.

./EncryptPasswords.sh config.xml -dbUser

d. Run the import.sh XMLIE script to deploy the cartridge PAR file:

./import.sh $cartridge.par config.xml

4. Deploy all the cartridges using the same approach and then start the servers.

Note

For a solution cartridge, the solution PAR file already contains all the PAR files of the
components of the cartridges. Deploy only the solution PAR file. Do not deploy PAR
files of the individual components.

Online Cartridge Deployment
You can deploy cartridges to your OSM running instance while orders from a cartridge that you
deployed earlier are still being processed. When you deploy cartridges in online mode, OSM

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 37

availability is uninterrupted and ongoing orders continue to react to new incoming messages.
This is achieved by shutting down and restarting the OSM managed servers sequentially. OSM
leverages WebLogic Zero Downtime Patching to deploy cartridges without any loss of service.

Online cartridge deployment is built on top of WebLogic's Zero Downtime framework. This
framework imposes certain pre-requisites:

• WebLogic Node Manager must be configured and running on all the hosts where OSM
servers exist (configured during domain creation).

• "Machines" must be configured in the WebLogic domain, and hosts must be assigned to
these machines during domain creation.

• The Proxy Server (if used) and Managed Servers must be started with Node Manager, not
via other mechanisms such as scripts. The Admin Server should also be started via Node
Manager.

• Admin Server cannot run on the same host as any Managed Server.

For complete control, ensure that each machine runs exactly one managed server. While it is
possible to assign two or more managed servers to the same machine, it affects the overall
availability of OSM as all managed servers on a given machine undergo maintenance at the
same time.

The OSM cluster must have at least two functioning managed servers for online cartridge
deployment to work.

The following cartridge deployment operations are supported in an online deployment mode:

• Deployment of the first version of a new cartridge

• Deployment of a new (updated) version of an existing cartridge

Note

To redeploy an existing version of a cartridge, use the regular deployment mechanism
via Design Studio. You can also use the Cartridge Management Tool (CMT) to
redeploy an existing version of a cartridge.

During the deployment process, the cluster is reduced by one managed server (the one that is
actively restarting), while at least one other managed server (the one that just finished restart)
is still warming up to full capacity. To avoid transient resourcing issues, it is strongly
recommended to perform online cartridge deployment during a low order volume period. The
processing of in-progress orders with undelivered incoming messages is paused while the
operating managed server undergoes a restart. The processing of the in-progress orders
resumes automatically once the restart of that managed server is complete. The processing of
in-progress orders without undelivered incoming messages is not interrupted.

To deploy cartridges while OSM is still running:

1. Deploy each cartridge PAR file that needs to be added to OSM. Also, fast-undeploy each
cartridge version that needs to be removed.

To deploy a cartridge PAR file:

a. Change the directory to the directory where XMLIE is installed. For example, cd /opt/
osm_sdk/SDK/XMLImportExport.

b. Copy the config_sample.xml file located at $XMLImportExport/config to the
config.xml file and edit it to specify the OSM DB schema connection information.

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 37

c. Run the EncryptPasswords.sh script to encrypt the password of the OSM DB
schema.

./EncryptPasswords.sh config.xml -dbUser

d. Run the import.sh XMLIE script to deploy the cartridge PAR file in online mode:

./import.sh $cartridge.par config.xml online

Note

For a solution cartridge, the solution PAR file already contains all the PAR files of
the components of the cartridges. Deploy only the solution PAR file. Do not deploy
PAR files of the individual components.

2. Perform rolling restart of the managed servers using WebLogic Remote Console or WLST.

a. In WebLogic Remote Console, from Monitoring Tree, go to Environment. Within
Environment, select Servers.

b. Here, manually shut down and restart each managed server, one at a time.

Note

Make sure each server returns to Running before proceeding to shut down
and restart the next server.

About Performing a Rolling Restart of Managed Servers

After running the XMLIE script to deploy the cartridge, you must restart all the managed
servers in the OSM cluster in a sequence. The completion of the restart of one managed
server should trigger the restart commencement of the next. The WebLogic Zero Downtime
Rolling Restart capability (part of the Zero Downtime Patching functionality) provides this
mechanism for online cartridge deployment. This rolling restart can be triggered and monitored
either using the WebLogic Remote Console or using WLST.

For details on how to configure the rolling restart workflow, see Oracle Fusion Middleware
Administering Zero Downtime Patching Workflows available at: https://docs.oracle.com/en/
middleware/fusion-middleware/weblogic-server/14.1.2/wlzdt/intro.html.

While configuring rolling restart in WebLogic Remote Console, make sure each server returns
to Running before proceeding to shut down and restart the next server.

While configuring the restart in WebLogic Remote Console, you need to specify the value for
Graceful Shutdown to 120. To do this, do the following:

1. Navigate from Edit Tree to Environment. Here, navigate to Servers, and open Server.

2. Here, open the Advanced tab, and within it, open the Start/Stop subtab.

3. In the Start/Stop subtab, specify 120 as the value for Graceful Shutdown Timeout.

This is the grace period for orderly shutdown. Tune this timeout value to ensure that your
managed servers can shutdown gracefully. In general, the more activity on the server, the
longer it takes to shutdown. Monitor how long it takes for your managed server to shutdown
normally and use that as the basis for this setting. For instructions about performing rolling

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 37

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/14.1.2/wlzdt/intro.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/14.1.2/wlzdt/intro.html

restart, see Oracle Fusion Middleware Remote Console Online Help for Oracle WebLogic
Server 14.1.2.0.

Building and Deploying Composite Cartridges
When you build and package a composite cartridge, it is packaged as a single PAR file which
contains:

• All non-orchestration entities aggregated and packaged into the composite cartridge

• A PAR file for each component cartridge referenced in the composite cartridge

When a composite cartridge is deployed, it includes all of the OSM non-orchestration entities
and all component cartridges referenced in the composite cartridge, if they are either changed
or not currently deployed.

Setting Cartridge Dependencies
Projects have dependencies on other projects when entities in one project reference entities in
a different project. If you configure a cartridge to reference content in other cartridges without
declaring project dependencies, Design Studio creates a warning. For information about how
to set cartridge dependencies, see "Managing Project Dependencies" in Modeling Basics.

Post-Deployment Effect on Numeric Data
When defining a data element in Design Studio, you have the option of defining numeric data
as type int, double, float, or decimal. OSM does not directly support these data types. Rather,
the OSM Data Dictionary defines the data type numeric. When a cartridge containing the data
types int, double, float, or decimal is deployed to the OSM server, the data types are converted
to the OSM Data Dictionary type numeric.

Post-Deployment Changes to Cartridge
You can make changes to a cartridge after the cartridge has been deployed to the OSM server
by making changes to the original cartridge in Design Studio and then redeploying the
cartridge. Before doing this, you should back up the original cartridge, because exporting a
deployed Design Studio cartridge back out of OSM into Design Studio is not supported.

Metadata Errors
Metadata errors can cause order processing failures and can occur in any cartridge with
orchestration model entities. Metadata is the information used to represent OSM modeled
entities such as order templates, order components, order items, tasks, decomposition rules
and so on. If there are no metadata errors, the cartridge models deployed are valid.

Metadata errors occur when OSM references an entity that is missing or the modeling for an
entity is incorrect (for example, a data type for an entity is incorrectly entered).

OSM detects and logs metadata errors during the following procedures:

• Deploying a cartridge to a server

• Restarting an OSM server

• Refreshing OSM metadata with the OSM Order Management web client or with an Ant
refresh

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 37

These actions reload OSM metadata, and errors are detected while running validation
constraints against certain orchestration model entities. Table 19-2 lists the orchestration
entities that are currently validated.

Table 19-2 Orchestration Entities That Are Currently Validated

Entity Type Schema Constraint Description

OrchestrationStageType Verifies that the value for the element dependsOnStage is a valid
stage. dependsOnStage is empty if the stage is independent. A stage
is valid if it is defined in the orchestrationSequence of
orchestrationModel.

OrderComponentSpecRef Verifies that this reference is pointing to a valid OrderComponentSpec.
OrderComponentSpec is valid if it is defined in orchestrationModel.

OrchestrationConditionRef Verifies that this reference is pointing to a valid orchestration condition.
An orchestration is valid if it is defined in orderItemSpec of
orchestrationModel.

DurationType Verifies that a valid duration value is specified.

ProductSpecRef Verifies that this reference is pointing to a valid ProductSpec.
ProductSpec is valid if it is defined in orchestrationModel.

OrderItemSpecRef Verifies that this reference is pointing to a valid OrderItemSpec.
OrderItemSpec is valid if it is defined in orchestrationModel.

After rebuilding or deploying a cartridge, check for metadata errors. Search for the string
Metadata Errors in the Console view of the Cartridge Management editor in Design Studio. If
you are not using Design Studio to deploy cartridges, look in the Oracle WebLogic Server logs
for the same string.

Metadata errors appear together in a numbered list. For example:

Metadata Modeling Errors**************************

1) Metadata error Severity:ERROR Description:Invalid
ProductSpec[name=NonService.Offer,
namespace:CommunicationsSalesOrderFulfillmentPIP]
Cartridge Name:TypicalSalesOrderFulfillment Version:1.0.0
EntityName:NonService.Offer EntityType:ProductSpecRef

where

• Severity can be an ERROR, WARNING or CRITICAL.

• Description describes the failure and provides the entity type, name and name space.

• Cartridge Name is the name of the Cartridge that is reporting the problem.

• Version is the cartridge version.

• EntityName and EntityType are the name and type of the entity reporting the metadata
error and its name space. In some cases, the modeled entity within the cartridge is invalid.
In other cases, the modeled entity is referring to another entity which is missing or invalid.

If you find metadata errors, it most likely means that OSM is calling on an entity that is missing,
has the wrong name, or has a value that is incompatible for the entity type.

To fix the problem, clean and rebuild your cartridges, and make sure all related cartridges are
deployed. If you still have metadata errors, it may mean that you have errors in your data. In
this case you will have to use Design Studio to re-validate your model. See "Cleaning and
Rebuilding Cartridges Prior to Deployment."

Chapter 19
Cartridge Deployment

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 37

Part V
Working with Capabilities Cartridges

Part V contains the following chapter about working with Capabilities Cartridges in Oracle
Communications Order and Service Management:

• Working with Capabilities Cartridges (Cloud Native Only)

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

20
Working with Capabilities Cartridges (Cloud
Native Only)

This chapter describes the guidelines, limitations and restrictions for generating Design Studio
workspace content as a capabilities cartridge.

About Capabilities Cartridges
A capabilities cartridge is a packaging concept. It is not a new cartridge type but instead relates
to the way a set of OSM cartridge content is packaged for delivery into the dynamic design
process.

About Dynamic Cartridge Assembly (Cloud Native Only)in OSM Concepts provides an
overview of the Dynamic Cartridge Assembly feature. You need to understand this feature to
understand how a capabilities cartridge fits within OSM.

About OSM Participant provides an overview of the steps that you need to take in both
Solution Designer, and OSM to use Capabilities Cartridges. You need to understand the way
this exchange functions to use a capabilities cartridge.

You should have a good working knowledge about writing OSM orchestration cartridges as
context for the information in this chapter.

About Capabilities Cartridges Restrictions
Not all OSM cartridges can support generation as a capabilities cartridge. The following are the
restrictions that you need to be aware of when generating capabilities cartridges:

• You can use only TMF cartridges to generate a capabilities cartridge CPAR file.

• It must host a TMF 622 specification.TMF 641 is not yet supported for capabilities cartridge
development.

• The OSM target server version in Design Studio must be 8.0 or later.

• Only a single capabilities cartridge can be delivered to dynamic design. Multiple versions of
the capabilities cartridge (as identified by the Solution name) are allowed. For example,
multiple COM solutions are not allowed, but multiple versions of a single COM solution is
possible.

User Workflow in Design Studio
For background information about user journeys, refer to About Dynamic Cartridge Assembly
(Cloud Native Only) in OSM Concepts.

The following image shows the traditional design journey for developing and deploying
cartridges using Design Studio and OSM.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 17

Figure 20-1 Traditional Design Journey

In phase one, the workspace is re-packaged so that the necessary artifacts are generated and
can then be passed to the OSM dev ops administrator for delivery to the OCA microservice
and Solution Designer.The following image illustrates this phase.

Figure 20-2 Phase 1 of Dynamic Design Journey

Capabilities Cartridge Lifecycle
All lifecycle stages must be managed in a coordinated manner between the OSM Cartridge
Assembler (OCA) microservice and Solution Designer. Any changes or updates that you make
in one application must also be reflected through a corresponding update in the other
application. This synchronization ensures that both systems remain aligned, reducing the risk
of inconsistencies and operational errors.

Chapter 20
Capabilities Cartridge Lifecycle

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 17

Creating and Delivering the CPAR
A capabilities cartridge is generated from a Design Studio workspace resulting in two
deliverable artifacts. These artifacts are:

• A CPAR archive that is used to create an image that is loaded into the OSM Cartridge
Assembler Microservice. For more information about this, refer to Container Images in the
OSM Cloud Native Deployment Guide.

• A manifest file that is extracted from the archive to import into Solution Designer.

The following flowchart illustrates the deliverable artifacts generated from the sample CPAR.

Figure 20-3 CPAR Deiverable Artifacts

Updating and Re-Delivering the Capabilities Cartridge
Once a capabilities cartridge has been delivered, any changes you make to the content can
impact:

• Only OCA, such as an XQuery change

• Only SCD, such as the OSM entity descriptions

• Both applications, such as adding, removing or updating the OSM capabilities. For
example, introducing new or changed fulfillment patterns, fulfillment functions or fulfillment
systems

Regardless of its type, you need to exclusively re-deliver any change you make through
Design Studio. You need to ensure that all Design Studio content is being maintained under
source control to ensure deliverable artifacts can be reliably and repeatedly generated. This
approach promotes consistency, traceability, and reproducibility in your deployment process.

To further enhance traceability, Oracle strongly recommends that when you are making
changes to the capabilities cartridge produced by Design Studio, you also change the version.

The following flowchart illustrates the Update and Re-deliver process for the capabilities
cartridge.

Chapter 20
Capabilities Cartridge Lifecycle

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 17

Figure 20-4 Updating and Re-Delivering the CPAR

Retiring a Capabilities Cartridge
If a capabilities cartridge version should no longer be used, the entry for that image should be
removed from all OSM workspaces connected to the Solution Designer instance. The manifest
should also be deleted.

Note

Solution Designer does not support retirement of a manifest once it has been released
to production.

The following flowchart illustrates the process for retiring a CPAR.

Figure 20-5 Retiring a CPAR

Chapter 20
Capabilities Cartridge Lifecycle

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 17

Capabilities Cartridge Content
This section describes some limitations and conventions when packaging content as a
capabilities cartridge.

Design Studio Workspace
A Design Studio workspace can be organized in such a way that it can support both a
traditional build (PAR) or capabilities cartridge generation (CPAR). While PAR files can be
deployed to OSM and take effect immediately (allowing OSM to process orders), a CPAR file
needs to be delivered differently. A CPAR file cannot process orders - it needs to be part of the
dynamic cartridge process first.

In order to be compatible with the dynamic cartridge assembly process that takes place in the
OCA microservice, the capabilities cartridge must adhere to the restrictions and conventions
outlined in this chapter. OSM delivers a reference sample inside the OSM SDK that can be
built as a capabilities cartridge. It aligns to the correct design studio workspace setup, and
follows the guidelines outlined here.

Capabilities Cartridge Conventions
You need to adhere to the guidelines outlined in the following topics to ensure that your
capabilities cartridge is compatible with the dynamic cartridge assembly process:

• Fulfillment Model

• Order Recognition Rule

• XML Catalogs

• Automation Concurrency Map

• Relationship Types

• Provider Function

• Description Fields

• Fulfillment Pattern Property on the Order Item Specification

• Transformed Order Item Properties

• Order Component Organization

Fulfillment Model
A single component cartridge must hold the fulfillment model. In the reference sample, this is
PO_FulfillmentModel.

This cartridge should not contain any OSM entity definitions other than what is allowed as Test
Content. For more information about what is allowed as test content, refer to Conceptual Model
Test Content .

Note

This does not apply to items in the resources (such as XQueries) directory.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 17

Order Recognition Rule
The cartridge version changes every time you publish from Solution Designer. Therefore, you
need to set the Target Order Version as default in the Order Recognition Rule.

XML Catalogs
Any XML catalog that references the resources held in the fulfillment model cartridge
(PO_FulfillmentModel), needs to use default in the re-write string instead of a version
number as this will be updated with each publish from Solution Designer.

<!-- Support ParameterBinding -->

<rewriteURI uriStartString="http://oracle.communications.orchestration.com/
tmf-api/productOrderingManagement/%{TMF622_VERSION}/productOrder/
parameterBinding" rewritePrefix="osmmodel:///PO_FulfillmentModel/default/
resources/parameterBinding"/>

Automation Concurrency Map
This is a file that you can optionally define in the resources directory of the Solution cartridge. If
you use this file, you must not include the target Plugin version. In this way, the use of Order
Automation Concurrency Control will be scoped to the cartridge namespace and not one
specific version.

<targetPlugins>
 <cartridgeNamespace>TMF_PO_B2C_Solution</cartridgeNamespace>
 <pluginSelector>.[cartridgeNamespace="TMF_PO_B2C_Solution"][implement/
script/url="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/%{TMF622_VERSION}/productOrder/provisioning/
componentInteraction/4.1.0.1.0/serviceOrderStateChangeReceiver.xquery"]</
pluginSelector>
</targetPlugins>

Relationship Types
The Relationship Type entity is not configurable in Solution Designer. However you can use
the associations Primary and Auxiliary in the product to service relationship.

These entities are still defined in the capabilities cartridge instead of being test content,
because of the action configuration these entities carry. Refer to Mapping Rules for more
details.

You need to follow these rules when configuring relationships:

• You must create a relationship called Primary.

• You must create a relationship called Auxiliary. Design Studio will enforce this when the
capabilities cartridge is generated.

• You must not create any additional relationship types.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 17

Provider Function
If you use OTM, the provider function must have the two relationship types defined - Primary
and Auxiliary, with Primary set as the default.

Description Fields
While description fields on various objects in Design Studio are optional, it is strongly
recommended that you populate these fields with care. The description is a means of
communicating information from the technical user in Design Studio to the business modeler in
Solution Designer.

The descriptions should capture meaningful details for the following entities in Design Studio:

• All order components (functions, systems, granularities)

• Fulfillment patterns

You can provide an overall description to summarize the entire cartridge as part of the
Capabilities Cartridge wizard. All of these descriptions will be visible to the business modeler in
Solution Designer in order to guide them on the nature of these entities and any other relevant
aspects, such as functional assumptions made by the technical user.

Fulfillment Pattern Property on the Order Item Specification
Product definitions are pruned from the capabilities cartridge during generation. Due to this,
Design Studio cannot populate the productSpecMapping.xml file with mapping details. Prior
to OSM 7.5.0, this file was used to determine the correct fulfillment pattern for the inbound line
item.

A simplified mapping technique was introduced in OSM 7.5.0 and the dynamic assembly
feature relies on this pattern.

Note

See the "How to Simplify the Fulfillment Pattern Property on an OSM Order Item
Specification (Doc ID 3000040.1)" KM article on My Oracle Support for more
information on simplifying the fulfillment pattern property on an OSM Order Item
Specification.

In the capabilities cartridge, you need to populate the fulfillment pattern property with the
incoming product specification name instead of the fulfillment pattern name. This simplified
mapping defined in the capabilities cartridge will be coupled with the compatible OSM
metadata during dynamic assembly so that OSM can resolve the correct pattern to use.

Transformed Order Item Properties
You need to create the following properties on the transformed order item so that they can be
populated by the cartridge assembly process. These values are needed by the automation
plugin constructing the TMF 641 service order.

• ServiceSpecificationId

• ServiceSpecificationName

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 17

Order Component Organization
OSM uses cartridge boundaries to create the correct function to system hierarchy. This is used
to construct a graphical fulfillment pattern display in Solution Designer. A functional cartridge
must therefore contain order components representing the function and all applicable
fulfillment systems.

The following image shows the order component organization for a sample cartridge.

Figure 20-6 Order Component Organization

Configurability Limitations
In the dynamic design journey, Solution Designer has ownership for some entity definitions but
it does not provide the same level of OSM specific configurability which can be seen in Design
Studio. This is necessary to provide a simpler and more streamlined experience for the
modeler, but the cartridge developer needs to be aware of the impact this may have on the
fulfillment logic in the capabilities cartridge.

General Restrictions
The following are the general restrictions:

• You must use a single cartridge to hold the fulfillment model.

• You must use three stage orchestration which includes decomposition to function, to
system, and to granularity.

• You cannot use structured data elements on catalog entities (product or service entities).

Mapping Rules
The limitations in this area are:

• The mapping options for individual attribute mappings support copy value, value map and
unit of measure. There is no equivalent for advanced mapping in Solution Designer.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 17

• You cannot map order item properties (from source to target). Refer to Transformed Order
Item Properties for a detailed explanation.

• The primary relationship is used to drive order item selection. This is set during dynamic
assembly and cannot be changed in Design Studio or Solution Designer

• You cannot configure action codes directly. These come from the action codes defined in
the capabilities cartridge and cannot be restricted in Design Studio or Solution Designer

• You cannot configure action mappings directly. These are driven from the relationship
action map. This is set during dynamic assembly and cannot be changed, however the
relationship type and its action map can be defined in Design Studio

• You cannot configure fulfillment state filters directly. These come from the order component
that uses the provider function and cannot be restricted in Design Studio or Solution
Designer

• All mappings support bi-directional mapping. This is set during dynamic assembly and
cannot be changed in Design Studio or Solution Designer

Transformation Sequence
The transformation sequence editor allows you to define the order item context for the Primary
Relationship stage. Design Studio enforces this configuration even though the context can be
driven from similar configuration in the mapping rule.

You need to provide the configuration that Design Studio needs to generate a capabilities
cartridge successfully and without any build errors. At the same time you need to ensure that
the configuration you provide does not conflict with what is applied during dynamic cartridge
assembly.

In the editor, select Advanced as the context type, and for the expression use 'na'. The
following image shows sample Tranformation Sequence configuration.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 17

Figure 20-7 Transformation Sequence

Decomposition and Routing Rules
Routing rules in Solution Designer get translated into decomposition rules in OSM. The
following limitations apply to routing rule configuration:

• There is no means to limit the applicability of a routing rule to a fulfillment pattern or a set
of fulfillment patterns.

• The conditions on a routing rule apply equally to the rules controlling the second and third
stage of decomposition. You cannot configure a condition that applies to the function stage
to the system stage differently than it applies to the system stage to granularity stage.

• Cartridge assembly enforces that only a single routing rule can reference a fulfillment
function. You cannot have two rules that both target the same function.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 17

Cartridge Versioning
The version defined on most component cartridges in Design Studio is retained through the
dynamic assembly process. The fulfillment model and solution cartridges are exceptions to this
rule. The Customer Patch value of those cartridges will be replaced during dynamic assembly.

Note

Any changes you make to the customer patch value for the fulfillment model and
solution cartridges in the Design Studio workspace will not be preserved.

The following image shows the Customer Patch value.

Figure 20-8 Customer Patch Value in Cartridge Versioning

DataTypes for Product and Service Attributes
Products and Services are pruned from the test content when generating the capabilities
cartridge. Dynamic assembly supports only the following simple data types as characteristics
on Products and Services:

• string

• boolean

• int

• long

Solution Designer supports more data types (including structured data) but these are not
permitted by dynamic cartridge assembly. You need to ensure that the cartridge logic relies
only on the supported data types so that your orders process successfully.

Chapter 20
Capabilities Cartridge Content

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 17

Transformed Order Item Properties
You can define a set of general properties in the Order Item Specification editor in Design
Studio. These values are populated based on the mappings on the Product (PS) - Service
(CFS) mapping and not by any configuration applied on the Order Item Specification editor.

Since Solution Designer does not expose OSM specific configurability for PS-CFS mappings,
you cannot map the order item properties.

For an automation plugin to correctly generate a TMF 641 order, it needs access to data about
the CFS that is not defined as a service characteristic.

To bridge this gap, dynamic assembly provides the following property mappings for primary
PS-CFS relationships:

• ServiceSpecificationName: This should be created as an order item property. It will then
be populated automatically from the CFS ID defined in Solution Designer.

• ServiceSpecificationId : This should be created as an order item property. It will then be
populated automatically from the CFS Name defined in Solution Designer.

• The property that is declared as the Order Item ID Property will be populated with a
random UUID.

• The property that is declared as the Fulfillment Pattern Mapping Property will be copied
from the source fulfillment pattern and needs to be populated for successful cartridge
deployment.

Capabilities Cartridge Test Scaffolding
Test data is created in Design Studio and is required during the traditional design journey,
outlined in User Workflow in Design Studio when the re-usable OSM capabilities are being
validated through the traditional build and deploy cycle.

Fulfillment Model
Conceptually, a fulfillment model includes the following items:

• PSR (Product, Service, Resource) Entities

– Products

– Services

– Data Elements

– Unit of Measure Converters

• OSM Entities

– Mapping Rules

– Decomposition Rules

OSM Enrichment Data
OSM enrichment data includes entities or other metadata created during the assembly
process, including:

• Order Item Parameter Bindings

Chapter 20
Capabilities Cartridge Test Scaffolding

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 17

• Transformation Manager

• Product to Fulfillment Pattern Mappings

The following flowchart illustrates the flow of the test data usage during design journeys.

Figure 20-9 Test Data During Design Journeys

Cartridge Guidelines for Test Data
The cartridges must cleanly separate the re-usable entities (the capabilities cartridge) from the
test data. The test data is defined across different cartridges depending on the type of data it
holds such as OSM entity, OSM enrichment or PSR (Product, Service, Resource).

OSM Test Content
You must define OSM entities and OSM enrichment data in a single OSM cartridge. This
cartridge will be specified as the Fulfillment Model Cartridge during the generation of the
capabilities cartridge.

The following image shows the sample Fulfillment Model Cartridge and its test data.

Chapter 20
Capabilities Cartridge Test Scaffolding

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 17

Figure 20-10 Sample Fulfillment Model Cartridge

Conceptual Model Test Content
Conceptual model entities comprise a large portion of the capabilities test content. These
entities are defined in Design Studio model projects. An OSM cartridge is designated as the
container cartridge for these model projects so that the required metadata can be generated
into the OSM cartridge.

Note

For more information about Conceptual Models, refer to Working with Conceptual
Models.

The reference sample workspace contains Product and Service definitions for Mobile and
Digital TV domains and the PO_FulfillmentModel acts as the container cartridge.

Chapter 20
Capabilities Cartridge Test Scaffolding

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 17

Additionally, unit of measure converters which are available in Solution Designer and
conceptual fulfillment patterns which are only required in Design Studio, are defined in model
projects and are contained in PO_FulfillmentModel.

The following image shows the sample PSR project.

Figure 20-11 Sample PSR Project

Reusable Conceptual Model Content
When order transformation is used in the fulfillment logic, then you must define several other
conceptual entities. They are considered reusable content from a dynamic design perspective.

You must preserve these entities when building the cartridge. Therefore a separate OSM
cartridge must act as the container for the associated metadata. In the reference sample
workspace, the TMF_PO_PSRBase takes on this role.

The following image shows the reusable conceptual model content.

Chapter 20
Capabilities Cartridge Test Scaffolding

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 17

Figure 20-12 Reusable Conceptual Content

Capabilities Cartridge Build
This section provides an overview of the process and the output that you get when building the
capabilities cartridge.

Using the Capabilities Cartridge Wizard
When you are using the Capabilities Cartridge Wizard, you can select a set of order item
properties for exposure in Solution Designer. You should restrict the properties selected to
what needs to be exposed to correctly configure routing rules (OSM decomposition rules).

Properties that are created for the cartridge fulfillment logic do not need to be exposed to the
business modeler and therefore should not be selected. Additionally, you must not select
properties that use date, time or datetime as they are not supported by dynamic assembly.

About the CPAR File
When you are using the Capabilities Cartridge Wizard, you need to designate a cartridge in
the workspace as the fulfillment model cartridge. This will be the cartridge that contains the
test data.

Based on the inputs you provide to the wizard, Design Studio strips the test content before
packaging the CPAR archive. This stripped content includes everything in the /model directory.

The cartridge itself is still packaged in the CPAR and retains the following:

• Cartridge dependencies and model variables

• Everything in the /resources directory

Chapter 20
Capabilities Cartridge Build

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 17

• xmlCatalogs

Cartridge developers need to note that the pruning of test data is not selective, and any non-
test data that gets defined in the fulfillment model will be lost when the CPAR is generated.

Capabilities Manifest Details
The capabilities manifest consists of 2 types of data:

• Entities that are exposed in Solution Designer and can be referenced when configuring a
fulfillment model

• Metadata that is used internally by the dynamic assembly process

None of this data should be manipulated by a human user.

The table below describes the capabilities that are exposed in Solution Designer and a
description of how each is populated.

Table 20-1 Exposed Capabilities in Solution Designer

Field Description

description Textual summary of the capabilities offered in the cartridge, to be used by
modelers in Solution Designer. Usage summary entered in the Capabilities
Cartridge Wizard.

orderItemSpecification/
property

List of order item specification properties selected in the Capabilities
Cartridge Wizard. These are available for use in routing rule conditions in
Solution Designer.

orderComponents Order components are grouped according to their classification into
functions, systems, or granularities.The Product configuration in each
orchestration stage drives the classification (only leaf components).
• Function: Components produced by stage one.
• System: Components produced by stage two.
• Granularity: Components produced by stage three.
These are available in routing rule configuration in Solution Designer.

fulfillmentMode The standard fulfillment mode for TMF orders - deliver. This is informational
in Solution Designer.

fulfillmentPattern List of fulfillment patterns and their orchestration plan details. Products are
mapped to these patterns in Solution Designer.

component List of order components that are part of the orchestration plan of a
fulfillment pattern. These are used to build a graphical representation of the
pattern in Solution Designer.

transition List of transition dependencies for the order components in a fulfillment
pattern. These are used to build a graphical representation of the pattern in
Solution Designer.

For more information, refer to Packaging and Deploying a Capabilities Cartridge in Design
Studio Modeling OSM Orchestration.

Chapter 20
Capabilities Cartridge Build

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 17

A
Behaviors Quick Reference

The following pages contain a quick reference for Oracle Communications Order and Service
Management (OSM) behaviors which you can print and keep as a work aid.

For comprehensive information on behaviors, see "Modeling Behaviors."

OSM Behavior Type Overview
Table A-1 provides an overview of the OSM behaviors.

Table A-1 Behavior Type Overview

Behavior
Type Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Calculate
Behavior

1st Calculates the value of the data
instance node.

None All value nodes. Does not inherit.

Style
Behavior:
Appearance
Facet

2nd Specifies the appearance of a
data instance node:

• DEFAULT: the default
appearance should be used

• FULL: all choices should be
rendered at all times.

• COMPACT: a fixed number
of choices should be
rendered, with scrolling
facilities as needed.

• MINIMAL: a minimum
number of choices should be
rendered with a facility to
temporarily render additional
choices.

Data type
specific.For
Boolean type
fields:
CompactFor
Lookup type
fields: Minimal

Boolean and Lookup type
value nodes.

Nodes with Lookup
behaviors that have only
one displayed column.

Does not inherit.

Style
Behavior:
CSS Style
Facet

2nd Specifies the HTML CSS style
attributes of the data instance
node and label.

None All value and group nodes. Does not inherit.

Style
Behavior:
CSS Class
Facet

2nd Specifies the HTML CSS Class
name of the data instance node
and label.

None All value and group nodes. Does not inherit.

Style
Behavior:
Newline
Facet

2nd Specifies whether a line-break is
inserted before the node causing
it to be displayed at the start of a
new line.

False All value nodes. Does not inherit.

Style
Behavior:
Secret
Facet

2nd Ensures unauthorized users are
now allowed to view the contents
of nodes containing sensitive
information.

True All value nodes except for
modifiable (read/write)
lookups and boolean
values.

Does not inherit.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-1 of A-7

Table A-1 (Cont.) Behavior Type Overview

Behavior
Type Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Style
Behavior:
Layout
Facet

2nd Specifies the organization of a
group's child nodes into tabbed
pages.

None All group nodes. Does not inherit.

Style
Behavior:
Location
Facet

2nd Specifies the tabbed page that
this group will be placed in.

None All group nodes. Does not inherit.

Information
Behavior

3rd Specifies the label, hint, and help
information for the data instance
node.

None All value and group nodes. Does not inherit.

Relevant
Behavior

4th Indicates whether the data
instance node is currently
relevant. Data instance nodes
with this property evaluating to
false are not displayed in the
view. If this property is False,
other behaviors for this node are
not evaluated.

True All value and group nodes. If any ancestor
node evaluates to
false, this value is
treated as false.
Otherwise, the
local value is
used.

Lookup
Behavior

5th Specifies a set of dynamic
generated choices for the data
instance node.

Static lookup
values (if any)
specified in the
OSM Model
data dictionary.

All value nodes that are of
type lookup, number, or
text.

Does not inherit.

Constraint
Behavior:
Attachment
Facet

6th Specifies a condition that needs
to be satisfied for the associated
order attachment content to be
considered valid.

NOTE: This facet is only
supported through programmatic
behavior implementations.

True Attachment nodes. Does not inherit.

Read Only
Behavior

7th Describes whether the value is
restricted from changing. This
behavior overrides the static
read-only value specified in the
OSM Model View Node.

Default
specified by the
static read-only
value on the
OSM Model
View Node.

All value and group nodes. If any ancestor
node evaluates to
true, this value is
treated as true.
Otherwise, the
local value is
used.

Event
Behavior

8th Specifies an action to perform
when a given event occurs.

None Value nodes. Does not inherit.

Constraint
Behavior

N/A Specifies a condition that needs
to be satisfied for the associated
data instance node to be
considered valid. If the condition
is not satisfied (evaluates to
false), then messages are
displayed to the user.

True All value and group nodes. Does not inherit.

Appendix A
OSM Behavior Type Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-2 of A-7

Table A-1 (Cont.) Behavior Type Overview

Behavior
Type Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Data
Instance
Behavior

N/A Defines a container in which
instances can be declared.

It has no affect on the user
interface display of the element
for which the behavior is defined.

None All elements and structures Children. (Applies
to element
relationships
within a structure.
This is different
than the
inheritance of
behaviors
between the data
dictionary, order,
and task levels.

Common Behavior Elements
This section describes the syntax for declaring common behavior elements.

Annotation Element
<annotation>
 <documentation lang=“NCName">… </documentation>
</annotation>

Description Element
<description>string</description>

Instance Element
<instance name=“NCName" lang=“NCName"
 xsi:type=“inlineInstanceType|externalInstanceType">
 For inlineInstanceType, any valid XML document is allowed up to
 4000 characters in length.
 For externalInstanceType, adapter followed by parameter*, and cache*
</instance>

Adapter Element [externalInstanceType]
<adapter>com.mslv.oms.view.rule.adapter.ObjectelAdapter
 |com.mslv.oms.view.rule.adapter.OrderAdapter
 |com.mslv.oms.view.rule.adapter.XMLAttachmentAdapter
 |com.mslv.oms.view.rule.adapter.XMLFileAdapter
 |javaClassNameType<
/adapter>

Parameter Element [externalInstanceType]
<parameter name=“string">string-expr</parameter>

Appendix A
Common Behavior Elements

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-3 of A-7

Cache Element
<cache>
 <scope>NONE|NODE|SYSTEM</scope>
 <timeout>positiveInteger</timeout>
 <maxSize>positiveInteger</maxSize>
</cache>

Expression Element
<expression>boolean-expr</expression>

Declaring Behaviors in OSM XML Model
This section describes the syntax for declaring behaviors in OSM XML model.

Data Dictionary Level
<dataDictionary> element+
 <element name=“nameType" xsi:type=“booleanType|currencyType|dateType
 |dateTimeType|phoneType|groupType|textType|numericType|lookupType">
 description, viewRule*, followed by type specific content
 </element>
</dataDictionary>

Master Order Template Level
<masterOrderTemplate>
 dataNode+
 <dataNode element=“NCName">
 viewRule*, followed by dataNode*
 </dataNode>
</masterOrderTemplate>

View Level
<viewNode element=“NCName">
 editable?, minOccurs?, maxOccurs?, viewRule*, viewNode*
 <editable>boolean</editable>
 <minOccurs>unsignedInt</minOccurs>
 <maxOccurs>unsignedInt</maxOccurs>
</viewNode>

Data Provider Overview
Table A-2 provides an overview of the built-in and custom data providers. See "Using Data
Providers to Retrieve Data" for details.

Table A-2 Data Provider Overview

Data Provider Synopsis Parameter

Custom Uses data provided by a custom-defined Java
class.

Implementation-defined

Appendix A
Declaring Behaviors in OSM XML Model

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-4 of A-7

Table A-2 (Cont.) Data Provider Overview

Data Provider Synopsis Parameter

JDBC Lets OSM query any JDBC database, then
use the results within a behavior.

oms:dataSource, oms:sql, in:1 . . . in:n?, out:1 . . .
out:n?

Objectel Uses results of an Objectel Server Extension
as an instance.

obj:extensionName, obj:jmsFactory?, obj:queue?,
obj:allowErrorResponse?. Other parameters passed to
Objectel

Order Uses data from any OSM order as an external
instance.

oms:OrderID, oms:View | oms:OrderHistID

Property File Retrieves an external Java property file with a
given name from the classpath.

oms:url

SOAP Lets you open up OSM to web services, using
the HTTP protocol.

soap.endpoint, soap.action?, soap.envelope,
soap.body, soap.header?, oms:credentials.username?,
oms:credentials.password?,
oms:credentials.scope.host?,
soap.allowErrorResponse

XML Attachment Uses an XML attachment from any OSM
order as an instance.

oms:OrderID, oms:FileName

XML File Uses an XML file from any URL as an
instance.

oms:url

XML Validation Validates a provided XML instance document
according to a user-defined schema. The
document may be either a URL or an element.
The schema may also be a URL or an
element.

document, schema

Programmatic Behavior Implementation Overview
Table A-3 provides an overview of the programmatic behavior implementation.

Table A-3 Programmatic Behavior Implementation Overview

Rule Type Name Java Interface Method Names Parameter Types Return Types

Calculate Rule com.mslv.oms.view.Ca
lculateRule

calculate_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

Any Java primitive or
descendent of
java.lang.Object

Style Rule:

Appearance Facet

com.mslv.oms.view.St
yleRule

appearance_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

int

NOTE: Return value
must be one of
FULL_APPEARANCE,C
OMPACT_APPEARANC
E,
MINIMAL_APPEARAN
CE defined on the
StyleRule interface

Style Rule:

CSS Style Facet

com.mslv.oms.view.St
yleRule

style_<mnemonic>

styleForLabel_<mnemonic
>

com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

java.util.Map<String,
String>

Appendix A
Programmatic Behavior Implementation Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-5 of A-7

Table A-3 (Cont.) Programmatic Behavior Implementation Overview

Rule Type Name Java Interface Method Names Parameter Types Return Types

Style Rule:

CSS Class Facet

com.mslv.oms.view.St
yleRule

cssClass_<mnemonic>

cssClassForLabel_<mne
monic>

com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

String

Style Rule:

Newline Facet

com.mslv.oms.view.St
yleRule

newline_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

boolean

Style Rule:

Secret Facet

com.mslv.oms.view.St
yleRule

secret_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

boolean

Information Rule com.mslv.oms.view.Inf
ormationRule

information_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

java.util.Map<String,
String>

Relevant Rule com.mslv.oms.view.Re
levantRule

relevant_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

boolean

Lookup Rule com.mslv.oms.view.Lo
okupRule

lookup_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

String[]

String[][]

java.util.Map<Object,Ob
ject>

java.util.Collection<Obje
ct>

Constraint Rule com.mslv.oms.view.Co
nstraintRule

constraint_<mnemonic> com.mslv.oms.view.rule.
ConstraintContext

org.w3c.dom.Node

String[]

com.mslv.oms.view.rule.
ConstraintResult

com.mslv.oms.view.rule.
ConstraintResult[]

java.util.List<com.mslv.o
ms.view.rule.
ConstraintResult>

Constraint Rule

Attachment Facet

com.mslv.oms.view.Co
nstraintRule

constraint_attachment com.mslv.oms.view.rule.
ConstraintContext

org.w3c.dom.Node

java.io.InputStream

String[]

com.mslv.oms.view.rule.
ConstraintResult

com.mslv.oms.view.rule.
ConstraintResult[]

java.util.List<com.mslv.o
ms.view.rule.
ConstraintResult>

Read Only Rule com.mslv.oms.view.Re
adOnlyRule

readonly_<mnemonic com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

boolean

Appendix A
Programmatic Behavior Implementation Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-6 of A-7

Table A-3 (Cont.) Programmatic Behavior Implementation Overview

Rule Type Name Java Interface Method Names Parameter Types Return Types

Event Rule com.mslv.oms.view.Ev
entRule

event_<mnemonic> com.mslv.oms.view.rule.
ViewRuleContext

org.w3c.dom.Node

java.util.Map<String,
String>

NOTE: Map key must be
EventRule.VALUE_CHA
NGED_EVENT.

Map value must be one
of
EventRule.REFRESH_A
CTION or
EventRule.SAVE_ACTI
ON

Appendix A
Programmatic Behavior Implementation Overview

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-7 of A-7

B
XQuery Examples

You use XQuery expressions in various locations to implement key aspects of the Oracle
Communications Order and Service Management (OSM) orchestration functionality. For
information about these XQuery expressions, refer to the following topics:

• General XQuery Information

• Order Recognition Rule XQuery Expressions

• Decomposition XQuery Expressions

• Dependency XQuery Expressions

• Order Transformation Manager XQuery Expressions

General XQuery Information
This topic contains general or reference information about XQuery that applies the same in
different situations.

When working with XQuery expressions, see the following topics:

• About Creating XQuery Expressions with Design Studio

• OSM XQuery Functions

• Referencing Items from a Distributed Order Template in XQuery Expressions

About Creating XQuery Expressions with Design Studio
In general, the way you enter XQuery information into editors in Oracle Communications
Service Catalog and Design - Design Studio is the same, regardless of the editor. The XQuery
control in Design Studio generally has three tabs: XQuery, Instances, and Information.
Following are general instructions for entering XQuery information into each of these tabs in
Design Studio.

Using the XQuery Tab

The XQuery tab allows you to configure XQuery-based rules or elements, or identify the
source of the XQuery-based rules or elements. Select one of the following options:

• Select None if the XQuery configuration is optional and not configured. When you select
this option, Design Studio disables the remaining options in the subtabs.

• Select Expression and enter the XQuery expression in the corresponding text box. Click
Edit to open the Edit XQuery dialog box, which displays the configured XQuery expression
in a larger and resizable text box. You can edit the expression in the Edit XQuery dialog
box and click OK to save your changes, or click Cancel to dismiss the dialog box without
saving the changes.

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-1 of B-42

Note

Design Studio provides XQuery validation on basic syntax and semantics, and
denotes errors with Problem markers.

• Select File to denote that the XQuery configuration is located in a file saved to the project
resources directory. This option enables you to write your XQuery expressions using any
XQuery editing application you have installed in your Eclipse environment. See the Eclipse
online Help topic Associating editors with file types for more information.

Click Select to open the Select XQuery File dialog box, which displays all XQuery files
contained in the project resources directory. Select the appropriate XQuery file and click
OK.

• Select URI to denote that the XQuery configuration is located in a remote URI location. For
example, you might enter:

http://osm_server/AIARecognitionRule.xqy

Click Properties to open the Properties view, where you can define the following information
for the XQuery:

• Annotation: The optional XML annotation element allows you to provide information about
the XQuery. Enter information (for example, HTML-formatted information) for external
systems into the Annotation <appinfo> field. Enter information for human users into the
Annotation <documentation> field.

• Language: When you work with multiple languages, you can select a different language for
displaying the description and annotation. For more information, see "Defining Language
Preferences" in the Design Studio Modeling OSM Processes Help.

Using the Instances Tab

You can define a Data Instance behavior to obtain data that is not included in the order data
and make that data available to the rule. Click Add to add a Data Instance behavior. Select the
Data Instance behavior and click Properties to configure the Data Instance behavior.

For more information, see "Defining Data Instance Behavior Properties" in the Design Studio
Modeling OSM Processes Help.

Using the Information Tab

Use this tab if you want to describe the intended use of the rule. For example, you might
describe the functionality of a complex rule or provide instructions on its use.

OSM XQuery Functions
OSM-specific XQuery functions are available to you when writing XQuery expressions. These
XQuery functions are contained in classes that you can declare in the prolog of your XQuery
expression.

To see specifics about the functions available, install the OSM SDK and extract the OSM
Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip file (where w.x.y.z represents the specific
version numbers for OSM). See OSM Developer's Guide for more information about installing
the OSM SDK.

The specific classes that contain XQuery functions you might use are:

Appendix B
General XQuery Information

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-2 of B-42

• OrchestrationXQueryFunctions: This class contains XQuery functions that are used in
OSM Orchestration. To declare this class, put the following declaration in the prolog of your
XQuery expression:

declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQu
eryFunctions";

• XQueryFunctions: This class contains XQuery functions that are used in the order
transformation manager. To declare this class, put the following declaration in the prolog of
your XQuery expression:

declare namespace otmfn =
"java:oracle.communications.ordermanagement.orchestration.transformation.XQueryFuncti
ons.";

Referencing Items from a Distributed Order Template in XQuery
Expressions

The distributed order template is an option you can set on an order item specification to modify
the method used to store order item data. For more general information about the distributed
order template, see OSM Concepts.

When using a distributed order template, any XQuery expressions that reference order item
data must be in a particular format.

For any order item that is not a transformed order item, you must include the namespace of the
order item specification. Following is an example of an XQuery reference to the lineItemID
property on the InputOrderItem order item with the namespace http://ex_input.com:

/ControlData/OrderItem[@type='{http://ex_input.com}InputOrderItem']/lineItemID

For transformed order items, the format depends on the source of the data for the transformed
order item. Data that is defined in the order item specification itself will use the namespace for
the order item specification, the same way that data would be referenced for an input order
item. Following is an example of an XQuery reference to the lineItemID property on the
OutputOrderItem order item with the namespace http://ex_output.com:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/lineItemID

Data that has been derived from a common model entity, for example an action, will use a
different format. In the following situation:

• Order item name: OutputOrderItem

• Order item namespace: http://ex_output.com

• Conceptual model entity (in this case an Action) name: SA_Add_Internet

• Conceptual model cartridge name: Model_Broadband

• Conceptual model cartridge version: 1.0.0.0.0

• Parameter name on SA_Add_Internet: serviceLevel

The reference would look like this:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/
dynamicParams[@type='{Model_Broadband/1.0.0.0.0}SA_Add_InternetType']/serviceLevel

Appendix B
General XQuery Information

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-3 of B-42

Note that the type for the parameters contained in the conceptual model entity has the string
"Type" appended to the name of the entity. Thus, the type contains SA_Add_InternetType
rather than just SA_Add_Internet.

Order Recognition Rule XQuery Expressions
The following topics provide reference information about order recognition rule XQuery
expressions:

• About Recognition Rule XQuery Expressions

• About Validation Rule XQuery Expressions

• About Order Priority XQuery Expressions

• About Order Reference XQuery Expressions

• About Order Data Rule XQuery Expressions

About Recognition Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Recognition Rule area
XQuery tab to write an expression that specifies a customer order and associates it with an
OSM target order type. The XQuery has the following characteristics:

• Context: The input document for the Recognition Rule XQuery is the customer order. For
more information about typical customer order structures, see OSM Concepts.

• Prolog: You can declare the namespace for the customer order if you want to use the
contents of the order as part of the recognition rule or you can omit the declaration if you
only want to check the incoming customer order namespace. For example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: You must match the namespace you want to select for order processing with the
namespace of the incoming customer order. For example, the following expression
retrieves the namespace URI from the incoming customer order (fn:namespace-uri(.))
and compares it with this URI: 'http://xmlns.oracle.com/InputMessage':

fn:namespace-uri(.) = 'http://xmlns.oracle.com/InputMessage'

If you have declared a namespace in the prolog, you can also check to see if specific
values exist in the order. For example, you can use the fn:exists function to check that an
element exists. Or you can use a comparison expression such as = (equal to) or != (not
equal to) to compare a value in the customer order with a value in the XQuery.

Tip

Recognition rules are global entities within OSM, meaning that they can apply to any
CreateOrder operation. Configure the relevancy settings and the recognition rule
carefully to avoid having an incoming customer order recognized by a recognition rule
that you do not intend. For more information about relevancy, see OSM Concepts.

For example, in a simple scenario, the XQuery is based on a namespace:

fn:namespace-uri(.) = 'http://xmlns.oracle.com/InputMessage'

Appendix B
Order Recognition Rule XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-4 of B-42

The input message XML file includes the following line, which matches the namespace
specified in the recognition rule:

<im:order xmlns:im="http://xmlns.oracle.com/InputMessage"

The XQuery expression returns a Boolean expression, for example, fn:true() or fn:false()

The following example searches in a specific type of order:

fn:namespace-uri(.) = 'http://xmlns.oracle.com/communications/sce/dictionary/
CentralOMManagedServices-Orchestration/CustomerSalesOrder'

In a more complicated scenario, you might create an XQuery expression that looks for a
specific namespace and also interrogates the data within the incoming customer order. The
following example shows a recognition rule that recognizes an order based on the following
criteria:

• Namespace

• Value of the typeCode data element in the incoming customer order. In this case, the
value must be OSM-BDB. This indicates an OSM business-to-business order.

• The value of the FulfillmentModeCode data element in the incoming customer order. In
this case, the value can be DELIVER, CANCEL, or TSQ.

declare namespace provord=";http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1";;
declare namespace corecom=";http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";;
fn:namespace-uri(.) = 'http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1'
and
fn:exists(../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
corecom:Identification/corecom:BusinessComponentID)
and
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:TypeCode/text() = 'OSM-BDB'
and
(
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:FulfillmentModeCode/text() = 'DELIVER'
or
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:FulfillmentModeCode/text() = 'CANCEL'
or
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:FulfillmentModeCode/text() = 'TSQ'
)

For more information about order recognition rules see OSM Concepts.

About Validation Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Validation Rule area
XQuery tab to write an expression that specifies nodes in the incoming customer order that
must evaluate to true to accept the customer order into the system. The XQuery has the
following characteristics:

• Context: The input document for the Validation Rule XQuery is the customer order. For
more information about typical customer order structures, see OSM Concepts.

• Prolog: The input document for the Validation Rule XQuery is the customer order. You can
declare the customer order namespace in the XQuery prolog. For example:

Appendix B
Order Recognition Rule XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-5 of B-42

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The validation rule must specify customer order parameters or parameter values to
evaluate to true for the validation to be successful. If the validation fails, the expression
should return an error message.

In addition, if the Validation Rule fails, OSM automatically creates the order and sets the
order state to Failed. The inbound message and validation failure output are attached to
the order for reference. You can display and manage the order failure in the Order
Management web client.

The following sample XQuery checks for the existence of a sender ID:

if (fn:exists(./header/c:Sender/c:ID) and ./header/c:Sender/c:ID != '')
 then (true())
 else concat("SEVERE", "Message Header should contain Sender ID", header/Sender/ID")

The following sample XQuery checks for correct values in the typeCode data element in the
incoming customer order:

if (fn:exists($orderLine/im:ItemReference/im:TypeCode)
 and
 $orderLine/im:ItemReference/im:TypeCode != '')
then
 (
 if ($orderLine/im:ItemReference/im:TypeCode = "PRODUCT" or
 $orderLine/im:ItemReference/im:TypeCode = "OFFER" or
 $orderLine/im:ItemReference/im:TypeCode = "BUNDLE") then ()
 else
 local:reportIssue("ERROR", "Product Type should be one of: PRODUCT, OFFER, BUNDLE",
 $lineNum, "ProcessProvisioningOrderEBM/DataArea/ProcessProvisioningOrder/
 ProvisioningOrderLine/ItemReference/TypeCode")
)

Given this XQuery sample, the following part of a customer order would evaluate to true
because the typeCode element value is BUNDLE.

<!-- FIXED BUNDLE - BUNDLE -->
<im:salesOrderLine>
 <im:lineId>2</im:lineId>
 <im:promotionalSalesOrderLineReference>1</im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Fixed Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup />
 </im:itemReference>
</im:salesOrderLine>

For more information about validation rules see OSM Concepts.

About Order Priority XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Priority area XQuery
tab to write an expression that specifies an element value in the incoming customer order that
identifies the order priority. The XQuery has the following characteristics:

• Context: The input document for the Order Priority XQuery is the customer order. For more
information about typical customer order structures, see OSM Concepts.

Appendix B
Order Recognition Rule XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-6 of B-42

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Priority body must specify the node that contains the order priority value.

For more information about creating order priority XQuery expressions in the order recognition
rule and about creating order priority ranges for an order type, see OSM Concepts.

About Order Reference XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Reference area
XQuery tab to write an expression that specifies an element value in the incoming customer
order that identifies the order reference. The XQuery has the following characteristics:

• Context: The input document for the Order Reference XQuery is the customer order. For
more information about typical customer order structures, see OSM Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Reference body must specify the node that contains the order reference
value.

The following example shows a transformation rule XQuery expression that retrieves the order
reference number (as a string) from the numSalesOrder field in the incoming customer order:

declare namespace im="http://xmlns.oracle.com/InputMessage";
let $order := ../im:order
return
$order/im:numSalesOrder/text()

For more information about order reference, see OSM Concepts.

About Order Data Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Data Rule area
XQuery tab to write an expression that specifies nodes in the incoming customer order that
must be used in the creation task. The XQuery has the following characteristics:

• Context: The input document for the Order Data Rule XQuery is the customer order. For
more information about typical customer order structures, see OSM Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Data Rule body must map the customer order element values to the
corresponding creation task Task Data values.

The following example shows the fields in an incoming customer order:

<im:customerAddress>
 <im:locationType>Street</im:locationType>
 <im:nameLocation>Jangadeiros</im:nameLocation>
 <im:number>48</im:number>
 <im:typeCompl>floor</im:typeCompl>
 <im:numCompl>6</im:numCompl>
 <im:district>Ipanema</im:district>

Appendix B
Order Recognition Rule XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-7 of B-42

 <im:codeLocation>5000</im:codeLocation>
 <im:city>Rio de Janeiro</im:city>
 <im:state>RJ</im:state>
 <im:referencePoint>Gen. Osorio Square</im:referencePoint>
 <im:areaCode>22420-010</im:areaCode>
 <im:typeAddress>Building</im:typeAddress>
</im:customerAddress>

Following is a sample order data in a creation task. In the example, the following data is
contained in a CustomerDetails element:

– locationType

– nameLocation

– number

– typeCompl

– numCompl

– district

– codeLocation

– city

– state

– referencePoint

– areaCode

– typeAddress

The following XQuery expression specifies a variable for the location of the
customerAddress node in the customer order that can then be used to map
customerAddress child element values to CustomerDetails task data elements:

let $details := $customer/mes:customerAddress

The following XQuery expression performs this mapping:

return<_root>
<CustomerDetails>
 <locationType>{$details/im:locationType/text()}</locationType>
 <nameLocation>{$details/im:nameLocation/text()}</nameLocation>
 <number>{$details/im:number/text()}</number>
 <typeCompl>{$details/im:typeCompl/text()}</typeCompl>
 <numCompl>{$details/im:numCompl/text()}</numCompl>
 <district>{$details/im:district/text()}</district>
 <codeLocation>{$details/im:codeLocation/text()}</codeLocation>
 <city>{$details/im:city/text()}</city>
 <state>{$details/im:state/text()}</state>
 <referencePoint>{$details/im:referencePoint/text()}</referencePoint>
 <areaCode>{$details/im:areaCode/text()}</areaCode>
 <typeAddress>{$details/im:typeAddress/text()}</typeAddress>
</CustomerDetails>
</_root>

In the following example, the XQuery expression returns the <_root> portion of the order. The
ControlData portion of the order is populated by the system during the generation of the
orchestration plan.

declare namespace cso="http://xmlns.oracle.com/communications/sce/dictionary/
CentralOMManagedServices-Orchestration/CustomerSalesOrder";
let $customer := //cso:CustomerAccount

Appendix B
Order Recognition Rule XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-8 of B-42

return
<_root>
<OrderHeader>
<AccountIdentifier>{$customer/cso:AccountID/text()}</AccountIdentifier>
</OrderHeader>
</_root>

For more information about order data rules, see OSM Concepts.

Decomposition XQuery Expressions
This topic includes information about order recognition rule XQuery expressions related to
order decomposition:

• About Orchestration Sequence XQuery Expressions

• About Order Item Specification XQuery Expressions

• About Fulfillment Pattern Order Component XQuery Expressions

• About Decomposition Rule Condition XQuery Expressions

• About Component Specification Custom Component ID XQuery Expressions

• About Component Specification Duration XQuery Expressions

• About Fulfillment Pattern Duration XQuery Expressions (deprecated)

• About Fulfillment Pattern Component Duration XQuery Expressions

About Orchestration Sequence XQuery Expressions
The Orchestration Sequence editor provides the following areas to define XQuery expressions
related to order decomposition:

• About Order Sequence Order Item Selector XQuery Expressions

• About Order Sequence Fulfillment Mode XQuery Expressions

About Order Sequence Order Item Selector XQuery Expressions
This topic describes how to use the Orchestration Sequence editor Order Item Selector area
XQuery tab to write an expression that specifies which node-set to use from the customer
order as order items and has the following characteristics:

• Context: The input document for the Order Item Selector XQuery is the customer order.
For more information about typical customer order structures, see OSM Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog.

• Body: The XQuery body must specify the customer order node-sets that OSM then uses
as order items.

The following example shows an order item selector XQuery where the <salesOrderLine>
node-set is specified. OSM can now use the data in the <salesOrderLine> node-set in the
incoming customer order in the order items. There can only be one node-set selected per
sequence.

declare namespace im="http://xmlns.oracle.com/InputMessage";
.//im:salesOrderLine

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-9 of B-42

About Order Sequence Fulfillment Mode XQuery Expressions
This topic describes how to use the Orchestration Sequence editor Fulfillment Mode area
XQuery tab to write an expression that specifies the fulfillment mode for the orchestration
sequence from a customer order element and has the following characteristics:

• Context: The input document for the Fulfillment Mode Expression area XQuery is the
customer order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: The input document for the Fulfillment Mode Expression area XQuery is the
incoming customer order. You must declare the customer order namespace in the XQuery
prolog.

• Body: The XQuery body must specify the fulfillment mode.

Typically, the fulfillment mode is specified in the order header. For example:

<im:FulfillmentModeCode>Deliver</im:FulfillmentModeCode>

In the following example, the XQuery looks in the incoming customer order (SalesOrder) for
the <FulfillmentModeCode> element. It returns the text contained in that element.

declare namespace
im="http://xmlns.oracle.com/InputMessage";
<osm:fulfillmentMode name="{fn:normalize-space(.//im:SalesOrder/im:DataArea/im:FulfillmentModeCode/
text())}"

This is the XML in the incoming customer order:

<im:FulfillmentModeCode>Deliver</im:FulfillmentModeCode>

In this case, the XQuery returns Deliver.

About Order Item Specification XQuery Expressions
The Order Item Specification editor provides the following areas to define XQuery expressions
related to order decomposition:

• About Order Item Specification Order Item Property XQuery Expressions

• About XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns

• About Order Item Specification Order Item Hierarchy XQuery Expressions

• About Order Item Specification Condition XQuery Expressions

About Order Item Specification Order Item Property XQuery Expressions
This topic describes how to use the Order Item Specification editor, Order Item Properties
tab, Property Expression area, XQuery tab to write an expression that specifies order item
properties based on the input context. These expressions have the following characteristics:

• Context: The Property Expression area XQuery input document is a node from the node-
set returned by the order item selector (see "About Order Sequence Order Item Selector
XQuery Expressions"). OSM runs every order item Property Expression area XQuery
against each node (starting with the first and ending with the last node) in the node-set
returned by the order item selector.

• Prolog: You can declare the following variables within the prolog to access additional
context information:

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-10 of B-42

– The $inputDoc variable can be declared in the prolog of an OSM XQuery to provide
access to the original input customer order. This external function can be useful if you
need to generate order item properties based on elements outside of the order item
node-set defined in the order item selector. The format for declaring this variable in the
XQuery prolog is:

declare variable $inputDoc as document-node() external;

You can then access this variable within the XQuery body. For example, the following
XQuery body uses $inputDoc to define the ItemReferenceName value:

let $inputOrderData:= $inputDoc/GetOrder.Response/_root
fn:normalize-space(cso:ItemReferenceName/text())

For more information about typical customer order structures, see OSM Concepts.

– The $salesOrderLines variable can be used in an OSM XQuery to provide access to
original order item node-set before it is selected by the orchestration sequence's order
item selector. This can be useful if the order item selector XQuery changes the
selected order item node-set (for example, by rearranging the order of the elements).
The format for declaring this variable in the XQuery prolog is:

declare variable $salesOrderLines as document-node() external;

You can access this variable within the XQuery body. For more information about
typical customer order structures, see OSM Concepts.

• Body: The XQuery body must specify the order item element that provides the values for
each order item property you define.

After these XQuery expressions have run against an order item, the order item and the order
item properties become internally accessible as an XQuery context for other OSM entities. For
example,

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="1288881040699">
 <osm:name>Commercial Fixed Service [Add]</osm:name>
 <osm:orderItemSpec xmlns="http://xmlns.oracle.com/communications/ordermanagement/model">
 <osm:name>CustomerOrderItemSpecification</osm:name>
 <osm:namespace>
 http://oracle.communications.ordermanagement.unsupported.centralom
 </osm:namespace>
 </osm:orderItemSpec>
 <osm:productSpec xmlns="http://xmlns.oracle.com/communications/ordermanagement/model">
 <osm:name>Service.Fixed</osm:name>
 <osm:namespace>
 http://oracle.communications.ordermanagement.unsupported.centralom
 </osm:namespace>
 </osm:productSpec>
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported. centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productSpec>Fixed Service Plan Class</im:productSpec>
 <im:serviceId>552131313131</im:serviceId>
 <im:fulfillPatt>Service.Fixed</im:fulfillPatt>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-11 of B-42

The following examples show some ways to map data in an incoming customer order to an
order item property. The current context is a single node from salesOrderLines, which is one of
the nodes returned by executing the orchestration sequence order item selector against the
input message (see "About Order Sequence Order Item Selector XQuery Expressions").

• Order management personnel need to know what the requested delivery date is for order
items. Adding the date to the order item allows the order management personnel to see it
in the OSM web clients. In addition, OSM needs the requested delivery date to calculate
the order start date.

To retrieve the requested delivery data for an order item, OSM looks in the incoming
customer order for the <requestedDeliveryDate> element:

<im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>

The definition of the requestedDeliveryDate order item property includes the following
XQuery, which returns the text of the <requestedDeliveryDate> element:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(im:requestedDeliveryDate/text())

• Order management personnel need to identify order items in the OSM web clients. The
lineItemName order item property includes the following XQuery:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(fn:concat(im:itemReference/im:name/text(),'
[',im:serviceActionCode/text(),']'))

This XQuery looks for two elements, <name> and <serviceActionCode>:

<im:name>Fixed Caller ID</im:name>
<im:serviceActionCode>Add</im:serviceActionCode>

It then concatenates the text retrieved from the two elements to form the order item name,
in this case Fixed Caller ID [Add].

• Order management personnel need to identify the products or product specification from
the customer order so that order items can be mapped to fulfillment patterns (see "About
XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns"). The
following example shows the product specification data in the message, contained in the
<primaryClassificationCode> element:

<im:primaryClassificationCode>Mobile Service Feature Class
</im:primaryClassificationCode>

The productClass order item property uses the following XQuery expression to get the
data:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(im:itemReference/im:primaryClassificationCode/text())

About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns

The order item property specified in the Fulfillment Pattern Mapping Property field for the
order item must map to an existing OSM fulfillment pattern entity. The value could be contained
in a customer order, but more often, it is derived from other customer order parameter. This
property is mandatory.

The construction of the fulfillment pattern mapping order item property follows the same rules
as other order item property XQuery expressions. See "About Order Item Specification Order

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-12 of B-42

Item Property XQuery Expressions" for more information about the XQuery context, prolog,
and body.

The following describes a common scenario for deriving fulfillment patterns from product or
product specification data contained in an order. In other scenarios, the mapping from product
or product specification to fulfillment pattern might be simpler; or, there might be cases where
some order line items have no product specification, in which case the product specification
can be derived from the context of the order item.

You typically create conceptual model products in your OSM system by importing them. (See
OSM Concepts for more information.) When you import products, Design Studio creates the
productClassMapping.xml and productSpecMapping.xml files. These files contain
mappings between conceptual model products and OSM product specifications and fulfillment
patterns. The productClassMapping.xml file is provided for backward compatibility, so in this
topic it is assumed that you are using the productSpecMapping.xml file. These files are
created in one of the following directories:

• If you have specified a value for the Product Specification Mapping Folder field of the
Orchestration Preferences in Eclipse, it will create the two files in the directory specified.

• If no value is specified for that field, OSM will create the productClassMapping.xml file in
the resources/productClassMapping directory and the productSpecMapping.xml file in
the resources/productSpecMapping directory.

You can retrieve this mapping data from one of these files by creating a data instance provider
that can be referenced from an XQuery expression body using a data instance behavior.

Note

The element names are not the same between the productClassMapping.xml and
productSpecMapping.xml files. Ensure that you are using the correct element
names for the file you are referencing. The names in this topic are correct for the
productSpecMapping.xml file.

For example, the following XQuery creates the $productSpecMap variable that references the
data instance that points to the productSpecMapping.xml file:

let $productSpecMap := vf:instance('dataInstace1')

The following code creates a variable that references the product specification value from the
customer order. For example:

let $productSpecName := fn:normalize-space(im:itemReference/
im:primaryClassificationCode/text())

You can now create an expression that matches the product specification from the order with
the product specification contained in the productSpecMapping.xml file and returns the
fulfillment pattern associated with it or else defaults to the Non.Service.Offer fulfillment pattern.
For example:

return
if ($productSpecName != '')
then
 fn:normalize-space($productSpecMap/productSpec
 [fn:lower-case(@name)=fn:lower-case($productSpecName)]/productSpec/text())
else
 'Non.Service.Offer'

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-13 of B-42

In the following example, OSM retrieves the product specification Mobile Service Feature
Class from the incoming customer order. OSM uses the order item property specified in the
Fulfillment Pattern Mapping Property field for the order item to map the product specification
to a fulfillment pattern.

The order item property specified in the Fulfillment Pattern Mapping Property field for the
order item includes the following XQuery expression:

declare namespace im="http://xmlns.oracle.com/InputMessage";
(: Use the ProductSpecMap data instance behavior to retrieve the data in the
productSpecMapping.xml file: :)
 let $productSpecMap := vf:instance('ProductSpecMap')
 let $productSpecName :=
 fn:normalize-space(im:itemReference/im:primaryClassificationCode/text())
 return
 if ($productSpecName != '')
 then
 fn:normalize-space($productSpecMap/productSpec
 [fn:lower-case(@name)=fn:lower-case($productSpecName)]/productClass/text())
 else

 'Non.Service.Offer'

The productSpecMapping.xml file includes the <productSpec> element, that maps the
Mobile Service Feature Class product specification to the Service.Mobile fulfillment pattern:

<productSpec name="Mobile Service Feature Class"
 cartridge="OsmCentralOMExample-ProductSpecs">
 <fulfillmentPattern>Service.Mobile</fulfillmentPattern>
</productSpec>

To summarize, to map an order line item in an incoming customer order to a fulfillment pattern,
you configure the following:

• In the order item specification:

– A property that retrieves the conceptual model product or the OSM product
specification from the incoming customer order.

– The order item property specified in the Fulfillment Pattern Mapping Property field,
that maps the product or product specification to the fulfillment pattern. To do so, OSM
uses the ProductClassMap data instance behavior.

• The ProductSpecMap data instance behavior (and the data provider that supports it), that
retrieves data from the productSpecMapping.xml file.

• The productSpecMapping.xml file used by the ProductClassMap data instance behavior,
that maps products and product specifications to fulfillment patterns.

When you update your product catalog, you might need to add new fulfillment patterns. In that
case, you need to:

• Create new fulfillment patterns and conceptual model products, if necessary.

• Add mappings to the productSpecMapping.xml file.

You do not need to change the order item specification or the data instance behavior.

About Order Item Specification Order Item Hierarchy XQuery Expressions
This topic describes how to use the Order Item Specification editor Order Item Hierarchies
tab, Key Expression and Parent Key Expression areas, XQuery subtabs to write expressions
that specify the relative hierarchy of order items, in the same order or between different orders,

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-14 of B-42

based on an order item value, such as lineId and parentLineId and has the following
characteristics:

• Context: The Key Expression and Parent Key Expression area XQuery input document is
the order item. Specifically order item properties that indicate the relative hierarchy, such
as order item lineId and parentLineID properties. For example:

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Prolog: You can declare the order item specification namespace and the OSM namespace
in the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

You can declare the OrchestrationXQueryFunctions class in the prolog to use the
ancestors method that returns the current node and all ancestors of the current node
based on the specified hierarchy definition. This method can be useful when creating
dependencies between order items based on hierarchy. For example:

declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQu
eryFunctions";

See "OSM XQuery Functions" for more information about the
OrchestrationXQueryFunctions class. See OSM Concepts for an example of how the
ancestors method is used.

• Body: The XQuery body must specify an order item property defined in the order item
specification.

For example, for the Key Expression, you can identify a unique key for each order item,
typically the order item line ID:

fn:normalize-space(osm:properties/im:LineId/text())

For example, for the Parent Key Expression, you can identify a parent order line item,
typically the line ID for the parent order line item:

fn:normalize-space(osm:properties/im:parentLineId/text())

In the following example, the key expression uses the parent order line item's <lineId> element
from the order item property customer order:

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-15 of B-42

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:lineId/text())

The parent key expression uses the child order line item's <parentLineId> element from the
incoming customer order:

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:parentLineId/text())

About Order Item Specification Condition XQuery Expressions
This topic describes how to use the Order Item Specification editor Orchestration Conditions
tab, Condition Expression area, XQuery subtab to write expressions that specifies an order
item property value as a condition that you can then use in an order decomposition rule or in a
fulfillment pattern to determine whether an order item gets included in an order component.
The XQuery for the condition has the following characteristics:

• Context: The Condition Expression area XQuery input document is the order item
properties you want to use as conditions. For example, the following order item contains
the region and the ServiceActionCode order item properties, that could be associated
with conditions:

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

See "About Fulfillment Pattern Order Component Condition XQuery Expressions" for a
description of the XQuery condition based on the ServiceActionCode. See "About
Decomposition Rule Condition XQuery Expressions" for a description of the XQuery
condition based on the region.

• Prolog: You can declare the order item specification namespace and the OSM namespace
in the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body must evaluate an order item property defined in the order item
specification. These order item properties are available from the OSM namespace using
the properties element. For example, the following expression evaluates to true if the value
of region is anything other than Sao Paulo and the order item gets included in the order

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-16 of B-42

component. If the region were set to Sao Paulo, then the order item would not be included
in the order component.

fn:not(fn:normalize-space(osm:properties/im:region/text())='Sao Paulo')

Another condition could be created that would only evaluate to true if the value of region
was set to Sao Paulo. In this case, the order item would only be included in the order
component if the region were set to Sao Paulo.

About Fulfillment Pattern Order Component XQuery Expressions
The Fulfillment Pattern editor provides the following areas to define XQuery expressions
related to order decomposition:

• About Fulfillment Pattern Order Component Condition XQuery Expressions

• About Associating Order Items Using Property Correlations XQuery Expressions

Note

The XQuery expressions discussed in this chapter also apply to the Orchestration
Dependency editor.

About Fulfillment Pattern Order Component Condition XQuery Expressions
This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan tab, Order
Components subtab, Conditions subtab XQuery subtab to write an expression that specifies
whether to include or exclude an order item from an order component. You can create a new
fulfillment pattern from the Fulfillment Pattern editor or select from conditions created in the
Order Item Specification. See "About Order Item Specification Condition XQuery Expressions"
for more information about the context, prolog, and body of condition XQuery expressions.

The following example XQuery expression only evaluates to true if the value of
ServiceActionCode is not NONE or UPDATE. For example, if the value of
ServiceActionCode were ADD, then the order item would be included in the order
component.

fn:boolean
(
(osm:properties/im:ServiceActionCode/text()!="NONE" and
osm:properties/im:ServiceActionCode/text()!="UPDATE") or
(

About Associating Order Items Using Property Correlations XQuery Expressions
This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan tab, Order
Components subtab, Order Item Association subtab, Property Correlation selection,
XQuery subtab to write an expression that associates order items to order components that
are not assigned by their fulfillment pattern. These order item associations are typically
required when external systems need a specific context for an order item and includes the
following characteristics:

• Context: The Order Item Association subtab XQuery input documents are multiple order
items in the order after decomposition contained in the fromOrderComponent element
and the entire set of order items included in the order contained in the
toOrderComponent element. You can make an XQuery association based on the

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-17 of B-42

contents of these order items that create an association between the unique order item
IDs. For example:

<fromOrderComponent xmlns="">
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1234">
 <osm:name>Speed By Demand [Add]</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00
 </im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Speed by Demand class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <mi:region>Sao Paulo</im:region>
 <osm:properties>
 </osm:orderItem>
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
</fromOrderComponent>
<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00
 </im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 </osm:orderItem>
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-18 of B-42

 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in the
XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body must specify a dependency between the order item and the
associated order item using something similar to the following syntax:

let $fromItem := osm:fromOrderComponent/osm:orderItem[osm:name/text()="Speed By
Demand [Add]"]
let $toItem := osm:toOrderComponent/osm:orderItem[osm:name/text()="Broadband Bundle
[Add]" and osm:properties/im:SiteID/text() = $fromItem/osm:properties/im:SiteID/
text()]
return
<osm:dependency fromOrderItemId='{$fromItem/@id}' toOrderItemId='{$toItem/@id}'/>

where

– osm:fromOrderComponent: Returns the set of order items included in the order
component after the decomposition phase.

– osm:toOrderComponent: Returns the entire set of order items included in the order.

– osm:orderItem: These are the order items in the fromOrderComponent or
toOrderComponent categories.

– osm:dependency fromOrderItemId='{$fromItem/@id}: The output of the XQuery
specifying the source order item ID for the association.

– toItem='{$childOrderItem/@id}'/>: The output of the XQuery specifying the target
order item ID for the association.

Given the sample provided in the context bullet, this XQuery would return the following
association:

<osm:dependency fromOrderItemId='1234' toOrderItemId='5678'/>

The following example shows an XQuery that associates all child order items with their parent
items. (See OSM Concepts for more information.) The output of the XQuery expression returns
a node-set of <osm:dependency fromOrderItemId='{$fromOrderItem/@id}' toOrderItemId='
{$toOrderItem/@id}'/> where item IDs are the @id attribute of the order item.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://oracle.communications.ordermanagement.unsupported.centralom";
(: $fromOrderItemList contains all order items in the selected order component: :)
for $fromOrderItem in $fromOrderItemList
let $fromOrderItemList := osm:fromOrderComponent/osm:orderItem
(: $childOrderItems contains all children for the current $fromOrderItem: :)
let $childOrderItems := osm:toOrderComponent/osm:orderItem/osm:properties
 [prop:ParentLineID/text() = $fromOrderItem/osm:properties/prop:LineID/text()]
(: Returns the association between all parents and their children: :)
for $childOrderItem in $childOrderItems
return
 <osm:dependency fromOrderItemId='{$fromOrderItem/@id}' toOrderItemId='{$childOrderItem/@id}'/>

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-19 of B-42

About Decomposition Rule Condition XQuery Expressions
This topic describes how to use the Decomposition Rule editor, Conditions tab, Conditions
Details subtab, XQuery subtab to write an expression that associates a condition with a
decomposition rule. You can create the condition in the order item specification and select
them in the decomposition rule, or you can create them directly in the decomposition rule. See
"About Order Item Specification Condition XQuery Expressions" for more information about the
context, prolog, and body of condition XQuery expressions.

The following is an example of two decomposition rules, each having a condition set that
determines whether an order item is included in the target order component or not. In this
example:

• The decomposition rule that targets the target system order component for region 1 has
the following decomposition condition:

isRegion1

• The decomposition rule that targets the a target system order component for region 2 has
the following decomposition condition:

isOtherRegion

The XQuery for the isRegion1 decomposition rule condition is:

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:region/text())='Toronto')

This condition specifies the value of the region order item property. If the value is Toronto, the
decomposition rule condition is true, and the order item is included in the region 1 target
system order component.

The XQuery for the isOtherRegion decomposition rule condition is:

declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";declare namespace
osm="http://xmlns.oracle.com/communications/ordermanagement/model";fn:not(fn:normalize-
space(osm:properties/im:region/text())='Toronto')

This condition also specifies the value of the region order item property, but evaluates to true
only if the value is not Toronto. All order items that have any other value are included in the
region 2 target system order component.

The following example includes a variation on the isRegion1 decomposition rule that specifies
that all the order items from the source order component to the target order component that
have at least one order item with a region property of Toronto are included in the order
component. Otherwise, if the condition evaluates to false then none of the order items in
fromOrderComponent are included in the resulting order component.

declare namespace im="http://oracle.communications.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:exists(osm:fromOrderComponent/osm:orderItem[fn:normalize-space(osm:properties/
im:Region/text())='Toronto'])

For some functions, there is only one target system in the topology. For example, if you have
only one collections system in the topology, you will have one dependency rule that uses a
simple mapping from the source collections function order component to the collections target
system order component, and no decomposition condition is necessary.

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-20 of B-42

About Component Specification Custom Component ID XQuery
Expressions

This topic describes how to use the Order Component Specification editor, Component ID tab,
Component ID area, XQuery subtab to write an expression that specifies a custom component
ID for an order component. These custom component IDs are typically required when the
default component IDs are not sufficiently specific (see OSM Concepts for more information
about the default component ID). The Component ID XQuery includes the following
characteristics:

• Context: The Component ID tab XQuery input document is the order item and the order
item properties you want to use to create a custom component ID with. For example, the
following order item contains the SiteID and requestedDeliveryDate order item
properties. In a simple scenario, you can use this element to group all order items that
share the same SiteID value and further delineate groups based on
requestedDeliveryDate date range.

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>Bundle</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Prolog: You can declare the order item namespace and the OSM namespace in the
XQuery prolog. In more complicated XQuery expressions, you can also use the
OrchestrationXQueryFunctions OSM Java package to specify component IDs based on
order item hierarchies, order item requested delivery date, order component duration,
order component minimum duration separation, or a combination of some or all of them.
For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQu
eryFunctions";

See "OSM XQuery Functions" for more information about the
OrchestrationXQueryFunctions class.

• Body: The body must return a string. Every order item that ends with the same string gets
included in the order component. For example, if you wanted to group all order items
based on the SiteID value, you could specify the following XQuery:

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-21 of B-42

return osm:properties/im:SiteID/text()

The following topics describe OSM Java package methods.

For more information about how the OrchestrationXQueryFunctions are used in custom
Component ID XQuery expressions and for more complicated custom group ID generation
scenarios that use Orchestration XQueryFunction, see the following topics:

• Custom Order Component IDs Based on Hierarchy

• Custom Component IDs Based on Requested Delivery Date and Duration

• Custom Component IDs by Duration and Minimum Separation Duration

• Combining Order Item Hierarchy with Duration-Based Groupings

Custom Order Component IDs Based on Hierarchy
A more common scenario where custom order component IDs can be used is when you need
additional groupings of order components at the granularity level. For example, three levels of
decomposition from Function, System, to Bundle, results in the following component IDs:

• BillingFunction

• BillingFunction.BillingSystem

• BillingFunction.BillingSystem.Bundle

If you had order items in the Bundle order components that were part of different bundles that
go to different the billing system, you would need to separate each order item bundle into
different bundle order component. A component ID for such a scenario could look like this:

• For billing system 1: BillingFunction.BillingSystem.Bundle.2/BundleGranularity

• For billing system 2: BillingFunction.BillingSystem.Bundle.6/BundleGranularity

To create custom component IDs for this scenario, you could use the following order item
properties:

• typeCode: This property specifies if the order line item is an offer, bundle, or product. This
element also defines the product hierarchy of the order line items. For example:

OFFER
 BUNDLE
 PRODUCT

• lineId and parentLineId: These properties specify the hierarchical relationship between
the bundle and product order line items. You can create separate component IDs for every
order item bundle and associate all product order items with their corresponding bundle
component ID. To identify all ancestor order items that may be a bundle, you can use the
XQuery ancestors function, as explained later.

For example, the following four order items include two bundles and two associated products.
These order items have the following characteristics:

• Order Item 1 includes:

– typeCode: BUNDLE

– lineId: 2

– parentLineId: 1 (for example, an order item with an OFFER typeCode. This order
item is not specified in this example).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-22 of B-42

 id="1234">
 <osm:name>FIXED BUNDLE - BUNDLE</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>BUNDLE</im:typeCode>
 <im:parentLineId>1</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Fixed Bundle</im:lineItemName>
 <im:lineId>2</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 2 includes:

– typeCode: PRODUCT

– lineId: 3

– parentLineId: 2 (This matches the lineID of order item 1 indicating that order item 1 is
the parent of order item 2).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="56789">
 <osm:name>FIXED CALLER ID - PRODUCT</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>2</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>5</im:lineId>
 <im:SiteID>7</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 3 includes:

– typeCode: BUNDLE

– lineId: 6

– parentLineId: 1 (This indicates that both order item 1 and order item 3 share the same
parent).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="10111213">

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-23 of B-42

 <osm:name>BroadBand BUNDLE - BUNDLE</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>BUNDLE</im:typeCode>
 <im:parentLineId>1</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle</im:lineItemName>
 <im:lineId>6</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Broadband</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 4 includes:

– typeCode: PRODUCT

– lineId: 7

– parentLineId: 6 (This matches the lineID of order item 3 indicating that order item 3 is
the parent of order item 4).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="14151617">
 <osm:name>BroadBand Service - PRODUCT</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>6</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Fixed Bundle</im:lineItemName>
 <im:lineId>7</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Broadband</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

The customer order includes two bundles with two products. The hierarchy is:

Fixed Bundle - order item 2
 Fixed Caller ID - order item 5
Broadband Bundle - order item 6
 BroadBand Service - order item 7

To create the separate customized component IDs for the bundle order items 1 and 3, and
include all their corresponding children order items you need to:

• Return a separate component ID for each BUNDLE typeCode. This causes BUNDLE
order components to be generated.

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-24 of B-42

• Ensure that the PRODUCT typeCode for that bundle are included in its parent order item.

To do so, the XQuery uses the ancestors function to find whether the order item has a
BUNDLE typeCode or has a BUNDLE typeCode in one of its parent order items. If the order
item is a bundle, then a OSM creates a component ID for the bundle. If the order item has a
bundle in one of its parent order items, then OSM includes the order item in its parent order
item component ID. The following example shows an XQuery that does this.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryF
unctions";
(: The following part of the XQuery identifies the order line hierarchy definition
and retrieve all of the predecessor order line items in the bundle: :)
let $ancestors := osmfn:ancestors("CustomerOrderItemSpecification","default","http://
oracle.communications.ordermanagement.unsupported.centralom")

(: The following part of the XQuery finds the BUNDLE order item and generates an ID
based on the bundle order item lineID: :)
 return
 if (fn:exists($ancestors[osm:properties/prop:typeCode='BUNDLE']))
 then (
 concat($ancestors[osm:properties/prop:typeCode=('BUNDLE')]
 [1]/osm:properties/prop:lineId/text(),'/BundleGranularity')
)
 else (
 'ALL_OFFERS_AND_NON_SERVICE_BILLING/BundleGranularity'
)

This XQuery finds the child order line items, finds their parent order line items, and creates a
bundle order component for each of the bundle lines. The component IDs are:

• BillingFunction.BillingSystem.Bundle.2/BundleGranularity

• BillingFunction.BillingSystem.Bundle.6/BundleGranularity

In another example, there is one offer with two bundles and two products in each bundle. The
following table shows the hierarchy of bundles and products. The component IDs use the line
IDs of the two bundle items.

Line Number Line Name Line typeCode Parent Line ID Value to Use in
Component ID

1 Triple Play OFFER - -

2 Fixed Bundle BUNDLE 1 2

2.1 Fixed Service PRODUCT 2 2

2.2 Call Forwarding PRODUCT 2 2

5 Broadband Bundle BUNDLE 1 5

5.1 Broadband Service PRODUCT 5 5

5.2 High-Speed Internet PRODUCT 5 5

Custom Component IDs Based on Requested Delivery Date and Duration
In some scenarios, you may want to create custom Order Component IDs based on order item
requested delivery date and duration. For example, the following custom component ID
XQuery creates order component grouping based on the order item requested delivery dates:

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-25 of B-42

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryF
unctions";
let $groupDuration := "P2D"
return
osmfn: getGroupIdByDateTime ($groupDuration)

The XQuery creates a new order component for an order item based on the order item's
requested delivery date and includes all order items within this group that fall within two days of
the first order item's requested delivery date in the group. The XQuery does the same thing for
all other order items within the order.

The following table shows how five order items would be grouped given a custom Order
Component ID XQuery that creates a new component IDs.

Note

The group ID names are static with the first order component always called Group1
and the next Group2, and so on.

Order Item Requested Delivery Date Group ID

A June 9, 2014 Group1

B June 10, 2014 Group1

C June 11, 2014 Group2

D June 12, 2014 Group2

E June 12, 2014 Group3

See "About Component Specification Custom Component ID XQuery Expressions" for more
information about the context, prolog, and body of this XQuery. See "OSM XQuery Functions"
for more information about the OrchestrationXQueryFunctions class.

Custom Component IDs by Duration and Minimum Separation Duration
You can specify a minimum duration separation value for order items that fall very close to a
custom Order ID grouping based on order item requested delivery date and duration. For
example, the following XQuery adds a minimum separation value of one day:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryF
unctions";
let $groupDuration := "P2D"
let $minSeparationDuration := "P1D"
return
osmfn: getGroupIdByDateTime ($groupDuration, $minSeparationDuration)

All order item requested delivery dates that fall within one day of a two day grouping, would be
included in the two day grouping.

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-26 of B-42

The following table shows how the five order items would be grouped given a one day
minimum separation duration.

Order Item Requested Delivery Date Group ID

A June 9, 2014 Group1

B June 10, 2014 Group1

C June 11, 2014 Group1

D June 12, 2014 Group2

E June 12, 2014 Group2

See "About Component Specification Custom Component ID XQuery Expressions" for more
information about the context, prolog, and body of this XQuery. See "OSM XQuery Functions"
for more information about the OrchestrationXQueryFunctions class.

Combining Order Item Hierarchy with Duration-Based Groupings
You can combine the function to create custom Component IDs based on order item requested
delivery date, duration, and minimum duration separation, or a combination of these functions
with order component ID generation based on order item hierarchy. The following example
creates separate component IDs for order items that, although they have the same requested
delivery date, are part of different order item hierarchical groupings:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryF
unctions";
let $groupDuration := "P2D"
let $minSeparationDuration := "P1D"
return
osmfn: getGroupIdByDateTime ($groupDuration, $minSeparationDuration)
let $rootAncestorID := osmfn:ancestors("eboLineItem", "default", "http://
xmlns.oracle.com/communications/ordermanagement")[fn:last()]/osm:properties/
prop:BaseLineId/text()
return fn:concat($rootAncestorId, '/', $groupId)

The following table shows how five hierarchically divided order items would be grouped given a
one day minimum separation duration.

Order Item Requested Delivery Date Group ID Component ID

A.1 June 9, 2014 Group1 A/Group1

A.1.1 June 11, 2014 Group1 A/Group1

A1.2 June 19, 2014 Group2 A/Group2

A.1.3 June 20, 2014 Group2 A/Group2

B.1 June 9, 2014 Group1 B/Group1

B.1.1 June 11, 2014 Group1 B/Group1

B.1.2 June 12, 2014 Group1 B/Group2

See "About Component Specification Custom Component ID XQuery Expressions" for more
information about the context, prolog, and body of this XQuery. See "OSM XQuery Functions"
for more information about the OrchestrationXQueryFunctions class.

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-27 of B-42

About Component Specification Duration XQuery Expressions
This topic applies to the Order Component editor, Duration tab, Duration Expression area,
XQuery subtab.

• Context: There is no input document for this expression.

• Prolog: There is no prolog required for this expression.

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of the
expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

The following example is a hard-coded duration expression for seven hours:

PT7H0M0S

For more information about how OSM uses these fields to calculate order component
durations, see OSM Concepts.

About Fulfillment Pattern Duration XQuery Expressions
This topic applies to the Fulfillment Pattern editor, Orchestration Plan tab, Duration subtab,
Duration Expression area, XQuery subtab. The functionality for this tab has been deprecated
and is displayed to provide backward compatibility with older cartridges.

For the recommended functionality for configuring order component durations, see "About
Fulfillment Pattern Component Duration XQuery Expressions" and "About Component
Specification Duration XQuery Expressions".

About Fulfillment Pattern Component Duration XQuery Expressions
This topic applies to the Fulfillment Pattern editor, Orchestration Plan tab, Order
Components subtab, Duration subtab, Duration Expression area, XQuery subtab.

• Context: There is no input document for this expression.

• Prolog: There is no prolog required for this expression.

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

Appendix B
Decomposition XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-28 of B-42

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of the
expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

The following example is a hard-coded duration expression for three hours:

PT3H0M0S

For more information about how OSM uses these fields to calculate order component
durations, see OSM Concepts.

Dependency XQuery Expressions
This topic includes information about Orchestration XQuery expressions related to
orchestration dependencies:

• About Order Item Dependency Property Correlation XQuery Expressions

• About Wait Delay Duration XQuery Expressions

• About Wait Delay Date and Time XQuery Expressions

• About Order Data Change Wait Condition XQuery Expressions

• About Order Item Inter-Order Dependency XQuery Expressions

About Order Item Dependency Property Correlation XQuery Expressions
This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies tab, Order Item
Dependency subtab, XQuery subtab for the Property Correlation selection

• Orchestration Dependency editor, Order Item Dependencies tab, XQuery subtab for the
Property Correlation selection

to write an expression that specifies dependencies between different order items using order
item properties. The Property Correlation XQuery has the same context, prolog, and body
structure as the Fulfillment Pattern editor, Order Components tab, Order Item Association
subtab, XQuery subtab. See "About Associating Order Items Using Property Correlations
XQuery Expressions" for more information.

The following example shows a dependency that requires provisioning of an Internet service
before shipping a modem. This involves two order items: provision Internet service and ship
modem. The correlating property is the order item ID.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://sample.broadband";
let $bbProvision := osm:fromOrderComponent/osm:orderItem[osm:name="Internet Service"]
let $bbModem := osm:toOrderComponent/osm:orderItem[osm:name/text()='Broadband Modem'
 and osm:properties/im:SiteID/text() = $bbProvision/osm:properties/im:SiteID/text()]

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-29 of B-42

return
 <osm:dependency fromOrderItemId='{$bbProvision/@id}' toOrderItemId='{$bbModem/@id}'/>

In this example:

• $bbProvision contains the broadband service order item in the blocking Provision order
component.

• $bbModem is the broadband modem in the waiting Ship order component.

• The XQuery returns a dependency from the Internet Service order item to its associated
Broadband Modem order item, identified by $bbProvision/@id and $bbModem/@id.

If the order item IDs are:

• $bbProvision/@id = 1301589468772

• $bbModem/@id = 1301589468785

Then the XQuery returns the following:

<osm:dependency fromOrderItemId='1301589468772' toOrderItemId='1301589468785'/>

About Wait Delay Duration XQuery Expressions
This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait Condition
subtab, Wait Delay area, Duration Expression area XQuery subtab for the Duration
selection

• Orchestration Dependency editor, Wait for Condition tab, Wait Delay area, Duration
Expression area XQuery subtab for the Duration selection

to write an expression that specifies the duration of delay, based on an order item property,
before starting a waiting order component after all dependencies have been resolved.

• Context: The Duration XQuery input document is the entire set of order items included in
the order contained in the toOrderComponent element. You can return the value of
requestedDeliveryDate to help determine the wait delay duration. For example:

<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported. centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 <osm:orderItem [57 lines]

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-30 of B-42

 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in the
XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body returns a duration value based on the requestedDeliveryDate
order item property:

let $mydate := osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/
*[namespace-uri()='http://
oracle.communications.ordermanagement.unsupported.centralom' and local-
name()='requestedDeliveryDate'][1]/text()
return
if (fn:current-dateTime()- xs:dateTime($mydate) < xs:dayTimeDuration('PT10H')) then
 'PT10H'
else
 'PT10M'
return

where

– osm:toOrderComponent: Provides the entire set of order items included in the order.

– osm:orderItem: These are the order items in the toOrderComponent category. The
remainder of this expression identifies the namespace of the order item specification
and returns the value of the requestedDeliveryDate element.

– The if statement checks to see if the value of the requestedDeliveryDate is less than
the hard-coded dayTimeDuration value. These values conform to the XSD duration
data type.

– The then statement returns 10 hours if the if statement evaluates to true.

– The else statement return 10 months if the if statement evaluates to false.

The following example shows the sample XQuery to return a duration value.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";

let $mydate := osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-uri()='http://
oracle.communications.ordermanagement.unsupported.centralom' and local-name()='requestedDeliveryDate']
[1]/text()
return
if (fn:current-dateTime()- xs:dateTime($mydate) < xs:dayTimeDuration('PT10H')) then
 'PT10H'
else
 'PT10M'

About Wait Delay Date and Time XQuery Expressions
This topic describes how to use one of the following fields:

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-31 of B-42

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait Condition
subtab, Wait Delay area, Duration Expression area XQuery subtab for the Date Time
Expression selection

• Orchestration Dependency editor, Wait for Condition tab, Wait Delay area, Duration
Expression area XQuery subtab for the Date Time Expression selection

to write an expression that specifies the date and time, based on an order item property, for
starting a waiting order component after all dependencies have been resolved.

• Context: The Date Time Expression XQuery input document is the entire set of order
items included in the order contained in the toOrderComponent element. You can use the
requestedDeliveryDate order item property to determine the date and time that the XQuery
should start after all blocking items have resolved. For example:

<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported. centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in the
XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body returns a date and time value based on the
requestedDeliveryDate order item property:

osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-uri()='http://
oracle.communications.ordermanagement.unsupported.centralom' and local-
name()='requestedDeliveryDate'][1]/text()

osm:toOrderComponent: returns the entire set of order items included in the order and
returns the requested delivery date of all order items for the wait delay date and time.

The following example shows the sample XQuery to return a date time value.

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-32 of B-42

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-uri()='http://
oracle.communications.ordermanagement.unsupported.centralom' and local-
name()='requestedDeliveryDate'][1]/text()

About Order Data Change Wait Condition XQuery Expressions
This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan tab,
Dependencies subtab, Wait Condition subtab, Wait for Condition area, XQuery subtab for
the Data Change Notification selection,

This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait Condition
subtab, Wait for Condition area, XQuery subtab for the Data Change Notification
selection

• Orchestration Dependency editor, Wait for Condition tab, Wait for Condition area,
XQuery subtab for the Data Change Notification selection

to write an expression that specifies a value that must exist in order item property (typically a
blocking order item property) before a waiting order item starts.

• Context: The Data Change Notification XQuery input document is the task view task data
that was changed using an update order transaction.

• Prolog: You can declare the $blockingIndexes variable in the XQuery prolog that contains
an index of data element for all blocking order items. For example:

declare variable $blockingIndexes as xs:integer* external;

• Body: The XQuery body returns a specific value and will wait until all blocking order items
have the corresponding value and the XQuery returns true.

The following example shows the XQuery that evaluates the data change. The dependency is
met when all blocking order items have reached a state of PROVISION STARTED.

(: The $blockingIndexes variable contains data element indexes for all blocking order items: :)
declare variable $blockingIndexes as xs:integer* external;
(: Specify "PROVISION STARTED" as the data value that must be met: :)
let $expectedMilestoneCode := "PROVISION STARTED"
(: $milestoneValues contains a set of milestones for all blocking order items: :)
let $milestoneValues :=
 /GetOrder.Response/_root/ControlData/Functions/ProvisioningFunction/orderItem/orderItemRef[
 fn:index-of($blockingIndexes, xs:integer(@referencedIndex)) !=
 0]/milestone[text() eq $expectedMilestoneCode]
(: Return true only if all the milestones in ProvisioningFunction/orderItem/orderItemRef are PROVISION
STARTED: :)
return fn:count($milestoneValues) eq fn:count($blockingIndexes)

The following example returns true when at least one blocking item is completed.

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare variable $blockingIndexes as xs:integer* external;
let $component := //ControlData/Functions/NetworkProvisionFunction
let $lineItem := $component/orderItem/orderItemRef[fn:index-of($blockingIndexes,
xs:integer(@referencedIndex)) != 0]
return
 if (fn:exists($lineItem))
 then

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-33 of B-42

 let $statusValue := $lineItem/OrderItemStatus/text() = "completed"
 return
 if (fn:count($statusValue)>0)
 then
 fn:true()
 else
 fn:false()
 else
 fn:false()

About Order Item Inter-Order Dependency XQuery Expressions
This topic describes how to use the Order Item Specification editor, Order Item Dependency
tab, Order Item Selector area, XQuery tab to write an expression that creates dependencies
between the order items on the follow-on order and the order items on the base order. It is the
follow-on order that generates this dependency on the base order.

• Context: The Order Item Selector XQuery input document is typically an order item on a
follow-on order (the waiting order).

• Prolog: You can declare the OSM namespace, the cartridge namespace for the target
order (the base order), and the namespace of the query task that contains the order data
you want to view. For example:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="CommunicationsSalesOrderFulfillmentPIP";
declare namespace osmc="urn:oracle:names:ordermanagement:cartridge:
CommunicationsSalesOrderFulfillmentPIP:1.0.0:view:CommunicationsSalesOrderQueryTask";

• Body: The CRM that sends the follow-on order must specify the reference number that
uniquely identifies the base order and also the order item line ID of the blocking order item.
You can define a variable (such as $dependingLineId) that extracts the dependent line ID
from the order item context. For example:

let $dependingLineId := fn:normalize-space(osm:properties/
im:DependingSalesOrderBaseLineId)

You can configure a web service data instance provider that runs a FindOrder Web Service
that searches for orders based on the reference value (osm:properties/prop:Ref/text()))
in the follow-on order that generates a FindOrder response that includes the order ID of the
base order. See OSM Developer's Guide for more information about configuring web
service data instance providers. For example:

<ord:FindOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 xmlns:prop="http://oracle.communications.ordermanagement.unsup.centralom">
 <ord:ViewBy>
 <ord:AmendmentFilter>
 <ord:LevelOfDetail>AmendmentsSummary</ord:LevelOfDetail>
 </ord:AmendmentFilter>
 <ord:LifecycleEventFilter>
 <ord:RetrieveLifecycleEvents>false</ord:RetrieveLifecycleEvents>
 </ord:LifecycleEventFilter>
 </ord:ViewBy>
 <ord:SelectBy>
 <ord:Reference>{fn:normalize-space(osm:properties/prop:Ref/text())} </ord:Reference>
 </ord:SelectBy>
</ord:FindOrder>

This data instance provider returns the order ID of the base order which you can capture in
an XQuery variable (such as $parentOrderID). You can use this variable in a data

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-34 of B-42

instance provider that runs a GetOrder Web Service to obtain the order item details from
the base order. For example, the following XQuery populates the GetOrder request
message using the results from the "findOrder" data instance provider to provide the value
for the order ID of the base order in the Order ID field:

<ord:GetOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model">
 <ord:OrderId>{vf:instance("findOrder")/ord:Order[last()]/ord:Amendments/
ord:AmendedOrderSummary/ord:Id/text()}</ord:OrderId>
<ord:View>CommunicationsSalesOrderQueryTask</ord:View>
</ord:GetOrder>

This data instance provider returns all order item instances in the base order that you can
then search through to find the blocking order item using the $dependingLineId variable.
You can capture the results in an XQuery variable (such as $parentOrderItemId). For
example:

let $parentOrderItemId :=fn:normalize-space(vf:instance("getOrder") /ord:Data/
osmc:_root/osmc:ControlData/osmc:OrderItem [osmc:BaseLineId=$dependingLineId]/@index)

The XQuery body returns the order ID of the base order and the order item property that
specifies the blocking order item on the base order:

 <osm:dependency fromOrderId="{$parentOrderId}"
fromOrderItemId="{$parentOrderItemId}"/>

where

– <osm:dependency fromOrderId: Returns the base order ID.

– fromOrderItemId: Returns the blocking order item property value that controls the
dependency. OSM internally monitors the blocking order item until it is no longer being
processed by any order component on the base order.

The following example shows an XQuery for an inter-order dependency.

declare namespace ord="http://xmlns.oracle.com/communications/ordermanagement";
declare namespace im="CommunicationsSalesOrderFulfillmentPIP";
declare namespace osmc="urn:oracle:names:ordermanagement:cartridge:
CommunicationsSalesOrderFulfillmentPIP:1.0.0:view:CommunicationsSalesOrderQueryTask";
let $dependingLineId := fn:normalize-space(osm:properties /
im:DependingSalesOrderBaseLineId)
return
 if(fn:not($dependingLineId = ''))
 then
(: Use the data instance behavior "findOrder" to find the base order: :)
 let $parentOrderId := fn:normalize-space(vf:instance("findOrder")/
ord:Order[last()]/ord:Amendments/ord:AmendedOrderSummary/ord:Id/text())
(: Use the data instance behavior "getOrder" to find the associated order item ID in the
base order: :)
 let $parentOrderItemId :=
 fn:normalize-space(vf:instance("getOrder")/ord:Data/
 osmc:_root/osmc:ControlData/osmc:OrderItem[osmc:BaseLineId=$dependingLineId]/
@index)
 return
 if(fn:not($parentOrderId = '') and fn:not($parentOrderItemId = ''))
 then
(: Return the dependency: :)
 <osm:dependency fromOrderId="{$parentOrderId}"
fromOrderItemId="{$parentOrderItemId}"/>
 else()
 else()

Appendix B
Dependency XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-35 of B-42

Order Transformation Manager XQuery Expressions
The following topics provide reference information about order transformation manager XQuery
expressions.

• About Transformation Sequence XQuery Expressions

• About Mapping Rule XQuery Expressions

• About Order Item Parameter Binding XQuery Expressions

• About Transformed Order Item Fulfillment State XQuery Expressions

About Transformation Sequence XQuery Expressions
When working with Transformation Sequence editor, see the following topics for information
about defining XQuery expressions related to transformation sequences:

• About Order Item Context XQuery Expressions

• About Related Order Item Selector XQuery Expressions

• About Stage Condition XQuery Expressions

About Order Item Context XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies tab,
Order Item Context subtab, Expression area, XQuery subtab to write an expression that
defines the context order items for the order transformation. To see the Order Item Context
subtab, you must select a transformation stage in the tree on the Dependencies tab.

• Context: The input document is the complete set of source order items.

• Prolog: You can declare the order item namespace in the XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.centralom';

• Body: The XQuery body returns the source order items that should be considered the
context for the transformation stage.

The following example shows an XQuery expression for selecting an order item context.

 declare namespace prop='http://oracle.communications.centralom';
 osm:orderItem[osm:properties/prop:serviceIntance = 'Y']

About Related Order Item Selector XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies tab,
Related Order Item Selector subtab, Expression area, XQuery subtab to write an expression
that defines the related order items for a particular context order item. To see the Related
Order Item Selector subtab, you must select a transformation stage in the tree on the
Dependencies tab.

• Context: The input document is a context order item.

• Prolog: You can declare the order item namespace and the namespace for the order
transformation manager functions in the XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.broadband;
declare namespace

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-36 of B-42

otmfn="java:oracle.communications.ordermanagement.orchestration.transformation.XQuery
Functions.";

• Body: The XQuery body returns the source order items related to the context order items.

The following example shows an XQuery expression that returns sibling order items as related
order items to the order transformation.

 declare namespace prop='http://oracle.communications.broadband;
declare namespace
otmfn="java:oracle.communications.ordermanagement.orchestration.transformation.XQueryFunc
tions.";
 let $siblings := otmfn:siblings (., ‘{http://
oracle.communications.broadband}default')
 return $siblings[! fn:exists(osm:properties[prop:serviceInstance = 'Y'])]

For more information about the transformation.XQueryFunctions class, install the OSM SDK
and extract the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip file (where w.x.y.z
represents the specific version numbers for OSM). See OSM Installation Guide for more
information about installing the OSM SDK.

About Stage Condition XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies tab,
Stage Condition subtab, Expression area, XQuery subtab to write an expression that
determines whether a particular transformation stage should be run. To see the Stage
Condition subtab, you must select a transformation stage in the tree on the Dependencies
tab.

• Context: The input document is the complete set of target order items.

• Prolog: You can declare the order item property and parameter namespaces in the XQuery
prolog. For example:

 declare namespace prop='http://oracle.communications.broadband';

declare namespace parm='http://oracle.communications.broadband';

• Body: The XQuery body returns a Boolean, with true meaning that the transformation
stage should be run and false meaning that the transformation stage should not be run.

The following example shows an XQuery expression that returns true if certain parameters
have not been defined, and false if the parameters are already defined.

declare namespace prop='http://oracle.communications.cso';
declare namespace parm='http://oracle.communications.broadband';
not(fn:exists(osm:properties/prop:Parameters[fn:exists(parm:uploadSpeed) and fn:exists
(parm:downloadSpeed)]))

About Mapping Rule XQuery Expressions
When working with Mapping Rule editor, see the following topics for information about defining
XQuery expressions related to order decomposition:

• About Mapping Condition XQuery Expressions

• About Action Mapping XQuery Expressions

• About Entity-to-Entity Advanced Mapping XQuery Expressions

• About Entity-to-Data-Element Advanced Mapping XQuery Expressions

• About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-37 of B-42

• About Reverse Mapping XQuery Expressions

• About Multi-Instance XQuery Expressions

About Mapping Condition XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Condition subtab,
Expressions area, XQuery subtab to write an expression that defines a condition that must be
satisfied to apply this mapping.

• Context: The input document is a target order item.

• Prolog: You can declare the order item namespace in the XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.broadband';

• Body: The XQuery body returns a Boolean, with true meaning that the mapping rule should
be run and false meaning that the mapping rule should not be run.

The following example shows an XQuery expression that runs the rule only if the target action
is None.

declare namespace prop='http://oracle.communications.cso';
osm:properties/prop:Action/text() = 'None'

About Action Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Actions subtab Action
Mappings area, XQuery subtab to write an expression that defines the mapping for an action
code for a particular mapping rule. To access this field, you must deselect Use Relationship
Action Map and select the Advanced option.

• Context: The input document is a source order item.

• Prolog: You can declare the following variables within the prolog to determine the action
code.

– You can declare $sourceValue to access the action code of the source order item.
This is the Order Item Action property value for the source order item.

– You can declare $currentTargetValue to access the action code of the target order
item. This is the Order Item Action property value for the target order item.

• Body: The XQuery body returns an action code, or returns () to leave the current value
unchanged.

The following example shows an XQuery expression that returns the source action code if the
target action code is not already set and otherwise leaves the target action code unchanged.

 declare $sourceValue external;
 declare $currentTargetValue external;
 if (! fn:empty($currentTargetValue))
 $sourceValue
 else
 ()

About Entity-to-Entity Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping subtab,
Mapping Rule Item area, XQuery subtab to write an expression that defines an advanced
mapping between two entities. This field is displayed when you select the target of an entity-to-
entity mapping. This is the only type of mapping available for entity-to-entity mapping.

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-38 of B-42

• Context: The input document is a source order item.

• Prolog: You can declare any namespaces needed to construct the target property (or
properties) in the XQuery prolog. For example:

declare namespace prop='http://oracle.communications.cso;

• Body: The XQuery body returns a list of order item properties to be set on the target order
item. If the property already exists on the target order item, it will be overwritten by the
value returned from this XQuery expression.

The following example shows an XQuery expression that returns the structured Parameters
property for the target order item.

declare namespace prop='http://oracle.communications.cso;
<prop:Parameters xmlns:param="http://oracle.communications.broadband">
 <parm:AAAAccount>Account1</parm:AAAAccount>
 <parm:DownloadSpeed>6</parm:DownloadSpeed>
 <parm:UploadSpeed>0.6</parm:UploadSpeed>
 <parm:MAC/>
 <parm:Brand>Siemens</param:Brand>
 <parm:Model>4200</parm:Model>
 <parm:Firewall>Y</parm:Firewall>
</prop:Parameters>

About Entity-to-Data-Element Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping subtab
Mapping Rule Item area, XQuery subtab to write an expression that defines an advanced
mapping between an entity and a data element. This field is displayed when you select the
target of an entity-to-data-element mapping and select the Advanced option in the Mapping
Rule Item topic.

• Context: The input document is a source order item.

• Prolog: There is no prolog for this XQuery.

• Body: The XQuery body returns a data element value or returns () to leave the current
value unchanged.

The following example shows an XQuery expression that returns "Y" if a particular parameter
exists, and () if it does not exist.

if fn:exists(vf:instance("checkMe")/somevalue)
 "Y"
else
 ()

About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping subtab
Configuration subtab, XQuery subtab to write an expression that defines an advanced
mapping between two data elements. This field is displayed when you select the target of a
data-element-to-data-element mapping and select the Advanced option in the Mapping Rule
Item topic.

• Context: The input document is a source order item during normal transformation. If
invoked during forward data propagation, the input document is empty.

• Prolog: You can declare the order item namespace in the XQuery prolog. For example:

declare namespace prop='http://oracle.communications.centralom';

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-39 of B-42

You can also declare the following variable within the prolog to determine the action code.

– You can declare $value to contain the values of the target data elements.

• Body: The XQuery body returns one or more data element values or returns () to leave the
current value unchanged.

The following example shows an XQuery expression that returns the target value of a data
element based on the value of the source data element.

declare variable $value external;
if (fn:empty($value)) then ('unknown') else (fn:concat('Loc: ', $value))

The following example shows an XQuery expression that returns the target value of a data
element based on characteristics of the source order item.

declare namespace prop='http://oracle.communications.centralom';
if (fn:exists(osm:properties/prop:ServicePoint/text()))
then (fn:concat('Loc: ', fn:normalize-space(osm:properties/prop:ServicePoint/string())))
else ('unknown')

About Reverse Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping subtab, Bi-
Directional Mapping subtab, XQuery subtab to write an expression that defines an advanced
mapping between two data elements. This field is displayed when you select the target of a
data element-to-data element mapping and select the Advanced option in the Mapping Rule
Item topic, if Supports Bi-Directional Mapping is selected in the Details subtab of the
Mapping tab for the selected mapping.

• Context: The input document is empty.

• Prolog: You can declare the following variables within the prolog to determine the action
code.

– You can declare $value to access the updated target value.

• Body: The XQuery body returns the updated source value.

The following example shows an XQuery expression that returns () if the return value is
unknown and otherwise returns the updated value.

declare variable $value external;
if ('unknown' = $value) then() else (fn:substring($value, 5))

About Multi-Instance XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping subtab,
Multi-Instance Expression subtab, XQuery subtab to write an expression that defines key
mapping for a multi-instance structure. This field is displayed when you select the target of a
data element-to-data element mapping and select the Advanced option in the Mapping Rule
Item topic, if the target data element is a member of a multi-instance structure.

• Context: The input document is a source order item.

• Prolog: You can declare the order item namespace in the XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.broadband';

• Body: The XQuery body returns a key value that identifies a source order item instance.

The following example shows an XQuery expression that returns the concatenation of two
source order item properties for the key value.

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-40 of B-42

fn:concat(prop:areaCode, '-', prop:localNumber)

About Order Item Parameter Binding XQuery Expressions
This topic describes how to use the Order Item Parameter Binding editor, Parameter Bindings
tab, Binding Expression area, XQuery subtab to write an expression that defines the bindings
for one or more parameters on a conceptual model entity from an order item.

• Context: The input document is an input order item. Each order item element in this node
set is passed into the XQuery as the context.

• Prolog: You can declare the namespace for the incoming order and the namespace for the
conceptual model entity in the XQuery prolog. For example:

declare namespace im="http://xmlns.oracle.com/InputMessage";
declare namespace otm="CommonModelBroadbandCart/1.0.0.0.0";

• Body: The body of the XQuery will return a node set of elements that correspond to the
conceptual model entity data elements. Since you can have as many separate bindings
between the entities as you like, this can return anything from one data element to all of
them.

The following example shows an XQuery expression that returns an UploadSpeed and a
DownloadSpeed parameter from two name-value pairs where the names are Upload Speed
and Download Speed.

declare namespace fulfillord="http://xmlns.oracle.com/InputMessage";
declare namespace otm="OSMCom_3Play/1.0.0.0.0";

<otm:UploadSpeed>{fn:normalize-space(fulfillord:itemReference/
fulfillord:specificationGroup/fulfillord:specification[fulfillord:name='Upload Speed']/
fulfillord:value)}</otm:UploadSpeed>

<otm:DownloadSpeed>{fn:normalize-space(fulfillord:itemReference/
fulfillord:specificationGroup/fulfillord:specification[fulfillord:name='DownloadSpeed']/
fulfillord:value)}</otm:DownloadSpeed>

About Transformed Order Item Fulfillment State XQuery Expressions
This topic describes how to use the Transformed Order Item Fulfillment State Composition
Rule Set editor, Composition Rules tab, Source Order Item subtab, XQuery field to write an
expression that defines the conceptual model entities that should be present if the condition is
to be evaluated. This field is only available when you have a condition selected in the tree in
the tab, and you have selected the Advanced option on the subtab.

• Context: The input document is the order.

• Prolog: You can declare $orderItemIndex to access the index of the order item being
considered.

• Body: The body of the XQuery will return a Boolean value indicating whether the current
rule should be used to calculate the fulfillment state.

The following example shows an XQuery expression that returns true if a particular order item
property has a specific value.

declare variable $orderItemIndex external;

let $orderData := fn:root(.)/GetOrder.Response
let $orderItem := $orderData/_root/ControlData/OrderItem[@index=$orderItemIndex]
return
 if (fn:exists($orderItem) and fn:data($orderItem/AnyProperties) = 'ABC')

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-41 of B-42

 then fn:true()
 else fn:false()

Appendix B
Order Transformation Manager XQuery Expressions

Modeling Guide
G37998-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-42 of B-42

	Contents
	About This Content
	Part I Modeling OSM Solutions Overview
	1 OSM Solution Modeling Overview
	About the OSM Solution Modeling Process
	About Determining the OSM Functionality to Implement
	Solution Modeling Considerations
	General Solution Data Modeling Principles
	Performance Considerations

	Planning OSM COM Solution Requirements
	Modeling COM Order and Order Recognition Requirements
	COM Data Modeling Considerations
	Modeling COM Orchestration Order Items and Binding Conceptual Model Parameters
	Modeling COM Orchestration Order Item Decomposition
	Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling COM Order Transformation Manager
	Modeling COM Orchestration Dependencies
	Modeling COM Processes and Tasks
	Modeling COM Fallout Scenarios
	Modeling COM Fulfillment States
	Modeling COM Processing States
	Modeling Change Order Management for COM
	Cartridge Management Considerations for COM

	Planning OSM SOM Solution Requirements
	Modeling SOM Order and Order Recognition Requirements
	SOM Data Modeling Considerations
	Modeling SOM Orchestration Order Items and Bindings Conceptual Model Parameters
	Modeling SOM Orchestration Order Item Decomposition
	Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling SOM Orchestration Dependencies
	Modeling SOM Processes and Tasks
	Modeling SOM Fallout Scenarios
	Modeling SOM Fulfillment States
	Modeling SOM Processing States
	Modeling Change Order Management for SOM
	Cartridge Management Considerations for SOM

	Planning OSM TOM Solution Requirements
	Modeling TOM Order and Order Recognition Requirements
	TOM Data Modeling Considerations
	Modeling TOM Orchestration Order Items and Bindings Conceptual Model Parameters
	Modeling TOM Orchestration Order Item Decomposition
	Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling TOM Orchestration Dependencies
	Modeling TOM Processes and Tasks
	Modeling TOM Fallout Scenarios
	Modeling TOM Fulfillment States
	Modeling TOM Processing States
	Modeling Change Order Management for TOM
	Cartridge Management Considerations for TOM

	About the OSM SDK

	Part II Implementing an OSM Solution
	2 Modeling Orders and Permissions
	Modeling OSM Orders
	About OSM Orders Without Orchestration
	About OSM Orders With Orchestration
	Modeling Roles and Setting Permissions

	About Order Types
	About Order Updates
	Using a Job Control Order to Manage Multiple Orders
	About Job Control Order Operations
	About Job Control Order Permissions
	About Job Control Order System Configuration Files

	Viewing Orders in OSM Web Clients
	Specifying Which Data to Display in the OSM Web Clients
	Modeling Query Tasks for OSM Clients

	3 Modeling Order Life-Cycle Policies
	Modeling Order Life-Cycle Policy States and Transitions
	About Modeling Transition Conditions
	About Modeling Transition Grace Periods
	About Modeling Transition Permissions
	OSM Order States and Transactions
	About Order State Categories
	Common Order State Transitions
	Optional, Mandatory, and Prohibited Transactions
	About the Aborted Order State
	About the Amending Order State
	About the Cancelled Order State
	About the Cancelling Order State
	About the Completed Order State
	About the Failed Order State
	About the In Progress Order State
	About the Not Started Order State
	About the Suspended Order State
	About the Waiting Order State
	About the Waiting for Revision Order State
	About Deleting Orders

	4 Modeling Order Recognition
	About Sending Orders to OSM and Order Recognition
	Modeling Order Recognition Rules
	Validating Incoming Order Data
	Transforming Order Data
	Modeling the Order Data Rule to Populate the Creation Task
	Modeling Order Priority
	Configuring JMS Message Priority on JMS Queue
	Creating a JMS Destination Key
	Configuring Destination Key for a JMS resource
	Creating and Configuring JMS Destination Key in OSM Cloud Native

	Modeling the Order Reference Number

	Modeling a Catch-All Recognition Rule
	Common Order Recognition Errors

	5 Modeling Orchestration Plans
	Orchestration Plan Overview
	Modeling an Orchestration Plan
	About Component Names and Component IDs

	About Order Items
	About Creating Order Items from Customer Order Line Item Node-Sets
	About Associated Order Items
	Modeling Order Item Hierarchies
	About Using a Distributed Order Template
	About Mapping Order Items to Fulfillment Patterns
	About Modeling Product Specifications

	Modeling Fulfillment Modes
	About the Decomposition of Order Items to Function Order Components
	About Assigning Order Items to Fulfillment Pattern Function Components
	About the Function Components Stage
	About Order Component Control Data
	About Fulfillment Pattern Conditions for Including Order Items
	Summary of Order Item to Function Components Decomposition

	About the Decomposition of Function to Target System Components
	About Decomposition Rules from Function Components to Target Systems
	About Decomposition Rule Conditions for Choosing a Target System
	About the Target Systems Stage
	Summary of Configuring Target System Components Decomposition

	About the Decomposition of Target System to Granularity Components
	About Decomposition Rules from Target System to Granularity Components
	About Customized Component IDs for Separating Bundled Components
	About the Granularity Components Stage
	Summary of Configuring Granularity Components Decomposition

	About Dependencies
	About Intra-Order Dependencies
	Modeling an Order Item Dependency
	About Order Item Dependency Wait Conditions
	About Order Item Dependency Wait Conditions Based on Data Changes
	Modeling a Fulfillment Pattern Dependency
	Modeling an Order Item Property Correlation Dependency
	About Inferred Dependencies
	About Modeling Orchestration Dependencies
	About Processing Order Items Sequentially

	About Inter-Order Dependencies
	About Modeling Orchestration Dependencies
	Using Task States to Manage Orchestration Dependencies

	6 Modeling the Order Transformation Manager
	Understanding the Order Transformation Manager
	Order Transformation Manager in Runtime
	The Order Transformation Manager and the Conceptual Model
	OSM Entities Used in the Order Transformation Manager
	Calling the Order Transformation Manager
	Using the Distributed Order Template with the Order Transformation Manager
	Modeling OTM With Calculate Service Order
	Calculate Service Order Design Patterns
	About the Calculate Service Order Provider Function
	About Calculate Service Order Relationship Types
	About the Calculate Service Order Transformation Sequence

	User-Created Entities for Calculate Service Order

	Modeling OTM Without Calculate Service Order

	7 Modeling Processes and Tasks
	Overview of Processes and Tasks
	Modeling Processes
	About Process Flows
	Adding Process Activities
	Configuring Subprocesses
	Understanding Parallel Process Flows
	About Amendments and Multi-Instance Subprocesses

	About Order Rules in Processes and Notifications
	Modeling Order Rules in Notifications
	Using the System Date in Delays

	Process and Task Design and Data Considerations for Compensation
	Order Perspectives and Data Elements in Compensation
	Effects of Process Loops on Compensation

	Modeling Tasks Entities Common to All Task Types
	Modeling Task States
	Modeling Task Permissions and Execution Modes
	About Normal and Fallout Execution Modes and Task States
	Modeling Task Status Transitions
	Specifying the Expected Task Duration
	Specifying the Task Priority
	About Extending Tasks

	About Task Types
	Modeling Automated Tasks
	About Automation Plug-in and Automated Tasks
	Completing an Automation Task That Handles Concurrent Status Updates

	Modeling Manual Tasks
	Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool
	Using a Custom Task Algorithm in OSM Cloud Native

	Modeling Transformation Tasks
	Modeling Activation Tasks
	About Service Action Request Mapping
	About Service Action Response Mapping
	About Activation Tasks and Amendment Processing
	About State and Status Transition Mapping for Activation Tasks

	About Automation Plug-ins
	Specifying Which Data to Provide to Automation Plug-ins
	Modeling Query Tasks for Order Automation Plug-ins

	About Automation Message Correlation
	Example: Modeling a Basic Automator Plug-in for an Automated Task

	8 Modeling OSM Data
	Data Modeling Overview
	Modeling Order Data
	About the Data Dictionary
	About the Order Template
	Identifying Data Requirements for Order Payload
	Adding the Input Message to an Order Recognition Rule
	Adding the Input Message to the Order Template

	Modeling Valid Data Keys

	Modeling Data for Tasks
	Determine Task Data for Manual and Automated Tasks
	Determine Task Data for Data Returned from Fulfillment Applications
	Generating Multiple Task Instances from a Multi-Instance Field

	Modeling Data for Orchestration
	About Order Item Control Data
	About Order Template Data
	About Order Item Specification Data
	About ControlData for Order Component Data

	Modeling Data for Fulfillment States
	About ControlData for External Fulfillment States
	About ControlData for Order Fulfillment State
	About ControlData for Order Item Fulfillment State
	Fulfillment States and Point of No Return
	Fulfillment State and Point of No Return Initial Values
	Sample XQuery for Changing Default Data Locations

	Modeling Data for Processing States
	About ControlData for Order Component Order Item Processing States
	About ControlData for Order Item Processing States

	Modeling Orders With Data Fields Above 1000 Characters
	Using XML Types for Data Fields Above 1000 Characters
	Using Order Remarks for Data Fields Above 1000 Characters
	Using Attachments for Data Fields Above 1000 Characters

	Using Data Providers to Retrieve Data
	About Data Providers and Adapters
	Data Provider Interface Tab
	Accessing Data through Data Providers
	Augmenting or Overriding Data
	Objectel
	Order
	Adding a New Order Data Provider

	Property File
	SOAP
	XML Attachment
	XML File
	XML Validation
	JDBC
	Web Service
	Adding a New Web Service Data Provider
	Sample soap.request XQuery
	Accessing Data

	Custom Data Providers
	Handling Parameters

	9 Modeling Behaviors
	Modeling Behaviors Overview
	About Behavior Evaluation
	Evaluating Behavior Levels
	Evaluating Design Studio Final and Override Options
	Evaluating Behavior Type Precedence and Sequence
	Evaluation Process
	Evaluating Multiple Behaviors of Similar Type and Level

	About Setting Conditions in Behaviors
	Using the Calculation Behavior
	Calculation Behavior XPath Examples
	Calculation Behavior Overview

	Using the Constraint Behavior to Validate Data
	Displaying Constraint Behavior Error Messages
	Evaluating Constraint Behaviors
	Using Task Statuses to Control Process Transitions
	Task Statuses and Constraint Behavior Violation Severity Levels
	Constraint Behavior Overview

	Using the Data Instance Behavior to Retrieve and Store Data
	Evaluating Data Instance Behaviors
	Data Instance Behavior XML, XPath, and XQuery Examples
	Data Instance Behavior Overview

	Using the Event Behavior to Re-evaluate Data
	Event Behavior Overview

	Using the Information Behavior to Display Data and Online Help
	Information Behavior XPath Examples
	Information Behavior Overview

	Using the Lookup Behavior to Display Data Selection Lists
	Lookup Behavior XPath Example
	Lookup Behavior Overview

	Using the Read-Only Behavior
	Read-Only Behavior Overview

	Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client
	Relevant Behavior Overview

	Using the Style Behavior to Specify How to Display Data in the Task Web Client
	About Style Behavior Layouts
	About Style Behavior Password Fields
	Style Behavior Overview

	10 Modeling a TMF Solution (Cloud Native Only)
	About Specifications
	About Cancelling or Revising an Inflight Order
	Modeling PONR
	Change Order Support
	Order Fulfillment Modes
	Upstream Listener
	About TMF Order Events For the External Event Listener
	About Fallout Exception Management

	11 Implementing a TMF Solution (Cloud Native Only)
	Accessing the Specifications
	About Extending the Specifications
	Considerations When Extending the Main Resource
	About Versioning the Specifications
	About the "ANY" Schema Type
	About anyOf, allOf, and oneOf

	About TMF Cartridges and Non-TMF Cartridges
	About Importing the Hosted Order Specification
	About Fulfillment Modes
	About TMF Order Lifecycle Policy
	About Data Dictionary
	About the Order Template
	About the Master Order Template
	About the Order Item Specification Order Template
	About the Significance of CDT

	About TMF Orders and Permissions
	Permissions for Internal Gateway Role

	About Order Recognition
	About Updating the TMF Order Item with Downstream Data
	Updates to Order Item Characteristics
	Updates to General Order Item Data
	Updates to External Fulfillment State

	About TMF Order State
	About TMF Order Item State
	About Fulfillment State and Processing State

	12 Modeling External REST Interactions using System Interaction (Cloud Native Only)
	About Importing the OpenAPI Document into Design Studio
	TMF APIs for BSS/OSS System Interactions
	Importing a System Interaction
	Updating a System Interaction Specification

	System Interaction and OSM Order Components
	Determining the Order Component

	About Array of Arrays Support in System Interactions
	About the OSM Gateway Functions
	Support for JSON Patch and Merge-Patch Content Types in System Interaction

	Considerations for OSM Cloud Native to OSM Cloud Native Integration using System Interaction
	Developing Automation Plugins
	Known Issues and Workarounds

	Part III Modeling Run-time Order Management
	13 Modeling Changes to Orders
	About Amendment Processing and Compensation
	About Revising or Canceling Orders by Using the Task Web Client
	About Order Keys
	About Submitting Multiple Revisions of an Order
	About Compensation States
	About Revising In-flight Revision Orders
	About Insignificant Revision
	About Terminating Compensation
	Disabling Processing of Revisions on In-flight Revision Orders
	Example: Revising an In-flight Revision Order

	About Controlling When Amendment Processing Starts
	About Compensation
	About Order-Level and Task-Level Compensation Analysis
	About Order Data Position and Order Data Keys
	About Data Significance
	About Task Execution Modes
	Modeling Compensation for Tasks
	Determining Task Compensation Strategy
	About Compensating In Progress Tasks
	About Task Compensation Strategy XQuery Expressions
	About Managing Compensation in the Task Web Client

	Modeling Compensation for Rules in Processes
	Modeling Compensation for Task Automation Plug-Ins
	Compensation Examples
	Example 1: Compensation During Provisioning
	Example 2: Compensation During Billing
	Example 3: Amend Do Compensation
	Examples of Changes to Orchestration Plans

	Modeling a Point of No Return
	Fulfillment Pattern Point of No Return
	Life-Cycle Policy Point of No Return

	About Modeling Order Change Management
	Troubleshooting Order Change Management Modeling

	About Order Change Management at the Orchestration Layer
	About Compensation and Orchestration
	About Point of No Return

	14 Modeling Fallout
	Overview of Fallout
	Understanding Fallout Across OSM Roles
	Understanding Fallout Sources
	Managing Business Related Fallout Sources
	Managing Fallout from Failures in Network or System Resources
	Managing Fallout During Order Creation

	Managing Fallout in the OSM Web Clients
	Modeling Fallout in Tasks
	About Failed Tasks and Execution Modes
	About Alternate Task Fallout Management Methods
	Modeling Task Notifications for Fallout
	About Modeling Fallout Exceptions
	Managing Fallout Exceptions in the Task Web Client

	Simplified Fallout Exception Automation Framework (Cloud Native Only)
	Modeling Fallout in Orders
	Modeling the Failed Order State
	Modeling Order Notifications for Fallout
	About Terminating an Order
	Managing Fallout in the OSM Order Management Web Client

	15 Modeling Fulfillment States and Processing States
	About Fulfillment States, and Processing States
	Modeling Fulfillment States
	Defining Fulfillment States
	Modeling External Fulfillment States
	Modeling Fulfillment State Maps
	Modeling Fulfillment State Composition Rule Sets

	Modeling Processing States
	Order Component Order Item Processing States
	Order Item Processing States

	16 Modeling Jeopardy and Notifications
	Best Practices for Using Notifications for Status Updates
	Status Update Strategies
	Strategies for Using Notifications

	Modeling Notifications
	Using Task States and Statuses to Trigger Event Notifications
	About Notification Priority
	About Sending Notifications in Email
	About Configuring Entities to Support Notifications

	About Jeopardy Notifications
	About Modeling Jeopardy Notifications
	About Jeopardy Notification Triggering
	About Jeopardy Notification Conditions
	Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor
	Specifying Jeopardy Notification Conditions in the Order Editor
	Specifying Jeopardy Notification Conditions for a Task

	About Event Notifications
	About Using Task Transitions to Trigger Event Notifications
	About Using Task States and Rules to Trigger Event Notifications
	About Using Task States to Trigger Automated Event Notifications
	About Using Order Milestones to Trigger Event Notifications
	About Using Order Data Changes to Trigger Notifications
	About Enabling Order Life-Cycle Events

	Summary of Notification Functionality

	17 Modeling Milestone Events
	About Milestones and Model-driven Milestones
	Usage of Milestone Events
	Modeling Model-driven Milestones

	18 Modeling Order Scheduling
	About Order Item Requested Delivery Date and Order Components
	How OSM Decomposes and Processes Order Items in Order Components
	About Grouping Order Items in Order Components by Date Range
	Modeling Order Component Minimum Processing Duration
	About Minimum Processing Duration Inheritance in Fulfillment Patterns
	About Minimum Processing Duration Expressions
	Calculating the Earliest Order Component Start Date (Order Start Date)
	About Calculated Order Component Start Dates
	Modeling Order Component Dependencies and Requested Delivery Dates
	Modeling Order Items Processed by Multiple Dependent Order Components
	Revisions of Future-Dated Orders
	Examples of Calculating the Expected Start Date
	Example 1: Calculating Start Dates for Order Components with No Dependencies
	Example 2: Calculating Start Dates for Order Components with Dependencies

	Part IV Managing OSM Projects
	19 Managing OSM Solution Cartridges
	Solution Management Overview
	About OSM Cartridge Scope
	Scope of OSM Entities Without Namespaces
	Design Studio Entities
	XML Catalogs and Resource Files

	Scope of OSM Entities with Namespaces
	Standalone Cartridge Scope
	XML Catalog Files in Standalone Cartridges
	Avoiding Namespace Collisions for Design Studio Entities
	Avoiding Namespace Collisions for Resource and XML Catalog Files

	Composite Cartridge Scope
	Special Cases for Scope
	Order Recognition Rules
	Fulfillment Patterns

	Managing Cartridge Versions
	Making Changes to Existing Cartridge Versions
	Handling Multiple Cartridge Versions
	Migrating Orders to a New Version of a Cartridge
	Designation of the Default Cartridge Among Cartridge Versions
	Handling Revision Orders When Multiple Cartridge Versions Are Deployed

	Working with Cartridges in OSM Cloud Native
	Building and Packaging a Cartridge
	About Generating OSM Cartridges and Deployment Options
	About Cartridge Types
	About Design Studio Editors for OSM Cartridges
	Organizing Design Studio and Naming Conventions
	Cartridge Packaging Design
	Modifying the Build
	About XML Catalogs
	Using XML Catalogs in OSM
	Resource Packaging Considerations for Using XML Catalogs
	Defining rewriteURI Entries in XML Catalogs
	Specifying XML Catalogs for OSM
	Enabling and Disabling XML Catalog Support

	Examples of Using XML Catalogs
	Using XML Catalogs to Support Cartridge Versioning
	Using XML Catalogs to Load Resources from a Development File System (Traditional OSM Only)
	Using XML Catalogs to Insulate Run-Time Environments from Development

	Cartridge Deployment
	Cleaning and Rebuilding Cartridges Prior to Deployment
	Optimizing Cartridge Deployment
	Deploying Multiple Cartridges
	Deploying Cartridges with Dependencies
	Deploying Cartridges to the OSM Database Using XMLIE
	Building and Deploying Composite Cartridges
	Setting Cartridge Dependencies
	Post-Deployment Effect on Numeric Data
	Post-Deployment Changes to Cartridge
	Metadata Errors

	Part V Working with Capabilities Cartridges
	20 Working with Capabilities Cartridges (Cloud Native Only)
	About Capabilities Cartridges
	About Capabilities Cartridges Restrictions
	User Workflow in Design Studio
	Capabilities Cartridge Lifecycle
	Creating and Delivering the CPAR
	Updating and Re-Delivering the Capabilities Cartridge
	Retiring a Capabilities Cartridge

	Capabilities Cartridge Content
	Design Studio Workspace
	Capabilities Cartridge Conventions
	Fulfillment Model
	Order Recognition Rule
	XML Catalogs
	Automation Concurrency Map
	Relationship Types
	Provider Function
	Description Fields
	Fulfillment Pattern Property on the Order Item Specification
	Transformed Order Item Properties
	Order Component Organization

	Configurability Limitations
	General Restrictions
	Mapping Rules
	Transformation Sequence
	Decomposition and Routing Rules
	Cartridge Versioning
	DataTypes for Product and Service Attributes
	Transformed Order Item Properties

	Capabilities Cartridge Test Scaffolding
	Fulfillment Model
	OSM Enrichment Data
	Cartridge Guidelines for Test Data
	OSM Test Content
	Conceptual Model Test Content
	Reusable Conceptual Model Content

	Capabilities Cartridge Build
	Using the Capabilities Cartridge Wizard
	About the CPAR File
	Capabilities Manifest Details

	A Behaviors Quick Reference
	OSM Behavior Type Overview
	Common Behavior Elements
	Annotation Element
	Description Element
	Instance Element
	Adapter Element [externalInstanceType]
	Parameter Element [externalInstanceType]
	Cache Element
	Expression Element

	Declaring Behaviors in OSM XML Model
	Data Dictionary Level
	Master Order Template Level
	View Level

	Data Provider Overview
	Programmatic Behavior Implementation Overview

	B XQuery Examples
	General XQuery Information
	About Creating XQuery Expressions with Design Studio
	OSM XQuery Functions
	Referencing Items from a Distributed Order Template in XQuery Expressions

	Order Recognition Rule XQuery Expressions
	About Recognition Rule XQuery Expressions
	About Validation Rule XQuery Expressions
	About Order Priority XQuery Expressions
	About Order Reference XQuery Expressions
	About Order Data Rule XQuery Expressions

	Decomposition XQuery Expressions
	About Orchestration Sequence XQuery Expressions
	About Order Sequence Order Item Selector XQuery Expressions
	About Order Sequence Fulfillment Mode XQuery Expressions

	About Order Item Specification XQuery Expressions
	About Order Item Specification Order Item Property XQuery Expressions
	About XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns
	About Order Item Specification Order Item Hierarchy XQuery Expressions
	About Order Item Specification Condition XQuery Expressions

	About Fulfillment Pattern Order Component XQuery Expressions
	About Fulfillment Pattern Order Component Condition XQuery Expressions
	About Associating Order Items Using Property Correlations XQuery Expressions

	About Decomposition Rule Condition XQuery Expressions
	About Component Specification Custom Component ID XQuery Expressions
	Custom Order Component IDs Based on Hierarchy
	Custom Component IDs Based on Requested Delivery Date and Duration
	Custom Component IDs by Duration and Minimum Separation Duration
	Combining Order Item Hierarchy with Duration-Based Groupings

	About Component Specification Duration XQuery Expressions
	About Fulfillment Pattern Duration XQuery Expressions
	About Fulfillment Pattern Component Duration XQuery Expressions

	Dependency XQuery Expressions
	About Order Item Dependency Property Correlation XQuery Expressions
	About Wait Delay Duration XQuery Expressions
	About Wait Delay Date and Time XQuery Expressions
	About Order Data Change Wait Condition XQuery Expressions
	About Order Item Inter-Order Dependency XQuery Expressions

	Order Transformation Manager XQuery Expressions
	About Transformation Sequence XQuery Expressions
	About Order Item Context XQuery Expressions
	About Related Order Item Selector XQuery Expressions
	About Stage Condition XQuery Expressions

	About Mapping Rule XQuery Expressions
	About Mapping Condition XQuery Expressions
	About Action Mapping XQuery Expressions
	About Entity-to-Entity Advanced Mapping XQuery Expressions
	About Entity-to-Data-Element Advanced Mapping XQuery Expressions
	About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions
	About Reverse Mapping XQuery Expressions
	About Multi-Instance XQuery Expressions

	About Order Item Parameter Binding XQuery Expressions
	About Transformed Order Item Fulfillment State XQuery Expressions

