
Oracle® Communications Order and
Service Management
Concepts

Release 7.4.1
F30320-01
November 2020

Oracle Communications Order and Service Management Concepts, Release 7.4.1

F30320-01

Copyright © 2009, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

1 Order and Service Management Overview

Overview of OSM 1-1

About Order Fulfillment Business Processes 1-4

About the OSM System Architecture 1-4

About Creating an Order Fulfillment Process 1-6

2 How OSM Processes Orders

About Order Processing 2-1

About Customer Orders, Service Orders, and Technical Orders 2-4

About COM, SOM, and TOM 2-8

3 How OSM Creates Orders

How OSM Receives and Creates Orders 3-1

About the Data in an Incoming Order 3-3

About the Data in an OSM Order 3-6

Data Used for Processing an Order 3-7

About the Order Lifecycle Policy 3-7

4 About Orchestration

How OSM Generates and Executes an Orchestration Plan 4-1

About Decomposition 4-3

About Dependencies 4-7

About Order Items and Order Components 4-8

Orchestration and COM, SOM, and TOM 4-10

About Order Item Transformation 4-12

iii

About the Design Studio Conceptual Model 4-12

5 About Tasks and Processes

About Tasks and Processes 5-1

About Manual Tasks 5-3

About Automated Tasks 5-4

About Task States 5-4

6 About Order Management Business Processes

About OSM and Order Management Business Processes 6-1

About Making Changes to In-flight Orders 6-1

About Submitting Multiple Revisions of an Order 6-3

About Point of No Return 6-3

About Follow-on Orders 6-4

About Determining Order Completion Dates 6-4

About Order Status 6-5

About Notifications 6-7

About Managing Order and Task Fallout 6-8

Managing Changes in Your Business 6-9

7 About Runtime Order Management

About Managing Orders 7-1

Assigning Tasks to OSM Users 7-1

About Workflow and Workstream Processes 7-2

About the Order Lifecycle Management UI 7-2

About Managing OSM Users 7-2

About Using Behaviors to Customize the Task Web Client 7-3

8 OSM Functional Overview

OSM Functional Diagram 8-1

Glossary

iv

Preface

This guide provides an overview of Oracle Communications Order and Service
Management (OSM).

Audience
This guide is intended for:

• Business domain experts who make decisions about the order fulfillment process.

• Order management personnel who need to know how OSM works and how orders
are processed.

• Developers who extend OSM to interface with external systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Order and Service Management Overview

This chapter provides an overview of Oracle Communications Order and Service
Management (OSM).

Overview of OSM
OSM is an order processing system that takes as input an order from a customer
relationship management (CRM) system, and manages the fulfillment functions that
need to be carried out to complete the order. Fulfillment functions include operations
such as assigning a phone number, activating a service on the network, shipping a
phone, and running billing.

Communications service providers typically register customers and manage their
services by capturing orders in a CRM system or on a website. The order received
from a customer defines what the customer wants to purchase, such as a phone
service. OSM initiates and coordinates the order fulfillment functions required to
complete the order. For example, if the customer orders a phone service, OSM can:

• Send billing and customer management requests to a billing system.

• Query a service and resource management (SRM) application to find the network
resources required to activate a service and to determine the actions required
on each resource; for example, to find out if there is enough circuit capacity for
the service and to determine what actions must be performed on the network to
allocate the circuit to the customer.

• Send activation commands to Oracle Communications ASAP to activate the
service on the network.

• Send a shipping request to a shipping system; for example, to send a phone to the
customer.

Figure 1-1 shows how OSM receives orders from a CRM system, and then works
with multiple external fulfillment systems to handle the order fulfillment requirements. A
fulfillment system is a system that carries out the actions necessary to complete the
order; for example, activate services on the network, or run billing. In this example,
OSM coordinates with fulfillment systems that run other Oracle Communications
applications; Billing and Revenue Management (BRM), Unified Inventory Management
(UIM), and ASAP.

1-1

Figure 1-1 OSM and External Fulfillment Systems

While processing an order, OSM can interact with multiple external systems
simultaneously, or in a sequence of processes. For example, OSM can interact with
a billing system at the same time as working with UIM to assign the resources
and determine the actions required to fulfill the service on those resources. After
determining the resources and actions in UIM, OSM can send those resources and
actions as activation commands to ASAP to activate the service on the network. OSM
maintains the status of all of the interactions with external systems, and can return the
status of each interaction to the order source system.

Because OSM can support order processing for any type of service or product, OSM
does not have a predefined order fulfillment process. Instead, you define the OSM
order fulfillment process for each type of order that you process. For example, some
orders might require shipping or installation actions, and some might not.

The high-level order fulfillment process is:

1. An order is placed in a CRM system, or on a self-service portal such as a page.
OSM is not part of the order capture process.

CRM systems typically create and maintain their own order that tracks the status
of the customer's purchase. They use this order to communicate the order status
to the customer.

2. The CRM system sends the order to OSM.

3. OSM receives the sales order. OSM validates the order and transforms it into an
OSM order in the OSM order format. If you have defined multiple types of orders,

Chapter 1
Overview of OSM

1-2

for example, for different services, OSM creates the type of order that is required
to fulfill the customer's order.

An order in OSM can include:

• The fulfillment functions that need to be completed, such as add or cancel a
service

• The requested completion date

• Customer data that is relevant to the order process; for example, the
customer's address

• Information about the services being requested; for example, telephone
number, bandwidth, or DSLAM port

• Status information; for example, if the order is in progress or completed

4. OSM fulfills the order by running tasks. Some tasks are manual; for example, you
might want an order processor to manually validate that an equipment installation
has been completed. Most tasks are automated; for example, a task that sends an
activation command to the network.

5. As tasks are completed, OSM monitors the overall status of the order. You can use
the OSM Task web client and the OSM Order Management web client to track the
order's progress and manage any problems that occur.

6. When all of the tasks are complete, OSM informs the order source system that the
order has been fulfilled, and the services are available to the customer.

Figure 1-2 shows the order fulfillment process.

Figure 1-2 OSM Order Fulfillment Process

Chapter 1
Overview of OSM

1-3

For a detailed description of the OSM order process, see "How OSM Processes
Orders."

About Order Fulfillment Business Processes
OSM supports the following business processes:

• If an order is in progress and a customer needs to change it, you can resubmit
the order to OSM. OSM can roll back and change fulfillment tasks as needed. For
example, an order might be in progress that specifies a 5Mbps bandwidth. If the
customer decides to change the order to 13Mbps bandwidth, the same order with
the new requirement is submitted. The original order is called the base order, and
the second order is called the revision order.

• You can calculate the length of time that an order might take to process and
provide customers with an expected delivery date. In some cases, a customer
might need a service activated at a date in the future; for example, at the end of
the next month. OSM can calculate when to start the order to enable the service at
the required date.

• You can configure various ways to report order status, including the status of the
entire order and the status of individual fulfillment tasks. You can use fulfillment
states to combine the various statuses received from multiple external systems
into an aggregated status.

• You can create processes to manage errors in order processing. An error in order
processing is called fallout.

• You can create workgroups to manage manual order processing tasks and
order fallout. You can use workgroups to assign tasks to specific types of order
operators; for example, order operators who interact with customers, or order
operators who manage failed orders.

For more information, see "About Order Management Business Processes."

About the OSM System Architecture
The OSM system includes system server components, web-based GUI applications,
utilities, and interfaces for communicating with external systems. Figure 1-3 illustrates
the OSM system components.

Chapter 1
About Order Fulfillment Business Processes

1-4

Figure 1-3 OSM System Architecture

An OSM system includes the following client components:

• Use the Task web client to monitor and manage the tasks in an order. This
application is typically used by order processing personnel to ensure that all
the tasks are completed. It is also used by order fallout managers. You can
also perform some order management tasks, such as suspending, resuming, and
canceling orders.

• Use the Order Management web client to display detailed information about the
progress of the order. Displaying the order process is useful for developers who
are modeling orders and need to see relationships between the specifications they
create in Design Studio. You can also perform some order management tasks,
such as suspending and resuming orders, canceling orders, and managing fallout.
You can open the Order Management web client from within the Task web client.

• Use Design Studio to model types of orders, tasks, and other OSM entities
that run the order fulfillment process. When you design your order fulfillment
process, you also use Design Studio to design entities for other Oracle products;
for example, to configure services for UIM, and to design activation processes for
ASAP.

To implement the order fulfillment process that you design, you create cartridges
in Design Studio and deploy them on OSM server systems. You can deploy
multiple cartridges to manage different functional areas; for example, cartridges
that deploy OSM fallout management functions, and cartridges that deploy UIM
functions.

OSM includes the following server components:

• The OSM server manages OSM runtime functionality, including inbound order
operations and outbound communications with external systems. The OSM server
is deployed on Oracle WebLogic Server.

You typically configure multiple instances of the OSM server. For example, you
might configure one OSM server instance to receive and process incoming sales
orders, and one or more OSM server instances to process orders that require
interaction with provisioning and activation systems.

Chapter 1
About the OSM System Architecture

1-5

To communicate with external systems, the OSM server uses mostly Java
Message Service (JMS) queues. JMS is part of the standard Java platform. In
traditional OSM, a JMS queue is a staging area that you configure when you install
OSM. In OSM cloud native, JMS queues are added to the project specification for
an instance. Systems communicate via JMS queues by publishing messages to
them and receiving messages from them.

• Oracle WebLogic Server hosts the OSM server. Oracle WebLogic Server, part of
Oracle Fusion Middleware, provides Java JEE services for the hosted components
and includes availability, scalability, manageability, clustering, and performance
features.

• OSM uses Oracle Database to store orders being processed and orders that
have been processed. The OSM database also stores the OSM metadata that
you create when modeling the order fulfillment process. For example, the order
specification that you define in Design Studio is stored as metadata. OSM uses
that metadata as a template to create instances of orders at runtime. OSM
metadata defines the order model and behavior of the OSM Server, including
order templates and tasks.

OSM uses Java Database Connectivity (JDBC) to carry out communication
between server components and the OSM database.

For information about administering an OSM system, see OSM System Administrator's
Guide.

About Creating an Order Fulfillment Process
Using OSM includes two different types of activities:

• Design-time activities. To implement OSM, you define the content of each type
of order, and the process that fulfills the order. To do so, you use Design Studio to
model types of orders, tasks, and other OSM entities that run the order fulfillment
process. As the products, offers, and bundles in your product catalog change, you
use Design Studio to make changes to the order fulfillment process. OSM includes
sample Design Studio cartridges to use as a starting point, but you must model
your own order fulfillment process.

• Runtime activities. To manage orders, you can use the Task web client to run
manual tasks, and you use the Task web client and the Order Management
web client to track the progress of the orders and manage any problems that
occur. For example, if an external system reports an error, you can use the
Order Management web client to troubleshoot the order. For more information,
see "About Runtime Order Management."

OSM fulfills orders to support your specific product offerings. For example, if you sell a
DSL service, you model your order process to include the data necessary to activate
the DSL service on the network, and to carry out provisioning and activation tasks.
If you sell a fixed line telephone service, your order process needs to carry out a
different set of fulfillment functions.

To design and implement your order fulfillment process, you do the following:

1. Define your business requirements; for example, the products, bundles, and offers
you sell.

2. Plan how to implement the fulfillment requirements for those products and
services. For example:

Chapter 1
About Creating an Order Fulfillment Process

1-6

• Which systems (activation, inventory, billing) does OSM need to communicate
with?

• What data is needed to activate a service?

• Which tasks need to be performed manually, and which can be performed
automatically?

• How are changes to an order handled?

3. Model the orders and the fulfillment processes in Design Studio and test the order
execution.

4. Implement the order fulfillment process in your production system.

5. As your business changes, create new types of orders and implement changes
to how orders are fulfilled. For more information, see "Managing Changes in Your
Business."

For more information about designing and modeling OSM, see OSM Modeling Guide
and Design Studio Concepts.

Chapter 1
About Creating an Order Fulfillment Process

1-7

2
How OSM Processes Orders

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) processes orders. Before reading this chapter, read "Order and
Service Management Overview ."

About Order Processing
To fulfill an order, OSM initiates actions in external fulfillment systems. For example,
if an order needs to implement a service, OSM initiates network activation on an
activation system. The fulfillment functions required to fulfill an order are carried out by
running tasks. A task is an OSM function that initiates work that needs to be done to
complete an order.

For example, if an order needs to implement an email service, you could model a task
such as Create Email Account. This task would send a message to the network to
activate the service, and to receive a notification back from the activation system.

Tasks are run by running a process. A process is one or more tasks, run in sequence.
You create tasks and processes when you model the order fulfillment process.

To interact with multiple external systems, you can create multiple processes. Some
processes need to be completed before other processes, whereas other processes
can be run independently. To manage multiple and related processes, you use
orchestration. Orchestration identifies dependencies between processes and runs
them in the required sequence.

OSM uses three basic steps to process an order:

1. Create the order. OSM receives the sales order and creates an order in OSM.

2. Generate the orchestration plan. The orchestration plan manages how the
processes that fulfill the order run.

3. Run processes and tasks. The tasks interact with external systems to complete
the order. The processes control how the tasks run.

The following procedure describes how OSM processes an order:

1. OSM receives the order from the CRM system. The order specifies the data
and fulfillment actions required to fulfill the order. For example, the order might
specify that the customer needs a telephone and a telephone number. These
requirements are specified in order line items in the sales order; for example:

• Add mobile service

• Add handset

2. After OSM receives the order, it creates an order in the OSM format. Because
you can have multiple types of orders, OSM uses recognition rules to determine
what type of order to create; for example, for a specific type of service or product
offering. You can also use recognition rules to receive orders from order source
systems that use different order formats. In that case, you can create multiple

2-1

order recognition rules that point to the same target order. The order recognition
rules would transform the incoming order data into the target order data format.

See "How OSM Creates Orders" for more information.

3. The order includes a default orchestration process. The orchestration process
starts generating an orchestration plan. Each order has a unique orchestration
plan.

Note:

Some orders can be run without orchestration when the order
management requirements are simple and relatively static, but most
orders require orchestration.

4. An orchestration plan specifies how to fulfill an order; for example, the order in
which fulfillment actions should be carried out, and which external systems need to
be involved. To determine what the fulfillment requirements are, OSM transforms
the order line items in the order into order items. Order items are individual
products, services, and offers that need to be fulfilled as part of an order; for
example:

• Gold Access Internet Bundle: A set of products and features

• BroadBand Internet Access: A service that defines how the customer will
access the Internet; for example, DSL or cable.

• ADSL Service: The network resources provisioned to deliver the service.

Order items have properties, including the action that needs to be taken on the
order item; such as Add or Delete. For example, order items displayed in the
Order Management web client look like this:

• BroadBand Internet Access [Add]

• Gold Access Internet Bundle [Add]

• ADSL Service [Add]

The orchestration plan considers each order item and defines:

• Which functions need to be performed on each order item. For example,
provision a service, bill a bundle, activate a DSL resource, and so on.

• Which external system needs to fulfill the order item. For example, a product
or bundle order item needs to be fulfilled by the billing system.

• Dependencies between order items. For example, an activation order item
cannot be started until a shipping order item is completed.

To manage different functions, systems, and dependencies, order items are
organized into order components. Order components organize order items to
enable OSM to process them efficiently.

For example, to manage billing for a BroadBand Bandwidth Bundle, the
BroadBand Bandwidth Bundle order item would be included in order components
for:

• The billing function

• The billing system that handles the BroadBand Bandwidth Bundle

Chapter 2
About Order Processing

2-2

• The billing system interaction required for a bundle

Similarly order items that represent resources, such as DSL are included in
order components for the activation function, a specific activation system, and an
activation interaction.

This process of organizing order items into order components is called
decomposition. The final step in decomposition is to create a set of executable
order components that OSM can run. The executable order components include
the order items that have been decomposed into them. Every executable order
component runs a process, which in turn can run subprocesses and tasks. See
"About Orchestration" for more information.

5. OSM executes the orchestration plan by running the executable order
components, which run processes, which in turn runs tasks.

Tasks can be automated or manual. Automated tasks run with no intervention, but
manual tasks must be run by an order manager by using the Task web client.
The Task web client displays a list of tasks that need to be processed. Figure 2-1
shows a list of tasks in the Task web client. In this figure, tasks are displayed for
three different orders, as shown by the order IDs (385, 386, and 388).

Figure 2-1 Tasks Displayed in the Task Web Client

6. As the order is processed, it is assigned order states. Figure 2-1 shows entries
for two orders in the In Progress state, and one order in the Not Started state.
You use order states to track the progress of the order. Every order has a set of
possible states, called a lifecycle policy.

Tasks are also assigned states. When all tasks in an order reach the Completed
state, the order is assigned the Completed state. See "About Tasks and
Processes" for more information.

7. As the order progresses, OSM communicates with the originating CRM or order-
source system to provide information about the status of the order. You can track
the status of tasks, order items, order components, and the order itself. OSM
can use fulfillment states to aggregate notifications of task completion events to
present a real-time, unified view of the order completion process to the originating
system and to the OSM web clients.

You can also use predefined order item processing states to aggregate
notifications of task events to issue warnings and identify failures.

8. When all order items for the order are complete, OSM closes the order and
informs the originating system that all of the fulfillment tasks are complete.

Figure 2-2 shows a high-level view of the order fulfillment process when using
orchestration.

Chapter 2
About Order Processing

2-3

Figure 2-2 Order Fulfillment Process by Using Orchestration

About Customer Orders, Service Orders, and Technical
Orders

To process an order, OSM typically performs these general types of functions:

• Receive an order from a CRM, and initiate fulfillment actions on external systems.

• Interact with a billing system to handle charging and billing actions on the
products, bundles, and offers.

• Interact with a service and resource management system to design the services
that need to be implemented, and assign the resources needed.

• Interact with activation, shipping, and work order management systems to
implement the services on the network and install equipment at the customer site.

To manage these general functions, you can create an order process that uses three
orders. For example:

1. An instance of OSM creates an order, called a customer order. The customer
order interacts directly with the CRM system, and runs tasks that interact with

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

2-4

external systems such as a billing system. To provision services, OSM sends an
order to another instance of OSM.

2. The second instance of OSM creates an order to communicate with a service and
resource management system. This order is called a service order. The service
order finds the resources needed for the service, and sends an order to another
instance of OSM to process activation and shipping tasks.

3. The third instance of OSM creates an order to design the service, assigns the
resources, and determine the actions required to fulfill the service using those
resources. This order is called a technical order.

4. When the technical order is complete, the service order can be completed, and, in
turn, the original customer order can be completed.

To manage this type of scenario, these three types of orders are processed by OSM
running in three different roles:

• Central order management (COM) runs customer orders.

• Service order management (SOM) runs service orders.

• Technical order management (TOM) runs technical orders.

Figure 2-3 shows how COM, SOM, and TOM work together:

Figure 2-3 Correlation Between COM, SOM, and TOM

A sample order fulfillment process that uses COM, SOM, and TOM runs as follows:

1. OSM in the COM role receives an order from the CRM system and creates a
customer order. As described in "About Order Processing," OSM generates an
orchestration plan.

2. When the orchestration plan is executed, OSM decomposes order items into:

• An order component that interacts with a billing system to run billing

• An order component that sends a service order to an instance of OSM in the
SOM role to provision the service

3. OSM in the SOM role processes the service order. In this case, OSM uses
orchestration again, and OSM decomposes order items into:

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

2-5

• An order component that interacts with a service and resource management
(SRM) system to design the service and assign resources. For example, the
service might need a local loop, telephone number, and so on. An SRM
system is also known as an inventory system.

• An order component that sends a technical order to OSM in the TOM role to
manage service activation and shipping.

In the SOM role, orchestration is used to ensure that the service design occurs
first. The inventory system needs to send data about the network resources and
the actions required on those resources back to OSM, so OSM can include
that data when processing activation, shipping, and interactions with a partner
gateway.

4. OSM in the TOM role processes the technical order and decomposes order items
into:

• An order component that sends activation requests to the network.

• An order component that sends requests to a shipping system.

• An order component that sends requests to a partner gateway to create a local
loop.

5. When the activation and shipping tasks are complete, OSM in the TOM role sets
the status of the technical order to Completed and informs OSM in the SOM role
that the activation order is complete. This is done by using order item processing
states, order lifecycle policy states, and, potentially, fulfillment states.

6. OSM in the SOM role sets the status of the service order to Completed and sends
a message to the originating OSM instance in the COM role.

7. While the service order and technical order were running, the customer order
processes the billing and shipping functions. Upon being informed that the
provisioning and activation orders have been completed, OSM completes the
original order.

Figure 2-4 shows how an order is fulfilled by using three orders, sent to three OSM
instances in the COM, SOM, and TOM roles.

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

2-6

Figure 2-4 Order Fulfillment Using COM, SOM, and TOM

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

2-7

About COM, SOM, and TOM
As described in "About Customer Orders, Service Orders, and Technical Orders,"
OSM can run in three roles, COM, SOM, and TOM, to process customer orders,
service orders, and technical orders.

OSM in the COM role typically interacts with a billing system to perform such tasks
as synchronizing customer accounts between the order source system and the billing
system, and initiating billing activities in billing systems. OSM in the COM role also
typically identifies the services that are associated with the products, bundles, and
offers, and sends that data to OSM in the SOM role in a service order.

Note:

OSM in the COM role can also interact with workforce management
(WFM) and supply chain management (SCM) systems to ship products to
customers. However, shipping tasks may require knowledge of the services
and resources being activated and shipped; for example, the service design
process might determine which type of modem to ship. Therefore such
shipping tasks should typically be delegated to OSM instances running in
the SOM or TOM role.

OSM in the SOM role works with service and resource management (SRM) systems
to design services, assign the resources required to fulfill the services, and define how
those resources need to be configured to fulfill the services. This process is called
design and assign.

To design and assign services, OSM in the SOM role uses the data received in the
service order. OSM in the SOM role sends that data to an SRM system to design
the service and assign resources. As part of the service fulfillment design in Design
Studio, you model predefined service configurations in your SRM system, such as
UIM.

The design and assign process works as follows:

1. OSM sends the SRM system a request to design a service and assign resources.
The request specifies the type of service, for example, broadband Internet, the
requested services attributes, such as upload and download speed, and relevant
data, such as the location of the customer.

2. Given the customer requirements, the SRM system determines which predefined
service configuration is appropriate, and based on that, finds the network
resources that are available. For example, if Broadband Internet Service maps to
DSL service, the SRM system knows that the DSL service design requires a port
and a local loop. The SRM system finds an available local loop at the customer's
location and assigns it to the customer's service.

3. The SRM system returns the resources, resource-facing services, and their
associated actions to OSM. The SRM system also changes the status of the
resources in the inventory.

By using the design and assign process in a service order, the incoming sales
order does not need to include any information about the existing installed network

Chapter 2
About COM, SOM, and TOM

2-8

resources, such as local loops, ports, and so on. The incoming order needs to
describe only the type of service, the desired attributes such as bandwidth, and any
information that affects the choice of resources, such as the customer's location.

The design and assign process completes the transformation from a customer-facing
service (CFS) to a resource-facing service (RFS). A CFS is a representation of the
service that the customer purchased. An RFS is how the service is implemented on
the network.

For example, a customer might purchase a product offering named Gold Broadband
Service. The CFS is Broadband Internet Service. How that service is implemented
on the network is the RFS, in this case DSL Service. Therefore, the CFS
Broadband Internet Service is resolved to RFS DSL Service. However, the customer's
requirements might be such that DSL is not possible, but a cable broadband access
is possible. In that case, the CFS Broadband Internet Service is resolved to the RFS
Cable Internet Service.

Because the resource-facing services are pre-configured in the SRM, the SRM
can design the resource-facing service and assign resources based only on the
requirements of the customer-facing service.

After receiving the required data from the SRM system, the OSM SOM instance sends
a technical order to OSM in the TOM role. In the TOM role, OSM processes the
technical order and orchestrates the activation, shipping, and installation tasks. The
systems typically involved in these activities are WFM, SCM, and activation systems.
Partner gateway (PGW) systems for third party service providers or trading partners
can also be involved at the TOM level.

After completing the tasks in the technical order, OSM in the TOM role communicates
the order status to OSM in the SOM role, which in turn communicates its order status
to OSM in the COM role. OSM in the COM role can then complete the original
customer order.

Note:

OSM can also send the status of individual order items to the order source
system while the order is being processed.

By using COM, SOM, and TOM, OSM is able to take as input the products, bundles,
and offers that the customer purchases, and resolve those into customer-facing
services and, ultimately, the resource-facing services that need to be implemented
on the network.

Figure 2-5 shows a fulfillment topology that uses COM, SOM, and TOM. A fulfillment
topology consists of all of the fulfillment systems required to fulfill orders, and the
relationships between the fulfillment systems.

Chapter 2
About COM, SOM, and TOM

2-9

Figure 2-5 Fulfillment Topology Using COM, SOM, and TOM

A typical OSM fulfillment topology includes business support systems (BSS) fulfillment
systems and operations support systems (OSS) fulfillment systems. Figure 2-6 shows
how OSM in the COM, SOM, and TOM roles function with BSS and OSS systems.

Chapter 2
About COM, SOM, and TOM

2-10

Figure 2-6 Roles of SOM, COM, and TOM in BSS and OSS Fulfillment Systems

Chapter 2
About COM, SOM, and TOM

2-11

3
How OSM Creates Orders

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) receives and creates orders. Before reading this chapter, read
"Order and Service Management Overview " and "How OSM Processes Orders."

How OSM Receives and Creates Orders
To enable order processing, you need to configure your order-source systems to
send orders to OSM. For example, if you use Siebel as a customer relationship
management (CRM) system, you configure Siebel to send a sales order to OSM. A
single OSM instance can receive orders from multiple order-source systems.

OSM receives and creates orders as follows:

1. The order is captured in a CRM system; for example, as a Siebel sales order.

2. The CRM system sends the sales order to OSM by using the OSM CreateOrder
web service operation. The OSM Web Service API is the primary API for external
clients that you can use to communicate with OSM (see OSM Developer's Guide
for more information).

3. OSM receives the incoming sales order as an XML message in a Java Message
Service (JMS) queue managed by Oracle WebLogic Server. Incoming orders are
processed directly by the OSM server from the queue.

4. Because a single instance of OSM can process multiple types of orders, OSM
needs to determine which type of order to create. For example, if you have created
different order specifications for different services, OSM needs to find out which
service needs to be fulfilled to know which order specification to use when creating
the order.

To identify the order specification, OSM uses recognition rules. Recognition rules
read the data in the incoming order; for example, the type of service, the fulfillment
mode (the action to carry out, such as add a service or cancel a service), or the
type of customer can all be used to identify the correct order specification. See
"About the Data in an OSM Order."

In most cases, you use one generic order type to create all orders. You can
use orchestration to define the order fulfillment process for different service
domains and other processing requirements. Oracle recommends having one
standard order type that accepts all incoming orders with other order types for
only very specific uses, such as a fallout management order type that can extract
information about a failed order.

You typically model a different order specification when the structure or order data
is different from any existing order type, or when there are specific and different
fulfillment requirements.

5. After the order specification has been identified, OSM uses validation rules to
perform order validation. For example, you can use validations rules to:

• Ensure that all mandatory fields are populated.

3-1

• Ensure that valid characters (numeric or alphanumeric) are used as needed.

6. Following order validation, OSM uses transformation rules to perform order
transformation. Order transformation does the following:

• Normalizes data; for example, ensure that telephone number formats are
correct. If there are multiple different CRM systems sending orders with
different data structures, you can transform each order into the target order
format.

• Adds data needed for order processing. This data is part of the creation task.
The creation task is used by OSM in the order process; for example, when an
order is canceled, the order is returned to the creation task. The creation task
is required in all orders.

• Sets the order priority. The order priority defines the processing priority of the
order in relation to other orders in the system.

• Sets the order reference number. The order reference number is used as
an identifier to external systems; for example, between the COM order that
generated a child SOM order, or between two sibling SOM orders within an
OSM SOM instance.

7. OSM creates the order and runs the default orchestration process to generate the
orchestration plan. Every order includes a default process that is run when the
order is created.

Note:

If an order does not require orchestration, it can run a process directly,
not an orchestration process. Most orders require orchestration.

8. OSM executes the orchestration plan to process the order. See "About
Orchestration."

Figure 3-1 shows how OSM receives and creates orders. To identify the order
specification, you create multiple recognition rules. Each rule is assigned a relevancy.
OSM uses the highest relevancy first, until an order specification is found. You can
create a catch-all recognition rule (relevancy = 0) to allow OSM to accept any order,
even if it cannot process it. This allows you to troubleshoot how orders are received.

Chapter 3
How OSM Receives and Creates Orders

3-2

Figure 3-1 Receiving and Creating an Order

About the Data in an Incoming Order
Incoming sales orders typically include the following data:

• The order header information, which contains information that is applicable to the
entire order; for example, the sales order number, the order action (Add, Cancel,
Delete, and so forth), and customer account information.

• The order line items, which contain information about the products and services on
the order.

Figure 3-2 shows part of a sales order, received from a CRM system.

Chapter 3
About the Data in an Incoming Order

3-3

Figure 3-2 Example of a Sales Order

Orders that are submitted to OSM typically have a specific purpose that is defined as
an order action. This information is usually included in the order header to indicate
if the order adds or cancels products and services for a customer. For example, the
following line from an incoming sales order specifies that the order adds services:

<im:typeOrder>Add</im:typeOrder>

The order action is used in an orchestration plan as the fulfillment mode. Fulfillment
modes enable OSM to generate an orchestration plan based on whether a service
needs to be added, changed, canceled, or qualified, such as validating that the
network has enough capacity to offer the purchased products.

Whereas the order header typically contains data that pertains to the entire order, the
order line items describe the individual fulfillment actions that need to be carried out.
Figure 3-3 shows one of the order line items in its expanded form. Included in this
order line item are the requested delivery date and the action to take (Add).

Chapter 3
About the Data in an Incoming Order

3-4

Figure 3-3 Example Order Line Item in a Sales Order

Order line items include details about the services that the order must fulfill. They can
include:

• The offers, bundles, and products being ordered by the customer, the services
these products ultimately resolve to, and the resources that deliver them.

• Information about the services; for example, speed, storage size, and requested
service date

Each order line item in an incoming sales order that OSM receives specifies an action
to perform. Order line item actions are typically one of the following:

• Add a product, service, or resource.

• Change an existing product, service, or resource

• Delete a product, service, or resource.

• Update attributes of a product, service, or resource.

• Cancel an existing product, service, or resource

• Move a product, service, or resource.

• Suspend or resume a product, service, or resource.

An order can contain a mix of actions for different products or services. For example,
an existing customer might request to add some new products, change some existing
products, and remove other products. These can all be included on the same order.

Incoming order item lines also include data that is used later in the service fulfillment
process, but not needed by the initial customer order that OSM creates. For example,
a customer's street address might not be needed until a technical order is processed
to assign a local loop.

Chapter 3
About the Data in an Incoming Order

3-5

About the Data in an OSM Order
When a sales order is captured in an order-source system, it includes data such
as the customer's name and contact information, customer billing information, the
products that the customer is ordering, and the requested date of delivery. A subset
of that information is included in the sales order that is sent to OSM; for example,
the customer information and the order line items that specify the offers, bundles, and
products, and the actions that must be performed on them.

When you model the data in an order specification, you specify the mandatory and
optional data that OSM uses to fulfill the service. For example, in an order for a
telephone service, the order must include a telephone number. The data an order can
contain is called order data, and is defined in the order template. You can define data
in data dictionaries and then import these elements into order templates. Modeling
data in data dictionaries enables you to reuse the same data definitions across a
solution.

The metadata that you model in the order template defines the data that the order can
include at runtime. For example, a runtime order can include the following data:

• Information about the order. For example:

– The type of order, such as a request for a new service or a change to an
existing service.

– Order creation date.

– Expected completion date.

• Information about the customer; for example, name and address.

• Information about the services being requested; for example, upload speed,
download speed, and quality of service.

• The order components, order items, processes, tasks, and dependencies that are
required to fulfill the order.

• Status information. For example:

– If the order is still in flight, or if it has completed.

– State of the tasks that need to be performed.

• Tracking information; for example, remarks, notifications, and order history.

The data in customer orders, service orders, and technical orders is typically different
for each type of order:

• Customer orders include information about the customer, such as their location,
the product offerings that the customer purchased, and the product requirements,
such as download speed.

• Service orders include information about the customer-facing services that need
to be provisioned, including the technical requirements such as bandwidth and
quality of service, and the customer's location.

• Technical orders include information about the resources and resource-facing
services that need to be activated, and the equipment that needs to the shipped
or installed. Resources and resource facing services are identified by the SRM
system from customer-facing services that OSM SOM sends to the SRM system.

Chapter 3
About the Data in an OSM Order

3-6

Data Used for Processing an Order
In addition to data such as the customer's address and phone number, an OSM order
includes information that defines how the order is run. This includes:

• Control data. Control data provides information about order items, order
components, and dependencies required to generate the orchestration plan. This
includes status and requested delivery dates for its order items and components.
You can also track order and order item fulfillment states and order item
processing states in control data.

• Behaviors. You can use behaviors to manipulate data and to control how data is
displayed in the Task web client. For example, you can specify the minimum and
maximum times that a data element can be used in an order. See "About Using
Behaviors to Customize the Task Web Client."

• Notifications. You can use notifications to alert users and external systems to
events that occur in the order as it processes or to tell users that an action must be
carried out. See "About Notifications."

• Lifecycle policy. The lifecycle policy defines the states that an order can have;
for example, In Progress and Suspended, and the rules governing transitions
between states. See "About the Order Lifecycle Policy."

About the Order Lifecycle Policy
Every order specification you create must be associated with an order lifecycle policy.
The lifecycle policy defines the states that an order can be in, (such as In Progress
or Canceled), the rules governing the transitions between those states, and who is
authorized to initiate those transitions. For example, you can specify that an order can
be transitioned to the Suspended state only when it is in the In Progress state, and
only by OSM users of a designated role.

OSM allows any number of order lifecycle policies to be configured. You can create
a custom policy for each order type or one general policy that is applied to many
order types. The default order life cycle contains the minimum set of order state and
transaction combinations assigned to all roles defined in the system.

Customizing an order lifecycle policy enables you to control the following:

• You can specify conditions that need to be met before an order can transition from
one state to another. A common example is specifying the point of no return
for revision orders, which controls the transition from the In Progress state to the
Submit Amendment and Process Amendment states, effectively causing OSM to
reject any further revision orders for the base order.

• You can specify a grace period that allows the order to complete processing tasks
before performing a transition to another order state.

• You can specify the roles that are allowed to perform a transaction. Transactions
typically transition an OSM order from one order lifecycle state to another. For
example, the suspend order transaction causes an OSM order to transition from
the In Progress state to the Suspended state.

• You can specify the error message and severity to use when a transition condition
is not met.

Chapter 3
Data Used for Processing an Order

3-7

In addition, you can configure an order to publish common events at specified order
lifecycle milestones, such as when an order is first created in OSM, when the order
state has changed, or when the order begins amending. These events can be used to
trigger notifications. See "About Notifications."

Chapter 3
About the Order Lifecycle Policy

3-8

4
About Orchestration

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) uses orchestration to manage the order fulfillment process.
Before reading this chapter, read "Order and Service Management Overview " and
"How OSM Processes Orders."

How OSM Generates and Executes an Orchestration Plan
A single order can fulfill multiple products and services. To process an order, OSM
needs to run processes and tasks for a variety of functional areas while interacting
with multiple systems. To manage all of the orchestration entities and processes, OSM
generates an orchestration plan. The orchestration plan decomposes order items
into order components, and establishes dependencies between order components and
between order items.

Each order has a unique orchestration plan, based on the customer requirements
and the tasks required to complete the order. OSM executes the orchestration plan
by running the order's default orchestration process. The orchestration process
begins the process of selecting the executable order components to run. As order
components run their processes and tasks, the orchestration plan manages their
dependencies.

Figure 4-1 shows a high-level view of the process flow for generating and executing an
orchestration plan:

Figure 4-1 Generating and Executing an Orchestration Plan

The following process flow describes how OSM typically processes an order.

1. OSM receives the order from the CRM system and uses recognition rules to find
the order specification to use when creating the order. Each order specification
that you create identifies a default process to run.

2. OSM starts generating an orchestration plan by running the order's default
orchestration process.

The orchestration plan specifies an orchestration sequence. The orchestration
sequence specifies the orchestration stages that need to be followed. The
stages define the order components that order items need to be organized into;
for example, function order components, target system order components, and
granularity order components.

4-1

3. OSM converts order line items in the incoming order into OSM order items and
their order item properties. For example, the order line item shown below becomes
the Firewall order item with the Add order line action property.

<im:serviceActionCode>Add</im:serviceActionCode>
<im:name>Firewall</im:name>

This order items displays as Firewall [Add] in the Order Management web client.

4. In addition to creating the order items required for the order, OSM uses the
incoming order data to determine:

• The fulfillment mode (Deliver, Cancel, and so on). Fulfillment modes enable
you to design different order fulfillment flows depending on whether the order
adds a service, qualifies a service, or deletes a service.

• The product, customer-facing service, resource-facing service, or
resource specification. A product specification is a group of related products
that share common attributes, such as the same service domain. For
example, the products Broadband Light, Broadband Medium, and Broadband
Ultimate would all belong to the ServiceBroadBand product specification.
When processing an order, you can process order items that belong to
the ServiceBroadBand product specification differently from order items that
belong to the ServiceMobile product specification.

• The product, customer-facing service, resource-facing service, or
resource specification order item action. You might have an order with a
fulfillment mode of Add that designates products that the customer wants to
perform actions on such as add, alter, or move.

5. Based on the fulfillment mode and the order item's product, customer-facing
service, resource-facing service, or resource specification, OSM assigns each
order item to a fulfillment pattern.

In general, order items for a given product specification and a given fulfillment
mode need similar fulfillment actions. You create fulfillment patterns that organize
order items by the combination of fulfillment mode and product, customer-facing
service, resource-facing service, or resource specification. For example, you can
define a fulfillment pattern that includes order items for orders that deliver a
broadband service. In this case, the fulfillment mode is Deliver, and the product
specification is ServiceBroadBand.

6. The fulfillment pattern initiates the first level of decomposition, by decomposing
order items into the function order components identified in the fulfillment
pattern. For example, order items are organized into Billing, Shipping, and
Provisioning order components.

7. After decomposing order items into function order components, OSM decomposes
the order items in each function component into target system order
components. For example, the order items that were decomposed into billing
function order components might be further decomposed into order components
for a wholesale billing system and a retail billing system.

8. After decomposing order items into target system order components, OSM
decomposes the order items in each target system order component into
granularity order components. This is typically the final stage of decomposition,
although additional stages can be defined.

Granularity order components are usually needed when a single fulfillment system
must process commands in a specific way. For example, you might need to fulfill

Chapter 4
How OSM Generates and Executes an Orchestration Plan

4-2

billing requirements for mobile and fixed services. You can use different order
components to process the billing requirements for those services separately.

See "About Decomposition" for more information.

9. After order items have been decomposed as much as required, OSM runs
executable order components. Executable order components run processes
that in turn run the tasks to complete the order. The tasks that the executable
order component runs are the tasks that complete the order items that the order
component contains. For example, an order component that includes activation
order items runs a process that runs activation tasks. An order component that
includes the following order items can run a single provisioning process (and its
subprocesses) to complete all of the order items:

• Fixed Line Service [Add]

• Fixed Call Waiting [Add]

• Fixed Caller ID [Add]

OSM uses the dependencies defined in the orchestration plan to process order
components in the correct order. A dependency requires a waiting order item and
a blocking order item. The blocking order item is the order item that must be
completed before the waiting order item is started. See "About Dependencies."

10. As the order progresses, OSM can communicate with the originating order-source
system to provide information about the status of the order. In addition, OSM
tracks the status of each order item and order component. You can configure how
the order status is reported by modeling fulfillment states and processing states.
See "About Order Status" for more information.

11. When the last task in the order completes, the order transitions to the Completed
state.

About Decomposition
To process order items that are fulfilled for different functions, and by different target
fulfillment systems, OSM organizes order items into order components, a process
known as decomposition.

Decomposition occurs in stages. Order items are organized into types of order
components from general to specific:

• Function order components organize order items by functions; such as billing,
provisioning, and activation.

• Target system order components organize order items by fulfillment systems;
for example, an activation system for DSL and an activation system for VoIP.

• Granularity order components separate order components that are fulfilled on
the same fulfillment system.

The following examples show how decomposition works.

Before decomposing order items into order components, OSM creates order items
from order line items in the incoming order. Figure 4-2 shows how order line items for
two fixed services and handsets are derived from the order. In addition to separate
order items for adding services and shipping handsets, there are different regions
defined for each service and handset (Ontario and Quebec).

Chapter 4
About Decomposition

4-3

Figure 4-2 Order Line Items and Order Items

The first decomposition stage (Determine Functions) organizes order items according
to function. Figure 4-3 shows how the order items derived in Figure 4-2 are organized
into three function order components: Provisioning, Shipping, and Billing. The fixed-
line services require provisioning, the handsets require shipping, and all order items
require billing, so all order items are included in the Billing order component.

Chapter 4
About Decomposition

4-4

Figure 4-3 Function Order Components

After decomposing order items into function order components, OSM decomposes the
order items in each function component into target system order components, and
then into granularity order components. These stages are called Determine Target
System and Determine Granularity.

Figure 4-4 shows how the order component for the billing function is composed further
into two levels of decomposition:

• Order items for the Ontario and Quebec regions are decomposed into target
system order components. This sends the billing fulfillment process to the correct
region, Ontario or Quebec.

• For each region, the fixed-line service must be billed separately from the handset.
Therefore, order components for each target system are further decomposed into
granularity components.

Chapter 4
About Decomposition

4-5

Figure 4-4 Function Order Component Decomposed into Target and Granularity Order
Components

As shown in Figure 4-4, you configure decomposition by modeling decomposition
rules.

Figure 4-5 shows how order items are organized across all three orchestration stages.

Chapter 4
About Decomposition

4-6

Figure 4-5 Order Items Decomposed into Order Components

About Dependencies
An orchestration plan is based on two main factors: decomposition, which organizes
order items into order components, and dependencies, which dictate when the
executable order components are allowed to run.

Some services might require that some fulfillment tasks are completed before others.
For example, you need to complete provisioning order items before you can process
activation order items. Dependencies are relationships in which a condition related to
one order item must be satisfied before another item can be processed successfully.
For example, a piece of equipment must be shipped to a location before the action to
install it at that location can be taken.

Dependencies can be between order components in the same order (intra-
order dependencies) or between order components in different orders (inter-order
dependencies). Inter-order dependencies are particularly common in situations that
involve amendments or follow-on orders. For example, the order items in a follow-on
order for VoIP provisioning might depend on the execution of the order items in the
original order for DSL provisioning. See "About Follow-on Orders."

Chapter 4
About Dependencies

4-7

Dependencies are configured in Design Studio and determined for an order when
OSM generates its orchestration plan.

You can model the following types of dependencies. In each of the dependencies
below, you can also model a delay after the condition is met. For example, you may
want the installation order items to start two days after the shipping order items have
completed.

• A Completion dependency means that the dependent order item requires that
another order item complete before it can begin. For example, the Provisioning
order component for the VoIP Service order item cannot begin until the
Provisioning order component for the High Speed Internet Service order item is
complete.

• A Data Change dependency indicates that an order item has a dependency on
data in another order item. For example, the status of the Provisioning order
component for the VoIP Service order item must be set to Designed before the
Ship Order order component for the same order item can begin.

• An Order Item dependency indicates that an order item is dependent on the
completion of another order item in another order. Because orders can contain
many order items, an order component of an order can contain many Order
Item dependencies. Order Item dependencies support follow-on orders. Follow-on
orders always have at least one order item that has a dependency on an order
item in a base order. The line item in the base order must be completed before the
line item in the follow-on order can begin processing.

Orders can have combinations of these types of dependencies. For example, an
Installation order component may have a Data dependency on the status of a Ship
Order order component as well as Order Item dependencies among its order items
and order items in other orders.

Although dependencies exist logically between order items, they are managed by
order components. In other words, if any item in a component has a dependency,
the component as a whole cannot be started until the dependency is resolved. In the
Order Management web client, order items include dependency IDs to indicate items
whose dependencies are managed together. See Order Management Web Client
User's Guide for more information.

About Order Items and Order Components
As described in "How OSM Generates and Executes an Orchestration Plan,"
orchestration is the process of decomposing order items into order components, which
then run based on their dependencies.

Because order items are hierarchical, a single parent order item can include child
order items that can be decomposed into multiple function order components.
Figure 4-6 shows the order items that can be decomposed into Provisioning, Shipping,
and Billing order items.

Chapter 4
About Order Items and Order Components

4-8

Figure 4-6 Hierarchical Order Items

The offers, bundles, and products would first be decomposed into function order
components for Provisioning, Shipping, and Billing. Therefore, even though all the
child order items share a parent order item, they do not necessarily share function
order components.

The provisioning order items might be further decomposed into system order
components with the following order component IDs:

• Provisioning.Voip

• Provisioning.Email

• Provisioning.Media

The provisioning order items for VoIP might be decomposed into granularity order
components with the following order component IDs:

• Provisioning.Voip.WholeOrder

• Provisioning.Voip.Bundle

• Provisioning.Voip.Offer

At runtime, OSM creates an order component ID based on the sum of all
order components used in the decomposition. For example, the order component
Billing.BillingSystem.FixedBundle represents:

Chapter 4
About Order Items and Order Components

4-9

• A Billing function order component

• A BillingSystem target system component

• A FixedBundle granularity component

The Billing.BillingSystem.MobileBundle order component represents:

• A Billing function order component

• A BillingSystem target system component

• A MobileBundle granularity component

Orchestration and COM, SOM, and TOM
As described in "About Customer Orders, Service Orders, and Technical Orders," you
can use OSM in the COM, SOM, and TOM roles to run customer orders, service
orders, and technical orders in a single service fulfillment process. Each type of order
uses orchestration, but each type of order uses different order items.

In the COM role, OSM receives a sales order from the order-source system and
creates a customer order. The order items in a customer order typically describe the
products, bundles, and offers that customers have purchased; for example, Add Gold
Broadband Bundle or Add Triple-Play Plus Offer. Services are generally identified
generically, such as a Add Email Service or Add Video Service.

Because a customer order works with order items that describe the products and
bundles that customers purchase, OSM in the COM role typically runs executable
order components that work directly with billing systems. (A customer who purchases
a product needs to be billed for it.)

To manage provisioning order items, such as Email Service [Add] or Video Service
[Add], a customer order runs provisioning order components that send data to OSM in
the SOM role.

In the SOM role, the order items in the sales order describe customer-facing services;
for example Broadband Internet Service [Add] or Video Service [Cancel]. The data in
the order contains the provisioning data required to transform the customer-facing
services into resource-facing services. For example, the provisioning data might
include the customer's location, the bandwidth requirements, and so on.

The executable order components in a service order interact with a service and
resource management (SRM) system such as Oracle Communications Unified
Inventory Management (UIM). These order components send the provisioning data
that describes the service requirements to the SRM. The SRM system returns the
data required to activate the services. The executable order components in the service
order then send the data to OSM in the TOM role to create a technical order to activate
services and ship equipment.

OSM in the TOM role processes a technical order to activate the resource-facing
services and interact directly with shipping and workforce management systems. The
order items describe resources and resource-facing services such as DSL Service
[Add] or Firewall [Add].

The executable order components in a technical order interact with the activation and
shipping systems. They send the service requirements, and receive confirmation that
the services were activated and equipment shipped.

Chapter 4
Orchestration and COM, SOM, and TOM

4-10

Figure 4-7 shows examples of the order items that are processed in COM, SOM, and
TOM.

Figure 4-7 Order Items in COM, SOM, and TOM

Chapter 4
Orchestration and COM, SOM, and TOM

4-11

About Order Item Transformation
As described in "Orchestration and COM, SOM, and TOM," OSM in the COM role
processes a customer order to transform order items for products into order items for
customer-facing services. You can use order item transformation to enable OSM to
automatically identify the order items for customer-facing services. To configure order
item transformation, you configure the following:

• The order items to transform from.

• The order items to transform to.

• The rules that govern which customer-facing service needs to be implemented.

Figure 4-8 shows how OSM in the COM role runs a customer order to calculate a
service order. In this example, OSM can transform the Broadband product order items
into the Internet service order items.

Figure 4-8 Order Items Transformed by OSM SOM

About the Design Studio Conceptual Model
The Design Studio conceptual model functionality helps you model an order fulfillment
process by using the known aspects of your business requirements. Instead of using
Design Studio to manually create entities for Oracle Communications ASAP, UIM,
and OSM, you provide Design Studio with information about your products, services,

Chapter 4
Orchestration and COM, SOM, and TOM

4-12

and resources, and Design Studio creates entities required for the service fulfillment
process.

The conceptual model takes as input such entities as:

• Customer-facing services

• Resource-facing services

• The actions required to fulfill services

• Resources on your network

• Products in your product catalog

• Customer locations

Conceptual model entities represent abstractions of services that are converted
into application model entities. This conversion process is called realization. The
conversion starts with an abstract conceptual model entity and creates a real
application model entity. You include the realized application model entities in
application projects, and then deploy the application projects that contain the realized
entities to runtime environments.

The application entities that are realized are such entities as:

• UIM service configurations. These are the service configurations that OSM needs
to design a service.

• UIM inventory resources. These are used by OSM to assign resources to services.

You can use the output from a conceptual model as a starting point to model your
OSM runtime solution.

See Design Studio Concepts for more information about conceptual model projects.
See OSM Modeling Guide for more information about using conceptual model entities
to map order items to fulfillment patterns.

Chapter 4
Orchestration and COM, SOM, and TOM

4-13

5
About Tasks and Processes

This chapter provides an overview of Oracle Communications Order and Service
Management (OSM) tasks and processes. Before reading this chapter, read "Order
and Service Management Overview " and "How OSM Processes Orders."

About Tasks and Processes
A task is an activity that must be carried out to complete an order; for example, if
an order needs to verify that an ADSL service was activated, you could model a task
named Verify ADSL Service. Tasks can be manual or automated.

• Manual tasks must be processed by order management personnel, by using the
Task web client. Manual tasks typically include tasks that cannot be automated,
or tasks that require decision-making, when there are multiple choices for how to
proceed with order processing.

• Automated tasks run automatically with no manual intervention. Automated tasks
typically communicate with external systems by using the external system's API.
For example, you could define an automated task called Verify Address. An
automation plug-in can be configured to send order data to a third-party address
verification system whenever an order reaches the Verify Address task. The third
party returns an address confirmation to OSM, completing the task.

A process is a sequence of tasks and subprocesses that run consecutively or
concurrently to fulfill all or part of an order. Processes enable you to break down
the work required to execute and fulfill an order into functional tasks, which can be
distributed to various systems and order managers to be completed in a controlled
manner.

In processes, you can control how the tasks are run. For example, you could create
a rule that evaluates data and branches the process appropriately. Any number
of processes can be defined in an order process, consisting of any number or
combination of manual and automated tasks. You can also run subprocesses from
a process. Subprocesses are processes that are launched from another process, as
opposed to being launched from an order.

Figure 5-1 shows a process and its tasks, as shown in Design Studio:

5-1

Figure 5-1 Example of an OSM Process

This process manages the fulfillment of a request for an ADSL service:

1. The first task, Verify ADSL Service, is an automated task that verifies that the
ADSL service exists. For example, the task might run a web service operation that
reads a database to determine if the service is available at the specified address.

2. After verifying that the service is available, the process branches to two tasks that
are independent and can run in parallel:

a. The Ship Modem Self-Install Pkg task sends a shipping order to the hardware
provider.

b. The Assign Port task looks up a port in the inventory system and assigns it.

If the port is available, the next task is Activate DSLAM. However, if the port is
not available, the process transitions to the Add Capacity task, and then back
to the Assign Port task.

3. After the Assign Port task is finished, the Activate DSLAM task can run. This task
contains an OSM integration with a third-party activation system to activate the
DSLAM.

The Assign Port task is dependent on the completion of both the Ship Modem
Self-Install Pkg task and the Activate DSLAM task. Therefore, even if the Ship
Modem Self-Install Pkg task completes, the Activate DSLAM task cannot start until
the Assign Port task is finished.

Chapter 5
About Tasks and Processes

5-2

4. When the activation is complete, the next two tasks send the customer survey and
require that an OSM user verifies the order to make sure it is complete. After these
two tasks are completed, the order is complete.

Any of the tasks in this process can be configured as automated tasks. For example,
the Assign Port task can be an automated task if there is an integration with the
inventory system, and the inventory system is able to respond to an automation plug-in
sender requesting a port number with a response that assigns the port number for the
service.

When you create tasks in Design Studio, you define the data required by the task.
A task typically contains a subset of the order data received on an incoming order.
For example, the task for shipping a modem might require a customer name, phone
number, and address but not the required internet bandwidth.

About Manual Tasks
Manual tasks are assigned to personnel who complete the work for these tasks in the
OSM Task web client. Personnel can manage tasks by adding comments to the order,
attaching documents, displaying the history of the order, and manually entering and
saving order data required to complete the task.

To run manual tasks by using the OSM Task web client, an order manager works from
a list of manual tasks called a worklist. To complete a task, an order manager typically
enters data or reviews the data, and then indicates that the task is complete.

Figure 5-2 shows tasks displayed in the Task web client worklist. In this example,
Assign Port and Ship Modem are manual tasks.

Figure 5-2 Tasks Displayed in the Task Web Client

Task states track the progress of a task. For example, when a task begins, it is in the
Received state until such time as an operator accepts the task. The task remains in
the Accepted state until the operator complete the task.

When you model manual tasks in Design Studio and define the data required for the
task, you can do the following:

• Assign Roles: You can assign roles to tasks which, when associated with OSM
WebLogic user accounts as workgroups, limit who can receive, accept, and work
on new tasks in the Task web client.

• Define Notifications: You can configure a task to trigger notification messages
that appear in the Task web client to inform order managers of the progress of the
order. Notifications can also trigger automation plug-ins that send status updates
or jeopardy warnings to external systems or users.

• Configure Behaviors: You can use behaviors to manipulate data and to control
how data is displayed in the Task web client. For example:

Chapter 5
About Manual Tasks

5-3

– You can specify the maximum allowed number of characters for text string
data.

– You can specify the contents of a list displayed in the Task web client.

About Automated Tasks
Automated tasks require no manual intervention. Automated tasks handle internal
interactions with external fulfillment system, such as billing systems, shipping systems,
activation systems, and other fulfillment systems. OSM processes typically include
more automated tasks than manual tasks.

To create an automated task, you do the following:

• Model a task entity in Design Studio. An automated task entity includes many of
the same elements as a manual task; for example, data required for the task,
notifications to send, and task states.

• Create one or more automation plug-ins. Automation plug-ins can perform custom
logic, send a message to an external system, or update OSM with data received
from an external system. For example, you could define a task called Verify
Address. An automation plug-in can be configured to send order data to a third-
party address verification system whenever an order reaches the Verify Address
task. Another plug-in can be used to receive the address verification. Most plug-ins
use XQuery to find, filter, and transform data.

OSM uses the automation framework to run and manage plug-ins. The automation
framework provides the primary interface for outbound and inbound operations
that interact with external systems for automated order fulfillment. The automation
framework also provides internal data processing for automated tasks within a process
workflow. A plug-in can access task data and perform OSM functions such as
completing a task.

An activation task is a type of automated task, designed specifically to interact with
the Oracle Communications ASAP product and the Oracle Communications IP Service
Activator product to activate services on your network.

Activation tasks include many of the same properties as other automated tasks; for
example, you can assign permissions, define the task data, and configure notifications
that trigger automation plug-ins. However, you also configure activation-specific data
elements, such as how to map data sent to and received from ASAP or IP Service
Activator.

About Task States
A task state determines the condition of a task in a process. Every task in OSM has a
set of possible states that reflect the life cycle of the task. The required tasks are:

• Received: The task has been received by a workgroup and is waiting to be
accepted.

• Assigned: The task has been assigned to a specific OSM user. Tasks that are in
the assigned state cannot be worked on by other users.

• Accepted: An order manager has accepted the task and is working on it. Tasks
that are in the Accepted state cannot be worked on by other users unless the state
is returned to the Received state.

Chapter 5
About Automated Tasks

5-4

• Completed: The task has been completed by a user or an automation plug-in. A
task that has been completed no longer appears in a user's worklist.

Chapter 5
About Task States

5-5

6
About Order Management Business
Processes

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) works with business processes such as managing changes to
orders and managing order delivery dates. Before reading this chapter, read "Order
and Service Management Overview " and "How OSM Processes Orders."

About OSM and Order Management Business Processes
When you design your order fulfillment process, you can configure various entities in
different ways to support your business processes. For example:

• You can configure orders and tasks to support changes to in-flight orders. See
"About Making Changes to In-flight Orders."

• You can create dependencies between orders in case an in-flight order cannot be
changed. See "About Follow-on Orders."

• You can configure OSM to be able to calculate when an order will be completed,
and if necessary, when it should be started. See "About Determining Order
Completion Dates."

• You can track the status of orders, tasks, and order items. See "About Order
Status."

• You can configure notifications to alert order management personnel about orders
that need attention. See "About Notifications."

• You can configure ways to deal with order and task failures. See "About Managing
Order and Task Fallout."

• You can configure OSM in the COM, SOM, and TOM roles to minimize changes
to the order fulfillment process when changes occur in your product offerings and
network resources. See "Managing Changes in Your Business."

About Making Changes to In-flight Orders
If an order is in flight and a customer needs to change it, you can resubmit the order to
OSM. OSM can roll back and change fulfillment actions as needed.

OSM manages changes to orders as follows:

1. An order is submitted to OSM. OSM begins processing the order.

2. The order is resubmitted to OSM with some of the data requirements changed. For
example, the bandwidth requirement might change from 5Mbps to 13Mbps. You
can also resubmit an order to correct a failed order.

3. OSM checks to see if the order is amendable. You specify whether an order is
amendable when you model the order specification.

6-1

4. If the order is amendable, OSM looks for the original order by checking in-flight
orders for a matching value in an order key. You configure the order key when you
model the order specification. For example, you can specify to use the sales order
number as the order key. In that case, when OSM processes an order, it looks for
an existing order that has the same sales order number and amends that order.

If an existing order is found, OSM needs to manage both the original order, called
the base order, and the new version of the order, called the revision order.

5. OSM performs further checks on the base order to determine if the order is
allowed to be amended. OSM does the following:

• OSM checks to see if the base order is in a state that can be amended. Orders
in the Not Started, Completed, or Aborted state cannot be amended. You can
customize the allowed transitions to the amending order state by configuring
the order lifecycle policy.

• OSM checks to see if the base order has not passed the point of no return.
The point of no return is the point in the processing of an order item after
which order amendments are either impossible or too expensive to allow. See
"About Point of No Return."

6. After determining if the base order requires changes, OSM begins the process of
compensation. Compensation compares the requirements in a revision order to
the requirements in the base order and determines the changes that need to be
made. OSM creates a compensation plan to define the actions that need to be
carried out to amend the base order.

When you define data in OSM, you can flag data that might need to be
changed as significant. OSM uses the significance of the data to determine if
compensation is needed. Data significance allows you to optimize amendment
processing in a way that compensation is considered only for changes to data that
is marked as significant.

7. OSM handles the base order and the revision order as follows:

• For the base order, OSM generates a new orchestration plan that includes the
order components and their dependencies.

• For the revision order, OSM transitions it to the Completed state because its
only purpose was to revise the base order.

8. OSM processes the changes according to the compensation plan it calculated
and recalculates the compensation plan needed after every change. The revised
orchestration plan changes how order components are processed:

• Order components with data that has changed as a result of the revision are
redone.

• Order components that have been processed but are no longer required in the
revision are undone.

• Order components that are inserted as new requirements are fulfilled.

As order components are run, OSM runs tasks as needed. As with order
components, tasks can be undone, redone, and so on.

9. All processing not related to compensation is suspended for an orchestration
plan until compensation is complete. After compensation is complete, the order is
restored from the Amending state to an In Progress state and normal processing
continues.

Chapter 6
About Making Changes to In-flight Orders

6-2

About Submitting Multiple Revisions of an Order
In some cases, multiple revisions to a single order are submitted. Each revision is
expected to be a new revision of the in-flight order, not a cumulative comparison
of previous revisions. The latest amendment is assumed to be the most complete
revision containing all of the changes from earlier revisions.

You can use versioning in revision orders to recognize the order of the revisions as
OSM receives them. For example:

• If revisions are received out of sequence, OSM ensures that the latest revision
is used. If a later revision is received while the current revision is being
compensated, OSM completes the compensation for the current revision before
processing the latest version. If a version is received that is earlier than the current
revision being processed, the earlier version is ignored.

• If several revisions are received, OSM discards interim revisions and applies the
latest revision because it represents the latest customer instructions for the order
and is a complete copy of the base order.

About Point of No Return
In some cases, there may be a point in the order process after which it becomes
impossible or undesirable to make changes to an order. This is called a point of no
return.

There are two types of point of no return in OSM.

• A hard point of no return indicates that amendments to the order are either
impossible or undesirable. In the case of a hard point of no return, a revision order
is not possible. Instead, you can create a follow-on order.

Note:

A follow-on order is not a change to an in-flight order but is an alternative
when revising the in-flight order is not possible. Follow-on orders are
used to make changes to items on an order that have not yet been
completed but are past the point of no return. OSM manages follow-on
orders to ensure they do not run until the order items upon which they
depend are completed. See "About Follow-on Orders."

• A soft point of no return indicates that order amendment processing is still
possible, but there are consequences for the customer. For example, you can
specify to bill a customer for an extra charge if the order is revised after the soft
point of no return has been reached.

You can define multiple point-of-no-return milestones in an order's fulfillment flow. For
example:

• For a fixed-line service, a point of no return after provisioning.

• For a broadband service, a point of no return after billing.

All soft and hard points of no return depend on the order lifecycle policy conditions that
control whether orders can transition from the In Progress state to the Amending state.

Chapter 6
About Making Changes to In-flight Orders

6-3

About Follow-on Orders
A follow-on order is an order that can be started only after the completion of an order
item in another order. You can configure follow-on orders for various reasons:

• If an order has passed its point of no return where a revision order is no longer
possible, you can configure a follow-on order to modify an order after the order
completes.

• In some cases, your order management process might be more efficient or faster
if you use follow-on orders to manage fulfillment functions on different systems,
implement load balancing, and so on. Using follow-on orders provides another
method of controlling when an order runs.

To configure a follow-on order, you create inter-order dependencies. When using inter-
order dependencies, the blocking order item is in the base order, and the waiting order
item is in the follow-on order. A typical scenario is:

1. A customer has ordered a broadband service.

2. The next day, while the order is still in-flight but past the point of no return, the
customer requests a change to the service bandwidth.

3. Because a revision to the base order cannot be submitted, the customer service
representative creates a follow-on order.

4. The follow-on order is submitted to OSM; however, it does not begin processing
until the blocking order item in the base order has completed.

About Determining Order Completion Dates
An order received by OSM includes a requested delivery date. This is the date
that the customer wants the order to be completed. OSM can calculate the expected
completion date based on the time OSM expects to take to complete all of the tasks in
the order.

If the requested delivery date is the same as or earlier than the expected completion
date, OSM can start processing the order immediately. However, in some cases, the
start date of an order should be delayed. For example, a customer might request that
a new VoIP service be added at the beginning of the next month, when the customer's
current service expires. In cases where the requested delivery date is later than the
expected completion date, you can specify to start the order in the future.

In addition, there might be groups of order items within an order that need to be
fulfilled at different times. For example, an order might contain three services, such
as internet, IPTV, and VoIP. The internet and IPTV services might have an immediate
requested delivery date, but the VoIP service might only be required at the end of the
month, after the customer's current phone service plan has expired. In this case, you
can enable OSM to calculate an order start time that would allow the service to be
activated at the requested delivery date at the end of the month.

To calculate when an order should start so that it can meet a requested delivery date,
OSM calculates the expected duration of the order. To enable OSM to calculate the
expected duration, you assign processing duration values, for example:

• You can assign processing duration values to order components.

Chapter 6
About Follow-on Orders

6-4

• You can assign processing duration values to tasks. These values can be used for
calculating the processing duration for order components.

• You can assign requested start dates to order items.

To calculate the expected duration for the order, OSM uses the expected duration
of the order components and tasks in the order. Dependencies between order
components are included in the calculation.

After the expected duration for the order has been calculated, OSM assigns an
expected completion date to the order, based on the current date and the expected
duration. For example, if the current date is May 1, and the expected duration is 5
days, the expected completion date is May 6.

If the expected completion date is later than the requested delivery date, OSM can set
the order start date to a date in the future. For example, if the current date is May 1,
the expected duration is 5 days, and the requested delivery date is May 11, OSM sets
the order start date to May 6. Figure 6-1 shows how a start date is determined for a
future order.

Figure 6-1 Future Order Start Date

To track order completion dates, you can see the following fields in the Order
Management web client:

• Order Creation Date: The date when the order is created in OSM.

• Expected Order Start Date: The date when the order is expected to start being
processed.

• Expected Order Completion Date: The date when the order is expected to be
completed.

• Requested Order Delivery Date: The date by which the customer requests the
order to be delivered.

• Expected Order Duration: The amount of time the order is expected to take to
complete processing.

About Order Status
Order management personnel can use the Order Management web client and the
Task web client to track the status of an order, order components, order items, and
individual tasks.

The customer service representative (CSR) who runs the customer relationship
manager also needs to keep the customer informed about the order status. You can
use fulfillment states or processing states to maintain a complete and detailed view
of order item status and (with fulfillment states) order status. For example, a CSR

Chapter 6
About Order Status

6-5

might need to know if shipping has been completed for an order, but activation has not
been completed.

OSM can send requests to many different systems for the same order item or order.
Each request may have many responses that provide statuses.

Processing states are a predefined set of states that an order item can enter. OSM
aggregates the values returned from external systems in each order component for the
order item to determine the overall processing state of the effected order item. You can
apply processing states based on values in response messages from external systems
that OSM receives in automated task automation plug-ins or based on direct operator
input in manual tasks. In addition, because order items can be arranged hierarchically,
when a child order item processing state changes, OSM also evaluates whether the
parent order item should change, all the way up the hierarchy.

Fulfillment states allow you to send meaningful status values to an upstream system,
which would not be able to parse all of the individual statuses returned by the external
systems. You can use fulfillment states to manage system complexity in the following
ways:

• Normalize status names. For example, to indicate success, one system might
return OK, while another returns Complete. You can map both of these responses
to the same value, for example Successful.

• Create statuses based on multiple statuses. For example, if one system returns
the status Complete, and another system returns the status In Progress, you can
create a status named Partially Complete.

• Define composite status values for order items, order components, and the order
itself. For order items, you can change the status of a parent order item when the
status of a child order item changes.

In addition to using fulfillment states to provide order item and order processing state
information to upstream systems, you can also use them to restrict processing of order
amendments from the upstream system. This functionality is provided by point-of-no-
return processing, which uses fulfillment states. See "About Point of No Return" for
more information.

Figure 6-2 depicts a fulfillment state scenario.

Chapter 6
About Order Status

6-6

Figure 6-2 Fulfillment State in an Order

About Notifications
You can use notifications to alert users and external systems to events that occur in
the order as it processes or to tell users that an action must be carried out.

There are two types of notifications:

• Use jeopardy notifications when you want to alert users that an order or a task
might have a problem. To trigger jeopardy notifications, OSM checks order and
task conditions at specified intervals. If an action has not occurred as expected,
OSM sends a notification. Jeopardy notifications are displayed in the Task web
client Notifications page.

• Use event notifications to alert users of changes to an order based on its
progress. Event notifications can be triggered by:

– A change in task state

– A change in order status

– A change to order data

You typically configure notifications by using automation plug-ins, which send
notification data to end users or systems.

Figure 6-3 shows notifications displayed in the Task web client. You can specify which
workgroups can see the notifications.

Chapter 6
About Notifications

6-7

Figure 6-3 Notifications Displayed in the Task Web Client

About Managing Order and Task Fallout
Order fallout occurs when an order fails during processing and cannot continue
processing. Task fallout occurs when a task fails during process and can only continue
processing in a fallout execution mode. Fallout management is the ability to resolve
fallout and enable an order or task to continue processing normally. You can model
automated fallout management, which corrects errors by compensation or by running
automation plug-ins in a fallout execution mode, or you can model manual fallout
management, which supports manual intervention to correct errors.

For any order specification, you can define order fallout definitions. Fallout definitions
enable you to identify specific order data that can cause a fallout scenario. For
example, it might be common for a task that activates a port to return an error that
the port is already in use. The fallout definition can identify the port ID as the data
that needs correcting. This allows OSM to undo the resource assignment task in the
inventory system, so the task can be redone and the port ID corrected. The order can
then resume processing with the corrected data.

OSM can manage fallout that occurs both internally during OSM processing, such as
errors in internal data, and as the result of an error returned by an external fulfillment
system. The most common fallout scenarios are:

• Failure in a downstream system; for example, a failure in an activation system.

Scenarios include:

– The data was received, but was missing or incorrect and could not be
processed. When a downstream system detects missing or incorrect data
received from OSM, it returns an error, which in turn fails the order.

– An internal error unrelated to the data occurred.

• Failure in a network or system resource; for example, a network connectivity
failure or a database failure.

• Failure when an order is created in OSM; for example, recognition or validation
errors. If OSM receives a corrupted order from an external system, it accepts the
order but immediately places it in Failed state.

• Failure in runtime OSM execution; for example, an unresolved dependency that
prevents an order from being processed.

You can track the progress of order items including fallout scenarios that impact order
items in the Order Management web client by enabling tasks to associate status
values included in response message from external fulfillment systems to OSM order
item processing states. You can classify these response messages into order item

Chapter 6
About Managing Order and Task Fallout

6-8

processing states that fall into the normal, warning, or failure categories that you can
track in the Order Management web client.

When a task receives a failure message from an external system, you can configure
the task to run in a fallout execution such as Do in Fallout in contrast to a normal
execution mode such as Do. For example, you may configure an automated task to
run special automation plug-ins that only run when the task transitions to a fallout
execution mode.

You can retry or resolve a failed task in the Task web client, or you can retry or resolve
all failed tasks on an order or within an order component in the Order Management
web client. Retrying a task returns the task to a normal execution mode in the received
state. Resolving a task returns the task to a normal execution mode in the state it had
been in when the failure occurred.

Managing Changes in Your Business
As a service provider, you need to manage changes in your service fulfillment
implementation, for example, changes to product offerings, service configurations, and
network resources.

By running OSM in the COM, SOM, and TOM roles, you can decouple your product
offerings from your network resources, and minimize the changes required in order
processing. For example:

• Changes to product offerings do not change how resource-facing services are
configured, and do not change how technical orders are processed. A change in
how a product is packaged has no effect on how OSM manages the activation of
the services in the offer.

• Changes to how you implement your services on the network typically do not
change your product offerings, unless you add resources for a new type of service.
For example, you might make equipment-level changes to your network that
require changes to technical orders. However, those changes do not affect how
a customer order is processed.

Figure 6-4 shows how frequent changes occur at both ends of the process; to
commercial offerings and to network resources. Changes occur less frequently in the
middle of the process, where services are designed according to predefined models,
and resources are assigned to the services.

In addition, whereas there are many commercial offerings and many network
resources, there are considerably fewer service designs. A single service design can
be used by many different commercial offerings and resources.

Chapter 6
Managing Changes in Your Business

6-9

Figure 6-4 How Changes Occur in an Order Fulfillment Process

Decoupling commercial offerings from network resources is important because system
changes typically occur at both ends of the order fulfillment process. For example,
when managing product offerings, you might introduce a new pricing for an existing
service. When managing network resources, you might add more circuit capacity.
These changes should have only minimal changes to an isolated part of the order
fulfillment process.

The following are some typical scenarios that require changes to the order fulfillment
process:

• Change product offerings. Examples include: introduce a new pricing for an
existing service, introduce a new product in an existing product family, introduce a
new bundle of existing services. In this case, changes are usually required only in
customer orders. No changes need to be made in the SOM and TOM processing.

• Upgrade network elements to a new vendor. This requires new activation tasks
to be able to send commands to the new network elements. Because there are
no changes to the services offered, no changes need to be made to the order
management process or to customer-facing services. The COM, SOM, and TOM

Chapter 6
Managing Changes in Your Business

6-10

processes remain the same. No changes are needed in product offerings or in the
product specifications defined in OSM.

• Introduce a variant to an existing technology. For example, you might introduce
a VDSL option when ADSL is already available. In this case, you probably need
to make changes to the definitions of resource-facing services, add resources
to inventory, change some service activation tasks carried out by technical order
management, and create new activation tasks. COM and SOM remain the same.
No changes are needed in product offerings or in the product specifications
defined in OSM.

Chapter 6
Managing Changes in Your Business

6-11

7
About Runtime Order Management

This chapter provides an overview of the Oracle Communications Order and Service
Management (OSM) runtime tasks. Before reading this chapter, read "Order and
Service Management Overview ."

For information about using the OSM web clients, see OSM Order Management Web
Client User's Guide and OSM Task Web Client User's Guide.

About Managing Orders
Order management personnel use the Task web client and the Order Management
web client to manage orders. Order management tasks include:

• Completing manual tasks. Most of the tasks required to complete an order are
automated. Manual tasks are completed in the Task web client. An order manager
can add comments to the order, attach documents, display the history of the order,
and receive notifications about at-risk orders or tasks.

• Managing fallout. You can identify errors that occur during order fulfillment, notify
the appropriate individuals or systems, and take corrective measures.

• Managing the order life cycle. Most changes to the order life cycle occur
automatically. However, an order manager can manually suspend and resume
orders, cancel orders, update orders, and create orders.

• Running reports. You can run reports to get information about the overall order
processing load. You can run the following summary reports:

– Pending Orders

– Order Volume

– Completed Order Statistics

– Completed Tasks Statistics

Assigning Tasks to OSM Users
There are two approaches to assigning tasks to users in OSM:

• A work offer approach, which is by role, where tasks are associated to a role and
users performing that role may select tasks from their worklist to work on them.
This is the standard task assignment approach in OSM.

• A work assign approach, where a task assignment algorithm is used to specifically
assign each task to a user performing the role. This approach requires additional
OSM modeling.

For each manual task, you can specify how it is assigned to an OSM user for
completion. You can use the following methods:

• Round robin assignment automatically assigns tasks to users in a workgroup
alphabetically by user name.

7-1

• Load balancing assignment automatically assigns users in a workgroup to
balance the workload across users, based on the number of tasks assigned to
each user. The user with the least number of tasks is assigned the task.

You can also create custom automatic assignment methods. For example, you might
specify that the first task received is the first one assigned or that the last task received
is the first one assigned.

About Workflow and Workstream Processes
When you create processes in Design Studio, you specify if a process is a workflow
process or a workstream process.

With a workflow process, the Task web client displays the worklist after it completes
each task. This is because a workflow process is intended to distribute work among
different users in different workgroups. The next task in the process might be handled
by a different user.

With a workstream process, OSM displays the order editor page for the next task
automatically without first returning you to the worklist.

A workstream process can include manual and automated tasks. If an automated task
occurs, OSM processes it and displays a message indicating that processing is taking
place. While automated processing is occurring in the workstream, you can return to
the worklist to work on other tasks. The automated task in the workstream will continue
to progress to completion. This type of process is useful when the automated task in
the workstream takes some time.

After the automated task finishes, and the next task becomes available, any user in
the workgroup can pick up the workstream from that point. When the final task in
a workstream completes, OSM returns the user to the worklist. OSM automatically
displays the order editor page for the next manual task in the workstream to the user.

About the Order Lifecycle Management UI
Using the Order Lifecycle Management UI, you can view information about an order,
such as fulfillment dates, the order's progress on a timeline, and order processing
errors. The Order Lifecycle Management UI is available on the Timeline tab of the
Order Management web client. If your system uses the Oracle Configure, Price, and
Quote Cloud (Oracle CPQ Cloud) application as the order capture software, you can
view the Order Lifecycle Management UI within Oracle CPQ Cloud.

The Order Lifecycle Management UI provides online Help. Click the Help icon in the UI
for more detailed information.

About Managing OSM Users
Order managers use the Task web client to manage an order in runtime. To control
which users can process specific types of tasks or perform specific actions in OSM,
you define users in Oracle WebLogic Server. You can assign users to two types of
groups:

• Use WebLogic Server groups to define who can access system administration
tasks, such as who can use client tools, read log files, and start and stop OSM
server components.

Chapter 7
About Managing OSM Users

7-2

• Use OSM workgroups to define how users can perform order management tasks,
for example:

– You can assign permissions to carry out tasks such as assigning tasks to other
users, running reports, changing order priority, and so on.

– You can specify the data that a user can see in the Task web client.

– You can specify the orders that OSM users can manage, based on data in the
order. For example, you specify that a user can see only orders from a region
or for a specific type of service.

To create OSM workgroups, you do the following:

1. Create roles in Oracle Communications Design Studio. The term role in Design
Studio means the same as the term workgroup in the Task web client and the
Order Management web client.

When you create roles, you define permissions; for example, you can specify who
can display reports in the Task web client or who can change the priority of a task
during order processing. You can assign roles when you model OSM entities. For
example, you can specify the roles that can manage an order, or process a task.

2. Assign users to workgroups by using the Order Management web client. This is
typically performed as a one-time configuration task.

For example, you might create roles based on what a user can do in the Task web
client. You can assign the same tasks to multiple workgroups, but users in each
workgroup can work with it differently; for example, you might have a workgroup
specifically for fallout management.

Roles are also used by automated tasks. For example, automated tasks use OSM
roles to restrict who can receive a notification.

About Using Behaviors to Customize the Task Web Client
You can use behaviors to specify how OSM manages data. For example:

• You can specify the maximum allowed number of characters for text string data.

• You can add the values of multiple fields and display the sum in another field.

• You can specify the minimum and maximum times that a data element can
be used in an order. For example, an order might require that exactly two IP
addresses are added.

Figure 7-1 shows an example of changing the user interface by using behaviors. In
this example, data from two fields is combined into one field.

Chapter 7
About Using Behaviors to Customize the Task Web Client

7-3

Figure 7-1 Combining Two Fields

For more information, see the discussion about modeling behaviors in OSM Modeling
Guide.

Chapter 7
About Using Behaviors to Customize the Task Web Client

7-4

8
OSM Functional Overview

This chapter provides a diagram of Oracle Communication Order and Service
Management (OSM) functionality.
This chapter provides a summary for this book. Before reading this chapter, read the
previous chapters, starting with "Order and Service Management Overview ."

OSM Functional Diagram
Figure 8-1 shows a functional diagram of OSM.

8-1

Figure 8-1 OSM Functional Diagram

Chapter 8
OSM Functional Diagram

8-2

Figure 8-1 shows the three primary stages in order management: create the order,
generate and execute an orchestration plan, and run processes and tasks.

• To create an order, OSM receives an order as a web service operation from
an order source system. When an order request is received, OSM performs
order recognition to determine which type of order to create, based on the order
specification. Transformation rules transform the order data into a format that can
be used by OSM. See "How OSM Receives and Creates Orders."

The order specification also defines the order lifecycle policy, which governs the
states that the order can transition through. For more information, see "About the
Order Lifecycle Policy."

• To generate and execute an orchestration plan, OSM derives order items from
the order data, and decomposes the order items in order components, based on
fulfillment patterns. See "How OSM Generates and Executes an Orchestration
Plan" and "About Decomposition."

The orchestration plan includes dependencies that determine the order in which
processes can run. See "About Dependencies."

When processing a customer order, OSM can use order item transformation
to transform order items for products, bundles, and offers into order items for
customer-facing services. See "About Order Item Transformation" and "About
COM, SOM, and TOM."

• When running processes, OSM runs manual tasks and automated tasks. Manual
tasks are managed by the Task web client. Automated tasks are run as plug-
ins by the automation framework. Plug-ins use EXtensible Stylesheet Language
Transformations (XSLT), XQuery scripts, and Java to communicate with external
systems. See "About Tasks and Processes."

Figure 8-1 shows the areas in OSM that carry out functionality related to business
processes such as changes to in-flight orders:

• Fulfillment states can manage states in orders and in order items.

• Predefined processing states can manage order item states. (Note that order item
processing states do not go to the order level as fulfillment states do.)

• Order change management, such as using revision orders and compensation,
is performed when processing tasks. Revising an order can also require a new
orchestration plan.

• Internal order and task events throughout the order management process can
create events that trigger notifications to order management personnel.

Figure 8-1 shows the interfaces used by the OSM functionality:

• CRM systems use JMS queues to send an order to OSM. HTML can be used in
test and demonstration systems.

• You configure orchestration by using XQuery scripts to find, get, and transform
data. You can also use XQuery scripts in processes.

• The Task web client and the Order Management web client communicate with the
OSM server by using HTTP.

• The reporting interface uses SQL to retrieve data from the OSM database.

• OSM uses a variety of interfaces to connect to external systems, such as billing or
shipping systems.

Chapter 8
OSM Functional Diagram

8-3

Glossary

activation
The enabling, disabling or changing of a network resource; for example, creating a
local loop for a DSL service. Activation is preceded by provisioning . Activation is
typically initiated in a technical order run by OSM in the technical order management
(TOM) role.

activation task
A type of automated task designed specifically to interact with the Oracle
Communications ASAP product or the Oracle Communications IP Service Activator
product.

amendment processing
A generic term that refers to making changes to in-flight orders. Amendments are
typically made when processing a revision order, or managing an order cancellation
or order failure. The amendment usually performs compensation; such as redoing or
undoing tasks.

ASAP
An Oracle product used by communication service providers to activate operational
support systems equipment across multiple technology domains. ASAP supports
many hardware vendor's network systems, and is integrated with OSM using activation
tasks.

automated task
A task that does not require manual activity. Automated tasks handle interactions with
external systems such as billing systems, shipping systems, and activation systems.
They can also perform custom calculations and other operations. See manual task.

automation framework
An interface that enables the integration of OSM with external applications. It is
used to automate tasks and notifications to other systems. It can also be used to
perform business logic (such as performing complex calculations) without interacting

Glossary-1

with an external system. The automation framework is an OSM server component that
performs the work required by automation plug-ins.

automation plug-in
An OSM component that performs the operation specified by an automated task. For
example, you can create automation plug-ins to update order data, complete order
tasks with appropriate statuses, set process exceptions, react to system notifications
and events, send requests to external systems, and process responses from external
systems. OSM provides several predefined plug-ins. You can also develop your own
plug-ins.

behaviors
OSM behaviors allow you to control the validation and presentation of data elements in
the OSM Task web client. For example, you can use the Calculate behavior to derive
the value of the data in a field by adding the values in two other fields. You could use
the Information behavior to present a tool tip for a field in the Task web client.

In addition to customizing the Task web client, you can also use the Data Instance
behavior to retrieve data by using data providers. See data provider.

cartridge
A collection of entities and data defined in Design Studio and packaged in an archive
file for deployment to a runtime server. In Design Studio, you build cartridges in
cartridge projects. You can create your own custom cartridges to extend Oracle
Communications applications. Additionally, you can obtain from Oracle customized
cartridges that support integration with other common applications, and cartridge
packs that bundle cartridges containing metadata for particular technology domains;
for example, order specifications, recognition rules, processes, behaviors, and so on.

central order management (COM)
The OSM role that receives orders from one or more order-source systems such
as Siebel CRM, creates an OSM customer order, and manages the fulfillment of
the order across other enterprise systems including billing and OSM in the service
order management (SOM) role. OSM operating in the COM role also receives status
information from these systems and provides visibility of an order's status back to the
order-source system.

CFS
See customer-facing service (CFS).

Glossary

Glossary-2

COM
See central order management (COM).

common fulfillment state
A fulfillment state that can be assigned to an order item, order component, or
order. Common fulfillment states are user-defined values that provide consistent state
definitions for various entities. Common fulfillment states are available for the entire
workspace. To define a common fulfillment state, you define its name, and then apply
either a mapped fulfillment state or a composite fulfillment state to it. For example, a
common fulfillment state named Failed could be used for a fulfillment state mapped
from Error, or a composite state of Error + Unsuccessful.

See mapped fulfillment state and composite fulfillment state.

compensation
The process of comparing the requirements in a revision order to the requirements in
the base in-flight order, and making the changes. For example, if a customer initially
orders Bronze-level DSL service but upgrades to Gold-level service while the original
order is in place, tasks may need to be done, redone, or undone. OSM automatically
calculates the compensation required to accommodate the changes to orders.

compensation plan
An internal process that OSM defines and runs to process a revision order. The
compensation plan defines which tasks need to be done, redone, or undone.

composite fulfillment state
The fulfillment state that results from combining the fulfillment states from order items
into a single fulfillment state.

control data
Metadata in an orchestration order that is used to manage the execution of the
orchestration plan. OSM extracts control data from an order. Control data provides
information about order items, order components, and dependencies required to
generate the orchestration plan. This includes status and timestamps for its order
items and components. During the execution of an orchestration plan, the order data,
including control data, can be updated as transactions are completed.

Design Studio automatically generates control data for order components. You
manually model control data for order items.

creation task
The task that contains data required for the order. The creation task specifies what
information must be provided to the order before it can start processing. It is used

Glossary

Glossary-3

by OSM in the order process; for example, when an order is canceled, the order is
returned to the creation task. A creation task is defined in the order specification.

CRM
Customer relationship management. A system for managing a company's interactions
with customers, clients and sales prospects; for example, Oracle's Siebel CRM.

customer-facing service (CFS)
A service that implements what the customer ordered, independent from how the order
is implemented on the network. A CFS is typically the service as the customer would
recognize it; for example, Internet service. By contrast, a resource-facing service
(RFS) is the service as implemented on the network; for example ADSL or VDSL.

customer order
An order processed by OSM in the central order management (COM) role. OSM
creates a customer order from the order received from the CRM system. The customer
order typically fulfills billing functions and calculates the requirements for a service
order that is sent to OSM in the service order management (SOM).

Data Dictionary
A logical collection of data elements and data types in a workspace, enabling you to
leverage common definitions across an entire Oracle Communications solution. For
example, the Data Dictionary enables you to create order templates, atomic actions,
and service specifications, and share the data defined for those entities across your
OSM, ASAP, and Inventory applications. Entities in a workspace contribute data types
to the Data Dictionary, and data schemas in a workspace (which are accessible across
all projects) contribute data elements to the Data Dictionary.

The Data Dictionary enables you to integrate and correlate data models for multiple
applications, reduce the size and complexity of a solution model, simplify the
application integration by eliminating data translation among applications, and validate
data model integrity. See also data schema.

data element
A structured or simple type data definition. When modeling data for a project, you
create data elements that you can reuse throughout your model. There are two types
of data elements: simple data elements and structured data elements.

See simple data element, structured data element.

data provider
An adapter that can retrieve order data from external systems in an XML format.
Design Studio provides several built-in data providers to retrieve external XML

Glossary

Glossary-4

instances from specific sources such as a JDBC database or a SOAP web service.
Additionally, you can create your own custom data provider. Data providers are used
when defining Data Instance behaviors.

data schema
An XML schema that provides a formal description of a data model, expressed in
terms of constraints and data types governing the content of elements and attributes.
All data elements are created and saved in data schemas, which are accessible
across all projects in a workspace. Design Studio automatically creates a project-
specific data schema when you create a new project. You can use this default schema
to contain the data you require to model the project, you can create multiple schemas
in the same project, or you can create schemas in common projects. You can model
your projects using data from any combination of these data schemas.

decomposition
The process by which order line items in a sales order are transformed into order
items, which are then organized into order components. For example, OSM can use
the following algorithm to achieve decomposition:

• Map order items to functions (fulfillment function order components)

• Map function order items to fulfillment systems (fulfillment system order
components)

• Map fulfillment system order items to processing granularity (granular order
components)

See also order component, executable order component, orchestration stage.

decomposition rule
Rules that determine the order items in each order component during decomposition.
OSM evaluates every order item in the source order component against the conditions
that you define for the decomposition rule.

Unlike many other OSM modeling entities, decomposition rules are not directly
referenced by other parts of the model. OSM selects decomposition rules by matching
the source and target order components of the decomposition rule to the order
components in the orchestration stages in the orchestration sequence.

See orchestration, order item, order component.

default process
The first process that runs after an order is created. A default process can either be an
orchestration process (which will be backed by a dynamically generated orchestration
plan) or a workflow or workstream process.

Glossary

Glossary-5

delay
A process activity that specifies that a process stops until a condition evaluates as
true. In OSM there are two types of delays, timer delays and event delays. A timer
delay retries the evaluation of the rule at a fixed time interval. An event delay retries
the evaluation of the rule only when order data changes.

dependency
A relationship in which a condition related to one order component or order item must
be satisfied before another order item can be processed. For example, it may be
necessary to perform provisioning before billing can occur for the same order item.
Dependencies can have the following relationships:

• Between different order components for the same order item.

• Between different order components for different order items.

• Between order items across orders.

• Time-based dependencies.

See also inter-order dependency, intra-order dependency.

design and assign
The process of determining the resources required to implement a service, and
assigning the resources based on the available inventory. For example, the design
for a DSL service might specify a port and a local loop, which would be assigned
based on the inventory. Design and assign is typically initiated in a service order run by
OSM in the service order management (SOM) role.

Design Studio
An integrated design environment for the development of solutions based on the
Oracle Communications OSS Applications. Design Studio enables solution designers
to configure application-specific and multi-application solutions by leveraging
application-specific concepts. Design Studio is built on an open architecture based
on the Eclipse framework, and it uses a wide variety of innovative technologies.

entity
A functional unit created and edited in Design Studio; for example, tasks, processes,
physical and logical resources, and order specifications. Entities are collected in
projects and deployed to runtime environments to support your business processes.

event delay
See delay.

Glossary

Glossary-6

executable order component
An order component with an associated process. Typically this is a component
decomposed to its final level of granularity. Executable order components are
generated during the last orchestration stage in an order.

See also decomposition.

expected duration
The amount of time an order, or some part of the order, (for example an order
component, fulfillment pattern or task), is expected to take to complete processing.
OSM uses the expected duration to calculate the expected start date and the expected
completion date.

expected start date
The date on which an order is expected to start being processed. Expected start date
is determined by calculating the expected order duration and factoring this in with the
requested delivery date for order items on the order.

external fulfillment state
The status returned from a fulfillment system to an order component. This may be the
exact status returned by the system, or automation may be used to translate the status
before it is put on the order. It is a key input into a fulfillment state mapping.

See fulfillment state.

fallout
The failure of an order or task during processing. Fallout occurs whenever an order
or task encounters a situation that prevents it from processing normally. Causes for
fallout include missing data or the inability to access a fulfillment system. Fallout
management includes detecting, investigating, resolving, or escalating failed orders
and tasks.

fallout exception
A mechanism initiated from the OSM Task Client or from an automated task
automation plug-in to interrupt or stop an order or task, to redirect it to any task in
the same process or any other process, or to transition a task into a fallout execution
mode.

fallout management
A process that includes detecting, investigating, resolving, and escalating failed orders
and tasks. Administrators perform fallout management with the OSM web clients. The
clients allow them to search for failed orders and tasks, identify the reason for the
failure by viewing order and task details, and resolve errors and dependencies to allow

Glossary

Glossary-7

order processing to proceed. In cases where the fallout scenarios cannot be resolved,
you can cancel or terminate the order.

follow-on order
An order that is submitted to modify a completed order. Follow-on orders are not
processed until their order-item dependencies on the in-flight orders allow them to
proceed.

fulfillment
Operations that fulfill a customer's order, such as providing, modifying, resuming, or
canceling a customer's requested products and services.

fulfillment function
An operation that must be performed to process an order; for example, initiating billing,
shipping a modem, or activating a service.

fulfillment mode
An entity that represents the intent of an order. For example, the fulfillment mode could
indicate whether the order is intended for qualification, delivery to fulfillment systems,
testing and so on. Every customer order can specify a fulfillment mode.

fulfillment pattern
An entity that includes the fulfillment function order components and dependencies
required to fulfill a product order. Each order item in an order is mapped to a fulfillment
pattern. OSM uses the fulfillment pattern to determine the necessary fulfillment
functions, order components, and dependencies to generate an orchestration plan.

fulfillment state
The state of an order or order item aggregated and translated from status values
returned by external systems. This state can be used to provide status visibility to
upstream systems and to users by using the Order Management web client.See also
common fulfillment state, composite fulfillment state, external fulfillment state, mapped
fulfillment state.

fulfillment state map
The Design Studio entity that contains both the definition of common fulfillment states
and fulfillment state mappings. A common fulfillment state defined on one fulfillment
state map is available to all fulfillment state mappings in the workspace.

See common fulfillment state and fulfillment state mapping.

Glossary

Glossary-8

fulfillment state mapping
The Design Studio entity that maps external fulfillment states to values from the
common fulfillment state list. The resulting fulfillment state is referred to as a mapped
fulfillment state.

fulfillment system
A system that carries out the actions necessary to complete the order; for example,
activate services on the network, ship equipment, or run billing. To process an order,
OSM sends commands to fulfillment systems to carry out their functions and return the
status of the fulfillment action.

fulfillment topology
The fulfillment systems required to fulfill orders. For example, a fulfillment topology
might include a CRM system, OSM running in the COM role, multiple instances of
OSM running in the SOM and TOM roles, a billing system, a shipping system, and
so on. The fulfillment topology also defines the relationships between the fulfillment
systems; for example, the activation systems and shipping systems that OSM in the
TOM role interacts with.

future-dated order
An order that has a requested delivery date that is later than the current date and time.
For example, a customer order to have a new VoIP service added at the beginning
of the next month is a future-dated order. OSM uses the order orchestration plan to
calculate the order start date of future dated orders so the order can be completed by
the time the customer wants it.

See also expected duration and expected start date.

inbound order
See customer order.

in-flight changes
Changes that are made to an order that is being processed.

in-flight order
Any order that is not in a closed state (Closed or Aborted). An in-flight order still has
the potential for further work to be performed on it.

Glossary

Glossary-9

inter-order dependency
A dependency between order items in different orders.

intra-order dependency
A dependency between order items in the same order. An intra-order dependency can
refer to external information, but not to data in other orders.

IP Service Activator
Internet Provider Service Activator. An Oracle product used by communication service
providers to define and fully automate the activation of services on large-scale multi-
vendor IP networks. IP Service Activator delivers end-to-end network control and
enables real time reaction to new service and customer demands.

line item
See order line item.

lifecycle policy
An order attribute that defines the states that an order can have; for example, In
Progress and Suspended, and the rules governing transitions between states.

JMS queue
A method used by systems to communicate with each other. To communicate with
external systems, the OSM server uses mostly Java Message Service (JMS) queues.
JMS is part of the standard Java platform. A JMS queue is a staging area that you
configure when you install OSM. Systems communicate via JMS queues by publishing
messages to them and receiving messages from them.

manual task
Tasks performed manually by OSM operations personnel using the Task web client.
See also automated task.

mapped fulfillment state
The fulfillment state that results from a fulfillment state mapping.

metadata
The data that you create when modeling OSM in Design Studio. Metadata is data
about data, that is, metadata defines how data is created and used in the OSM
system. OSM uses metadata to determine how to process order data. For example,

Glossary

Glossary-10

OSM uses metadata from the order specification as a template to create orders at
runtime.

mnemonic
A synonym for an entity name. Mnemonic is a legacy term for OSM. The proper name
is entity name.

multi-instance data element
A data element that is permitted to have more than one instance. For example, you
configure the ControlData/OrderItem structure as a multi-instance data element so
that OSM can create an instance of the structure for every order line item extracted off
the inbound order.

namespace
A method for uniquely naming elements and attributes in an XML document. Design
Studio supports entity and cartridge namespaces. You pair the entity or cartridge name
with a namespace name to create a fully qualified namespace. For example, you can
pair entity names with a namespace name to enable different groups of Design Studio
users to create different entities without concern for naming conflicts. Services can be
implemented independently by different teams and then deployed into a single runtime
environment.

Not every OSM entity has a separate namespace (example: tasks and processes). For
these types of entities, a unique name is created by attaching the cartridge name and
version number to the entity name.

notification
Messages sent by OSM to alert users of order problems (jeopardy notifications) or
changes to an order's state, status or data (event notifications). By default, OSM sends
most types of notifications to the Task web client Notifications page. You can also
specify that notifications be sent by e-mail.

Oracle Application Integration Architecture (Oracle AIA)
Integrates business processes across multiple applications. OSM integrates with
Oracle AIA for Communications. Oracle AIA runs on top of Oracle Fusion Middleware.

Oracle Application Integration Architecture (Oracle AIA) Order-to-Activate Cartridges
A set of OSM cartridges that integrate with the Oracle Communications Order to
Cash Integration Pack for Oracle Communications Order and Service Management
(Order to Cash Integration Pack for OSM). The Order-to-Activate cartridges and the

Glossary

Glossary-11

integration pack enable OSM to be part of an order fulfillment solution that covers the
entire order-to-activate process from order creation to service activation.

Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud)
Oracle's order capture software that enables companies to select products, assign
pricing, create quotes, and submit orders.

Oracle WebLogic Server
Oracle's application server for building and deploying enterprise Java EE applications.
The Oracle WebLogic Server hosts the OSM server, OSM integration, and related
interfaces.

orchestration
The process OSM uses to manage the fulfillment of an order across many fulfillment
systems. Dependencies may require that these interactions be run in a specific order
to ensure that order items are sent to the proper systems, and that the required steps,
in the proper sequence are run.

orchestration order
An order that requires an orchestration plan for fulfillment. Orchestration orders
contain control data for an orchestration plan. The default process for an orchestration
order is an orchestration process. Most orders are orchestration orders. See process-
based order.

orchestration plan
A dynamically generated plan that is used to manage the fulfillment of an order.
Order fulfillment often requires interaction with many fulfillment systems, and various
dependencies may require that these interactions be run in a specific order. The
orchestration plan includes the order, order component, and the type and the
sequence of order component execution. An orchestration plan is generated for each
order based on the metadata defined for the type of order being processed.

For example, an order is captured by Siebel CRM and is sent to OSM for processing.
Using the recognition rules and other entities provided by the OSM cartridges in
the Order to Cash Integration Pack for OSM, OSM decomposes the order and
dynamically generates an orchestration plan that is used to manage the fulfillment
of the customer's order across other enterprise systems.

orchestration sequence
A set of orchestration stages for an order. Orchestration sequences specify the set of
orchestration stages for an order. Orchestration stages and sequences together define
how an order is decomposed.

Glossary

Glossary-12

See also decomposition, orchestration stage.

orchestration stage
A step in an orchestration sequence used to decompose an order and generate an
orchestration plan.

See also decomposition, order.

order
An order in the OSM format. You model orders by creating order specifications in
Design Studio.

There are many order variants including:

• customer order

• follow-on order

• future-dated order

• inbound order

• in-flight order

• orchestration order

• process-based order

• revision order

• service order

• technical order

order component
A collection of order items that can be processed together because they meet some
common criteria as determined by an orchestration stage. Order components are
modeled in Design Studio, based on factors such as a function that needs to be
performed, the systems that need to perform that function, and what other items can
be processed in the same group.

See also decomposition, executable order component.

order component ID
An ID associated with an order component that can be used in decomposition. When
implementing fulfillment systems, for example, you can configure OSM to decompose
an order by using decomposition rules or by using the component IDs.

Glossary

Glossary-13

order data
The data that is used for fulfilling an order; for example, the customer name and
address, required bandwidth, and so on.

order data key
Uniquely identifies a data element or structure in an order by differentiating the data
element or structure based on a data element value. Order data keys are important
when identifying order data changes during compensation and for multi-instance data
elements.

order definition
See order specification.

order duration
See expected duration.

order entity
See order specification.

order fallout
See fallout.

order fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of
root-level order items and compose them into a single composite fulfillment state for
the entire order.

See fulfillment state.

order header
The part of an incoming sales order that contains information applicable to the entire
order such as the sales order number, the order action (Add, Cancel, Delete, and so
forth), and the customer name and address. An order in the OSM format does not
have a header; only orders received from external order source systems.

order item
An order line item transformed so that it can be processed in OSM. Order item
properties include the action required to implement it, such as Add, Suspend, and
Delete. Order items are decomposed into order components during orchestration.

Glossary

Glossary-14

See also order component.

order item fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of
order component order items and child order items and compose them into a single
composite fulfillment state for the entire order item.

See fulfillment state.

order item transformation
The process of using rules to derive one set of order items from another set of order
items.

order key
A unique value that enables the system to match incoming revision orders to the
corresponding OSM order. If the order key matches an order that is currently in
progress, the order is considered to be a revision that amends a base order. For
example, you can specify to use the customer reference ID as the order key. In that
case, when OSM processes an order, it looks for previous orders that have the same
customer reference ID, and amends it.

The order key can be any data or combination of data associated with the order. It
is configured in Design Studio as an XPath expression to a data element that will
uniquely match an amended order to its corresponding OSM order. For example,
you might specify a customer reference ID as the following Xpath expression: root/
Cust_Ref_ID

order life cycle
The sequential states through which an order passes and the transactions it
undergoes from the time it is received in OSM until the time it is resolved. States
include Not Started, In Progress, Suspended, and Completed. Each order state is
associated with a set of transactions that can be performed while the order is in that
particular state. Transactions include Update Order, Cancel Order, Complete Task,
and Raise Exception. The life cycle of an OSM order is governed by the order state
model and order life cycle.

Order Lifecycle Management UI
A user interface that enables you to view the progress of an order that is being
managed by an OSM system.

order lifecycle policy
A set of policies that controls the states in which an order can be, and the transactions
allowed in those states. The order lifecycle policy also determines which roles can

Glossary

Glossary-15

perform which transactions. For example, while an order is in the In Progress state,
you might want your Customer Service role to be able to perform the Update Order,
Cancel Order, and Suspend Order transactions, while your Fallout role is able to
perform the Raise Exceptions transaction. Every order type you create must be
associated with an order lifecycle policy.

order line item
Specific items such as individual products, services, and offers on an incoming order.
OSM transforms order line items into order items.

Order Management web client
An OSM web application that displays an order's orchestration plan, including
dependencies, order components, and order items. The Order Management web
client is used by fallout administrators responsible for locating orders with errors,
determining the causes of failures, and taking the necessary corrective actions;
operations and management personnel who monitor the progress of orders; and
orchestration plan designers who can use this application to test and validate
orchestration-based orders during the modeling and implementation of OSM solutions.
The Order Management web client also has an Administration area used to manage
user workgroups, calendars and schedules, email notifications, and system errors.

order priority
A value that OSM uses to determine which orders should be given more processing
resources. OSM uses order priority to determine the next thing to be done. Orders
with higher priority will be processed before orders with lower priority. In situations
where resources are constrained (for example, the system is using all available CPU,
memory, or other resources to process orders), orders with higher priority will process
faster than orders with lower priority.

order recognition
The process of determining the type of an incoming order so it can be mapped to an
order specification in OSM. During order recognition, OSM steps through an ordered
list of recognition rules to determine which rule applies to the customer order. Each
rule is associated with an order specification.

See recognition rule.

order reference number
A value associated with an order specified in one of the OSM web clients or OSM
APIs. OSM uses an order reference number as an identifier to external systems.
Reference numbers can be used as keys to correlate orders between systems.

Glossary

Glossary-16

order specification
An order entity defined in Design Studio. The order specification is the central entity in
OSM. It defines the basic information OSM requires for it to be able to process orders.
It specifies such things as what data is allowed in an order, (defined in the order
template), what are the range of order priorities, whether amendments are allowed and
how they are processed, how to handle jeopardy, fallout, permissions and so on.

Other entities such as tasks, processes, and notifications require that you specify
an order specification to which it relates. Order specifications can inherit from other
order specifications, and multiple order specifications can be modeled and can exist
simultaneously. Also known as an order definition and order entity.

order state
The condition of the order. For example:

1. An order is created in the Not Started state.

2. When processing begins on the order, the state changes to the In Progress state.

3. When the order is complete, it transitions to the Completed state.

See order life cycle.

order state transition
Changes from one order state to another order state as a result of a transaction.
Each order state has a set of allowable transitions. For example, when an order is
completed, it transitions from the In Progress state to the Completed state.

order template
A part of an order specification that defines what order data OSM will use to process
and fulfill the order. For example, the order template defines the data required for order
items as well as the data required in an order header. You create or modify order
templates by adding data elements from one or more data dictionaries.

order transformation
The manipulation and enrichment of the structure and contents of an order through
a set of rules. Transformation rules are applied to an incoming sales order in a
recognition rule.

Three types of transformation rules are available: order priority rules, which define the
priority of the order in relation to others; order reference rules, which define the order
reference number; and order data rules, which add to or modify incoming customer
order data.

Glossary

Glossary-17

order validation
A process that validates that an order is syntactically correct. When an inbound
order is recognized, OSM validates it based on validation rules defined in the order
recognition rule.

For example, a validation rule can determine that all mandatory fields are populated,
that valid characters (numeric or alphanumeric) are used for fields, and that the order
has a valid status code such as Open.

OSM order management web services API
The primary interface for external systems to OSM. The OSM order management web
services provide for inbound order operations such as creating, managing, retrieving,
updating, or canceling an order. Web services are web APIs that support interoperable
machine-to-machine interaction over a network such as the Internet. Web services
run on a remote system hosting the requested services such as OSM. Web service
interfaces are described by the web service definition language (WSDL).

OSM security callback
A callback interface that allows you to generate an audit trail log of users before they
gain access to order data that is considered sensitive. The security callback interface
is designed to intercept order access from defined functions such as GetOrder, XML
API WorkList.Request, and Task web client Order Data History page.

OSM server
The server that manages OSM runtime functionality, including inbound order
operations and outbound communications with external systems. The OSM server is
deployed on Oracle WebLogic Server.

OSM web clients
The two OSM GUI applications called the Order Management web client and the
Task web client. The Order Management web client displays an order's orchestration
plan, including dependency, orchestration stages, order components, order items, and
processes. The Task web client is used for monitoring and managing the tasks in an
order.

point of no return
The point in the orchestration of an order item after which revisions can no longer be
accepted.

process
A sequence of tasks and subprocesses that need to be carried out to fulfill all or
part of an order. For example, an ADSL fulfillment process could include the following

Glossary

Glossary-18

tasks that can take place over a number of days: assign a port, ship modem to
customer, activate DSLAM, send customer survey, and verify order. The process
includes definitions of the relationships between tasks and the sequence in which they
are run.

process-based order
An order that does not include an orchestration plan. See orchestration order .

processing granularity
Decomposition groups order items into optimally executable order components. For
example, if monthly fees, VoIP adapter, and VoIP phone are all billed by the same
billing system, they can be grouped into a single executable order component. This is
called processing granularity. See decomposition.

processing state
Processing states are a predefined set of states that an order item can enter. OSM
aggregates the values returned from external systems in each order component for the
order item to determine the overall processing state of the effected order item.

product
A conceptual model entity that represents something that your business sells.
Because Design Studio is primarily used for service fulfillment rather than sales,
products are often identifiers associated with information from other systems.

product catalog
The complete collection of your products, offers, and bundles. A product catalog is
typically stored as a data repository on the CRM or other order-source system; for
example, the Siebel Sales Catalog or Oracle Product Information Management Data
Hub. Sometimes called the master product catalog.

product specification
Groups of related products that share common attributes. For example, suppose you
sell products for three levels of DSL service. Though there are different values to
differentiate the service levels, the products are structurally identical and provisioned
by the same system; they are variations of the basic DSL service. As a result, a single
product-specification to fulfillment-pattern mapping can be used for all of them.

The use of OSM product specifications has been deprecated, and new OSM product
specifications cannot be created in Design Studio 7.2.4 and later. Conceptual model
products, customer-facing service (CFS), resource-facing service (RFS), resources,
and actions should be used instead.

Glossary

Glossary-19

project
An entity that contains artifacts (entities, data, rules, code, and so forth) that you use
to model and deploy Design Studio cartridges. Your solution uses various types of
projects. For example, you use projects for version management, for single sourcing
data, for resource organization, and to build cartridges that can be deployed to a
server. You can create various types of projects and you can extend cartridges that
you purchase with your own projects. Oracle Communications supports a library of
extensible cartridges that are fully compatible with Design Studio and provide a basis
from which to assemble solutions.

provisioning
Identifying the network resources required to enable a service. For example, to
provision a phone service, the service and resource management (SRM) system finds
a phone number. The provisioning data is used during activation to enable the service
on the network.

recognition rule
Rules that enable OSM to validate an incoming order and transform it into an OSM
order format.

related order
An order that contains order items that depend on another order.

reporting interface
A tool for generating reports about OSM orders, tasks, and notifications. The
Reporting Interface augments the reports that are available through the OSM web
clients. See OSM Reporting Interface Guide for more information.

requested delivery date
The date on which an order is requested to be delivered.

resource-facing service (RFS)
A service as it is implemented on the network; for example, an ADSL service. By
contrast, a customer-facing service (CFS) is the service that the customer purchased
and would recognize; for example, Internet service.

revision order
An order that modifies a previously submitted order that is still being processed. For
example, a customer may want to switch to a higher level of service before an order
is completed. Revision orders may require compensation. The system can process

Glossary

Glossary-20

revision orders until the original order reaches its point of no return. A revision order is
sometimes called a supplemental order.

See also follow-on order.

RFS
See resource-facing service (RFS).

role
A set of permissions to access functions in the Task web client and Order
Management web client that can be assigned to users. Functions include viewing
reports, assigning tasks, and querying orders. In addition to granting OSM web client
permissions, you can also grant permissions at the order and task levels. Roles are
created by using Design Studio. The Administration area of the Order Management
web client refers to roles as workgroups, although they are both the same thing.

rule
Rules are defined as part of an order specification to work on data in the order.
Rules are used in many OSM activities to evaluate conditions and determine next
process steps. For example, you can specify to delay the next task in a process until a
specified data element includes a certain value.

rule engine
An OSM processing component that evaluates rule and timer delays for transition to
the next task. The engine is implemented as one or more Oracle database jobs. The
rule engine is configured as one or multiple jobs to improve performance.

sales order
An order received by OSM to obtain a product or products, typically generated by a
CRM system or other order-source system. OSM converts the sales order to OSM
format after which it is referred to as a customer order or as an order.

A sales order is sometimes called an inbound order.

security callback interface
See OSM security callback.

Glossary

Glossary-21

service order
An order processed by an OSM instance acting in the service order management
(SOM) role. Service orders work with service and resource management (SRM)
systems to design services and assign resources.

service order management (SOM)
The OSM system role that processes the service orders. Service orders work
with service and resource management (SRM) systems to design services and
assign resources. OSM in the SOM role receives orders from OSM in the central
order management (COM) role, and sends orders to OSM in the technical order
management (TOM) role.

simple data element
Reusable data types that contain no child dependencies. A simple data element has
no structure, and is associated (directly or indirectly) to a primitive type (int, boolean,
char, and so forth).

SOM
See service order management (SOM).

specification
A blueprint that defines the composition of an entity, including the attributes and
relationships between an entity and other objects. There are different types of
specifications for different types of entities, such as telephone numbers, networks,
customer-facing services, and resources. Specifications are defined in Design Studio
and deployed into runtime environments, where entities can be created based on
them.

In OSM, this may refer specifically to an order specification.

structured data element
Reusable data types that include embedded data types and are containers of simple
data elements and other structured data elements.

subprocess
A process started by another process. A subprocess is used to organize any large
process into smaller more re-usable pieces.

Glossary

Glossary-22

task
An individual step that is required for the processing of an order. Tasks are defined by
the order specification in Design Studio, and can be either a manual task (performed
by human action) or automated task (performed by an automation plug-in).

task state
A state describing the milestones of a task in a process. The task state also
determines how it can be worked on. OSM provides the following task states:
Received, Assigned, and Accepted. You can, however, create your own task states.
For example, you can define a Suspended task state to indicate the progress of
automated tasks, or you can define a Completed task state to indicate that user is
finished with the task and the order is ready to move to the next task in the process.

task status
A representation of how a task can transition to the next step in a process. The task
status shows how the task transitions in a process; for example, if the task transitioned
the process to the next task, or if it caused the process to fail. Changing the status of
the task determines the next step in the order process. The statuses that you define
appear as task transition options in the OSM web clients.

For example, if you have a task called Assign Port, and the two statuses are Port
Available and Port Unavailable, the status determines whether the process can
proceed to the next task. Task status also controls notifications, so when the status
is Port Available, OSM can send a message saying Successful.

Task web client
An OSM GUI application used for monitoring and managing the tasks in an order. This
application is typically used by order processing personnel to ensure that all the tasks
are completed. It is also used by order fallout managers. You can also suspend and
resume orders, cancel orders, and create orders manually.

technical order
An order processed by OSM in the technical order management (TOM) role. Technical
orders work with external systems to implement activation, shipping, installation, and
other fulfillment actions.

technical order management (TOM)
The OSM role that processes technical orders. Technical orders work with external
systems to implement activation, shipping, installation, and other fulfillment actions.
OSM in the TOM role receives orders from OSM in the service order management
(SOM) role.

Glossary

Glossary-23

timer delay
See delay.

TOM
See technical order management (TOM).

transaction
An action taken by the OSM system on an order. For example, the Suspend
Order transaction stops all processing on the order and transitions the order to the
Suspended state. Also called an order state transaction.

Some other transactions are Abort Order, Complete Task, Process Amendment and
Raise Exception. Most transactions perform transitions that change the state of the
order to a different state. However, some transactions do not perform a transition to
another state. For example, the Update Order transaction can make changes to an
order without changing the order's state.

transformation
See order transformation and order item transformation.

trouble ticket (TT)
A request to the trouble ticketing system indicating that an error occurred during the
processing of an order. Different from a fallout task in that trouble tickets come from
front-end systems such as Siebel CRM.

unresolved dependency
A dependency with at least one unmet condition.

validation
See order validation.

WebLogic Server
See Oracle WebLogic Server.

workgroup
A group of users with assigned permissions to access functions in the Task web client
and Order Management web client. Functions include viewing reports, assigning tasks,
and querying orders. In addition to granting OSM web client permissions, you can also
grant permissions at the order and task levels. Workgroups are created with Design

Glossary

Glossary-24

Studio and managed using the Administration area of the Order Management web
client. Design Studio refers to workgroups as roles, although they are the same thing.

worklist
A list of manual tasks assigned to OSM operations personnel who use the Task web
client to manage orders. When an order arrives at a task, it is added to the worklist of
all the members of all the workgroups assigned to work on that task. Users can select
a task from their worklist to view the assigned task in the order process. Worklist also
refers to the main page in the Task web client used for managing orders.

Glossary

Glossary-25

	Contents
	Preface
	Audience
	Documentation Accessibility

	1 Order and Service Management Overview
	Overview of OSM
	About Order Fulfillment Business Processes
	About the OSM System Architecture
	About Creating an Order Fulfillment Process

	2 How OSM Processes Orders
	About Order Processing
	About Customer Orders, Service Orders, and Technical Orders
	About COM, SOM, and TOM

	3 How OSM Creates Orders
	How OSM Receives and Creates Orders
	About the Data in an Incoming Order
	About the Data in an OSM Order
	Data Used for Processing an Order
	About the Order Lifecycle Policy

	4 About Orchestration
	How OSM Generates and Executes an Orchestration Plan
	About Decomposition
	About Dependencies
	About Order Items and Order Components
	Orchestration and COM, SOM, and TOM
	About Order Item Transformation
	About the Design Studio Conceptual Model

	5 About Tasks and Processes
	About Tasks and Processes
	About Manual Tasks
	About Automated Tasks
	About Task States

	6 About Order Management Business Processes
	About OSM and Order Management Business Processes
	About Making Changes to In-flight Orders
	About Submitting Multiple Revisions of an Order
	About Point of No Return

	About Follow-on Orders
	About Determining Order Completion Dates
	About Order Status
	About Notifications
	About Managing Order and Task Fallout
	Managing Changes in Your Business

	7 About Runtime Order Management
	About Managing Orders
	Assigning Tasks to OSM Users
	About Workflow and Workstream Processes
	About the Order Lifecycle Management UI

	About Managing OSM Users
	About Using Behaviors to Customize the Task Web Client

	8 OSM Functional Overview
	OSM Functional Diagram

	Glossary
	activation
	activation task
	amendment processing
	ASAP
	automated task
	automation framework
	automation plug-in
	behaviors
	cartridge
	central order management (COM)
	CFS
	COM
	common fulfillment state
	compensation
	compensation plan
	composite fulfillment state
	control data
	creation task
	CRM
	customer-facing service (CFS)
	customer order
	Data Dictionary
	data element
	data provider
	data schema
	decomposition
	decomposition rule
	default process
	delay
	dependency
	design and assign
	Design Studio
	entity
	event delay
	executable order component
	expected duration
	expected start date
	external fulfillment state
	fallout
	fallout exception
	fallout management
	follow-on order
	fulfillment
	fulfillment function
	fulfillment mode
	fulfillment pattern
	fulfillment state
	fulfillment state map
	fulfillment state mapping
	fulfillment system
	fulfillment topology
	future-dated order
	inbound order
	in-flight changes
	in-flight order
	inter-order dependency
	intra-order dependency
	IP Service Activator
	line item
	lifecycle policy
	JMS queue
	manual task
	mapped fulfillment state
	metadata
	mnemonic
	multi-instance data element
	namespace
	notification
	Oracle Application Integration Architecture (Oracle AIA)
	Oracle Application Integration Architecture (Oracle AIA) Order-to-Activate Cartridges
	Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud)
	Oracle WebLogic Server
	orchestration
	orchestration order
	orchestration plan
	orchestration sequence
	orchestration stage
	order
	order component
	order component ID
	order data
	order data key
	order definition
	order duration
	order entity
	order fallout
	order fulfillment state composition rule set
	order header
	order item
	order item fulfillment state composition rule set
	order item transformation
	order key
	order life cycle
	Order Lifecycle Management UI
	order lifecycle policy
	order line item
	Order Management web client
	order priority
	order recognition
	order reference number
	order specification
	order state
	order state transition
	order template
	order transformation
	order validation
	OSM order management web services API
	OSM security callback
	OSM server
	OSM web clients
	point of no return
	process
	process-based order
	processing granularity
	processing state
	product
	product catalog
	product specification
	project
	provisioning
	recognition rule
	related order
	reporting interface
	requested delivery date
	resource-facing service (RFS)
	revision order
	RFS
	role
	rule
	rule engine
	sales order
	security callback interface
	service order
	service order management (SOM)
	simple data element
	SOM
	specification
	structured data element
	subprocess
	task
	task state
	task status
	Task web client
	technical order
	technical order management (TOM)
	timer delay
	TOM
	transaction
	transformation
	trouble ticket (TT)
	unresolved dependency
	validation
	WebLogic Server
	workgroup
	worklist

