Oracle® Communications Order and

Service Management
Developer's Guide

Release 7.5
F60006-04
April 2025

ORACLE"

Oracle Communications Order and Service Management Developer's Guide, Release 7.5
F60006-04
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Diversity and Inclusion XVi

1 Introduction
Planning and Designing 1-1
Customizing OSM 1-1
External Interfaces 11
OSM Web Services 1-1
OSM Automation 1-1
OSM Security Callback 1-2
The OSM XML API 1-2
User Interfaces 1-2
Behaviors 1-2
Custom Menu Items and Actions 1-2
Localizing OSM 1-2
Logging with ODL (Traditional OSM Only) 1-3
Tools for Customizing OSM 1-3
Oracle Communications Service Catalog and Design - Design Studio 1-3
Apache Ant 1-3
The XML Import/Export Application 1-3
About XPath and XQuery 1-3
About the OSM SDK 1-4
2 Using OSM Order Management Web Services

About Web Services 2-1
Generate Java Code from OSM WSDL 2-1
About Order Management Web Services 2-1
Request Validations 2-2
Determining Request and Response Queues To Use 2-2
Queues in a WebLogic Server Cluster 2-2

ORACLE"

Queues in a Single-Server WebLogic Server Environment (Traditional OSM Only) 2-3
Sending OSM Web Service Requests to a WebLogic Server Cluster (Traditional OSM

Only) 2-3
Accessing the WSDL Files 2-3
Using the SOAP Standard Message Format 2-4
Message Header 2-4
Message Body 2-4

White Space in Message Text 2-5

Testing OSM Web Services 2-5
Order States and Transitions 2-6
Web Services Sample 2-6
About Order Management Web Service Operations 2-6
Parameters 2-6
Fault Types and OSM Web Service Client Error Processing 2-7
Request and Response Examples 2-7
Web Service Operations Used for Order Management 2-7
CreateOrderBySpecification 2-7
CreateOrder 2-8
FindOrder 2-9
GetOrder 2-9
UpdateOrder 2-11
SuspendOrder 2-13
ResumeOrder 2-14
CancelOrder 2-14
AbortOrder 2-15
FailOrder 2-15
ResolveFailure 2-16
RetryOrder 2-16
Web Service Operations Used for Problem Order Diagnosis 2-17
GetOrderProcessHistory 2-17
GetOrderCompensations 2-18
GetCompensationPlan 2-18
Navigating WSDL and XSD Files 2-19
Order Management WSDL File 2-19
Order Management XSD File 2-19
Order Management Request and Response Examples 2-25
CreateOrderBySpecification Examples 2-25
GetOrder Examples 2-28
UpdateOrder Examples 2-35
SuspendOrder Examples 2-39
ResumeOrder Examples 2-40
CancelOrder Examples 2-40

ORACLE

RetryOrder and ResolveFailure Examples 2-41

GetOrderProcessHistory Examples 2-43
GetOrderCompensations Examples 2-52
GetCompensationPlan Examples 2-52

3 Using the OSM XML API

About Using the XML API 3-1
Audience 3-2
About Using the OrderID, View, and OrderHistID 3-2

About Accessing the XML API 3-2
Logging In and Logging Out 3-3
Message Formats 3-3

Input XML Message Format 3-3
Output XML Message Format 3-3
Date/Time Formats 3-4
White Space in Message Text 3-5
Authentication 3-5
Reserved Mnemonics 3-5

XML API Functionality 3-6
AddOrderThread 3-6
Acknowledgments 3-8
AcknowledgeNoatification 3-9
AssignOrder 3-10
CancelOrder 3-11
CompleteOrder 3-13
CopyOrder 3-14
CreateOrder 3-15
FalloutTask 3-17
FailOrder 3-18
GetNextOrderAtTask 3-20
GetOrder 3-22
GetOrderAtTask 3-31
GetOrderDataHistory 3-35
GetOrderProcessHistory 3-37
GetOrderStateHistory 3-39
GetTaskStatuses 3-41
GetUserInfo 3-42
ListExceptions 3-43
ListStatesNStatuses 3-44
ListViews 3-45
ModifyRemark 3-47

ORACLE

Notifications

OrderTypesNSources

OrderViewTemplate
Query
ReceiveOrder
ResolveFailure
ResumeOrder
RetryTask
SetException
SuspendOrder
TaskDescription
UpdateOrder
Worklist

Warning and Error Code Descriptions
Document Type Definitions (DTD)

AddOrderThread
AssignOrder
CompleteOrder
CopyOrder
CreateOrder

Error

GetOrder
GetNextOrderAtTask
GetOrderDataHistory

GetOrderProcessHistory
GetOrderStateHistory

GetUserInfo
ListExceptions
ListStatesNStatuses
ListViews
ModifyRemark
OrderTypeNSource
OrderViewTemplate
Query
ResumeOrder
SetException
SuspendOrder
TaskDescription
UpdateOrder
Warning

Worklist

ORACLE

3-48
3-51
3-53
3-57
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-73
3-76
3-78
3-78
3-79
3-79
3-79
3-80
3-81
3-81
3-82
3-82
3-83
3-84
3-84
3-84
3-85
3-85
3-86
3-86
3-87
3-88
3-89
3-89
3-89
3-90
3-90
3-91
3-91

Vi

4 Using TMF REST APIs (Cloud Native Only)

About TMF Ordering in OSM 4-1
Supported Endpoints 4-1
Authentication and Authorization 4-2
Constructing the Endpoint 4-3
Registering for Events 4-3
About the Payload 4-5

5 Fallout Exception Management Rest APIs V2.0 (Cloud Native Only)

Fallout Exception Management Rest API Versions 5-1
Fallout Exception Lifecycle 5-2
Support for Filtering, Grouping and Ordering of Fallout Exception Objects 5-2
Filtering and Attribute Selection Rules 5-2
Grouping 5-3
Ordering 5-3
Additional Query Fields 5-4
Supported Fallout Actions 5-4
API Operations 5-5
Authentication and Authorization 5-5
Constructing the Endpoint 5-5
GET Endpoints 5-5
POST Endpoints 5-13

6 Using OSM Security Callback

About Security Callback 6-1
About the Security Callback Interface 6-1
Exceptions 6-2
Security Callback Sample 6-3
Configuring Security Callbacks 6-5
7 Using Custom Menu Items and Actions
About Custom Menu Items and Actions 7-1
About the File Name and Location 7-1
About the Model Definition 7-1
Action Definition 7-1
OrderContext and Orders 7-2
Calling the XML API 7-2
Sample Action Implementations 7-3
Menu Item Definition 7-3
ORACLE

Vii

Sample Menu Item Definition

7-4

Setting Up the Environment 7-4
Setting Up the oms-config.xml File (Traditional OSM Only) 7-5
Working with oms-config Parameters in OSM Cloud Native 7-6
File System Path Environment Configuration Method 7-6
XML Catalog (Static Relative Location) Environment Configuration Method 7-6
XML Catalog (rewriteURI) Environment Configuration Method 7-7
Verifying the Changes 7-8

8 Using Automation

About Automations and the Automation Framework 8-1
About Sender and Automator Automation Types 8-3
About Automations in the Order and Task Contexts 8-3
About Internal and External Events that Trigger Automations 8-5
About Accessing the XML API in Automations 8-6
About Queues, Correlation, and Property Selectors 8-6

OSM Request and Response Message Queues 8-7
Correlating Requests from OSM to Responses from External Systems 8-7
Intercommunication Between Orders in the Same Domain 8-8
About Message Property Selectors 8-9
About Automation Plug-in Communication Options 8-9
No External Communication: Data Processing Only 8-9
Fire-and-Forget Communication: Message Sent to External Systems 8-10
Synchronous Communication: Single Request and Response 8-11
Synchronous Communication: Multiple Requests and Responses 8-12
Asynchronous Communication: Single or Multiple Requests and Responses 8-13
Storing Response Message as XML Type Parameters 8-16

About Custom Automation Plug-ins 8-16

Defining the Custom Automation Plug-in 8-17
About the XML Template 8-17
About Creating Custom Automation Plug-ins 8-18
inputXML Argument 8-19
AutomationContext Argument and Casting the Context Argument 8-19
outboundMessage Argument 8-19
Accessing JDBC from Within an Automation Plug-in 8-19
Compiling the Custom Automation Plug-in 8-20

About Predefined Automation Plug-ins 8-21

XSLT Sender 8-21
Defining the Automation 8-22
Writing the XSLT 8-23
Steps to Follow When Using XSLT Sender 8-24

ORACLE

viii

XSLT Automator
Defining the Automation
Writing the XSLT
Steps to Follow When Using XSLT Automator
XQuery Sender
Defining the Automation
Writing the XQuery
Steps to Follow When Using XQuery Sender
XQuery Automator
Defining the Automation
Writing the XQuery
Steps to Follow When Using XQuery Automator
DatabasePlugin
Defining the Custom Automation Plug-in
Creating the JDBC Data Source
About Large Orders and Automation Plug-ins
Limiting Automation Concurrency in Large Orders
Using GetOrder and UpdateOrder API Functions in Large Orders
About Compensation for Automations
About Execution Modes for Automations
About Automations that Update Order Data and Compensation Analysis
About Using GetOrder Responses to View Compensation Perspectives
About Creating Automations in Design Studio
About Building and Deploying Automation Plug-ins
About Automation Maps
About Editing the Automation Map
About Mnemonic Values for Design Studio Entities in Automation Maps
About Managing Automations
Building and Deploying Automation Plug-ins
Automating the Build and Deploy
Troubleshooting Automations
Upgrading Automation Plug-ins
Using Automation with a System Interaction (Cloud Native Only)
Pre-Requisites
Task Transport Type
Automation Plugins
Typical REST Interaction
InternalEventReceiver (Senders)
ExternalEventReceiver
System Interaction As a Receiver Only

ORACLE

8-24
8-24
8-26
8-26
8-26
8-27
8-28
8-28
8-28
8-29
8-29
8-30
8-30
8-31
8-35
8-36
8-36
8-39
8-39
8-39
8-40
8-41
8-41
8-41
8-43
8-43
8-43
8-44
8-44
8-44
8-44
8-45
8-45
8-46
8-46
8-46
8-46
8-47
8-49
8-50

O Using Order Metrics Manager

About Order Metrics Manager ADML Files 9-1
Viewing Metrics 9-1

10 Localizing OSM

About Localization 10-1
Localizing OSM 10-1
Localizing the XML Import/Export Application 10-4
Additional Considerations for Localizing OSM 10-5
Support for Different Locales 10-5
Character Set Encoding and Fonts 10-5
Localization of Settings 10-6
Language Support for OSM User Interfaces 10-6
About NLS Database Configuration 10-6
Oracle Database Character Set 10-6
NLS Environment 10-7
NLS_LANG Parameter 10-8
ORA_NLS33 Environment Variable 10-8

About OSM Database Error Messages 10-8
About Application Server Strings 10-11
About Generic Preferences 10-12
om_generic_mnemonic 10-13
Localizing the Task Web Client 10-14
Task Web Client Localization Resource Bundles 10-15
Localizing the Process History Pages 10-15
Localizing Date, Time and Currency Formats 10-16
Localizing Text and Error Messages 10-18
Localizing Page Titles 10-18
Localizing Image References 10-18
Inserting New Images 10-18
Editing the First Day of the Week 10-18
Editing the Boolean Data Element Values 10-19
Editing the Number of Records Displayed in the Worklist 10-19
Editing and Replacing Task Web Client Icons 10-19
Localizing the Order Management Web Client 10-19
Changing the Order Management Web Client Logo Image and Text 10-21
Localizing the Order Lifecycle Management User Interface 10-22
Working with the oms.ear File 10-23
Unpacking the oms.ear File 10-23
Packing the oms.ear File 10-24

ORACLE

Rebuilding OSM Container Image in OSM Cloud Native 10-25
Undeploying and Redeploying the oms.ear File 10-25

11 Using XPath Functions

About XPath Functions 11-1
Node Set Functions 11-1
number last() 11-2
number position() 11-2
number count(node-set) 11-2
node-set id(object) 11-2
string local-name(node-set?) 11-2
string namespace-uri(node-set?) 11-2
string name(node-set?) 11-2
node-set evaluate(string) 11-3
node-set match(node-set, string) 11-3
node-set instance(string) 11-3
String Functions 11-4
string string(object?) 11-4
string concat(string, string, string*) 11-4
string starts-with(string, string) 11-4
string contains(string, string) 11-4
string substring-before(string, string) 11-4
string substring-after(string, string) 11-4
string substring(string, number, number?) 11-4
number string-length(string?) 11-4
string normalize-space(string?) 11-5
string translate(string, string, string) 11-5
string lower-case(string?) 11-5
string upper-case(string?) 11-5
string ends-with(string, string) 11-5
Boolean Functions 11-5
Boolean boolean(object) 11-5
Boolean not(boolean) 11-5
Boolean true() 11-5
Boolean false() 11-6
Boolean boolean-from-string(string) 11-6
object if(boolean,object,object) 11-6
Number Functions 11-6
number number(object?) 11-6
number sum(node-set) 11-6
number floor(number) 11-6
ORACLE

Xi

number ceiling(number) 11-6

number round(number) 11-6
number avg(node-set) 11-7
number min(node-set) 11-7
number max(node-set) 11-7
number count-not-empty(node-set) 11-7
XPath 1.0 Reference 11-7
Location Paths [XPath §2] 11-7
Location Paths [XPath §2.1] 11-7
Axis Specifiers [XPath §2.2] 11-7
Node Tests [XPath §2.] 11-8
Abbreviated Syntax for Location Paths 11-8
Predicate [XPath §2.4] 11-8
Variable Reference [XPath §3.7] 11-8
XPath 11-8
XPath Operators 11-8
Node-sets [XPath §3.3] 11-8
Booleans [XPath §3.4] 11-8
Numbers [XPath §3.5] 11-8
Node Types [XPath §5] 11-9
Object Types [811.1, XPath 8§1] 11-9
XPath Core Function Library 11-9
Node Set Functions [XPath 8§4.1] 11-9
String Functions [XPath §4.2] 11-9
Boolean Functions [XPath §4.3] 11-9
Number Functions [XPath §4.4] 11-10
OSM Behavior XPath Functions 11-10
Node Set Functions 11-10
String Functions 11-10
Boolean Functions 11-10
Number Functions 11-10

A Automation and Compensation Examples

Predefined Automation Plug-ins A-1
Message Example A-1

Automation Plug-in XQuery Examples A-4

Internal XQuery Sender A-4

External XQuery Automator A-10

External XQuery Sender A-12

Internal XQuery Automator A-13

Automation Plug-in XSLT Examples A-13

ORACLE

Xii

Internal XSLT Sender A-13
External XSLT Automator A-19
External XSLT Sender A-22

Internal XSLT Automator A-23
Automation Plug-in Examples for Events, Jeopardies, and Notifications A-23
Event Automators A-23
Jeopardy Automators A-24

Order Notification Automation Plug-ins A-26
Custom Java Automation Plug-ins A-27
Internal Custom Java Automator A-28
Internal Custom Java Sender A-29
External Custom Java Automator that Changes the OSM Task Status A-30
External Custom Java Automator that Updates Order Data A-32
Using OrderDataUpdate Elements to Pass Order Modification Data A-35
Examples of Sending Messages to External Systems A-37
Examples of Handling Responses from External Systems A-39
Compensation XQuery Expressions A-41
Task Re-Evaluation and Rollback XQuery Expressions A-41

In Progress Compensation Include XQuery Expressions A-42

In Progress Compensation Complete XQuery Expressions A-43

In Progress Compensation Grace Period XQuery Expressions A-44
Order Jeopardy Automation XQuery Plug-ins A-45

B AutomationMap.xml File

AutomationMap.xml Examples for Automated Tasks B-1
XSLTSender Internal Event Receiver B-1
Notes Common to All Examples B-2

Notes on Example B-2
XSLTSender External Event Receiver B-2
Notes on Example B-3
XSLTAutomator Internal Event Receiver B-3
Notes on Example B-4
XSLTAutomator External Event Receiver B-4
Notes on Example B-5
Custom Automation Internal Event Receiver B-5
Notes on Example B-6
Custom Automation External Event Receiver B-6
Notes on Example B-7
AutomationMap.xml Examples for Automated Notifications B-7
Order Milestone-Based Notification B-7
Task State-Based Notifications B-8

ORACLE

Xiii

Task Status-Based Notification B-8

Order Data Changed Notification B-9
Order Jeopardy Notification B-9
Task Jeopardy Notification B-10
Generated Entity-Specific XML Files B-10

C Automation: Start to Finish

Assumptions C-1
Getting Started C-1
Defining an Automated Task C-3
Writing the Custom Automation Plug-in C-3
Defining the Custom Automation Plug-in C-3
Defining the Automation C-4
Defining the Process C-4
Building the Cartridge C-4
Packaging and Deploying the Cartridge C-4
Triggering the Automation in OSM C-4
ORACLE

Xiv

Preface

This document provides information about the following areas of Oracle Communications
Order and Service Management (OSM) that can be customized:

* Web services

e Extensible Markup Language (XML) Application Programming Interface (API)
¢ Automation

e Security Callback

* Behaviors

¢ Custom menu items and action items

* Localization of OSM

This document also provides a process example of provisioning a Plain Old Telephone Service
(POTS) customer using unbundled local loop to illustrate various types of customization.

Audience

This document is intended for programmers who have a working knowledge of:

e System interfaces

e XML

* Java development

* Java Messaging Service (JMS)
* Web services

This document assumes that you have read OSM Concepts, and have a conceptual
understanding of:

e Oracle Communications Service Catalog and Design - Design Studio configuration
e Orders

e Order states

e Tasks

e Task states

* Notifications

* Behaviors

« Web services

Documentation Accessibility

ORACLE v

Preface

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

XVI

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction

This chapter provides an introduction to customizing Oracle Communications Order and
Service Management (OSM) interfaces.

Planning and Designing
Before customizing OSM, it is important to understand what needs to be done and to design

the solution properly.

This topic is further explored in OSM Modeling Guide.

Customizing OSM

There are two areas of OSM that you can customize:

» External interfaces, which interact with other systems and which you customize to meet
specific business requirements. This includes OSM Web Services, OSM automation and
OSM Security callback.

* User interfaces, which you customized per installation or per individual user. This includes
using behaviors to manipulate data, adding custom menu actions of the Task web client,
and localizing user interfaces.

External Interfaces

The two primary external interfaces for performing automated fulfillment are OSM Web
Services and OSM automation. Additional external interfaces include OSM Security Callback
and the OSM XML API.

OSM Web Services

OSM Web Services provide the primary interface for inbound order operations such as creating
or canceling an order. Web services are typically initiated from customer relationship
management (CRM) systems and other order sources that need to create and manage orders
in OSM.

This topic is further explored in "Using OSM Order Management Web Services".

OSM Automation

OSM automation provides the primary interface for outbound operations to interact with
external systems to achieve automated order fulfilment. Outbound operations are initiated by
OSM through automated tasks and automated notifications.

Automated tasks and automated notifications are not limited to outbound operations:
Automated tasks can send outbound messages to external systems and also receive inbound
messages back from the external systems. (Automated notifications only send outbound
messages to external systems; they cannot receive inbound messages.) Additionally,

ORACLE 1

Chapter 1
User Interfaces

automated tasks and automated notifications can perform internal business logic or update the
OSM database.

This topic is further explored in OSM Modeling Guide.

OSM Security Callback

OSM Security Callback allows you to generate an audit trail log of users before they gain
access to order data that is considered sensitive. OSM provides a callback interface that is
designed to intercept order access from defined functions.

This topic is further explored in "Using OSM Security Callback™.

The OSM XML API

The OSM XML API is deprecated for all uses except the following:

e Customizing the appearance or functioning of a task when customization using behaviors
or OSM Java server pages does not satisfy all of your requirements.

* Using from within an automation plug-in when necessary because the Web Services API
and the OSM automation functionality do not meet your requirements.

For information about the OSM XML API, see "Using the OSM XML API".

User Interfaces

The following sections briefly describe the ways you can customize the OSM user interfaces
(Uls).

Behaviors

Behaviors provide the ability to customize data validation and data presentation in both the
Task web client and the Order Management web client. OSM defines several behavior types,
and you can define instances of behavior types on data elements defined in the data
dictionary, for an order, or for a task.

For information about behaviors, see OSM Concepts.

Custom Menu Items and Actions

The custom menu actions and items feature provides the ability to configure custom menu
items and actions that are called from the Context menu of the Task web client Worklist and
Query Result pages.

This topic is further explored in "Using Custom Menu Items and Actions".

Localizing OSM

Localizing OSM is the process of changing the user interfaces from the original language in
which it was written to another language. You can localize the Order Management web Ul and
the Task web Ul. This processes involves modifying OSM XML files.

This topic is further explored in "Localizing OSM".

ORACLE 1o

Chapter 1
Tools for Customizing OSM

Logging with ODL (Traditional OSM Only)

Oracle recommends that you use Oracle Diagnostic Logging (ODL), which is used by most
Oracle Fusion Middleware applications, to generate and manage the system log messages.
See OSM System Administrator's Guide for more information.

Tools for Customizing OSM

Several tools are available to you when customizing OSM, as described in the following
sections.

Oracle Communications Service Catalog and Design - Design Studio

Oracle Communications Service Catalog and Design - Design Studio is an Eclipse-based
integrated development environment (IDE). Design Studio is a separate software that comes
with your OSM installation, along with Design Studio plug-ins specific to OSM that enable you
to configure and customize OSM. Detailed information on using Design Studio to customize
OSM is presented in OSM Modeling Guide.

Apache Ant

Apache Ant is an open source software application often used for automating application build
processes. See OSM Installation Guide for the required version of Ant.

Ant uses XML to define targets which are executable commands that perform a specific task.
By default, the XML file is named build.xml.

Installing Design Studio OSM-specific plug-ins provide the build.xml file, which can be used to
automate building automation plug-ins. Ant is also used by the XML Import/Export application,
as described in the following section.

See OSM Modeling Guide for information on installing Ant.

The XML Import/Export Application

OSM includes the option to install the XML Import/Export application, a set of customizable Ant
commands that help you manage data when dealing with multiple OSM development and test
environments.

You can also use the XML Import/Export application to manage data when dealing with
multiple OSM production environments. This topic is further explored in OSM System
Administrator's Guide.

About XPath and XQuery

To model OSM orders, you must have a working knowledge of the XPath and XQuery
languages.

You typically use XPath statements to specify the location of data in OSM entities. You use
XQuery statements to find and filter data needed for OSM functionality. You can use XQuery in
situations where a more expressive language or transformation abilities are needed.

An XPath tutorial is available at:

ORACLE 13

Chapter 1
About the OSM SDK

https://www.w3schools.com/xml/xpath intro.asp
An XQuery tutorial is available at:

https://www.w3schools.com/xml/xquery intro.asp

Note:

In OSM, XQuery statements are limited to a maximum of 4000 characters.

About the OSM SDK

ORACLE

A number of directories within the SDK are referenced in procedures throughout this guide.
SDK is available as a separately downloadable .Zip file which is common for both OSM cloud
native and OSM traditional.

1-4

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xquery_intro.asp

Using OSM Order Management Web Services

This chapter describes Oracle Communications Order and Service Management (OSM) order
management Web Services, which provides the primary interface for inbound order operations
such as creating or canceling an order.

About Web Services

Web services support interoperable machine-to-machine interaction over a network. Web
services are web APIs that can be accessed over a network, such as the Internet, and run on a
remote system hosting the requested services, as is the case with OSM. Web service
interfaces are described by the web service definition language (WSDL).

WSDL is an XML-based language that is used in combination with simple object access
protocol (SOAP) and XML Schema to provide web services over the Internet. A client program
connecting to a web service can read the WSDL to determine what operations are available on
the server. Any special data types used are embedded in the WSDL file in the form of XML
Schema. The client can then use SOAP to actually call one of the operations defined in the
WSDL.

Generate Java Code from OSM WSDL

You can generate the Java code you need from OSM WSDL using the wsimport functionality of
Oracle Java. You need to use the command line interface to generate the java code from OSM
WSDL using the command given here:

wsimport -Xauthfile auth.conf -s src "http://<0SM _HOST IP/
OSM_HOST NAME>:<0SM HOST PORT>/OrderManagement/wsapi?WSDL" -extension

Here the -Xauthfile auth.conf carries authorization information in the format http://
username:password@osm-hostname: osm-port/OrderManagement/wsapi?WSDL. See wsimport
documentation for more details.

Note:

You must add -extension at the end of the command.

About Order Management Web Services

ORACLE

The OSM Web Services provide the primary interface for inbound order operations such as
creating, updating, or canceling an order. OSM Web Services are typically initiated from
Customer Relationship Management (CRM) systems and other order sources that need to
create and manage orders in OSM. OSM Web Services use the SOAP standard.

The OSM Web Service operations are defined in WSDL files. The operations are listed below,
and grouped by WSDL file.

2-1

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/wsimport.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/wsimport.html

OrderManagement.wsdl

CreateOrderBySpecification
CreateOrder
FindOrder
GetOrder
UpdateOrder
SuspendOrder
ResumeOrder
CancelOrder
AbortOrder
FailOrder
ResolveFailure

RetryOrder

OrderManagementDiag.wsdl

GetOrderProcessHistory
GetOrderCompensations

GetCompensationPlan

Chapter 2
About Order Management Web Services

These services can be accessed using HTTP, HTTPS, or JMS as the transport protocol. IMS
is a reliable, asynchronous messaging transport with guaranteed delivery while HTTP is
synchronous and less reliable.

Request Validations

All OSM Web Service requests are validated by the server based on the rules defined in the
schema files. If a validation error is encountered, the server returns a fault message detailing

the validation error so it can be resolved.

Determining Request and Response Queues To Use

The queues you should use depend on whether your implementation is in a WebLogic Server
cluster or in a single server.

For more information about the specifics of the queues that are created, see the discussion of
OSM installed components in OSM System Administrator's Guide.

Queues in a WebLogic Server Cluster

There are two queues created for requests. In a WebLogic Server cluster, you can use one or
both of the queues. Following are the considerations to use to help you decide:

ORACLE

The oms_ws_cluster_requests queue is designed with optimization for processing
requests relating to updating or retrieving existing orders in a WebLogic Server cluster.
This queue can also handle requests to create new orders, if desirable to simplify

integration with upstream systems.

The oms_ws_requests queue can be used for new order creation requests, and this
avoids some overhead of the oms_ws_cluster_requests queue. This queue checks for an

2-2

Chapter 2
About Order Management Web Services

<Orderld> element which will not be present in a new order creation request. If order
updates and new order requests come from two different interfaces, then it is a good idea
to send new order requests to the oms_ws_requests queue.

« If there are a larger number of order updates than new order creation requests, then it
makes sense to process all requests using the oms_ws_cluster_requests queue.

For responses, a WebLogic Server cluster environment uses the
oms_ws_cluster_responses and oms_ws_cluster_correlates queues, which set the
JMSCorrelationID properly and forward the message to the destination specified in the
ReplyTo JMS property of the message.

Queues in a Single-Server WebLogic Server Environment (Traditional OSM Only)

In a single-server environment, like a development environment, you must always direct
requests to the oms_ws_requests queue. Responses are forward the message to the
destination specified in the ReplyTo JMS property of the message without the need for other
queues.

Sending OSM Web Service Requests to a WebLogic Server Cluster
(Traditional OSM Only)

If your web services client connects to OSM using Oracle WebLogic Server, and if your
WebLogic Server instance for OSM is a cluster, the WSDL generated by WebLogic Server
identifies the endpoint using the address of the first managed server and ignores the
addresses of all other managed servers.

To ensure that the addresses of all managed servers are used, include code in your client to
override the endpoint.

Example 2-1 demonstrates how to override the default endpoint and include all of the
endpoints.

Example 2-1 Sample Code to Override the Endpoint Address for a Cluster

Stub stub = (Stub) port;

stub. setProperty(WlsProperties.READ TIMEOUT, 1000000);
stub. setProperty (WLStub.JMS TRANSPORT JNDI URL, t3://
ip addressl:portl,ip address2:portZ2, ipaddressn:portn");

In the example, ip_address1 is the IP address of the first managed server and port1 is the port
of that server, ip_address2 is the IP address of the second managed server and port2 is the
port of that server, and so on for all of your managed servers. As in the example, separate
each IP address from its port by a colon and separate the address information for the servers
by commas.

Accessing the WSDL Files

ORACLE

OSM Web Services are part of the OSM installation. The OSM WSDL files and the supporting
schema files (XSD files) are located in the SDK/WebServicelwsdl directory.

Alternatively, you can access the OSM WSDL by entering the following in your web browser
after you have installed, configured, and deployed the OSM server:

http://server:port/OrderManagement/wsapi for web service operations used for order
management.

and

2-3

Chapter 2
About Order Management Web Services

http://server:port/OrderManagement/diagnostic/wsapi for web service operations used for
diagnosing problem orders.

where:

e server is the specific server (traditional OSM deployments) on which the application is
deployed. In OSM cloud native, the base hosthname to access this instance is
instance.project.osm.org.

e portis the port on which the application listens. Users who access the WSDL this way
must be configured in the WebLogic console with usernames and passwords and must
belong to the group OMS_ws_api.

The syntax of each OSM Web Service operation is specified using the XML schema, which is
associated with the WSDL for the web service, and is the same for HTTP, HTTPS, and JMS
port types. The JNDI name for the JMS request queue is available in the WSDL file.

Using the SOAP Standard Message Format

OSM Web Services use the SOAP standard message format, which includes a header and a
body.

Message Header

OSM Web Services require that security related information be provided in the message
header. The user name and password for the web service authorized user must be included in
each request using the elements <wsse:UserName> and <wsse:PasswordText>, as shown in
Example 2-2.

Example 2-2 Message Header

<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.
oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-
200401-wss-username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>

Message Body

ORACLE

The message body contains the data payload. The data payload varies depending on the
specific request, as shown in Example 2-3.

Example 2-3 Message Body

<soapenv:Body>
<createOrderBySpecification>
<specification>

</specification>
</createOrderBySpecification>
</soapenv:Body>

2-4

Chapter 2
About Order Management Web Services

Response messages include a data payload containing the result of the method call.

White Space in Message Text

OSM trims off the white space to the right of the beginning of a text block and to the left of the
end of a text block. For example, if you send an update with the following field:

<osmc:street index="1414682666685"> 2300 Oracle Way </osmc:street>

the response message returns having removed the white space at the beginning and the end
of the text block:

<osmc:street index="1414682666685">2300 Oracle Way</osmc:street>

Testing OSM Web Services

ORACLE

Test OSM Web Services with software such as SoapUIl or HermesJMS. Information on such
open source test software is available on the internet.

< Note:

With OSM 7.2, the context-root for OSM applications changed to /
OrderManagement. OSM redirects requests specifying the old URIs to the current
ones. However, soapUl 2.5.1 does not correctly handle redirects. soapUl3.x or above
correctly handles redirects.

Note:

If you are using soapUl for testing in a clustered WebLogic environment, enable
preemptive authentication in soapUl by selecting Preferences, then HTTP Settings,
then Authenticate Preemptively.

Without this, soapUl sends requests without authentication. The request is rejected
and then resent with authentication. Because of OSM's load balancing approach in a
clustered WebLogic environment, the second request is sent to a different managed
server, distorting load balancing. For example, if a cluster has only two managed
servers and you employ round-robin load balancing, all authenticated requests will be
sent to the same managed server.

Regardless of the software used to test OSM Web Services, you must ensure the clocks are
synchronized between the test client and the server hosting the web services. The
synchronization can be done manually, or by using Network Time Protocol (NTP). The
following errors are encountered if the clocks are not synchronized:

* Failing to submit order to server_name server from my local system.

e Security token failed to validate. weblogic.xml.crypto.wss.
SecurityTokenValidateResult@11f081b[status false][msg UNT Error:Message Created time
past the current time even accounting for set clock skew.

2-5

Chapter 2
About Order Management Web Service Operations

Note:

Starting with OSM 7.2, order IDs are allocated in blocks. For OSM running on a
standalone database, there is no visible impact. However, if OSM is running on an
Oracle RAC database, Order IDs are assigned from different blocks, one for each
Oracle RAC instance. This means that when orders are submitted, the Order IDs
may not be sequential.

Order States and Transitions

Several of the OSM Web Service operations initiate a transition from one order state to
another. For example, CancelOrder initiates a transition from either an in progress or
suspended order state to the cancelling order state. Any transition that occurs within a web
service operation is described in the Expected Outcome section for that particular operation as
described in "About Order Management Web Service Operations." To learn more about order
states and their transitions, see OSM Concepts.

Web Services Sample

The OSM SDK provides a Web Service sample that demonstrates how OSM Web Services are
called. The sample is available in the SDK/Samples/Web Services directory. The sample
includes both HTTP and JMS clients, and demonstrates the use of the web service operations:

e CreateOrderBySpecification
e GetOrder
e UpdateOrder

The GetOrder and UpdateOrder operations depend on the order ID that is provided in the
CreateOrderBySpecification response. Before you can run the sample, you must configure it to
reflect your environment. See the ReadMe.txt file for detailed instructions on configuring,
building, and running the sample.

About Order Management Web Service Operations

Parameters

ORACLE

The remaining sections of this chapter describes each OSM Web Service operation, and
includes the following information per operation:

* Preconditions: Describes any conditions that must exist prior to calling the request.

* Expected Outcome: Describes the expected outcome that occurs as a result of the
request.

Unless parameters require additional explanation, the parameters that are defined by each
web service are not provided in this documentation. The information is available in the XSD
files provided with your OSM installation. For information on determining the input and output
parameters for any given web service, see "Navigating WSDL and XSD Files."

2-6

Chapter 2
Web Service Operations Used for Order Management

Fault Types and OSM Web Service Client Error Processing

OSM Web Service operations sent over JMS or HTTPS to OSM may fail for various reasons,
such as a local error or exception on the OSM server, incorrect syntax, invalid permissions,
and so on. The OSM Web Service client, such as a CRM communicating to OSM in the COM
role, must monitor returning response messages from OSM for any fault types that indicate
whether the operation succeeded or failed. If the OSM Web Service operation request fails it is
the responsibility of the OSM Web Service client to track and resubmit the failed request after
troubleshooting the problem.

The possible fault types that each web service may throw is not provided in this documentation
because the information is available in the WSDL files provided with your OSM installation. For
information on determining the fault types that any given web service may throw, see
"Navigating WSDL and XSD Files."

Request and Response Examples

Request and response examples for each web service are not provided in this documentation.
However, several request and response examples are provided, which you can use to help you
create or understand other web service requests and responses. See "Order Management
Request and Response Examples," which also provides information on how to generate XML
examples for any given web service operation.

Web Service Operations Used for Order Management

This section describes web service operations used for order management. This includes
creating, retrieving, updating and cancelling an order. Order management operations are
defined in the OrderManagementWS.wsdl file.

Each operation lists preconditions that must exist for a successful invocation of the web service
operation. However, the following preconditions are common to all operations, so they are
listed here rather than repeated for each operation:

« OSM Web Service calls are authenticated by the server based on the user ID and
password provided in the request header. Only requests that pass authentication are
processed by the server.

e APl users must belong to the WebLogic group, OMS_ws_api.

CreateOrderBySpecification

ORACLE

This operation creates a service order.

Preconditions

e The order specification referenced on the request is defined in the metadata and has been
deployed to the target OSM server.

e The content of the order detail that is provided on the request must conform to the order
specification referenced on the request.

e The user performing the transaction is a member of at least one workgroup that has been
granted permission on the creation task for the referenced order specification.

2-7

Chapter 2
Web Service Operations Used for Order Management

Expected Outcome

The order is created and processing begins. If the newly created order is matched against an
existing order (based on the key defined on the order's specification), then this new order is an
amendment to an existing order, and information regarding the amended order and status of
the amendment is returned.

If the newly created order is not an amendment, the order is transitioned to the
open.running.in_progress state by specifying StartOrder=true.

Alternate Outcome with Start Order Set to False

The order is created but processing does not begin. The order is in the
open.not_running.not_started state. The order can be further updated and started through the
UpdateOrder operation.

Attachments

OSM database is the placeholder for order attachments.

Note:

By default, uploading file attachments is secured. Only xml1, json, pdf, txt file
extensions can be uploaded. To override this default behavior, add the property
file attachment filter type tothe oms-config.xml file. For more details refer to
the OSM System Administrator's Guide.

Reference Nodes

Reference nodes are pointers to values contained in different data nodes, and they enable you
to create information once and reuse it in multiple locations in your data model. You set up
reference nodes at order creation time.

To set up reference nodes in an order, when creating the order, you must explicitly give the
referred-to field an index, and then refer to it with {#} in the reference. For an example that
demonstrates how to set up reference nodes at order creation time as part of coding the
automation plug-ins that call the CreateOrderBySpecification web service operation, see
"Request Example - Setting Up Reference Nodes."

CreateOrder

ORACLE

This operation creates a new order. If the StartOrder flag is set to true, then the order is
created and started automatically. If the flag is set to false, the order is created and remains in
the Not Started state. Later, the order can be started by specifying the flag in the
UpdateOrder web service.

Preconditions

e The content of the order detail that is provided on the request must conform to a defined
recognition rule.

e The user performing the transaction is a member of at least one workgroup that has been
granted permission on the creation task for the order.

2-8

FindOrder

GetOrder

ORACLE

Chapter 2
Web Service Operations Used for Order Management

Expected Outcome

The order is created and is in the Not Started state. The order is transitioned to the
open.running.in_progress state by specifying startOrder=true.

Request Example

<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/
ordermanagement">
<!--Optional:-->
<ord:StartOrder>true</ord:StartOrder>
<!--You may enter ANY elements at this point-->
</ord:CreateOrder>

This operation finds a set of orders that match all the conditions defined in the select clause.
The SelectBy element specifies which orders will be returned.

Note:

If you choose to specify the name of the cartridge in the SelectBy element of the
request and you do not specify the cartridge version, only orders from the default
version will be returned. If you wish to retrieve orders from all of the versions of the
specified cartridge, include "*" as the cartridge version.

Results can contain a combination of flexible headers and task data. The calling user must
belong to a role with permissions to view the order. If the user does not have the permission,
no data is returned.

Flexible Headers are user-defined columns which are displayed while viewing order details.
Flexible headers are set by OSM administrators. Generally the path of a flexible header is |
<WebService>/<ElementGroup>/<FlexibleHeader>. Note that /I<WebService> is preceded
by a single slash (/). A double slash (//) or no slash will yield different results. See XML API
Functionality for details on how to query and retrieve orders that include available flexible
headers using the XML API.

Preconditions

e The order being retrieved must exist. If the order does not exist, FindOrder returns an
empty set.

Expected Outcome

Order data that meets specified selection criteria is returned in the specified sequence and is
viewed through the specified filter.

This operation retrieves an order. A summary of the order is returned, along with the detailed
order data based on a specified order view (query task) template. See also "GetOrder
Examples."

2-9

Chapter 2
Web Service Operations Used for Order Management

Parameters

Orderld
The identification of the order to be retrieved.

View

The name of the view (query task) used to determine the order data that is returned. You must
associate the task data you want to return to a role in the Oracle Communications Service
Catalog and Design - Design Studio Order editor Permissions Query Task sub tab and set a
query task with the data to be returned as the Default query task.

The following parameters are optional:

AmendmentFilter

Retrieves the amendment information associated with this order, if the LevelOfDetail child
element is set to AmendmentSummary. If it is not specified, no amendment summary is
returned.

AttachmentFilter

If RetrieveRemarks is set to true, zero or more filters (FileNameMatch, MinSize, MaxSize,
Format) may control how attachments are returned. Attachment filters are processed in the
order they are provided. If no filters are provided, then no attachments are returned.

OrderDataFilter

Parent element for the Condition child element that specifies which order data to return in the
GetOrder response message specified in the View parameter. This filtering functionality
improves OSM performance, especially when the order with the multi-instance data is a large
order.

e Condition: An XPath 1.0 expression against the order data defined by the View
parameter. OSM returns only the instances of the order data selected by the expression,
not the other instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM
returns only the <address> element that contains a child street element with the specified
street address. The response includes all child nodes of the instance of the <address>
element (city, postal code, and street). The other instances of the <address> element and
their child elements (city, street, and postal code) are not returned.

<ord:OrderDataFilter>
<ord:Condition>/subscriber info/address/[street='190 Drive']</ord:Condition>
</ord:OrderDataFilter>

In the example, any sibling elements of <subscriber_info>, or sibling elements of
<address> (except for the other instances of the <address> element) would be returned.

When you are using an order condition that includes an element that is using a distributed
order template, you should include the namespace of the data element in the condition.
For example:

<OrderDataFilter>
<Condition>
/ControlData/OrderItem[@type="'{OrderItemNamespace}OrderItemName' and
@LinelId='1"]

ORACLE 510

Chapter 2
Web Service Operations Used for Order Management

</Condition>
</OrderDataFilter>

There can be as many <Condition> child elements as required. When there are more
than one <Condition> elements, each condition is evaluated and applied independently
of the other conditions to the sections of the order data respectively.

RemarkFilter
Controls how remarks and attachments are returned.

RetrieveRemarks
Set to true if remarks and associated attachments should be returned.

Preconditions

e The specified order exists.

e The user performing the transaction is a member of one or more workgroups that has been
assigned the specified view (query task) for the order definition in question.

Expected Outcome

The order summary and detail are returned. If the order contains any remarks or attachments,
they are returned based on the filters set on the request.

UpdateOrder

This operation allows order data to be updated, and allows orders that have been created but
not started (in the open.not_running.not_started state) to be started.

The updateOrder operation defines different ways to update the order:

* UpdatedOrder: Provides the ability to update the order by supplying a complete order. The
existing order is updated (elements added, changed, or deleted) to match the supplied
order.

* UpdatedNodes: Provides the ability to update the order by supplying only the nodes to be
updated (elements added or changed). Deletion is not performed using UpdatedNodes.
The nodes are supplied in the format of the existing order.

- DataChange: Provides the ability to update the order by supplying a series of add, update,
and delete elements that are used to manipulate the order.

Note:

If you update an order either to add a node (which includes providing a value to a
node that did not previously have one) or to delete a node (which includes setting the
value of a node to null), the OSM order transformation manager will not propagate
the change in either the forward or reverse direction. For more information about data
propagation, see the discussion of mapping rules in the Design Studio Modeling
OSM Orchestration Help.

You can specify and filter which data to return in response to the UpdateOrder requests:

* ResponseView: An optional parameter that defines the name of the view (query task) that
specifies what parameters are returned in UpdateOrder responses. If the UpdateOrder

ORACLE 11

Chapter 2
Web Service Operations Used for Order Management

request results in a fulfillment state update, the response auto-filters nodes to only include
the affected Orderltem and OrderComponent instances.

e OrderDataFilter: Parent element for the Condition child element that specifies which
order data to return in the OrderUpdate response message specified in the
ResponseView parameter.

— Condition: An XPath 1.0 expression against the order data defined by the
ResponseView parameter. OSM returns only the instances of the order data selected
by the expression, not the other instances of the element. All other parent or sibling
elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM
returns only the <address> element that contains a child street element with the
specified street address. The response includes all child nodes of the instance of the
<address> element (city, postal code, and street). The other instances of the
<address> element and their child elements (city, street, and postal code) are not
returned.

<ord:OrderDataFilter>
<ord:Condition>/subscriber info/address/[street="'190 Drive']</ord:Condition>
</ord:OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of
<address> (except for the other instances of the <address> element) would be
returned.

When you are using an order condition that includes an element that is using a
distributed order template, you should include the namespace of the data element in
the condition. For example:

<OrderDataFilter>
<Condition>
/ControlData/OrderItem[@type="'{OrderItemNamespace}OrderItemName' and
@LineId='1"]
</Condition>
</OrderDataFilter>

In addition, you can directly specify order fulfilment using the ExternalFulfillmentStates
element rather than do so with Add or Update statement on an UpdateOrder. This optional
approach improves order processing efficiency, especially in large orders. The
ExternalFulfillmentStates element has the following child elements:

e OrderltemOrderComponentFulfillmentState: The parent element to the children
elements that specify the new external fulfillment state of an order component and order
item.

— ExternalFulfillmentState: The new external fulfillment state.

— OrderComponentindex: The order component index. Every order component element
must specify a unique index attribute. In most cases, the automation running the XML
API OrderUpdate already knows which order component the update is for.

— Orderltemindex: The order item index. Every order item element must specify a
unigue index attribute. In most cases, the automation running the XML API
OrderUpdate already knows which order component the update is for.

For samples of updateOrder, see SDKISamples/WebService.

ORACLE 510

Chapter 2
Web Service Operations Used for Order Management

Preconditions

e The user performing the transaction is a member of at least one workgroup (role) that has
been granted permission on the creation task (view) for the order specification associated
with the order.

e The order is in the open.not_running.not_started state.

Note:

These preconditions apply if the order is in the not_started state. You can update the
order data when the order is running, if the order life-cycle policy permissions allow it
for the task you want to update.

You must associate the task data you want to update to a role in the Design Studio
Order editor Permissions Query Task sub tab and set a query task with the required
data as the Default query task. You can associate only one role per task in the Order
editor. The user specified in the UpdateOrder header must be a member of this role.

Expected Outcome

The order's data is updated successfully but remains in the open.not_running.not_started
state. The order can be further updated or started by additional calls to the UpdateOrder
operation.

Attachments

You can add attachments through the updateOrder operation. Attachments are added by
populating the Remark element, which provides a place to define a text remark as well as an
attachment. The attachment is added by populating the Attachment element, which is a child
element of Remark. Within the Attachment element, you can define a sequence of file names
and their corresponding file types. For additional information, see the
OrderManagementWsS.xsd file, which defines these elements.

Note:

By default, uploading file attachments is secured. Only xm1, json, pdf, txt file
extensions can be uploaded. To override this default behavior, add the property
file attachment filter type to the oms-config.xml file. For more details refer to
the OSM System Administrator's Guide.

SuspendOrder

ORACLE

This operation suspends an order thereby preventing work items associated with the order
from being processed. A suspended order must be resumed before its associated work items
can once again be processed.

Preconditions

e The current state of the specified order is open.running.in_progress or
open.not_running.not_started.

2-13

Chapter 2
Web Service Operations Used for Order Management

e The target state of the order is not set.

* The order life-cycle policy associated with the order's specification has the Suspend Order
transaction enabled from the open.running.in_progress state or from the not_started state.

e The user performing the transaction is a member of one or more of the workgroups
associated with the Suspend Order transaction referenced in the precondition.

Expected Outcome

The order is successfully transitioned to the open.not_running.suspended state. Users are
restricted from processing work items associated with the suspended order.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains open.running.in_progress
and the target state is set to open.not_running.suspended. The order will complete the
transition to the open.not_running.suspended state when all accepted work items for the order
are completed or the grace period expires, whichever comes first. New work items cannot be
accepted during the grace period.

The grace period may be configured on the order state policy and/or specified on this call.

ResumeOQrder

This operation resumes an order that is currently suspended or cancelled so that work items
associated with the order are allowed to be processed.

Preconditions

e The current state of the specified order is either open.not_running.suspended or
open.not_running_cancelled.

e The target state of the order is not set.

e The order life-cycle policy associated with the order's specification has the Resume Order
transaction enabled from the open.not_running.suspended state or
open.not_running.cancelled state.

e The user performing the transaction is a member of one or more of the workgroups
associated with the Resume Order transaction referenced in precondition.

Expected Outcome

The order is successfully transitioned to the open.running.in_progress or
open.not_running.not_started state. Authorized users may process work items associated with
the specified order.

CancelOrder

ORACLE

This operation cancels an order. All outstanding work items associated with the order are
deleted, and all complete work items associated with the order are compensated (undone).

Preconditions

* The current state of the specified order is open.running.in_progress or
open.not_running.suspended.

e The target state of the order is not set.

2-14

AbortOrder

FailOrder

ORACLE

Chapter 2
Web Service Operations Used for Order Management

e The order life-cycle policy associated with the order's specification has the Cancel Order
transaction enabled from the current order state (open.running.in_progress state or
open.not_running.suspended).

e The user performing the transaction is a member of one or more of the workgroups
associated with the Cancel Order transaction referenced in precondition.

Expected Outcome

The order is successfully transitioned to the open.running.compensating.cancelling state.
Incomplete work items associated with the order are deleted. Completed work items
associated with the specified order are compensated. Once compensation completes, the
order is transitioned to open.not_running.cancelled.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains at its current value
(open.running.in_progress or open.not_running.suspended) and the target order state is set to
open.running.compensating.cancelling. The order will complete the transition to the
open.running.compensating.cancelling state when all accepted work items for the order are
completed or the grace period expires, whichever comes first. New work items cannot be
accepted during the grace period. The grace period may be configured on the order life-cycle
policy and/or specified on this call.

This operation stops an order, and stops all work items associated with the order. You can
grant permissions for this operation by editing the Abort Order transaction in the order life-cycle
policy associated with the order's specification in Design Studio.

Preconditions

e The user performing the operation must be a member of one or more of the workgroups
associated with the Abort Order transaction.

Expected Outcome

The order is successfully transitioned to the closed.aborted state. Users are restricted from
processing the aborted order.

This operation fails an order. A failure must be resolved before the order can proceed any
further. You can grant permissions for this operation by editing the Fail Order transaction in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

e The user performing the operation must be a member of one or more of the workgroups
associated with the Fail Order transaction.

Expected Outcome

The order is successfully transitioned to the open.not_running.failed state. Users are restricted
from processing work items associated with the failed order.

2-15

Chapter 2
Web Service Operations Used for Order Management

Alternate Outcome With Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains open.running.in_progress
and the target state is set to open.not_running.failed. The order will complete the transition to
the open.not_running.failed state when all accepted work items for the order are completed or
the grace period expires, whichever comes first. New work items cannot be accepted during
the grace period. The grace period may be configured on the order state policy or specified on
this call.

ResolveFailure

This operation resolves all failed tasks within an order or a collection of order components for a
given order. The operation causes all tasks to transition back to the corresponding normal
execution mode such as do, redo and undo from failed-do, failed-redo, or failed undo. The
operation also causes the task to return to the task state it had been in before failing (normally
the accepted or a custom task state).

If you use the failed order state, then this operations also causes an order that is currently
failed to transition back to the order state prior to entering the current failed order state.

You can grant permissions for this operation by editing the Manage Order Fallout transaction
for the failed, amending, canceling, in progress, suspended, or waiting for revision states in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

e The current state of the specified order must be one of the following:
— open.not_running.failed
— open.not_running.suspended
— open.not_running.waitinforrevision
— open.running.in_progress
— open.running.amending
— open.running.canceling
e The user performing the operation must be a member of one or more of the workgroups

associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the state the task
had been in before failing. For example, an order with a task in the failed-undo mode in the
accepted state would transition back to the normal undo mode in the state the task had been in
when it had failed.

If this operation is run when the order is in the failed sate, then the order is successfully
transitioned to its previous state.

RetryOrder

This operation retries all failed tasks within an order or a collection of order components for a
given order. The operation causes all tasks to transition back to the corresponding normal

ORACLE 16

Chapter 2
Web Service Operations Used for Problem Order Diagnosis

execution modes such as do, redo and undo from failed-do, failed-redo, or failed-undo. The
operation also causes tasks to return to the received state.

You can grant permissions for this operation by editing the Manage Order Fallout transaction
for the failed, amending, canceling, in progress, suspended, or waiting for revision states in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

e The current state of the specified order must be one of the following:
— open.not_running.failed
— open.not_running.suspended
— open.not_running.waitinforrevision
— open.running.in_progress
— open.running.amending
— open.running.canceling
e The user performing the operation must be a member of one or more of the workgroups

associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the received state.
For example, an order with a task in the Failed-Undo mode in the accepted state would
transition to the Undo mode in the received state and another task in the Failed-Do mode in
the assigned state would transition to the Do mode in the received state.

Web Service Operations Used for Problem Order Diagnosis

This section describes web service operations used for diagnosing problem orders. This
includes getting order process history, compensation history and compensation details. Order
diagnoses operations are defined in the OrderManagementDiag.wsdl.wsdl file.

GetOrderProcessHistory

ORACLE

This operation returns process history perspective of an order. The root data comes from the
get_order_history SQL procedure, which sorts the results in the chronological order of entry
time. Note that this is not CompleteDate necessarily. The entry time is when the order
transitioned into that task and not when the order exited that task. For sequential tasks, this
amounts to the same thing as CompleteDate. But, when tasks are in parallel, it is possible for
tasks to start in a particular order but complete in a different order.

The different kinds of process history perspectives are:

e Original: An order that has never been compensated and has only one (the original)
process history perspective. For an order that has been compensated, the original process
history perspective includes all tasks created before the first compensation for the order
has started.

e Latest: Includes all tasks that have never been compensated.

- ldentified by compensationID: A new process history perspective is created for the
compensation of each order that has been started. A task must satisfy the following

2-17

Chapter 2
Web Service Operations Used for Problem Order Diagnosis

conditions to be included in the process history perspective that is identified by
compensation:

— To be created before any later compensation has started (if any).
— Not to be compensated in any prior compensation.

When a task is "redo" compensated, the "redo" compensator replaces the task in all
subsequent process history perspectives. When a task is "undone," it is not included into
any subsequent process history perspectives. Tasks that are compensated in the
compensation context that the process history is requested for are included in the
response and their compensation details are provided.

Use the GetOrderCompensations operation to retrieve information about order compensations,
including their IDs. See "GetOrderCompensations."

Preconditions

e The specified order exists.

Expected Outcome

The process history perspective for the order is returned.

GetOrderCompensations

This operation retrieves the history of all compensations for an order. For each compensation,
the data returned includes the type of compensation, submission date, start date (optional),
and completion date (optional).

Preconditions

e The specified order must exist.

» The specified order must be in the open.running.compensating.amending or
open.running.compensating.cancelling state.

Expected Outcome

The order compensation plan information is returned as a set of compensation tasks, along
with the compensation dependencies between them.

GetCompensationPlan

ORACLE

This operation retrieves compensation plan details for an order. For each compensation plan,
the data returned includes the type of compensation, active compensation task information,
pending compensation task information , and the state transition history for compensation
tasks.

Preconditions

e The specified order must exist.

e The specified order must be open.running.compensating.amending or
open.running.compensating.cancelling.

Expected Outcome

The order compensation plan information is returned.

2-18

Chapter 2
Navigating WSDL and XSD Files

Navigating WSDL and XSD Files

This section describes how to navigate the WSDL and XSD files to determine the input
parameters, responses, and fault types that a given OSM Web Service operation defines. The
information is presented through an example that is applicable to all operations.

Order Management WSDL File

Example 2-4 is an excerpt from the OrderManagementWS.wsdl file that shows how a typical
OSM Web Service operation is defined.

Example 2-4 WSDL Operation Definition

<wsdl:operation name="CreateOrderBySpecification">
<wsdl:input message="prov:CreateOrderBySpecificationRequest">
</wsdl:input>
<wsdl:output message="prov:CreateOrderBySpecificationResponse">
</wsdl:output>
<wsdl:fault name="InvalidOrderSpecificationFault"
message="prov:CreateOrder faultMsg">
</wsdl:fault>
<wsdl:fault name="TransactionNotAllowedFault"
message="prov:CreateOrder faultMsgl">
</wsdl:fault>
<wsdl:fault name="InvalidOrderDataFault"
message="prov:CreateOrder faultMsg3">
</wsdl:fault>
</wsdl:operation>

The WSDL file defines each operation in the same manner, which provides the following
information:

e Operation name: The name of the web service operation.

* Input message: The request structure that is defined in the corresponding XSD file.

* Output message: The response structure that is defined in the corresponding XSD file.
* Fault names: The exception structures that are defined in the corresponding XSD file.

The WSDL file tells you what request goes with what response, and what exceptions the
request may throw. Each web service operation defines a request and a response, which are
the input and output parameters. The request and response structures are defined in the
corresponding XSD file. For example, the CreateOrderBySpecification operation is defined in
the OrderManagmentWS.wsdl file, and the corresponding XSD file is
OrderManagementWsS.xsd.

Order Management XSD File

ORACLE

This section describes how to navigate the XSD files. The request and response structures
defined in the XSD are used by the OSM Web Service operations as input and output
parameters. This section provides graphics of the XSD in various states of expansion. You can
view the XSD using any XML application, such as XMLSpy.

XMLSpy offers several ways to view XML files. XSD files containing large structures can be
very difficult to read. The examples provided in this section show how to view XSD files using
the Schema/WSDL Design view, which allows you to view the top level structures and then

2-19

Chapter 2
Navigating WSDL and XSD Files

expand and collapse them as needed. Viewing the XML structure in this manner automatically
pulls in any referenced structures, removing the need to scroll around to locate them.

Note:

If you are using an application other than XMLSpy to view XML files, your views of
the XSD may differ from the examples used in this section.

Determining Input Parameters (Request)

Figure 2-1 shows a portion of the OrderManagmentWS.xsd file in the Schema/WSDL Design
view, as it appears when first opened. This is the top level of the view, which lists all
simpleType, complexType, and elements that are defined in the file.

Figure 2-1 Schemal/WSDL Design View

ﬁcamplexwpe GetOrderRequestType
ﬁcumplexwpe GetOrderResponseType

off |elemert CreateOrderBySpecification

off |2lement CreateOrderBySpecificationResponse
off |element GetOrder

off | elemert GetOrderResponse

From the top level, clicking the grey box located to the left of any element or complexType
expands the structure. Continuing with the example, Figure 2-2 shows the result of clicking the
grey box located to the left of CreateOrderBySpecification.

Figure 2-2 Expanded Structure

From this level, you can see that CreateOrderBySpecification defines
CreateOrderBySpecificationRequestType, but you cannot see what
CreateOrderBySpecificationRequestType actually defines. Clicking the "+" located within the
CreateOrderBySpecificationRequestType structure box expands the structure. Figure 2-3 and
Figure 2-4 show the result of this action.

ORACLE 590

Chapter 2
Navigating WSDL and XSD Files

Figure 2-3 Further Expanded Structure

-
El | osm:CreateOrderBySpecificationRequest Type

Specification

O00000OThe arder
definition.

= i
-+ Reference !

O0000OThe arder
reference, The arder
reference s 000000
typically used to store an
upstraarn order id ForO OO0
OOtracking purposes,
however it can be used Ford
O00OOary required
pUrpose,

O00000OThe priokty of
the arder, IF the priority
walue OOOOOOis outside
the walid priotity range
specified asO000000Opart
of the arder definition, then
the prioiity 0OOOOO
walue will be autaratically
rounded to the 0OO0O0O0O
nearest valid walue,

- - AutoAddMandatoryData |

contrals whether ar nat the
systern 00000 Owill
autarnatically add mandatory
data that is00000Omissing
frorn a request, Missing
mandatory dataO0O000O00will
be added using default walues
defined inO0O0O0OOOmetadata,

- 4= StartOrder ;
O00000OThis elerment
controls whether or not the
orderO000000will be
autarnatically started or not,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CreateOrderBySpecification E}:—[—H-—:EI— DLILIBI s &l =
|
|
|
|
|
|
'

ORACLE’ 501

ORACLE

Chapter 2

Navigating WSDL and XSD Files

Figure 2-4 Further Expanded Structure (continued)

From this level, you can see that CreateOrderBySpecificationRequestType defines:

CreateQrderBySpecification [%}l{—-ﬂ—jzl—

Specification

Reference

Priority
AutoAddMandatoryData
StartOrder

Data

Remark

OO0O000OThis elernent
controls whether ar nat the
systern OO OO0 Owill
autarnatically add mandatory
data that is00000Ormissing
fram a request, Missing
mandatory dataO0 0000wl
be added using daFault walues
defined inOO0OOOOmetadata,

O00000OThis elerment
contrals whather or nat the
order 00000 0will be
autarnatically started or not,

a O0OThe

structure and acceptable

content of thiz O

Oelerment is defined by the

metadata aszociated O
OOwith the arder

specification, In particular,

theO O DOcreation
wiew associated with the
orderd oo

specification type and source
detatrmnines the O
Oexact walues required,

0. .=
O0000OThis elernent
allowys rernarks and
attachments to 0OO0O0O0O
be added to the arder,

However, you cannot see what the Specification, Data, or Remark structures define. As with
the previous level, you can expand any of these structures by clicking the "+" located to the
right of the structure name. Clicking the "+" located within the Data and Remark structure box
expands the structures. Figure 2-5 shows the result of this action.

2-22

Figure 2-5 Further Expansion of Data and Remark Elements

ORACLE"

OO0000OOThis elernent
contrals whether or not the
systern OO 000 Owill
autornatically add rnandatory
data that is000000Omissing
Frorn a request, Missing
randatory data OOO0OO0wl
be added using deFault values
defined inOO00O0OOOmet adata.

OO0000OThis elernent
controls whether ar not the
order 00000 Owill be
autornatically started or not,

Chapter 2
Navigating WSDL and XSD Files

rDSI‘I‘I:OrdETDﬂtﬂT}!‘pE _|

) Bate B

content af this O
Oelernent is defined by the
metadata associated O
ODOwith the arder
specification, In particular,
the O O0Ocreation
wiew associated with the
orderd oo
spacification type and source
detarmnines the
Oexact walues required.

0.
OO0000OOThis elernent
allowws rermarks and L
attachments te 0O0O0OOO
be added to the ordar,

m} OOThe |
structure and acceptable L

Expanding the Specification, Data, and Remark structures shows additional defined structures
and fields. In this example, note that the structure defined under the Data structure
(OrderDataType any) is a structure that is defined in Design Studio. For example, you may
define five different order templates, so the structure under the Data structure varies depending
on the order type. The order-specific data in the request is validated by the server through the

creation task view.

2-23

ORACLE

Chapter 2
Navigating WSDL and XSD Files

Note:

To collapse any of the structures at any level, click "-" located near the structure
name. You can also collapse all structures and return to the top level by clicking the
collapse button, located in the upper left corner as shown in Figure 2-3. The collapse
button is only visible in the upper left corner, so you must scroll all the way up and all
the way to the left to see it.

Determining Output Parameters (Response)

You can expand the response structure defined for an operation. Figure 2-6 shows the top
level of the OrderManagementWS.xsd file in Schema/WSDL Design view. Continuing with our
example, expand CreateOrderBySpecificationResponse to determine the expected response.

Figure 2-6 Schemal/WSDL Design View

ﬁcnmplexwpe GetOrderRequestType
ﬂcnmplexwpe GetOrderResponzeType

ofd | elemert CreateOrderBySpecification

ofd |elemert CreateOrderBySpecificationResponse
off|element GetOrder

off | element GetOrderResponse

Figure 2-7 shows the expected response defined by CreateOrderBySpecificationResponse,
which can be expanded even further.

Figure 2-7 Expanded Structure

—
usm CreateOrderBySpecificationResponseType |

OrderSummary
0000004 surnrnary of
CreateOrderBySpecificationResp. .E]—|—(—-H— 1 the arder,

|
|
L~ AmendmentSummary H I
|
|

| OO00000OIF the created ordar
is an amendrment, 3 summary O

| O0O0O0Oof the arder that is being
arnended is retumed.

Determining Fault Types

You can expand the fault names defined for the operation. Continuing with the
CreateOrderBySpecification example, InvalidOrderSpecificationFault,
TransactionNotAllowedFault, and InvalidOrderDataFault are all defined as top level structures
in the OrderManagementWS.xsd file.

2-24

Chapter 2
Order Management Request and Response Examples

Order Management Request and Response Examples

This section provides sample XML requests and sample XML responses. Sample XML for any
web service operation can be generated from the XSD using any XML application such as
XMLSpy.

To generate a sample XML file using XMLSpy:
1. Open an XSD file in XMLSpy.

2. From the menu, select DTD/ISchema, then select Generate Sample XML File.

The Select a Root Element dialogue box opens, which lists all root elements defined in
the XSD, such as CreateOrder, CreateOrderResponse, FindOrder, FindOrderResponse,
and so on.

3. Select a root element and click OK.

The Generate Sample XML File dialogue box appears, which provides a few selection
options such as generating non-mandatory elements and attributes, the number of
structures to generate for structures that are defined as a sequence, and whether or not to
populate the XML with data.

4. Choose the appropriate options and click OK.
The generated XML displays within a new file, Untitled.xml.

Generating XML in this manner does not generate the SOAP header and body. However, the
SOAP header and body can be manually inserted into the generated XML.

CreateOrderBySpecification Examples

This section provides a request example and a response example for the
CreateOrderBySpecification operation.

Request Example

Example 2-5 CreateOrderBySpecificationRequest

<?xml version = '1.0' encoding = 'UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.orqg/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-username-
token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:CreateOrderBySpecification>
<ws:Specification>
<ws:Cartridge>

<ws:Name>view framework demo</ws:Name>

<!--Optional:-->

<ws:Version>1.0</ws:Version>

</ws:Cartridge>

ORACLE 5 o5

ORACLE

<_root>

Chapter 2

Order Management Request and Response Examples

<ws:Type>vf demo</ws:Type>
<ws:Source>web</ws:Source>
</ws:Specification>
<!--Optional:-->
<ws:Reference>test message</ws:Reference>
<!--Optional:-->
<ws:Priority>5</ws:Priority>
<!--Optional:-->
<ws:AutoAddMandatoryData>true</ws:AutoAddMandatoryData>
<!--Optional:-->
<ws:StartOrder>true</ws:StartOrder>
<!--Optional:-->
<ws:Data>

<account information>
<amount owing>553</amount owing>
</account_information>
</ _root>
</ws:Data>

<!--Zero or more repetitions:-->
<ws:Remark>

<!--Optional:-->
<ws:Text>Test Remark</ws:Text>
<!--Zero or more repetitions:-->
<ws:Attachment>
<!--Optional:-->
<ws:Name>readme. txt</ws:Name>

<!--You have a CHOICE of the next 3 items at this level-->
<ws:swaRefMimeContent>cid: first</ws:swaRefMimeContent>
<!--ws:base64BinaryContent>?</ws:base64BinaryContent>

<ws:hexBinaryContent>?</ws:hexBinaryContent-->

</ws:Attachment>
</ws:Remark>
<ws:Remark>

<!--Optional:-->
<ws:Text>Test Remark</ws:Text>
<!--Zero or more repetitions:-->
<ws:Attachment>
<!--Optional:-->
<ws:Name>test2.txt</ws:Name>

<!--You have a CHOICE of the next 3 items at this level-->
<ws:swaRefMimeContent>cid:second</ws:swaRefMimeContent>
<!--ws:base64BinaryContent>?</ws:base64BinaryContent>

<ws:hexBinaryContent>?</ws:hexBinaryContent-->

</ws:Attachment>
</ws:Remark>

</ws:CreateOrderBySpecification>

</soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-6 CreateOrderBySpecificationResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<ws:CreateOrderBySpecificationResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:OrderSummary>
<ws:I1d>202</ws:Id>
<ws:Specification>
<ws:Cartridge>

2-26

Chapter 2
Order Management Request and Response Examples

<ws:Name>view framework demo</ws:Name>
<ws:Version>l.0</ws:Version>
</ws:Cartridge>

<ws:Type>vE demo</ws:Type>
<ws:Source>web</ws:Source>
</ws:Specification>
<ws:State>open.not running.not started</ws:State>
<ws:Reference>test message</ws:Reference>
<ws:Priority>5</ws:Priority>
</ws:0rderSummary>
</ws:CreateOrderBySpecificationResponse>
</soapenv:Body>

Request Example - Setting Up Reference Nodes

This example demonstrates how to set up reference nodes in the task data of the creation task
when you code the CreateOrderBySpecification call in your XQuery or XSLT or Java
automation plug-ins.

Note:

A creation task is selected for an order in the Order Editor Details tab of Design
Studio. In this example, the name of the creation task (for which the
CreateOrderBySpecification call requires the order data) is in the parameter
<ord:View>ReferenceDebugCreationTask</ord:View>.

When creating the order you must explicitly give the referred-to field an index, and then refer to
it with {#} in the reference. You assign the index and code it when you write your automation
plug-in code (XQuery/XSLT/Java code).

In this example, <LineItem index="1"> is the index value you defined to this Lineltem
instance in your automation plug-in code. The index value must be unique within this
CreateOrderBySpecification order data; this allows you to refer to this instance later as
<LineItem refNode>{1}</LineItem refNode> to point to a single data node location in the
order template at order creation time.

Example 2-7 CreateOrderBySpecificationRequest - Setting Up Reference Nodes

<ord:CreateOrderBySpecification>
<ord:Specification>
<ord:Cartridge>
<ord:Name>ReferenceDebug</ord:Name>
<ord:Version>1.0.0</ord:Version>
</ord:Cartridge>
<ord:Type>ReferenceDebugOrder</ord: Type>
<ord:Source>ReferenceDebugOrder</ord:Source>
<ord:View>ReferenceDebugCreationTask</ord:View>
</ord:Specification>
<ord:Reference>created from SoapUI</ord:Reference>
<ord:Priority>5</ord:Priority>
<ord:AutoAddMandatoryData>false</ord:AutoAddMandatoryData>
<ord:StartOrder>false</ord:StartOrder>
<!--Optional:-->
<ord:Data>
<_root>
<Data>
<LineItem index="1">
<ID>1</ID>

ORACLE 2-27

</LineIltem>
<Lineltem index="2">
<ID>2</1ID>
</LineIltem>
</Data>
<References>

Chapter 2
Order Management Request and Response Examples

<LineItem_refNode>{1}</LineItem_refNode>

</References>
</_root>
</ord:Data>
</ord:CreateOrderBySpecification>

GetOrder Examples

This section provides a request example and a response example for the GetOrder operation.

ORACLE

Request and Response Example

Example 2-9 shows a GetOrderRequest.

Example 2-9 shows a GetOrderRequest that specifies that the data defined by the
demo_query query task be returned in the GetOrderResponse from the order with order ID 9.

Example 2-10 shows the GetOrderResponse returned for the GetOrderRequest in

Example 2-9.
Example 2-8 GetOrder Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">

<soapenv:Header/>
<soapenv:Body>
<ord:GetOrder>

<ord:0rderId>?</ord:OrderId>

<!--Optional:-->
<ord:View>?</ord:View>
<!--Optional:-->
<ord:OrderDataFilter>

<!--Zero or more repetitions:-->
<ord:Condition>?</ord:Condition>

</ord:OrderDataFilter>

<!--Optional:-->

<ord:RemarkFilter>
<!--Optional:-->

<ord:RetrieveRemarks>false</ord:RetrieveRemarks>

<!--Zero or more repetitions:-->

<ord:AttachmentFilter>
<!--Optional:-->

<ord:FileNameMatch>.*</ord:FileNameMatch>

<!--Optional:-->

<ord:MinSize>0</ord:MinSize>

<!--Optional:-->

<ord:MaxSize>4</ord:MaxSize>

<!--Optional:-->

<ord:Format>inlineBase64Binary</ord:Format>

</ord:AttachmentFilter>

</ord:RemarkFilter>
<!--Optional:-->
<ord:AmendmentFilter>

<ord:LevelOfDetail>AmendmentSummary</ord:LevelOfDetail>

</ord:AmendmentFilter>
<!--Optional:-->

2-28

Chapter 2
Order Management Request and Response Examples

<ord:LifecycleEventFilter>
<!--Optional:-->
<ord:RetrieveLlifecycleEvents>false</ord:RetrievelLifecycleEvents>
</ord:LifecycleEventFilter>
</ord:GetOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-9 GetOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement" xmlns:ws="http://
xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ord:GetOrder>
<ord:0rderId>9</ord:OrderId>
<ord:View>demo query</ord:View>
</ord:GetOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-10 GetOrderResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ ordermanagement">
<OrderSummary>
<Id>9</Id>
<Specification>
<Cartridge>
<Name>bb ocm demo</Name>
<Version>1.0.0.0.0</Version>
</Cartridge>
<Type>add adsl siebel</Type>
<Source>add adsl siebel</Source>
</Specification>
<State>open.running.in progress</State>
<Reference></Reference>
<CreatedDate>2014-10-30T08:24:15.000-07:00</CreatedDate>
<ExpectedDuration>P1D</ExpectedDuration>
<ExpectedOrderCompletionDate>2014-10-31T08:24:26.000-07:00 </
ExpectedOrderCompletionDate>
<ProcessStatus>n/a</ProcessStatus>
<Priority>5</Priority>
</OrderSummary>
<Data>
<osmc: root index="0" xmlns:osmc="urn:oracle:names:
ordermanagement:cartridge:bb ocm demo:1.0.0.0.0:view:demo query">
<osmc:subscriber info index="1414682666683">
<osmc:address index="1414682666684">
<osmc:city index="1414682666687">T0</osmc:city>

ORACLE 559

ORACLE

Chapter 2
Order Management Request and Response Examples

<osmc:postal code index="1414682666686">MIN6H8</osmc:postal code>
<osmc:street index="1414682666685">2300 Oracle Way</osmc:street>
</osmc:address>
<osmc:address index="1414682666692">
<osmc:city index="1414682666693">TO</osmc:city>
<osmc:postal code index="1414682666694">A1B2Z7</osmc:postal code>
<osmc:street index="1414682666695">2300 Oracle Way</osmc:street>
</osmc:address>
<osmc:address index="1414682666696">
<osmc:city index="1414682666697">TO</osmc:city>
<osmc:postal code index="1414682666698">A1B2Z7</osmc:postal code>
<osmc:street index="1414682666699">2300 Oracle Way</osmc:street>
</osmc:address>
<osmc:primary phone number index="1414682666689">603.555.0100</
osmc:primary phone number>
<osmc:name index="1414682666688">Adams</osmc:name>
</osmc:subscriber info>
<osmc:adsl_service details index="1414682666690">
<osmc:bandwidth index="1414682666691">3</osmc:bandwidth>
</osmc:adsl service details>
</osmc:_root>
</Data>
</GetOrderResponse>
</env:Body>
</env:Envelope>

Request and Response Example with OrderDataFilter

Example 2-11 shows a GetOrderRequest that specifies that the data defined by the
demo_query query task be returned in the GetOrderResponse from the order with order ID 9.
The GetOrderRequest also includes an OrderDataFilter that specifies that only the address
instance with a corresponding street value of "190 Attwell Drive". should return in the
GetOrderResponse.

Example 2-12 shows the GetOrderResponse returned for the GetOrderRequest in
Example 2-11.

Example 2-11 GetOrderRequest with OrderDataFilter

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/comnunications/ordermanagement" xmlns:ws="http://
xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ord:GetOrder>
<ord:0rderId>9</ord:OrderId>
<ord:View>demo query</ord:View>
<ord:OrderDataFilter>
<ord:Condition>/subscriber_info/address[street:’2300 Oracle Way']</
ord:Condition>
</ord:OrderDataFilter>
</ord:GetOrder>

2-30

Chapter 2
Order Management Request and Response Examples

</soapenv:Body>
</soapenv:Envelope>

Example 2-12 GetOrderResponse with OrderDataFilter

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ ordermanagement">
<OrderSummary>
<Id>9</Id>
<Specification>
<Cartridge>
<Name>bb ocm_ demo</Name>
<Version>1.0.0.0.0</Version>
</Cartridge>
<Type>add adsl siebel</Type>
<Source>add adsl siebel</Source>
</Specification>
<State>open.running.in progress</State>
<Reference></Reference>
<CreatedDate>2014-10-30T08:24:15.000-07:00</CreatedDate>
<ExpectedDuration>P1D</ExpectedDuration>
<ExpectedOrderCompletionDate>2014-10-31T08:24:26.000-07:00
</ExpectedOrderCompletionDate>
<ProcessStatus>n/a</ProcessStatus>
<Priority>5</Priority>
</OrderSummary>
<Data>
<osmc: root index="0" xmlns:osmc="urn:oracle:names:
ordermanagement:cartridge:bb ocm demo:1.0.0.0.0:view:demo query">
<osmc:subscriber info index="1414682666683">
<osmc:address index="1414682666684">
<osmc:city index="1414682666687">T0</osmc:city>
<osmc:postal code index="1414682666686">MIN6H8</osmc:postal code>
<osmc:street index="1414682666685">2300 Oracle Way</osmc:street>
</osmc:address>
<osmc:primary phone number index="1414682666689">603.555.0100</
osmc:primary phone number>
<osmc:name index="1414682666688">Adams</osmc:name>
</osmc:subscriber info>
<osmc:adsl service details index="1414682666690">
<osmc:bandwidth index="1414682666691">3</osmc:bandwidth>
</osmc:adsl service details>
</osmc: root>
</Data>
</GetOrderResponse>
</env:Body>
</env:Envelope>

Response Example - Order with Distributed Order Template Elements and Transformed
Order Items

Example 2-13 Partial GetOrderResponse containing Distributed Order Template Data

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ordermanagement">
<OrderSummary>
<Id>20</Id>
<Specification>
<Cartridge>

ORACLE 531

ORACLE

Chapter 2
Order Management Request and Response Examples

<Name>OsmCentralOMExample-Solution</Name>
<Version>4.0.0.0.0</Version>
</Cartridge>
<Type>OsmCentralOMExampleOrder</Type>
<Source>OsmCentralOMExampleOrder</Source>
</Specification>
<State>open.running.in progress</State>
<Reference>0rder1397235767310</Reference>
<CreatedDate>2014-04-11T10:03:28.000-07:00</CreatedDate>
<RequestedDeliveryDate>2014-03-31T07:05:00.000-07:00
</RequestedDeliveryDate>
<ExpectedStartDate>2014-04-11T10:03:32.495-07:00</ExpectedStartDate>
<ExpectedDuration>PT0S</ExpectedDuration>
<ExpectedOrderCompletionDate>2014-04-11T10:03:32.495-07:00
</ExpectedOrderCompletionDate>
<Priority>5</Priority>
</OrderSummary>
<Data>
<osmc: root index="0"
xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:0smCentralOMExample-
Solution:4.0.0.0.0:view:0smCentralOMExampleQueryTask">
<osmc:0OrderHeader index="1">
<osmc:numSalesOrder index="2">Order number</osmc:numSalesOrder>
<osmc:typeOrder index="3">Add</osmc:typeOrder>
</osmc:0rderHeader>
<osmc:CustomerDetails index="11">
<osmc:namelLocation index="13">Ilocationl</osmc:nameLocation>
<osmc:typeAddress index="23">2300 Oracle Way</osmc:typeAddress>
</osmc:CustomerDetails>
<osmc:AccountDetails index="24">
<osmc:numAccount index="25">TEL1234</osmc:numAccount>
<osmc:status index="26">Existing</osmc:status>
<osmc:corporate index="27">PoC</osmc:corporate>
<osmc:inscrState index="30">232,232,232,232</osmc:inscrState>
<osmc:clientSince index="31">1986-12-31-08:00</osmc:clientSince>
<osmc:category index="32">Corporate</osmc:category>
</osmc:AccountDetails>
<osmc:ControlData index="1397235812801">
<osmc:Functions index="1397235812888">
<osmc:ProvisioningFunction index="1397235811141">
<osmc:transformedOrderItem index="1397235812898">
<osmc:orderItemRef xsi:type="ctl60:TransformedOrderLineType"
type="{http://www.oracle.com/otm/cso}TransformedOrderLineType" index="1397235812899"
referencedIndex="1397235811129" xmlns:ctl160="http://www.oracle.com/otm/cso"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<ctl135:Lineld index="1397235812853" xmlns:ct135="http://
xmlns.oracle.com/communications/studio/ordermanagement/transformation">CS0O_2</
ct135:Lineld>
<ctl60:dynamicParams
xsi:type="ct264:SA Provision BroadbandInternetType"
type="{OracleComms Model BroadbandInternet/4.0.0.0.0}SA Provision BroadbandInternetType"
index="1397235812848" xmlns:ct264="0OracleComms Model BroadbandInternet/4.0.0.0.0">
<ct264:DownloadSpeed index="1397235812851">50</ct264:DownloadSpeed>
<ct264:Q0S index="1397235812852">Data</ct264:Q0S>
<ct264:UploadSpeed index="1397235812850">3.072</ct264:UploadSpeed>
</ct160:dynamicParams>
<ctl60:Recognition
index="1397235812846">{OracleComms Model BroadbandInternet/
4.0.0.0.0}SA Provision BroadbandInternetSpec</ctl60:Recognition>
<ctl60:LineName
index="1397235812847">SA Provision BroadbandInternetSpec [Add]</ctl160:LineName>
<ctl60:FulfillmentPattern index="1397235812855">{http://

2-32

Chapter 2
Order Management Request and Response Examples

oracle.communications.ordermanagement.unsupported.centralom}Service.Broadband</
ctl60:FulfillmentPattern>
<ctl60:Action index="1397235812854">Add</ctl60:Action>
</osmc:orderItemRef>
</osmc:transformedOrderItem>
<osmc:componentKey
index="1397235812889">ProvisioningFunction.DSLProvisioningSystem Region2.WholeOrder</
osmc: componentKey>
<osmc:orderItem index="1397235812892">
<osmc:orderItemRef xsi:type="ct21ll:CustomerOrderItemSpecificationType"
type="{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType" index="1397235812893" referencedIndex="1397235811126" xmlns:ct211="http://
oracle.communications.ordermanagement.unsupported.centralom" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<ct2ll:productSpec index="1397235812811">Broadband Service Feature
Class</ct211l:productSpec>
<ct21l:fulfPatt index="1397235812802">Service.Broadband</
ct21l:fulfPatt>
<ct21l:1ineld index="1397235812809">1</ct211:1lineld>
<ct2ll:linelItemName index="1397235812808">Brilliant Broadband [Add]</
ct21l:1lineItemName>
<ct2ll:requestedDeliveryDate
index="1397235812806">2014-03-31T07:05:00-07:00</ct211l:requestedDeliveryDate>
<ct2ll:region index="1397235812803">Rio de Janeiro</ct2ll:region>
<ct2ll:typeCode index="1397235812813">BUNDLE</ct211:typeCode>
<ct2ll:lineItemPayload index="1397235812805">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>1
</im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>2014-03-31T07:05:00
</im:requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:nameLocation>Locationl</im:nameLocation>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:typeCode>BUNDLE</im:typeCode>
<im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct2ll:lineltemPayload>
<ct2ll:Recognition index="1397235812810">Broadband Service Feature
Class</ct211l:Recognition>
<ct2ll:Action index="1397235812812">Add</ct21l:Action>
<ct2ll:Servicelnstance index="1397235812807">N</
ct2ll:Servicelnstance>
</osmc:orderItemRef>
</osmc:orderItem>
[...]
<osmc:calculatedStartDate
index="1397235812890">2014-03-31T07:05:00-07:00</osmc:calculatedStartDate>
<osmc:duration index="1397235812891">PT0S</osmc:duration>
</osmc:ProvisioningFunction>
</osmc:Functions>

ORACLE 2.33

ORACLE

Chapter 2
Order Management Request and Response Examples

<osmc:0rderItem xsi:type="ct21ll:CustomerOrderItemSpecificationType"
type="{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType" index="1397235811126" xmlns:ct211="http://
oracle.communications.ordermanagement.unsupported.centralom" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<ct21l:productSpec index="1397235812811">Broadband Service Feature Class</
ct21l:productSpec>
<ct21l:fulfPatt index="1397235812802">Service.Broadband</ct211:fulfPatt>
<ct21l:1lineld index="1397235812809">1</ct211:1lineId>
<ct2ll:lineltemName index="1397235812808">Brilliant Broadband [Add]</
ct21l:1lineItemName>
<ct2ll:requestedDeliveryDate
index="1397235812806">2014-03-31T07:05:00-07:00</ct211l:requestedDeliveryDate>
<ct2ll:region index="1397235812803">Rio de Janeiro</ct2ll:region>
<ct21l:typeCode index="1397235812813">BUNDLE</ct211:typeCode>
<ct2ll:lineItemPayload index="1397235812805">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>l
</im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>2014-03-31T07:05:00
</im:requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:nameLocation>Locationl</im:nameLocation>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:typeCode>BUNDLE</im:typeCode>
<im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct2ll:lineltemPayload>
<ct2ll:Recognition index="1397235812810">Broadband Service Feature Class</
ct2ll:Recognition>
<ct2ll:Action index="1397235812812">Add</ct21l:Action>
<ct2ll:Servicelnstance index="1397235812807">N</ct21l:Servicelnstance>
</osmc:0rderItem>
[...]
<osmc:TransformedOrderItem xsi:type="ctl60:TransformedOrderLineType"
type="{http://www.oracle.com/otm/cso}TransformedOrderLineType" index="1397235811129"
xmlns:ctl160="http://www.oracle.com/otm/cso" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<ctl35:Lineld index="1397235812853" xmlns:ctl35="http://xmlns.oracle.com/
communications/studio/ordermanagement/transformation">CSO 2</ct135:LineId>
<ctle0:dynamicParams xsi:type="ct264:SA Provision BroadbandInternetType"
type="{OracleComms Model BroadbandInternet/4.0.0.0.0}SA Provision BroadbandInternetType"
index="1397235812848" xmlns:ct264="0OracleComms Model BroadbandInternet/4.0.0.0.0">
<ct264:DownloadSpeed index="1397235812851">50</ct264:DownloadSpeed>
<ct264:Q0S8 index="1397235812852">Data</ct264:Q0S>
<ct264:UploadSpeed index="1397235812850">3.072</ct264:UploadSpeed>
</ct160:dynamicParams>
<ctl60:Recognition
index="1397235812846">{OracleComms Model BroadbandInternet/
4.0.0.0.0}SA Provision BroadbandInternetSpec</ctl60:Recognition>
<ctle0:LineName index="1397235812847">SA Provision BroadbandInternetSpec

2-34

Chapter 2
Order Management Request and Response Examples

[Add]</ctl160:LineName>
<ctl60:FulfillmentPattern index="1397235812855">{http://
oracle.communications.ordermanagement.unsupported.centralom}Service.Broadband</
ctl60:FulfillmentPattern>
<ctl60:Action index="1397235812854">Add</ctl160:Action>
</osmc:TransformedOrderItem>
<osmc:MappingContext index="1397235812856">
<osmc:ProviderFunction index="1397235812857">
<osmc:namespace index="1397235812858">0OracleComms_Model Base/4.0.0.0.0</
osmc:namespace>
<osmc:name index="1397235812859">CalculateServiceOrder</osmc:name>
<osmc:TargetMapping index="1397235812860">
<osmc:target index="1397235812861">CSO_2</osmc:target>
<osmc:SourceMapping index="1397235812862">
<osmc:source index="1397235812863">2</osmc:source>
<osmc:InstantiatingMappingRule index="1397235812864">
<osmc:namespace index="1397235812865">http://www.oracle.com/otm/
cso</osmc:namespace>
<osmc:name
index="1397235812866">BroadbandMappingRule Broadband PS SA Provision BroadbandInternet Pr
imary ---g--+U--+R---QI0kDkw</osmc:name>
</osmc:InstantiatingMappingRule>
</osmc:SourceMapping>
[...]
</osmc:TargetMapping>
</osmc:ProviderFunction>
</osmc:MappingContext>
</osmc:ControlData>
<osmc:BillingProfile index="4">
<osmc:mediaType index="5">1</osmc:mediaType>
<osmc:typelnvoice index="6">Summary</osmc:typelnvoice>
<osmc:billingCycle index="7">Q11</osmc:billingCycle>
<osmc:exemptionICMS index="8">Yes</osmc:exemptionICMS>
<osmc:empresaFaturamento index="9">0i Fixed</osmc:empresaFaturamento>
<osmc:paymentMethod index="10">1</osmc:paymentMethod>
</osmc:BillingProfile>
</osmc:_root>
</Data>
</GetOrderResponse>
</env:Body>
</env:Envelope>

UpdateOrder Examples

This section provides request examples and a response example for the UpdateOrder
operation.

Request Examples

Example 2-14 UpdateOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>

ORACLE 535

Chapter 2
Order Management Request and Response Examples

</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:UpdateOrder>
<ws:0rderId>4</ws:0rderId>
<ws:View>enter payment details</ws:View>
<ws:UpdatedOrder>
<_root>
<account information>
<amount owing>222</amount owing>
</account_information>
</ _root>
</ws:UpdatedOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-15 UpdateOrderRequest: Update nodes

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss—
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:UpdateOrder>
<ws:0rderId>4</ws:0rderId>
<ws:View>enter payment details</ws:View>
<WS:UpdatedNodes>
< _root>
<ControlData>
<Functions>
<FulfillBillingFunction>
<orderItem>
<ExternalFulfillmentState>COMPLETED</ExternalFulfillmentState>
<orderItemRef>
<serviceName>C GSM ADD SUB</serviceName>
<LinelId>987654</LineId>
</orderItemRef>
</orderItem>
</FulfillBillingFunction>
</Functions>
</ControlData>
</ _root>
</ws:UpdatedNodes>
<ws:ExternalFulfillmentStates>
<ws:0rderItemOrderComponentFulfillmentState>
<ws:ExternalFulfillmentState>COMPLETED</ws:ExternalFulfillmentState>
<ws:0rderComponentIndex>1234</ws:0rderComponentIndex>
<ws:0rderItemIndex>456789</ws:0OrderItemIndex>
</ws:0rderItemOrderComponentFulfillmentState>
</ws:ExternalFulfillmentStates>
</ws:UpdateOrder>
</soapenv:Body>
</soapenv:Envelope>

ORACLE 536

ORACLE

Chapter 2
Order Management Request and Response Examples

Example 2-16 UpdateOrderRequest: Data change

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:UpdateOrder>
<ws:0rderId>41</ws:OrderId>
<ws:DataChange>
<ws:Update Path="/account information/amount owing">
444
</ws:Update>
</ws:DataChange>
<ws:StartOrder>false</ws:StartOrder>
<ws:View>enter payment details</ws:View>
</ws:UpdateOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-17 UpdateOrderRequest: Data change with Distributed Order Template

<ord:UpdateOrder>
<ord:0rderId>123</ord:OrderId>
<ord:View>OsmCentralOMExampleQueryTask</ord:View>
<ord:DataChange>
<ord:Update Path="/ControlData/OrderItem[@index='111222333"][Qtype="{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType']/dynamicParams[@index='222333444'][@type='{OracleComms_Model_BroadbandInternet/
4.0.0.0.0}Broadband Bandwidth PSType']/UploadSpeed">
10000
</ord:Update>
</ord:DataChange>
</ord:UpdateOrder>

Request and Response Example with ResponseView and OrderDataFiltering
Example 2-18 shows the standard response message returned from an UpdateOrderRequest.

Example 2-19 shows an UpdateOrderRequest that adds a new customer address instance to
the order that includes a ResponseView query task that defines the data to be returned in the
UpdateOrderResponse message. The UpdateOrderRequest also includes an OrderDataFilter
that specifies that only the new address instance with street value of "112 Update Drive" must
be returned.

Example 2-20 shows the UpdateOrderResponse to the UpdateOrderRequest in Example 2-19.
Example 2-18 UpdateOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:UpdateOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">

2-37

Chapter 2
Order Management Request and Response Examples

<ws:0rderId>2180</ws:0rderId>
<ws:State>open.running.in progress</ws:State>
</ws:UpdateOrderResponse>

</soapenv:Body>

</soapenv:Envelope>

Example 2-19 UpdateOrderRequest with ResponseView and OrderDataFilter

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.orqg/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ord:UpdateOrder>
<ord:0rderId>10</ord:0rderId>
<ord:View>demo query</ord:View>
<ord:ResponseView>demo query</ord:ResponseView>
<ord:OrderDataFilter>
<ord:Condition>/subscriber info/address[street='112 Update Drive']</ord:Condition>
</ord:OrderDataFilter>
<ord:UpdatedNodes>
<_root>
<subscriber info>
<address>
<city>TO</city>
<postal code>AlAlAl</postal code>
<street>112 Update Drive</street>
</address>
</subscriber info>
</ _root>
</ord:UpdatedNodes>
</ord:UpdateOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-20 UpdateOrderResponse with ResponseView and OrderDataFilter Applied

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<UpdateOrderResponse xmlns="http://xmlns.oracle.com/communications/ordermanagement">
<0rderId>10</OrderId>
<State>open.running.in progress</State>
<Data>
<osmc: root index="0"
xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:bb ocm demo:1.0.0.0.0:view:demo qu
ery">
<osmc:subscriber info index="1414771747926">
<osmc:address index="1414771747949">
<osmc:city index="1414771747950">TO</osmc:city>
<osmc:postal code index="1414771747951">A1A1Al</osmc:postal code>
<osmc:street index="1414771747952">112 Update Drive</osmc:street>
</osmc:address>
<osmc:primary phone number index="1414771747932">6035550100</

ORACLE 5 38

Chapter 2
Order Management Request and Response Examples

osmc:primary phone number>
<osmc:name index="1414771747931">Adams</osmc:name>
</osmc:subscriber info>
<osmc:adsl service details index="1414771747933">
<osmc:bandwidth index="1414771747934">3</osmc:bandwidth>
</osmc:adsl service details>
</osmc: _root>
</UpdateOrderResponse>
</Data>
</env:Body>
</env:Envelope>

SuspendOrder Examples

ORACLE

This section provides a request example and a response example for the SuspendOrder
operation.

Request Example

Example 2-21 SuspendOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:SuspendOrder>
<ws:0rderId>145</ws:0rderId>
<!--Optional:-->
<ws:Reason>test</ws:Reason>
<!--You have a CHOICE of the next 2 items at this level-->
<!--Optional:-->
<ws:GracePeriodExpiryDate>?</ws:GracePeriodExpiryDate>
<!--Optional:-->
<ws:GracePeriodExpiry>?</ws:GracePeriodExpiry>
<!--Optional:-->
<ws:EventInterval>?</ws:EventInterval>
</ws:SuspendOrder>
</soapenv:Body>
</soapenv:Envelope>

Response Example
Example 2-22 SuspendOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:SuspendOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:0rderId>145</ws:0rderId>
</ws:SuspendOrderResponse>

2-39

Chapter 2
Order Management Request and Response Examples

</soapenv:Body>
</soapenv:Envelope>

ResumeOrder Examples

This section provides a request example and a response example for the ResumeOrder
operation.

Request Example

Example 2-23 ResumeOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:ResumeOrder>
<ws:0rderId>1176</ws:0OrderId>
</ws:ResumeOrder>
</soapenv:Body>
</soapenv:Envelope>

Response Example
Example 2-24 ResumeOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:ResumeOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:0rderId>1176</ws:0rderId>
</ws:ResumeOrderResponse>
</soapenv:Body>
</soapenv:Envelope>

CancelOrder Examples

ORACLE

This section provides a request example and a response example for the CancelOrder
operation.

Request Example

Example 2-25 CancelOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-

2-40

Chapter 2
Order Management Request and Response Examples

open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:CancelOrder>
<ws:0rderId>1316</ws:0rderId>
<!--Optional:-->
</ws:CancelOrder>
</soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-26 CancelOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:CancelOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:0rderId>1316</ws:0rderId>
</ws:CancelOrderResponse>
</soapenv:Body>
</soapenv:Envelope>

RetryOrder and ResolveFailure Examples

ORACLE

This section provides a request example and a response example for the RetryOrder and
ResolveFailure operation.

¢ Note:

The structure of the RetryOrder and ResolveFailure operations are identical apart
from the operation name itself.

Request Example Whole Order
Example 2-27 RetryOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:RetryOrder>

2-41

ORACLE

Chapter 2
Order Management Request and Response Examples

<ws:0rderId>18</ws:0rderId>
<ws:Reason>1307</ord:Reason>
</ws:RetryOrder>
</soapenv:Body>
</soapenv:Envelope>

Response Example Whole Order
Example 2-28 RetryOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:RetryOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:0rderId>18</ws:OrderId>
</ws:RetryOrderResponse>
</soapenv:Body>
</soapenv:Envelope>

Request Example Order Component
Example 2-29 ResolveFailureRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:ResolveFailure>
<ws:0rderId>18</ws:OrderId>
<ws:Reason>1307</ord:Reason>
<ws:0rderComponent>
<ws:0rderComponentId>
ADD SUB OPT.OrderProcessingSystemA.OrderProcessingDemoGranularity.1l
</ws:0rderComponentId>
</ws:0rderComponent>
</ws:ResolveFailure>
</soapenv:Body>
</soapenv:Envelope>

Response Example Order Component

Example 2-30 ResolveFailureResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:ResolveFailureResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:0rderId>18</ws:0rderId>
</ws:ResolveFailureResponse>
</soapenv:Body>
</soapenv:Envelope>

2-42

Chapter 2
Order Management Request and Response Examples

GetOrderProcessHistory Examples

ORACLE

This section provides a request example and a response example for the
GetOrderProcessHistory operation.

GetOrderProcessHistory Requests

Example 2-31 GetOrderProcessHistory Requests by CompensationiD

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header/>
<soapenv:Body>
<ord:GetOrderProcessHistory>
<OrderId>6</OrderId>
<CompensationId>1</CompensationId>
</ord:GetOrderProcessHistory>
</soapenv:Body>
</soapenv:Envelope>

Example 2-32 GetOrderProcessHistory Requests by Perspective (Original)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header/>
<soapenv:Body>
<ord:GetOrderProcessHistory>
<OrderId>6</OrderId>
<Perspective>original</Perspective>
</ord:GetOrderProcessHistory>
</soapenv:Body>
</soapenv:Envelope>

Example 2-33 GetOrderProcessHistory Requests by Perspective (Latest)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header/>
<soapenv:Body>
<ord:GetOrderProcessHistory>
<OrderId>6</OrderId>
<Perspective>latest</Perspective>
</ord:GetOrderProcessHistory>
</soapenv:Body>
</soapenv:Envelope>

GetOrderProcessHistory Responses

Example 2-34 GetOrderProcessHistory Response by CompensationiD

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<env:Header/>
<env:Body>
<ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
<OrderId>6</OrderId>
<Cartridge>
<ord:Name>OsmCentralOMExample-Solution</ord:Name>
<ord:Version>4.0.0.0.0</ord:Version>
</Cartridge>

2-43

Chapter 2
Order Management Request and Response Examples

<Compensation xsi:type="ord:AmendmentCompensationInfoType">
<CompensationId>1</CompensationId>
<CompensationType>amend</CompensationType>
<Submitted>2015-06-02T08:24:29.975-07:00</Submitted>
<Started>2015-06-02T08:24:31.000-07:00</Started>
<AmendmentOrderId>7</AmendmentOrderId>
</Compensation>
<ProcessHistory>
<Item xsi:type="ord:WorkItemType">
<Id>2</Id>
<TaskName>OsmCentralOMExampleOrder OsmCentralOMExampleOrder</TaskName>
<TaskType>creation</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT0.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>102</Id>
<TaskName>SyncCustomerFunction CustomerSystemSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT6.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<I1d>1205</Id>
<TaskName>configureCustomerSystemTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
</Item>
<Links/>
</Scope>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>202</Id>
<TaskName>MarketingFunction MarketingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<Id>1105</Id>
<TaskName>configureMarketingTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:48.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>undo</ExecutionMode>
<CompensatorId>1810</CompensatorId>
<CompensatorState>completed</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT2.000S</ActualDuration>
</Item>
<Item xsi:type="ord:WorkItemType">

ORACLE 244

Chapter 2
Order Management Request and Response Examples

<Id>1409</Id>
<TaskName>MarketingBaseTask</TaskName>
<TaskType>manual</TaskType>
<StartDate>2015-06-02T08:23:48.000-07:00</StartDate>
<EndDate>2015-07-23T13:40:03.849-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>P51DT5H16M15.8495</ActualDuration>
</Item>
<Links>
<Link>
<Source>1105</Source>
<Target>1409</Target>
</Link>
</Links>
</Scope>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>302</Id>
<TaskName>BillingFunction BillingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<Id>904</Id>
<TaskName>configureBillingTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:45.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>2117</CompensatorId>
<CompensatorState>accepted</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT1.000S</ActualDuration>
</Item>
<Links/>
</Scope>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>402</Id>
<TaskName>CollectionsFunction CollectionsSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT21.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<I1d>1305</Id>
<TaskName>configureCollectionsTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT18.000S</ActualDuration>
</Item>
<Links/>
</Scope>

ORACLE .45

ORACLE

</Item>
<Item xsi
<Id>50
<TaskN
<TaskT
<Start
<EndDa
<User>
<Actua
<Scope
<It

</I
<It

</I
<Li

</L

</Scop
</Item>
<Links>

<Link>

<So

<Ta

Chapter 2
Order Management Request and Response Examples

:type="ord:ContainerItemType">
2</1d>
ame>ProvisioningFunction ProvisioningSI</TaskName>
ype>subprocess</TaskType>
Date>2015-06-02T08:23:43.000-07:00</StartDate>
te>2015-06-02T08:23:45.000-07:00</EndDate>
omsadmin</User>
1Duration>PT2.000S</ActualDuration>
>
em xsi:type="ord:WorkItemType">
<Id>602</Id>
<TaskName>routeToProvisioningTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>1912</CompensatorId>
<CompensatorState>completed</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT0.000S</ActualDuration>
tem>
em xsi:type="ord:WorkItemType">
<Id>704</1d>
<TaskName>activationOrderAdslRegion2Task</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>2014</CompensatorId>
<CompensatorState>completed</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT2.000S</ActualDuration>
tem>
nks>
<Link>
<Source>602</Source>
<Target>704</Target>
</Link>
inks>
e>

urce>2</Source>
rget>102</Target>

</Link>

<Link>
<So
<Ta

urce>2</Source>
rget>202</Target>

</Link>

<Link>
<So
<Ta

urce>2</Source>
rget>302</Target>

</Link>

<Link>
<So
<Ta

urce>2</Source>
rget>402</Target>

2-46

Chapter 2
Order Management Request and Response Examples

</Link>

<Link>
<Source>2</Source>
<Target>502</Target>

</Link>

</Links>
</ProcessHistory>
</ord:GetOrderProcessHistoryResponse>
</env:Body>
</env:Envelope>

Example 2-35 GetOrderProcessHistory Response by Perspective (Original)

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<env:Header/>
<env:Body>
<ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
<OrderId>6</OrderId>
<Cartridge>
<ord:Name>OsmCentralOMExample-Solution</ord:Name>
<ord:Version>4.0.0.0.0</ord:Version>
</Cartridge>
<ProcessHistory>
<Item xsi:type="ord:WorkItemType">
<Id>2</Id>
<TaskName>OsmCentralOMExampleOrder OsmCentralOMExampleOrder</TaskName>
<TaskType>creation</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT0.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>102</Id>
<TaskName>SyncCustomerFunction CustomerSystemSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT6.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>202</Id>
<TaskName>MarketingFunction MarketingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>302</Id>
<TaskName>BillingFunction BillingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">

ORACLE 2_47

ORACLE

Chapter 2

Order Management Request and Response Examples

<Id>402</1d>
<TaskName>CollectionsFunction CollectionsSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT21.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>502</I1d>
<TaskName>ProvisioningFunction ProvisioningSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT2.000S</ActualDuration>
</Item>
<Links>
<Link>
<Source>2</Source>
<Target>102</Target>
</Link>
<Link>
<Source>2</Source>
<Target>202</Target>
</Link>
<Link>
<Source>2</Source>
<Target>302</Target>
</Link>
<Link>
<Source>2</Source>
<Target>402</Target>
</Link>
<Link>
<Source>2</Source>
<Target>502</Target>
</Link>
</Links>
</ProcessHistory>
</ord:GetOrderProcessHistoryResponse>
</env:Body>
</env:Envelope>

Example 2-36 GetOrderProcessHistory Response by Perspective (Latest)

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://

www.w3.0rg/2001/XMLSchema-instance">
<env:Header/>
<env:Body>

<ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/

communications/ordermanagement">

<OrderId>6</OrderId>

<Cartridge>
<ord:Name>OsmCentralOMExample-Solution</ord:Name>
<ord:Version>4.0.0.0.0</ord:Version>

</Cartridge>

<ProcessHistory>
<Item xsi:type="ord:WorkItemType">

<Id>2</Id>

<TaskName>OsmCentralOMExampleOrder OsmCentralOMExampleOrder</TaskName>

<TaskType>creation</TaskType>

2-48

Chapter 2
Order Management Request and Response Examples

<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT0.000S</ActualDuration>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>102</Id>
<TaskName>SyncCustomerFunction CustomerSystemSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT6.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<I1d>1205</Id>
<TaskName>configureCustomerSystemTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
</Item>
<Links/>
</Scope>
</Item>
<Item xsi:type="ord:ContainerItemType">
<Id>202</1d>
<TaskName>MarketingFunction MarketingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<Id>1105</Id>
<TaskName>configureMarketingTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:48.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>undo</ExecutionMode>
<CompensatorId>1810</CompensatorId>
<CompensatorState>completed</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT2.000S</ActualDuration>
</Item>
<Item xsi:type="ord:WorkItemType">
<Id>1409</Id>
<TaskName>MarketingBaseTask</TaskName>
<TaskType>manual</TaskType>
<StartDate>2015-06-02T08:23:48.000-07:00</StartDate>
<EndDate>2015-07-24T08:19:07.207-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>P51DT23H55M19.207S</ActualDuration>
</Item>
<Links>
<Link>
<Source>1105</Source>
<Target>1409</Target>

ORACLE .49

ORACLE

Chapter 2
Order Management Request and Response Examples

</Link>
</Links>
</Scope>

</Item>
<Item xsi:type="ord:ContainerItemType">

<Id>302</Id>
<TaskName>BillingFunction BillingSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT3.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<Id>904</Id>
<TaskName>configureBillingTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:45.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>2117</CompensatorId>
<CompensatorState>accepted</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT1.000S</ActualDuration>
</Item>
<Links/>
</Scope>

</Item>
<Item xsi:type="ord:ContainerItemType">

<Id>402</Id>
<TaskName>CollectionsFunction CollectionsSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT21.000S</ActualDuration>
<Scope>
<Item xsi:type="ord:WorkItemType">
<Id>1305</Id>
<TaskName>configureCollectionsTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
<EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT18.000S</ActualDuration>
</Item>
<Links/>
</Scope>

</Item>
<Item xsi:type="ord:ContainerItemType">

<Id>502</Id>
<TaskName>ProvisioningFunction ProvisioningSI</TaskName>
<TaskType>subprocess</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
<User>omsadmin</User>
<ActualDuration>PT2.000S</ActualDuration>
<Scope>

<Item xsi:type="ord:WorkItemType">

<Id>602</Id>

2-50

Chapter 2
Order Management Request and Response Examples

<TaskName>routeToProvisioningTask</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>1912</CompensatorId>
<CompensatorState>completed</CompensatorState>
</CompensateeRole>
<User>omsadmin</User>
<ActualDuration>PT0.000S</ActualDuration>

</Item>
<Item xsi:type="ord:WorkItemType">

<Id>704</1d>
<TaskName>activationOrderAdslRegion2Task</TaskName>
<TaskType>automated</TaskType>
<StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
<EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
<CompensateeRole>
<ExecutionMode>redo</ExecutionMode>
<CompensatorId>2014</CompensatorId>
<CompensatorState>completed</CompensatorState>

</CompensateeRole>
<User>omsadmin</User>

<ActualDuration>PT2.000S</ActualDuration>

</Item>
<Links>
<Link>
<Source>602</Source>
<Target>704</Target>
</Link>
</Links>
</Scope>
</Item>
<Links>
<Link>
<Source>2</Source>
<Target>102</Target>
</Link>
<Link>
<Source>2</Source>
<Target>202</Target>
</Link>
<Link>
<Source>2</Source>
<Target>302</Target>
</Link>
<Link>
<Source>2</Source>
<Target>402</Target>
</Link>
<Link>
<Source>2</Source>
<Target>502</Target>
</Link>
</Links>
</ProcessHistory>
</ord:GetOrderProcessHistoryResponse>
</env:Body>
</env:Envelope>

ORACLE

2-51

Chapter 2
Order Management Request and Response Examples

GetOrderCompensations Examples

This section provides a request example and a response example for the
GetOrderCompensations operation.

Example 2-37 GetOrderCompensations

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header/>
<soapenv:Body>
<ord:GetOrderCompensations>
<OrderId>6</OrderId>
</ord:GetOrderCompensations>
</soapenv:Body>
</soapenv:Envelope>

Example 2-38 GetOrderCompensationsResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<env:Header/>
<env:Body>
<ord:GetOrderCompensationsResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
<OrderId>6</OrderId>
<Compensation xsi:type="ord:AmendmentCompensationInfoType">
<CompensationId>1</CompensationId>
<CompensationType>amend</CompensationType>
<Submitted>2015-06-02T08:24:29.975-07:00</Submitted>
<Started>2015-06-02T08:24:31.000-07:00</Started>
<AmendmentOrderId>7</AmendmentOrderId>
</Compensation>
</ord:GetOrderCompensationsResponse>
</env:Body>
</env:Envelope>

GetCompensationPlan Examples

This section provides a request example and a response example for the
GetOrderCompensations operation.

Example 2-39 GetOrderCompensationPlan

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header/>
<soapenv:Body>
<ord:GetCompensationPlan>
<OrderId>6</OrderId>
</ord:GetCompensationPlan>
</soapenv:Body>
</soapenv:Envelope>

Example 2-40 GetOrderCompensationPlanResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<ord:GetCompensationPlanResponse xmlns:ord="http://xmlns.oracle.com/communications/

ORACLE 5o

ORACLE

Chapter 2
Order Management Request and Response Examples

ordermanagement">

<OrderId>6</OrderId>
<CompensationId>1</CompensationId>
<CompensationType>amend</CompensationType>
<ActiveItem>
<TaskName>SyncCustomerFunction CustomerSystemSI</TaskName>
<ExecutionMode>redo</ExecutionMode>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>102</FlowItemId>
</Activeltem>
<ActiveItem>
<TaskName>CollectionsFunction CollectionsSI</TaskName>
<ExecutionMode>redo</ExecutionMode>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>402</FlowItemId>
</Activeltem>
<ActiveItem>
<TaskName>configureBillingTask</TaskName>
<ExecutionMode>redo</ExecutionMode>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>1005</FlowItemId>
</Activeltem>
<PendingItem>
<TaskName>cdiTask</TaskName>
<ExecutionMode>redo</ExecutionMode>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>1508</FlowItemId>
<WaitsFor>
<TaskName>SyncCustomerFunction CustomerSystemSI</TaskName>
<ExecutionMode>redo</ExecutionMode>
<PositionedInFlow>before</PositionedInFlow>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>1509</FlowItemId>
</WaitsFor>
</PendingItem>
<PendingItem>
<TaskName>Configure Collections Task</TaskName>
<ExecutionMode>redo</ExecutionMode>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>1608</FlowItemId>
<WaitsFor>
<TaskName>CollectionsFunction CollectionsSI</TaskName>
<ExecutionMode>redo</ExecutionMode>
<PositionedInFlow>before</PositionedInFlow>
<CompenationWorkItem>self</CompenationWorkItem>
<FlowItemId>1609</FlowItemId>
</WaitsFor>
</PendingItem>

</ord:GetCompensationPlanResponse>
</env:Body>
</env:Envelope>

2-53

Using the OSM XML API

ORACLE

This chapter provides overview information about the Oracle Communications Order and
Service Management (OSM) Extensible Markup Language (XML) Application Programming

Interface (API). It is assumed that the programmer has user-level knowledge of Windows and
UNIX operating systems.

About Using the XML AP

The OSM XML API enables you to:

Create, retrieve, and update orders.

Transition orders: Move an order through the various states and tasks of a process. This
includes moving an order to a new process through exception processing.

Search for the next order at task: Search for the next available order at a given task.
Copy orders: Copy the data of an existing order to produce a new order.

Suspending and resuming orders: Temporarily halt all provisioning activity on an order
and then release the suspended order back into the system for provisioning.

Add attachments and remarks: Add remarks along with optional attachments to orders.
After you add the remark, it is stamped with the time, task, and state of the order at that
time.

Query: Retrieve a list of orders through two query functions: a predefined query that lists
orders of interest to an external agent, and a generalized query that provides external
agents a means to define their own query criteria.

Retrieve the order data and process history: Retrieve the history of an order as it
moves through the process.

Retrieve user information: Retrieve the user's name and description, as well as the name
and description of each workgroup to which they belong.

You can use the XML API for the following purposes:

Customizing the appearance or functioning of a task when customization using behaviors
or OSM Java server pages does not satisfy all of your requirements.

Using from within an automation plug-in when necessary because the Web Services API
and the OSM automation functionality do not meet your requirements.

You can use the XML API functions from the Automation Framework when running
automation plug-ins by using the OSM Java OrderContext class processXMLRequest
method. Parts of XML API (mainly GetOrder.Response) appear in various places as a
context document throughout the OSM model. For example, when an automated task
transitions into the received state, the automation framework starts an automation plug-in
associated with it and passes the plug-in the TaskContext object. You can access the data
associated to that TaskContext object using the GetOrder.Response XML API function call.

The XML API is deprecated for the following uses:

External automation (for example, polling). Use the event-driven Automation Framework
for this purpose.

3-1

Audience

Chapter 3
About Accessing the XML API

* Integration with an upstream system. Use the Web Service API for this purpose.

* Task automation when the equivalent functionality exists in the Automation Framework.
See "Localizing OSM" and the OSM Javadocs for more information about automation plug-
ins.

* Processing manual tasks and order submission when the equivalent functionality exists
within the OSM Task web client and the OSM Web Services. See OSM Task Web Client
User's Guide and "Using OSM Order Management Web Services" for more information.

The following operations are deprecated for all uses, and are provided for backward
compatibility only, since they are not in accord with current OSM direction:

e SetException.Request

e ListException.Request

e GetNextOrderAtTask.Request
AddOrderThread.Request

This chapter is designed for developers familiar with XML 1.0 DOM level-1 and the HTTP
transport mechanism for delivery of XML messages. You must ensure that an XML parser and
DOM implementation is available on your platform.

About Using the OrderID, View, and OrderHistID

OSM assigns all internally processing orders an order ID (OrderID). You can use the OrderID
to indicate which order you want to run the function against. You specify the data available to
many of the XML API function calls with the View and OrderHistID parameters.

You configure the data available to a View when you create an order specification in Design
Studio. In the order specification editor Permissions tab, Query Task subtab, you can select a
default Query Task, which is a manual task that is not part of a process flow. All data that you
define in the manual task editor Task Data tab represents the data available to XML API
functions that use the View field.

OSM generates a OrderHistID every time an OSM task transitions from one state to another
of performs a status transition from one task to another. You configure the data available to an
OrderHistID when you create a manual or automated task in Design Studio. All data that you
define in the manual or automated task editor Task Data tab represents the data available to
the XML API functions that use the OrderHistID field.

Oracle recommends that you only use the XML API functions that reference View or
OrderHistID in the limited way described in "About Using the XML API."

About Accessing the XML AP

ORACLE

The OSM XML API is a programmatic interface for sending HTTP POST requests and
receiving HTTP responses.

See the SDKIXMLSchemaloms-xmlapi.xsd schema for additional information about the OSM
XML API.

The OSM XML API provides a single access point for API requests.

The SDK contains a sample HTML file (SDKISamples/xmlapil/testxmlapi.html) that you can
modify and use to send XML API requests via a web browser. This file is intended to be used

3-2

Chapter 3
About Accessing the XML API

only for quick testing and similar exploratory usage. It does not represent a proper integration
with an external component and is not suitable for production environments. See the SDK/
Samples/xmlapi/README.txt file for details about using the sample HTML file.

Making the HTTP connection for Traditional OSM Deployments

See the SDK/Samples/xmlapi/README.txt file for details about making the HTTP
connection. See OSM Installation Guide for more information about HTTP and HTTPS
hardware and software load balancing options for OSM WebLogic clusters.

Making the HTTP connection for OSM Cloud Native Deployments

See the SDK/Samples/xmlapi/README.txt file for details about making the HTTP
connection. See "Chapter 2 Planning and Validating Your Cloud Environment" in OSM Cloud
Native Deployment Guide for details about hostname resolution.

Logging In and Logging Out

Before using any API messages, you must login by supplying a valid user ID and password. If
the login is successful, the following message is displayed:

Login for admin successful.
Oracle Order and Service Management - Version 7.4.x.y.z

For details about logging in and logging out of the OSM XML API, see the SDK/Samples/
xmlapi/README.txt file.

Message Formats

OSM messages follow a simple format that allows for arbitrary data and metadata to be
passed across a network.

Input XML Message Format

Each operation that can be requested of the XML API defines its own root element for an XML
document with the format command name.Request. Any required parameters are child elements
of the operation request.

Example 3-1 Input XML Message Format

<command name.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<parameterl />
<parameter2 />
. additional parameters ...
</command name.Request>

Output XML Message Format

ORACLE

For each request operation, there is a corresponding response document with a root element
in the form command name.Response. Any returned data is a child element of the operation

response.

If non-critical errors occur during processing of an operation request, they are children of a
Warnings element, as shown in Example 3-2.

3-3

Chapter 3
About Accessing the XML API

Example 3-2 Output XML Message Format With Warnings

<command name.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<resultl />
<result2 />
. additional result elements ...
<Warnings>
<Warning code="1052" desc="SQL Warning">message</Warning>
</Warnings>
</command_name.Response>

If errors occur that prevent a request from being processed, the XML API returns an error
document with a root element of command name.Error. The error(s) that occurred are children
of the error document.

You must monitor returning response messages from OSM for any errors that indicate whether
the request operation succeeded or failed. If the operation request fails it is the responsibility of
the sender to track and resubmit the failed request after troubleshooting the problem.

Example 3-3 Output XML Message Format With Errors

<command name.Error xmlns="urn:com:metasolv:oms:xmlapi:1">
<Error code="300" desc="Request parameter error">message</Error>
</command name.Error>

If an invalid document is received, the server returns the HTTP code 403: Forbidden.

When you create XML, element values must not contain the characters &, <, or >. The XML
standard defines the following replacement text:

e &-&
o <-<
o >->
e '-'
e« "-"

Date/Time Formats

ORACLE

The date/time format is the same for input and output messages. For any parameter with a
date/time value, the format is:

yyyy-MM-ddTHH:mm: ss timezone

where

* yyyy is the four-digit year

* MM is the two-digit month

e dd is the two digit day of the month

e HHis the two digit hours in 24-hour format

* mm is the two-digit minutes

e ssis the two-digit seconds

e timezone is a three-letter designation of the time zone
For example:

2013-08-05T14:06:05 EDT

3-4

Chapter 3
About Accessing the XML API

White Space in Message Text

OSM keeps the white space to the right of the beginning of a text block and to the left of the
end of a text block. For example, if you create or update an order with the following field:

<street> 190 Attwell Drive <street>

OSM retains the white space.

Authentication

All requests are processed in the context of the privileges assigned to a user ID. Prior to using
the messages of the XML API, a user ID must be authorized. An authorization servlet, based
on a user ID and password, authenticates a user ID and provides a session ID HTTP cookie to
be used by subsequent requests. If further security is required, the XML API can be deployed
in an environment that supports HTTPS for secure transport.

The OSM XML API does not provide access to the administrative facilities of OSM. Before
using this API, you must use the OSM Administrator to configure a user ID that establishes the
security privileges for the external software. This determines the range of data that can be
retrieved from OSM.

Reserved Mnemonics

ORACLE

The mnemonics in Table 3-1 are reserved and used to reference special systems values. If an
order data element is created with the same mnemonic as a reserved mnemonic, the system
functions correctly. The Worklist and Query response lists two elements with the same element
name - one for the system value and one for the data element value.

Table 3-1 Reserved Mnemonics

Header Mnemonic

Order Sequence ID _order_seq_id
Order History Sequence ID _order_hist_seq_id
State _order_state
Execution Mode _execution_mode
Task Mnemonic _task_id

Order Source Mnemonic _order_source
Order Type Mnemonic _order_type

Order State _current_order_state
Target Order State _target_order_state
Reference Number _reference_number
Priority _priority

User _user

Process Description _process_description
Order Status _process_status
Date Created _date_pos_created
Date Started _date_pos_started

3-5

Table 3-1 (Cont.) Reserved Mnemonics

Chapter 3
XML API Functionality

Header

Mnemonic

Root node

_root

Number of Remarks

_num_remarks

Expected Order Completion Date

_compl_date_expected

NotificationID

_notif_id

Notification Description

_notif_desc

Notification Type

_notif_type

Notification Priority

_notif_priority

Notification Timestamp

_notif_time

Namespace

Namespace_namespace

Version

Version_version

XML API Functionality

The following list contains all currently available requests and their responses.

AddOrderThread

AddOrderThread lets you add sub process threads to a pending order. The order must reside

in one of the sub processes.

Note:

Operation

AddOrderThread

Parameters

OrderlID: The Order ID.

AddOrderThread has been deprecated and is supported only for backward
compatibility. Use amendment processing functionality instead.

Process: The process mnemonic to indicate where the sub process task resides.

ProcessPosition: The process position mnemonic of the sub process task.

Add: A list of nodes to be added. The format of this should follow UpdateOrder. Request
format. You may add multiple instances of the pivot nodes, multiple threads are created as a

result.

Request Example with One Pivot Node Value

<AddOrderThread.Request xmlns="urn:com:metasolv:oms:xmlapi:1">

<0rderID>1234</OrderID>

<Process>process_mnemonic</Process>

ORACLE

3-6

ORACLE

Chapter 3
XML API Functionality

<ProcessPosition>process position mnemonic</ProcessPosition>
<Add path="/client info">
<address>
<streetl>55 James St.</streetl>
<city>Washington</city>
<state>DC</state>
<country>USA</country>
<zip>20002</zip>
</address>
</Add>
</AddOrderThread.Request>

In this case, client info is the pivot node.

Response

<AddOrderThread.Response xmlns="urn:com:metasolv:oms:xmlapi:1"/>

Request Example with Multiple Pivot Nodes

<AddOrderThread.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<Process>process_mnemonic</Process>
<ProcessPosition>process position mnemonic</ProcessPosition >
<Add path="/error">
<code>1000</code>
<code>2000</code>
</Add>
</AddOrderThread.Request>

In this case, /error/code is the pivot node.

Response

<AddOrderThread.Response xmlns="urn:com:metasolv:oms:xmlapi:1"/>

Error Codes

200: Order data invalid

232: Order update failed

270: Transaction not allowed

302: Request parameter error

350: Pivot node data is not provided

351: Process position supplied is not a sub process task
352: No sub process task is currently pending

354: Process position not found

355: Pivot node not found

356: Cannot spawn threads for sub-process tasks that support sequential sub-processing
400: Not authorized

500: Internal error

3-7

Chapter 3
XML API Functionality

Note:

See Table 3-3 for more information if you receive an error code that is not listed here.

Acknowledgments

ORACLE

A list of retrievable acknowledgments for a given notification.

Operation

Acknowledgments

Parameters
The request requires one of two possible parameters:

Notification: If the notification is supplied, all acknowledgments for that notification are
returned.

Order ID: If the order ID is supplied, all acknowledgments for all notifications for that order ID
are returned.

Namespace: The namespace mnemonic of order type/source.

Version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

The Notification and NotificationDescription elements are identical for all acknowledgments. If
the request was for a Notification, the information is duplicated to keep consistency of the
Acknowledgement element's content.

Request Example

<Acknowledgements.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<Notification>send order creation</Notification>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</Acknowledgements.Request>

The response includes the NotificationID or OrderID supplied and zero or more
Acknowledgement elements. Each Acknowledgement element includes the following:

Notification ID: The notification ID associated with this acknowledgment.
NotificationDescription: The description of the notification. If no description, it is left blank.

OrderHistID: The order history ID associated with the acknowledgment. If this is not a
transition based natification, then OrderHistID is empty.

Time: The time the acknowledgment was created.
Author: The user ID who created the acknowledgment.

Comment: The comment included with the acknowledgment. If no comment is supplied, it is
empty.

Action: A string with a value of one of:

* Activate: the acknowledgment was created when the notification was activated.

3-8

Chapter 3
XML API Functionality

« Update: the acknowledgment was added to the notification.

» Deactivate: the acknowledgment deactivated the notification.

Response Example

<Acknowledgements.Response xmlns="urn:com:metasolv:oms:xmlapi:1">

<NotificationID>3244</NotificationID>

<Acknowledgement>
<NotificationID>3244</NotificationID>
<NotificationDescription>Poll every hour</NotificationDescription>
<OrderHistID/>
<Time>2000-10-30T14:44:33 EST</Time>
<Author>OMS 160</Author>
<Comment/>
<Action>activate</Action>

</Acknowledgement>

<Acknowledgement>
<NotificationID>3244</NotificationID>
<NotificationDescription>Poll every hour</NotificationDescription>
<OrderHistID/>
<Time>2000-10-30T15:01:22 EST</Time>
<Author>jdoe</Author>
<Comment>Activated switch</Comment>
<Action>deactivate</Action>

</Acknowledgement>

</Acknowledgements.Response>

Error Codes

e 110: Order not found

190: Notification not found

e 302: Request parameter error

500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

AcknowledgeNotification

ORACLE

Adds an acknowledgment to a notification. A naotification can be acknowledged any number of
times until is deactivated. Once an acknowledgment with a request to deactivate the
notification is received, the notification is no longer included in the list of notifications.

Operation

AcknowledgeNotification

Parameters
NotificationID: The unique identification number of the notification.

OrderID: The order ID associated with the notification. Omitted for system-based notifications.

3-9

Chapter 3
XML API Functionality

OrderHistID: The order history ID associated with the notification. Omitted or polled
notifications.

Comment: A string description to include with the acknowledgment.

Deactivate: A "true" or "false" value to deactivate the notification.

Request Example

<AcknowledgeNotification.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<NotificationID>3444</NotificationID>
<0rderID>123</0OrderID>
<OrderHistID>5665</OrderHistID>
<Comment>This is a string comment</Comment>
<Deactivate>true</Deactivate>

</AcknowledgeNotification.Request>

Response Example

<AcknowledgeNotification.Response
xmlns="urn:com:metasolv:oms:xmlapi:1" />

Error Codes

190: Notification not found

e 302: Request Parameter Error

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

AssignOrder
Assigns an order to a given user.

Operation

AssignOrder

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

User: The user ID to assign to the order.

Request Example

<AssignOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>22334</0OrderHistID>
<User>jsmith</User>

</AssignOrder.Request>

ORACLE 310

CancelOrder

ORACLE

The AssignOrder response includes the new Order History ID for the order.

Response Example

<AssignOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">

<0rderID>1234</0OrderID>
<OrderHistID>33247</OrderHistID>

</AssignOrder.Response>

Error Codes

110:
251:
253:
270:
302:
400:
401:
500:

Order not found

Transition invalid

User not found

Transaction not allowed
Request parameter error
Not authorized

Database Connection Failed

Internal error

Note:

Chapter 3
XML API Functionality

See Table 3-3 for more information if you receive an error code that is not listed

here.

Cancels an order as described below depending on the parameters supplied in the request:

Cancels the pending tasks for an order and sets an exception status regardless of where it
currently is in the process flow. All pending tasks are removed and the order goes to the
location defined by the exception status - either a particular task, or stopped.

Or

Cancels an order by undoing all completed tasks and returning the order to the creation

task.

Parameters

To cancel and set an exception:

OrderID: The ID of the order to cancel

Status: The exception status mnemonic to set

To cancel and undo completed tasks:

OrderlID: The ID of the order to cancel

And one of the following:

Immediate: Force immediate cancellation of all completed tasks in the order.

3-11

Chapter 3
XML API Functionality

GracePeriodExpiryDate: A period of time to allow tasks in the Accepted state time to
complete.

Infinite: Wait indefinitely until all tasks in the Accepted state complete.

Optional parameters

Eventinterval: If the cancellation is not immediate, you can set an interval for sending a
jeopardy notification.

Reason: The reason for canceling the order.

Request Example 1: Cancel and Set Exception

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<Status>status_memonic</Status>

</CancelOrder.Request>

Request Example 2: Cancel and Undo

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</0OrderID>
<Immediate/>
<Reason>Customer relocating services</Reason>
</CancelOrder.Request>

or

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<GracePeriodExpiryDate>2006-10-10T11:10:10 EST</GracePeriodExpiryDate>
<EventInterval>PT10S</EventInterval>
<Reason>Customer relocating services</Reason>

</CancelOrder.Request>

or

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<Infinite/>
<Reason>Customer relocating services</Reason>
</CancelOrder.Request>

Response Example 1: Cancel and Set Exception

If the status mnemonic resulted in the order moving to a task, the OrderHistID has a value. If
the order is stopped, then OrderHistID is empty.

<CancelOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</0OrderID>
<OrderHistID/>

</CancelOrder.Response>

Example 2: Cancel and Undo

<CancelOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</0OrderID>
</CancelOrder.Response>

Error Codes

e 110: Order Not Found

ORACLE 310

Chapter 3
XML API Functionality

e 255: Invalid Status Mnemonic
e 270: Transaction not allowed
e 302: Request Parameter Error
e 400: Not Authorized

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

CompleteOrder

ORACLE

Completes an order and supplies a status mnemonic for the order.

Operation

CompleteOrder

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

Status: The status mnemonic.

Request Example

<CompleteOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</OrderID>
<OrderHistID>33251</0OrderHistID>
<Status>submit</Status>

</CompleteOrder.Request>

Response Example

<CompleteOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID/>

</CompleteOrder.Response>

Response Example for Amendment

<CompleteOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>7</OrderID>
<OrderHistID/>
<Amendment xmlns="um:com:metasolv:oms:xmlapi:1">
<matchedOrderID>6</matchedOrderID>
<Status>accepted</Status>
</Rmendment>
</CompleteOrder.Response>

Error Codes

e 110: Order not found

e 251: Transition invalid

3-13

Chapter 3
XML API Functionality

e 255: Status mnemonic invalid

e 270: Transaction not allowed

e 302: Request parameter error

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

CopyOrder

You can create a new order populated with the data from an existing order. The old order is
retrieved using the order creation template associated with the type and source of the new
order. The existing order data that is visible in the new order creation template is inserted into
the new order. Any data from the old order that does not map to the new order's creation
template is not inserted into the new order.

Operation

CopyOrder

Parameters

OriginalOrderID: The order ID of the existing order to copy.
OrderType: The order type mnemonic for the new order.
OrderSource: The order source mnemonic for the new order.
Reference: The reference number for the new order.

Priority: An integer of 0-9 indicating the priority level of the order. 5 is the default priority.

Request Example

<CopyOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0riginalOrderID>1235</0OriginalOrderID>
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Reference>AA-NEW-345</Reference>
<Priority>5</Priority>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</CopyOrder.Request>

The content of the response is the same as CreateOrder, except that CopyOrder.Response is
the top level element.

Response Example

<CopyOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1236</0OrderID>
<OrderHistID>23334</0OrderHistID>

ORACLE 314

Chapter 3
XML API Functionality

<OrderSource>sourcel</OrderSource>
<OrderType>phone_transfer</OrderType>
<OrderState>open.not_running.not started</OrderState>
<State>received</State>
<Reference>AA-NEW-345</Reference>
<Priority>5</Priority>
<Namespace>DSL_Highspeedline</Namespace>
<Version>l.1</Version>
<CopyRemarks>false</CopyRemarks>
</CopyOrder.Response>

Error Codes

e 150: Namespace/version not found.
e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Namespace: The namespace mnemonic of order type/source.

Version: The version of the order type or source.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

CreateOrder

ORACLE

To create an order you must provide an order type and order source with a CreateOrder
operation. The initial data for the order is provided based on the same structure as the order
template. The root element of the order has the XML name of _root.

Operation

CreateOrder

Parameters
ParentOrderID: The parent order.

OrderType: The order type mnemonic.

3-15

Chapter 3

XML API Functionality
OrderSource: The order source mnemonic.
View: The view (query task) assigned to the order.
Reference: A reference ID string.
Priority: An integer of 0-9 indicating the priority level of the order. 5 is the default priority.
Namespace: The namespace mnemonic of order type/source.
Version: The version of the order type or source.

_root: The root element of the order document.

Optional Parameters
AddMandatory - If true:

« If you delete a mandatory node, AddMandatory replaces the node and populates it with the
default value.

e If the request is missing a mandatory node, AddMandatory adds the missing node and
populates it with the default value.

Note:

If you add a mandatory field, but do not include a value, AddMandatory will not
add a default value and the request will generate an error-error code 200.

¢ Order header element.
e If not explicitly set, defaults to 5.

e If the priority specified is above the maximum or below the minimum priority value for the
order type/source, it is automatically rounded up or down accordingly.

Note:

If the priority is set outside the range of allowable priority values for the system
(0-9) or is set to a non-numeric value, an error is thrown.

» CreateOrder response always returns the priority regardless of whether it is set or not.

Request Example

<CreateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Reference>3ab34</Reference>
<Priority>5</Priority>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
<_root>
<client info>
<name>John Doe</name>
<address>
<streetl>1211 Lakeview Dr.</streetl>
<city>New York</city>

ORACLE 316

FalloutTask

ORACLE

Chapter 3
XML API Functionality

<state>NY</state>
<country>USA</country>
<zip>12345</zip>
</address>
<client info>
. more data ...
</_root>
<AddMandatory>true</AddMandatory>
</CreateOrder.Request>

Response Example

The response includes the new order ID number, the initial state, the order source and type,
and the reference provided with the request. The response always returns a priority value
whether it is set or not (defaults to 5).

<CreateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<OrderHistID>678</0OrderHistID>
<OrderSource>phone transfer</OrderSource>
<OrderType>sourcel</OrderType>
<OrderState>open.not running.not started</OrderState>
<State>accepted</State>
<Reference>3ab34</Reference>
<Priority>5</Priority>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</CreateOrder.Response>

Error Codes

150: Namespace/version not found.

152: Invalid namespace mnemonic.

153: No legacy data found. Namespace and Version need to be supplied.

200: Order data invalid

Note:

See Table 3-3 for more information if you receive an error code that is not listed here.

Initiates fallout from a particular task. This request requires an Order ID, Order History ID, and
Fallout mnemonic.

Operation

FalloutTask

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

3-17

FailOrder

ORACLE

Chapter 3
XML API Functionality

Fallout: The fallout mnemonic as defined in the metadata.

Reason: The reason for the fallout. This parameter is optional.

Request Example

<FalloutTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>501</OrderID>
<OrderHistID>3010</OrderHistID>
<Fallout>fallout switch</Fallout>
<Reason>Bad switch</Reason>
</FalloutTask.Request>

Response Example

The system returns the response with an accepted status to indicate the fallout has been
accepted for processing.

<FalloutTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>501</OrderID>
<Status>accepted</Status>

</FalloutTask.Response>

Error Codes

e 110: Order not found

e 270: Transaction not allowed

e 302: Request parameter error

* 400: Not authorized

* 401: Database connection failed

e 419: The process exception is restricted?
* 439: Invalid fallout mnemonic

e 500: Internal ErrorSuspendOrder

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

The request either fails the order, or fails the current task. OSM fails the task when OrderHistID
is provided in the request otherwise OSM fails the order. One request cannot be used to fail
both task and order at the same time.

Operation

FailOrder

Parameters
OrderID: The ID of the order to fail.
OrderHistID: The order history ID.

3-18

ORACLE

Chapter 3
XML API Functionality

Reason: The reason for the failure. This parameter is optional.
And one of the following:
Immediate: Force immediate failure of order or task.

Infinite: Wait indefinitely until all tasks on the order complete or become available.

Optional parameters

Eventinterval: An event will be generated periodically while the order remains in grace period.
This event acts as a warning to external systems than an order is in grace period and awaiting
completion of accepted work items. This value controls the frequency that the event will be
generated.

GracePeriodExpiry: A point in time, after which the grace period for completing accepted
work items expires. After this time, the order will be transitioned regardless of whether or not
there are outstanding work items. The grace period expiry date specified here must be within
the limits imposed by the grace period expiry range specified in the order state policy.
Request Example

<FailOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>501</OrderID>
<OrderHistID>3010</OrderHistID>
<Reason>BadData</Reason>

</FailOrder.Request>

Response Example

The system returns the response with an accepted status to indicate the fallout has been
accepted for processing.

<FailOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>501</OrderID>
<OrderHistID>3010</OrderHistID>

</FailOrder.Response>

Error Codes

e 110: Order not found

e 270: Transaction not allowed

e 302: Request parameter error

* 400: Not authorized

e 401: Database connection failed

e 419: The process exception is restricted?
* 439: Invalid fallout mnemonic

e 500: Internal ErrorSuspendOrder

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

3-19

Chapter 3
XML API Functionality

GetNextOrderAtTask

ORACLE

Allows agents to retrieve an order at a given task and at a specific state. The order returned by
GetNextOrderAtTask is the first order found in the OSM database that matches the request
criteria. At least one state should be present in GetNextOrderAtTask.Request. Until an order is
moved to a task or a state that does not match the request criteria, it remains to be returned by
subsequent calls to GetNextOrderAtTask.

Operation

GetNextOrderAtTask

Parameters

OrderID: If specified, retrieves the next instance of a task on the specific order. This is an
optional parameter.

Task: The mnemonic for the task.

ExecutionMode: If specified, value may be one of "do", "redo", or "undo". Retrieves the next
instance of a task with the given execution mode. This is an optional parameter.

Accept: A value of "true" or "false" indicating if the XML API should accept the order for the
user's ID.

State: A state for the task. This element can have multiple instances and the values indicate
which states a task must be in for the order to be returned. Acceptable values are:

* Assigned: The task is in the Assigned state and is assigned to the current user's ID.
* Received: The task is in the Received state.

* Accepted: The task is in the Accepted state for the current user's ID.

* Suspended: The task is in the Suspended state.

Namespace: The namespace mnemonic of the order type/source.

Version: The version of the order type or source.

Request Example

<GetNextOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<Task>provision switch</Task>
<ExecutionMode>redo</ExecutionMode>
<Accept>false</Accept>
<State>received</State>
<State>assigned</State>
<State>accepted</State>
<Namespace>DSL_Highspeedline</Namespace>
<Version>l.1</Version>

</GetNextOrderAtTask.Request>

If an order matching the request criteria is found, the response has the same content as
GetOrder.Response, except the top-level element is GetNextOrderAtTask.Response. If no
matching order is found, the response consists of the top level GetNextOrderAtTask.Response
with no child elements.

3-20

Chapter 3
XML API Functionality

Request Example

<GetNextOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<Task>provision switch</Task>
<ExecutionMode>redo</ExecutionMode>
<Accept>false</Accept>
<State>received</State>
<State>assigned</State>
<State>accepted</State>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
</GetNextOrderAtTask.Request>

If an order matching the request criteria is found, the response has the same content as
GetOrder.Response, except the top-level element is GetNextOrderAtTask.Response. If no
matching order is found, the response consists of the top level GetNextOrderAtTask.Response
with no child elements.

Response Example

<GetNextOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>2333</OrderHistID>
<Task>provision switch</Task>
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Workgroups>
<Workgroup>workgroupl</Workgroup>
<Workgroup>workgroup2</Workgroup>
</Workgroups>
<OrderState>open.running.in progress</OrderState>
<State>received</State>
<ExecutionMode>do</ExecutionMode>
<Reference>3ab34</Reference>
<Priority>5</Priority>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
< _root index="0">
<client info index="76578">
<name index="76579">John Doe</name>
<address index="76580">
<streetl index="76581">1211 Lakeview Dr.</Streetl>
<city index="76582">New York</city>
<state index="76583">NY</state>
<country index="76584">USA</country>
<zip index="76585">12345</zip>
</address>
<address index="80132">
<streetl index="80133">20 Biz drv.</streetl>
<city index="80134">New York</city>
<state index="80135">NY</state>
<country index="80136">USA</country>
<zip index="80137">12345</zip>
</address>
</client info>
. more order data ...
</ _root>
<HistoricalPerspective>
<OrderHistID>52</OrderHistID>
< _root index="0">

ORACLE 301

GetOrder

ORACLE

Chapter 3
XML API Functionality

<customer ref index="1146675411084">Cust01</customer ref>
<shape index="1146675411085">circle</shape>
<color index="1146675411086">blue</color>
<pattern index="1146675411087">checkerboard</pattern>
</_root>
<Changes>
<Update path="/color[@index="'1146675411086"]"
oldvalue="blue">green</Update>
</Changes>
</HistoricalPerspective>
</GetNextOrderAtTask.Response>

Error Codes

* 150: Namespace/version not found.

e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

e 270: Transaction not allowed.

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

To retrieve the order data, you must provide the relevant IDs obtained from the worklist or
another external source. If successful, the response includes the order data values.

To retrieve an order, you must provide the order ID and an Accept parameter indicating
whether the order is updated. You may also provide an order history ID or view (query task) ID.

Operation

GetOrder

Parameters
OrderlD: The ID of the order.

Accept: Determines whether an attempt was made to move the order to an Accepted state.

3-22

ORACLE

Chapter 3
XML API Functionality

And one of the following:

OrderHistID: The history ID of the order.

Note:

You should only use contemporary, current, or historical data that you retrieve using
the OrderHistID from a currently received or accepted task. Contemporary, current, or
historical data retrieved using OrderHlIstID for a task that is already complete may no
longer be valid.

ViewlD: The particular view (query task) associated with the order. You can obtain a list of valid
ViewlDs for an order with the ListViews.Request.

OrderChangeld: Determines from which revision the historical and current OCM (Order
Change Management) perspectives are to be constructed.

TaskExecutionHistory: Determines the processing history of a revision on a task. It contains
details of the execution mode in which the task was run in the revision, the OrderHistoryID of
the task during the revision, and the OrderChangelD of the corresponding revision.

OrderDataFilter: Parent element for the Condition child element that specifies which order
data to return in the GetOrder.Response.

« Condition: An XPath 1.0 expression against the order data defined by the view (query
task). OSM returns only the instances of the order data selected by the expression, not the
other instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM returns
only the <address> element that contains a child street element with the specified street
address. The response includes all child nodes of the instance of the <address> element
(city, postal code, and street). The other instances of the <address> element and their child
elements (city, street, and postal code) are not returned.

<OrderDataFilter>
<Condition>/subscriber info/address/[street="'190 Drive']</Condition>
</OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of <address>
(except for the other instances of the <address> element) would be returned.

There can be as many <Condition> child elements as required. When there are more than
one <Condition> elements, each condition is evaluated and applied independently of the
other conditions to the sections of the order data respectively.

Request Example

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<Accept>true</Accept>
<OrderHistID>34433</OrderHistID>

</GetOrder.Request>

When you are using an order condition that includes an element that is using a distributed

order template, you should include the namespace of the data element in the condition. For
example:

3-23

ORACLE

Chapter 3
XML API Functionality

<OrderDataFilter>
<Condition>
/ControlData/OrderItem[@type="'{OrderItemNamespace}OrderItemName' and @LineId='1l"']
</Condition>
</OrderDataFilter>

The order response includes the order source and type, the reference number, and its current
state. If an order history ID is supplied in the request, the response returns the related task
mnemonic. The order data is supplied under the _root element. The _root element and all
_root child elements include index attributes to uniquely identify each element in any
subsequent order updates.

The order response also shows the workgroup associated to the user who has accepted a
task, suspended a task, or to whom a task has been assigned. When the task is in the
received state, the response displays all workgroups that can possibly work on the task. When
the task is in the accepted state, the response displays the user who accepted the task.

If there are remarks associated with the order, there is a Remarks element in the <Remarks>
element. A Remark element has the following content:

RemarkID: A unique identifier for the remark.

Time: The time the remark was added.

Author: The user ID of the person who added the remark.

Text: The text of the remark.

TaskID: The task mnemonic of the order when the remark was added.

TaskType: The type of task. For example, creation, manual, automated, rule or delay.

OrderHistID: The order history ID for the order when the remark was created. If the remark
was added without using an OrderHistID, the field is empty.

State: The state of the order when the remark was added.

ReadOnly: A "true" or "false" value indicating if the remark can still be modified. To modify, the
current user must be the author of the remark and the remark cannot be older than a time
specified by your administrator.

ProcessStatus: The process status of the order. Possible ProcessStatus values are taken
from the reporting statuses defined in the Studio Process Editor, on the General subtab in the
Properties window.

Attachments: A parent for the attachment information having zero or more Attachment
elements.

Each attachment element contains:
AttachmentID: A unique identifier for the attachment.

FileName: The name of the file.

Response Example

<GetOrder.Response xmlns="urn:metasolv:oms:xmlapi 1">
<OrderID>1234</0OrderID>
<OrderHistID>34433</0OrderHistID>
<Task>SampleTaskl</OrderHistID>
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Workgroups>

3-24

Chapter 3
XML API Functionality

<Workgroup>workgroupl</Workgroup>
<Workgroup>workgroup2</Workgroup>
</Workgroups>
<OrderState>open.running.in progress</OrderState>
<State>received</State>
<ExecutionMode>do</ExecutionMode>
<Reference>3ab34</Reference>
<ExpectedOrderCompletionDate>2009-03-10T00:00:00%</ExpectedOrderCompletionDate>
<Priority>5</Priority>
<ProcessStatus>n/a</ProcessStatus>
<_rootindex="0">
<client_info index="76577">
<name index="76578">John Doe</name>
<address index="76579">
<streetl index="76580">1211 Lakeview Dr.</Streetl>
<city index="76581">New York</city>
<state index="76582">NY</state>
<country index="76583">USA</country>
<zip index="76584">12345</zip>
</address>
<address index="80132">
<streetl index="80133">20 Biz drv.</streetl>
<city index="80134">New York</city>
<state index="80135">NY</state>
<country index="80136">USA</country>
<zip index="80137">12345</zip>
</address>
</client info>
. more order data
</ _root>
<Remarks>
<Remark>
<RemarkID>13444</RemarkID>
<Date>2000-10-30T14:44:33 EST</Date>
<Author>jdoe</Author>
<TaskID>provision switch</TaskID>
<TaskType>manual</TaskType>
<OrderHistID>34401</OrderHistID>
<State>accepted</State>
<Text>0SM completed</Text>
<ReadOnly>true</ReadOnly>
<Attachments>
<Attachment>
<AttachmentID>111324</AttachmentID>
<FileName>provisioninfo.txt</FileName>
</Attachment>
</Attachments>
</Remark>
<Remark>
<RemarkID>14322</RemarkID>
<Date>2000-10-30T15:01:22 EST</Date>
<Author>jdoe</Author>
<TaskID>provision switch</TaskID>
<TaskType>manual</TaskType>
<OrderHistID>34401</OrderHistID>
<State>accepted</State>
<Text>Switch activated</Text>
<ReadOnly>false</ReadOnly>
<Attachments/>
</Remark>
</Remarks>
</GetOrder.Response>

ORACLE 3.95

ORACLE

Chapter 3
XML API Functionality

Request Example with OrderChangeld

This is an example of a GetOrder.Request in which the OrderChangeld is set to 123. This
function sends a request to OSM to retrieve an order with OrderChangeld 123.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>34433</OrderHistID>
<OrderChangeId>123</0OrderChangeld>
</GetOrder.Request>

Response Example with OrderChangeld and TaskExecution History

This is an example of a GetOrder.Response in which the TaskExecutionHistory element
contains details of order data revisions with corresponding OrderChangelDs. The base order
has an OrderChangelD of 0 and the revised OrderChangeld is indicated by 561.

<GetOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>2845</0rderID><OrderHistID>61926</0rderHistID>
<Task>stask a</Task>
<State>received</State>
<OrderChangeID>565</0OrderChangeID>
<OrderSource>0CMPerspectivesTestOrder</OrderSource>
<Workgroups>
<Workgroup>workgroupl</Workgroup>
<Workgroup>workgroup2</Workgroup>
</Workgroups>
<OrderType>0CMPerspectivesTestOrder</OrderType>
<OrderState>open.running.compensating.amending</OrderState>
<ExecutionMode>redo</ExecutionMode> <Reference/><Priority>5</Priority>
<Namespace>OCMPerspectivesTest</Namespace><Version>1.0.0</Version>
< _rootindex="0">
<data index="1271706877188">rev2</data>
</ _root>
<HistoricalPerspective>
<OrderHistID>61917</0OrderHistID>
< _root index="0">
<data index="1271706877188">revl</data>
</ _root>
<Changes>
<Update significant="true" path="/data[@index='1271706877188"]
"oldValue="revl">rev2</Update>
</Changes>
</HistoricalPerspective>
<CurrentPerspective>
< _root index="0">
<data index="1271706877188">rev2</data>
</ _root>
</CurrentPerspective>
<TaskExecutionHis tory>
<Task>
<OrderHistID>61917</OrderHistID>
<ExecutionMode>redo</ExecutionMode>
<OrderChangeID>561</0OrderChangeID>
</Task>
<Task>
<OrderHistID>61904</OrderHistID>
<ExecutionMode>do</ExecutionMode>
<OrderChangeID>0</OrderChangeID>
</Task>

3-26

ORACLE

Chapter 3
XML API Functionality

</TaskExecutionHistory>
</GetOrder.Response>

Response Example with Distributed Order Template

This is a partial example of the response for an order in which the order items and their
dynamic parameters properties are using the distributed order template.

<GetOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>15</0OrderID>
<OrderHistID>236809</OrderHistID>
<Task>configureCustomerSystemTask</Task>
<OrderSource>0OsmCentralOMExampleOrder</OrderSource>
<OrderType>0OsmCentral OMExampleOrder</OrderType>
<Workgroups>
<Workgroup>workgroupl</Workgroup>
<Workgroup>workgroup2</Workgroup>
</Workgroups>
<OrderState>open.running.in progress</OrderState>
<State>accepted</State>
<ExecutionMode>do</ExecutionMode>
<Reference>0rder1397065147300</Reference>
<RequestedDeliveryDate>2014-03-31T07:05:00 PDT</RequestedDeliveryDate>
<ExpectedStartDate>2014-04-09T10:39:58 PDT</ExpectedStartDate>
<ExpectedDuration>PT0S</ExpectedDuration>
<ExpectedOrderCompletionDate>2014-04-09T10:39:58 PDT</ExpectedOrderCompletionDate>
<Priority>5</Priority>
<Namespace>0smCentralOMExample-Solution</Namespace>
<Version>4.0.0.0.0</Version>
<ProcessStatus>n/a</ProcessStatus>
<_root index="0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<CustomerDetails index="11">
<nameLocation index="13">Jangadeiros</nameLocation>
<typeAddress index="23">Building</typeAddress>
</CustomerDetails>
<OrderHeader index="1">
<numSalesOrder index="2">0rder1397065147300</numSalesOrder>
<typeOrder index="3">Add</typeOrder>
</OrderHeader>
<AccountDetails index="24">
<numAccount index="25">TEL1234</numAccount>
<status index="26">Existing</status>
<corporate index="27">PoC</corporate>
<category index="32">Corporate</category>
</AccountDetails>
<ControlData index="1397065199251">
<Functions index="1397065199537">
<SyncCustomerFunction index="1397065194936" instanceLocked="true">
<componentKey index="1397065199567">
SyncCustomerFunction.CustomerSystem.WholeOrder</componentKey>
<orderItem index="1397065199570">
<orderItemRef index="1397065199571" referencedIndex="1397065194907"
xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
<ct234:productSpec index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productSpec>
<ct234:filfillPatt index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:fulfillPatt>
<ct234:1ineld index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:1inelId>
<ct234:1lineltemName index="1397065199263" xmlns:ct234="http://

3-27

ORACLE

Chapter 3
XML API Functionality

oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineIltemName>
<ct234:requestedDeliveryDate index="1397065199257"
xmlns:ct234="http://oracle.osm.centralom">2014-03-31T07:05:00 PDT</
ct234:requestedDeliveryDate>
<ct234:lineltemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/
InputMessage" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>l </
im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>
2014-03-31T07:05:00</im: requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:locationType>Street</im:locationType>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:primaryClassificationCode>Broadband Service Feature
Class</im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct234:lineltemPayload>
<ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
<ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom”" xmlns:ct264="OracleComms Model Mobile/4.0.0.0.0"
xsi:itype="ct264:S5A MobileMessagingCFSType" type="{OracleComms Model Mobile/
4.0.0.0.0}SA MobileMessagingCFSType" xmlns:ctl35="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
<ct264:MMSIncoming index="1397065199692"
xmlns:ct264="0OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
<ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="0OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
</ct234:dynamicParams>
<ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
<ct234:Servicelnstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
</orderItemRef>
</orderItem>

</SyncCustomerFunction>
</Functions>
<OrderItem index="1397065194907" xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
<ct234:productClass index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
<ct234:productSpec index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:productSpec>
<ct234:1ineld index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:1ineId>
<ct234:lineltemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineIltemName>
<ct234:requestedDeliveryDate index="1397065199257" xmlns:ct234="http://

3-28

ORACLE

Chapter 3
XML API Functionality

oracle.osm.centralom">2014-03-31T07:05:00 PDT</ct234:requestedDeliveryDate>
<ct234:lineltemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>
2014-03-31T07:05:00</im: requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:locationType>Street</im:locationType>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct234:1lineltemPayload>
<ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
<ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms Model Mobile/4.0.0.0.0"
xsi:itype="ct264:S5A MobileMessagingCFSType" type="{OracleComms Model Mobile/
4.0.0.0.0}SA MobileMessagingCFSType" xmlns:ctl35="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
<ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
<ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
</ct234:dynamicParams>
<ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
<ct234:Servicelnstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:Servicelnstance>
</OrderItem>

</ControlData>
</ _root>
</GetOrder.Response>

Request and Response Example with OrderDataFilter

The following GetOrder.Request specifies the demo_query query task that specifies the data to
return in the GetOrder.Response from an order with an order ID of 2.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>2</OrderID>
<View>demo query</View>

</GetOrder.Request>

The following response returned all the data specified by the demo_query query task including
all address multi-instance nodes.

<GetOrder.Response>
<OrderID>2</OrderID>

3-29

ORACLE

Chapter 3
XML API Functionality

<View>demo query</View>
<OrderSource>add adsl siebel</OrderSource>
<OrderType>add adsl siebel</OrderType>
<OrderState>open.running.in progress</OrderState>
<Reference>1112223333</Reference>
<Priority>5</Priority>
<Namespace>bb_ocm_demo</Namespace>
<Version>1.0.0.0.0</Version>
<ProcessStatus>n/a</ProcessStatus>
<_root index="0">
<subscriber info index="1414783208019">
<address index="1414783208020">
<city index="1414783208023">M0</city>
<postal code index="1414783208022">A1A1Al</postal code>
<street index="1414783208021">Montreal Street</street>
</address>
<address index="1414783208024">
<city index="1414783208027">0T</city>
<postal code index="1414783208026">B1B1B1</postal code>
<street index="1414783208025">0Ottawa Street</street>
</address>
<address index="1414783208028">
<city index="1414783208031">T0</city>
<postal code index="1414783208030">MIW6H8</postal code>
<street index="1414783208029">190 Drive</street>
</address>
<primary phone number index="1414783208033">1112223333
</primary phone number>
<name index="1414783208032">John Doe</name>
</subscriber info>
<adsl service details index="1414783208034">
<bandwidth index="1414783208035">3</bandwidth>
</adsl_service details>
</_root>
</GetOrder.Response>

The following request uses the OrderDataFilter to filter out all sibling instances of the address
multi-instance node. This functionality is particularly important in large orchestration orders
when requesting order item information where an unfiltered GetOrder.Response message
containing all the order data would negatively impact performance.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>2</OrderID>
<View>demo query</View>
<OrderDataFilter>
<Condition>/ root/subscriber info/address[street='190 Drive']</Condition>
</OrderDataFilter>
</GetOrder.Request>

The following response has filtered out two other instances of the address multi-instance node.

<GetOrder.Response>
<O0rderID>2</0OrderID>
<View>demo query</View>
<_root index="0">
<subscriber info index="1414682666683">
<address index="1414682666696">
<city index="1414682666697">T0O</city>
<postal code index="1414682666698">A1B277</postal code>
<street index="1414682666699">190 Drive</street>
</address>
<phone number index="1414682666689">1111111111</phone number>

3-30

Chapter 3
XML API Functionality

<name index="1414682666688">John Doe</name>
</subscriber info>
<adsl service details index="1414682666690">
<bandwidth index="1414682666691">3</bandwidth>
</adsl_service details>
</_root>
</GetOrder.Response>

Error Codes

e 110: Order not found

e 232: Order update failed

e 270: Transaction not allowed

e 302: Request parameter error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderAtTask

ORACLE

To retrieve the order data as it exists at a specified task, you must provide the relevant IDs
obtained from the worklist or another external source. If successful, the response includes the
order data values as they exist at the specified task.

Parameters
OrderlID: The order's ID number

Task: A descriptive mnemonic for the task

Request Example

<GetOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<Task>SampleTaskl</Task>

</GetOrderAtTask.Request>

Response Example

<GetOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>204</OrderID>
<OrderHistID>443</0OrderHistID>
<Task>SampleTaskl</Task>
<OrderSource>xmlapi</OrderSource>
<OrderType>xmlapi</OrderType>
<OrderState>open.running.in progress</OrderState>
<State>received</State>
<ExecutionMode>do</ExecutionMode>
<Reference>get order</Reference>
<ExpectedOrderCompletionDate>2009-03-10T00:00:00%</ExpectedOrderCompletionDate>
<Priority>5</Priority>
<Namespace>vadim</Namespace>
<Version>1.0</Version>
<_root index="0">

3-31

Chapter 3
XML API Functionality

<ProcessStatus index="1">n/a</ProcessStatus>
<order_origination index="2">
<currency index="3">150.55</currency>
<boolean index="4">Yes</boolean>
<m_multiple lines text index="5">textl</m multiple lines text>
<m_multiple lines text index="6">text2</m multiple lines text>
<options index="7">#1</options>
<phone index="8">1234567890</phone>
<date index="9">2010-10-10T15:10:10 EDT</date>
<numeric index="10">155.0</numeric>
<nested group index="11">
<currency index="12">200.0</currency>
</nested_group>
</order origination>
</ _root>
</GetOrderAtTask.Response>

Response Example with Distributed Order Template

This is a partial example of the response for an order in which the order items and their
dynamic parameters properties are using the distributed order template.

<GetOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>15</0OrderID>
<OrderHistID>236809</OrderHistID>
<Task>configureCustomerSystemTask</Task>
<OrderSource>0OsmCentralOMExampleOrder</OrderSource>
<OrderType>0OsmCentral OMExampleOrder</OrderType>
<OrderState>open.running.in progress</OrderState>
<State>accepted</State>
<ExecutionMode>do</ExecutionMode>
<Reference>0rder1397065147300</Reference>
<ExpectedOrderCompletionDate>2014-04-09T10:39:58 PDT</ExpectedOrderCompletionDate>
<Priority>5</Priority>
<Namespace>0smCentralOMExample-Solution</Namespace>
<Version>4.0.0.0.0</Version>
<ProcessStatus>n/a</ProcessStatus>
< _root index="0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<CustomerDetails index="11">
<locationType index="12">Street</locationType>
<typeAddress index="23">Building</typeAddress>
</CustomerDetails>
<OrderHeader index="1">
<numSalesOrder index="2">0rder1397065147300</numSalesOrder>
<typeOrder index="3">Add</typeOrder>
</OrderHeader>
<AccountDetails index="24">
<numAccount index="25">TEL1234</numAccount>
<status index="26">Existing</status>
<corporate index="27">PoC</corporate>
<category index="32">Corporate</category>
</AccountDetails>
<ControlData index="1397065199251">
<Functions index="1397065199537">
<SyncCustomerFunction index="1397065194936" instancelLocked="true">
<componentKey index="1397065199567">
SyncCustomerFunction.CustomerSystem.WholeOrder</componentKey>
<orderItem index="1397065199570">
<orderItemRef index="1397065199571" referencedIndex="1397065194907"
xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">

ORACLE 330

Chapter 3
XML API Functionality

<ct234:productClass index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
<ct234:productSpec index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:productSpec>
<ct234:1ineld index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:1ineId>
<ct234:lineltemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineIltemName>
<ct234:requestedDeliveryDate index="1397065199257"
xmlns:ct234="http://oracle.osm.centralom">2014-03-31T07:05:00 PDT</
ct234:requestedDeliveryDate>
<ct234:1lineltemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/
InputMessage" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>l </
im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>
2014-03-31T07:05:00</im: requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:locationType>Street</im:locationType>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:primaryClassificationCode>Broadband Service Feature
Class</im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct234:lineltemPayload>
<ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
<ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms Model Mobile/4.0.0.0.0"
xsi:itype="ct264:SA MobileMessagingCFSType" type="{OracleComms Model Mobile/
4.0.0.0.0}SA MobileMessagingCFSType" xmlns:ctl35="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
<ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
<ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="0OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
</ct234:dynamicParams>
<ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
<ct234:Servicelnstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
</orderItemRef>
</orderItem>

</SyncCustomerFunction>
</Functions>
<OrderItem index="1397065194907" xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
<ct234:productClass index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
<ct234:productSpec index="1397065199260" xmlns:ct234="http://

ORACLE 3.33

ORACLE

Chapter 3
XML API Functionality

oracle.osm.centralom">Service.Broadband</ct234:productSpec>
<ct234:1ineld index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:1ineId>
<ct234:lineltemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineItemName>
<ct234:requestedDeliveryDate index="1397065199257" xmlns:ct234="http://
oracle.osm.centralom">2014-03-31T07:05:00 PDT</ct234:requestedDeliveryDate>
<ct234:lineltemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
<im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<im:lineId>1</im:lineId>
<im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
<im:serviceId/>
<im:requestedDeliveryDate>
2014-03-31T07:05:00</im: requestedDeliveryDate>
<im:serviceActionCode>Add</im:serviceActionCode>
<im:serviceInstance>N</im:serviceInstance>
<im:serviceAddress>
<im:locationType>Street</im:locationType>
<im:typeAddress>Building</im:typeAddress>
</im:serviceAddress>
<im:itemReference>
<im:name>Brilliant Broadband</im:name>
<im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
<im:specificationGroup/>
</im:itemReference>
</im:salesOrderLine>
</ct234:1lineltemPayload>
<ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
<ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms Model Mobile/4.0.0.0.0"
xsi:itype="ct264:S5A MobileMessagingCFSType" type="{OracleComms Model Mobile/
4.0.0.0.0}SA MobileMessagingCFSType" xmlns:ctl35="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
<ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
<ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="0OracleComms_Model Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
</ct234:dynamicParams>
<ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
<ct234:Servicelnstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:Servicelnstance>
</OrderItem>

</ControlData>
</ _root>
</GetOrderAtTask.Response>

Error Codes

e 110: order not found
e 257: Invalid task mnemonic

e 302: request parameter error

3-34

Chapter 3
XML API Functionality

GetOrderDataHistory

ORACLE

Provides a list of the creation, update, and deletion of data in an order. Only those data
elements that are visible in the order's assigned view (query task) is described in the
OrderDataHistory response.

Operation

GetOrderDataHistory

Parameters

OrderID - The order sequence ID.

And one of the following:

OrderHistID: The order history ID.

View: A view (query task) assigned to the order.

With the given parameters, OrderDataHistory returns the order data history for all data
elements of the order. To request the data history of specific elements, any number of Field
elements can be provided to restrict the returned data history to the specific elements. The
Field element contains an attribute and path, which resolves to a mnemonic path (using /' as
separators) for the data element whose data history is requested. Index values can be used in
the path to narrow the scope of elements returned. Some examples are:

<Field path="/group node/value node" />

Returns data history for the root node, and all instances of /group_node and all instances of /
group_node/value_node.

<Field path="/group node[@index='12234"']/value node" />

Returns data history for the root node, the group_node with index 12234, and all instances of /
group_node/value_node having group_node with index 12234 as a parent.

<Field path="/group node[@index='12234"']/value node[@index='23111"]1" />
Returns data history for the root node, the group_node with index 12234, and all instances of /

group_node/value_node having the index 23111 and group_node with index 12234 as a
parent.

<Field path="/group node/value node" namespace="DSL Highspeedline " version ="1.1" />

Returns data history for the root node, and all instances of /group_node and all instances of /
group_node/value_node for the cartridge namespace DSL_Highspeedline version 1.1.

Request Example

<GetOrderDataHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<ViewID>32222</ViewID>

</GetOrderDataHistory.Request>

or

<GetOrderDataHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<View>Order Creation view</View>

3-35

ORACLE

Chapter 3
XML API Functionality

<Field path="/group node/value node" namespace="DSL Highspeedline"
version ="1.1"/>
</GetOrderDataHistory.Request>

The response returns the OrderID and OrderHistID/ViewlID provided in the request, in addition
to order data history in Field elements.

Each Field element has the following attributes:
path: The mnemonic path for the data element with '/* separating mnemonics.
namespace: The namespace mnemonic of order type/source.

version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

Index: The index number for the data element.

Parentindex: The index number of the data element's parent. If the data element is the root
node, it has an empty parentindex (parentindex="").

Multiple instance data elements have the same path but different indexes.

Each Field element has a Change element for each modification made to a data element. Each
Change element has the following attributes:

Action: The action, either create, update, or delete.
User: The user ID that performed the change.
Time: The time of the change.

If the Change element is for a value node and has an action of "create" or "update”, the value
supplied to the data appears as the text value of the Change element.

Response Example

<GetOrderDataHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>32222</OrderHistID>
<Field path="/" namespace="DSL Highspeedline " version ="1.1" index="1221"
parentIndex="">
<Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
</Field>
<Field path="/client info" namespace="DSL Highspeedline " version ="1.1"
index="1222" parentIndex="1221">
<Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
</Field>
<Field path="/client info/phone" namespace="DSL Highspeedline" version ="1.1"
index="1223" parentIndex="1221">
<Change action="create" user="oms" time="2000-01-28T14:33:22 EST">4169999999
</Change>
<Change action="update" user="jdoe" time="2000-01-28T14:35:23 EST">
4168888888
</Change>
</Field>
<Field path="/client info/address" namespace="DSL Highspeedline" version ="1.1"
index="12552" parentIndex="1222">
<Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
</Field>
<Field path="/client info/address/street" namespace="DSL Highspeedline"
version ="1.1" index="12553" parentIndex="12552">
<Change action="create" user="oms" time="2000-01-28T14:33:22 EST">
20 West St.

3-36

Chapter 3
XML API Functionality

</Change>
<Change action="delete" user="oms" time="2000-01-28T15:21:45 EST" />
</Field>
</GetOrderDataHistory.Response>

Error Codes

e 110: Order not found

e 302: Request parameter error

e 400: Not authorized

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderProcessHistory

ORACLE

Provides a list of each task transition of an order and a summary of the total time an order has
been in a process. The root data comes from the get_order_history SQL procedure, which
sorts the results in the chronological order of entry time. Note that this is not CompleteDate
necessarily. The entry time is when the order transitioned into that task and not when the order
exited that task. For sequential tasks, this amounts to the same thing as CompleteDate. But
when tasks are in parallel, it is possible for tasks to start in a particular order but complete in a
different order.

Operation

GetOrderProcessHistory

Parameter

OrderlD: The order ID for the order.

Request Example

<GetOrderProcessHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
</GetOrderProcessHistory.Request>

The GetOrderProcessHistory response returns the Order ID provided, and a Summary and
Transitions element.

The children of the Summary element are:

ExpectedCompletionDate: The expected completion date of the entire process.
ActualDuration: The sum of the duration of all transitions of the order in seconds.
StartDate: The date the order was started in the process.

CompleteDate: The date the order was completed.

3-37

ORACLE

Chapter 3
XML API Functionality

The children of the Transitions element are zero or more Transition elements. Each Transition
element has the following children:

TaskID: The task mnemonic.

TaskType: The task type; manual, automatic, and creation.

TaskDescription: The description of the task.

ExpectedCompletionDate: The expected completion date of the task in seconds.
ActualDuration: The actual duration of the task and state in seconds.
StartDate: The date/time the task and state was entered.

CompleteDate: The date and time the task and state was completed.
OrderHistID: The order history sequence ID of the order's task and state.
FromOrderHistID: The order history sequence ID of the previous task and state.
State: The state mnemonic of the order.

Status: The status mnemonic of the order.

TransitionType: There are two transition types "normal”, indicating transition within the
process or "exception" indicating the transition was to an exception processing transition.

User: The unique identifier of the user who performed the transition.

ParentTaskOrderHistID: If the transition is within a sub-process resulting from an order data
based transition, this value indicates the order history ID of the parent process task. If the
transition is not within a sub-process, this value is empty.

DataNodelndex: If the transition or a previous transition resulted from order data, this is a
correlation index for the transitions that followed from the order data based transition.

DataNodeMnemonic: If the transition is a sub-process and the result of an order data based
task (creates sub-processes), this value contains the mnemonic path (with '/' separators) of the
node on which the sub-processes tasks were created.

DataNodeValue: If the transition is based on order data and is a value node, this element
provides the value of the order data.

Response Example

<GetOrderProcessHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</0OrderID>
<Summary>
<ExpectedCompletionDate>2000-03-25T14:33:22 EST</ExpectedCompletionDate>
<ActualDuration>101000</ActualDuration>
<StartDate>2000-01-28T14:33:22 EST</StartDate>
<CompleteDate/>
</Summary>
<Transitions>
<Transition>
<TaskID>order entry</TaskID>
<TaskType>manual</TaskType>
<TaskDescription>Order Entry Task</TaskDescription>
<ExpectedCompletionDate>2000-02-15T14:33:22 EST</ExpectedCompletionDate>
<ActualDuration>65</ActualDuration>
<StartDate>2000-01-28T14:33:22 EST</StartDate>
<CompleteDate>2000-01-28T14:34:27 EST </CompleteDate>
<OrderHistID>12432</0OrderHistID>

3-38

Chapter 3
XML API Functionality

<FromOrderHistID>12431</FromOrderHistID>

<State>received</State>

<Status/>

<TransitionType>normal</TransitionType>

<User>oms</User>

<ParentTaskOrderHistID/>

<DataNodeIndex/>

<DataNodeMnemonic/>

<DataNodeValue/>

</Transition>
. more Transition elements ...
</Transitions>

</GetOrderProcessHistory.Response>

Error Codes

e 110: Order not found

e 302: Request parameter error

e 400: Not authorized

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderStateHistory

Provides a list of each order state transition and its duration. The root data comes from the
get_order_state_history SQL procedure, which sorts the results in the order of order state.
Note that this is not CompleteDate necessarily.

Each order state has a number value:

0: No state

: Not started
: Suspended
: Cancelled

. In Progress
: Amending

: Cancelling
: Completed
: Wait For Revision
: Aborted
10: Failed

O©CoO~NOOOULDS, WNBR

For an order that moves from start to finish, this will be in a chronological order. For an order
that is suspended and resumed, revised, or cancelled, it will not be in a chronological order.

Operation

GetOrderStateHistory

ORACLE 339

ORACLE

Chapter 3
XML API Functionality

Parameter
OrderlD: The order ID for the order.
Namespace

Version

Request Example

<GetOrderStateHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
</GetOrderStateHistory.Request>

The GetOrderStateHistory response returns the Order ID provided, and the following Transition
elements:

OrderState: The state mnemonic of the order.

TransitionStartDate: The date/time the order state was entered.
TransitionCompletedDate: The date/time the order state was completed.
ActualDuration: The actual duration of the order state in seconds.

User: The unique identifier of the user who performed the transition.

Reason: The reason for the order state transition. Supplied by the system when an order is
created (create order) or submitted (submit order). Optionally supplied by the user when an
order is suspended or resumed.

Response Example

<GetOrderStateHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>161</0OrderID>
<Namespace>orderamendment</Namespace>
<Version>1.0</Version>
<OrderStates>
<OrderState>
<OrderState>open.not running.not started</OrderState>
<TransitionStartDate>2006-04-03T14:08:59 EDT</TransitionStartDate>
<TransitionCompletedDate>2006-04-03T14:19:21 EDT
</TransitionCompletedDate>
<ActualDuration>PT10M22.000S</ActualDuration>
<User>oms</User>
<Reason>create order</Reason>
</OrderState>
<OrderState>
<OrderState>open.running.in progress</OrderState>
<TransitionStartDate>2006-04-03T14:19:32 EDT</TransitionStartDate>
<TransitionCompletedDate>2006-04-03T14:19:36 EDT
</TransitionCompletedDate>
<ActualDuration>PT4.000S</ActualDuration>
<User>oms</User>
<Reason>submit order</Reason>
</OrderState>
<OrderState>
<OrderState>open.not running.suspended</OrderState>
<TransitionStartDate>2006-04-03T14:19:36 EDT</TransitionStartDate>
<TransitionCompletedDate>2006-04-03T14:19:36 EDT
</TransitionCompletedDate>
<ActualDuration>PT0.000S</ActualDuration>

3-40

Chapter 3
XML API Functionality

<User>oms</User>
<Reason>customer requested hold on order</Reason>
</OrderState>
</OrderStates>
</GetOrderStateHistory.Response>

Error Codes

e 110: Order not found

e 302: Request parameter error

e 400: Not authorized

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetTaskStatuses

Provides a list of all statuses for a given task.

Operation

GetTaskStatuses

Parameter
Task - A task mnemonic.
Namespace

Version

Request Example

<GetTaskStatuses.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<Task>new_test task</Task>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</GetTaskStatuses.Request>

Response Example

<GetTaskStatuses.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<Task>new_test task</Task>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
<Status>delete</Status>
<Status>dicksonl</Status>
<Status>dickson2</Status>
<Status>end</Status>
<Status>false</Status>
<Status>redirect</Status>
<Status>submit</Status>

ORACLE 341

Chapter 3
XML API Functionality

<Status>true</Status>
<Status>undo</Status>
</GetTaskStatuses.Response>

Error Codes

* 150: Namespace/version not found.
e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

GetUserInfo

ORACLE

Provides information regarding the current user's ID, the mnemonic and description of all
assigned workgroups, and all user-defined columns (flexible headers).

Parameters

None

Request Example

<GetUserInfo.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />
The response includes the following elements:

User: ID of the user currently logged in.

Workgroup: The workgroup mnemonic to which the user is assigned.
The Workgroup element has the following attribute:

Desc: Description of the workgroup.

FlexibleHeaders: A list of all flexible headers available to the user.
The FlexibleHeaders element has the following attribute:

namespace: The namespace mnemonic of order type/source.

3-42

Chapter 3
XML API Functionality

version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

Desc: Description of the flexible header.

Response Example

<GetUserInfo.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<User>jdoe</User>
<Workgroup desc="Provisioning">provisioning</Workgroup>
<Workgroup desc="Customer Service">customer service</Workgroup>
<FlexibleHeaders>
<FlexibleHeader namespace="DSL Highspeedline" version="1.1"
desc="Name">customer.name</FlexibleHeader>
<FlexibleHeader namespace="DSL Highspeedline" version="1.1" desc=
"Phone Number">customer.phone number</FlexibleHeader>
</FlexibleHeaders>
<GetUserInfo.Response>

Error Codes

e 401: Database Connection Failed

e 500: Internal error

¢ Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

ListExceptions

Provides a list of available exception statuses for a given order. The request message includes
an Order ID and Order History ID.

Operation

ListExceptions

Parameters
OrderlD: The ID of the order.
OrderHistID: The order history ID.

Request Example

<ListExceptions.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>3422</0OrderID>
<OrderHistID>4333</OrderHistID>

</ListExceptions.Request>

The response includes the Exceptions element with zero or more status elements. The value
of a status element is the status mnemonic.

ORACLE 343

Chapter 3
XML API Functionality

Response Example

<ListExceptions.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>3422</0OrderID>
<OrderHistID>4333</OrderHistID>
<Exceptions>
<Status desc="Complete">complete</Status>
<Status desc="Delete">delete</Status>
</Exceptions>
</ListExceptions.Response>

Error Codes

e 110: Order not found

e 302: Request parameter error

e 400: Not authorized

e 401: Database Connection Failed

e 500: Internal Error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

ListStatesNStatuses

ORACLE

Returns a list of states and statuses used to transition a given task.

The task status/state request consists of a ListStatesNStatuses operation with parameters
indicating the order ID and order history ID.

Operation

ListStatesNStatuses

Parameters
OrderID: The ID of the order.
OrderHistID: The order history ID.

Request Example

<ListStatesNStatuses.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>12345</0OrderID>
<OrderHistID>67890</OrderHistID>

</ListStatesNStatuses.Request>

The response has parameters with the requested order ID, the order history ID, and the current
state of the task. The list of possible states and statuses are listed under the
TaskStatesNStatuses element. There are five possible children:

* Received: The task may be set to the Received state.

3-44

ListViews

ORACLE

Chapter 3
XML API Functionality

Accepted: The task may be accepted by the current user. Tasks are automatically moved
to the Accepted state when retrieved using GetOrder.Request with an Accept parameter of
"true”.

Assigned: The task can be assigned to any user ID listed in the User children elements.

Suspended: The task can be suspended by providing any of the state mnemonics listed
as children.

Completed: The task can be completed by providing any of the status mnemonics listed
as children.

Response Example

<ListStatesNStatuses.Response xmlns="urn:com:metasolv:oms:xmlapi:1">

<0rderID>12345</0rderID>
<OrderHistID>67890</OrderHistoryID>
<State>Received</State>
<TaskStatesNStatuses>
<Accepted/>
<Assigned>
<User>jdoe</User>
<User>rsmith</User>
</Assigned>
<Suspend>
<waiting on provisioning/>
<customer info incomplete/>
</Suspend>
<Completed>
<submit/>
<delete/>
</Completed>
</TaskStatesNStatuses>

</ListStatesNStatuses.Response>

Error Codes

110: Order not found

302: Request parameter error
400: Not authorized

401: Database Connection Failed

500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Lists the views (query tasks) associated to a user workgroup for a given order source and type.
If there is no view associated with a user workgroup, a view will not be returned. You can
associate views with workgroups by bringing up the query task in Design Studio and selecting
the Default view. See the discussion of query tasks in the Design Studio online help. (Note also
that workgroups are called roles in Design Studio.)

3-45

Chapter 3
XML API Functionality

Operation

ListViews

Parameters

OrderType: The type of the order.
OrderSource: The source of the order.
Namespace

Version

Request Example

<ListViews.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>provisioning</OrderType>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</ListViews.Request>

Response Example

<ListViews.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>provisioning</OrderType>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
<View desc="Create order" mnemonic="create order view">1223</View>
<View desc="Provision number" mnemonic="create order view">3424</View>
</ListViews.Response>

Error Codes

e 150: Namespace/version not found.
e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This condition generates an
error (152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

ORACLE 346

Chapter 3
XML API Functionality

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

ModifyRemark

A remark can be modified after it is created, either to change the text of the remark or to add or
remove attachments. Only the user who created the initial remark has authorization to change
it, and only within an administrator defined time interval. The time interval after creating a
remark is specified in the oms-config.xml file of the OSM Task web client with the property
name remark_change_timeout_hours.

Operation

ModifyRemark

Parameters
OrderlID: The order ID associated with the remark.

OrderHistID: The order history ID associated with the remark. If the remark has no
OrderHistID, this field can be omitted or empty.

RemarkID: The unique identifier for the remark.
Text: The replacement text for the remark.
AddAttachments: A list of FileName elements that specify file names for new attachments.

DeleteAttachments: A list of AttachmentID elements that specify attachments to remove from
the repository. Invalid AttachmentID values are not reported as errors. When attachments are
deleted, the associated file is deleted from the file repository.

Request Example

<ModifyRemark.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>1234</OrderID>
<OrderHistID>12333</0OrderHistID>
<RemarkID>1333</RemarkID>
<Text>This is the new text for the remark</Text>
<AddAttachments>
<FileName>newfile.txt</FileName>
<FileName>moreInformation.doc</FileName>
</AddAttachments>
<DeleteAttachments>
<AttachmentID>10222</AttachmentID>
</DeleteAttachments>
</ModifyRemark.Request>

The response follows the same format as that of UpdateOrder when there is a new
attachment. The AttachmentID elements must be used to construct the file name for storing the
attachment.

The response has a Remark element with the following child elements:

e RemarklD: The unique ID for the remark, assigned by OSM.

« Attachment: Zero or more Attachment elements for each attachment. An Attachment
element has the following child elements:

ORACLE 3-47

Chapter 3
XML API Functionality

— AttachmentID: The unique ID for the attachment, assigned by OSM. When adding the
attachment with the WebLogic file (T3) service, use the file name AttachmentID.srv,
where AttachmentID is the value of the AttachmentID element on the response.

— FileName: The name of the file specified for the attachment.

Response Example

<ModifyRemark.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<Remark>
<RemarkID>1333</RemarkID>
<Attachment>
<AttachmentID>12222</AttachmentID>
<FileName>newfile.txt</FileName>
</Attachment>
<Attachment>
<AttachmentID>12223</AttachmentID>
<FileName>moreInformation.doc</FileName>
</Attachment>
</Remark>
</ModifyRemark>

Error Codes

e 160: Remark not found

e 260: Remark cannot be modified
e 270: Transaction not allowed

e 302: Request parameter error

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Notifications
A list of current retrievable notifications.

Operation

Notifications

Parameters

None

The returned information includes the following information for each notification:
_notif_id: An integer unique identification number for the natification.

_notif_desc: A string description of the notification.

ORACLE 348

ORACLE

Chapter 3
XML API Functionality

_notif_type: Either the string 'poll' for a polled notification or 'process' for a transitional
notification.

_notif_priority: An integer indicating the priority level of the natification.
_hotif_time: An XML API datetime representing the time the notification was generated.

_order_seq_id: An integer unique identification number of the order for which the notification
was generated. If order ID does not exist, an empty value appears.

_order_hist_seq_id: An integer ID number of the order history ID for which the notification
was generated.

_order_type: The mnemonic of the order's type. If there is no order, then an empty value
appears.

_order_source: The mnemonic of the order's source. If there is no order, then an empty value
appears.

_date_pos_created: An XML API datetime representation of the time the order was created. If
there is no order, then an empty value appears.

_reference_number: The order's reference string. If there is no order, then an empty value
appears.

_priority: An integer indicating the priority level of the order.

_requested_delivery_date: The date when the order is requested to be delivered. If an order
contains multiple requested dates, for example because multiple order components have
individual requested dates, then the requested date is interpreted to be the one selected for
calculation of "expected start date."

_user: The surname currently associated with the order. If there is no order, then an empty
value appears.

_ProcessStatus: The process status of the order.
_expected_completion_date: The date that OSM expects order processing to complete.

_expected_duration: The amount of time OSM determines it will take to complete the order.
OSM calculates this value from durations given in the OSM model. OSM selects the durations
based on the details of a specific order.

_expected_start_date: The date that OSM determines that the order should begin running the
order to meet its requested delivery date. This date is calculated by considering the expected
duration. OSM only returns this parameter for orders that use orchestration plans. If an order
does not use an orchestration plan, it is not returned.

_hamespace: The namespace of the order type/source
_version: The version of the order type/source

In addition, for each flexible header assigned to the user, an instance of the following
parameter is returned:

_header: This element has an attribute named mnemonic_path which contains the path of
the flexible header. The value of the _header element is the value of the flexible header
converted into a string. Table 3-2 lists the formats for data types that require formatting to be
converted into a string:

3-49

ORACLE

Table 3-2 Formatting for Text Representation of Data Types

Chapter 3
XML API Functionality

Primitive Type

Format

dateTime yyyy-MM-ddThh:mm:ss time zone

(for example 2013-10-30T14:33:22 EST)
date yyyy-MM-dd
Boolean Yes or No

The notifications retrieved for a given user ID consist of those assigned to the user or any of
the user's workgroups still in an active state. The maximum number of notifications returned in
one request is defined by the max_notification_rows property in the oms-config.xml.

Request Example

<Notifications.Request xmlns="urn:com:metasolv:oms:xmlapi:1l" />

If there are no notifications for a user ID, the response contains only the Header element.

Response Example

<Notifications.Response xmlns="urn:com:metasolv:oms:xmlapi:1">

<Header>

< notif id desc="Notification ID"/>

< notif desc desc="Notification Description/>
< notif type desc="Notification Type"/>

< notif priority desc="Priority" />

< notif time desc="Notification Timestamp"/>
< order seq id desc="Order ID"/>

< order hist seq id desc="Order History ID"/>
< _order source desc="Source"/>

< order type desc="Type"/>

<_reference number desc="Ref. #"/>

< priority desc="Priority" />

< date pos created desc="Order Creation Date"/>

< requested delivery date desc="Requested Order Delivery Date"/>

< expected start date desc="Expected Order Start Date"/>
< _expected duration desc="Expected Order Duration"/>

< _compl date expected desc="Expected Order Completion Date"/>
< user desc="User" />

< _process_status desc="Status"/>

< namespace desc="Namespace" />

< version desc="Version" />
<customer.name desc="Customer Name"/>
<customer.phone desc="Customer Phone"/>

</Header>

<Notification>

< notif id>4567</ notif id>

< notif desc>Order transitioned</ notif desc>
< notif type>process</ notif type>

< notif priority>1</ notif priority>

< notif time>2000-10-30T14:33:22 EST</ notif time>
< order seq id>2345</ order seq id>

< order hist seq 1d>2333</ order hist seq id>
<_order source>order entry</ order source>

< _order type>pots</ order type>

< reference>AA-B3653F</ reference>

< priority>5</ priority>

< date pos created>2000-10-30T14:30:00 EST</ date pos created>

3-50

Chapter 3
XML API Functionality

< requested delivery date>2000-10-30T14:30:00 EST</ requested delivery date>
< expected start date>2000-10-20T14:30:00 EST</ expected start date>
<_expected duration>P10D</_expected duration>

< compl date expected>2000-10-30T14:30:00 EST</ compl date expected>

< user>oms</_user>

<_status/>

< namespace>DSL Highspeedline</ namespace>

< version>1.1</ version>

<customer.name>John Doe</customer.name>
<customer.phone>4165555555</customer.phone>

</Notification>
<Notification>

< notif id>4568</ notif id>

< notif desc>Pots Order Overdue</ notif desc>

< notif type>poll</ notif type>

< notif priority>1</ notif priority>

< notif time>2000-10-30T18:33:22 EST</ notif time>

< order seq id>2346</_order seq id>

< order hist seq id>2333</_order hist seq id>

< order source>order entry</ order source>

< order type>pots</ order type>

<_reference>AA-B3653F</_reference>

< priority>5</ priority>

< date pos created>2000-10-30T14:30:00 EST</ date pos_created>

< requested delivery date>2000-10-30T14:30:00 EST</ requested delivery date>
< expected start date>2000-10-20T14:30:00 EST</ expected start date>
<_expected duration>P10D</_expected duration>

< _compl date expected>2000-10-30T14:30:00 EST</ compl date expected>
< user>oms</_user>

<_status/>

< namespace>DSL Highspeedline</ namespace>

< version>1.1</ version>

<customer.name>John Doe</customer.name>
<customer.phone>4165555555</customer.phone>

</Notification>
. more notifications
</Notifications.Response>

Error Codes

500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

OrderTypesNSources

ORACLE

Orders have an associated source and type that is required prior to creating new orders. The
available order type/source combinations are retrieved by requesting OrderTypesNSources.
The mnemonics for the type/source pairs can be used to retrieve an order template and create
a new order.

Operation

OrderTypesNSources

3-51

ORACLE

Chapter 3
XML API Functionality

Parameters
Namespace

Version

Request Example

<OrderTypesNSources.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</OrderTypesNSources.Request>

Response Example

<OrderTypesNSources.Response mlns="urn:com:metasolv:oms:xmlapi:1">
<TypeNSource namespace="DSL Highspeedline" version="1.1">
<Type mnemonic="phone activation" category="Customer Service"
desc="Phone Activation Order"/>
<Source mnemonic="sourcel" desc="from front-end system"/>
</TypeNSource>
<TypeNSource namespace="DSL Highspeedline" version="1.1" >
<Type mnemonic="phone transfer category="Customer Service"
desc="Phone Number Transfer"/>
<Source mnemonic="sourcel" desc="from front-end system"/>
</TypeNSource>
</OrderTypesNSources.Response>

Error Codes

e 150: Namespace/version not found.
e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

< Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request without a version. This forces the system to
use the default version for the supplied hamespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, this cartridge is used. If this legacy cartridge does not exist, then an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist an error (150)
message is shown.

Scenario 5: If both namespace and version attributes are set to "*", the list of available order
types and sources across all namespaces and versions is returned.

3-52

Chapter 3
XML API Functionality

Scenario 6: If a namespace is supplied with version "*", the list of available order types and
sources corresponding to the namespace across all of its existing versions is returned.

OrderViewTemplate

ORACLE

The OrderViewTemplate request provides the data type descriptions, such as minimum and
maximum instances of lists, data types, and business names for data elements.

The OrderViewTemplate describes the structure of a particular order type. The types of order
templates can be grouped into the following categories:

* Order view creation template: You must provide the mnemonics for a valid order type/
source pair.

* Order view template for a particular task in a process: You must provide the order ID
(_order_seq_id in the worklist) and the order history ID (_order_hist_seq_id in the worklist).

e Order view templates for orders not in a process: You must provide the order view
(query task) template "view ID". You can obtain the list of valid view IDs for an order with a
ListViews Request.

e Order view templates for a task: You must provide the order type/source and task
mnemonic.

Operation

OrderViewTemplate

Parameters

For a creation template:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

For an in-process order:

OrderID: The sequence ID of an order (Orderdata/_order_seq_id from worklist).

OrderHistID: The history sequence ID of an order (Orderdata/_order_hist_seq_id from the
worklist).

Namespace: The namespace mnemonic of order type/source.
Version: The version mnemonic of order type/source.

For an order not in a process:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

View: A view (query task) valid for a particular order type and source.
Namespace: The namespace mnemonic of order type/source.
Version: The version mnemonic of order type/source.

For a task order view template:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

3-53

Chapter 3
XML API Functionality

Task: The task mnemonic.
Namespace: The namespace mnemonic of order type/source.

Version: The version mnemonic of order type/source.

Request Example

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</OrderViewTemplate.Request>

Response Example

<OrderViewTemplate.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderType>phone transfer</OrderType>
<OrderSource>sourcel</OrderSource>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>
<_root>
<client info
readOnly="false"
desc="Client Information"
minInstance="1"
maxInstance="1">
<name
readOnly="false"
desc="Name"
minInstance="1"
maxInstance="1"
type="TX"
len="30"/>
<address
readOnly="false"
desc="Address"
minInstance="1"
maxInstance="2">
<streetl
readOnly="false"
desc="Street 1"
minInstance="1"
maxInstance="1"
type="TX"
length="50" />
<street?2
readOnly="false"
desc="Street 2"
minInstance="0"
maxInstance="1"

type="TX"
length="50" />
<city
readOnly="false"
desc="City"

minInstance="0"
maxInstance="1"
type="TX"
length="25" />
<state
readOnly="false"

ORACLE -

ORACLE

Chapter 3
XML API Functionality

desc="State"
minInstance="1"
maxInstance="1"
type="LK" />
</address>
</client info>
</_root>
<LookupTables>
<state>
<option desc="New York">NY</option>
<option desc="California">CA</option>
<option desc="New Jersey">NJ</option>
... etc ...
</state>
</LookupTables>
</OrderViewTemplate.Response>

The response includes the OrderViewTemplate beginning with a _root element. Each child is
named with the mnemonic of that data element, along with the following attributes:

Desc: The business name of the element.

Minlnstance: The minimum number of instances allowed (0-n). A field with mininstance > 0 is
a mandatory field if the parent is defined in the order.

MaxInstance: The maximum number of instances allowed (1-n).

Mask: The mask associated with an element of type NM or TX.

ReadOnly: A true/false attribute indicating that the field cannot be modified.
Type: The data type of the element. The data type values are:

* NM: Numeric type

TX: Text type

e D: Date type in the form: yyyy-mm-dd (for example, 2000-03-10)

* DT: Date/time type in the form: yyyy-mm-ddThh:mm:ss time zone (for example,
2000-03-10T14:43:00 EST)

e PH: Phone number type

* YN: Boolean type (Yes/No)

e CY: Currency type

* LK: Lookup type

Length: The maximum length of the element if the type is NM or TX.

The values for the lookup elements in the view template are rooted at the LookupTables
element. The name of a lookup element matches the data elements of type LK in the order
template.

Error Codes

e 150: Namespace/version not found.
e 152: Invalid namespace mnemonic.

e 153: No legacy data found. Namespace and Version need to be supplied.

3-55

Chapter 3
XML API Functionality

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This forces the system to
use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, this cartridge is used. If this legacy cartridge does not exist, then an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, then an error (150)
message is shown.

For an In-Process Order

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<OrderHistID>12333</OrderHistID>

</OrderViewTemplate.Request>

For an Order Not In a Process

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<ViewID>1123</ViewID>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</OrderViewTemplate.Request>

or

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<View>phone transfer</View>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</OrderViewTemplate.Request>

For a Task Order View Template

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderSource>sourcel</OrderSource>
<OrderType>phone transfer</OrderType>
<Task>phone transfer</Task>
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</OrderViewTemplate.Request>

ORACLE -

Query

ORACLE

Chapter 3
XML API Functionality

Queries the order header information and data elements of orders for inclusion in the
Query.Response.

Operation

Query

Parameters

OrderID: An integer value with wildcards for the order sequence ID.
Reference: A string with wildcards for the reference number.
OrderType: An order type mnemonic.

OrderSource: An order source mnemonic.

Task: The task mnemonic.

CreatedDate: The date the order was created. Two attributes, "from" and "to", indicate the
beginning and ending date or date/time for the query.

RequestedDeliveryDate: The date requested by the client for the order to be completed.
ExpectedStartDate: The date that OSM will begin processing an order.

ExpectedDuration: The amount of time the order is expected to take to complete processing.
ExpectedCompletionDate: The date that OSM expects the order to complete.
CompletedDate: The date the order was completed.

User: A user ID.

State: A task state mnemonic. The valid mnemonics are:

* Received

e Assigned
e Accepted
e Completed

* Any user-defined state mnemonics

Status: A task status mnemonic. The valid status mnemonics are those statuses defined in the
OSM Administrator.

Priority: An integer indicating the priority level of the order.
OrderState: An order state mnemonic. The valid mnemonics are:
* open.not_running.not_started

e open.not_running.suspended

e open.not_running.waiting_for_revision

e open.not_running.cancelled

° open.running.in_progress

e open.running.compensating.amending

3-57

ORACLE

Chapter 3
XML API Functionality

e open.running.compensating.cancelling
e closed.completed

* closed.aborted

e open.not_running.failed

TargetOrderState: Same mnemonics as OrderState.

ExecutionMode: An execution mode mnemonic. The valid mnemonics are:

« Do
* Redo
e Undo

FlexibleHeaders: A list of flexible headers available to the user. Can contain zero or more
FlexibleHeader elements with the mnemonic paths of flexible headers to include in the output.
If FlexibleHeaders is omitted, no flexible headers are returned.

SingleRow: This element forces OSM to display only a single row if a query returns more than
one match per order.

OrderBy: The OrderBy element contains a list of fields on which to order the results. The order
of the Field elements is significant: the results are ordered based on the first element, then the
second element, and so on.

The order attribute must be either descending or ascending, otherwise an error results. The
path attribute must belong to the element name of one of the fixed headers or one of the
request's selected flexible headers. If the mnemonic path does not resolve to a valid field to
sort by, error code 170: Header for mnemonic path not found is returned.

When sorting on fixed header elements, the sorted value for elements that are represented by
an ID (that is, state) will be sorted based on the internal ID's value, not that of the final output.

For querying order data values, a 'Field' element is provided with the following format. If
querying for equality:

<Field path="/client info/address/city" namespace="DSL Highspeedline"
version="1.1">Toronto</Field>

If querying for a range of values:

<Field path="/client info/address/city" namespace="DSL Highspeedline"
version="1.1">

<From>A*</From>

<To>D*</To>
</Field>

The "path" attribute of the field is a sequence of data element mnemonics, separated by a
slash, "/", indicating the mnemonic path of the data field to be matched against. Only the data
elements that are assigned as flexible headers for the user ID can be queried in a Field
element.

All of the elements have the following attributes:

namespace: The namespace mnemonic of order type/source. If you do not specify a
namespace or specify *, all available namespaces are picked up.

version: The version of the order type or source. If you do not specify a version or specify *, all
available versions are picked up.

3-58

Chapter 3
XML API Functionality

You can use wildcard characters with the Order ID, Reference and Field elements whose path
attribute resolves to a OSM text field (TX data type). Valid wildcard characters are:

e "™"indicates any number of characters
e "?"indicates a single character

If an additional element, SingleRow, is "true", an order is listed only once. If SingleRow is
"false", the order is listed once for each data element it matches in the query request.

The Query request performs a logical "AND" of all provided parameters.

Request Example

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>123*</OrderID>
<FlexibleHeaders>
<FlexibleHeader namespace="DSL Highspeedline" version="1.1"
path="customer/name"/>
<FlexibleHeader namespace="DSL Highspeedline" version="1.1"
path="customer/phone"/>
<FlexibleHeader>customer/address</FlexibleHeader>
<FlexibleHeader>customer/name</FlexibleHeader>
</FlexibleHeaders>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">

<FlexibleHeaders>

<FlexibleHeader namespace="view framework demo" version="1.0.0.0.0"path="/

account_information/amount owing"/>

</FlexibleHeaders>

<Field namespace="view framework demo" version="1.0.0.0.0" path="/account information/
amount owing">444</Field>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>123*</OrderID>
<Field path="/client info/address/city" namespace="DSL Highspeedline"
version="1.1">Toronto</Field>

</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1l">
<0rderID>123*</OrderID>
<OrderBy>
<Field order="descending" namespace="DSL Highspeedline" version="1.1">
customer/phone </Field>
</OrderBy>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderState>open.not_running.not started</OrderState>
</Query.Request>

ORACLE 350

ORACLE

Chapter 3
XML API Functionality

Response Example

<Query.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<Header>

< _order seq id desc="Order ID"/>
< order hist seq id desc="Order History ID"/>
< order state desc="Task State"/>
<_execution mode desc="Execution Mode"/>
< task_id desc="Task Name"/>
< order source desc="Source"/>
< _order type desc="Order Type"/>
<_current order state desc="Order State"/>
< _target order state desc="Target Order State"/>
< _reference number desc="Ref. #"/>
< priority desc="Priority"/>
< date pos created desc="Order Creation Date"/>
< requested delivery date desc="Requested Delivery Date"/>
< expected start date desc="Expected Start Date"/>
<_expected duration desc="Expected Duration"/>
< user desc="User"/>
< process_status desc="Process Status"/>
< date pos_started desc="Started"/>
< _compl date expected desc="Expected Order Completion Date"/>
< ord completion date desc="Completed Date"/>
< _grace period completion date desc="Expected Grace Period Completion"/>
< num_remarks desc="Number of Remarks"/>
< namespace desc="Namespace"/>
< _version desc="Version"/>
<_workgroups desc="Workgroups">
<_workgroup/>
</ _workgroups>

</Header>
<Orderdata>

< order seq 1d>40</ order seq id>
< order hist seq 1d>502</ order hist seq id>
< order state>received</ order state>
<_execution mode>do</ execution mode>
< _task_id>CollectionsFunction CollectionsSI</ task id>
< _order_ source>OsmCentralOMExampleOrder</ order source>
< _order type>OsmCentralOMExampleOrder</ order type>
<_current order state>open.not running.waiting</ current order state>
< _target order state/>
<_reference number>[do:1]$ref1436191716838</ reference number>
< priority>5</ priority>
< date pos created>2015-07-06T07:08:36 PDT</ date pos created>
< _requested delivery date>2015-08-05T10:08:36 PDT</ requested delivery date>
<_expected start date>2015-07-09T10:08:36 PDT</ expected start date>
<_expected duration>P26D</_expected duration>
< user/>
< _process_status>n/a</ process_status>
< date pos started>2015-07-06T07:08:38 PDT</ date pos started>
< _compl date expected>2015-08-04T10:08:36 PDT</ compl date expected>
< ord completion date/>
< _grace period completion date/>
< num_remarks>0</ num remarks>
< namespace>OsmCentralOMExample-Solution</ namespace>
< version>4.0.0.0.0</ version>
<_workgroups>
<_workgroup/>
</ _workgroups>

3-60

Chapter 3
XML API Functionality

</Orderdata>
</Query.Response>

The query response uses a similar format as the XMLAPI Worklist message. It consists of a
header element that contains descriptive elements for all columns returned. The columns
consist of a number of fixed header elements (prefixed with _), followed by any flexible
headers defined for the user in the OSM Administrator. Zero or more Orderdata elements
follow the Header element with each one corresponding to the data for a particular order
matched by the query criteria. If the request has "SingleRow" set to "false", an order appears
once for each data element that was matched. If set to "true", it appears only once.

To retrieve an order matched in the query, the GetOrder.Request supports a parameter,
"ViewlID", which retrieves an order based on a particular view (query task). You can obtain a list
of valid ViewIDs for an order source/type with ListViews.Request.

Error Codes

e 170: Header for mnemonic path not found
e 302: Request parameter error

e 400: Not authorized

e 401: Database connection failed

e 500: Internal Error

e 601: Deprecated parameter

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

ReceiveOrder

ORACLE

Moves an order to the Received state.

Operation

ReceiveOrder

Parameters
OrderlID: The ID of the order to change.
OrderHistID: The order history ID.

Request Example

<ReceiveOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>222334</0rderHistID>

</ReceiveOrder.Request>

Response Example

<ReceiveOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>

3-61

Chapter 3
XML API Functionality

<OrderHistID>33123</0OrderHistID>
</ReceiveOrder.Response>

The ReceiveOrder response includes the new order history ID for the task.

Error Codes

e 110: Order not found

e 251: Transition invalid

e 270: Transaction not allowed

e 302: Request parameter error

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

ResolveFailure

ORACLE

Resolves failures from a particular task causing the task to transition from a failed execution
mode to a corresponding normal execution mode. The task reverts to the state it had been in
before the failure occurred. This request requires an Order ID and Order History ID.

Operation

ResolveFailure

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

Reason: The reason for the failure resolution. This parameter is optional.

Request Example

<ResolveFailure.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>18</0OrderID>
<OrderHistID>342</OrderHistID>

</ResolveFailure.Request>

Response Example

<ResolveFailure.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>18</OrderID>
<OrderHistID>342</OrderHistID>

</ResolveFailure.Response>

Error Codes

e 110: Order not found

3-62

Chapter 3
XML API Functionality

e 270: Transaction not allowed

e 302: Request parameter error

e 400: Not authorized

e 401: Database connection failed

e 500: Internal ErrorSuspendOrder

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

ResumeOQrder

ORACLE

Releases a suspended order back into the system and returns it to the state from which it was
suspended. Can also be used to resubmit a canceled order back into the system.

Operation

ResumeOrder

Parameters
OrderlID: The ID of the order to resume.

Reason: The reason why the order is being resumed. Optional.

Request Example

<ResumeOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<Reason>Customer requests resumption of order</Reason>
</ResumeOrder.Request>

Response Example

<ResumeOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
</ResumeOrder.Response>

Error Codes

e 110: Order not found

e 251: Transition invalid

e 270: Transaction not allowed

e 302: Request parameter error

e 401: Database Connection Failed

e 500: Internal error

3-63

RetryTask

ORACLE

Chapter 3
XML API Functionality

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

Retries a failed task causing the task to transition from a failed execution mode to a
corresponding normal execution mode. The task reverts to the received state. This request
requires an Order ID and Order History ID.

Operation

RetryTask

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

Reason: The reason retrying the task. This parameter is optional.

Request Example

<RetryTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>18</OrderID>
<OrderHistID>342</0OrderHistID>

</RetryTask.Request>

Response Example

<RetryTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>18</OrderID>
<OrderHistID>342</0OrderHistID>

</RetryTask.Response>

Error Codes

e 110: Order not found

e 270: Transaction not allowed

e 302: Request parameter error

e 400: Not authorized

e 401: Database connection failed

e 500: Internal ErrorSuspendOrder

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

3-64

Chapter 3
XML API Functionality

SetException

ORACLE

Sets the exception status for a given order. This request requires an Order ID, Order History
ID, and Status mnemonic.

Operation

SetException

Parameters
OrderID: The ID of the order to change.
OrderHistID: The order history ID.

Status: The status mnemonic.

Request Example

<SetException.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>3422</0rderID>
<OrderHistID>4333</OrderHistID>
<Status>complete</Status>

</SetException.Request>

Response Example

<SetException.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>3422</0rderID>
<OrderHistID>4334</OrderHistID>

</SetException.Response>

The SetException response includes the new order history ID if the exception goes to a new
task.

Error Codes

e 110: Order not found

e 256: Invalid exception status mnemonic
e 270: Transaction not allowed

e 302: Request parameter error

* 400: Not authorized

e 401: Database Connection Failed

* 419: The process exception is restricted

e 500: Internal ErrorSuspendOrder

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

3-65

Chapter 3
XML API Functionality

SuspendOrder

ORACLE

Suspends an order, or a task, depending on the parameters supplied in the request.

Operation

SuspendOrder

Parameters

For an order:

OrderID: The ID of the order to suspend.

And one of the following:

Immediate: Force immediate suspension of all tasks associated with the order.

GracePeriodExpiryDate: A period of time to allow tasks in the Accepted state time to
complete.

Infinite: Wait indefinitely until all tasks in the Accepted state complete.

Optional parameters

Eventinterval: If the suspension is not immediate, you can set an interval for sending a
jeopardy notification.

Reason: The reason why the order is being suspended.
For a task:

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

State: The user-defined state mnemonic.

Request Example 1: Order

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<Immediate/>
<Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

or

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<GracePeriodExpiryDate>2006-10-10T11:10:10 EST</GracePeriodExpiryDate>
<EventInterval>PT10S</EventInterval>
<Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

or

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<Infinite/>
<Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

3-66

Chapter 3
XML API Functionality

Request Example 2: Task

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
<OrderHistID>22334</OrderHistID>
<State>waiting on provisioning</State>
</SuspendOrder.Request>

Response Example 1: Order

<SuspendOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</0OrderID>
</SuspendOrder.Response>

Response Example 2: Task

<SuspendOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderID>1234</OrderID>
<OrderHistID>33247</0OrderHistID>

</SuspendOrder.Response>

The SuspendOrder response includes the new order history ID for the task.

Error Codes

e 110: Order not found

e 251: Transition invalid

o 254: State mnemonic invalid

e 270: Order could not be suspended
e 302: Request parameter error

e 401: Database Connection Failed

e 500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

TaskDescription

ORACLE

The TaskDescription operation retrieves the list of all available tasks.

Operation

TaskDescription

Parameters
Namespace: The namespace mnemonic of the order type/source (optional).

Version: The version of the order type or source (optional).

3-67

Chapter 3
XML API Functionality

Request Example 1

<TaskDescription.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />

Request Example 2

<TaskDescription.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<Namespace>DSL Highspeedline</Namespace>
<Version>1.1</Version>

</TaskDescription.Request>

Response Example

<TaskDescription.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<Task mnemonic="activate switch" TaskType="automatic" desc="Activate switch">
<Task mnemonic="provision number" TaskType="manual"
desc="Provision Customer Number">
</TaskDescription.Response>

Error Codes

e 400: Not authorized
e 401: Database Connection Failed

e 500: Internal errorWorklist

Note:

See Table 3-3 for more information if you receive an error code that is not listed
here.

The worklist data retrieved by the Client user ID is defined by the OSM Administrator. The
Worklist is implicitly defined by the privileges of each workgroup to which the Client ID is
assigned.

The worklist response consists of fixed header elements followed by the flexible headers as
defined in the OSM Administrator.

UpdateOrder

ORACLE

An order update consists of an operation UpdateOrder, with the order ID and order history ID
to identify the order. The request defines different ways to update the order such as
UpdatedOrder, UpdatedNodes, Add, and Delete.

Operation

UpdateOrder

Parameters

This API defines the following parameter:
OrderlD: The ID of the order to change.
OrderHistID: The order history ID.

3-68

ORACLE

Chapter 3
XML API Functionality

ViewlD: The id of the view (query task) that is used for the order update. This is a workgroup
view that must be associated with one or more workgroups the requesting user is a member of
for the definition of the order.

View: The name of the task (view) that is used for the order update. You must associate the
task you want to update to a role (workgroup) in the Design Studio Order editor Permissions
Query Task sub tab and set the task as the Default query task. You can associate only one role
per task in the Order editor. The user submitting the UpdateOrder must be a member of this
role.

ResponseView: An optional parameter that defines the name of the task (view) that specifies
what parameters are returned in UpdateOrder responses. If the UpdateOrder request results in
a fulfillment state update, the response auto-filters nodes to only include the effected
Orderltems and OrderComponents instances.

OrderDataFilter: Parent element for the Condition child element that specifies which order
data to return in the OrderUpdate.response specified in the ResponseView parameter.

* Condition: An XPath 1.0 expression against the order data defined by the ResponseView.
OSM returns only the instances of the order data selected by the expression, not the other
instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM returns
only the <address> element that contains a child street element with the specified street
address. The response includes all child nodes of the instance of the <address> element
(city, postal code, and street). The other instances of the <address> element and their child
elements (city, street, and postal code) are not returned.

<OrderDataFilter>
<Condition>/subscriber info/address/[street='190 Drive']</Condition>
</OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of <address>
(except for the other instances of the <address> element) would be returned.

When you are using an order condition that includes an element that is using a distributed
order template, you should include the namespace of the data element in the condition.
For example:

<OrderDataFilter>
<Condition>
/ControlData/OrderItem|[@type="'{OrderItemNamespace}OrderItemName' and
@LinelId='1"]
</Condition>
</OrderDataFilter>

NewReference: An optional new reference number for the order.

AddMandatory: This parameter is true if the mandatory fields defined in the order view (task)
should be added into the order by this order update, otherwise this parameter should be false.

Priority: The priority that the order is set to by this order update.
A choice of:

e UpdatedOrder: Allows the user to update the order by supplying a complete order. The
existing order is then updated (elements added, changed or deleted as necessary) to
match the supplied order.

« UpdatedNodes: Allows the user to update the order by supplying only the nodes that
should be added or updated. The nodes are supplied in the format of the existing order:
The structure of the nodes (parents and children) must match the view (task) specification

3-69

ORACLE

Chapter 3
XML API Functionality

for the view being used. No deletes are performed using this approach. You can only use
key definitions to match multi-instance nodes. Index attributes are ignored.

Add: Allows the user to update the order by adding new data in the form of a node to be
added. The path attribute identifies the parent node under which to add the element.

Delete: Allows the user to update the order by deleting existing data in the form of a node
to be deleted. The path attribute identifies the node to delete.

Update: Allows the user to update the order by updating existing data in the form of a node
to be updated. The path attribute identifies the node to update.

AddRemark: A remark can be added to the order using an AddRemark parameter. The
AddRemark element has the following elements:

Text: The text for the new remark.

Attachments: The parent element for FileName elements. The Attachments element can
also have one of the following elements:

FileName: The name of the file for a new attachment. If both the Text and Attachments
elements are empty, a remark is not created.

ExternalFulfillmentStates: Allows you to set external fulfillment states instead of using an
Add or Update statement on an UpdateOrder. This optional approach improves order
processing efficiency, especially in large orders. The ExternalFulfillmentStates element has
the following child elements:

OrderltemOrderComponentFulfillmentState: The parent element to the children
elements that specify the new external fulfillment state of an order component and order
item.

— ExternalFulfillmentState: The new external fulfillment state.

— OrderComponentindex: The order component index. Every order component element
must specify a unique index attribute. In most cases, the automation running the XML
API OrderUpdate already knows which order component the update is for.

— Orderltemindex: The order item index. Every order item element must specify a
unigue index attribute. In most cases, the automation running the XML API
OrderUpdate already knows which order component the update is for.

Note:

If you update an order either to add a node (which includes providing a value to a
node that did not previously have one) or to delete a node (which includes setting the
value of a node to null), the OSM order transformation manager will not propagate
the change in either the forward or reverse direction. For more information about data
propagation, see the discussion of mapping rules in the Design Studio Modeling
OSM Orchestration Help.

Request Example

<UpdateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">

<0rderID>702</0OrderID>
<View>Update Order View</View>
<NewReference/>
<Add path="/client info">
<address>
<streetl>55 James St.</streetl>

3-70

Chapter 3
XML API Functionality

<city>Washington</city>
<state>DC</state>
<country>USA</country>
<zip>45432</zip>
</address>
</Add>
<Delete path="/client info/address[@index='80132"]" />
<AddRemark>
<Text>This is the text for the remark</Text>
<Attachments>
<FileName>provisioninfo.txt</FileName>
<FileName>diagram.bmp</FileName>
</Attachments>
</AddRemark>
<ExternalFulfillmentStates>
<OrderItemOrderComponentFulfillmentState>
<ExternalFulfillmentState>COMPLETED</ExternalFulfillmentState>
<OrderComponentIndex>123</OrderComponentIndex>
<OrderItemIndex>456</OrderItemIndex>
</OrderItemOrderComponentFulfillmentState>
</ExternalFulfillmentStates>
</UpdateOrder.Request>

If a remark is added to an order, remark information is returned in the UpdateOrder response.
The response has a Remark element with the following child elements:

* RemarklD: The unique ID for the remark, assigned by OSM.

« Attachment: Zero or more Attachment elements for each attachment. An Attachment
element has the following child elements:

— AttachmentID: The unique ID for the attachment, assigned by OSM. When adding the
attachment with the WebLogic file (T3) service, use the file name AttachmentiD.srv,
where AttachmentID is the value of the AttachmentID element on the response.

— FileName: The name of the file specified for the attachment.

Response Example

<UpdateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>702</0rderID>
<View>Update Order View</View>
<Remark>
<RemarkID>3224</RemarkID>
<Attachment>
<AttachmentID>10333</AttachmentID>
<FileName>provisioninfo.txt</FileName>
</Attachment>
<Attachment>
<AttachmentID>10334</AttachmentID>
<FileName>diagram.bmp</FileName>
</Attachment>
</Remark>
</UpdateOrder.Response>

Request Example with ResponseView and OrderDataFilter

<UpdateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>15778</0OrderID>
<View>OsmCentralOMExampleQueryTask</View>
<ResponseView>OsmCentralOMExampleQueryTask</ResponseView>
<OrderDataFilter>
<Condition>/CustomerDetails/typeCompl[@index="'15"]</Condition>

ORACLE 3-71

ORACLE

Chapter 3
XML API Functionality

<OrderDataFilter>
<UpdatedNodes>
<_root>
<CustomerDetails>
<typeCompl>floor</typeCompl>
</CustomerDetails>
</_root>
</UpdatedNodes>
<ExternalFulfillmentStates>
<OrderItemOrderComponentFulfillmentState>
<ExternalFulfillmentState>ExtFulfStatel</ExternalFulfillmentState>
<ExternalFulfillmentStateDescription>
</ExternalFulfillmentStateDescription>
<OrderComponentIndex>132490</OrderComponentIndex>
<OrderItemIndex>1434565</0OrderItemIndex>
</OrderItemOrderComponentFulfillmentState>
</ExternalFulfillmentStates>
</UpdateOrder.Request>

Response Example with ResponseView and OrderDataFilter

<UpdateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<0rderID>15778</0rderID>
<View>Update Order View</View>
<Data>
< _root index="0">
<CustomerDetails index="11">
<typeCompl index="15">floor</typeCompl>
</CustomerDetails>
</ _root>
</Data>
</UpdateOrder.Response>

Error Codes

110: Order not found

200: Order data invalid

230: Order not accepted by user

232: Order update failed

270: Transaction not allowed

302: Request parameter error

400: Not authorized

401: Database Connection Failed

420: Not authorized to modify order priority

500: Internal error

Note:

See Table 3-3 for more information if you receive an error code that is not listed here.

3-72

Worklist

ORACLE

Chapter 3
XML API Functionality

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied nhamespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

Returns order data from the worklist.

Operation

Worklist

Parameters

FlexibleHeaders: A list of flexible headers available to the user. It can contain zero or more
flexibleheader elements with the mnemonic paths of flexible headers to include in the output. If
FlexibleHeaders is omitted, all available flexible headers are returned.

FlexibleHeader: This parameter is a sub-parameter of FlexibleHeaders and has the following
attributes:

* namespace (mandatory if you use the FlexibleHeader element of Worklist.Request)
* version (optional)

OrderBy: The OrderBy element contains a list of fields on which to order the results. The
order of the Field elements is significant: the results are ordered based on the first element,
then the second element, and so on.

The order attribute must be either descending or ascending, otherwise an error results. The
path attribute must belong to the element name of one of the fixed headers or one of the
request's selected flexible headers. If the mnemonic path does not resolve to a valid field to
sort by, error code 170: Header for mnemonic path not found is returned.

When sorting on fixed header elements, the sorted value for elements that are represented by
an ID (that is, state) will be sorted based on the internal ID's value, not that of the final output.

Field: A value on the order, either Fixed or Flexible. This element takes the following
mandatory attribute:

e Order (you must specify either ascending or descending as the argument.)

FilterStates: A list of the states on which the Task web client filters the Worklist. For example,
if FilterStates only contains accepted, then the Worklist displays only those tasks that are in
the Accepted state.

OrderState: A state for the order. This element can have multiple instances and the values
indicate which states an order must be in to be returned. Acceptable values are: "Amending”,

3-73

ORACLE

Chapter 3
XML API Functionality

"Cancelled", "Cancelling", "Completed", "In Progress", "No state", "Not Started", "Suspended",
and any user-defined state states.

State: A state for the task. This element can have multiple instances and the values indicate
which states a task must be in to be returned. Acceptable values are:

» Assigned: The task is in the Assigned state and is assigned to the current user's ID.
* Received: The task is in the Received state.

* Accepted: The task is in the Accepted state for the current user's ID.

* Suspended: The task is in the Suspended state.

Namespace: The namespace mnemonic of order type/source.
Version: The version mnemonic of order type/source.

UsePreferences: The element uses user-preferences from the Task web client to determine
how to filter and sort the Worklist.

Request Example

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<FlexibleHeaders>
<FlexibleHeader namespace="OrderAmendment" version="1.0"
path="customer/phone"/>
<FlexibleHeader namespace="OrderAmendment" version="1.0"
path="customer/name" />
</FlexibleHeaders>
</Worklist.Request>

or

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderBy>
<Field order="ascending" path="masks group/m numeric 999"/>
</OrderBy>
</Worklist.Request>

or

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
<Namespace>sp nead</Namespace>
<Version>2.1.2</Version>
<OrderBy>
<Field order="descending"> order seq id</Field>
</0OrderBy>
</Worklist.Request>

Response Example

<Worklist.Response xmlns="urn:metasolv-com:oms:xmlapi 1">
<Header>

<_order seq id desc="Order ID" />
<_order hist seq id desc="Order History ID" />
<_order state desc="State" />
< _execution mode desc="Execution Mode" />
<_task_id desc="Task" />
<_order source desc="Source" />
< order type desc="Type" />
<_current order state desc="Order State" />
<_target order state desc="Target Order State" />
<_reference number desc="Ref. #" />

3-74

ORACLE

Chapter 3
XML API Functionality

< priority desc="Priority" />

<_user desc="User" />

< process_status desc="Process Status" />

< date pos started desc="Started" />

< requested delivery date desc="Requested Order Delivery Date"/>
<_expected start date desc="Expected Order Start Date"/>

< expected duration desc="Expected Order Duration"/>

< compl date expected desc="Expected Order Completion Date" />
< num_remarks desc="Number of Remarks" />

< namespace desc="Namespace" />

<_version desc="Version" />

<customer phone desc="Customer Phone Number" />

<customer name desc="Customer Name" />

</Header>
<Orderdata>

< order seq i1d>390</ order seq id>

< order hist seq id>7822</ order hist seq id>

< order_ state>received</ order state>

< execution mode>do</ execution mode>

< task _id>assign port</ task id>

< order source>order entry</ order source>

< order type>pots</ order type>

< _current order state>open.not running.not started

</ current order state>

< target order state />

<_reference number>SEP-27-0-1</_reference number>

< priority>5</ priority>

< user>oms</_user>

< _process_status/>

< date pos started>2001-10-29T10:30:24 EST</ date pos_started>

< requested delivery date>2001-10-29T10:30:14 EST</ requested delivery date>
< expected start date>2001-10-19T10:30:14 EST</ expected start date>
< _expected duration>P10D</ expected duration>

< _compl date expected>2001-10-29T10:30:16 EST</ compl date expected>
< num_remarks>0</ num remarks>

<_namespace>OrderAmendment</ namespace>

< version>1.0</ version>

<customer phone>4165551212</customer phone>

<customer name>John Doe</customer name>

</Orderdata>
<Orderdata>

< order seq i1d>391</ order seq id>

< order hist seq id>7718</ order hist seq id>

< order state>accepted</ order state>

< _execution mode>do</ execution mode>

< task _id>assign port</ task id>

< order source>order entry</ order source>

< order type>pots</ order type>

< current order state>open.running.in progress</ current order state>
< target order state />

<_reference number>SEP-27-0-2</_reference number>

< priority>5</ priority>

< user>oms</_user>

< _process_status/>

< date pos created>2001-10-29T10:31:16 EST</ date pos created>

< requested delivery date>2001-10-29T10:30:14 EST</ requested delivery date>
< expected start date>2001-10-19T10:30:14 EST</ expected start date>
< _expected duration>P10D</_ expected duration>

< compl date expected>2001-10-29T10:30:14 EST</ compl date expected>
< num_remarks>0</ num remarks>

<_namespace>OrderAmendment</ namespace>

< version>1.0</ version>

3-75

Chapter 3
Warning and Error Code Descriptions

<customer phone>4165552121</customer phone>
<customer name>Frank Smith</customer name>

</Orderdata>
</Worklist.Response>

Error Codes

e 170: Header for mnemonic path not found

e 400: Not authorized

e 401: Database connection failed

e 500: Internal error

e 601: Deprecated parameter

Note:

here.

See Table 3-3 for more information if you receive an error code that is not listed

Warning and Error Code Descriptions

Any request can produce warnings as a side effect of accessing the OSM database. The
warning element supplies the code and message of any non-fatal warnings that occurred while
processing a request. Any changes to the data by the request are still committed. For more
information on the cause of the warning codes, consult your Oracle DBA.

ORACLE

Error Codes represent request errors in the XML API that prevent further processing of a
request. If an error is returned by a request, data changes are not sent to the database.

Table 3-3 lists the error codes and their descriptions.

Table 3-3 Error Code Descriptions

Error Code

Description

100: Order type/source not
found

The order type/source does not exist, or is not available to the user.

110: Order not found

The order does not exist, or is not available to the user.

120: Order template not found

The order template does not exist, or is not available to the user.

160: Remark not found

The remark could not be found.

150: Namespace/version not
found.

The namespace or version does not exist or is not available to the user.

152: Invalid namespace
mnemonic.

The order cannot be completed with the given namespace mnemonic.

153: No legacy data found.
Namespace and Version need
to be supplied.

Because the legacy data could not be found you must specify a valid
Namespace and Version.

170: Header for mnemonic
path not found

The header for a given mnemonic path does not exist, or is not
available to the user.

190: Notification not found

If the notification ID does not exist, is no longer active, or is not
assigned to the user ID or user ID's workgroup.

3-76

ORACLE

Chapter 3
Warning and Error Code Descriptions

Table 3-3 (Cont.) Error Code Descriptions

Error Code

Description

200: Order data invalid

The format of the order data is not correct. The message details the
error location.

For example, a message detail, such as:
"com.mslv.oms.handler.OrderDatalnvalidException: Could not convert
input value: value_for_x for field data_field_x", may indicate that
value_for_x exceeds the field's acceptable length set in OSM
Administrator.

230: Order not accepted by
user

An attempt to update an order was made without first retrieving the
order with an Accept parameter of "true".

232: Order update failed

The order could not be updated due to a data format error. The
message details the reason for failure.

250: Mandatory check failed

A mandatory field was not given a value when attempting to create,
assign, complete, or suspend an order.

251: Transition invalid

The order cannot be transitioned to that state. Use
ListStatesNStatuses.Request to get a list of valid states.

252: Unable to accept order

When retrieving an order for update, the order cannot be accepted by
the current user.

253: User not found

The order cannot be assigned to the given user ID.

254: Invalid state mnemonic

The order cannot be suspended with the given state mnemonic.

Note: Only user-defined states are valid. To complete or assign an
order, you must use the appropriate request.

255: Invalid status mnemonic

The order cannot be completed with the given status mnemonic.

256: Invalid exception status
mnemonic

You used an invalid exception status mnemonic when raising the
process exception.

257: Invalid Task Mnemonic

The supplied task mnemonic could not be found.

260: Remark cannot be
modified

The time interval in which a created remark can be modified has
elapsed, or the user trying to change the remark is not the user who
created the remark. The remark can no longer be modified.

270: Transaction not allowed

The requested transaction is not allowed. This error is returned in
situations where the transaction has been disabled, or the user or
workgroup is not authorized to perform the transaction. It can also be
returned when attempting to suspend/resume an order that is already
suspended/resumed.

300: Request unknown

The request type could not be identified from the root element of the
XML document of the message.

302: Request parameter error

A parameter for the request is missing or invalid. The message details
the parameter in question.

350: Pivot node data is not
provided

The order cannot proceed because no pivot node is indicated.

351: Process position supplied
is not a sub process task.

The indicated process position is not a sub process task. To add a sub
process thread, the order must reside in one of the sub processes.

352: No sub process task is
currently pending.

There are no sub-process tasks to which you can add a thread.

354: Process position not
found.

The indicated process position does not exist or is inaccessible by the
order.

355: Pivot node not found.

The indicated pivot node does not exist or is inaccessible by the order.

3-77

Chapter 3
Document Type Definitions (DTD)

Table 3-3 (Cont.) Error Code Descriptions

- __|
Error Code Description

356: Cannot spawn threads for | You cannot add a sub-process thread to a sub-process that supports
sub-process tasks that support | sequential sub-process.
sequential sub-processing.

400: Not authorized The user is not authorized to make the request.
401: Database Connection The XML API cannot connect to OSM.
Failed.

419: The process exception is | A process exception cannot be raised, because it is restricted.
restricted.

420: Not authorized to modify | The user does not have the necessary privilege to modify order priority.
order priority.

500: Internal error. An internal application error has occurred. The message details further
information.
601: Deprecated parameter The parameter identified in the warning details has been deprecated.

The details specify an applicable replacement parameter.

Document Type Definitions (DTD)

Document Type Definitions are markup declarations that describe the syntax for a class of
documents. The DTD is declared within the document type declaration production of the XML
file. The markup declarations can be in an external subset (a special kind of external entity), in
an internal subset directly within the XML file, or both. The DTD for a document consists of
both subsets taken together. The following is a list of the OSM DTDs.

AddOrderThread

ORACLE

The AddOrderThread XML API is used to implement sub-process creation, (also known as
process forking), is implemented by the AddOrderThread XML API.

Note:

AddOrderThread has been deprecated and is supported only for backward
compatibility. Use amendment processing functionality instead.

Request Example

<!-- add_order_thread.dtd -->

<!ELEMENT AddOrderThread.Request (OrderID, Process, ProcessPosition, View, Add)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT Process (#PCDATA) >

<!ELEMENT ProcessPosition (#PCDATA)>

<!ELEMENT View (#PCDATA) >

<!-- The contents of the Add element cannot be described in a dtd

Let children := mnemonic for order elements from the template -->

<!ELEMENT Add(children+)>

<!ATTLIST Add path CDATA #REQUIRED>

3-78

Chapter 3
Document Type Definitions (DTD)

Response Example

<!-- add order thread.dtd -->

<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT AddOrderThread.Response (warnings?)>

AssignOrder

The AssignOrder XML API is used to assign an order.

Request Example

<!-- assign order request.dtd -->

<!ELEMENT AssignOrder.Request (OrderID, OrderHistID, User)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT User (#PCDATA) >

Response Example

<!-- assign order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT AssignOrder.Response (OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID (#PCDATA)>
<!ELEMENT OrderHistID (#PCDATA)>

CompleteOrder

CopyOrder

ORACLE

The CompleteOrder XML API is used to complete an order.

Request Example

<!-- complete order request.dtd -->

<!ELEMENT CompleteOrder.Request (OrderID, OrderHistID, Status)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT Status (#PCDATA) >

Response Example

<!-- complete order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT CompleteOrder.Response (OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID (#PCDATA) >
<!ELEMENT OrderHistIDEMPTY>

The CopyOrder XML API is used to copy an order.

Request Example

<!-copy order request.dtd -->

<!ELEMENT CopyOrder.Request (OriginalOrderID, OrderType,
OrderSource, Reference, Namespace?, version?)>
<!ELEMENT OriginalOrderID (#PCDATA) >

3-79

Chapter 3
Document Type Definitions (DTD)

<!ELEMENT OrderType (#PCDATA) >
<!ELEMENT OrderSource (#PCDATA) >
<!ELEMENT Reference (#PCDATA) >
<!ELEMENT Namespace (#PCDATA) >
<!ELEMENT Version (#PCDATA) >

Response Example

<!-- copy order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT CopyOrder.Response (OrderID, OrderHistID, OrderSource,
OrderType, OrderState, State, Reference, Priority, Warnings?, Namespace, Version)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT OrderState (#PCDATA) >

<!ELEMENT State (#PCDATA) >

<!ELEMENT Reference (#PCDATA) >

<!ELEMENT Priority (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

CreateOrder

ORACLE

The CreateOrder XML API is used to create an order.

Request Example

<!-- create order request.dtd -->

<!ELEMENT CreateOrder.Request (OrderSource, OrderType,

Reference, root, Namespace?, Version?)>

<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT Reference (#PCDATA) >

<!ELEMENT Priority (#PCDATA)>

<!-- The contents of the root element cannot be described in a dtd
Let children := the mnemonics for order elements from the template -->

<!ELEMENT root (children*)>

<!ELEMENT children (#PCDATA | children*)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

Response Example

<!-- create order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT CreateOrder.Response (OrderID, OrderHistID,
OrderSource, OrderType, OrderState, State, Reference, Priority, Warnings?, Namespace?,
Version?)>

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT OrderState (#PCDATA) >

<!ELEMENT State (#PCDATA) >

<!ELEMENT Reference (#PCDATA) >

<!ELEMENT Priority (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

3-80

Error

GetOrder

ORACLE

Chapter 3
Document Type Definitions (DTD)

If an error occurs during processing for each of the following request DTDs, the following
information is returned.

<!-- error.dtd -->

<!-- let command name := the command name of the request
that originated the error -->

<!ELEMENT command name.Error (Error+)>

<!ELEMENT Error (#PCDATA)>

<!ATTLIST Error codeCDATA #REQUIRED>

<!ATTLIST Error descCDATA #REQUIRED>

The GetOrder XML API is used to retrieve an order from OSM.

Request Example

<!-- get order request.dtd -->

<!ELEMENT GetOrder.Request (OrderID, (OrderHistID | ViewID))>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA)>

<!ELEMENT Accept (#PCDATA) >

Response Example

<!-- get order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT GetOrder.Response (OrderID, (OrderHistID | ViewID,

OrderSource, OrderType, OrderState, State, ExecutionMode,

Reference, Priority, root, Remarks, Warnings?)>

<!ELEMENT OrderID (#PCDATA) >

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA)>

<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT Workgroups (#PCDATA) >

<!ELEMENT Workgroup (#PCDATA) >

<!ELEMENT OrderState (#PCDATA) >

<!ELEMENT State (#PCDATA)>

<!ELEMENT ExecutionMode (#PCDATA) >

<!ELEMENT Reference (#PCDATA) >

<!ELEMENT Priority (#PCDATA)>

<!-- The contents of the root element cannot be described in a dtd
Let children := the mnemonics for order elements from the template -->

<!ELEMENT root (children*)>

<!ELEMENT children (#PCDATA | children*)>

<!ELEMENT Remarks (Remark*)>

<!ELEMENT Remark (RemarkID, Date, Author, TaskID,

TaskType, OrderHistID, State, Text,

ReadOnly, Attachments)>

<!ELEMENT RemarkID (#PCDATA) >

<!ELEMENT Date (#PCDATA) >

<!ELEMENT Author (#PCDATA) >

<!ELEMENT TaskID (#PCDATA)>

<!ELEMENT TaskType (#PCDATA) >

<!ELEMENT State (#PCDATA)>

3-81

Chapter 3
Document Type Definitions (DTD)

<!ELEMENT Text (#PCDATA) >

<!ELEMENT ReadOnly (#PCDATA) >

<!ELEMENT Attachments (Attachment*)>

<!ELEMENT Attachment (AttachmentID, FileName)>
<!ELEMENT AttachmentID (#PCDATA)>

<!ELEMENT FileName (#PCDATA) >

GetNextOrderAtTask

The GetNextOrderAtTask XML API is used to retrieve the next order.

Request Example

<!-get next order at task request.dtd -->

<!ELEMENT GetNextOrderAtTask.Request (TaskID, Accept, State+, Namespace?, Version?)>
<!ELEMENT TaskID (#PCDATA)>

<!ELEMENT Accept (#PCDATA) >

<!ELEMENT State (#PCDATA) >

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

Response Example

<!-get next order at task response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;
<!ELEMENT GetNextOrderAtTask.Response ((OrderID, OrderHistID, OrderSource,
OrderType, OrderState, State, ExecutionMode, Reference, Priority, root, Warnings?,
Namespace?, Version?) | EMPTY)>
<!ELEMENT OrderID (#PCDATA)>
<!ELEMENT OrderHistID (#PCDATA)>
<!ELEMENT OrderSource (#PCDATA) >
<!ELEMENT OrderType (#PCDATA) >
<!ELEMENT Workgroups (#PCDATA) >
<!ELEMENT Workgroup (#PCDATA) >
<!ELEMENT OrderState (#PCDATA) >
<!ELEMENT State (#PCDATA) >
<!ELEMENT ExecutionMode (#PCDATA) >
<!ELEMENT Reference (#PCDATA) >
<!ELEMENT Priority (#PCDATA)>
<!-- The contents of the root element cannot be described in a dtd
Let children := the mnemonics for order elements from the template -->
<!ELEMENT root (children*)>
<!ELEMENT children (#PCDATA | children*)>
<!ELEMENT Namespace (#PCDATA) >
<!ELEMENT Version (#PCDATA) >

GetOrderDataHistory

ORACLE

The GetOrderDataHistory XML APl is used to retrieve order data history for an order.

Request Example

<!-order data history resquest.dtd -->

<!ELEMENT GetOrderDataHistory.Request (OrderID, (OrderHistID |
ViewID), Field*)>

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA) >

<!ELEMENT FieldEMPTY>

<!ATTLIST Field pathCDATA #REQUIRED>

3-82

Response Example

<!-order data history response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT GetOrderDataHistory.Response (OrderID, (OrderHistID

ViewID), Field*)>

<!ELEMENT OrderID (#PCDATA) >

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA)>

<!ELEMENT Field(Changet)>

<!ATTLIST Field pathCDATA #REQUIRED>
<!ATTLIST Field indexCDATA #REQUIRED>
<!ATTLIST Field parentIndexCDATA #REQUIRED>
<!ELEMENT Change (#PCDATA | EMPTY)>
<!ATTLIST Change action(create | update | delete)
<!ATTLIST Change userCDATA #REQUIRED>
<!ATTLIST Change timeCDATA #REQUIRED>

GetOrderProcessHistory

The GetOrderProcessHistory XML API is used to retrieve the process history for an order.

ORACLE

Request Example

<!-order process history request.dtd -->
<!ELEMENT GetOrderProcessHistory.Request (OrderID) >
<!ELEMENT OrderID (#PCDATA)>

Response Example

<!-order process history response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT GetOrderProcessHistory.Response (OrderID, Summary,

Transitions)>

<!ELEMENT OrderID (#PCDATA)>
<!ELEMENT Summary (ExpectedDuration,
ActualDuration,

StartDate,

CompleteDate) >

<!ELEMENT ExpectedDuration (#PCDATA) >
<!ELEMENT ActualDuration (#PCDATA) >
<!ELEMENT StartDate (#PCDATA) >
<!ELEMENT CompleteDate (#PCDATA)>
<!ELEMENT Transitions(Transition*)>
<!ELEMENT Transition(TaskID, TaskType,
TaskDescription,

ExpectedDuration,

ActualDuration,

StartDate,

CompleteDate,

OrderHistID,

FromOrderHistID, State,

Chapter 3
Document Type Definitions (DTD)

Status, TransitionType, user, ParentTaskOrderHistID, DataNodeIndex, DataNodeMnemonic,

DataNodeValue) >

<!ELEMENT TaskID (#PCDATA)>

<!ELEMENT TaskType (#PCDATA) >
<!ELEMENT TaskDescription (#PCDATA) >
<!ELEMENT ExpectedDuration (#PCDATA) >
<!ELEMENT ActualDuration (#PCDATA) >

3-83

Chapter 3
Document Type Definitions (DTD)

<!ELEMENT StartDate (#PCDATA) >
<!ELEMENT CompleteDate (#PCDATA)>
<!ELEMENT OrderHistID (#PCDATA)>
<!ELEMENT FromOrderHistID (#PCDATA)>
<!ELEMENT State (#PCDATA) >

<!ELEMENT Status (#PCDATA) >

<!ELEMENT TransitionType (#PCDATA) >
<!ELEMENT User (#PCDATA) >

<!ELEMENT SubProcessParentTaskOrderHistID (#PCDATA) >
<!ELEMENT DataNodeIndex (#PCDATA) >
<!ELEMENT DataNodeMnemonic (#PCDATA) >
<!ELEMENT DataNodeValue (#PCDATA) >

GetOrderStateHistory

The GetOrderStateHistory XML API is used to retrieve the order state history for an order.

Request Example

<!-- get order state history.dtd -->
<!ELEMENT GetOrderStateHistory.Request (OrderID)>
<!ELEMENT OrderID (#PCDATA)>

Response Example

<!-- get order state history.dtd -->
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderState (#PCDATA) >

<!ELEMENT TransitionStartDate (#PCDATA) >
<!ELEMENT TransitionCompletedDate (#PCDATA)>
<!ELEMENT ActualDuration (#PCDATA) >
<!ELEMENT User (#PCDATA) >

<!ELEMENT Reason (#PCDATA) >

GetUserlInfo

The GetUserInfo XML API is used to retrieve user information.

Request Example

<!-user info request.dtd -->
<!ELEMENT GetUserInfo.RequestEMPTY>

Response Example

<!-user info response.dtd -->

<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT GetUserInfo.Response (User, Workgroup*FlexibleHeaders)>
<!ELEMENT User (#PCDATA) >

<!ATTLIST User descCDATA #IMPLIED>

<!ELEMENT Workgroup (#PCDATA) >

<!ATTLIST Workgroup desc CDATA #IMPLIED>
<!ELEMENT FlexibleHeaders ((FlexibleHeader*)>
<!ELEMENT FlexibleHeader (#PCDATA) >

<!ATTLIST FlexibleHeader descCDATA #REQUIRED>

ListExceptions

The ListExceptions XML API is used to retrieve exceptions.

ORACLE 384

Chapter 3
Document Type Definitions (DTD)

Request Example

<!-- list exceptions request.dtd -->

<!ELEMENT ListExceptions.Request (OrderID, OrderHistID)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

Response Example

<!-- list exceptions_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning

<!ELEMENT ListExceptions.Response (OrderID, OrderHistID,
Exceptions, Warnings?)>

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT Exceptions(Status*)>

<!ELEMENT Status (#PCDATA) >

<!ATTLIST Status descCDATA #REQUIRED>

ListStatesNStatuses

ListViews

ORACLE

The ListStatesNStatuses XML API is used to retrieve the states and statuses.

Request Example

<!-- task state status_request.dtd -->

<!ELEMENT ListStatesNStatuses.Request (OrderID, OrderHistID)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

Response Example

<!-task state status response.dtd -->

<!ENTITY % warning SYSTEM "warning.dtd">

$warning;

<!ELEMENT ListStatesNStatuses.Response (OrderID, OrderHistID,
TaskStatesNStatuses,

Warnings?)>

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT TaskStatesNStatuses (Accepted?, Assigned?, Suspend?, Completed?)>
<!ELEMENT AcceptedEMPTY>

<!ELEMENT Assigned (User+)>

<!ELEMENT User (#PCDATA) >

<!-- The content of the Suspend element cannot be described in a dtd
Let userstates := mnemonics for user defined states -->

<!ELEMENT Suspend (userstates+) >

<!-- The content of the Completed element cannot be described in a dtd
Let userstatuses := mnemonics for user defined statuses -->

<!ELEMENT Completed (userstatuses+)>

The ListViews XML API is used to retrieve views.

Request Example

<!-- views request.dtd -->
<!ELEMENT ListViews.Request (OrderSource, OrderType, Namespace?, Version?)>

3-85

<!ELEMENT OrderSource (#PCDATA) >
<!ELEMENT OrderType (#PCDATA) >
<!ELEMENT Namespace (#PCDATA) >
<!ELEMENT Version (#PCDATA) >

Response Example

<!-- views_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

Chapter 3
Document Type Definitions (DTD)

<!ELEMENT ListViews.Response (OrderSource, OrderType, View*, Warnings?, Namespace?,

Version?)>

<!ELEMENT OrderSource (#PCDATA) >
<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT View (#PCDATA)>

<!ATTLIST View desc CDATA #REQUIRED>
<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

ModifyRemark

The ModifyRemark XML API is used to modify remarks for an order.

Request Example

<!-modify remark request.dtd -->

<!ELEMENT ModifyRemark.Request (OrderID, OrderHistID, RemarkID, Text?, Attachments?,

DeleteAttachments?) >

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT RemarkID (#PCDATA) >

<!ELEMENT Text (#PCDATA) >

<!ELEMENT Attachments (FileName*)>

<!ELEMENT FileName (#PCDATA) >

<!ELEMENT DeleteAttachments (AttachmentID*)>
<!ELEMENT AttachmentID (#PCDATA) >

Response Example

<!-modify remark response.dtd -->

<!ENTITY % warning SYSTEM "warning.dtd">

$warning;

<!ELEMENT ModifyRemark.Response (Remark?, Warnings?)>
<!ELEMENT Remark (RemarkID, Attachment*)>

<!ELEMENT RemarkID (#PCDATA)>

<!ELEMENT Attachment (AttachmentID, FileName)>
<!ELEMENT AttachmentID (#PCDATA)>

<!ELEMENT FileName (#PCDATA)>

OrderTypeNSource

The OrderTypeNSource XML API is used for the order type and source.

ORACLE

Request Example

<!-- order source type request.dtd -->

<!ELEMENT OrderTypesNSources.RequestEMPTY, Namespace?, Version?>

<!ELEMENT Namespace (#PCDATA) >
<!ELEMENT Version (#PCDATA) >

3-86

Chapter 3

Document Type Definitions (DTD)

Response Example

<!-- order source type request.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT OrderTypesNSources.Response (TypeNSource*, Warnings?, Namespace?, Version?)>

<!ELEMENT TypeNSource (Source, Type)>
<!ELEMENT SourceEMPTY>

<!ATTLIST Source mnemonicCDATA #REQUIRED>
<!ATTLIST Source descCDATA #IMPLIED>
<!ELEMENT TypeEMPTY>

<!ATTLIST Type mnemonicCDATA #REQUIRED>
<!ATTLIST Type categoryCDATA #IMPLIED>
<!ATTLIST Type descCDATA #IMPLIED>
<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA)>

OrderViewTemplate
The OrderViewTemplate XML API is used for the order view template.

Request Example

<!-- order template request.dtd -->

<!ELEMENT OrderViewTemplate.Request ((OrderSource, OrderType) | (OrderID, OrderHistID)

(OrderSource, OrderType, ViewID), Namespace?, Version?)>
<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT OrderID (#PCDATA) >

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

Response Example

<!--order template response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">

$warning;
<!ELEMENT OrderViewTemplate.Response (((OrderSource, OrderType) |
(OrderID, OrderHistID) | (OrderSource, OrderType, ViewID)),

_root, LookupTables?, Warnings?, Namespace?, Version?)>
<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT ViewID (#PCDATA)>

<!-- The children of root cannot be described in a dtd.

Let children := the mnemonic of each node in the order template -->

<!ELEMENT root (children*)>

<!ELEMENT childrenEMPTY>

<!ATTLIST children descCDATA #REQUIRED>

<!ATTLIST children minInstanceCDATA "0">

<!ATTLIST children maxInstanceCDATA "1">

<!ATTLIST children typeCDATA (NM | TX | DT | D | PH | YN | CY | LK) "TX">
<!ATTLIST children readOnly(true | false) "false">

<!-- the mask attribute is only applicable if type = NM or TX and there is a mask

defined -->
<!ATTLIST children maskCDATA #IMPLIED>

<!-- the len attribute is only applicable if type = NM or TX and a mask is not defined --

>

ORACLE

3-87

Query

ORACLE

Chapter 3

Document Type Definitions (DTD)

<!ATTLIST children lenCDATA #IMPLIED>

<!-- The children of LookupTables cannot be described in a dtd.
Let lkchildren := the element name of children[type="LK"]

<!ELEMENT LookupTables (lkchildren+)>

<!ELEMENT lkchildren (option+)>

<!ELEMENT option (#PCDATA)>

<!ATTLIST option descCDATA #REQUIRED>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

The Query XML API is used to query an order.

Request Example

<!-- query request.dtd -->

<!ELEMENT Query.Request (OrderID?, Reference?, Priority? OrderType?,
OrderSource?, SingleRow?, TaskID?, CreatedDate?, CompletedDate?, Field*)?¥,
FlexibleHeaders?, Namespace?, Version?)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT Reference (#PCDATA) >

<!ELEMENT Priority (#PCDATA)>

<!ELEMENT OrderType (#PCDATA) >

<!ELEMENT OrderSource (#PCDATA) >

<!ELEMENT SingleRow (#PCDATA) >

<!ELEMENT TaskID (#PCDATA)>

<!ELEMENT OrderState (#PCDATA) >

<!ELEMENT TargetState (#PCDATA)>

<!ELEMENT ExecutionMode (#PCDATA) >

<!ELEMENT CreatedDateEMPTY>

<!ATTLIST CreatedDate fromCDATA #IMPLIED>
<!ATTLIST CreatedDate toCDATA #IMPLIED>
<!ELEMENT CompletedDateEMPTY>

<!ELEMENT CompletedDate fromCDATA #IMPLIED>
<!ELEMENT CompletedDate toCDATA #IMPLIED>
<!ELEMENT Field (#PCDATA | From, To)>
<!ATTLIST Field pathCDATA #REQUIRED>
<!ELEMENT From (#PCDATA) >

<!ELEMENT To (#PCDATA) >

<!ELEMENT FlexibleHeaders (FlexibleHeader*)>
<!ELEMENT FlexibleHeader (#PCDATA)>
<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

Response Example

<!-- query response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning
<!ELEMENT Query.Response (Header, Orderdata*, Warnings?, Namespace?, Version?)>
<!-- The contents of Header cannot be described in a dtd.
Let children := the mnemonic path of all flexible headers for the user -->

<!ELEMENT Header(order seq id, order hist seq id,
_date pos created, date pos started, task id,

_order type, order source, order state,

_process_description, reporting status,

_reference number, priority, user, num remarks, children*)>
<!-- Let headerchild := each of the children of Header -->
<!ELEMENT headerchildEMPTY>

<!ATTLIST headerchild descCDATA #IMPLIED>

3-88

Chapter 3
Document Type Definitions (DTD)

<!-- The contents of Orderdata cannot be described in a dtd.
Let orderdatachildren := the mnemonic path of all flexible headers for the user --

>

<!ELEMENT Orderdata(order seq id, order hist seq_id,

_date pos created, date pos started,

_task id, order type, order source,

_order state, process description,

_reporting status, reference number, user,

_num_remarks,orderdatachildren*)>

<!-- Let ordedatachild := each of the children of Orderdata -->

<!ELEMENT orderdatachild (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

ResumeOrder
The ResumeOrder XML API is used to resume an order.

Request Example

<!-- resume order request.dtd -->

<!ELEMENT ResumeOrder.Request (OrderID, Reason)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT Reason (#PCDATA) >

Response Example

<!-- resume order_ response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT ResumeOrder.Response (OrderID, Reason, Warnings?)>
<!ELEMENT OrderID (#PCDATA) >
<!ELEMENT Reason (#PCDATA) >

SetException
The SetException XML API is used to set an exception.

Request Example

<!-- set exception request.dtd -->

<!ELEMENT SetException.Request (OrderID, OrderHistID, Status)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT Status (#PCDATA) >

Response Example

<!-- set exception response.dtd -->

<!ELEMENT SetException.Response (OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT OrderHistID (#PCDATA)>

SuspendOrder

The SuspendOrder XML API is used to suspend an order.

ORACLE 280

Chapter 3
Document Type Definitions (DTD)

Request Example

<!-- suspend order request.dtd -->

<!ELEMENT SuspendOrder.Request (OrderID, Reason, OrderHistID, State)>
<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT Reason (#PCDATA) >

<!ELEMENT OrderHistID (#PCDATA)>

<!ELEMENT State (#PCDATA) >

Response Example

<!-- suspend order response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT SuspendOrder.Response (OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID (#PCDATA)>
<!ELEMENT OrderHistID (#PCDATA)>

TaskDescription

The TaskDescription XML API is used for the task description.

Request Example

<!-- task description request.dtd -->

<!ELEMENT TaskDescription.RequestEMPTY, Namespace?, Version?>
<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA)>

Response Example

<!-- task description response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT TaskDescription.Response (Task, Warnings?, Namespace?, Version?)>
<!ELEMENT TaskEMPTY>

<!ATTLIST Task mnemonicCDATA #REQUIRED>

<!ATTLIST Task taskTypeCDATA (automatic | manual | creation | rule | delay)
#REQUIRED>

<!ATTLIST Task descCDATA #REQUIRED>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

UpdateOrder

ORACLE

The UpdateOrder XML API is used to update an order.

Request Example

<!-- update order request.dtd -->
<!ELEMENT UpdateOrder.Request (OrderID, ViewID, NewReference?, NewPriority? Add*,
Delete*, Update*, AddRemark?)>
<!ELEMENT OrderID (#PCDATA) >
<!ELEMENT OrderHistID (#PCDATA)>
<!ELEMENT NewReference (#PCDATA) >
<!ELEMENT NewPriority (#PCDATA)>
<!-- The contents of the Add element cannot be described in a dtd
Let children := mnemonic for order elements from the template -->
<!ELEMENT Add(children*)>
<!ATTLIST Add pathCDATA #REQUIRED>

3-90

Warning

Worklist

ORACLE

Chapter 3

Document Type Definitions (DTD)

<!ELEMENT DeleteEMPTY>
<!ATTLIST Delete pathCDATA #REQUIRED>
<!-- The contents of the Updateelement cannot be described in a dtd
Let children := mnemonic for order elements from the template -->
<!ELEMENT Update (children* | #PCDATA)>
<!ATTLIST Update pathCDATA #REQUIRED>
<!ELEMENT AddRemark (Text, Attachments?)>
<!ELEMENT Text (#PCDATA) >
<!ELEMENT Attachments (FileName*)>
<!ELEMENT FileName (#PCDATA) >

Response Example

<!-- update_order_ response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;

<!ELEMENT UpdateOrder.Response (Remark?, Warnings?)>
<!ELEMENT Remark (RemarkID, Attachment*)>

<!ELEMENT RemarkID (#PCDATA) >

<!ELEMENT Attachment (AttachmentID, FileName)>
<!ELEMENT AttachmentID (#PCDATA) >

<!ELEMENT FileName (#PCDATA) >

The warning DTD is included by all response documents.

<!-- warning.dtd -->

<!ELEMENT Warnings (Warning+)>
<!ELEMENT Warning (#PCDATA) >

<!ATTLIST Warning codeCDATA #REQUIRED>
<!ATTLIST Warning descCDATA #REQUIRED>

The Worklist XML API is used for worklists.

Request Example

<!-- worklist request.dtd -->

<!ELEMENT Worklist.Request (FlexibleHeaders?, Namespace?, Version?)>
<!ELEMENT FlexibleHeaders (FlexibleHeader*)>

<!ELEMENT FlexibleHeader (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

Response Example

<!-- worklist response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
$warning;
<!ELEMENT Worklist.Response (Header, OrderData*, Warnings?, Namespace?, Version?)>
<!-- The contents of Header cannot be described in a dtd.
Let children := the mnemonic path of all flexible headers specified in the

request -->

<!ELEMENT Header(order seq id, order hist seq id, date pos created,
_date pos started, task id, order type, order source, order state,
_execution mode, process description, current order state,
_target order state, reporting status, reference number, priority,
_user, num remarks,children*)>

<!-- Let headerchild := each of the children of Header -->

3-91

ORACLE"

Chapter 3
Document Type Definitions (DTD)

<!ELEMENT headerchildEMPTY>
<!ATTLIST headerchild descCDATA #IMPLIED>

<!-- The contents of Orderdata cannot be described in a dtd.
Let orderdatachildren := the mnemonic path of all flexible headers specified in

the request -->

<!ELEMENT Orderdata(order seq id, order hist seq id, date pos created,
_date pos started, task id, order type, order source, order state,
_execution mode, process description, current order state, target order state,
_reporting status, reference number, priority, user, num remarks,
orderdatachildren*)>

<!-- Let ordedatachild := each of the children of Orderdata -->

<!ELEMENT orderdatachild (#PCDATA)>

<!ELEMENT Namespace (#PCDATA) >

<!ELEMENT Version (#PCDATA)>

3-92

Using TMF REST APIs (Cloud Native Only)

REST (Representational State Transfer) APIs are widely used for communication between
different software components over HTTP and HTTPS. The OpenAPI specification provides a
common language to describe such REST APIs. TMForum has defined specifications that
represent the operations of an order management system for a communications service
provider.

OSM supports the following TMF ordering specifications:

e TMF 622 Product Ordering
* TMF 641 Service Ordering

Note:
TMF REST APIs are supported for OSM cloud native deployments only.

Before reading this chapter, read the chapter about TMF Ordering Support in OSM Concepts.

About TMF Ordering in OSM

The design-time journey for TMF ordering support involves importing one of the two supported
TMF specifications into Design Studio. Further, design-time configuration provides the
necessary support that enables OSM to "host" the specification. When this TMF cartridge is
deployed, the OSM Gateway microservice dynamically exposes the REST endpoints that are
defined in the specification. If the hosted order specification is TMF 622, this would result in
endpoints such as IproductOrder. Conversely, if a TMF 641 hosted order specification is
deployed, then OSM Gateway would expose endpoints such as IserviceOrder.

Supported Endpoints

ORACLE

This section lists the supported endpoints in the TMF622 and TMF641 specifications. The
support either comes from the canonical TMF specification or from extensions made by OSM.
If an endpoint is not listed, then it is not supported.

Table 4-1 Supported Endpoints
|

API Endpoint Supported Through
/productOrder Canonical or OSM Extension
IserviceOrder

/cancelProductOrder Canonical or OSM Extension

/cancelServiceOrder

/suspendProductOrder OSM Extension

/suspendServiceOrder

4-1

Chapter 4
Authentication and Authorization

Table 4-1 (Cont.) Supported Endpoints
|

API Endpoint Supported Through
/reviseProductOrder OSM Extension
IreviseServiceOrder

/resumeProductOrder/{id} OSM Extension
/resumeServiceOrder/{id}

/abortProductOrder/{id} OSM Extension
/abortServiceOrder/{id}

For further details about each API, refer to the REST API Reference for Oracle
Communications Order and Service Management Cloud Native.

Authentication and Authorization

ORACLE

OSM Gateway is secured with OpenID Connect (OIDC). OIDC permissions for users are
granted for all operations on OSM Gateway. Access to individual operations cannot be
controlled in the same granular fashion as it is for Task Web Client operations via the order
lifecycle policy.

In order to access TMF REST APIs, which are secured, the request must contain an access
token to gain access for that request. Endpoints that are secured are not only those operating
on the hosted object (Product Order or Service Order) and related task resources, but also on
the incoming events from external TMF and other sources. Any user who is successfully
authenticated with the REST API is automatically authorized to execute all operations in the
API across all the orders and task resources defined in the API.

In order to generate an access token from the OIDC server, the following credentials are
required:

e ClientID

* Client Secret

* Access Token URL
e Scope

e Grant Type (= Client Credentials)

< Note:

These credentials, which are used for token generation, should match with those
specified in the OIDC credential secret. See the section about creating OSM
Gateway secrets in the OSM Cloud Native Deployment Guide for more details.

The generated token is added to the header for the requests. The same token can be used for
future requests until it expires.

Header Key Authorization

Header Value Bearer access-token

4-2

Chapter 4
Constructing the Endpoint

Constructing the Endpoint

Construct the HTTP request on the client as follows:

e APl Endpoint URL.: It is the combination of the base URL and endpoint path. All API
endpoints are relative to the base URL. A complete URL is formed when the base URL is
appended with endpoint paths. If version is prefixed with v in the server URL in the
OpenAPI specification, then the endpoint version must also be prefixed with v. See the
example that follows.

* Request Type: Set the REST Request type as specified for the endpoint.
* Request Headers: Set any required headers as specified by the Open API specification.

* Request Parameters: Include any query parameters and path parameters if required by
the API.

* Request Body: Include the payload if required by the API.

< Authentication: Acquire the credentials that are required to generate an access token.
Once a token is generated, pass the access token in the Authorization header.

Let us consider for an OSM cloud native instance, sr and quick as the project and instance
names respectively and the OSM-Extended TMF622 OpenAPI specification deployed. The
OSM-Extended TMF622 Specification has version as part of the server URL in the OpenAPI
specification file in the OSM SDK. Say this version is v4.0.0.1.0.

For a Create Product Order request, the following table shows the API attributes and example
values:

Table 4-2 API Attributes and Values

]
API Attribute Value

API Endpoint URL http://hostname:port/orchestration/sr/quick/tmf-api/
productOrderingManagement/v4.0.0.1.0/productOrder

where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type POST

Request Header Content-Type:application/json (The key-value added as header.)

Request Body json payload of ProductOrder_Create Schema

Authentication Authorization:Bearer access-token (The key-value added as
header.)

Registering for Events

ORACLE

The TMF specifications define not only the endpoints and operations but northbound event
notifications as well. TMF 622 and TMF 641 events communicate important information about
the resource - lifecycle events such as creation and completion, state changes and certain
types of data updates.

The design-time configuration for hosting a specification includes an "Event Target System"
name. This should be the logical name for the upstream system that brokers event
notifications. The logical system name is decoupled from the actual connection details so that
cartridge deployment is not impacted by a specific environment.

4-3

Chapter 4

Registering for Events

At runtime, OSM Gateway would attempt to resolve the logical target system name. To do so,

the logical system must be defined in the CNTK instance specification along with the actual

server details and any related security scheme. See the OSM Cloud Native Deployment Guide
for further details about CNTK configuration.

The following table lists events that are defined in TMF622 and TMF641 specifications:

Table 4-3 List of Supported Events
e

ent

Events Canonical OSM-Extended Supported?
ProductOrderCreateEvent Available Available Supported
ServiceOrderCreateEvent Available Available Supported
ProductOrderAttributeValueC | Available Available Supported
hangeEvent

ServiceOrderAttributeValueC | Available Available Supported
hangeEvent

ProductOrderDeleteEvent Available Not Available Not Supported
ServiceOrderDeleteEvent Available Not Available Not Supported
ProductOrderStateChangeEv | Available Available Supported
ent

ServiceOrderStateChangeEv | Available Available Supported
ent

ProductOrderinformationReq | Available Not Available Not Supported
uiredEvent

ServiceOrderinformationReq | Available Not Available Not Supported
uiredEvent

ServiceOrderMilestoneEvent | Available Not Available Not Supported
ServiceOrderJeopardyEvent | Available Not Available Not Supported
CancelProductOrderCreateE | Available Available Supported
vent

CancelServiceOrderCreateE | Available Available Supported
vent

CancelProductOrderStateCh | Available Available Supported
angeEvent

CancelServiceOrderStateCh | Available Available Supported
angeEvent

CancelProductOrderinformati | Available Not Available Not Supported
onRequiredEvent

CancelServiceOrderInformati | Available Not Available Not Supported
onRequiredEvent

SuspendProductOrderCreate | Not Available Available Supported
Event

SuspendServiceOrderCreate | Not Available Available Supported
Event

SuspendProductOrderStateC | Not Available Available Supported
hangeEvent

SuspendServiceOrderStateC | Not Available Available Supported
hangeEvent

ReviseProductOrderCreateE | Not Available Available Supported
vent

ReviseServiceOrderCreateEv | Not Available Available Supported

ORACLE

4-4

Chapter 4
About the Payload

Table 4-3 (Cont.) List of Supported Events

Events Canonical OSM-Extended Supported?
ReviseProductOrderStateCh | Not Available Available Supported
angeEvent

ReviseServiceOrderStateCha | Not Available Available Supported
ngeEvent

The details about each event are available in REST API Reference for Oracle Communications
Order and Service Management Cloud Native .

These events will be published to the event target system.

For TMF622 related event, the endpoint URL of the event to which it will be published looks as
follows:

target-system url/productOrderingManagement/<version>/listener/<event-name>

For TMF641 related event, the endpoint URL of the event to which it will be published looks as
follows:

target-system url/serviceOrdering/<version>/listener/<event-name>

target-system url is the base context URL of the target system which will be picked from the
CNTK instance.

Let us consider, for an OSM cloud native instance as the target system, sr and slow as the
project and instance names respectively and the OSM-Extended TMF622 OpenAPI
specification deployed. The OSM-Extended TMF622 Specification has version as part of the
server URL in the OpenAPI specification file in the OSM SDK. Say, this version is v4.0.0.1.0.
The Target System URL will be: http://hostname:port/orchestration/sr/slow/tmf-api

If the event is ProductOrderStateChangeEvent, the endpoint looks like: http://
hostname:port/orchestration/sr/slow/tmf-api/productOrderingManagement/v4.0.0.1.0/
listener/ProductOrderStateChangeEvent

This constructed endpoint must be exposed by the Target System in order to receive the
notifications.

About the Payload

ORACLE

OSM Gateway expects payload of JSON type and converts it to XML for OSM.
Sample JSON Payload

"@type": "ProductOrderOSM Create",

"description": "sales order Request",

"category": "salesOrder",

"externalId": "456789",

"requestedStartDate": "2022-08-22T17:42:14.6682Z",
"priority": "high",

"agreement": |

{

4-5

ORACLE

Chapter 4
About the Payload

"@type": "AgreementRef",

"id": lll",
"name": "John",
"href". "bar"

]I
"billingAccount": {
"@type": "BillingAccountRef",
"id": "9SIA-DR5SBW",
"name": "e2e individual20200428233218579@cheers.com",
"href": "bar"
}I
"channel": [
{
"@type": "RelatedChannel",

"j_d": "1",

Hnamen. Hfoovl
. 4

Hhrefn. "bar"

"note": [
{
"@type": "Note",
"id". "1,
"author": "Jean Pontus",
"date": "2022-07-30T08:13:59.509z2",
"text": "This is a TMF 622 Sample Solution product order"
}
]I
"payment": [

{
"@type": "PaymentRef",

"id": |l2365",
"href": "https://host:port/paymentManagement/v4/cashPayment/2365",
"name": "Cash payment for access fee",

"@referredType": "Payment"

I

"productOfferingQualification": |
{
"@type": "ProductOfferingQualificationRef",
"id": "ABC-17Z8QMG",
"name": "dummyPOQualification"

I

"quote": [
{
"@type": "QuoteRef",
"id": "ABC-123AGG",
"name": "dummyQuote"
}
]I
"relatedParty": |

{
"@type": "RelatedParty",

4-6

ORACLE

df4s5",

hjyd",

I

Chapter 4
About the Payload

"id": "456-dd-df45",
"href": "https://host:port/partyManagement/v4/individual/456-dd-

"name": "Joe Doe",
"role": "Seller",
"@referredType": "Individual"

"@type": "RelatedParty",
"id": "££55-hjy4",
"href": "https://host:port/partyRoleManagement/v4/customer/ff55-

"name": "Jean Pontus",
"@referredType": "Customer"

"productOrderItem": [

{

"@type": "ProductOrderItem",
"quantity": 1,
"id": "0CX-1Z8QSX",
"action": "add",
"appointment": {
"@type": "AppointmentRef",
"id": "ABC",
"href": "dummy",
"description": "dummyAppointment"
}I
"billingAccount": {
"@type": "BillingAccountRef",
"id": "OCX-1XRFRM"
}I
"itemPrice": [
{
"@type": "OrderPrice",
"billingAccount": {
"@type": "BillingAccountRef",
"id": "9SIA-DR5SBW",
"name": "e2e individual20200428233218579@cheers.com",
"href": "bar"
}I
"price": {
"Qtype": "Price",
"percentage": 30.00,
"taxRate": 0
}I
"priceAlteration": [
{
"@type": "PriceAlteration",
"applicationDuration": 12,
"priceType": "recurring",
"price": {
"Qtype": "Price",
"percentage": 30.00,
"taxRate": 40.50
}I

4-7

ORACLE

Chapter 4
About the Payload

"productOfferingPrice": {
"@type": "ProductOfferingPriceRef",
"id": "123-ABC",
"name": "dummyPOPriceRef",
"href": "dummy2"

]I
"productOfferingPrice": {
"@type": "ProductOfferingPriceRef",
"id": "123-ABC",
"name": "dummyPOPriceRef",
"href": "dummy3"

I

"itemTerm": [

{
"@type": "OrderTerm",

"description": "Tariff plan 12 Months commitment",
"name": "12Months"
}
]I
"itemTotalPrice": [

{
"@type": "OrderPrice",
"billingAccount": {
"@type": "BillingAccountRef",
"id": "9SIA-DR5SBW",
"name": "e2e individual20200428233218579@cheers.com",
"href": "bar"
}I
"price": {
"Qtype": "Price",
"percentage": 10.00,
"taxRate": 20.50
}I
"priceAlteration": [
{
"@type": "PriceAlteration",
"applicationDuration": 12,
"priceType": "recurring",
"price": {
"Qtype": "Price",
"percentage": 10.05,
"taxRate": 20.5
}I
"productOfferingPrice": {
"@type": "ProductOfferingPriceRef",
"id": "123-ABC",
"name": "dummyPOPriceRef",
"href": "dummy4"

I

"productOfferingPrice": {

4-8

Chapter 4
About the Payload

"@type": "ProductOfferingPriceRef",
"id": "123-ABC",

"name": "dummyPOPriceRef",

"href": "dummy5"

]I
"payment": [
{
"@type": "PaymentRef",
"id": "2365",
"href": "https://host:port/paymentManagement/v4/
cashPayment/2365",
"name": "Cash payment for access fee",
"@referredType": "Payment"

]I
"product": {
"@type": "ProductRefOrValue",
"id": "0CX-1zZ8QMG",
"isBundle": false,
"isCustomerVisible": true,
"name": "Amazon Prime",
"agreement": [
{
"@type": "AgreementItemRef",

"idll: "l"’
"name": "John",
"href": "bar"

] 4
"billingAccount": {
"@type": "BillingAccountRef",
"id": "9SIA-DR5BW",
"name": "eZe individual20200428233218579@cheers.com",
"href": "barProduct"
}I
"place": |
{
"@type": "RelatedPlaceRefOrValue",
"id": "456-dd-df45",
"href": "https://host:port/partyManagement/v4/
individual/456-dd-df45",
"name": "Joe Doe",
"role": "Seller"

I

"productCharacteristic": [

{

"@type": "Characteristic",

"name": "Channel",
"valueType": "string",
"value": "Amazon Prime"

"@type": "Characteristic",

ORACLE 49

ORACLE

Chapter 4
About the Payload

'lname": "QOS",
"valueType": "string",
"value": "1080P"

"@type": "Characteristic",
"name": "BillingAccount",
"valueType": "object",
"value": {
"@type": "BillingAccountRef",
"id": "15"

] 4
"productOffering": {
"@type": "ProductOfferingRef",
"id": "14305",
"href": "https://host:port/productCatalogManagement/v4/
productOffering/14305",
"name": "Amazon Prime"
I
"productOrderItem": [],
"productPrice": [
{
"@type": "ProductPrice",
"priceType": "recurring",
"name": "Amazon Prime",
"recurringChargePeriod": "month",
"unitOfMeasure": "GB",
"billingAccount": {
"@type": "BillingAccountRef",
"id": "9SIA-DR5BW",

"name":
"e2e individual20200428233218579R@cheers.com",
"href": "barProductPrice"
}I
"price": {

"Qtype": "Price",
"percentage": 30.00,
"taxRate": 0
}I
"productPriceAlteration": [
{
"@type": "PriceAlteration",
"applicationDuration": 12,
"priceType": "recurring",
"price": {
"Qtype": "Price",
"percentage": 30.00,
"taxRate": 40.50
}I
"productOfferingPrice": {
"@type": "ProductOfferingPriceRef",
"id": "456-ABC",
"name": "dummyPOPriceRef",
"href": "dummy8"

4-10

ORACLE

Chapter 4
About the Payload

]I
"productOfferingPrice": {
"@type": "ProductOfferingPriceRef",
"id": "987-ABC",
"name": "dummyPOPriceRef",
"href": "dummy9"

] 4

"productSpecification": {
"@type": "ProductSpecificationRef",
"name": "Digital TV PS",
"id": "OCX-1YAFD5S"

}I
"productOffering": {
"@type": "ProductOfferingRef",
"id": "0CX-1YAFDS",
"name": "Amazon Prime"
}I
"productOfferingQualificationItem": ({
"@type": "ProductOfferingQualificationItemRef",
"id": "0CX-1YAFDS",
"productOfferingQualificationId": "ABC-123",
"name": "Amazon Prime Qualification item"
}I
"productOrderItem": [],
"productOrderItemRelationship": |
{
"@type": "OrderItemRelationship",
"id". "123",
"relationshipType": "dummyBundles"

1y

"quoteItem": {
"@type": "QuoteItemRef",
"quoteId": "ABC-123AGG",

"quoteName": "dummyQuote",
llidll : "ABCII,
"name": "dummyQuoteItem"

Sample XML Payload

<productOrder xmlns="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/4.0.0.1.0/productOrder/inputMessage"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="ProductOrderOSM Create">

<description>sales order Request</description>

4-11

Chapter 4
About the Payload

<category>salesOrder</category>
<externalIld>456789</externalld>
<requestedStartDate>2022-08-22T17:42:14.668%</requestedStartDate>
<priority>high</priority>
<agreement xsi:type="AgreementRef">
<id>1</id>
<name>John</name>
<href>bar</href>
</agreement>
<billingAccount xsi:type="BillingAccountRef">
<id>9SIA-DR5HBW</id>
<name>e2e individual20200428233218579€cheers.com</name>

<href>bar</href>
</billingAccount>
<channel xsi:type="RelatedChannel">
<id>1</id>
<name>foo</name>
<href>bar</href>
</channel>
<note xsi:type="Note">
<id>1</id>

<author>Jean Pontus</author>
<date>2022-07-30T08:13:59.509Z</date>
<text>This is a TMF 622 Sample Solution product order</text>
</note>
<payment xsi:type="PaymentRef">
<id>2365</1id>
<href>https://host:port/paymentManagement/v4/cashPayment/2365</href>
<name>Cash payment for access fee</name>
< referredType>Payment</ referredType>
</payment>
<productOfferingQualification xsi:type="ProductOfferingQualificationRef">
<1d>ABC-17Z8QMG</id>
<name>dummyPOQualification</name>
</productOfferingQualification>
<quote xsi:type="QuoteRef">
<id>ABC-123AGG</1id>
<name>dummyQuote</name>
</quote>
<relatedParty xsi:type="RelatedParty">
<id>456-dd-df45</id>
<href>https://host:port/partyManagement/v4/individual/456-dd-df45</

href>
<name>Joe Doe</name>
<role>Seller</role>
< referredType>Individual</ referredType>
</relatedParty>

<relatedParty xsi:type="RelatedParty">
<id>ff55-hjyd</id>
<href>https://host:port/partyRoleManagement/v4/customer/ff55-hjy4</
href>
<name>Jean Pontus</name>
< referredType>Customer</ referredType>
</relatedParty>
<productOrderItem xsi:type="ProductOrderItem">
<quantity>1</quantity>

ORACLE 415

Chapter 4
About the Payload

<id>0CX-1Z8QSX</id>
<action>add</action>
<appointment xsi:type="AppointmentRef">
<id>ABC</id>
<href>dummy</href>
<description>dummyAppointment</description>
</appointment>
<billingAccount xsi:type="BillingAccountRef">
<1d>0CX-1XRFRM</id>
</billingAccount>
<itemPrice xsi:type="OrderPrice">
<billingAccount xsi:type="BillingAccountRef">
<id>9SIA-DR5HBW</id>
<name>e2e individual20200428233218579€cheers.com</name>
<href>bar</href>
</billingAccount>
<price xsi:type="Price">
<percentage>30.0</percentage>
<taxRate>0.0</taxRate>
</price>
<priceAlteration xsi:type="PriceAlteration">
<applicationDuration>12</applicationDuration>
<priceType>recurring</priceType>
<price xsi:type="Price">
<percentage>30.0</percentage>
<taxRate>40.5</taxRate>
</price>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<id>123-ABC</id>
<name>dummyPOPriceRef</name>
<href>dummy2</href>
</productOfferingPrice>
</priceAlteration>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<id>123-ABC</id>
<name>dummyPOPriceRef</name>
<href>dummy3</href>
</productOfferingPrice>
</itemPrice>
<itemTerm xsi:type="OrderTerm">
<description>Tariff plan 12 Months commitment</description>
<name>12Months</name>
</itemTerm>
<itemTotalPrice xsi:type="OrderPrice">
<billingAccount xsi:type="BillingAccountRef">
<id>9SIA-DR5HBW</id>
<name>e2e individual20200428233218579€cheers.com</name>
<href>bar</href>
</billingAccount>
<price xsi:type="Price">
<percentage>10.0</percentage>
<taxRate>20.5</taxRate>
</price>
<priceAlteration xsi:type="PriceAlteration">
<applicationDuration>12</applicationDuration>
<priceType>recurring</priceType>

ORACLE 413

ORACLE

Chapter 4
About the Payload

<price xsi:type="Price">
<percentage>10.05</percentage>
<taxRate>20.5</taxRate>
</price>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<id>123-ABC</id>
<name>dummyPOPriceRef</name>
<href>dummy4</href>
</productOfferingPrice>
</priceAlteration>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<id>123-ABC</id>
<name>dummyPOPriceRef</name>
<href>dummy5</href>
</productOfferingPrice>
</itemTotalPrice>
<payment xsi:type="PaymentRef">
<id>2365</1id>
<href>https://host:port/paymentManagement/v4/cashPayment/2365</
href>
<name>Cash payment for access fee</name>
< referredType>Payment</ referredType>
</payment>
<product xsi:type="ProductRefOrValue">
<1d>0CX-1728QMG</1d>
<isBundle>No</isBundle>
<isCustomerVisible>Yes</isCustomerVisible>
<name>Amazon Prime</name>
<agreement xsi:type="AgreementItemRef">
<id>1</id>
<name>John</name>
<href>bar</href>
</agreement>
<billingAccount xsi:type="BillingAccountRef">
<id>9SIA-DR5HBW</id>
<name>e2e individual20200428233218579€cheers.com</name>

<href>barProduct</href>
</billingAccount>
<place xsi:type="RelatedPlaceRefOrValue">
<id>456-dd-df45</id>

<href>https://host:port/partyManagement/v4/individual/456-dd-
df45</href>

<name>Joe Doe</name>
<role>Seller</role>
</place>

<productCharacteristic xsi:type="Characteristic">

4-14

Chapter 4
About the Payload

<name>Channel</name>
<valueType>string</valueType>
<value>Amazon Prime</value>
</productCharacteristic>
<productCharacteristic xsi:type="Characteristic">
<name>QoS</name>
<valueType>string</valueType>
<value>1080P</value>
</productCharacteristic>
<productCharacteristic xsi:type="Characteristic">
<name>BillingAccount</name>
<valueType>object</valueType>
<valueXml>
<xmlData>
<object xsi:type="BillingAccountRef">
<id>15</id>
</object>
</xmlData>
</valueXml>
</productCharacteristic>
<productOffering xsi:type="ProductOfferingRef">
<id>14305</id>

<href>https://host:port/productCatalogManagement/v4/
productOffering/14305</href>

<name>Amazon Prime</name>
</productOffering>
<productPrice xsi:type="ProductPrice">
<priceType>recurring</priceType>

<name>Amazon Prime</name>

ORACLE T

ORACLE

Chapter 4
About the Payload

<recurringChargePeriod>month</recurringChargePeriod>
<unitOfMeasure>GB</unitOfMeasure>
<billingAccount xsi:type="BillingAccountRef">
<id>9STA-DR5BW</id>
<name>e2e individual20200428233218579€cheers.com</name>
<href>barProductPrice</href>
</billingAccount>
<price xsi:type="Price">
<percentage>30.0</percentage>
<taxRate>0.0</taxRate>
</price>
<productPriceAlteration xsi:type="PriceAlteration">
<applicationDuration>12</applicationDuration>
<priceType>recurring</priceType>
<price xsi:type="Price">
<percentage>30.0</percentage>
<taxRate>40.5</taxRate>
</price>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<id>456-ABC</id>
<name>dummyPOPriceRef</name>
<href>dummy8</href>
</productOfferingPrice>
</productPriceAlteration>
<productOfferingPrice xsi:type="ProductOfferingPriceRef">
<1d>987-ABC</id>
<name>dummyPOPriceRef</name>

<href>dummy9</href>

4-16

Chapter 4
About the Payload

</productOfferingPrice>
</productPrice>
<productSpecification xsi:type="ProductSpecificationRef">
<name>Digital TV PS</name>
<id>0CX-1YAFD5</id>
</productSpecification>
</product>
<productOffering xsi:type="ProductOfferingRef">
<id>0CX-1YAFD5</id>
<name>Amazon Prime</name>
</productOffering>

<productOfferingQualificationItem
xsi:type="ProductOfferingQualificationItemRef">

<id>0CX-1YAFD5</id>

<productOfferingQualificationId>ABC-123</
productOfferingQualificationId>

<name>Amazon Prime Qualification item</name>

</productOfferingQualificationItem>

<productOrderItemRelationship xsi:type="OrderItemRelationship">
<id>123</id>
<relationshipType>dummyBundles</relationshipType>

</productOrderItemRelationship>

<quoteltem xsi:type="QuoteltemRef">
<quoteId>ABC-123AGG</quoteId>
<quoteName>dummyQuote</quoteName>
<id>ABC</id>
<name>dummyQuoteItem</name>

</quoteltem>

</productOrderItem>
</productOrder>

About Schema Mismatch

It is possible that payloads contain data that is not part of the schema defined in the
specification that is used. You have control to determine whether strict parsing should be used
or whether extra data can simply be silently pruned. The validations property in the project
specification will be used to set incoming and outgoing validations. You can specify STRICT
and PRUNE.

ORACLE 4-17

Fallout Exception Management Rest APIs
V2.0 (Cloud Native Only)

This chapter provides information about the second version (V2) of the Fallout Exception
Management REST APIs for Oracle Communications Order and Service Management (OSM).
Fallout Exception Management Rest APIs are part of the OSM Simplified Fallout Management
framework.

You can retrieve a list of details about the fallout exceptions using the (GET) REST APIs
provided by OSM. These REST APIs come with the following capabilities:

e Filtering
e Grouping
e Ordering

e Selecting fields

Associate a fallout exception with an action and then submit it. OSM provides the REST API
endpoint submitFalloutAction which will accept the submit request (POST) and return no
response.

The successful response from the submitFalloutAction endpoint indicates that the fallout
action is submitted and is in progress. The success or failure of the fallout action is reflected in
the fallout exception state.

For more details on the Simplified Fallout Management Framework and fallout exception
scenarios, refer to About Managing Fallout Exception in OSM Concepts Guide.

Fallout Exception Management Rest API Versions

ORACLE

The Fallout Exception Management APIs are versioned. The endpoint URL builds using the
version information. For example:

https://serverRoot/fallout/v2.0/falloutException

For more information on which version you should use, refer to the Manage Fallout Exception
section of the REST API Reference for Oracle Communications Order and Service
Management Cloud Native.

Version History

The following table details the operations in the available versions of the fallout exception
management REST API.

5-1

Chapter 5
Fallout Exception Lifecycle

Table 5-1 Version History
|

Version Details
V2.0 POST operations on the Fallout Exception
Resource.

Enhanced GET operations with new response
attributes (taskStatuses, lastUpdatedDate and
recentAction)

V1 GET operations on the Fallout Exception
Resource.

Fallout Exception Lifecycle

The following diagram illustrates the fallout exception state lifecycle changes when actions are
submitted using the Fallout Exception Management REST APIs.

Figure 5-1 Fallout Exception Lifecycle

Failed Execution

Created In Progress. Completed

Fallout Exception Fallout Action is Fallout Action
Created and Waiting Submitted using the execution completed
for Manual or REST APls successfuly

Automated Action

Support for Filtering, Grouping and Ordering of Fallout Exception
Objects

You can use the GET operation for generating a list of fallout exception objects. These lists
provide the details of the objects in fallout exception using the following capabilities:

e Filtering
e Grouping
e Ordering

Filtering and Attribute Selection Rules

The GET operation generates a list of the objects in fallout exception using the filtration and
attribute selection capabilities.

This capability filters the fallout exception objects. Wildcard search supports the
customerName and orderType fields only.

ORACLE -

Grouping

Ordering

ORACLE

Chapter 5
Support for Filtering, Grouping and Ordering of Fallout Exception Objects

Any of the following can be provided using the filterBy parameter:
e contains (field,'searchstring’)

* startswith (field,'searchstring’)

e endswith (field,'searchstring’)

Wildcard search for multiple capabilities is also supported.
For example:

GET /falloutException?filterBy=contains (customerName, 'ABC') Example: GET /
falloutException?

filterBy=contains (customerName, 'ABC') &filterBy=contains (orderType, 'Service') &fiel
ds=customerName, orderId, state, requestedCompletionDate

The grouping capability returns the aggregated fallout exception objects with total fallout
exceptions per order and other aggregated details. Fallout exceptions can only be grouped
based on the orderid.

For example:

GET /falloutException?groupBy=orderId

The Ordering capability returns the objects in fallout exception in a sorted order.

The following are valid fields for the orderBy parameter when it is used with the groupBy
parameter:

e orderld

* customerName

e orderType

* requestedCompletionDate
e creationDate

« externalld

* totalFalloutExceptionPerOrder

The following are valid fields for the orderBy parameter when it is used without the groupBy
parameter:

* timestamp

* errorld

* productNames
+ taskName

For example:

°* GET /falloutException?orderBy=errorId&sort=asc

5-3

Chapter 5
Supported Fallout Actions

Note:

By default, the objects will be sorted in descending order.

e GET /falloutException?groupBy=orderIds&orderBy=creationDate&sort=desc

Additional Query Fields

The following table describes the querying fields you can use for the GET operation to find the
list of the objects in fallout exception.

Table 5-2 Additional Query Fields

Query Field

Description

Example

customerName

Retrieves fallout exceptions for a given
customer name. You can provide
multiple customer names.

GET /falloutException?
customerName=abcd&customerName=
Xy7Z

fromRequestedCompletionDate

The start date for the requested
completion date. You must use this with
toRequestedCompletionDate.

GET /falloutException?
fromRequestedCompletionDate=201
6-11-15&toRequestedCompletionDa
te=2016-11-20

fromfalloutCreationDate

The start date for the report. You must
use this with tofalloutCreationDate.

GET /falloutException?
fromfalloutCreationDate=2016-11
-15&¢tofalloutCreationDate=2016-
11-20

orderld Retrieves fallout exceptions for an GET /falloutException?
orderld. You can also provide multiple |orderId=12345 or GET /
orderlds. falloutException?
orderId=12345&0rderId=3312
orderType Retrieves data based on orderType GET /falloutException?
(this is shown as Reference Number in | orderType=Product or GET /
the Fallout Order Operations falloutException?
Dashboard). You can also provide orderType=Product&orderType=Ser
multiple states. vice
overdue Retrieves fallout exceptions for orders | GET /falloutException?

that are overdue based on the
requested completion date.

overdue=true

toRequestedCompletionDate

The end date for the report. You must
use this with
fromRequestedCompletionDate.

GET /falloutException?
fromRequestedCompletionDate=201
6-11-15&toRequestedCompletionDa
te=2016-11-20

tofalloutCreationDate

The end date for the report. You must
use this with fromfalloutCreationDate.

GET /falloutException?
fromfalloutCreationDate=2016-11
-15¢tofalloutCreationDate=2016-
11-20

Supported Fallout Actions

The following actions can be submitted using the Fallout Exception Management REST API
endpoint submitFalloutAction:

ORACLE

5-4

Chapter 5
AP| Operations

* Force Complete Task: The task will be marked as Complete with the task status provided
by you. This resolves the fallout exception. You have to take care of the required data
updates that are needed to perform the force complete prior to submitting the action.

* Retry Task: The task is retried and the fallout exception is cleared. If the Retry is
successful, the task completes. If the Retry runs into problems, the cartridge code can
raise a new fallout exception.

e Cancel Order: This operation cancels an order. All outstanding work items associated with
the order are deleted, and all complete work items associated with the order are
compensated (undone).

* Fail Order: This results in the entire OSM order failing and triggers an update to the final
TMF state in case of TMF orders. The fallout exception is resolved automatically, marked
with the action code Fail.

« Abort Order: This operation tells OSM to stop working on the selected order without
triggering any further work.

API Operations

The table below lists the supported endpoints in the Simplified Fallout Exception Management.
If an endpoint is not listed, then it is not supported.

Table 5-3 Supported Fallout Endpoints

API Endpoint API Operation Description

/falloutException GET List or find fallout exceptions.
[falloutException/{id} GET Retrieve a fallout exception using its ID.
[falloutException/{id}/ POST Submit a given fallout action on the
submitFalloutAction fallout exception.

[falloutException/ POST Submit a given fallout action on the
submitFalloutAction fallout order.

Authentication and Authorization

The Fallout Exception Management REST APIs are secured with OpenlD connect (OIDC) that
has been configured for the TMF Rest APls.

For further details about authentication and authorization, refer to the section Using TMF REST
APIs (Cloud Native Only).

For further details about the OIDC, refer to the section About OSM Authentication and
Authorization Methods of the Security Guide.

Constructing the Endpoint

This section provides the details for using the GET and POST endpoints for the Fallout
Exception API.

GET Endpoints

The following table shows the API attributes and example values for listing or finding the OSM
Fallout Exception details:

ORACLE c e

ORACLE

Chapter 5
Constructing the Endpoint

Table 5-4 API Attributes for Listing or Finding Fallout Exception Details

API Attribute

Example Value

API Endpoint URL

http://hostname:port/orchestration/sr/quick/falllout/
v2.0/falloutException

where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type

GET.

Request Header

There are no request headers for this operation.

Request Body

There's no request body for this operation.

Authentication

Authorization:Bearer access-token (The key-value is added as a
header).

Query Parameters

Query parameters are used for filtering, selection of fields, grouping and
ordering of the fallout exception list. For further details refer to the REST
API Reference for Oracle Communications Order and Service
Management Cloud Native.

Request

GET /falloutException

There's no request body for this operation.

Response

GET FalloutException list

200

"id": "942057168",
"href": "self",
"creationDate": "2025-02-13T13:38:36Z",

"message": "error",
"orderType": "Product",
"customerName": "Team2@osm.com",

"productNames": [
"Digital IDC OSM"
1,

"fullfillmentFunction":

"TmfProvFunctionFunction TmfProvFunctionProcess",

"taskName": "ProvisionOrderEntryTask",
"orderId": 19,
"externalId": "MultipleFTE0000123889",

"category": "catl",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-13T13:38
"lastUpdatedDate": "2025-02-13T13:38:372",

"state": "created",
"attributes": [
{
"name": "componentNodeIndex",

: 362",

5-6

ORACLE

"value": "1739453916707"

"name": "orderComponentKey",
"value": "TmfProvFunctionFunction"
}I
{
"name": "location",
"value": "testLocation2"
}I
{
"name": "orderHistId",
"value": "302"

1,
"taskStatuses": [
"next"

"id": "1397187211",
"href": "self",
"creationDate": "2025-02-13T13:38:36Z",

"message": "error",
"orderType": "Product",
"customerName": "Team2@osm.com",

"productNames": [
"Digital IDC OSM"
I

"fullfillmentFunction":

"TmfProvFunctionFunction TmfProvFunctionProcess",

"taskName": "ProvisionOrderEntryTask",
"orderId": 19,
"externalId": "MultipleFTE0000123889",

"category": "catl",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-13T13:38:362",

"lastUpdatedDate": "2025-02-13T13:38:372",

"state": "created",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1739453916707"

"name": "orderComponentKey",
"value": "TmfProvFunctionFunction"
}I
{
"name": "location",
"value": "testLocationl"
}I
{
"name": "orderHistId",
"value": "302"

Chapter 5
Constructing the Endpoint

5-7

ORACLE

1,
"taskStatuses": [
"next"

"id": "88621671",
"href": "self",
"creationDate": "2025-02-13T13:38:34z",

"message": "error",
"orderType": "Product",
"customerName": "Team2@osm.com",

"productNames": [
"Digital IDC OSM"
I

"fullfillmentFunction":

"TmfProvFunctionFunction TmfProvFunctionProcess",

"taskName": "ProvisionOrderEntryTask",
"orderId": 18,
"externalId": "MultipleFTE0000123889",

"category": "catl",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-13T13:38:332",

"lastUpdatedDate": "2025-02-13T13:38:34z",

"state": "created",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1739453913919"

"name": "orderComponentKey",
"value": "TmfProvFunctionFunction"
}I
{
"name": "location",
"value": "testLocation2"
}I
{
"name": "orderHistId",
"value": "302"

1,
"taskStatuses": [
"next"

"id": "1935585748",
"href": "self",
"creationDate": "2025-02-13T13:38:34z",

"message": "error",
"orderType": "Product",
"customerName": "Team2@osm.com",

Chapter 5
Constructing the Endpoint

5-8

ORACLE

Chapter 5

Constructing the Endpoint

"productNames": [
"Digital IDC OSM"
I

"fullfillmentFunction":

"TmfProvFunctionFunction TmfProvFunctionProcess",

"taskName": "ProvisionOrderEntryTask",
"orderId": 18,
"externalId": "MultipleFTE0000123889",

"category": "catl",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-13T13:38:332",
"lastUpdatedDate": "2025-02-13T13:38:34z",

"state": "created",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1739453913919"

"name": "orderComponentKey",
"value": "TmfProvFunctionFunction"
}I
{
"name": "location",
"value": "testLocationl"
}I
{
"name": "orderHistId",
"value": "302"

1,
"taskStatuses": [
"next"

"id": "359453722",

"href": "self",

"creationDate": "2025-02-04T12:01:432Z",
"message": "500",

"orderType": "Product",

"customerName": "eZe individual20200428233218579€cheers.com",

"productNames": [
"Promotional Offering PS"

I

"fullfillmentFunction":

"ProductProvisionOrderFunction ProductProvisionOrderSubProcess",

"taskName": "ProductProvisionSITask",
"orderId": 2,
"externalId": "456855",

"category": "category",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-04T12:01:40z",
"lastUpdatedDate": "2025-02-04T12:03:492",

5-9

Chapter 5
Constructing the Endpoint

"recentAction": "cancel",
"state": "completed",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1738670500916"

"name": "orderComponentKey",
"value":
"ProductProvisionOrderFunction.AmazonPrime.WholeGranularity"
}I
{
"name": "actionId",
"value": "1381339654"

"name": "location",

"value": "ProductProvisioningComponent"
}I
{

"name": "orderHistId",

"value": "1116"

1,
"taskStatuses": [
"success"

"id": "1354901350",

"href": "self",

"creationDate": "2025-02-04T12:01:432Z",

"message": "403: Forbidden",

"orderType": "Product",

"customerName": "eZe individual20200428233218579€cheers.com",

"productNames": [

"Promotional Offering PS"

]I

"fullfillmentFunction": "Emulated SOM Emulator ProvisionOrder",

"taskName": "ProvisionOrderEmulatorTask",

"orderId": 2,

"externalId": "456855",

"category": "UnexpectedDownstreamError",

"orderOverdue": true,

"affectedLines": "La League VR [add], Text Roaming [add], Data
Roaming [add], Wireless Voice Service [add], Voice Roaming [add], SIM Card
[add], Wireless Data Service [add], Wireless Text Service [add]",

"requestedCompletionDate": "2025-02-04T12:01:40z",

"lastUpdatedDate": "2025-02-04T12:03:492",

"recentAction": "cancel",
"state": "completed",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1738670500914"

ORACLE =10

Chapter 5
Constructing the Endpoint

"name": "orderComponentKey",
"value":
"ProvisionOrderFunction.Emulated SOM.WholeGranularity"
}I
{
"name": "actionId",
"value": "447045169"

"name": "location",

"value": "ProvisioningComponent"
}I
{

"name": "orderHistId",

"value": "1114"

1,
"taskStatuses": [
"success"

"id": "1778200595",
"href": "self",
"creationDate": "2025-02-04T12:01:42z",
"message": "500",
"orderType": "Product",
"customerName": "eZe individual20200428233218579%€cheers.com",
"productNames": [
"Promotional Offering PS"
]I
"fullfillmentFunction":
"ProductProvisionOrderFunction ProductProvisionOrderSubProcess",
"taskName": "ProductProvisionSITask",
"orderId": 2,
"externalId": "456855",

"category": "category",
"orderOverdue": true,
"affectedLines": "Disneyt+ [add]",

"requestedCompletionDate": "2025-02-04T12:01:40z2",
"lastUpdatedDate": "2025-02-04T12:04:01z",

"recentAction": "cancel",
"state": "completed",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1738670500917"

"name": "orderComponentKey",
"value":
"ProductProvisionOrderFunction.Disney.WholeGranularity"
}I
{

ORACLE -

ORACLE

"name": "actionId",
"value": "458412405"

Chapter 5
Constructing the Endpoint

"name": "location",

"value": "ProductProvisioningComponent"
}I
{

"name": "orderHistId",

"value": "1117"

1,
"taskStatuses": [
"success"

The following table shows the API attributes and example values for retrieving the Fallout

Exception details by ID:

Table 5-5 API Attributes for Retrieving Fallout Exception Details by ID
|

API Attribute

Value

API Endpoint URL

http://hostname:port/orchestration/sr/
quick/falllout/v2.0/falloutException/
{falloutExceptionId}

where hostname and port are the access details
of the Kubernetes cluster exposed by your Ingress
Controller or Load Balancer.

Request Type

GET.

Request Header

There are no request headers for this operation.

Request Body

There's no request body for this operation.

Authentication

Authorization:Bearer access-token (The
key-value added as header).

Query Parameters

Query parameters are used for selecting fields in
the response. For further details refer to the REST
API Reference for Oracle Communications Order
and Service Management Cloud Native.

Path Parameter

falloutExceptionld: Identifier of the Fallout
Exception.

Request

GET /falloutException/1791523756

There's no request body for this operation.

Response

Get Fallout Exception By ID Response

200

5-12

"id": "1791523756",
"href": "self",
"creationDate": "2025-02-13T13:38:482",

"message": "error",
"orderType": "Product",
"customerName": "Team2@osm.com",

"productNames": [
"Digital IDC OSM"
I

"fullfillmentFunction":

"TmfProvFunctionFunction TmfProvFunctionProcess",

POST Endpoints

"taskName": "ProvisionOrderEntryTask",
"orderId": 22,
"externalId": "0000123889",

"category": "catl",
"orderOverdue": true,
"affectedLines": "Amazon Prime [add]",

"requestedCompletionDate": "2025-02-13T13:38
"lastUpdatedDate": "2025-02-13T13:38:48z",

"state": "created",
"attributes": [
{
"name": "componentNodeIndex",

"value": "1739453927876"

"name": "orderComponentKey",
"value": "TmfProvFunctionFunction"
}I
{
"name": "location",
"value": "testLocation"
}I
{
"name": "orderHistId",
"value": "302"

1,
"taskStatuses": [
"next"

477",

Chapter 5
Constructing the Endpoint

The following table shows the API attributes and sample values for a task level
submitFalloutAction request (retry and force complete task):

ORACLE

5-13

ORACLE

Chapter 5

Constructing the Endpoint

Table 5-6 API Attributes for a Task Level submitFalloutAction Request

API Attribute Value

exposed by your Ingress Controller or Load Balancer.

API Endpoint URL http://hostname:port/orchestration/sr/quick/falllout/v2.0/
falloutException/{falloutExceptionId}/submitFalloutAction

where hostname and port are the access details of the Kubernetes cluster

Request Type POST.
Request Header Content-Type:application/json (The key-value is added as a header).
Request Body JSON payload of action schema.
Authentication Authorization:Bearer access-token (The key-value is added as a
header).
Path Parameter falloutExceptionId: Identifier of the fallout exception.
Request

POST /falloutException/{falloutExceptionId}/submitFalloutException
Content-Type: application/json

Force Complete Task

The request JSON payload needed to provide the taskStatus for marking the task complete.
The task status information is made available by the GET falloutException API response
body attribute taskStatuses. The task status is optional when the number of the taskStatuses

is 1.

action_forceCompleteAction Schema Sample

"falloutAction": "forceComplete",
"taskStatus": "next",
"author": "fallout user"

Retry Task

action_otherFalloutAction Schema Sample

"falloutAction": "retry",
"author": "fallout user"

Response

202

The following table shows the API attributes and sample values for an order level
submitFalloutAction request (failOrder, cancelOrder, abortOrder).

5-14

ORACLE

Chapter 5
Constructing the Endpoint

Table 5-7 API Attributes and Sample Values for an Order Level submitFalloutAction

Request

API Attribute

Value

API Endpoint URL

http://hostname:port/orchestration/sr/quick/falllout/
v2.0/falloutException/submitFalloutAction

where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type

POST.

Request Header

Content-Type:application/json (The key-value is added as a
header).

Request Body

JSON payload of actionOnOrder SchemaOrderld for which the fallout
action is submitted is part of the request body. For further details refer to
the REST API Reference for Oracle Communications Order and Service
Management Cloud Native.

Authentication

Authorization:Bearer access-token (The key-value is added as a
header.)

For details about the Constructing the HTTP request for client, refer to Using TMF REST APIs

(Cloud Native Only).

Request

POST /falloutException/submitFalloutException
Content-Type: application/json

Cancel Order

actionOnOrder Schema Sample

"falloutAction": "cancel",
"id": 11,
"author": "fallout user"

}

Abort Order

actionOnOrder Schema Sample

"falloutAction": "abort",
"id": 11,
"author": "fallout user"
}
Fail Order

actionOnOrder Schema Sample

"falloutAction":
"igr: 11,

"failOrder",

5-15

Chapter 5
Constructing the Endpoint

"author": "fallout user"

Response

202

ORACLE -

Using OSM Security Callback

This chapter describes the Oracle Communications Order and Service Management (OSM)
Security Callback feature, which allows you to generate an audit trail log of users before they
gain access to order data that is deemed to be sensitive.

About Security Callback

OSM provides a callback interface that is designed to intercept order access from the following
functions:

* GetOrder

* Web Service GetOrder

e Order Automation Context getOrder()

e XML API GetOrder.Request, GetNextOrderAtTask.Request, GetOrderAtTask.Request
e Opening the order from the Task web client Worklist and Query pages

* Worklist

e XML API WorkList.Request

e Query

e XML API Query.Request

e OrderDataHistory

e Task web client Order Data History page (clicking on view or node URLs in Order Editor)
e XML API GetOrderDataHistory.Request

The callback is called before sensitive order data is about to be retrieved or displayed to a
user. The normal security authorization for the call being made remains in place and runs
before this callback interface.

About the Security Callback Interface

ORACLE

The security callback interface (contained in the com.mslv.osm.security Java package) is
implemented by a registered custom class which calls the defined method (single order or
result set) and passes information about the order which has been exposed to the user. In the
single order or result set method, the custom class can be passed either a single order or a
result, depending on which interface it is invoked. For example, if you select multiple orders in
a worklist, the security callback would be passed a result set of orders.

For more information about the security callback interface, see the Javadocs located in the
OSM SDK at ISDKlosm7.w.x.y.z-javadocs.zip (where w.x.y.z represents the specific version
numbers for OSM). See OSM Installation Guide for more information about installing the OSM
SDK for traditional OSM.

package com.mslv.oms.security;

import java.util.Collection;

6-1

Chapter 6
About the Security Callback Interface

/**

* The interface provides the callback to user defined custom code in which

* the external call accesses the order.

*

*/

public interface OrderViewAccessProvider extends Callback {
/**

* Called before the details of an order are retrieved for a user. This occurs
when an order is displayed in the order editor, or retrieved via APIs e.g.
GetOrder, GetWorklist, GetQuery, GetOrderDataHistory, GetOrderAtTask,
GetNextOrderTask (xmlapi only).

* @param userId The user that accessing the order.

* @param orderId OSM order ID.

* @param cartridgeName The cartridge name that order belongs to.

* @param cartridgeVersion The cartridge version that order belongs to.

* @param orderType The order type.

* @param orderSource The order source.

* @param view The view mnemonic.

* @throws OrderViewAccessNotAllowedException This embeds any custom code
application exceptions. The exception to differentiate unexpected exception
that may be occurring in custom code.

* Any exceptions other than OrderViewAccessException suppressed and logged by
OSM core.

* @see OrderViewAccessNotAllowedException

*/

public void checkOrderAccess (String userId, String orderId, String cartridgeName,
String cartridgeVersion, String orderType,
String orderSource, String view)
throws OrderViewAccessNotAllowedException;

/*‘k

* Invoked before a summary of an order is displayed for a user. This occurs before
an order is returned on a worklist or query. Note that multiple order summaries may be
passed through the supplied array. This allows the core to optimize invocations of this
method to pass multiple orders at the same time.

* @param userSummaryInfo

* The collection of Workgroups of the user who is accessing the order.
* @param orderSummaryInfo
* The collection of order summaries accessed by the function.

* @return order IDs
The collection of order IDs that need be filterd from the order list. If
returns null or empty collection, Order and Service Management returns the whole list.
* @throws OrderViewAccessNotAllowedException
* This may embed any custom code application exceptions. Order and Service
Management core would deny the access to all orders if the exception is thrown. Other
exceptions suppressed and logged by Order and Service Management core.
* @see OrderViewAccessNotAllowedException
*/
Public Collection<String> checkOrderSummaryAccess
(UserSummaryInfo userInfo,
Collection<OrderSummaryInfo> ordersInfo
) throws OrderViewAccessNotAllowedException;

Exceptions

OSM blocks order access if it catches an OrderViewAccessNotAllowedException from the
callback call, regardless of the method called. Other types of exceptions are simply logged and
users are not blocked from order access or retrieval.

ORACLE 60

Chapter 6
Security Callback Sample

Security Callback Sample

ORACLE

You can find the following sample in the SDK in the SDK/Samples/SecurityCallback directory.

import java.util.Collection;
import java.util.Map;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.mslv.oms.security.OrderSummaryInfo;

import com.mslv.oms.security.OrderViewAccessNotAllowedException;
import com.mslv.oms.security.OrderViewAccessProvider;

import com.mslv.oms.security.UserSummaryInfo;

/**
* The sample provides an example of security callback.
*

*/
public class MyViewAccessCallback implements OrderViewAccessProvider {

private static final Log LOG = LogFactory.getLog(MyViewAccessCallback.class);

/**
* Invoked before the details of an order are retrieved for a user. This occurs when
an order is displayed in the order editor, or
* retrieved via APIs (e.g. GetOrder, GetWorklist, GetQuery, GetOrderDataHistory,
GetOrderAtTask and GetNextOrderAtTask).
*
@param userId
The user that acessing the order.
@param orderId
Order and Service Management order ID.
@param cartridgeName
The cartridge name that order belongs to.
@param cartridgeVersion
The cartridge version that order belongs to.
@param orderType
The order type.
@param orderSource
The order source.
@param view
The view mnemonic.
@throws OrderViewAccessNotAllowedException
This embeds any custom code application exceptions. The exception to
differentiate unexpected exception that may be

* occurring in custom code.
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* (@see
com.mslv.oms.security.OrderViewAccessProvider#checkOrderViewDetail (java.lang.String,
java.lang.String, java.lang.String,

* java.lang.String, java.lang.String, java.lang.String, java.lang.String)

*/

public void checkOrderAccess(final String userId, final String orderId, final String
cartridgeName, final String cartridgeVersion,
final String orderType, final String orderSource, final String view) throws
OrderViewAccessNotAllowedException {

if (LOG.isInfoEnabled()) {

6-3

ORACLE

Chapter 6
Security Callback Sample

LOG.info ("MyViewAccessCallback called on checkOrderViewDetail:" + "by:" +
userId + " orderID:" + orderId + " cartridgeName:"
+ cartridgeName + " cartridgeVersion:" + cartridgeVersion + "
orderType:" + orderType + " orderSource:" + orderSource
+ " view:" + view);

/*‘k

* Invoked before a summary of an order is displayed for a user. This occurs before
an order is returned on a worklist or query. Note that multiple order summaries may be
passed through the supplied array. This allows the core to optimize invocations of this
method to pass multiple orders at the same time.

* @param userSummaryInfo

* The collection of Workgroups of the user who is accessing the order.
* @param orderSummaryInfo
* The collection of order summaries accessed by the function.

* @return order IDs
The collection of order IDs that need be filterd from the order list. If

returns null or empty collection, Order and Service Management returns the whole list.

* @throws OrderViewAccessNotAllowedException

* This may embed any custom code application exceptions. Order and Service
Management core would deny the access to all orders if the exception is thrown. Other
exceptions suppressed and logged by Order and Service Management core.

* @see OrderViewAccessNotAllowedException

*/

public Collection<String> checkOrderSummaryAccess (final UserSummaryInfo
userSummaryInfo,
final Collection<OrderSummaryInfo> orderSummaryInfo) throws

OrderViewAccessNotAllowedException {

if (LOG.isInfoEnabled()) {
LOG.info ("MyViewAccessCallback called on checkOrderViewSummary");

for (final OrderSummaryInfo order : orderSummaryInfo) {

if (LOG.isInfoEnabled()) {
LOG.info ("MyViewAccessCallback called on checkOrderViewSummary" + " by:"

+ userSummaryInfo.getUserId() + " orderID:"

+ order.getOrderId() + " orderHistID:" +
order.getTaskInfo().getOrderHistId() + " cartridgeName:"

+ order.getCartridgeName () + " cartridgeVersion:" +
order.getCartridgeVersion() + " orderType:"

+ order.getOrderType() + " orderSource:" +
order.getOrderSource () + " orderState:" + order.getOrderState()

+ " targetOrderState:" + order.getTargetOrderState() + "
reference:" + order.getReference() + " priority:"

+ order.getPriority() + " processStatus:" +
order.getProcessStatus() + " orderCreationDate:"

+ order.getOrderCreationDate() + " orderCompletedDate:" +
order.getOrderCompletedDate ()

+ " expectedOrderCompletionDate:" +
order.getExpectedOrderCompletionDate () + " expectedGracePeriodCompletionDate:"

+ order.getExpectedGracePeriodCompletionDate () + "
taskMnemonic:" + order.getTaskInfo () .getTaskMnemonic ()

+ " taskState:" + order.getTaskInfo().getTaskState() + "
taskStartDate:" + order.getTaskInfo().getTaskStartDate()

+ " executionMode:" + order.getTaskInfo().getExecutionMode() + "
expectedTaskCompletionDate:"

6-4

Chapter 6
Security Callback Sample

+ order.getTaskInfo () .getExpectedTaskCompletionDate());

}
final Map<String, String> flexHeadersWithValues = order.getFlexibleHeaders();
if (LOG.isInfoEnabled()) {

LOG.info ("FlexibleHeaders in the form { (MnemonicPath=Value)} " +

flexHeadersWithValues);

}

}

return null;

Configuring Security Callbacks

Complete the following steps to configure your callback implementation.

ORACLE

1.

Implement the interface OrderViewAccessProvider.

OSM provides the osmcommon.jar file, which includes the callback interface and
exception OrderViewAccessException. The JAR file can be obtained by unpacking the
oms.ear file. See "Unpacking the oms.ear File" for more information about unpacking the
oms.ear file.

Register the callback:
* For traditional OSM, register through the oms-config.xml file.

<oms-parameter>
<oms-parameter-name>com.mslv.oms.security.OrderViewAccessProvider</oms-parameter-
name>
<oms-parameter-value>callbackexamples.MyViewAccessCallback</oms-parameter-value>
</oms-parameter>

See the chapter on configuring OSM with oms-config.xml in OSM System
Administrator's Guide for detailed instructions on accessing and modifying the oms-
config.xml file.

e For OSM cloud native, specify the following:
omsConfig:

com.mslv.oms.security.OrderViewAccessProvider:
callbackexamples.MyViewAccessCallback

See the "Configuring Parameters" section in "Chapter 6 Creating Your Own OSM
Cloud Native Instance" of OSM Cloud Native Deployment Guide for further details on
modifying oms-config parameters.

Compile and package the callback implementation in the customization.jar file.
Modify the security.jar manifest to include any required JAR for the custom code to run.

Repack oms.ear with customization.jar and any custom code dependent libraries using
the scripts provided. See "Packing the oms.ear File" for more information about packing
the oms.ear file.

Do one of the following:

6-5

ORACLE

Chapter 6
Security Callback Sample

For traditional OSM, redeploy the oms.ear.

For OSM cloud native, rebuild the OSM container image. See the "Deploying Entities
to an OSM WebLogic Domain" section in "Chapter 7 Extending the WebLogic Server
Deploy Tooling (WDT) Model" in OSM Cloud Native Deployment Guide.

6-6

Using Custom Menu Items and Actions

This chapter describes the Oracle Communications Order and Service Management (OSM)
Custom Menu and Action feature, which allows you to configure custom menu items and
actions that are called from the context menu of the Task web client Worklist and Query
Result pages.

About Custom Menu Items and Actions

A custom menu action calls customer-specific business logic, for example, enabling a print job
of tasks in the Worklist. The custom business logic can easily interact with the OSM server
through the XML API.

You define custom menu items and actions using a model in an XML file. Actions are defined
globally across all cartridges, and may be called for any task or group of tasks. The action is
available to all users. Actions that call the XML API are done within the web client session, so
access privileges to the API are based on the web client user's workgroup privileges.

Additionally, APl users must belong to a WebLogic group that provides privilege to access the
APIs. For custom menu and action items, that WebLogic group is OMS_xml_api. So, to access
the APIs through custom menu items and actions, the API user must belong to the WebLogic
group OMS_xml_api.

About the File Name and Location

The metadata definition for custom menu action is supported through a standalone
configuration file that is loaded and run at runtime. Refresh the server cache in the
Administration area of the OSM Order Management web client (or an Ant task in the Cartridge
Development Kit) to trigger a reload of the configuration file.

The name and location of the custom menu action file are configurable parameters. For
traditional OSM, these are available in the oms-config.xml file. In OSM cloud native, these
can be set in the specification files. See the "Configuring Parameters" section in "Chapter 6
Creating Your Own OSM Cloud Native" Instance of OSM Cloud Native Deployment Guide for
details on working with osm-config parameters in cloud native.

A working model, which includes a sample configuration file, Javascript file, and ReadMe, is
available in the SDK/Samples/CustomMenuAndAction directory.

About the Model Definition

The definition of the model must follow the XML schema menuAction.xsd located in the SDK/
XMLImportExport/models directory. The action and menultem elements are described below.

Action Definition

Table 7-1 lists the action elements.

ORACLE -

ORACLE

Chapter 7
About the Model Definition

Table 7-1 Action Elements

Element

Description

name

The name of the action referenced by the menu item.

xsi:type

There are three types of actions:

javascriptActionType - Defines a Javascript function as part of the
<implementation> element. The function may be embedded directly in the
element, in which case it should not be wrapped in a function name () {}
construction, or it may be located in an external file which can be called from the
<implementation> element.

orderContextActionType - Similar to javascriptActionType, can make use of
Javascripts in the same way. In addition, has an object named orderContext
which is accessible from within the Javascript. Refer to this object as part of the
function. If the function is defined in an external file and the <implementation>
contains a call to that function, pass orderContext as a parameter to the function.

uriActionType - Forwards you to the supplied URI, which opens in a new window

in the browser. The URI is supplied as part of the <implementation> element.

description

The description of the action that appears on the context menu when no menu
item description is supplied.

hint

The tool tip associated with the action.

icon

The icon associated with the action. lcons must be packed as part of the
oms.ear file (oms.ear/oms.war/images).

implementation

The implementation of the action, e.g. Javascript function, orderContext, URI.
May also contain a href, which is a URI pointing to a Javascript file.

uri

The path to a local directory, web page address, or any point of content.

OrderContext and Orders

An orderContextActionType action is supplied with an object named orderContext. This
object contains an array of orders which, in turn, contains information about the orders for
which the action was called. Table 7-2 shows the method calls that can be made on the

orderContext and order objects.

Table 7-2 orderContext and Orders
]

Object Methods Description

orderContext | getOrders() Call this method to get the selected orders.

order getOrderld() Call this method to get the order ID for the order.

order getOrderHistld() Call this method to get the order history ID for the order.
order getOrderTypeld() Call this method to get the order type ID for the order.
order getOrderSourceld() Call this method to get the order source ID for the order.
order getState() Call this method to get the state of the order.

Calling the XML API

The function, callXmlApi (), makes it easier for action implementations to call the XML API.
The function takes the XML API request document as an argument and returns the response

XML document.

7-2

Chapter 7
About the Model Definition

Sample Action Implementations

This section provides some samples of the different types of actions that you can configure in
your custom action and menu XML file.

<action name="get_worklist through xml api" xsi:type="javascriptActionType">
<description>Get worklist though XML API</description>
<hint>An XML API call</hint>
<icon>/oms/images/delete node.gif</icon>

<implementation>
var callString=prompt ("Please enter the XML API statement", "<Worklist.Request
xmlns='urn:com:oracle:oms:xmlapi:1'> </Worklist.Request>"); var
returnDoc=callXmlApi (callString); alert ("Returned document: " + returnDoc.xml);
</implementation>
</action>

<action name="test order context" xsi:type="orderContextActionType">

<description>Test Order Context</description>

<implementation>

var orders=orderContext.getOrders();var callString="<GetOrder.Request

xmlns='urn:com:oracle:oms:xmlapi:1'>";callString = callString + "<OrderID>" +
orders[0].getOrderId() + "</OrderID>";callString = callString + "<Accept>false</
Accept>";callString = callString + "<OrderHistID>" + orders[0].getOrderHistId() + "</
OrderHistID>";callString = callString + "</GetOrder.Request>";returnDoc =
callXmlApi (callString) ;alert('result: ' + returnDoc.xml);

</implementation>
</action>

<action name="test js_file" xsi:type="orderContextActionType">
<description>Test Order Context</description>
<implementation href="file:///$bea home/user projects/domains/provisioning/foo.js">
test js file(orderContext);
</implementation>
</action>

<action name="go_to_about" xsi:type="uriActionType">
<description>Show OSM About</description>
<icon>/oms/images/mslv_logol.jpg</icon>
<uri>/oms/about</uri>

</action>

Menu Item Definition

ORACLE

Table 7-3 shows the elements of the menu item definition.

Table 7-3 Menu Item Elements
-]

Attribute Description

name The name of the menu item (internal reference only).

description The description of the menu item that appears on the context menu.
enabled Set to true(), true, yes, or y (case-insensitive) to enable the menu item, or

set to anything else to disable it.

visible Set to true(), true, yes, or y (case-insensitive) to make the menu item

visible, or set to anything else to make the menu item invisible.

7-3

Chapter 7
Setting Up the Environment

Table 7-3 (Cont.) Menu Item Elements
|

Attribute Description

displayStyle The display style of the menu item on the context menu, either ICON, or
TEXT, or both (ICON TEXT). References the action icon and/or
description.

action Reference to the action being called.

Sample Menu Item Definition

<menultem name="get worklist">

<description>Get worklist through XML API</description>
<enabled>true () </enabled>
<visible>true()</visible>
<displayStyle>ICON TEXT</displayStyle>
<action>
<name>get worklist through xml api</name>
</action>

</menultem>

Setting Up the Environment

Once you have defined the elements in your configuration file, you must set up the
environment before running the file. There are three methods for doing this:

ORACLE

File system path method: This is the simplest configuration method for a single
environment. It does not require any cartridges for its implementation. However, it does
require you to unpack, repack, and redeploy the oms.ear file for each environment with a
different file location and every time the file location changes.

XML Catalog (Static Relative Location) method: This method uses the XML Catalog
function in Oracle Communications Service Catalog and Design - Design Studio. It allows
you to deploy the resources with a cartridge, and configure a static location for the source
files based on their location in the Design Studio files hierarchy. This means that the files
can be deployed from Studio to environments in different locations, and having different file
structures, without needing any further manual intervention.

XML Catalog (rewriteURI) method: This method uses the XML Catalog function in Design
Studio. It provides a mechanism for you to define the location of the files dynamically,
either to an absolute file location or to a location relative to the current Design Studio
environment. You can then change the location for the files without having to edit the oms-
config.xml file. This could be especially useful while you are developing or unit testing the
configuration, as you could define a local directory for the files and change them without
having to redeploy the cartridge after each change.

To configure your environment, you must perform the steps in "Setting Up the oms-config.xml
File (Traditional OSM Only)" and only one of the following sections:

File System Path Environment Configuration Method
XML Catalog (Static Relative Location) Environment Configuration Method

XML Catalog (rewriteURI) Environment Configuration Method

7-4

Chapter 7
Setting Up the Environment

Setting Up the oms-config.xml File (Traditional OSM Only)

All three methods of environment configuration require that you set up the oms-config.xml

ORACLE

file.

For the file system path method, you must edit the oms-config.xml file for each environment
where the absolute path to the file is different. For the XML Catalog methods you should only
need to perform this procedure once.

See OSM System Administrator's Guide for more information about editing the oms-
config.xml file.

1.

Locate the following section of the oms-config.xml file:

<oms-parameter>

<oms-parameter-name>custommenuaction model location</oms-parameter-name>
<oms-parameter-value/>

</oms-parameter>

Update the <oms-parameter-value> tag. The value you use here depends on the
environment configuration method you are using.

If you are using the file system path method, update the value with the exact path to
the configuration file for the current environment. You must perform this procedure for
each environment that has a different file path.

<oms-parameter>
<oms-parameter-name>custommenuaction model location</oms-parameter-name>
<oms-parameter-value>
/opt/0SM/CustomMenu/custom menu_action model.xml
</oms-parameter-value>
</oms-parameter>

If you are using the XML Catalog (Static Relative Location) method, you use a relative
location based on osmmodel and referring to a directory in the Studio workspace.

<oms-parameter>
<oms-parameter-name>custommenuaction model location</oms-parameter-name>
<oms-parameter-value>
osmmodel://cartridge name/cartridge version/resources/filename.xml
</oms-parameter-value>
</oms-parameter>

where cartridge_name and cartridge_version represent the name and version of the
cartridge where you are planning to include the custom files, and filename.xml is the
file with your XML model (for example, custom_menu_action_model.xml).

If you are using the XML Catalog (rewriteURI) method, you use a URI that you have
determined for this task. It does not have to be a valid URL or any location where the
file is located. It will be overwritten with a valid value automatically at runtime.

<oms-parameter>
<oms-parameter-name>custommenuaction model location</oms-parameter-name>
<oms-parameter-value>
http://example.org/somewhere/filename.xml
</oms-parameter-value>
</oms-parameter>

where example.org/somewhere represents a namespace you are using as a
convention to refer to this file and filename.xml is the file with your XML model (for
example, custom_menu_action_model.xml).

7-5

Chapter 7
Setting Up the Environment

Working with oms-config Parameters in OSM Cloud Native

In OSM cloud native, all oms-config parameters can be updated in the specification files. The
parameter name and value can be set in either the shape, instance, or project specification
files. For more details, see OSM Cloud Native Deployment Guide.

File System Path Environment Configuration Method

You must perform the procedure below for each server environment.

1.

Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

Save the changes and close the file.

Ensure that your custom configuration XML file is located in the directory you specified in
step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)."

Do one of the following:

* For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

e For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters” section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

XML Catalog (Static Relative Location) Environment Configuration Method

You must perform the procedure below for each Design Studio environment.

1.

ORACLE

Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

Create or open a cartridge in Design Studio with the name and version that you configured
in step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)."

Ensure that XML_CATALOG_SUPPORT is not set to disable for the cartridge. To check
this, open the cartridge definition file, and click on the Cartridge Management Variables
tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the
Cartridge Management Variables table for that parameter, no change is needed. If there is
an entry and it is set to disable, remove the entry and save the cartridge definition file.

Copy your custom configuration XML file and any files that it references to the location you
configured in step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)." In the
example, you would copy the files to the resources directory for your cartridge.

Build and deploy the cartridge.
Do one of the following:

e For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

7-6

Chapter 7
Setting Up the Environment

e For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters" section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

XML Catalog (rewriteURI) Environment Configuration Method

You must perform the procedure below for each Design Studio environment. You must perform
steps 4-7 whenever you change the location of the files.

ORACLE

1.

Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

Create or open a cartridge in Design Studio.

Ensure that XML_CATALOG_SUPPORT is not set to disable for the cartridge. To check
this, open the cartridge definition file, and click on the Cartridge Management Variables
tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the
Cartridge Management Variables table for that parameter, no change is needed. If there is
an entry and it is set to disable, remove the entry and save the cartridge definition file.

Copy your custom configuration XML file and any files that it references to a location of
your choice, either inside or outside of the cartridge directory structure.

Create a copy of the xmlICatalogCoreTemplate.xml file. It is located in the
xmlCatalogs\core directory for your cartridge. You can name the copy anything you like
as long as it is a different name from the original and it ends with . xm1.

In your new XML file, replace the commented text with a line indicating how you want to
translate the URI into a file location. The new line should look something like this:

<rewriteURI uriStartString=specified namespace string rewritePrefix="file-

_location"/>

where specified_namespace_string refers to the string you specified in step 2 of "Setting
Up the oms-config.xml File (Traditional OSM Only)" and file_location refers to the location
where you copied your custom configuration files.

For example, if you have copied the files to a location inside your cartridge directory
structure, you would add a line similar to this:

<rewriteURI uriStartString=http://example.org/somewhere rewritePrefix="osmmodel:///
TestCartridge/1.0.0/resources"/>

If you have copied the files to some location outside the Design Studio file structure, you
would add a line similar to this:

<rewriteURI uriStartString=http://example.org/somewhere rewritePrefix="file:///C:/
LocalResourcesFolder/resources"/>

Note:

File re-write is not supported in OSM cloud native.

Build and deploy the cartridge.

Do one of the following:

7-7

Chapter 7
Setting Up the Environment

* For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

e For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters" section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

Verifying the Changes

1. If OSM was running when you made the changes to set up the environment, refresh the
server cache in the Administration area of the OSM Order Management web client to
refresh the metadata. This loads the latest configuration for the custom menu and actions.

2. Log in to the Task web client.
3. In the Worklist or Query Results page, select any order and right-click.

The context menu displays the new menu items, positioned at the bottom of the menu.

ORACLE .

Using Automation

This chapter describes the Oracle Communications Order and Service Management (OSM)
automation framework, which enables you to configure and automatically run automated tasks
and notifications.

About Automations and the Automation Framework

ORACLE

The OSM automation framework provides the primary interface for outbound and inbound
operations that interact with external systems for automated order fulfilment. The automation
framework also provides internal data processing for automated tasks within a process
workflow. You can create notifications for individual tasks or at the order level that trigger
automations. See OSM Concepts for information about automated tasks and notifications.

To run automated tasks, notifications at the task level, or notifications at the order level, you
write automation plug-ins. The automation framework runs instances of automation plug-ins
within the context of these tasks and notifications which defines what order data is available to
the automation.

An automation plug-in can be a:

» Custom automation plug-in, which is an automation plug-in that you write, consisting of
custom business logic in the form of Java code.

* Predefined automation plug-in, which is an automation plug-in that is provided with the
OSM installation that you can augment with your business logic requirements.

OSM provides the following predefined automation plug-ins:

e XSLT Plug-in. A plug-in that uses XSLT to generate outbound messages and process
inbound messages.

* XQuery Plug-in. A plug-in that uses XQuery to generate outbound messages and process
inbound messages.

e JDBC Plug-in. A plug-in that uses JDBC to retrieve or update data in the database.

e Email Plug-in. A plug-in available for notifications that send email messages to external
systems.

The automation framework simplifies the process of sending messages to external systems.
The automation framework does the following:

e Uses the IMS communication protocol.

* Establishes and maintains the various JMS connections.

« Constructs the JMS messages, setting the required message properties.
* Correlates requests from OSM with responses from external systems.

e Guarantees delivery of the message and handles any errors or exceptions. It retries
messages until the message delivers.

* Handles poison messages. For example, if the message is undeliverable for some reason.

8-1

ORACLE

Chapter 8
About Automations and the Automation Framework

When OSM sends a message to an external system using an automation plug-in, the following
processing flow generally occurs:

1. OSM runs an automated task instance that triggers an automation called a sender plug-in.

2. The automation framework adds properties to the outbound message to correlate external
system responses to requests. For example, for a predefined XQuery or XSLT sender
plug-in:

a. The sender plug-in sets a property on the outbound JMS message as the correlation
property.

b. The automation framework saves the message properties set for each message with
the event information.

c. The automation framework sets the replyTo JMS property on the JMS request based
on properties configured for the sender plug-in.

3. The automation framework sends the JMS message to the JMS queue and destination
type that the external system must subscribe to in order to consume based on properties
configured for the sender plug-in.

Note:

Custom automations are not restricted to JMS but can use any communication
protocol, such as HTTP or FTP. See "About Custom Automation Plug-ins" for
more information.

When OSM receives a message in response to the request, the following process flow
generally occurs.

1. After processing the request, the external system copies the properties from the incoming
request to the outgoing response.

2. The external system sends the response message to the reply to queue based on the
replyTo JMS property in the request.

3. The automation framework routes the response from the queue to the plug-in. The plug-in
that receives the response is called an automator.

4. The automation framework uses the message properties of the response, plus the
correlation information, to reload a Context for the response message, which is in this
scenario the task that sent the original request.

5. The automator performs business logic, such as updating order data and completing the
task.

You can create custom or predefined plug-ins using Design Studio Help.

Figure 8-1 shows the flow of an automated task with a notification that call their corresponding
automation plug-in. Design Studio provides the ability to map a specific automated task (Task
A) to a specific automation plug-in (Automation Plug-in A), or a specific automated notification
(Notification B) to a specific automation plug-in (Automation Plug-in B). This is called
automation mapping. The mappings are saved to a cartridge, which is then deployed to the
OSM server. OSM processes the automated tasks which trigger the mapped automation plug-
ins when specific events occur. See "About Creating Automations in Design Studio " and
"About Internal and External Events that Trigger Automations" for more information.

8-2

Chapter 8
About Automations and the Automation Framework

Figure 8-1 Automation Flow

Task A transitions
or
MNaotification B
is created
1 1
r r
Automation Automation
Flugin A Plugin B
(Java code) (Java code)

1 — Task A Transitions to the Received State or
Motification B is trigger based on a notification event,

About Sender and Automator Automation Types

When you create an automation plug-in for a task, task notification, or order notification in
Design Studio, you bring up the Add Automation dialog box to create a plug-in for the task or
notification, give it a name, and select the Automation Type (for example, one of the
predefined automations or a custom automation). There are two basic types of automation
plug-ins: Sender and Automator. Use the Automator type if you want the plug-in to receive
data and perform work on the data. Use the Sender type if you want the plug-in to receive
data, perform work, then send the data to external systems.

About Automations in the Order and Task Contexts

ORACLE

You can configure automations in various contexts, such as automated tasks, notifications
configured for automated tasks, notifications configured for manual tasks, notifications
configured in process flows, and notifications configured at the order level. The data available
to these automations depends on which of these contexts the automation is triggered. The two
main contexts from which depend all the other contexts are the order context and the task
context.

The data available to an automation plug-in in the task context is restricted to the data defined
in the automated task's Task Data tab. The data available to an automation plug-in in the order
context is restricted to the data defined in the order specification, Permission tab, Query Task
subtab. This subtab links to a manual task designated as a query task that defines the data
available to order level notifications but is not part of any process flow.

When you create custom automations, you can access these contexts from the OSM Java API
com.mslv.automation.oms.AutomationContext class which is the parent class of
OrderContext which is in turn the parent of the TaskContext. These are either parent or
sibling classes for all the other contexts. You never need to import the AutomationContext
because it is inherited by all the other contexts. You can also declare these contexts in
predefined automation plug-ins.

8-3

Chapter 8
About Automations and the Automation Framework

Each context class provides methods (or inherits them from parent classes) that you can use in
automation plug-ins to perform various functions such as:

e Updating order data

e Transitioning the task to a new state

e Suspending the task

e Completing the task

e Getting order task data for use in business logic
e Transition the order into a failed state

Figure 8-2 shows the class hierarchy stemming from the AutomationContext.

Figure 8-2 Context Object Class Hierarchy

Automation
Context
I
Order Motification
Context Context
I
Task Order
Context MotificationContext
S—
w L *
Task OrderJeopardy DataChange
MotificationContext MNotificationContext MotificationContext

Some of the methods that the task context inherits from the order context behave differently
when run from the task context. For example, the update order method run from the task
context can generate historical and contemporary order perspectives that can be used in order
amendment analysis, while the update order method run from the order context does not. See
"About Compensation for Automations" for more information.

Table 8-1 shows the Design Studio entity where you can configure automations, the types of
events that trigger the automations, and the context that gets passed into the plug-in.

Table 8-1 Context Objects Passed To Plug-in

Automation Plug-in
Trigger

Design Studio
Definition Location

OSM Event

OSM Event Type

Context Object

Passed To Plug-in

Automated task

tab

Task editor, Automation

Task state transitions to
Received

Task Event

TaskContext

ORACLE

8-4

Table 8-1 (Cont.) Context Objects Passed To Plug-in
|

Automation Plug-in
Trigger

Design Studio
Definition Location

OSM Event

Chapter 8

About Automations and the Automation Framework

OSM Event Type

Context Object
Passed To Plug-in

event notification

Notifications tab

changes.

Order milestone-based | Order editor, Events tab | Order reaches specified | Order Notification Event | OrderNotificationCo
event notification milestone ntext
Task state-based event | Task editor, Events tab | Task reaches specified | Task Notification Event | TaskNotificationCon
notification state text
Task state-based event | Process editor, Events | Task reaches specified | Task Notification Event | TaskNotificationCon
notification tab on Properties view | state, then data text

of a task in the process | condition specified by

rule evaluates to true.

Task status-based event | Process editor, Events | Task reaches specified | Task Notification Event | TaskNotificationCon
notification tab on Properties view | status, then data text

of a status in the condition specified by

process rule evaluates to true.
Order data changed Order editor, Specified order data Order Notification Event | OrderDataChangeN

otificationContext

rule evaluates to true.

Order jeopardy Order Jeopardy editor | The timer conditions for | System Notification OrderJeopardyNotifi
notification the jeopardy have been | Event cationContext
reached.
Order jeopardy Order editor, Jeopardy | At polling, data System Notification OrderNoatificationCo
notification tab condition defined by Event ntext
rule evaluates to true.
Task jeopardy Task editor, Jeopardy At polling, data System Notification If the task-level
notification tab condition defined by Event jeopardy condition

Multiple events
per Task instance
is set, then
TaskNotificationCon
text is passed.
Otherwise
OrderNotificationCo
ntext is passed.

All context objects are located in the SDK/automation/automationdeploy_|

bin/

automation_plugins.jar file. All context objects are defined in the same package:
com.mslv.automation.oms.

About Internal and External Events that Trigger Automations

You must also define where you expect the sender or automator plug-in to receive its data
when you set the plug-in Event Type, which specifies whether the plug-in instance receives
data events internally from OSM or from external systems. The choices are as follows:

¢ Internal Event Receiver (default choice): Internal receiver indicates that the source of
event for plug-ins is internal to OSM. OSM makes order data available to these type of
plug-ins in their respective contexts (see "About Automations in the Order and Task
Contexts" for more information). For internal event receivers, the following happens:

ORACLE

An event occurs within OSM.

OSM creates a message and sends it to the oms_events message queue that the
OSM installer creates during the installation process. OSM maps order priority to the
JMS priority to prioritize internal events.

8-5

Chapter 8
About Automations and the Automation Framework

— The automation framework subscribes to the internal message queue as part of the
OSM installation.

— The message is picked up by the automation framework and processed.

- External Event Receiver: The data made available to the automation plug-in comes from
a message sent from an external system. For external event receivers, the following
happens:

— An event occurs within an external system, such as an OSM automation plug-in sends
a message that arrives at the external system.

— The external system creates a response message and sends it to an external
message queue. You must explicitly create the external message queues or you can
use the oms_events queue that OSM uses for internal message processing.

— The automation framework subscribes to the external message queue through the
information you define on the External Event Receiver tab of the automation
definition.

— The message is picked up by the automation framework and processed.

Automated notifications are always defined as internal event receivers because, as the name
implies, notifications are used to notify OSM users or other areas of the OSM system of some
event occurring within OSM. That is why notifications do not receive messages from external

systems; the information with which to notify always originates within OSM.

The new plug-in appears in the Automation list. Once you add a plug-in to your automated
task, you define the plug-in properties. See the Design Studio Help for further information.

About Accessing the XML API in Automations

You can use the XMP API from within automations. To access the XML APIs from within a
custom automation plug-in, APl users must belong to a WebLogic group that provides privilege
to access the APIs. For accessing the XML APIs from within a custom automation plug-in, that
WebLogic group is OSM_automation. So, to access the APIs from within a custom automation
plug-in, the API user must belong to the WebLogic group OSM_automation.

See the Design Studio Help for further information regarding the Run As field, which defines
the user of the automation.

About Queues, Correlation, and Property Selectors

Automation automator or sender plug-ins that are external event receivers (process responses
from external systems) listen for responses (JMS messages) from external systems on an
external message queue (JMS queue). These are responses to previously sent messages that
are correlated back to a task based on correlation ID. In some cases you must specify filter
criteria, defined in Design Studio as a message property selector, which OSM uses to filter
messages on the JMS queue. A task only receives messages from queues that match the
message property. If a message is selected, then message correlation occurs as normal and
the automated task receives the message. The external system must echo back the filter
criteria information by extracting and reinserting it into its response.

ORACLE -

Chapter 8
About Automations and the Automation Framework

Note:

For JMS messages, Oracle recommends that you do not use the JMS prefix for
custom headers. Reserve the JMS prefix for predefined JMS headers, for example,
JMSCorrelationID, JIMSMessagelD, JMSPriority, and so on. Using the JMS prefix in
custom headers can cause problems.

OSM Request and Response Message Queues

When configuring OSM automation plug-in requests, you must create request queues that
external systems consume OSM request messages from. You can configure the JMS settings
for these queues based on the order processing requirements of the solution. For example,
request queues often require different retry, pause, and resume settings when external
systems are down. As such, it is important to have specific request queues configured to
support the various JMS message consumption scenarios for each external systems.

For returning responses messages, you can create response queues. The benefits of creating
new response queues is that you can configure the JMS settings as the solution requires.
Optionally, you can also use the predefined oms_events queue (using the mslvioms/
server_namelinternal/jms/events JNDI) that OSM uses for internal message processing. The
benefits of using oms_events exclusively for all response messages include:

» Design Studio requires less time to build cartridges because the oms_events queue is
internal to the oms.ear file. Design Studio does not need to generate a message-driven-
bean and external automation ear file to listen on the external queue.

* You can more efficiently deploy and undeploy cartridges where there is no external
automation ear file for the response queue.

* The OSM server consumes less memory when there is no external automation ear file for
the response queue.

* OSM is better able to prioritize messages from different systems when there is only one
gueue. OSM can observe message priority uniformly across all messages within the
queue.

However, if you use oms_events, you cannot configure the JMS settings, such as the pause,
retry, or resume settings because these settings are already optimized to process internal OSM
messages. Being able to configure these JMS settings can be important in production systems
when configuring error queues or when stopping the JMS message flow to certain queues
during upgrade or maintenance windows. You must weigh the advantages and disadvantages
of using oms_events.

Correlating Requests from OSM to Responses from External Systems

ORACLE

Correlation is a property that associates an incoming external system message with an
outbound OSM message previously sent to initiate communication with the external system. In
some situations you may need additional message filtering using message property selectors.

You can set the JMS ID Correlation parameter in messages sent from OSM to external
systems to correlate response messages from the external system with the original request. If
you expect the correlated response to return to the task that originally sent the message, then
you do not need to programmatically set the correlation ID for the task because this is done for
the task when the original sender sent the message. If you expect the correlated response to
return to a different task (a receiver task) than the one that sent the message, then you must
programmatically set the correlation ID for the outgoing JMS message in the sending task, and

8-7

Chapter 8
About Automations and the Automation Framework

configure the receiver task to use the matching correlation ID. For more information about this
second scenario, see "Asynchronous Communication: Single or Multiple Requests and
Responses." In both scenarios, OSM compares the JMSCorrelationID with the correlation 1D
set for the task and associates the two messages if the respective values match.

Note:

No correlation configuration is required at the external system that sends the
response message.

Correlation is of two types: Message Property and XML Body correlation.

In Message Property correlation, you specify a message header as the correlation ID in the
outbound OSM message. For example:

outboundMessage:setJMSCorrelationID ($SoutboundMessage, $corrID)

You can also specify additional message header properties in the outbound message. For
example:

outboundMessage:setStringProperty (SoutboundMessage, S$HEADER1, S$corrID)

By default, Message Property correlation uses JMSCorrelationID as the correlation ID. The
XML Body correlation uses an XPath expression to retrieve the correlation ID from the body of
the XML message.

See "Internal XQuery Sender" and "Internal XSLT Sender " for examples of predefined XQuery
and XSLT sender that set correlation ID for the outgoing messages. See "Internal Custom Java
Sender" for an example of a custom Java sender that sets the correlation ID for the outgoing
message.

Intercommunication Between Orders in the Same Domain

ORACLE

There is a special consideration when managing intercommunication between orders, and by
extension cartridges that are deployed in the same domain. This situation can occur whenever
there are two or more cartridges deployed in the same OSM server that need to communicate
with each other.

The automation sender in the child cartridge needs to use the correlation ID specified by the
parent order's task. By default, OSM uses the JMSCorrelationID property in the message
header as the correlation ID. However, if both parent and child task senders use the same
JMSCorrelationID property as the correlation ID, there is a potential situation where duplicate
entries will exist in the OSM database with the same correlation ID, resulting in an error when
the parent receiver tries to look up an automation context.

The design guideline to handle this is as follows:

« For the parent automation sender, set the JMSCorrelationID header either
programmatically, or allow the system to auto-generate this value.

* For the child automation sender, set the IMSCorrelationID header to a different correlation
ID than what the parent task sent, for example by using a different algorithm than the one
used in the automator for the parent, or allowing the system to auto-generate a value.
Define a separate custom field in the JMS header to contain the correlation ID expected by
the parent task.

8-8

Chapter 8
About Automations and the Automation Framework

* For the parent automation receiver, use the message property correlation configuration to
retrieve the correlation ID from the custom defined JMS header field. This will prevent
multiple entries with the same correlation ID in the database and will allow the parent task
to correlate the automation context properly.

About Message Property Selectors

An automation task may have one or more external event receivers listening on the JMS
queue.

If the automation task has only one external event receiver, you do not need to specify a
message property selector. The automation tasks can use the JMS queue without the need for
filter criteria.

You must specify a unique message property selector for the event receiver if any of the
following situations apply:

« If the automation task has more than one external event receiver listening on the same
JMS queue. For example, if you defined multiple automation plug-in external event
receivers for the same automation task.

« If applications other than OSM share the same queue that an external event receiver is
listening on.

e If you use the Legacy build-and-deploy mode to build and deploy cartridges.

* If you use the Both (Allow server preference to decide) build-and-deploy mode to build and
deploy cartridges and configure the Internal dispatch mode for the OSM server.

Note:

Internally, the activation task uses the OSS_API_CLIENT_ID property in the
message property selector when listening for response message from Oracle
Communications ASAP. Do not use this property in a non-activation task external
automator (even if the activation task is not used in the solution) because this causes
OSM to route the response message incorrectly.

For information on how OSM processes plug-ins according to the build-and-deploy mode you
set, see "About Building and Deploying Automation Plug-ins." For information on message
property selector filter criteria, see the Design Studio Help.

About Automation Plug-in Communication Options

Automated tasks and the automation plug-ins they trigger can handle asynchronous or
synchronous communication. Automated notifications and the automation plug-ins they trigger
can handle asynchronous communication only because an automated notification can not be
defined as external event receiver, so it can not process a response.

No External Communication: Data Processing Only

ORACLE

You can define automation as an internal event receiver that extends AbstractAutomator. In
this scenario, the input data is coming from OSM and not being sent anywhere, so there is no
communication with an external system. The automation plug-in may perform some internal
calculation, or just complete the task. Use this scenario for order-level or task-level notifications

8-9

Chapter 8
About Automations and the Automation Framework

because notifications do not require responses. You can also use this scenario with automated

task plug-ins.

Figure 8-3 illustrates this scenario. In the figure, Automation Plug-ins A and B are internal
event receivers/automators.

Figure 8-3 Automation Flow

Task A transitions
or
Naotification B
is created

Automation
Plugin A
(Java code)

Automation
Plugin B
{Java code)

1 — Task A Transitions to the Received State or
Motification B is trigger based on a notification event,

Fire-and-Forget Communication: Message Sent to External Systems

ORACLE

You can define an automation as an internal event receiver that extends

AbstractSendAutomator. In this scenario, the input data is coming from OSM and being sent to
an external system. The automation plug-in sends an asynchronous "fire-and-forget" message.
That is, it completes the task and sends a message to an external system, but does not expect
a response back from the external system.

Figure 8-4 illustrates this scenario, which builds on Figure 8-1. In the figure, Automation Plug-in
A is an internal event receiver/sender.

8-10

Chapter 8
About Automations and the Automation Framework

Figure 8-4 Automation Flow: Fire-and-Forget

[ask A transitions
(Task A defines
1 plug

, 4
2
3 .| External | Automation
External oams Plugin A
System Message niemal Event Receive

2 — sends message lo external message gueus
3 — subscribes to external message queue
4 — receives messange from external queue

Synchronous Communication: Single Request and Response

You can define an automated task that defines two automation plug-ins:

* You can define the first automation as an internal event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from OSM and being
sent to an external system. The automation plug-in sends a synchronous message which
expects a response back from the external system.

* You can define the second automation as an external event receiver that extends
AbstractAutomator. In this scenario, the input data is coming from the external system (it is
the response from the message sent by the first automation) and not being sent anywhere.
The automation plug-in processes the response and completes the task.

Figure 8-5 illustrates this scenario, which builds upon Figure 8-4. In the figure, Automation
Plug-in A-1 is an internal event receiver/sender, and Automation Plug-in A-2 is an external
event receiver/automator.

ORACLE 811

Chapter 8
About Automations and the Automation Framework

Figure 8-5 Automation Flow: Simple Synchronous

5 — sends a response message back
& — subscribes to external message quele

[ask A transitions
(Task A& defines
2 plug-ins)

| External - Automation
JMS Plugin A-
Messa | I Ret [
\ Quet Sender
5 _
i
Automation
> Plugin A-2
7 Extarnal Event Racaiver
Automator

¥ — recelves message from external message queue

Synchronous Communication: Multiple Requests and Responses

ORACLE

You can define an automated task that defines multiple automation plug-ins:

You can define the first automation as an internal event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from OSM and being
sent to an external system. The automation plug-in sends a synchronous message which
expects a response back from the external system.

You can define the second automation as an external event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from the external system
(it is the response from the message sent by the first automation) and being sent back to
the external system. The automation plug-in processes the response and replies back by
sending another message.

You can define the third automation as an external event receiver that extends
AbstractAutomator. In this scenario, the input data is coming from the external system (it is
the response from the second message sent by the second automation) and not being
sent anywhere. The automation plug-in processes the response and completes the task.

Figure 8-6 illustrates this scenario, which builds upon Figure 8-5. In the figure, Automation
Plug-in A-1 an internal event receiver/sender, Automation Plug-in A-2 is an external event
receiver/sender, and Automation Plug-in A-3 is an external event receiver/automator.

There can be multiple exchanges in such a scenario; this is just an example. After some
number of messages back and forth, the final automation must be an external event receiver
that extends AbstractAutomator, to complete the task. This example shows communication
with two different external systems; however, steps 8-13 could continue communications with
External System X, rather than with External System Y.

8-12

Chapter 8
About Automations and the Automation Framework

Figure 8-6 Automation Flow: Complex Synchronous

lask A transitions
(Task A defines
J plug-ins)
b J
» External 2 . ;
e Automation
External 4 . JMS e Plugin A-1
System X Messag Internal Event Receiver
’ | Queue . Sandar
X
£ <
Automation
. Plugin A-2
Exlarnal Evant Recalver
Sandar
a8
g 4
» External 12)
" Automation
JMS [
External 10 Message Plugin A-3
System Y B g .| External Event Receiver
Queus :

Automator
11

11 — sends a response message back
12 — subscribes to external message
gueue Y

13 - receives massage from external
message queue Y

8 — sends message o external message queue Y
9 - subscribes to external message queus Y
10 — receives message from external message queue Y

Asynchronous Communication: Single or Multiple Requests and Responses

In the synchronous communication scenario one task sends a single message and expects a
response in return (see "Synchronous Communication: Single Request and Response"). While
the task is waiting for the response to return, the order data associated to that task is not
available for amendment processing, effectively blocking any revision order changes or
cancelation request involving that task. This scenario is normally not a problem when the
response returns quickly but for more asynchronous communication where the message can
take a longer time to return, the scenario described in this section is more appropriate so as to
avoid unnecessarily long delays in order amendments or cancelation requests.

You can define an automated task that defines a single automation as an internal event
receiver that extends AbstractSendAutomator. In this scenario, the input data is coming from
OSM and being sent to an external system. The automation plug-in sets a correlation ID and

ORACLE 8-13

ORACLE

Chapter 8
About Automations and the Automation Framework

sends a message. In this case, however, OSM expects a response back from the external
system but to a different task.

In this scenario, you must programmatically set the correlation ID for the outgoing message in
the sending task. You cannot use the OSM auto-generated correlation ID functionality. For
more information, see "Correlating Requests from OSM to Responses from External Systems."

You can define the second automated task with two automation plug-ins:

e The first plug-in is an internal event receiver that extends AbstractAutomator. In this
scenario, the input data is coming from the previous task that sent the initial message and
correlation ID to the external system. The automation plug-in configures the correlation 1D
to correspond to the correlation ID configured on the previous task so that the message.is
routed to the right location. In addition, this automator uses the taskContext
suspendTask method to transition the task to a new customer defined task state (for
example, a state called waitingforresponse) and also has the ability to suspend the task.
When a task is in the suspended state, it can be amended.

* The second plug-in is an external event receiver that extends AbstractAutomator. In this
scenario, the input data is coming from the response to the message sent by the previous
task. When the response arrives, the event automatically transitions the task to a new state
(for example, a state called waitForProvisioningCompleted) that moves the task out of the
suspended state and completes that task.

Figure 8-7 illustrates this scenario, which is a variant of Figure 8-5. In the figure, Automation
Plug-in A-1 is an internal event receiver/sender. Automation plug-in B-1 sets the correlation ID
and suspends the task, and Automation Plug-in B-2 is an external event receiver/automator.

8-14

Figure 8-7 Automation Flow: Simple Asynchronous

Chapter 8
About Automations and the Automation Framework

lask A transitions
(Task A defines

1 plug-in)
1
) ¥
J
A External - Automation
External JMS Plugin A-1
System Message Intermal Event Receiver
|.t.. Cluaue .:_. Sander
7 e
)
Automation
> Plugin B-2
q External Event Receiver
Automator
5 — Task B triggers internal automator plugin B-1 that set the correlation
D to match the one set by Plugin A-1 and suspands task B. .
& — External automator plugin B-2 runs g
T — External system posts JMS response message to the message
gueue after a long delay.
8 — Plugin B-2 subscribes to the JMS message quaue)
9 — Plugin B-2 receives message from external message queus Automation
Plugin B-1
Intemal Event Receivar
Automator
-
5

Task B transitions
(Task B defines
2 plug-ins)

You can also apply this asynchronous communication to the synchronous communication
scenario where one task sends and receives multiple messages (see "Synchronous
Communication: Multiple Requests and Responses"). In Figure 8-6, replace plug-in A-3 with a
new task that includes two automation plug-ins that set the expect correlation ID, suspend the
task so that the task data can be amended or canceled while it is waiting for the response, and
then completes the task when the response returns.

ORACLE"

8-15

Chapter 8
About Custom Automation Plug-ins

Storing Response Message as XML Type Parameters

When you receive response message from external fulfillment systems, you may want to store
response message data on the OSM order. To do this, you can use a parameter that you
designate as XML Type in the Design Studio Order editor Order Template tab.

However, you must strip the envelope, header, and body from the response message before
storing data in this way. Having XML type data that includes the envelop, header, or body
prevents OSM from sending any subsequent Web Service request messages because Web
Service message envelops, headers, or body cannot be nested.

For example, you could receive response data and assign it to a variable, such

as $wsResponseDataXmlData. This variable contains the entire response including the Web
Service envelope, header, and body. You could use the following code to strip the envelope,
header, and body:

Example 8-1 Stripping the Envelope, Header, and Body

let SwsResponseContentXmlData := S$wsResponseDataXmlData/env:Envelope/env:Body/*

The new $wsResponseContentXmlData variable now contains only the content of the body.

About Custom Automation Plug-ins

ORACLE

All custom automation plug-in Java source files must reside in the cartridgeNamelsrc directory.
You can create subdirectories within the src directory as needed. When you compile the
source file, the resultant Java class file is placed in the cartridgeNamelout directory. Any
subdirectories you created within the src directory are reflected in the out directory.

All custom automation plug-ins must extend one of the following automation classes, located in
the SDK/automation/automationdeploy bin/automation_plugins.jar file:

e AbstractAutomator
* AbstractSendAutomator

The custom automation plug-in can directly or indirectly extend AbstractAutomator or
AbstractSendAutomator: If needed, there can be one or more layers of inheritance between
AbstractAutomator or AbstractSendAutomator, and the automation plug-in.

These classes are hierarchically related. AbstractAutomator is the parent of
AbstractSendAutomator as shown in Figure 8-8. Both classes reside in the
com.mslv.automation.plugin package.

8-16

Chapter 8
About Custom Automation Plug-ins

Figure 8-8 Class Hierarchy

Abstract
Automator

AbstractSend
Automator

The AbstractAutomator can receive information, either from OSM or from an external system.
The AbstractSendAutomator inherits this ability, so it can also receive information from OSM or
from an external system; however, it can also send information. If the purpose of the custom
automation plug-in you are writing is to send a message, it should extend the
AbstractSendAutomator class; otherwise, it should extend the AbstractAutomator class.

Defining the Custom Automation Plug-in

For every custom automation plug-in you write, you must define a corresponding Custom
Automation Plug-in entity in Design Studio. The Custom Automation Plug-in editor associates a
Java class representing the custom automation plug-in to the Custom Automation Plug-in
Design Studio entity. For example, if you create MyCustomPlugin.java and compile it, the
result is MyCustomPlugin.class. You then create a new Custom Automation Plug-in entity,
and populate the fields defined on the editor.

There is a difference between the terms custom automation plug-in and Custom Automation
Plug-in: The former is a custom Java class, the latter is a Design Studio entity.

About the XML Template

ORACLE

The Custom Automation Plug-in editor also defines the XML Template field.

You must provide XML that defines the implementation for your custom automation plug-in.
This is done through the <implement> element, as shown in Example 8-2. The <implement>
element is defined in the cartridgeNamelcustomAutomation/automationMap.xsd file, which
is available with the creation of an OSM cartridge. See OSM Modeling Guide for more
information.

Example 8-2 XML Template

<implement xsi:type="hw:customImplementation"
xmlns:hw="http://www.example.org/hello/world"
xsi:schemaLocation="http://www.example.org/hello/world helloWorld.xsd">
<hw:completionStatus>success</hw:completionStatus></implement>

You must also provide the corresponding schema file that defines the rules for the XML that
you entered in the XML Template field. The schema file name in this example is
helloWorld.xsd, shown on the third line of Example 8-2. The content of helloWorld.xsd is
shown in Example 8-3.

8-17

Chapter 8
About Custom Automation Plug-ins

Example 8-3 Schema for XML Template

<?xml version="1.0" encoding="UTF-8"?><schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/hello/world" xmlns:tns="http://
www.example.org/hello/world"
elementFormDefault="qualified"
xmlns:Ql="http://www.oracle.com/OMS/AutomationMap/2001/11/23">
<import schemaLocation="automationMap.xsd"
namespace="http://www.oracle.com/OMS/AutomationMap/2001/11/23">
</import>
<complexType name="customImplementation">
<complexContent>
<extension base="Ql:Implementation">
<sequence>
<element name="completionStatus" type="string"></element>
</sequence>
</extension>
</complexContent>
</complexType>
</schema>

The schema files you create must reside in the cartridgeNamelcustomAutomation directory
and the cartridgeNamelresources/automation directory.

Note:

The generated automationMap.xml file includes the <implement> element for
predefined automation plug-ins, but not for custom automation plug-ins. For
additional examples of the implement element, see "AutomationMap.xml File".

When looking at the examples, note that the sub-elements defined for the implement
element differ for senders versus automators.

About Creating Custom Automation Plug-ins

ORACLE

AbstractAutomator and AbstractSendAutomator each define abstract methods which require
child classes to define those methods. The custom automation plug-in must define a specific
method, depending on which Java class the custom automation plug-in extends:

e A custom automation plug-in that extends AbstractAutomator must define the method:

public void run(String inputXML, AutomationContext automationContext)

e A custom automation plug-in that extends AbstractSendAutomator must define the
method:

public void makeRequest (String inputXML, AutomationConext automationContext,
TextMessage outboundMessage)

By defining one of these methods in a custom automation plug-in, when an automated task or
automated notification is triggered, OSM can process the automation mapping and call the
method, knowing it is defined for the class name provided in the automation mapping.

The following sections describe the arguments used in the run and makeRequest methods.
See "Custom Java Automation Plug-ins" for sample custom automation senders and receivers
that illustrate how you can use these arguments.

8-18

Chapter 8
About Custom Automation Plug-ins

inputXML Argument

The inputXML argument is a java.lang.String object. The custom automation plug-in does not
need to include an import statement for this object because it is included in the hierarchy from
which the custom automation is extending.

The inputXML argument is the input data in XML document form that can be parsed to access
the individual pieces of data. If the automation is defined as an internal event receiver, the XML
document defines OSM order data. If the automation is defined as an external event receiver,
the XML document defines data from an external source. In either case, you need to know the
expected XML definition in order to write the code to parse the data.

Data is not stored at the element for a given XML tag; it is stored at its child, so the approach
for retrieving order data is not obvious. A command to retrieve order data looks like this:

Element clli a = root.getElementsByTagName ("clli a").item(0);
String text = clli a.getFirstChild().getNodeValue();

AutomationContext Argument and Casting the Context Argument

Within the custom plug-in, you must determine which context object to expect as an argument,
and then cast the AutomationContext object to the appropriate child context object (for
example, TaskContext or OrderNotificationContext).

For example, in the code below, the expected context object is TaskContext and
automationContext is the name of the AutomationContext object argument.

if (automationContext instanceof TaskContext) {
TaskContext taskContext = (TaskContext)automationContext; }
else { //log an error }

After the AutomationContext object is cast to the appropriate context object, all methods on the
context object are available to the custom plug-in. See "About Automations in the Order and
Task Contexts" for more information.

outboundMessage Argument

The outboundMessage argument is a javax.jms.TextMessage object. The custom automation
plug-in does not need to include an import statement for this object because it is included in
the hierarchy from which the custom automation is extending.

The outboundMessage argument is defined only for the makeRequest method,; it is not defined
for the run method. The makeRequest method is defined for classes that extend
AbstractSendAutomator, which automatically sends a message to an external system. You can
write custom code that populates outboundMessage, which is sent to the external message
gueue defined by the automation definition. You do not have to write custom code to connect to
the external system or send the message; OSM automation handles the connection and the
message upon completion of the makeRequest method.

Accessing JDBC from Within an Automation Plug-in

ORACLE

Because custom automation plug-ins run inside a J2EE container, JDBC services are readily
available.

To use JDBC from a plug-in, you must create a data source through the WebLogic console.
The data source contains all the connection information for your proprietary database, such as
host names, user names, passwords, number of connections, and so on.

8-19

Chapter 8
About Custom Automation Plug-ins

For information on setting up data sources in WebLogic, see the overview of WebLogic Server
applications development in the Oracle WebLogic documentation.

The following code illustrates how to connect to a proprietary database from OSM and perform
a"SELECT *".

javax.naming.InitialContext initialContext = new InitialContext();
javax.sgl.DataSource datasource = (javax.sgl.DataSource) initialContext.lookup
("java:comp/env/jdbc/DataSource") ;

javax.sgl.connection connection = datasource.getConnection();
javax.sgl.Statement statement = connection.createStatement();

javax.sql.ResultSet resultSet = statement.executeQuery("SELECT * FROM my custom table");

Line two, the lookup, uses the JNDI name of the data source as a parameter.

Compiling the Custom Automation Plug-in

ORACLE

You must include the following JAR files in your project library list for the custom automation
plug-in to compile:

WLS_homelwlserver_10.3/serverllib/weblogic.jar

* SDK/automation/automationdeploy_bin/automation_plugins.jar

Note:

The version of the automation_plugins.jar that you reference to compile the custom
automation plug-in must be the same version that resides in the cartridge osmlib
directory. To verify this, check the date and size of each file. If they are different, use
the version that came with the OSM installation. To do so, copy the
automation_plugins.jar file from the SDK/automation/automationdeploy_bin
directory to the osmlib directory of your cartridge. After the file is copied to the
cartridge, clean and rebuild the cartridge.

Depending on the content of the custom automation plug-in, you may also need to include
additional JAR files.

To include a JAR file in the project library list:

1. From the Design Studio menu bar, select Project, then select Properties.
The Properties for CartridgeName window opens.

2. Inthe left navigation pane, click Java Build Path.

3. Click the Libraries tab.

4. Click Add External JARs.
The Jar Selection window opens.

5. Navigate to the location of the JAR file and double-click the JAR file to add it to the library
list.

8-20

Chapter 8
About Predefined Automation Plug-ins

About Predefined Automation Plug-ins

The OSM installation provides several predefined automation plug-ins, as described in the
following sections. The sections are presented in the order that the predefined automation
plug-ins display within Design Studio, on the Add Automation window Automation Type list
field.

All of the predefined automation plug-ins are part of the automation class hierarchy; they
extend, either directly or indirectly, the AbstractAutomator class that you use to create custom
automations, as shown in Figure 8-9.

Figure 8-9 Predefined Automation Plug-in Class Hierarchy

Abstract
Automator

[y JL¢

AbstractScript
Automator
A A *
AbstractSend AbstractSeript
Automator SendAutomator
A A
XQuery XSLT XQuery XSLT Database
Sender Sender Recelver Receiver Plugin
Note:

The XSLT and XQuery Automator predefined automation plug-in Java class are
XSLTReceiver and XQueryReceiver. The presentation in Design Studio was changed
to remove confusion. The names receiver and sender imply that one receives and
one sends, which is not true: Both receive. The sender just has the added ability to
send a message.

XSLT Sender

The XSLT Sender predefined automation plug-in provides a way to transform data and send it
to an external system using JMS, with you supplying the extensible stylesheet language
transformation (XSLT).

ORACLE 801

Chapter 8
About Predefined Automation Plug-ins

Defining the Automation

ORACLE

When defining the automation on the Add Automation window, select XSLT Sender from the
Automation Type list field.

For an automation defined as an internal event receiver, the XSLT must transform the OSM
input data to SystemY data, where SystemY is the external system that the automation is
sending the transformed data to.

For an automation defined as an external event receiver, the XSLT must transform SystemX
data to SystemY data, where SystemX is the external system that the automation is receiving
input data from, and SystemY is the external system that the automation is sending the
transformed data to.

See "Internal XSLT Sender " and "External XSLT Sender" for sample code.
XSLT Tab

Selecting XSLT Sender from the Automation Type list field results in XSLT tab being present
on the Properties view for the automation. The XSLT tab is where you specify your XSLT file
so the predefined automation plug-in can access it. You can specify your XSLT file in one of
three ways by choosing the appropriate radio button:

* When you choose Bundle in, you can select your XSLT file from a list that displays all
XSLT files defined in the cartridge resources directory, which populates the XSLT field for
you.

* When you choose Absolute path, you must enter the path and name of your XSLT file in
the XSLT field.

* When you choose URL, you must enter the unified resource locator (URL) to your XSLT
file in the XSLT field.

Note:

Oracle recommends that you choose Bundle in for production mode because it pulls
the XSLT files into the PAR file. As a result, you can deploy the EAR file (which
contains the PAR file) to any server and, at run time, the application can locate the
XSLT files. If you choose Absolute Path or URL for production mode, you can
deploy the EAR file to any server but are responsible for ensuring the XSLT files
reside in the specified location on the server.

Conversely, Absolute Path or URL are optimal for testing mode because they do not
require a rebuild and redeploy to pick up changes to the XSLT.

The XSLTSender class can cache the associated XSLT file, incurring minimal overhead on
each invocation. When the automation is defined to cache the XSLT, the implementation
detects at runtime whether the XSLT source has changed by checking the URL modification
time and the XSLT is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

8-22

Chapter 8
About Predefined Automation Plug-ins

Oracle uses Saxon as the transformer factory to process XSLT. You can specify use of a
different transformer factory by specifying a value for the Transformer Factory field.

Note:

Oracle recommends that you use the default Saxon transformer factory.

Routing Tab

The Routing tab consists of two sub-tabs: To and Reply To. Both sub-tabs define the same
set of fields. The To sub-tab defines where the outbound message is being routed to, and the
Reply To sub-tab defines where the inbound message (replying to the outbound message) is
being routed to. You must set the ReplyTo queue on the sender even if you are processing the
return message on a different automation plug-in.

Writing the XSLT

When the XSLT transformer is called, it is passed references to the following named
parameters that may be used from within the XSLT:

* Automator: The class instance (for example, the instance of XSLTSender that is calling
the XSLT).

* Log: The automator's instance of org.apache.commons.logging.Log.
e Context: The context object input parameter to the makeRequest method.
* OutboundMessage: The outbound JMS TextMessage.

XSLTSender does not automatically complete the associated task after successful processing.
If the task needs to be completed, the XSLT must include a call to

TaskContext.completeTaskOnExit (java.lang.String s)

as shown in Example 8-4:

Example 8-4 XSLT Java Call

<xsl:stylesheet version="1.0"
xmlns="http://java.sun.com/products/oss/xml/ServiceActivation"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:java="http://xml.apache.org/xslt/java"
xmlns:xalan="http://xml.apache.org/xslt"
xmlns:sa="http://java.sun.com/products/oss/xml/ServiceActivation"
xmlns:mslv-sa="http://www.oracle.com/oss/ServiceActivation/2003"
xmlns:co="http://java.sun.com/products/oss/xml/Common"
exclude-result-prefixes="xsl java xalan sa mslv-sa">
<l== * —=>
<xsl:param name="automator"/>
<xsl:param name="log"/>
<xsl:param name="context"/>
<l== * —=>
<xsl:output method="xml" indent="yes" omit-xml-declaration="no"
xalan:indent-amount="5"/>

<l== * —=>
<xsl:template match="/">

<xsl:variable name="voidl" select="java:info($log, 'completing task

with status success')"/>
<xsl:variable name="void" select="java:completeTaskOnExit

ORACLE 893

Chapter 8
About Predefined Automation Plug-ins

(Scontext, 'success')"/>
</xsl:template>
<l== % —=>

<xsl:template match="* | @* | text()">
<!-- do nothing -->
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

As the XSLT author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XSLT Sender

The following steps describe how to set up the XSLT Sender predefined automation plug-in:

1. Determine the from and to data that your XSLT is to translate.
2. Write the XSLT.
3. Define automated task or automated notification that will trigger the automation plug-in.
4. Define the automation for automated task or automated notification:
a. Select XSLT Sender from the Automation Type list field.
b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tabs specific to this
type of automation: the XSLT tab and the Routing tab.

Build the cartridge.
Deploy the cartridge to the OSM server.

From within OSM, perform the event that triggers the automation.

@ N o O

XSLTSender uses your XSLT to transform the data and send it to the external system
specified by the automation definition.

XSLT Automator

The XSLT Automator predefined automation plug-in provides a way to transform data or
update OSM with the transformed data, with you supplying the extensible stylesheet language
transformation (XSLT).

Defining the Automation

ORACLE

When defining the automation on the Add Automation window, select XSLT Automator from
the Automation Type list field.

For an automation defined as an internal event receiver, the scenario is not very plausible
because your corresponding XSLT would not need to transform OSM data to OSM data.
However, you can write XSLT that runs Java rather than transforms data, so it is possible to
define an XSLT Automator as an internal event receiver, but you can accomplish the same
thing by writing a custom automation plug-in. The decision on which to use is based on the
complexity of the Java code: If it is fairly short and simple, it may be quicker to use the
predefined automation plug-in and just write the XSLT, as opposed to writing the custom
automation plug-in.

8-24

ORACLE

Chapter 8
About Predefined Automation Plug-ins

For an automation defined as an external event receiver, your corresponding XSLT must
transform SystemX data to OSM data, where SystemX is the external system that the
automation is receiving input data from. You can also specify to update OSM with the
transformed data.

See "External XSLT Automator" and "Internal XSLT Automator" for sample code.
XSLT Tab

Selecting XSLT Automator from the Automation Type list field results in XSLT tab being
present on the Properties view for the automation. The XSLT tab is where you specify your
XSLT so the predefined automation plug-in can access it. You can specify your XSLT in one of
three ways by choosing the appropriate radio button:

* When you choose Bundle in, you can select your XSLT file from a list that displays all
XSLT files defined in the cartridge resources directory, which populates the XSLT field for
you.

* When you choose Absolute path, you must enter the path and name of your XSLT file in
the XSLT field.

* When you choose URL, you must enter the unified resource locator (URL) that locates
your XSLT file in the XSLT field.

Note:

Oracle recommends that you choose Bundle in for production mode and Absolute
Path or URL for testing mode.

The XSLTReceiver class can cache the associated XSLT file, incurring minimal overhead on
each invocation. When the automation is defined to cache the XSLT, the implementation
detects at runtime whether the XSLT source has changed by checking the URL modification
time; the XSLT is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

Oracle uses Saxon as the transformer factory to process XSLTs. You can specify to use a
different transformer factory by specifying a value for the Transformer Factory field.

Note:

Oracle recommends that you use the default Saxon transformer factory.

When XSLT Automator is selected from the Automation Type list, the XSLT tab also includes
the Update Order check box, which is not present when XSLT Sender is selected from the
Automation Type list. If the check box is selected, XSLTReceiver updates OSM with the
transformed order data. If the check box is deselected, XSLTReceiver just transforms the data;
it does not update OSM with the transformed data.

8-25

Chapter 8
About Predefined Automation Plug-ins

Writing the XSLT

When the XSLT transformer is called, it is passed references to the following named
parameters that may be used from within the XSLT:

e Automator: The class instance (for example, the instance of XSLTReceiver that is calling
the XSLT).

e Log: The automator's instance of org.apache.commons.logging.Log.
e Context: The context object input parameter to the makeRequest method.

XSLTReceiver does not automatically complete the associated task after successful
processing. If the task needs to be completed, the XSLT must include a call to

TaskContext.completeTaskOnExit (java.lang.String s)

as shown in Example 8-4.

As the XSLT author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XSLT Automator

The following high-level steps describe how to set up the XSLT Automator predefined
automation plug-in:

1. Determine the from and to data that your XSLT is to translate.
2. Write the XSLT.
3. Define automated task or automated notification that will trigger the automation plug-in.
4. Define the automation for automated task or automated notification:
a. Select XSLT Automator from the Automation Type list field.
b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tab specific to this
type of automation; that is, the XSLT tab.

Build the cartridge.
Deploy the cartridge to the OSM server.

From within OSM, perform the event that triggers the automation.

@ N o o

XSLTAutomator uses your XSLT to transform the data or updates OSM with the
transformed data.

XQuery Sender

The XQuery Sender predefined automation plug-in provides a way to extract and manipulate
XML data and send it to an external system using JMS, with you supplying the XML query

(XQuery).

ORACLE 896

Chapter 8
About Predefined Automation Plug-ins

Defining the Automation

ORACLE

When defining the automation on the Add Automation window, select XQuery Sender from
the Automation Type list field.

For an automation defined as an internal event receiver, your corresponding XQuery can
manipulate OSM data and send it to SystemY, where SystemY is the external system that the
automation is sending the manipulated data to.

For an automation defined as an external event receiver, your corresponding XQuery can
manipulate SystemX data and send it to SystemY, where SystemX is the external system that
the automation is receiving input data from, and SystemY is the external system that the
automation is sending the manipulated data to.

See "Internal XQuery Sender" and "External XQuery Sender" for sample code.
XQuery Tab

Selecting XQuery Sender from the Automation Type list field results in XQuery tab being
present on the Properties view for the automation. The XQuery tab is where you specify your
XQuery file so the predefined automation plug-in can access it. You can specify your XQuery
file in one of three ways by choosing the appropriate radio button:

* When you choose Bundle in, you can select your XQuery file from a list that displays all
XQuery files defined in the cartridge resources directory, which populates the XQuery
field for you.

* When you choose Absolute path, you must enter the path and name of your XQuery file
in the XQuery field.

* When you choose URL, you must enter the unified resource locator (URL) to your XQuery
file in the XQuery field.

Note:

Oracle recommends that you choose Bundle in for production mode and Absolute
Path or URL for testing mode.

The XQuerySender class can cache the associated XQuery file, incurring minimal overhead on
each invocation. When the