
Oracle® Communications Order and
Service Management
Cloud Native Deployment Guide

Release 8.0
G38005-01
October 2025

Oracle Communications Order and Service Management Cloud Native Deployment Guide, Release 8.0

G38005-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Overview of the OSM Cloud Native Deployment

About the OSM Cloud Native Deployment 1

OSM Cloud Native Architecture 1

About the WebLogic Domain 3

About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration
Config Map 4

About Oracle WebLogic Server Deploy Tooling (WDT) 5

About Projects and Instances 5

About Specification Layers 5

About Helm Overrides 6

About the OSM Cloud Native Toolkit 6

2 Planning and Validating Your Cloud Native Environment

Required Components for OSM Cloud Native 1

Planning Your Cloud Native Environment 2

Setting Up Your Kubernetes Cluster 2

Synchronizing Time Across Servers 4

Provisioning Oracle Multitenant Container Database (CDB) 4

Provisioning an Empty PDB 4

Provisioning a Seed OSM PDB 7

Secondary Database Support for OSM Cloud Native 8

Prerequisites 8

About Container Image Management 9

Installing Helm 9

Setting Up Oracle WebLogic Server Kubernetes Operator 11

About Load Balancing and Ingress Controller 11

Using NGINX as the Ingress Controller 12

Using Domain Name System (DNS) 12

Configuring Kubernetes Persistent Volumes 13

About NFS-based Persistence 13

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of x

About Authentication 14

Management of Secrets 14

Using Kubernetes Monitoring Toolchain 15

About Application Logs and Metrics Toolchain 15

Role of Continuous Integration (CI) Pipelines 16

Role of Continuous Delivery (CD) Pipelines 16

Planning Your Container Engine for Kubernetes (OKE) Cloud Environment 17

Compute Disk Space Requirements 17

Connectivity Requirements 18

Using Load Balancer as a Service (LBaaS) 18

About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones 18

Using Persistent Volumes and File Storage Service (FSS) 18

Leveraging Oracle Cloud Infrastructure Services 19

Validating Your Cloud Environment 19

Performing a Smoke Test 20

Validating Common Building Blocks in the Kubernetes Cluster 21

Running Oracle WebLogic Kubernetes Operator Quickstart 24

3 Creating OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder 1

Prerequisites for Creating OSM Images 2

Configuring the OSM Cloud Native Images 3

Creating OSM Cloud Native Images 7

4 Creating a Basic OSM Cloud Native Instance

Installing the OSM Cloud Native Artifacts and the Toolkit 1

Using Oracle Autonomous Database Serverless 1

Using RDS or RDS Custom for Oracle 5

Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller 6

Installing the WebLogic Kubernetes Operator 6

Installing the Ingress Controller 7

Creating a Basic OSM Instance 7

Setting Environment Variables 7

Registering the Namespace 7

Assembling the Specifications 9

Configuring OpenID Connect for OSM Microservices 9

Creating Secrets 13

Configuring OSM Cloud Native to Connect with a TCPS Enabled Database 14

Installing the OSM and RCU Schemas 16

Configuring the Project Specification 19

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of x

Tuning the Project Specification 20

Configuring the Instance Specification 22

Creating an Ingress 23

Creating an OSM Instance 24

Validating the OSM Instance 25

Scaling the OSM Application Cluster 26

Deploying the Sample Cartridge 26

Submitting Orders 27

Deleting and Recreating Your OSM Instance 28

Cleaning Up the Environment 28

Troubleshooting Issues with the Scripts 29

Next Steps 31

5 Planning Infrastructure

Sizing Considerations 1

Managing Configuration as Code 1

Creating Source Control Repository 2

Managing OSM Instances 2

Deciding on the Scope 2

About the Repository Directory Structure 2

Deployment Considerations 3

Setting the Repository Path During Instance Creation 4

Setting Up Automation 4

Securing Operations in Kubernetes Cluster 10

6 Creating Your Own OSM Cloud Native Instance

Selecting a Deployment Topology 1

Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer 2

Preparing for OSM Cartridge Assembler 3

Managing an OSM Cartridge Assembler Deployment via Cloud Native Toolkit 6

Configuring OSM Runtime Parameters 7

Configuring Schema Validation 8

Configuring Target Systems for Events and System Interactions 9

Configuring Security Schemes for Target Systems 10

Using the OIDC Security Scheme 11

Using the Basic Authentication Security Scheme 11

Basic Auth with User Credentials 12

JSESSIONID in Authentication Header 12

JSESSIONID in Cookies 12

Configuring OSM Gateway Readiness 13

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of x

Configuring the Order Operations User Interface 13

Configuring the Alerts Displayed in the Order Operations Dashboard 14

Configuring Session Timeout 15

Preparing Cartridges 16

Working with Kubernetes Secrets 18

About Mandatory Secrets 19

About Optional Secrets 19

About Custom Secrets 21

Accommodating the Scope of Secrets 22

Mechanism for Creating Custom Secrets 24

Adding JMS Queues and Topics 25

Generating Error Queues for Custom Queues and Topics 26

Creating a JMS Template 27

Provisioning Cartridge User Accounts 28

Working with Cartridges 32

Cartridge Deployment Tool in OSM Cloud Native 32

Single or One-off Cartridge Deployment 33

Specification-driven Cartridge Deployment 33

Offline Cartridge Deployment Using the OSM Cloud Native Toolkit 34

Online Cartridge Deployment Using the OSM Cloud Native Toolkit 35

Deploying Cartridges Using Design Studio 35

Listing Deployed Cartridges Using the OSM Cloud Native Toolkit 36

Cartridge par Sources 36

Local Files 36

Remote File Repository 36

Container Images 37

Selecting Deployment Style and Cartridge Source 38

Deploying Cartridges in Open Environments 39

Deploying Cartridges in Controlled Environments 39

7 Extending the WebLogic Server Deploy Tooling (WDT) Model

About the Custom WDT Extension Mechanism 1

Using the WDT Model Tools 1

WDT Discover Domain Tool 1

WDT Validate Model Tool 2

Common WDT Extension Mechanism 2

Using the Sample Scripts to Extend the WDT Model 5

Adding a JDBC Datasource 5

Adding a JMS System Resource 7

Deploying Entities to an OSM WebLogic Domain 8

Extending the WDT Metadata for an External Authenticator 10

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of x

Accessing Kubernetes Secrets from WDT Metadata 13

Troubleshooting WDT Issues 13

8 Exploring Configuration Options

Manage LDAP Providers in WLS via OSM 1

Working with Shapes 3

Init and Sidecar Containers Resourcing 5

Creating Custom Shapes 6

Injecting Custom Configuration Files 6

Choosing Worker Nodes for Running OSM Cloud Native 8

Working with Ingress, Ingress Controller, and External Load Balancer 9

Using an Alternate Ingress Controller 12

Preconfiguration on Primary and Standby Database 14

Configuring the OSM Application for High Availability 14

Data Guard Setup on OCI 15

Reusing the Database State 16

Recreating an Instance 16

Creating a New Instance 17

Setting Up Persistent Storage 18

Setting Up Database Optimizer Statistics 19

Leveraging Oracle WebLogic Server Active GridLink 20

Managing Logs 21

Configuring Fluentd Logging 21

Obfuscating Sensitive Data in Logs 25

Configuring Logging and Log Rotation 28

Managing OSM Cloud Native Metrics 30

Configuring Prometheus for OSM Cloud Native Metrics 31

Viewing Metrics Without Using Prometheus 34

Viewing OSM Cloud Native Metrics in Grafana 34

Exposed OSM Order Metrics 36

Managing WebLogic Monitoring Exporter (WME) Metrics 42

Enabling WebLogic Monitoring Exporter (WME) 43

Configuring the Prometheus Scrape Job for WME Metrics 44

Viewing WebLogic Monitoring Exporter Metrics in Grafana 45

Proxy Configuration in Microservices 45

9 Automating OSM Cloud Native Operations for Continuous Delivery

About Continuous Delivery Mechanism 1

Prerequisites for Creating an OSM Instance Using the Introspector Job 2

Git Strategy for OSM Instances 2

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of x

OSM Cloud Native Toolkit Introspector Job Helm Chart 5

Creating an OSM Cloud Native Instance Using Flux-CD 6

Setup Flux-descriptors Configuration 6

Kustomization Resource 7

GitRepository Resource 8

HelmRelease Resource 8

Setup Job-Values Configuration 9

Triggering CD for a New Instance 11

Making Changes to an OSM Instance 12

Adding Custom Content 12

Custom Extensions 12

Custom Files 15

Custom Shapes 16

10

Integrating OSM

Connectivity With Traditional OSM Instances 1

Connectivity With OSM Cloud Native 2

Connectivity Between the Building Blocks 2

Inbound HTTP Connectivity 3

Inbound JMS Connectivity 4

Inbound JMS Connectivity Within the Same Kubernetes Cluster 5

Outbound HTTP Connectivity 6

Outbound JMS Connectivity 6

Configuring SAF 7

Security for Remote SAF and Bridges 9

Configuring the Instance Specification 10

Configuring the Project Specification 11

Configuring WebLogic Messaging Bridges 12

Applying the WebLogic Patch for External Systems 16

Configuring SAF On External Systems 17

Setting Up Secure Communication with SSL 17

Configuring Secure Incoming Access with SSL 17

Generating SSL Certificates for Incoming Access 17

Setting Up OSM Cloud Native for Incoming Access 18

SSL Termination at the Load Balancer 21

Configuring Incoming HTTP and JMS Connectivity for External Clients 22

Configuring Access to External SSL-Enabled Systems 23

Loading Certificates for Outgoing Access 23

Enabling SSL on an External WebLogic Domain 24

Setting Up OSM Cloud Native for Outgoing Access 25

Adding Additional Certificates to an Existing Trust 27

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vi of x

Debugging SSL 28

11

Running the SAF Sample for OSM Cloud Native

Preparing the WebLogic System to Run the Emulator 2

Deploying the Emulator on the WebLogic System 4

Deploying the SimpleProvisioning Sample Cartridge 5

Preparing the OSM Cloud Native Instance 5

Validating the SAF Endpoints 8

Submitting Orders 8

Submitting Orders with HTTP 9

Submitting Orders with T3 over HTTP 9

12

Maintaining the OSM Cloud Native Environment

Before You Upgrade 1

About Upgrade Paths and Procedures 1

Rolling Restart 2

Identifying Your Upgrade Path 2

Offline Change Upgrade Paths 8

Online Change Upgrade Paths 9

Exceptions 10

Unsupported Tasks 10

OSM Cloud Native Upgrade Procedures 10

PDB Upgrade Procedure 11

OSM Application Upgrade 11

Offline Cartridge Deployment 11

Online Cartridge Deployment 12

Upgrades to Infrastructure 12

Miscellaneous Upgrade Procedures 13

Running Operational Procedures 14

Triggering Introspection 14

Scaling Down the Cluster 14

Scaling Up the Cluster 15

Restarting the Instance 15

Fast Delete 16

Upgrade Path Flow Chart 17

13

Upgrading your OSM Cloud Native Deployment

Overview of the Upgrade Steps 1

Installing WebLogic Kubernetes Operator 1

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vii of x

WKO Monitoring Mechanism 1

Operator Installation 2

Unregistering and Registering the Namespace with Weblogic Operator 2

Ingress Controller 3

Updating Specification Files 3

Updating the Project Specification 3

Updating the Instance Specification 4

Updating Shape Specification 7

Upgrading to OSM Cloud Native 8.0 7

Prerequisites for the Upgrade 7

Preparation Steps for the Upgrade 7

Updating the Secrets 9

Update Existing Secrets 9

Creating New Secrets 9

Upgrading the OSM DB Schema 11

OSM Application Upgrade 12

14

Moving to OSM Cloud Native from a Traditional Deployment

Supported Releases 1

Performing Pre-move and Post-move Tasks 1

About the Move Process 1

Pre-move Development Activities 3

Moving to an OSM Cloud Native Deployment 4

Quiescing the Traditional Instance of OSM 5

Exporting and Importing JMS Messages 5

Migrating JMS Messages By Using the Cloud Native Toolkit 5

Migrating JMS Messages By Using the WebLogic Remote Console 8

Upgrading the Database 9

Upgrading the Database Server 9

Preparing the Required Database Entities for OSM Cloud Native 10

Upgrading the OSM Schema and Cartridges 10

Switching Integration with Upstream Systems 10

Reverting to Your OSM Traditional Deployment 11

Cleaning Up 11

15

Debugging and Troubleshooting

Setting Up Java Flight Recorder (JFR) 1

Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console 2

Recovering an OSM Cloud Native Database Schema 6

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page viii of x

Finding the Issue that Caused the OSM Cloud Native Database Schema Upgrade
Failure 6

Restarting the OSM Database Schema Upgrade from the Point of Failure 7

Resolving Improper JMS Assignment 8

Common Problems and Solutions 9

Known Issues 14

Image Build Failure Due to OPatch Error 17

A Differences Between OSM Cloud Native and OSM Traditional
Deployments

B Reference of Secrets Created by the Scripts

OSM Gateway OIDC Credentials Secret B-4

OCA OIDC Credentials Secret B-5

DB Credentials Secret B-5

RCU DB Credentials Secret B-5

TCPS DB Wallet Secret B-6

WebLogic Credentials Secret B-6

WebLogic Runtime Encryption Secret B-6

FMW Wallet Encryption Secret B-6

FMW Secure Wallet Secret B-6

OSM Internal User Passwords Secret B-6

OSM OIDC Credentials Secret B-7

OSM Fluentd Credentials Secret B-7

Certificate and Key to Access the Gateway HTTPS Endpoint B-7

Certificate and Key to Access the OSM HTTPS Endpoint B-7

Certificate and Key to Access the OSM WebLogic Remote Console HTTPS Endpoint B-8

Certificate and Key to Access the OSM t3 over HTTPS B-8

Trusted CA Injection B-8

Secure Identity B-8

ADB Wallet Secret B-8

ADB Admin Secret B-9

Cartridge Defined Custom User Credentials B-9

External LDAP Information B-9

SAF Credentials B-10

Global Trust Credentials B-10

Cross Domain Users in Remote Domains B-10

Xtrust Secret B-10

Generic Credentials B-10

Security Scheme Credentials B-11

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ix of x

SAML Archive for IdP B-11

Git Access Secret B-11

C Leveraging OSM Cloud Native SAF Connectivity Patterns for Your Use-
Case

About SAF Connectivity Patterns C-1

Common Integration Patterns C-2

OSM Cloud Native Colocated SAF C-3

OSM Remote SAF C-3

DNS Considerations C-5

Cloud Native to Cloud Native Remote SAF C-5

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page x of x

About This Content

This document describes how to install and administer Oracle Communications Order and
Service Management (OSM) Cloud Native Deployment.

Audience

This document is intended for DevOps administrators and those involved in installing and
maintaining OSM Cloud Native Deployment.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the OSM Cloud Native
Deployment

Get an overview of Oracle Communications Order and Service Management (OSM) cloud
native deployment, architecture, and the OSM cloud native toolkit.

This chapter provides an overview of Oracle Communications Order and Service Management
(OSM) deployed in a cloud native environment using container images and a Kubernetes
cluster.

About the OSM Cloud Native Deployment
You can deploy OSM in a Kubernetes-based shared cloud (cluster) while implementing modern
DevOps “Configuration as Code” principles to manage system configuration in a consistent
manner. You can automate system lifecycle management. You set up your own cloud native
environment and can then use the OSM cloud native toolkit to automate the deployment of
OSM instances. By leveraging the pre-configured Helm charts, you can deploy OSM instances
quickly ensuring your services are up and running in far less time than a traditional
deployment.

OSM cloud native supports the following deployment models:

• On Private Kubernetes Cluster: OSM cloud native is certified for a general deployment of
Kubernetes.

• On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): OSM cloud
native is certified to run on Oracle's hosted Kubernetes OKE service.

OSM Cloud Native Architecture
This section describes and illustrates the OSM cloud native architecture and the deployment
environment.

The following diagram illustrates the OSM cloud native architecture.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 7

Figure 1-1 OSM Cloud Native Architecture

The following diagram illustrates the runtime deployment in Kubernetes.

Figure 1-2 OSM Cloud native Runtime Deployment in Kubernetes

The following diagram provides legend for the runtime deployment in Kubernetes diagram.

Chapter 1
OSM Cloud Native Architecture

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 7

Figure 1-3 Legend for the run-time deployment in Kubernetes diagram

The OSM cloud native architecture requires components such as the Kubernetes cluster and
WebLogic Kubernetes Operator, which are under your control to install and configure. A single
WebLogic Operator can manage multiple OSM domains in multiple namespaces. Each domain
is a dynamic cluster with multiple managed servers that is configured for integration with both
optional and required components. The OSM cloud native artifacts include two container
images built using Docker and the OSM cloud native toolkit.

About the WebLogic Domain
The following diagram illustrates the OSM cloud native deployment environment and important
concepts about producing a WebLogic domain that is capable of supporting OSM cloud native.

Chapter 1
OSM Cloud Native Architecture

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 7

Figure 1-4 OSM Cloud Native Deployment Environment

In the deployment environment, the Helm chart that is provided with the OSM cloud native
toolkit is deployed into the Kubernetes cluster producing two Kubernetes resources. These
resources are then consumed by the WebLogic Kubernetes Operator (WKO).

About Kubernetes Custom Resource Definitions (CRD) and Domain
Configuration Config Map

The Kubernetes API provides extensions called custom resources. To understand more about
a Custom Resource Definition (CRD) and why it might be used, see the Kubernetes
CustomResourceDefinition (CRD) documentation at: https://kubernetes.io/docs/tasks/access-
kubernetes-api/custom-resources/custom-resource-definitions/

To configure the operation of your WebLogic domain, you set up and configure your own
domain resource. The domain resource does not replace the traditional configuration of the
WebLogic domains found in the domain configuration files, but instead co-operates with those
files to describe the Kubernetes artifacts of the corresponding domain. Refer to the "WKO
Quickstart" to understand how to use a CRD to describe a WebLogic domain resource.

While the domain resource describes much of the operational details for a domain such as
domain identification, secrets, pod creation, server instances, startup and shutdown, security,
logging, clusters, admin and managed servers, and JVM options, the details about the more
traditional configuration (deployed applications, JMS Queues, data sources and so on) are
provided in a configuration map and are described using a metadata model specified by the
Weblogic Deploy Tooling (WDT). The OSM cloud native toolkit provides the base configuration
to produce these resources.

Chapter 1
OSM Cloud Native Architecture

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 7

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

About Oracle WebLogic Server Deploy Tooling (WDT)
The WebLogic Server Deploy Tooling (WDT) has the following main purposes:

• It provides a metadata model that describes a WebLogic Server domain configuration.

• It provides scripts that perform domain lifecycle operations, simplifying the definition and
the creation of domains. This capability provides an alternative to programmatic ways of
defining domain configuration such as WebLogic Scripting Tool (WLST) or Java Mbeans
manipulation.

The OSM cloud native toolkit leverages the WDT metadata model only. It does not use the
scripting capabilities directly.

The toolkit provides the WDT metadata for a domain that is capable of supporting OSM. The
toolkit enables you to easily override much of the base configuration through the use of Helm
charts. Additionally, the toolkit framework allows you to add supplementary WDT metadata
fragments to the domain. WDT provides tools that help with this task by inspecting an existing
domain to produce the WDT metadata required for the configuration.

For more details about WDT, see the Oracle WebLogic Server Deploy Tooling documentation
on GitHub at: https://github.com/oracle/weblogic-deploy-tooling

About Projects and Instances
A project is a function of OSM. Examples of OSM functions include order management roles
such as SOM and COM. For example, in a COM role, a solution cartridge contains
configuration requirements that dictate how COM processes orders. This might include the
JMS queues for messaging, credentials for communication with external systems, additional
applications deployed to the WebLogic server (external system emulators), or SAF setup for
connectivity to peer systems. All of these configuration requirements can be scoped to a
project.

An instance is a specific flavor of OSM for a given project. Test, development, and production
are all instances of an OSM COM project. Some bits of the configuration makes more sense to
be applied on a per-instance basis. The production instance of OSM in a COM role uses
different values for tuning parameters and may employ a different logging and metrics strategy
than a development instance of COM.

In order to create a running WebLogic domain, the target project and instance must be
determined so that the appropriate configuration can be assembled.

About Specification Layers
The OSM configuration defines the footprint, layout and tuning of OSM. Treating this as one
monolithic configuration is not optimal for sustainability or risk management. The result is a
layered approach to the configuration.

There are three layers defined, each scoping a set of values that are specific to the function of
that layer:

• Project: The project layer contains configuration that is common and applicable for all
instances of an OSM project. Examples of content in this layer are JMS Queues and
external authentication details.

• Instance: The instance layer contains configuration that is unique to each OSM instance,
such as database identity and cluster size.

Chapter 1
OSM Cloud Native Architecture

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 7

https://github.com/oracle/weblogic-deploy-tooling

• Shape: The shape layer defines the hardware resource utilization and the resulting tuning.
Java Heap Size is an example of a configuration value found in the shape specification.

The layers are implemented as specification files written in YAML:

• project-instance.yaml

• project.yaml

• shape.yaml

You can build a palette of re-usable, common portions of a configuration for a shape and
project. When a new environment is needed, you can pick from this palette, adding an instance
specification, which is unique to a single instance of OSM.

About Helm Overrides
The specification files are consumed in a hierarchical fashion. If a value is found in multiple
specification files (layers), the one further up the hierarchy takes precedence. This allows the
instance specification to have the final control over its configuration by being able to override a
value that is prescribed in either the shape or project specifications. This also allows Oracle to
define sealed, base configuration, while still providing you the control over the values used for
any specific OSM instance.

Following are the specification files, listed in the order of the highest priority to the lowest:

• project-instance.yaml

• project.yaml

• shape.yaml

• values.yaml

While the specification for an instance points to the specification for the shape to be used
(implying the order here may be out of sequence), the values found in the specification for the
shape are actually loaded for processing before the values in the specification for the instance.

The instance specification remains the final authority on any values that are found in multiple
specification files.

About the OSM Cloud Native Toolkit
The OSM cloud native toolkit is an archive file that includes the default configuration files, utility
scripts, and samples to deploy OSM in a cloud native environment. With OSM cloud native,
managing the domain configuration as code (CaC) is paramount. OSM cloud native provides
guidance on effective management of this configuration to ensure that instances can be
created in a standardized and repeatable fashion.

Contents of the OSM Cloud Native Toolkit

The OSM cloud native toolkit contains the following artifacts:

• Helm charts for OSM and OSM database installer:

– The Helm chart for OSM is located in $OSM_CNTK/charts/osm.

– The Helm chart for the OSM DB Installer is located in $OSM_CNTK/charts/osm-
dbinstaller.

• WebLogic Server Deploy Tooling (WDT) metadata model for an OSM WebLogic domain

Chapter 1
About the OSM Cloud Native Toolkit

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 7

• Mechanism to extend the domain and WDT samples and scripts for some common use
cases

• Utility scripts to help with the lifecycle of WebLogic Kubernetes Operator

• Sample scripts to manage pre-requisite secrets. These are not pipeline-friendly.

• Scripts to manage the lifecycle of an OSM instance. These are pipeline friendly.

Chapter 1
About the OSM Cloud Native Toolkit

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 7

2
Planning and Validating Your Cloud Native
Environment

In preparation for Oracle Communications Order and Service Management (OSM) cloud native
deployment, you must set up and validate pre-requisite software. This chapter provides
information about planning, setting up, and validating the environment for OSM cloud native
deployment.

See the following topics:

• Required Components for OSM Cloud Native

• Planning Your Cloud Native Environment

• Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

• Validating Your Cloud Environment

If you are already familiar with traditional OSM, for important information on the differences
introduced by OSM cloud native, see "Differences Between OSM Cloud Native and OSM
Traditional Deployments".

Required Components for OSM Cloud Native
In order to run, manage, and monitor the OSM cloud native deployment, the following
components and capabilities are required. These must be configured in the cloud environment:

• Kubernetes Cluster

• Oracle Multitenant Container Database (CDB)

• Container Image Management

• Helm

• Oracle WebLogic Server Kubernetes Operator

• Load Balancer

• Domain Name System (DNS)

• Persistent Volumes

• Authentication

• Secrets Management

• Kubernetes Monitoring Toolchain

• Application Logs and Metrics Toolchain

For details about the required versions of these components, see OSM Compatibility Matrix.

In order to utilize the full flexibility, reliability and value of the deployment, the following aspects
must also be set up:

• Continuous Integration (CI) pipelines for custom images and cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 25

• Continuous Delivery (CD) pipelines for creating, scaling, updating, and deleting instances
of the cloud native deployment

Planning Your Cloud Native Environment
This section provides information about planning and setting up OSM cloud native
environment. As part of preparing your environment for OSM cloud native, you choose, install,
and set up various components and services in ways that are best suited for your cloud native
environment. The following sections provide information about each of those required
components and services, the available options that you can choose from, and the way you
must set them up for your OSM cloud native environment.

Setting Up Your Kubernetes Cluster
For OSM cloud native, Kubernetes worker nodes must be capable of running Linux 7.x pods
with software compiled for Intel 64-bit cores. A reliable cluster must have multiple worker
nodes spread over separate physical infrastructure and a very reliable cluster must have
multiple master nodes spread over separate physical infrastructure.

The following diagram illustrates Kubernetes cluster and the components that it interacts with.

Figure 2-1 Kubernetes Cluster

OSM cloud native requires:

• Kubernetes

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 25

To check the version, run the following command:

kubectl version

• Flannel
To check the version, run the following command on the master node running the kube-
flannel pod:

builder images | grep flannel
kubectl get pods --all-namespaces | grep flannel

builder will be Docker or Podman.

• Docker
To check the version, run the following command:

docker version

Typically, Kubernetes nodes are not used directly to run or monitor Kubernetes workloads. You
must reserve worker node resources for the execution of Kubernetes workload. However,
multiple users (manual and automated) of the cluster require a point from which to access the
cluster and operate on it. This can be achieved by using kubectl commands (either directly on
command line and shell scripts or through Helm) or Kubernetes APIs. For this purpose, set
aside a separate host or set of hosts. Operational and administrative access to the Kubernetes
cluster can be restricted to these hosts and specific users can be given named accounts on
these hosts to reduce cluster exposure and promote traceability of actions.

Typically, the Continuous Delivery pipeline automation deploys directly on a set of such
operations hosts (as in the case of Jenkins) or leverage runners deployed on such operations
hosts (as in the case of GitLab CI). These hosts must run Linux, with all interactive-use
packages installed to support tools such as Bash, Wget, cURL, Hostname, Sed, AWK, cut, and
grep. An example of this is the Oracle Linux 7.6 image (Oracle-Linux-7.6-2019.08.02-0) on
Oracle Cloud Infrastructure.

In addition, you need the appropriate tools to connect to your overall environment, including
the Kubernetes cluster. For instance, for a Container Engine for Kubernetes (OKE) cluster, you
must install and configure the Oracle Cloud Infrastructure Command Line Interface.

Additional integrations may need to include LDAP for users to be able to login to this host,
appropriate NFS mounts for home directories, security lists and firewall configuration for
access to overall environment, and so on.

Kubernetes worker nodes should be configured with the recommended operating system
kernel parameters listed in "Preparing the Operating System" in the OSM Installation Guide, or
if they are engineered systems, "Installing OSM on Engineered Systems" of the OSM
Installation Guide. Use the documented values as the minimum values to set for each
parameter. Ensure that OS kernel parameter configuration is persistent, so as to survive a
reboot.

The basic OSM cloud native instance, for which specification files are provided with the toolkit,
requires up to 16 GB of RAM and 3 CPUs, in terms of Kubernetes worker node capacity. A
small increment is needed for WebLogic Kubernetes Operator and NGINX. Refer to those
projects for details. For detailed breakdown of CPU and memory capacity requirements, see
"Working with Shapes."

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 25

Synchronizing Time Across Servers
It is important that you synchronize the date and time across all machines that are involved in
testing, including client test drivers and Kubernetes worker nodes. Oracle recommends that
you do this using Network Time Protocol (NTP), rather than manual synchronization, and
strongly recommends it for Production environments. Synchronization is important in inter-
component communications and in capturing accurate run-time statistics.

Provisioning Oracle Multitenant Container Database (CDB)
OSM cloud native architecture is best supported by the multitenant architecture that enables
an Oracle database to function as a multitenant container database (CDB). A container
database is either a Pluggable Database (PDB) or the root container. The root container is a
collection of schemas, schema objects, and non-schema objects to which all PDBs belong. A
PDB container for OSM cloud native contains the OSM schema and RCU schema. Each
instance of OSM has its own PDB. OSM cloud native requires access to PDBs in an Oracle
19c Multitenant database. For more information about the benefits of Oracle Multitenant
Architecture for database consolidation, see Oracle Database Concepts.

You can provision a CDB in an on-premise installation by following the instructions in Oracle
Database Installation Guide for Linux. Alternatively, you can set it up as an Oracle Cloud
Infrastructure DB system. For details on the supported versions, see OSM Compatibility Matrix.
The provisioning process can vary based on the needs and the setup of your organization.

OSM cloud native requires certain settings to be configured at the CDB level. You can find
those details in the section about Database Parameters in OSM Installation Guide.

CDB hosts should be configured with OS kernel parameters as per Knowledge Article
1587357.1 on My Oracle Support. Use the recommended values specified in the KM article as
the minimum values. Ensure that OS parameter configuration is persistent so as to survive a
reboot.

Once the CDB is ready, you can follow one of the following strategies for the PDB:

Provisioning an Empty PDB
To create an empty PDB:

1. Run the following SQL commands using the sys dba account for the CDB:

CREATE PLUGGABLE DATABASE _replace_this_text_with_db_service_name_ ADMIN
USER _replace_this_text_with_admin_name_ IDENTIFIED BY
"_replace_this_text_with_real_admin_password_" DEFAULT TABLESPACE "USERS"
DATAFILE '+DATA' SIZE 5M REUSE
AUTOEXTEND ON;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_ open
instances = all;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_ save
state instances = all;
alter session set container=_replace_this_text_with_db_service_name_;
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'tag' FORCE KEYSTORE
IDENTIFIED BY "sys_password" WITH BACKUP USING 'db_service_name_backup';

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 25

2. Provide the required GRANTS to the user by running the following SQL commands:

GRANT CREATE ANY CONTEXT TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
ADMIN OPTION;
GRANT QUERY REWRITE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN
OPTION;
GRANT CREATE TABLE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN
OPTION;
GRANT GRANT ANY PRIVILEGE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
ADMIN OPTION;
GRANT CREATE USER TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN
OPTION;
GRANT CREATE ANY VIEW TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN
OPTION;
GRANT UNLIMITED TABLESPACE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
ADMIN OPTION;
GRANT CREATE MATERIALIZED VIEW TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH ADMIN OPTION;
GRANT CREATE SYNONYM TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN
OPTION;
GRANT SELECT ON SYS.V_$PARAMETER TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_TABLESPACES TO
_REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_JOBS TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_AUTOTASK_CLIENT_JOB TO
_REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH GRANT OPTION;
GRANT EXECUTE ON SYS.DBMS_LOB TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT EXECUTE ON SYS.DBMS_LOCK TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT EXECUTE ON SYS.UTL_FILE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT RESOURCE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN OPTION;
GRANT IMP_FULL_DATABASE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
ADMIN OPTION;
GRANT CONNECT TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN OPTION;
GRANT DBA TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH ADMIN OPTION;
GRANT EXP_FULL_DATABASE TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
ADMIN OPTION;
GRANT EXECUTE ON DBMS_RANDOM TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_
WITH GRANT OPTION;
GRANT EXECUTE ON SYS.DBMS_SCHEDULER TO
_REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH GRANT OPTION;
GRANT EXECUTE ON UTL_HTTP TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
GRANT OPTION;
GRANT EXECUTE ON DBMS_SQL TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
GRANT OPTION;
GRANT EXECUTE ON UTL_TCP TO _REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ WITH
GRANT OPTION;

3. Log into the PDB as the sys dba account for the PDB (defined by the
_REPLACE_THIS_TEXT_WITH_DB_ADMIN_NAME_ parameter in the above commands) and
adjust the PDB tablespace by running the following command:

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 25

Note

In the command, replace DATA with the proper name from v$asm_diskgroup.

create tablespace osm datafile '+DATA' size 1024m reuse autoextend on next 64m;
ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE OSM;

Using RDS or RDS Custom for Oracle

If you are using RDS for Oracle or RDS Custom for Oracle, you need to use the following SQL
commands:

• Create a custom user:

CREATE USER _replace_this_text_with_user_name_ PROFILE DEFAULT IDENTIFIED
BY <password> ACCOUNT UNLOCK;

• Provide all the required GRANTS for OSM to the above created user by running the
commands listed here. You can ignore the following commands while configuring the user:

GRANT GRANT ANY PRIVILEGE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT SELECT ON SYS.DBA_AUTOTASK_CLIENT_JOB TO
_replace_this_text_with_admin_name_ WITH GRANT OPTION;

• While configuring a user, instead of the above two GRANTs, run the following commands:

EXECUTE rdsadmin.rdsadmin_util.grant_sys_object(p_obj_name =>
'DBA_AUTOTASK_CLIENT_JOB', p_grantee =>
'_replace_this_text_with_admin_name_', p_privilege => 'SELECT',
p_grant_option => true);

Note

Use uppercase to define all parameter values, for example
DBA_AUTOTASK_CLIENT_JOB even if you are creating them with lower case.

GRANT SELECT_CATALOG_ROLE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;

• To create the tablespace with RDS, you cannot specify the filenames for tablespaces as it
only supports Oracle Managed Files (OMF). Run the following SQL from the osm user
<pdbadmin> to create a tablespace named 'OSM' with 100MB space, as an example.

create tablespace OSM datafile size 100m autoextend on;

Choosing Tablespaces

OSM cloud native supports the OSM best-practice of separate tablespaces for order data,
order data indexes, OSM model data, and OSM model data indexes. Production and
production-like instances must utilize this separation.

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 25

For a simple instance, such as a developer instance, separate tablespaces are not necessary.
The default tablespace can be named as the tablespace for each of these categories in the
OSM cloud native specification files.

To create PDBs for such instances, additional tablespaces can be added using the "sys dba"
account for the PDB:

create tablespace osm_model datafile '+DATA' size 1024m reuse autoextend on
next 64m;
create tablespace osm_model_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_order datafile '+DATA' size 1024m reuse autoextend on
next 64m;
create tablespace osm_order_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;

Choose tablespace names and datafiles as per your database management guidelines.
Choose the initial tablespace size depending on the desired OSM partition size as per the
following table:

Table 2-1 Partition Sizes and Tablespace Sizes

Partition Size Tablespace Size

2000000 (2 million) > or = 1024 MB

10000000 (10 million) > or = 10240 MB

20000000 (20 million) > or = 20480 MB

The tablespace names and the partition size chosen will be required to populate the OSM
cloud native specification files for the instance that connects to this PDB.

Oracle recommends using the smaller partition size for developer instances and small test
instances. Larger partition sizes are applicable for heavy-duty test instances (for example,
stress tests and performance tests) and production-grade instances.

If securing OSM data is a requirement, the recommended approach is to use transparent data
encryption (TDE) to encrypt the tablespaces used to store OSM and WebLogic data. For more
details, see OSM - Encrypting Database Tablespaces and WebLogic Protocols (Doc ID
2399723.1) knowledge article on My Oracle Support.

In that context, note that all OSM data is stored in tablespaces and, as a result, it is not
necessary to supplement TDE encryption by setting the database parameter db_securefile
to PREFERRED. While OSM supports PREFERRED, which has been the default since 12c, it
is sufficient to set db_securefile to PERMITTED.

Provisioning a Seed OSM PDB
You can create a "master PDB" for OSM cloud native for a particular project or a subset of
users by cloning a seed PDB and then running the OSM cloud native DB installer on it to
deploy the OSM schema. At this point, you can deploy your cartridges to this PDB. The
resulting PDB can serve as a master that you can clone for each instance that needs those set
of cartridges.

You can also add the Fusion MiddleWare RCU DB schema to the master PDB. However, the
master PDB must never be directly used in an OSM cloud native instance, as the RCU DB

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 25

schema contents are inextricably linked to that instance. OSM cloud native instances must only
use clones of the master PDB.

The advantage of a master PDB for OSM cloud native is that it standardizes a PDB for a
significant number of users, and eliminates the need to perform some of the tasks related to
creating instances in pipeline.

Secondary Database Support for OSM Cloud Native
This topic provides detailed guidelines for adding a secondary database with the Oracle Data
Guard for users who are currently operating a standalone or a single-instance Oracle
Database. Adding a secondary database enhances high availability and provides data
protection for critical business operations in OSM.

OSM provides high availability through the use of pod clustering and anti-affinity rules. Pod
clustering involves deploying multiple instances of an application within a Kubernetes cluster,
allowing for load balancing and failover in case of pod failure. Anti-affinity rules are used to
distribute pods across different nodes to minimize the impact of node failures, ensuring that if
one node goes down, the remaining nodes can still handle the application's traffic. If you are
using a standalone or single-instance database, adding a Data Guard enabled secondary
database ensures that OSM benefits from high database availability.

Before setting up the secondary database, it is essential to understand the following:

• This configuration places the primary and standby databases in separate Availability
Domains within the same region.

• This setup increases system resilience by ensuring that if one Availability Domain
encounters a failure, the other can continue to provide uninterrupted service.

Prerequisites
Before starting the setup process for the secondary database ensure that you have the
following:

• Standalone Oracle Database.

• Oracle Data Guard setup and configuration files.

• Administrative access to both the primary and secondary database servers.

In Oracle Data Guard, the primary and secondary databases are key components in
maintaining high availability and data protection.

Table 2-2 Role and Function of Primary and Secondary Database in OSM

Database Type Role Function

Primary The primary database is the main
database where all the write
operations (DML statements) and
updates occur. It handles all the
user transactions and serves as
the source of truth for the data.

It processes all read and write
requests from applications and
continuously sends changes to
the secondary databases to keep
them synchronized.

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 25

Table 2-2 (Cont.) Role and Function of Primary and Secondary Database in OSM

Database Type Role Function

Secondary The secondary database (also
known as the standby database)
is a replica of the primary
database. It is used for backup,
disaster recovery, and can take
over if the primary database fails.

It receives and applies the
changes from the primary
database to maintain data
consistency. In the event of a
primary database failure, the
secondary database can be
promoted to become the new
primary database.

Active and Standby Roles

• Active (Primary) Role: In this role, the database is actively used for all read and write
operations. It is the operational database where transactions and updates happen.

• Standby Role: The standby database is in a passive state. It continuously receives and
applies changes from the primary database. It remains synchronized with the primary
database and can be activated if needed, such as in the event of a primary database
failure.

With a primary and secondary database setup, Oracle Data Guard ensures that there is
minimal downtime and data loss in case of unexpected failures or disasters. The standby
database can be promoted to primary if necessary, promoting business continuity.

In order to know more about how to configuring Primary and Secondary Database in OSM,
refer to Preconfiguration on Primary and Standby Database.

About Container Image Management
An OSM cloud native deployment generates container images for OSM and OSM database
installer. Additionally, images are downloaded for WebLogic Kubernetes Operator and Traefik
(depending on the choice of Ingress controllers).

Oracle highly recommends that you create a private container repository and ensure that all
nodes have access to that repository. Images are saved in this repository and all nodes would
then have access to the repository. This may require networking changes (such as routes and
proxy) and include authentication for logging in to the repository. Oracle recommends that you
choose a repository that provides centralized storage and management of not just container
images, but also other artifacts such as OSM cartridge PAR files, Fusion MiddleWare patch
ZIP files, and so on, as needed.

Failing to ensure that all nodes have access to a centralized repository will mean that images
have to be synced to the hosts manually or through custom mechanisms (for example, using
scripts), which are error-prone operations as worker nodes are commissioned,
decommissioned or even rebooted. When an image on a particular worker node is not
available, then the pods using that image are either not scheduled to that node, wasting
resources, or fail on that node. If image names and tags are kept constant (such as
myapp:latest), the pod may pick up a pre-existing image of the same name and tag, leading to
unexpected and hard to debug behaviors.

Installing Helm
OSM cloud native requires Helm, which delivers reliability, productivity, consistency, and ease
of use.

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 25

In an OSM cloud native environment, using Helm enables you to achieve the following:

• You can apply custom domain configuration by using a single and consistent mechanism,
which leads to an increase in productivity. You no longer need to apply configuration
changes through multiple interfaces such as WebLogic Console, WLST, and WebLogic
Server MBeans.

• Changing the OSM domain configuration in the traditional installations is a manual and
multi-step process which may lead to errors. This can be eliminated with Helm because of
the following features:

– Helm Lint allows pre-validation of syntax issues before changes are applied

– Multiple changes can be pushed to the running instance with a single upgrade
command

– Configuration changes may map to updates across multiple Kubernetes resources
(such as domain resources, config maps and so on). With Helm, you merely update
the Helm release and its responsibility to determine which Kubernetes resources are
affected.

• Including configuration in Helm charts allows the content to be managed as code, through
source control, which is a fundamental principle of modern DevOps practices.

OSM requires a helm version compliant with the information in the Compatibility Matrix. This
should be installed and available as "helm" in the PATH.

Note

The Helm version mentioned in the commands is used as an example only. See OSM
Compatibility Matrix for the recommended versions.

The following text shows sample commands for installing and validating Helm:

$ cd some-tmp-dir
$ wget https://get.helm.sh/helm-v3.9.3-linux-amd64.tar.gz
$ tar -zxvf helm-v3.9.3-linux-amd64.tar.gz

Find the helm binary in the unpacked directory and move it to its desired
destination. You need root user.
$ sudo mv linux-amd64/helm /usr/local/bin/helm

Optional: If access to the deprecated Helm repository "stable" is required,
uncomment and run
helm repo add stable https://charts.helm.sh/stable

verify Helm version
$ helm version
version.BuildInfo{Version:"v3.9.3",
GitCommit:"c4e74854886b2efe3321e185578e6db9be0a6e29", GitTreeState:"clean",
GoVersion:"go1.20.3"}

Helm leverages kubeconfig for users running the helm command to access the Kubernetes
cluster. By default, this is $HOME/.kube/config. Helm inherits the permissions set up for this
access into the cluster. You must ensure that if RBAC is configured, then sufficient cluster
permissions are granted to users running Helm.

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 25

Setting Up Oracle WebLogic Server Kubernetes Operator
Oracle WebLogic Server Kubernetes Operator provides WebLogic servers and clusters in a
manner that is compatible with Kubernetes. The WebLogic Server Kubernetes Operator
software is available as a container image.

For details about the version of WKO, see OSM Compatibility Matrix.

Note

Oracle recommends that if you use any of the recommended components listed in the
compatibility matrix, then consider upgrading all other components in the Kubernetes
technology stack to the recommended versions.

For more details about WKO, see Oracle WebLogic Kubernetes Operator User Guide.

For instructions on validating the operation of the WebLogic Server Kubernetes Operator on
your Kubernetes cluster, see "Validating Your Cloud Environment".

About Load Balancing and Ingress Controller
Each OSM cloud native instance is a WebLogic cluster running in Kubernetes. To access
application endpoints, you must enable HTTP/S connectivity to the cluster through an
appropriate mechanism. This mechanism must be able to route traffic to the appropriate OSM
cloud native instance in the Kubernetes cluster (as there can be many) and must be able to
distribute traffic to the multiple Managed Server pods within a given instance. Each instance
must be insulated from the traffic of the other instance. Distribution within an instance must
allow for session stickiness so that OSM client UIs bind to a managed server wherever
possible and therefore not require arbitrary re-authentication by the user. In the case of
HTTPS, the load balance mechanism must enable TLS and handle it appropriately.

For OSM cloud native, an ingress controller is required to expose appropriate services from the
OSM cluster and direct traffic appropriately to the cluster members. An external load balancer
is an optional add-on.

The ingress controller monitors the ingress objects created by the OSM cloud native
deployment, and acts on the configuration embedded in these objects to expose OSM HTTP
and HTTPS services to the external network. This is achieved using NodePort services
exposed by the ingress controller.

The ingress controller must support:

• Sticky routing (based on standard session cookie).

• Load balancing across the OSM managed servers (back-end servers).

• SSL termination and injecting headers into incoming traffic.

Examples of such ingress controllers include Nginx. The OSM cloud native toolkit provides
samples and documentation that use Nginx as the ingress controller.

An external load balancer serves to provide a highly reliable singe-point access into the
services exposed by the Kubernetes cluster. In this case, this would be the NodePort services
exposed by the ingress controller on behalf of the OSM cloud native instance. Using a load
balancer removes the need to expose Kubernetes node IPs to the larger user base, and
insulates the users from changes (in terms of nodes appearing or being decommissioned) to
the Kubernetes cluster. It also serves to enforce access policies. The OSM cloud native toolkit

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 25

includes samples and documentation that show integration with Oracle Cloud Infrastructure
LBaaS when Oracle OKE is used as the Kubernetes environment.

Using NGINX as the Ingress Controller
Oracle recommends that you use the Ingress-NGINX Controller that supports the generic
Kubernetes ingress API.

Weblogic Kubernetes Operator describes the installation and the usage of the Ingress-NGINX
controller. Refer to Install and Configure NGINX for more information about installing and
configuring NGINX.

Using Domain Name System (DNS)
A Kubernetes cluster can have many routable entrypoints. Common choices are:

• External load balancer (IP and port)

• Ingress controller service (master node IPs and ingress port)

• Ingress controller service (worker node IPs and ingress port)

You must identify the proper entrypoint for your Kubernetes cluster.

OSM cloud native requires hostnames to be mapped to routable entrypoints into the
Kubernetes cluster. Regardless of the actual entrypoints (external load balancer, Kubernetes
master node, or worker nodes), users who need to communicate with the OSM cloud native
instances require name resolution.

The access hostnames take the prefix.domain form. prefix and domain are determined by the
specifications of the OSM cloud native configuration for a given deployment. prefix is unique to
the deployment, while domain is common for multiple deployments.

The default domain in OSM cloud native toolkit is osm.org.

For a particular deployment, as an example, this results in the following addresses:

• dev1.wireless.osm.org (for HTTP access)

• admin.dev1.wireless.osm.org (for WebLogic Console access)

• t3.dev1.wireless.osm.org (for T3 JMS/SAF access)

These "hostnames" must be routable to the entry point of your Ingress Controller or Load
Balancer. For a basic validation, on the systems that access the deployment, edit the local
hosts file to add the following entry:

Note

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

ip_address dev1.wireless.osm.org admin.dev1.wireless.osm.org
t3.dev1.wireless.osm.org

However, the solution of editing the hosts file is not easy to scale and co-ordinate across
multiple users and multiple access environments. A better solution is to leverage DNS services
at the enterprise level.

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 25

https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/kubernetes/samples/charts/nginx/README.md

With DNS servers, a more efficient mechanism can be adopted. The mechanism is the creation
of a domain level A-record:

A-Record: *.osm.org IP_address

If the target is not a load balancer, but the Kubernetes cluster nodes themselves, a DNS
service can also insulate the user from relying on any single node IP. The DNS entry can be
configured to map *.osm.org to all the current Kubernetes cluster node IP addresses. You must
update this mapping as the Kubernetes cluster changes with adding a new node, removing an
old node, reassigning the IP address of a node, and so on.

With these two approaches, you can set up an enterprise DNS once and modify it only
infrequently.

Configuring Kubernetes Persistent Volumes
Typically, runtime artifacts in OSM cloud native are created within the respective pod
filesystems. As a result, they are lost when the pod is deleted. These artifacts include
application logs, Fusion MiddleWare logs, and JVM Java Flight Recorder data.

While this impermanence may be acceptable for highly transient environments, it is typically
desirable to have access to these artifacts outside of the lifecycle of the OSM cloud native
instance. It is also highly recommended to deploy a toolchain for logs to provide a centralized
view with a dashboard. To allow for artifacts to survive independent of the pod, OSM cloud
native allows for them to be maintained on Kubernetes Persistent Volumes.

OSM cloud native does not dictate the technology that supports Persistent Volumes, but
provides samples for NFS-based persistence. Additionally, for OSM cloud native on an Oracle
OKE cloud, you can use persistence based on File Storage Service (FSS).

Regardless of the persistence provider chosen, persistent volumes for OSM cloud native use
must be configured:

• With accessMode ReadWriteMany

• With capacity to support intended workload

Log size and retention policies can be configured as part of the shape specification.

About NFS-based Persistence
For use with OSM cloud native, one or more NFS servers must be designated.

It is highly recommended to split the servers as follows:

• At least one for the development instances and the non-sensitive test instances (for
example, for Integration testing)

• At least one for the sensitive test instances (for example, for Performance testing, Stress
testing, and production staging)

• One for the production instance

In general, ensure that the sensitive instances have dedicated NFS support, so that they do
not compete for disk space or network IOPS with others.

The exported filesystems must have enough capacity to support the intended workload. Given
the dynamic nature of the OSM cloud native instances, and the fact that the OSM logging
volume is highly dependent on cartridges and on the order volume, it is prudent to put in place
a set of operational mechanisms to:

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 25

• Monitor disk usage and warn when the usage crosses a threshold

• Clean out the artifacts that are no longer needed

If a toolchain such as ELK Stack picks up this data, then the cleanup task can be built into this
process itself. As artifacts are successfully populated into the toolchain, they can be deleted
from the filesystem. You must take care to only delete log files that have rolled over.

About Authentication
OSM cloud native requires the use of two-level LDAP with embedded first and then external
next. For details about OSM system users in LDAP, see About Authentication and
Authorization in the OSM Security Guide. It is highly recommended that all system users and
all users configured for automation tasks and API servicing be created in embedded LDAP for
performance and reliability reasons. Human users are recommended to be served via access
to an external (corporate) LDAP system.

For complete details on the requirement of an external authenticator, see "Using WebLogic
Server Authenticators with OSM" in OSM System Administrator's Guide. When OSM cloud
instances use external authentication, ensure that you create separate users and groups for
each environment (or class of environments) in the external LDAP service. The specifications
of this depend on the LDAP service provider.

OSM cloud native toolkit provides a sample configuration to integrate with external LDAP
server for human users. For details on setting up the external LDAP server and the layout of
the data within it, see "Manage LDAP Providers in WLS via OSM."

Management of Secrets
OSM cloud native leverages Kubernetes Secrets to store sensitive information securely. This
sensitive information is, at a minimum, the database credentials and the WebLogic
administrator credentials. Additional credentials may be stored to authenticate with the external
LDAP system. Your custom cartridges may need to communicate with other systems, such as
Unified Inventory Management (UIM). The credentials for such systems too are managed as
Kubernetes Secrets.

These secrets need to be secured over their lifecycle by the Kubernetes cluster administration.
RBAC should be used to restrict the entities that can describe, view, or mount these
credentials.

OSM cloud native scripts assume that a set of pre-requisite secrets exist when they are
invoked. As such, creation of the secrets is a pre-requisite step in the pipeline. OSM cloud
native toolkit provides a sample script to create some of the common secrets it needs, but this
script is interactive and therefore not suitable for Continuous Delivery (CD) automation
pipelines. The sample script serves to provide a basic mechanism to add secrets and
illustrates the names and structure of the secrets that OSM cloud native requires.

You can create the secrets manually by using the sample script for each instance. The sample
can be augmented to include additional custom secrets. This method requires exposing RBAC
for creating secrets for a larger group of users, which might not be desirable. It can also result
in human errors, such as mistyping a password, which will only be detected during the runtime
of the OSM instance.

A more sustainable and scalable option is using a secrets management system. There are
several secrets management systems available for use with Kubernetes. Choose a system that
offers a secure API (to be called from the CD pipeline) and populates the sensitive information
as secrets into Kubernetes, as opposed to populating into pods through environment variables.
The installation, configuration, and validation of such a secrets management system is a pre-

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 25

requisite to uptake OSM cloud native. For details on setting up the secrets management
system, see the documentation of the system that you adopt.

Using Kubernetes Monitoring Toolchain
A multi-node Kubernetes cluster with multiple users and an ever-changing workload requires a
capable set of tools to monitor and manage the cluster. There are tools that provide data, rich
visualizations and other capabilities such as alerts. OSM cloud native does not require any
particular system to be used, but recommends using such a monitoring, visualization and
alerting capability.

For OSM cloud native, the key aspects of monitoring are:

• Worker capacity in CPU and memory. The pods take up non-trivial amount of worker
resources. For example, pods configured for production performance use 32 GB of
memory. Monitoring the free capacity leads to predictable OSM instance creation and
scale-up.

• Worker node disk pressure

• Worker node network pressure

• Health of the core Kubernetes services

• Health of WebLogic Kubernetes Operator

• Health of ingress-NGINX (or other load balancer in the cluster)

The namespaces and pods that OSM cloud native uses provide a cross instance view of OSM
cloud native.

About Application Logs and Metrics Toolchain
OSM cloud native generates all logs that traditional OSM and WebLogic Server typically
generate. The logs can be sent to a shared filesystem for retention and for retrieval by a
toolchain such as Elastic Stack.

In addition, OSM cloud native generates metrics and JVM Java Flight Recorder (JFR) data.
OSM cloud native exposes metrics for scraping by Prometheus. These can then be processed
by a metrics toolchain, with visualizations like Grafana dashboards. Dashboards and alerts can
be configured to enable sustainable monitoring of multiple OSM cloud native instances
throughout their lifecycles. The OSM JFR data can be retrieved by Java Mission Control or
such similar tools to analyze the performance of OSM at the JVM level. Performance metrics
include heap utilization, threads stuck, garbage collection, and so on.

Oracle highly recommends using a toolchain to effectively monitor OSM cloud native instances.
The dynamic lifecycle in OSM cloud native, in terms of deploying, scaling and updating an
instance, requires proper monitoring and management of the database resources as well. For
non-sensitive environments such as development instances and some test instances, this
largely implies monitoring the tablespace usage and the disk usage, and adding disk space as
needed.

Another important facet is to track PDB usage to ensure PDBs that are no longer required are
deleted so that the resources are freed up. Sensitive environments such as production and
stress test instances require close monitoring of the database resources such as CPU, SGA/
PGA, top-runner SQLs, and IOPS.

A key implication of the dynamic behavior of OSM cloud native on the database is when the
instances are dehydrated. Very often, there is a requirement to have an OSM instance kept
around even when it is not being actively used. This is because it captures a particular state

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 25

(for example, cartridge lineup or order load) or is non-trivial to recreate. Such an environment
lies idle until it is needed again. With OSM cloud native, there is no retained state within the
run-time instance. The information on creating the instance is in the CD artifacts (the various
specification files), and all the OSM application information is in the PDB. As a result, when the
instance is not actively needed, all Kubernetes resources for it can be freed up by deleting the
instance. This does not delete the PDB. The CD artifacts and the PDB can be used to
rehydrate the instance when required. In the meantime, if the instance is not required for a
while (or if there is database capacity pressure), the PDB can be unplugged to no longer
consume any run-time resources. An unplugged PDB can even be transferred to another CDB
and plugged in there.

Role of Continuous Integration (CI) Pipelines
The roles of CI pipelines in an OSM cloud native environment are as follows:

• To generate standard OSM cartridge PAR files and store them in a central location with
appropriate path and naming convention for deployment. Developers run this automation
as they modify cartridges for testing. Standalone mechanisms that generate "official"
cartridge builds for testing and production use also run automation.

• To generate custom OSM cloud native images. The OSM cloud native images contain all
the components needed to run OSM cloud native. However, you may require additional
applications to be co-hosted by the OSM WebLogic cluster. Examples of such applications
include MDBs to mediate communication with an external system and third-party Java EE
monitoring tools. These applications must be layered on top of the OSM cloud native
image to generate a custom image. Automation can accomplish this by using the file
samples that are provided in the toolkit. The generated images must be uploaded to the
internal container repository for use by deployment. The path and naming convention must
be followed to designate images that are in development versus images that are ready for
testing; and to version the images themselves.

OSM cloud native does not mandate the use of a specific set of tools for CI automation.
Common choices are GitLab CI and Jenkins. As part of preparing for OSM cloud native, you
must evaluate CI automation tools and choose one that fits your business needs and the
desired source control mechanisms.

Role of Continuous Delivery (CD) Pipelines
The role of CD pipelines in an OSM cloud native environment is to perform operations on the
target Kubernetes cluster to automate the full lifecycle of an OSM cloud native instance.

The following are the main operations you must implement:

• Create instance: This must drive off the source-controlled OSM cloud native specification
files and run through the various stages (secrets creation, PDB creation, OSM database
installation, OSM instance creation, load balancer creation, and cartridge deployment) to
create a new OSM cloud native instance. Variability should be built in for some key phases
as secrets may already exist and may need to be updated, or PDB may already exist with
or without OSM schema, and so on. As a result, this automation is written to a "create-or-
update" pattern.

• Update instance: This must be a variant of the instance creation automation, skipping the
PDB creation and perhaps the load balancer (Ingress) creation. The automation takes the
source-controlled OSM cloud native specification files, which have presumably been
modified in some way since the instance was created, and runs through the steps to make
those changes appear in the provisioned OSM instance. The specification changes could
be as simple as a change in the number of desired Managed Servers, or could be as

Chapter 2
Planning Your Cloud Native Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 25

complex as introducing a new OSM container image. On the other hand, the only change
might be a new version of the cartridge to be deployed.

• Delete instance: This must clean up the Kubernetes resources used by the instance.
Typically, the PDB is left alone to be handled separately, but it is possible to chain its
deletion to the clean up operation as well.

OSM cloud native does not mandate the use of a particular set of tools for CD automation.
Common choices are GitLab CD and Jenkins. As part of preparing for OSM cloud native, you
must evaluate CD automation tools and choose one that fits your business needs and the
target Kubernetes environment.

Planning Your Container Engine for Kubernetes (OKE) Cloud
Environment

This section provides information about planning your cloud environment if you want to use
Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) for OSM cloud native.
Some of the components, services, and capabilities that are required and recommended for a
cloud native environment are applicable to the Oracle OKE cloud environment as well.

• Kubernetes and Container Images: You can choose from the version options available in
OKE as long as the selected version conforms to the range described in the section about
planning cloud native environment.

• Container Image Management: OSM cloud native recommends using Oracle Cloud
Infrastructure Registry with OKE. Any other repository that you use must be able to serve
images to the OKE environment in a quick and reliable manner. The OSM cloud native
images are of the order of 3 GB each.

• Oracle Multitenant Database: It is strongly recommended to run Oracle DB outside of
OKE, but within the same Oracle Cloud Infrastructure tenancy and the region as an Oracle
DB service (BareMetal, VM, or ExaData). The database version should be 19c. You can
choose between a standalone DB or a multi-node RAC.

• Helm and Oracle WebLogic Kubernetes Operator: Install Helm and Oracle WebLogic
Kubernetes Operator as described for the cloud native environment into the OKE cluster.

• Persistent Volumes: Use NFS-based persistence. OSM cloud native recommends the
use of Oracle Cloud Infrastructure File Storage service in the OKE context.

• Authentication and Secrets Management: These aspects are common with the cloud
native environment. Choose your mechanisms to deliver these capabilities and implement
them in your OKE instance.

• Monitoring Toolchains: While the Oracle Cloud Infrastructure Console provides a view of
the resources in the OKE cluster, it also enables you to use the Kubernetes Dashboard.
Any additional monitoring capability must be built up.

• CI and CD Pipelines: The considerations and actions described for CI and CD pipelines in
the cloud native environment apply to the OKE environment as well.

Compute Disk Space Requirements
Given the size of the OSM cloud native container images (approximately 2 GB), the size of the
OSM cloud native containers, and the volume of the OSM logs generated, it is recommended
that the OKE worker nodes have at least 40 GB of free space that the /var/lib filesystem can
use. Add disk space if the worker nodes do not have the recommended free space in
the /var/lib filesystem.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 25

Work with your Oracle Cloud Infrastructure OKE administrator to ensure worker nodes have
enough disk space. Common options are to use Compute shapes with larger boot volumes or
to mount an Oracle Cloud Infrastructure Block Volume to /var/lib/docker.

Note

The reference to logs in this section applies to the container logs and other
infrastructure logs. The space considerations still apply even if the OSM cloud native
logs are being sent to an NFS Persistent Volume.

Connectivity Requirements
OSM cloud native assumes the connectivity between the OKE cluster and the Oracle CDBs is
a LAN-equivalent in reliability, performance and throughput. This can be achieved by creating
the Oracle CDBs within the same tenancy as the OKE cluster, and in the same Oracle Cloud
Infrastructure region.

OSM cloud native allows for the full range of Oracle Cloud Infrastructure "cloud-to-ground"
connectivity options for integrating the OKE cluster with on-premise applications and users.
Selecting, provisioning, and testing such connectivity is a critical part of adopting Oracle Cloud
Infrastructure OKE.

Using Load Balancer as a Service (LBaaS)
For load balancing, you have the option of using the services available in OKE. The
infrastructure for OKE is provided by Oracle's IaaS offering, Oracle Cloud Infrastructure. In
OKE, the master node IP address is not exposed to the tenants. The IP addresses of the
worker nodes are also not guaranteed to be static. This makes DNS mapping difficult to
achieve. Additionally, it is also required to balance the load between the worker nodes. In order
to fulfill these requirements, you can use Load Balancer as a Service (LBaaS) of Oracle Cloud
Infrastructure.

You must create a Kubernetes service as per OCI LBaaS documentation to expose your
Ingress controller via Load Balancer. Once this is done, you can describe the resulting service
and note down the "EXTERNAL-IP" and "PORT(S)". The EXTERNAL-IP must be used for DNS
mapping and in places where an access hostname-or-IP is required. PORT(S) provide the
access port - the number before the colon ":" for each port set.

About Using Oracle Cloud Infrastructure Domain Name System (DNS)
Zones

While a custom DNS service can provide the addressing needs of OSM cloud native even
when OSM is running in OKE, you can evaluate the option of Oracle Cloud Infrastructure
Domain Name System (DNS) zones capability. Configuration of DNS zones (and integration
with on-premise DNS systems) is not within the scope of OSM cloud native.

Using Persistent Volumes and File Storage Service (FSS)
In the OKE cluster, OSM cloud native can leverage the high performance, high capacity, high
reliability File Storage Service (FSS) as the backing for the persistent volumes of OSM cloud
native. There are two flavors of FSS usage in this context:

• Allocating FSS by setting up NFS mount target

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 25

• Native FSS

To use FSS through an NFS mount target, see instructions for allocating FSS and setting up a
Mount Target in "Creating File Systems" in the Oracle Cloud Infrastructure documentation.
Note down the Mount Target IP address and the storage path and use these in the OSM cloud
native instance specification as the NFS host and path. This approach is simple to set up and
leverages the NFS storage provisioner that is typically available in all Kubernetes installations.
However, the data flows through the mount target, which models an NFS server.

FSS can also be used natively, without requiring the NFS protocol. This can be achieved by
leveraging the FSS storage provisioner supplied by OKE. The broad outline of how to do this is
available in the blog post "Using File Storage Service with Container Engine for Kubernetes"
on the Oracle Cloud Infrastructure blog.

Troubleshooting File Storage Service Provisioning of PVCs as Native FSS

If you see the "Pod cannot access file system due to insufficient permissions" issue, refer to
the "Troubleshooting File Storage Service Provisioning of PVCs" section in Oracle Cloud
Infrastructure documentation.

Leveraging Oracle Cloud Infrastructure Services
For your OKE environment, you can leverage existing services and capabilities that are
available with Oracle Cloud Infrastructure. The following table lists the Oracle Cloud
Infrastructure services that you can leverage for your OKE cloud environment.

Table 2-3 Oracle Cloud Infrastructure Services for OKE Cloud Environment

Type of Service Service Indicates Mandatory /
Recommended / Optional

Developer Service Container Clusters Mandatory

Developer Service Registry Recommended

Core Infrastructure Compute Instances Mandatory

Core Infrastructure File Storage Recommended

Core Infrastructure Block Volumes Optional

Core Infrastructure Networking Mandatory

Core Infrastructure Load Balancers Recommended

Core Infrastructure DNS Zones Optional

Database BareMetal, VM, and ExaData Recommended

Validating Your Cloud Environment
Before you start using your cloud environment for deploying OSM cloud native instances, you
must validate the environment to ensure that it is set up properly and that any prevailing issues
are identified and resolved. This section describes the tasks that you should perform to
validate your cloud environment.

You can validate your cloud environment by:

• Performing a smoke test of the Kubernetes cluster

• Validating the common building blocks in the Kubernetes cluster

• Running tasks and procedures in Oracle WebLogic Kubernetes Operator Quickstart

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 25

https://docs.cloud.oracle.com/en-us/iaas/Content/File/Tasks/creatingfilesystems.htm
https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingpersistentvolumeclaim_Provisioning_PVCs_on_FSS.htm#contengcreatingpersistentvolumeclaim_topic-Provisioning_PVCs_on_FSS-Troubleshooting

Performing a Smoke Test
You can perform a smoke test of your Kubernetes cloud environment by running nginx. This
procedure validates basic routing within the Kubernetes cluster and access from outside the
environment. It also allows for initial RBAC examination as you need to have permissions to
perform the smoke test. For the smoke test, you need nginx 1.14.2 container image.

Note

The requirement of the nginx container image for the smoke test can change over
time. See the content of the deployment.yaml file in step 3 of the following procedure
to determine which image is required. Alternatively, ensure that you have logged in to
Docker Hub so that the system can download the required image automatically.

To perform a smoke test:

1. Download the nginx container image from Docker Hub.

For details on managing container images, see "Container Image Management."

2. After obtaining the image from Docker Hub, upload it into your private container repository
and ensure that the Kubernetes worker nodes can access the image in the repository.

Oracle recommends that you download and save the container image to the private image
repository even if the worker nodes can access Docker Hub directly. The images in the
OSM cloud native toolkit are available only through your private image repository.

3. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml # the
deployment specifies two replicas
kubectl get pods # Must return two pods in the Running state
kubectl expose deployment nginx-deployment --type=NodePort --name=external-
nginx
kubectl get service external-nginx # Make a note of the external port
for nginx

These commands must run successfully and return information about the pods and the
port for nginx.

4. Open the following URL in a browser:

http://master_IP:port/

where:

• master_IP is the IP address of the master node of the Kubernetes cluster or the
external IP address for which routing has been set up

• port is the external port for the external-nginx service

5. To track which pod is responding, on each pod, modify the text message in the web page
served by nginx. In the following example, this is done for a deployment of two pods:

$ kubectl get pods -o wide | grep nginx
nginx-deployment-5c689d88bb-g7zvh 1/1 Running 0 1d

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 25

10.244.0.149 worker1 <none>
nginx-deployment-5c689d88bb-r68g4 1/1 Running 0 1d
10.244.0.148 worker2 <none>
$ cd /tmp
$ echo "This is pod A - nginx-deployment-5c689d88bb-g7zvh - worker1" >
index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-g7zvh:/usr/share/nginx/
html/index.html
$ echo "This is pod B - nginx-deployment-5c689d88bb-r68g4 - worker2" >
index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-r68g4:/usr/share/nginx/
html/index.html
$ rm index.html

6. Check the index.html web page to identify which pod is serving the page.

7. Check if you can reach all the pods by running refresh (Ctrl+R) and hard refresh
(Ctrl+Shift+R) on the index.html Web page.

8. If you see the default nginx page, instead of the page with your custom message, it
indicates that the pod has restarted. If a pod restarts, the custom message in the page
gets deleted.

Identify the pod that restarted and apply the custom message for that pod.

9. Increase the pod count by patching the deployment.

For instance, if you have three worker nodes, run the following command:

Note

Adjust the number as per your cluster. You may find you have to increase the pod
count to more than your worker node count until you see at least one pod on each
worker node. If this is not observed in your environment even with higher pod
counts, consult your Kubernetes administrator. Meanwhile, try to get as much
worker node coverage as reasonably possible.

kubectl patch deployment nginx-deployment -p '{"spec":{"replicas":3}}' --
type merge

10. For each pod that you add, repeat step 5 to step 8.

Ensuring that all the worker nodes have at least one nginx pod in the Running state ensures
that all worker nodes have access to Docker Hub or to your private image repository.

Validating Common Building Blocks in the Kubernetes Cluster
To approach OSM cloud native in a sustainable manner, you must validate the common
building blocks that are on top of the basic Kubernetes infrastructure individually. The following
sections describe how you can validate the building blocks.

Network File System (NFS)

OSM cloud native uses Kubernetes Persistent Volumes (PV) and Persistent Volume Claims
(PVC) to use a pod-remote destination filesystem for OSM logs and performance data. By
default, these artifacts are stored within a pod in Kubernetes and are not easily available for
integration into a toolchain. For these to be available externally, the Kubernetes environment

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 25

must implement a mechanism for fulfilling PV and PVC. The Network File System (NFS) is a
common PV mechanism.

For the Kubernetes environment, identify an NFS server and create or export an NFS
filesystem from it.

Ensure that this filesystem:

• Has enough space for the OSM logs and performance data.

• Is mountable on all the Kubernetes worker nodes

Create an nginx pod that mounts an NFS PV from the identified server. For details, see the
documentation about "Kubernetes Persistent Volumes" on the Kubernetes website. This
activity verifies the integration of NFS, PV/PVC and the Kubernetes cluster. To clean up the
environment, delete the nginx pod, the PVC, and the PV.

Ideally, data such as logs and JFR data is stored in the PV only until it can be retrieved into a
monitoring toolchain such as Elastic Stack. The toolchain must delete the rolled over log files
after processing them. This helps you to predict the size of the filesystem. You must also
consider the factors such as the number of OSM cloud native instances that will use this
space, the size of those instances, the volume of orders they will process, and the volume of
logs that your cartridges generate.

Validating the Load Balancer

For a development-grade environment, you can use an in-cluster software load balancer. OSM
cloud native toolkit provides documentation and samples that show you how to use Ingress-
NGINX to perform load balancing activities for your Kubernetes cluster.

A more intensive environment, such as a test, a production, a pre-production, or performance
environments can additionally require a more robust load balancing service to handle the
HTTP/HTTPS traffic. For such environments, Oracle recommends using a load balancing
hardware that is set up outside the Kubernetes cluster. A few examples of external load
balancers are Oracle Cloud Infrastructure LBaaS for OKE, Google's Network LB Service in
GKE, and F5's Big-IP for private cloud. The actual selection and configuration of an external
load balancer is outside the scope of OSM cloud native itself, but is an important component to
sort out in the implementation of OSM cloud native. For more details on the requirements and
options, see "Integrating OSM."

To validate the ingress controller of your choice, you can use the same nginx deployment used
in the smoke test described earlier. This is valid only when run in a Kubernetes cluster where
multiple worker nodes are available to take the workload.

To perform a smoke test of your ingress setup:

1. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml
kubectl get pods -o wide # two nginx pods in Running state; ensure
these are on different worker nodes
cat > smoke-internal-nginx-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
 name: smoke-internal-nginx
 namespace: default
spec:
 ports:
 - port: 80

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 25

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 sessionAffinity: None
 type: ClusterIP
EOF
kubectl apply -f ./smoke-internal-nginx-svc.yaml
kubectl get svc smoke-internal-nginx

2. Create your ingress targeting the internal-nginx service. The following text shows a
sample ingress annotated to work with the Generic NGINX Ingress controller:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: smoke-nginx-ingress
 namespace: default
spec:
 rules:
 - host: smoke.nginx.osmtest.org
 http:
 paths:
 - backend:
 service:
 name: smoke-internal-nginx
 port:
 number: 80

If you plan to use other ingress controllers, refer to the documentation about the
corresponding controllers for information on creating the appropriate ingress and make it
known to the controller. The ingress definition should be largely reusable, with ingress
controller vendors describing their own annotations that should be specified, instead of the
Traefik annotation used in the example.

3. Create a local DNS/hosts entry in your client system mapping smoke.nginx.osmtest.org
to the IP address of the cluster, which is typically the IP address of the Kubernetes master
node, but could be configured differently.

4. Open the following URL in a browser:

http://smoke.nginx.osmtest.org:Ingress_Port/

where Ingress_Port is the external port that Ingress has been configured to expose.

5. Verify that the web address opens and displays the NGINX default page.

Your Ingress controller must support session stickiness for OSM cloud native. To learn how
stickiness should be configured, refer to the documentation about the Ingress controller you
choose. For Traefik, stickiness must be set up at the service level itself. For testing purposes,
you can modify the internal-nginx service to enable stickiness by running the following
commands:

kubectl delete ingress smoke-nginx-ingress
vi smoke-internal-nginx-svc.yaml

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 25

Add an annotation section under the metadata section:
annotation:
traefik.ingress.kubernetes.io/affinity: "true"
kubectl apply -f ./smoke-internal-nginx-svc.yaml
now apply back the ingress smoke-nginx-ingress using the above yaml
definition

Other ingress controllers may have different configuration requirements for session stickiness.
Once you have configured your ingress controller, and the smoke-nginx-ingress and
smoke-internal-nginx services as required, repeat the browser-based procedure to verify
and confirm if nginx is still reachable. As you refresh (Ctrl+R) the browser, you should see the
page getting served by one of the pods. Repeatedly refreshing the web page should show the
same pod servicing the access request.

To further test session stickiness, you can either do a hard refresh (Ctrl+Shift+R) or restart your
browser (you may have to use the browser in Incognito or Private mode), or clear your browser
cache for the access hostname for your Kubernetes cluster. You may observe that the same
nginx pod or a different pod is servicing the request. Refreshing the page repeatedly should
stick with the same pod while hard refreshes should switch to the other pod occasionally. As
the deployment has two pods, chances of a switch with a hard refresh are 50%. You can
modify the deployment to increase the number of replica nginx pods (controlled by the
replicas parameter under spec) to increase the odds of a switch. For example, with four
nginx pods in the deployment, the odds of a switch with hard refresh rise to 75%. Before
testing with the new pods, run the commands for identifying the pods to add unique
identification to the new pods. See the procedure in "Performing a Smoke Test" for the
commands.

To clean up the environment after the test, delete the following services and the deployment:

• smoke-nginx-ingress

• smoke-internal-nginx

• nginx-deployment

Running Oracle WebLogic Kubernetes Operator Quickstart
Oracle recommends that you validate your new Kubernetes environment for OSM cloud native
by performing the procedures described in Oracle WebLogic Kubernetes Operator Quickstart
available at: https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

The quickstart guide provides instructions for creating a WebLogic deployment in a Kubernetes
cluster with the Oracle WebLogic Kubernetes Operator. The guide also provides instructions
for downloading and installing a load balancer, and a domain. Follow the instructions provided
above for Helm 3.x.

When you run and complete the tasks in the quickstart successfully, the following aspects of
the cloud environment are tested and verified:

• Private image repository (or procedures to sync per-node Docker cache on a multi-node
Kubernetes cluster)

• Initial view of the chosen in-cluster load balancers

• RBAC for WebLogic Kubernetes Operator

• Procedure to introduce secrets into the cloud environment

• Basic compatibility of the cloud environment with WebLogic Kubernetes Operator

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 25

https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

The quickstart also contains instructions for cleaning up the environment after you finish the
validation and testing. Perform these clean-up procedures to return the environment to the
original state for OSM cloud native.

After completing the clean-up procedures, ensure that the WebLogic Kubernetes Operator
CustomResourceDefinition (CRD) is removed from your cluster by running the following
commands:

$ kubectl get crd domains.weblogic.oracle
if this returns an existing CRD even after WKO quickstart cleanup, then run:
$ kubectl delete crd domains.weblogic.oracle

Chapter 2
Validating Your Cloud Environment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 25

3
Creating OSM Cloud Native Images

OSM cloud native requires container images be made available to create and manage OSM
cloud native instances. This chapter describes how to create those OSM cloud native images.

OSM cloud native requires two container images. The OSM DB Installer image is used to
manage the OSM and Fusion MiddleWare schemas - create, delete, upgrade - as well as
deploy and fast-undeploy OSM cartridges in the OSM schema. The other image is the OSM
image itself. This image is the basis for all of the long running pods - the WebLogic admin
server and all the Managed Servers that comprise an OSM cloud native instance. Each image
is built on top of a Linux base image and adds Java, Fusion MiddleWare components and
OSM product components on top.

OSM Cloud native images are created using the OSM cloud native builder toolkit and a
dependency manifest file. The OSM cloud native Image Builder is intended to be run as part of
a Continuous Integration process that generates images. It needs to run on Linux and have
access to the local Docker daemon. The versions of these are as per the OSM statement of
certification in the OSM documentation. The dependency manifest is a file that describes all
the versions and patches required to build out the image.

See the following topics for further details:

• Downloading the OSM Cloud Native Image Builder

• Prerequisites for Creating OSM Images

• Specifying Configurations for the OSM Cloud Native Images

• Creating the OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder
You download the OSM cloud native image builder from My Oracle Support at: https://
support.oracle.com

The OSM cloud native image builder is bundled with the following components:

• An unpatched dependency manifest file.

This file does not include any artifacts that require contract-driven access to Oracle
download sites (for example, for Fusion MiddleWare patches). Use this unpatched
manifest file for evaluation purposes only.

For production use (and throughout the adoption lifecycle leading up to production), obtain
the latest dependency manifest file. See OSM Compatibility Matrix for details about the
latest recommended manifest file for your OSM release.

• OSM cloud native builder kit. The kit contains:

– The OSM Domain WDT Model.

– The OSM DB Installer scripts and manifest files.

– The WDT Deployment tool and the WebLogic Image tool.

• Staging directory structure.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 12

https://support.oracle.com
https://support.oracle.com

Prerequisites for Creating OSM Images
The minimum resource requirements for building OSM cloud native images are:

• 2 CPUs

• 4GB RAM

• 40GB Disk Space

The following versions of Podman and Oracle Linux Server were used to obtain the
requirements listed above:

• Oracle Linux Server 8.8

• Podman 4.4.1

See OSM Compatibility Matrix for more details about the required and supported versions of
Podman, Oracle Linux Server, and the following components.

Note

It is not recommended to use podman-docker or similar rpm packages where a Docker
executable is created only as a front for Podman. You must either use only Podman or
a real Docker.

If Podman is used, the image build process might intermittently fail due to Podman's low open
files default for image building. These build failures appear as Oracle OPatch failures in the
build output. Image builder overcomes this issue by setting Podman's hard limit ulimit -n -H
as the value for the open files limit, if it is defined. If the hard limit is undefined or unlimited, it
uses the value 1048576.

See Image Build Failure Due to OPatch Error for more information.

Additional pre-requisites for building OSM cloud native images are:

• Installers for WebLogic Server and JDK. Download these from the Oracle Software
Delivery Cloud:

https://edelivery.oracle.com

• Oracle Instant Client. Download this from Oracle Software Downloads:

https://www.oracle.com/downloads/

• Required patches. Download these from My Oracle Support:

https://support.oracle.com/

• (Optional) OSM-CNTK zip. This is required only if you are building the CNTK image.
Download this from My Oracle Support:

https://support.oracle.com/

• (Optional) Kubectl and Helm binaries. This is required only if you are building the CNTK
image. See the OSM Compatibility Matrix for details about required and supported
versions of Kubectl and Helm.

• Java, installed with JAVA_HOME set in the environment.

• Bash, to enable the `<tab>` command complete feature.

Chapter 3
Prerequisites for Creating OSM Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 12

https://edelivery.oracle.com
https://www.oracle.com/downloads/
https://support.oracle.com/
https://support.oracle.com/

Configuring the OSM Cloud Native Images
The dependency manifest file describes the input that goes into OSM images. It is consumed
by the image build process. The default configuration in the latest manifest file provides all the
necessary components and required patches for creating OSM cloud native images. Refer to
the Compatibility Matrix to know more about the supported versions of various components.

You can also modify the manifest file to extend it to meet your requirements. This enables you
to:

• Specify any Linux image as the base, as long as its binary is compatible with Oracle Linux.

• Upgrade the Oracle Enterprise Linux version to a newer version to uptake a quarterly CPU.

• Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

• Upgrade the Fusion Middleware version to a newer version. For example, you upgrade the
Fusion Middleware version to a newer version when you initiate the upgrade to pick up
new PSU or when Oracle recommends a new update.

• Change the set of patches applied on WebLogic Server, Coherence, Fusion Middleware,
and OPatch to stay aligned with evolving OSM recommendations.

• Change the OSM artifacts to newer artifacts to uptake a new OSM patch.

• Choose a different userid and groupid for oracle:oracle user:group that the image
specifies. The default is 1000:1000.

The breakdown of each section in the dependency manifest file is as follows:

Note

The schemaVersion and date parameters are maintained by Oracle. Do not modify
these parameters.

Version numbers provided here are only examples. The manifest file used specifies
the actual versions currently recommended.

• OSM Cloud Native Infrastructure Image

While not required by OSM cloud native to create or manage OSM instances, this
infrastructure image is a necessary building block of the final OSM container image.

Specify the details of the Linux base image for OSM.
 # Refer to the OSM documentation for certification statement on supported
 # types and versions. This information is coded into the OSM image as a
 # LABEL, for tracking purposes.
 linux:
 vendor: Oracle
 # uncomment below two lines when selecting linux 9
 # version: 9.5
 # image: container-registry.oracle.com/os/oraclelinux:9-slim
 # comment below two lines when selecting linux 9
 version: 8.10
 image: container-registry.oracle.com/os/oraclelinux:8-slim

Chapter 3
Configuring the OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 12

You can uncomment and modify the specification to choose which Linux version can be
used as base image for OSM. The linux parameter specifies the base Linux image to be
used as the base container image. The version is the two-digit version from /etc/redhat-
release.

The vendor and version details are specified and used for:

– Validation when an image is built.

– Querying at run-time. To troubleshoot issues, Oracle support requires you to provide
these details in the manifest file used to build the image.

userGroup:
 username: oracle
 userid: 1000
 groupname: oracle
 groupid: 1000

The userGroup parameter specifies the default userId and groupId for oracle.

jdk:
 vendor: Oracle
 version: 21.0.7
 path: $CN_BUILDER_STAGING/java/jdk-21.0.7_linux-x64_bin.tar.gz

The jdk parameter specifies the JDK vendor, version, and the staging path. This
parameter is referenced by the microservices for the JDK version that needs to be used.

fmw:
 version: 14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/install/fmw_14.1.2.0.0_infrastructure.jar

The fmw parameter specifies the Fusion Middleware version and staging path.

oPatch:
 description: Weblogic Opatch
 patchNumber: 28186730
 patchId: 28186730_13.9.4.2.20
 path: $CN_BUILDER_STAGING/fmw/patch/p28186730_1394220_Generic.zip

The oPatch parameter specifies the Oracle Patch tool and staging path.

fmwPatch:
 - description: PSU for WLS (JUL 2025 CPU)
 patchNumber: 38130086
 patchId: 38130086_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38130086_141200_Generic.zip
 - description: PSU Coherence 14.1.2.0.3 (JUL 2025 CPU)
 patchNumber: 38018960
 patchId: 38018960_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38018960_141200_Generic.zip
 - description: ADF Bundle Patch (JUL 2025 CPU)
 patchNumber: 38015961
 patchId: 38015961_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38015961_141200_Generic.zip

Chapter 3
Configuring the OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 12

 - description: FMW THIRD PARTY BUNDLE PATCH (JUL 2025 CPU)
 patchNumber: 38101364
 patchId: 38101364_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38101364_141200_Generic.zip
 - description: JDBC BUNDLE PATCH (JUL 2025 CPU)
 patchNumber: 37925693
 patchId: 37925693_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p37925693_141200_Generic.zip
 - description: Oracle Web Services Manager (OWSM) Bundle Patches (JUL
2025 CPU)
 patchNumber: 38184117
 patchId: 38184117_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38184117_141200_Generic.zip
 - description: RDA Release for FMW 14.1.2.0.0 (JUL 2025 CPU)
 patchNumber: 37887265
 patchId: 37887265_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p37887265_141200_Generic.zip
 - description: UMS Bundle Patch (JUL 2025 CPU)
 patchNumber: 38032126
 patchId: 38032126_14.1.2.0.0
 path: $CN_BUILDER_STAGING/fmw/patch/p38032126_141200_Generic.zip
 - description: CROSS DOMAIN SAF CONNECTIVITY ISSUE
 patchNumber: 37940403
 patchId: 37940403_14.1.2.0.250629
 path: $CN_BUILDER_STAGING/fmw/patch/p37940403_14120250629_Linux-
x86-64.zip

The fmwPatch parameter specifies additional patches and their staging paths.

• OSM Cloud Native Image

Note

Do not modify these parameters. These parameters are maintained by Oracle.

osmCnImage:
 name: osm-cn-base
 tag: 8.0.0
 wdt:
 version: 4.3.6
 path: $CN_BUILDER_STAGING/cnsdk/tools/weblogic-deploy.zip
 modelfiles: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-domain-config/osm-
base-domain.yaml,$CN_BUILDER_STAGING/cnsdk/osm-model/osm-domain-config/
properties/docker-build/domain.properties
 application: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-app-archive.zip
 uxwarapplication: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-fallout-app-
archive.zip
 dockerExtension: $CN_BUILDER_STAGING/cnsdk/osm-model/
additionalBuildCommands.txt

The osmCnImage section specifies details about the OSM artifacts required to build the
OSM base image. These include the oms.ear, cartridge management WS ear file, default
cartridge par file, job control cartridge par file, WDT and base model files.

Chapter 3
Configuring the OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 12

• OSM Cloud Native DB Installer Image

osmCnDbInstallerImage:
 name: osm-cn-db-installer
 tag: 8.0.0

The osmCnDbInstallerImage parameter specifies the DB Installer image name and
version. This includes the transformed OSM DB model and Semele jar file.

oracleInstantClient:
 version: 19.21.0.0.0
 basic:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
basic-19.21.0.0.0-1.x86_64.rpm
 sqlplus:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
sqlplus-19.21.0.0.0-1.x86_64.rpm
 tools:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
tools-19.21.0.0.0-1.x86_64.rpm

The oracleInstantClient parameter specifies details about the Oracle Instant Client
required by the DB installer.

osmGwImage:
 name: osm-gateway
 tag: 8.0.0
rtuxMsImage:
 name: osm-runtime-ux-server
 tag: 8.0.0
ocaMsImage:
 name: "osm-cartridge-assembler"
 tag: 8.0.0

The osmGwImage, rtuxMsImage and ocaMsImage parameters specify details about the OSM
Gateway, RTUX and OSM Cartridge Assembler microservices respectively.

• OSM Cloud Native Toolkit Image
This image is required only if OSM cloud native is being managed using the FluxCD-based
gitops mechanism. The osmCntk parameter specifies the details about the OSM cloud
native toolkit and the staging path for the OSM cloud native toolkit zip file, kubectl and
helm binary.

osmCntk:
 name: "osm-cntk"
 tag: 8.0.0
 path: $CN_BUILDER_STAGING/osm-cntk/osm-cntk-*.zip
 baseImage: container-registry.oracle.com/os/oraclelinux:8
 # The binary provided for kubectl must conform to the guidance in the
compatibility matrix,
 # and must be for the same OS as the base image.
 kubectl:
 path: $CN_BUILDER_STAGING/tools/kubectl

Chapter 3
Configuring the OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 12

 # The binary provided for helm must conform to the guidance in the
compatibility matrix,
 # and must be for the same OS as the base image.
 helm:
 path: $CN_BUILDER_STAGING/tools/helm

Creating OSM Cloud Native Images
To create the OSM image, the image builder does the following:

• Starts with a base-level operating system image (for example, oraclelinux:8-slim or
oraclelinux:9-slim).

• Creates user and group (for example, oracle:oracle).

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies patches.

• Installs the OSM application base on the WDT model.

To create the OSM DB Installer image, the image builder does the following:

• Starts with a base-level operating system image (for example, oraclelinux:8-slim or
oraclelinux:9-slim).

• Creates a user and a group (for example, oracle:oracle)

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies the required patches.

• Installs SQL Plus and SQL Loader and the supporting libraries.

• Installs the OSM DB Installer.

You can specify any Linux image as the base, as long as its binary is compatible with Oracle
Linux and conforms to the compatibility matrix. See OSM Compatibility Matrix for details about
the supported software.

The following packages must be installed onto the given base image, or be already present:

• gzip

• tar

• unzip

In addition to OSM, OSM DB installer, OSM Gateway, and RTUX microservices images, OSM
cloud native now enables you to create OSM-CNTK images as well.

Creating the OSM and OSM DB Installer Images

To create the OSM and OSM DB Installer images:

1. Create the workspace directory:

mkdir workspace

2. Obtain and unzip the OSM image builder file, osm-image-builder.zip to the workspace
directory:

unzip ./osm-image-builder-*.zip -d workspace

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 12

3. (Optional) Download and copy the version of Oracle Instant Client in the manifest you are
using to workspace/osm-image-builder/staging/instant-client directory and update the
version and the file names.

Note

Oracle Instant Client packages are included in the OSM Image Builder and can be
used as-is without additional downloads. Also, follow your organization's standard
for $http_proxy.

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-basic-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1921000/
oracle-instantclient19.21-basic-19.21.0.0.0-1.x86_64.rpm

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-sqlplus-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1920000/
oracle-instantclient19.21-sqlplus-19.21.0.0.0-1.x86_64.rpm

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-tools-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1920000/
oracle-instantclient19.21-tools-19.21.0.0.0-1.x86_64.rpm

4. Download JDK to workspace.

• Determine the JDK versions specified in the manifest - there will be JDK 21.

• Download each JDK version tar.gz into ./workspace/osm-image-builder/staging/
java.

• Amend the manifest for each JDK section to include the correct path and filename if
they differ.

#Example
cp jdk-21.0.7_linux-x64_bin.tar.gz ./workspace/osm-image-builder/staging/
java/jdk-21.0.7_linux-x64_bin.tar.gz

Note

You can modify the manifest by substituting the default tags with tags that have
relevance to your specific work. Specifying tags is not required, but it is
recommended.

Information about the OSM Gateway image
osmGwImage:
 name: osm-gateway
 tag: 8.0.0

Information about the OSM rtux m-s image
rtuxMsImage:

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 12

 name: osm-runtime-ux-server
 tag: 8.0.0

Information about the OSM oca m-s image
ocaMsImage:
 name: "osm-cartridge-assembler"
 tag: 8.0.0

5. (Optional) You need to do this if you want to create an image for OSM cloud native toolkit:

a. Download and copy the osm-cntk zip file into the ./workspace/osm-image-builder/
staging/osm-cntk directory.

b. Download and copy the Kubectl and Helm binaries into the ./workspace/osm-image-
builder/staging/tools directory.

cp osm-cntk-*.zip ./workspace/osm-image-builder/staging/osm-cntk/

cp kubectl ./workspace/osm-image-builder/staging/tools/kubectl
cp helm ./workspace/osm-image-builder/staging/tools/helm

6. (Optional) You need to do this if the external system is using the SSL certificate as a self
signed certificate. For the OSM Gateway to successfully participate in a handshake with an
external system to emit the message, the SSL certificates from the external domain must
be made available to the OSM Gateway. This can be achieved adding the external system
SSL certificates to the Java keystore. To add the SSL certificates to the Java keystore, do
the following:

$ cd $CN_BUILDER_STAGING/java

#untar the java tar file
$ tar –xvzf jdk-21.0.7_linux-x64_bin.tar.gz

navigate to the bin folder
$ cd jdk-21.0.7/bin

#import the certificate to java keystore
keytool -import -trustcacerts -keystore ../lib/security/cacerts -alias
ALIAS_NAME -file /path/to/certificate
repeat import for each set of certificates until all affected external
systems are covered

#tar the java folder again
tar czf jdk-21.0.7_linux-x64_bin.tar.gz jdk-21.0.7

7. From Oracle Software Delivery Cloud: https://edelivery.oracle.com, download Fusion
Middleware Infrastructure installer and copy it to the workspace/osm-image-builder/
staging/fmw/install directory. The Fusion Middleware Infrastructure installer version to be
download is described in the dependency manifest file under the fmw section.

cp fmw_14.1.2.0.0_infrastructure.jar ./workspace/osm-image-builder/
staging/fmw/install/fmw_14.1.2.0.0_infrastructure.jar

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 12

8. Download all the listed patches to the workspace/osm-image-builder/staging/fmw/
patch directory. The list of required patches is in the dependency manifest file in the
oPatch and fmwPatch sections.

Note

This step is not required if osm_cn_ci_manifest_unpatched.yaml is the manifest
used.

You can download the patches using any of the following options:

• (Recommended) Manually search for and download each OPatch/FMW patches from
Oracle Support to the current working directory and then copy to the staging directory.

cp pxxxxxx_xxxxx_Generic.zip ./workspace/osm-image-builder/staging/fmw/
patch

• Provide your My Oracle Support account credentials when invoking the build-osm-
images.sh script, and let the builder download the patches automatically:

Note

Some patches may not be retrievable in this manner. If the image build
process fails with errors about a missing patch, use the recommended option.
If the image build process fails with credential errors from My Oracle Support,
retry in some time or switch to the recommended option.

./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c osm -u MOS_username -p MOS_password

9. Run build-osm-images.sh and pass the dependency manifest file, staging path and the
images to be created.

export DMANIFEST=./workspace/osm-image-builder/bin/
osm_cn_ci_manifest_unpatched.yaml
export STAGING=$(pwd)/workspace/osm-image-builder/staging

• Select the images to create using the -c command-line argument. If you are specifying
more than one image to create, provide a comma-separated list.
Valid values are:

– osm: OSM image.

– dbinstaller: OSM DB Installer image

– gateway: OSM Gateway microservice image

– rtuxms: OSM Runtime microservice image

– oca: OSM Cartridge Assembler microservice image

– cntk: OSM cloud native toolkit image

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 12

• To build all images, for example:

./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c osm,dbinstaller,gateway,rtuxms,oca,cntk

These steps can be included into your CI pipeline as long as the required components are
already downloaded to the staging area.

Additional Considerations When Using the Unpatched Manifest File

When an OSM image is created by the image builder with the
osm_cn_ci_manifest_unpatched.yaml file, the resulting image does not contain the Fusion
Middleware patches that are required for proper OSM cloud native functioning. It is intended to
be used only for evaluation purposes. One workaround is to manually establish the association
between OSM users and groups.

OSM users and groups are not associated after the start up of the admin server, which results
in OSM EJB failing to deploy to the managed server. You should manually associate users and
the group before starting up the managed server.

To associate OSM users with a group when using the unpatched manifest file:

1. Create a new instance with only the admin server running. In the instance specification,
change the value for clusterSize manually. This change would ultimately be performed by
an automated CI/CD pipeline.

vi $SPEC_PATH/project-instance.yaml

Change the cluster size to 0
clusterSize: 0

Create the OSM instance.

2. Run the config-security.sh script passing the domain namespace and domain UID.

$OSM_CNTK/scripts/config-security.sh project project-instance

3. Start the managed servers.

• In the instance specification, set clusterSize to the desired number of managed
servers.

vi $SPEC_PATH/project-instance.yaml
Change the cluster size to the desired number
clusterSize: 8

• Upgrade the OSM instance.

The associations are reset every time the Admin Server pod terminates or restarts. This can
happen when the instance is deleted, or on an unexpected event (such as an hardware issue),
or as a side-effect of an instance upgrade that involves a rolling restart. Regardless of the
scenario that led to Admin Server pod being recreated, the associations must be set up afresh.

To recreate the user and group association:

1. Stop all the managed servers by setting the cluster size to 0 in the instance specification
and upgrade the instance.

2. Run the config-security.sh script as described in step 2 in the above procedure.

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 12

3. Start the managed servers as described in step 3 in the above procedure.

Post-build Image Management

The OSM cloud native image builder creates images with names and tags based on the
settings in the manifest file. By default, this results in the following images:

• osm-cn-base: 8.0.0

• osm-cn-db-installer: 8.0.0

• osm-gateway: 8.0.0

• osm-runtime-ux-server: 8.0.0

• osm-cntk: 8.0.0

Once images are built in a CI pipeline, the pipeline uniquely tags the images and pushes them
to an internal image repository. An uptake process can then be triggered for the new images:

• Sanity Test

• Development Test (for explicit retesting of scenarios that triggered the rebuild, if any)

• System Test

• Integration Test

• Pre-Production Test

• Production

Chapter 3
Creating OSM Cloud Native Images

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 12

4
Creating a Basic OSM Cloud Native Instance

This chapter describes how to create a basic OSM cloud native instance in your cloud
environment using the operational scripts and the base OSM configuration provided in the
OSM cloud native toolkit. You can create an OSM instance quickly in order to become familiar
with the process, explore the configuration, and structure your own project. This procedure is
intended to validate that you are able to create a basic OSM instance in your environment. For
information on creating your own project with custom configuration, see "Creating Your Own
OSM Cloud Native Instance".

Before you can create an OSM instance, you must do the following:

• Download and extract the OSM cloud native toolkit archive file

• Install the WKO and Ingress-Nginx container images. These tasks are required to be
performed for each cluster that has shared resources.

Installing the OSM Cloud Native Artifacts and the Toolkit
Build container images for the following using the OSM cloud native Image Builder:

• OSM core application

• OSM database installer

You must create a private image repository for these images, ensuring that all nodes in the
cluster have access to the repository. See "About Container Image Management" for more
details.

Download the OSM cloud native toolkit archive and do the following:

• On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and extract the
tar archive to each host that has connectivity to the Kubernetes cluster.

• On OKE: For an environment where Kubernetes is running in OKE, extract the contents of
the tar archive on each OKE client host. The OKE client host is the bastion host/s that is
set up to communicate with the OKE cluster.

Set the variable for the installation directory by running the following command, where
osm_cntk_path is the installation directory of the OSM cloud native toolkit:

$ export OSM_CNTK=osm_cntk_path

Using Oracle Autonomous Database Serverless
OSM cloud native provides experimental capability to use Oracle Autonomous Database
Serverless (the transaction-based variant of ADB-S) on a shared infrastructure.

However, this functionality has the following limitations:

• This capability is made available only for exploration and investigation purposes. It must
not be used for production or similar environments.

• Online order-based purging is not supported.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 31

• Order purge (online and partition-based) is not supported.

• Performance under high order volume is not quantified.

Both OSM schema and RCU schema can be installed on Autonomous Database.

Note

If you choose to use Autonomous Database, instead of Standard DB (PDB), then both
RCU and OSM schemas will be created on the same Autonomous Database.

For more information about Autonomous Database, see the documentation at: https://
docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html.

Using Wallet-based Connection
OSM uses wallet-based connection associated with Database Resident Connection Pooling
(DRCP), which is a connection pooling mechanism in Oracle Database that allows you to
manage database connections efficiently.

For information about using wallet-based connection in Oracle Autonomous Database, see
ADB-S documentation at: https://docs.oracle.com/en/cloud/paas/autonomous-database/
serverless/adbsb/getting-started.html.

While downloading the wallet, provide a password that needs to be provided while creating
secrets as well. Ensure that you remember the password used at the time of downloading the
wallet.

Note

Do not change the contents of the wallet.

Unzip the wallet and copy it to your local filesystem, which will be used while creating secrets.

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets that
the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope of the
toolkit and must be implemented while adhering to your organization's corporate policies.
Additionally, OSM cloud native does not establish password policies although Autonomous
Database Serverless does.

Note

As a pre-requisite to using the toolkit for either installing the OSM database or creating
an OSM instance, you must create OSM database secrets and RCU DB secrets.

The toolkit provides sample scripts for this purpose. However, they are not pipeline-friendly.
Use the scripts for creating an instance manually and quickly, but not for any automated
process for creating instances. See Reference of Secrets Created by the Scripts for the full list
of secrets that OSM cloud native can process, including naming and content requirements as
well as when each secret is required. You must create secrets prior to running the install-
osmdb.sh or create-instance.sh scripts. The manage-instance-credentials.sh script is the
main tool for manual secrets management. This script uses the configuration settings defined
in your spec files to reduce the number of prompts for user input.

Chapter 4
Using Oracle Autonomous Database Serverless

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 31

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/getting-started.html#GUID-E68B32BE-6571-4214-8E12-A85491716995
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/getting-started.html#GUID-E68B32BE-6571-4214-8E12-A85491716995

At the time of creating secrets, you are prompted to answer a question related to OSM schema
followed by questions related to wallet. The following is a sample:

Are you using Autonomous Database Serverless (Experimental OSM feature)?
(select number from menu)
1) Yes
2) No

After you select 1, questions related to the ADB-S wallet are prompted.

Updating the Instance Specification
In the instance specification, modify the database parameters as follows:

• Set db.type to "ADB".

• For defaultTablespace, specify the default tablespace name. For Oracle ADB-S, the
default is "temp".

Note

Refer to ADB-S documentation and ensure the passwords used conform to the
specified requirements.

db:
 type: "ADB" # Acceptable values are STANDARD and ADB
 #serviceName: dbserver-servicename
 # This DB protocol is all applicable for all database connections.
 # Default value is TCP, Uncomment and change it to TCPS when required.
 # If TCPS is selected, the dbwallet "<project>-<instance>-db-ssl-wallet"
secret must exist
 #protocol: TCP
 # datasourcesPrimary section is applicable only for STANDARD DB. For ADB,
values will be used from Autonomous Database Serverless secrets+configMap.
 datasourcesPrimary:
 port: 1521
 # Provide the DB server hostname/IP address
 #host: dbserver-ip
 #
 # If using RAC, provide list of SCAN hostname/IP addresses
 # If not using RAC, comment out "#scans:"
 #scans:
 # - scan1-ip
 # - scan2-ip
 #
 # If using RAC, provide either a list of VIP hostname/IP addresses
 # or a list of INSTANCE_NAMES
 # If not using RAC, comment these out "#vips:" and "#instances:"
 #
 #vips:
 # - vip1-ip
 # - vip2-ip
 # --- OR ---
 #instances:
 # - instance-1

Chapter 4
Using Oracle Autonomous Database Serverless

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 31

 # - instance-2

 # Default log level. Valid value
 #
 ## The levels in descending order are:
 ## SEVERE (highest value)
 ## WARNING
 ## INFO
 ## CONFIG
 ## FINE
 ## FINER
 ## FINEST (lowest value)
 ##
 logLevel: "WARNING"
 #
 # The remaining parameters must match the values used when the PDB was
 # created. Failure to match will result in dbInstaller errors
 #
 # The default tablespace name of OSM schema
 defaultTablespace: "temp"
 # The temporary tablespace name of OSM schema
 tempTablespace: "TEMP"
 # The time zone offset in seconds
 timezoneOffsetSeconds: "-28800"
 # The model data tablespace name of OSM schema
 modelDataTablespace: "temp"
 # The model index tablespace name of OSM schema
 modelIndexTablespace: "temp"
 # The order data tablespace name of OSM schema
 orderDataTablespace: "temp"
 # The order index tablespace name of OSM schema
 orderIndexTablespace: "temp"

Run the following command:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
specPath create osmdb,rcudb

You will be prompted with questions related to OSM schema followed by questions related to
the wallet:

Do you have pre-existing ADB-S wallet secrets conforming to OSM CNTK ?
(select number from menu)
1) No
2) Yes
#? 1

Provide Autonomous Database Serverless credentials for 'dev-quick' ...
Supplied values must align with rules dictated by component that owns the
password policy
ADB-S Admin Username: ADB-S admin_username
ADB-S Admin Password: ADB-s password
ADB-S unzipped wallet location: /file/location/to/unzipped/wallet

Chapter 4
Using Oracle Autonomous Database Serverless

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 31

ADB-S wallet password: Wallet_password
ADB-S tns_alias: alias_in_wallet

TNS_Alias refers to the aliases mentioned in the tnsnames.ora wallet.

After creating secrets, you will be able to see the following secrets and configMap:

• secret/project-instance-db-wallet created

• secret/project-instance-db-secret created

• configmap/project-instance-db-config created

Using RDS or RDS Custom for Oracle
OSM cloud native provides the capability to use Relational Database Service (RDS) for Oracle.
RDS is a managed database service that helps you set up, operate, and scale relational
databases in the Amazon Web Services (AWS) cloud.

Both OSM schema and RCU schema can be installed on an RDS Database for Oracle.

Updating the Instance Specification
In the instance specification, modify the database parameters as follows:

• Set db.rcuDb.honorOMF to true.

• Provide default and temp tablespace names.

Note

While creating the tablespace with RDS, you cannot specify the filenames for
tablespaces as it only supports Oracle Managed Files (OMF).

Run the following SQL as the <pdbadmin> user set up for OSM to create a tablespace
named 'OSM' with 100MB space, as an example.

create tablespace OSM datafile size 100m autoextend on;

instance.yaml

db:
 type: "STANDARD" # Acceptable values are STANDARD and ADB
 ...
 ...
 rcuDb:
 honorOMF: true # Enable this if using AWS RDB; for others, enable if DB
server is setup to use Oracle Managed Files.

Chapter 4
Using RDS or RDS Custom for Oracle

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 31

Installing WebLogic Kubernetes Operator (WKO) and Ingress
Controller

In a shared environment, multiple developers may create OSM instances in the same
Kubernetes cluster, using a shared WebLogic Kubernetes Operator.

For each Kubernetes cluster in your environment, you download and install the following:

• WebLogic Kubernetes Operator (WKO) container

• Ingress Controller

Note

These installations must be coordinated on large teams so that they occur in a
controlled manner.

Before installing the WKO and the Ingress Controller, do the following tasks:

• Remove the instances of the WKO and Ingress Controller that you installed to validate
your cloud environment.

• Ensure that you have cleaned up the environment. See "Validating Your Cloud
Environment" for instructions on cleaning up.

• Ensure that there are no WebLogic Server Operator artifacts in the environment.

Installing the WebLogic Kubernetes Operator
For information about installation packages and installation instructions, visit the WebLogic
Kubernetes Operator (WKO) documentation at: https://oracle.github.io/weblogic-kubernetes-
operator/managing-operators/installation/#install-the-operator.

For information about the recommended WKO version, see the OSM Compatibility Matrix.

For example, if the recommended WKO version is 4.1.2:

• For details about WKO 4.1.2, see the WKO documentation at: https://github.com/oracle/
weblogic-kubernetes-operator/releases/tag/v4.1.2.

• Choose a namespace for the operator and set the WLSKO_NS environment variable to the
Kubernetes namespace in which WKO will be deployed.

• Use --version=4.1.2 during the installation.

• Set the label to the same as namespace using --set
"domainNamespaceLabelSelector=namespace=enabled". Do not use the default label
"weblogic-enabled" because it is not advised to have multiple operators installed with the
same label.

After the successful installation of WKO, validate that the operator is installed, by running the
following command:

kubectl get pods -n $WLSKO_NS

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 31

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v4.1.2
https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v4.1.2

Note

Prior to version 3.1.0, the operator supported specifying the namespaces that it
manages only through a list. From release 4.0.0 onwards, WKO supports a list of
namespaces, a label selector, or a regular expression matching the namespace
names. OSM cloud native supports the label selector method.

If you are upgrading from OSM Cloud Native release 7.4.1 and an older version of the
WebLogic Kubernetes Operator, see "Maintaining the OSM Cloud Native Environment" for
special considerations.

Installing the Ingress Controller
You can use any Ingress Controller that conforms to the standard Kubernetes ingress API and
that supports annotations needed by OSM. Oracle does not certify individual Ingress
controllers to confirm this generic compatibility. Refer to "Working with Ingress, Ingress
Controller, and External Load Balancer" for more details on annotations and generic Ingress
configurations.

You can find examples in GtitHub at: "https://github.com/kubernetes/ingress-nginx".

Weblogic Kubernetes Operator describes the installation and the usage of the NGINX Ingress
controller. Refer to "Install and Configure NGINX" for more information.

Creating a Basic OSM Instance
This section describes how to create a basic OSM instance.

Setting Environment Variables
OSM cloud native relies on access to certain environment variables to run seamlessly. Ensure
that you set the path to your private specification repository in your environment.

To set the environment variables, create a directory that serves as your specification repository,
by running the following command, where spec_repo_path is the path to your private
specification repository:

Note

The scripts in the toolkit support multiple directories being supplied to the -s parameter
in a colon separated list (path/one:path/two:path/three). For simplicity, the toolkit works
with a single directory.

$ export SPEC_PATH=spec_repo_path/quickstart

Registering the Namespace
To register your namespace, complete the following steps:

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 31

https://github.com/kubernetes/ingress-nginx
https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/kubernetes/samples/charts/nginx/README.md

1. Set the environment variables that you will use throughout the installation and registration
steps.

export WKO_NS=wkoversion # Operator namespace
export WLSKO_NS=wlsko # Logical name for the WebLogic
operator target
export PROJECT=sr # Your domain (project) namespace

where version is the version of the WebLogic Kubernetes Operator that you are using.

2. Add the Operator Helm Chart Repository. Ensure that you are using the latest operator
chart information.

helm repo add weblogic-operator https://oracle.github.io/weblogic-
kubernetes-operator/charts --force-update

3. Install the WebLogic Kubernetes Operator into its dedicated namespace. This installation
will configure the operator to monitor all namespaces that have the label you specify.

helm install $WKO_NS \
 weblogic-operator/weblogic-operator \
 --namespace $WKO_NS \
 --version compatible-version \
 --set "domainNamespaceLabelSelector=$WKO_NS=enabled"

where compatible-version is the version of the WKO that is compatible with your OSM
instance.

Note

Refer to the Order and Service Management Compatibility Matrix to determine the
correct version for your OSM instance. For more information about installing
WebLogic Kubernetes Operator, refer to the WebLogic Kubernetes Operator
documentation.

4. Validate the Operator Installation by checking that the operator and webhook pods are
deployed and running.

kubectl get pods -n $WKO_NS

5. Create and Label the Domain Namespace. If the domain namespace (project) does not
already exist, create it and add the necessary label so that the operator can manage it.

kubectl create namespace $PROJECT
kubectl label namespace $PROJECT $WKO_NS=enabled

6. . Confirm Namespace Label. Ensure the label $WKO_NS=enabled is present on your domain
namespace.

kubectl get namespace $PROJECT --show-labels

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 31

Assembling the Specifications
To assemble the specifications:

1. Copy the instance specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/instance.yaml $SPEC_PATH/sr-quick.yaml

2. Copy the project specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/project.yaml $SPEC_PATH/sr.yaml

You edit these files as per the instructions described in the sections that follow.

Configuring OpenID Connect for OSM Microservices
This section provides information about configuring OpenID Connect (OIDC) for OSM
microservices.

Prerequisites

Create a unified authentication service that supports the standard OIDC protocol such as
Keycloak.

Securing REST APIs

OSM microservices such as OSM Gateway are integrated with OIDC. OIDC is an
authentication protocol that enhances security and simplifies user identity management in
applications. It is an extension of OAuth 2.0, which is primarily focused on authorization.

Note

IDP Identity Provider (IDP): An Identity Provider (IDP) is a system or service that
authenticates and provides identity information about users to other applications,
services, or systems. It plays a crucial role in identity and access management (IAM).
The primary function of an IDP is to verify a user's identity and provide authentication
to various relying parties (applications or services) without the need for the user to
authenticate separately with each of them. Examples of IDPs: Keycloak and IDCS
(Oracle Identity Cloud Service).
OIDC OpenID Connect (OIDC): OpenID Connect (OIDC) is an identity layer built on
top of the OAuth 2.0 protocol. It is designed to enable secure and standardized
authentication and user information sharing between clients (OSM cloud native) and
IDPs. OIDC provides a framework for identity verification, user authentication, and
obtaining user profile information.

OSM Gateway authenticates external requests to OSM REST APIs (for TMF and for Fallout
Exception Management) to ensure service security. To do this, it is configured as the relying
party for an external OpenID provider, which has to be set up as an authentication provider
implementing OpenID Connect. It connects to the authentication system based on the OIDC
protocol and provides unified authentication for connecting to internal services. To configure
OSM Gateway microservice as the relying party for a third-party OpenID provider, set up an
authentication provider that implements OpenID Connect. With this configuration, OSM

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 31

Gateway REST APIs are accessible from the OpenID provider and authorize users to access
protected data.

Creating OSM Secret for OIDC

OSM cloud native uses a secret for the administrator to provide the required OIDC information
to secure its REST APIs. This secret can be created using the manage-instance-
credentials.sh script from the OSM cloud native toolkit, with the gwOidc or ocaOidc option.
Make sure you have the required credentials available before running this script.

 $OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create gwOidc,ocaOidc

where gwOidc and ocaOidc specify the details of the OIDC IdP that will be used to authenticate
access to the Gateway and OCA APIs.

Note

The oidc secret option is now deprecated. You can use gwOidc in place of oidc. If
provided, it behaves the same as gwOidc for backward compatibility. The script will ask
for OIDC details for both TMF and Fallout API with the gwOidc option. You can use the
same details for both the APIs. For the ocaOidc option, the script will additionally ask if
want to configure OIDC details for Solution Designer. If you affirm that you do, it will
then ask for OIDC details for Solution Designer.

This command creates the secrets project-instance-gateway-credentials and project-
instance-oca-credentials.

Here are the parameters that the script requests in order to create the secret:

Table 4-1 OIDC Parameters

OIDC Parameters Description

Auth URL This is the URL where the client initiates the authentication process. You are
redirected to this URL to log in and grant permissions to the client application.

client_id Identifier for the client application.

client_secret Secret key shared between the client and OIDC server.

Token URL This is the URL where the client exchanges the authorization code for an
access token and ID token. This step typically occurs after you have
successfully authenticated and granted permissions.

The OCA Microservice is disabled by default. The OIDC secret for OCA is needed only when
you enable the microservice. To enable, set the OSM cartridge assembler property to true in
the project specification file

osm-cartridge-assembler.enabled: true

An OIDC secret is needed to use the OSM Gateway microservice. The exception to this
requirement is if you have the runtime type property set to WLS in the project specification file.

omsConfig.project.osm_runtime_type: WLS

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 31

Note

Refer to your OpenID Connect authentication provider's documentation for details on
these parameters.

You need to configure the audience and scope values as specified below in IdP to access the
OSM Microservice APIs. You will not be able to use the authentication token generated for one
API (using api specific scope) to access any other API.

Table 4-2 Audience and Scope Configuration for OSM Microservices

API Scope Audience

TMF (GW m-s) tmf tmf

Fallout (GW m-s) fallout fallout

OCA (OCA m-s) catalog catalog

To verify the above OIDC parameters, run the following cURL command:

curl --noproxy '*' -i -H 'Authorization: Basic base64Encoded client_id:client_secret' -H
'Content-Type: application/x-www-form-urlencoded' -XPOST token_url -d
'grant_type=client_credentials&scope=scope'

Fundamentally, OpenId Connect defines two tokens:

• IDToken: The ID Token carries information about the authenticated user. This information is
often used for user authentication and identity verification.

• AccessToken: This is a short-lived token generated by OIDC provider which is sent to OSM
Gateway to gain access to resources defined in the token.

Note

In case of troubleshooting authentication issues using the OIDC token, make sure that
the 'aud' listed in the OIDC token has the desired client_id added.

Note

OIDC details are required for accessing OSM TMF REST endpoints, Fallout Exception
REST endpoints and OCA REST endpoints. Human users accessing OSM UIs like
Task Web client, Order Management UI, Order Operations and Fallout Order
Management UI would still be users from External LDAP or SAML.

Keycloak as an example IDP

Keycloak is a widely used open-source identity and access management (IAM) system that
can act as an IDP, supporting OIDC among other authentication and authorization protocols. It
provides a complete solution for user authentication and user management. For more
information on Keycloak, see Keycloak documentation at: https://www.keycloak.org/.

IDP Certificate Management

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 31

https://www.keycloak.org/

If the OSM Gateway or RTUX microservice cannot establish an SSL connection to the IDP due
to the certificate being unknown, you can introduce the IDP's certificate into the OSM Gateway
and RTUX microservies while building microservice images.

To introduce the IDP's certificate:

1. Identify the JDK version used in the osmCnInfrastructureImage.jdk section from the
manifest file used for building OSM cloud native images. You would have obtained this
JDK file as part of creating images.

2. Add the certificate to this JDK's truststore and rebuild the OSM Gateway image, and the
RTUX image. Refer to the example below for more details.

Note

The example below assumes JDK 21.0.7, but use the JDK as per your manifest file:
cd $CN_BUILDER_STAGING/java

cd $CN_BUILDER_STAGING/java

#untar the java tar file
tar –xvzf jdk-21.0.7_linux-x64_bin.tar.gz

navigate to the bin folder
cd jdk-21.0.7/bin

#import the certificate to java keystore
keytool -import -trustcacerts -keystore jdk-21.0.7/lib/security/cacerts -
alias ALIAS_NAME -file /path/to/idpcert.pem
#Run this command to add multiple certificates if any (Ex: OIDC)
#Example: keytool -import -trustcacerts -keystore $JAVA_HOME/lib/security/
cacerts -alias foo -file idpcert.pem

#tar the java folder again
tar czf jdk-21.0.7_linux-x64_bin.tar.gz jdk-21.0.7

#build the image again using OSM image builder tool
#To create OSM Gateway image, use "-c gateway" as shown:
./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c gateway

#To create rtux m-s image, use "-c rtuxms" as shown:
./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c rtuxms

(Optional) Verify the Certificate in the Keystore:

cd $CN_BUILDER_STAGING/java/jdk-21.0.7/bin
keytool -list -keystore $CN_BUILDER_STAGING/java/jdk-21.0.7/lib/security/
cacerts -alias ALIAS_NAME

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 31

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets that
the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope of the
toolkit and must be implemented while adhering to your organization's corporate policies.
Additionally, OSM cloud native does not establish password policies.

Note

The passwords and other input data such as RCU schema prefix length that you
provide must adhere to the policies specified by the appropriate component.

As a pre-requisite to using the toolkit for either installing the OSM database or creating an
OSM instance, you must create secrets for access to the following. For more information on
creating secrets, see Reference of Secrets Created by the Scripts.

• OSM database

• OSM system users

• RCU DB

• OPSS

• Operator artifacts for the instance

• WebLogic Server Admin credentials used when creating the domain

• OIDC credentials

The toolkit provides sample scripts for this purpose. However, they are not pipeline-friendly.
Use the scripts for creating an instance manually and quickly, but not for any automated
process for creating instances. See Reference of Secrets Created by the Scripts for the full list
of secrets that OSM cloud native can process, including naming and content requirements as
well as when each secret is required. You must create secrets prior to running the install-
osmdb.sh or create-instance.sh scripts.

Run the following script to create the required secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p sr -i quick -s
$SPEC_PATH \
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,gwOidc,ocaOidc

where:

• osmdb specifies the credentials for connecting to the OSM PDB mentioned in the instance
specification and credentials required to create OSM schema. This is consumed by the
OSM DB installer and OSM runtime.

Note

The osmdb secrets contain PDB sysdba user, osm main schema user, osm rule
engine schema user, and osm report schema user. The names of these must be
unique.

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 31

• osmldap is the credential for OSM system admin and internal users. The script prompts
for passwords for the following users.

– OSM admin user (username is omsadmin)

– Design Studio admin user (username is sceadmin)

– OSM internal user (username is oms-internal)

– OSM automation user (username is oms-automation)

– OSM Gateway user (username is osm-tmf-internal)

• rcudb specifies the credentials required to create RCU schema. This is consumed by the
OSM database installer and OSM and Fusion MiddleWare runtime.

• wlsadmin is the credential for the intended user that will be created with administrative
access to the WebLogic domain.

• opssWP is the password for encrypting and decrypting the ewallet contents.

• wlsRTE is the password used to encrypt the operator artifacts for this instance. The
merged domain model and the domain ZIP are available in the operator config map and
are encoded using this password.

• gwOidc, ocaOidc authenticate users and provide access for the REST APIs exposed by
microservices. For more details about configuring an authentication provider using OpenID
Connect, see Configuring OpenID Connect for OSM Microservices.

The merged domain model and the domain ZIP are available in the operator config map and
are encoded using this password.

Verify that the following secrets are created:

sr-quick-database-credentials
sr-quick-embedded-ldap-credentials
sr-quick-weblogic-credentials
sr-quick-rcudb-credentials
sr-quick-opss-wallet-password-secret
sr-quick-runtime-encryption-secret
sr-quick-gateway-credentials
sr-quick-oca-credentials

Additionally, the secret opssWF is created by the installation process and does not follow the
same guidelines. It is therefore not a pre-requisite for creating a new instance. In scenarios
where a database is being re-used for a different OSM instance, then this becomes a pre-
requisite secret. For more details, see Reusing the Database State.

Configuring OSM Cloud Native to Connect with a TCPS Enabled Database
This section describes what you need to do to configure your OSM cloud native instance to
connect with a TCPS enabled database. Follow this procedure to successfully configure your
instance:

1. Enabling TCPS from the Instance Specification

Uncomment protocol under the db section in the instance specification and provide
TCPS instead. Populate the db section with the service name and the
db.datasourcesPrimary section with the database's host, and tcps port. If you
are using a RAC database, provide scan IPs and VIPs/Instances as well.

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 31

Note

Providing db.datasourcePrimary.host is mandatory. If you are using a RAC
DB, you need to give a SCAN address instead.

db:
 type: "STANDARD" # Acceptable values are STANDARD and ADB
 serviceName: dbserver-servicename
 # This DB protocol is all applicable for all database connections.
 # Default value is TCP, Uncomment and change it to TCPS when required.
 # If TCPS is selected, the dbwallet "<project>-<instance>-db-ssl-wallet"
secret must exist
 protocol: TCPS
 # datasourcesPrimary section is applicable only for STANDARD DB. For
ADB, values will be used from Autonomous Database Serverless
secrets+configMap.
 datasourcesPrimary:
 port: 2484
 # Provide the DB server hostname/IP address
 host: dbserver-ip

2. Create Oracle Wallet with Database SSL Certificate

OSM expects a single wallet containing the SSL certificates of the database that needs to
be connected using TCPS. You can create a wallet using the orapki tool. You can obtain
the orapki tool from a Fusion Middleware installation. The tool relies on Java. Use the
OSM Compatibility Matrix to ensure that you are using the right versions of Fusion
Middleware and Java.

a. Check the orapki version.

$ $FMW_HOME\Oracle_Home\oracle_common\bin>orapki
Oracle PKI Tool : Version 12.2.1.4.0

b. Create an Oracle wallet using orapki.

$ $FMW_HOME\Oracle_Home\oracle_common\bin>orapki wallet create -wallet
<ssl_wallet_dir> -auto_login -pwd <password>

c. Add certificates to the wallet one at a time.

$ $FMW_HOME\Oracle_Home\oracle_common\bin>orapki wallet add -wallet
<ssl_wallet_dir> -pwd <password> -trusted_cert -cert <cert_dir>/<xx.crt>

where,

• ssl_wallet_dir is the directory where the wallet is to be created.

• cert_dir is the directory where the certificate from the database is stored.

• xx.crt is the certificate obtained from the database.

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 31

Note

You need to repeat this step for each certificate that you need to include.

3. Create DBWallet Secret using Oracle Wallet

Create a secret for the DBWallet using the Orace wallet you created in the previous step.

$ $OSM_CNTK/scripts/manage-instance-credentials.sh -p <project> -i
<instance> -s <spec_path> create dbwallet

Unzipped db wallet location: <ssl_wallet_dir>

secret/<project>-<instance>-db-ssl-wallet configured

4. Create or Update the OSMDB Secret

Create or update the osmdb secret to provide the login credentials for the TCPS enabled
database.

$ $OSM_CNTK/scripts/manage-instance-credentials.sh -p <project> -i
<instance> -s <spec_path> create osmdb

$ $OSM_CNTK/scripts/manage-instance-credentials.sh -p <project> -i
<instance> -s <spec_path> update osmdb

Installing the OSM and RCU Schemas
This procedure configures an empty PDB. Depending on the database strategy for your team,
you may have already performed this procedure as described in "Planning Your Cloud Native
Environment". Before continuing, confirm whether the PDB being used for creating the OSM
instance has been cloned from a master PDB that includes the schema installation. If the PDB
already has the schema installed, skip this procedure and proceed to the Creating OSM Users
and Groups topic.

After the PDB is created, it is configured with the OSM schema, the RCU schema, and the
cluster leasing table.

Note

Before installing the OSM and RCU schemas, stop or interrupt the automatic optimizer
statistics collection maintenance task. For more details, see the New OSM Database
Optimizer Statistics Management knowledge article (Doc ID 1925539.1) on My Oracle
Support.

To install the OSM and RCU schemas:

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 31

Note

YAML formatting is case-sensitive. While the next step uses vi editor for editing, if you
are not familiar with editing YAML files, use a YAML editor to ensure that the you do
not make any syntax errors while editing. Follow the indentation guidelines for YAML,
as incorrect spacing can lead to errors.

1. Edit the project specification file and update the DB installer image to point to the location
of your image as shown below:

Note

Before changing the default values provided in the specification file, confirm that
they align with the values used during PDB creation. For example, the default
tablespace name should match the value used when PDB is created.

dbinstaller:
 image: DB_installer_image_in_your_repo:<tag>

2. If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the image pull credentials. See the
"Kubernetes documentation" for details. Reference the secret name in the project
specification.

The image pull access credentials for the "docker login" into Docker
repository, as a Kubernetes secret.
Uncomment and set if required.
imagePullSecret: ""

3. Set the partition size to the actual tablespace size that was created. The default value for
production sizing is 20000000 (20 million) and for development is 2000000 (2 million).
These may need to be overridden for this instance. See the OSM System Administrator's
Guide for guidelines on partition and tablespace sizing. If required, update
defaultPartitionSize in the development shape in $OSM_CNTK/charts/osm/
shapes/dev.yaml. The defaultPartitionSize parameter also impacts how
defaultSubPartitionCount is calculated. Calculate OSM_SUBPARTITION_COUNT from
OSM_PARTITION_SIZE.

Note

osmDBInstaller.resources is used by the pod while creating, upgrading or
dropping the OSM and RCU schemas.

Table 4-3 Calculating Sub-partitions

defaultPartitionSize Calculated Sub-partitions

< = 2M 16

> 2M and < = 10M 32

> 10M 64

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 31

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

4. Run the following script to start the OSM DB installer, which instantiates a Kubernetes Pod
resource. The pod resource lives until the DB installation operation completes.

#(OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 1
 ## once finished
(RCU Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 7

You can invoke the script with -h to see the available options.

5. Check the console to see if the DB installer is installed successfully.

6. If the installation failed, run the following command to review the error message in the log:

kubectl logs -n sr sr-quick-dbinstaller-osm-dbinstaller

7. Clean up the failed pod by running the following command:

helm uninstall sr-quick-dbinstaller -n sr

8. Go back to step 4 and run the script again to install the OSM DB installer.

The following table lists the basic database parameters that are handled by the DB Installer:

Table 4-4 Database Parameters Handled by the DB Installer

Parameter Value

cursor_sharing FORCE

parallel_degree_policy AUTO

deferred_segment_creation By default, set to True. The DB Installer
specification can override this to FALSE for
production environments.

open_cursors 2000

optimizer_mode ALL_ROWS

_optimizer_invalidation_period 600

OSM DB Installer Activities
The OSM DB Installer performs the following activities during OSM schema creation:

• Automatic Optimizer Statistics Collection Maintenance Task: The OSM DB Installer
disables this task during the creation of OSM schema. This avoids race conditions when
copying partition statistics as part of the OSM schema installation. This maintenance task
is re-enabled after the partition statistics are copied. This is handled as part of the OSM
schema installation.

• Statistics gathering schedule: The OSM DB Installer modifies the default statistics
gathering schedule so that the weekend schedule is the same as the weekday schedule.
By default, weekday maintenance windows start at 10 PM and are 4 hours long. The
Saturday and Sunday maintenance windows are 20 hours long and start at 6 AM; this
impacts order processing performance during peak weekend hours.

See the following topics in Oracle Database Administrator's Guide for more details:

– Predefined Maintenance Windows

– Configuring Automated Maintenance Tasks

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 31

Configuring the Project Specification
This section provides instructions for creating a project that is configured to support the
processing of the SimpleRabbits sample cartridge that is provided with the toolkit. This
sample cartridge validates that OSM processes orders successfully. The project specification is
a Helm override file that contains values that are scoped to a project. The values specified in
the specification are shared by all the instances of a project, unless they are overridden in an
instance specification. Review the content about Helm chart layering in Overview of the OSM
Cloud Native Deployment.

The toolkit provides a sample project specification by the name sr that you can use with minor
adjustments.

To configure the project specification:

1. Edit the project specification to provide the image in your repository (name and tag) by
running the following command:

OSM CN Cluster Image
image: "osm"

OSM Gateway Image
osm-gateway:
 image: "osm-gateway"

OSM Runtime UX Server Image
osmRuntimeUXServer:
 image: "osm-runtime-ux-server"

2. The test cartridge requires JMS Queue configuration, which is provided with the toolkit.
Copy the JMS Queue configuration from the location shown below into the instance
specification.

vi $OSM_CNTK/samples/simpleRabbits/project_fragment.yaml

 ** Copy the queue content
 vi $SPEC_PATH/sr.yaml
 * find the existing placeholder for the queues and paste the content

The following text is an example of JMS Queue configuration:

jms distributed queues
uniformDistributedQueues:
 - name: new_jms_queue_1
 jndiName: oracle.communication.ordermanagement.ppt.loopbackA
 jmsTemplate: defaultJmsTemplate

first line is LEFT aligned with no leading spaces. each subsequent
indent is 2 spaces from the last

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 31

3. If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the image pull credentials. See the Kubernetes
documentation for details. Reference the secret name in the project specification.

The image pull access credentials for the "docker login" into Docker
repository, as a Kubernetes secret.
uncomment and set if required.
#imagePullSecret: ""

4. For your DNS resolution mechanism, change the default load balancer domain name as
needed:

loadBalancerDomainName: "osm.org"

Tuning the Project Specification
This section provides instructions for tuning the project specification. The values specified in
the specification are shared by all the instances of a project, unless they are overridden in an
instance specification.

Do the following to tune the project specification:

• To configure the maximum number of bytes allowed in messages that are received over all
WebLogic protocols, set the following parameter:

wlsMaxMsgSize: value_in_bytes

For OSM cloud native, the default value is 300000000 bytes, which is much higher than
the default value of 10000000 bytes in WebLogic. The low default value in WebLogic can
cause errors when this limit is reached.

• To configure the tablespace name for OSM model and order tables and indexes, see the
following parameters:

db:
 modelDataTablespace: string
 modelIndexTablespace: string
 orderDataTablespace: string
 orderIndexTablespace: string

For each parameter, the default value is OSM.

• To configure the partition size for OSM order tables, see the following parameter:

defaultPartitionSize: integer

The default is 2,000,000 (2 million). Production shapes define a larger value of 20,000,000
(20 million), which is a better choice when combined with online purging.

• To configure the sub-partition count for partitioned OSM order tables, see the following
parameter:

defaultSubPartitionCount: integer

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 31

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

The default value is undefined. Typical values are 16, 32 and 64. Leave this parameter
undefined to allow the OSM cloud native database installer to choose a value appropriate
for the partition size. For example, for a large 20 million partition, the installer will choose a
value of 64 so as to minimize database contention.

• To configure whether database segment creation should be deferred, see the following
parameter:

deferredSegmentCreation: "TRUE" or "FALSE"

The default value is TRUE. To minimize database contention, this should be set to FALSE for
production systems.

• To configure OSM and infrastructure data source connection pool parameters, see the
parameters under the jdbc element. For example, the maximum database connection pool
capacity for the OSM application data sources and for the infrastructure data sources
(which support JMS and tlog JDBC stores) can be set with:

jdbc:
 app:
 maxCapacity: integer
 infra:
 maxCapacity: integer

For more details on connection pool parameters, see Oracle Fusion Middleware Remote
Console Online Help for Oracle WebLogic Server 14.1.2.0. Also refer to the production and
development shapes for the full list of supported parameters and default values.

• To configure the message buffer cache size for individual JMS servers, see the following
parameter:

jmsMsgBufferSize: value_in_bytes

The default value is approximately one-third of the maximum JVM heap size, or a
maximum of 512 megabytes (536,870,912 bytes). For production environments, the
recommended value is 1 gigabyte (1,073,741,824 bytes) to reduce the possibility that
WebLogic will start paging JMS message bodies to disk once the buffer is full.

• To configure whether database optimizer statistics should be loaded when creating OSM
order table partitions, see the following parameter:

loadPartitionStatistics: false

The default value is false. This should be set to true for production systems.

• To configure logging options, see the following parameter:

logging_options: string

Refer to the production and development shapes for more details and the default values.
The following is an example:

logging_options: " -Dweblogic.log.FileMinSize=5000 -
Dweblogic.log.FileCount=10 -Dweblogic.log.RotateLogOnStartup=false "

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 31

• To configure JVM parameters for the admin server or for managed servers, see the
following parameter:

user_mem_args: string

Refer to the production and development shapes for sample values. The following is an
example from the prodlarge shape:

managedServers:
 shape:
 user_mem_args: "-XX:+UseG1GC -XX:G1HeapRegionSize=16m -
XX:+ClassUnloadingWithConcurrentMark -XX:+UseStringDeduplication -
XX:SurvivorRatio=3 -XX:CodeCacheMinimumFreeSpace=16m -
XX:ReservedCodeCacheSize=512m -verbose:gc -XX:+PrintGCDetails -
XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -
XX:+PrintTenuringDistribution -XX:+PrintAdaptiveSizePolicy -Xloggc:/u01/
oracle/user_projects/domains/domain/gc.log -XX:+DisableExplicitGC -
XX:+ParallelRefProcEnabled -XX:+AlwaysPreTouch -Xms64g -Xmx64g -Xmn22g -
XX:InitiatingHeapOccupancyPercent=50 -XX:ParallelGCThreads=13 "

For more details, see the OSM Memory Tuning Guidelines (Doc ID: 2028249.1) knowledge
article on My Oracle Support.

Configuring the Instance Specification
The instance specification is a Helm override file that contains values that are specific to a
single instance. These values feed into the WDT model developed for the OSM WebLogic
domain.

To configure the instance specification:

1. Edit the sr-quick.yaml file to specify the database details:

db:
 type: "STANDARD" # Acceptable values are STANDARD and ADB
 #serviceName: dbserver-servicename
 # This DB protocol is all applicable for all database connections.
 # Default value is TCP, Uncomment and change it to TCPS when required.
 # If TCPS is selected, the dbwallet "<project>-<instance>-db-ssl-wallet"
secret must exist
 #protocol: TCP
 # datasourcesPrimary section is applicable only for STANDARD DB. For
ADB, values will be used from Autonomous Database Serverless
secrets+configMap.
 datasourcesPrimary:
 port: 1521
 # Provide the DB server hostname/IP address
 #host: dbserver-ip
 #
 # If using RAC, provide the list of SCAN hostname/IP addresses
 # If not using RAC, comment out "#scans:"
 #scans:
 # - scan1-ip
 # - scan2-ip
 #

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 31

https://support.oracle.com/portal/

 # If using RAC, provide either a list of VIP hostname/IP addresses
 # or a list of INSTANCE_NAMES
 # If not using RAC, comment out "#vips:" and "#instances:"
 #
 #vips:
 # - vip1-ip
 # - vip2-ip
 # --- OR ---
 #instances:
 # - instance-1
 # - instance-2

2. If you are using Oracle Cloud Infrastructure Load Balancer as a Service (LBaaS), run the
following command to find the IP address of the load balancer, assuming the relevant
service is configured in your namespace:

kubectl get svc -n <namespace> <service-name> --
output=jsonpath="{..status.loadBalancer.ingress[0].ip}"

3. Because an external load balancer is not required to be configured for the basic OSM
instance, change the value of loadBalancerPort to the default nginx-ingress nodeport
of 30305 if you are not using Oracle Cloud Infrastructure LBaaS:

loadBalancerPort: 30305

If you use Oracle Cloud Infrastructure LBaaS, or any other external load balancer, set
loadBalancerPort to 80, and uncomment and update the value for
externalLoadBalancerIP appropriately:

loadBalancerPort: load_balancer_port
#externalLoadBalancerIP: IP_address_of_the_external_load_balancer

Creating an Ingress
An ingress establishes connectivity to the OSM instances.

To create an Ingress, run the following command:

$OSM_CNTK/scripts/create-ingress.sh -p sr -i quick -s $SPEC_PATH
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
Ingress Controller: GENERIC
External LB IP : 192.0.0.8

NAME: sr-quick-ingress
LAST DEPLOYED: Wed Jul 1 10:20:27 2020
NAMESPACE: sr
STATUS: deployed
REVISION: 1
TEST SUITE: None

Ingress created successfully...

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 31

Creating an OSM Instance
This procedure describes how to create an OSM instance in your environment using the scripts
that are provided with the toolkit.

To create an OSM instance:

1. Run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

The create-instance.sh script uses the Helm chart located in the charts/osm directory to
create and deploy the domain custom resource and the domain config map for your
instance. If the scripts fails, see the Troubleshooting Issues section at the end of this
topic, before you make additional attempts.

The instance creation process creates the opssWF secret, which is required for access to
the RCU DB. It is possible to handle the wallet manually if needed. To do so, pass -w to
the create-instance.sh script, which creates the wallet file at a location you choose. You
can then use this wallet file to create a secret by using the manage instance credentials
script.

2. Validate the important input details such as Image name and tag, specification files used
(Values Applied), hostname, and port for ingress routing:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Calling helm lint
==> Linting ./scripts/../charts/osm
[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
LB_PORT : 30305
Image : osm:7.4.1.200504-0655-b1735.a0f9526f
Shape : dev
Values Applied : -f ./scripts/../charts/osm/values.yaml -f ./scripts/../
charts/osm/shapes/dev.yaml -f /home/oracle/SmokeTest/repo/sr.yaml -f /
home/oracle/SmokeTest/repo/sr-quick.yaml
Output wallet : n/a

After the script finishes executing, the log shows the following:

NAME READY STATUS RESTARTS AGE
sr-quick-admin 1/1 Running 0 2m12s
sr-quick-ms1 0/1 ContainerCreating 0 1s

Provide opss wallet File for 'sr-quick' ...
For example : '/path-to-osm-cntk/sr-quick.ewallet'
opss wallet File:
secret/sr-quick-opss-walletfile-secret created

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 31

Instance 'sr/sr-quick' admin server is now running.
Creation of instance 'sr/sr-quick' has completed successfully.

The create-instance.sh script also provides some useful commands and configuration to
inspect the instance and access it for use.

3. If you query the status of the pods, the READY state of the managed servers may display
0/1 for several minutes while the OSM application is starting.
When the READY state shows 1/1, your OSM instance is up and running. You can then
validate the instance by deploying a sample cartridge and submitting orders.

The base hostname required to access this instance using HTTP is quick.sr.osm.org. See
"Planning and Validating Your Cloud Native Environment" for details about hostname
resolution.

The create-instance script prints out the following valuable information that you can use while
working with your OSM domain:

• The T3 URL: http://t3.quick.sr.osm.org This is required for external client
applications such as JMS and WLST.

• The WebLogic Remote Console is deployed on the Admin Server and can be accessed
at:http://admin.<host>:<Port>/rconsole.
For additional information, see Oracle WebLogic Remote Console Online Help.

• The URL for access to the OSM UIs, which is provided through the ingress controller that
requires the host to be specified as: http://quick.sr.osm.org:30305/
OrderManagement/Login.jsp.

Validating the OSM Instance
After creating an instance, you can validate it by checking the domain configuration and the
client UIs.

Run the following command to display the domain configuration details of the OSM instance
that you have created:

kubectl describe domain.weblogic.oracle sr-quick -n sr

The command displays the domain configuration information.

To verify the client UIs:

• Log into the WebLogic Remote console using the URL specified in the output of the
create-instance script: http://admin.quick.sr.osm.org:30305/rconsole

You can use the console to verify the configuration that has been applied and to see that
the OSM application is in a good state.

• Log into the OSM Task Web client user interface with the OSM administrator login
credentials created as part of "Creating Secrets" using the URL (http://
quick.sr.osm.org:30305/OrderManagement/Login.jsp) specified in the output of
the create-instance script.

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 31

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-remote-console/administer/index.html

Note

After an OSM instance is created, it may take a few minutes for the OSM user
interface to become active.

Scaling the OSM Application Cluster
Now that your OSM instance is up and running, you can explore the ability to dynamically scale
the application cluster.

To scale the OSM application cluster, edit the configuration:

1. In the instance specification, change the value for clusterSize manually. This change
would ultimately be performed by an automated CI/CD pipeline.

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to a value not larger than 18

 #cluster size
clusterSize: 2

Note

You can watch the Kubernetes pods in your namespace shrink or grow in real-
time. To watch the pods shrink or grow, in a separate terminal window, run the
following command:

kubectl get pods -n sr --watch

2. Upgrade the deployed Helm release:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s $SPEC_PATH

This pushes the new configuration to the deployed Helm release so the operator can take
the necessary steps.

The WebLogic operator monitors changes to clusterSize and results in the operator
spinning up or tearing down managed servers to align with the requested cluster size.

Deploying the Sample Cartridge
By deploying the sample cartridge that is provided with the toolkit, you can validate order
processing in the OSM instance that you created.

Before deploying the cartridge, you must bring down the running domain. You can do this by
scaling the cluster size down to 0.

To deploy the sample cartridge:

1. Scale down the cluster:

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 31

a. Reduce the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to 0

#cluster size
clusterSize: 0

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s $SPEC_PATH

The operator terminates the managed server.

2. Deploy the SimpleRabbits sample cartridge by running the following command:

./scripts/manage-cartridges.sh \
 -p sr -i quick -s $SPEC_PATH
 -f $OSM_CNTK/samples/simpleRabbits/SimpleRabbits.par -c parDeploy

3. Scale up the cluster:

a. Increase the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to 1

#cluster size
clusterSize: 1

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s $SPEC_PATH

The operator terminates the managed server.

Submitting Orders
The OSM cloud native toolkit provides a sample order that you can submit to validate order
processing in OSM. The sample order is available at: $OSM_CNTK/samples/simpleRabbits/
sample.xml.

To submit OSM orders over HTTP, use an external client such as SoapUI. The endpoint is the
same as the URL used to verify the OSM Task Web client.

When using SoapUI, a Soap Envelope element needs to wrap CreateOrderBySpecification
that is provided in $OSM_CNTK/samples/simpleRabbits/sample.xml

To submit OSM orders over JMS, use an external client such as Hermes JMS. The endpoint
must be as follows:

jms://OSM_1::queue_oracle/communications/ordermanagement/
WebServiceQueue::queue_oracle/communications/ordermangement/
SoapUIResponseQueue

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 31

The connection factory's providerURL must be as follows:

http://t3.quick.sr.osm.org:30305

Deleting and Recreating Your OSM Instance
Deleting Your OSM Instance

To delete your OSM instance, run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

Re-creating Your OSM Instance

When you delete an OSM instance, the database state for that instance still remains
unaffected. You can re-create an OSM instance with the same project and the instance names,
pointing to the same database.

Note

Ensure that you use the same specifications that you used for creating the instance
and that the following secrets have not been deleted:

• osmdb

• osmldap

• rcudb

• opssWF

• opssWP

• wlsRTE

To re-create an OSM instance, run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Note

After re-creating an instance, client applications such as SoapUI and HermesJMS may
need to be restarted to avoid using expired cache information.

Cleaning Up the Environment
To clean up the environment:

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 31

2. Delete the ingress:

$OSM_CNTK/scripts/delete-ingress.sh -p sr -i quick

3. Delete the namespace, which in turn deletes the Kubernetes namespace and the secrets:

$OSM_CNTK/scripts/unregister-namespace.sh -p sr -d -t targets

Note

wlsko and traefik are the names of the targets for registration of the
namespace. The script uses WLSKO_NS and TRAEFIK_NS to find these targets.
Do not provide the "traefik" target if you are not using Traefik. If the Traefik version
you are using is different from the version you specified at the time of this release,
modify the Traefik chart version in the unregister-namespace.sh script.

4. If you wish to unregister a namespace without deleting the namespace and secrets, do one
of the following:

• If you have not added domainNamespaceLabelSelector, run the following command for
the operator to stop monitoring your namespace:

$OSM_CNTK/scripts/unregister-namespace.sh -p project -t wlsko
For example, $OSM_CNTK/scripts/unregister-namespace.sh -p sr -t wlsko

• If you have specified a value for domainNamespaceLabelSelector (for example,
wko412=enabled) during the installation of the operator, run the following command for
unregistering the namespace:

$OSM_CNTK/scripts/unregister-namespace.sh -p project -t wlsko
For example, $OSM_CNTK/scripts/unregister-namespace.sh -p sr -t wlsko
-l wko412

5. Drop the PDB or delete the instance schemas from it. Deleting the schemas is
recommended if you are using the PDB to re-create the instance.

Note

If PDB is dropped, all schemas hosted on it will be lost, not just the instance
schemas.

#(Deletes OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 8
#(Deletes RCU Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 6

Troubleshooting Issues with the Scripts
This section provides information about troubleshooting some issues that you may come
across when running the scripts.

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 31

If you experience issues when running the scripts, do the following:

• Check the operator logs to find out the details about the issue:

kubectl get pods -n $WLSKO_NS
get the operator pod name to be used in the next command
kubectl logs -n $WLSKO_NS operator_pod

• Check the "Status" section of the domain to see if there is useful information:

kubectl describe domain.weblogic.oracle -n sr
 sr-quick

"Timeout" Issue

In the logs, you may sometimes see the word "timeout" when the create-instance script fails.
When you run the create-instance script, it may take a long time to pull the image, if you are
doing it for the first time. In such a scenario, the script may fail and display the text "timeout" in
the log.

To resolve this issue, try increasing the podStartupDeadlineSeconds parameter. The
podStartupDeadlineSeconds parameter is a configurable parameter exposed in the
instance specification that can be increased if required. Start with a very high timeout value
and then monitor the average time it takes, because it depends on the speed with which the
images are downloaded and how busy your cluster is. Once you have a good idea of the
average time, you can reduce the timeout value accordingly to something that considers both
the average time and some buffer.

Modify the timeout value to start introspector pod. Mainly
when using against slow DB or pulling image first time.
podStartupDeadlineSeconds: 800

After adjusting the parameter, clean up the failed instance and re-create the instance.

Cleanup Failed Instance

When a create-instance script fails, you must clean up the instance before making another
attempt at instance creation.

Note

Do not retry running the create-instance script or the upgrade-instance script
immediately to fix any errors, as they would return errors. The upgrade-instance
script may work but re-running it does not complete the operation.

To clean up the failed instance:

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete and recreate the RCU schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 5

Chapter 4
Creating a Basic OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 31

Recreating an Instance

If you face issues when creating an instance, do not try to re-run the create-instance.sh script
as this will fail. Instead, perform the cleanup activities and then run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Next Steps
A basic OSM cloud native instance should now be running in your environment. This process
exposed you to some of the base functionality and concepts that are new to OSM cloud native.
You can continue in your sandbox environment learning about more OSM cloud native
capabilities by following the learning path.

If, however, your first priority is to understand details on infrastructure setup and structuring of
OSM instances for your organization, then you should follow the infrastructure path.

To follow the infrastructure path, proceed to "Planning Infrastructure".

To follow the learning path, proceed to "Creating Your Own OSM Cloud Native Instance".

Chapter 4
Next Steps

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 31

5
Planning Infrastructure

In "Creating a Basic OSM Cloud Native Instance", you learned how to create a basic OSM
instance in your cloud native environment. This chapter provides details about setting up
infrastructure and structuring OSM instances for your organization. However, if you want to
continue in your sandbox environment learning about more OSM cloud native capabilities, then
proceed to "Creating Your Own OSM Cloud Native Instance".

See the following topics:

• Sizing Considerations

• Managing Configuration as Code

• Setting Up Automation

• Securing Operations in Kubernetes

Sizing Considerations
The hardware utilization for an OSM cloud native deployment is approximately the same as
that of an OSM traditional deployment.

Consider the following when sizing for your cloud native deployment:

• For OSM cloud native, ensure that the database is sized to account for the WLS Persistent
Store workload residing in the database. For details, see the "Persistent Store
Configuration & Operational Considerations for JMS, SAF & WebLogic tlogs in OSM (Doc
ID 2469767.1)" knowledge article on My Oracle Support.

• Oracle recommends sizing using a given production shape as a building block, adjusting
the OSM cluster size to meet target order volumes.

• In addition to planning hardware for a production instance, Oracle recommends planning
for a Disaster Recovery size and key non-production instances to support functional,
integration and performance tests The Disaster Recovery instance can be created against
an Active Data Guard Standby database when needed and terminated when no longer
needed to improve hardware utilization.

• Non-production instances can likewise be created when needed, either against new or
existing database instances.

Contact Oracle Support for further assistance with sizing.

Managing Configuration as Code
Managing Configuration as Code involves the following tasks:

• Creating Source Control Repository

• Managing OSM instances

• Deciding on the Scope

• Deployment Considerations

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 12

https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html

• Creating an Instance Using the Repository

Creating Source Control Repository
Managing Configuration as Code (CAC) is a central tenet of using OSM cloud native. You must
create a source control repository to store all configuration that is necessary to re-create an
OSM instance (or PDB) if it is lost. This does not include the toolkit scripts.

You must also set up a image repository for the OSM and OSM DB Installer images, as well as
any custom versions of the OSM image for your use cases. For example, custom images are
required to deploy a custom application .ear file. For more details on custom images, see
"Extending the WebLogic Server Deploy Tooling (WDT) Model".

Managing OSM Instances
To extract the full benefits of OSM cloud native, it is imperative that you consider the
management of the OSM instances before making potential configuration changes. The
sections that follow describe how to structure your repositories to group project level artifacts,
while allowing for other artifacts to be re-used (if needed) by the multiple OSM instances within
a project.

Example Scenario

This section describes a scenario to help illustrate the concepts.

Let us assume that in an organization, OSM is used for two business purposes each of which
is handled by two separate teams. The first team uses OSM to orchestrate wireline (triple play)
orders for residential customers, and a second team uses OSM to process mobile orders for
business customers.

Deciding on the Scope
You must first decide on the scope of the project including how many instances are required.
Choose meaningful names for your project and instance.

The organization in our example will have two projects named resiwireline and bizwireless.
We can assume that each project team has a predefined "pre-production" instance for final
validation or production changes, a geo-redundant production instance for disaster recovery, a
final User Acceptance Testing (UAT) instance for business testing, a few small Quality
Assurance (QA) systems and many small development instances.

The directory structure for your configuration repository should reflect the hierarchical
relationship of the project/instance relationship as well as isolating different projects from each
other.

About the Repository Directory Structure
The project directory includes the project specification as well as configuration that is common
to all instances, whereas instance specifications reside in a specific instance directory.

• Each project requires its own project specifications (YAML files).

• Optional artifacts such as the list of users and credentials used by the cartridges are also
located under the top level project directory.

• All artifacts under the project are shared across the instances. Instance directories contain
the instance specification.

Chapter 5
Managing Configuration as Code

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 12

Note

While cartridge par files are shown to reside in this repository, you may consider
using a separate repository for cartridges as described in "Working with
Cartridges".

The following illustration shows the structure and hierarchy of the project directory with an
example.

Figure 5-1 Project Directory Structure

Deployment Considerations
As the scenario shows, there will be many bits of configuration that may mix and match in
different ways to produce a specific OSM instance. While all of these instances are pre-defined
in the source control repository, they need not be deployed all the time.

Consider the following:

• For each project, one or more production instances may be deployed.

Chapter 5
Managing Configuration as Code

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 12

• It would be reasonable for pre-production to be deployed only when needed while first
cloning the production DB.

• Likewise, the performance instance could also be deployed only when needed. Its PDB
could be cloned from a specially generated PDB with synthetic test data, providing a
consistent starting point.

• Likewise, the UAT instance could be deployed when needed, starting from similarly saved
UAT PDB.

• The GR instance application would not be pre-deployed, but its database would be created
in a DR site and synchronized from production via Active Data Guard.

Setting the Repository Path During Instance Creation
To offer flexibility in how the repository directory structure develops, the create-instance script
takes as input, the path to the specification files.

The -s specPath parameter is mandatory in create-instance.sh and can point to several
directories at once (directories are separated by a colon).

specPath would contain all the directories that contain specification files used for creating an
instance:

• repo/resiwireline

• repo/resiwireline:repo/resiwireline/instances/qa. (This will include all specification files
at the resiwireline project level, as well as the specification files in the qa instance
directory.)

Additionally, a separate parameter is used to point to the directory where custom extensions
are found.

The -m customExtPath parameter is an optional parameter that can be passed into the
create-instance.sh script.

customExtPath would point to all the directories where custom template files reside for the
instance being created: fileRepo/resiwireline/extensions

Setting Up Automation
This section describes the complete sequence of activities for setting up an OSM environment
with the aim of grouping repeatable steps into high-level categories. You should start to plan
the steps that you can automate to some degree. This section does not include details on the
changes that must be made to the specification files, which is described in Creating a Basic
OSM Instance.

Note

These steps exclude any one-time setup activities. For details on one-time setup
activities, see the tasks you must do before creating an OSM instance in Creating a
Basic OSM Cloud Native Instance.

Where pre-requisite secrets are required, the toolkit provides sample scripts for this activity.
However, the scripts are not pipeline-friendly. Use the scripts for manually standing up an
instance quickly and not for any automated process for creating instances. These scripts are
also important because they illustrate both the naming of the secret and the layout of the data

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 12

within the secret that OSM cloud native requires. You must replace references to toolkit scripts
for creating secrets with your own mechanism in your DevOps process.

Configuring Code for Creating an OSM Instance

To configure code for creating an instance, you assemble the configuration at the project and
the instance levels. While some of these activities could be automated, much of the work is
manual in nature.

1. Assemble the configuration.
To assemble the configuration at the project level:

Note

These steps should be performed once per project and then re-used for each
instance.

a. Copy $OSM_CNTK/samples/project.yaml to your file repository and rename to align
with your project naming decisions made earlier (for example, project.yaml).

b. Assemble the optional configuration files as needed. These files include custom WDT
fragments, custom shapes, cartridge user files, and par files for deployment.

To assemble the configuration at the instance level, copy $OSM_CNTK/samples/
instance.yaml to your file repository and rename to align with your project naming
decisions made earlier (for example, project-instance.yaml).

2. Create pre-requisite secrets for OSM DB access, RCU DB access, OSM system users,
oidc, OPSS, Introspector and the WLS Admin credentials used when creating the domain.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path\
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,gwOidc,ocaOidc

Note

Passwords and other secret input must adhere to the rules specified of the
corresponding component.

3. Create custom secrets as required by your OSM solution cartridges.

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -p project -
i instance \
 -c create \
 -f user information file

** $OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -h for
help

4. Create other custom secrets as required by optional configuration.

5. Populate the embedded LDAP with all the cartridge users (only those from prefix/map
name osm) under the cartridgeUsers section in the project.yaml file. During the

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 12

creation of the OSM server instance, for all the users listed, an account is created in
embedded LDAP with the same username and password as the Kubernetes secret:

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

After the configuration and the input are available, the remaining activities are focused on
Continuous Delivery, which can be automated. If your project namespace does not have the
label for the desired WebLogic Kubernetes Operator (WKO):

1. Remove any existing WKO labels from the namespace. Replace <old-operator-
label> with any previous WKO label key:

kubectl label namespace $PROJECT <old-operator-label>-

Note

If you are not sure which labels are present, you can generate a list by using

kubectl get namespace $PROJECT --show-labels

2. Add the desired WKO label to the namespace:

kubectl label namespace $PROJECT $WKO_NS=enabled --overwrite

This ensures that only the intended operator will manage the namespace.

3. Create one OSM PDB per instance:

• If the master OSM PDB exists in the CDB, clone the PDB. In this scenario, a master
PDB is created by cloning a seed PDB, deploying the OSM/RCU schema, and then
optionally deploying cartridges. This master is only valid for a specific OSM schema
version.

• If the master CDB does not have the schema provisioned, do the following:

a. Clone the seed PDB and then run the DB installer to create OSM and the RCU
schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
1 (OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
7 (RCU Schema)

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 12

b. Deploy the cartridges:

./scripts/manage-cartridges.sh -p project_name -i instance_name -
s $SPEC_PATH
 -f par_file -c parDeploy

• If you want to use a PDB from another instance in order to reuse the OSM data, do the
following:

a. Clone the existing PDB.

b. Drop the existing RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 6

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 12

Note

Refer to the help content to obtain the list of valid and correct command
codes for the install-osmdb.sh script. Run

$OSM_CNTK/scripts/install-osmdb.sh -h

Running the script above will generate the following output:

 This script is the entry point to perform all deployment-
type activities on
 the OSM CN database. It manages the OSM schema as well as
the FMW RCU schema.

 Usage:
 install-osmdb.sh <parameters>
 -p <projectName> : mandatory
 -i <instanceName> : mandatory
 -s <specPath> : mandatory; locations of
specification files
 specPath is a colon(:) delimited
list of directories
 -c <commandCode> : mandatory
 -y : optional; assume "y" is entered
for any prompt
 -d : optional; do --dry-run only
 -q : optional; disable verbose progress
indicators
 -a : optional; source partition name
where statistic data
 to be copy from.
 Only valid for command 11, if not
specified, use the
 default partition statistic data
as copy source.
 -b : optional; Comma delimited list of
partition name
 where statistic data will be
copied to.
 Only valid for command 11, if not
specified, copy to
 all partitions.

 or just -h for help

 CommandCode allowed values:
 1 - Create or upgrade OSM schema
 2 - Create or upgrade OSM schema, then create RCU
schema
 3 - Create or upgrade OSM schema, then drop RCU schema
 4 - Create or upgrade OSM schema, then drop and re-
create RCU schema
 5 - Drop and re-create RCU schema
 6 - Drop RCU schema
 7 - Create RCU schema

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 12

 8 - Drop OSM schema
 9 - Reserved
 10 - Reserved
 11 - Import partition-level DB optimizer statistics
 12 - Migrate OSM Traditional schema
 13 - Reserved
 14 - Reserved
 15 - Reserved
 16 - Reserved
 17 - Reserved

c. Recreate the RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 7

Alternatively, the RCU schema can be re-used. This use case has additional CaC
changes as discussed in the Re-using PDB topic.

4. Create the Ingress:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

5. Create the instance.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

Deleting an Ingress

To delete an ingress, run the following command:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Deleting an Instance

This section describes the sequence of activities for deleting and cleaning up various aspects
of the OSM environment.

To delete the application instance:

1. Run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

2. Remove the instance content manually from the LDAP server using your LDAP Admin
client. Specify ou=project-instance.

To clean up the PDB, drop it.

To clean up the configuration as code:

1. Delete the OSM instance and the database instance specification files.

Chapter 5
Setting Up Automation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 12

2. Delete the secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -
s spec_path\
 delete \
 osmldap,osmdb,rcudb,wlsadmin,opssWP,wlsRTE

3. Delete any additional custom secrets using kubectl.

Trying to streamline the processes and identifying when to omit certain activities and where
other activities must be repeated can be challenging. For instance, dropping the OSM RCU
schema is independent of deleting an instance, which happens through different script
invocations. While the life-cycle of the OSM instance and the PDB should be aligned, there are
also use cases where the business data in a PDB (cartridges or orders) is required for re-use
by a different OSM instance. For details on specific use cases, see Reusing the Database
State.

Securing Operations in Kubernetes Cluster
This section describes how to secure the operations of OSM cloud native users in a
Kubernetes cluster. A well organized deployment of OSM cloud native ensures that individual
users have specific privileges that are limited to the requirements for their approved actions.
The Kubernetes objects concerned are service accounts and RBAC objects.

All OSM cloud native users fall into the following three categories:

• Infrastructure Administrator

• Project Administrator

• OSM User

Infrastructure Administrator

Infrastructure Administrators perform the following operations:

• Install WebLogic Kubernetes Operator in its own namespace

• Create a project for OSM cloud native and configure it

• After creating a new project, run the register-namespace.sh script provided with the OSM
cloud native toolkit

• Before deleting an OSM cloud native project, run the unregister-namespace.sh script

• Delete an OSM cloud native project

• Manage the lifecycle of WebLogic Kubernetes Operator (restarting, upgrading, and so on)

Project Administrator

Project Administrators can perform all the tasks related to an instance level OSM cloud native
deployment within a given project. This includes creating, updating, and deleting secrets, OSM
cloud native instances, OSM cloud native DB Installer, and so on. A project administrator can
work on one specific project. However, a given human user may be assigned Project
Administrator privileges on more than one project.

OSM User

This class of users corresponds to the users described in the context of traditionally deployed
OSM. These users can log into the user interfaces (UI) of OSM and can call the OSM APIs.
These users are not Kubernetes users and have no privileges outside that granted to them

Chapter 5
Securing Operations in Kubernetes Cluster

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 12

within the OSM application. For details about user management, see the "OSM Cloud Native
System Administrator's Guide" and "Manage LDAP Providers in WLS via OSM" in this guide.

About Service Accounts

In the WebLogic Kubernetes Operator (WKO), the serviceAccount Helm chart property
specifies the name of a Kubernetes ServiceAccount in the namespace where the operator is
installed. The operator uses this service account to call the Kubernetes API server, and the
operator's Helm chart creates the appropriate access controls for the service account.

The pods that comprise each OSM cloud native instance (including the transient OSM DB
Installer pod and the transient WKO Introspector pod) within a given project namespace use
the "default" service account in that namespace. This is created at the time of namespace
creation, but can be modified by the Infrastructure Administrator later. For more information
about how to use this service account and its associated privileges, refer to the WKO
documentation here: https://oracle.github.io/weblogic-kubernetes-operator/managing-
operators/using-helm/#serviceaccount

RBAC Requirements

The RBAC requirements for the WebLogic Kubernetes Operator are documented in its user
guide. The privileges of the Infrastructure Administrator have to include these. In addition, the
Infrastructure Administrator must be able to create and delete namespaces, operate on the
WebLogic Kubernetes Operator's namespace and also on the NGINX namespace (if NGINX is
used as the ingress controller). Depending on the specifics of your Kubernetes cluster and
RBAC environment, this may require cluster-admin privileges.

The Project Administrator's RBAC can be much more limited. For a start, it would be limited to
only that project's namespace. Further, it would be limited to the set of actions and objects that
the instance-related scripts manipulate when run by the Project Administrator. This set of
actions and objects is documented in the OSM cloud native toolkit sample located in the
samples/rbac directory.

Structuring Permissions Using the RBAC Sample Files

There are many ways to structure permissions within a Kubernetes cluster. There are
clustering applications and platforms that add their own management and control of these
permissions. Given this, the OSM cloud native toolkit provides a set of RBAC files as a sample.
You will have to translate this sample into a configuration that is appropriate for your
environment. These samples are in samples/rbac directory within the toolkit.

The key files are project-admin-role.yaml and project-admin-rolebinding.yaml. These files
govern the basic RBAC for a Project Administrator.

Do the following with these files:

1. Make a copy of both these files for each particular project, renaming them with the project/
namespace name in place of "project". For example, for a project called "biz", these files
would be biz-admin-role.yaml and biz-admin-rolebinding.yaml.

2. Edit both the files, replacing all occurrences of project with the actual project/namespace
name.

For the project-admin-rolebinding.yaml file, replace the contents of the "subjects" section
with the list of users who will act as Project Administrators for this particular project.

Alternatively, replace the contents with reference to a group that contains all users who will
act as Project Administrators for this project.

3. Once both files are ready, they can be activated in the Kubernetes cluster by the cluster
administrator using kubectl apply -f filename.

Chapter 5
Securing Operations in Kubernetes Cluster

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 12

It is strongly recommended that these files be version controlled as they form part of the
overall OSM cloud native configuration.

The Project Administrator role specification contains the pods/exec resource. This is required
for only one specific scenario - using the OSM DB Installer to deploy a cartridge from the local
file system (where the install-osmdb.sh script is being run). This particular resource can be
removed, forcing cartridge deployment to only happen from a repository. It is highly
recommended to remove this resource for production environments. The resource may be
retained for development environment, as it eases the code-build-deploy-test cycle for OSM
cartridge development.

In addition to the main Project Administrator role and its binding, the samples contain two
additional and optional role-rolebinding sets:

• project-admin-addon-role.yaml and project-admin-addon-rolebinding.yaml: This role
is per project and is an optional adjunct to the main Project Administrator role. It contains
authorization for resources and actions in the project namespace that are not required by
the toolkit, but might be of some use to the Project Administrator for debugging purposes.

• wko-read-role.yaml and wko-read-rolebinding.yaml: This role is available in the
WebLogic Kubernetes Operator's namespace, and is an optional add-on to the Project
Administrator's capabilities. It lets the user list the WKO pods and view their logs, which
can be useful to debug issues related to instance startup and upgrade failures. This is
suitable only for sandbox or development environments. It is strongly recommended that,
even in these environments, WKO logs be exposed via a logs toolchain. The WebLogic
Kubernetes Operator's Helm chart comes with the capability to interface with an ELK
stack. For details, see WebLogic Kubernetes Operator documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/.

Chapter 5
Securing Operations in Kubernetes Cluster

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 12

https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/

6
Creating Your Own OSM Cloud Native
Instance

This chapter provides information on creating your own OSM instance. While the "Creating a
Basic OSM Cloud Native Instance" chapter provides instructions for creating a basic OSM
instance that is capable of processing orders for the SimpleRabbits sample cartridge that is
provided with the OSM cloud native toolkit, this chapter provides information on how you can
create an OSM instance that is tailored to the business requirements of your organization.
However, if you want to first understand details on infrastructure setup and structuring of OSM
instances for your organization, then see "Planning Infrastructure".

Before proceeding with creating your own OSM instance, you can look at the alternate and
optional configuration options described in "Exploring Configuration Options".

When you created a basic instance, you used the operational scripts and the base
configuration provided with the toolkit.

Creating your own instance involves various activities spanning both instance management
and instance configuration and includes some of the following tasks:

• Selecting a Deployment Topology

• Configuring OSM Runtime Parameters

• Preparing Cartridges

• Extending the WDT Model

• Working with Kubernetes Secrets

• Adding JMS Queues and Topics

• Generating Error Queues for Custom Queues and Topics

• Creating a JMS template

• Deploying Cartridges

• Provisioning Cartridge User Accounts

Selecting a Deployment Topology
OSM CNTK can be instructed to deploy only WebLogic-based components either with or
without new microservices. This can be achieved with the help of the
omsConfig.osm_runtime_type element in the project specification. The default value of this
specification is MultiService.

project.yaml

Provide values to override the defaults for oms-config.xml
omsConfig:
 # anything here overrides what is in shape spec in case of duplication
 # anything here can be overridden by instance spec
 project:
 osm_runtime_type: MultiService # MultiService(CN with full topology) or WLS (CN
with only core fulfillment topology)

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 39

The possible values can be:

• WLS: OSM is running with only the WebLogic based components without new
microservices.

– Microservice dependent features such as TMF orders, System Interactions and Fallout
Exception, are not available and cartridges that use such features cannot be deployed.

• MultiService: OSM is running with new microservices with the OSM cloud native 7.5
features enabled.

– OSM cloud native 7.5 features which are enabled are TMF orders, System Interactions
and Fallout Exception.

While deploying older cartridges, you must rebuild cartridges using Design Studio. For more
information, about the Design Studio version you need to use, refer to OSM Software
Compatibility. If the rebuild fails, you must not deploy the cartridges.

For more information about TMF and non-TMF cartridges, refer to "About TMF Cartridges and
Non-TMF Cartridges".

Upgrade Scenarios
An OSM cloud native instance set up as WLS can be upgraded to MultiService. To do this, you
must:

1. Scale down your cluster to 0.

2. Upgrade the database using the database installer command code 1.

3. Scale your cluster back to the original clusterSize.

This upgrade will impact microservices and features such as TMF orders, System Interactions
and Fallout Exception.

If you create an OSM cloud native instance with osm_runtime_type as WLS and then later
upgrade to MultiService, you need to recreate Ingress to access the newly created
microservices.

Note

An OSM Instance set up as MultiService must not be downgraded to WLS even
though such a change is not blocked by the CNTK.

Pre-requisite Configuration For WLS
When installing an OSM cloud native instance with the WLS option, you need to configure
empty values for the following properties in the project specification file:

osm-gateway.image: ""
osmRuntimeUXServer.image:""
ingress.osmgw.annotations: {}
ingress.rtux.annotations: {}

Installing OSM Cartridge Assembler (OCA) for Integration with
Solution Designer

The OSM Cartridge Assembler (OCA) microservice unifies the TMF cartridges created in
Design Studio with content modeled in Solution Designer. This process enables dynamic

Chapter 6
Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 39

assembly and streamlined deployment of cartridges to OSM to support more flexible,
collaborative, and efficient cartridge design processes.

To learn about the dynamic cartridge assembly and the critical role that OCA plays, see About
Dynamic Cartridge Assembly (Cloud Native Only) in the OSM Concepts.

You need to install the OCA Microservice when OSM is integrating with Solution Designer.
OCA is disabled by default and you can enable it with the configuration in the following topics.

Preparing for OSM Cartridge Assembler
To install the OCA microservice, you need to do the following tasks:

1. Create Secrets

2. Build the OCA Image

3. Build the Capabilties Cartridge Image

4. Configure the Project Specification

5. Configure the Instance Specification

Creating Secrets

Creating secrets is part of creating a basic OSM cloud native instance. When you are using the
OCA microservice you need to ensure that the secret was created properly. For more
information on creating the required secrets for OCA, see About Optional Secrets.

Building the OCA Image

Similar to creating secrets, building images is a part of creating an OSM cloud native instance.
For more information on building images for OCA, see Creating the OSM and OSM DB
Installer Images in Creating OSM Cloud Native Images.

Building the Capabilities Cartridge Image

You need to build the Capabilities Cartridge Image that will be used with the OCA Microservice.
To do this, you need to first generate the capabilities cartridge. For more information on
creating the capabilites cartridge, see OSM Modeling Guide and Design Studio Modeling OSM
Orchestration.

Once you have generated the .cpar file in Design Studio, you need to use it to build the image
that will be used with OCA. See Building Cartridge Images in Container Images for more
information about building cartridge images for OCA.

Configuring the Project Specification

After building the capabilities cartridge image, you need to configure the project specification.

osm-cartridge-assembler:
 image: "osm-cartridge-assembler"
 enabled: false ## OCA is disabled by default. Enable it if required.

<ingress annotations. Uncomment the section for OCA>

ingress:

Chapter 6
Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 39

 oca:
 annotations: {} # This empty declaration should be removed if adding
items here.
 # This annotation is required for nginx ingress controller for oca.
 #annotations:
 # # Enables regular expression (regex) support in the path field
 # nginx.ingress.kubernetes.io/use-regex: "true"
 # # To rewrite the URL path before forwarding the request to the backend
service.
 # nginx.ingress.kubernetes.io/rewrite-target: /$1
 # # To configure timeout in NGINX Ingress Controller for reading data
from the the backend service.
 # nginx.ingress.kubernetes.io/proxy-read-timeout: "240"
 # # To configure timeout for sending data from the NGINX Ingress
Controller to the backend service.
 # nginx.ingress.kubernetes.io/proxy-send-timeout: "240"

<specify the capabilities cartridge versions that should be loaded into OCA>

capabilitiesCartridgeList: []
#capabilitiesCartridgeList:
- name: fulfillment-capabilities-1-0-2
version: "1.0.2"
image: "/mypath/fulfillment-capabilities-1-0-2-cpar:latest"
- name: fulfillment-capabilities-1-0-3
version: "1.0.3"
image: "/mypath/fulfillment-capabilities-1-0-3-cpar:latest"
imagePullPolicy: Always
imagePullSecret: capabilitiesCartridge-imagepull

where,

• osm-cartridge-assembler is the OCA image and a boolean value to enable OCA
installation

• annotations are the annotations required for the NGINX ingress controller for OCA

 # Enables regular expression (regex) support in the path field
 nginx.ingress.kubernetes.io/use-regex: "true"
 # To rewrite the URL path before forwarding the request to the
backend service.
 nginx.ingress.kubernetes.io/rewrite-target: /$1
 # To configure timeout in NGINX Ingress Controller for reading data
from the the backend service.
 nginx.ingress.kubernetes.io/proxy-read-timeout: "240"
 # To configure timeout for sending data from the NGINX Ingress
Controller to the backend service.
 nginx.ingress.kubernetes.io/proxy-send-timeout: "240"

• capabilitiesCartridgeList are the image details for the list of capabilities cartridges

Chapter 6
Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 39

Configuring the Instance Specification

After configuring the project specification, you need to complete the following configuration
related to the SCD integration in the instance specification file.

OSM Cartridge Assembler
osm-cartridge-assembler: {} # This empty declaration should be removed if
adding items here.
#osm-cartridge-assembler:
SCD Base URL
scdBaseURL: "http://localhost:8080/dummy"
Prometheus endpoint is enabled by default.
prometheus:
enabled: true
Flag to specify the log level
The valid log levels in descending order are:
SEVERE (highest value)
WARNING
INFO
FINE
FINEST (lowest value)
#
The default value is "INFO"
log:
level: INFO
If disabled, no log files will be created. All logs will go to stdout/
stderr
fileLogging:
enabled: false
The storage volume must specify the PVC to be used for persistent
storage.
When enabled with PVC value, log data will be directed here
With fileLogging.enabled:false, there will be no log file in PVC location
storageVolume:
enabled: false
pvc: storage-pvc # dummy value, to be replaced when using pvc

where,

• fileLogging if enabled creates log files which are used by the FluentD daemonset to
collect container logs and import into the log stack. Logs are routed to stdout/stderr even
when fileLogging is enabled.

Note

This parameter is disabled by default.

• storageVolume is used to store log data. You can enable storage volume with valid
PVC. The PVC which is used to persist OSM cloud natie logs when enabled, can also be
used here. The logs will be available at <nfs_path>/<project>-<instance>/osm-
cartridge-assembler.

Chapter 6
Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 39

Note

This parameter is disabled by default.

• prometheus is used for exposing metrics for scraping. You can disable this parameter if
you do not want to expose metrics.

Note

This parameter is enabled by default.

• log is the log level. This can be set to different levels of severity in OCA. These levels are:
SEVERE, WARNING, INFO, FINE, FINEST

• scdBaseUrl is a URL required to enable a connection with a single Solution Designer
instance.

Managing an OSM Cartridge Assembler Deployment via Cloud Native
Toolkit

There are no special scripts used to manage the OCA microservice. All operations are
available using the standard set of CNTK scripts

Create Ingress

Creating an ingress is part of creating a basic OSM cloud native instance. When the OCA
microservice is being used, you need to create a specific ingress for OCA. For more
information about creating an ingress for OCA, refer to Configuring the Project Specification.

kubectl get ingress -n <namespace>

NAME CLASS
HOSTS
ADDRESS PORTS AGE
<project>-<instance>-ingress <none>
<instance>.<project>.osm.org,t3.<instance>.<project>.osm.org,admin.<instance>.
<project>.osm.org 80 10s
<project>-<instance>-oca-ingress <none>
<instance>.<project>.osm.org
 80 10s
<project>-<instance>-osmgw-ingress <none>
<instance>.<project>.osm.org,<instance>.<project>.osm.org
 80 10s
<project>-<instance>-rtux-ingress <none>
<instance>.<project>.osm.org

Create OCA Microservice

Run the following script to create the OSM cloud native instance including OCA.

$OSM_CNTK/scripts/create-instance.sh -p <project> -i <instance> -s <spec
files path>

Chapter 6
Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 39

Upgrade OCA Microservice

Run the following script to upgrade the OSM cloud native instance with a new OCA
configuration.

$OSM_CNTK/scripts/upgrade-instance.sh -p <project> -i <instance> -s <spec
files path>

Restart OCA Microservice

To restart the OCA pod, you need to run the following script. Provide ocams as the input to flag
-r to restart only the OCA pod. If you want to restart the OCA pod along with the other OSM
pods, provide all as the input.

$OSM_CNTK/scripts/restart-instance.sh -p <project> -i <instance> -s <spec
files path> -r ocams

Delete OCA Microservice

You can delete the OCA microservice in two ways. The first approach is to disable the
microservice in the project specification file and run the upgrade-instance.sh script.

osm-cartridge-assembler:
 enabled: false
 image: "osm-cartridge-assembler"

The second approach is to delete the entire OSM cloud native instance. This deletes the OCA
pod, as well as all other OSM pods.

$OSM_CNTK/scripts/delete-instance.sh -p <project> -i <instance>

Lint an OCA Chart

To lint OCA charts, use the following command.

$OSM_CNTK/scripts/lint-osm-instance-chart.sh -p <project> -i <instance> -s
<spec files path>

OCA Dry Run

To render OCA templates, run the following command to debug the helm chart changes.

$OSM_CNTK/scripts/create-instance-dry-run.sh -p <project> -i <instance> -s
<spec files path>

Configuring OSM Runtime Parameters
You can control various OSM runtime parameters using the oms-config.xml file. See
"Configuring OSM with oms-config.xml" in OSM Cloud Native System Administrator's Guide for
details.

Chapter 6
Configuring OSM Runtime Parameters

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 39

This configuration is managed differently in OSM cloud native. While all the parameters
described in the OSM Cloud Native System Administrator's Guide are still valid, the method of
specifying them is different for a cloud native deployment.

Each of the three specification file tiers - shape, project, and instance - has a section called
omsConfig. For example, the project specification has the following section:

omsConfig:
 project:

com.mslv.oms.handler.cluster.ClusteredHandlerFactory.HighActivityOrder.Collect
ionCycle.Enabled: true
 oracle.communications.ordermanagement.cache.UserPerferenceCache: near

Some parameters have been laid out for you in the pre-configured shape specification files and
in the sample project and instance specification files. When you wish to change the value of a
parameter to a different one from the documented default value, you must add that parameter
and its custom value to an appropriate specification file.

For values that depend on (or contribute to) the footprint of the OSM Managed Server, the
shape specification would be best. For values that are common across instances for a given
project, the project specification would be best. Values that vary for each instance would be
appropriate in the instance specification.

Any parameter specified in the instance specification overrides the same parameter specified
in the project or shape specification. Any parameter specified in the project specification
overrides the same parameter in the shape specification.

Any parameter that is not present in all three specification files (shape, project, instance)
automatically has its default value as documented in OSM Cloud Native System
Administrator's Guide.

Note

All pre-defined shape specifications have the omsConfig parameters flagged as do
NOT delete. These must not be edited and must be copied as-is to custom shapes.
See "Working with Shapes" for details about custom shapes.

Configuring Schema Validation
OSM Gateway handles incoming and outgoing JSON payload transformation. When a JSON
payload contains data that is not registered with OSM, OSM Gateway can either fail validation
or silently prune the extra data from the transformation, depending on the settings in the
project specification.

Schema dictating the incoming payloads for TMF REST endpoints, are registered via the
Hosted Order Specification in TMF cartridges (622 or 641).

This validation is applicable to incoming order payloads only when hosting a TMF cartridge
(622 and 641). This validation is also applicable to incoming and outgoing payloads for
Freeform or TMF cartridges that use a System Interaction to communicate with external
systems.

If incoming or outgoing JSON payloads contain extensions that are
not registered with OSM, use these parameters to specify whether the

Chapter 6
Configuring Schema Validation

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 39

payload should be failed (STRICT) or the unrecognized extensions
simply pruned (PRUNE). Default is STRICT.
#validation:
unregisteredSchema:
incoming: STRICT
outgoing: STRICT

Configuring Target Systems for Events and System Interactions
TMF cartridges define an Event Target System name, to identify the recipient of event
notifications about the TMF resource.

Freeform cartridges and TMF cartridges that use System Interaction specifications would
define a target system name to identify the external system involved in a REST interaction.

In both cases, a logical target system name is provided inside the cartridge. The configuration
necessary for OSM to resolve these names at runtime is provided in the CNTK specification
files.

Configuring the Project Specification

Whether it is an event target system or a system interaction target system, the cartridge
configuration always reflects a logical system name and it is not tied to a specific server
instance. Each one must be defined in the project specification.

Define targetSystem info, provide name of the targetSystem like
reverseProxy.
requiredTargetSystems: [] # This empty declaration should be removed if
adding items here.
#requiredTargetSystems:
- name: BillingSystem
description: "Oracle BRM for TMF622 COM cartridge"
- name: ShippingSystem
description: "Unified shipping portal"

Configuring the Instance Specification

The logical system name is decoupled from the actual connection details so that cartridge
deployment is not impacted by a specific environment. Each logical system name will be
resolved against a set of connection details and applicable security scheme, at runtime. To
enable this resolution, the connection information must be provided in the CNTK instance
specification.

If we take an example where a cartridge and its project specification have a reference to a
"BillingSystem" target system. By providing the actual connection details in the instance
specification, the same cartridge can be deployed without any change into multiple
environments - development instance 1 and 2, QA instance 1, and test instance xyz.

Define targetSystem info, provide server details and security info
targetSystems: {} # This empty declaration should be removed if adding items
here.
#targetSystems:
 #systems:
 #targetSystem_Name:
 #url: target_system_url
 #protocol: protocol

Chapter 6
Configuring Target Systems for Events and System Interactions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 39

 #description: description
 #securityScheme: securitySchemeName
 # To override default fault tolerance parameters, uncomment this
section and provide values
 #fault-tolerance:
 #retry:
 # The maximum number of retry attempts by pod when emitting a
message failed
 # When value is absent, pod will retry 2147483647
(Integer.MAX_VALUE) times.
 #maxRetries: 2147483647
 # The delay between the retry attempts
 #delay: 5000
 # The delay unit eg MILLIS
 #delayUnit: MILLIS
 # Instructs pod on which error code has to retry
 #onErrorCodes:
 # - 500
 # - 503
 # - 409
 # - 429
 #concurrency:
 # The maximum number of concurrent connections that can be made to
this target system from the OSM Gateway
 # across the OSM cluster (default : 50)
 #maxValue: 50

 # Define security scheme for target systems enabled with security
 # For each security scheme defined kubernetes secret should be created using
 # ${CNTK_HOME}/scripts/manage-target-system-credentials.sh script.
 #securitySchemes:
 #- name: <SecuritySchemeName-1>
 # type: "userPassword"
 # authorizationUrl: <authorization URL>
 # sessionId:
 # type: <"cookie" or "header">
 # name: <Cookie-name or Header-name that carries sessionID>
 #- name: <SecuritySchemeName-2>
 # type: "OAuth2"
 # authorizationUrl: <authorization URL>
 # tokenUrl: <token URL>
 # scopes:
 # - name: scope1
 # description: "Scope 1 Description" #optional
 # - name: scope2
 # description: "Scope 2 Description" #optional

Configuring Security Schemes for Target Systems
System interactions support OIDC and basic authentication security schemes for target
systems that are enabled with security. You can define these security schemes in the Instance
Specification under the element targetSystems as securitySchemes.

When using either of the security schemes, you need to create a Kubernetes secret using the
following command:

Chapter 6
Configuring Security Schemes for Target Systems

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 39

${CNTK_HOME}/scripts/manage-target-system-credentials.sh -p project -i instance -n
securitySchemeName -t OAuth2/userPassword create

Note

In the script above, if you use the userPassword security scheme, you will need to
provide a username and password. If you use the OAUTH2 security scheme, then you
will need to provide a client and secret.

The following sections provide more information about the security schemes.

Using the OIDC Security Scheme
If the target system is enabled with OAUTH2 security, then you need to configure the OAUTH2
security scheme. The following instance specification sample shows the security scheme
configuration for OAUTH2 when the target system is enabled with OAUTH2 security:

targetSystems:
 securitySchemes:
 - name: SecuritySchemeName
 type: "OAuth2"
 tokenUrl: token URL
 scopes:
 - name: scope_1
 description: "Write Scope"
 - name: scope_2
 description: "Read Scope"

In the security scheme configuration above:

• token URL is the access token URL which is used to obtain the access token from the
Identity provider such as KeyCloak.

• Scopes provide limitations to the access granted to an access token.

• SecuritySchemeName is used to fetch the client id and the client secret from the Kubernetes
secret.

Using the Basic Authentication Security Scheme
If the target system is enabled with basic authentication security either utilizing user credentials
or JSESSIONID, then you need to configure the userPassword security scheme.

You can configure this security scheme using either of the following three methods:

• Basic auth with user credentials

• JSESSIONID header

• JSESSIONID cookie

Note

The default configuration for the userPassword security scheme is Basic auth with user
credentials.

Chapter 6
Configuring Security Schemes for Target Systems

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 39

Basic Auth with User Credentials
The following instance specification sample shows the security scheme configuration for
userPassword when the target system is enabled with basic auth using user credentials
security.

securitySchemes:
 - name: SecuritySchemeName
 type: "userPassword"

In the security scheme configuration above, each REST call to the target system includes an
authentication header which has a base-64 encoded value of username:password. Therefore
the authentication header would look like:

 Authorization: Basic base-64 encoded value of username:password

JSESSIONID in Authentication Header
In this security scheme configuration, instead of sending user credentials, the OSM gateway
sends the user session ID in an authentication header for each request. The OSM gateway
exchanges the user credentials only once to obtain the user session ID from the response
header.

The following instance specification sample shows the security scheme configuration for
userPassword when the target system is enabled with authentication using the user session ID
in an authentication header.

securitySchemes:
 - name: SecuritySchemeName
 type: "userPassword"
 authorizationUrl: authorization URL
 sessionId:
 type: "header"
 name: <Header Name>

In the above security scheme configuration:

• The OSM gateway exchanges the user credentials (base-64 encoded value of
username:password) in an authentication header using the the target system's
authorizationUrl to obtain the user session ID.

• The OSM gateway extracts the user session ID from the response headers using the
header name defined the in the security scheme.

• The OSM gateway sends the user session ID in an authentication header in each request
sent to the target system.

• Therefore, the authentication header would look like:

Authorization: user session ID

JSESSIONID in Cookies
In this security scheme configuration, instead of sending user credentials, OSM gateway sends
the user session ID in cookies for each request. OSM gateway exchanges the user credentials
only once to obtain the user session ID from the response cookies.

Chapter 6
Configuring Security Schemes for Target Systems

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 39

The following instance specification sample shows the security scheme configuration for
userPassword when the target system is enabled with authentication using user session ID in
cookies.

securitySchemes:
 - name: SecuritySchemeName
 type: "userPassword"
 authorizationUrl: authorization URL
 sessionId:
 type: "cookie"
 name: Cookie Name

In the security scheme configuration above:

• The OSM gateway exchanges the user credentials (base-64 encoded value of
username:password) in an authentication header using the target system's
authorizationURL to obtain the user session ID.

• The OSM gateway extracts the user session ID from the response cookies using the
Cookie Name defined in the security scheme.

• The OSM gateway sends the user session ID in cookies in each request to the target
system.

• Therefore, the http header would look like:

 cookie: user session ID

Configuring OSM Gateway Readiness
You can control different aspects of OSM Gateway behavior by editing the instance
specification. Additionally, tuning parameters for OSM Gateway are available in the shape
specifications.

OSM Gateway establishes a connection with the OSM managed server and waits for it to
transition into the "ready" state. However, if the managed server fails to become ready within
the specified timeout duration, the gateway declares it as "not ready" and proceeds to initiate
Kubernetes cleanup and retry procedures. This parameter is enabled by default.

OSM Gateway
osm-gateway: {} # This empty declaration should be removed if adding items
here.
#osm-gateway:
 # When enabled, in order to start, OSM Gateway app waits until the timeout
is elapsed for OSM-CN to be up.
 #waitForOSMReadinessBeforeStart:
 #enabled : true
 # Based on the ISO-8601 duration format PnDTnHnMn.nS.
 # For additional information, refer https://docs.oracle.com/en/java/
javase/21/docs/api/java.base/java/time/Duration.html
 #timeout: "PT300S"

..............

Configuring the Order Operations User Interface

Chapter 6
Configuring OSM Gateway Readiness

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 39

Use the instance specification to configure how and when various details are displayed in the
Order Operations user interface.

The following block shows the instance specification where you configure settings for the data
displayed in the Order Operations user interface:

osmRuntimeUX: {} # This empty declaration should be removed if adding items
here.
#osmRuntimeUX:
 #alertThresholds:
 # The percentage of orders that must succeed in a given time interval
otherwise an alert is displayed to the user.
 # Order Success Rate = OrdersCompletedCount / (OrdersCompletedCount +
OrdersFailedCount) * 100
 #minOrderSuccess: "98"
 # The maximum number of orders that can be submitted in an hour before an
alert is displayed to the user.
 #maxHourlySubmittedOrder: "5000"
 #configuration:
 # An ISO 8601 duration period string that represents the oldest
fromDatetime supported by the operations backend and UX.
 # The default value "P6M" indicates the oldest fromDate allowed by the
API and the UX is 6 months ago.
 #minFromDateTimePeriod: "P6M"
 # The maximum percentage of orders that can fail otherwise above KPI
badge is displayed to the user on Order Operations KPI dashboard.
 # Order Failure Rate = (OrdersFailedCount + OrdersRejectedCount) /
TotalOrdersCount * 100
 #maxOrderFailure: "2"
 # The number seconds between automatic dashboard refresh in the
Operations UX
 #refreshTimeInterval: 180
 # The number seconds for which landing page or iframe applications
timeout when left idle
 # This should always be less than default OSM core session timeout value
of 1500s.
 #sessionTimeOut: 1400
 # The number of retries UX applications will perform on errors reaching
server APIs
 #onErrorMaxRetryCount: 3
 # The number of seconds UX applications will wait between such retries
 #onErrorRetryIntervalSecs : 30

Configuring the Alerts Displayed in the Order Operations Dashboard

You can control different aspects of the Order Operations user interface behavior by editing the
instance specification. Additionally, tuning parameters for the Order Operations user interface
are available in the shape specifications.

The Operations Dashboard displays a bell icon, which upon clicking opens the Alerts panel.
The Alerts panel displays alerts when a threshold set on the orders is reached.

An alert is triggered and displayed when the percentage of orders drops below the number of
orders that must succeed in a given time interval.

Chapter 6
Configuring the Order Operations User Interface

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 39

Order Success Rate = OrdersCompletedCount / (OrdersCompletedCount +
OrdersFailedCount) * 100

To configure the alerts displayed in the Operations Dashboard, you configure the following
parameters in the instance specification:

• alertThresholds.minOrderSuccess: The order completion success threshold that must be
met by every order group. Otherwise, an alert is triggered and displayed. The default value
is 98.

• alertThresholds.maxHourlySubmittedOrder: The number of orders that can be submitted
in an hour before an alert is shown. The default value is 5000.

The following block shows the instance specification where you configure parameters for
alerts:

osmRuntimeUX
osmRuntimeUX: {} # This empty declaration should be removed if adding items
here.
#osmRuntimeUX:
 #alertThresholds:
 # The percentage of orders that must succeed in a given time interval
otherwise an alert is displayed to the user.
 # Order Success Rate = OrdersCompletedCount / (OrdersCompletedCount +
OrdersFailedCount) * 100
 #minOrderSuccess: "98"
 # The maximum number of orders that can be submitted in an hour before an
alert is displayed to the user.
 #maxHourlySubmittedOrder: "5000"

..........

Configuring Session Timeout

When logged into the application, if a user leaves the user interface idle in a tab, a pop-up
window appears after 80% of the configured session timeout duration is reached. The pop-up
window indicates how much time the user has before the session times out. If the user clicks
OK or refreshes the page, the timer is reset.

However, if the user does not take any action, they will be logged out after the remaining time
is run out. If the user opens the application in two separate browser windows or tabs, and one
of them is kept idle, a pop-up window appears on the one that is left idle after 80% of the
configured session timeout duration is reached. If the user does not click the OK button, or
refreshes the page on the idle browser window, when the time runs out, the user will be logged
out of the application on both the windows.

To configure session timeout, set the configuration.sessionTimeOut parameter in the
instance specification. This parameter defines the number of seconds after which the landing
page or an application will timeout when left idle. By default, this is set to 1400 seconds.

The following block shows the instance specification where you configure session timeout:

osmRuntimeUX
osmRuntimeUX: {} # This empty declaration should be removed if adding items
here.
#osmRuntimeUX:

Chapter 6
Configuring the Order Operations User Interface

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 39

.....

 # The number seconds for which landing page or iframe applications
timeout when left idle
 # This should always be less than default OSM core session timeout value
of 1500s.
 #sessionTimeOut: 1400

Preparing Cartridges
Existing OSM cartridges that run on a traditional OSM deployment can still be used with OSM
cloud native, but you prepare and deploy those cartridges differently. Instead of using multiple
interfaces to persist the WebLogic domain configuration (WebLogic Admin console and
WLST), the configuration is added into the files that feed into the instance creation mechanism.
With OSM cloud native, you use the WebLogic Remote Console only for validation purposes.

Before proceeding, you must determine which OSM solution cartridge you want to use to
validate your OSM cloud native environment. For simplicity, use a setup where any
communication with OSM is restricted to an application running in the same instance of the
WebLogic domain.

Identify the following requirements for your cartridge:

• The list of JMS queues and topics that the cartridge needs.

• The list of credentials stored in the OSM Credential Store.

• Users that the cartridge requires.

• Applications that need to be deployed to the WebLogic server. This can include system
emulators for stubbing out communication to external peer systems.

About OSM Cloud Native Cartridges and Design Studio

Existing cartridges do not always need to be rebuilt for use with OSM cloud native. As long as
they were built with an OSM 7.4.0.x SDK, using the Design Studio target OSM version of 7.4.0,
their existing par files can be deployed.

If cartridges have to be built afresh or re-built, use the OSM SDK packaged with OSM 7.4.1
release, and set the Design Studio target OSM version as 7.4.0. In general, use the Design
Studio target OSM version that is closest to the actual OSM version but not newer than it.

Warning

Cartridges with Java plugins or emulators relying on JDK 8 (or earlier) or Java EE 7
(or earlier) need to be upgraded to use Java 21 and Java EE 8 libraries to ensure
compatibility with FMW 14.1.2 and Java 21. To deploy such cartridges on OSM 8.0,
you need to rebuild the cartridges using the OSM SDK provided with OSM 8.0 and set
Design Studio's target OSM version to 8.0.

About Domain Configuration Restrictions

Some restrictions on the domain configuration are necessary to keep the process simple for
creating and validating your basic OSM cloud native instance. As you build confidence in the
tooling and the extension mechanisms, you can remove the restrictions and include additional
configuration in your specifications to support advanced features.

Chapter 6
Preparing Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 39

Ensure that you restrict the domain configuration to the following:

• Instance with no SAF setup.

• Re-directing logs (to live outside the pods) will not be configured at this time.

Changing the Default Values

The project and the instance specification templates in the toolkit contain the values used in
the out-of-the-box domain configuration. These files are intended for editing, as the required
information such as the PDB host needs updating and the flags controlling the optional
features such as NFS need to be turned on or off, and the default values such as Java options
and cluster size can be changed. If you find that the existing values need to be updated for
your OSM instance, update the values in your specification files.

Change the default values as per the following guidelines:

• NFS: As per the restrictions, leave nfs disabled in the instance specification

• Shape: The provided configuration uses tuning parameters that are appropriate for a
development environment. This is done through the use of a shape specification that is
specified in the instance specification.

Creating an instance with the default shape is recommended. For details on how you can
provide a custom shape if necessary, see "Working with Shapes".

Adding New WDT Metadata

The OSM cloud native toolkit provides the base WDT metadata in $OSM_CNTK/charts/osm/
templates. As the OSM application requires this WDT metadata for the proper functioning, this
must not be edited. Instead, the toolkit provides a mechanism whereby new pieces of WDT
metadata can be included in the final description of the domain.

See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for complete details on the
general process for providing custom WDT. The steps described must be repeated for a variety
of WDT use cases.

You must specify the JMS Queues required for your new using the WDT metadata.

There are two options for providing the required configuration for JMS Queues:

• Re-using the OSM JMS Resources as described in "Adding JMS Queues and Topics". This
is the suggested mechanism for your first attempt at configuring your customized OSM
instance.

• Creating custom JMS Resources as described in "Adding a JMS System Resource".

Handling of sensitive data from within the WDT metadata fragment is supported as described
in the "Accessing Kubernetes Secrets from WDT Metadata".

Other Customizations

To support a custom OSM solution cartridge, not all changes are done using the WDT
metadata. Depending on the processing needs of your OSM solution cartridge, there are other
changes that are likely required:

This topic describes how to use the following methods for supporting a custom solution
cartridge:

• Credential Store

• Custom Application EAR

• Cartridge Users

Chapter 6
Preparing Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 39

Credential Store

For traditional installations, if a solution cartridge has automation plugins that needed to
retrieve external system credentials, it did so by storing those credentials in the WebLogic
Credential Store.

In OSM cloud native, if your cartridge uses the credential store framework of OSM, then you
must provision cartridge user accounts. See "Provisioning Cartridge User Accounts" for details.

Custom Application Ear

If there are additional applications that need to be deployed to WebLogic to support the
processing of your OSM solution cartridge, see "Deploying Entities to an OSM WebLogic
Domain".

This method requires both WDT metadata as well as the custom OSM images. Supplemental
scripts and WDT fragments are provided as samples in the $OSM_CNTK/samples/
customExtensions

Cartridge Users

Cartridges may also define users who need access to OSM APIs. These user credentials need
to be available in the right locations as described in "Provisioning Cartridge User Accounts".
These credentials must then be made available through the configuration to OSM.

Working with Kubernetes Secrets
Secrets are Kubernetes objects that you must create in the cluster through a separate process
that adheres to your corporate policies around managing secure data. Secrets are then made
available to OSM cloud native by declaring them in your configuration.

When the OSM cloud native sample scripts are not used for creating secrets, the secrets you
create must align to what is expected by OSM. The sample scripts contain guidelines for
creating secrets.

The following diagram illustrates the role of Kubernetes Secrets in an OSM cloud environment:

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 39

Figure 6-1 Kubernetes Secrets in OSM Cloud Environment

There are three classifications of secrets, as shown in the above illustration:

• Mandatory (Pre-requisite) Secrets

• Optional Secrets

• Custom Secrets

About Mandatory Secrets
Mandatory secrets must be created prior to running the cartridge management scripts or the
instance creation script.

The toolkit provides the sample script: $OSM_CNTK/scripts/manage-instance-
credentials.sh to create the secrets for you. For more information on secrets created by the
script, refer to the script help (-h flag) -h, and to Reference of Secrets Created by the Scripts.

See the following topics for more details about Kubernetes Secrets:

• Creating Secrets

• Management of Secrets

About Optional Secrets
Optional secrets are dictated by enabling the out-of-the-box configuration. There is some
functionality that is pre-configured in OSM cloud native and can be enabled or disabled in the
specification files. When the functionality is enabled, these secrets must be created in the
cluster before an OSM instance is created.

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 39

• If you use any external LDAP for authentication configured via project specification, OSM
cloud native relies on the following secret to have been created:

project-instance-ldap-credentials

The toolkit provides a sample script to create these secrets for you ($OSM_CNTK/
samples/credentials/manage-osm-ldap-credentials.sh by passing in "-o secret").

• With Credential Store, the secrets hold credentials for external systems that the
automation plug-ins access. These secrets are a pre-requisite to running cartridges that
rely on this mechanism and must adhere to a naming convention. See "Provisioning
Cartridge User Accounts" for more details.

• When SAF is configured, SAF secrets are used. SAF secrets are similar to custom secrets
and are declared in a specialized area within the instance specification that feeds into the
SAF-specific WDT.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_pass

• If you have installed OSM Cartridge Assembler (OCA), then the following secret needs to
be created:

project-instance-oca-credentials

The toolkit provides a sample script to create this secret for you

$ {OSM_CNTK}/scripts/manage-instance-credentials.sh -p project -i instance
-s spec-path create ocaOidc

The script prompts you for the following details for the OCA microservice:

Note

The OIDC configuration should point to a keycloak instance in an LDAP machine.

– OIDC Client ID

– OIDC Client Secret

– OIDC Access Base URL

– OIDC AccessToken URL

This secret is required to access the OCA endpoint.
Additionally, the script prompts you for information regarding the optional OIDC
configuration needed for connectivity with SCD - Solution Designer. The OIDC details
(clientId, clientSecret, authTokenUrl, scope) for this can be obtained from the team that
installed Solution Designer for you.

This secret is required to enable a Solution Designer-OCA integration.

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 39

About Custom Secrets
OSM cloud native provides a mechanism where WDT metadata can access sensitive data
through a custom secret that is created in the cluster and then declared in the configuration.
See "Accessing Kubernetes Secrets from WDT Metadata" to familiarize yourself with this
process.

This class of secrets are required only if you need secrets for this mechanism.

To use custom secrets with WDT metadata:

Note

As an example, this procedure uses a WDT snippet for authentication.

1. Add secret usage in the WDT metadata fragment:

Host: '@@SECRET:authentication-credentials:host@@'
Port: '@@SECRET:authentication-credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:authentication-credentials:principal@@'
CredentialEncrypted: '@@SECRET:authentication-credentials:credential@@'

2. Add the secret to the project specification.

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - authentication-credentials

3. Create the secret in the cluster, by using any one of the following methods:

• Using OSM cloud native toolkit scripts

• Using a Template

• Using the Command-line Interface

In the example metadata shown in step 1, the secret must capture host, port, principal, and
credential.

See "Mechanism for Creating Custom Secrets" for details about the methods.

OSM CNTK provides a utility script which generates the list of secrets required for an OSM
cloud native instance based on the provided specification files.

$OSM_CNTK/scripts/list-instance-secrets.sh -p project -i instance -
s $SPEC_PATH

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 39

This will provide the list of secrets categorized into OSM core and custom secrets as shown
below:

secrets:
 coreSecrets:
 - <project>-<instance>-database-credentials
 - <project>-<instance>-rcudb-credentials
 - <project>-<instance>-embedded-ldap-credentials
 - <project>-<instance>-weblogic-credentials
 - <project>-<instance>-opss-walletfile-secret
 - <project>-<instance>-opss-wallet-password-secret
 - <project>-<instance>-runtime-encryption-secret
 - <project>-<instance>-gateway-credentials
 - <project>-<instance>-oca-credentials
 - <project>-<instance>-fluentd-credentials
 customSecrets:
 - partitionStatisticSecret
 - projectCustomSecret
 - instanceCustomSecret

Accommodating the Scope of Secrets
The WDT metadata fragments are defined at the project level as the project typically owns the
solution definition. Accommodating this is a simple task. However, the scenario becomes
complicated when you consider that there may be project level configuration that needs to
allow for instance level control over the secret contents.

To walk through this, we will use authentication as an example and introduce a COM project
that includes three instances: development, test, and production. The production environment
has a dedicated authentication system, but the development and test instances use a shared
authentication server.

To accommodate this scenario, the following changes must be made to each of the basic
steps:

1. Define a naming strategy for the secrets that introduce scoping. For instance, secrets that
need instance level control could prepend the instance name. In the example, this results
in the following secret names:

• COM-dev-authentication-credentials

• COM-test-authentication-credentials

• COM-prod-authentication-credentials

2. Include the secret in the WDT fragment. In order for this scenario to work, a generic way is
required to declare the "scope" or instance portion of the secret name. To do this, use the
built-in Helm values:

.Values.name - references the full instance name (project-instance)

.Values.namespace - references the project name (project)

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 39

If the fragment needs to support instance-level control, derive the instance name portion of
the secret name.

Host: '@@SECRET:{{ .Values.name }}-authentication-credentials:host@@'
Port: '@@SECRET:{{ .Values.name }}-authentication-credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:{{ .Values.name }}-authentication-
credentials:principal@@'
CredentialEncrypted: '@@SECRET:{{ .Values.name }}-authentication-
credentials:credential@@'

3. Add the secret to the instance specification. The secret name must be provided in the
instance specification as opposed to the project specification.

Dev Instance Spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-dev-authentication-credentials

 ## Test Instance spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-test-authentication-credentials

 ## Prod Instance Spec

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-prod-authentication-credentials

4. Create the secret in the cluster by following any one of the methods described in the
Mechanism for Creating Custom Secrets topic. In our example, the secret would need
to capture host, port, principal and credential. Each instance would need a secret created,
but the values provided depend on which authentication system is being used.

Dev secret creation

 kubectl create secret generic COM-dev-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

 # Test secret creation

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 39

kubectl create secret generic COM-test-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

 ##Production secret creation

 kubectl create secret generic COM-prod-authentication-credentials \
-n COM \
--from-literal=principal=<prodvalue1> \
--from-literal=credential=<prodvalue2> \
--from-literal=host=<prodvalue3> \
--from-literal=port=<prodvalue4>

The following diagram illustrates the secret landscape in this example:

Figure 6-2 Landscape of Secrets

Mechanism for Creating Custom Secrets
You can create custom secrets in any of the following ways:

• Using Scripts

• Using a Template

• Using the Command-line Interface

Using Scripts to Create Secrets

Chapter 6
Working with Kubernetes Secrets

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 39

Functionality such as LDAP, NFS, and Credential Store that can be enabled or disabled in
OSM cloud native relies on pre-requisite secrets to be created. In such cases, the toolkit
provides sample scripts that can create the secrets for you. While these scripts are useful for
configuring instances quickly in development situations, it is important to remember that they
are sample scripts, and not pipeline friendly. These scripts are also essential because when
the secret is mandated by OSM cloud native, both the secret name and the secret data are
available in the sample script that populates it.

As an example, the secrets used by the Credential Store mechanism must follow a specific
naming convention:

projectName-instanceName-osmcn-cred-mapName

Using a Template

To create custom secrets using a template:

1. Save the secret details into a template file.

apiVersion: v2
kind: Secret
metadata:
 labels:
 weblogic.resourceVersion: domain-v2
 weblogic.domainUID: project-instance
 weblogic.domainName: project-instance
 namespace: project
 name: secretName
type: Opaque
stringData:
password_key: value1
user_key: value2

2. Run the following command to create the secret:

kubectl apply -f templateFile

Using the Command-line Interface

You can also specify the secret name and the details directly on the command-line interface:

kubectl create secret generic secretName \
-n project \
--from-literal=password_key=value1 \
--from-literal=user_key=value2

Adding JMS Queues and Topics
JMS queues and topics are unique because the base JMS resources (JMS server and JMS
subdeployments) already exist in the domain as the OSM core application requires them. You
can add custom queues and topics to the OSM JMS resources by specifying the appropriate
content in the project specification file.

To add queues or topics, uncomment the sample in your specification file, providing the values
necessary to align with your requirements.

Chapter 6
Adding JMS Queues and Topics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 39

Consider the following points:

• The only mandatory values are 'name' and 'jndiName'.

• Text in angular brackets do not have a default value. You must supply an actual value per
your requirements.

• The remaining parameters are set to their default values if omitted. When a different value
is supplied in the specification file, it is used as an override to the default value.

Note

There should only be one list of uniformDistributedQueues and one list of
uniformDistributedTopics in the specification. When copying the content from
the samples, ensure that you do not replicate these sections more than once.

To add JMS distributed queues:

jms distributed queues
uniformDistributedQueues:
 - name: custom-queue-name
 jndiName: custom-queue-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

To add JMS distributed topics:

jms distributed topics
uniformDistributedTopics:
 - name: custom-topic-name
 jndiName: custom-topic-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

Generating Error Queues for Custom Queues and Topics
You can generate error queues for all custom queues and topics automatically.

Chapter 6
Generating Error Queues for Custom Queues and Topics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 39

To generate error queues automatically, configure the following parameters in the project.yaml
file:

errorQueue:
 autoGenerate: false
 expirationPolicy: "Redirect"
 redeliveryLimit: 15

By default, the autoGenerate parameter is set to false. To generate error queues for all JMS
queues automatically, set this parameter to true.

When autoGenerate is set to true, all custom queues and topics will have their own error
queues.

The following sample shows the error queue generated for a custom queue:

'jms_queue_name_ERROR':
 ResetDeliveryCountOnForward: false
 SubDeploymentName: osm_jms_server
 JNDIName: error/ jms_queue_jndiName
 IncompleteWorkExpirationTime: -1
 LoadBalancingPolicy: 'Round-Robin'
 ForwardDelay: -1
 Template: osmErrorJmsTemplate

Note

• All error queues have _ERROR as the suffix.

• For internal queues and topics in OSM, generation of error queues is always
enabled. Each queue and topic has its own _ERROR queue. Messages that
cannot be delivered are redirected accordingly.

• Disable this feature for O2A 2.1.2.1.0 cartridges used in an OSM cloud native
environment. The O2A build generates its own project specification fragment,
which must be used instead.

Creating a JMS Template
A JMS template provides an efficient means of defining multiple destinations with similar
attribute settings.

You can add one or more JMS templates if required in addition to the one provided. To create
additional JMS templates, copy the customJmsTemplate definition and rename it:

JMS Template (optional). Uncomment to define "customJmsTemplate"
Alternatively use the built-in template "customJmsTemplate"
#jmsTemplate:
customJmsTemplate:
DeliveryFailureParams:
RedeliveryLimit: 10
ExpirationPolicy: Discard
DeliveryParamsOverrides:
RedeliveryDelay: 1000

Chapter 6
Creating a JMS Template

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 39

TimeToLive: -1
Priority: -1
TimeToDeliver: -1

To use a JMS template for a queue or topic definition, you can specify the template name, as
well as the unique JNDI name:

jms distributed queues. Uncomment to define one or more JMS queues under a
single element uniformDistributedQueues.
uniformDistributedQueues: {} # This empty declaration should be removed if
adding items here.
#uniformDistributedQueues:
- name: jms_queue_name
jndiName: jms_queue_jndiName
jmsTemplate: customJmsTemplate

jms distributed topic. Uncomment to define one or more JMS Topics under a
single element uniformDistributedTopics.
uniformDistributedTopics: {} # This empty declaration should be removed if
adding items here.
#uniformDistributedTopics:
- name: jms_topic_name
jndiName: jms_topic_jndiName
jmsTemplate: customJmsTemplate

If the queues and topics need to be created under custom JMS resources, then the OSM cloud
native WDT extension mechanism should be employed as described in "Adding a JMS System
Resource".

Provisioning Cartridge User Accounts
This section describes how to use the sample scripts to create credential store secrets and
provide the instance configuration so that OSM cloud native can access the credentials.

This section covers the following topics:

• Creating Credential Store Secret

• Declaring the Secret

You manage the following types of users, based on the host system:

• Users "hosted" by this OSM instance: These are non-human user accounts that
systems use to login from outside OSM (via a User Interface, OSM XML API or OSM Web
Service API) or are logged in internally (as a Run As user for an automation plugin).

These users:

– Require mappings to OSM groups.

– Use the osm mapname, with _sysgen_ keyname.

– Must be added to the project specification "cartridgeUsers" list.

• Users "hosted" by external systems: The external systems could be UIM, ASAP or
another instance of OSM. These users are used by cartridge automation while interacting
with external systems to authenticate themselves to the external system.

These users:

Chapter 6
Provisioning Cartridge User Accounts

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 39

– Require Kubernetes secret entries. OSM group mapping is not required.

– Use the mapname and keyname the cartridge developer has decided upon in the
code.

– Must be added to the project specification "externalCredStore.secrets.mapNames" list.

It is possible for the same credentials to be required in two ways - as a non-human cartridge
user and as an access credential for an "external" system. An example would be an instance
that hosts both SOM and TOM cartridges. The TOM cartridge may require a non-human user
called "tom", while the SOM cartridge needs an access credential to send the TOM order. For
flexibility, the instances that send the TOM order would not assume co-location and would fetch
access credentials for the user "tom". When the same credentials need to exist for both
categories, that user ID must be duplicated - once for each category, as per the syntax of that
category. Ensure that the passwords are in sync, as OSM cloud native views these as
independent entries.

Creating Credential Store Secret

In a traditional deployment, OSM uses the Fusion Middleware Credential Store framework and
provides tooling for creating and populating the credential store through the XMLIE's
"credStoreAdmin" operation. OSM cloud native uses Kubernetes Secrets as the credential
store and the OSM cloud native toolkit provides sample scripts that create credential store
secrets and populate them with the required credentials.

Note

If you use custom code that relies on the OPSS Keystore Service, you need to make
changes for OSM cloud native as that mechanism is no longer supported. For details,
see "Differences Between OSM Cloud Native and OSM Traditional Deployments".

A text file is used to describe the details required to provision the user accounts properly. Each
user is captured in one line and has the following format:

map_name:key_name:username:credential-system[:osm-groups]

$OSM_CNTK/samples/credentials/osm_users.txt serves as a template for user credentials
that need to be created for both human and automation users.

Copy this file to your private specification repository under the instance specific directory and
rename it to something meaningful. For example, rename the file as repo/
cartridge_user_text_file.txt.

The mapName parameter is a mandatory parameter, as this value is used as the prefix of the
secret name to be created.

The choice of map name and key name affects which OSM automation framework API can be
used to retrieve the value within the automation plugin:

• Use "osm" as map name and _sysgen_ as key name. The credential record is accessed
with the context:getOsmCredentialPassword API.

• Any other map name and key name needs access with the
context:getCredentialAsXML or context:getCredential APIs.
Refer to the OSM SDK for more details.

The credential-system parameter is a mandatory parameter and must be set to:

Chapter 6
Provisioning Cartridge User Accounts

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 39

• secret: Creates the human user or automation user against the Kubernetes Secret.

The osm-groups parameter represents a list of OSM groups to associate the user to the
embedded LDAP server.

The valid values for the osm-groups parameter are:

• OMS_client

• OMS_designer

• OMS_user_assigner

• OMS_workgroup_manager

• OMS_xml_api

• OMS_ws_api

• OMS_ws_diag

• OMS_log_manager

• OMS_cache_manager

• Cartridge_Management_WebService

• OSM_automation

• osmEntityClientGroup

• osmRestApiGroup

Refer to OSM System Administrator's Guide for details about OSM user group mapping.

The following text shows a sample user information text file:

osm:_sysgen_:osmlf:secret:OMS_xml_api,OSM_automation,OMS_ws_api
uim:uim:uim:secret
tom:osm:tomadmin:secret

In the above example:

• The first line creates a Kubernetes secret entry for "osmlf" user in the "osm" credential
secret. The entry contains a username, password, and the group associations. Use the

context:getOsmCredentialPassword

API to retrieve the password. Add "osmlf" to the project specification's "cartridgeUsers" list.

• The second line creates a Kubernetes secret entry for the user "uim" with the access key
name "uim". The entry contains a username and a password. Use the
context:getCredential API or the context:getCredentialAsXML API to retrieve both
username and password from map "uim" with key "uim". Add "uim" to the project
specification's "externalCredStore.secrets.mapNames" list.

• The third line creates a Kubernetes secret entry for the user "tomadmin" with the access
key name "osm". The entry contains a username and a password. Use the
context:getCredential API or the context:getCredentialAsXML API to retrieve both
username and password from map "tom" with key "osm". Add "tom" to the project
specification's "externalCredStore.secrets.mapNames" list.

The secrets that the manage-cartridge-credentials.sh script creates are named project-
instance-osmcn-cred-mapName as per the naming conventions required by OSM. For each

Chapter 6
Provisioning Cartridge User Accounts

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 39

unique mapName that you provide, the script creates one secret. This means if five user
entries exist for "uim", each entry will be available in a single secret named project-instance-
osmcn-cred-uim. The script prompts for passwords interactively.

To create the credential store secret:

1. Run the following script:

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh \
-p project \
-i instance \
-c create \
-f fileRepo/customSolution_users.txt

You will see the following output
secret/project-instance-osmcn-cred-uim created

2. Validate that the secrets are created:

kubectl get secret -n project

NAME
project-instance-osmcn-cred-uim

Creating Cartridge User Accounts in Embedded LDAP

To create accounts for cartridge users in embedded LDAP, under the cartridgeUsers
section in project.yaml, add all the cartridge users (only those from the prefix/map name
osm). During the creation of the OSM server instance, for all the cartridge users listed, an
account is created in embedded LDAP with the same username and password and groups as
the Kubernetes secret.

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

Declaring the Secret

After the secret is created, declare the secret used by the credential store mechanism by
editing your project specification. In the project specification, specify only mapName. The prefix
project-instance-osmcn-cred is derived during the instance creation.

To declare the secrets, edit the project specification:

#External Credentials Store
externalCredStore:
 secrets:
 mapNames:
 -mapName

Chapter 6
Provisioning Cartridge User Accounts

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 39

The OSM cloud native configuration provides a start-up parameter that allows the OSM core
application to determine whether the credentials are held in a WebLogic Credential Store (for
traditional deployments) or in a Kubernetes Secret Credential Store (for cloud native) so that
the configuration is set for you. Cartridges that rely on accessing these credentials are now
enabled for execution.

Working with Cartridges
This section describes how you build, deploy, and undeploy OSM cartridges in a cloud native
environment.

OSM cartridges are built using either Design Studio or build scripts, which are the methods
used for building cartridges in traditional environments. There are multiple ways to deploy
cartridges, but they all result in cartridge information extracted from the par files and stored in
various OSM metadata tables in the OSM DB.

The following diagram illustrates cartridge deployment paths.

Figure 6-3 Cartridge Deployment Paths

Cartridge Deployment Tool in OSM Cloud Native
To deploy cartridge par files, OSM cloud native employs a mechanism using the OSM cloud
native toolkit's manage-cartridges.sh script.

Use the following commands with the manage-cartridges.sh script:

• -p projectName: Mandatory. Name of the project.

• -i instanceName: Mandatory. Name of the instance.

• -s specPath: Mandatory. The location of the specification files. A colon(:) delimited list of
directories.

• -m customExtPath: Use this to specify the path of custom extension files. Takes a colon(:)
delimited list of directories. If the path provided is empty with the custom flag enabled as
true in the specifications, then the script is stopped.

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 39

• -o : Enables online cartridge deployment.

• -c commandName: Mandatory. Use the following command names:

– parDeploy: Use this to deploy a cartridge par file from your local file system. Use this
for development environments only.

– sync: Use this to synchronize cartridges using the project specification and remote file
repository. Use this for all controlled environments.

• -f parPath: Mandatory if parDeploy is used. This specifies the path of the cartridge par file
that you want to deploy.

• -q: Optional. Disables verbose progress indicators.

The manage-cartridges.sh script spins up a pod to perform the requested deployment
activities.

Single or One-off Cartridge Deployment
To deploy a single cartridge par file, use the parDeploy command to the manage-
cartridges.sh script along with the -fparPath parameter. The script must be run such that it
has access to the specified cartridge par file as well as the kubectl cp privileges on the pod that
is spun up in the project namespace.

Specification-driven Cartridge Deployment
For more control and traceability in the OSM cartridge loadout, use the sync command to the
manage-cartridges.sh script. You must first describe the desired list of cartridges in your
project specification. The sync command performs the required deploy, redeploy and fast-
undeploy changes to modify the in-database set of cartridges to match the list given in the
specification. This command also sets the default cartridge as per the specification.

The list in the project specification must depict the desired or target state.

Note

In the actions listed below, "cartridge" refers to "cartridge+version".

• If a cartridge is listed as deployed in the specification, but is not deployed in the
database: it is deployed.

• If a cartridge is listed as deployed in the specification and the same version exists in the
database, the two cartridge’s contents are compared; if there is a difference, the new par
file is redeployed.

• If a cartridge is listed in the specification with a default setting that does not match with
what is in the database, the default setting in the database is updated to match the
specification; no change is done to this setting if they already match.

• If a cartridge is listed as fastundeployed in the specification and it exists as active in the
database, it is fast-undeployed in the database. If the cartridge is already fast-undeployed
in the database, nothing is done. If the cartridge does not exist in the database, nothing is
done.

The OSM cloud native toolkit ignores the default flag encoded in the cartridge par file when
the sync command is used - it enforces the list as specified in the project specification. For
each cartridge, the sync validation ensures that exactly one version is tagged as default.

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 39

Each entry in the list of cartridges describes a specific cartridge using the name of the
cartridge, its version, the intended deployment state and the intended default state. In addition,
it specifies a URL that can be used to download the cartridge par file into the cartridge
management pod. Alternatively, it can specify a container image that carries the cartridge par.
The URL would be pointing to a remote file repository that may require authentication or other
parameters. The cartridge entry’s param fields can be used to provide parameters (in the form
of "curl" command line parameters) as well as a secret that carries the username and
password information.

Refer to the "Cartridge par Sources" section for details on the different options possible.

cartridges:
 - name: name of the cartridge - Mandatory, (must match the cartridge name in the par
file)

 url: URL of the location where to download the cartridge par file - Provide the URL
or the image details.

 secret: Kubernetes secret in the project namespace - Optional. Required only if
remote URL server requires authentication.

 image: image built with par file- Provide either the image or the URL, but not both.

 imagePullSecret: The secret required to pull the image built for cartridge
deployment via image.

 params: Commandline parameters will be passed to curl - Optional. User can provide
additional parameters such as proxy settings for curl.

 version: cartridge version, Example 1.0.0.0.0 - Mandatory. Cartridge version must
match the cartridge version in the par file.

 default: true|false - Mandatory. Specify if this cartridge is the default cartridge.

 deploymentState: deployed|fastundeployed - Mandatory. Indicate the desired target
state of the cartridge.

Use the manage-cartridges.sh script from the CNTK with the command option -c of
parDeploy

Offline Cartridge Deployment Using the OSM Cloud Native Toolkit
This deployment mode supports deployment of new cartridges, deployment of new versions of
existing cartridges, and redeployment of existing cartridge versions with changes.

For offline cartridge deployment, all managed servers in your environment must be shut down.
The script stops running if there are managed servers up and running.

When using the toolkit for deploying cartridges in offline mode, the running instance of OSM
must be shut down first by scaling down the cluster size to 0:

vi spec_Path/project-instance.yaml
Change the cluster size to 0
#cluster size
clusterSize: 0
$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s spec_Path

Run the manage-cartridges.sh script with the desired command – parDeploy or sync.

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 39

Note

cartridgeManagement.resources (from the shape specification) is used by the pod
while deploying the cartridges.

Additionally, when you are using the sync command and the cartridges are listed in
the project specification using container images, cartridgeInitContainer.resources is
used to pull the cartridge images.

Edit the instance spec to restore the original number for the cluster size and run the same
upgrade-instance.sh command as before to bring up all the managed servers.

Online Cartridge Deployment Using the OSM Cloud Native Toolkit
This deployment mode only supports deployment of new cartridges and deployment of new
versions of existing cartridges.

Deploying cartridges in an OSM cloud native environment provides the following key benefits:

• You can deploy the cartridges without needing to isolate OSM from order processing at the
JMS/HTTP level.

• You can describe the cartridges for an environment in a declarative fashion.

In online mode, you can deploy cartridges to your OSM cloud native running instance with zero
down time. During the deployment process, OSM CN remains reachable by external HTTP
clients and JMS/SAF endpoints – this means OSM will continue to accept orders and will
continue to work on existing orders.

You use the manage-cartridges.sh script with the -o option to enable online deployment of
cartridges. After deploying the cartridges, the script performs a rolling restart of all the
managed servers in your environment. This restart loads the new cartridge+version into
memory and when all managed servers have the changes loaded, OSM switches to using the
new cartridge+version in sync across all managed servers.

Note

When deploying cartridges in online mode, the running instance of OSM must
continue to run and the required cluster size is at least 2.

Run the manage-cartridges.sh command with the additional -o command-line option to
deploy cartridges in online mode, with either parDeploy or sync

Consider the following when deploying cartridges in online mode:

• If no managed servers are running, a warning is shown that no managed server is up and
running and that the deployment mode is switching to offline deployment. The script
continues with offline deployment.

• If only one managed server is running, then the script fails to perform the deployment.

Deploying Cartridges Using Design Studio
You can deploy cartridges directly from Design Studio using the Eclipse user interface or
headless Design Studio. However, use Design Studio for deploying cartridges in scenarios

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 39

where there is a lot of churn in the build, deploy and test cycle, but not for production
environments. If used in conjunction with the OSM cloud native cartridge management
mechanism, then the deployed cartridges become out of sync with what is listed in the source
controlled specification file. For this reason, deploying cartridges using Design Studio is not
recommended for environments where the specification file is considered the single source of
truth for the set of deployed cartridges.

In order to incorporate Design Studio into the larger OSM cloud native ecosystem, you need to
have previously taken care of the mapping of the hostname to the Kubernetes cluster or the
load balancer as described in "Planning and Validating Your Cloud Native Environment".

After confirming that this has been done, do the following in Design Studio:

• Ensure that the connection URL of the Design Studio environment project matches your
OSM cloud native environment. This is likely: http://instance.project.osm.org:30305/
cartridge/wsapi. The suffix osm.org is configurable.

• In the Design Studio workspace, depending on your network setup, you may need to set
the Proxy bypass field in the Network Connection Preferences to:
instance.project.osm.org .

Listing Deployed Cartridges Using the OSM Cloud Native Toolkit
This command provides a report on all the cartridges present in the OSM cloud native
instance. The report contains the cartridge name, cartridge version, cartridge ID, whether it is
the default version or not, number of orders still open for it and number of orders completed by
it.

To invoke it, run the following command:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s spec_Path -c
list

The output includes fast-undeployed cartridges.

Cartridge par Sources
This topic outlines the sources from where you can deploy the Cartridge par files. For OSM,
Cartridge par files can be deployed from the following sources:

• Local Files

• Remote File Repository

• Container Images

Local Files
Use this method for only development environments. You can use the parDeploy command
with the manage-cartridges.sh script to deploy a cartridge par file from your system.

Remote File Repository
Using a remote file repository is more preferable than local files. However, choose between
this option and the container images as per your convenience. Use this method with the sync
command with the manage-cartridges.sh script.

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 39

There are two approaches to using the Remote File Repository – Secured and Unsecured. The
Unsecured approach could be suitable for test environments. You can also disable host
verification. However, it is recommended that you do not opt for this as it can be a security risk.

Details of the cartridge, its version and the remote repository must be specified in the project
specification as entries in the “cartridges” list. See the comments against this element in the
sample specification file for full details:

cartridges:
 - name: cartridge-name
 version: cartridge-version
 default: true-or-false
 deploymentState: deployed-or-fastundeployed
 url: url-to-cartridge-par-file-in-remote-repository
 secret: name-of-kubernetes-secret-holding-login-credentials-if-secured-remote-
repository
 params: any-parameters-that-must-be-passed-to-curl-to-connect-to-above-url

secret is only required if the remote repository is secured. The Kubernetes secret must be in
the same project namespace and must contain two fields, username and password, with the
appropriate values.

params is optional and depends solely on the networking and nature of the remote repository.

Container Images
Having a repository for cartridges is not always feasible or sustainable. However, there is one
kind of repository that is already a mandatory requirement for OSM cloud native (and in
general, for any work on Kubernetes). It is the container image repository. Allowing OSM to pull
cartridges as images from such an image repository allows for reuse of existing infrastructure
and security.

Use this method with the sync command with the manage-cartridges.sh script. Details of the
cartridge, its version and the image location must be specified in the project specification as
entries in the cartridges list (see the comments against this element in the sample
specification file for full details):

cartridges:
 - name: cartridge-name
 version: cartridge-version
 default: true-or-false
 deploymentState: deployed-or-fastundeployed
 image: image-name-and-tag
 imagepullsecret: credentials-for-image-repository

imagepullsecret is only required if the image repository demands authenticated access. It is
the standard Kubernetes image pull secret.

Building Cartridge Images

OSM Cloud Native Image Builder provides a sample utility to create a container image for a
cartridge par file or capability cartridge cpar file for use in deployment activities. See osm-
image-builder/samples/cartridgeAsImage.

#Script that builds container image using the par/cpar file that is provided
in -f parameter
./buildCartridgeImage.sh -n <Cartridge_Name> -v <Cartridge_Version> -f /
path/to/par/file
 or
./buildcartridgeImage.sh -f <cpar_file_path>

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 39

Example:
./buildCartridgeImage.sh -n SimpleRabbits -v 1.7.0.1.0 -f /home/user/
Cartridge/SimpleRabbits.par

Cartridge_Name and Cartridge_Version are extracted from the .par/.cpar archive file, which
are specified in Design Studio during the build process.

This creates an image with tag name as <Cartridge_Name>:<Cartridge_Version> in
lowercase for the .par archive file and <Cartridge_Name>-cpar:<Cartridge_Version> in
lowercase for the .cpar archive file. For the example above, the tag would be
simplerabbits:1.7.0.1.0.

Note

Cartridge_Name and Cartridge_Version must match what is encoded within the par
file.

Example :
./buildCartridgeImage.sh -f /path/to/parfile/SimpleRabbits.par
 - This results in the image "simplerabbit:1.0.1", which can be retagged and
 pushed as required.

OR

./buildCartridgeImage.sh -f /path/to/cparfile/COMCapabilities.cpar
 - This results in the image "comcapabilities-cpar:1.0.2", which can be
retagged and
 pushed as required.

A Dockerfile is present at osm-image-builder/samples/cartridgeAsImage, and is responsible
for creating a Docker image when this script is invoked. Modifications can be made to the
Dockerfile as follows:

• Base Image: You can update the base image as needed, as long as it is a compatible
Linux image.

• Custom configuration: You can add any OS level or network commands in the Dockerfile if
required, such as applying patches, updating /etc/hosts , or certificates.

Note

Do not modify any other lines in the Dockerfile

Selecting Deployment Style and Cartridge Source
This topic outlines the deployment styles and methods you can use to deploy cartridge par
files. We can consider there to be two categories of environments where cartridges need to be
managed:

• Open Environments

• Controlled Environments

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 39

Deploying Cartridges in Open Environments
Open environments are mostly development and some test environments. To deploy cartridges
to a running instance of OSM cloud native in an open environment, you can use any of the
following combinations:

• Design Studio deploy (during active cartridge development activity).

• Online or offline pardeploy using local file.

• Online or offline sync deploy using remote file repository or container images.

Deploying Cartridges in Controlled Environments
To install cartridges in controlled environments such as UAT, pre-production, and production,
use only the declarative approach. Such environments require careful control of content as well
as strong auditing of changes. Using the sync approach with an online or offline deployment
using manage-cartridges.sh will ensure fitment to pipelines and strong validation and
traceability. Choose remote file repositories or container image repositories to serve the
cartridge par files in a secure, versioned and auditable way. Use Design Studio’s headless
build to automate building the par file itself from source as a precursor to putting it into the
desired secured location.

Chapter 6
Working with Cartridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 39

7
Extending the WebLogic Server Deploy
Tooling (WDT) Model

While the OSM cloud native toolkit provides a domain model that is sufficient to support the
operation of the OSM application, there are a few aspects that you can customize to meet your
business requirements. This chapter provides the general mechanism that OSM cloud native
provides for how custom WebLogic Server Deploy Tooling (WDT) metadata can be used.

The following sections enable you to familiarize yourself with the basic extension mechanism.
For details on using the sample scripts to add custom WDT metadata, see "Using the Sample
Scripts to Extend the WDT Model".

About the Custom WDT Extension Mechanism
The OSM cloud native toolkit exposes an extension mechanism to extend the base WDT
domain configuration. For better management practices, you must specify different WDT model
fragments in multiple .tpl files that can be included in instances as necessary.

All extensions must be located in your source control repository in a directory referred to as
customExtPath, which is provided during instance creation. This does not need to be the same
location as specPath that contains the specification files. See the illustration about the directory
structure in "Managing Configuration as Code".

Using the WDT Model Tools
This section describes the WDT model tools that you can use when extending the WDT model.

The WDT model tools are available at: https://github.com/oracle/weblogic-deploy-tooling. The
documentation available on GitHub describes various tools, which are included in the OSM
cloud native toolkit.

For a developer trying to modify or extend the WDT model for a custom OSM instance, the
following tools are the most useful:

• WDT Discover Domain

• WDT Validate Model

WDT Discover Domain Tool
One way to generate the desired custom model is to manually create a WLS domain (using
legacy installers, wlst scripts, console UI changes, and so on) that contains all the constructs
that are required and is known to work, in terms of the custom use case. The WDT Discover
Domain tool can be pointed at this WLS domain to generate a set of model files. These can be
scanned and pruned to get the portions that are of custom interest. They can further be
parameterized using WDT's properties files or using Helm values.

If WDT properties are used to parameterize, ensure that you add that properties file to the
extension point in the custom implementation.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 15

https://github.com/oracle/weblogic-deploy-tooling

If Helm values are used to parameterize, ensure that you add these values to the appropriate
location - project/instance/shape yamls.

To discover a domain, run the following commands on the prepared WLS admin server or
standalone server:

ensure ORACLE_HOME is properly set
cd $ORACLE_HOME
mkdir wdt && cd wdt
wget https://github.com/oracle/weblogic-deploy-tooling/releases/download/
weblogic-deploy-tooling-1.6.0/weblogic-deploy.zip
Replace 1.6.0 with the actual WDT version as per OSM documentation
unzip weblogic-deploy.zip
cd weblogic-deploy/bin
./discoverDomain.sh -oracle_home $ORACLE_HOME \
 -domain_home domain-home \
 -archive_file archive \
 -model_file model \
 -domain_type domain-type \
 -admin_user admin-user \
 -admin_url t3-admin-url

where:

• archive and model are the directory+name of the files that the discovery tool creates. The
model file is of primary importance in this situation.

• domain-type is JRF for OSM applications

The command extracts the model from the running WLS instance. Alternatively, if it is sufficient
to extract the model from the domain configuration files, the admin_user and admin_url
parameters can be left out.

WDT Validate Model Tool
This tool is useful in the following scenarios:

• When there is a need to see what attributes and sub-fields are available for a model
element

• When there is a need to see if a model fragment is valid

Trying to test a newly written or even a modified model file by incorporating it into an instance
creation is cumbersome and often an inefficient way to test your changes. You need to check
the Introspector logs to see the details of any errors.

With the Validate Model tool, it is easier to validate the model file, especially if you are building
the model iteratively.

Common WDT Extension Mechanism
This section describes the extension mechanism that is generic and common to all methods of
extending WDT metadata.

Enabling the Extension Mechanism

To enable the extension mechanism:

Chapter 7
Common WDT Extension Mechanism

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 15

1. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository customExtPath. This file is a single location where other template files, which
store specific WDT metadata fragments, can be included for an OSM instance. This sets
up the WDT fragments for re-use across a project, while allowing conditional inclusion
based on instance level values in the specification files.

2. Enable the extension mechanism by setting the custom flag to true in the project
specification and including _custom-domain-model.tpl:

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl

The basic extension mechanism is now enabled.

For each WDT fragment that is destined for inclusion, perform the following additional steps:

• Provide the WDT fragment

• (Optional) Parameterize the WDT Fragment

• Load the WDT Fragment

• List the .tpl files

• Debug the changes in the Helm chart

Providing the WDT Fragment

Naming convention dictates that the template files start with an underscore _. For example,
_custom-extension-support.tpl.

You can copy any one of the WDT fragments provided in the samples, or you can create your
own. If you provide your own WDT fragment, then you will need to reverse engineer the
required metadata using the WDT tooling. For these samples, see "Using the WDT Model
Tools".

If you create your own .tpl file, ensure that the WDT fragment is enclosed in a define block as
follows:

{{- define "osm-domain.custom-extension-support" -}}
custom model fragment goes here
{{- end }}

(Optional) Parameterizing the WDT Fragment

Instead of hard coding the values into the WDT, you can parameterize the content so that
specific values can be driven from the Helm chart. Determine which values fall into this
category and then apply the following changes:

To parameterize the WDT fragment:

1. Update the WDT to use a parameter as illustrated in the following example:

Host: 'external.provider.hostname'

becomes....

Chapter 7
Common WDT Extension Mechanism

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 15

Host: '{{ .Values.custom.extension.host }}'

2. Add values to the application instance in either the project specification or the instance
specification found in the source control at spec_Path.

custom:
 enabled: true
 <extension>:
 host: provide_explicit_value_here

The custom area of the specification file is where you can add as much content as needed for
your extension use cases. Oracle recommends that you keep the yaml structure as flat as
possible.

Loading the WDT Fragment

The sample _custom-domain-model.tpl already has conditional inclusions for some of the
samples provided in the toolkit. JMS, JDBC, and custom application archives can be enabled
by providing the appropriate flag in the instance specification and including the specific .tpl file
in the project specification. For the samples, you do this task as described in "Using the
Sample Scripts to Extend the WDT Model".

Load the model fragment into extension_Directory/_custom-domain-model.tpl as follows:

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
custom-<extension>-support.<index>.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}
{{- end }}

Note

See the yaml naming convention that is specified by wdt - filename.yaml. The index
used determines the loading order when there are multiple yaml files. Indexes below
70 are reserved for internal Oracle use.

The WDT may only need to be used conditionally. It is important to be able to exclude the
fragment based on the values provided in the project specification. In this case, _custom-
domain-model.tpl should include the condition that needs to be met for the WDT to be
included.

Note

Including the WDT in extension_Directory, which makes it available during instance
creation, but not used does not pose any problems for Helm.

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.<extension>.enabled }}
custom-extension-support.index.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}

Chapter 7
Common WDT Extension Mechanism

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 15

{{- end }}
{{- end }}

Listing the TPL Files in the Project

For each WDT fragment that is created in a .tpl file, it needs to be listed in the project
specification.

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl
 - new_wdt.tpl

Debugging Helm Chart Changes

When making changes to existing yaml files or creating new WDT fragments, it is useful to test
the changes before attempting to create an instance.

You can use the following scripts provided with the toolkit to debug Helm chart changes:

• $OSM_CNTK/scripts/lint-osm-instance-chart.sh

• $OSM_CNTK/scripts/create-instance-dry-run.sh

You can now create an OSM instance.

Using the Sample Scripts to Extend the WDT Model
This section provides instructions for extending the WDT model by using the sample scripts
that are provided with the toolkit. You add custom WDT metadata to create your own OSM
instances.

The toolkit includes sample scripts for the following:

• Adding a JDBC Datasource

• Adding a JMS System Resource

• Deploying a Custom Application ear to an OSM WebLogic domain

• Extending the WDT Metadata for an External Authenticator

The general and common extension process described in "Common WDT Extension
Mechanism" must be repeated for each of the use cases described in this section.

Adding a JDBC Datasource
The WDT fragment describing a JDBCSystemResource is provided in the $CNTK/samples/
customExtension/_custom-jdbc-support.tpl sample file.

To incorporate this fragment into your OSM instance:

1. Enable the extension mechanism by setting the custom flag to true and add the custom-
domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 15

 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/_custom-
jdbc-support.tpl to the customExtPath in your source control repository.

3. Parameterize the WDT fragment. The fragment has already been parameterized and uses
values specified in the shape file. You must update the remaining values enclosed in
angular brackets. By default, this WDT reads the JDBC values from the shape that is
provided during instance creation.

Note

Kubernetes Secrets can also be used to provide sensitive data such as username
and password. See "Accessing Kubernetes Secrets from WDT Metadata" for
details.

resources:
 JDBCSystemResource:
 '<custom-connection-pool>':
 JdbcResource:
 JDBCDriverParams:
 URL: 'jdbc:oracle:thin:@<database_host>:<database_port>/<database-
service>'
 PasswordEncrypted: '<password>'
 #PasswordEncrypted: '@@SECRET:my_secret_name:my_db_password@@'
 Properties:
 user:
 Value: '<user>'
 #Value: '@@SECRET:my_secret_name:my_db_user@@'
 oracle.net.CONNECT_TIMEOUT:
 Value: {{ default "10000" .Values.jdbc.oracleNetConnectTimeout }}
 oracle.jdbc.ReadTimeout:
 Value: {{ default "3660000" .Values.jdbc.oracleJdbcReadTimeout }}
 JDBCConnectionPoolParams:
 InitialCapacity: {{ default "0" .Values.jdbc.initialCapacity }}
 MaxCapacity: {{ default "15" .Values.jdbc.maxCapacity }}
 MinCapacity: {{ default "0" .Values.jdbc.minCapacity }}
 ShrinkFrequencySeconds: {{ default
"900" .Values.jdbc.shrinkFrequencySeconds }}
 TestFrequencySeconds: {{ default
"300" .Values.jdbc.testFrequencySeconds }}
 TestConnectionsOnReserve: {{ default
"true" .Values.jdbc.testConnectionsOnReserve }}
 SecondsToTrustAnIdlePoolConnection: {{ default
"10" .Values.jdbc.secondsToTrustAnIdlePoolConnection }}
 StatementCacheSize: {{ default "30" .Values.jdbc.statementCacheSize }}
 ConnectionCreationRetryFrequencySeconds: {{ default
"30" .Values.jdbc.connectionCreationRetryFrequencySeconds }}
 IgnoreInUseConnectionsEnabled: {{ default
"true" .Values.jdbc.ignoreInUseConnectionsEnabled }}
 InactiveConnectionTimeoutSeconds: {{ default
"0" .Values.jdbc.inactiveConnectionTimeoutSeconds }}
 StatementCacheType: '{{ default "LRU" .Values.jdbc.statementCacheType }}'

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 15

 CountOfTestFailuresTillFlush: {{ default
"5" .Values.jdbc.countOfTestFailuresTillFlush }}
 CountOfRefreshFailuresTillDisable: {{ default
"5" .Values.jdbc.countOfRefreshFailuresTillDisable }}
 RemoveInfectedConnections: {{ default
"false" .Values.jdbc.removeInfectedConnections }}
 ConnectionReserveTimeoutSeconds: {{ default
"10" .Values.jdbc.connectionReserveTimeoutSeconds }}
 StatementTimeout: {{ default "3630" .Values.jdbc.statementTimeout }}

4. The fragment is already configured for conditional loading based on the presence of the
jdbc flag in the project specification. Set the jdbc flag to true.

custom:
 enabled: true
 jdbc: true

5. Add the JDBC .tpl file to the project specification:

custom:
 enabled: true
 jdbc: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jdbc-support.tpl

You can now create the OSM instance.

Adding a JMS System Resource
The WDT fragment describing a JMS System Resource is provided in the $CNTK/samples/
customExtension/_custom-jms-support.tpl sample file.

To incorporate this fragment into your OSM instance:

1. Enable the extension mechanism by setting the custom flag to true and add the custom-
domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/_custom-
jms-support.tpl to the customExtPath in your source control repository. While this sample
shows WDT for a JMS Queue and JMS Topic, any other JMS entity can be supplied
instead. See "Using the WDT Model Tools" for details on establishing the correct WDT.

3. Parameterize the WDT fragment. The fragment has not been parameterized. The text
enclosed in angular brackets must be replaced with specific values.
Alternatively, update the WDT to parameterize content and provide actual values in the
project specification.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 15

4. The fragment is already configured for conditional loading based on the presence of the
jms flag in the project specification. See the $CNTK/charts/osm/templates/_custom-
domain-model.tpl template. Set the jms flag to true.

custom:
 enabled: true
 jms: true

5. Add the jms tpl file to the project specification:

custom:
 enabled: true
 jms: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jms-support.tpl

You can now create the OSM instance.

Deploying Entities to an OSM WebLogic Domain
You can deploy any WebLogic Server deployable entity, such as an application EAR or WAR to
an OSM WebLogic domain.

To deploy an entity to an OSM WebLogic Domain:

1. Package the entity, for example, the application ear into an archive file and place it inside
the container image used for creating OSM instances.

Note

The WebLogic domain tooling expects application binaries to be available at the
correct path within the archive. A script is provided for your convenience that
packages the application into the correct path.

cp application.ear samples/customExtensions
cd samples/customExtensions
./make-custom-archive.sh archive_file_name.zip application.ear

2. Build a new container image:

cd samples/customExtensions
builder build -t "image_name:tag" --build-arg base_image=osm_base_image --
build-arg archive=archive_file_name.zip .

builder will be docker or podman.

3. Upload the generated image to your private image repository.

4. Add the domain configuration.
In addition to copying the archive file into the base image, you must supply custom
configuration, which can be passed in by any one of following two mechanisms:

• Inside the container image.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 15

This mechanism keeps the ear file together with the domain configuration in one
location. This is best suited to applications that can be considered standard or fixed for
all variants of a domain that are required (test, development, and production).

Advantage: You do not need to add the custom domain configuration every time you
create a domain.

Disadvantage: If you want to change the configuration, it requires a change to the
base image. In domains that are already up, an image change triggers a full restart of
the domain.

To add the domain configuration using this mechanism:

a. Save your fragment in a YAML file that includes an index 70 or above. For
example, custom-application-extension.70.yaml.

b. Edit Dockerfile to copy the YAML file to the u01/wdt/models directory along with
the archive.

• Using the extension mechanism.
This approach allows for per instance control over the application. This is best suited
to situations where the application configuration needs to be dictated by the specific
domain instance (for example, test vs. production).

Advantage: Keeps all "variable" (per instance) configuration in one place at domain
creation.

Disadvantage: Domain creation for every instance that uses the application must
remember to add the configuration.

To use the extension mechanism:

a. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

b. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-application-support.tpl to the customExtPath in your source control
repository.

c. Parameterize the WDT fragment. The fragment has already been parameterized.

appDeployments:
 Application:
 {{- .Values.custom.application_name }}:
 SourcePath: 'wlsdeploy/
applications/{{- .Values.custom.binary_name }}.ear'
 ModuleType: ear
 StagingMode: nostage
 PlanStagingMode: nostage
 Target: '@@PROP:CLUSTER_NAME@@'

d. Provide the values in the instance specification:

custom:
 enabled: true
 application: true

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 15

 #additional values here
 application_name: myApplication
 binary_name: myApp

e. Add the application flag and set it to true. The fragment is already configured
for conditional loading based on the presence of the application flag in the
project specification. See $CNTK/charts/osm/templates/_custom-domain-
model.tpl in the toolkit.

custom:
 enabled: true
 application: true

f. Add the application tpl file to the project specification:

custom:
 enabled: true
 application: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-application-support.tpl

You can now create the OSM instance.

Extending the WDT Metadata for an External Authenticator
The OSM cloud native toolkit supports configuration for any generic external LDAP provider.
However, if the chosen LDAP provider has limitations with the generic LDAP provider, you
would need different WDT metadata, which is a significant undertaking. The configuration
required to support an alternate WLS provider would need to be investigated and developed
independently using an existing WebLogic domain. Oracle's WDT Discover Domain Tool can
analyze an existing domain and generate the corresponding WDT model. The WDT model
fragment can then be used to configure the OSM domain using the toolkit extension
mechanism.

See Fusion MiddleWare documentation for information on configuring a WebLogic domain with
alternative authentication providers:

• Configuring WebLogic to use LDAP

• Configuring Active Directory (AD) as an Authentication Provider in WebLogic

After the WDT is determined, it is provided during the creation process in the same way as
other WDT metadata fragments. This section describes the process for setting up external
authentication for OSM cloud native.

To set up external authentication:

1. Disable OpenLDAP by editing the project specification in customExPath:

authentication:
 openldap:
 enabled: false

2. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository at customExtPath.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 15

https://docs.oracle.com/en/middleware/enterprise-data-quality/12.2.1.3/secure/configuring-weblogic-use-ldap.html#GUID-2E31FC0B-6934-441E-AA4B-3F57A70ABA68
https://docs.oracle.com/cd/E82085_01/141/rib_implementation_guide/appendixA.htm#sthref138

3. Enable the extension mechanism by setting the custom flag to true in the project
specification and including the _custom-domain-model.tpl

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

4. Determine and provide the WDT model fragment for the security provider in the WebLogic
domain. Once you know the WDT fragment that needs to be supplied, save it into a file in
your source control repository at the customExtPath (_custom-provider-support.tpl).

For OSM cloud native, a custom authentication provider offers integration with an
additional identity store, for example, Active Directory. This is in addition to the default
authentication providers offered by WebLogic, DefaultAuthenticator and
DefaultIdentityAsserter, which are required by OSM.

The following WDT model fragment is automatically combined with the
DefaultAuthenticator and DefaultIdentityAsserter defined in OSM's default WDT
model. Because of this, the custom authentication provider appears last among all
authentication providers. Since the order of the authentication providers determines the
order that they are queried, this means that users are authenticated against WebLogic's
embedded LDAP first, and if no such user exists then the custom authentication provider is
queried. This means that when a human user logs in, they are first checked against the
machine users in embedded LDAP (which will not find a match) and then checked against
the custom authentication provider.

{{- define "osm.custom-provider-support" -}}
topology:
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 YouLDAPProviderStartHere:
 <specific details here>

{{- end }}

Oracle recommends that you keep this order. If required, you can query the custom
provider first by using the following pattern:

{{- define "osm.custom-provider-support" -}}
topology:
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 '!DefaultAuthenticator':
 '!DefaultIdentityAsserter':
 YouLDAPProviderStartHere:
 <specific details here>

 DefaultAuthenticator:
 DefaultAuthenticator:
 ControlFlag: SUFFICIENT
 UseRetrievedUserNameAsPrincipal: true

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 15

 DefaultIdentityAsserter:
 DefaultIdentityAsserter:
{{- end }}

This is WDT syntax that deletes the default providers specified in OSM's default WDT
model, adds the custom provider, and recreates the default providers.

Note

In this configuration, the ControlFlag for the custom provider must be
SUFFICIENT.

5. (Optional) Update any parameters that should not be hard coded in the WDT fragment.
Add these values to the project specification under the "custom" section.

6. Load the model fragment by editing your custom_extension_path/ _custom-domain-
model.tpl file:

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-provider-support" $root | nindent 2 }}
{{- end }}

If you would like conditional inclusion of the fragment...something
like this instead

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.provider.flag}}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-<provider>-support" $root | nindent 2 }}
{{- end }}
{{- end }}

Note

Remember the yaml naming convention that is specified by wdt - filename.yaml.
The index used determines the loading order when there are multiple yaml files.
Indexes below 70 are reserved for internal Oracle use.

7. Add the tpl file that has the authentication provider WDT into the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-provider-support.tpl

You can now create an OSM instance.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 15

Accessing Kubernetes Secrets from WDT Metadata
The process of handling sensitive data inside a WDT fragment involves the following:

• Creating Kubernetes secrets

• Declaring the secrets in the specification file

• Referencing the secrets from the WDT fragment

To access Kubernetes secrets from WDT metadata:

1. Create the secret.
Secrets must be created in the correct Kubernetes namespace. The namespace is already
created when registering the namespace and aligns to your project name.

To create the secret using the command line, run the following command:

$kubectl -n project_Name create secret generic secret_Name \
 --from-literal=key1=$value \
 --from-literal=key2=$value

2. Add the secret in the custom section of the instance specification in your source
repository:

Custom secrets
replace the empty secret names with one or more secrets
instance:
 customSecrets:
 enabled: true
 secretNames:
 - mysecret1
 - mysecret2

Once you have created and declared your custom secrets, they can be referenced from
elsewhere in the WDT model.

3. Access the secret from inside a WDT fragment:

Field1: '@@SECRET:secret_name:key1@@'
Field2: '@@SECRET:secret_name:key2@@'

where secret_name represents the secret name and key represents one of the keys in the
secret.

Troubleshooting WDT Issues
This section provides details about some procedures that you may have to run in order to
resolve issues with WDT.

Starting and Terminating a WDT Pod

The OSM image includes the WDT tools that are often needed to debug or discover a WDT
fragment. You can start a temporary pod that provides access to these tools. Before starting

Chapter 7
Accessing Kubernetes Secrets from WDT Metadata

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 15

the pod, download the container image of the OSM base image to ensure that the download
time does not exceed the duration of the Kubernetes pod creation timeout.

kubectl run wdt --generator=run-pod/v1 \
 --image OSM_base_image -- sleep infinity

When the pod is no longer needed, you can delete it:

kubectl delete pod wdt

Validating a Model YAML File

To validate a model YAML file:

1. Copy a model yaml into your temporary pod:

kubectl cp model_file wdt:/tmp/model_file

2. Run the following command and wait for the prompt:

kubectl exec -ti wdt /bin/bash

3. Validate the model file you copied:

cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME -model_file /tmp/model_file

4. When you are done validating, exit the pod:

exit

The line numbers returned by the validateModel script are exclusive of the comment lines.
Either strip the comments first or do the calculation to get the "real" line number in the file.

This process can be iterated by first reviewing the WDT errors and warnings, fixing the YAML
file, and then re-running the above procedure. Repeat this as required.

Note

Model files can contain fragments of models, but each model element must have its
full parentage, starting from section. For example, following is the sample if the
fragment is the model element JmsResource:

resources:
 JMSSystemResource:
 JmsResource:
 model-fragment-to-validate

Displaying Valid Attributes and Child Attributes of a WDT Model

Chapter 7
Troubleshooting WDT Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 15

To display the attributes of a WDT model, run the following commands:

kubectl exec -ti wdt /bin/bash
wait for prompt
cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME \
 -print-usage path
exit

The path here is the WDT path to the model element of interest. For example, to see all the
attributes and child attributes for SAFImportedDestinations, the path is resources:/
JMSSystemResource/JmsResource/SAFImportedDestinations.

A common way to construct the path is to look for the element in a discovered model file and
determine its yaml path. Another way is to start off with a path of section:, where section
is one of "domainInfo", "topology", "resources" or "appDeployments". By iteratively discovering
the child attributes, the final path can be built-up.

To shorten this search process, add the -recursive flag to the validateModel.sh script
command line. Care should be taken as the output can be quite large at the higher levels.

Chapter 7
Troubleshooting WDT Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 15

8
Exploring Configuration Options

The OSM cloud native toolkit gives you options to set up your configuration based on your
requirements. This chapter describes the configurations you can explore, allowing you to
decide how best to configure your OSM cloud native environment to suit your needs.

You can choose configuration options for the following:

• Manage LDAP Providers in WLS via OSM

• Working with Shapes

• Injecting Custom Configuration Files

• Choosing Worker Nodes for Running OSM Cloud Native

• Working with Ingress, Ingress Controller, and External Load Balancer

• Using an Alternate Ingress Controller

• Reusing the Database State

• Setting Up Persistent Storage

• Setting Up Database Optimizer Statistics

• Leveraging Oracle WebLogic Server Active GridLink

• Managing Logs

• Managing OSM Cloud Native Metrics

• Managing WebLogic Monitoring Exporter (WME) Metrics

• Proxy Configuration in Microservices

The sections that follow provide instructions for working with these configuration options.

Manage LDAP Providers in WLS via OSM
This section explains how to manage your LDAP providers in WLS using OSM.

• OSM no longer supports the management of LDAP server via OSM cloud native toolkit
scripts (such as managing accounts, users and groups in the LDAP server).

• Support for Generic LDAP to adapt all supported directory services by weblogic which
uses LDAP including OpenLDAP has been provided.

• OSM will be providing functionality to users for other directory services via model
extensions.

Integrating LDAP service with Weblogic via OSM
OSM provides two ways to integrate the LDAP service:

• Generic LDAP: It supports many of the LDAP vendors.

• Model Extensions: If a specific LDAP vendor is not compatible with Generic LDAP
provider, a custom model extension can be used to configure a vendor-specific LDAP
provider.

Using Generic LDAP

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 45

To use generic LDAP, you need to do the following:

Secret Creation

• ldap-secret-creation

$OSM_CNTK/samples/credentials/manage-osm-ldap-credentials.sh -p project -i instance -
c create -l ldap

• After executing the above command, the script asks the host and domain node to get
users and groups, user domain node and password to access the LDAP server.

• After providing all the credentials, the script creates project-instance-ldap-credentials
secret which is used while creating an instance to import users from the LDAP server and
assign respective groups.

Enabling LDAP in Project Specification

<project>.yaml

#External authentication
authentication:
When enabled, kubernetes secret "project-instance-ldap-credentials"
must exist
ldap:
 enabled: true

After above configurations, create the OSM cloud native instance. If it is already running,
delete it and create it again.

Using LDAP Providers via Model Extensions
Other LDAP Providers as listed by Weblogic can be used via model extensions.

• Add the custom model tpl file which has configurations for the LDAP provider to
the $OSM_CNTK/samples/_custom-domain-model.tpl.

custom-ldapprovider.tpl

{{- if .Values.custom.jms }}
custom-jms-support.74.yaml: |+
 {{- include "osm.custom-jms-support" $root | nindent 2 }}
{{- end }}
custom-<ldap-provider>-support.76.yaml: |+
 {{- include "osm.custom-ldap-provider-support" $root | nindent 2}}

• Enable custom flag and add both custom-domain-model.tpl and custom-ldap-provider-
support.tpl to wdtFiles in the project specification file.

project.yaml

Sample WDT extensions can be enabled here. When enabled is true, then
_custom-domain-model.tpl needs to be un-commented. Custom template files can
also be added.
custom:
 enabled: true
 application: false
 jdbc: false
 jms: false
 #wdtFiles: [] # This empty declaration should be removed if adding items here.
 wdtFiles:
 # - _myWDTFile1.tpl
 # - _myWDTFile2.tpl

Chapter 8
Manage LDAP Providers in WLS via OSM

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 45

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/secmg/ldap_atn.html#GUID-D2C1CB94-5806-4748-8F00-A02BA28281FA

 - _custom-domain-model.tpl
 - _custom-ldap-provider-support.tpl

• Create the OSM cloud native instance. If it is already running, delete it and create it again.
Here custom-models-path refers to the directory where the wdtFiles exist.

create-instance

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s specpath -m custom-models-
path

Sample LDAP Provider Model File

If the decision is made to use a vendor specific LDAP provider instead of Generic LDAP
provider, to illustrate the model extension required a sample model extension for Active
Directory is provided at $OSM_CNTK/samples/customExtensions/_custom-active_directory-
support.tpl. Such extensions can be populated with direct values for the fields or by
referencing a custom secret. If referencing a custom secret, the secret should contain
referenced fields and the secret must be specified in the section for custom secrets in project
specification.

<project>.yaml

#Custom secrets at Project level
Any custom secrets that can be used within WDT metadata fragments specified
above. Secrets used in instance specific WDT should be listed in the instance
specification. More than one secret name can be provided
project:
 customSecrets:
 #secretNames: {} # This empty declaration should be removed if adding items here.
 secretNames:
 - ldap-provider-secret

To configure a vendor specific LDAP Provider, refer to the "WebLogic Server MBean
Reference Document" for the WebLogic version in your image manifest file, under
Configuration MBeans → Security MBeans. Alternatively, use the method described in the
section "Displaying Valid Attributes and Child Attributes of a WDT Model".

Working with Shapes
The OSM cloud native toolkit provides the following pre-configured shapes:

• charts/osm/shapes/dev.yaml. This can be used for development, QA and user
acceptance testing (UAT) instances.

• charts/osm/shapes/devsmall.yaml. This can be used to reduce CPU requirements for
small development instances.

• charts/osm/shapes/prod.yaml. This can be used for production, pre-production, and
disaster recovery (DR) instances.

• charts/osm/shapes/prodlarge.yaml. This can be used for production, pre-production and
disaster recovery (DR) instances that require more memory for OSM cartridges and order
caches.

• charts/osm/shapes/prodsmall.yaml. This can be used to reduce CPU requirements for
production, pre-production and disaster recovery (DR) instances. For example, it can be
used to deploy a small production cluster with two managed servers when the order rate
does not justify two managed servers configured with a prod or prodlarge shape. For
production instances, Oracle recommends two or more managed servers. This provides

Chapter 8
Working with Shapes

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 45

https://docs.oracle.com/en/industries/communications/order-service-management/7.5/cloud-native/extending-weblogic-server-deploy-tooling-wdt-model.html#GUID-98F2E90E-6485-4D5F-809B-5B3771391310:~:text=Displaying%20Valid%20Attributes%20and%20Child%20Attributes%20of%20a%20WDT%20Model

increased resiliency to a single point of failure and can allow order processing to continue
while failed managed servers are being recovered.

• charts/osm/shapes/prodxsmall.yaml. This shape is similar to prodsmall with the
exception that the CPU resources are scaled down to accommodate instances with lower
order workloads.

You can create custom shapes using the pre-configured shapes. See "Creating Custom
Shapes" for details.

The pre-defined shapes come in standard sizes, which enables you to plan your Kubernetes
cluster resource requirement and are available under directory charts/osm/shapes/ inside the
toolkit.

The pre-defined shapes will have sizing requirements for the WebLogic pods (admin server
and managed server), the microservice pods (OSM Gateway and RTUX) and for init (such as
osm-gateway-init) as well as sidecar containers (wme, fluentd).

Based on the values (resource "request" and "limit") defined in the pre-defined shapes (or your
custom shape), the Kubernetes scheduler attempts to find space for each pod in the worker
nodes of the Kubernetes cluster.

To plan the cluster capacity requirement, consider the following:

• Number of development instances required to be running in parallel: D

• Number of managed servers expected across all the development instances: Md (Md will
be equal to D if all the development instances are 1 MS instances)

• Number of OSM gateway microservices across all the development instances: Md (The
number of gateway microservices will be always equal to the number of managed servers
since we have 1:1 relationship)

• Number of RTUX microservices across all the development instances: D (RTUX
microservice is always one per instance)

• Number of Fluentd containers across all the development instances (if enabled): D + Md

• Number of WME containers across all the development instances (unless disabled): D +
Md

• Number of production (and production-like) instances required to be running in parallel: P

• Number of managed servers expected across all production instances: Mp

• Number of OSM gateway microservices across all the production instances: Mp

• Number of RTUX microservices across all the production instances: P

• Number of Fluentd containers across all the production instances (if enabled): P + Mp

• Number of WME containers across all the production instances (unless disabled): P + Mp

• Assume use of "dev" and "prod" shapes. The tables shown below are for example only.
The real values will always come from the toolkit pre-defined shapes (or your custom
shape).

• CPU requirement (CPUs) =D * 1 + Md * 2 + Md * 1 + D * 0.5 + D * 0.5 + Mp * 0.5 + D * 0.5
+ Mp * 0.5 + P * 2 + Mp * 15 + Mp * 6 + P *2 + P * 0.5 + Md * 0.5 + P * 0.5 + Md * 0.5 = D *
2.5 + Md * 4 + P * 5 + Mp * 22

• Memory requirement (GB) = D * 4 + Md * 8 + Md * 2 + D * 1 + D * 1 + Md * 1 + D * 1 + Md
* 1 + P * 8 + Mp * 48 + Mp * 12 + P * 4 + P * 1 + Mp * 1 + P * 1 + Mp * 1 = D * 7 + Md * 12
+ P * 14 + Mp * 62

The following table lists sample sizing requirements for "dev" shapes:

Chapter 8
Working with Shapes

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 45

https://docs.oracle.com/en/industries/communications/order-service-management/7.5/cloud-native/exploring-configuration-options1.html#GUID-EE6A9B01-1DE5-4B5B-904D-112AE65D090D
https://docs.oracle.com/en/industries/communications/order-service-management/7.5/cloud-native/exploring-configuration-options1.html#GUID-EE6A9B01-1DE5-4B5B-904D-112AE65D090D

Table 8-1 Sample Sizing Requirements of "dev" Shapes

Component Kube Request Kube Limit

Admin Server 3 GB RAM, 1 CPU 4 GB RAM, 1 CPU

Managed Server 8 GB RAM, 2 CPU 8 GB RAM, 2 CPU

OSM Gateway 0.5 GB RAM, 0.5 CPU 2 GB RAM, 1 CPU

OSM RTUX 1 GB RAM, 0.5 CPU 1 GB RAM, 0.5 CPU

Fluentd 1 GB RAM, 0.5 CPU 1 GB RAM, 0.5 CPU

WME 1 GB RAM, 0.5 CPU 1 GB RAM, 0.5 CPU

The following table lists sample sizing requirements for "prod" shapes:

Table 8-2 Sample Sizing Requirements of "prod" Shapes

Component Kube Request Kube Limit

Admin Server 8 GB RAM, 2 CPU 8 GB RAM, 2 CPU

Managed Server 48 GB RAM, 15 CPU 48 GB RAM, 15 CPU

OSM Gateway 12 GB RAM, 6 CPU 12 GB RAM, 6 CPU

OSM RTUX 4 GB RAM, 2 CPU 4 GB RAM, 2 CPU

Fluentd 1 GB RAM, 0.5 CPU 1 GB RAM, 0.5 CPU

WME 1 GB RAM, 0.5 CPU 1 GB RAM, 0.5 CPU

Note

The production managed servers take their memory and CPU in large chunks. Kube
scheduler requires the capacity of each pod to be satisfied within a particular worker
node and does not schedule the pod if that capacity is fragmented across the worker
nodes.

The shapes are pre-tuned for generic development and production environments. You can
create an OSM instance with either of these shapes, by specifying the preferred one in the
instance specification.

Name of the shape. The OSM cloud nativeshapes are devsmall, dev, prodsmall, prod, and
prodlarge.
Alternatively, custom shape name can be specified (as the filename without the
extension)

Init and Sidecar Containers Resourcing
The standard shapes mentioned above have sections respect to resources for all containers
including init (OSM Gateway and OSM DB Installer) and sidecar containers (WME and FluentD
associated with Weblogic pods). The default values in the shapes are already tested for the
respective shapes' corresponding workloads. While creating custom shapes, if you want to
modify resource allocation for a particular instance, you can uptake the particular section from
the standard shapes and adjust the resources accordingly. For example, if you want to adjust
the resource allocation for the WME container, you can uptake the following section from any
of the standard shape and adjust the resources. For any custom sidecar containers configured
in the project specification, you havw to take account for configuring your resource allocation.
For more information about working with custom shapes, refer to "Working with Shapes."

Chapter 8
Working with Shapes

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 45

Sets resources to the wme sidecare container when enabled.
wme:
 resources:
 requests:
 cpu: "500m"
 memory: "1G"
 limits:
 cpu: "500m"
 memory: "1G"

Creating Custom Shapes
You create custom shapes by copying the provided shapes and then specifying the desired
tuning parameters. Do not edit the values in the shapes provided with the toolkit.

In addition to processor and memory sizing parameters, a custom shape can be used to tune:

• The number of threads allocated to OSM work managers

• OSM connection pool parameters

• Order cache sizes and inactivity timeouts

For more details on the recommended approach to tune these parameters, see the section
about "OSM Pre-Production Testing and Tuning" in OSM Installation Guide.

To create a custom shape:

1. Copy one of the pre-configured shapes and save it to your source repository.

2. Rename the shape and update the tuning parameters as required.

3. In the instance specification, specify the name of the shape you copied and renamed:

shape: custom

4. Create the domain, ensuring that the location of your custom shape is included in the
colon-separated list of directories passed with -s.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s spec_Path

Note

While copying a pre-configured shape or editing your custom shape, ensure that you
preserve any configuration that has comments indicating that it must not be deleted.

Injecting Custom Configuration Files
Sometimes, a solution cartridge may require access to a file on disk. A common example is for
reading of property files or mapping rules.

A solution may also need to provide configuration files for reference via parameters in the
oms-config.xml file for OSM use (for example, for operational order jeopardies and OACC
runtime configuration).

To inject custom configuration files:

Chapter 8
Injecting Custom Configuration Files

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 45

1. Make a copy of the OSM_CNTK/samples/customExtensions/custom-file-support.yaml
file.

2. Edit it so that it contains the contents of the files. See the comments in the file for specific
instructions.

3. Save it (retaining its name) into the directory where you save all extension files. Say
extension_directory. See "Extending the WebLogic Server Deploy Tooling (WDT) Model"
for details.

4. Edit your project specification to reference the desired files in the customFiles element:

#customFiles:
- mountPath: /some/path/1
configMapSuffix: "path1"
- mountPath: /some/other/path/2
configMapSuffix: "path2"

When you run create-instance.sh or upgrade-instance.sh, provide the extension_directory in
the "-m" command-line argument. In your oms-config.xml file or in your cartridge code, you
can refer to these custom files as mountPath/filename, where mountPath comes from your
project specification and filename comes from your custom-file-support.yaml contents. For
example, if your custom-file-support.yaml file contains a file called properties.txt and you
have a mount path of /mycompany/mysolution/config, then you can refer to this file in your
cartridge or in the oms-config.xml file as /mycompany/mysolution/config/properties.txt.

While working with custom configuration files, consider the following usage guidelines:

• The files created are read-only for OSM and for the cartridge code.

• The mountPath parameter provided in the project specification should point to a new
directory location. If the location is an existing location, all of its existing content will
occlude with the files you are injecting.

• Do not provide the same mountPath more than once in a project specification.

• The custom-file-support.yaml file in your extension_directory is part of your
configuration-as-code, and must be version controlled as with other extensions and
specifications.

To modify the contents of a custom file, update your custom-file-support.yaml file in your
extension_directory and invoke upgrade-instance.sh. Changes to the contents of the existing
files are immediately visible to the OSM pods. However, you may need to perform additional
actions in order for these changes to take effect. For example, if you changed a property value
in your custom file, that will only be read the next time your cartridge runs the appropriate logic.

If you wish to add files for a running OSM cloud native instance, update your custom-file-
support.yaml file as described above and invoke upgrade-instance.sh. While this same
procedure can work when you need to remove custom files for a running OSM instance, it is
strongly recommended that you do this as described in the following procedure to avoid "file
not found" type of errors:

1. Update the instance specification to set the size to 0 and then run upgrade-instance.sh.

2. Update the instance specification to set the size to the initial value and remove the file from
your custom-file-support.yaml file.

3. Update the customFiles parameter in your project specification and run upgrade-
instance.sh.

Chapter 8
Injecting Custom Configuration Files

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 45

Choosing Worker Nodes for Running OSM Cloud Native
By default, OSM cloud native has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example, these situations include:

• Licensing restrictions: Coherence could be limited to be deployed on specific shapes. Also,
there could be a limit on the number of CPUs where Coherence is deployed.

• Non license restrictions: Limitation on the deployment of OSM on specific worker nodes
per team for reasons such as capacity management, chargeback, budgetary reasons, and
so on.

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
project specification yaml file.

If OSM cloud native instances must be targeted to a subset of worker nodes
in the
Kubernetes cluster, tag those nodes with a label name and value, and choose
that label+value here.
key : any node label key
values : list of values to choose the node.
If any of the values is found for the above label key, then that
node is included in the pod scheduling algorithm.
#
This can be overridden in instance specification if required.
osmWLSTargetNodes, if defined, restricts all OSM cloud native WebLogic pods
and DB
Installer pods to worker nodes that match the label conditions and for these
pods, will take precedence over osmcnTargetNodes.
osmWLSTargetNodes: {} # This empty declaration should be removed if adding
items here.
#osmWLSTargetNodes:
nodeLabel:
example.com/licensed-for-coherence is just an indicative example; any
label and its values can be used for choosing nodes.
key: example.com/licensed-for-coherence
values:
- true

osmcnTargetNodes, if defined, restricts all OSM cloud native pods to worker
nodes
that match the label conditions. This value will be ignored for OSM cloud
native
WebLogic pods and DB Installer pods if osmWLSTargetNodes is also specified.
osmcnTargetNodes: {} # This empty declaration should be removed if adding
items here.
#osmcnTargetNodes:
nodeLabel:
example.com/use-for-osm is just an indicative example; any label and
its values can be used for choosing nodes.
key: oracle.com/use-for-osm

Chapter 8
Choosing Worker Nodes for Running OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 45

values:
- true

Consider the following when you update the configuration:

• There is no restriction on node label key. Any valid node label can be used.

• There can be multiple valid values for a key.

• You can override this configuration in the instance specification yaml file, if required.

Working with Ingress, Ingress Controller, and External Load
Balancer

A Kubernetes ingress is responsible for establishing access to back-end services. However,
creating an ingress is not sufficient. An Ingress controller allows for the configurable exposure
of back-end services to clients outside the Kubernetes cluster, via edge objects like NodePort
services, Load Balancers, and so on. In OSM cloud native, an ingress controller can be
selected and configured in the project specification.

OSM cloud native supports annotation-based "generic ingress" creation, which means the use
of the standard Kubernetes Ingress API (as opposed to a proprietary ingress Custom
Resource Definition), as verified by Kubernetes Conformance tests. The benefit of this is that it
works for any Kubernetes certified ingress controller, provided that the ingress controller offers
annotations (which are generally proprietary to the ingress controller) required for proper
functioning of OSM.

Annotations applied to an Ingress resource allow you to use advanced features (like
connection timeout, URL rewrite, retry, additional headers, redirects, sticky cookie services,
and so on) and to fine-tune behavior for that Ingress resource. Different Ingress controllers
support different annotations. For information about different Ingress controllers, see
Kubernetes documentation at https://kubernetes.io/docs/concepts/services-networking/ingress-
controllers/. Review this documentation for your Ingress controller to confirm which annotations
are supported.

Any Ingress Controller, which conforms to the standard Kubernetes ingress API and supports
annotations needed by OSM should work, although Oracle does not certify individual Ingress
controllers to confirm this "generic" compatibility.

The configurations required in your project specification are as follows:

Note

The configurations below take NGINX as an example and NGINX specific annotations
are provided at $OSM_CNTK/samples/project.yaml.

valid values are GENERIC, OTHER
ingressController: "GENERIC"

When ingressController is set to GENERIC, the actual ingress controller
might require some annotations to be added to the Kubernetes
Ingress object. Place annotations that are must-have for such a controller
and/or common to all instances here. Instance specific
annotations can be placed in the instance spec file.

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 45

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

ingress:
 ingressClassName: nginx
 # This annotation is required for nginx ingress controller.
 annotations:
 nginx.ingress.kubernetes.io/proxy-body-size: "50m"
 nginx.ingress.kubernetes.io/affinity: 'cookie'
 nginx.ingress.kubernetes.io/session-cookie-name: 'sticky'
 nginx.ingress.kubernetes.io/affinity-mode: 'persistent'
 osmgw:
 # This annotation is required for nginx ingress controller for osm
gateway.
 annotations:
 nginx.ingress.kubernetes.io/use-regex: "true"
 nginx.ingress.kubernetes.io/rewrite-target: /$1
 rtux:
 # This annotation is required for nginx ingress controller for rtux.
 annotations:
 nginx.ingress.kubernetes.io/use-regex: "true"
 nginx.ingress.kubernetes.io/rewrite-target: /orchestration-operations/$1
 oca:
 # This annotation is required for nginx ingress controller for oca.
 annotations:
 nginx.ingress.kubernetes.io/use-regex: "true"
 nginx.ingress.kubernetes.io/rewrite-target: /$1
 nginx.ingress.kubernetes.io/proxy-read-timeout: "240"
 nginx.ingress.kubernetes.io/proxy-send-timeout: "240"

Note

You need to ensure that Ingress has annotation to handle large body size of client
request, like large order payloads (during regular processing) or large cartridge par
files (while deploying from Design Studio). For example,
nginx.ingress.kubernetes.io/proxy-body-size: "50m". See the documentation
about Ingress NGINX Controller at https://github.com/kubernetes/ingress-nginx/blob/
main/README.md#readme.

When ssl.incoming is set to true in the instance specification file, weblogic custom request
headers X-Forwarded-Proto: https and WL-Proxy-SSL: true need to be added as
annotations. You also need to ensure that you remove any incoming WL-Proxy-SSL header.
This protects you from a malicious user sending in a request to appear secure to WebLogic
when it isn't.

The configurations required in your instance specification are:

Note

The configurations below take NGINX as an example and NGINX specific annotations
are provided at $OSM_CNTK/samples/instance.yaml.

SSL Configuration
ssl:

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 45

https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme

 incoming: true

 ingress:
 # These annotations are required if project spec ingressController is
"GENERIC" and SSL enabled.
 # Different Ingress controller can have implementation specific
annotations and can be added here.
 # Provided annotations below for nginx.
 # These annotations are required if project spec ingressController is
"GENERIC"
 # and the actual ingress controller is nginx with wls custom request
headers.
 annotations:
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 nginx.ingress.kubernetes.io/ingress.allow-http: "false"

The NGINX controller works by creating an operator in its own "nginx" (or other specified)
namespace, and exposing this as a service outside of the Kubernetes cluster (NodePort,
LoadBalancer, and so on).

Using NGINX Ingress Controller

OSM can use an NGINX-ingress common to all applications in the Kubernetes cluster or it can
use an NGINX-ingress that is dedicated to all OSM instances in that cluster.

Common NGINX-Ingress to All Applications

OSM requires snippet annotations for NGINX (annotations are provided at $OSM_CNTK/
samples/project.yaml and $OSM_CNTK/samples/instance.yaml) which is disabled by
default. Enabling this is recommended only for trusted ingress objects. If you want to use
common NGINX, you need to deem OSM Cloud Native ingresses as trusted. To do so, you
need to edit the the NGINX controller configmap to include following lines under the data field:

data:
 allow-snippet-annotations: "true"
 annotations-risk-level: Critical

Dedicated NGINX-Ingress Specific to All OSM Instances

If you do not want the annotations-risk-level to be Critical, you can configure a dedicated
NGINX-Ingress for OSM. NGINX-Ingress is still shared but only among OSM instances that
have SSL access. To do so, you need to include a custom configmap with the following content
for you dedicated NGINX-ingress:

apiVersion: v1
kind: ConfigMap
metadata:
name: custom-headers
namespace: <nginx-namespace>
data:
 WL-Proxy-SSL: "true"
 X-Forwarded-Proto: "https"

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 45

You also need to add the following field in the data section of the NGINX-controller configmap:

data:
 proxy-set-headers: "<nginx-namespace>/custom-headers"

To make OSM instances use the dedicated NGINX-ingress, add the IngressClass name of the
NGINX-ingress controller in the project specification.

ingress:
 ingressClassName: <nginx-ingressClassName>

To accommodate all types of ingress controllers and exposure options, you need to specify the
inboundGateway.host and inboundGateway.port in the instance.yaml file. Populate the
values in the instance.yaml file before invoking the create-instance.sh command to create
an instance:

inboundGateway:
 accessStyle: host
 # Provide FQDN (recommended) or IP address of the actual ingress point/
loadbalancer
 host:
 # Provide Port of the actual ingress point/loadbalancer
 port:
 # Provide if protocol is different from ssl.incoming setting
 # Accepted values (http, https)
 #protocolOverride: # Optional

To create an ingress, run:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

To delete an ingress, run:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Using an Alternate Ingress Controller
By default, OSM cloud native supports standard Kubernetes ingress API and provides sample
files for integration. If your desired ingress controller does not support one or more
configurations via annotations on generic ingress, or you wish to use your ingress controller's
CRD instead, you can choose "OTHER".

By choosing this option, OSM cloud native does not create or manage any ingress required for
accessing the OSM cloud native services. However, you may choose to create your own
ingress objects based on the service and port details mentioned in the tables that follow. The
toolkit uses an ingress Helm chart ($OSM_CNTK/samples/charts/ingress-per-domain/
templates/generic-ingress.yaml) and scripts for creating the ingress objects. These samples
can be used as a reference to make copies and customize as necessary.

The actual ingress controller might require some annotations to be added to the kubernetes
ingress object. The toolkit has provided all those annotations in the sample project and
instance specification files in the cloud native toolkit. These can be used as a reference to
make copies and customize as necessary.

Chapter 8
Using an Alternate Ingress Controller

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 45

The host-based rules and the corresponding back-end Kubernetes service mapping are
provided using the clusterName definition, which is the name of the cluster in lowercase.
Replace any hyphens with underscores. The default, unless overridden, is c1.

The host-based rules and the corresponding back-end Kubernetes service mapping are
provided using the clusterName definition, which is the name of the cluster in lowercase.
Replace any hyphens with underscores. The default, unless overridden, is c1.

The following table lists the service name and service ports for Ingress rules. All services
require ingress session stickiness to be turned on so that once authenticated, all subsequent
requests reach the same endpoint. All these services can be addressed within the Kubernetes
cluster using the standard Kubernetes DNS for services.

Table 8-3 Service Name and Service Ports for Host-based Ingress Rules

Rule (host) Service Name Service
Port

Purpose

instance.project.loadBalancerDoma
inName

project-instance-cluster-
clusterName

8001 For access to OSM through UI,
XMLAPI, Web Services, and so on.

t3.instance.project.loadBalancerDo
mainName

project-instance-cluster-
clusterName

30303 OSM T3 Channel access for WLST,
JMS, and SAF clients.

admin.instance.project.loadBalance
rDomainName

project-instance-admin 7001 For access to OSM WebLogic
Admin and Remote Console UI.

The path-based rules and the corresponding back-end Kubernetes service mapping are
provided using the following definitions. All these services can be addressed within the
Kubernetes cluster using the standard Kubernetes DNS for services.

The following table lists the service name and service ports for Ingress rules:

Table 8-4 Service Name and Service Ports for Path-based Ingress Rules

Rule (path) rewrite-target Service Name Service Port Purpose

/orchestration/project/
instance/tmf-api/(.*)

/$1 project-instance-osm-
gateway

8080 For access to OSM
TMF REST APIs.

/orchestration/project/
instance/fallout/(.*)

/$1 project-instance-osm-
gateway

8080 For access to OSM
Fallout Exception
REST APIs.

/orchestration/project/
instance/orchestration-
operations/(.*)

/orchestration-
operations/$1

project-instance-osm-
runtime-ux-server

8080 For user interface
access to instance
data.

/orchestration/project/
instance/
(cartridgeAssembler/.*)

/$1 project-instance-oca 8080 For access to OSM
Cartridge Assembler
APIs.

Ingresses need to be created for each of the above rules per the following guidelines:

• Before running create-instance.sh, ingress must be created.

• After running delete-instance.sh, ingress must be deleted.

You can develop your own code to handle your ingress controller or copy the sample
ingress-per-domain chart and add additional template files for your ingress controller with
a new value for the type.

• The reference sample for creation is: $OSM_CNTK/scripts/create-ingress.sh

Chapter 8
Using an Alternate Ingress Controller

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 45

• The reference sample for deletion is: $OSM_CNTK/scripts/delete-ingress.sh

Preconfiguration on Primary and Standby Database
To achieve a highly available database service with automatic failover and role interchange you
must adopt a role based approach utilizing both primary and standby databases. This
configuration ensures that the service always connects to the active database. In the event of a
failover or switchover, roles are automatically interchanged and the connection is rerouted to
the new active database.

Preconfigure the service at the PDB level using the command below. The default service
created during PDB creation cannot be used.

srvctl add service -d database_Uniquename -s servicename -pdb pdb_name -l
PRIMARY -e SESSION
 -m BASIC -w 10 -z 10

Example: srvctl add service -d database_name -s service_name -pdb pdbname -l
PRIMARY -e
 SESSION -m BASIC -w failover_delay -z failback_delay

In order to know more, refer to Appendix F Oracle Database Clusterware Administration and
Deployment Guide.

Note

The service name must be identical on both servers.

Configuring the OSM Application for High Availability
You can configure OSM to recognize both the primary and standby databases, so all OSM
components and microservices interact with these databases and benefit from high availability
and data protection.

In instance specification add the secondary database details as shown below.

In order to know more about adding a secondary database in case of a standalone setup, refer
to Planning and Validating Your Cloud Native Environment.

db:
 type: "STANDARD"
 # datasourcesPrimary section is applicable only for STANDARD DB. For ADB,
values will be used from Autonomous Database Serverless secrets+configMap.
 datasourcesPrimary:
 port: 1521
 host: dbserverPrimary-ip
 datasourcesSecondary:
 port: 1521
 host: dbserverSecondary-ip

Ensure that you make a note of the following things while configuring OSM:

Chapter 8
Preconfiguration on Primary and Standby Database

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 45

• Always ensure that there are at least two managed servers when configuring the
secondary database in OSM. For example, when the clusterSize >= 2.

• Standby database configuration in OSM is applicable only for a single instance database
and not RAC database.

• db.type should be standard in instance.yaml.

Data Guard Setup on OCI
Oracle Data Guard setup on OCI allows for the configuration of a standby database that
automatically syncs with the primary Oracle database. OCI can handle both the set up and
monitoring of Data Guard as a service. To set up Oracle Data Guard on OCI, do the following:

1. Provision Primary and Standby Databases: Use the OCI console to provision the primary
and standby databases, ensuring they are in the same region.

2. Enable Data Guard Configuration: In the OCI console, navigate to the database service
and configure Data Guard by creating a standby database from the existing primary
database.

In order to know more, you can refer to the Oracle Cloud Infrastructure documentation and
Oracle Database Data Guard Broker documentation.

Note

It's recommended that you select the Protection Mode as high availability.

Figure 8-1 Data Guard Setup on OCI

Chapter 8
Preconfiguration on Primary and Standby Database

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 45

Reusing the Database State
When an OSM instance is deleted, the state of the database remains unaffected, which makes
it available for re-use. This is common in the following scenarios:

• When an instance is deleted and the same instance is re-created using the same project
and the instance names, the database state is unaffected. For example, consider a
performance instance that does not need to be up and running all the time, consuming
resources. When it is no longer actively being used, its specification files and PDB can be
saved and the instance can be deleted. When it is needed again, the instance can be
rebuilt using the saved specifications and the saved PDB. Another common scenario is
when developers delete and re-create the same instance multiple times while configuration
is being developed and tested.

• When a new instance is created to point to the data of another instance with a new project
and instance names, the database state is unaffected. A developer, who might want to
create a development instance with the data from a test instance in order to investigate a
reported issue, is likely to use their own instance specification and the OSM data from PDB
of the test instance.

Additionally, consider the following components when re-using the database state:

• The OSM DB (schema and data)

• The RCU DB (schema and data)

Recreating an Instance
You can re-create an OSM instance with the same project and instance names, pointing to the
same database. In this case, both the OSM DB and the RCU DB are re-used, making the
sequence of events for instance re-creation relatively straightforward.

To recreate an instance, the following pre-requisites must be available from the original
instance and made available to the re-creation process:

• PDB

• The project and instance specification files

Reusing the OSM Schema

To reuse the OSM DB, the secret for the PDB must still exist:

project-instance-database-credentials

This is the osmdb credential in the manage-instance-credentials.sh script.

Reusing the RCU

To reuse the RCU, the following secrets for the RCU DB must still exist:

• project-instance-rcudb-credentials. This is the rcudb credential.

• project-instance-opss-wallet-password-secret. This is the opssWP credential.

• project-instance-opss-walletfile-secret. This is the opssWF credential.

If the opssWP and opssWF secrets no longer exist and cannot be re-created from offline data,
then drop the RCU schema and re-create it using the OSM DB Installer.

Chapter 8
Reusing the Database State

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 45

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Creating a New Instance
If the original instance does not need to be retained, then the original PDB can be re-used
directly by a new instance. If however, the instance needs to be retained, then you must create
a clone of the PDB of the original instance. This section describes using a newly cloned PDB
for the new instance.

If possible, ensure that the images specified in the project specification (project.yaml) match
the images in the specification files of the original instance.

Reusing the OSM Schema

To reuse the OSM DB, the following secret for the PDB must be created using the new project
and instance names. This is the osmdb credential in manage-instance-credentials.sh and
points to your cloned PDB:

project-instance-database-credentials

If your new instance must reference a newer OSM DB installer image in its specification files
than the original instance, it is recommended to invoke an in-place upgrade of OSM schema
before creating the new instance.

To upgrade or check the OSM schema:

Upgrade the OSM schema to match new instance's specification files
Do nothing if schema already matches
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path -c 1

You can choose a strategy for the RCU DB from one of the following options:

• Create a new RCU

• Reuse RCU

Creating a New RCU

If you only wish to retain the OSM schema data (cartridges and orders), then you can create a
new RCU schema.

The following steps provide a consolidated view of RCU creation described in "Managing
Configuration as Code".

To create a new RCU, create the following secrets:

• project-instance-rcudb-credentials. This is the rcudb credential and describes the
new RCU schema you want in the clone.

• project-instance-opss-wallet-password-secret. This is the opssWP credential
unique to your new instance

After these credentials are in place, prepare the cloned PDB:

Create a fresh RCU DB schema while preserving OSM schema data
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path -c 7

Chapter 8
Reusing the Database State

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 45

With this approach, the RCU schema from the original instance is still available in the cloned
PDB, but is not used by the new instance.

Reusing the RCU

Using the manage-instance-credentials.sh script, create the following secret using your new
project and instance names:

project-instance-rcudb-credentials

The secret should describe the old RCU schema.

• Reusing RCU Schema Prefix

Over time, if PDBs are cloned multiple times, it may be desirable to avoid the proliferation
of defunct RCU schemas by re-using the schema prefix and re-initializing the data. There
is no OSM metadata or order data stored in the RCU DB so the data can be safely re-
initialized.

project-instance-opss-wallet-password-secret. This is the opssWP credential
unique to your new instance.

To re-install the RCU, invoke DB Installer:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path -c 5

• Reusing RCU Schema and Data

In order to reuse the full RCU DB from another instance, the original opssWF and opssWP
must be copied to the new environment and renamed following the convention: project-
instance-opss-wallet-password-secret and project-instance-opss-walletfile-secret.

This directs Fusion MiddleWare OPSS to access the data using the secrets.

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s spec_path

Setting Up Persistent Storage
OSM cloud native can be configured to use a Kubernetes Persistent Volume to store data that
needs to be retained even after a pod is terminated. This data includes application logs, JFR
recordings and DB Installer logs, but does not include any sort of OSM state data. When an
instance is re-created, the same persistent volume need not be available. When persistent
storage is enabled in the instance specification, these data files, which are written inside a pod
are re-directed to the persistent volume.

Data from all instances in a project may be persisted, but each instance does not need a
unique location for logging. Data is written to a project-instance folder, so multiple instances
can share the same end location without destroying data from other instances.

The final location for this data should be one that is directly visible to the users of OSM cloud
native. The development instances may simply direct data to a shared file system for analysis
and debugging by cartridge developers. Whereas, formal test and production instances may
need the data to be scraped by a logging toolchain such as EFK, that can then process the
data and make it available in various forms. The recommendation therefore is to create a PV-
PVC pair for each class of destination within a project. In this example, one for developers to
access and one that feeds into a toolchain.

Chapter 8
Setting Up Persistent Storage

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 45

A PV-PVC pair would be created for each of these "destinations", that multiple instances can
then share. A single PVC can be used by multiple OSM domains. The management of the PV
and PVC lifecycles is beyond the scope of OSM cloud native.

The OSM cloud native infrastructure administrator is responsible for creating and deleting PVs
or for setting up dynamic volume provisioning.

The OSM cloud native project administrator is responsible for creating and deleting PVCs as
per the standard documentation in a manner such that they consume the pre-created PVs or
trigger the dynamic volume provisioning. The specific technology supporting the PV is also
beyond the scope of OSM cloud native. However, samples for PV supported by NFS are
provided.

Creating a PV-PVC Pair

The technology supporting the Kubernetes PV-PVC is not dictated by OSM cloud native.
Samples have been provided for NFS and can either be used as is, or as a reference for other
implementations.

To create a PV-PVC pair supported by NFS:

1. Edit the sample PV and PVC yaml files and update entries with enclosing brackets

Note

PVCs need to be ReadWriteMany.

vi $OSM_CNTK/samples/nfs/pv.yaml
 vi $OSM_CNTK/samples/nfs/pvc.yaml

2. Create the Kubernetes PV and PVC.

kubectl create -f $OSM_CNTK/samples/nfs/pv.yaml
kubectl create -f $OSM_CNTK/samples/nfs/pvc.yaml

Enable storage in the instance specification and specify the name of the PVC created:

The storage volume must specify the PVC to be used for persistent storage.
storageVolume:
 enabled: true
 pvc: storage-pvc

After the instance is created, you should see the following directories in your PV mount point, if
you have enabled logs:

[oracle@localhost project-instance]$ dir
db-installer logs performance

Setting Up Database Optimizer Statistics
As part of the setup of a highly performant database for OSM, it is necessary to set up
database optimizer statistics. OSM DB Installer can be used to set up the database partition

Chapter 8
Setting Up Database Optimizer Statistics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 45

statistics, which ensures a consistent source of statistics for new partitions so that the
database generates optimal execution plans for queries in those partitions.

About the Default Partition Statistics

The OSM DB Installer comes with a set of default partition statistics. These statistics come
from an OSM system running a large number of orders (over 400,000) for a cartridge of
reasonable complexity. These partition statistics are usable as-is for production.

Setting Up Database Partition Statistics

To use the provided default partition statistics, no additional input, in terms of specification files,
secrets or other runtime aspects, is required for the OSM cloud native DB Installer.

The OSM cloud native DB Installer is invoked during the OSM instance creation, to either
create or update the OSM schema. The installer is configured to automatically populate the
default partition statistics (to all partitions) for a newly created OSM schema when the "prod",
"prodsmall", or "prodlarge" (Production) shape is declared in the instance specification. The
statistics.loadPartitionStatistics field within these shape files is set to true to enable the
loading.

If you want to load partition statistics for a non-production shape, or if you want to reload
statistics due to a DB or schema upgrade, use the command with 11 to load the statistics to all
existing partitions in the OSM schema:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH -c 11

If you create new partitions, to import the default partition statistics to these new partitions, run
the following command on the DB Installer.

Note

The partition name is specified in -b parameter with a comma delimited list of partition
names.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH -b
the_newly_created_partition_1,the_newly_created_partition_2 -c 11

If you create new partitions, and want to copy or load the partition statistics data from an
existing partition to these new partitions, run the following command on the DB Installer.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH -a
existing_partition_name -b
the_newly_created_partition_1,the_newly_created_partition_2 -c 11

Leveraging Oracle WebLogic Server Active GridLink
If you are using a RAC database for your OSM cloud native instance, by default, OSM uses
WebLogic Multi-DataSource (MDS) configurations to connect to the database.

If you are licensed to use Oracle WebLogic Server Active GridLink (AGL) separately from your
OSM license (consult any additional WebLogic licenses you possess that may apply), you can
configure OSM cloud native to use AGL configurations where possible. This will better
distribute load across RAC nodes.

Chapter 8
Leveraging Oracle WebLogic Server Active GridLink

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 45

To enable the use of AGL, find the "db:" section in your instance specification YAML file and
add the "aglLincensed" line as shown below and then create or upgrade your instance as
usual:

db:
 aglLicensed: true

Managing Logs
OSM cloud native generates traditional textual logs. By default, these log files are generated in
the managed server pod, but can be re-directed to a Persistent Volume Claim (PVC) supported
by the underlying technology that you choose. See "Setting Up Persistent Storage" for details.

By default, logging is enabled. When persistent storage is enabled, logs are automatically re-
directed to the Persistent Volume.

The storage volume must specify the PVC to be used for persistent storage.
If enabled, the log, metric and JFR data will be directed here.
storageVolume:
 enabled: true
 pvc: storage-pvc

• The OSM application logs can be found at: pv-directory/project-instance/logs

• The OSM DB Installer logs can be found at: pv_directory/project-instance/db-installer

• The OSM Gateway logs can be found at: pv_directory/project-instance/osm-gateway

• The OSM Runtime UX logs can be found at: pv_directory/project-instance/osm-runtime-ux-
server

The following applies to OSM Gateway logs:

• Each log file gets rolled over daily and will be retained for 30 days.

• The size of each log file is limited to 10 MB.

Configuring Fluentd Logging
OSM logs can be processed via Fluentd using the following mechanisms:

• The WebLogic pods (admin server and managed server) and DB Installer pods log to
Fluentd via a sidecar. For the pods covered by a sidecar, you configure Fluentd using Helm
charts.

• The microservice pods (OSM Gateway and RTUX) write to container logs. Fluentd has to
be configured externally to process these logs.

Configuring Fluentd Logging for OSM Core Pods

OSM supports integration of Fluentd as a sidecar container to read the log entries from
WebLogic pods and DB Installer pods. Fluentd can be integrated with ElasticSearch,
OpenSearch or other equivalent upstream components and Kibana, OpenSearch Dashboard
or other equivalent visualization components.

OSM provides samples and configuration for the following combinations

• Fluentd, ElasticSearch, and Kibana

• Fluentd, OpenSearch and OpenSearch Dashboards

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 45

Using a log processing stack such as Elastic Stack (ElasticSearch, Fluentd, and Kibana) or
OpenSearch Stack (OpenSearch, OpenSearch Dashboards and Fluentd) in OSM cluster can
make it much easier to collect, store, and analyze log data from all the Weblogic pods and
OSM DB installer pods in the OSM cluster, making it more manageable and more accessible
for different users. You can use the fields defined in Fluentd as filters in Kibana to filter and
search for particular log events.

To enable Fluentd with built-in log parsing configuration:

1. In the instance.yaml file, enable fluentdLogging.

fluentdLogging:
 enabled: true
 outputType: elasticsearch # Acceptable values are elasticsearch and
opensearch, Default is elasticsearch
 outputProtocol: http # Acceptable values are http and https, Default is
http
image: fluent/fluentd-kubernetes-daemonset:v1.14.5-debian-
elasticsearch7-1.1 # default if none specified
imagePullPolicy: IfNotPresent

• Example for enabling Fluentd logging with ElasticSearch

fluentdLogging:
 enabled: true
 outputType: elasticsearch
 outputProtocol: http # Protocol of elasticsearch
image: fluent/fluentd-kubernetes-daemonset:v1.14.5-debian-elasticsearch7-1.1
default if none specified
imagePullPolicy: IfNotPresent

• Example for enabling Fluentd logging with OpenSearch

fluentdLogging:
 enabled: true
 outputType: opensearch
 outputProtocol: http # Protocol of opensearch
 image: fluent/fluentd-kubernetes-daemonset:v1-debian-opensearch
imagePullPolicy: IfNotPresent

Note

If you are using OpenSearch, then you must provide a Fluentd-OpenSearch image
as the default image is for Fluentd-ElasticSearch. You can use any Fluentd image
which is mandated by your organization or else use the Fluentd image from
Docker Hub or an equivalent.

2. Get the IP address or host name and port details of ElasticSearch, OpenSearch or other
equivalent upstream component for Fluentd.

3. Create a secret for Fluentd credentials:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p sr -i quick -
s $SPEC_PATH create fluentd

Provide 'elasticsearch' credentials for 'sr-quick' ...
Host: host_IP_address
Port: port

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 45

Username: username
Password: password

secret/sr-quick-fluentd-credentials configured

4. Create or upgrade the OSM instance. Use the Kibana user interface, OpenSearch
Dashboard or other equivalent visualization tools to view the resulting logs.
By default, OSM populates some default fields, which you can use to filter the log
messages in a visualization tool such as Kibana or OpenSearch Dashboards.

The following table lists some fields for filtering logs.

Table 8-5 Fields for Filtering Logs

Field Description Example

tag Retrieves the log events related
to a particular log file. The value
should be in the following pattern:

{{ProjectName}}-
{{InstanceName}}_{{LogFi
leName}}

DB Installer logs →
sr-quick_dbInstaller.log
Weblogic introspector
logs → sr-
quick_introspector_scrip
t.out
Weblogic server logs →
 Adminserver → sr-
quick_admin.log,

 sr-
quick_admin.out,

 sr-
quick_admin_nodemanager.
log,

 sr-
quick_admin_nodemanager.
out
 MS1 → sr-
quick_ms1.log,
 sr-
quick_ms1.out,
 sr-
quick_ms1_nodemanager.lo
g,
 sr-
quick_ms1_nodemanager.ou
t

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 45

Table 8-5 (Cont.) Fields for Filtering Logs

Field Description Example

-index Retrieves the log messages
related to a particular instance.
The value should be in the
following pattern:

{{ProjectName}}-
{{InstanceName}}

sr-quick

servername Retrieves the log messages
related to a particular server. The
value should be in the following
pattern:

{{ProjectName}}-
{{InstanceName}}_{{Serve
rName}}

sr-quick-admin, sr-quick-
ms1

level Retrieves the log messages of
specific log level. The value
should be in the following pattern:

 Info/Warning/Debug/
Error ...

 Info/Warning/Debug/
Error ...

logger Retrieves the log messages
generated by a class. The value
should be the logger name. For
example, if you want to see the
status of automation plugins,
enter
oracle.communications.orde
rmanagement.automation.plu
gin.AutomationPluginManage
r

oracle.communications.orde
rmanagement.automation.plu
gin.AutomationPluginManage
r

Configuring Fluentd Logging for Microservices

For the microservice pods, you must configure Fluentd externally to process the logs. The
Fluentd configuration to interpret OSM logs is provided in the cloud native toolkit's samples/
fluentd/fluentd.conf sample file. Refer to Fluentd documentation for information about setting
up Fluentd and importing this configuration into it.

All logs of OSM microservices logs are written to stdout/stderr and then appear in container
logs. You can parse the OSM microservices logs using the tool of your choice. You can use
Fluentd deployed as a daemonset within your Kubernetes cluster. To interpret the OSM
microservices logs, utilize the log format provided.

All OSM microservices logs are written in the following format:

%date{yyyy-MM-dd HH:mm:ss.SSS} [%t] [%-5level] [%logger] - %msg%n

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 45

The log messages start with a date in the yyyy-mm-dd hh:mm:ss.sss format. This is followed
by the thread id and severity, after which, the logger and the log message can be seen. Parse
all OSM microservices logs using this pattern.

For parsing OSM microservices logs, use Fluentd deployed as a daemonset within your
Kubernetes cluster.

The following is an example of the OSM Gateway microservice log:

2023-07-14 14:13:02.842 [pool-3-thread-32] [INFO]
[oracle.comms.ordermanagement.noa.cloudevent.HttpNOAEventProcessor] -
path:productOrderingManagement/v4.0.0.1.0/listener/
productOrderStateChangeEvent\n

The following is an example of the RTUX microservice log:

2023-07-14 14:13:02.842 [pool-3-thread-32] [INFO]
[oracle.comms.ordermanagement.noa.cloudevent.HttpNOAEventProcessor] -
path:productOrderingManagement/v4.0.0.1.0/listener/
productOrderStateChangeEvent\n

Note

Ensure that all OSM microservices logs originating in the same Kubernetes cluster are
either in JSON or Text format. Do not generate them in both the formats.

Obfuscating Sensitive Data in Logs

You can mask sensitive data (personal information) that is logged to files, the terminal (stdout
and stderr), or sent to a log monitor. Sensitive data includes details such as names of persons,
addresses, and account numbers.

The masking of sensitive data applies only to the DEBUG log level. Cartridge developers are
not expected to expose potentially sensitive data unless they do it via DEBUG logs. OSM itself
does not expose potentially sensitive data except in DEBUG logs. OSM masks such exposed
sensitive data only in DEBUG logs.

To leverage OSM's capability to mask sensitive data in logs:

• Cartridge developers have to provide a draft of the Personal Information (PI) regex
configuration required to identify sensitive data, as part of the cartridge development
process.

• Testers have to monitor log outputs and adjust the PI regex configuration as required to
ensure all sensitive information is masked.

• Administrators have to ensure the tested PI regex configuration is added to the instance
specification when creating or upgrading an OSM cloud native instance.

Prerequisite Configuration

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 45

OSM cloud native turns on its log masking capability if the instance has the following effective
values in its instance specification:

...
log:
 # handlerLevel filters the logs lower than its level.
 # Here log level TRACE takes a numeric value between 1(highest severity)
and 32(lowest severity) e.g. TRACE:1
 handlerLevel: "TRACE:1"
 # This is to optionally control logging level for specific classes.
Uncomment to add the entries.
 # 'class' will have full ClassName e.g. com.mslv.oms.poller.EventPoller
 # 'level' should have same possible values as above e.g. TRACE:1
 # Give class as "root" to set level for all classes.
 #loggers:
 # - class:
 # level:
 loggers:
 - class: "root"
 level: "TRACE:1"
...

The OSM cloud native loggers.level property TRACE is equivalent to DEBUG.

The OSM Gateway and RTUX microservices turn on their log masking capability if the instance
has the following effective values in the instance specification:

...
osm-gateway:
 log:
 level: FINE
osmRuntimeUX:
 log:
 level: FINE
...

The osm-gateway and osmRuntimeUX log.level properties determine the logging level of the
logs and must be set to FINE to enable log masking. FINE is equivalent to DEBUG.

Configuring Log Masking

Sensitive data is identified and masked based on Java regular expression (regex) patterns
defined in the instance specification as a list of entries under "logMaskingCustomRegexes".
Each entry describes one item of PI data and how to recognize it using a regex. Any entries
provided here are added to predefined entries. To see the full list of predefined entries for your
version of the toolkit, review the contents of the charts/osm/templates/osm-gdpr-regex-
json.yaml file in the toolkit. Predefined entries include patterns for email addresses and for
phone numbers contained in an element called "phoneNumber".

Once PI data is identified in a log message using one of these regexes, the masking is done by
substituting the sensitive data with a string of 4 stars "****".

Custom Regex Patterns

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 45

Depending on the logs emitted by the cartridge code, additional regex patterns can be
configured to mask PI data that may become exposed. This is done by adding entries to the
"logMaskingCustomRegexes" element in the instance specification:

...
logMaskingCustomRegexes:
 - description: "account number"
 type: partial
 regex: "\"(?i)accountNumber\"\\s*:\\s*\"(.*?)\""
 - description: "ssn"
 type: exact
 regex: "\\d{3}-\\d{2}-\\d{4}"
 ...

where:

• description is a human readable description of the field targeted by this regex entry.

• type is the type of the regex pattern. Possible values are either partial or exact.

• regex is the Java regex pattern for the value to be recognized

Note that the regex patterns should be a valid string as per Java standards described at:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html or
similar source.

Partial Regex Patterns

Partial regexes provide a pattern that matches only some part of the target field's values.
These regex patterns are applied to XML and JSON documents or fragments in log messages.
The regex pattern should begin with the field name in it and encompass the rest of the value,
using wildcards as necessary. If this regex matches an XML or JSON line in a log message,
the value part of the matching field is masked.

For example, to mask the account number contained in a JSON field called "accountNumber".

The following block shows the partial regex pattern in the instance specification:

...
logMaskingCustomRegexes:
 - description: "account number"
 type: partial
 regex: "\"(?i)accountNumber\"\\s*:\\s*\"(.*?)\""
 ...

The following block shows a sample log message as generated by the cartridge:

...
"ownerAccount": {
 "accountNumber": "1234321",
 "id": "0CX-1XYHGQ",
 "@type": "AccountRef",
 }
...

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 45

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html

The following block shows a sample output log message:

...
"ownerAccount": {
 "accountNumber": "****",
 "id": "0CX-1XYHGQ",
 "@type": "AccountRef",
 }
...

Exact Regex Patterns

Exact regex patterns provide a complete match mechanism to identify the PI data to mask.
OSM looks through all log messages (not just XML and JSON portions) for such regex
matches.

Everything in the log message that matches an exact regex pattern will be masked. Field
names or other situating strings cannot be part of an exact regex pattern as otherwise, they too
will get masked.

For example, given the below exact regex pattern, OSM will look for any string composed of
digits in the format xxx-xx-xxxx in any log message. If found, that string is masked. To illustrate
the scope of application of exact regex patterns, in the example below, even though the
intention was to mask US Social Security Numbers, the masking feature will apply suppression
to any string or sub-string that has digits in the format xxx-xx-xxxx.

The following block shows the Exact regex pattern in the instance specification:

...
logMaskingCustomRegexes:
 - description: "US Social Security Number"
 type: exact
 regex: "\\d{3}-\\d{2}-\\d{4}"
...

The following block shows a sample log as generated by a cartridge:

...
"US Social Security Number": "232-45-3434",
"orderReference": "987-87-8765"
...

The following block shows a sample output log message:

...
"US Social Security Number": "****",
"orderReference": "****"
...

Configuring Logging and Log Rotation

OSM cloud native provides a way to configure Oracle Diagnostic Logging (ODL) logging level
to debug logs in an efficient manner.

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 45

This configuration is defined via the instance specification as follows:

The valid log levels in descending order are:
INCIDENT_ERROR (highest value)
ERROR
WARNING
NOTIFICATION
TRACE (lowest value)
Each log level also takes a numeric value between 1(highest severity) and
32(lowest severity) e.g. ERROR:1
log: [] # This empty declaration should be removed if adding items here.
#log:
handlerLevel filters the logs lower than its level.
Set the handlerLevel lower or equal to class level.
handlerLevel: ""
This is to optionally control logging level for specific classes.
Uncomment to add the entries.
'class' will have full ClassName e.g. com.mslv.oms.poller.EventPoller
'level' will have same possible values as above e.g. ERROR:1
Give class as "root" to set level for all classes.
loggers:
- class:
level:

Valid ODL Log Levels

For ODM log levels, refer to the "About Log Severity Levels" section in OSM Cloud Native
System Administrator's Guide. Each message type can also take a numeric value between 1
(highest severity) and 32 (lowest severity) that you can use to further restrict log output (for
example ERROR:1).

When you specify a level, ODL returns all log messages of that type, as well as the messages
that have a higher severity. For example, if you set the level to WARNING, ODL also returns
log messages of type INCIDENT_ERROR and ERROR.

Configure ODL Handlers Logging Level

To configure Logging level for the ODL handlers (odl-handler, console-handler and wls-
domain), set log.handlerLevel with appropriate value (for example, ERROR:1). An empty
value would have the default setting (WARNING) for the handlers.

Configure Logging Level for Specific Class

To enable logging for a specific class or package, log.loggers[] can also be configured as
follows. It can have multiple entries for different classes.

The log level for class should be of equal or higher level compared to log handlerLevel. Logs
of lower level than the handlerLevel do not appear in the logs.

To set log level for all the classes, provide class as "root". The class specific logger level
overrides the root log level for that class.

log:
 handlerLevel: ""
 loggers:
 - class: "root"
 level: "NOTIFICATION:1"

Chapter 8
Managing Logs

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 45

 - class: "com.mslv.oms.poller.EventPoller"
 level: "ERROR:1"

Log Files Rotation

OSM pods use ephemeral storage to store log files, GC logs, and JFR data. All of these have
to be managed so that worker nodes do not fail because they run out of ephemeral/container
storage. For all the logs, GC logs, and JFR data, OSM cloud native provides log rotation and
retention mechanisms to put an upper limit on the space they take. These are defined via
specifications as described in the following table:

Table 8-6 Log Files Rotation in Specification Files

Data Specification Example Log Location: PVC
Enabled

Log Location: PVC
Disabled

OSM logs Shape specification

weblogic.log.Fil
eMinSize

weblogic.log.Fil
eCount

Dev shape has file
count 7 and size 500k

Admin server: /
logMount/$
{DOMAIN_ID}/logs/
admin.log
Managed server: /
logMount/$
{DOMAIN_ID}/logs/
ms1.log

Admin server: /u01/
oracle/user_projects/
domains/domain/
servers/admin/logs/
admin.log
Managed server: /u01/
oracle//user_projects/
domains/domain/
servers/ms1/logs/
ms1.log

GC logs Shape specification

NumberOfGCLogFil
es

GCLogFileSize

Dev shape has file
count 7 and size 500k

Admin server: /
logMount/$
(DOMAIN_UID)/logs/
admin-gc-%t.log
Managed server:/
logMount/$
(DOMAIN_UID)/logs /
gc-$
(SERVER_NAME)-
%t.log

Admin server: /u01/
oracle/user_projects/
domains/domain/gc-$
(SERVER_NAME)-
%t.log
Managed server: /u01/
oracle/user_projects/
domains/domain/gc-$
(SERVER_NAME)-
%t.log

JFR data Instance specification

jfr:
 enabled:
 max_age:
 max_size:

Default maximum age
is 4 hours, and the
maximum size is 100
MB

/logMount/$
(DOMAIN_UID)/
performance/$
(SERVER_NAME)

/logMount/$
(DOMAIN_UID)/
performance/$
(SERVER_NAME)/

Managing OSM Cloud Native Metrics
All managed server pods running OSM cloud native carry annotations added by WebLogic
Operator and an additional annotation by OSM cloud native.

osmcn.metricspath: /OrderManagement/metrics
osmcn.metricsport: 8001
prometheus.io/scrape: true

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 45

By default, the OSM Gateway pod and the RTUX pod expose metrics to Prometheus (or any
other compliant tool) scrape. This is controlled by the instance specification as follows:

Prometheus monitoring is enabled by default.
prometheus:
enabled: true

To disable this behavior, set prometheus.enabled to false.

Configuring Prometheus for OSM Cloud Native Metrics
For OSM cloud native metrics, configure the scrape job in Prometheus as follows:

Note

During the installation, the OSM installer creates a user who is authorized to view
OSM and Weblogic server metrics.

- job_name: 'osmcn'
 # HTTP basic authentication information
 basic_auth:
 username: oms-metrics
 password: password
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
['__meta_kubernetes_pod_annotationpresent_osmcn_metricspath']
 action: 'keep'
 regex: 'true'
 - source_labels: [__meta_kubernetes_pod_annotation_osmcn_metricspath]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: ['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'drop'
 regex: 'false'
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_osmcn_metricsport]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace

- job_name: osmgateway

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 45

 oauth2:
 client_id: client-id
 client_secret: client-secret
 scopes:
 - scope
 token_url: OIDC_token_URL
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_scrape
 action: keep
 regex: true
 - source_labels:
 - __meta_kubernetes_pod_label_app
 action: keep
 regex: (^.+osm-gateway$)
 - source_labels:
 - __meta_kubernetes_pod_container_port_number
 action: keep
 regex: (8080)
 - source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_path
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels:
 - __address__
 - __meta_kubernetes_pod_annotation_prometheus_io_port
 action: replace
 regex: '([^:]+)(?::\d+)?;(\d+)'
 replacement: '$1:$2'
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels:
 - __meta_kubernetes_namespace
 action: replace
 target_label: kubernetes_namespace
 - source_labels:
 - __meta_kubernetes_pod_name
 action: replace
 target_label: kubernetes_pod_name

- job_name: 'rtux'
 oauth2:
 client_id: client-id
 client_secret: client-secret
 scopes:
 - scope
 token_url: OIDC_token_URL
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
 action: keep

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 45

 regex: true
 - source_labels: [__meta_kubernetes_pod_label_app]
 action: keep
 regex: (^.*-osm-runtime-ux-server$)
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 action: keep
 regex: (8080)
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: kubernetes_pod_name

- job_name: 'oca'
 metrics_path: /metrics
 oauth2:
 client_id: client-id
 client_secret: client-secret
 scopes:
 - scope
 token_url: OIDC_token_URL
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
 action: keep
 regex: true
 - source_labels: [__meta_kubernetes_pod_label_app]
 action: keep
 regex: (^.*-oca$)
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 action: keep
 regex: (8080)
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 45

 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: kubernetes_pod_name

Note

OSM cloud native has been tested with Prometheus and Grafana installed and
configured using the Helm chart prometheus-community/kube-prometheus-stack
available at: https://prometheus-community.github.io/helm-charts. See the OSM
Compatibility Matrix for the compatible versions.

The endpoint for the OSM Gateway, RTUX and OCA microservices metrics is secured using
OAUTH2 credential. Hence, it is required to configure scrape jobs for the pods with the same
OAUTH2 credential.

The same job name is used in the sample grafana dashboards to filter the metrics of the
microservice.

Viewing Metrics Without Using Prometheus
To view metrics without using Prometheus:

1. Find the internal IP address of the pod by running the following command:

kubectl get pod pod-name -n namespace -o yaml

2. Log in to any of the worker nodes of the Kubernetes cluster.

3. Do the following:

• For microservices, curl to http://pod_ip:port/metrics using the oath2 token.

• For OSM, curl to http://pod_ip:port/OrderManagement/metrics using basic
authorization. OSM metrics should be accessed either with oms-metrics as a user or,
if you are using another user, then make sure to have the role omsMetricsGroup
assigned to that user.

For more details, see Kubernetes documentation at: https://kubernetes.io/docs/tutorials/
services/connect-applications-service/#exposing-pods-to-the-cluster.

Viewing OSM Cloud Native Metrics in Grafana
OSM cloud native metrics scraped by Prometheus can be made available for further
processing and visualization. The OSM SDK comes with sample Grafana dashboards to get
you started with visualizations.

Import the dashboard JSON files from the location SDK/Samples/Grafana into your Grafana
environment.

The sample dashboards are:

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 45

https://prometheus-community.github.io/helm-charts
https://kubernetes.io/docs/tutorials/services/connect-applications-service/#exposing-pods-to-the-cluster
https://kubernetes.io/docs/tutorials/services/connect-applications-service/#exposing-pods-to-the-cluster

• OSM by Instance: Provides a view of OSM cloud native metrics for one or more instances
in the selected project namespace.

• OSM by Server: Provides a view of OSM cloud native metrics for one or more managed
servers for a given instance in the selected project namespace.

• OSM by Order Type: Provides a view of OSM cloud native metrics for one or more order
types for a given cartridge version in the selected instance and project namespace.

• OSM and Weblogic by Server: Provides a view of OSM cloud native metrics and
WebLogic Monitoring Exporter metrics for one or more managed servers for a given
instance in the selected project namespace.

• TMF and SI Messaging by Instance: Provides a view of the TMF API and System
Interaction messaging metrics for one or more instances in the selected project
namespace.

• OCA Publish Operations: Provides a view of the OCA Publish Operations metrics for one
or more instances in the selected project namespace.

These are provided as samples. You can import them as-is into a Grafana environment. They
can also be used as a pattern to create a set of dashboards for specific requirements.

About TMF and SI Messaging by Instance
You can use the following global filters in the sample dashboard:

• Project: Displays the available projects and the default. This does not have multi-selection.

• Instance: Displays the filter value based on the selected project.

• Pod: Displays the filter value based on the selected instance.

• API Category: Displays the filter value based on the selected pod.

• API: Displays the API names such as serviceOrdering.

• API Version: Displays the API version based on the selected API.

• Target System: Displays the target system based on the selected API and version.

• Message Status: Displays the status of request or events.

You can use the following detail panels in the sample dashboard:

• Incoming REST Requests per Hour: Displays the rate at which the incoming REST calls
are processed per hour. This reflects the incoming traffic to the OSM Gateway. This detail
panel displays the consolidated view of successful and failed requests. It also displays the
failed request rate per hour. You can use this to check for bottlenecks during the
processing of a REST request.

• Outgoing REST Requests per Hour: Displays the rate at which the outgoing messages
are processed per hour. This reflects the outgoing traffic from the OSM Gateway. This
detail panel displays the consolidated view of successful and failed outgoing REST
requests. It also displays the failed outgoing REST request rate per hour. Any spike in
failed REST request rate indicates an issue in delivering the events to the target system.

• Average Incoming REST Request Duration: Displays the average time taken for
processing the incoming REST request to OSM. It reflects the efficiency of request
processing of OSM.

• CPU Load: Displays the current usage of CPU.

• Heap Usage: Displays the amount of heap space used out of the available heap space.

About OCA Publish Operations
You can use the following global filters in the sample dashboard:

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 45

• Project: Displays the available projects and the default project. Multi-selection is not
supported.

• Instance: Displays filter values based on the selected project.

• Pod: Displays filter values based on the selected instance.

• Initiative ID: Displays the initiative ID of the publish operation.

• Operation State: Displays the publish operation state (for example, Completed or Failed)
for the selected initiative.

• Publish Message: Displays the publish operation success or failure message for the
selected initiative.

• Commit Type: Displays the database commit type (for example, Deploy or Activate) for
the publish operation on the selected initiative.

You can use the following detail panels in the sample dashboard:

• Total Publish Initiatives: Displays the total number of publish requests processed. This
panel provides a consolidated view of successful and failed requests. Use this panel to
identify potential bottlenecks during REST request processing.

• Average Publish Duration: Displays the average time (in seconds) taken to process
publish requests. This panel also shows the average time taken by individual OCA pods to
process requests, indicating the efficiency of request processing across pods.

• Average Commit Duration: Displays the average time (in seconds) taken for database
commits against publish requests. This panel also shows the average time taken by
individual OCA pods to perform database commits, indicating the efficiency of database
operations across pods.

• CPU Load: Displays the current CPU usage.

• Heap Usage: Displays the amount of heap space used compared to the available heap
space.

Exposed OSM Order Metrics
The following OSM metrics are exposed via Prometheus APIs.

Note

• All metrics are per managed server. Prometheus Query Language can be used to
combine or aggregate metrics across all managed servers.

• All metric values are short-lived and indicate the number of orders (or tasks) in a
particular state since the managed server was last restarted.

• When a managed server restarts, all the metrics are reset to 0. These metrics do
not refer to the exact values, which can be queried via OSM APIs such as Web
Services and XML API.

Order Metrics

The following table lists order metrics exposed via Prometheus APIs.

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 45

Table 8-7 Order Metrics Exposed via Prometheus APIs

Name Type Help Text Notes

osm_orders_total Counter Counter for the number of orders in the
Created state.

N/A

osm_orders_completed_total Counter Counter for the number of orders in the
Completed state.

N/A

osm_orders_failed_total Counter Counter for the number of orders in the
Failed state.

N/A

osm_orders_cancelled_total Counter Counter for the number of orders in the
Canceled state.

N/A

osm_orders_aborted_total Counter Counter for the number of orders in the
Aborted state.

N/A

osm_orders_in_progress Gauge Gauge for the number of orders currently
in the In Progress state.

N/A

osm_order_items Histogram Histogram that tracks the number of order
items in an order with buckets for 0, 10,
25, 50, 100, 250, 1000, and 5000 order
items.

N/A

osm_orders_amending Gauge Gauge for the number of orders currently
in the Amending state.

N/A

osm_short_lived_orders Histogram Histogram that tracks the duration of all
orders in seconds with buckets for 1
second, 3 seconds, 5 seconds, 10
seconds, 1 minute, 3 minutes, 5 minutes,
and 15 minutes.

Enables focus on short-lived orders.

Buckets for 1 second, 3
seconds, 5 seconds, 10
seconds, 1 minute, 3
minutes, 5 minutes, and 15
minutes.

osm_medium_lived_orders Histogram Histogram that tracks the duration of all
orders in minutes with buckets for 5
minutes, 15 minutes, 1 hour, 12 hours, 1
day, 3 days, 1 week, and 2 weeks.

Enables focus on medium-lived orders.

Buckets for 5 minutes, 15
minutes, 1 hour, 12 hours, 1
day, 3 days, 7 days, and 14
days.

osm_long_lived_orders Histogram Histogram that tracks the duration of all
orders in days with buckets for 1 week, 2
weeks, 1 month, 2 months, 3 months, 6
months, 1 year and 2 years. Enables
focus on long-lived orders.

Buckets for 7 days, 14 days,
30 days, 60 days, 90 days,
180 days, 365 days, and 730
days.

osm_order_cache_entries Gauge Gauge for the number of entries in the
cache of type order, orchestration,
historical order, closed order, and redo
order.

N/A

osm_order_cache_max_entri
es

Gauge Gauge for the maximum number of
entries in the cache of type
order,orchestration, historical order,
closed order, and redo order

N/A

Labels for All Order Metrics

The following table lists labels for all order metrics.

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 45

Table 8-8 Labels for All Order Metrics

Label Name Sample Value Notes Source of the Label

cartridge_name_
version

SimpleRabbits_1.7.0.1.
0

Combined Cartridge Name and Version OSM Metric Label Name/Value

order_type SimpleRabbitsOrder OSM Order Type OSM Metric Label Name/Value

server_name ms1 Name of the Managed Server OSM Metric Label Name/Value

instance 10.244.0.198:8081 Indicates the Pod IP and Pod port from
which this metric is being scraped.

Prometheus Kubernetes SD

job omscn Job name in Prometheus configuration
which scraped this metric.

Prometheus Kubernetes SD

namespace quick Project Namespace Prometheus Kubernetes SD

pod_name quick-sr-ms1 Name of the Managed Server Pod Prometheus Kubernetes SD

weblogic_cluster
Name

c1 OSM Cloud Native WebLogic Cluster
Name

WebLogic Operator Pod Label

weblogic_cluster
RestartVersion

v1 OSM Cloud Native WebLogic Operator
Cluster Restart Version

WebLogic Operator Pod Label

weblogic_create
dByOperator

true WebLogic Operator Pod Label to identify
operator created pods

WebLogic Operator Pod Label

weblogic_domai
nName

domain WebLogic Operator pod label WebLogic Operator pod label

weblogic_domai
nRestartVersion

v1 OSM Cloud Native WebLogic Operator
Domain Restart Version

WebLogic Operator Pod Label

weblogic_domai
nUID

quick-sr OSM Cloud Native WebLogic Operator
Domain UID

WebLogic Operator Pod Label

weblogic_modelI
nImageDomainZi
pHash

md5.3d1b561138f3ae3
238d67a023771cf45.m
d5

Image md5 hash WebLogic Operator Pod Label

weblogic_server
Name

ms1 WebLogic Operator Pod Label for Name
of the Managed Server

WebLogic Operator Pod Label

Task Metrics

The following metrics are captured for Manual or Automated Task Types only. All other Task
Types are currently not being captured.

Table 8-9 Task Metrics Captured for Manual or Automated Task Types Only

Name Type Help Text

osm_tasks_total Counter Counter for the number of Tasks
Created

osm_tasks_completed_total Counter Counter for the number of Tasks
Completed

Labels for All Task Metrics

A task metric has all the labels that an order metric has. In addition, a task metric has two more
labels.

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 45

Table 8-10 Labels for All Task Metrics

Label Sample Value Notes Source of Label

task_name RabbitRunTask Task Name OSM Metric Label Name/
Value

task_type A A for Automated

M for Manual

OSM Metric Label Name/
Value

TMF and System Interaction Messaging Metrics

The following table lists the OSM Gateway metrics in additions to Helidon standard metrics that
are exposed via Prometheus APIs.

Table 8-11 TMF and System Interaction Messaging Metrics

Name Type Label Name Description

osmgw_outgoing_messages
_pending

Gauge targetSystem, cn_project,
cn_instance, pod_name,
api_name, api_version, and
spec_usage_type.

Count of outgoing messages
waiting to be sent.

osmgw_incoming_messages
_total

Counter cn_project, cn_instance,
pod_name, api_name,
api_version,
spec_usage_type,
managed_server_names,
and status.

"status" has the following
values:
• successful
• failed

Count of incoming messages
processed.

osmgw_outgoing_messages
_processed_total

Counter targetSystem, cn_project,
cn_instance, pod_name,
api_name, api_version,
spec_usage_type, and
status.

"status" has the following
values:
• successful.message.with

out.retry
• expired.message.with.ret

ry
• expired.message.without

.retry

Count of outgoing messages
processed.

osmgw_incoming_rest_durati
on

SimpleTimer cn_project, cn_instance,
pod_name, api_name,
api_version,
spec_usage_type,
managed_server_names,
and status.

"status" has the following
values:
• successful
• failed

Cumulative time taken to
process incoming REST
messages.

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 45

Table 8-11 (Cont.) TMF and System Interaction Messaging Metrics

Name Type Label Name Description

cpu_processCpuLoad_perce
nt

Gauge cn_project, cn_instance,
pod_name, and
managed_server_name.

Displays the recent CPU
usage for the Java Virtual
Machine process.

Labels for TMF and System Interaction Messaging Metrics

The following table lists the labels for TMF and System Interaction Messaging Metrics

Table 8-12 Labels for TMF and System Interaction Messaging Metrics

Label Name Sample Value Notes Source of the Label

cn_project quick Project Namespace Gateway Metric Label Name/
Value

cn_instance sr Instance name within the
project

Gateway Metric Label Name/
Value

pod_name quick-sr-gateway-0 Name of the OSM Gateway
Pod

Gateway Metric Label Name/
Value

api_name serviceOrdering TMF API name Gateway Metric Label Name/
Value

api_version 4.1.0 TMF API version Gateway Metric Label Name/
Value

spec_usage_type Hosted Roles of TMF API in OSM:
either hosted or SI

Gateway Metric Label Name/
Value

managed_server_names ms1 Name of the Managed Server
pinned to Gateway pod

Gateway Metric Label Name/
Value

status successful Status of REST request or SI
message

Gateway Metric Label Name/
Value

targetSystem Billing Downstream or upstream
system

Gateway Metric Label Name/
Value

Helidon provides the standard Helidon base and vendor metrics for OSM Gateway and RTUX
microservices.

The response for the metrics endpoint contains the standard Helidon application and vendor
metrics. The following sample shows some of the metrics in the response:

TYPE classloader_loadedClasses_count gauge
HELP classloader_loadedClasses_count Displays the number of classes that are currently
loaded in the Java virtual machine.
classloader_loadedClasses_count 9667
TYPE classloader_loadedClasses_total counter
HELP classloader_loadedClasses_total Displays the total number of classes that have
been loaded since the Java virtual machine has started execution.
classloader_loadedClasses_total 9672
TYPE classloader_unloadedClasses_total counter
HELP classloader_unloadedClasses_total Displays the total number of classes unloaded
since the Java virtual machine has started execution.
classloader_unloadedClasses_total 5
TYPE cpu_availableProcessors gauge
HELP cpu_availableProcessors Displays the number of processors available to the Java
virtual machine. This value may change during a particular invocation of the virtual
machine.

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 45

cpu_availableProcessors 1
TYPE cpu_systemLoadAverage gauge
HELP cpu_systemLoadAverage Displays the system load average for the last minute. The
system load average is the sum of the number of
runnable entities queued to the available processors and the number of runnable entities
running on the available processors averaged over a
period of time. The way in which the load average is calculated is operating system
specific but is typically a damped timedependent average. If the load average is not
available, a negative value is
displayed. This attribute is designed to provide a hint about the system load and may be
queried frequently. The load average may be unavailable on some platforms where it is
expensive to implement this method.
cpu_systemLoadAverage 0.92
TYPE gc_time_seconds_total gauge
HELP gc_time_seconds_total Displays the approximate accumulated collection elapsed
time in milliseconds. This attribute displays -1 if the collection elapsed time is
undefined for this collector. The Java
virtual machine implementation may use a high resolution timer to measure the elapsed
time. This attribute may display the same value even if the collection count has been
incremented if the collection elapsed time is very short.
gc_time_seconds_total{name="Copy"} 0.009
gc_time_seconds_total{name="MarkSweepCompact"} 0.212
TYPE gc_total counter
HELP gc_total Displays the total number of collections that have occurred. This
attribute lists -1 if the collection count is undefined for this collector.
gc_total{name="Copy"} 1
gc_total{name="MarkSweepCompact"} 2

For more details about metrics and about Helidon monitoring, see the following:

• Helidon MP Metrics Guide in the Helidon MP documentation at: https://helidon.io/
docs/v3/#/mp/metrics/metrics

• MicroProfile Metrics specification on the GitHub web site: https://github.com/eclipse/
microprofile-metrics/releases/3.0

OCA Publish Operations Matrics

The following table lists the OCA metrics in addition to Helidon standard metrics that are
exposed via Prometheus APIs.

Table 8-13 OCA Metrics Exposed via Prometheus APIs

Name Type Label Name Description

publish_initative_total Counter cn_instance, cn_project,
pod_name, initiativeId, cartridge,
operation_state,
operation_message

operation_state has values:
completed/failed

operation_message will have
success message for 'completed'
operation_state, and failed
message with type of failure for
'failed' operation_state.

Counts the number of HTTP
requests in each operation state
category (completed, failed)

Chapter 8
Managing OSM Cloud Native Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 45

Table 8-13 (Cont.) OCA Metrics Exposed via Prometheus APIs

Name Type Label Name Description

publish_initiative_dur
ation

Summary cn_instance, cn_project,
pod_name, initiativeId, cartridge,
operation_state,
operation_message

operation_state has values:
completed/failed

operation_message will have
success message for 'completed'
operation_state, and failed
message with type of failure for
'failed' operation_state.

Computes the REST request
execution duration in each operation
state category (completed, failed)

commit_initiative Summary cn_instance, cn_project,
pod_name, initiativeId, cartridge,
operation_type, status

operation_type has values:
Deploy/Activate/Undeploy

status has the values:
successful/failed

Computes the commit duration in
each operation category (Deploy,
Activate, Undeploy).

Here, the metrics summary will
provide other details like commit
count, sum of all commit duration.
This can be helpful in tracking the
number of commits.

Labels for OCA Publish Operations Metrics

The following table lists the labels for OCA Publish Operations Metrics:

Table 8-14 Labels for OCA Publish Operations Metrics

Label Name Sample Value Notes Source of the Label

cn_project sr Project Namespace OCA Metric Label Name/
Value

cn_instance quick Instance name within the
project

OCA Metric Label Name/
Value

pod_name sr-quick-oca-8b955fb68-
cxszc

Name of the OCA Pod OCA Metric Label Name/
Value

initiativeId 103001 Initiative ID of the Publish
Operation

OCA Metric Label Name/
Value

cartridge TMF_PO_B2C_Solution_1.0.
0.0.0

CPAR Name and Version OCA Metric Label Name/
Value

operation_state completed State of Publish REST
request

OCA Metric Label Name/
Value

operation_message Publish Operation Successful Publish request success or
fail message

OCA Metric Label Name/
Value

operation_type Activate Database commit type OCA Metric Label Name/
Value

Managing WebLogic Monitoring Exporter (WME) Metrics
OSM cloud native deployment provides an integrated Prometheus-compatible exporter of
metrics from all WebLogic Server pods using WebLogic Monitoring Exporter (WME). WME
runs as a sidecar container within each of the WebLogic Server pods (admin server and

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 45

managed servers). This section describes a sample integration for OSM pods that run
WebLogic Server.

OSM cloud native also provides a Grafana sample dashboard that can be used to visualize
OSM and WebLogic metrics from a Prometheus data source. See OSM Compatibility Matrix for
the supported versions of WME.

Note

If you have configured WME as a custom sidecar in 7.4.1 and wish to upgrade to this
release, remove your custom sidecar configuration and perform the tasks described in
this section. If you wish to retain your custom WME sidecar, while this is not
recommended, you may do so provided you disable the integrated WME. The
integrated WME is enabled by default.

The following topics describe a sample integration:

• Enabling WebLogic Monitoring Exporter (WME)

• Configuring the Prometheus Scrape Job for WME Metrics

• Viewing WebLogic Monitoring Exporter Metrics in Grafana

Enabling WebLogic Monitoring Exporter (WME)
To enable WebLogic Monitoring Exporter:

1. In the instance specification, set weblogicMonitoringExporter to true.

Set to true if weblogic monitoring exporter is required
weblogicMonitoringExporter:
 enabled: true #or false to disable

By default, this parameter is set to true, which creates a sidecar container for WME using
the default image for the version of WebLogic Operator in use.

2. (Optional) Specify the WebLogic Operator image yourself by providing the image name and
imagePullPolicy in the project specification:

Note

If you do not provide an image name, the default image pulled is ghcr.io/oracle/
weblogic-monitoring:exporter:tag, where tag depends on the version of
WebLogic Operator monitoring this project namespace and is selected by the
Operator automatically.

WebLogic Monitoring Exporter
wme:
 image: URL_for_weblogic-monitoring-exporter
 imagePullPolicy: policy

For imagePullPolicy, specify any one of the following values:

• IfNotPresent

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 45

• Always

• Never

The following snippet shows an example:

WebLogic Monitoring Exporter
wme:
 image: ghcr.io/oracle/weblogic-monitoring-exporter:2.0.5
 imagePullPolicy: IfNotPresent

3. Create or upgrade your instance as usual, using create-instance.sh or upgrade-
instance.sh respectively.

Configuring the Prometheus Scrape Job for WME Metrics
Configure the scrape job in Prometheus as follows in the scrapeJobConfiguration.yaml file:

Note

In the basic_auth section, specify the WebLogic username and password.

- job_name: 'basewls'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: ['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'keep'
 regex: 'true'
 - source_labels: [__meta_kubernetes_pod_label_weblogic_createdByOperator]
 action: 'keep'
 regex: 'true'
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 basic_auth:
 username: weblogic_username
 password: weblogic_password

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 45

Viewing WebLogic Monitoring Exporter Metrics in Grafana
WebLogic Monitoring Exporter metrics scraped by Prometheus can be made available for
further processing and visualization. The OSM cloud native toolkit comes with sample Grafana
dashboards to get you started with visualizations. The OSM and WebLogic by Server sample
dashboard provides a combined view of OSM cloud native and WebLogic Monitoring Exporter
metrics for one or more managed servers for a given instance in the selected project
namespace.

Import the dashboard JSON file from $OSM_CNTK/samples/grafana into your Grafana
environment, selecting Prometheus as the data source.

Proxy Configuration in Microservices
OSM communicates with specific external systems for authentication and authorization via
OIDC or for System Interactions as target systems via REST. This traffic can go over http or
https. It is possible that some or all of these destinations require the use of a proxy server.

A single proxy server can be defined for this purpose, targeting either http or https. You can
exclude specific target IPs or hostnames from the proxy. The proxy server configuration does
not support credentials to authenticate with the proxy itself. You can configure the proxy in the
project specification file:

Proxy configuration
proxy: {} # This empty declaration should be removed if adding items here.
#proxy:
host: "" # Mandatory Proxy server hostname or IP
port: "80" # Proxy server port
protocol: "http" # Protocol to use for the proxy (http/https) default http
no_proxy: # List of hosts/IPs that should bypass the proxy
- "190.190.*.*"
- "localhost"
- "127.0.0.1"
- ".oracle.com"

Chapter 8
Proxy Configuration in Microservices

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 45

9
Automating OSM Cloud Native Operations for
Continuous Delivery

OSM cloud native provides flexible options to automate its operations for continuous delivery.
You can choose to build custom pipelines by invoking OSM cloud native toolkit scripts directly,
using your preferred tools and a backing store for configuration management. Alternatively, for
organizations adopting GitOps practices, a streamlined integration is available by leveraging
Flux-CD, enabling declarative management of deployments through Git as the source of truth.

GitOps allows you to manage and deploy applications by keeping all configuration files and
settings in a Git repository. For more details on GitOps, see https://about.gitlab.com/topics/
gitops/ .

Flux-CD is a tool that helps keep your Kubernetes environment in sync with the files you store
in Git. It constantly compares your running environment with your Git repository, and if
something does not match, it automatically makes the necessary updates to keep them
aligned. For more details on Flux-CD, see https://fluxcd.io/flux/get-started/.

About Continuous Delivery Mechanism
Continuous Delivery (CD) is a process that automatically gets applications ready for release
every time a change is made. With CD, new updates are automatically tested and prepared, so
that new features or fixes can be delivered safely and automatically. For more details on
Continuous Delivery, see https://about.gitlab.com/topics/continuous-delivery/.

Figure 9-1 Continuous Delivery Mechanism

In the image above:

1. Git Repository: All configuration for Flux-CD, Kustomize and OSM CN is stored in a git
repository.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 16

https://about.gitlab.com/topics/gitops/
https://about.gitlab.com/topics/gitops/
https://fluxcd.io/flux/get-started/
https://about.gitlab.com/topics/continuous-delivery/

2. Flux Bootstrapping: Flux-CD is instructed to monitor and process this using a bootstrap
command.

3. Flux-CD Infrastructure: This reads the configuration and installs Flux-CD controllers in a
flux-CD namespace for this OSM instance.

4. Kustomization.yaml: Using one of these controllers - the Kustomization controller, Flux-
CD generates resources in the OSM CN namespace to hold configuration from git that will
be required at runtime.

5. OSM Introspector Job: Finally, the Flux-CD Helm controller invokes the OSM CN
Introspector Helm chart. The OSM CN Introspector Job then compares the desired target
state configuration (as relayed from git) with the actual state of the instance. It calculates
the operations required to reconcile the two states and runs them.

6. sr-test namespace: This results in the OSM cloud native instance being brought in line
with the configuration.

Prerequisites for Creating an OSM Instance Using the
Introspector Job

Before creating an OSM cloud native instance using the Introspector Job, ensure the following
requirements are met:

1. Create Required Secrets and pdb (and pvc if you are using it):

All Kubernetes secrets, pdb, and pvc (if you are using it) required for the OSM cloud native
instance need to be created before you run the Introspector Job.

2. Namespace Registration:

Register the required namespace with one or both of the following as needed:

• WebLogic Operator

• Ingress Controller

3. Role-Based Access Control (RBAC):

Create a Service Account for OSM Introspector with the RBAC specified in the OSM cloud
native toolkit samples. If you are using an existing Service Account, ensure it has the
required RBAC.

Git Strategy for OSM Instances
A structured Git strategy is recommended to ensure a robust and reliable deployment process
for OSM instances (such as prod and test). This section describes a sample branching
approach and directory structure. OSM cloud native has been validated against this strategy.
The goal is to use the main branch as the “source of truth,” which holds only the latest,
production-ready code and shared configurations. You can manage instance specific
deployment and customizations in dedicated branches.

The key elements of this strategy are:

• It organizes the directory structure which separates common content (such as project
specifications, custom model extensions, and custom shapes) from instance specific
configurations (such as instance specifications and job-values.yaml).

• The main branch serves as a reference and shows the complete set of content for all
instances, but does not drive any changes to the Kubernetes environment.

Chapter 9
Prerequisites for Creating an OSM Instance Using the Introspector Job

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 16

• For each OSM instance, a dedicated branch is created from main. Changes to these
branches are directly reflected in the associated Kubernetes environment for that instance.

• You can develop and deliver changes on the instance branch, and merge them back into
main, while keeping the instance branch active for ongoing updates.

• To incorporate updates from common configurations, you can rebase the instance branch
from the main branch.

• When an OSM instance is deleted, its related branch can also be removed. However,
instance details continue to live inert in the main branch for reference, future resurrection
or future cleanup.

To setup a dedicated branch for an OSM Instance:

1. Create a new instance branch from the main branch:

Pull the latest changes to the main branch
git pull origin main

Checkout a dedicated branch for 'test' instance from main branch
git checkout -b <project>-<instance> origin/main

eg: git checkout -b sr-quick origin/main (where "sr" and "quick"
represents OSM project and instance name respectively)

This ensures that the new branch includes the latest common code and configuration.

2. Switch to the instance branch: Set up directory structure and instance specific
configurations in the instance branch.

3. Push your changes and Bootstrap:

a. Commit and push updates to your remote instance branch. It will trigger the OSM
cloud native instance creation/upgradation for that instance environment.

b. Bootstrap your instance branch (eg: sr-quick). This needs to be done only once for a
given branch, because after that Flux-CD will continue to monitor for ongoing changes.

4. Deliver to main: Deliver changes back into main branch, while keeping the instance branch
active for ongoing updates.

The following example shows how to create a test environment, for an OSM cloud native
project sr.

To set up a dedicated branch for the test instance:

1. Create a branch: sr-test

• git pull origin main

• git checkout -b sr-test origin/main

2. Switch to the sr-test branch, setup up directory structure and instance specific changes in
the sr-test branch as required.

git (in sr-test branch)
├── sr <project-name>
│ ├── custom-extensions
│ ├── project-specs
│ │ └── sr.yaml
│ │ └── shape.yaml(custom shape if any)
│ ├── test <instance-name>

Chapter 9
Git Strategy for OSM Instances

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 16

│ │ ├── job
│ │ │ ├── charts
│ │ │ ├── templates
│ │ │ │ └── job.yaml
│ │ │ ├── values.yaml
│ │ │ └── Chart.yaml
│ │ ├── instance-specs
│ │ │ ├── sr-test.yaml
│ │ │ └── job-values.yaml
│ │ ├── flux-descriptors
│ │ ├── helmRelease.yaml
│ │ ├── gitRepoResource.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeConfig.yaml

3. Push your changes and Bootstrap:

• Commit and push changes to the sr-test branch, this will trigger the OSM cloud native
instance creation/upgradation for the test environment.

• Bootstrap the sr-test instance.

4. Deliver changes back into main branch, and keep the sr-test instance branch active for
ongoing updates.

The following table lists the directory names and their contents:

Table 9-1 Directory Structure and Contents

Directory Contents

osm-project Top-level directory named after your OSM project
(for example, sr)

osm-project/custom-extensions Provide all OSM custom extension files

osm-project/project-specs Project specification file and custom shape file (if
required)

osm-project/instance-name Subdirectory for each OSM instance

osm-project/instance-name/job OSM cloud native toolkit Introspector Job Helm
Chart. Copy all contents from the job directory
present in OSM cloud native toolkit.

osm-project/instance-name/instance-specs Instance specification file and job-
values.yaml, from the OSM cloud native toolkit
samples directory.

osm-project/instance-name/flux-descriptors Flux-CD resources: HelmRelease,
GitRepository, Kustomization,
kustomizeConfig.yaml (with
nameReference). Copy all files from the OSM
cloud native toolkit samples/flux-descriptors
directory

The following example shows how to create a production instance, for an OSM cloud native
project sr.

To create a production instance:

1. Create a branch: sr-prod

• git pull origin main

Chapter 9
Git Strategy for OSM Instances

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 16

• git checkout -b sr-prod origin/main

2. Switch to the sr-prod branch, setup up the directory structure and the instance specific
changes in the sr-prod branch as required.

git (in sr-prod branch)
├── sr
│ ├── custom-extensions
│ ├── project-specs
│ │ └── sr.yaml
│ │ └── shape.yaml (custom shape if any)
│ ├── prod (newly added in this step)
│ │ ├── job
│ │ │ ├── charts
│ │ │ ├── templates
│ │ │ │ └── job.yaml
│ │ │ ├── values.yaml
│ │ │ └── Chart.yaml
│ │ ├── instance-specs
│ │ │ ├── sr-prod.yaml
│ │ │ └── job-values.yaml
│ │ ├── flux-descriptors
│ │ ├── helmRelease.yaml
│ │ ├── gitRepoResource.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeConfig.yaml
│ ├── test
│ │ ├── job
│ │ │ ├── charts
│ │ │ ├── templates
│ │ │ │ └── job.yaml
│ │ │ ├── values.yaml
│ │ │ └── Chart.yaml
│ │ ├── instance-specs
│ │ │ ├── sr-test.yaml
│ │ │ └── job-values.yaml
│ │ ├── flux-descriptors
│ │ ├── helmRelease.yaml
│ │ ├── gitRepoResource.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeConfig.yaml

3. Push changes and Bootstrap:

• Commit and push changes to the sr-prod branch, this will trigger the OSM cloud
native instance creation/upgradation for the production environment.

• Bootstrap the sr-prod instance.

4. Deliver changes back into main branch, and keep the sr-prod instance branch active for
ongoing updates.

OSM Cloud Native Toolkit Introspector Job Helm Chart
The Introspector Job Helm chart provisions a Kubernetes Job that runs the OSM cloud native
toolkit Introspector script.

Chapter 9
OSM Cloud Native Toolkit Introspector Job Helm Chart

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 16

The introspector script automates and manages the lifecycle of OSM instance. It performs the
following tasks sequentially:

• Delete or restart the OSM Instance. This is done only if it is specifically requested.

• Determine if the operation will trigger an outage.

• Validate if the outage is allowed.

• Shutdown pods if the outage is required and permitted.

• Install or skip the RCU schema as per the requiremenets.

• Install or upgrade the OSM schema as per the requirements.

• Deploy or sync OSM cartridges.

• Create or upgrade the OSM cloud native instance. This depends on the configuration.

• Create or upgrade ingress.

Note

All customization and operational parameters for the Introspector Job are defined
externally in the job-values.yaml configuration file. The Helm chart itself must not be
modified.

Creating an OSM Cloud Native Instance Using Flux-CD
This section describes how to create an OSM cloud native instance, expanding on the
configuration changes required in git and the setup of Flux-CD. This can only be done after you
have set up the basic file system for the instance on the instance's branch.

Setup Flux-descriptors Configuration
The following artifacts are configurations of Flux-CD and contain resources that will create and
manage the OSM cloud native instance. OSM cloud native uses three Flux-CD resources and
a nameReference:

• Kustomization

• HelmRelease

• GitRepository

Kustomization is the entry point that triggers the creation of the other two resources
(helmRelease and gitRepository) along with configMaps. The nameReference is used to
override the helm chart values.

The samples that OSM cloud native ships have placeholders that need to be updated to your
specific details. The following table lists the placeholders that you need to update in all the files
you copy from the OSM cloud native toolkit.

Table 9-2 Placeholders in the Cloud Native Toolkit

Placeholder Value

<project> Name of your OSM project, for example sr.

<instance> Name of your OSM instance, for example quick.

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 16

Table 9-2 (Cont.) Placeholders in the Cloud Native Toolkit

Placeholder Value

<git-repository-url> URL of the Git repository that Flux-CD will watch.

<branch-name> Branch that Flux-CD will watch.

<git-repo-secret> Secret to access the Git repository referenced via <git-repository-
url>. For more infomation, see Git Access Secret.

<PATH-TO-JOB> Location of the Job directory in the provided Git repository source. In
the branching structure described previously, this would be <project>/
<instance>

Kustomization Resource
The Kustomization resource acts as the primary entry point for Flux-CD. When Flux-CD
detects a Kustomization resource inside the flux-descriptors directory, it orchestrates the
creation and management of related resources defined within it. The Kustomization resource
creates two resources, gitRepository and helmRelease. It also creates configuration maps to
hold the configuration derived from Git to make it available to the OSM Introspector Job.

If you are using custom extensions, uncomment the configMap specific to Custom Extensions.
This will be disabled by default. For example, sr-quick-customs-cm and you will need to
mention the files provided in the custom-extensions directory in this configMap. For more
information on adding custom extensions, refer to Custom Extensions.

The following is a sample kustomization resource:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: sr
resources:
 - gitRepoResource.yaml
 - helmRelease.yaml
configMapGenerator:
 ## configMap for specs
 - name: sr-quick-specs-cm
 ## add all specs and shape files here. This will be mounted in /osm-specs
folder in job container
 files:
 - ../../project-specs/sr.yaml
 - ../instance-specs/sr-quick.yaml
 - ../../project-specs/shape.yaml
 ## configMap for job-values.yaml
 - name: sr-quick-helm-values-cm
 files:
 - values.yaml=../instance-specs/job-values.yaml
generatorOptions:
 disableNameSuffixHash: true
configurations:
 - kustomizeConfig.yaml

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 16

GitRepository Resource
The GitRepository resource defines the Git project that Flux-CD continuously monitors. It
specifies the repository URL, the branch, and the directory path that Flux-CD will watch to
monitor configuration changes.

The following is a sample gitRepository resource:

apiVersion: source.toolkit.fluxcd.io/v1beta2
kind: GitRepository
metadata:
 name: sr-quick-flux-cntk-gr
 namespace: sr
spec:
 interval: 1m
 # Git-Repository URL for Flux-cd to watch
 url: https://<git-repo-url>
 ref:
 # Specify the branch to watch
 branch: sr-quick
 secretRef:
 # Secret to access the above mention Git Repository
 name: gitlab-creds
 ignore: |-
 #Exclude all
 /*
 #Include specific directory to watch
 !/sr/custom-extensions/
 !/sr/project-specs/
 !/sr/quick/

HelmRelease Resource
The HelmRelease resource defines the deployment of Helm charts within the cluster and
ensures that they remain synchronized with the desired state stored in Git. It leverages the
GitRepository resource as the source for pulling Helm charts and applies updates
automatically when it detects changes.

The following is a sample HelmRelease resource:

apiVersion: helm.toolkit.fluxcd.io/v2beta1
kind: HelmRelease
metadata:
 name: cntk-flux-hr
 namespace: sr
spec:
 interval: 1m
 timeout: 60m
 releaseName: sr-quick-osmcn-release
 chart:
 spec:
 chart: sr/quick/job/charts
 reconcileStrategy: Revision
 sourceRef:

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 16

 kind: GitRepository
 name: sr-quick-flux-cntk-gr
 valuesFrom:
 - kind: ConfigMap
 name: sr-quick-helm-values-cm

Setup Job-Values Configuration
The Job-Values configuration provides a mechanism to define and customize parameters
required by the OSM cloud native Introspector Job. The following properties can be defined in
the job-values.yaml file to configure the Job:

• introspectorJobVersion: This version is a suffix appended to the job name to distinguish
between different iterations of the job. Every time there is a change to the specification or
configuration, this version must be incremented or changed.

• project: This specifies the name of the project.

• instance: This specifies the name of the instance.

• image: This specifies the container image that needs to be used for the Introspector Job.

• imagePullPolicy: This defines how Kubernetes pulls the container image for the
Introspector Job's pods.

• imagePullSecret: (Optional) This provides the credentials to pull container images from
secured registries.

• customModel: This field is used to enable or disable the Custom Model Extensions. By
default it is set to False (disable).

• customFiles: This field is used to enable or disable the Custom Files. By default it is set to
False (disable).

• serviceAccountName: (Optional) This specifies a custom service account. If you do not
mention a custom service account, a default service account will be used.

Note

Oracle recommends that you do not use the default service account but that you
create a custom service account.

• targetState: This specifies the desired end state of the OSM instance as running or
notRunning. If you set it to notRunning, the instance will not be created if it is a new
instance, or it will get deleted if it is an existing instance.

• action: This applies operational actions on the OSM instance. These actions are only
performed if the job version listed under the action matches the introspectorJobVersion. At
present, the restart operation is controlled using action.

• tolerance: This sets the deployment tolerance for various runtime situations. Tolerances
are applied if their jobVersion matches the introspectorJobVersion. The tolerance for OSM
outage is controlled here. By default, any change that will result in an OSM outage will not
be allowed to proceed, and will return a failure from the Introspector Job. If it is acceptable
for a change to cause an outage, the fullOutage tolerance can be set to true. OSM
production systems have minimum cluster size of 2 or more. For development systems,
which tend to have cluster size of 1, you can either setup outage tolerance on each change
that requires pod restart, or simply set the jobVersion value to all.

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 16

Warning

Setting the jobVersion to all is not recommended for production systems as that
bypasses the tolerance safety net.

The following is a sample job-values.yaml file:

This version need to be changed to rerun Introspector Job
introspectorJobVersion: v1

Provide project name in place of <project-name>
project: sr

Provide instance name in place of <project-name>
instance: quick

Provide the OSM CNTK image
image: osm-cntk:8.0.0

Provide when the container image should be pulled from the container
registry
Valid values (Always, IfNotPresent, Never)
imagePullPolicy: IfNotPresent

Provide authentication credentials for pulling container images,
Optional field, uncomment to specify the imagePullSecret
#imagePullSecret: <image-pull-secret-name>

Enable if there are any OSM CN model extensions, by default it will be
disabled.
customModel: false

Enable if there are customFiles provided in the project specification.
customFiles: false

Provide service account name,
Optional field, if not provided 'default' serviceAccount will be used,
Uncomment to specify custom serviceAccount.
#serviceAccountName: <service-account-name>

To manage OSM CN instance create/upgrade OR delete.
running : OSM Introspector Job will 'create' or 'upgrade' the instance.
notRunning : OSM Introspector Job will 'delete' the instance.
targetState: running

Actions that can be applied based on jobVersion.
action:
OSM Introspector Job will restart or skip the restart, based on the
jobVersion value,
if jobVersion is same as introspectorJobVersion, restart will be applied,
otherwise if jobVersion is different from introspectorJobVersion, restart
will be skipped.
valid values for Restart.Type are: full, admin, ms
* full : Restarts the whole instance (rolling restart)
* admin : Restarts the WebLogic Admin Server only

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 16

* ms : Restarts all the Managed Servers (rolling restart)
 restart:
 type: full
 appliesTo:
 jobVersion: v0

Deployment tolerance that can be applied based on jobVersion.
tolerance:
OSM Introspector Job will upgrade or skip the upgrade based on fullOutage
allowed,
This will applies to provided jobVersion only,
if jobVersion is different from introspectorJobVersion, fullOutage will not
be allowed.
if jobVersion value is "all", this tolerance will be applicable for all
introspectorJobVersion.
if fullOutage is allowed : Upgrade will be done (with or without full
outage).
if fullOutage is not allowed : Upgrade will fail if full outage is
required, else upgrade will be done.
 fullOutage:
 allowed: false
 appliesTo:
 jobVersion: v0

Note

A sample job-values.yaml file is provided in the OSM cloud native toolkit package
under samples/job-values.yaml.

Triggering CD for a New Instance
The Flux-CD bootstrap command links Flux-CD to the namespace, the branch and path in your
Git repository. This allows automated deployment and lifecycle management of your OSM
cloud native instances. Flux-CD also requires its bootstrap command to be run by a user who
has cluster administration rights on the target Kubernetes cluster.

Oracle recommends using the main branch as the source of truth for maintaining the latest
code. Do not use this branch directly to create instances. For each environment (for example,
prod, dev, or test), create a separate branch cloned from the main branch. Each branch will
contain the required flux-descriptor path to bootstrap and create its own OSM cloud native
instance. token-auth is required for Flux-CD to interact with the Git repository, and tokens
need be generated from an appropriate Git repository account.

The following are the minimum parameters needed for OSM cloud native use:

• -n flux-<project>-<instance>: Assigns a unique namespace for the Flux-CD components.

• --url: The Git repository URL.

• --branch: The branch associated with the environment/instance.

• --path: The directory path (within the branch) containing the flux-descriptor manifests.

Chapter 9
Creating an OSM Cloud Native Instance Using Flux-CD

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 16

• --token-auth: Enables authentication using a git access token.

bash-4.4$ flux bootstrap -n flux-<project>-<instance> git \
 --url=<Provide your Git repository URL> \
 --branch=<Provide your branch here> \
 --path=<project>/<instance>/flux-descriptors \
 --token-auth

After bootstrapping, Flux-CD will process the kustomization.yaml file located in the specified
flux-descriptor directory. Flux-CD will create various housekeeping resources in the flux-
<project>-<instance> namespace, as well as operational pods.

Making Changes to an OSM Instance
When modifying the configuration of an instance managed by Flux-CD, it is important to ensure
that Flux-CD detects and reconciles the changes correctly.

To update the configuration of an instance:

1. Modify Configuration: Make the required changes in the configuration files (for example,
the job-values.yaml, project, and instance specification). This can also include normal git
operations like rebasing from main or cherry-picking a commit from elsewhere. If it is okay
for this instance to experience an outage, then set the outage tolerance as well.

2. Increment the Job Version: Update the introspectorJobVersion in the job-values.yaml
file. For example,

introspectorJobVersion: v2 # previously v1

3. Commit and Push as One Transaction: All the configuration changes and the
introspectorJobVersion updates must be committed and pushed in a single Git
transaction. This ensures that the Flux-CD identifies the update as a new version.

Once the changes are pushed, Flux-CD will detect them. A new Job will be created with the
updated version. The Job’s name will automatically include a suffix corresponding to the
specified introspectorJobVersion , for example, sr-quick-osmops-v2. The versioned job
name provides clear traceability of configuration changes applied over time.

Adding Custom Content
This section explains how you can configure the custom content supported by OSM cloud
native.

Custom Extensions
If you need to include custom extensions as part of your OSM cloud native deployment, follow
these steps in the <instance> branch:

1. Add all the custom extensions files under the custom-extensions directory present under
<project>/custom-extensions. Refer to Git Strategy for OSM Instances for more
information about the directory structure.

git (dev branch)
├── project
│ ├── custom-extensions # Specify all the .tpl files under this

Chapter 9
Making Changes to an OSM Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 16

directory.
│ │ └── _custom-domain-model.tpl
│ │ └── _custom-jms-support.tpl
...

2. Update the Kustomization resource with all the custom extension files:

a. Open the Kustomization resource present in the flux-descriptors directory present
under <project>/<instance>/flux-descriptors. Refer to Git Strategy for OSM
Instances for more information about the directory structure.

b. In Kustomization resource under the configMapGenerator tag, a configMap is
available that has been configured for custom extensions. Uncomment that section.

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
...
configMapGenerator:
...
 ## configMap for custom extensions
 ## Please uncomment this section and add all custom extension tpl
files.
 #- name: <project>-<instance>-customs-cm
 # ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container
 # files:
 # - ../../custom-extensions/_custom-jms-support.tpl
 # - ../../custom-extensions/_custom-domain-model.tpl
...

c. Replace the placeholders <project> and <instance> in the uncommented section
with real values.

configMapGenerator:
...
 # configMap for custom extensions
 # Please uncomment this section and add all custom extension tpl
files.
 - name: sr-quick-customs-cm
 ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container
 files:
...

d. After setting up the name, under the files tag, you need to specify each custom
extension tpl file path. The path will always follow the format ../../custom-extensions/
<name-of-custom-extension>.tpl. For example, if the custom extension name is
_custom-domain-model.tpl then you need to add an entry ../../custom-extensions/
_custom-domain-model.tpl under the files tag.

configMapGenerator:
 # configMap for custom extensions
 # Please uncomment this section and add all custom extension tpl
files.
 - name: sr-quick-customs-cm
 ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container

Chapter 9
Adding Custom Content

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 16

 files:
 - ../../custom-extensions/_custom-domain-model.tpl
 - ../../custom-extensions/_custom-jms-support.tpl

e. The following is a sample Kustomization resource with custom model extensions:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: sr
resources:
 - gitRepoResource.yaml
 - helmRelease.yaml
configMapGenerator:
 ## configMap for specs
 - name: sr-quick-specs-cm
 ## add all specs and shape files here. This will be mounted in /osm-
specs folder in job container
 files:
 - ../../project-specs/sr.yaml
 - ../instance-specs/sr-quick.yaml
 # configMap for custom extensions
 # Please uncomment this section and add all custom extension tpl
files.
 - name: sr-quick-customs-cm
 ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container
 files:
 - ../../custom-extensions/_custom-domain-model.tpl
 - ../../custom-extensions/_custom-jms-support.tpl
 ## configMap for job-values.yaml
 - name: sr-quick-helm-values-cm
 files:
 - values.yaml=../instance-specs/job-values.yaml
generatorOptions:
 disableNameSuffixHash: true
configurations:
 - kustomizeConfig.yaml

3. Enable custom extensions in the job-values.yaml file present under <project>/
<instance>/instance-specs/job-values.yaml.

Note

By default custom extensions are disabled and set to false. To enable custom
extensions, set it to true.

Enable if there are any OSM CN model extensions, by default it will be
disabled.
customModel: true

4. Enable custom extension in the project specification. To do this, set the enabled tag as
true and specify the model extension files names in the wdtFiles list element. Ensure this

Chapter 9
Adding Custom Content

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 16

list matches the list provided in <project>/<instance>/flux-descriptors/
kustomization.yaml.

Sample WDT extensions can be enabled here. When enabled is true, then
_custom-domain-model.tpl needs to be un-commented. Custom template
files can
also be added.
custom:
 enabled: true
 application: false
 jdbc: false
 jms: true
 #wdtFiles: [] # This empty declaration should be removed if adding items
here.
 wdtFiles:
 - _custom-jms-support.tpl
 - _custom-domain-model.tpl

Custom Files
If you need to include custom files as part of your OSM cloud native deployment, follow these
steps in the <instance> branch:

1. Add the configured custom-file-support.yaml file under the custom-extensions directory
present under <project>/custom-extensions. A sample file for this is present in the OSM
cloud native toolkit. Refer to Git Strategy for OSM Instances for more information about the
directory structure.

git (dev branch)
├── project
│ ├── custom-extensions
│ │ └── custom-file-support.yaml
...

2. Update the Kustomization resource with the custom-file-support.yaml file.

a. Open the Kustomization resource present in the flux-descriptors directory present
under <project>/<instance>/flux-descriptors.

b. In Kustomization resource under the configMapGenerator tag, a configMap is
available that has been configured for custom extensions. Uncomment that section
and replace the placeholders <project> and <instance> in the uncommented
section with real values.

configMapGenerator:
...
 # configMap for custom extensions
 # Please uncomment this section and add all custom extension tpl
files.
 - name: sr-quick-customs-cm
 ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container
 files:
...

Chapter 9
Adding Custom Content

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 16

c. After setting up the name, you need to specify custom file path under the files tag
as ../../custom-extensions/custom-file-support.yaml.

configMapGenerator:
 # configMap for custom extensions
 - name: sr-quick-customs-cm
 ## add all custom extensions files here. This will be mounted in /
osm-customs folder in job container
 files:
 - ../../custom-extensions/custom-file-support.yaml

3. Enable custom files in the job-values.yaml file present under <project>/<instance>/
instance-specs/job-values.yaml.

Note

By default custom files are disabled and set to false. To enable custom file, set it
to true.

Enable if there are customFiles provided in the project specification.
customFiles: true

4. Edit your project specification to reference the desired files in the customFiles element:

#customFiles:
- mountPath: /some/path/1
configMapSuffix: "path1"
- mountPath: /some/other/path/2
configMapSuffix: "path2"

Custom Shapes
You can use custom shapes as part of your OSM cloud native deployment. For more
information on creating custom shapes, refer to Creating Custom Shapes.

Once you have created the custom shape, follow these steps in the <instance> branch:

1. Under the <project>/project-specs directory add the file of the custom shape.

2. In the instance specification specify the name of the custom shape.

shape: <custom-shape-filename-without-extension>

Chapter 9
Adding Custom Content

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 16

10
Integrating OSM

Typical usage of OSM involves the OSM application coordinating activities across multiple peer
systems. Several systems interact with OSM for various purposes. This chapter examines the
considerations involved in integrating OSM cloud native instances into a larger solution
ecosystem.

This section describes the following topics and tasks:

• Connectivity with traditional OSM instances

• Connectivity with OSM cloud native instances

• Configuring SAF

• Applying the WebLogic patch for external systems

• Configuring SAF for External Systems

• Setting up Secure Communication with SSL/TLS

Connectivity With Traditional OSM Instances
OSM interacts with external systems that fall broadly in the following categories:

• Human user interaction

• Upstream systems that inject orders and check status

• Peer systems and downstream systems that receive requests and provide updates

Human User Interaction

Human users interact with OSM using the following user interfaces:

• Task Web Client

• Order Management Web Client

These user interfaces connect to OSM through HTTP and HTTPS. Some deployments involve
custom user interfaces built for specific purposes. These too interact with OSM using the Web
Services API (WSAPI) or XML API (XMLAPI), with requests and responses transmitted over
HTTP and HTTPS.

Order Submission and Status Check

Order capture systems, CRM systems, and middleware applications such as Application
Integration Architecture (AIA) submit orders into OSM. They can sign up for order updates
through the event/milestone framework. This interaction can theoretically happen through Web
Services API,XML API calls over HTTP/HTTPS. However, for reasons of scalability, resilience
and load management, the strong recommendation is to conduct this interaction over JMS.
This typically involves SAF as well, to avoid foreign JMS injection. JMS, whether native or with
SAF, runs over the T3 protocol.

OSM itself can be the upstream system here. For instance, consider an OSM instance
functioning as Central Order Management (COM). This would need to send orders to another
OSM instance functioning as Service Order Management (SOM) and receive updates from it.
This too would be via JMS with SAF, running over T3.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 28

There are additional use cases where monitoring systems (or similarly tasked components)
can query OSM. These typically take the form of searches for orders that fit some business
criteria, and reporting back status and perhaps some additional operationally significant
information. OSM is optimized to process orders and therefore processes such requests at
some impact. However, many deployments still opt for such interactions. These typically
happen as WSAPI or XMLAPI calls over HTTP/HTTPS.

Connectivity with Peer Systems

As OSM processes orders, the logic encoded in the cartridges drives requests to other
systems, such as those for billing or inventory or workforce management. These requests can
be one-way messages but are much more likely to follow a "request - response" pattern, where
the remote system sends one or more responses back to OSM. These responses can arrive
immediately or at a later (perhaps much later) time. The communication model OSM
recommends for this is JMS (with SAF), which runs over T3.

Technical Connectivity

Over the three categories of interaction, we can distill the following connectivity types:

• OSM APIs invoked via HTTP/HTTPS

• OSM APIs invoked via JMS and SAF

• OSM conversing via JMS and SAF

OSM initiates HTTP/HTTPS messages if explicitly coded to do so in cartridges. This is an anti-
pattern for OSM cartridge development as it causes high impact to the throughput capability of
OSM. Normally, OSM responds to incoming requests over HTTP/HTTPS (API call responses).

With JMS messages, OSM can be both the originator of a "request-response" transaction or
the recipient of one. To support this, OSM can host SAF agents that provide the ability to send
JMS messages to remote systems, and OSM can host queues that are targeted by SAF
agents on those remote systems.

Security Requirements

OSM Cloud Native supports HTTP and T3. In addition, SAF configuration from one WebLogic
domain to another domain very often requires additional security arrangements, including the
availability of credentials to authenticate such a connection.

Connectivity With OSM Cloud Native
Functionally, the interaction requirements of OSM do not change when OSM is run in a cloud
native environment. All of the categories of interaction that are applicable for connectivity with
traditional OSM instances are applicable and must be supported for OSM cloud native.

Connectivity Between the Building Blocks
The following diagram illustrates the connectivity between the building blocks in an OSM cloud
native environment using an example:

Chapter 10
Connectivity With OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 28

Figure 10-1 Connectivity Between Building Blocks in OSM Cloud Native Environment

Invoking the OSM cloud native Helm chart creates a new OSM instance. In the above
illustration, the name of the instance is "dev2" in the project "mobilecom". The instance
consists of the WebLogic cluster that has one Admin Server and three Managed Servers and a
Kubernetes Cluster Service.

The Cluster Service contains endpoints for both HTTP and T3 traffic. The instance creation
script creates the OSM cloud native Ingress object. The Ingress object has metadata to trigger
the ingress-NGINX controller as a sample. ingress-NGINX responds by creating new front-
ends with the configured "hostnames" for the cluster (dev2.mobilecom.osm.org and
t3.dev2.mobilecom.osm.org in the illustration) and the admin server
(admin.dev2.mobilecom.osm.org) and links them up to new back-end constructs. Each
back-end routes to each member of the Cluster Service (MS1, MS2, and MS3 in the example)
or to the Admin Server. The dev2.mobilecom.osm.org front-end is linked to the back-end
pointing to the HTTP endpoint of each managed server, while the
t3.dev2.mobilecom.osm.org front-end links to the back-end pointing to the T3 endpoint of
each managed server.

The prior installation of ingress-NGINX has already exposed ingress-NGINX itself via a
selected port number (30305 in the example) on each worker node.

Inbound HTTP Connectivity
An OSM instance is exposed outside of the Kubernetes cluster for HTTP access via an Ingress
Controller and potentially a Load Balancer.

Because the ingress-NGINX port (30305) is common to all OSM cloud native instances in the
cluster, ingress-NGINX must be able to distinguish between the incoming messages headed
for different instances. It does this by differentiating on the basis of the "hostname" mentioned
in the HTTP messages. This means that a client (User Client B in the illustration) must believe

Chapter 10
Connectivity With OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 28

it is talking to the "host" dev2.mobilecom.osm.org when it sends HTTP messages to port
30305 on the access IP. This might be the Master node IP, or IP address of one of the worker
nodes, depending on your cluster setup. The "DNS Resolver" provides this mapping.

In this mode of communication, there are concerns around resiliency and load distribution. For
example, If the DNS Resolver always points to the IP address of Worker Node 1 when asked
to resolve dev2.mobilecom.osm.org, then that Worker node ends up taking all the inbound
traffic for the instance. If the DNS Resolver is configured to respond to any
*.mobilecom.osm.org requests with that IP, then that worker node ends up taking all the
inbound traffic for all the instances. Since this latter configuration in the DNS Resolver is
desired, to minimize per-instance touches, the setup creates a bottleneck on Worker node 1. If
Worker node 1 were to fail, the DNS Resolver would have to be updated to point
*.mobilecom.osm.org to Worker node 2. This leads to an interruption of access and requires
intervention. The recommended pattern to avoid these concerns is for the DNS Resolver to be
populated with all the applicable IP addresses as resolution targets (in our example, it would
be populated with the IPs of both Worker node 1 and node 2), and have the Resolver return a
random selection from that list.

An alternate mode of communication is to introduce a load balancer configured to balance
incoming traffic to the ingress-NGINX ports on all the worker nodes. The DNS Resolver is still
required, and the entry for *.mobilecom.osm.org points to the load balancer. Your load
balancer documentation describes how to achieve resiliency and load management. With this
setup, a user (User Client A in our example) sends a message to dev2.mobilecom.osm.org,
which actually resolves to the load balancer - for instance, http://
dev2.mobilecom.osm.org:8080/OrderManagement/Login.jsp. Here, 8080 is the public port
of the load balancer. The load balancer sends this to ingress-NGINX, which routes the
message, based on the "hostname" targeted by the message to the HTTP channel of the OSM
cloud native instance.

By adding the hostname resolution such that admin.dev2.mobilecom.osm.org also resolves
to the Kubernetes cluster access IP (or Load Balancer IP), User Client B can access the
WebLogic Remote console via http://admin.dev2.mobilecom.osm.org/rconsole and the
credentials specified while setting up the "wlsadmin" secret for this instance.

Note

Access to the WebLogic Remote console is provided for review and debugging use
only. Do not use the console to change the system state or configuration. These are
maintained independently in the WebLogic Operator, based on the specifications
provided when the instance was created or last updated by the OSM cloud native
toolkit. As a result, any such manual changes (whether using the console or using
WLST or other such mechanisms) are liable to be overwritten without notice by the
Operator. The only way to change state or configuration is through the tools and
scripts provided in the toolkit.

Inbound JMS Connectivity
JMS messages use the T3 protocol. Since Ingress Controllers and Load Balancers do not
understand T3 for routing purposes, OSM cloud native requires all incoming JMS traffic to be
"T3 over HTTP". Hence, the messages are still HTTP, but contain a T3 message as payload.
OSM cloud native requires the clients to target the "t3 hostname" of the instance -
t3.dev2.mobilecom.osm.org, in the example. This "t3 hostname" should behave identically as
the regular "hostname" in terms of the DNS Resolver and the Load Balancer. ingress-NGINX
however not only identifies the instance this message is meant for (dev2.mobilecom) but also
that it targets the T3 channel of instance.

Chapter 10
Connectivity With OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 28

The "T3 over HTTP" requirement applies for all inbound JMS messages - whether generated
by direct or foreign JMS API calls or generated by SAF. The procedure in SAF QuickStart
explains the setup required by the message producer or SAF agent to achieve this
encapsulation. If SAF is used, the fact that T3 is riding over HTTP does not affect the
semantics of JMS. All the features such as reliable delivery, priority, and TTL, continue to be
respected by the system. See "Applying the WebLogic Patch for External Systems".

An OSM instance can be configured for secure access, which includes exposing the T3
endpoint outside the Kubernetes cluster for HTTPS access. See "Configuring Secure Incoming
Access with SSL" for details on enabling SSL.

Inbound JMS Connectivity Within the Same Kubernetes Cluster
For all inbound JMS connectivity, use the T3 hostname: t3.dev2.mobilecom.osm.org.
This URL applies to clients outside of the Kubernetes cluster in which OSM cloud native is
deployed. This requires configuring Ingress Controller and DNS Resolver to access the URL.

However, there can be situations where OSM cloud native needs to be accessed from within
the same Kubernetes cluster where it is deployed. For example, an upstream application
sending orders or a downstream application sending status updates could be deployed in the
same Kubernetes cluster. It could also be another OSM cloud native instance deployed in the
same Kubernetes cluster either sending or receiving Create Order requests. For such
requirements, there is no need for the request to be routed via an Ingress Controller or a load
balancer and resolved via a DNS Resolver.

OSM cloud native exposes a T3 channel exclusively for such connections and can be
accessed via t3://project-instance-cluster-c1.project.svc.cluster.local:31313.

This saves the various network hops typically involved in routing a request from an external
client to OSM cloud native deployed in a Kubernetes cluster.

The following diagram illustrates inbound JMS connectivity within the same Kubernetes cluster
using an example.

For the example, the URL is t3://mobilecom-dev2-cluster-
c1.mobilecom.svc.cluster.local:31313.

Note

The protocol is T3 as there is no need for wrapping in HTTP. Note that the port is
different.

Chapter 10
Connectivity With OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 28

Figure 10-2 Inbound JMS Connectivity in a Kubernetes Cluster

If SSL is enabled for domains, communication between the domains within the Kubernetes
cluster is not secured because the ingress is not involved. See "Setting Up Secure
Communication with SSL" for further details.

Outbound HTTP Connectivity
No specific action is required to ensure the HTTP messages from OSM cloud native instance
reach out of the Kubernetes Cluster.

When a domain inside a Kubernetes cluster sends REST API or Web Service requests over
HTTP to a domain that is outside the cluster that is enabled with SSL, then you should set up
some required configuration. For instructions, see "Configuring Access to External SSL-
Enabled Systems".

Outbound JMS Connectivity
JMS messages originating from the OSM cloud native instance such as requests to peer
systems from cartridge automation plug-ins or event notifications to upstream system from
notification plug-ins, always end up on local queues. The OSM cloud native Helm chart allows
for the specification of SAF connections to remote systems in order to get these messages to
their destinations. The project specification contains all the SAF connections that must exist for
the cartridge(s) to do their job. The instance specification provides a specific endpoint for each
of these SAF connections. This allows for a canonical expression of the SAF connectivity
requirements, which are uniquely fulfilled by each instance by pointing to the appropriate
upstream, downstream, peer systems or emulators, and so on.

Chapter 10
Connectivity With OSM Cloud Native

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 28

When a WebLogic domain inside a Kubernetes cluster sends JMS messages to a domain that
is outside the cluster that is SSL-enabled, then see "Configuring Access to External SSL-
Enabled Systems" for instructions on setting up some required configuration.

Configuring SAF
OSM cloud native requires SAF for the OSM cartridge automation functionality to send
messages to external systems through JMS. The SAF configuration in OSM cloud native has
two distinct aspects - the project and the instance. At the project level, the project specification
can be used to define all the SAF connections that any OSM cloud native instance must make.
This list is governed by the cartridges that constitute the project. At the instance level, each of
these SAF connections must be given a specific remote endpoint.

Configuring the Project Specification

The project specification lists out all the SAF connections that are required for the set of
solution cartridges that the project requires in order to function. These are listed under the
safDestinationConfig element of the project specification.

The following sample shows a basic SAF specification that describes the need to interact via
SAF with external-system-identifier. It specifies that the project is interested in
accessing two queues on that remote system: remote-queue-1 and remote-queue-2. On
that system, these queues can be addressed using the JNDI prefix prefix-1. Further,
remote-queue-1 is also mapped locally as local-queue-1. Whether this is necessary or
not depends on the addressing system coded into the OSM cartridge's external sender
automation plugins. OSM cloud native supports both local names and remote names for SAF
destinations.

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1
 - queue:
 remoteJndi: remote_queue_2

If the queues of an external system are spread across more than one JNDI prefix, the
jndiPrefix element can be repeated as many times as necessary. In this example,
prefix_1 applies to remote_queue_1 and remote_queue_2, while prefix_2 applies to
remote_queue_3.

The following sample shows SAF project specification with multiple JNDIs:

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1
 - queue:
 remoteJndi: remote_queue_2

Chapter 10
Configuring SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 28

 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_3

It is possible for an external system to not use a JNDI prefix, which is configured by leaving the
value empty for jndiPrefix. However, at most, one of the jndiPrefix entries in a
destinations list can be empty, as the jndiPrefixes in this list have to be unique. If there are
more than one external system that the project's solution cartridges interact with via SAF, these
can be named and listed as follows:

safDestinationConfig:
 - name: external_system_identifier_1
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 - name: external_system_identifier_2
 destinations:
 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_2

Note

Using the provided configuration, OSM cloud native automatically computes names for
some entities required for completing the SAF setup. You may find such entities when
you log into WebLogic Remote Console for troubleshooting purposes and are not to
be confused.

Configuring the Instance Specification

The project specification lays out the connectivity requirements of the solution cartridges in the
project. However, each instance needs to provide its own set of endpoints to satisfy those
connections. For example, the project specification may require connectivity to a remote UIM
system to send inventory related commands via JMS and SAF. It is the instance specification
that directs this requirement to a specific UIM installation valid for use with this instance.
Another instance of the same project might target a different UIM installation or an emulator.

The instance specification contains the T3 URL of the external system along with the name of
a Kubernetes secret that provides the credentials required to interact with that system. The T3
URL can be specified using any of the standard mechanisms supported by WebLogic. The
Kubernetes secret must contain the fields username and password, carrying credentials that
have permission to inject JMS messages into the remote system.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_password

Chapter 10
Configuring SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 28

Here, the external_system_identifier needs to match the
external_system_identifier specified in the project specification. The instance
specification must have an entry for each of the external_system_identifier entries
listed in the project specification.

If the external system is an OSM cloud native instance deployed in the same Kubernetes
cluster, use the T3 URL as described in "Inbound JMS Connectivity Within the Same
Kubernetes Cluster".

If SSL is enabled for the external system, use the T3 URL as described in "Configuring Access
to External SSL-Enabled Systems".

Usage in OSM Cartridge Automation

The OSM cartridge automation external sender plugins are unaffected by the switch to OSM
cloud native. The plugins continue to address their destinations as before, using JNDI prefix
and remote queue name, or JNDI prefix and local queue name. The project specification must
reflect what the cartridge developer has actually coded into the automation plug-in in Design
Studio.

Inbound SAF Requirements

The OSM cloud native Helm charts create all the entities required for inbound SAF to be
processed as T3 over HTTP. No additional configuration is required in the OSM cloud native
specification files. However, if the OSM cartridge automation receiver plugins are set up to
read from local JNDI prefix and queue name, these must be added to the project specification
as standard solution queues under uniformDistributedQueues (not as
safConnectionConfig).

Security for Remote SAF and Bridges
WebLogic Server supports cross-domain security that establishes trust between domains, and
this can be achieved in two ways. These are:

• Global Trust

• Cross-domain Security

Refer to Oracle Fusion Middleware WebLogic Server Documentation for more details. While
OSM cloud native supports both the types of domain trust, cross-domain security is preferable
due to its finer-grained security.

Configuring Global Trust

For details about global trust, see Oracle Fusion Middleware WebLogic Server documentation.

Because the shared password provides access to all domains that participate in the trust, strict
password management is critical. Trust should be enabled when SAF is configured as it is
needed for inter-domain communication using distributed destinations. In a Kubernetes cluster
where the pods are transient, it is possible that a SAF sender will not know where it can
forward messages unless domain trust is configured.

If trust is not configured when using SAF, you may experience unstable SAF behavior when
your environment has pods that are growing, shrinking, or restarting.

To enable global trust, in your instance specification file, for domainTrust.globalEnabled,
change the default value to true:

domainTrust:
 globalEnabled: true

Chapter 10
Configuring SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 28

Note

In previous versions, the configuration in the instance specification file was
domainTrust.enabled. While this is still supported for backward compatibility, it is now
deprecated in favor of the configuration mentioned above,
domainTrust.globalEnabled. If you are using specification files from an older version,
consider updating it with the new configuration.

Configuring Cross-Domain Security

Weblogic Server supports cross-domain security, which establishes trust between two domains
using specific credentials. Whereas, global trust uses the same credentials to communicate
with all domains. Hence, in most cases, using cross-domain security is better as opposed to
using global trust. To enable cross-domain security in OSM cloud native, refer to Configuring
the Instance Specification and Configuring the Project Specification.

Note

When you are using JTA with XA-enabled messaging with either SAF (Store-and-
Forward) messaging or JMS bridge messaging (with Exactly-once QoS), it is
recommended to enable Cross Domain Trust instead of Global Trust.

Enabling Global Trust introduces security risks, especially for anonymous users and
has been observed to cause JMS message rollbacks with errors. To ensure secure
and reliable message delivery, always configure Cross Domain Trust.

Configuring the Instance Specification
The instance specification lists out the cross-domain security components that are to be
configured on the OSM domain. These are listed under the domainTrust.crossDomain element
of the instance specification.

To enable cross-domain security, for domainTrust.crossDomain.enabled, set the default value
to true. You can choose to enable cross-domain security for some, but not all of the remote
domains that OSM communicates with. In that case you need to add the names of the domains
for which cross-domain security is not enabled to the list of excluded domains in the
domainTrust.crossDomain.excludeDomainNames element. For those remote domains for which
you have enabled cross-domain security, you need to specify a user on the remote domain
whose credentials are to be trusted by OSM cloud native. To map each credential you need the
remote domain name and a secret with the credentials of the remote user who is authorized to
interact with the OSM cloud native instance. These are set using the elements
domainTrust.remoteDomains.name and domainTrust.remoteDomains.secretName respectively.

The following sample shows the cross-domain security configuration for multiple remote
domains:

domainTrust:
 globalEnabled: false
 crossDomain:
 enabled: true
 excludeDomains:
 - remote-domain-1
 - remote-domain-2

Chapter 10
Configuring SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 28

 remoteDomains:
 - name: remote-domain-3
 secretName: remote-domain-3-secret
 - name: remote-domain-4
 secretName: remote-domain-4-secret

Note

If you enable cross-domain security to communicate between two domains, then you
must not enable global trust. Therefore, for globalEnabled (or the deprecated
enabled) set the value to false when enabling cross-domain security.

You need to create a Kubernetes secret to store the credentials of the remote users.

kubectl create secret generic -n project <remote-domain-secret> --from-
literal=username=<username> --from-literal=password=<password>

Configuring the Project Specification
The project specification lists out all the cross-domain users that are to be configured on the
OSM cloud native instance. These users must be used while configuring credential mapping
on remote domains that are communicating with OSM cloud native with the cross-domain
security enabled. These are listed under the crossDomainTrustUsers element of the project
specification. There is no restriction on the number of cross-domain users configured on each
domain. There can be one or 'n' such users tied to specific remote domains in either a '1:1' or a
'1:Many' orientation.

The following sample shows the cross-domain users that are to be configured in the OSM
domain:

crossDomainTrustUsers:
 - user-1
 - user-2

You must create the xtrust secret for configuring the user credentials for the cross-domain
trust users in the OSM domain. Run the following script to configure the secret:

$ $OSM_CNTK/scripts/manage-instance-credentials.sh -p $PROJECT -i $INSTANCE -
s $SPEC_PATH create xtrust

Verify that the following secret is created:

secret/<project>-<instance>-crossdomain-users configured

Note

The cross-domain trust users are specifically configured for the purpose of cross-
domain security and must not be assigned other roles apart from the default
CrossDomainConnector.

Chapter 10
Configuring SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 28

Configuring WebLogic Messaging Bridges
This section explains the configuration steps required when integrating OSM cloud native with
other systems via Messaging Bridges hosted on OSM cloud native.

Use the process described below to set up and configure JMS Bridges in OSM cloud native.

Chapter 10
Configuring WebLogic Messaging Bridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 28

Figure 10-3 Configuring JMS Bridges for OSM Cloud Native

Chapter 10
Configuring WebLogic Messaging Bridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 28

1. Building the OSM Image: Use the OSM cloud native image builder to build the required
images. Refer to Creating OSM Cloud Native Images for more information about building
images. Ensure that you are using the latest manifest and patch list as per the OSM
Compatibility Matrix. Note down the image name and tag.

2. Adding Vendor Libraries: If your JMS Bridges involve destinations (either source or target)
hosted on non-WebLogic platforms, you may need to make vendor-specific libraries
available to WebLogic. Consult the appropriate vendor documentation to see if this is
needed to obtain the required libraries. Any such libraries need to be included in the OSM
image.

a. You need a container image builder, either Docker or Podman for this process. Refer
to the Compatibility Matrix for more information about which version to use. You can
reuse the main cloud native image build host and environment.

b. Copy the vendor libraries to the build host.

c. Create a Dockerfile to augment the standard OSM image with the libraries. You can
use the following as an example to modify to your requirements:

ARG base_image
FROM $base_image
ARG username=username
ARG groupname=groupname
ARG vendor_jar1
COPY --chown=$username:$groupname $vendor_jar1 /u01/oracle/wlserver/
server/lib/

If you have more than one vendor jar, you can add more ARG and COPYcommands
using vendor_jar2, vendor_jar3, and so on.

d. Build an updated image in the same directory as the above Dockerfile:

builder build -tag output-image-name:output-image-tag . --build-arg
vendor_jar1=vendor-jar

Note

builder will be Docker or Podman.

You can repeat the --build-arg for each vendor jar you defined the way you did
above for vendor_jar. If your image build manifest uses hostname or groupname
other than the default oracle, provide these values as well:

--build-arg username=username --build-arg groupname=groupname

e. Use the output image name and tag in your project specification as the OSM image.

3. Configuring Specifications: You can configure the specifications using the following
process:

a. Use your project specification to provide a list of JMS Bridges to be hosted on each
OSM cloud native instance for this project. This takes the form of a YAML list called
jmsBridges. Refer to the sample project specification in the OSM cloud native ToolKit
for details on the format and parameters of each list entry.

Chapter 10
Configuring WebLogic Messaging Bridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 28

b. Use your instance specification to provide the actual endpoints for each JMS Bridge to
be hosted for this project. This takes the form of a YAML list called
jmsBridgeDestinations, where each item describes one of the JMS destinations
referenced in the jmsBridges list in the project specification. Refer to the sample
instance specification in the OSM cloud native ToolKit for details on the format and
parameters of each list entry.

Note

Each destination will need credentials for access. The OSM destination
definition in the instance specification takes the name of secret where these
credentials can be found. This secret must be present in the project
namespace before the instance is created or upgraded. Each such secret
should have the keys "username" and "password" with the appropriate value.
Refer to the example given below:

kubectl -n project create secret generic project-instance-othersystem \
 --from-literal=username=username \
 --from-literal=password=

4. Configuring Optional Specifications: You can use the following optional configurations for
the specifications.

a. Domain Trust: If one or more of the JMS destinations are on another WebLogic
domain, configure domain trust in the instance specification. For more information,
refer to Configuring SAF.

b. Host Aliasing: If one or more of the JMS destinations use URLs that include
hostnames that cannot be resolved by DNS, provide the hostname-to-IP mappings
using the hostAliases section of the instance specification.

c. RMI Forwarding: If one or more of the JMS destinations are on another WebLogic
domain running in a Kubernetes environment, configure a RMI forwarding proxy in the
project specification:

managedServers:
 project:
 java_options:

In the value of the above java_options, for each foreign domain, add the option -
Dweblogic.rjvm.domain.proxy.domainname=url-of-load-balancer, where,
domainname is the name of the domain configured in the remote WebLogic system and
url-of-load-balancer is the URL to reach the remote WebLogic domain. If this is a
different Kubernetes cluster from where OSM cloud native is running, it will use
protocol http or https and the IP, hostname and port of the load balancer configured for
that cluster. If you are using the same Kubernetes cluster as that of OSM cloud native,
it will use protocol t3 and the hostname or port of the T3ClustChannel service
(<project>-<instance>-cluster-c1.com.svc.cluster.local:31313)

5. Applying the Changes: To apply the changes made above, complete the following steps:

a. Create the OSM cloud native instance using the above specification for configuration
and secrets. This will automatically create the JMS bridges as specified.

Chapter 10
Configuring WebLogic Messaging Bridges

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 28

b. If you have an existing OSM cloud native instance for this project and it has been
created using an OSM cloud native version older than 7.4.1.0.17, do the following:

• Delete the instance using the CNTK script delete-instance.sh

• Create the instance using the CNTK script create-instance.sh

c. If you are not using an OSM cloud native version older than 7.4.1.0.17, then invoke the
CNTK script upgrade-instance.sh.

Applying the WebLogic Patch for External Systems
When an external system is configured with a SAF sender towards OSM cloud native, using
HTTP tunneling, a patch is required to ensure the SAF sender can connect to the OSM cloud
native instance. You need to do this regardless of whether the connection resolves to an
ingress controller or to a load balancer. Each such external system that communicates with
OSM through SAF must adhere to the following guidelines:

• For the external system configured with FMW 14.1.x: Apply July 2025 (or later) CPU
patches as listed in the OSM Compatibility Matrix. Ensure that you have applied WebLogic
patch 37940403 related to SAF.

• For the external system configured with FMW 12.2.1.x: Apply July 2025 (or later) CPU
patches as listed in the OSM Compatibility Matrix. Ensure that you have applied WebLogic
patch 37940403 related to SAF.

Note

SAF configuration will not work with any patches, even if you are using the SAF
workaround if you are using either the October 2024 or the January 2025 CPU
patches. Oracle recommends that you move to July 2025 (or later) CPU patches
as listed in the OSM Compatibility Matrix. Ensure that you have applied WebLogic
patch 37940403 related to SAF.

If you are using CPU patches from prior to October 2024 CPU patches, then each external
system that communicates with OSM through SAF must have the WebLogic patch
30656708 installed and configured, by adding: -
Dweblogic.rjvm.allowUnknownHost=true to the WebLogic startup parameters.

If you cannot apply any patches to your environment follow the workaround given below.
On each host running a Managed Server of the external system, add the following entries
to the /etc/hosts file:

0.0.0.0 project-instance-<ms1>.project
0.0.0.0 project-instance-<ms2>.project
...
0.0.0.0 project-instance-<ms17>.project
0.0.0.0 project-instance-<ms18>.project

You need to add these entries for all the OSM cloud native instances that the external system
interacts with. Set the IP address to 0.0.0.0. You need to list all eighteen managed servers
possible in your OSM cloud native instance, regardless of how many you have actually
configured in the instance specification.

Chapter 10
Applying the WebLogic Patch for External Systems

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 28

Configuring SAF On External Systems
To create SAF and JMS configuration on your external systems to communicate with the OSM
cloud native instance, use the configuration samples provided as part of the SAF sample as
your guide.

It is important to retain the "Per-JVM" and "Exactly-Once" flags as provided in the sample.

All connection factories must have the "Per-JVM" flag, as must SAF foreign destinations.

Each external queue that is configured to use SAF must have its QoS set to "Exactly-Once".

Enabling Domain Trust

To enable domain trust, in your domain configuration, under Advanced, edit the Credential
and ConfirmCredential fields with the same password you used to create the global trust
secret in OSM cloud native.

Setting Up Secure Communication with SSL
When OSM cloud native is involved in secure communication with other systems, either as the
server or as the client, you should additionally configure SSL/TLS. The configuration may
involve the WebLogic domain, the ingress controller or the URL of remote endpoints, but it
always involves participating in an SSL handshake with the other system. The procedures for
setting up SSL use self-signed certificates for demonstration purposes. However, replace the
steps as necessary to use signed certificates.

If an OSM cloud native domain is in the role of the client and the server, where secure
communications are coming in as well as going out, then both of the following procedures need
to be performed:

• Configuring Secure Incoming Access with SSL

• Configuring Access to External SSL-enabled Systems

Configuring Secure Incoming Access with SSL
This section demonstrates how to secure incoming access to OSM cloud native. In this
scenario, SSL termination happens at the ingress. The traffic coming in from external clients
must use one of the HTTPS endpoints. When SSL terminates at the ingress, it also means that
communication within the cluster, such as SAF between the OSM cloud native instances, is not
secured.

Generating SSL Certificates for Incoming Access
The following illustration shows when certificates are generated.

Chapter 10
Configuring SAF On External Systems

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 28

Figure 10-4 Generating SSL Certificates

When OSM cloud native dictates secure communication, then it is responsible for generating
the SSL certificates. These must be provided to the appropriate client. When an OSM cloud
native instance in a different Kubernetes cluster acts as the external client (Domain Z in the
illustration), it loads the T3 certificate from Domain A as described in "Configuring Access to
External SSL-Enabled Systems".

TLS Secrets

If you have SSL turned on for incoming connections (by setting ssl.incoming to true in the
specification files), then you must create wlstls and gatewaytls secrets to provide the
required certificate information. This information is provided to the ingress controller securely.

This secret carries the application or ingress TLS credentials for OSM.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create wlstls

You get the following three options after you run the above command:

• WLSStore: This is for creating secret for truststore when OSM needs to interact with JMS
and SAF securely to external system and needs that system's certificates.

• WLSIngress: This is for creating secret for Ingress when SSL is enabled.

• Both: This is for WLSIngress and WLSStore.

Setting Up OSM Cloud Native for Incoming Access
The Ingress controller routes unique hostnames to different backend services. You can see this
if you look at the Ingress controller YAML file (obtained by running kubectl get ingress -n
project ingress_name -o yaml):

For more information on the Service name details, see Using an Alternate Ingress Controller.

To set up OSM cloud native for incoming access:

1. Edit the instance specification and set incoming to true and provide Ingress specific
annotations:

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 28

Note

Make sure that you remove any incoming WL-Proxy-SSL and WL-Proxy-Client-IP
headers. Also, set X-Forwarded-Proto: https and WL-Proxy-SSL: true
WebLogic HTTP headers, to notify WebLogic that SSL terminated at Ingress and
that the request came in over SSL. See Oracle Cloud Infrastructure
Documentation for more details.

The instance specification contains NGINX annotations as an example. The Ingress
resource eliminates the WL-Proxy-Client-IP and WL-Proxy-SSL client headers and adds
theX-Forwarded-Proto: https and WL-Proxy-SSL: true input headers.

For any other Ingress controller, identify the corresponding annotations to achieve the
same behavior described here:

SSL Configuration
ssl:
 incoming: true
 ingress:
 # These annotations are required if project spec ingressController is
"GENERIC" and SSL enabled.
 # Different Ingress controller can have implementation specific
annotations and can be added here.
 # Provided annotations below for nginx and openshift.
 # These annotations are required if project spec ingressController is
"GENERIC"
 # and the actual ingress controller is nginx with wls custom request
headers.
 annotations:
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 nginx.ingress.kubernetes.io/ingress.allow-http: "false"

To configure NGINX-Ingress for SSL, see Using NGINX Ingress Controller

2. Generate key pairs for each hostname corresponding to an endpoint that OSM cloud
native exposes to the outside world:

Create TLS Secret For Ingress
Create a directory to save your keys and certificates. This is for
sample only. Proper management policies should be used to store private
keys.

mkdir $SPEC_PATH/ssl

Generate key and certificates
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $SPEC_PATH/ssl/
osm.key -out $SPEC_PATH/ssl/osm.crt -subj "/CN=instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $SPEC_PATH/ssl/
admin.key -out $SPEC_PATH/ssl/admin.crt -subj "/
CN=admin.instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $SPEC_PATH/ssl/

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 28

https://docs.oracle.com/en-us/iaas/Content/Balance/Reference/httpheaders.htm
https://docs.oracle.com/en-us/iaas/Content/Balance/Reference/httpheaders.htm

t3.key -out $SPEC_PATH/ssl/t3.crt -subj "/CN=t3.instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $SPEC_PATH/ssl/
osm-gateway.key -out $SPEC_PATH/ssl/osm-gateway.crt -subj "/
CN=instance.project.osm.org"

Create secrets to hold each of the certificates.
Run the manage-instance-credentials.sh to create the TLS secrets.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create gatewaytls,wlstls
Provide Gateway Ingress TLS Credentials for 'project-instance' ...

Ingress TLS Certificate Path: /home/path/gateway.crt
Ingress TLS Key file Path : /home/path/gateway.key

Please select the option to provide TLS Credentials for 'project-
instance' ...
1) WLSStore
2) WLSIngress
3) BOTH
#? 2

Provide WLS Ingress Keys and Certificates for 'project-instance' ...

Do you wish to use one common certificate for Admin Server, Managed Server
and T3
(select number from menu)
1) Yes
2) No
#? 1
Certificate File Path: /home/path/osm.crt
Key File Path : /home/path/osm.key

secret/project-instance-app-tls-cert configured
secret/project-instance-osm-tls-cert configured
secret/project-instance-admin-tls-cert configured
secret/project-instance-t3-tls-cert configured

3. After running create-ingress.sh, you can validate the configuration by describing the
Ingress controller for your instance. You should see each of the certificates you generated,
terminating one of the hostnames:

$kubectl get ingress -n project

#Once you have the name of your ingress, run the following command:

kubectl describe ingress -n project ingress

TLS:
 project-instance-osm-tls-cert terminates instance.project.osm.org
 project-instance-t3-tls-cert terminates t3.instance.project.osm.org
 project-instance-admin-tls-cert terminates admin.instance.project.osm.org
 project-instance-app-tls-cert terminates

4. Create your instance as usual.

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 28

SSL Termination at the Load Balancer
In this configuration, SSL termination happens at the external Load Balancer which handles all
incoming HTTPS traffic and forwards decrypted HTTP traffic to the OSM Cloud Native Ingress.
The Ingress resource does not expose TLS certificates in this case, as SSL is terminated at
the Load Balancer level before the traffic reaches the cluster.

Prerequisites for SSL termination at the external Load Balancer are:

• Ensure that SSL certificates are installed and available at the Load Balancer.

• Confirm that the Load Balancer is configured to forward decrypted traffic to the Ingress
service.

Configuration Steps in OSM Cloud Native Specification Files
You must follow the standard steps to configure secure incoming access with SSL in OSM
Cloud Native which includes key pair generation, secrets creation, instance specification
updates, ingress creation and instance creation. See, Setting Up Secure Communication with
SSL for more information about the configuration steps in OSM Cloud Native specification files.

For SSL pre-termination at the load balancer, you must apply the following changes:

1. Enable SSL Pre-Termination in Instance Specification
In the instance specification file, set:

ssl:
 incoming: true
 preTermination: true

This ensures that TLS certificates are not mounted in the Ingress resource, since SSL
termination is expected at the Load Balancer.

2. Set SSL Redirect Annotation
In the instance specification file, configure the following annotation:

nginx.ingress.kubernetes.io/ssl-redirect: "false"

Note

This annotation is provided as an example for NGINX Ingress (ingress-nginx).
Other Ingress controllers may use different annotations or configurations.

This prevents NGINX Ingress from forcing an HTTPS redirect, as SSL is already
terminated at the Load Balancer.

3. Final Combined Configuration
The ssl section in your instance specification should now look as follows, assuming use of
ingress-NGINX:

SSL Configuration
ssl:
 incoming: true
 preTermination: true # This needs to be enabled for ssl termination at
loadbalancer before ingress
 ingress:

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 28

https://github.com/kubernetes/ingress-nginx

 # These annotations are required if project spec ingressController is
"GENERIC" and SSL enabled.
 # Different Ingress controller can have implementation specific
annotations and can be added here.
 # Provided annotations below for nginx and openshift.
 # These annotations are required if project spec ingressController is
"GENERIC"
 # and the actual ingress controller is nginx with wls custom request
headers.
 annotations:
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 # This annotation is required if SSL enabled with pretermination
 nginx.ingress.kubernetes.io/ssl-redirect: "false"

4. Create the Ingress using create-ingress.sh.

5. Create the OSM instance as usual.

Configuring Incoming HTTP and JMS Connectivity for External Clients
This section describes how to configure incoming HTTP and JMS connectivity for external
clients.

Note

Remember to have your DNS resolution set up on any remote hosts that will connect
to the OSM cloud native instance.

Incoming HTTPS Connectivity

External Web clients that are connecting to OSM cloud native must be configured to accept the
certificates from OSM cloud native. They will then connect using the HTTPS endpoint and port
30443.

Incoming JMS Connectivity

For external servers that are connected to OSM cloud native through SAF, the certificate for
the t3 endpoint needs to be copied to the host where the external domain is running.

If your external WebLogic configuration uses "CustomIdentityAndJavaSTandardTrust", then
you can follow these instructions exactly to upload the certificate to the Java Standard Trust. If,
however, you are using a CustomTrust, then you must upload the certificate into the custom
trust keystore.

The keytool is found in the bin directory of your jdk installation. The alias should uniquely
describe the environment where this certificate is from.

./keytool -importcert -v -trustcacerts -alias alias -file /path-to-copied-t3-
certificate/t3.crt -keystore /path-to-jdk/jdk-21.0.7/lib/security/cacerts -
storepass default_password

For example

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 28

./keytool -importcert -v -trustcacerts -alias osmcn -file /scratch/t3.crt -
keystore /jdk-21.0.7/lib/security/cacerts -storepass default_password

Update the SAF remote endpoint (on the external OSM instance) to use HTTPS and 30443
port (still t3 hostname).

From the SAF sample provided with the toolkit, the external system would configure the
following remote endpoint URL:

https://t3.dev.example.osm.org:30443/
oracle.communications.ordermanagement.SimpleResponseQueue

Configuring Access to External SSL-Enabled Systems
In order for OSM cloud native to participate successfully in a handshake with an external
server for SAF connectivity, the SSL certificates from the external domain must be made
available to the OSM cloud native setup. See "Enabling SSL on an External WebLogic
Domain" for details about how you could do this for an on-premise WebLogic domain. If you
have an external system that is already configured for SSL and working properly, you can skip
this procedure and proceed to "Setting Up OSM Cloud Native for Outgoing Access".

Loading Certificates for Outgoing Access
In outgoing SSL, the certificates come from the external domain, whether on-premise or in
another Kubernetes cluster. These certificates are then loaded into the OSM cloud native trust.

The following illustration shows information about loading certificates into OSM cloud native
setup.

Figure 10-5 SSL Certificates for Outgoing Connectivity

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 28

Enabling SSL on an External WebLogic Domain
These instructions are specific to enabling SSL on a WebLogic domain that is external to the
Kubernetes cluster where OSM cloud native is running.

To enable SSL on an external WebLogic domain:

1. Create the certificates. Perform the following steps on the Linux host that has the on-
premise WebLogic domain:

a. Use the Java keytool to generate public and private keys for the server. When the tool
asks for your username, use the FQDN for your server.

jdk_path/bin/keytool -genkeypair -keyalg RSA -keysize 1024 -alias alias
-keystore keystore file -keypass private key password -storepass
keystore password -validity 360

b. Export the public key. This certificate will then be used in the OSM cloud native setup.

jdk_path/bin/keytool -exportcert -rfc -alias alias -storepass password -
keystore keystore -file certificate

2. Configure WebLogic server for SSL. Follow steps 3 to 17 (skip step 7) in the OSM -
Encrypting Database Tablespaces and WebLogic Protocols (Doc ID 2399723.1) KM note
on My Oracle Support.

3. Validate that SSL is configured properly on this server by importing the certificate to a trust
store. For this example, the Java trust store is used.

jdk_path/bin/keytool -importcert -trustcacerts -alias alias -file
certificate -keystore path-to-jdk/jdk-21.0.7/lib/security/cacerts -
storepass default_password

4. Verify that t3s over the specified port is working by connecting using WLST.
Navigate to the directory where the WLST scripts are located.

Set the environment variables. Some shells don't set the variables
correctly so be sure to check that they are set afterward
path-to-FMW/Oracle/Middleware/Oracle_Home/oracle_common/common/bin/
setWlsEnv.sh

ensure CLASSPATH and PATH are set
echo $CLASSPATH

java -
Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=default_password
weblogic.WLST

once wlst starts, connect using t3s
wls:offline> connect('admin_user','admin_password','t3s://server:7002')

If successful you will see the prompt
wls:>domain_name/serverConfig>

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 28

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1

#when finished disconnect
disconnect()

Setting Up OSM Cloud Native for Outgoing Access
To set up OSM cloud native for outgoing access:

1. (Optional) Set up custom trust using the following steps:

Note

This step is required when HTTPS/T3S-based SAF connections are configured.

Note

You need to configure a custom identity keystore customIdentity whenever you
use a custom trust keystore customTrust.

a. Load the certificate from your remote server into a trust store and make it available to
the OSM cloud native instance.
Use the Java keytool to create a jks file (truststore) that holds the certificate from your
SSL server:

keytool -importcert -v -alias alias -file /path-to/certificate.cer -
keystore /path-to/truststore.jks -storepass password

Note

Repeat this step to add as many trusted certificates as required.

b. Edit the instance specification, setting the trust name.

SSL trust and identity
ssl:
 trust:
 name: truststore # truststore filename without extension
(truststore.jks). This must be commented out or a fixed value of
"truststore" as this is deprecated.
 identity:
 name: keystore # Identity store filename without extension
(keystore.jks).A valid Custom Identity keystore is required when a
truststore is used.

c. Create a Kubernetes secret to hold the truststore file and the passphrase. The secret
name should match the truststore name.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
-s $SPEC_PATH create wlstls

Please select the option to provide TLS Credentials for 'project-

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 28

instance' ...
1) WLSStore
2) WLSIngress
3) BOTH
#? 1

Please select the option to create WLS Store for 'project-instance' ...
1) TrustStore
2) KeyStore
3) Both
#? 1
Provide WLS Store for 'project-instance' ...

The WLS Truststore File Path+Name. This JKS file will be renamed to
truststore.jks, and be attached to the --truststoresecret,and be used
by the OSM managed servers and Admin server as the truststore.
WLS Truststore file Path+Name: /truststore.jks
WLS Truststore Passphrase:

Note

If ssl.trust.name isn't populated in the instance specification, a warning will
be displayed that the truststore isn't required.

2. Set up custom identity using the following steps:

Note

The demo identity keystore is not recommended for production use. If you have
not configured a custom identity keystore and you have not enabled secure
production mode, the system uses the demo identity keystore by default for non-
SSL configurations.

a. Create the keystore:

keytool -genkeypair -keyalg RSA -keysize 1024 -alias <alias> -keystore
identity.jks -keypass private_key_password -storepass keystore_password
-validity 360

b. Edit the specification file:

identity:
 name: keystore # Identity store filename without extension
(keystore.jks).

c. Create the secret:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
-s $SPEC_PATH create wlstls

Please select the option to provide TLS Credentials for 'project-
instance' ...

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 28

1) WLSStore
2) WLSIngress
3) BOTH
#? 1

Please select the option to create WLS Store for 'project-instance' ...
1) TrustStore
2) KeyStore
3) Both
#? 2
Provide WLS Store for 'project-instance' ...

The WLS keystore File Path+Name. This JKS file will be renamed to
keystore.jks, and be attached to the --keystore secret,and be used by
the OSM managed servers and Admin server as the keystore.
WLS Keystore file Path+Name: /keystore.jks
WLS Keystore Passphrase:

SSL Key Alias: ssl_key
SSL Key Passphrase:

3. Configure SAF by updating the SAF connection configuration in the OSM cloud native
instance specification file to reflect t3s and the SSL port:

safConnectionConfig:
 - name: simple
 t3Url: t3s://remote_server:7002
 secretName: simplesecret

4. Create the OSM cloud native instance as usual.

Adding Additional Certificates to an Existing Trust
You can add additional certificates to an existing trust while an OSM cloud native instance is up
and running.

To add additional certificates to an existing trust:

1. Set up OSM cloud native for outgoing access. See "Configuring Access to External SSL-
Enabled Systems" for instructions.

2. Copy the certificates from your remote server and load them into the existing truststore.jks
file you had created:

keytool -importcert -v -alias alias -file /path-to/certificate.cer -
keystore /path-to/truststore.jks -storepass password

3. Re-create your Kubernetes secret using the same name as you did previously:

manually
kubectl create secret generic trust_secret_name -n project --from-
file=truststore.jks --from-literal=passphrase=password

verify
k get secret -n project trust_secret_name -o yaml

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 28

4. Upgrade the instance to force WebLogic Operator to re-evaluate:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Debugging SSL
To debug SSL, do the following:

• Verify Hostname

• Enable SSL logging

Verifying Hostname

When the keystore is generated for the on-premise server, if FQDN is not specified, then you
may have to disable hostname verification. This is not secure and should only be done in
development environments.

To do so, add the following Java option to the managed server in the project specification:

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.security.SSL.ignoreHostnameVerification=true"

Enabling SSL Logging

When trying to establish the handshake between servers, it is important to enable SSL specific
logging.

Add the following Java options to your managed server in the project specification. This should
be done for your external server as well.

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.StdoutDebugEnabled=true -Dssl.debug=true -
Dweblogic.security.SSL.verbose=true -Dweblogic.debug.DebugSecuritySSL=true -
Djavax.net.debug=ssl"

Chapter 10
Setting Up Secure Communication with SSL

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 28

11
Running the SAF Sample for OSM Cloud
Native

It is highly recommended that you explore OSM cloud native support of SAF using a
predefined set of configurations and instructions. This activity not only serves to quickly identify
issues with your cloud environment but also enables you to familiarize yourself with setting up
the connectivity for your own projects, which are likely to be more complex than the SAF
sample this section describes.

This chapter describes how to run the SAF sample for OSM cloud native.

The SAF sample for OSM cloud native consists of the following components:

• SimpleProvisioningCartridge sample cartridge available as a par file, ready to be
deployed using the OSM cloud native DB Installer. This cartridge implements a flow that
consists of sending a JMS message to a remote system and receiving a JMS message in
response. The order then ends.

• Configuration fragments for a project and an instance. These can be added to your project
and instance specifications and contain all the SAF connection specifications as well as
endpoint identification.

• A simple emulator that is available as a JAR file, along with instructions and configuration
samples. This emulator can be set up on a WebLogic system outside the Kubernetes
cluster and functions as a "remote system" in the SAF communication. The emulator
simply echos the message given to it.

The SAF sample can be run as a separate project and instance, derived from the samples in
the OSM cloud native toolkit. Alternatively, it can be added on to the specifications of a basic
OSM instance. A project can consist of multiple cartridges. If you add the specifications to a
basic OSM instance, the project consists of SimpleRabbits and
SimpleProvisioningCartridge; instances of this project can consume both types of orders.

For the SAF sample, you need the following:

• A Linux host capable of running WebLogic Server 14.1.2 outside of the Kubernetes cluster.

• Traffic should be routable between the Kubernetes cluster and this host.

• If you are not using a centralized DNS resolution server, edit the /etc/hosts file of the Linux
host to add resolution for your OSM cloud native instance. For example, use kubernetes
access IP address quick.sr.osm.org t3.quick.sr.osm.org admin.quick.sr.osm.org.

For further details, see "Planning and Validating Your Cloud Native Environment".

Running the SAF sample involves the following tasks:

• Preparing the WebLogic system to run the emulator

• Deploying the emulator on the WebLogic system

• Deploying the SimpleProvisioning sample cartridge

• Preparing the OSM instance

• Validating the SAF endpoints

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 10

• Submitting OSM orders

Preparing the WebLogic System to Run the Emulator
Install WebLogic 14.1.2 on the Linux host. The specific patchset does not matter as long as it
contains the patch referenced in "Applying the WebLogic Patch for External Systems".

To prepare the WebLogic system to run the emulator:

1. Start WebLogic server and create a domain accepting all the default settings. Do not
enable JRF or any other Fusion MiddleWare capabilities for this sample. Name the domain
simple.

2. Stop the WebLogic server and find the domain home for simple.

3. Edit the domain-home/config/config.xml file and delete the line: <admin-server-
name>AdminServer</admin-server-name> .

4. Locate and open the samples/saf-sample/emulated-weblogic-resources/config/
config_fragment.xml configuration fragment XML file in the OSM cloud native toolkit.

5. Copy the contents under the domain element and append them to the end of the domain
element in the domain-home/config/config.xml file just before </domain>.
This creates a persistent store for JMS as well as a JMS server and a SAF agent. The SAF
agent is used in sending emulator responses back to the OSM cloud native instance.

6. Copy the samples/saf-sample/emulated-weblogic-resources/config/jms folder in the
toolkit to <domain-home>/config. This creates a folder jms under the target config
directory with the specific JMS configuration. This also creates JMS queues and SAF
entities.

7. Configure the SAF system to connect to your OSM cloud native instance. The instance
does not need to be up at this point, but you should have decided on a project name,
instance name, and the WebLogic username and password. If you want to reuse the basic
OSM instance, you should already have these ready.
Edit the domain_home/config/jms/simple_osm_jms_module-jms.xml file and update
the fields underlined in the following fragment. The password is entered as plain text and
gets auto-encrypted during WLS startup:

 <saf-login-context>
 <loginURL>osm_cn_t3_url</loginURL>
 <username>osm_weblogic_username</username>
 <password-encrypted>osm_weblogic_password</password-encrypted>
 </saf-login-context>

osm_cn_t3_url is:

• If Oracle Cloud Infrastructure Load Balancer is not used: http://
t3.instance.project.osm.org:30305

• If Oracle Cloud Infrastructure Load Balancer is used: http://
t3.instance.project.osm.org:80

8. Start WebLogic. At this point, if you see errors from SAF/JMS about your OSM cloud
native instance, you can ignore them. These errors go away once the OSM cloud native
instance is up and configured for the SAF sample.

9. When enabling cross-domain security, configure its components using Weblogic Scripting
Tool (WLST) in online mode by following the steps below:

Chapter 11
Preparing the WebLogic System to Run the Emulator

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 10

a. Once the simple domain is up and running, start the WLST at the
location $FMW_HOME/oracle_common/common/bin

$./wlst.sh

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

b. Connect to the admin server by setting values corresponding to simple domain
Weblogic server.

wls:/offline> connect('<username>','<password>','t3://<admin-server-
host>:<admin-server-port>')

Upon connecting successfully, you will see a message like the one below:

Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server "AdminServer" that belongs to
domain "simple".

c. Since this attribute is set as read-only, start an edit session and navigate to the domain
for setting the cross-domain security to true. Save and activate the changes.

wls:/simple/serverConfig/> edit()
Location changed to edit tree.
This is a writable tree with DomainMBean as the root.
To make changes you will need to start an edit session via startEdit().
For more help, use help('edit').
You already have an edit session in progress and hence WLST will
continue with your edit session.

wls:/simple/edit/ !> startEdit()
Starting an edit session ...
Started edit session, be sure to save and activate your changes once
you are done.
wls:/simple/edit/ !> cd('SecurityConfiguration/simple')
wls:/simple/edit/SecurityConfiguration/simple !>
cmo.setCrossDomainSecurityEnabled(true)
wls:/simple/edit/SecurityConfiguration/simple !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/simple/edit/SecurityConfiguration/simple !> activate()
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released once the
activation is completed.
Activation completed

d. To configure a cross-domain user, navigate back to the root and then to the
authentication provider to create a user simple-cross-user by setting an appropriate
password. Assign the user to the CrossDomainConnectors group. This credential will

Chapter 11
Preparing the WebLogic System to Run the Emulator

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 10

be used in step 4 of Preparing the OSM Cloud Native Instance, while creating the
secret simple-cross-user-credentials in the OSM cloud native instance.

wls:/simple/edit/SecurityConfiguration/simple> serverConfig()
wls:/simple/serverConfig/> cd('SecurityConfiguration/simple/Realms/
myrealm/AuthenticationProviders/DefaultAuthenticator')
wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
AuthenticationProviders/DefaultAuthenticator> cmo.createUser('simple-
cross-user', '<password>', 'for cross-domain security')
wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
AuthenticationProviders/DefaultAuthenticator>
cmo.addMemberToGroup('CrossDomainConnectors', 'simple-cross-user')

e. To configure credential mapping for cross-domain security, navigate to the credential
mapper directory. Create a credential for osm-cross-user as configured in OSM cloud
native. Refer to step 4 of Preparing the OSM Cloud Native Instance for more
information. Replace remoteHost with the OSM domain name.

wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
AuthenticationProviders/DefaultAuthenticator> cd('/
SecurityConfiguration/simple/Realms/myrealm/CredentialMappers/
DefaultCredentialMapper')
wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
CredentialMappers/DefaultCredentialMapper>
cmo.setUserPasswordCredential('type=<remote>, protocol=cross-domain-
protocol, remoteHost=<project>-<instance>', 'osm-cross-user',
'<password>')
wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
CredentialMappers/DefaultCredentialMapper>
cmo.setUserPasswordCredentialMapping('type=<remote>, protocol=cross-
domain-protocol, remoteHost=<project>-<instance>', 'cross-domain', 'osm-
cross-user')

Note

While setting the credential and mapping it, do not change the value for type.
It must be <remote> as specified above.

f. Once all the cross-domain security components are configured successfully,
disconnect from the admin server and exit the script.

wls:/simple/serverConfig/SecurityConfiguration/simple/Realms/myrealm/
CredentialMappers/DefaultCredentialMapper> disconnect()
Disconnected from weblogic server: AdminServer
wls:/offline> exit()

Exiting WebLogic Scripting Tool.

Deploying the Emulator on the WebLogic System
To deploy the emulator on the WebLogic system:

Chapter 11
Deploying the Emulator on the WebLogic System

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 10

1. Find the samples/saf-sample/emulator-mdb/emulator-mdb-1.0.0.jar emulator MDB jar
file in the OSM cloud native toolkit.

2. Open the WebLogic Remote Console for the simple domain.

3. In Deployments, upload the emulator MDB jar file.

4. Complete the deployment using the defaults and ensure that the MDB file is shown with
State "Active" and Health "OK".

Deploying the SimpleProvisioning Sample Cartridge
The SimpleProvisioning sample cartridge contains the following:

• process_1 process

• A manual creation task

• An automation task with the following:

– qQuerySender XQuery Sender

– Receiver XQuery Automator

To deploy the SimpleProvisioning cartridge:

1. Identify a PDB for use with the SAF sample.
This must be ready to host an OSM cloud native instance with RCU DB schema and OSM
DB schema in place. You can use a fresh PDB and run the OSM cloud native DB Installer,
or reuse or clone the PDB from the basic OSM cloud native instance. If you reuse the PDB
in the basic OSM cloud native instance, you must use the basic OSM cloud native project
and instance specification files in subsequent steps and delete the basic OSM cloud native
instance.

2. Deploy the SimpleProvisioning cartridge using the script in the toolkit:

./scripts/manage-cartridges.sh -p project_name -i instance_name -
s $SPEC_PATH -f $OSM_CNTK/samples/saf-sample/cartridge-resources/cartridge-
par/SimpleProvisioning.par -c parDeploy

Preparing the OSM Cloud Native Instance
To prepare the OSM cloud native instance for the SAF sample:

1. Obtain a starter project specification. This can be the samples/project.yaml sample in the
toolkit or you can reuse the project specification created for the basic OSM cloud native
instance.

a. Configure a UDQ (SimpleResponseQueue) to receive the response from an external
WebLogic domain by replacing the following line:

uniformDistributedQueues: {}

with the following:

uniformDistributedQueues:
 - name: SimpleResponseQueue
 jndiName: oracle.communications.ordermanagement.SimpleResponseQueue
 resetDeliveryCountOnForward: false

Chapter 11
Deploying the SimpleProvisioning Sample Cartridge

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 10

 deliveryFailureParams:
 expirationPolicy: Discard
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'

If uniformDistributedQueues already exists in your project.yaml file, do not
create a new element. Instead, append the item SimpleResponseQueue from the
above snippet to the end of the existing list of items for
uniformDistributedQueues.

b. Configure the SAF Queue (RequestQueue) by replacing the following line:

safDestinationConfig: {}

with the following:

safDestinationConfig:
 - name: simple
 destinations:
 - jndiPrefix: simple.
 queues:
 - queue:
 localJndi: RequestQueue
 remoteJndi: RequestQueue

The cartridge deployed for this sample uses this SAF queue to send messages to the
external WebLogic domain.
If safDestinationConfig already exists in your project.yaml file, do not create a
new element. Instead, append the item simple from above to the end of the existing
list of items for safDestinationConfig.

2. Obtain a starter instance specification. This can be the samples/instance.yaml sample in
the toolkit or you can reuse the instance specification created for your basic OSM instance.

a. If you start with the instance.yaml sample, you must use your experience with
creating a basic OSM cloud native instance to set up the DB server, NFS for logs
(optional), authentication, and so on.

b. Configure the connection to the external OSM WebLogic domain by replacing the
following line:

safConnectionConfig: {}

with the following:

safConnectionConfig:
 - name: simple
 t3Url: t3://{simple_weblogic_hostname}:{simple_weblogic_port}
 secretName: simplesecret

Chapter 11
Preparing the OSM Cloud Native Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 10

Replace the value of {simple_weblogic_hostname} and
{simple_weblogic_port} with the hostname and port where simple WebLogic
domain is installed. If safConnectionConfig already exists in your project-
instance.yaml, do not create a new element. Instead, append the item simple from
the above to the end of the existing list of items for safConnectionConfig.

3. Create a secret to contain the credentials for the simple WebLogic domain by running the
following command. Name the secret as simpleSecret as specified in the above steps
for the SAF connection and Replace the username and password with the values for the
simple WebLogic domain.

kubectl -n project create secret generic simplesecret --from-
literal=username='simple_domain_weblogic_username' --from-
literal=password='simple_domain_weblogic_password'

4. When enabling cross-domain security, the components of the instance must be configured
via the project and instance specification:

a. To configure your instance specification, replace the existing domainTrust
configuration with the following:

domainTrust:
 globalEnabled: false
 crossDomain:
 enabled: true
 remoteDomains:
 - name: simple
 secretName: simple-cross-user-credentials

Create the secret simple-cross-user-credentials to contain the credentials of the
cross-domain user configured for the simple WebLogic domain by running the
following command. Enter the project name and password that you are using.

kubectl create secret generic -n project simple-cross-user-credentials
--from-literal=username=simple-cross-user --from-
literal=password=<password>

b. To configure your project specification, provide username for the user to be created
and added to CrossDomainConnectors group in the OSM domain by replacing the
existing crossDomainTrustUsers configuration with the following:

crossDomainTrustUsers:
 - osm-cross-user

Create the xtrust secret for configuring the user credentials for the above cross-
domain trust user by running the following CNTK script:

$ $OSM_CNTK/scripts/manage-instance-credentials.sh -p $PROJECT -
i $INSTANCE -s $SPEC_PATH create xtrust

This user's credentials must be same as the one supplied in step 9 of Preparing the
WebLogic System to Run the Emulator.

5. Bring up the OSM cloud native instance. If you are not reusing the basic OSM instance,
you will have to first create all the required secrets.

Chapter 11
Preparing the OSM Cloud Native Instance

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 10

6. If you used a clone of the PDB of the basic OSM cloud native instance, you must replicate
the opssWF and opssWP secrets from your basic OSM instance and set
rcu.db.preexisting to true in your instance specification file. Failing to do this results in
your new instance not being able to process the cloned PDB.

7. Once the OSM cloud native instance is up, do the following:

a. Log in to the OSM Orchestration UI.

b. Go to Administer Workgroups.

c. Choose the OSM user you will be using to inject orders and add this user to the
"SimpleProvisioningRole" workgroup.

This allows your chosen user to create orders in the SimpleProvisioning cartridge.
Both SAF endpoints, one on simple and one in this OSM cloud native instance should
now be active. You can confirm this by validating the setup.

Validating the SAF Endpoints
To validate the SAF endpoints:

On the simple WebLogic domain, log in to the WebLogic Remote console and do the
following:

1. Navigate to Remote Endpoints.

a. Navigate from the Monitoring Tree to the Services. From the Services, expand
Messaging.

b. From Messaging, select SAF Runtime. From SAF Runtime, select Agents. From the
Agents, select <SAF-Agent>. Here you can access the Remote Endpoints.

c. You should see a remote endpoint called simple_osm_saf_agent with the URL
pointing to your OSM cloud native instance.

2. Navigate to Deployments.

a. Navigate from the Monitoring Tree to the Deployments section. Here, select
Application Management.

b. You should see the emulator MDB shown with State as Active and Health as OK.

On the OSM cloud native instance, log in to the WebLogic Remote console and do the
following:

1. Navigate from Monitoring Tree to Services. From Services, expand Messaging.

2. From Messaging, select SAF Runtime. From SAF Runtime, select Agents. From the
Agents, select <SAF-Agent>. Here you can access the Remote Endpoints.

3. Here, you should see the following remote endpoints pointing to the simple WebLogic
domain:

osm_simple_jms_module!osm_saf_destinations_simple.!<saf_queuex|
saf_topicx>@osm_saf_agent@ms1

Submitting Orders
You can submit orders with HTTP and T3 over HTTP.

Chapter 11
Validating the SAF Endpoints

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 10

Submitting Orders with HTTP
To submit orders with HTTP:

1. Submit orders using the OSM Task Web Client or SoapUI:

a. If you wish to use SoapUI, find the sample order payload for the SimpleProvisioning
cartridge in the toolkit at samples/saf-sample/cartridge-resources/
CreateOrderBySpec.xml.

b. In the OSM Task Web client, create a new order of type SimpleProvisioning.

2. In the order data, find the "data" element and replace MsgText with a unique value.

3. Submit the order.

4. Examine the order in OSM Task Web Client of the OSM cloud native instance. It is very
likely that the order completes very quickly and therefore does not appear in the Worklist.
Use Query to look for completed orders and find the order. The completed order should
show the response from the emulator.

If there are any issues with connectivity, the order does not complete successfully. Examine the
message count on the queues in both OSM cloud native and in the simple WebLogic domain
to see where the sequence was disrupted.

Submitting Orders with T3 over HTTP
To submit orders with T3 over HTTP, install SoapUI and HermesJMS and set them up to
connect to your cloud native environment. SoapUI uses plain HTTP to submit orders. By using
SoapUI with HermesJMS, orders can also be submitted as JMS messages using T3 over
HTTP.

Consider the following when setting up SoapUI and HermesJMS:

• Java 8: If you use Java 8, you must find your Hermes installation location and the
hermes.sh file within that location in the bin directory. Edit this file to replace the existing
invocation of JAVACMD with the following:

"$JAVACMD" -
Dorg.xml.sax.parser=com.sun.org.apache.xerces.internal.parsers.SAXParser
-
Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.interna
l.jaxp.DocumentBuilderFactoryImpl
-
Djavax.xml.parsers.SAXParserFactory=com.sun.org.apache.xerces.internal.jaxp
.SAXParserFactoryImpl
-XX:NewSize=512m -Xmx2048m $HERMES_OPTS -
Dlog4j.configuration=file:$HERMES_HOME/bin/log4j.props
-Dhermes.home=$HERMES_HOME -Dhermes=$HERMES_CFG -Dhermes.libs=$HERMES_LIB -
classpath
$LOCALCLASSPATH hermes.browser.HermesBrowser

• WebLogic Libraries: When you create a session in HermesJMS preferences, create a
Classpath Group that includes the WebLogic jar files weblogic.jar, wlclient.jar
and wlthint3client.jar. These jar files are found in the standard WebLogic
installation. Provide the full path to each jar file in the HermesJMS preferences.

Chapter 11
Submitting Orders

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 10

• Connection Properties: When you set up a Connection Factory in your HermesJMS
Session, add the following properties to it to point to your OSM cloud native instance:

Table 11-1 Connection Properties for HermesJMS Session

Property Value

providerURL http://t3.instance.project.osm.org:access-port
access-port is the Traefik (ingress controller)
NodePort or the Load Balancer port.

binding oracle/communications/ordermanagement/osm/
ExternalClientConnectionFactory

initialContextFactory weblogic.jndi.WLInitialContextFactory

securityPrincipal osm-user-name

securityCredentials password-for-osm-user-name

With these in place, you should now be able to discover the JMS queues and topics from
your OSM cloud native instance

• Target JMS Queue: Add a JMS endpoint using the Session created. Specify the "Send/
Publish Destination" as oracle/communications/ordermanagement/
WebServiceQueue. If you wish to see the responses, specify the "Receive/Subscribe
Destination" as oracle/communications/ordermanagement/
SoapUIResponseQueue. You need to have first specified this response queue as an
additional queue in your project specification.
HermesJMS submits the order requests into the OSM cloud native WebServiceQueue
distributed queue and optionally shows you responses in the SoapUIResponseQueue
distributed queue.

• SoapUI Test Case: When you create a test case with the sample order payload, do the
following:

– Choose Basic authentication and specify the osm-user-name and password-for-osm-
user-name as earlier.

– If you use responses, set the JMSReplyTo JMS Property to oracle/
communications/ordermanagement/SoapUIResponseQueue

– Add "JMS Headers" properties with name-value as:

_wls_mimehdrContent_Type : text/xml; charset="utf-8"
URI : /osm/wsapi

This setup can now submit orders into the OSM cloud native instance as JMS messages.
The SoapUI project and configuration can be saved to serve as a template for future reuse.

Chapter 11
Submitting Orders

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 10

12
Maintaining the OSM Cloud Native
Environment

This chapter describes the tasks you perform in order to apply a change or upgrade a
component in your OSM cloud native environment.

Before You Upgrade
Before you upgrade your OSM cloud native environment, you must compare the new samples
with the current samples in your cloud native toolkit and migrate any customizations you have
made. These include the following:

• Custom shape specifications: Review the shape specifications in the toolkit and identify
any changes required to your custom shape files.

• Project specification: Compare the sample project specification of the new toolkit with the
sample from the current one and migrate your customizations to the new specification.

• Instance specification: Compare the sample instance specification of the new toolkit with
the sample from the current one and migrate your customizations to the new specification.

• Model extensions and custom files.

Also, see the OSM patch readme for the latest patch and OSM Release Notes for additional
information related to changes in the cloud native toolkit.

About Upgrade Paths and Procedures
Creating a detailed upgrade plan can be a complex process. It is useful to start by mapping
your use case to an upgrade path. These upgrade paths identify a set of sequenced activities
that align to a CD stage. Once you know the activity sequence, you can then look for the
detailed steps involved in each to come up with the comprehensive set of steps to be
performed.

Upgrade paths consist of activities that fall into the following two main categories:

• Operational Procedures

• Component Upgrade Procedures

Operational Procedures

There are many different operational procedures and all of these affect the operating state of
OSM. OSM cloud native provides the mechanism to change the operational state as described
in "Running Operational Procedures".

The flowcharts in this chapter use the following image to depict an operational procedure:

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 18

Component Upgrade Procedures

These are the actual set of steps to perform a component upgrade and can be one of the
following types:

• OSM Cloud Native Procedures: OSM cloud native owns the component and therefore
the upgrade procedure for that component. OSM cloud native provides the mechanism to
perform the upgrade via the scripts that are bundled with the OSM cloud native toolkit.
An example of this is a change to a value in an OSM cloud native specification file (shape,
project, and instance).

The flowcharts in this chapter use the following image to depict an OSM cloud native
owned procedure.

• External Procedures: These procedures are for components that are part of the OSM
cloud native operating environment, but are out of the control of OSM cloud native. OSM
cloud native does not determine how to apply the upgrade, but provides recommendations
on the operational state of OSM accompanying the upgrade.
An example would be updating the operating system on a worker node.

The flowcharts in this chapter use the following image to depict an external upgrade
procedure.

• Miscellaneous upgrade procedures: There are some procedures that require special
handling and are not captured in any of the upgrade paths. These are described in
"Miscellaneous Upgrade Procedures".

Rolling Restart
Occasionally, you may need to restart OSM managed servers in a rolling fashion, one at a
time. This does not result in downtime, but only reduced capacity for a limited period. A rolling
restart can be triggered by invoking the restart-instance.sh script. This script can restart the
whole instance in a rolling fashion, or only the admin server or all the managed servers in a
rolling fashion. Some operations may automatically trigger rolling restart. These include online
cartridge deployment and certain changes (image updates, tuning parameter changes, and so
on) pushed via the upgrade-instance.sh script.

Identifying Your Upgrade Path
In order to prepare your detailed plan for an upgrade, you need to be able to map your
upgrade use case to an upgrade path. Some common use cases are detailed in the following
charts. If your use case is not listed, see Upgrade Path Flow Chart, which guides you through
the decision making process to prepare a specific upgrade path.

Chapter 12
Rolling Restart

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 18

Table 12-1 Upgrade Paths Using CNTK Scripting

Upgrade Type Component Upgrade Path Requires Changing Image?

Cartridge
Management

Deploy new cartridge version Online change, online cartridge
deployment

OR

Offline change, offline cartridge
deployment

No

Cartridge
Management

Redeploy a cartridge against an
existing cartridge version

Offline change, offline cartridge
deployment

No

Cartridge
Management

Fast undeploy cartridge version Offline change, offline cartridge
deployment

OR

Online change, online cartridge
deployment

No

Cartridge
Management

Purge cartridge version Online Change, external procedure,
Manual restart

No

Configuration
and Tuning

OSM cluster size (scaling up or
down)

Online change, application upgrade Not applicable

Configuration
and Tuning

Java parameters (memory, GC, and
so on)

Online change, application upgrade Not applicable

Configuration
and Tuning

WebLogic domain configuration
(WDT such as JMS Queue
configuration)

Online change, application upgrade No

Configuration
and Tuning

OSM configuration parameters
(traditionally, oms-config.xml)

Online change, application upgrade
(some exceptions needing offline
change)

No

Database
Storage
Management

Create partition and clone database
statistics

Offline Change, PDB upgrade No

Database
Storage
Management

Online row-based order purge Online Change, external procedure No

Database
Storage
Management

Purge partition Online Change, external procedure No

Security
parameters

New, renamed or deleted secrets
passed to cartridges

Online change, application upgrade No

Security
parameters

Secrets value (For example,
changing password)

Online change, external procedure,
Manual restart

No

Software
Upgrade and
Patching

OSM release or patch upgrade with
Database change

Offline change, PDB upgrade Yes

Software
Upgrade and
Patching

Fusion MiddleWare upgrade Online change, application upgrade
(some exceptions needing offline
change)

Yes

Software
Upgrade and
Patching

OSM patch upgrade without
Database change

Online Change, application upgrade
(some exceptions needing offline
change)

Yes

Software
Upgrade and
Patching

Fusion MiddleWare overlay patches
(for example, PSU or one-off patch)

Online Change, application upgrade
(some exceptions needing offline
change)

Yes

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 18

Table 12-1 (Cont.) Upgrade Paths Using CNTK Scripting

Upgrade Type Component Upgrade Path Requires Changing Image?

Software
Upgrade and
Patching

Java upgrade Online Change, application upgrade Yes

Software
Upgrade and
Patching

Linux Online Change, application upgrade Yes

Software
Upgrade and
Patching

Custom code or third-party tool
(custom image)

Online Change, application upgrade
(some exceptions needing offline
change)

Yes

Software
Upgrade and
Patching

OSM cloud native toolkit The release dictates the
constraints.

Not applicable

Shared
infrastructure

Operating system or hardware on
worker node

Online change, external procedure No

Shared
infrastructure

WebLogic Operator minor upgrade
(backward compatible)

Online change, external procedure No

Shared
infrastructure

WebLogic Operator major upgrade
(non-backward compatible)

Online change, external procedure No

Shared
infrastructure

Kubernetes Cluster Software
Infrastructure

Online change, external procedure Not Applicable

Note

The upgrade paths in the follwing table assume that the introspectorJobVersion
property in the job-values.yaml file is currently set to a value such as v1.

Table 12-2 Upgrade Paths with CD Automation Using Flux-CD

Upgrade
Type

Component Allowed Outage
Required

Details

Cartridge
Management

Deploy new
cartridge
version

Yes No Change introspectorJobVersion to v2.

Cartridge
Management

Redeploy a
cartridge
against an
existing
cartridge
version

Yes Yes
introspectorJobVersion: v2
targetState: running
tolerance:
 fullOutage:
 allowed: true
 appliesTo:
 jobVersion: v2

Cartridge
Management

Fast undeploy
cartridge
version

Yes No Change introspectorJobVersion to v2.

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 18

Table 12-2 (Cont.) Upgrade Paths with CD Automation Using Flux-CD

Upgrade
Type

Component Allowed Outage
Required

Details

Cartridge
Management

Purge cartridge
version

No Yes 1. Purge cartridge manually

2. Restart the OSM cloud native instance by the job:

introspectorJobVersion: v2
targetState: running
action:
 restart:
 type: all
 appliesTo:
 jobVersion: v2

Configuration
and Tuning

OSM cluster
size (scaling up
or down)

Yes No Change introspectorJobVersion to v2.

Configuration
and Tuning

Java
parameters
(memory, GC,
and so on)

Yes No Change introspectorJobVersion to v2.

Configuration
and Tuning

WebLogic
domain
configuration
(WDT such as
JMS Queue
configuration)

Yes No Change introspectorJobVersion to v2.

Configuration
and Tuning

OSM
configuration
parameters
(traditionally,
oms-
config.xml)

Yes No Change introspectorJobVersion to v2.

Database
Storage
Management

Create partition
and clone
database
statistics

No Yes 1. Shut down the OSM cloud native instance by the job:

introspectorJobVersion: v2
targetState: notRunning

2. PDB upgrade: Maually create partitions and clone database
statistics.

3. Bring up the OSM cloud native instance by the job:

introspectorJobVersion: v3
targetState: running

Database
Storage
Management

Online row-
based order
purge

No Not
applicable

Nothing to do in the job. External procedure.

Database
Storage
Management

Purge partition No Not
applicable

Nothing to do in the job. External procedure.

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 18

Table 12-2 (Cont.) Upgrade Paths with CD Automation Using Flux-CD

Upgrade
Type

Component Allowed Outage
Required

Details

Security
parameters

New, renamed
or deleted
secrets passed
to cartridges

Yes No 1. New, renamed or deleted secrets passed to cartridges.

2. Restart the OSM cloud native instance using the job:

introspectorJobVersion: v2
targetState: running
action:
 restart:
 type: full
 appliesTo:
 jobVersion: v2

Security
parameters

Secrets value
(For example,
changing
password)

No Not
applicable

1. Secrets value (For example, changing password)

2. Restart your OSM cloud native instance using the job:

introspectorJobVersion: v2
targetState: running
action:
 restart:
 type: full
 appliesTo:
 jobVersion: v2

Software
Upgrade and
Patching

OSM release or
patch upgrade
with Database
change

Yes Yes 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running
tolerance:
 fullOutage:
 allowed: true
 appliesTo:
 jobVersion: v2

Software
Upgrade and
Patching

Fusion
MiddleWare
upgrade

Yes No 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 18

Table 12-2 (Cont.) Upgrade Paths with CD Automation Using Flux-CD

Upgrade
Type

Component Allowed Outage
Required

Details

Software
Upgrade and
Patching

OSM patch
upgrade
without
Database
change

Yes Yes 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running
tolerance:
 fullOutage:
 allowed: true
 appliesTo:
 jobVersion: v2

Software
Upgrade and
Patching

Fusion
MiddleWare
overlay patches
(for example,
PSU or one-off
patch)

Yes No 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Software
Upgrade and
Patching

Java upgrade Yes No 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Software
Upgrade and
Patching

Linux Yes No 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Software
Upgrade and
Patching

Custom code
or third-party
tool (custom
image)

Yes No 1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Software
Upgrade and
Patching

OSM cloud
native toolkit

Yes Not
applicable

1. Upgrade the image.

2. Create/Upgrade your OSM cloud native instance:

introspectorJobVersion: v2
targetState: running

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 18

Table 12-2 (Cont.) Upgrade Paths with CD Automation Using Flux-CD

Upgrade
Type

Component Allowed Outage
Required

Details

Shared
infrastructure

Operating
system or
hardware on
worker node

Not
applicable

Not
applicable

Not applicable

Shared
infrastructure

WebLogic
Operator minor
upgrade
(backward
compatible)

Not
applicable

Not
applicable

Not applicable

Shared
infrastructure

WebLogic
Operator major
upgrade (non-
backward
compatible)

Not
applicable

Not
applicable

Not applicable

Shared
infrastructure

Kubernetes
Cluster
software
infrastructure

Not
applicable

Not
applicable

Not applicable

Once you understand the activities in your upgrade path, you can begin to map out the
sequence of activities that you need to perform.

Offline Change Upgrade Paths
Offline changes are defined as those requiring OSM to be shutdown before the change can be
applied.

All offline upgrades must start with a Scale Down procedure and end with a Scale Up
procedure. You can find the explicit steps to perform these activities in Running Operational
Procedures.

Once the cluster has been scaled down, you will need to perform either an external procedure
(referencing documentation for the component) or follow an OSM cloud native owned
procedure. See "OSM Cloud Native Upgrade Procedures" for details.

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 18

Figure 12-1 Offline Change Upgrade Paths

As an example, if your use case is to re-deploy an existing cartridge version, then the upgrade
path would be "Offline change, offline cartridge deployment", the second flow in the above flow
chart. The actual steps involve the following:

• Scale Down

– Edit the instance specification file to set cluster size to 0.

– Run upgrade-instance.sh.

• Offline cartridge deployment

– Edit the project specification file to change the cartridge version.

– Run manage-cartridges.sh with option sync.

• Scale Up

– Edit the instance specification file to return cluster size to original (1-18).

– Run upgrade-instance.sh.

Online Change Upgrade Paths
Online changes are changes for which OSM can remain running while the component upgrade
is performed. There is, therefore, no operational procedure at the start of the flow, but some
paths include a rolling restart after the upgrade procedure is performed.

The component upgrade will either be an external procedure (referencing documentation for
the component) or follow an OSM cloud native owned procedure described in "OSM Cloud
Native Upgrade Procedures".

If explicit post-upgrade operational activities are required, you can find details in "Running
Operational Procedures".

The following flowchart illustrates online change upgrade paths:

Chapter 12
Identifying Your Upgrade Path

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 18

Figure 12-2 Online Change Upgrade Paths

Exceptions
The following require shutdown:

• Some OSM patches

• Some Oracle Fusion MiddleWare overlay patches

• Some custom code or 3rd party

• Oracle Fusion MiddleWare version upgrades

Unsupported Tasks
Adding, modifying, and deleting users or groups from embedded LDAP are not supported
through an upgrade procedure.

To make changes to users and groups, the instance must be deleted and re-created.

OSM Cloud Native Upgrade Procedures
The OSM cloud native owned upgrade procedures are:

• PDB upgrade

• OSM application upgrade

• Online cartridge deployment

Chapter 12
OSM Cloud Native Upgrade Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 18

• Offline cartridge deployment

Change or upgrade procedures that are dictated by OSM cloud native are applied using the
scripts and the configuration provided in the toolkit.

PDB Upgrade Procedure
Changes impacting the PDB can be found in any of the specification files - project, instance or
shape.

Examples include updating the OSM DB Installer image.

To perform a PDB upgrade procedure:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/install-osmdb.sh with the command appropriate for your
use case.
To see a list of options, invoke with -h.

OSM Application Upgrade
Changes impacting the OSM application can be found in any of the specification files - project,
instance or shape.

Examples include changing an existing value, changing the OSM image or supplying
something new such as a secret or a new WDT extension.

To perform OSM application upgrade:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/upgrade-instance.sh to push out the changes you just
made to the running instance. This also triggers introspection for upgrade paths where
introspection is required.

3. In upgrade paths where a manual restart is required, restart the instance. See "Restarting
the Instance" for details.

Offline Cartridge Deployment
Offline deployment mode supports deployment of new cartridges, deployment of new versions
of existing cartridges, fast undeploy and re-deployment of existing cartridge versions with
changes.

Changes impacting the cartridges can be found in the project specification file.

In order to perform an offline deployment, you must not have managed servers running.

To perform an offline cartridge deployment:

1. Scale down your managed server count. See “Scaling Down the Cluster” for more details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

• Run the following command:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path –c sync

Chapter 12
OSM Cloud Native Upgrade Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 18

3. Scale up your managed server count. See “Scaling Up the Cluster” for more details.

Online Cartridge Deployment
Online deployment mode supports deployment of new cartridges, deployment of new versions
of existing cartridges and fast undeploy. It does not support re-deployment of existing
cartridges.

The changes impacting the cartridges can be found in the project specification file.

In order to perform an online deployment, you must have a minimum of two managed servers
running.

To perform an online cartridge deployment:

1. If necessary, scale up your managed server count (2 or more). See “Scaling Up the
Cluster” for more details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

• Invoke the following script:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path -c sync -o

Note

If the changes to the cartridges in the project specification include more than one kind
of update (new cartridge, new version, existing version, undeploy), if it includes
redeploy of existing versions, then you must use offline cartridge deployment.
Alternatively, if possible, break up the operational activity into two parts: one set of
changes that satisfy the online deployment and then following that, a second set with
all the cartridge redeployment changes to be done offline.

Upgrades to Infrastructure
From the point of view of OSM instances, upgrades to the cloud infrastructure fall into two
categories: rolling upgrades and one-time upgrades.

Note

All infrastructure upgrades must continue to meet the supported types and versions
listed in the OSM documentation's certification statement.

Rolling upgrades are where, with proper high-availability planning (like anti-affinity rules), the
instance as a whole remains available as parts of it undergo temporary outages. Examples of
this are Kubernetes worker node OS upgrades, Kubernetes version upgrades and Docker
version upgrades.

One-time upgrades affect a given instance all at once. The instance as a whole suffers either
an operational outage or a control outage. Examples of this are WebLogic Operator upgrade
and perhaps Ingress Controller upgrade.

Chapter 12
Upgrades to Infrastructure

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 18

Kubernetes and Docker Infrastructure Upgrades

Follow the standard Kubernetes and Docker practices to upgrade these components. The
impact at any point should be limited to one node - master (Kubernetes and OS) or worker
(Kubernetes, OS, and Docker). If a worker node is going to be upgraded, drain and cordon the
node first. This will result in all pods moving away to other worker nodes. This assumes your
cluster has the capacity for this - you may have to temporarily add a worker node or two. For
OSM instances, any pods on the cordoned worker will suffer an outage until they come up on
other workers. However, their messages and orders are redistributed to surviving managed
server pods and processing continues at a reduced capacity until the affected pods relocate
and initialize. As each worker undergoes this process in turn, pods continue to terminate and
start up elsewhere, but as long as the instance has pods in both affected and unaffected
nodes, it will continue to process orders.

WebLogic Kubernetes Operator Upgrade

To upgrade the WebLogic Kubernetes Operator, you have the following options:

• Operator Upgrade: For a standard upgrade process, follow the WKO documentation at:
https://oracle.github.io/weblogic-toolkit-ui/navigate/kubernetes/k8s-wko/#install-operator.
Ensure that the target version is compatible with the current version within your
Kubernetes cluster.
Advantages with this option are:

– No additional Kubernetes resources are required.

– No need to re-register namespaces.

Disadvantages with this option are:

– Cannot test with a canary namespace.

– More challenging to roll back to the previous version if needed.

• Phased Cutover Approach: To install new WKO, create a new namespace with a fresh
label selector. Transition the OSM namespaces by removing the old label and adding the
new label to each respective namespace. After all namespaces have successfully
transitioned and are stable, proceed to uninstall the old WKO.
Advantages with this option are:

– Ability to test with a canary namespace before full deployment.

– Allows for a phased cutover, accommodating program timelines.

– Easy backout option by reverting the label change on OSM namespaces.

Disadvantages with this option are:

– Requires modification of all OSM namespaces to use the new WKO.

– Additional Kubernetes resources are in use until the old WKO is uninstalled.

For more information on upgrading the operator, refer to the WKO upgrade documentation at:
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-
webhook/.

Miscellaneous Upgrade Procedures
This section describes miscellaneous upgrade scenarios.

Network File System (NFS)

Chapter 12
Miscellaneous Upgrade Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 18

https://oracle.github.io/weblogic-toolkit-ui/navigate/kubernetes/k8s-wko/#install-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-webhook/
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-webhook/

If an instance is created successfully, but a change to the NFS configuration is required, then
the change cannot be made to a running OSM instance. In this case, the procedure is as
follows:

1. Perform a fast delete. See "Running Operational Procedures" for details.

2. Update the nfs details in the instance specification.

3. Start the instance.

Running Operational Procedures
This section describes the tasks you perform on the OSM server in response to a planned
upgrade to the OSM cloud native environment. You must consider if the change in the
environment fundamentally affects OSM processing to the extent that OSM should not run
when the upgrade is applied or OSM can run during the upgrade but must be restarted to
properly process the change.

The operational procedures are performed using the OSM cloud native specification files and
scripts.

The operational procedures you perform for upgrading your cloud environment are:

• Trigger introspection

• Scaling down the cluster

• Scaling up the cluster

• Restarting the cluster

• Fast delete

– Shutting down the cluster

– Starting up the cluster

Triggering Introspection
When any of the specification files have changed, invoke the upgrade-instance.sh script to
trigger the operator's introspector to examine the change and apply it to the running instance.

Scaling Down the Cluster
The scaling down procedure described here is only in the context of the upgrade flow diagram.
Hence, scaling down is down to 0 managed servers. A generalized scaling can change the
cluster size down to a value between 0 and 18 (both inclusive) in any desired increment or
decrement.

To scale down the cluster, edit the instance specification and change the clusterSize
parameter to 0. This terminates all the managed server pods, but leaves the admin server up
and running.

Note

If you scale down the cluster size to 1, the OSM Gateway microservice will experience
downtime.

Chapter 12
Running Operational Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 18

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Scaling Up the Cluster
The scaling up procedure described here is only in the context of the upgrade flow diagram.
Hence, scaling up is up to the initial cluster size. A generalized scaling can change the cluster
size up to a value between 0 and 18 (both inclusive) in any desired increment or decrement.

To scale up the cluster, edit the instance specification and change the value of the
clusterSize parameter to its original value to return the cluster to its previous operational
state.

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Restarting the Instance
The OSM cloud native toolkit provides a script (restart-instance.sh) that you can use to
perform different flavors of restarts on a running instance of OSM cloud native.

Following is the usage of the restart-instance.sh script

restart-instance.sh parameters
 -p projectName : mandatory
 -i instanceName : mandatory
 -s specPath : mandatory; locations of specification files
 -m customExtPath : optional; locations of custom extension files
 -r restartType : mandatory; what kind of restart is requested
 # specPath and customExtPath take a colon(:) delimited list of directories
 # restartType can take the following values:
 * full: Restarts the whole instance (rolling restart)
 * admin: Restarts the WebLogic Admin Server only
 * ms: Restarts all the Managed Servers (rolling restart)

 # or just -h for help

For example, to restart a complete cluster, run the following command:

$OSM_CNTK/scripts/restart-instance.sh -p project -i instance -s $SPEC_PATH -r
full

Chapter 12
Running Operational Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 18

Note

If changes are made in secrets while a microservice is up and running, run the restart-
instance.sh script for that microservice for the changes to take effect. For example, if
secrets specific to OSM Gateway are changed, run the following command:

$OSM_CNTK/scripts/restart-instance.sh -p project -i instance -
s $SPEC_PATH -r osmgw

Fast Delete
When the entire WebLogic domain, including the admin server, needs to be taken offline, then
the full shutdown and full startup procedures follow. This can be used to perform a "fast delete"
or "dehydration" of the domain, instead of a full delete-instance operation where you may
have to be concerned about the secrets and other pre-requisites being deleted. To quickly
restore the domain, simply perform the startup procedure.

Shutting Down the Cluster

To shut down the cluster, edit the instance specification uncomment and add or modify the
value of the serverStartPolicy parameter to Never. This terminates all admin and
managed servers including microservices pods.

serverStartPolicy: "Never"

Apply the changes to the running instance using upgrade-instance.sh script.

For example:

$OSM_CNTK/scripts/upgrade-instance.sh -p <projectName> -i <instanceName> -s
<specPath>

Starting Up the Cluster

To start up the cluster, edit the instance specification uncomment and modify the value of the
serverStartPolicy to IfNeeded. This starts all admin and managed server including
microservices pods.

serverStartPolicy: "IfNeeded"

Apply the changes to the running instance using upgrade-instance.sh script.

For example:

$OSM_CNTK/scripts/upgrade-instance.sh -p <projectName> -i <instanceName> -s
<specPath>

Chapter 12
Running Operational Procedures

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 18

Upgrade Path Flow Chart
When comparing and contrasting the different flows, identifying common steps or divergences,
it can be useful to have a combined view of the flowcharts along with the main decision points.
This can be useful when trying to automate parts of the process.

The first decision to make is whether OSM can be running when you apply the change.
Typically, OSM needs to be shutdown for PDB impacting scenarios and the exceptions listed in
the "Exceptions" section.

The following flowchart illustrates the flow for offline upgrades and various scenarios.

Figure 12-3 Upgrade Path Flow for Offline Changes

The following flowchart illustrates the flow for online upgrades and various scenarios.

Chapter 12
Upgrade Path Flow Chart

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 18

Figure 12-4 Upgrade Path Flow for Online Changes

Chapter 12
Upgrade Path Flow Chart

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 18

13
Upgrading your OSM Cloud Native
Deployment

This chapter provides instructions for upgrading OSM cloud native deployment release 7.4.1 or
later to OSM cloud native 8.0.

Overview of the Upgrade Steps
This sections outlines the upgrade steps:

• Download the OSM 8.0 CNTK version.

• Install or upgrade WebLogic Kubernetes Operator (WKO). See "Installing WebLogic
Kubernetes Operator".

• Decide on the Ingress Controller. See "Ingress Controller".

• Build the OSM, DB Installer, OSMGW, RTUX and OCA images, using the same OSM
cloud native version as the toolkit. See "Creating OSM Cloud Native Images" for building
the images.

• Updating the specification files. See "Updating Specification Files".

• Upgrading to OSM Cloud Native 8.0. See "Upgrading to OSM Cloud Native 8.0".

Installing WebLogic Kubernetes Operator
This section provides information about installing WebLogic Kubernetes Operator.

WKO Monitoring Mechanism
Once WKO is installed in a Kubernetes cluster, it needs to know which namespaces will have
OSM instances. Of interest are two mechanisms:

• List: WKO is given an explicit list of namespaces. This is done by upgrading the WKO
helm chart to put in a new value for the list (one that takes the existing value and either
adds a new namespace or removes one of the namespaces). This mechanism is
supported in WKO 3.x and 4.x and is the mechanism in OSM 7.4.1 CNTK as well (upto
7.4.1.0.13). With this, the user needs RBAC access to the WKO namespace, which is
likely administratively problematic in a large shared environment.

• Label: When WKO is installed, it is given a label to look for in namespaces. Any
namespace in the cluster that has that label is monitored. Adding or removing that label
from a namespace has the effect of adding or removing that namespace from WKO's
monitoring. This mechanism is supported in WKO 4.x. With this, the user needs RBAC
access only to the OSM project namespace and not to WKO namespace.

For OSM cloud native, the recommendation is to use the Label mechanism for WKO 4.x and
especially for WKO 4.0.8 and newer.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 12

Operator Installation
Before starting with the procedure in this section, refer to OSM Compatibility Matrix for release
8.0 for the list of supported WKO versions. It is mandatory to have WKO installed with label-
based monitoring mechanism for OSM 8.0.

If your existing WebLogic Kubernetes Operator satisfies the OSM 8.0 version requirements
and uses the label-based monitoring mechanism, no action is required. Skip to the "Ingress
Controller" section.

If you need to upgrade, it is recommended to install the new WKO into a new namespace. As
individual namespaces are deregistered from old WKO and registered to new WKO, eventually,
the old WKO will no longer be managing any namespaces. It can then be safely uninstalled.

• Refer to Weblogic Kubernetes Operator documentation for operator installation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/

• During installation, it is strongly recommended to choose a specific label that this version
of WKO must look for, rather than relying on the default label. Relying on the default label
causes problems when multiple WKOs need to be installed for any reason (such as during
a phased WKO upgrade).

• To provide the custom label, use the domainNamespaceLabelSelector parameter as shown
below.

• It is recommended that the custom label you select is descriptive and unique to this WKO.
In the example below, this is achieved by specifying the full WKO version.

Eg: For installing WKO version 4.1.2 with a custom label
wlsko412=enabled, use below after configuring the right helm repo
$ helm install $WLSKO_NS \
 weblogic-operator/weblogic-operator \
 --namespace $WLSKO_NS \
 --version 4.1.2 \
 --set "domainNamespaceLabelSelector=wlsko412\=enabled"

Unregistering and Registering the Namespace with Weblogic Operator
Using your older CNTK, unregister your namespace forcefully with operator using "unregister-
namespace.sh" script

Set required variables with earlier CN values (before upgrade)
$ export OSM_CNTK=<osm_7.4.1/7.5.0_cntk>
$ export WLSKO_NS=<operator_namespace_before_upgrade>
$ export WLSKO_HOME=<path_for_operator_home>
$ $OSM_CNTK/scripts/unregister-namespace.sh -p $PROJECT -t wlsko -f

Install/upgrade your operator by following weblogic operator documentation.

Register OSM namespace with recent weblogic operator using "register-namespace.sh" script.

Set required variables with OSM CN 8.0 values
$ export OSM_CNTK=<osm_8.0_cntk>
$ export WLSKO_NS=<operator_namespace_before_upgrade>

Chapter 13
Installing WebLogic Kubernetes Operator

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 12

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/

$ $OSM_CNTK/scripts/register-namespace.sh -p $PROJECT -t wlsko -l <custom-
label>

Ingress Controller
OSM cloud native supports any annotations based ingress controller.

Support for Traefik (deprecated earlier) has been discontinued in favour of ingress controllers
that support the generic Kubernetes ingress API. See "Working with Ingress, Ingress
Controller, and External Load Balancer" for more details. If you were using Traefik earlier, and
you wish to transition to such an Ingress Controller, you must delete ingresses, deregister the
OSM project namespace from traefik, install the new ingress controller and, if required, register
the OSM project namespace with the new controller. This will result in new ingresses being
created. Further, it is recommended to uninstall the Traefik chart and delete the Traefik
namespace before beginning the upgrade process. As part of upgrading, add the required
annotations for the Ingress object to your 8.0 specification files, ensure Ingress objects in the
namespace will be monitored by the replacement Ingress Controller, and create the new
Ingress with the 8.0 toolkit using the create-ingress.sh script.

Updating Specification Files
This section focuses on the delta in the specification files between OSM 7.4.1, OSM 7.5.0 and
new OSM 8.0 releases.

It is strongly recommended that you begin by copying over the sample specification files from
the OSM 8.0 CNTK. You can then re-make the customizations from your current specification
files one by one.

Updating the Project Specification
This section describes the sections that you update in the project specification:

Upgrading from 7.4.1 to 8.0

• OSM cloud native 8.0 adds new capabilities (such as OSMGW, RTUX and OCA
microservices) for which there are corresponding sections in the project and instance
specification files. See Creating OSM Cloud Native Images for more information.

• The default value for Ingress Controller has been set to GENERIC.

• If you use GENERIC ingress controller, the required annotations need to be added to the
ingress section. In the project specification file, ingress.annotations lists the
required annotations if you are using NGINX ingress controller. Adjust the annotations
based on the ingress controller that you use.

• crossDomainTrustUsers section has been added which lists users for the
CrossDomainConnectors group, required for cross-domain security and credential
mapping. If you were using global trust before, it is recommended to switch to cross-
domain trust for finer grained control.

• fluentdLogging section has been added that enables Fluentd sidecar logging by
specifying image options for WebLogic and DB Installer pods.

• In OSM 7.4.1 cloud native, there is a separate step to deploy WME WAR file to the
instance as a custom archive. In 8.0 cloud native, WebLogic Monitoring Exporter can be
enabled and disabled by changing the value of enabled in the instance.yaml. By default,
it is set to true, which creates a sidecar container for WME using the default image for the

Chapter 13
Ingress Controller

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 12

version of WebLogic Operator in use. If you want to use a different image than the one that
WKO uses, you have a provision to do that by updating WME in the project specification
file.

• openldap authentication is deprecated; use ldap authentication instead. Refer to the
authentication section.

• There are new capabilities added for deploying cartridges. OSM cloud native cartridge
deployment supports container image built with par file. Either the url or the Image field
should be populated for a particular cartridge but not both. See Cartridge par Sources for
more details.

• A new section named capibilitiesCartridgeList has been added to the list
capabilties cartridge. See About Dynamic Cartridge Assembly (Cloud Native Only) in OSM
Concepts.

• Defining osmWLSTargetNodes restricts all OSM cloud native WebLogic pods and DB
Installer pods to worker nodes, that match the label conditions and for these pods and it
will take precedence over osmcnTargetNodes.

• Update the requiredTargetSystems section if your cartridge needs to integrate with
external systems using REST API.

• Declarations for secretNames , customFiles, safDestinationConfig,
cartridges, certificates, certificates.secrets,
uniformDistributedQueues, and uniformDistributedTopics have been
changed from {} (map) to [] (list).

Upgrading from 7.5.0 to 8.0

• OSM cloud native 8.0 adds the OCA microservice for which there are corresponding
sections in the project and instance specification files. See Creating OSM Cloud Native
Images for more information.

• You can update ingress annotations related to oca in ingress.oca.annotations
based on your configuration.

• A new section named capibilitiesCartridgeList has been added to the list
capabilties cartridge. See About Dynamic Cartridge Assembly (Cloud Native Only) in OSM
Concepts.

• Double quotes have been removed from numeric values such as threshold, duration,
and resetDuration, so they are now specified as integers instead of strings.

• Declarations for safDestinationConfig, cartridgeUsers,
uniformDistributedTopics, uniformDistributedQueues have been changed
from {} (map) to [] (list).

Updating the Instance Specification
This section describes the sections that you update in the instance specification:

Upgrading from 7.4.1 to 8.0

• The serverStartPolicy parameter now requires use of the correct case-sensitive
value depending on your deployment version. Refer to the section in 8.0 instance.yaml
file.

• If you are planning to use log masking functionality, uncomment and use the
logMaskingCustomRegexes section.

Chapter 13
Updating Specification Files

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 12

• OSM supports fine grain control of the log level for OSM core using the instance
specification file. Uncomment and use the log section for overriding the default log level.

• WebLogic Monitoring Exporter can be enabled and disabled by changing the value of
weblogicMonitoringExporter.enabled in the instance.yaml file. By default, this is
set to true.

• You can use FluentD as a sidecar container for reading the logs from OSM Servers and
DB Installer. Enable the fluentdLogging section for making use of this functionality. See
"Configuring Fluentd Logging" for more details.

• The storage volume must specify pvc to be used for persistent storage or as emptydir to
share with a custom sidecar which is enabled via sidecar.enabled in instance
specification file.

storageVolume:
 enabled: true
 type: pvc # Acceptable values are pvc and emptydir
 volumeName: storage-volume
 pvc: storage-pvc # Specify this only in case type is pvc

• If you want to enable a sidecar other than FluentD, make use of the section
sidecar.enabled.

• In earlier versions, to enable global trust, the configuration you needed to use was
domainTrust.enabled. While this is still supported for backward compatibility, it is
deprecated in favor of the configuration domainTrust.globalEnabled. Oracle
recommends that if you are using an instance specification from older versions, you should
update it with this new configuration.

• A valid Custom Identity keystore must be provided. The use of DemoIdentity is no
longer supported.

identity:
 name: keystore # Identity store filename without extension
(keystore.jks)

• For enabling SSL using generic Ingress, add the annotations required for OSM. The
ssl.ingress.annotations section in the instance specification file lists the sample
annotations required for OSM if you are using NGINX ingress controller. Add the
annotations based on the ingress controller that you choose.

• The db section now adds a required field type (STANDARD or ADB) to specify your
database type. Fields like serviceName, datasourcesSecondary, and rcuDb are
now included for expanded configuration. Refer to the db section for more details.

• In the 7.4.1 cloud native, the instance.yaml file contains the loadBalancerPort
section. In OSM 8.0 cloud native, it is renamed to inboundGateway. As part of the
inboundGateway section, you need to provide the host and port details of the actual
ingress point or the load balancer.

• Using Host Aliases, you can achieve hostname resolution inside the pods. Refer to the
hostAliases element and its comments in the instance specification for more details.

• Update the osm-gateway, osmRuntimeUX and osm-cartridge-assembler sections
as per "Configuring Target Systems for Events and System Interactions".

• If you have defined targetSystems in the project specification file, provide the details of
the respective target system in the instance specification file.

Chapter 13
Updating Specification Files

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 12

• The serviceName field in the db section and the host field under the
db.datasourcesPrimary section has been made mandatory.

db:
 type: "STANDARD" # Acceptable values are STANDARD and ADB
 #serviceName: dbserver-servicename
 # This DB protocol is all applicable for all database connections.
 # Default value is TCP, Uncomment and change it to TCPS when required.
 # If TCPS is selected, the dbwallet "<project>-<instance>-db-ssl-wallet"
secret must exist
 #protocol: TCP
 # datasourcesPrimary section is applicable only for STANDARD DB. For
ADB, values will be used from Autonomous Database Serverless
secrets+configMap.
 datasourcesPrimary:
 port: 1521
 # Provide the DB server hostname/IP address
 #host: dbserver-ip

• Declarations for secretNames and safConnectionConfig has been changed from
{} (map) to [] (list).

Upgrading from 7.5.0 to 8.0

• A valid Custom Identity keystore must be provided. The use of DemoIdentity is no
longer supported.

identity:
 name: keystore # Identity store filename without extension
(keystore.jks)

• The serviceName field in the db section and the host field under the
db.datasourcesPrimary section has been made mandatory.

db:
 type: "STANDARD" # Acceptable values are STANDARD and ADB
 #serviceName: dbserver-servicename
 # This DB protocol is all applicable for all database connections.
 # Default value is TCP, Uncomment and change it to TCPS when required.
 # If TCPS is selected, the dbwallet "<project>-<instance>-db-ssl-wallet"
secret must exist
 #protocol: TCP
 # datasourcesPrimary section is applicable only for STANDARD DB. For
ADB, values will be used from Autonomous Database Serverless
secrets+configMap.
 datasourcesPrimary:
 port: 1521
 # Provide the DB server hostname/IP address
 #host: dbserver-ip

• A new portConfig section has been introduced under inboundGateway.port to
enable detailed configuration of individual service ports when using the port access style
at the ingress point. Refer to the instance specification file for more details.

• A new osm-cartridge-assembler section has been introduced. Refer to the instance
specification file for more details.

Chapter 13
Updating Specification Files

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 12

• Declarations for logMaskingCustomRegexes have been changed from {} (map) to
[] (list) and log has been changed from [] (list) to {} (map).

Copy the remaining sections for which there are no changes from your existing OSM cloud
native version without making any changes to OSM cloud native 8.0 based on your usage of
the respective functionalities in OSM cloud native 8.0.

Updating Shape Specification
If you have a custom shape specification, identify the standard shape on which your custom
shape is based. Make a copy of this standard shape from the OSM 8.0 cloud native toolkit and
make your customization one-by-one to it.

Upgrading to OSM Cloud Native 8.0
Oracle recommends that you upgrade the existing OSM 7.4.1 or 7.5.0 cloud native application
to 8.0 cloud native using the same project namespace and the instance name.

Prerequisites for the Upgrade
Check OSM Compatibility Matrix for details about the required and supported versions of the
pre-requisite software, before proceeding with the upgrade.

Note

Perform the following steps using the existing 7.4.1 or 7.5 Cloud Native toolkit
specification files.

Delete the Instance

To delete an instance, run the following:

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

Delete the Ingress

To delete an ingress, run the following:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

If you are switching from Traefik as part of this upgrade, to stop Traefik from monitoring this
namespace, run the following:

$OSM_CNTK/scripts/unregister-namespace.sh -t traefik -p project

Preparation Steps for the Upgrade
This section lists preparatory steps for the upgrade:

• Take a backup of the working OSM 7.4.1 or 7.5.0 project and instance specification files or
rely on your source code management system to maintain versioning.

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 12

• Take the OSM 7.4.1 or 7.5.0 DB schema backup before the upgrade.

• Take a backup of the following secrets and also of any custom OSM secrets created for
7.4.1 or 7.5.0 cloud native before the upgrade.

<project>-<instance>-database-credentials
<project>-<instance>-embedded-ldap-credentials
<project>-<instance>-weblogic-credentials
<project>-<instance>-rcudb-credentials
<project>-<instance>-opss-wallet-password-secret
<project>-<instance>-runtime-encryption-secret
<project>-<instance>-osmcn-cred-<user> (If you have this secret created.
Ignore, if the secret do not exist.)
<project>-<instance>-saf-<remote-system> (If you have this secret created.
Ignore, if the secret do not exist.)

Note

If you are upgrading from an older version of OSM cloud native and have
OpenLDAP, note that it was deprecated in 7.5 and is now discontinued. You need
to switch to Generic LDAP.

• Run the following command on each secret which would copy the output to the secret.yaml
file. Maintain a separate file for each secret.

kubectl get secret -n project secretName -o yaml > secret.yaml

• Set the $OSM_CNTK environment variable to point to the 8.0 cloud native toolkit.

• Copy the specification files updated in your earlier steps to your $SPEC_PATH location
and rename them to match the same as existing 7.4.1 or 7.5.0 cloud native specification
files (to match the existing project name and the instance name).

• (Optional) If you use a newer version of WKO, install the newer version WKO in a new
namespace and register the project namespace with it.

• (Optional) If you replace the existing ingress with another ingress controller, install the new
ingress controller.

Note

You need to provide the following GRANT on the dba user which has been used in the
secrets created for osmdb and rcudb. This is required for RCU Schema creation.

GRANT execute on dbms_lob to _replace_this_text_with_admin_name_ with
grant option;

OSM no longer requires the sysdba role for its DB schema owner. This role can be
safely rescinded. To rescind the role, run the following command:

REVOKE sysdba from _replace_this_text_with_admin_name_;

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 12

Updating the Secrets

Note

Starting with the below steps, you will use the OSM 8.0 cloud native toolkit and
specification files.

Update Existing Secrets
As a pre-requisite to using the toolkit for upgrading the OSM 7.4.1 or 7.5.0 cloud native
environment, you must update the below secrets for access to the following:

• OSM database

• RCU DB

• OSM system users

Secrets can be updated using manage-instance-credentials as below:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path update osmdb,rcudb,osmldap

In OSM 8.0 cloud native:

• Database host, port and service name have been moved from secrets to instance
specifications. OSM and RCU schemas will be created on the same database.

• When you choose osmldap, the script prompts the password for a new user "osm-
gateway-internal", which is used to access the OSM Gateway microservices.

Creating New Secrets
This section describes how to create new secrets and credentials.

Note

For more details about these secrets, see Reference of Secrets Created by the
Scripts.

Creating Secrets for an OSM Upgrade

If you are upgrading from a release prior to OSM 7.5.0, you should create the following
secrets. If the upgrade is from OSM 7.5.0, you can update these existing secrets.

To create a new secret, run the following command:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create secret

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 12

To update an existing secret, run the following command:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path update secret

Clean Up OIDC Secret

If you are upgrading from a release prior to OSM 7.5.0, you need to create OIDC secrets. If
you are upgrading from OSM 7.5, you need to delete the existing OIDC secret, project-
instance-oidc-credentials, using the OSM 7.5 cloud native toolkit or manually. You can use
the following command to delete the existing OIDC Secret using the OSM 7.5 cloud native
toolkit:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path delete oidc

or,

kubectl delete secret -n project project-instance-oidc-credentials

After deleting the existing secret, you need to re-create the required OIDC secrets using the
OSM 8.0 CNTK. You need to create the new OIDC secrets to the APIs exposed by the
Gateway, RTUX and OCA microservices. For more information on how to create the new
secrets, see Creating OSM Secrets for OIDC in Configuring OpenID Connect for OSM
Microservices

Creating TLS Secrets

If you have SSL turned on for incoming connections (by setting ssl.incoming to true in the
specification files), then you must create wlstls and gatewaytls secrets as below to provide the
required certificate information. This information is provided securely to the ingress controller.

This secret carries the application or ingress TLS credentials for OSM.

Note

If you have the secrets project-instance-osm-tls-cert, project-instance-
admin-tls-cert and project-instance-t3-tls-cert already created as part of 7.4.1,
skip this step and proceed to gatewaytls secret creation. In 7.5.0, if you have already
created the gatewaytls secret, you do not need to perform the gatewaytls secret
creation step again.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create wlstls

This carries the application and ingress TLS credentials for microservices.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create gatewaytls

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 12

Creating FluentD Credentials

If FluentD is enabled as a sidecar, then create the credentials for its connection to Elastic
Search server.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create fluentd

Creating Target Systems Credentials

If security schemes for the target systems are enabled, then create secrets for each target
system separately.

$OSM_CNTK/scripts/manage-target-system-credentials.sh -p project -i instance -
n securitySchemeName -t authenticationType create

Creating SAML SSO Secret

If SAML SSO is enabled, you should create a secret that carries the archive file that is needed
by the OSM Weblogic domain to support SAML2 SSO.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create samlsso

Creating DB Wallet Secret

If the db.protocol is TCPS, you need to create a secret to carry the wallet that is needed for
OSM to make the connection with the database.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path create dbwallet

Upgrading the OSM DB Schema
Make sure you have the updated specification files for OSM 8.0 in your $SPEC_PATH.

Run the following command to upgrade the existing OSM schema:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH -c 1

Back-out procedure

Perform this procedure if the DB Schema upgrade does not work as expected. Use the 8.0
cloud native toolkit and specification files for this procedure.

To perform back-out procedure:

1. Drop the OSM Schema using DB installer code 8.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -c 8

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 12

2. Delete all the secrets that were created while updating the secrets (including fluentd,
gatewaytls, target systems).

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance -s
spec_path \ delete \
oidc,osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,fluentd,gatewaytls

$OSM_CNTK/scripts/manage-target-system-credentials.sh -p project -i
instance -n security_scheme_name delete (optional)

3. Restore the OSM 7.4.1 or 7.5.0 installation schema backup that was taken during the
"Preparation Steps for the Upgrade" task.

4. Copy the 7.4.1 or 7.5.0 cloud native backup specification files to $SPEC_PATH location
and set the $OSM_CNTK variable to point to the cloud native toolkit of your 7.4.1 or 7.5.0
OSM cloud native (before upgrade) environment.

5. Import all the secrets from the backup files taken before the upgrade. Run the following
command using each secret file to import the secret.

kubectl apply -f secret.yaml

6. Create the instance.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

7. Create the ingress.

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

OSM Application Upgrade
Make sure you have the updated specification files for OSM 8.0 in your $SPEC_PATH.

Run $OSM_CNTK/scripts/create-instance.sh to create an instance with OSM 8.0
cloud native artifacts.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

Once the create-instance.sh script completes running, admin and managed server pods
will be in the running state.

Create the ingress.

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

Back-out procedure (in case OSM application upgrade didn't work as expected):

With 8.0 cloud native toolkit and specification files, follow below steps:

1. Delete the OSM cloud native instance.

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

2. Perform the DB backout procedure as described above.

Chapter 13
Upgrading to OSM Cloud Native 8.0

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 12

14
Moving to OSM Cloud Native from a
Traditional Deployment

You can move to an OSM cloud native deployment from your existing OSM traditional
deployment. This chapter describes tasks that are necessary for moving from a traditional
OSM deployment to an OSM cloud native deployment.

Supported Releases
You can move to OSM cloud native from all supported traditional OSM releases. In addition,
you can move to OSM cloud native within the same release, starting with OSM release
7.4.1.0.1.

Performing Pre-move and Post-move Tasks
Some OSM releases require running some tasks before and after moving to OSM cloud native.
These tasks are described in the documentation of the target version of the OSM cloud native
release. As mentioned in the documentation, before and after moving to OSM cloud native,
perform these tasks.

Some of the patch readme files describe potential error conditions and workarounds listed in
the Known Issues with Workaround section. Monitor and apply these too if required. An
example of this (documented in the 7.3.5.1.x Patch Readmes) is the error condition where
OM_DB_STATS_PKG remains in an invalid state. If you encounter this issue, apply the
appropriate workaround to grant the required permissions and rebuild the package.

About the Move Process
The move to OSM cloud native involves offline preparation as well as maintenance outage.
This section outlines the general process as well as the details of the steps involved in the
move to OSM cloud native. However, there are various places where choices have to be
made. It is recommended that a specific procedure be put together after taking into account
these choices in your deployment context.

The OSM cloud native application layer runs on different hardware locations (within a
Kubernetes cluster) than the OSM traditional application layer.

The process of moving to OSM cloud native involves the following sets of activities:

• Pre-move development activities, which include the following tasks:

– Building OSM cloud native images (cloud native task)

– Creating project specification OSM cloud native (cloud native and solution task)

– Creating instance specification OSM cloud native (cloud native and solution task)

– Rebuilding cartridges using Design Studio and OSM SDK (solution task)

– Creating an OSM cloud native instance for testing (cloud native task)

– Validating your solution cartridges (solution task)

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

– Deleting the test OSM cloud native instance (cloud native task)

– Finalizing your specifications (cloud native and solution task)

• Data synchronization activities, which include the following tasks:

– Preparing a new database server (database task)

– Synchronizing the current database server (database task)

• Tasks for moving to OSM cloud native, which include the following:

– Quiescing the OSM traditional instance (solution task)

– Exporting JMS messages (WebLogic Server administration task)

– Backing up the database (database task)

– Upgrading the database (database task)

– Upgrading the OSM schema and cartridges (database task)

– Creating an OSM cloud native instance (cloud native task)

– Importing JMS messages (WebLogic Server administration task)

– Performing a smoke test (solution task)

– Switching all upstream systems (solution task)

The following diagram illustrates these activities.

Note

In the diagram, the short form of "OSM CN" stands for "OSM cloud native".

Chapter 14
About the Move Process

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

Figure 14-1 Move to OSM Cloud Native Process

Pre-move Development Activities
In preparation to move your traditional OSM instance into an OSM cloud native environment,
you must do the following activities:

1. Build OSM cloud native images. This task includes creating the OSM container image and
the DB Installer container image by using the OSM cloud native download packages. See
"Creating OSM Cloud Native Images" for details.

2. Analyze your solution and create a project specification for your OSM cloud native
instance. This specification includes details of JMS queues and topics, as well as SAF
connections. See "Configuring the Project Specification" for details. If your solution
requires model extensions or custom files, create the additional YAML files for those as
well.

3. Create an instance specification for your OSM cloud native instance. Preferably, create a
test instance, pointing to a test PDB. You can later change this specification to point to the
migrated database. Similarly, any SAF endpoint details should be pointing to the test
components or emulators. When creating the specification, choose your cloud native
production shape - prodsmall, prod, prodlarge. Alternatively, create a custom production
shape by copying and modifying one of these. See "Creating Custom Shapes" for details
about custom shapes.

4. Upgrade your cartridges only if they were built using an OSM SDK older than version
7.3.5. If you need to build or re-build cartridges for OSM 8.0, use the OSM 8.0 SDK and
set the Design Studio target version for OSM as 8.0. In general, use the Design Studio
target version for OSM that is closest to the current OSM version.

Chapter 14
Pre-move Development Activities

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

Note

You need to upgrade or rebuild cartridges whose Java plugins or emulators
currently depend on JDK 8 or earlier and Java EE 7 or earlier libraries. This is to
ensure that all such components are migrated to use Java 21 and Java EE 8
libraries for compatibility with FMW 14.1.2 and Java 21.

5. Create an OSM cloud native test instance and test your specifications. To do this, create
your cartridge users document and follow the process (create instance secrets, install the
RCU schema, install the OSM schema, deploy your cartridges, bring up OSM, create
ingress, and run test orders) to bring up the OSM cloud native instance as described in
"Creating a Basic OSM Instance".

6. Validate the solution.

7. Shut down your test instance and remove the associated secrets, PDB, and ingress.

8. Finalize your specifications for the move by picking up any changes from your test activity
and re-create instance secrets to use the migrated database. Change the instance
specification to:

a. Point to the migrated database location once it is known.

b. Switch SAF endpoints to the actual components, instead of emulators.

c. Arrange for the same number of managed servers in your OSM cloud native instance.

OSM cloud native requires the use of standard sizing for managed servers. This is
represented as a set of "shapes". As a result, it is possible that your OSM cloud native
instance needs a different number of managed servers to handle your workload as
compared to your OSM traditional instance. For the purpose of this migration activity, it
is recommended to start with the same number of managed servers, perform the
import and smoke tests, and then scale (scale-up or scale-down) the OSM cloud
native instance to the desired size.

If it is not possible to arrange for the same number of managed servers in your OSM
cloud native instance as there are in your OSM traditional instance, it is recommended
that you get as close as you can. You can then import the JMS messages from the
leftover managed servers into one of the OSM cloud native managed servers. For
example, consider an OSM traditional instance with four managed servers (ms1, ms2,
ms3, and ms4). The analysis may show that you only need two managed servers (cn-
ms1 and cn-ms2) of prod shape in your OSM cloud native instance. You can import all
JMS messages from ms1 into cn-ms1, and from ms2 into cn-ms2. Then import the
remaining messages from ms3 to cn-ms1 and from ms4 to cn-ms2. Try to spread the
load as evenly as possible.

Moving to an OSM Cloud Native Deployment
Moving to an OSM cloud native deployment from an OSM traditional deployment requires
performing the following tasks:

1. Quiesce the OSM traditional instance. See "Quiescing the Traditional Instance of OSM".

2. Export JMS messages. See "Exporting and Importing JMS Messages".

3. Take a back up and upgrade the database. See "Upgrading the Database".

4. Upgrade the OSM schema and cartridges. See "Upgrading the OSM Schema and
Cartridges".

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

5. Create the OSM cloud native instance. See "Creating Your Own OSM Cloud Native
Instance".

6. Import JMS messages. See "Importing JMS Messages".

7. Perform a smoke test. See "Performing a Smoke Test". Once the OSM cloud native
instance passes smoke test and is optionally resized to the desired target value, shut down
the OSM traditional instance fully.

8. Switch all upstream systems to the OSM cloud native instance. See "Switching Integration
with Upstream Systems".

Quiescing the Traditional Instance of OSM
At the start of the maintenance window, the OSM traditional instance must be quiesced. This
involves stopping database jobs, stopping all upstream and peer systems from sending
messages (for example, http/s, JMS, and SAF) to OSM, and ensuring all human users are
logged out. It also involves pausing the JMS queues so that no messages get queued or
dequeued. The result is that OSM is up and running, but completely idle.

Exporting and Importing JMS Messages
Irrespective of the persistence mechanism you use (file-based or JDBC) in your OSM
traditional instance, you must still export and import outstanding messages as described in this
section. If file-based persistence is used, this procedure accomplishes a switch to JDBC-based
persistence. On the other hand, if JDBC-based persistence is already in use, this procedure
brings the setup (in WebLogic and in the database) in line with OSM cloud native
requirements.

Overall, this procedure consists of exporting the JMS messages to disk, switching over to the
OSM cloud native instance, and importing the JMS messages from disk. Due to the
configuration in the OSM cloud native instance, the imported messages will get populated into
the appropriate database tables of the OSM cloud native instance rather than their original
location. The time taken for the export and import depends on the number of messages that
are in the persistent store to begin with.

You can migrate the JMS messages in any of the following ways:

• Migrating JMS Messages By Using the Cloud Native Toolkit

• Migrating JMS Messages By Using the WebLogic Remote Console

Migrating JMS Messages By Using the Cloud Native Toolkit
This section describes the steps for migrating JMS messages by running the scripts provided
with the OSM cloud native toolkit.

Note

This procedure is applicable if you are moving from OSM traditional releases 7.3.x.x.x
and 7.4.x.x.x. to OSM cloud native release 7.4.1.0.8 and later. It is also applicable if
you are moving from OSM traditional 7.5x.x.x to OSM cloud native 7.5.0 or later

The scripts you run and the steps you perform are different for the options (Option A and
Option B) illustrated in Figure 12-1 Move to OSM Cloud Native Process and your choice.

See the following topics for the details:

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

• Prerequisites for Running the Migration Scripts

• Using a New Database Server for the Cloud Native Instance (Option A)

• Upgrading the Database Server for the OSM Traditional Environment and Using it for the
Cloud Native Instance (Option B)

Prerequisites for Running the Migration Scripts
Before performing the steps for the option you have chosen, do the following:

• Update the $OSM_CNTK/samples/migration/config.sh file, provided with the toolkit, with
details about the OSM traditional and cloud native environments.

• Ensure that all In progress orders are completed to the extent possible. This minimizes
the impact on the systems.

• Grant sufficient RBAC permissions, equivalent to an Admin role, for the user who is
running the scripts on the cloud native instance (bastion host or equivalent).

• In WebLogic Remote Console, select Edit Tree. From Edit Tree, select Environment. In
the Environment section, select Servers. From Servers, select admin. Here, open the
Protocols tab to access the settings for the admin server of your OSM traditional
deployment and select Enable Tunneling.

• Ensure that the database snapshot of the cloud native system is taken. Alternatively, the
cloud native database can be rebuilt if there is no prior data to preserve. This would be
useful in case of a failure when importing the messages.

• Verify the specification files to ensure that all user-defined queues (both JMS and SAF) on
the traditional OSM instance are present on the cloud native instance. The queue
destinations do not have to match.

Using a New Database Server for the Cloud Native Instance (Option A)

If you choose to use a new database server for the cloud native instance, do the following:

1. Ensure that the instances of both traditional and cloud native deployments are up and
running.

2. Ensure that the required HTTP and HTTPS ports are enabled in the firewall for connecting
to the traditional system from the cloud native instance.

3. Run the following script from the bastion host or an equivalent to migrate the JMS
messages:

$OSM_CNTK/samples/migration/migrate-jms-messages.sh command

The script contains commands that can perform full migration or individual operations such
as exporting, importing, validating, and resuming queues.

Run $OSM_CNTK/samples/migration/migrate-jms-messages.sh -h for details about the
commands to use with the script.

Upgrading the Database Server for the OSM Traditional Environment and Using it for the Cloud
Native Instance (Option B)

If you choose to upgrade the database server of your traditional deployment and use it for the
cloud native instance, do the following:

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

1. Ensure that the admin server and the managed servers of the OSM traditional deployment
are up and running.

2. Copy the following scripts to a server on which Oracle Fusion Middleware is installed:

• $OSM_CNTK/samples/migration/export-jms-messages.sh

• $OSM_CNTK/samples/migration/config.sh

3. Update the config.sh file with details about the OSM traditional environment.

4. Run the following script, which exports the JMS messages from the traditional OSM
environment:

$OSM_CNTK/samples/migration/export-jms-messages.sh command

Run $OSM_CNTK/samples/migration/export-jms-messages.sh -h for details about the
commands to use with the script.

5. If the messages are exported successfully and you want to proceed with the migration,
shut down the OSM traditional deployment servers. If there are issues with the export, run
the script again.

6. Ensure the server of the OSM cloud native deployment is up and running.

7. After the script finishes exporting the JMS messages, copy the migration scripts
from $OSM_CNTK/samples/migration and the output files from the OSM traditional system
to the admin server pod of the OSM cloud native instance manually.

8. Update the path to the exported files in the $OSM_CNTK/samples/migration/config.sh file.

9. Stop the database jobs.

10. On the OSM cloud native admin server pod, run the following script, which imports the
JMS messages into the OSM cloud native deployment:

$OSM_CNTK/samples/migration/import-jms-messages.sh command

Run $OSM_CNTK/samples/migration/import-jms-messages.sh -h for details about the
commands to use with the script.

11. If the messages are imported into the OSM cloud native instance without errors and you
want to transition to the cloud native deployment, resume the queues on the OSM cloud
native instance and start the database jobs back up.
Resume the queues on the cloud native instance using the appropriate options with the
migrate-jms-messages.sh script or the import-jms-messages.sh script.

If the import fails or if you find any errors while running the script, do the following:

a. Make sure that copies of the exported files exist outside of the OSM cloud native
admin pod.

b. Shut down the OSM cloud native instance.

c. Restore the OSM cloud native database from backup. Alternatively, if there is no prior
data, use the install-osmdb.sh script in the cloud native toolkit to delete the OSM and
RCU database schemas and recreate them.

d. Start the OSM cloud native servers.

e. Copy the exported files to the admin server pod.

f. Run the $OSM_CNTK/samples/migration/import-jms-messages.sh script using the
appropriate commands.

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

Migrating JMS Messages By Using the WebLogic Remote Console
This section describes the steps for migrating JMS Messages by using the WebLogic Remote
Console.

Perform the following tasks to migrate JMS messages:

• Exporting JMS Messages

• Importing JMS Messages

Exporting JMS Messages
For a release prior to OSM 8.0, before exporting JMS messages, validate that your OSM
traditional instance has the WebLogic patch 31169032 (or its equivalent for your WebLogic
version) installed. This patch is required to properly export OSM JMS messages. If it is not
installed, follow the standard WebLogic patch procedures to procure and install the patch.

For more information on exporting JMS messages, for a release prior to OSM 8.0, refer to
Moving to OSM Cloud Native from a Traditional Deployment and Oracle Fusion Middleware
Administration Console Online Help for Oracle WebLogic Server 12.2.1.4.0.

For OSM 8.0, before exporting JMS messages, validate that your OSM traditional instance has
the WebLogic July 2025 CPU patches installed These patches are required to view the
message content. If it is not installed, follow the standard WebLogic patch procedures to
procure and install the patch.

To export JMS messages for OSM 8.0:

1. Login to the WebLogic Remote Console and navigate to the Monitoring Tree.

2. In the left navigation pane, select Services. From Services, select the Messaging
section. In the Messaging section, select the JMS Runtime section.

3. Find and select the JMS Server that hosts your target queue. For example:
osm_jms_server@ms1

4. Under the selected server, click on Destinations. This displays a list of all destinations on
that server.

5. Click the name of the desired destination. Select the queue and then go to the Messages
tab. If there are any messages pending inthe destination of this queue, click the Export
button to export all the messages to a file. Note the queue name and destination in the file
name for ease of tracing.

6. If you have defined other JMS Modules as part of your solution, repeat steps 2 to 5 for
each of those modules.

Importing JMS Messages
Before importing JMS messages, ensure that your OSM cloud native instance is up and
running, but quiesced (queues paused and database jobs stopped). It is recommended that
your OSM cloud native instance has the same number of managed servers as your OSM
traditional instance.

To import JMS messages:

1. Transfer all the exported files into the Admin Server pod using the kubectl cp command.

2. Login to the WebLogic Remote Console and navigate to the Monitoring Tree.

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

https://docs.oracle.com/en/industries/communications/order-service-management/7.5/cloud-native/moving-osm-cloud-native-traditional-deployment1.html#GUID-9DB59BF0-F181-4DA5-92A5-CDE2849DF704

3. In the left navigation pane, select Services. From Services, select the Messaging
section. In the Messaging section, select the JMS Runtime section.

4. Find and select the JMS Server that hosts your target queue. For example:
osm_jms_server@ms1.

5. Under the selected server, click on Destinations. This will display a list of all destinations
on that server.

6. For each destination on this queue for which you have an export file, find the same
destination in the list. Select the queue then go to Messages tab.

7. Click Import to specify the filename and import the messages.

8. If your export contains files that came from a custom JMS module in your OSM traditional
instance, you should still see those queues in osm_jms_module in your OSM cloud native
instance. If you do not, check that your project specification is up to date.

Upgrading the Database
To upgrade the database, you perform the following tasks:

• Upgrading the Database Server

• Preparing the Required Database Entities for OSM Cloud Native

Upgrading the Database Server
You may need to upgrade the database server itself to the version supported by the OSM
cloud native release you are moving to. To identify the required version of the database server
and to determine if you need a database server upgrade, see OSM Compatibility Matrix.

If you do need a database server upgrade, choose one of the following options:

• Option A: Create an additional database server: Create a second database server of
the target database version (with required patches), seeded with an RMAN backup of the
OSM traditional database. Enable Oracle Active DataGuard to continuously synchronize
data from the OSM traditional database to this new database. Use this new database for
the OSM cloud native instance. For further details, see Mixed Oracle Version support with
Data Guard Redo Transport Services (Doc ID 785347.1) knowledge article on My Oracle
Support. The exact mechanisms to be used are subject to circumstances such as resource
availability, size of data, timing, and so on but the goal is to have a second database server
running the target database version but always containing the data from the OSM
traditional database.
This option has the following advantages:

– Allows switching from a standalone database to a Container DB and Pluggable DB
model that is required for OSM cloud native, without impacting other users of the
existing database.

– Reduces the duration of a service outage since you can avoid having to backup the
database and upgrade it as part of the maintenance window.

– Preserves the OSM traditional database unchanged reducing the risk and cost
associated with reverting to OSM traditional instance, if that becomes necessary.

• Option B: Retain the existing DB server: You can retain the existing database server,
upgrading it in-place to the target database version and patches.

If you choose option A, the upgrade process must pause after the export of JMS messages,
and ensure the Active DataGuard sync is complete (if there are pending redo logs). Then,

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

before proceeding, the sync must be turned off and the new database must be brought online
fully.

Preparing the Required Database Entities for OSM Cloud Native
To meet the OSM cloud native pre-requisites, you will have to create an RCU schema in the
database using the DB Installer, with command 7.

To ensure a clean start for OSM cloud native managed servers, delete the leftover LLR tables.
When OSM cloud native managed servers start, these tables are recreated with the required
data automatically.

To delete the LLR tables:

1. Connect to the database using the OSM cloud native user credentials

2. Get the list of tables to delete:

select 'drop table '||tname||' cascade constraints PURGE;' from tab where
tname like ('WL_LLR_%');

3. For the tables listed, run the commands for dropping a table.

Upgrading the OSM Schema and Cartridges
To upgrade the OSM schema and cartridges, do the following:

• Migrate the OSM schema: To migrate the schema of your OSM traditional instance into a
schema that is compatible with OSM cloud native, run the OSM cloud native DB Installer
with command 12.

• Upgrade the OSM Schema to the target version: If you are running a version of OSM
traditional instance that is older than the target OSM cloud native version, use the OSM
cloud native DB Installer with command 1 to upgrade the OSM schema to the correct
version.

• Rebuild solution cartridges: Depending on the version of your current OSM traditional
deployment, you may have to rebuild your solution cartridges using the latest release of
Design Studio and the target OSM SDK. This is a preparatory step, and the new cartridge
lineup would be reflected in the project specification that is also created as part of the
preparatory step. All cartridges built targeting OSM versions prior to release version 7.3.5
require rebuilding. This rebuild is the same requirement that exists for OSM traditional
deployments as well.

Note

You need to upgrade or rebuild cartridges whose Java plugins or emulators
currently depend on JDK 8 or earlier and Java EE 7 or earlier libraries. This is to
ensure that all such components are migrated to use Java 21 and Java EE 8
libraries for compatibility with FMW 14.1.2 and Java 21

Switching Integration with Upstream Systems
After you shut down the OSM traditional instance fully, do the following:

• Ensure that the OSM cloud native instance has its JMS and SAF objects unpaused and its
DB jobs restarted.

Chapter 14
Moving to an OSM Cloud Native Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

• Configure the upstream and peer systems to resume sending messages. See "Integrating
OSM" for more details.

Reverting to Your OSM Traditional Deployment
During the move to OSM cloud native, if there is a need to revert to your OSM traditional
deployment, the exact sequence of steps that you need to perform depend on the options you
have chosen while moving to OSM cloud native.

In general, the OSM traditional deployment application layer should be undisturbed through the
upgrade process. If Option A was followed for upgrading the database, the OSM traditional
instance can simply be started up again, still pointing to its database.

If however, Option B was followed for upgrading the database, the following steps are required
before the OSM traditional instance can be spun up:

• Revert the database server version to the earlier version (if a database server upgrade
was performed as part of the switch to OSM cloud native)

• Restore the database contents from the backup taken as part of Option B for upgrading the
database.

Cleaning Up
Once the OSM cloud native instance is deemed operational, you can release the resources
used for the OSM traditional application layer.

If Option A was adopted for the database, then you can delete the database used for OSM
traditional instance and release its resources as well. If Option B was followed and your OSM
traditional instance was using JDBC persistent stores, the tables corresponding to these are
now defunct and you can delete these as well.

Chapter 14
Reverting to Your OSM Traditional Deployment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

15
Debugging and Troubleshooting

This chapter provides information about debugging and troubleshooting issues that you may
face while setting up OSM cloud native environment and creating OSM cloud native instances.

This chapter describes information about the following:

• Setting Up Java Flight Recorder (JFR)

• Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console

• Recovering an OSM Cloud Native Database Schema

• Resolving Improper JMS Assignment

• Common Error Scenarios

• Known Issues

Setting Up Java Flight Recorder (JFR)
The Java Flight Recorder (JFR) is a tool that collects diagnostic data about running Java
applications. OSM cloud native leverages JFR. See Java Platform, Standard Edition Java
Flight Recorder Runtime Guide for details about JFR.

You can change the JFR settings provided with the toolkit by updating the appropriate values in
the instance specification.

To analyze the output produced by the JFR, use Java Mission Control. See Java Platform,
Standard Edition Java Mission Control User's Guide for details about Java Mission Control.

JFR is turned on by default in all managed servers. You can disable this feature by setting the
enabled flag to false.

You can customize how much data is maintained, by changing the max_age parameter in the
instance specification:

Java Flight Recorder (JFR) Settings
jfr:
 enabled: true
 max_age: 4h

Data that is generated by the JFR is saved in the container in /logMount/project-instance/
performance/$server_name.

Persisting JFR Data

JFR data can be persisted outside of the container by re-directing it to persistent storage
through the use of a PV-PVC. See "Setting Up Persistent Storage" for details.

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 18

Once the storage has been set up, enable storageVolume and set the PVC name. Once
enabled, JFR data is re-directed automatically.

The storage volume must specify the PVC to be used for persistent storage.

storageVolume:
 enabled: true
 pvc: storage-pvc

Troubleshooting Issues with NGINX, OSM UI, and WebLogic
Remote Console

This section describes how to troubleshoot issues with access to the OSM UI clients, WLST,
and WebLogic Remote Console.

It is assumed that Traefik is the Ingress controller being used and the domain name suffix is
osm.org. You can modify the instructions to suit any other domain name suffix that you may
have chosen.

The following table lists the URLs for accessing the OSM UI clients and the WebLogic Remote
Console, when the Oracle Cloud Infrastructure load balancer is used and not used:

Table 15-1 URLs for Accessing OSM Clients

Client If Not Using Oracle Cloud
Infrastructure Load Balancer

If Using Oracle Cloud
Infrastructure Load Balancer

OSM Task Web Client http://
instance.project.osm.org:30305/
OrderManagement

http://instance.project.osm.org:80/
OrderManagement

WLST http://
t3.instance.project.osm.org:30305

http://t3.instance.project.osm.org:80

WebLogic Remote Console http://
admin.instance.project.osm.org:303
05/rconsole

http://
admin.instance.project.osm.org:80/
rconsole

Error: Http 503 Service Unavailable (for OSM UI Clients)

This error occurs if the managed servers are not running.

To resolve this issue:

1. Check the status of the managed servers and ensure that at least one managed server is
up and running:

kubectl -n project get pods

2. Log into WebLogic Remote Console and navigate from the Monitoring Tree to
Deployments . From Deployments, navigate to App Management and check if the State
column for oms shows Active. To validate the name of the cluster in the Targets column,
navigate from Edit Tree to Deployments. In the Deployments tab, select App
Deployments. The value in the Targets column indicates the name of the cluster.
If the application is not Active, check the managed server logs and see if there are any
errors. For example, it is likely that the OSM DB Connection pool could not be created. The
following could be the reasons for this:

Chapter 15
Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 18

• DB connectivity could not be established due to reasons such as password expired,
account locked, and so on.

• DB Schema health check policy failed.

There could be other reasons for the application not becoming Active.

Resolution: To resolve this issue, address the errors that prevent the application from
becoming Active. Depending on the nature of the corrective action you take, you may have
to perform the following procedures as required:

• Upgrade the instance, by running upgrade-instance.sh

• Upgrade the domain, by running upgrade-domain.sh

• Delete and create a new instance, by running delete-instance.sh followed by create-
instance.sh

Security Warning in Mozilla Firefox

If you use Mozilla Firefox to connect to an OSM cloud native instance via HTTP, your
connection may fail with a security warning. You may notice that the URL you entered
automatically change to https://. This can happen even if HTTPS is disabled for the OSM
instance. If HTTPS is enabled, it only happens if you are using a self-signed (or otherwise
untrusted) certificate.

If you wish to continue with the connection to the OSM instance using HTTP, in the
configuration settings for your Firefox browser (URL: "about:config"), set the
network.stricttransportsecurity.preloadlist parameter to FALSE.

Error: Http 404 Page not found

This is the most common problem that you may encounter.

To resolve this issue:

1. Check the Domain Name System (DNS) configuration.

Note

These steps apply for local DNS resolution via the hosts file. For any other DNS
resolution, such as corporate DNS, follow the corresponding steps.

The hosts configuration file is located at:

• On Windows: C:\Windows\System32\drivers\etc\hosts

• On Linux: /etc/hosts

Check if the following entry exists in the hosts configuration file of the client machine from
where you are trying to connect to OSM:

• Local installation of Kubernetes without Oracle Cloud Infrastructure load balancer:

Kubernetes_Cluster_Master_IP instance.project.osm.org
t3.instance.project.osm.org admin.instance.project.osm.org

• If Oracle Cloud Infrastructure load balancer is used:

Load_balancer_IP instance.project.osm.org t3.instance.project.osm.org
admin.instance.project.osm.org

Chapter 15
Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 18

Resolve the DNS configuration.

2. Check the browser settings and ensure that *.osm.org is added to the No proxy list, if your
proxy cannot route to it.

3. Check if the NGINX is running and its status:

kubectl get all --namespace nginx

NAME READY
STATUS RESTARTS AGE
pod/nginx-operator-ingress-nginx-controller-546cc856c9-q5rk8 1/1
Running 0 56d

NAME TYPE
CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/nginx-operator-ingress-nginx-controller LoadBalancer
10.97.152.128 <pending> 80:30305/TCP,443:30443/TCP 56d
service/nginx-operator-ingress-nginx-controller-admission ClusterIP
10.109.25.98 <none> 443/TCP 56d

NAME READY UP-TO-
DATE AVAILABLE AGE
deployment.apps/nginx-operator-ingress-nginx-controller 1/1
1 1 56d

4. Check and Install Ingress:

a. Check for an Existing Ingress. To see if an Ingress resource already exists for your
instance, run:

kubectl get ingress -n <project> --no-headers | grep '^<project>-
<instance>.*-ingress'

Look for Ingress names related to your instance. For more information about the
ingresses that are expected to be present, refer to Reference of Secrets Created by
the Scripts.

If you see expected Ingress(es) listed, you do not need to create a new one. Continue
to the next step.

b. Check NGINX Annotations. Make sure all required NGINX annotations in your project
specification and instance specification files are uncommented. These annotations are
needed for the Ingress to work correctly.

c. Create the Ingress. If the expected Ingress for your instance is missing, or if you had
fixed or updated any NGINX annotations, run the following command to (re)create or
update your Ingress:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s specPath -
u

The -u flag safely updates or installs the Ingress as needed.

Chapter 15
Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 18

d. Confirm Ingress Creation. After completing the above steps, refer to Step A and
confirm that the expected ingresses are present for your instance.

Setting up Logs

As described earlier in this guide, OSM and WebLogic logs can be stored in the individual pods
or in a location provided via a Kubernetes Persistent Volume. The PV approach is strongly
recommended, both to allow for proper preservation of logs (as pods are ephemeral) and to
avoid straining the in-pod storage in Kubernetes.

Within the pod, if PV is not configured, logs are available at: /u01/oracle/user_projects/
domains/domain/servers/ms1/logs and /u01/oracle/user_projects/domains/domain. If PV
is configured, logs are available at /logMount/project-instance/logs.

Note

Replace ms1 with the appropriate managed server or with "admin".

When a PV is configured, logs are available at the following path starting from the root of the
PV storage:

project-instance/logs.

The following logs are available in the location (within the pod or in PV) based on the
specification:

• admin.log - Main log file of the admin server

• admin.out - stdout from admin server

• admin_nodemanager.log: Main log from nodemanager on admin server

• admin_nodemanager.out: stdout from nodemanager on admin server

• admin_access.log: Log of http/s access to admin server

• ms1.log - Main log file of the ms1 managed server

• ms1.out - stdout from ms1 managed server

• ms1_nodemanager.log: Main log from nodemanager on ms1 managed server

• ms1_nodemanager.out: stdout from nodemanager on ms1 managed server

• ms1_access.log: Log of http/s access to ms1 managed server

All logs in the above list for "ms1" are repeated for each running managed server, with the logs
being named for their originating managed server in each case.

In addition to these logs:

• Each JMS Server configured will have its log file with the name server_msn-
jms_messages.log (for example: osm_jms_server_ms2-jms_messages.log).

• Each SAF agent configured will have its log file with the name server_msn-
jms_messages.log (for example: osm_saf_agent_ms1-jms_messages.log).

OSM Cloud Native and Oracle Enterprise Manager

OSM cloud native instances contain a deployment of the Oracle Enterprise Manager
application, reachable at the admin server URL with the path "/em". However, the use of
Enterprise Manager in this Kubernetes context is not supported. Do not use the Enterprise
Manager to monitor OSM. Use standard Kubernetes pod-based monitoring and OSM cloud
native logs and metrics to monitor OSM.

Chapter 15
Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 18

Recovering an OSM Cloud Native Database Schema
When the OSM DB Installer fails during an installation, it exits with an error message. You must
then find and resolve the issue that caused the failure. You can re-run the DB Installer after the
issue (for example, space issue or permissions issue) is rectified. You do not have to rollback
the DB.

Note

Remember to uninstall the failed DB Installer helm chart before rerunning it. Contact
Oracle Support for further assistance.

It is recommended that you always run the DB Installer with the logs directed to a Persistent
Volume so that you can examine the log for errors. The log file is located at: filestore/project-
instance/db-installer/{yyyy-mm-dd}-osm-db-installer.log.

In addition, to identify the operation that failed, you can look in the filestore/project-instance/db-
installer/InstallPlan-OMS-CORE.csv CSV file. This file shows the progress of the DB
Installer.

When you install the Oracle Database schema for the first time and if the database schema
installation fails, do the following:

1. Delete the new schema or use a new schema user name for the subsequent installation.

2. Restart the installation of the database schema from the beginning.

To recover a schema upgrade failure, do the following:

1. Find the issue that caused the upgrade failure. See "Finding the Issue that Caused the
OSM Cloud Native Database Schema Upgrade Failure" for details.

2. Fix the issue. Use the information in the log or error messages to fix the issue before you
restart the upgrade process. For information about troubleshooting log or error messages,
see OSM Cloud Native System Administrator's Guide.

3. Restart the schema upgrade procedure from the point of failure. See "Restarting the OSM
Database Schema Upgrade from the Point of Failure" for details.

Finding the Issue that Caused the OSM Cloud Native Database Schema
Upgrade Failure

There are several files where you can look to find information about the issue. By default,
these files are generated in the managed server pod, but can be re-directed to a Persistent
Volume Claim (PVC) supported by the underlying technology that you choose. See "Setting Up
Persistent Storage" for details.

To access these files after the DB installer pod is deleted, re-direct all logs to the PVC.

See the following files for details about the issue:

• The database installation plan action spreadsheet file: This file contains a summary of all
the installation actions that are part of this OSM database schema installation or upgrade.
The actions are listed in the order that they are performed. The spreadsheet includes
actions that have not yet been completed. To find the action that caused the failure, check
the following files and review the Status column:

Chapter 15
Recovering an OSM Cloud Native Database Schema

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 18

– filestore/project-instance/db-installer/InstallPlan-OMS-CORE.csv

– filestore/project-instance/db-installer/InstallPlan-OMS_CLOUD-CORE.csv

The failed action is the first action with a status that is FAILED. The error_message
column of that row contains the reason for the failure.

• The database installation log file: This file provides a more detailed description of all the
installation actions that have been run for this installation. The issue that caused the failure
is located in the filestore/project-instance/db-installer/{yyyy-mm-dd}-osm-db-
installer.log file. The failed action, which is the last action that was performed, is typically
listed at the end of log file.

The following database tables also contain information about the database installation:

• semele$plan_actions: This contains the same information as the database plan action
spreadsheet. Compare this table to the spreadsheet in cases of a database connection
failure.

• semele$plan: This contains a summary of the installation that has been performed on this
OSM database schema.

Restarting the OSM Database Schema Upgrade from the Point of Failure
In most cases, restarting the OSM database schema upgrade consists of pointing the installer
to the schema that was partially upgraded, and then re-running the installer.

Note

This task requires a user with DBA role.

Consider the following when preparing to restart an upgrade:

• Most migration actions are part of a single transaction, which is rolled back in the event of
a failure. However, some migration actions involve multiple transactions. In this case, it is
possible that some changes were committed.

• Most migration actions are repeatable, which means that they can safely be re-run even if
they were committed. However, if a failed action is not repeatable and it committed some
changes, either reverse all the changes that were committed and set the status to FAILED,
or complete the remaining changes and set the status to COMPLETE.

To restart the upgrade after a failure:

1. Determine which action has failed and the reason for the failure.

2. If the status of the failed action is STARTED, check the database to see whether the action
is completed or still running. If it is still running, either end the session or wait for the action
to finish.

Note

The transaction might not finish immediately after the connection is lost,
depending on how fast the database detects that the connection is lost and how
long it takes to roll back.

3. Fix the issue that caused the failure.

Chapter 15
Recovering an OSM Cloud Native Database Schema

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 18

Note

If the failure is caused by a software issue, contact Oracle Support. With the help
of Oracle Support, determine whether the failed action modified the schema and
whether you must undo any of those changes. If you decide to undo any changes,
leave the action status set to FAILED or set it to NOT STARTED. When you retry
the upgrade, the installer starts from this action. If you manually complete the
action, set the status to COMPLETE, so that the installer starts with the next
action. Do not leave the status set to STARTED because the next attempt to
upgrade will not be successful.

4. Restart the upgrade by running the installer.
The installer restarts the upgrade from the point of failure.

Resolving Improper JMS Assignment
While running OSM cloud native with more than one managed server, sometimes, the
incoming orders and the resulting workload may not get distributed evenly across all managed
servers.

While there are multiple causes for improper distribution (including the use of an incorrect JMS
connection factory to inject order creation messages), one possible cause is the improper
assignment of JMS servers to managed servers. For even distribution of workload, each
managed server that is running must host its corresponding JMS server.

The following figure shows an example of improper JMS assignment.

Figure 15-1 Example of Improper JMS Assignment

In the figure, osm_jms_server@ms7 is incorrectly running on ms6 even though its native host
ms7 is running. It can be normal for more than one JMS server to be running on a managed
server as long as the additional JMS servers do not have a native managed server that is
online.

Workaround

As a workaround, terminate the Kubernetes pod for the managed server that has been left
underutilized. In the above example, the pod for ms7 should be terminated. The WebLogic
Operator recreates the managed server pod, and that should trigger the migration of
osm_jms_server@ms7 back to ms7.

Chapter 15
Resolving Improper JMS Assignment

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 18

Resolution

To resolve this issue, tune the time setting for InitialBootDelaySeconds and
PartialClusterStabilityDelaySeconds. See the WebLogic Server documentation for more
details.

To tune the time setting:

1. Add the following Clustering fragment to the instance specification:

Clustering:
 InitialBootDelaySeconds: 10
 PartialClusterStabilityDelaySeconds: 30

2. Increase the value for the following parameters from the base WDT model:

• InitialBootDelaySeconds. The default value in base WDT is 2.

• PartialClusterStabilityDelaySeconds. The default value in base WDT is 5.

Note

The default values for these parameters in WebLogic Server are 60 and 240
respectively. The actual values required depend on the environmental factors and
must be arrived at by tuning. Higher values can result in slower placement of JMS
servers. While this is not a factor during OSM startup, it will mean more time could be
taken when a managed server shuts down before its JMS server migrates and comes
up on a surviving managed server. Orders with messages pending delivery in that
JMS server will be impacted by this, but the rest of the system is unaffected.

Common Problems and Solutions
This section describes some common problems that you may experience because you have
run a script or a command erroneously or you have not properly followed the recommended
procedures and guidelines regarding setting up your cloud environment, components, tools,
and services in your environment. This section provides possible solutions for such problems.

Domain Introspection Pod Does Not Start

There may be a case where introspector doesn't start. This could mean that the operator is not
monitoring your namespace or your namespace is not tagged to the correct label which the
operator is monitoring.

For more information about operator monitoring, see: https://oracle.github.io/weblogic-
kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-
operator-to-monitor-a-namespace

Domain Introspection Pod Status

While the introspection is running, you can check the status of the introspection pod by running
the following command:

kubectl get pods -n namespace

healthy status looks like this

Chapter 15
Common Problems and Solutions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 18

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace

NAME READY STATUS RESTARTS AGE
project-instance-introspect-domain-job-hzh9t 1/1 Running 0 3s

The READY field is showing 1/1, which indicates that the pod status is healthy.

If there is an issue accessing the image specified in the instance specification, then it shows
the following:

NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ErrImagePull
0 5s

OR

NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ImagePullBackOff
0 45s

This shows that the introspection pod status is not healthy. If the image can be pulled, it is
possible that it took a long time to pull the image.

To resolve this issue, verify that the image name and the tag and that it is accessible from the
repository by the pod.

You can also try the following:

• Increase the value of podStartupDeadlineSeconds in the instance specification.
Start with a very high timeout value and then monitor the average time it takes, because it
depends on the speed with which the images are downloaded and how busy your cluster
is. Once you have a good idea of the average time, you can reduce the timeout values
accordingly to a value that includes the average time and some buffer.

• Pull the container image manually on all Kubernetes nodes where the OSM cloud native
pods can be started up.

Domain Introspection Errors Out

Some times, the domain introspector pod runs, but ends with an error.

To resolve this issue, run the following command and look for the causes:

kubectl logs introspector_pod -n project

The following are the possible causes for this issue:

• RCU Schema is pre-existing: If the logs shows the following, then RCU schema could be
pre-existing:

WLSDPLY-12409: createDomain failed to create the domain: Failed to write
domain to /u01/oracle/user_projects/domains/domain: wlst.writeDomain(/u01/
oracle/user_projects/domains/domain) failed : Error writing domain:
64254: Error occurred in "OPSS Processing" phase execution
64254: Encountered error:
oracle.security.opss.tools.lifecycle.LifecycleException: Error during
configuring DB security store. Exception

Chapter 15
Common Problems and Solutions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 18

oracle.security.opss.tools.lifecycle.LifecycleException: The schema
FMW1_OPSS is already in use for security store(s). Please create a new
schema..
64254: Check log for more detail.

This could happen because the database was reused or cloned from an OSM cloud native
instance. If this is so, and you wish to reuse the RCU schema as well, provide the required
secrets. For details, see "Reusing the Database State".
If you do not have the secrets required to reuse the RCU instance, you must use the OSM
cloud native DB Installer to create a new RCU schema in the DB. Use this new schema in
your rcudb secret. If you have login details for the old RCU users in your rcudb secret,
you can use the OSM cloud native DB Installer to delete and re-create the RCU schema in
place. Either of these options gives you a clean slate for your next attempt.

Finally, it is possible that this was a clean RCU schema but the introspector ran into an
issue after RCU data population but before it could generate the wallet secret (opssWF). If
this is the case, debug the introspector failure and then use the OSM cloud native DB
Installer to delete and re-create the RCU schema in place before the next attempt.

• Fusion MiddleWare cannot access the RCU: If the introspector logs show the following
error, then it means that Fusion MiddleWare could not access the schema inside the RCU
DB.

WLSDPLY-12409: createDomain failed to create the domain: Failed to get FMW
infrastructure database defaults from the service table: Failed to get the
database defaults: Got exception when auto configuring the schema
component(s) with data obtained from shadow table:
Failed to build JDBC Connection object:

Typically, this happens when wrong values are entered while creating secrets for this
deployment. Less often, the cause is a corrupted RCU DB or an invalid one. Re-create
your secrets, verifying the credentials and drop and re-create the RCU DB.

Recovery After Introspection Error

If the introspection fails during instance creation, once you have gathered the required
information and have a solution, delete the instance and then re-run the instance creation
script with the fixed specification, model extension, or other environmental failure cause.

If the introspection fails while upgrading a running instance, then do the following:

1. Make the change to fix the introspection failure. Trigger an instance upgrade. If this results
in successful introspection, the recovery process stops here.

2. If the instance upgrade in step 1 fails to trigger a fresh introspection, then do the following:

a. Rollback to the last good Helm release by first running the helm history -n project
project-instance command to identify the version in the output that matches the
running instance (that is, before the upgrade that led to introspection failure). The
timestamp on each version helps you identify the version. Once you know the "good"
version, rollback to that version by running: helm rollback -n project project-
instance version. Monitor the pods in the instance to ensure only the Admin server
and the appropriate number of Managed Server pods are running.

b. Upgrade the instance with the fixed specification.

Instance Deletion Errors with Timeout

You use the delete-instance.sh script to delete an instance that is no longer required. The
script attempts to do this in a graceful manner and is configured to wait up to 10 minutes for

Chapter 15
Common Problems and Solutions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 18

any running pods to shut down. If the pods remain after this time, the script times out and exits
with an error after showing the details of the leftover pods.

The leftover pods can be OSM pods (Admin Server, Managed Server) or the DBInstaller pod.

For the leftover OSM pods, see the WKO logs to identify why cleanup has not run. Delete the
pods manually if necessary, using the kubectl delete commands.

For the leftover DBInstaller pod, this happens only if install-osmdb.sh is interrupted or if it
failed in its last run. This should have been identified and handled at that time itself. However,
to complete the cleanup, run helm ls -n project to find the failed DBInstaller release, and
then invoke helm uninstall -n project release. Monitor the pods in the project
namespace until the DBInstaller pod disappears.

OSM Cloud Native Toolkit Instance Create and Update Scripts Timeout; Pods Show
Readiness "0/1"

If your create-instance.sh or upgrade-instance.sh scripts timeout, and you see that the
desired managed server pods are present, but one or more of them show "0/1" in the "READY"
column, this could be because OSM hit a fatal problem while starting up. The following could
be the causes for this issue:

• A mismatch in the OSM schema found and the expected version: If this is the case, the
OSM managed server log shows the following issue:

Error: The OSM application is not compatible with the schema code detected
in the OSM database.
Expected version[7.4.0.0.68], found version[7.4.0.0.70]
This likely means that a recent installation or upgrade was not successful.
Please check your install/upgrade error log and take steps to ensure the
schema is at the correct version.

To resolve this issue, check the container image used for the DB installer and the OSM
domain instances. They should match.

• OSM internal users are missing: This can happen if there are issues with the configuration
of the external authentication provider and the standard OSM users (for example, oms-
internal) and the group association is not loaded. The managed server log shows
something like the following:

<Error> <Deployer> <BEA-149205> <Failed to initialize the application
"oms" due to error
weblogic.management.DeploymentException: The ApplicationLifecycleListener
"com.mslv.oms.j2ee.LifecycleListener" of application "oms"
has a run-as user configured with the principal name "oms-internal" but a
principal of that name
could not be found. Ensure that a user with that name exists.

To resolve this issue, review your external authentication system to validate users and
groups. Review your configuration to ensure that the instance is configured for the correct
external authenticator.

OSM Cloud Native Pods Do Not Distribute Evenly Across Worker Nodes

In some occasions, OSM cloud native pods do not distribute evenly across the worker nodes.

Chapter 15
Common Problems and Solutions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 18

To resolve this issue, prime all the worker nodes with the image using the OSM cloud native
sample utility script:

$ $OSM_CNTK/samples/image-primer.sh -p project image-name:image-tag

This should be done only once for a given image name+tag combination, regardless of which
project uses that image or how many instances are created with it.

This script is offered as a sample and may need to be customized for your environment. If you
are using an image from a repository that requires pull credentials, edit the image-primer.sh
script to uncomment these lines and add your pull secret:

#imagePullSecrets:
 #- name: secret-name

If you are planning to target OSM cloud native to specific worker nodes, edit the sample to
ensure only those nodes are selected (typically by using a specific label value) as per standard
Kubernetes configuration. See the Kubernetes documentation for DaemonSet objects.

User Workgroup Association Lost

During cartridge deployment, if users are not present in LDAP or if LDAP is not accessible, the
user workgroup associations could get deleted.

To resolve this issue, restore the connectivity to LDAP and the users. You may need to redo
the workgroup associations.

Changing the WebLogic Kubernetes Operator Log Level

Some situations may require analysis of the WKO logs. These logs can be certain kinds of
introspection failures or unexpected behavior from the operator. The default log level for the
Operator is INFO.

For information about changing the log level for debugging, see the documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-
and-conversion-webhook-logging-level.

Deleting and Re-creating the WLS Operator

You may need to delete a WLS operator and re-create it. You do this when you want to use a
new version of the operator where upgrade is not possible, or when the installation is
corrupted.

When the controlling operator is removed, the existing OSM cloud native instances continue to
function. However, they cannot process any updates (when you run upgrade-instance.sh) or
respond to the Kubernetes events such as the termination of a pod.

To avoid common mistakes during the installation of WKO, refer to the WKO troubleshooting
information at: https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/
common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace.

To uninstall WKO, follow the steps in WKO documentation at: https://oracle.github.io/weblogic-
kubernetes-operator/managing-operators/installation/#uninstall-the-operator.

Re-register your namespaces using the register-namespace.sh and unregister-
namespace.sh scripts in the cloud native toolkit.

You can install the operator by following the instructions in WKO documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-

Chapter 15
Common Problems and Solutions

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 18

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator

operator. Then, register all the projects again, one by one. See "Registering the Namespace"
for details.

Lost or Missing opssWF and opssWP Contents

For an OSM instance to successfully connect to a previously initialized set of DB schemas, it
needs to have the opssWF (OPSS Wallet File) and opssWP (OPSS Wallet-file Password)
secrets in place. The $OSM_CNTK/scripts/manage-instance-credentials.sh script can be
used to set these up if they are not already present.

If these secrets or their contents are lost, you can delete and recreate the RCU schemas
(using $OSM_CNTK/scripts/install-osmdb.sh with command code 5). This deletes data
(such as some user preferences and so on) stored in the RCU schemas. On the other hand, if
there is a WebLogic domain currently running against that DB (or its clone), the
"exportEncryptionKey" offline WLST command can be run to dump out the "ewallet.p12" file.
This command also takes a new encryption password. For details about WLST Command
Reference for Infrastructure Security, see Oracle Fusion MiddleWare documentation. The
contents of the resulting ewallet.p12 file can be used to recreate the opssWF secret, and the
encryption password can be used to recreate the opssWP secret. This method is also suitable
when a DB (or the clone of a DB) from a traditional OSM installation needs to be brought into
OSM cloud native.

Clock Skew or Delay

When submitting JMS message over the Web Service queue, you might see the following in
the SOAP response:

Security token failed to validate.
weblogic.xml.crypto.wss.SecurityTokenValidateResult@5f1aec15[status: false][msg
UNT Error:Message older than allowed MessageAge]

Oracle recommends synchronizing the time across all machines that are involved in
communication. See "Synchronizing Time Across Servers" for more details. Implement
Network Time Protocol (NTP) across the hosts involved, including the Kubernetes cluster
hosts.

It is also possible to temporarily fix this through configuration by adding the following properties
to java_options in the project specification for each managed server.managedServers:
project:

#JAVA_OPTIONS for all managed servers at project level java_options:
-Dweblogic.wsee.security.clock.skew=72000000
-Dweblogic.wsee.security.delay.max=72000000

Known Issues
This section describes known issues that you may come across, their causes, and the
resolutions.

Email Plugin
The OSM Email plugin is currently not supported. Users who require this capability can create
their own plugin for this purpose.

SituationalConfig NullPointerException

In the managed server logs, you might notice a stacktrace that indicates a
NullPointerException in situational config.

This exception can be safely ignored.

Chapter 15
Known Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 18

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator

Connectivity Issues During Cluster Re-size

When the cluster size changes, whether from the termination and re-creation of a pod, through
an explicit upgrade to the cluster size, or due to a rolling restart, transient errors are logged as
the system adjusts.

These transient errors can usually be ignored and stop after the cluster has stabilized with the
correct number of Managed Servers in the Ready state.

If the error messages were to persist after a Ready state is achieved, then looking for
secondary symptoms of a real problem would be appropriate. Such connectivity errors could
result in orders that were inexplicably stuck or were otherwise processing abnormally.

While not an exhaustive list, some examples of these transient errors you may see in a
managed server log are:

• An MDB is unable to connect to a JMS destination. The specific MDB and JMS destination
can vary, such as:

– <The Message-Driven EJB OSMInternalEventsMDB is unable to connect to
the JMS destination mslv/oms/oms1/internal/jms/events.

– <The Message-Driven EJB DeployCartridgeMDB is unable to connect to the
JMS destination mslv/provisioning/internal/ejb/deployCartridgeQueue.

• Failed to Initialize JNDI context. Connection refused; No available router to destination.
This type of error is seen in an instance where SAF is configured.

• Failed to process events for event type[AutomationEvents].

• Consumer destination was closed.

Upgrade Instance failed with spec.persistentvolumesource: Forbidden: is immutable
after creation.

You may come across the following error when you run the commands for upgrading the OSM
Helm chart:

Error: UPGRADE FAILED: cannot patch "<project>-<instance>-nfs-pv" with kind
PersistentVolume: PersistentVolume "<project>-<instance>-nfs-pv" is invalid:
spec.persistentvolumesource:
Forbidden: is immutable after creation
Error in upgrading osm helm chart

Once created, the Persistent Volume Claim cannot be changed.

To resolve this issue:

1. Disable NFS by setting the nfs.enabled parameter to false and run the upgrade-
instance script. This removes the PV from the instance.

2. Enable it again by changing nfs.enabled: to true with the new values of NFS and then
run upgrade-instance.

JMS Servers for Managed Servers are Reassigned to Remaining Managed Servers

When scaling down, the JMS servers for managed servers that do not exist are getting
reassigned to remaining managed servers.

Chapter 15
Known Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 18

For example, for a SimpleResponseQueue when there is only 1 managed server running, you
can notice something like the following in the logs:

Jun 15, 2020 11:01:32,821 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationListene
r> <BEA-000000> <
All local JMS destinations: ms1
JNDI
JMS Server WLS Server Migratable Target Local Member
Type Partition
--
------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1.

When scaled to 2 Managed Servers, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationListene
r> <BEA-000000> <
All local JMS destinations: ms1
JNDI
JMS Server WLS Server Migratable Target Local Member
Type Partition
--
------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms2 ms2 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms2 ms2 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1 and osm_jms_server@ms2 is targeting
ms2.

Chapter 15
Known Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 18

After scaling back to 1 managed server, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationListene
r> <BEA-000000> <
All local JMS destinations: ms1
JNDI
JMS Server WLS Server Migratable Target Local Member
Type Partition
--
------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms2 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms2 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that the JMS Server osm_jms_server@ms2 is not deleted and is targeting ms1.

This is completely expected behavior. This is a WebLogic feature and not to be mistaken for
any inconsistency in the functionality.

Image Build Failure Due to OPatch Error
You may face the following error while building images using the OSM cloud native builder
toolkit:

OPatch failed with error code 73
[SEVERE] Build command failed with error: OPatch failed to restore OH '/u01/
oracle'. Consult OPatch document to restore the home manually before
proceeding.
UtilSession failed: ApplySession failed in system modification phase...
'ApplySession::apply failed:
oracle.glcm.opatch.common.api.install.HomeOperationsException: A failure
occurred while processing patch: 31676526'
Error: building at STEP "RUN /u01/oracle/OPatch/opatch apply -silent -oh /u01/
oracle -nonrollbackable /tmp/imagetool/patches/p31676526_122140_Generic.zip":
while running runtime: exit status 73

The root cause for this error is that Podman's default value for number of open files is too low
for an OPatch invocation.

The way to resolve this error is to configure the build system's Linux to have a higher hard limit
for open files. The current hard limit on the number of open files can be known by running
ulimit -n -H on the host. For more information, refer to Prerequisites for Creating OSM
Images.

Chapter 15
Known Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 18

Chapter 15
Known Issues

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 18

A
Differences Between OSM Cloud Native and
OSM Traditional Deployments

If you are moving from a traditional deployment of OSM to a cloud native deployment, this
section describes the differences between OSM cloud native and OSM traditional.

• Embedded LDAP

You no longer need to create human users using the embedded LDAP capabilities of
WebLogic Server.

By default, OSM uses the WebLogic embedded LDAP as the authentication provider and
all OSM system users are created in embedded LDAP during the creation of the instance.
The OSM cloud native toolkit provides a sample configuration to demonstrate how to
integrate with external LDAP server for human users.

• Credential Store for Automation Code

The existing Fusion MiddleWare Credential Store framework has been replaced with
Kubernetes Secrets in OSM cloud native. See Provisioning Cartridge User Accounts for
more details on configuration differences. However, the automation plugin code in your
cartridges that accesses this information using the automation framework APIs continues
to receive the credentials transparently.

• Credential Store for Custom Code

If you use custom code that relies on the OPSS Keystore Service, then port the code. This
mechanism is no longer supported. The recommended replacement is Kubernetes
Secrets. Kubernetes Secrets can be specified as custom secrets in OSM cloud native and
are mounted into the instance's pods for your code to use and access.

• XMLIE Operations

The following operations are still available using XMLIE. However, these should not be
used in OSM cloud native. See the following table that describes the replacement
mechanism for using these operations.

Table A-1 Replacement Mechanisms for XMLIE Operations

Operation Replacement Mechanism

credStoreAdmin Sample script in $OSM_CNTK/samples/credentials/manage-cartridge-
credentials.sh. Use the secret option in the user text file. See Provisioning
Cartridge User Accounts for more details.

userAdmin Sample script in $OSM_CNTK/samples/credentials/manage-cartridge-
credentials.sh. Use the ldap option in the user text file. See Provisioning
Cartridge User Accounts for more details.

import OSM DB Installer. Additionally, this operation relies on a pre-built par file,
instead of an XML model file. It can use a local file or pull it from a remote
repository. See Working with Cartridges for more details.

fastUndeploy OSM DB Installer. See Working with Cartridges for more details.

• WebLogic Domain Configuration

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-1 of A-3

In a traditional deployment of OSM, the WebLogic domain configuration is done using
WLST or the WebLogic Remote Console. In OSM cloud native, domain configuration is
done by providing WDT metadata in the instance creation process. See Extending the
WebLogic Server Deploy Tooling (WDT) Model for details.

Do not perform WebLogic administrative activities such as changing the configuration,
shutting down and restarting the server directly on the WebLogic Server cluster of the
OSM cloud native instance. The same applies to the activities done using WebLogic
Remote Console, WLST invocation, or any mechanism, other than those supplied by the
specification files for updating and upgrading the OSM cloud native instance.

• Incoming SAF and Outgoing SAF

For incoming SAF agents, the originator must use T3 over HTTP tunneling.

Outgoing SAF mechanism has not changed.

• OSM Solution Cartridges

If a cartridge defines and uses model variables, these variables are always set to their
default value when the cartridge is deployed into a CN environment. The default value is
as specified by the cartridge developer as part of the definition of the model variable. If no
default value is specified, the model variable is left as-is, not substituted.

For cartridges that might access a custom property file, this can be done by injecting
custom files into the specifications. See Injecting Custom Configuration Files for details. An
alternative is to use a database table instead. This has the advantage of becoming part of
backups and replication automatically.

Using custom tables or datasources needs to be declared by providing the necessary WDT
extensions. See Extending the WebLogic Server Deploy Tooling (WDT) Model for details.

• OSM Workgroups: OSM Workgroups, including user and workgroup associations, are still
managed through the orchestration UI.

• OSM User Interfaces: All OSM user interfaces are still available with both OSM traditional
and OSM cloud native deployments. The UIs can be accessed using the default hostname:
instance.project.osm.org and port 30305, which is the default but configurable and the
path that is necessary for the specific UI. For example, to access the Order Management
UI, use:

http://instance.project.osm.org:30305/OrderManagement/Login.jsp

• OSM API: Accessing OSM through the traditional APIs such as the Web Services API, the
REST API, and the XML API has not changed.

• Order Partitioning Realm Configuration: Runtime configuration of order partitioning
realms is not supported. In traditional OSM deployments, this is specified in the oms-
config.xml file as a set of files against the
oracle.communications.ordermanagement.OrderPartitioningRealmConfigFileURLs
parameter.

• OSM Runtime Parameters: Some OSM runtime parameters can be controlled using the
oms-config.xml file. This configuration is still available in OSM cloud native, but is
managed differently. See Configuring OSM Runtime Parameters for more details.

– Operational Order Jeopardies: Configuration to support operational order jeopardies
is specified in the oms-config.xml file as a set of files against the
oracle.communications.ordermanagement.order.OperationalOverrideFileURLs
parameter. These configuration files are custom files and must be injected properly.
See Injecting Custom Configuration Files for details.

Appendix A

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-2 of A-3

– OACC Runtime Configuration: This is specified in the oms-config.xml file as a set
of files against the AutomationConcurrencyModels parameter. These configuration files
are custom files and must be injected properly. See Injecting Custom Configuration
Files for details.

Appendix A

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-3 of A-3

B
Reference of Secrets Created by the Scripts

The secrets created by the OSM cloud native toolkit scripts follow the naming pattern of
<project>-<instance>-<suffix>, where the "suffix" differentiates between the secrets.

The following table lists the secrets, describes their purpose, and provides other details.

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-
database-credentials

Credentials required for OSM
DB schemas.

Yes manage-instance-
credentials osmdb

DB Credentials
Secret

<project>-<instance>-
gateway-credentials

Credentials and connection
details for the OIDC IdP to
secure TMF and Fallout
Exception REST APIs.

No • Required if
omsConfig.projec
t.osm_runtime_ty
pe is MultiService

• manage-instance-
credentials
gwOidc

OSM Gateway
OIDC
Credentials
Secret

<project>-<instance>-oca-
credentials

Credentials and connection
details for the OIDC IdP to
secure OSM Cartridge
Assembler (OCA) REST
APIs.

No • Required if
omsConfig.projec
t.osm_runtime_ty
pe is MultiService
and osm-
cartridge-
assembler.enable
d is true

• manage-instance-
credentials.sh
ocaOidc

OCA OIDC
Credentials
Secret

<project>-<instance>-rcudb-
credentials

Credentials required for FMW
RCU DB schemas.

Yes manage-instance-
credentials rcudb

RCU DB
Credentials
Secret

<project>-<instance>-db-ssl-
wallet

Credentials and certificates
required to connect with
TCPS enabled database.

No • manage-instance-
credentials

• dbwallet

TCPS DB Wallet
Secret

<project>-<instance>-
weblogic-credentials

WebLogic admin credential. Yes manage-instance-
credentials
wlsadmin

WebLogic
Credentials
Secret

<project>-<instance>-
runtime-encryption-secret

Password used to secure
instance metadata in
Kubernetes.

Yes manage-instance-
credentials wlsRTE

WebLogic
Runtime
Encryption
Secret

<project>-<instance>-opss-
wallet-password-secret

Password used to encrypt the
FMW wallet.

Yes manage-instance-
credentials opssWP

FMW Wallet
Encryption
Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-1 of B-11

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-opss-
walletfile-secret

Secure storage of FMW
wallet.

No • Automatically during
create-instance

• Manually using
manage-instance-
credentials
opssWF

FMW Secure
Wallet Secret

<project>-<instance>-
embedded-ldap-credentials

Passwords for OSM's internal
users.

Yes manage-instance-
credentials osmldap

OSM Internal
User Passwords
Secret

<project>-<instance>-fluentd-
credentials

Credentials and connection
details to the ElasticSearch
service.

No • Required if
fluentdLogging.e
nabled is true

• manage-instance-
credentials
fluentd

OSM Fluentd
Credentials
Secret

<project>-<instance>-app-tls-
cert

Certificate and key to access
OSM TMF REST APIs,
Fallout Exception APIs and
UX backend APIs.

No • Required if
ssl.incoming is true

• manage-instance-
credentials
gatewaytls

Certificate and
Key to Access
the Gateway
HTTPS Endpoint

<project>-<instance>-osm-
tls-cert

Certificate and key to access
the OSM HTTPS endpoint.

No • Required if
ssl.incoming is true

• manage-instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificate and
Key to Access
the OSM HTTPS
Endpoint

<project>-<instance>-admin-
tls-cert

Certificate and key to access
the OSM WebLogic Remote
Console HTTPS endpoint.

No • Required if
ssl.incoming is true

• manage-instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificate and
Key to Access
the OSM
WebLogic
Remote Console
HTTPS Endpoint

<project>-<instance>-t3-tls-
cert

Certificate and key to access
the OSM t3 over HTTPS
endpoint.

No • Required if
ssl.incoming is true in
the specification

• manage-instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificateandke
ytoaccesstheOS
Mt3overHTTPS

<project>-<instance>-
truststore

Providing OSM with trusted
CAs for secure outbound
JMS/SAF

No • Required if ssl.trust
is populated in the
specification

• manage-instance-
credentials wlstls
(with option WLSStore or
Both)

Trusted CA
Injection

Appendix B

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-2 of B-11

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-
keystore

Providing OSM with private
keys for secure outbound
JMS/SAF or SAML IdP.

Yes • Required if
ssl.identity.name
or SAML SSO is
enabled.

• Required when SSL is
enabled, or a custom
trust keystore is
configured.

• manage-instance-
credentials wlstls
(with option WLSStore or
Both)

Secure Identity

<project>-<instance>-db-
wallet

Secure storage of details to
connect to the ADB
database.

No • Required if adb is used
for the OSM instance

• manage-instance-
credentials
osmdb

ADB Wallet
Secret

<project>-<instance>-db-
secret

ADB administrator password. No • Required if adb is used
for the OSM instance

• manage-instance-
credentials
osmdb

ADB Admin
Secret

<project>-<instance>-osmcn-
cred-<user>

Credentials for custom users
defined by the cartridge
Credentials required by the
cartridge accessed from the
map named "osm"

No • Required if
cartridgeUsers is
specified, or if cartridge
code uses
getOsmCredential
Password

• manage-
cartridge-
credentials with
– cartridgeUsers:

"osm:_sysgen_
:<username>:s
ecret:<group-
list>"

– getOsmCredentialP
assword:
"osm:_sysgen_
:<username>:s
ecret"

Cartridge
Defined Custom
User Credentials

<project>-<instance>-ldap-
credentials

Information required for OSM
to use an external LDAP for
human user credentials

No • Required if
authentication.ldap
.enabled is true

• manage-osm-ldap-
credentials -c
create -l ldap

External LDAP
Information

<project>-<instance>-saf-
<remote-system>

Credentials to establish SAF
connectivity to <remote-
system>

No • Required if secret is
named in
safConnectionCon
fig.secretName

• Create manually

SAF Credentials

Appendix B

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-3 of B-11

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-global-
trust-credentials

Shared password for
configuring global trust

No • Required if
domainTrust.enabled
(deprecated) or
domainTrust.globalE
nabled is true

• Create manually

Global Trust
Credentials

<remote-domain-secret> User credentials for the
cross-domain users in remote
domain

No • Required if
domainTrust.crossDo
main.enabled is true

• Create manually

Cross Domain
Users in Remote
Domains

<project>-<instance>-
crossdomain-users

User credentials for the
cross-domain users in OSM
cloud native

No • Required
ifdomainTrust.crossD
omain.enabled is true
and you have a list of
cross-domain users in
the specification

• manage-instance-
credentials xtrust

Xtrust Secret

<repository-access-secret> Credentials to access a
repository

No • Required if secret is
named in
cartridges.
[].secret or
partitionStatist
ic.secret

• Create manually

Generic
Credentials

<project>-<instance>-
<securityScheme>

Secrets for establishing
connections to target
systems that are defined in
the security scheme.

No • Required for each
targetSystems.secur
itySchemes.[].name

• manage-target-
system-
credentials.sh

Security Scheme
Credentials

<project>-<instance>-
ssosaml-archive

Secure information for OSM
to communicate with SAML
IdP.

No • Required if
sso.enabled is true in
the specification

• manage-instance-
credentials
samlsso

SAML Archive
for IdP

<git-repo-secret> Credentials to access a
repository.

No • Required if using
Continuous Delivery and
GitRepository resources
in Flux-CD configuration
refers to a secured Git
repository.

• Create manually.

Git Access
Secret

OSM Gateway OIDC Credentials Secret
Credentials and connection details for the OIDC IdP to secure TMF and Fallout Exception
REST APIs.

Appendix B
OSM Gateway OIDC Credentials Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-4 of B-11

<project>-<instance>-gateway-credentials

oidc-base-url: <the oidc base url>
oidc-access-token-url: <the token access url>
tmf-oidc-client-id: <the oidc client id>
tmf-oidc-client-secret: <the oidc client secret>
fallout-oidc-client-id: <the oidc client id>
fallout-oidc-client-secret: <the oidc client secret>

OCA OIDC Credentials Secret
Credentials and connection details for the OIDC IdP to secure OCA REST APIs.

<project>-<instance>-oca-credentials

oidc-base-url: <the oidc base url>
oidc-access-token-url: <the token access url>
oca-oidc-client-id: <the oidc client id>
oca-oidc-client-secret: <the oidc client secret>
scd-oidc-access-token-url: <optional access token url of SCD app>
scd-oidc-client-id: <optional client id of SCD app>
scd-oidc-client-secret: <optional client secret of SCD app>
scd-oidc-scope: <optional scope of SCD app>

DB Credentials Secret
Credentials required for OSM DB schemas.

<project>-<instance>-database-credentials

db_password: <osmschema-user-password>
db_reports_password: <reportsschema-user-password>
db_reports_user: <reportsschema-user-name>
db_rule_password: <ruleschema-user-password>
db_rule_user: <ruleschema-user-name>
db_service_name: <db-service-name>
db_user: <osmschema-user-name>
dba_password: <dbadmin-password>
dba_user: <dbadmin-user-name>
is_adb: <Y/N> -- Y for yes, N for No.

RCU DB Credentials Secret
Credentials required for FMW RCU DB schemas.

<project>-<instance>-rcudb-credentials

is_adb: <Y/N> -- Y for yes, N for No.
rcu_prefix: <unique-prefix-for-this-instance>
rcu_schema_password: <password-for-all-rcu-schemas>

Appendix B
OCA OIDC Credentials Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-5 of B-11

TCPS DB Wallet Secret
Credentials and certificates required to connect with TCPS enabled database.

<project>-<instance>-db-ssl-wallet

ewallet.p12: <credentials and certificates required to connect with DB>
cwallet.sso: <provides ability to open the wallet without password>

WebLogic Credentials Secret
WebLogic admin credential.

<project>-<instance>-weblogic-credentials

password: <weblogic-admin-password>
username: <weblogic-admin-username>

WebLogic Runtime Encryption Secret
Password used to secure instance metadata in Kubernetes.

<project>-<instance>-runtime-encryption-secret

password: <runtime-encryption-password>

FMW Wallet Encryption Secret
Password used to secure instance metadata in Kubernetes.

<project>-<instance>-opss-wallet-password-secret

walletPassword: <wallet-encryption-password>

FMW Secure Wallet Secret
Secure storage of FMW wallet.

<project>-<instance>-opss-walletfile-secret

walletFile: <encrypted-wallet>

OSM Internal User Passwords Secret
Passwords for OSM's internal users.

Appendix B
TCPS DB Wallet Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-6 of B-11

<project>-<instance>-embedded-ldap-credentials

automation_password: <password for oms-automation user>
gateway_internal_password: <password for gateway internal user>
gateway_internal_user: <username for gateway internal user>
internal_password: <password for oms-internal user>
metrics_password: <password for metrics user>
omsadmin_password: <password for omsadmin user>
sceadmin_password: <password for sceadmin user>

OSM OIDC Credentials Secret
Credentials and connection details for the OIDC IdP in order to secure TMF and Fallout
Exception REST APIs.

<project>-<instance>-oidc-credentials

app-oidc-audience: <the oidc audience>
app-oidc-base-url: <the oidc base url>
app-oidc-client-id: <the oidc client id>
app-oidc-client-secret: <the oidc client secret>
client-oidc-access-token-url: <the token access url>
client-oidc-scope: <the scope>

OSM Fluentd Credentials Secret
Credentials and connection details to the ElasticSearch service.

<project>-<instance>-fluentd-credentials

elasticsearchhost: <host name of the elastic search server>
elasticsearchpassword: <password to access the elastic search service>
elasticsearchport: <port id of the elastic search service>
elasticsearchuser: <user name to access the elastic search service>

Certificate and Key to Access the Gateway HTTPS Endpoint
Certificate and key to access OSM TMF REST APIs, Fallout Exception APIs and UX backend
APIs.

<project>-<instance>-app-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM HTTPS Endpoint
Certificate and key to access the OSM HTTPS endpoint.

Appendix B
OSM OIDC Credentials Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-7 of B-11

<project>-<instance>-osm-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM WebLogic Remote
Console HTTPS Endpoint

Certificate and key to access the OSM WebLogic Remote Console HTTPS endpoint.

<project>-<instance>-admin-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM t3 over HTTPS
Certificate and key to access the OSM t3 over HTTPS.

<project>-<instance>-t3-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Trusted CA Injection
CA trust for secure outbound JMS/SAF connections.

<project>-<instance>-truststore

<cert-name>.crt: <concatenated-CA-certs>
passphrase: <truststore access password>

Secure Identity
Private key to define identity for secure outbound JMS/SAF or SAML IdP connections.

<project>-<instance>-identitystore

<key-name>.key: <private key>
passphrase: <keystore access password>

ADB Wallet Secret
Secure storage of details to connect to the ADB database.

Appendix B
Certificate and Key to Access the OSM WebLogic Remote Console HTTPS Endpoint

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-8 of B-11

<project>-<instance>-db-wallet

wallet-password: <adb wallet password>
ojdbc.properties: <ojdbc.properties>
tnsnames.ora: <tnsnames.ora>
sqlnet.ora: <sqlnet.ora>
cwallet.sso: <cwallet.sso>
ewallet.p12: <ewallet.p12>
keystore.jks: <keystore.jks>
truststore.jks: <truststore.jks>

ADB Admin Secret
ADB administrator password.

<project>-<instance>-db-secret

admin-password: <Adb administrator password>

Cartridge Defined Custom User Credentials
This example is for a custom user named "osmprime" defined by the cartridge. These three
lines will repeat for each custom user, with "osmprime" being replaced by each user in turn.

<project>-<instance>-osmcn-cred-<user>

osmUser_osmprime_groups: <comma-separated list of OSM groups for this user>
osmUser_osmprime_name: <osmprime>
osmUser_osmprime_password: <password for osmprime>

This example is for a cartridge that invokes getOsmCredentialPassword with user
"osmsom". These two lines will repeat for each user invoked by the cartridge using
getOsmCredentialPassword.

osmUser_osmsom_name: <osmsom>
osmUser_osmsom_password: <password for osmsom>

External LDAP Information
Credentials and connection details required to connect with the external LDAP server.

<project>-<instance>-ldap-credentials

ldap_credential: <password to access external LDAP>
ldap_groupBaseDn: <base DN on external LDAP to use to look for groups>
ldap_host: <hostname or IP of LDAP server>
ldap_port: <port of LDAP server>
ldap_principal: <LDAP principal to use>
ldap_userBaseDn: <base DN on external LDAP to use to look for users>

Appendix B
ADB Admin Secret

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-9 of B-11

SAF Credentials
Each SAF credential secret contains exactly one set of credentials.

SAF Credentials

username: <SAF destination weblogic user name>
password: <password for above user>

Global Trust Credentials
Shared password for establishing global trust with those domains with which OSM cloud native
communicates.

<project>-<instance>-global-trust-credentials

password: <shared trust password>

Cross Domain Users in Remote Domains
Secret(s) for remote users configured in each remote domain with which OSM cloud native
communicates.

<remote-domain-secret>

username: <user configured in remote domain>
password: <password for above user as configured in remote domain>

Xtrust Secret
Credential for each of the cross-domain users to be configured in an OSM cloud native
instance.

<project>-<instance>-crossdomain-users

<cross-domain-user-1>_password: <local password for cross-domain-user-1>
<cross-domain-user-2>_password: <local password for cross-domain-user-2>...

Generic Credentials
Each credential secret contains exactly one set of credentials.

Generic Credentials

username: <user name>
password: <password for above user>

Appendix B
SAF Credentials

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-10 of B-11

Security Scheme Credentials
Secrets for establishing connections to target systems that are defined in the security scheme.
It supports two types of authentication: OAuth2 and Username/Password.

• OAuth2: uses OIDC for authentication

<project>-<instance>-<securitySchemeName> (OAuth2)

clientId: <client id>
secret: <secret>

• Username/Password: uses username and password for authentication

<project>-<instance>-<securitySchemeName> (userPassword)

password: <password>
user: <user>

SAML Archive for IdP
Secret to carry the secure information for OSM to be a SAML2 participant for the configured
IdP for SSO functionality. Refer to OSM Security Guide for more details.

<project>-<instance>--ssosaml-archive

sso-saml2.zip: <archive of secure IdP information>

Git Access Secret
Access credentials for secured git repositories.

<git-repo-secret>

username: <your-git-username>
password: <your-git-access-token>

Appendix B
Security Scheme Credentials

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-11 of B-11

C
Leveraging OSM Cloud Native SAF
Connectivity Patterns for Your Use-Case

This appendix provides details about leveraging OSM cloud native SAF connectivity patterns
for your use-case. See the following topics for more information:

• About SAF Connectivity Patterns

• Common Integration Patterns

• OSM Cloud Native Colocated SAF

• OSM Remote SAF

• Cloud Native to Cloud Native Remote SAF

About SAF Connectivity Patterns
The integration of OSM with upstream, downstream and peer systems is an essential part of
the role it plays at a service provider. These integrations typically use SAF. While the specific
integrations are dependent on the service provider's solution, some common patterns can be
laid out for OSM cloud native and are described in the rest of this document. These can be
used to plan, capture and communicate the connectivity.

When laying out OSM cloud native integration for a project, Oracle recommends that you
carefully review the chapter Integrating OSM. You can then use the common patterns below to
identify which one best fits each integration. Prepare an overall integration diagram, or set of
diagrams, that use the pattern diagrams here, annotated for the specific solution being
implemented. Such an artifact is very useful to control the integration, and drive content into
the project and instance specifications. Additionally, if an OSM cloud native integration issue is
referred to Oracle Support, the service request will require such an integration diagram to
describe your use-case.

The diagrams in this document were prepared using draw.io, leveraging its built-in palette of
standard Kubernetes icons (as per https://github.com/kubernetes/community/tree/master/
icons).

Figure C-1 Standard Kubernetes Diagrams

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-1 of C-6

https://github.com/kubernetes/community/tree/master/icons
https://github.com/kubernetes/community/tree/master/icons

Raw Sources
The draw.io sources for all diagrams are available in the OSM SDK, under the
ConnectivityDiagrams folder.

Common Integration Patterns
T3 Routing
JMS and SAF messages use the T3 or T3S protocols. While WebLogic itself can process this
protocol and perform any necessary routing within its cluster, the components involved in
exposing OSM cloud native to the outside world cannot perform T3 or T3S routing. Such
components could be Kubernetes-based Ingress Controllers or Load Balancers, or similar
reverse-proxy functions. Kubernetes services themselves do not care about the protocol and
can handle T3 or T3S.

This means that if OSM cloud native and the other system are in the same Kubernetes cluster,
they must use T3 or T3S protocols. The underlying infrastructure supports it, and direct use of
these protocols removes any packaging overhead.

However, if the other system is outside OSM cloud native's Kubernetes cluster, JMS and SAF
traffic have to use the tunneling feature of WebLogic. For more information about this feature,
see "Setting Up WebLogic Server for HTTP Tunneling" in Administering Server Environments
for Oracle WebLogic Server. Here the T3 messages are carried in an http or https envelope
and can therefore be routed by Ingress Controllers and Load Balancers. OSM cloud native
supports this capability. It is automatically triggered if the JMS or SAF URI begins with "http://"
or "https://". The other system needs similar configuration. See WebLogic documentation for
more details.

DNS Resolution
There are two aspects to consider regarding hostname resolution in the context of OSM cloud
native integration:

1. Accessing an OSM cloud native environment from outside the Kubernetes cluster requires
the use of a hostname derived from the instance name and project name. For example, an
environment with the project name "com" and instance name "prod" requires the use of the
hostname "prod.com.osm.org". Configuration can override the "osm.org" portion as
required. Say this results in "prod.com.csp.net". All external systems (browsers trying to
access OSM UIs, peer systems trying to invoke OSM web services, peer systems wanting
to interact via JMS or SAF, etc) need to use this hostname and have it mapped to the IP
address of the Load Balancer or Ingress Controller that exposes OSM cloud native. Ideally,
this is done using wildcards in the corporate DNS as described in the OSM Cloud Native
Deployment Guide. An alternative would be to add this mapping locally to each system (for
instance, via /etc/hosts on Linux-based systems).

2. Adding hostname resolution within OSM cloud native itself as the equivalent of /etc/hosts
requires such mappings to be injected into the OSM pods if there is no DNS system
configured to handle it. This is done by specifying the mapping in the instance
specification's "hostAliases" list.

Inbound SAF or JMS
An external system needs to establish SAF or JMS connectivity with OSM cloud native.

Table C-1 Remotes Within the Same Kubernetes Cluster and Outside the Kubernetes Cluster

x Remote in Same Kubernetes Cluster Remote Outside Kubernetes Cluster

Protocol t3 http or https

Appendix C
Common Integration Patterns

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-2 of C-6

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/cnfgd/web_server.html#GUID-9B08A327-0DBF-4DE9-B0E7-B4155DF51331

Table C-1 (Cont.) Remotes Within the Same Kubernetes Cluster and Outside the Kubernetes Cluster

x Remote in Same Kubernetes Cluster Remote Outside Kubernetes Cluster

Hostname project-instance-cluster-
c1.project.svc.cluster.local

instance.project.domainname

Port 31313 30303

Outbound SAF or JMS
When OSM cloud native needs to talk to an external system, it can do so via T3, http or https,
depending on what that external system accepts. Other details, like hostname and port, also
depend on that external system.

OSM Cloud Native Colocated SAF
This section describes how an OSM cloud native instance can have bidirectional SAF with
another WLS based component (WLS Peer Component) which is also cloud native and
running in the same Kubernetes cluster. This other component can be another instance of
OSM cloud native or an instance of UIM cloud native, for example.

OSM cloud native has a service project-instance-cluster-c1 for each instance. This service
includes a "T3ClustChannel" - which allows it to ingest t3 messages and route them to the
OSM pods - exposed at port 31313 with the "hostname" project-instance-cluster-
c1.namespace.svc.cluster.local.

The above image, Same Cluster, can be accessed as a draw.io file from the OSM SDK. See
the Raw Sources section for more details.

Note that the URIs are both still t3. Since we are in the same Kubernetes cluster, we do not
need to involve any ingresses or load balancers. Also note that the URIs take the form t3://
service.namespace.svc.cluster.local:31313/...

OSM Remote SAF
If the WLS Peer Component is not hosted on the same Kubernetes cluster as OSM cloud
native, then the SAF connectivity is done using URIs that reference DNS resolvable

Appendix C
OSM Cloud Native Colocated SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-3 of C-6

hostnames, externally exposed ports and the http/https protocol, as opposed to Kubernetes
resolvable hostnames, internally exposed ports and the t3 protocol.

Internally, OSM cloud native exposes this as a "T3Channel" in its project-instance-cluster-c1
service at port 30303, with the "hostname" instance.project.domainname. This channel is
meant to be accessed via an ingress route over http or https. This channel is different from the
"T3ClustChannel" described above.

The above image, Remote SAF, can be accessed as a draw.io file from the OSM SDK. See the
Raw Sources section for more details.

Here, an OSM cloud native instance called "prod" is running in the namespace "com", with a
configured domain name of "csp.net". It exposes its endpoints to the outside world (outside
Kubernetes) using an Ingress. For the purpose of SAF configuration, in this example, the
Ingress contains a rule to recognize http or https traffic addressed to "t3.prod.com.csp.net".
This rule routes the http or https traffic to the com-prod-cluster-c1 service's t3channel (port
30303). Elsewhere in the cluster, an Ingress Controller monitors Ingress rules and implements
them. It exposes its endpoint to the outside world via an Ingress Service, which is typically a
LoadBalancer in type. This will result in a load balancer on the cluster boundary. Details of the
Ingress Service and the Load Balancer are specific to each Ingress Controller (like Traefik,
nginx, etc.) and to each deployment environment (like Oracle OCI, Google GKE, etc.).

The Load Balancer is routable from the outside world in some controlled fashion via its own IP
address and hostname. In the above example, the Load Balancer is exposing http ingress
rules via port 80 and https ingress rules via port 443.

Appendix C
OSM Remote SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-4 of C-6

DNS Considerations
If the external system is addressed via a hostname instead of IP address by OSM cloud native,
this hostname must be resolvable by the DNS configured for the Kubernetes cluster. If this is
not the case, the OSM cloud native instance specification must have its "hostAliases" list
updated to include this hostname. An example of this is in the next section.

The external system must ensure its SAF traffic hits the Load Balancer using http or https.
However, for the Ingress Controller to apply the instance's routing rule internally, the SAF traffic
has to be addressed to t3.com.osm.csp.net. To satisfy both these requirements, two options
exist:

1. The external WebLogic system has its /etc/hosts file update on each machine to include a
line that matches the Load Balancer IP with the t3.prod.com.csp.net hostname.

2. An external DNS used by the external WebLogic system (for example, a corporate DNS) is
updated to return the Load Balancer IP for all hostnames with the pattern "*.com.csp.net"
or "*.csp.net".

Regardless of the DNS approach chosen, the external WebLogic system must ensure it has
WebLogic patch 30656708 or its equivalent for the WebLogic version or patch-level in use.

Cloud Native to Cloud Native Remote SAF
A special case of the above is when an OSM cloud native instance running in one Kubernetes
cluster needs to have SAF communication with another OSM cloud native instance running in
a different Kubernetes cluster. An example might be an OSM COM instance running in one
organization's cluster while needing to send service orders to an OSM SOM instance running
in another organization's cluster. This would include the need for OSM SOM to send events
back to OSM COM as well.

Appendix C
Cloud Native to Cloud Native Remote SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-5 of C-6

The above image, CN to CN Remote SAF, can be accessed as a draw.io file from the OSM
SDK. See the Raw Sources section for more details.

This is an extrapolation or doubling of the Remote SAF scenario. The main difference is that in
the absence of a ubiquitous DNS mechanism, the integrator must leverage OSM cloud native
capability to inject Linux /etc/hosts based name resolution via the instance specification.

Appendix C
Cloud Native to Cloud Native Remote SAF

Cloud Native Deployment Guide
G38005-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-6 of C-6

	Contents
	About This Content
	1 Overview of the OSM Cloud Native Deployment
	About the OSM Cloud Native Deployment
	OSM Cloud Native Architecture
	About the WebLogic Domain
	About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration Config Map
	About Oracle WebLogic Server Deploy Tooling (WDT)
	About Projects and Instances
	About Specification Layers
	About Helm Overrides

	About the OSM Cloud Native Toolkit

	2 Planning and Validating Your Cloud Native Environment
	Required Components for OSM Cloud Native
	Planning Your Cloud Native Environment
	Setting Up Your Kubernetes Cluster
	Synchronizing Time Across Servers
	Provisioning Oracle Multitenant Container Database (CDB)
	Provisioning an Empty PDB
	Provisioning a Seed OSM PDB

	Secondary Database Support for OSM Cloud Native
	Prerequisites

	About Container Image Management
	Installing Helm
	Setting Up Oracle WebLogic Server Kubernetes Operator
	About Load Balancing and Ingress Controller
	Using NGINX as the Ingress Controller

	Using Domain Name System (DNS)
	Configuring Kubernetes Persistent Volumes
	About NFS-based Persistence
	About Authentication
	Management of Secrets
	Using Kubernetes Monitoring Toolchain
	About Application Logs and Metrics Toolchain
	Role of Continuous Integration (CI) Pipelines
	Role of Continuous Delivery (CD) Pipelines

	Planning Your Container Engine for Kubernetes (OKE) Cloud Environment
	Compute Disk Space Requirements
	Connectivity Requirements
	Using Load Balancer as a Service (LBaaS)
	About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones
	Using Persistent Volumes and File Storage Service (FSS)
	Leveraging Oracle Cloud Infrastructure Services

	Validating Your Cloud Environment
	Performing a Smoke Test
	Validating Common Building Blocks in the Kubernetes Cluster
	Running Oracle WebLogic Kubernetes Operator Quickstart

	3 Creating OSM Cloud Native Images
	Downloading the OSM Cloud Native Image Builder
	Prerequisites for Creating OSM Images
	Configuring the OSM Cloud Native Images
	Creating OSM Cloud Native Images

	4 Creating a Basic OSM Cloud Native Instance
	Installing the OSM Cloud Native Artifacts and the Toolkit
	Using Oracle Autonomous Database Serverless
	Using RDS or RDS Custom for Oracle
	Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller
	Installing the WebLogic Kubernetes Operator
	Installing the Ingress Controller

	Creating a Basic OSM Instance
	Setting Environment Variables
	Registering the Namespace
	Assembling the Specifications
	Configuring OpenID Connect for OSM Microservices
	Creating Secrets
	Configuring OSM Cloud Native to Connect with a TCPS Enabled Database
	Installing the OSM and RCU Schemas
	Configuring the Project Specification
	Tuning the Project Specification

	Configuring the Instance Specification
	Creating an Ingress
	Creating an OSM Instance
	Validating the OSM Instance
	Scaling the OSM Application Cluster
	Deploying the Sample Cartridge
	Submitting Orders
	Deleting and Recreating Your OSM Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts

	Next Steps

	5 Planning Infrastructure
	Sizing Considerations
	Managing Configuration as Code
	Creating Source Control Repository
	Managing OSM Instances
	Deciding on the Scope
	About the Repository Directory Structure
	Deployment Considerations
	Setting the Repository Path During Instance Creation

	Setting Up Automation
	Securing Operations in Kubernetes Cluster

	6 Creating Your Own OSM Cloud Native Instance
	Selecting a Deployment Topology
	Installing OSM Cartridge Assembler (OCA) for Integration with Solution Designer
	Preparing for OSM Cartridge Assembler
	Managing an OSM Cartridge Assembler Deployment via Cloud Native Toolkit

	Configuring OSM Runtime Parameters
	Configuring Schema Validation
	Configuring Target Systems for Events and System Interactions
	Configuring Security Schemes for Target Systems
	Using the OIDC Security Scheme
	Using the Basic Authentication Security Scheme
	Basic Auth with User Credentials
	JSESSIONID in Authentication Header
	JSESSIONID in Cookies

	Configuring OSM Gateway Readiness
	Configuring the Order Operations User Interface
	Configuring the Alerts Displayed in the Order Operations Dashboard
	Configuring Session Timeout

	Preparing Cartridges
	Working with Kubernetes Secrets
	About Mandatory Secrets
	About Optional Secrets
	About Custom Secrets
	Accommodating the Scope of Secrets

	Mechanism for Creating Custom Secrets

	Adding JMS Queues and Topics
	Generating Error Queues for Custom Queues and Topics
	Creating a JMS Template
	Provisioning Cartridge User Accounts
	Working with Cartridges
	Cartridge Deployment Tool in OSM Cloud Native
	Single or One-off Cartridge Deployment
	Specification-driven Cartridge Deployment
	Offline Cartridge Deployment Using the OSM Cloud Native Toolkit
	Online Cartridge Deployment Using the OSM Cloud Native Toolkit

	Deploying Cartridges Using Design Studio
	Listing Deployed Cartridges Using the OSM Cloud Native Toolkit
	Cartridge par Sources
	Local Files
	Remote File Repository
	Container Images

	Selecting Deployment Style and Cartridge Source
	Deploying Cartridges in Open Environments
	Deploying Cartridges in Controlled Environments

	7 Extending the WebLogic Server Deploy Tooling (WDT) Model
	About the Custom WDT Extension Mechanism
	Using the WDT Model Tools
	WDT Discover Domain Tool
	WDT Validate Model Tool

	Common WDT Extension Mechanism
	Using the Sample Scripts to Extend the WDT Model
	Adding a JDBC Datasource
	Adding a JMS System Resource
	Deploying Entities to an OSM WebLogic Domain
	Extending the WDT Metadata for an External Authenticator

	Accessing Kubernetes Secrets from WDT Metadata
	Troubleshooting WDT Issues

	8 Exploring Configuration Options
	Manage LDAP Providers in WLS via OSM
	Working with Shapes
	Init and Sidecar Containers Resourcing
	Creating Custom Shapes

	Injecting Custom Configuration Files
	Choosing Worker Nodes for Running OSM Cloud Native
	Working with Ingress, Ingress Controller, and External Load Balancer
	Using an Alternate Ingress Controller
	Preconfiguration on Primary and Standby Database
	Configuring the OSM Application for High Availability
	Data Guard Setup on OCI

	Reusing the Database State
	Recreating an Instance
	Creating a New Instance

	Setting Up Persistent Storage
	Setting Up Database Optimizer Statistics
	Leveraging Oracle WebLogic Server Active GridLink
	Managing Logs
	Configuring Fluentd Logging
	Obfuscating Sensitive Data in Logs
	Configuring Logging and Log Rotation

	Managing OSM Cloud Native Metrics
	Configuring Prometheus for OSM Cloud Native Metrics
	Viewing Metrics Without Using Prometheus
	Viewing OSM Cloud Native Metrics in Grafana
	Exposed OSM Order Metrics

	Managing WebLogic Monitoring Exporter (WME) Metrics
	Enabling WebLogic Monitoring Exporter (WME)
	Configuring the Prometheus Scrape Job for WME Metrics
	Viewing WebLogic Monitoring Exporter Metrics in Grafana

	Proxy Configuration in Microservices

	9 Automating OSM Cloud Native Operations for Continuous Delivery
	About Continuous Delivery Mechanism
	Prerequisites for Creating an OSM Instance Using the Introspector Job
	Git Strategy for OSM Instances
	OSM Cloud Native Toolkit Introspector Job Helm Chart
	Creating an OSM Cloud Native Instance Using Flux-CD
	Setup Flux-descriptors Configuration
	Kustomization Resource
	GitRepository Resource
	HelmRelease Resource

	Setup Job-Values Configuration
	Triggering CD for a New Instance

	Making Changes to an OSM Instance
	Adding Custom Content
	Custom Extensions
	Custom Files
	Custom Shapes

	10 Integrating OSM
	Connectivity With Traditional OSM Instances
	Connectivity With OSM Cloud Native
	Connectivity Between the Building Blocks
	Inbound HTTP Connectivity
	Inbound JMS Connectivity
	Inbound JMS Connectivity Within the Same Kubernetes Cluster
	Outbound HTTP Connectivity
	Outbound JMS Connectivity

	Configuring SAF
	Security for Remote SAF and Bridges
	Configuring the Instance Specification
	Configuring the Project Specification

	Configuring WebLogic Messaging Bridges
	Applying the WebLogic Patch for External Systems
	Configuring SAF On External Systems
	Setting Up Secure Communication with SSL
	Configuring Secure Incoming Access with SSL
	Generating SSL Certificates for Incoming Access
	Setting Up OSM Cloud Native for Incoming Access
	SSL Termination at the Load Balancer
	Configuring Incoming HTTP and JMS Connectivity for External Clients

	Configuring Access to External SSL-Enabled Systems
	Loading Certificates for Outgoing Access
	Enabling SSL on an External WebLogic Domain
	Setting Up OSM Cloud Native for Outgoing Access

	Adding Additional Certificates to an Existing Trust
	Debugging SSL

	11 Running the SAF Sample for OSM Cloud Native
	Preparing the WebLogic System to Run the Emulator
	Deploying the Emulator on the WebLogic System
	Deploying the SimpleProvisioning Sample Cartridge
	Preparing the OSM Cloud Native Instance
	Validating the SAF Endpoints
	Submitting Orders
	Submitting Orders with HTTP
	Submitting Orders with T3 over HTTP

	12 Maintaining the OSM Cloud Native Environment
	Before You Upgrade
	About Upgrade Paths and Procedures
	Rolling Restart
	Identifying Your Upgrade Path
	Offline Change Upgrade Paths
	Online Change Upgrade Paths
	Exceptions
	Unsupported Tasks

	OSM Cloud Native Upgrade Procedures
	PDB Upgrade Procedure
	OSM Application Upgrade
	Offline Cartridge Deployment
	Online Cartridge Deployment

	Upgrades to Infrastructure
	Miscellaneous Upgrade Procedures
	Running Operational Procedures
	Triggering Introspection
	Scaling Down the Cluster
	Scaling Up the Cluster
	Restarting the Instance
	Fast Delete

	Upgrade Path Flow Chart

	13 Upgrading your OSM Cloud Native Deployment
	Overview of the Upgrade Steps
	Installing WebLogic Kubernetes Operator
	WKO Monitoring Mechanism
	Operator Installation
	Unregistering and Registering the Namespace with Weblogic Operator

	Ingress Controller
	Updating Specification Files
	Updating the Project Specification
	Updating the Instance Specification
	Updating Shape Specification

	Upgrading to OSM Cloud Native 8.0
	Prerequisites for the Upgrade
	Preparation Steps for the Upgrade
	Updating the Secrets
	Update Existing Secrets
	Creating New Secrets

	Upgrading the OSM DB Schema
	OSM Application Upgrade

	14 Moving to OSM Cloud Native from a Traditional Deployment
	Supported Releases
	Performing Pre-move and Post-move Tasks
	About the Move Process
	Pre-move Development Activities
	Moving to an OSM Cloud Native Deployment
	Quiescing the Traditional Instance of OSM
	Exporting and Importing JMS Messages
	Migrating JMS Messages By Using the Cloud Native Toolkit
	Prerequisites for Running the Migration Scripts
	Using a New Database Server for the Cloud Native Instance (Option A)
	Upgrading the Database Server for the OSM Traditional Environment and Using it for the Cloud Native Instance (Option B)

	Migrating JMS Messages By Using the WebLogic Remote Console
	Exporting JMS Messages
	Importing JMS Messages

	Upgrading the Database
	Upgrading the Database Server
	Preparing the Required Database Entities for OSM Cloud Native

	Upgrading the OSM Schema and Cartridges
	Switching Integration with Upstream Systems

	Reverting to Your OSM Traditional Deployment
	Cleaning Up

	15 Debugging and Troubleshooting
	Setting Up Java Flight Recorder (JFR)
	Troubleshooting Issues with NGINX, OSM UI, and WebLogic Remote Console
	Recovering an OSM Cloud Native Database Schema
	Finding the Issue that Caused the OSM Cloud Native Database Schema Upgrade Failure
	Restarting the OSM Database Schema Upgrade from the Point of Failure

	Resolving Improper JMS Assignment
	Common Problems and Solutions
	Known Issues
	Image Build Failure Due to OPatch Error

	A Differences Between OSM Cloud Native and OSM Traditional Deployments
	B Reference of Secrets Created by the Scripts
	OSM Gateway OIDC Credentials Secret
	OCA OIDC Credentials Secret
	DB Credentials Secret
	RCU DB Credentials Secret
	TCPS DB Wallet Secret
	WebLogic Credentials Secret
	WebLogic Runtime Encryption Secret
	FMW Wallet Encryption Secret
	FMW Secure Wallet Secret
	OSM Internal User Passwords Secret
	OSM OIDC Credentials Secret
	OSM Fluentd Credentials Secret
	Certificate and Key to Access the Gateway HTTPS Endpoint
	Certificate and Key to Access the OSM HTTPS Endpoint
	Certificate and Key to Access the OSM WebLogic Remote Console HTTPS Endpoint
	Certificate and Key to Access the OSM t3 over HTTPS
	Trusted CA Injection
	Secure Identity
	ADB Wallet Secret
	ADB Admin Secret
	Cartridge Defined Custom User Credentials
	External LDAP Information
	SAF Credentials
	Global Trust Credentials
	Cross Domain Users in Remote Domains
	Xtrust Secret
	Generic Credentials
	Security Scheme Credentials
	SAML Archive for IdP
	Git Access Secret

	C Leveraging OSM Cloud Native SAF Connectivity Patterns for Your Use-Case
	About SAF Connectivity Patterns
	Common Integration Patterns
	OSM Cloud Native Colocated SAF
	OSM Remote SAF
	DNS Considerations

	Cloud Native to Cloud Native Remote SAF

