
Oracle® Communications Order and
Service Management
Cloud Native Deployment Guide

Release 7.4.1
F32157-03
May 2021

Oracle Communications Order and Service Management Cloud Native Deployment Guide, Release 7.4.1

F32157-03

Copyright © 2020, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

1 Overview of the OSM Cloud Native Deployment

About the OSM Cloud Native Deployment 1-1

OSM Cloud Native Architecture 1-1

About the WebLogic Domain 1-2

About Kubernetes Custom Resource Definitions (CRD) and Domain
Configuration Config Map 1-3

About Oracle WebLogic Server Deploy Tooling (WDT) 1-4

About Projects and Instances 1-4

About Specification Layers 1-4

About Helm Overrides 1-5

About the OSM Cloud Native Toolkit 1-5

2 Planning and Validating Your Cloud Environment

Required Components for OSM Cloud Native 2-1

Planning Your Cloud Native Environment 2-2

Setting Up Your Kubernetes Cluster 2-2

Synchronizing Time Across Servers 2-4

Provisioning Oracle Multitenant Container Database (CDB) 2-4

Provisioning an Empty PDB 2-4

Provisioning a Seed OSM PDB 2-7

About Container Image Management 2-7

Installing Helm 2-7

Setting Up Oracle WebLogic Server Kubernetes Operator 2-8

About Load Balancing and Ingress Controller 2-9

Using Domain Name System (DNS) 2-10

Configuring Kubernetes Persistent Volumes 2-12

About NFS-based Persistence 2-12

iii

About Authentication 2-13

Management of Secrets 2-13

Using Kubernetes Monitoring Toolchain 2-14

About Application Logs and Metrics Toolchain 2-14

Role of Continuous Integration (CI) Pipelines 2-15

Role of Continuous Delivery (CD) Pipelines 2-15

Planning Your Container Engine for Kubernetes (OKE) Cloud Environment 2-16

Compute Disk Space Requirements 2-17

Connectivity Requirements 2-17

Using Load Balancer as a Service (LBaaS) 2-17

About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones 2-18

Using Persistent Volumes and File Storage Service (FSS) 2-18

Leveraging Oracle Cloud Infrastructure Services 2-19

Validating Your Cloud Environment 2-19

Performing a Smoke Test 2-19

Validating Common Building Blocks in the Kubernetes Cluster 2-21

Running Oracle WebLogic Kubernetes Operator Quickstart 2-24

3 Creating OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder 3-1

Prerequisites for Creating OSM Images 3-2

Configuring the OSM Cloud Native Images 3-2

Creating OSM Cloud Native Images 3-5

4 Creating a Basic OSM Cloud Native Instance

Installing the OSM Cloud Native Artifacts and the Toolkit 4-1

Cloning the WebLogic Kubernetes Operator (WKO) GIT Repository 4-2

Installing WebLogic Kubernetes Operator (WKO) and Traefik Container Images 4-2

Installing the WebLogic Kubernetes Operator Container Image 4-3

Installing the Traefik Container Image 4-3

Creating a Basic OSM Instance 4-4

Setting Environment Variables 4-4

Registering the Namespace 4-5

Creating Secrets 4-5

Assembling the Specifications 4-7

Installing the OSM and RCU Schemas 4-7

Configuring the Project Specification 4-10

Tuning the Project Specification 4-11

Configuring the Instance Specification 4-13

iv

Creating an Ingress 4-14

Creating an OSM Instance 4-15

Validating the OSM Instance 4-16

Scaling the OSM Application Cluster 4-17

Deploying the Sample Cartridge 4-18

Submitting Orders 4-19

Deleting and Recreating Your OSM Instance 4-19

Cleaning Up the Environment 4-20

Troubleshooting Issues with the Scripts 4-21

Next Steps 4-22

5 Planning Infrastructure

Sizing Considerations 5-1

Managing Configuration as Code 5-1

Creating Source Control Repository 5-2

Managing OSM Instances 5-2

Deciding on the Scope 5-2

About the Repository Directory Structure 5-2

Deployment Considerations 5-4

Setting the Repository Path During Instance Creation 5-4

Setting Up Automation 5-4

Securing Operations in Kubernetes Cluster 5-8

6 Creating Your Own OSM Cloud Native Instance

Configuring OSM Runtime Parameters 6-1

Preparing Cartridges 6-2

Working with Kubernetes Secrets 6-4

About Mandatory Secrets 6-5

About Optional Secrets 6-5

About Custom Secrets 6-6

Accommodating the Scope of Secrets 6-7

Mechanism for Creating Custom Secrets 6-9

Adding JMS Queues and Topics 6-10

Generating Error Queues for Custom Queues and Topics 6-12

Creating a JMS Template 6-12

Working with Cartridges 6-13

Deploying Cartridges Using the OSM Cloud Native Toolkit 6-14

Deploying Cartridges Using Design Studio 6-20

v

Provisioning Cartridge User Accounts 6-21

7 Extending the WebLogic Server Deploy Tooling (WDT) Model

About the Custom WDT Extension Mechanism 7-1

Using the WDT Model Tools 7-1

WDT Discover Domain Tool 7-1

WDT Validate Model Tool 7-2

Common WDT Extension Mechanism 7-3

Using the Sample Scripts to Extend the WDT Model 7-5

Adding a JDBC Datasource 7-6

Adding a JMS System Resource 7-7

Deploying Entities to an OSM WebLogic Domain 7-8

Extending the WDT Metadata for an External Authenticator 7-11

Accessing Kubernetes Secrets from WDT Metadata 7-13

Troubleshooting WDT Issues 7-14

8 Exploring Alternate Configuration Options

Setting Up Authentication 8-1

Working with Shapes 8-4

Creating Custom Shapes 8-5

Injecting Custom Configuration Files 8-6

Choosing Worker Nodes for Running OSM Cloud Native 8-7

Working with Ingress, Ingress Controller, and External Load Balancer 8-8

Using an Alternate Ingress Controller 8-9

Reusing the Database State 8-11

Recreating an Instance 8-11

Creating a New Instance 8-12

Setting Up Persistent Storage 8-14

Setting Up Database Optimizer Statistics 8-15

Leveraging Oracle WebLogic Server Active GridLink 8-16

Managing Logs 8-16

Managing OSM Cloud Native Metrics 8-17

Configuring Prometheus for OSM Cloud Native Metrics 8-17

Viewing OSM Cloud Native Metrics Without Using Prometheus 8-18

Viewing OSM Cloud Native Metrics in Grafana 8-18

Exposed OSM Order Metrics 8-18

Managing WebLogic Monitoring Exporter (WME) Metrics 8-21

Generating the WME WAR File 8-22

Deploying the WME WAR File 8-22

vi

Enabling Prometheus for WebLogic Monitoring Exporter (WME) Metrics 8-22

Configuring the Prometheus Scrape Job for WME Metrics 8-23

Viewing WebLogic Monitoring Exporter Metrics in Grafana 8-23

9 Integrating OSM

Connectivity With Traditional OSM Instances 9-1

Connectivity With OSM Cloud Native 9-2

Connectivity Between the Building Blocks 9-3

Inbound HTTP Connectivity 9-4

Inbound JMS Connectivity 9-5

Inbound JMS Connectivity Within the Same Kubernetes Cluster 9-5

Outbound HTTP Connectivity 9-6

Outbound JMS Connectivity 9-7

Configuring SAF 9-7

Applying the WebLogic Patch for External Systems 9-10

Configuring SAF On External Systems 9-11

Setting Up Secure Communication with SSL 9-11

Configuring Secure Incoming Access with SSL 9-11

Generating SSL Certificates for Incoming Access 9-12

Setting Up OSM Cloud Native for Incoming Access 9-12

Configuring Incoming HTTP and JMS Connectivity for External Clients 9-14

Configuring Access to External SSL-Enabled Systems 9-15

Loading Certificates for Outgoing Access 9-15

Enabling SSL on an External WebLogic Domain 9-16

Setting Up OSM Cloud Native for Outgoing Access 9-17

Adding Additional Certificates to an Existing Trust 9-19

Debugging SSL 9-19

10

Running the SAF Sample for OSM Cloud Native

Preparing the WebLogic System to Run the Emulator 10-2

Deploying the Emulator on the WebLogic System 10-3

Deploying the SimpleProvisioning Sample Cartridge 10-3

Preparing the OSM Cloud Native Instance 10-3

Validating the SAF Endpoints 10-5

Submitting Orders 10-6

Submitting Orders with HTTP 10-6

Submitting Orders with T3 over HTTP 10-6

vii

11

Upgrading the OSM Cloud Native Environment

Rolling Restart 11-2

Identifying Your Upgrade Path 11-2

Offline Change Upgrade Paths 11-4

Online Change Upgrade Paths 11-5

Exceptions 11-6

Unsupported Tasks 11-6

OSM Cloud Native Upgrade Procedures 11-6

PDB Upgrade Procedure 11-7

OSM Application Upgrade 11-7

Offline Cartridge Deployment 11-7

Online Cartridge Deployment 11-8

Upgrades to Infrastructure 11-8

Miscellaneous Upgrade Procedures 11-10

Running Operational Procedures 11-10

Triggering Introspection 11-11

Scaling Down the Cluster 11-11

Scaling Up the Cluster 11-11

Restarting the Instance 11-11

Fast Delete 11-12

Upgrade Path Flow Chart 11-13

12

Moving to OSM Cloud Native from a Traditional Deployment

Supported Releases 12-1

Performing Pre-move and Post-move Tasks 12-1

About the Move Process 12-1

Pre-move Development Activities 12-3

Moving to an OSM Cloud Native Deployment 12-4

Quiescing the Traditional Instance of OSM 12-5

Exporting and Importing JMS Messages 12-5

Exporting JMS Messages 12-5

Importing JMS Messages 12-6

Upgrading the Database 12-6

Upgrading the Database Server 12-6

Preparing the Required Database Entities for OSM Cloud Native 12-7

Upgrading the OSM Schema and Cartridges 12-7

Switching Integration with Upstream Systems 12-8

Reverting to Your OSM Traditional Deployment 12-8

viii

Cleaning Up 12-8

13

Debugging and Troubleshooting

Setting Up Java Flight Recorder (JFR) 13-1

Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console 13-2

Recovering an OSM Cloud Native Database Schema 13-7

Finding the Issue that Caused the OSM Cloud Native Database Schema
Upgrade Failure 13-8

Restarting the OSM Database Schema Upgrade from the Point of Failure 13-9

Resolving Improper JMS Assignment 13-10

Common Problems and Solutions 13-11

Known Issues 13-17

A Differences Between OSM Cloud Native and OSM Traditional
Deployments

ix

Preface

This document describes how to install and administer Oracle Communications Order
and Service Management (OSM) Cloud Native Deployment.

Audience
This document is intended for DevOps administrators and those involved in installing
and maintaining Oracle Communications Order and Service Management (OSM)
Cloud Native Deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the OSM Cloud Native
Deployment

Get an overview of Oracle Communications Order and Service Management (OSM)
cloud native deployment, architecture, and the OSM cloud native toolkit.

This chapter provides an overview of Oracle Communications Order and Service
Management (OSM) deployed in a cloud native environment using container images
and a Kubernetes cluster.

About the OSM Cloud Native Deployment
You can deploy OSM in a Kubernetes-based shared cloud (cluster) while implementing
modern DevOps “Configuration as Code” principles to manage system configuration
in a consistent manner. You can automate system lifecycle management. You set up
your own cloud native environment and can then use the OSM cloud native toolkit to
automate the deployment of OSM instances. By leveraging the pre-configured Helm
charts, you can deploy OSM instances quickly ensuring your services are up and
running in far less time than a traditional deployment.

OSM cloud native supports the following deployment models:

• On Private Kubernetes Cluster: OSM cloud native is certified for a general
deployment of Kubernetes.

• On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): OSM
cloud native is certified to run on Oracle's hosted Kubernetes OKE service.

OSM Cloud Native Architecture
This section describes and illustrates the OSM cloud native architecture and the
deployment environment.

The following diagram illustrates the OSM cloud native architecture.

1-1

Figure 1-1 OSM Cloud Native Architecture

The OSM cloud native architecture requires components such as the Kubernetes
cluster and WebLogic Kubernetes Operator, which are under your control to install and
configure. A single WebLogic Operator can manage multiple OSM domains in multiple
namespaces. Each domain is a dynamic cluster with multiple managed servers that is
configured for integration with both optional and required components. The OSM cloud
native artifacts include two container images built using Docker and the OSM cloud
native toolkit.

About the WebLogic Domain
The following diagram illustrates the OSM cloud native deployment environment and
important concepts about producing a WebLogic domain that is capable of supporting
OSM cloud native.

Chapter 1
OSM Cloud Native Architecture

1-2

Figure 1-2 OSM Cloud Native Deployment Environment

In the deployment environment, the Helm chart that is provided with the OSM cloud
native toolkit is deployed into the Kubernetes cluster producing two Kubernetes
resources. These resources are then consumed by the WebLogic Kubernetes
Operator (WKO).

About Kubernetes Custom Resource Definitions (CRD) and Domain
Configuration Config Map

The Kubernetes API provides extensions called custom resources. To understand
more about a Custom Resource Definition (CRD) and why it might be used, see the
Kubernetes CustomResourceDefinition (CRD) documentation at: https://kubernetes.io/
docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

To configure the operation of your WebLogic domain, you set up and configure
your own domain resource. The domain resource does not replace the traditional
configuration of the WebLogic domains found in the domain configuration files, but
instead co-operates with those files to describe the Kubernetes artifacts of the
corresponding domain. Refer to the Oracle WebLogic Kubernetes Operator User
Guide to understand how to use a CRD to describe a WebLogic domain resource.

While the domain resource describes much of the operational details for a domain
such as domain identification, secrets, pod creation, server instances, startup and
shutdown, security, logging, clusters, admin and managed servers, and JVM options,
the details about the more traditional configuration (deployed applications, JMS
Queues, data sources and so on) are provided in a configuration map and are
described using a metadata model specified by the Weblogic Deploy Tooling (WDT).

Chapter 1
OSM Cloud Native Architecture

1-3

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://oracle.github.io/weblogic-kubernetes-operator/userguide/introduction/introduction/
https://oracle.github.io/weblogic-kubernetes-operator/userguide/introduction/introduction/

The OSM cloud native toolkit provides the base configuration to produce these
resources.

About Oracle WebLogic Server Deploy Tooling (WDT)
The WebLogic Server Deploy Tooling (WDT) has the following main purposes:

• It provides a metadata model that describes a WebLogic Server domain
configuration.

• It provides scripts that perform domain lifecycle operations, simplifying the
definition and the creation of domains. This capability provides an alternative to
programmatic ways of defining domain configuration such as WebLogic Scripting
Tool (WLST) or Java Mbeans manipulation.

The OSM cloud native toolkit leverages the WDT metadata model only. It does not use
the scripting capabilities directly.

The toolkit provides the WDT metadata for a domain that is capable of supporting
OSM. The toolkit enables you to easily override much of the base configuration
through the use of Helm charts. Additionally, the toolkit framework allows you to add
supplementary WDT metadata fragments to the domain. WDT provides tools that help
with this task by inspecting an existing domain to produce the WDT metadata required
for the configuration.

For more details about WDT, see the Oracle WebLogic Server Deploy Tooling
documentation on GitHub at: https://github.com/oracle/weblogic-deploy-tooling

About Projects and Instances
A project is a function of OSM. Examples of OSM functions include order management
roles such as SOM and COM. For example, in a COM role, a solution cartridge
contains configuration requirements that dictate how COM processes orders. This
might include the JMS queues for messaging, credentials for communication with
external systems, additional applications deployed to the WebLogic server (external
system emulators), or SAF setup for connectivity to peer systems. All of these
configuration requirements can be scoped to a project.

An instance is a specific flavor of OSM for a given project. Test, development, and
production are all instances of an OSM COM project. Some bits of the configuration
makes more sense to be applied on a per-instance basis. The production instance of
OSM in a COM role uses different values for tuning parameters and may employ a
different logging and metrics strategy than a development instance of COM.

In order to create a running WebLogic domain, the target project and instance must be
determined so that the appropriate configuration can be assembled.

About Specification Layers
The OSM configuration defines the footprint, layout and tuning of OSM. Treating this
as one monolithic configuration is not optimal for sustainability or risk management.
The result is a layered approach to the configuration.

There are three layers defined, each scoping a set of values that are specific to the
function of that layer:

Chapter 1
OSM Cloud Native Architecture

1-4

https://github.com/oracle/weblogic-deploy-tooling

• Project: The project layer contains configuration that is common and applicable
for all instances of an OSM project. Examples of content in this layer are JMS
Queues and external authentication details.

• Instance: The instance layer contains configuration that is unique to each OSM
instance, such as database identity and cluster size.

• Shape: The shape layer defines the hardware resource utilization and the
resulting tuning. Java Heap Size is an example of a configuration value found
in the shape specification.

The layers are implemented as specification files written in YAML:

• project-instance.yaml

• project.yaml

• shape.yaml

You can build a palette of re-usable, common portions of a configuration for a shape
and project. When a new environment is needed, you can pick from this palette,
adding an instance specification, which is unique to a single instance of OSM.

About Helm Overrides
The specification files are consumed in a hierarchical fashion. If a value is found in
multiple specification files (layers), the one further up the hierarchy takes precedence.
This allows the instance specification to have the final control over its configuration
by being able to override a value that is prescribed in either the shape or project
specifications. This also allows Oracle to define sealed, base configuration, while still
providing you the control over the values used for any specific OSM instance.

Following are the specification files, listed in the order of the highest priority to the
lowest:

• project-instance.yaml

• project.yaml

• shape.yaml

• values.yaml

While the specification for an instance points to the specification for the shape to
be used (implying the order here may be out of sequence), the values found in the
specification for the shape are actually loaded for processing before the values in the
specification for the instance.

The instance specification remains the final authority on any values that are found in
multiple specification files.

About the OSM Cloud Native Toolkit
The OSM cloud native toolkit is an archive file that includes the default configuration
files, utility scripts, and samples to deploy OSM in a cloud native environment. With
OSM cloud native, managing the domain configuration as code (CaC) is paramount.
OSM cloud native provides guidance on effective management of this configuration to
ensure that instances can be created in a standardized and repeatable fashion.

Contents of the OSM Cloud Native Toolkit

Chapter 1
About the OSM Cloud Native Toolkit

1-5

The OSM cloud native toolkit contains the following artifacts:

• Helm charts for OSM and OSM database installer:

– The Helm chart for OSM is located in $OSM_CNTK/charts/osm.

– The Helm chart for the OSM DB Installer is located in $OSM_CNTK/charts/
osm-dbinstaller.

• WebLogic Server Deploy Tooling (WDT) metadata model for an OSM WebLogic
domain

• Mechanism to extend the domain and WDT samples and scripts for some
common use cases

• Utility scripts to help with the lifecycle of WebLogic Kubernetes Operator

• Sample scripts to manage pre-requisite secrets. These are not pipeline-friendly.

• Scripts to manage the lifecycle of an OSM instance. These are pipeline friendly.

Chapter 1
About the OSM Cloud Native Toolkit

1-6

2
Planning and Validating Your Cloud
Environment

In preparation for Oracle Communications Order and Service Management (OSM)
cloud native deployment, you must set up and validate pre-requisite software.
This chapter provides information about planning, setting up, and validating the
environment for OSM cloud native deployment.

See the following topics:

• Required Components for OSM Cloud Native

• Planning Your Cloud Native Environment

• Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

• Validating Your Cloud Environment

If you are already familiar with traditional OSM, for important information on the
differences introduced by OSM cloud native, see "Differences Between OSM Cloud
Native and OSM Traditional Deployments".

Required Components for OSM Cloud Native
In order to run, manage, and monitor the OSM cloud native deployment, the following
components and capabilities are required. These must be configured in the cloud
environment:

• Kubernetes Cluster

• Oracle Multitenant Container Database (CDB)

• Container Image Management

• Helm

• Oracle WebLogic Server Kubernetes Operator

• Load Balancer

• Domain Name System (DNS)

• Persistent Volumes

• Authentication

• Secrets Management

• Kubernetes Monitoring Toolchain

• Application Logs and Metrics Toolchain

For details about the required versions of these components, see OSM Compatibility
Matrix.

In order to utilize the full flexibility, reliability and value of the deployment, the following
aspects must also be set up:

2-1

• Continuous Integration (CI) pipelines for custom images and cartridges

• Continuous Delivery (CD) pipelines for creating, scaling, updating, and deleting
instances of the cloud native deployment

Planning Your Cloud Native Environment
This section provides information about planning and setting up OSM cloud native
environment. As part of preparing your environment for OSM cloud native, you
choose, install, and set up various components and services in ways that are best
suited for your cloud native environment. The following sections provide information
about each of those required components and services, the available options that
you can choose from, and the way you must set them up for your OSM cloud native
environment.

Setting Up Your Kubernetes Cluster
For OSM cloud native, Kubernetes worker nodes must be capable of running Linux 7.x
pods with software compiled for Intel 64-bit cores. A reliable cluster must have multiple
worker nodes spread over separate physical infrastructure and a very reliable cluster
must have multiple master nodes spread over separate physical infrastructure.

The following diagram illustrates Kubernetes cluster and the components that it
interacts with.

Figure 2-1 Kubernetes Cluster

OSM cloud native requires:

Chapter 2
Planning Your Cloud Native Environment

2-2

• Kubernetes
To check the version, run the following command:

kubectl version

• Flannel
To check the version, run the following command on the master node running the
kube-flannel pod:

docker images | grep flannel
kubectl get pods --all-namespaces | grep flannel

• Docker
To check the version, run the following command:

docker version

Typically, Kubernetes nodes are not used directly to run or monitor Kubernetes
workloads. You must reserve worker node resources for the execution of Kubernetes
workload. However, multiple users (manual and automated) of the cluster require a
point from which to access the cluster and operate on it. This can be achieved by
using kubectl commands (either directly on command line and shell scripts or through
Helm) or Kubernetes APIs. For this purpose, set aside a separate host or set of hosts.
Operational and administrative access to the Kubernetes cluster can be restricted to
these hosts and specific users can be given named accounts on these hosts to reduce
cluster exposure and promote traceability of actions.

Typically, the Continuous Delivery pipeline automation deploys directly on a set of
such operations hosts (as in the case of Jenkins) or leverage runners deployed on
such operations hosts (as in the case of GitLab CI). These hosts must run Linux,
with all interactive-use packages installed to support tools such as Bash, Wget, cURL,
Hostname, Sed, AWK, cut, and grep. An example of this is the Oracle Linux 7.6 image
(Oracle-Linux-7.6-2019.08.02-0) on Oracle Cloud Infrastructure.

In addition, you need the appropriate tools to connect to your overall environment,
including the Kubernetes cluster. For instance, for a Container Engine for Kubernetes
(OKE) cluster, you must install and configure the Oracle Cloud Infrastructure
Command Line Interface.

Additional integrations may need to include LDAP for users to be able to login to
this host, appropriate NFS mounts for home directories, security lists and firewall
configuration for access to overall environment, and so on.

Kubernetes worker nodes should be configured with the recommended operating
system kernel parameters listed in "Preparing the Operating System" in the OSM
Installation Guide, or if they are engineered systems, "Installing OSM on Engineered
Systems" of the OSM Installation Guide. Use the documented values as the minimum
values to set for each parameter. Ensure that OS kernel parameter configuration is
persistent, so as to survive a reboot.

The basic OSM cloud native instance, for which specification files are provided with
the toolkit, requires up to 12 GB of RAM and 3 CPUs, in terms of Kubernetes
worker node capacity. A small increment is needed for WebLogic Kubernetes Operator
and Traefik. Refer to those projects for details. For detailed breakdown of CPU and
memory capacity requirements, see "Working with Shapes."

Chapter 2
Planning Your Cloud Native Environment

2-3

Synchronizing Time Across Servers
It is important that you synchronize the date and time across all machines that
are involved in testing, including client test drivers and Kubernetes worker nodes.
Oracle recommends that you do this using Network Time Protocol (NTP), rather than
manual synchronization, and strongly recommends it for Production environments.
Synchronization is important in inter-component communications and in capturing
accurate run-time statistics.

Provisioning Oracle Multitenant Container Database (CDB)
OSM cloud native architecture is best supported by the multitenant architecture that
enables an Oracle database to function as a multitenant container database (CDB). A
container database is either a Pluggable Database (PDB) or the root container. The
root container is a collection of schemas, schema objects, and non-schema objects
to which all PDBs belong. A PDB container for OSM cloud native contains the OSM
schema and RCU schema. Each instance of OSM has its own PDB. OSM cloud native
requires access to PDBs in an Oracle 19c Multitenant database. For more information
about the benefits of Oracle Multitenant Architecture for database consolidation, see
Oracle Database Concepts.

You can provision a CDB in an on-premise installation by following the instructions
in Oracle Database Installation Guide for Linux. Alternatively, you can set it up as an
Oracle Cloud Infrastructure DB system. For details on the supported versions, see
OSM Compatibility Matrix. The provisioning process can vary based on the needs and
the setup of your organization.

OSM cloud native requires certain settings to be configured at the CDB level. You can
find those details in "Database Parameters" in OSM Installation Guide.

CDB hosts should be configured with OS kernel parameters as per Knowledge Article
1587357.1 on My Oracle Support. Use the recommended values specified in the KM
article as the minimum values. Ensure that OS parameter configuration is persistent so
as to survive a reboot.

Once the CDB is ready, you can follow one of the following strategies for the PDB:

Provisioning an Empty PDB
To create an empty PDB:

1. Run the following SQL commands using the sys dba account for the CDB:

CREATE PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
ADMIN USER _replace_this_text_with_admin_name_ IDENTIFIED BY
"_replace_this_text_with_real_admin_password_" DEFAULT TABLESPACE
"USERS" DATAFILE '+DATA' SIZE 5M REUSE
AUTOEXTEND ON;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
open instances = all;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
save state instances = all;
alter session set
container=_replace_this_text_with_db_service_name_;
GRANT CREATE ANY CONTEXT TO SYS WITH ADMIN OPTION;

Chapter 2
Planning Your Cloud Native Environment

2-4

GRANT CREATE ANY CONTEXT TO _replace_this_text_with_admin_name_
WITH ADMIN OPTION;
GRANT CREATE ANY VIEW TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT CREATE SNAPSHOT TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT CREATE SYNONYM TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT CREATE TABLE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT CREATE USER TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE VIEW TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE materialized view to
_replace_this_text_with_admin_name_;
GRANT GRANT ANY PRIVILEGE TO _replace_this_text_with_admin_name_
WITH ADMIN OPTION;
GRANT QUERY REWRITE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT UNLIMITED TABLESPACE TO _replace_this_text_with_admin_name_
WITH ADMIN OPTION;
GRANT SELECT ON SYS.DBA_TABLESPACES TO
_replace_this_text_with_admin_name_ WITH GRANT OPTION;
GRANT SELECT ON SYS.V_$PARAMETER TO
_replace_this_text_with_admin_name_ WITH GRANT OPTION;
GRANT SELECT on SYS.dba_jobs to _replace_this_text_with_admin_name_
with grant option;
GRANT "CONNECT" TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT "DBA" TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT "EXP_FULL_DATABASE" TO _replace_this_text_with_admin_name_
WITH ADMIN OPTION;
GRANT "IMP_FULL_DATABASE" TO _replace_this_text_with_admin_name_
WITH ADMIN OPTION;
GRANT "RESOURCE" TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT EXECUTE ON SYS.DBMS_LOCK TO
_replace_this_text_with_admin_name_ WITH GRANT OPTION;
grant execute on utl_file to _replace_this_text_with_admin_name_
with grant option;
grant sysdba to _replace_this_text_with_admin_name_;
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'tag' FORCE
KEYSTORE IDENTIFIED BY "sys_password" WITH BACKUP USING
'db_service_name_backup';

2. Log into the PDB as the sys dba account for the PDB (defined by the
"_replace_this_text_with_admin_name_" parameter in the above commands) and
adjust the PDB tablespace by running the following command:

Chapter 2
Planning Your Cloud Native Environment

2-5

Note:

In the command, replace DATA with the proper name from
v$asm_diskgroup.

create tablespace osm datafile '+DATA' size 1024m reuse autoextend on next
64m;
ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE OSM;

Choosing Tablespaces

OSM cloud native supports the OSM best-practice of separate tablespaces for order
data, order data indexes, OSM model data, and OSM model data indexes. Production
and production-like instances must utilize this separation.

For a simple instance, such as a developer instance, separate tablespaces are not
necessary. The default tablespace can be named as the tablespace for each of these
categories in the OSM cloud native specification files.

To create PDBs for such instances, additional tablespaces can be added using the
"sys dba" account for the PDB:

create tablespace osm_model datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_model_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_order datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_order_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;

Choose tablespace names and datafiles as per your database management
guidelines. Choose the initial tablespace size depending on the desired OSM partition
size as per the following table:

Table 2-1 Partition Sizes and Tablespace Sizes

Partition Size Tablespace Size

2000000 (2 million) > or = 1024 MB
10000000 (10 million) > or = 10240 MB
20000000 (20 million) > or = 20480 MB

The tablespace names and the partition size chosen will be required to populate the
OSM cloud native specification files for the instance that connects to this PDB.

Oracle recommends using the smaller partition size for developer instances and small
test instances. Larger partition sizes are applicable for heavy-duty test instances (for
example, for stress tests and performance tests) and production-grade instances.

If securing OSM data is a requirement, the recommended approach is to use
transparent data encryption (TDE) to encrypt the tablespaces used to store OSM and
WebLogic data. For more details, see OSM - Encrypting Database Tablespaces and
WebLogic Protocols (Doc ID 2399723.1) knowledge article on My Oracle Support.

Chapter 2
Planning Your Cloud Native Environment

2-6

In that context, note that all OSM data is stored in tablespaces and, as a result, it
is not necessary to supplement TDE encryption by setting the database parameter
db_securefile to PREFERRED. While OSM supports PREFERRED, which has
been the default since 12c, it is sufficient to set db_securefile to PERMITTED.

Provisioning a Seed OSM PDB
You can create a "master PDB" for OSM cloud native for a particular project or a
subset of users by cloning a seed PDB and then running the OSM cloud native DB
installer on it to deploy the OSM schema. At this point, you can deploy your cartridges
to this PDB. The resulting PDB can serve as a master that you can clone for each
instance that needs those set of cartridges.

You can also add the Fusion MiddleWare RCU DB schema to the master PDB.
However, the master PDB must never be directly used in an OSM cloud native
instance, as the RCU DB schema contents are inextricably linked to that instance.
OSM cloud native instances must only use clones of the master PDB.

The advantage of a master PDB for OSM cloud native is that it standardizes a PDB for
a significant number of users, and eliminates the need to perform some of the tasks
related to creating instances in pipeline.

About Container Image Management
An OSM cloud native deployment generates container images for OSM and OSM
database installer. Additionally, images are downloaded for WebLogic Kubernetes
Operator and Traefik (depending on the choice of Ingress controllers).

Oracle highly recommends that you create a private container repository and ensure
that all nodes have access to that repository. Images are saved in this repository
and all nodes would then have access to the repository. This may require networking
changes (such as routes and proxy) and include authentication for logging in to the
repository. Oracle recommends that you choose a repository that provides centralized
storage and management of not just container images, but also other artifacts such as
OSM cartridge PAR files, Fusion MiddleWare patch ZIP files, and so on, as needed.

Failing to ensure that all nodes have access to a centralized repository will mean
that images have to be synced to the hosts manually or through custom mechanisms
(for example, using scripts), which are error-prone operations as worker nodes are
commissioned, decommissioned or even rebooted. When an image on a particular
worker node is not available, then the pods using that image are either not scheduled
to that node, wasting resources, or fail on that node. If image names and tags are
kept constant (such as myapp:latest), the pod may pick up a pre-existing image of the
same name and tag, leading to unexpected and hard to debug behaviors.

Installing Helm
OSM cloud native requires Helm, which delivers reliability, productivity, consistency,
and ease of use.

In an OSM cloud native environment, using Helm enables you to achieve the following:

• You can apply custom domain configuration by using a single and consistent
mechanism, which leads to an increase in productivity. You no longer need
to apply configuration changes through multiple interfaces such as WebLogic
Console, WLST, and WebLogic Server MBeans.

Chapter 2
Planning Your Cloud Native Environment

2-7

• Changing the OSM domain configuration in the traditional installations is a manual
and multi-step process which may lead to errors. This can be eliminated with Helm
because of the following features:

– Helm Lint allows pre-validation of syntax issues before changes are applied

– Multiple changes can be pushed to the running instance with a single upgrade
command

– Configuration changes may map to updates across multiple Kubernetes
resources (such as domain resources, config maps and so on). With Helm,
you merely update the Helm release and its responsibility to determine which
Kubernetes resources are affected.

• Including configuration in Helm charts allows the content to be managed as
code, through source control, which is a fundamental principle of modern DevOps
practices.

In order to co-exist with older Helm versions in production environments, OSM
requires Helm 3.1.3 or later saved as helm in PATH.

The following text shows sample commands for installing and validating Helm:

$ cd some-tmp-dir
$ wget https://get.helm.sh/helm-v3.4.1-linux-amd64.tar.gz
$ tar -zxvf helm-v3.4.1-linux-amd64.tar.gz

Find the helm binary in the unpacked directory and move it to its
desired destination. You need root user.
$ sudo mv linux-amd64/helm /usr/local/bin/helm

Optional: If access to the deprecated Helm repository "stable" is
required, uncomment and run
helm repo add stable https://charts.helm.sh/stable

verify Helm version
$ helm version
version.BuildInfo{Version:"v3.4.1",
GitCommit:"c4e74854886b2efe3321e185578e6db9be0a6e29",
GitTreeState:"clean", GoVersion:"go1.14.11"}

Helm leverages kubeconfig for users running the helm command to access the
Kubernetes cluster. By default, this is $HOME/.kube/config. Helm inherits the
permissions set up for this access into the cluster. You must ensure that if RBAC
is configured, then sufficient cluster permissions are granted to users running Helm.

Setting Up Oracle WebLogic Server Kubernetes Operator
Oracle WebLogic Server Kubernetes Operator provides WebLogic servers and
clusters in a manner that is compatible with Kubernetes. The WebLogic Server
Kubernetes Operator software is available as a container image. For OSM cloud
native, you must download the WebLogic Server Kubernetes Operator container
image and clone the WebLogic Server Kubernetes Operator GitHub repository.

Chapter 2
Planning Your Cloud Native Environment

2-8

To clone the repository, run the following commands:

$ cd path_to_wlsko_repository
$ git clone https://github.com/oracle/weblogic-kubernetes-operator.git
$ cd weblogic-kubernetes-operator
$ git checkout tags/v3.1.0
This is the tag of v3.1.0 GA

For details about the required version of WKO, see OSM Compatibility Matrix.

After cloning the repository, set the WLSKO_HOME environment variable to the location
of the WKO git repository, by running the following command:

$ export WLSKO_HOME=path-to-wlsko-repo/weblogic-kubernetes-operator

Note:

Developers can add the export command to ~/.bashrc or ~/.profile so that it
is always set.

For more details on WKO, see Oracle WebLogic Kubernetes Operator User Guide.

For instructions on validating the operation of the WebLogic Server Kubernetes
Operator on your Kubernetes cluster, see "Validating Your Cloud Environment".

About Load Balancing and Ingress Controller
Each OSM cloud native instance is a WebLogic cluster running in Kubernetes. To
access application endpoints, you must enable HTTP/S connectivity to the cluster
through an appropriate mechanism. This mechanism must be able to route traffic
to the appropriate OSM cloud native instance in the Kubernetes cluster (as there
can be many) and must be able to distribute traffic to the multiple Managed Server
pods within a given instance. Each instance must be insulated from the traffic of the
other instance. Distribution within an instance must allow for session stickiness so
that OSM client UIs bind to a managed server wherever possible and therefore not
require arbitrary re-authentication by the user. In the case of HTTPS, the load balance
mechanism must enable TLS and handle it appropriately.

For OSM cloud native, an ingress controller is required to expose appropriate services
from the OSM cluster and direct traffic appropriately to the cluster members. An
external load balancer is an optional add-on.

The ingress controller monitors the ingress objects created by the OSM cloud native
deployment, and acts on the configuration embedded in these objects to expose OSM
HTTP and HTTPS services to the external network. This is achieved using NodePort
services exposed by the ingress controller.

The ingress controller must support:

• Sticky routing (based on standard session cookie).

• Load balancing across the OSM managed servers (back-end servers).

• SSL termination and injecting headers into incoming traffic.

Chapter 2
Planning Your Cloud Native Environment

2-9

https://oracle.github.io/weblogic-kubernetes-operator/userguide/introduction/introduction/

Examples of such ingress controllers include Traefik, Voyager, and Nginx. The OSM
cloud native toolkit provides samples and documentation that use Traefik as the
ingress controller.

An external load balancer serves to provide a highly reliable singe-point access into
the services exposed by the Kubernetes cluster. In this case, this would be the
NodePort services exposed by the ingress controller on behalf of the OSM cloud
native instance. Using a load balancer removes the need to expose Kubernetes
node IPs to the larger user base, and insulates the users from changes (in terms
of nodes appearing or being decommissioned) to the Kubernetes cluster. It also
serves to enforce access policies. The OSM cloud native toolkit includes samples
and documentation that show integration with Oracle Cloud Infrastructure LBaaS when
Oracle OKE is used as the Kubernetes environment.

Using Traefik as the Ingress Controller

If you choose to use Traefik as the ingress controller, the Kubernetes environment
must have the Traefik ingress controller installed and configured.

For details about the required version of Traefik, see OSM Compatibility Matrix.

To install and configure Traefik, do the following:

Note:

Set kubernetes.namespaces and the chart version specifically using
command-line.

1. Ensure that the following tasks are completed:

• Docker daemons in your Kubernetes environment are configured for access to
Docker Hub.

• The Helm repository is updated successfully as per the Helm section in this
chapter.

2. Run the following commands:

$ export TRAEFIK_NS=traefik
$ kubectl create namespace $TRAEFIK_NS
$ helm repo add traefik https://helm.traefik.io/traefik
$ helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \
 --version 9.11.0 \
 --values $OSM_CNTK/samples/charts/traefik/values.yaml \
 --set "kubernetes.namespaces={$TRAEFIK_NS}"

Once the installation of Helm succeeds, the Traefik operator monitors the namespaces
listed in its kubernetes.namespaces field for Ingress objects.

Using Domain Name System (DNS)
A Kubernetes cluster can have many routable entrypoints. Common choices are:

• External load balancer (IP and port)

Chapter 2
Planning Your Cloud Native Environment

2-10

• Ingress controller service (master node IPs and ingress port)

• Ingress controller service (worker node IPs and ingress port)

You must identify the proper entrypoint for your Kubernetes cluster.

OSM cloud native requires hostnames to be mapped to routable entrypoints into
the Kubernetes cluster. Regardless of the actual entrypoints (external load balancer,
Kubernetes master node, or worker nodes), users who need to communicate with the
OSM cloud native instances require name resolution.

The access hostnames take the prefix.domain form. prefix and domain are determined
by the specifications of the OSM cloud native configuration for a given deployment.
prefix is unique to the deployment, while domain is common for multiple deployments.

The default domain in OSM cloud native toolkit is osm.org.

For a particular deployment, as an example, this results in the following addresses:

• dev1.wireless.osm.org (for HTTP access)

• admin.dev1.wireless.osm.org (for WebLogic Console access)

• t3.dev1.wireless.osm.org (for T3 JMS/SAF access)

These "hostnames" must be routable to the entry point of your Ingress Controller or
Load Balancer. For a basic validation, on the systems that access the deployment, edit
the local hosts file to add the following entry:

Note:

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

ip_address dev1.wireless.osm.org admin.dev1.wireless.osm.org
t3.dev1.wireless.osm.org

However, the solution of editing the hosts file is not easy to scale and co-ordinate
across multiple users and multiple access environments. A better solution is to
leverage DNS services at the enterprise level.

With DNS servers, a more efficient mechanism can be adopted. The mechanism is the
creation of a domain level A-record:

A-Record: *.osm.org IP_address

If the target is not a load balancer, but the Kubernetes cluster nodes themselves, a
DNS service can also insulate the user from relying on any single node IP. The DNS
entry can be configured to map *.osm.org to all the current Kubernetes cluster node
IP addresses. You must update this mapping as the Kubernetes cluster changes with
adding a new node, removing an old node, reassigning the IP address of a node, and
so on.

With these two approaches, you can set up an enterprise DNS once and modify it only
infrequently.

Chapter 2
Planning Your Cloud Native Environment

2-11

Configuring Kubernetes Persistent Volumes
Typically, runtime artifacts in OSM cloud native are created within the respective pod
filesystems. As a result, they are lost when the pod is deleted. These artifacts include
application logs, Fusion MiddleWare logs, and JVM Java Flight Recorder data.

While this impermanence may be acceptable for highly transient environments, it is
typically desirable to have access to these artifacts outside of the lifecycle of the
OSM could native instance. It is also highly recommended to deploy a toolchain for
logs to provide a centralized view with a dashboard. To allow for artifacts to survive
independent of the pod, OSM cloud native allows for them to be maintained on
Kubernetes Persistent Volumes.

OSM cloud native does not dictate the technology that supports Persistent Volumes,
but provides samples for NFS-based persistence. Additionally, for OSM cloud native
on an Oracle OKE cloud, you can use persistence based on File Storage Service
(FSS).

Regardless of the persistence provider chosen, persistent volumes for OSM cloud
native use must be configured:

• With accessMode ReadWriteMany

• With capacity to support intended workload

Log size and retention policies can be configured as part of the shape specification.

About NFS-based Persistence
For use with OSM cloud native, one or more NFS servers must be designated.

It is highly recommended to split the servers as follows:

• At least one for the development instances and the non-sensitive test instances
(for example, for Integration testing)

• At least one for the sensitive test instances (for example, for Performance testing,
Stress testing, and production staging)

• One for the production instance

In general, ensure that the sensitive instances have dedicated NFS support, so that
they do not compete for disk space or network IOPS with others.

The exported filesystems must have enough capacity to support the intended
workload. Given the dynamic nature of the OSM cloud native instances, and the fact
that the OSM logging volume is highly dependent on cartridges and on the order
volume, it is prudent to put in place a set of operational mechanisms to:

• Monitor disk usage and warn when the usage crosses a threshold

• Clean out the artifacts that are no longer needed

If a toolchain such as ELK Stack picks up this data, then the cleanup task can be built
into this process itself. As artifacts are successfully populated into the toolchain, they
can be deleted from the filesystem. You must take care to only delete log files that
have rolled over.

Chapter 2
Planning Your Cloud Native Environment

2-12

About Authentication
OSM cloud native requires the use of two-level LDAP with embedded first and then
external next. All OSM system users are created in embedded LDAP during instance
creation. It is highly recommended that all system users and all users configured for
automation tasks and API servicing be created in embedded LDAP for performance
and reliability reasons. Human users are recommended to be served via access to an
external (corporate) LDAP system.

For complete details on the requirement of an external authenticator, see "Using
WebLogic Server Authenticators with OSM" in OSM System Administrator's Guide.
When OSM cloud instances use external authentication, ensure that you create
separate users and groups for each environment (or class of environments) in
the external LDAP service. The specifications of this depend on the LDAP service
provider.

OSM cloud native toolkit provides a sample configuration that uses OpenLDAP to
demonstrate how to integrate with external LDAP server for human users. For details
on setting up the OpenLDAP server and the layout of the data within it, see "Setting
Up Authentication."

Management of Secrets
OSM cloud native leverages Kubernetes Secrets to store sensitive information
securely. This sensitive information is, at a minimum, the database credentials and
the WebLogic administrator credentials. Additional credentials may be stored to
authenticate with the external LDAP system. Your custom cartridges may need to
communicate with other systems, such as Unified Inventory Management (UIM). The
credentials for such systems too are managed as Kubernetes Secrets.

These secrets need to be secured over their lifecycle by the Kubernetes cluster
administration. RBAC should be used to restrict the entities that can describe, view, or
mount these credentials.

OSM cloud native scripts assume that a set of pre-requisite secrets exist when they
are invoked. As such, creation of the secrets is a pre-requisite step in the pipeline.
OSM cloud native toolkit provides a sample script to create some of the common
secrets it needs, but this script is interactive and therefore not suitable for Continuous
Delivery (CD) automation pipelines. The sample script serves to provide a basic
mechanism to add secrets and illustrates the names and structure of the secrets that
OSM cloud native requires.

You can create the secrets manually by using the sample script for each instance. The
sample can be augmented to include additional custom secrets. This method requires
exposing RBAC for creating secrets for a larger group of users, which might not be
desirable. It can also result in human errors, such as mistyping a password, which will
only be detected during the runtime of the OSM instance.

A more sustainable and scalable option is using a secrets management system. There
are several secrets management systems available for use with Kubernetes. Choose a
system that offers a secure API (to be called from the CD pipeline) and populates the
sensitive information as secrets into Kubernetes, as opposed to populating into pods
through environment variables. The installation, configuration, and validation of such a
secrets management system is a pre-requisite to uptake OSM cloud native. For details

Chapter 2
Planning Your Cloud Native Environment

2-13

on setting up the secrets management system, see the documentation of the system
that you adopt.

Using Kubernetes Monitoring Toolchain
A multi-node Kubernetes cluster with multiple users and an ever-changing workload
requires a capable set of tools to monitor and manage the cluster. There are tools
that provide data, rich visualizations and other capabilities such as alerts. OSM cloud
native does not require any particular system to be used, but recommends using such
a monitoring, visualization and alerting capability.

For OSM cloud native, the key aspects of monitoring are:

• Worker capacity in CPU and memory. The pods take up non-trivial amount of
worker resources. For example, pods configured for production performance use
32 GB of memory. Monitoring the free capacity leads to predictable OSM instance
creation and scale-up.

• Worker node disk pressure

• Worker node network pressure

• Health of the core Kubernetes services

• Health of WebLogic Kubernetes Operator

• Health of Traefik (or other load balancer in the cluster)

The namespaces and pods that OSM cloud native uses provide a cross instance view
of OSM cloud native.

About Application Logs and Metrics Toolchain
OSM cloud native generates all logs that traditional OSM and WebLogic Server
typically generate. The logs can be sent to a shared filesystem for retention and for
retrieval by a toolchain such as Elastic Stack.

In addition, OSM cloud native generates metrics and JVM Java Flight Recorder (JFR)
data. OSM cloud native exposes metrics for scraping by Prometheus. These can then
be processed by a metrics toolchain, with visualizations like Grafana dashboards.
Dashboards and alerts can be configured to enable sustainable monitoring of multiple
OSM cloud native instances throughout their lifecycles. The OSM JFR data can be
retrieved by Java Mission Control or such similar tools to analyze the performance of
OSM at the JVM level. Performance metrics include heap utilization, threads stuck,
garbage collection, and so on.

Oracle highly recommends using a toolchain to effectively monitor OSM cloud
native instances. The dynamic lifecycle in OSM cloud native, in terms of deploying,
scaling and updating an instance, requires proper monitoring and management of the
database resources as well. For non-sensitive environments such as development
instances and some test instances, this largely implies monitoring the tablespace
usage and the disk usage, and adding disk space as needed.

Another important facet is to track PDB usage to ensure PDBs that are no longer
required are deleted so that the resources are freed up. Sensitive environments such
as production and stress test instances require close monitoring of the database
resources such as CPU, SGA/PGA, top-runner SQLs, and IOPS.

Chapter 2
Planning Your Cloud Native Environment

2-14

A key implication of the dynamic behavior of OSM cloud native on the database is
when the instances are dehydrated. Very often, there is a requirement to have an
OSM instance kept around even when it is not being actively used. This is because it
captures a particular state (for example, cartridge lineup or order load) or is non-trivial
to recreate. Such an environment lies idle until it is needed again. With OSM cloud
native, there is no retained state within the run-time instance. The information on
creating the instance is in the CD artifacts (the various specification files), and all
the OSM application information is in the PDB. As a result, when the instance is
not actively needed, all Kubernetes resources for it can be freed up by deleting the
instance. This does not delete the PDB. The CD artifacts and the PDB can be used to
rehydrate the instance when required. In the mean time, if the instance is not required
for a while (or if there is database capacity pressure), the PDB can be unplugged to no
longer consume any run-time resources. An unplugged PDB can even be transferred
to another CDB and plugged in there.

Role of Continuous Integration (CI) Pipelines
The roles of CI pipelines in an OSM cloud native environment are as follows:

• To generate standard OSM cartridge PAR files and store them in a central location
with appropriate path and naming convention for deployment. Developers run
this automation as they modify cartridges for testing. Standalone mechanisms
that generate "official" cartridge builds for testing and production use also run
automation.

• To generate custom OSM cloud native images. The OSM cloud native images
contain all the components needed to run OSM cloud native. However, you may
require additional applications to be co-hosted by the OSM WebLogic cluster.
Examples of such applications include MDBs to mediate communication with an
external system and third-party Java EE monitoring tools. These applications must
be layered on top of the OSM cloud native image to generate a custom image.
Automation can accomplish this by using the file samples that are provided in
the toolkit. The generated images must be uploaded to the internal container
repository for use by deployment. The path and naming convention must be
followed to designate images that are in development versus images that are
ready for testing; and to version the images themselves.

OSM cloud native does not mandate the use of a specific set of tools for CI
automation. Common choices are GitLab CI and Jenkins. As part of preparing for
OSM cloud native, you must evaluate CI automation tools and choose one that fits
your business needs and the desired source control mechanisms.

Role of Continuous Delivery (CD) Pipelines
The role of CD pipelines in an OSM cloud native environment is to perform operations
on the target Kubernetes cluster to automate the full lifecycle of an OSM cloud native
instance.

The following are the main operations you must implement:

• Create instance: This must drive off the source-controlled OSM cloud native
specification files and run through the various stages (secrets creation, PDB
creation, OSM database installation, OSM instance creation, load balancer
creation, and cartridge deployment) to create a new OSM cloud native instance.
Variability should be built in for some key phases as secrets may already exist and

Chapter 2
Planning Your Cloud Native Environment

2-15

may need to be updated, or PDB may already exist with or without OSM schema,
and so on. As a result, this automation is written to a "create-or-update" pattern.

• Update instance: This must be a variant of the instance creation automation,
skipping the PDB creation and perhaps the load balancer (Ingress) creation. The
automation takes the source-controlled OSM cloud native specification files, which
have presumably been modified in some way since the instance was created, and
runs through the steps to make those changes appear in the provisioned OSM
instance. The specification changes could be as simple as a change in the number
of desired Managed Servers, or could be as complex as introducing a new OSM
container image. On the other hand, the only change might be a new version of
the cartridge to be deployed.

• Delete instance: This must clean up the Kubernetes resources used by the
instance. Typically, the PDB is left alone to be handled separately, but it is possible
to chain its deletion to the clean up operation as well.

OSM cloud native does not mandate the use of a particular set of tools for CD
automation. Common choices are GitLab CD and Jenkins. As part of preparing for
OSM cloud native, you must evaluate CD automation tools and choose one that fits
your business needs and the target Kubernetes environment.

Planning Your Container Engine for Kubernetes (OKE)
Cloud Environment

This section provides information about planning your cloud environment if you want
to use Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) for OSM
cloud native. Some of the components, services, and capabilities that are required and
recommended for a cloud native environment are applicable to the Oracle OKE cloud
environment as well.

• Kubernetes and Container Images: You can choose from the version options
available in OKE as long as the selected version conforms to the range described
in the section about planning cloud native environment.

• Container Image Management: OSM cloud native recommends using Oracle
Cloud Infrastructure Registry with OKE. Any other repository that you use must be
able to serve images to the OKE environment in a quick and reliable manner. The
OSM cloud native images are of the order of 3 GB each.

• Oracle Multitenant Database: It is strongly recommended to run Oracle DB
outside of OKE, but within the same Oracle Cloud Infrastructure tenancy and
the region as an Oracle DB service (BareMetal, VM, or ExaData). The database
version should be 19c. You can choose between a standalone DB or a multi-node
RAC.

• Helm and Oracle WebLogic Kubernetes Operator: Install Helm and Oracle
WebLogic Kubernetes Operator as described for the cloud native environment into
the OKE cluster.

• Persistent Volumes: Use NFS-based persistence. OSM cloud native
recommends the use of Oracle Cloud Infrastructure File Storage service in the
OKE context.

• Authentication and Secrets Management: These aspects are common with the
cloud native environment. Choose your mechanisms to deliver these capabilities
and implement them in your OKE instance.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-16

• Monitoring Toolchains: While the Oracle Cloud Infrastructure Console provides
a view of the resources in the OKE cluster, it also enables you to use the
Kubernetes Dashboard. Any additional monitoring capability must be built up.

• CI and CD Pipelines: The considerations and actions described for CI and CD
pipelines in the cloud native environment apply to the OKE environment as well.

Compute Disk Space Requirements
Given the size of the OSM cloud native container images (approximately 2 GB), the
size of the OSM cloud native containers, and the volume of the OSM logs generated,
it is recommended that the OKE worker nodes have at least 40 GB of free space that
the /var/lib filesystem can use. Add disk space if the worker nodes do not have the
recommended free space in the /var/lib filesystem.

Work with your Oracle Cloud Infrastructure OKE administrator to ensure worker nodes
have enough disk space. Common options are to use Compute shapes with larger
boot volumes or to mount an Oracle Cloud Infrastructure Block Volume to /var/lib/
docker.

Note:

The reference to logs in this section applies to the container logs and other
infrastructure logs. The space considerations still apply even if the OSM
cloud native logs are being sent to an NFS Persistent Volume.

Connectivity Requirements
OSM cloud native assumes the connectivity between the OKE cluster and the Oracle
CDBs is a LAN-equivalent in reliability, performance and throughput. This can be
achieved by creating the Oracle CDBs within the same tenancy as the OKE cluster,
and in the same Oracle Cloud Infrastructure region.

OSM cloud native allows for the full range of Oracle Cloud Infrastructure "cloud-
to-ground" connectivity options for integrating the OKE cluster with on-premise
applications and users. Selecting, provisioning, and testing such connectivity is a
critical part of adopting Oracle Cloud Infrastructure OKE.

Using Load Balancer as a Service (LBaaS)
For load balancing, you have the option of using the services available in OKE.
The infrastructure for OKE is provided by Oracle's IaaS offering, Oracle Cloud
Infrastructure. In OKE, the master node IP address is not exposed to the tenants. The
IP addresses of the worker nodes are also not guaranteed to be static. This makes
DNS mapping difficult to achieve. Additionally, it is also required to balance the load
between the worker nodes. In order to fulfill these requirements, you can use Load
Balancer as a Service (LBaaS) of Oracle Cloud Infrastructure.

The load balancer can be created using the service descriptor in $OSM_CNTK/
samples/oci-lb-traefik.yaml. The subnet ID referenced in this file must be filled in
from your Oracle Cloud Infrastructure environment (using the subnet configured for
your LBaaS). The port values assume you have installed Traefik using the unchanged
sample values.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-17

The configuration can be applied using the following command (or for traceability, by
wrapping it into a Helm chart):

$ kubectl apply -f oci-lb-traefik.yaml
service/oci-lb-service-traefikconfigured

The Load Balancer service is created for Traefik pods in the Traefik namespace. Once
the Load Balancer service is created successfully, an external IP address is allocated.
This IP address must be used for DNS mapping.

$ kubectl get svc -n traefik oci-lb-service-traefik
NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S)
oci-lb-service-traefik LoadBalancer 10.96.103.118
100.77.24.178 80:32006/TCP,443:32307/TCP

For additional details, see the following:

• "Creating Load Balancers to Distribute Traffic Between Cluster Nodes" in Oracle
Cloud Infrastructure documentation.

• "Load Balancer Annotations" in Oracle GitHub documentation.

About Using Oracle Cloud Infrastructure Domain Name System (DNS)
Zones

While a custom DNS service can provide the addressing needs of OSM cloud native
even when OSM is running in OKE, you can evaluate the option of Oracle Cloud
Infrastructure Domain Name System (DNS) zones capability. Configuration of DNS
zones (and integration with on-premise DNS systems) is not within the scope of OSM
cloud native.

Using Persistent Volumes and File Storage Service (FSS)
In the OKE cluster, OSM cloud native can leverage the high performance, high
capacity, high reliability File Storage Service (FSS) as the backing for the persistent
volumes of OSM cloud native. There are two flavors of FSS usage in this context:

• Allocating FSS by setting up NFS mount target

• Native FSS

To use FSS through an NFS mount target, see instructions for allocating FSS and
setting up a Mount Target in "Creating File Systems" in the Oracle Cloud Infrastructure
documentation. Note down the Mount Target IP address and the storage path and
use these in the OSM cloud native instance specification as the NFS host and path.
This approach is simple to set up and leverages the NFS storage provisioner that is
typically available in all Kubernetes installations. However, the data flows through the
mount target, which models an NFS server.

FSS can also be used natively, without requiring the NFS protocol. This can be
achieved by leveraging the FSS storage provisioner supplied by OKE. The broad
outline of how to do this is available in the blog post "Using File Storage Service with
Container Engine for Kubernetes" on the Oracle Cloud Infrastructure blog.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-18

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm
https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://docs.cloud.oracle.com/en-us/iaas/Content/File/Tasks/creatingfilesystems.htm
https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes
https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes

Leveraging Oracle Cloud Infrastructure Services
For your OKE environment, you can leverage existing services and capabilities that
are available with Oracle Cloud Infrastructure. The following table lists the Oracle
Cloud Infrastructure services that you can leverage for your OKE cloud environment.

Table 2-2 Oracle Cloud Infrastructure Services for OKE Cloud Environment

Type of Service Service Indicates Mandatory /
Recommended / Optional

Developer Service Container Clusters Mandatory
Developer Service Registry Recommended
Core Infrastructure Compute Instances Mandatory
Core Infrastructure File Storage Recommended
Core Infrastructure Block Volumes Optional
Core Infrastructure Networking Mandatory
Core Infrastructure Load Balancers Recommended
Core Infrastructure DNS Zones Optional
Database BareMetal, VM, and

ExaData
Recommended

Validating Your Cloud Environment
Before you start using your cloud environment for deploying OSM cloud native
instances, you must validate the environment to ensure that it is set up properly and
that any prevailing issues are identified and resolved. This section describes the tasks
that you should perform to validate your cloud environment.

You can validate your cloud environment by:

• Performing a smoke test of the Kubernetes cluster

• Validating the common building blocks in the Kubernetes cluster

• Running tasks and procedures in Oracle WebLogic Kubernetes Operator
Quickstart

Performing a Smoke Test
You can perform a smoke test of your Kubernetes cloud environment by running nginx.
This procedure validates basic routing within the Kubernetes cluster and access from
outside the environment. It also allows for initial RBAC examination as you need to
have permissions to perform the smoke test. For the smoke test, you need nginx
1.14.2 container image.

Chapter 2
Validating Your Cloud Environment

2-19

Note:

The requirement of the nginx container image for the smoke test can change
over time. See the content of the deployment.yaml file in step 3 of the
following procedure to determine which image is required. Alternatively,
ensure that you have logged in to Docker Hub so that the system can
download the required image automatically.

To perform a smoke test:

1. Download the nginx container image from Docker Hub.

For details on managing container images, see "Container Image Management."

2. After obtaining the image from Docker Hub, upload it into your private container
repository and ensure that the Kubernetes worker nodes can access the image in
the repository.

Oracle recommends that you download and save the container image to the
private Docker repository even if the worker nodes can access Docker Hub
directly. The images in the OSM cloud native toolkit are available only through
your private Docker repository.

3. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/
deployment.yaml # the deployment specifies two replicas
kubectl get pods # Must return two pods in the Running state
kubectl expose deployment nginx-deployment --type=NodePort --
name=external-nginx
kubectl get service external-nginx # Make a note of the external
port for nginx

These commands must run successfully and return information about the pods
and the port for nginx.

4. Open the following URL in a browser:

http://master_IP:port/

where:

• master_IP is the IP address of the master node of the Kubernetes cluster or
the external IP address for which routing has been set up

• port is the external port for the external-nginx service

5. To track which pod is responding, on each pod, modify the text message in the
web page served by nginx. In the following example, this is done for a deployment
of two pods:

$ kubectl get pods -o wide | grep nginx
nginx-deployment-5c689d88bb-g7zvh 1/1 Running 0
1d 10.244.0.149 worker1 <none>
nginx-deployment-5c689d88bb-r68g4 1/1 Running 0
1d 10.244.0.148 worker2 <none>

Chapter 2
Validating Your Cloud Environment

2-20

$ cd /tmp
$ echo "This is pod A - nginx-deployment-5c689d88bb-g7zvh -
worker1" > index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-g7zvh:/usr/
share/nginx/html/index.html
$ echo "This is pod B - nginx-deployment-5c689d88bb-r68g4 -
worker2" > index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-r68g4:/usr/
share/nginx/html/index.html
$ rm index.html

6. Check the index.html web page to identify which pod is serving the page.

7. Check if you can reach all the pods by running refresh (Ctrl+R) and hard refresh
(Ctrl+Shift+R) on the index.html Web page.

8. If you see the default nginx page, instead of the page with your custom message,
it indicates that the pod has restarted. If a pod restarts, the custom message in the
page gets deleted.

Identify the pod that restarted and apply the custom message for that pod.

9. Increase the pod count by patching the deployment.

For instance, if you have three worker nodes, run the following command:

Note:

Adjust the number as per your cluster. You may find you have to
increase the pod count to more than your worker node count until you
see at least one pod on each worker node. If this is not observed in
your environment even with higher pod counts, consult your Kubernetes
administrator. Meanwhile, try to get as much worker node coverage as
reasonably possible.

kubectl patch deployment nginx-deployment -p '{"spec":
{"replicas":3}}' --type merge

10. For each pod that you add, repeat step 5 to step 8.

Ensuring that all the worker nodes have at least one nginx pod in the Running state
ensures that all worker nodes have access to Docker Hub or to your private Docker
repository.

Validating Common Building Blocks in the Kubernetes Cluster
To approach OSM cloud native in a sustainable manner, you must validate the
common building blocks that are on top of the basic Kubernetes infrastructure
individually. The following sections describe how you can validate the building blocks.

Network File System (NFS)

OSM cloud native uses Kubernetes Persistent Volumes (PV) and Persistent Volume
Claims (PVC) to use a pod-remote destination filesystem for OSM logs and
performance data. By default, these artifacts are stored within a pod in Kubernetes
and are not easily available for integration into a toolchain. For these to be available

Chapter 2
Validating Your Cloud Environment

2-21

externally, the Kubernetes environment must implement a mechanism for fulfilling PV
and PVC. The Network File System (NFS) is a common PV mechanism.

For the Kubernetes environment, identify an NFS server and create or export an NFS
filesystem from it.

Ensure that this filesystem:

• Has enough space for the OSM logs and performance data.

• Is mountable on all the Kubernetes worker nodes

Create an nginx pod that mounts an NFS PV from the identified server. For details,
see the documentation about "Kubernetes Persistent Volumes" on the Kubernetes
website. This activity verifies the integration of NFS, PV/PVC and the Kubernetes
cluster. To clean up the environment, delete the nginx pod, the PVC, and the PV.

Ideally, data such as logs and JFR data is stored in the PV only until it can be
retrieved into a monitoring toolchain such as Elastic Stack. The toolchain must delete
the rolled over log files after processing them. This helps you to predict the size of
the filesystem. You must also consider the factors such as the number of OSM cloud
native instances that will use this space, the size of those instances, the volume of
orders they will process, and the volume of logs that your cartridges generate.

Validating the Load Balancer

For a development-grade environment, you can use an in-cluster software load
balancer. OSM cloud native toolkit provides documentation and samples that show
you how to use Traefik to perform load balancing activities for your Kubernetes cluster.

It is not necessary to run through "Traefik Quick Start" as part of validating the
environment. However, if the OSM cloud native instances have connectivity issues
with HTTP/HTTPS traffic, and the OSM logs do not show any failures, it might be
worthwhile to take a step back and validate Traefik separately using Traefik Quick
Start.

A more intensive environment, such as a test, a production, a pre-production, or
performance environments can additionally require a more robust load balancing
service to handle the HTTP/HTTPS traffic. For such environments, Oracle
recommends using a load balancing hardware that is set up outside the Kubernetes
cluster. A few examples of external load balancers are Oracle Cloud Infrastructure
LBaaS for OKE, Google's Network LB Service in GKE, and F5's Big-IP for private
cloud. The actual selection and configuration of an external load balancer is outside
the scope of OSM cloud native itself, but is an important component to sort out in
the implementation of OSM cloud native. For more details on the requirements and
options, see "Integrating OSM."

To validate the ingress controller of your choice, you can use the same nginx
deployment used in the smoke test described earlier. This is valid only when run in
a Kubernetes cluster where multiple worker nodes are available to take the workload.

To perform a smoke test of your ingress setup:

1. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml
kubectl get pods -o wide # two nginx pods in Running state;
ensure these are on different worker nodes
cat > smoke-internal-nginx-svc.yaml <<EOF
apiVersion: v1

Chapter 2
Validating Your Cloud Environment

2-22

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.traefik.io/getting-started/quick-start/

kind: Service
metadata:
 name: smoke-internal-nginx
 namespace: default
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 sessionAffinity: None
 type: ClusterIP
EOF
kubectl apply -f ./smoke-internal-nginx-svc.yaml
kubectl get svc smoke-internal-nginx

2. Create your ingress targeting the internal-nginx service. The following text shows
a sample ingress annotated to work with the Traefik ingress controller:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: traefik
 name: smoke-nginx-ingress
 namespace: default
spec:
 rules:
 - host: smoke.nginx.osmtest.org
 http:
 paths:
 - backend:
 serviceName: smoke-internal-nginx
 servicePort: 80

If the Traefik ingress controller is configured to monitor the default namespace,
then Traefik creates a reverse proxy and the load balancer for the nginx
deployment. For more details, see Traefik documentation.

If you plan to use other ingress controllers, refer to the documentation about the
corresponding controllers for information on creating the appropriate ingress and
make it known to the controller. The ingress definition should be largely reusable,
with ingress controller vendors describing their own annotations that should be
specified, instead of the Traefik annotation used in the example.

3. Create a local DNS/hosts entry in your client system mapping
smoke.nginx.osmtest.org to the IP address of the cluster, which is typically the
IP address of the Kubernetes master node, but could be configured differently.

4. Open the following URL in a browser:

http://smoke.nginx.osmtest.org:Traefik_Port/

where Traefik_Port is the external port that Traefik has been configured to expose.

Chapter 2
Validating Your Cloud Environment

2-23

5. Verify that the web address opens and displays the nginx default page.

Your ingress controller must support session stickiness for OSM cloud native. To learn
how stickiness should be configured, refer to the documentation about the ingress
controller you choose. For Traefik, stickiness must be set up at the service level itself.
For testing purposes, you can modify the internal-nginx service to enable stickiness
by running the following commands:

kubectl delete ingress smoke-nginx-ingress
vi smoke-internal-nginx-svc.yaml
Add an annotation section under the metadata section:
annotation:
traefik.ingress.kubernetes.io/affinity: "true"
kubectl apply -f ./smoke-internal-nginx-svc.yaml
now apply back the ingress smoke-nginx-ingress using the above yaml
definition

Other ingress controllers may have different configuration requirements for session
stickiness. Once you have configured your ingress controller, and the smoke-nginx-
ingress and smoke-internal-nginx services as required, repeat the browser-
based procedure to verify and confirm if nginx is still reachable. As you refresh
(Ctrl+R) the browser, you should see the page getting served by one of the pods.
Repeatedly refreshing the web page should show the same pod servicing the access
request.

To further test session stickiness, you can either do a hard refresh (Ctrl+Shift+R) or
restart your browser (you may have to use the browser in Incognito or Private mode),
or clear your browser cache for the access hostname for your Kubernetes cluster.
You may observe that the same nginx pod or a different pod is servicing the request.
Refreshing the page repeatedly should stick with the same pod while hard refreshes
should switch to the other pod occasionally. As the deployment has two pods, chances
of a switch with a hard refresh are 50%. You can modify the deployment to increase
the number of replica nginx pods (controlled by the replicas parameter under
spec) to increase the odds of a switch. For example, with four nginx pods in the
deployment, the odds of a switch with hard refresh rise to 75%. Before testing with the
new pods, run the commands for identifying the pods to add unique identification to
the new pods. See the procedure in "Performing a Smoke Test" for the commands.

To clean up the environment after the test, delete the following services and the
deployment:

• smoke-nginx-ingress

• smoke-internal-nginx

• nginx-deployment

Running Oracle WebLogic Kubernetes Operator Quickstart
Oracle recommends that you validate your new Kubernetes environment for OSM
cloud native by performing the procedures described in Oracle WebLogic Kubernetes
Operator Quickstart available at: https://oracle.github.io/weblogic-kubernetes-operator/
quickstart/

The quickstart guide provides instructions for creating a WebLogic deployment in a
Kubernetes cluster with the Oracle WebLogic Kubernetes Operator. The guide also

Chapter 2
Validating Your Cloud Environment

2-24

https://oracle.github.io/weblogic-kubernetes-operator/quickstart/
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

provides instructions for downloading and installing a load balancer, and a domain.
Follow the instructions provided above for Helm 3.x.

When you run and complete the tasks in the quickstart successfully, the following
aspects of the cloud environment are tested and verified:

• Private Docker repository (or procedures to sync per-node Docker cache on a
multi-node Kubernetes cluster)

• Initial view of the chosen in-cluster load balancers

• RBAC for WebLogic Kubernetes Operator

• Procedure to introduce secrets into the cloud environment

• Basic compatibility of the cloud environment with WebLogic Kubernetes Operator

The quickstart also contains instructions for cleaning up the environment after you
finish the validation and testing. Perform these clean-up procedures to return the
environment to the original state for OSM cloud native.

After completing the clean-up procedures, ensure that the WebLogic Kubernetes
Operator CustomResourceDefinition (CRD) is removed from your cluster by running
the following commands:

$ kubectl get crd domains.weblogic.oracle
if this returns an existing CRD even after WKO quickstart cleanup,
then run:
$ kubectl delete crd domains.weblogic.oracle

Chapter 2
Validating Your Cloud Environment

2-25

3
Creating OSM Cloud Native Images

OSM cloud native requires container images be made available to create and manage
OSM cloud native instances. This chapter describes how to create those OSM cloud
native images.

OSM cloud native requires two container images. The OSM DB Installer image is used
to manage the OSM and Fusion MiddleWare schemas - create, delete, upgrade -
as well as deploy and fast-undeploy OSM cartridges in the OSM schema. The other
image is the OSM image itself. This image is the basis for all of the long running pods -
the WebLogic admin server and all the Managed Servers that comprise an OSM cloud
native instance. Each image is built on top of a Linux base image and adds Java,
Fusion MiddleWare components and OSM product components on top.

OSM Cloud native images are created using the OSM cloud native builder toolkit and
a dependency manifest file. The OSM cloud native Image Builder is intended to be
run as part of a Continuous Integration process that generates images. It needs to run
on Linux and have access to the local Docker daemon. The versions of these are as
per the OSM statement of certification in the OSM documentation. The dependency
manifest is a file that describes all the versions and patches required to build out the
image.

See the following topics for further details:

• Downloading the OSM Cloud Native Image Builder

• Prerequisites for Creating OSM Images

• Specifying Configurations for the OSM Cloud Native Images

• Creating the OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder
You download the OSM cloud native image builder from My Oracle Support at: https://
support.oracle.com

The OSM cloud native image builder is bundled with the following components:

• An unpatched dependency manifest file.

This file does not include any artifacts that require contract-driven access to
Oracle download sites (for example, for Fusion MiddleWare patches). Use this
unpatched manifest file for evaluation purposes only.

For production use (and throughout the adoption lifecycle leading up to
production), obtain the latest dependency manifest file. See OSM Compatibility
Matrix for details about the latest recommended manifest file for your OSM
release.

• OSM cloud native builder kit. The kit contains:

– The OSM Domain WDT Model.

– The OSM DB Installer scripts and manifest files.

3-1

https://support.oracle.com
https://support.oracle.com

– The WDT Deployment tool and the WebLogic Image tool.

• Staging directory structure.

Prerequisites for Creating OSM Images
The pre-requisites for building OSM cloud native images are:

• Docker client and daemon on the build machine.

• Installers for WebLogic Server and JDK. Download these from the Oracle
Software Delivery Cloud:

https://edelivery.oracle.com

• Oracle Instant Client. Download this from Oracle Software Downloads:

https://www.oracle.com/downloads/

• Required patches. Download these from My Oracle Support:

https://support.oracle.com/

• Java, installed with JAVA_HOME set in the environment.

• Bash, to enable the `<tab>` command complete feature.

See OSM Compatibility Matrix for details about the required and supported versions of
these pre-requisite software.

Configuring the OSM Cloud Native Images
The dependency manifest file describes the input that goes into the OSM images.
It is consumed by the image build process. The default configuration in the latest
manifest file (from the Knowledge Article 2170105.1 on My Oracle Support) provides
all the necessary components and required patches for creating the OSM cloud native
images easily.

You can also modify the manifest file to extend it to meet your requirements. This
enables you to:

• Specify any Linux image as the base, as long as its binary is compatible with
Oracle Linux.

• Upgrade the Oracle Enterprise Linux version to a newer version to uptake a
quarterly CPU.

• Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

• Upgrade the Fusion Middleware version to a newer version. For example, you
upgrade the Fusion Middleware version to a newer version when you initiate the
upgrade to pick up new PSU or when Oracle recommends a new update.

• Change the set of patches applied on WebLogic Server, Coherence, Fusion
Middleware, and OPatch to stay aligned with evolving OSM recommendations.

• Change the OSM artifacts to newer artifacts to uptake a new OSM patch.

• Choose a different userid and groupid for oracle:oracle user:group that the
image specifies. The default is 1000:1000.

The breakdown of each section in the dependency manifest file is as follows:

Chapter 3
Prerequisites for Creating OSM Images

3-2

https://edelivery.oracle.com
https://www.oracle.com/downloads/
https://support.oracle.com/

Note:

The schemaVersion and date parameters are maintained by Oracle. Do
not modify these parameters.

Version numbers provided here are only examples. The manifest file used
specifies the actual versions currently recommended.

• OSM Cloud Native Infrastructure Image

While not required by OSM cloud native to create or manage OSM instances,
this infrastructure image is a necessary building block of the final OSM container
image.

linux:
 vendor: Oracle
 version: 7.x
 image: oraclelinux:7-slim

The Linux parameter specifies the base Linux image to be used as the base
docker image. The version is the two-digit version from /etc/redhat-release.

The vendor and version details are specified and used for:

– Validation when an image is built.

– Querying at run-time. To troubleshoot issues, Oracle support requires you to
provide these details in the manifest file used to build the image.

userGroup:
 username: oracle
 userid: 1000
 groupname: oracle
 groupid: 1000

The userGroup parameter specifies the default userId and groupId for oracle

jdk:
 vendor: Oracle
 version: 8u251
 path: $CN_BUILDER_STAGING/java/jdk-8u251-linux-x64.tar.gz

The jdk parameter specifies the JDK vendor, version, and the staging path.

fmw:
 version: 12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/install/
fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip

Chapter 3
Configuring the OSM Cloud Native Images

3-3

The fmw parameter specifies the Fusion Middleware version and staging path.

oPatch:
 description: Weblogic Opatch
 patchId: 28186730_13.9.4.2.2
 path: $CN_BUILDER_STAGING/fmw/patch/p28186730_139422_Generic.zip

The oPatch parameter specifies the Oracle Patch tool and staging path.

fmwPatch:
 - description: p28334768,p27184424(on top of 12.2.1.4.0)
 patchId: 28334768_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p28334768_122140_Generic.zip
 - description: p28334768,p27184424(on top of 12.2.1.4.0)
 patchId: 27184424_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p27184424_122140_Generic.zip
 - description: SAF to dynamic cluster
 patchId: 30656708_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p30656708_122140_Generic.zip
 - description: user-group association bug fix
 patchId: 30319071_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p30319071_122140_Generic.zip
 - description: PSU Coherence
 patchId: 31030896_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p31030896_122140_Generic.zip
 - description: PSU WLS
 patchId: 31101341_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p31101341_122140_Generic.zip
 - description: PSU WLS
 patchId: 30970477_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p30970477_122140_Generic.zip
 - description: PSU WLS
 patchId: 30761841_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p30761841_122140_Generic.zip
 - description: Opatch
 patchId: 31101362_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p31101362_1394002_Generic.zip

The fmwPatch parameter specifies additional patches and their staging paths.

• OSM Cloud Native Image

Note:

Do not modify these parameters. These parameters are maintained by
Oracle.

osmCnImage:
 name: osm-cn-base
 tag: 7.4.1
 wdt:

Chapter 3
Configuring the OSM Cloud Native Images

3-4

 version: 1.8.0
 path: $CN_BUILDER_STAGING/cnsdk/tools/weblogic-deploy.zip
 modelfiles: $CN_BUILDER_STAGING/cnsdk/osm_model/osm-domain-config/
osm-base-domain.yaml,$CN_BUILDER_STAGING/cnsdk/osm_model/osm-domain-
config/properties/docker-build/domain.properties
 application: $CN_BUILDER_STAGING/cnsdk/osm_model/osm-full-wdt-app-
archive.zip
 dockerExtension: $CN_BUILDER_STAGING/cnsdk/osm_model/
additionalBuildCommands.txt

The osmCnImage section specifies details about the OSM artifacts required to
build the OSM base image. These include the oms.ear, cartridge management
WS ear file, default cartridge par file, job control cartridge par file, WDT and base
model files.

• OSM Cloud Native DB Installer Image

osmCnDbInstallerImage:
 name: osm-cn-db-installer
 tag: 7.4.1

The osmCnDbInstallerImage parameter specifies the DB Installer image name
and version. This includes the transformed OSM DB model and Semele jar file.

oracleInstantClient:
 version: 19.8.0.0.0
 basic:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient-
basic-19.8.0.0.0-1.x86_64.rpm
 sqlplus:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient-
sqlplus-19.8.0.0.0-1.x86_64.rpm
 tools:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient-
tools-19.8.0.0.0-1.x86_64.rpm

The oracleInstantClient parameter specifies details about the Oracle Instant
Client required by the DB installer.

Creating OSM Cloud Native Images
To create the OSM image, the image builder does the following:

• Starts with a base-level operating system image (for example, oraclelinux:7-
slim).

• Creates user and group (for example, oracle:oracle).

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies patches.

• Installs the OSM application base on the WDT model.

To create the OSM DB Installer image, the image builder does the following:

Chapter 3
Creating OSM Cloud Native Images

3-5

• Starts with a base-level operating system image (for example, oraclelinux:7-
slim).

• Creates a user and a group (for example, oracle:oracle)

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies the required patches.

• Installs SQL Plus and SQL Loader and the supporting libraries.

• Installs the OSM DB Installer.

You can specify any Linux image as the base, as long as its binary is compatible with
Oracle Linux and conforms to the compatibility matrix. See OSM Compatibility Matrix
for details about the supported software.

The following packages must be installed onto the given base image, or be already
present:

• gzip

• tar

• unzip

Creating the OSM and OSM DB Installer Images

To create the OSM and OSM DB Installer images:

1. Create the workspace directory:

mkdir workspace

2. Obtain and untar the OSM image builder file: osm-image-builder.tar.gz to the
workspace directory:

tar -xf ./osm-image-builder.tar.gz --directory workspace

3. (Optional) Download and copy a newer version of Oracle Instant Client to the
workspace/osm-image-builder/staging/instant-client directory and update the
version and the file names.

Note:

Oracle Instant Client packages are included in the OSM Image Builder
and can be used as-is without additional downloads.

Note:

Follow your organization standard for $http_proxy.

curl -x $http_proxy --output osm-image-builder/staging/
instant-client/oracle-instantclient-basic-19.8.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/19800/
oracle-instantclient19.8-basic-19.8.0.0.0-1.x86_64.rpm

Chapter 3
Creating OSM Cloud Native Images

3-6

curl -x $http_proxy --output osm-image-builder/staging/
instant-client/oracle-instantclient-sqlplus-19.8.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/19800/
oracle-instantclient19.8-sqlplus-19.8.0.0.0-1.x86_64.rpm
curl -x $http_proxy --output osm-image-builder/staging/
instant-client/oracle-instantclient-tools-19.8.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/19800/
oracle-instantclient19.8-tools-19.8.0.0.0-1.x86_64.rpm

4. Download JDK to the workspace/osm-image-builder/staging/java directory. The
JDK version to be downloaded is described in the dependency manifest file.

cp jdk-8u251-linux-x64.tar.gz ./workspace/osm-image-builder/staging/
java/jdk-8u251-linux-x64.tar.gz

5. From Oracle Software Delivery Cloud: https://edelivery.oracle.com, download
Fusion Middleware Infrastructure installer and copy it to the workspace/
osm-image-builder/staging/fmw/install directory. The Fusion Middleware
Infrastructure installer version to be download is described in the dependency
manifest file under the fmw section.

cp fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip ./
workspace/osm-image-builder/staging/fmw/install/
fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip

6. Download all the listed patches to the workspace/osm-image-builder/
staging/fmw/patch directory. The list of required patches is in the dependency
manifest file in the oPatch and fmwPatch sections.

Note:

This step is not required if osm_cn_ci_manifest_unpatched.yaml is
the manifest used.

You can download the patches using any of the following options:

• (Recommended) Manually search for and download each OPatch/FMW
patches from Oracle Support to the current working directory and then copy to
the staging directory.

cp pxxxxxx_xxxxx_Generic.zip ./workspace/osm-image-builder/
staging/fmw/patch

• Provide your My Oracle Support account credentials when invoking the
build-osm-images.sh script, and let the builder download the patches
automatically:

Chapter 3
Creating OSM Cloud Native Images

3-7

Note:

Some patches may not be retrievable in this manner. If the image
build process fails with errors about a missing patch, use the
recommended option.

./workspace/osm-image-builder/bin/build-osm-images.sh -f
$DMANIFEST -s $STAGING -c osm -u MOS_username -p MOS_password

7. Run build-osm-images.sh and pass the dependency manifest file, staging path,
and the type of image to be created.

export DMANIFEST=./workspace/osm-image-builder/bin/
osm_cn_ci_manifest_unpatched.yaml
export STAGING=$(pwd)/workspace/osm-image-builder/staging

• To create OSM image, use "-c osm" as shown:

./workspace/osm-image-builder/bin/build-osm-images.sh -f
$DMANIFEST -s $STAGING -c osm

• To create OSM DB installer image, use "-c dbinstaller" as shown:

./workspace/osm-image-builder/bin/build-osm-images.sh -f
$DMANIFEST -s $STAGING -c dbinstaller

These steps can be included into your CI pipeline as long as the required components
are already downloaded to the staging area.

Additional Considerations When Using the Unpatched Manifest File

When an OSM image is created by the image builder with the
osm_cn_ci_manifest_unpatched.yaml file, the resulting image does not contain the
Fusion Middleware patches that are required for proper OSM cloud native functioning.
It is intended to be used only for evaluation purposes. One workaround is to manually
establish the association between OSM users and groups.

OSM users and groups are not associated after the start up of the admin server, which
results in OSM EJB failing to deploy to the managed server. You should manually
associate users and the group before starting up the managed server.

To associate OSM users with a group when using the unpatched manifest file:

1. Create a new instance with only the admin server running. In the instance
specification, change the value for clusterSize manually. This change would
ultimately be performed by an automated CI/CD pipeline.

vi $SPEC_PATH/project-instance.yaml

Change the cluster size to 0
clusterSize: 0

Create the OSM instance.

Chapter 3
Creating OSM Cloud Native Images

3-8

2. Run the config-security.sh script passing the domain namespace and domain
UID.

$OSM_CNTK/scripts/config-security.sh project project-instance

3. Start the managed servers.

• In the instance specification, set clusterSize to the desired number of
managed servers.

vi $SPEC_PATH/project-instance.yaml
Change the cluster size to the desired number
clusterSize: 8

• Upgrade the OSM instance.

The associations are reset every time the Admin Server pod terminates or restarts.
This can happen when the instance is deleted, or on an unexpected event (such as
an hardware issue), or as a side-effect of an instance upgrade that involves a rolling
restart. Regardless of the scenario that led to Admin Server pod being recreated, the
associations must be set up afresh.

To recreate the user and group association:

1. Stop all the managed servers by setting the cluster size to 0 in the instance
specification and upgrade the instance.

2. Run the config-security.sh script as described in step 2 in the above procedure.

3. Start the managed servers as described in step 3 in the above procedure.

Post-build Image Management

The OSM cloud native image builder creates images with names and tags based on
the settings in the manifest file. By default, this results in the following images:

• osm-cn-base:7.4.1.0.0

• osm-cn-db-installer:7.4.1.0.0

Once images are built in a CI pipeline, the pipeline uniquely tags the images and
pushes them to an internal Docker repository. An uptake process can then be triggered
for the new images:

• Sanity Test

• Development Test (for explicit retesting of scenarios that triggered the rebuild, if
any)

• System Test

• Integration Test

• Pre-Production Test

• Production

Chapter 3
Creating OSM Cloud Native Images

3-9

4
Creating a Basic OSM Cloud Native
Instance

This chapter describes how to create a basic OSM cloud native instance in your cloud
environment using the operational scripts and the base OSM configuration provided
in the OSM cloud native toolkit. You can create an OSM instance quickly in order to
become familiar with the process, explore the configuration, and structure your own
project. This procedure is intended to validate that you are able to create a basic
OSM instance in your environment. For information on creating your own project with
custom configuration, see "Creating Your Own OSM Cloud Native Instance".

Before you can create an OSM instance, you must do the following:

• Download and extract the OSM cloud native toolkit archive file

• Clone the WebLogic Kubernetes Operator (WKO) GIT repository. This is required
to be performed on each host that installs and runs the toolkit scripts when a
Kubernetes cluster is shared by multiple hosts.

• Install the WKO and Traefik container images. These tasks are required to be
performed for each cluster that has shared resources.

Installing the OSM Cloud Native Artifacts and the Toolkit
Build container images for the following using the OSM cloud native Image Builder:

• OSM core application

• OSM database installer

You must create a private Docker repository for these images, ensuring that all
nodes in the cluster have access to the repository. See "About Container Image
Management" for more details.

Download the OSM cloud native toolkit archive and do the following:

• On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and
extract the tar archive to each host that has connectivity to the Kubernetes cluster.

• On OKE: For an environment where Kubernetes is running in OKE, extract the
contents of the tar archive on each OKE client host. The OKE client host is the
bastion host/s that is set up to communicate with the OKE cluster.

Set the variable for the installation directory by running the following command, where
osm_cntk_path is the installation directory of the OSM cloud native toolkit:

$ export OSM_CNTK=osm_cntk_path

4-1

Cloning the WebLogic Kubernetes Operator (WKO) GIT
Repository

Some scripts in the OSM cloud native toolkit require access to the WebLogic
Kubernetes Operator Helm chart. You must ensure that the repository is cloned on
each host that will use the scripts in the toolkit. In environments where multiple hosts
have access to the Kubernetes cluster, this would be done on each host.

To clone the repository, run the following commands:

$ cd path_to_wlsko_repository
$ git clone https://github.com/oracle/weblogic-kubernetes-operator.git
$ cd weblogic-kubernetes-operator
$ git checkout tags/v3.1.0
This is the tag of v3.1.0 GA

For details on WKO 3.1.0, see https://github.com/oracle/weblogic-kubernetes-operator/
releases/tag/v3.1.0.

After cloning the repository, set the WLSKO_HOME environment variable to the location
of the WKO git repository, by running the following command:

$ export WLSKO_HOME=path-to-wlsko-repo/weblogic-kubernetes-operator

Note:

Developers can add the export command to ~/.bashrc or ~/.profile so that it
is always set.

Installing WebLogic Kubernetes Operator (WKO) and
Traefik Container Images

In a shared environment, multiple developers may create OSM instances in the same
cluster, using a shared WebLogic Kubernetes Operator.

For each cluster in your environment, you download and install the following:

• WebLogic Kubernetes Operator (WKO) container image

• Traefik container image

Note:

These installations must be co-ordinated on large teams so that they occur in
a controlled manner.

Before installing the WKO image and the Traefik image, do the following tasks:

Chapter 4
Cloning the WebLogic Kubernetes Operator (WKO) GIT Repository

4-2

https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v3.1.0
https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v3.1.0

• Remove the instances of the WKO and Traefik that you installed to validate your
cloud environment.

• Ensure that you have cleaned up the environment. See "Validating Your Cloud
Environment" for instructions on cleaning up.

• Ensure that there are no WebLogic Server Operator artifacts in the environment.

Installing the WebLogic Kubernetes Operator Container Image
To download and install the WKO container image:

1. Ensure that Docker in your Kubernetes cluster can pull images from Docker
Hub. The WKO container image is at: ghcr.io/oracle/weblogic-kubernetes-
operator:3.1.0.

2. Choose a namespace for the operator and set the WLSKO_NS environment
variable to the Kubernetes namespace in which WKO will be deployed.

3. Run the following installation script to install the image:

$OSM_CNTK/scripts/install-operator.sh -n $WLSKO_NS

4. Validate that the operator is installed by running the following command:

kubectl get pods -n $WLSKO_NS

Installing the Traefik Container Image
To leverage the OSM cloud native samples that integrate with Traefik, the Kubernetes
environment must have the Traefik ingress controller installed and configured.

If you are working in an environment where the Kubernetes cluster is shared, confirm
whether Traefik has already been installed and configured for OSM cloud native. If
Traefik is already installed and configured, set your TRAEFIK_NS environment variable
to the appropriate namespace.

The instance of Traefik that you installed to validate your cloud environment must
be removed as it does not leverage the OSM cloud native samples. Ensure that you
have removed this installation in addition to purging the Helm release. Check that any
roles and rolebindings created by Traefik are removed. There could be a clusterrole
and clusterrolebinding called "traefik-operator". There could also be a role and
rolebinding called "traefik-operator" in the $TRAEFIK_NS namespace. Delete all of
these before you set up Traefik.

To download and install the Traefik container image:

1. Ensure that Docker in your Kubernetes cluster can pull images from Docker Hub.
See OSM Compatibility Matrix for the required and supported versions of the
Traefik image.

2. Run the following command to create a namespace ensuring that it does not
already exist:

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Traefik Container Images

4-3

Note:

You might want to add the traefik namespace to the environment setup
like .bashrc.

kubectl get namespaces
export TRAEFIK_NS=traefik
kubectl create namespace $TRAEFIK_NS

3. Run the following commands to install Traefik using the $OSM_CNTK/samples/
charts/traefik/values.yaml file in the samples:

Note:

Set kubernetes.namespaces and the chart version specifically using
command-line.

helm repo add traefik https://helm.traefik.io/traefik
helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \
 --version 9.11.0 \
 --values $OSM_CNTK/samples/charts/traefik/values.yaml \
 --set "kubernetes.namespaces={$TRAEFIK_NS}"

After the installation, Traefik monitors the namespaces listed in its
kubernetes.namespaces field for Ingress objects. The scripts in the toolkit manage
this namespace list as part of creating and tearing down OSM cloud native projects.

When the values.yaml Traefik sample in the OSM cloud native toolkit is used as
is, Traefik is exposed to the network outside of the Kubernetes cluster through port
30305. To use a different port, edit the YAML file before installing Traefik. Traefik
metrics are also available for Prometheus to scrape from the standard annotations.

Traefik function can be viewed using the Traefik dashboard. Create the Traefik
dashboard by running the instructions provided in the $OSM_CNTK/samples/charts/
traefik/traefik-dashboard.yaml file. To access this dashboard, the URL is: http://
traefik.osm.org. This is if you use the values.yaml file provided with the OSM cloud
native toolkit; it is possible to change the hostname as well as the port to your desired
values.

Creating a Basic OSM Instance
This section describes how to create a basic OSM instance.

Setting Environment Variables
OSM cloud native relies on access to certain environment variables to run seamlessly.
Ensure the following variables are set in your environment:

• Path to your private specification repository

Chapter 4
Creating a Basic OSM Instance

4-4

• Location of the WebLogic Server Kubernetes Operator (WLSKO) GIT repository

• Traefik namespace

To set the environment variables:

1. Create a directory that serves as your specification repository, by running the
following command, where spec_repo_path is the path to your private specification
repository:

Note:

The scripts in the toolkit support multiple directories being supplied to the
-s parameter in a colon separated list (path/one:path/two:path/three). For
simplicity, the toolkit works with a single directory.

$ export SPEC_PATH=spec_repo_path/quickstart

2. Set the WLSKO_HOME environment variable to the location of the WLSKO git
repository that you cloned:

$ export WLSKO_HOME=~/git/weblogic-kubernetes-operator

3. Set the TRAEFIK_NS variable for Traefik namespace.

Registering the Namespace
After you set the environment variables, register the namespace.

To register the namespace, run the following command:

$OSM_CNTK/scripts/register-namespace.sh -p sr -t targets
For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t
wlsko,traefik
Where the targets are separated by a comma without extra spaces

Note:

wlsko and traefik are the names of the targets for registration of the
namespace. The script uses WLSKO_NS and TRAEFIK_NS to find these
targets. Do not provide the "traefik" target if you are not using Traefik.

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes
Secrets that the scripts and Helm charts in the toolkit consume. Managing secrets
is out of the scope of the toolkit and must be implemented while adhering to your
organization's corporate policies. Additionally, OSM cloud native does not establish
password policies.

Chapter 4
Creating a Basic OSM Instance

4-5

Note:

The passwords and other input data such as RCU schema prefix length
that you provide must adhere to the policies specified by the appropriate
component.

As a pre-requisite to using the toolkit for either installing the OSM database or creating
an OSM instance, you must create secrets for access to the following:

• OSM database

• OSM system users

• RCU DB

• OPSS

• Operator artifacts for the instance

• WebLogic Server Admin credentials used when creating the domain

The toolkit provides sample scripts for this purpose. However, they are not pipeline-
friendly. The scripts should be used for creating an instance manually and quickly,
but not for any automated process for creating instances. The scripts also illustrate
both the naming of the secret and the layout of the data within the secret that OSM
cloud native requires. You must create secrets prior to running the install-osmdb.sh
or create-instance.sh scripts.

Run the following script to create the required secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p sr -i quick \
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE

where:

• osmdb specifies the connectivity details and the credentials for connecting to the
OSM PDB (OSM schema). This is consumed by the OSM DB installer and OSM
runtime.

Note:

The osmdb secrets contain PDB sysdba user, osm main schema user,
osm rule engine schema user, and osm report schema user. The names
of these must be unique.

• osmldap is the credential for OSM system admin and internal users. The script
prompts for passwords for the following users.

– OSM admin user (username is omsadmin)

– Design Studio admin user (username is sceadmin)

– OSM internal user (username is oms-internal)

– OSM automation user (username is oms-automation)

Chapter 4
Creating a Basic OSM Instance

4-6

• rcudb specifies the connectivity details and the credentials for connecting to the
OSM PDB (RCU schema). This is consumed by the OSM database installer and
OSM and Fusion MiddleWare runtime.

• wlsadmin is the credential for the intended user that will be created with
administrative access to the WebLogic domain.

• opssWP is the password for encrypting and decrypting the ewallet contents.

• wlsRTE is the password used to encrypt the operator artifacts for this instance.
The merged domain model and the domain ZIP are available in the operator config
map and are encoded using this password.

Verify that the following secrets are created:

sr-quick-database-credentials
sr-quick-embedded-ldap-credentials
sr-quick-weblogic-credentials
sr-quick-rcudb-credentials
sr-quick-opss-wallet-password-secret
sr-quick-runtime-encryption-secret

Additionally, the secret opssWF is created by the installation process and does not
follow the same guidelines. It is therefore not a pre-requisite for creating a new
instance. In scenarios where a database is being re-used for a different OSM instance,
then this becomes a pre-requisite secret. For more details, see "Reusing the Database
State".

Assembling the Specifications
To assemble the specifications:

1. Copy the instance specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/instance.yaml $SPEC_PATH/sr-quick.yaml

2. Copy the project specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/project.yaml $SPEC_PATH/sr.yaml

You edit these files as per the instructions described in the sections that follow.

Installing the OSM and RCU Schemas
This procedure configures an empty PDB. Depending on the database strategy for
your team, you may have already performed this procedure as described in "Planning
Your Cloud Native Environment". Before continuing, confirm whether the PDB being
used for creating the OSM instance has been cloned from a master PDB that
includes the schema installation. If the PDB already has the schema installed, skip
this procedure and proceed to the Creating OSM Users and Groups topic.

After the PDB is created, it is configured with the OSM schema, the RCU schema, and
the cluster leasing table.

Chapter 4
Creating a Basic OSM Instance

4-7

Note:

Before installing the OSM and RCU schemas, stop or interrupt the automatic
optimizer statistics collection maintenance task. For more details, see the
New OSM Database Optimizer Statistics Management knowledge article
(Doc ID 1925539.1) on My Oracle Support.

To install the OSM and RCU schemas:

Note:

YAML formatting is case-sensitive. While the next step uses vi editor for
editing, if you are not familiar with editing YAML files, use a YAML editor to
ensure that the you do not make any syntax errors while editing. Follow the
indentation guidelines for YAML, as incorrect spacing can lead to errors.

1. Edit the project specification file and update the DB installer image to point to the
location of your image as shown below:

Note:

Before changing the default values provided in the specification file,
confirm that they align with the values used during PDB creation. For
example, the default tablespace name should match the value used
when PDB is created.

dbinstaller:
 image: DB_installer_image_in_your_repo:<tag>

2. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
the Kubernetes documentation for details. Reference the secret name in the
project specification.

The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.
Uncomment and set if required.
imagePullSecret: ""

3. Set the partition size to the actual tablespace size that was created. The default
value for production sizing is 20000000 (20 million) and for development is
2000000 (2 million). These may need to be overridden for this instance. See
the OSM System Administrator's Guide for guidelines on partition and tablespace
sizing. If required, update defaultPartitionSize in the development shape
in $OSM_CNTK/charts/osm/shapes/dev.yaml. The defaultPartitionSize
parameter also impacts how defaultSubPartitionCount is calculated.
Calculate OSM_SUBPARTITION_COUNT from OSM_PARTITION_SIZE.

Chapter 4
Creating a Basic OSM Instance

4-8

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

Table 4-1 Calculating Sub-partitions

defaultPartitionSize Calculated Sub-partitions

< = 2M 16
> 2M and < = 10M 32
> 10M 64

4. Run the following script to start the OSM DB installer, which instantiates a
Kubernetes Pod resource. The pod resource lives until the DB installation
operation completes.

#(OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
1
 ## once finished
(RCU Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
7

You can invoke the script with -h to see the available options.

5. Check the console to see if the DB installer is installed successfully.

6. If the installation failed, run the following command to review the error message in
the log:

kubectl logs -n sr sr-quick-dbinstaller-osm-dbinstaller

7. Clean up the failed pod by running the following command:

helm uninstall sr-quick-dbinstaller -n sr

8. Go back to step 4 and run the script again to install the OSM DB installer.

The following table lists the basic database parameters that are handled by the DB
Installer:

Table 4-2 Database Parameters Handled by the DB Installer

Parameter Value

cursor_sharing FORCE
parallel_degree_policy AUTO
deferred_segment_creation By default, set to True. The DB Installer

specification can override this to FALSE for
production environments.

open_cursors 2000
optimizer_mode ALL_ROWS
_optimizer_invalidation_period 600

OSM DB Installer Activities
The OSM DB Installer performs the following activities during OSM schema creation:

Chapter 4
Creating a Basic OSM Instance

4-9

• Automatic Optimizer Statistics Collection Maintenance Task: The OSM DB
Installer disables this task during the creation of OSM schema. This avoids race
conditions when copying partition statistics as part of the OSM schema installation.
This maintenance task is re-enabled after the partition statistics are copied. This is
handled as part of the OSM schema installation.

• Statistics gathering schedule: The OSM DB Installer modifies the default
statistics gathering schedule so that the weekend schedule is the same as the
weekday schedule. By default, weekday maintenance windows start at 10 PM and
are 4 hours long. The Saturday and Sunday maintenance windows are 20 hours
long and start at 6 AM; this impacts order processing performance during peak
weekend hours.

See the following topics in Oracle Database Administrator's Guide for more details:

– Predefined Maintenance Windows

– Configuring Automated Maintenance Tasks

Configuring the Project Specification
This section provides instructions for creating a project that is configured to support
the processing of the SimpleRabbits sample cartridge that is provided with the toolkit.
This sample cartridge validates that OSM processes orders successfully. The project
specification is a Helm override file that contains values that are scoped to a project.
The values specified in the specification are shared by all the instances of a project,
unless they are overridden in an instance specification. Review the content about
Helm chart layering in "Overview of the OSM Cloud Native Deployment".

The toolkit provides a sample project specification by the name sr that you can use
with minor adjustments.

To configure the project specification:

1. Edit the project specification to provide the image in your repository (name and
tag) by running the following command:

vi $SPEC_PATH/sr.yaml

** edit the image to reflect the OSM image name and location in
your docker repository

image: osm_image_in_your_repository

2. The test cartridge requires JMS Queue configuration, which is provided with the
toolkit. Copy the JMS Queue configuration from the location shown below into the
instance specification.

vi $OSM_CNTK/samples/simpleRabbits/project_fragment.yaml

 ** Copy the queue content
 vi $SPEC_PATH/sr.yaml
 * find the existing placeholder for the queues and paste the
content

Chapter 4
Creating a Basic OSM Instance

4-10

The following text is an example of JMS Queue configuration:

jms distributed queues
uniformDistributedQueues:
 - name: new_jms_queue_1
 jndiName: oracle.communication.ordermanagement.ppt.loopbackA
 jmsTemplate: defaultJmsTemplate

first line is LEFT algined with no leading spaces. each
subsequent indent is 2 spaces from the last

3. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
the Kubernetes documentation for details. Reference the secret name in the
project specification.

The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.
uncomment and set if required.
#imagePullSecret: ""

4. For your DNS resolution mechanism, change the default load balancer domain
name as needed:

loadBalancerDomainName: "osm.org"

Tuning the Project Specification
This section provides instructions for tuning the project specification. The values
specified in the specification are shared by all the instances of a project, unless they
are overridden in an instance specification.

Do the following to tune the project specification:

• To configure the maximum number of bytes allowed in messages that are received
over all WebLogic protocols, set the following parameter:

wlsMaxMsgSize: value_in_bytes

For OSM cloud native, the default value is 300000000 bytes, which is much higher
than the default value of 10000000 bytes in WebLogic. The low default value in
WebLogic can cause errors when this limit is reached.

• To configure the tablespace name for OSM model and order tables and indexes,
see the following parameters:

db:
 modelDataTablespace: string
 modelIndexTablespace: string
 orderDataTablespace: string
 orderIndexTablespace: string

For each parameter, the default value is OSM.

Chapter 4
Creating a Basic OSM Instance

4-11

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

• To configure the partition size for OSM order tables, see the following parameter:

defaultPartitionSize: integer

The default is 2,000,000 (2 million). Production shapes define a larger value
of 20,000,000 (20 million), which is a better choice when combined with online
purging.

• To configure the sub-partition count for partitioned OSM order tables, see the
following parameter:

defaultSubPartitionCount: integer

The default value is undefined. Typical values are 16, 32 and 64. Leave this
parameter undefined to allow the OSM cloud native database installer to choose a
value appropriate for the partition size. For example, for a large 20 million partition,
the installer will choose a value of 64 so as to minimize database contention.

• To configure whether database segment creation should be deferred, see the
following parameter:

deferredSegmentCreation: "TRUE" or "FALSE"

The default value is TRUE. To minimize database contention, this should be set to
FALSE for production systems.

• To configure OSM and infrastructure data source connection pool parameters, see
the parameters under the jdbc element. For example, the maximum database
connection pool capacity for the OSM application data sources and for the
infrastructure data sources (which support JMS and tlog JDBC stores) can be
set with:

jdbc:
 app:
 maxCapacity: integer
 infra:
 maxCapacity: integer

For more details on connection pool parameters, see Oracle Fusion Middleware
Administration Console Online Help for Oracle WebLogic Server 12.2.1.4.0. Also
refer to the production and development shapes for the full list of supported
parameters and default values.

• To configure the message buffer cache size for individual JMS servers, see the
following parameter:

jmsMsgBufferSize: value_in_bytes

The default value is approximately one-third of the maximum JVM heap size, or a
maximum of 512 megabytes (536,870,912 bytes). For production environments,
the recommended value is 1 giga byte (1,073,741,824 bytes) to reduce the
possibility that WebLogic will start paging JMS message bodies to disk once the
buffer is full.

Chapter 4
Creating a Basic OSM Instance

4-12

• To configure whether database optimizer statistics should be loaded when creating
OSM order table partitions, see the following parameter:

loadPartitionStatistics: false

The default value is false. This should be set to true for production systems.

• To configure logging options, see the following parameter:

logging_options: string

Refer to the production and development shapes for more details and the default
values. The following is an example:

logging_options: " -Dweblogic.log.FileMinSize=5000 -
Dweblogic.log.FileCount=10 -Dweblogic.log.RotateLogOnStartup=false "

• To configure JVM parameters for the admin server or for managed servers, see
the following parameter:

user_mem_args: string

Refer to the production and development shapes for sample values. The following
is an example from the prodlarge shape:

managedServers:
 shape:
 user_mem_args: "-XX:+UseG1GC -
XX:G1HeapRegionSize=16m -XX:+ClassUnloadingWithConcurrentMark
-XX:+UseStringDeduplication -XX:SurvivorRatio=3 -
XX:CodeCacheMinimumFreeSpace=16m -XX:ReservedCodeCacheSize=512m
-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps
-XX:+PrintGCTimeStamps -XX:+PrintTenuringDistribution -
XX:+PrintAdaptiveSizePolicy -Xloggc:/u01/oracle/user_projects/
domains/domain/gc.log -XX:+DisableExplicitGC -
XX:+ParallelRefProcEnabled -XX:+AlwaysPreTouch -Xms64g
-Xmx64g -Xmn22g -XX:InitiatingHeapOccupancyPercent=50 -
XX:ParallelGCThreads=13 "

For more details, see the OSM Memory Tuning Guidelines (Doc ID: 2028249.1)
knowledge article on My Oracle Support.

Configuring the Instance Specification
The instance specification is a Helm override file that contains values that are specific
to a single instance. These values feed into the WDT model developed for the OSM
WebLogic domain.

To configure the instance specification:

Chapter 4
Creating a Basic OSM Instance

4-13

https://support.oracle.com/portal/

1. Edit the sr-quick.yaml file to specify the database details:

db:
 datasourcesPrimary:
 port: 1521
 # If not using RAC, provide the DB server hostname/IP address
 # If using RAC, comment out "#host:"
 # host: dbserver-ip
 #
 # If using RAC, provide the list of SCAN hostname/IP addresses
 # If not using RAC, comment out "#scans:"
 #scans:
 # - scan1-ip
 # - scan2-ip
 #
 # If using RAC, provide either a list of VIP hostname/IP
addresses
 # or a list of INSTANCE_NAMES
 # If not using RAC, comment out "#vips:" and "#instances:"
 #
 #vips:
 # - vip1-ip
 # - vip2-ip
 # --- OR ---
 #instances:
 # - instance-1
 # - instance-2

2. Assuming that oci-lb-service-traefik is the service created as part of the
Oracle Cloud Infrastructure Load Balancer setup, run the following command to
find the IP address of the Oracle Cloud Infrastructure LBaaS:

kubectl get svc -n traefik oci-lb-service-traefik --
output=jsonpath="{..status.loadBalancer.ingress[0].ip}"

3. Because an external load balancer is not required to be configured for the basic
OSM instance, change the value of loadBalancerPort to the default Traefik
NodePort of 30305 if you are not using Oracle Cloud Infrastructure LBaaS:

loadBalancerPort: 30305

If you use Oracle Cloud Infrastructure LBaaS, or any other external load balancer,
set loadBalancerPort to 80, and uncomment and update the value for
externalLoadBalancerIP appropriately:

loadBalancerPort: load_balancer_port
#externalLoadBalancerIP: IP_address_of_the_external_load_balancer

Creating an Ingress
An ingress establishes connectivity to the OSM instances.

Chapter 4
Creating a Basic OSM Instance

4-14

To create an Ingress, run the following command:

$OSM_CNTK/scripts/create-ingress.sh -p sr -i quick -s $SPEC_PATH
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
Ingress Controller: TRAEFIK
External LB IP : 192.0.0.8

NAME: sr-quick-ingress
LAST DEPLOYED: Wed Jul 1 10:20:27 2020
NAMESPACE: sr
STATUS: deployed
REVISION: 1
TEST SUITE: None

Ingress created successfully...

Creating an OSM Instance
This procedure describes how to create an OSM instance in your environment using
the scripts that are provided with the toolkit.

To create an OSM instance:

1. Run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

The create-instance.sh script uses the Helm chart located in the charts/osm
directory to create and deploy the domain custom resource and the domain config
map for your instance. If the scripts fails, see the Troubleshooting Issues section
at the end of this topic, before you make additional attempts.

The instance creation process creates the opssWF secret, which is required for
access to the RCU DB. It is possible to handle the wallet manually if needed. To
do so, pass -w to the create-instance.sh script, which creates the wallet file at a
location you choose. You can then use this wallet file to create a secret by using
the manage instance credentials script.

2. Validate the important input details such as Image name and tag, specification files
used (Values Applied), hostname, and port for ingress routing:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Calling helm lint
==> Linting ./scripts/../charts/osm
[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
LB_PORT : 30305
Image : osm:7.4.1.200504-0655-b1735.a0f9526f

Chapter 4
Creating a Basic OSM Instance

4-15

Shape : dev
Values Applied : -f ./scripts/../charts/osm/values.yaml -f ./
scripts/../charts/osm/shapes/dev.yaml -f /home/oracle/SmokeTest/
repo/sr.yaml -f /home/oracle/SmokeTest/repo/sr-quick.yaml
Output wallet : n/a

After the script finishes executing, the log shows the following:

NAME READY STATUS RESTARTS AGE
sr-quick-admin 1/1 Running 0 2m12s
sr-quick-ms1 0/1 ContainerCreating 0 1s

Provide opss wallet File for 'sr-quick' ...
For example : '/path-to-osm-cntk/sr-quick.ewallet'
opss wallet File:
secret/sr-quick-opss-walletfile-secret created

Instance 'sr/sr-quick' admin server is now running.
Creation of instance 'sr/sr-quick' has completed successfully.

The create-instance.sh script also provides some useful commands and
configuration to inspect the instance and access it for use.

3. If you query the status of the pods, the READY state of the managed servers may
display 0/1 for several minutes while the OSM application is starting.
When the READY state shows 1/1, your OSM instance is up and running. You can
then validate the instance by deploying a sample cartridge and submitting orders.

The base hostname required to access this instance using HTTP is
quick.sr.osm.org. See "Planning and Validating Your Cloud Environment" for
details about hostname resolution.

The create-instance script prints out the following valuable information that you can
use while working with your OSM domain:

• The T3 URL: http://t3.quick.sr.osm.org This is required for external
client applications such as JMS and WLST.

• The URL for access to the WebLogic UI, which is provided through the ingress
controller at host:http://admin.quick.sr.osm.org:30305/console.

• The URL for access to the OSM UIs, which is provided through the
ingress controller that requires the host to be specified as: http://
quick.sr.osm.org:30305/OrderManagement/Login.jsp.

Validating the OSM Instance
After creating an instance, you can validate it by checking the domain configuration
and the client UIs.

Run the following command to display the domain configuration details of the OSM
instance that you have created:

kubectl describe domain sr-quick -n sr

Chapter 4
Creating a Basic OSM Instance

4-16

The command displays the domain configuration information.

To verify the client UIs:

• Log into the WebLogic console using the URL specified in the output of the
create-instance script: http://admin.quick.sr.osm.org:30305/console

You can use the console to verify the configuration that has been applied and to
see that the OSM application is in a good state.

• Log into the OSM Task Web client user interface with the OSM administrator
login credentials created as part of "Creating Secrets" using the URL (http://
quick.sr.osm.org:30305/OrderManagement/Login.jsp) specified in the output of the
create-instance script.

Note:

After an OSM instance is created, it may take a few minutes for the OSM
user interface to become active.

Scaling the OSM Application Cluster
Now that your OSM instance is up and running, you can explore the ability to
dynamically scale the application cluster.

To scale the OSM application cluster, edit the configuration:

1. In the instance specification, change the value for clusterSize manually. This
change would ultimately be performed by an automated CI/CD pipeline.

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to a value not larger than 18

 #cluster size
clusterSize: 2

Note:

You can watch the Kubernetes pods in your namespace shrink or grow
in real-time. To watch the pods shrink or grow, in a separate terminal
window, run the following command:

kubectl get pods -n sr --watch

2. Upgrade the deployed Helm release:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s $SPEC_PATH

This pushes the new configuration to the deployed Helm release so the operator
can take the necessary steps.

Chapter 4
Creating a Basic OSM Instance

4-17

The WebLogic operator monitors changes to clusterSize and results in the
operator spinning up or tearing down managed servers to align with the requested
cluster size.

Deploying the Sample Cartridge
By deploying the sample cartridge that is provided with the toolkit, you can validate
order processing in the OSM instance that you created.

Before deploying the cartridge, you must bring down the running domain. You can do
this by scaling the cluster size down to 0.

To deploy the sample cartridge:

1. Scale down the cluster:

a. Reduce the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to 0

#cluster size
clusterSize: 0

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s
$SPEC_PATH

The operator terminates the managed server.

2. Deploy the SimpleRabbits sample cartridge by running the following command:

./scripts/manage-cartridges.sh \
 -p sr -i quick -s $SPEC_PATH
 -f $OSM_CNTK/samples/simpleRabbits/SimpleRabbits.par -c parDeploy

3. Scale up the cluster:

a. Increase the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to 1

#cluster size
clusterSize: 1

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s
$SPEC_PATH

The operator terminates the managed server.

Chapter 4
Creating a Basic OSM Instance

4-18

Submitting Orders
The OSM cloud native toolkit provides a sample order that you can submit to validate
order processing in OSM. The sample order is available at: $OSM_CNTK/samples/
simpleRabbits/sample.xml.

To submit OSM orders over HTTP, use an external client such as SoapUI. The
endpoint is the same as the URL used to verify the OSM Task Web client.

When using SoapUI, a Soap Envelope element needs to wrap
CreateOrderBySpecification that is provided in $OSM_CNTK/samples/
simpleRabbits/sample.xml

To submit OSM orders over JMS, use an external client such as Hermes JMS. The
endpoint must be as follows:

jms://OSM_1::queue_oracle/communications/ordermanagement/
WebServiceQueue::queue_oracle/communications/ordermangement/
SoapUIResponseQueue

The connection factory's providerURL must be as follows:

http://t3.quick.sr.osm.org:30305

Deleting and Recreating Your OSM Instance
Deleting Your OSM Instance

To delete your OSM instance, run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

Re-creating Your OSM Instance

When you delete an OSM instance, the database state for that instance still remains
unaffected. You can re-create an OSM instance with the same project and the instance
names, pointing to the same database.

Chapter 4
Creating a Basic OSM Instance

4-19

Note:

Ensure that you use the same specifications that you used for creating the
instance and that the following secrets have not been deleted:

• osmdb

• osmldap

• rcudb

• opssWF

• opssWP

• wlsRTE

To re-create an OSM instance, run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Note:

After re-creating an instance, client applications such as SoapUI and
HermesJMS may need to be restarted to avoid using expired cache
information.

Cleaning Up the Environment
To clean up the environment:

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete the ingress:

$OSM_CNTK/scripts/delete-ingress.sh -p sr -i quick

3. Delete the namespace, which in turn deletes the Kubernetes namespace and the
secrets:

$OSM_CNTK/scripts/unregister-namespace.sh -p sr -d -t targets

Note:

wlsko and traefik are the names of the targets for registration of
the namespace. The script uses WLSKO_NS and TRAEFIK_NS to find
these targets. Do not provide the "traefik" target if you are not using
Traefik.

Chapter 4
Creating a Basic OSM Instance

4-20

4. Drop the PDB.

Troubleshooting Issues with the Scripts
This section provides information about troubleshooting some issues that you may
come across when running the scripts.

If you experience issues when running the scripts, do the following:

• Check the operator logs to find out the details about the issue:

kubectl get pods -n $WLSKO_NS
get the operator pod name to be used in the next command
kubectl logs -n $WLSKO_NS operator_pod

• Check the "Status" section of the domain to see if there is useful information:

kubectl describe domain -n sr sr-quick

"Timeout" Issue

In the logs, you may sometimes see the word "timeout" when the create-instance
script fails. When you run the create-instance script, it may take a long time to pull the
image, if you are doing it for the first time. In such a scenario, the script may fail and
display the text "timeout" in the log.

To resolve this issue, try increasing the podStartupDeadlineSeconds parameter.
The podStartupDeadlineSeconds parameter is a configurable parameter exposed
in the instance specification that can be increased if required. Start with a very high
timeout value and then monitor the average time it takes, because it depends on the
speed with which the images are downloaded and how busy your cluster is. Once you
have a good idea of the average time, you can reduce the timeout value accordingly to
something that considers both the average time and some buffer.

Modify the timeout value to start introspector pod. Mainly
when using against slow DB or pulling image first time.
podStartupDeadlineSeconds: 800

After adjusting the parameter, clean up the failed instance and re-create the instance.

Cleanup Failed Instance

When a create-instance script fails, you must clean up the instance before making
another attempt at instance creation.

Note:

Do not retry running the create-instance script or the upgrade-instance
script immediately to fix any errors, as they would return errors. The
upgrade-instance script may work but re-running it does not complete the
operation.

To clean up the failed instance:

Chapter 4
Creating a Basic OSM Instance

4-21

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete and recreate the RCU schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 5

Recreating an Instance

If you face issues when creating an instance, do not try to re-run the create-
instance.sh script as this will fail. Instead, perform the cleanup activities and then
run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Next Steps
A basic OSM cloud native instance should now be running in your environment. This
process exposed you to some of the base functionality and concepts that are new to
OSM cloud native. You can continue in your sandbox environment learning about more
OSM cloud native capabilities by following the learning path.

If, however, your first priority is to understand details on infrastructure setup and
structuring of OSM instances for your organization, then you should follow the
infrastructure path.

To follow the infrastructure path, proceed to "Planning Infrastructure".

To follow the learning path, proceed to "Creating Your Own OSM Cloud Native
Instance".

Chapter 4
Next Steps

4-22

5
Planning Infrastructure

In "Creating a Basic OSM Cloud Native Instance", you learned how to create a
basic OSM instance in your cloud native environment. This chapter provides details
about setting up infrastructure and structuring OSM instances for your organization.
However, if you want to continue in your sandbox environment learning about more
OSM cloud native capabilities, then proceed to "Creating Your Own OSM Cloud Native
Instance".

See the following topics:

• Sizing Considerations

• Managing Configuration as Code

• Setting Up Automation

• Securing Operations in Kubernetes

Sizing Considerations
The hardware utilization for an OSM cloud native deployment is approximately the
same as that of an OSM traditional deployment.

Consider the following when sizing for your cloud native deployment:

• For OSM cloud native, ensure that the database is sized to account for the WLS
Persistent Store workload residing in the database. For details, see the "Persistent
Store Configuration & Operational Considerations for JMS, SAF & WebLogic tlogs
in OSM (Doc ID 2469767.1)" knowledge article on My Oracle Support.

• Oracle recommends sizing using a given production shape as a building block,
adjusting the OSM cluster size to meet target order volumes.

• In addition to planning hardware for a production instance, Oracle recommends
planning for a Disaster Recovery size and key non-production instances to support
functional, integration and performance tests The Disaster Recovery instance can
be created against an Active Data Guard Standby database when needed and
terminated when no longer needed to improve hardware utilization.

• Non-production instances can likewise be created when needed, either against
new or existing database instances.

Contact Oracle Support for further assistance with sizing.

Managing Configuration as Code
Managing Configuration as Code involves the following tasks:

• Creating Source Control Repository

• Managing OSM instances

• Deciding on the Scope

5-1

https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html

• Deployment Considerations

• Creating an Instance Using the Repository

Creating Source Control Repository
Managing Configuration as Code (CAC) is a central tenet of using OSM cloud native.
You must create a source control repository to store all configuration that is necessary
to re-create an OSM instance (or PDB) if it is lost. This does not include the toolkit
scripts.

You must also set up a Docker repository for the OSM and OSM DB Installer images,
as well as any custom versions of the OSM image for your use cases. For example,
custom images are required to deploy a custom application .ear file. For more details
on custom images, see "Extending the WebLogic Server Deploy Tooling (WDT)
Model".

Managing OSM Instances
To extract the full benefits of OSM cloud native, it is imperative that you consider the
management of the OSM instances before making potential configuration changes.
The sections that follow describe how to structure your repositories to group project
level artifacts, while allowing for other artifacts to be re-used (if needed) by the multiple
OSM instances within a project.

Example Scenario

This section describes a scenario to help illustrate the concepts.

Let us assume that in an organization, OSM is used for two business purposes each
of which is handled by two separate teams. The first team uses OSM to orchestrate
wire line (triple play) orders for residential customers, and a second team uses OSM to
process mobile orders for business customers.

Deciding on the Scope
You must first decide on the scope of the project including how many instances are
required. Choose meaningful names for your project and instance.

The organization in our example will have two projects named resiwireline and
bizwireless. We can assume that each project team has a predefined "pre-production"
instance for final validation or production changes, a geo-redundant production
instance for disaster recovery, a final User Acceptance Testing (UAT) instance for
business testing, a few small Quality Assurance (QA) systems and many small
development instances.

The directory structure for your configuration repository should reflect the hierarchical
relationship of the project/instance relationship as well as isolating different projects
from each other.

About the Repository Directory Structure
The project directory includes the project specification as well as configuration that is
common to all instances, whereas instance specifications reside in a specific instance
directory.

Chapter 5
Managing Configuration as Code

5-2

• Each project requires its own project specifications (YAML files).

• Optional artifacts such as the list of users and credentials used by the cartridges
are also located under the top level project directory.

• All artifacts under the project are shared across the instances. Instance directories
contain the instance specification.

Note:

While cartridge par files are shown to reside in this repository, you
may consider using a separate repository for cartridges as described
in "Working with Cartridges".

The following illustration shows the structure and hierarchy of the project directory with
an example.

Figure 5-1 Project Directory Structure

Chapter 5
Managing Configuration as Code

5-3

Deployment Considerations
As the scenario shows, there will be many bits of configuration that may mix and
match in different ways to produce a specific OSM instance. While all of these
instances are pre-defined in the source control repository, they need not be deployed
all the time.

Consider the following:

• For each project, one or more production instances may be deployed.

• It would be reasonable for pre-production to be deployed only when needed while
first cloning the production DB.

• Likewise, the performance instance could also be deployed only when needed.
Its PDB could be cloned from a specially generated PDB with synthetic test data,
providing a consistent starting point.

• Likewise, the UAT instance could be deployed when needed, starting from
similarly saved UAT PDB.

• The GR instance application would not be pre-deployed, but its database would be
created in a DR site and synchronized from production via Active Data Guard.

Setting the Repository Path During Instance Creation
To offer flexibility in how the repository directory structure develops, the create-
instance script takes as input, the path to the specification files.

The -s specPath parameter is mandatory in create-instance.sh and can point to
several directories at once (directories are separated by a colon).

specPath would contain all the directories that contain specification files used for
creating an instance:

• repo/resiwireline

• repo/resiwireline:repo/resiwireline/instances/qa. (This will include all
specification files at the resiwireline project level, as well as the specification files
in the qa instance directory.)

Additionally, a separate parameter is used to point to the directory where custom
extensions are found.

The -m customExtPath parameter is an optional parameter that can be passed into
the create-instance.sh script.

customExtPath would point to all the directories where custom template files reside
for the instance being created: fileRepo/resiwireline/extensions

Setting Up Automation
This section describes the complete sequence of activities for setting up an OSM
environment with the aim of grouping repeatable steps into high-level categories. You
should start to plan the steps that you can automate to some degree. This section
does not include details on the changes that must be made to the specification files,
which is described in "Creating a Basic OSM Instance".

Chapter 5
Setting Up Automation

5-4

Note:

These steps exclude any one-time setup activities. For details on one-time
setup activities, see the tasks you must do before creating an OSM instance
in "Creating a Basic OSM Cloud Native Instance".

Where pre-requisite secrets are required, the toolkit provides sample scripts for this
activity. However, the scripts are not pipeline-friendly. Use the scripts for manually
standing up an instance quickly and not for any automated process for creating
instances. These scripts are also important because they illustrate both the naming
of the secret and the layout of the data within the secret that OSM cloud native
requires. You must replace references to toolkit scripts for creating secrets with your
own mechanism in your DevOps process.

Configuring Code for Creating an OSM Instance

To configure code for creating an instance, you assemble the configuration at the
project and the instance levels. While some of these activities could be automated,
much of the work is manual in nature.

1. Assemble the configuration.
To assemble the configuration at the project level:

Note:

These steps should be performed once per project and then re-used for
each instance.

a. Copy $OSM_CNTK/samples/project.yaml to your file repository and rename
to align with your project naming decisions made earlier (for example,
project.yaml).

b. Assemble the optional configuration files as needed. These files include
custom WDT fragments, custom shapes, cartridge user files, and par files for
deployment.

To assemble the configuration at the instance level, copy $OSM_CNTK/samples/
instance.yaml to your file repository and rename to align with your project naming
decisions made earlier (for example, project-instance.yaml).

2. Create pre-requisite secrets for OSM DB access, RCU DB access, OSM system
users, OPSS, Introspector and the WLS Admin credentials used when creating the
domain.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance \
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE

Chapter 5
Setting Up Automation

5-5

Note:

Passwords and other secret input must adhere to the rules specified of
the corresponding component.

3. Create custom secrets as required by your OSM solution cartridges.

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -p
project -i instance \
 -c create \
 -f user information file

** $OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -h
for help

4. Create other custom secrets as required by optional configuration.

5. Populate the embedded LDAP with all the cartridge users (only those from
prefix/map name osm) under the cartridgeUsers section in the project.yaml
file. During the creation of the OSM server instance, for all the users listed, an
account is created in embedded LDAP with the same username and password as
the Kubernetes secret:

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

After the configuration and the input are available, the remaining activities are focused
on Continuous Delivery, which can be automated.

1. Register a namespace per project:

$OSM_CNTK/scripts/register-namespace.sh -p project -t namespaces
For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t
wlsko,traefik
where the namespaces are separated by a comma without spaces

Note:

wlsko and traefik are examples of namespaces. Do not provide
details about Traefik if you are not using it.

2. Create one OSM PDB per instance:

• If the master OSM PDB exists in the CDB, clone the PDB. In this scenario,
a master PDB is created by cloning a seed PDB, deploying the OSM/RCU

Chapter 5
Setting Up Automation

5-6

schema, and then optionally deploying cartridges. This master is only valid for
a specific OSM schema version.

• If the master CDB does not have the schema provisioned, do the following:

a. Clone the seed PDB and then run the DB installer to create OSM and the
RCU schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s
$SPEC_PATH -c 1 (OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s
$SPEC_PATH -c 7 (RCU Schema)

b. Deploy the cartridges:

./scripts/manage-cartridges.sh -p project_name -i
instance_name -s $SPEC_PATH
 -f par_file -c parDeploy

• If you want to use a PDB from another instance in order to reuse the OSM
data, do the following:

a. Clone the existing PDB.

b. Drop the existing RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s
$SPEC_PATH -c 8

c. Recreate the RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s
$SPEC_PATH -c 7

Alternatively, the RCU schema can be re-used. This use case has additional
CaC changes as discussed in the Re-using PDB topic.

3. Create the Ingress:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s
$SPEC_PATH

4. Create the instance.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s
$SPEC_PATH

Deleting an Ingress

To delete an ingress, run the following command:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Deleting an Instance

This section describes the sequence of activities for deleting and cleaning up various
aspects of the OSM environment.

Chapter 5
Setting Up Automation

5-7

To delete the application instance:

1. Run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

2. Remove the instance content manually from the LDAP server using your LDAP
Admin client. Specify ou=project-instance.

To clean up the PDB, drop it.

To clean up the configuration as code:

1. Delete the OSM instance and the database instance specification files.

2. Delete the secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance \
 delete \
 osmldap,osmdb,rcudb,wlsadmin,opssWP,wlsRTE

3. Delete any additional custom secrets using kubectl.

Trying to streamline the processes and identifying when to omit certain activities and
where other activities must be repeated can be challenging. For instance, dropping
the OSM RCU schema is independent of deleting an instance, which happens through
different script invocations. While the life-cycle of the OSM instance and the PDB
should be aligned, there are also use cases where the business data in a PDB
(cartridges or orders) is required for re-use by a different OSM instance. For details on
specific use cases, see "Reusing the Database State".

Securing Operations in Kubernetes Cluster
This section describes how to secure the operations of OSM cloud native users in a
Kubernetes cluster. A well organized deployment of OSM cloud native ensures that
individual users have specific privileges that are limited to the requirements for their
approved actions. The Kubernetes objects concerned are service accounts and RBAC
objects.

All OSM cloud native users fall into the following three categories:

• Infrastructure Administrator

• Project Administrator

• OSM User

Infrastructure Administrator

Infrastructure Administrators perform the following operations:

• Install WebLogic Kubernetes Operator in its own namespace

• Create a project for OSM cloud native and configure it

• After creating a new project, run the register-namespace.sh script provided with
the OSM cloud native toolkit

• Before deleting an OSM cloud native project, run the unregister-namespace.sh
script

Chapter 5
Securing Operations in Kubernetes Cluster

5-8

• Delete an OSM cloud native project

• Manage the lifecycle of WebLogic Kubernetes Operator (restarting, upgrading, and
so on)

Project Administrator

Project Administrators can perform all the tasks related to an instance level OSM cloud
native deployment within a given project. This includes creating, updating, and deleting
secrets, OSM cloud native instances, OSM cloud native DB Installer, and so on. A
project administrator can work on one specific project. However, a given human user
may be assigned Project Administrator privileges on more than one project.

OSM User

This class of users corresponds to the users described in the context of traditionally
deployed OSM. These users can log into the user interfaces (UI) of OSM and can
call the OSM APIs. These users are not Kubernetes users and have no privileges
outside that granted to them within the OSM application. For details about user
management, see the OSM Cloud Native System Administrator's Guide and "Setting
Up Authentication" in this guide.

About Service Accounts

Installing the WebLogic Kubernetes Operator requires the presence of a service
account that is set up appropriately. The install-operator.sh script requires a
service account called wlsko-ns-sa in the wlsko-ns namespace. For example, if the
namespace where WKO is to be installed is called wlsko, then the expected service
account is wlsko-sa. If a service account is found with the correct name, the script
uses it. Otherwise, the script creates a service account by that name. The WKO pods
need to be installed by the Infrastructure Administrator with cluster-admin privileges,
but at runtime, they use this service account and its associated privileges as described
in the WKO documentation.

The pods that comprise each OSM cloud native instance (including the transient
OSM DB Installer pod and the transient WKO Introspector pod) within a given project
namespace use the "default" service account in that namespace. This is created at the
time of namespace creation, but can be modified by the Infrastructure Administrator
later.

RBAC Requirements

The RBAC requirements for the WebLogic Kubernetes Operator are documented
in its user guide. The privileges of the Infrastructure Administrator have to include
these. In addition, the Infrastructure Administrator must be able to create and delete
namespaces, operate on the WebLogic Kubernetes Operator's namespace and also
on the Traefik namespace (if Traefik is used as the ingress controller). Depending
on the specifics of your Kubernetes cluster and RBAC environment, this may require
cluster-admin privileges.

The Project Administrator's RBAC can be much more limited. For a start, it would
be limited to only that project's namespace. Further, it would be limited to the set
of actions and objects that the instance-related scripts manipulate when run by the
Project Administrator. This set of actions and objects is documented in the OSM cloud
native toolkit sample located in the samples/rbac directory.

Structuring Permissions Using the RBAC Sample Files

There are many ways to structure permissions within a Kubernetes cluster. There are
clustering applications and platforms that add their own management and control of

Chapter 5
Securing Operations in Kubernetes Cluster

5-9

these permissions. Given this, the OSM cloud native toolkit provides a set of RBAC
files as a sample. You will have to translate this sample into a configuration that is
appropriate for your environment. These samples are in samples/rbac directory within
the toolkit.

The key files are project-admin-role.yaml and project-admin-rolebinding.yaml.
These files govern the basic RBAC for a Project Administrator.

Do the following with these files:

1. Make a copy of both these files for each particular project, renaming them with
the project/namespace name in place of "project". For example, for a project called
"biz", these files would be biz-admin-role.yaml and biz-admin-rolebinding.yaml.

2. Edit both the files, replacing all occurrences of project with the actual project/
namespace name.

For the project-admin-rolebinding.yaml file, replace the contents of the
"subjects" section with the list of users who will act as Project Administrators for
this particular project.

Alternatively, replace the contents with reference to a group that contains all users
who will act as Project Administrators for this project.

3. Once both files are ready, they can be activated in the Kubernetes cluster by the
cluster administrator using kubectl apply -f filename.

It is strongly recommended that these files be version controlled as they form part
of the overall OSM cloud native configuration.

The Project Administrator role specification contains the pods/exec resource. This
is required for only one specific scenario - using the OSM DB Installer to deploy a
cartridge from the local file system (where the install-osmdb.sh script is being run).
This particular resource can be removed, forcing cartridge deployment to only happen
from a repository. It is highly recommended to remove this resource for production
environments. The resource may be retained for development environment, as it
eases the code-build-deploy-test cycle for OSM cartridge development.

In addition to the main Project Administrator role and its binding, the samples contain
two additional and optional role-rolebinding sets:

• project-admin-addon-role.yaml and project-admin-addon-rolebinding.yaml:
This role is per project and is an optional adjunct to the main Project Administrator
role. It contains authorization for resources and actions in the project namespace
that are not required by the toolkit, but might be of some use to the Project
Administrator for debugging purposes.

• wko-read-role.yaml and wko-read-rolebinding.yaml: This role is available in
the WebLogic Kubernetes Operator's namespace, and is an optional add-on
to the Project Administrator's capabilities. It lets the user list the WKO pods
and view their logs, which can be useful to debug issues related to instance
startup and upgrade failures. This is suitable only for sandbox or development
environments. It is strongly recommended that, even in these environments, WKO
logs be exposed via a logs toolchain. The WebLogic Kubernetes Operator's
Helm chart comes with the capability to interface with an ELK stack. For details,
see https://oracle.github.io/weblogic-kubernetes-operator/userguide/managing-
operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration.

Chapter 5
Securing Operations in Kubernetes Cluster

5-10

https://oracle.github.io/weblogic-kubernetes-operator/userguide/managing-operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration
https://oracle.github.io/weblogic-kubernetes-operator/userguide/managing-operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration

6
Creating Your Own OSM Cloud Native
Instance

This chapter provides information on creating your own OSM instance. While
the "Creating a Basic OSM Cloud Native Instance" chapter provides instructions
for creating a basic OSM instance that is capable of processing orders for the
SimpleRabbits sample cartridge that is provided with the OSM cloud native toolkit,
this chapter provides information on how you can create an OSM instance that is
tailored to the business requirements of your organization. However, if you want to first
understand details on infrastructure setup and structuring of OSM instances for your
organization, then see "Planning Infrastructure".

Before proceeding with creating your own OSM instance, you can look at the alternate
and optional configuration options described in "Exploring Alternate Configuration
Options".

When you created a basic instance, you used the operational scripts and the base
configuration provided with the toolkit.

Creating your own instance involves various activities spanning both instance
management and instance configuration and includes some of the following tasks:

• Configuring OSM Runtime Parameters

• Preparing Cartridges for OSM Cloud Native

• Extending the WDT Model. See "Extending the WebLogic Server Deploy Tooling
(WDT) Model".

• Working with Kubernetes Secrets

• Adding JMS Queues and Topics

• Creating a JMS template

• Working with Cartridges

• Provisioning Cartridge User Accounts

Configuring OSM Runtime Parameters
You can control various OSM runtime parameters using the oms-config.xml file. See
"Configuring OSM with oms-config.xml" in OSM Cloud Native System Administrator's
Guide for details.

This configuration is managed differently in OSM cloud native. While all the
parameters described in the OSM Cloud Native System Administrator's Guide are still
valid, the method of specifying them is different for a cloud native deployment.

6-1

Each of the three specification file tiers - shape, project, and instance - has a section
called omsConfig. For example, the project specification has the following section:

omsConfig:
 project:

com.mslv.oms.handler.cluster.ClusteredHandlerFactory.HighActivityOrder.C
ollectionCycle.Enabled: true
 oracle.communications.ordermanagement.cache.UserPerferenceCache: near

Some parameters have been laid out for you in the pre-configured shape specification
files and in the sample project and instance specification files. When you wish to
change the value of a parameter to a different one from the documented default value,
you must add that parameter and its custom value to an appropriate specification file.

For values that depend on (or contribute to) the footprint of the OSM Managed Server,
the shape specification would be best. For values that are common across instances
for a given project, the project specification would be best. Values that vary for each
instance would be appropriate in the instance specification.

Any parameter specified in the instance specification overrides the same parameter
specified in the project or shape specification. Any parameter specified in the project
specification overrides the same parameter in the shape specification.

Any parameter that is not present in all three specification files (shape, project,
instance) automatically has its default value as documented in OSM Cloud Native
System Administrator's Guide.

Note:

All pre-defined shape specifications have the omsConfig parameters
flagged as do NOT delete. These must not be edited and must be copied
as-is to custom shapes. See "Working with Shapes" for details about custom
shapes.

Preparing Cartridges
Existing OSM cartridges that run on a traditional OSM deployment can still be used
with OSM cloud native, but you prepare and deploy those cartridges differently.
Instead of using multiple interfaces to persist the WebLogic domain configuration
(WebLogic Admin console and WLST), the configuration is added into the files that
feed into the instance creation mechanism. With OSM cloud native, you use the
WebLogic Admin Console only for validation purposes.

Before proceeding, you must determine which OSM solution cartridge you want to use
to validate your OSM cloud native environment. For simplicity, use a setup where any
communication with OSM is restricted to an application running in the same instance
of the WebLogic domain.

Identify the following requirements for your cartridge:

• The list of JMS queues and topics that the cartridge needs.

• The list of credentials stored in the OSM Credential Store.

Chapter 6
Preparing Cartridges

6-2

• Users that the cartridge requires.

• Applications that need to be deployed to the WebLogic server. This can include
system emulators for stubbing out communication to external peer systems.

About OSM Cloud Native Cartridges and Design Studio

Existing cartridges do not always need to be rebuilt for use with OSM cloud native. As
long as they were built with an OSM 7.4.0.x SDK, using the Design Studio target OSM
version of 7.4.0, their existing par files can be deployed.

If cartridges have to be built afresh or re-built, use the OSM SDK packaged with OSM
7.4.1 release, and set the Design Studio target OSM version as 7.4.0. In general, use
the Design Studio target OSM version that is closest to the actual OSM version but not
newer than it.

About Domain Configuration Restrictions

Some restrictions on the domain configuration are necessary to keep the process
simple for creating and validating your basic OSM cloud native instance. As you
build confidence in the tooling and the extension mechanisms, you can remove
the restrictions and include additional configuration in your specifications to support
advanced features.

Ensure that you restrict the domain configuration to the following:

• Instance with no SAF setup.

• Re-directing logs (to live outside the pods) will not be configured at this time.

Changing the Default Values

The project and the instance specification templates in the toolkit contain the values
used in the out-of-the-box domain configuration. These files are intended for editing,
as the required information such as the PDB host needs updating and the flags
controlling the optional features such as NFS need to be turned on or off, and the
default values such as Java options and cluster size can be changed. If you find that
the existing values need to be updated for your OSM instance, update the values in
your specification files.

Change the default values as per the following guidelines:

• NFS: As per the restrictions, leave nfs disabled in the instance specification

• Shape: The provided configuration uses tuning parameters that are appropriate for
a development environment. This is done through the use of a shape specification
that is specified in the instance specification.

Creating an instance with the default shape is recommended. For details on how you
can provide a custom shape if necessary, see "Working with Shapes".

Adding New WDT Metadata

The OSM cloud native toolkit provides the base WDT metadata in $OSM_CNTK/
charts/osm/templates. As the OSM application requires this WDT metadata for the
proper functioning, this must not be edited. Instead, the toolkit provides a mechanism
whereby new pieces of WDT metadata can be included in the final description of the
domain.

See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for complete
details on the general process for providing custom WDT. The steps described must
be repeated for a variety of WDT use cases.

Chapter 6
Preparing Cartridges

6-3

You must specify the JMS Queues required for your new using the WDT metadata.

There are two options for providing the required configuration for JMS Queues:

• Re-using the OSM JMS Resources as described in "Adding JMS Queues and
Topics". This is the suggested mechanism for your first attempt at configuring your
customized OSM instance.

• Creating custom JMS Resources as described in "Adding a JMS System
Resource".

Handling of sensitive data from within the WDT metadata fragment is supported as
described in the "Accessing Kubernetes Secrets from WDT Metadata".

Other Customizations

To support a custom OSM solution cartridge, not all changes are done using the WDT
metadata. Depending on the processing needs of your OSM solution cartridge, there
are other changes that are likely required:

This topic describes how to use the following methods for supporting a custom solution
cartridge:

• Credential Store

• Custom Application EAR

• Cartridge Users

Credential Store

For traditional installations, if a solution cartridge has automation plugins that needed
to retrieve external system credentials, it did so by storing those credentials in the
WebLogic Credential Store.

In OSM cloud native, if your cartridge uses the credential store framework of OSM,
then you must provision cartridge user accounts. See "Provisioning Cartridge User
Accounts" for details.

Custom Application Ear

If there are additional applications that need to be deployed to WebLogic to support
the processing of your OSM solution cartridge, see "Deploying Entities to an OSM
WebLogic Domain".

This method requires both WDT metadata as well as the custom OSM
images. Supplemental scripts and WDT fragments are provided as samples in
the $OSM_CNTK/samples/customExtensions

Cartridge Users

Cartridges may also define users who need access to OSM APIs. These user
credentials need to be available in the right locations as described in "Provisioning
Cartridge User Accounts". These credentials must then be made available through the
configuration to OSM.

Working with Kubernetes Secrets
Secrets are Kubernetes objects that you must create in the cluster through a separate
process that adheres to your corporate policies around managing secure data. Secrets
are then made available to OSM cloud native by declaring them in your configuration.

Chapter 6
Working with Kubernetes Secrets

6-4

When the OSM cloud native sample scripts are not used for creating secrets, the
secrets you create must align to what is expected by OSM. The sample scripts contain
guidelines for creating secrets.

The following diagram illustrates the role of Kubernetes Secrets in an OSM cloud
environment:

Figure 6-1 Kubernetes Secrets in OSM Cloud Environment

There are three classifications of secrets, as shown in the above illustration:

• Mandatory (Pre-requisite) Secrets

• Optional Secrets

• Custom Secrets

About Mandatory Secrets
Mandatory secrets must be created prior to running the cartridge management scripts
or the instance creation script.

The toolkit provides the sample script: $OSM_CNTK/scripts/manage-instance-
credentials.sh to create the secrets for you. Refer to the script code to see the
naming and internal structure required for each of these secrets.

See the following topics for more details about Kubernetes Secrets:

• Creating Secrets

• Management of Secrets

About Optional Secrets
Optional secrets are dictated by enabling the out-of-the-box configuration. There is
some functionality that is pre-configured in OSM cloud native and can be enabled

Chapter 6
Working with Kubernetes Secrets

6-5

or disabled in the specification files. When the functionality is enabled, these secrets
must be created in the cluster before an OSM instance is created.

• If you use OpenLDAP for authentication, OSM cloud native relies on the following
secret to have been created:

project-instance-openldap-credentials

The toolkit provides a sample script to create these secrets for you ($OSM_CNTK/
samples/credentials/manage-osm-ldap-credentials.sh by passing in "-o
secret").

• With Credential Store, the secrets hold credentials for external systems that
the automation plug-ins access. These secrets are a pre-requisite to running
cartridges that rely on this mechanism and must adhere to a naming convention.
See "Provisioning Cartridge User Accounts" for more details.

• When SAF is configured, SAF secrets are used. SAF secrets are similar to custom
secrets and are declared in a specialized area within the instance specification
that feeds into the SAF-specific WDT.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_pass

About Custom Secrets
OSM cloud native provides a mechanism where WDT metadata can access sensitive
data through a custom secret that is created in the cluster and then declared in the
configuration. See "Accessing Kubernetes Secrets from WDT Metadata" to familiarize
yourself with this process.

This class of secrets are required only if you need secrets for this mechanism.

To use custom secrets with WDT metadata:

Note:

As an example, this procedure uses a WDT snippet for authentication.

1. Add secret usage in the WDT metadata fragment:

Host: '@@SECRET:authentication-credentials:host@@'
Port: '@@SECRET:authentication-credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:authentication-credentials:principal@@'
CredentialEncrypted: '@@SECRET:authentication-
credentials:credential@@'

Chapter 6
Working with Kubernetes Secrets

6-6

2. Add the secret to the project specification.

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - authentication-credentials

3. Create the secret in the cluster, by using any one of the following methods:

• Using OSM cloud native toolkit scripts

• Using a Template

• Using the Command-line Interface

In the example metadata shown in step 1, the secret must capture host, port,
principal, and credential.

See "Mechanism for Creating Custom Secrets" for details about the methods.

Accommodating the Scope of Secrets
The WDT metadata fragments are defined at the project level as the project typically
owns the solution definition. Accommodating this is a simple task. However, the
scenario becomes complicated when you consider that there may be project level
configuration that needs to allow for instance level control over the secret contents.

To walk through this, we will use authentication as an example and introduce a
COM project that includes three instances: development, test, and production. The
production environment has a dedicated authentication system, but the development
and test instances use a shared authentication server.

To accommodate this scenario, the following changes must be made to each of the
basic steps:

1. Define a naming strategy for the secrets that introduce scoping. For instance,
secrets that need instance level control could prepend the instance name. In the
example, this results in the following secret names:

• COM-dev-authentication-credentials

• COM-test-authentication-credentials

• COM-prod-authentication-credentials

2. Include the secret in the WDT fragment. In order for this scenario to work, a
generic way is required to declare the "scope" or instance portion of the secret
name. To do this, use the built-in Helm values:

.Values.name - references the full instance name (project-instance)

.Values.namespace - references the project name (project)

If the fragment needs to support instance-level control, derive the instance name
portion of the secret name.

Host: '@@SECRET:{{ .Values.name }}-authentication-
credentials:host@@'

Chapter 6
Working with Kubernetes Secrets

6-7

Port: '@@SECRET:{{ .Values.name }}-authentication-
credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:{{ .Values.name }}-authentication-
credentials:principal@@'
CredentialEncrypted: '@@SECRET:{{ .Values.name }}-authentication-
credentials:credential@@'

3. Add the secret to the instance specification. The secret name must be provided in
the instance specification as opposed to the project specification.

Dev Instance Spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-dev-authentication-credentials

 ## Test Instance spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-test-authentication-credentials

 ## Prod Instance Spec

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-prod-authentication-credentials

4. Create the secret in the cluster by following any one of the methods described in
the Mechanism for Creating Custom Secrets topic. In our example, the secret
would need to capture host, port, principal and credential. Each instance would
need a secret created, but the values provided depend on which authentication
system is being used.

Dev secret creation

 kubectl create secret generic COM-dev-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

 # Test secret creation

Chapter 6
Working with Kubernetes Secrets

6-8

kubectl create secret generic COM-test-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

 ##Production secret creation

 kubectl create secret generic COM-prod-authentication-credentials \
-n COM \
--from-literal=principal=<prodvalue1> \
--from-literal=credential=<prodvalue2> \
--from-literal=host=<prodvalue3> \
--from-literal=port=<prodvalue4>

The following diagram illustrates the secret landscape in this example:

Figure 6-2 Landscape of Secrets

Mechanism for Creating Custom Secrets
You can create custom secrets in any of the following ways:

• Using Scripts

• Using a Template

• Using the Command-line Interface

Using Scripts to Create Secrets

Functionality such as OpenLDAP, NFS, and Credential Store that can be enabled or
disabled in OSM cloud native relies on pre-requisite secrets to be created. In such

Chapter 6
Working with Kubernetes Secrets

6-9

cases, the toolkit provides sample scripts that can create the secrets for you. While
these scripts are useful for configuring instances quickly in development situations,
it is important to remember that they are sample scripts, and not pipeline friendly.
These scripts are also essential because when the secret is mandated by OSM cloud
native, both the secret name and the secret data are available in the sample script that
populates it.

As an example, the secrets used by the Credential Store mechanism must follow a
specific naming convention:

projectName-instanceName-osmcn-cred-mapName

Using a Template

To create custom secrets using a template:

1. Save the secret details into a template file.

apiVersion: v2
kind: Secret
metadata:
 labels:
 weblogic.resourceVersion: domain-v2
 weblogic.domainUID: project-instance
 weblogic.domainName: project-instance
 namespace: project
 name: secretName
type: Opaque
stringData:
password_key: value1
user_key: value2

2. Run the following command to create the secret:

kubectl apply -f templateFile

Using the Command-line Interface

You can also specify the secret name and the details directly on the command-line
interface:

kubectl create secret generic secretName \
-n project \
--from-literal=password_key=value1 \
--from-literal=user_key=value2

Adding JMS Queues and Topics
JMS queues and topics are unique because the base JMS resources (JMS server
and JMS subdeployments) already exist in the domain as the OSM core application
requires them. You can add custom queues and topics to the OSM JMS resources by
specifying the appropriate content in the project specification file.

Chapter 6
Adding JMS Queues and Topics

6-10

To add queues or topics, uncomment the sample in your specification file, providing
the values necessary to align with your requirements.

Consider the following points:

• The only mandatory values are 'name' and 'jndiName'.

• Text in angular brackets do not have a default value. You must supply an actual
value per your requirements.

• The remaining parameters are set to their default values if omitted. When a
different value is supplied in the specification file, it is used as an override to
the default value.

Note:

There should only be one list of uniformDistributedQueues and one
list of uniformDistributedTopics in the specification. When copying the
content from the samples, ensure that you do not replicate these sections
more than once.

To add JMS distributed queues:

jms distributed queues
uniformDistributedQueues:
 - name: custom-queue-name
 jndiName: custom-queue-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

To add JMS distributed topics:

jms distributed topics
uniformDistributedTopics:
 - name: custom-topic-name
 jndiName: custom-topic-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000

Chapter 6
Adding JMS Queues and Topics

6-11

 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

Generating Error Queues for Custom Queues and Topics
You can generate error queues for all custom queues and topics automatically.

To generate error queues automatically, configure the following parameters in the
project.yaml file:

errorQueue:
 autoGenerate: false
 expirationPolicy: "Redirect"
 redeliveryLimit: 15

By default, the autoGenerate parameter is set to false. To generate error queues for
all JMS queues automatically, set this parameter to true.

When autoGenerate is set to true, all custom queues and topics will have their own
error queues.

The following sample shows the error queue generated for a custom queue:

'jms_queue_name_ERROR':
 ResetDeliveryCountOnForward: false
 SubDeploymentName: osm_jms_server
 JNDIName: error/ jms_queue_jndiName
 IncompleteWorkExpirationTime: -1
 LoadBalancingPolicy: 'Round-Robin'
 ForwardDelay: -1
 Template: osmErrorJmsTemplate

Note:

• All error queues have _ERROR as the suffix.

• For internal queues and topics in OSM, generation of error queues is
always enabled. Each queue and topic has its own _ERROR queue.
Messages that cannot be delivered are redirected accordingly.

• Disable this feature for O2A 2.1.2.1.0 cartridges used in an OSM
cloud native environment. The O2A build generates its own project
specification fragment, which must be used instead.

Creating a JMS Template
A JMS template provides an efficient means of defining multiple destinations with
similar attribute settings.

Chapter 6
Generating Error Queues for Custom Queues and Topics

6-12

You can add one or more JMS templates if required in addition to the one provided.
To create additional JMS templates, copy the customJmsTemplate definition and
rename it:

JMS Template (optional). Uncomment to define "customJmsTemplate"
Alternatively use the built-in template "customJmsTemplate"
#jmsTemplate:
customJmsTemplate:
DeliveryFailureParams:
RedeliveryLimit: 10
ExpirationPolicy: Discard
DeliveryParamsOverrides:
RedeliveryDelay: 1000
TimeToLive: -1
Priority: -1
TimeToDeliver: -1

To use a JMS template for a queue or topic definition, you can specify the template
name, as well as the unique JNDI name:

jms distributed queues. Uncomment to define one or more JMS queues
under a
single element uniformDistributedQueues.
uniformDistributedQueues: {} # This empty declaration should be removed
if adding items here.
#uniformDistributedQueues:
- name: jms_queue_name
jndiName: jms_queue_jndiName
jmsTemplate: customJmsTemplate

jms distributed topic. Uncomment to define one or more JMS Topics
under a
single element uniformDistributedTopics.
uniformDistributedTopics: {} # This empty declaration should be removed
if adding items here.
#uniformDistributedTopics:
- name: jms_topic_name
jndiName: jms_topic_jndiName
jmsTemplate: customJmsTemplate

If the queues and topics need to be created under custom JMS resources, then the
OSM cloud native WDT extension mechanism should be employed as described in
"Adding a JMS System Resource".

Working with Cartridges
This section describes how you build, deploy, and undeploy OSM cartridges in a cloud
native environment.

OSM cartridges are built using either Design Studio or build scripts, which are the
methods used for building cartridges in traditional environments.

This topic covers the following operations:

Chapter 6
Working with Cartridges

6-13

• Deploying Cartridges Using the OSM Cloud Native Toolkit

• Deploying Cartridges Using Design Studio

Deploying Cartridges Using the OSM Cloud Native Toolkit
To deploy cartridge par files, OSM cloud native employs a mechanism using the OSM
cloud native toolkit's manage-cartridges.sh script. You can deploy cartridge par files
in offline or online modes.

Use the following commands with the manage-cartridges.sh script:

• -p projectName: Mandatory. Name of the project.

• -i instanceName: Mandatory. Name of the instance.

• -s specPath: Mandatory. The location of the specification files. A colon(:) delimited
list of directories.

• -m customExtPath: Use this to specify the path of custom extension files. Takes a
colon(:) delimited list of directories. If the path provided is empty with the custom
flag enabled as true in the specifications, then the script is stopped.

• –o: Enables online cartridge deployment.

• -c commandName: Mandatory. Use the following command names:

– parDeploy: Use this to deploy a cartridge par file from your local file system.
Use this for development environments only.

– sync: Use this to synchronize cartridges using the project specification and
remote repository. Use this for all controlled environments.

• -f parPath: Mandatory if parDeploy is used. This specifies the path of the cartridge
par file that you want to deploy.

• -q: Optional. Disables verbose progress indicators.

The manage-cartridges.sh script spins up a pod to perform the requested
deployment activities:

• If parDeploy is chosen, the script must be run such that it has access to the
specified cartridge par file as well as the "kubectl cp" privileges on the pod that is
spun up.

• If sync is chosen, the script compares the list of cartridges and versions in the
project specification file against those that are present in the OSM cloud native
database and performs the necessary synchronization actions. The list in the
project specification file must depict the desired target state:

Note:

In the actions listed below, "cartridge" refers to "cartridge+version".

– If a cartridge is listed as deployed, but is not deployed in the database: it is
deployed.

– If a cartridge is listed as deployed and the same version exists in the
database, the two are compared; if there is a difference, the new par file is
redeployed.

Chapter 6
Working with Cartridges

6-14

– If a cartridge is listed with a default setting that does not match with what is
in the database, the default setting in the database is updated to match; no
change is done to this setting if they already match.

– If a cartridge is listed as fastundeployed and it exists as active in the
database, it is fast-undeployed in the database. If the cartridge is already
fast-undeployed in the database, nothing is done. If the cartridge does not
exist in the database, nothing is done.

The OSM cloud native toolkit ignores the "default" flag in the par file when
the sync command is used - it enforces the list as specified in the project
specification. For each cartridge, the sync validation ensures that exactly one
version is tagged as default.

Using a remote repository is the recommended approach as all aspects of an
OSM instance, including the cartridge set deployed, remain in source controlled
configuration.

Each entry in the list of cartridges describes a specific cartridge using the name of the
cartridge, its version, the intended deployment state and the intended default state. In
addition, it specifies a URL that can be used to download the cartridge par file into the
cartridge management pod. This URL would be pointing to a remote repository that
may require authentication or other parameters. The cartridge entry has fields that can
be used to provide parameters (in the form of "curl" command line parameters) as well
as a secret that carries the username and password information.

cartridges:
 - name: name_of_the_cartridge - Mandatory, (must match the cartridge
name in the par file)
 url: URL_of_the_location_where_to_download_the_cartridge_par_file -
Mandatory.
 secret: a Kubernetes_secret_in_the_project_namespace - Optional,
only required if remote URL server requires authentication.
 params: Commandline_parameters_will_be_passed_to_curl - Optional,
user can provide additional parameters like proxy settings for curl.
 version: cartridge version, example 1.0.0.0.0 - Mandatory,
cartridge version (must match the cartridge version in the par file)
 default: true|false - Mandatory, set this cartridge as default
cartridge or not.
 deploymentState: deployed|fastundeployed - Mandatory, indicate the
desired target state of the cartridge

Offline Cartridge Deployment

This deployment mode supports deployment of new cartridges, deployment of new
versions of existing cartridges, and redeployment of existing cartridge versions with
changes.

For offline cartridge deployment, all managed servers in your environment must be
shut down. The script stops running if there are managed servers up and running.
Rolling restart of managed servers is not performed for offline deployment.

When using the toolkit for deploying cartridges in offline mode, the running instance of
OSM must be shut down first by scaling down the cluster size to 0:

vi spec_Path/project-instance.yaml

Chapter 6
Working with Cartridges

6-15

Change the cluster size to 0

#cluster size
clusterSize: 0

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
spec_Path

Run the following command to deploy cartridges in offline mode:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path -c sync [-o]

Online Cartridge Deployment

This deployment mode supports deployment of new cartridges and deployment of new
versions of existing cartridges.

Deploying cartridges in an OSM cloud native environment provides the following key
benefits:

• You can deploy the cartridges without needing to isolate OSM from order
processing at the JMS/HTTP level.

• You can describe the cartridges for an environment in a declarative fashion.

In online mode, you can deploy cartridges to your OSM cloud native running instance
while orders from a cartridge that you deployed earlier are still being processed. To
achieve this, you should have a minimum of two managed servers on which your OSM
cloud native instance is running. In such an environment, when you deploy cartridges,
OSM availability is uninterrupted and ongoing order processing continues.

You use the manage-cartridges.sh script with the -o option to enable online
deployment of cartridges. After deploying the cartridges, the script performs a rolling
restart of all the managed servers in your environment.

When deploying cartridges in online mode, the running instance of OSM must continue
to run and the required cluster size is at least 2.

vi spec_Path/project-instance.yaml

Change the cluster size to a minimum of 2

#cluster size
clusterSize: 2

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
spec_Path

Run the following command to deploy cartridges in online mode:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path -c sync [-o]

Consider the following when deploying cartridges in online mode:

Chapter 6
Working with Cartridges

6-16

• If no managed servers are running, a warning is shown that no managed server is
up and running and that the deployment mode is switching to offline deployment.
The script continues with offline deployment.

• If only one managed server is running, then the script fails to perform the
deployment.

The OSM cloud native deployment has two different methods of providing cartridge par
files based on the following types of the environment they are being deployed to:

• Open Environments

• Controlled Environments

Deploying Cartridges in Open Environments

Open environments are mostly development and some test environments. To deploy
cartridges to a running instance of OSM cloud native in an open environment, you can
use any of the following options:

• Local par file
Run the script as follows:

$OSM_CNTK/scripts/manage-cartridges.sh -p projectName -i
instanceName -s spec_Path -f cartridge_par_file -c parDeploy

• Remote Repository (Unsecured)
This approach could be suitable for test environments.

1. Edit the project specification in your file repository to add entries for each
cartridge to be deployed:

Unsecured repository
cartridges:
 - name: OracleComms_OSM_O2A_COMSOM_CSO_Solution
 version: 2.1.2.0.0
 url:
http://example.com/Repo/OracleComms_OSM_O2A_COMSOM_CSO_Solution/
OracleComms_OSM_O2A_COMSOM_CSO_Solution.par
 default: true
 deploymentState: deployed
 - name: SimpleRabbits
 version: 1.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/1.0/
SimpleRabbits.par
 default: false
 deploymentState: fastundeployed
 - name: SimpleRabbits
 version: 2.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/2.0/
SimpleRabbits.par
 default: true
 deploymentState: deployed

2. Run the script as follows:

$OSM_CNTK/scripts/manage-cartridges.sh -p project_name -i
instance_name -s spec_path -c sync [-o]

Chapter 6
Working with Cartridges

6-17

• Remote Repository - Disabling Verification
To disable host verification:

1. Pass in the curl -k option as follows.

Note:

Disabling the verification on a secured repository is a security risk.

secured repository, disabling host verification
cartridges:
 - name: OracleComms_OSM_O2A_COMSOM_CSO_Solution
 version: 2.1.2.0.0
 url:
http://example.com/Repo/OracleComms_OSM_O2A_COMSOM_CSO_Solution/
OracleComms_OSM_O2A_COMSOM_CSO_Solution.par
 default: true
 deploymentState: deployed
 params: -k
 - name: SimpleRabbits
 version: 1.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/1.0/
SimpleRabbits.par
 default: false
 deploymentState: fastundeployed
 params: -k
 - name: SimpleRabbits
 version: 2.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/2.0/
SimpleRabbits.par
 default: true
 deploymentState: deployed
 params: -k

2. Run the script as follows:

$OSM_CNTK/scripts/manage-cartridges.sh -p project_name -i
instance_name -s specification_path -c sync [-o]

Deploying Cartridges in Controlled Environments

To install cartridges in controlled environments such as UAT, pre-production, and
production, use only the declarative approach. Rather than copying the par files into
the cartridge management pod, they are "pulled" from a URL.

The cartridge list is defined in the project specification, ensuring that the cartridge load
is also under version control.

• Using a Remote Repository

To use a remote repository to deploy cartridges in a controlled environment:

Chapter 6
Working with Cartridges

6-18

1. Edit the project specification in your file repository as follows:

Credentials required
cartridges:
 - name: OracleComms_OSM_O2A_COMSOM_CSO_Solution
 version: 2.1.2.0.0
 url:
http://example.com/Repo/OracleComms_OSM_O2A_COMSOM_CSO_Solution/
OracleComms_OSM_O2A_COMSOM_CSO_Solution.par
 default: true
 deploymentState: deployed
 secret: solution_cartridge_secret_name_in_lowercase
 - name: SimpleRabbits
 version: 1.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/1.0/
SimpleRabbits.par
 default: false
 deploymentState: fastundeployed
 secret: solution_cartridge_secret_name_in_lowercase
 - name: SimpleRabbits
 version: 2.0.0.0.0
 url: http://example.com/Repo/SimpleRabbits/2.0/
SimpleRabbits.par
 default: true
 deploymentState: deployed
 secret: solution_cartridge_secret_name_in_lowercase

The secret would contain any authentication credentials required to download
the par file from the remote repository. The toolkit relies on the secret having
the entries for the username and password set to the appropriate values.
These are used by curl.

An example of creating the secret using kubectl on the command line is as
follows:

kubectl create secret generic
solution_cartridge_secret_name_in_lowercase \
 -n project \
 --from-literal=username='remoteRepoUsername' \
 --from-literal=password='remoteRepoPassword'

2. Run the script as follows:

./scripts/manage-cartridges.sh -p project_name -i instance_name
\ -s spec_path -c sync [-o]

• Using a Remote Repository - TLS/SSL
For HTTPS, the SSL certificate of the repository server must be exposed
to the cartridge management pod and then passed as a command
line parameter -cacertpath_to_repo_server_ssl_certificate to curl. The
path_to_repo_server_ssl_certificate is the path within the pod.

To allow curl access to the SSL certificate within the cartridge management pod:

Chapter 6
Working with Cartridges

6-19

1. Obtain the server certificate by running the following command:

echo quit | openssl s_client -showcerts -
servername repo_server_hostname -connect repo_server_url
path_to_repo_server_ssl_name.pem

2. Run the register-certificate.sh script to create a Kubernetes secret that
contains the SSL certificate:

$OSM_CNTK/scripts/register-certificate.sh -p project_name -n
secret_name -f path_to_repo_server_ssl_name.pem

3. Add the following fragment to the project specification to enable the secret to
be mounted at the path /etc/ssl/certs/ within the cartridge management pod.
The name is the secret_name created in step 2 and type is the file extension
of the certificate file:

certificates:
 - name: secret_name
 type: file_type

#example
certificates:
 - name: mySecret
 type: pem

4. Add the parameter --cacert /etc/ssl/certs/secret_name.file_type to the
cartridges: params parameter in the project specification:

cartridges:
 - name: OracleComms_OSM_O2A_COMSOM_CSO_Solution
 version: 2.1.2.0.0
 url:
http://example.com/Repo/OracleComms_OSM_O2A_COMSOM_CSO_Solution/
OracleComms_OSM_O2A_COMSOM_CSO_Solution.par
 default: true
 deploymentState: deployed
 params: --cacert /etc/ssl/certs/secret_name.file_type

You use Design Studio or build scripts to undeploy (fast undeploy and full undeploy)
OSM cartridges.

Deploying Cartridges Using Design Studio
You can deploy cartridges directly from Design Studio using the Eclipse user interface
or headless Design Studio. However, use Design Studio for deploying cartridges in
scenarios where there is a lot of churn in the build, deploy and test cycle, but not for
production environments. If used in conjunction with the OSM cloud native cartridge
management mechanism, then the deployed cartridges become out of sync with what
is listed in the source controlled specification file. For this reason, deploying cartridges
using Design Studio is not recommended for environments where the specification file
is considered the single source of truth for the set of deployed cartridges.

Chapter 6
Working with Cartridges

6-20

In order to incorporate Design Studio into the larger OSM cloud native ecosystem, you
need to have previously taken care of the mapping of the hostname to the Kubernetes
cluster or the load balancer as described in "Planning and Validating Your Cloud
Environment".

After confirming that this has been done, do the following in Design Studio:

• Ensure that the connection URL of the Design Studio environment project
matches your OSM cloud native environment. This is likely: http://
instance.project.osm.org:30305/cartridge/wsapi. The suffix osm.org is
configurable.

• In the Design Studio workspace, depending on your network setup, you may
need to set the Proxy bypass field in the Network Connection Preferences to:
instance.project.osm.org

Provisioning Cartridge User Accounts
This section describes how to use the sample scripts to create credential store secrets
and provide the instance configuration so that OSM cloud native can access the
credentials.

The sample scripts also provide the ability to populate the OpenLDAP server so that
OSM can authenticate any cartridge users. In this way, provisioning a cartridge user
account uses the same mechanism regardless of the end location for the credentials.
In this way, provisioning a cartridge user account uses the same mechanism
regardless of the end location for the credentials.

This section covers the following topics:

• Creating Credential Store Secret

• Declaring the Secret

• Configuring LDAP Systems

OSM solution cartridges have complex requirements around user credentials:

• Automation plugins that handle communication with external systems need a
programmatic way to access credentials so that outgoing requests can supply
the appropriate credentials for the requested operation. To meet this requirement,
a credential store mechanism is required. Credentials must be populated into a
central repository for storing usernames and passwords, and OSM must be able to
access this repository to pass credentials to the plugin code when requested.

• Additionally, if a cartridge defined user (non-human) account is accessing an OSM
API, then the credentials for this user account also need to exist in the embedded
LDAP so that OSM can authenticate the user. Also, the cartridge human user
account needs to exist in the external authentication system (OpenLDAP).

In summary, some cartridge defined users need to be provisioned in a credential store,
some in OpenLDAP or other LDAP provider, and some users need to be defined in
both.

The following table summarizes the system that cartridge user accounts need to be
provisioned to:

Chapter 6
Provisioning Cartridge User Accounts

6-21

Note:

When the same credentials need to exist in both the LDAP server and as a
Kubernetes secret, care must be taken to ensure the credentials remain in
sync.

Table 6-1 Cartridge User Accounts

User Credential Usage LDAP Kubernetes Secret Description

OSM UI Required Not Required Normal manual OSM
user

OSM Web Service API Required Required The cartridge code
generates an OSM
create order request or
other OSM Web Service
payload.

OSM XML API Required Required if API access
is to another instance of
OSM

Normal manual OSM
user

OSM Automation Required Not Required OSM Automation Plugin
Run as user

OSM REST API Required Required if API access
is to another instance of
OSM

REST API User

External Systems (Web
Services, APIs and so on)

Not Required Required The cartridge code
generates a request for
external systems that
require authentication.

Creating Credential Store Secret

In a traditional deployment, OSM uses the Fusion Middleware Credential Store
framework and provides tooling for creating and populating the credential store
through the XMLIE's "credStoreAdmin" operation. OSM cloud native uses Kubernetes
Secrets as the credential store and the OSM cloud native toolkit provides sample
scripts that create credential store secrets and populate them with the required
credentials.

Note:

If you use custom code that relies on the OPSS Keystore Service, you need
to make changes for OSM cloud native as that mechanism is no longer
supported. For details, see "Differences Between OSM Cloud Native and
OSM Traditional Deployments".

A text file is used to describe the details required to provision the user accounts
properly. Each user is captured in one line and has the following format:

map_name:key_name:username:credential-system[:osm-groups]

Chapter 6
Provisioning Cartridge User Accounts

6-22

$OSM_CNTK/samples/credentials/osm_users.txt is used to define OSM human
users for external LDAP but can be used as a template for other user credentials
that need to be created.

Copy this file to your private specification repository under the instance specific
directory and rename it to something meaningful. For example, rename the file as
repo/cartridge_user_text_file.txt.

The mapName parameter is a mandatory parameter. If <credential-system> contains
"secret", then this value is used as the prefix of the secret name to be created.

Note:

If only LDAP is required, use "osm" for the secret prefix. This value is
not used anywhere, but enables the sample to extract the remaining data
properly.

The choice of map name and key name affects which OSM automation framework API
can be used to retrieve the value within the automation plugin:

• Use "osm" as map name and _sysgen_ as key name. The credential record is
accessed with the context:getOsmCredentialPassword API.

• Any other map name and key name needs access with the
context:getCredentialAsXML or context:getCredential APIs.
Refer to the OSM SDK for more details.

The credential-system parameter is a mandatory parameter and must be at least one
of the following values:

• ldap: Creates the OSM human user against the external LDAP server.

Note:

The cartridge automation user account should be created in embedded
LDAP by specifying the list of usernames in cartridgeUsers in
projectName.yaml. Do not create them in external LDAP.

• secret: Creates the human user or automation user against the Kubernetes
Secret.

Note:

Use a comma to separate the values if creation in both the systems is
required.

The osm-groups parameter represents a list of OSM groups to associate the user to
either the embedded or external LDAP server.

The valid values for the osm-groups parameter are:

• OMS_client

Chapter 6
Provisioning Cartridge User Accounts

6-23

• OMS_designer

• OMS_user_assigner

• OMS_workgroup_manager

• OMS_xml_api

• OMS_ws_api

• OMS_ws_diag

• OMS_log_manager

• OMS_cache_manager

• Cartridge_Management_WebService

• OSM_automation

• osmEntityClientGroup

• osmRestApiGroup

Refer to OSM System Administrator's Guide for details on OSM user group mapping.

The following text shows a sample user information text file:

Line 1
osm:_sysgen_:osmfallout:ldap,secret:OMS_client,OMS_xml_api,OSM_automatio
n,OMS_ws_api
Line 2 osm:_sysgen_:webuser:ldap,secret:OMS_client
Line 3 uim:_sysgen_:uimuser:secret
Line 4 uim:_sysgen_:uimadmin:secret
Line 5
osm:_sysgen_:osmlf:secret:OMS_client,OMS_xml_api,OSM_automation,OMS_ws_a
pi
Line 6 # Guidelines
Line 7 mapName:keyName:userName:credentialSystem:OsmGroup

Note:

The secret contains username, password, and the groups.

In the above example:

• Line 1 creates a user "osmfallout" in OpenLDAP and associates that user against
the groups listed.

• Line 2 creates a user "webuser" in OpenLDAP and associates this user to the
OSM_client group.

• Line 3 and 4 create users "uimadmin" and "uimuser" in the "uim" credential secret.

• Line 5 creates user "osmlf" in the "osm" credential secret.

The secrets that the manage-cartridge-credentials.sh script creates are named
project-instance-osmcn-cred-mapName as per the naming conventions required by
OSM. For each unique mapName that you provide, the script creates one secret.
This means if five user entries exist for "uim", each entry will be available in a single

Chapter 6
Provisioning Cartridge User Accounts

6-24

secret named project-instance-osmcn-cred-uim. The script prompts for passwords
interactively.

To create the credential store secret:

1. Run the following script:

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh \
-p project \
-i instance \
-c create \
-f fileRepo/customSolution_users.txt

You will see the following output
secret/project-instance-osmcn-cred-uim created

2. Validate that the secrets are created:

kubectl get secret -n project

NAME
project-instance-osmcn-cred-uim

Creating Cartridge User Accounts in Embedded LDAP

To create accounts for cartridge users in embedded LDAP, under the
cartridgeUsers section in project.yaml, add all the cartridge users (only those from
the prefix/map name osm). During the creation of the OSM server instance, for all
the cartridge users listed, an account is created in embedded LDAP with the same
username and password and groups as the Kubernetes secret.

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

Declaring the Secret

After the secret is created, declare the secret used by the credential store mechanism
by editing your project specification. In the project specification, specify only
mapName. The prefix project-instance-osmcn-cred is derived during the instance
creation.

To declare the secrets, edit the project specification:

#External Credentials Store
externalCredStore:
 secrets:

Chapter 6
Provisioning Cartridge User Accounts

6-25

 mapNames:
 -mapName

The OSM cloud native configuration provides a start-up parameter that allows the
OSM core application to determine whether the credentials are held in a WebLogic
Credential Store (for traditional deployments) or in a Kubernetes Secret Credential
Store (for cloud native) so that the configuration is set for you. Cartridges that rely on
accessing these credentials are now enabled for execution.

Configuring Other LDAP Systems

The manage-cartridge-credentials.sh script supports the OpenLDAP system. To
provide support for a different LDAP provider, you must modify the script. Also, the
corresponding LDAP client or the API must be installed on the system where the script
is executed.

You must modify the following functions within this script:

• create_ldap_account. This function creates the user account in the LDAP
system and associates the user to the specified groups.

• update_ldap_account. This function updates the user password.

• delete_ldap_account. This function deletes the user from the LDAP system
and disassociates this user from the specified group.

• verify_ldap_account. This function verifies that the specified user exists in
the LDAP server.

For details on developing the functions, see the developer's guide of the target LDAP
server that you want to use.

Chapter 6
Provisioning Cartridge User Accounts

6-26

7
Extending the WebLogic Server Deploy
Tooling (WDT) Model

While the OSM cloud native toolkit provides a domain model that is sufficient to
support the operation of the OSM application, there are a few aspects that you can
customize to meet your business requirements. This chapter provides the general
mechanism that OSM cloud native provides for how custom WebLogic Server Deploy
Tooling (WDT) metadata can be used.

The following sections enable you to familiarize yourself with the basic extension
mechanism. For details on using the sample scripts to add custom WDT metadata,
see "Using the Sample Scripts to Extend the WDT Model".

About the Custom WDT Extension Mechanism
The OSM cloud native toolkit exposes an extension mechanism to extend the base
WDT domain configuration. For better management practices, you must specify
different WDT model fragments in multiple .tpl files that can be included in instances
as necessary.

All extensions must be located in your source control repository in a directory referred
to as customExtPath, which is provided during instance creation. This does not need
to be the same location as specPath that contains the specification files. See the
illustration about the directory structure in "Managing Configuration as Code".

Using the WDT Model Tools
This section describes the WDT model tools that you can use when extending the
WDT model.

The WDT model tools are available at: https://github.com/oracle/weblogic-deploy-
tooling. The documentation available on GitHub describes various tools, which are
included in the OSM cloud native toolkit.

For a developer trying to modify or extend the WDT model for a custom OSM instance,
the following tools are the most useful:

• WDT Discover Domain

• WDT Validate Model

WDT Discover Domain Tool
One way to generate the desired custom model is to manually create a WLS domain
(using legacy installers, wlst scripts, console UI changes, and so on) that contains all
the constructs that are required and is known to work, in terms of the custom use
case. The WDT Discover Domain tool can be pointed at this WLS domain to generate
a set of model files. These can be scanned and pruned to get the portions that are

7-1

https://github.com/oracle/weblogic-deploy-tooling
https://github.com/oracle/weblogic-deploy-tooling

of custom interest. They can further be parameterized using WDT's properties files or
using Helm values.

If WDT properties are used to parameterize, ensure that you add that properties file to
the extension point in the custom implementation.

If Helm values are used to parameterize, ensure that you add these values to the
appropriate location - project/instance/shape yamls.

To discover a domain, run the following commands on the prepared WLS admin server
or standalone server:

ensure ORACLE_HOME is properly set
cd $ORACLE_HOME
mkdir wdt && cd wdt
wget https://github.com/oracle/weblogic-deploy-tooling/releases/
download/weblogic-deploy-tooling-1.6.0/weblogic-deploy.zip
Replace 1.6.0 with the actual WDT version as per OSM documentation
unzip weblogic-deploy.zip
cd weblogic-deploy/bin
./discoverDomain.sh -oracle_home $ORACLE_HOME \
 -domain_home domain-home \
 -archive_file archive \
 -model_file model \
 -domain_type domain-type \
 -admin_user admin-user \
 -admin_url t3-admin-url

where:

• archive and model are the directory+name of the files that the discovery tool
creates. The model file is of primary importance in this situation.

• domain-type is JRF for OSM applications

The command extracts the model from the running WLS instance. Alternatively, if it is
sufficient to extract the model from the domain configuration files, the admin_user
and admin_url parameters can be left out.

WDT Validate Model Tool
This tool is useful in the following scenarios:

• When there is a need to see what attributes and sub-fields are available for a
model element

• When there is a need to see if a model fragment is valid

Trying to test a newly written or even a modified model file by incorporating it into an
instance creation is cumbersome and often an inefficient way to test your changes.
You need to check the Introspector logs to see the details of any errors.

With the Validate Model tool, it is easier to validate the model file, especially if you are
building the model iteratively.

Chapter 7
Using the WDT Model Tools

7-2

Common WDT Extension Mechanism
This section describes the extension mechanism that is generic and common to all
methods of extending WDT metadata.

Enabling the Extension Mechanism

To enable the extension mechanism:

1. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository customExtPath. This file is a single location where other template files,
which store specific WDT metadata fragments, can be included for an OSM
instance. This sets up the WDT fragments for re-use across a project, while
allowing conditional inclusion based on instance level values in the specification
files.

2. Enable the extension mechanism by setting the custom flag to true in the project
specification and including _custom-domain-model.tpl:

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl

The basic extension mechanism is now enabled.

For each WDT fragment that is destined for inclusion, perform the following additional
steps:

• Provide the WDT fragment

• (Optional) Parameterize the WDT Fragment

• Load the WDT Fragment

• List the .tpl files

• Debug the changes in the Helm chart

Providing the WDT Fragment

Naming convention dictates that the template files start with an underscore _. For
example, _custom-extension-support.tpl.

You can copy any one of the WDT fragments provided in the samples, or you can
create your own. If you provide your own WDT fragment, then you will need to reverse
engineer the required metadata using the WDT tooling. For these samples, see "Using
the WDT Model Tools".

If you create your own .tpl file, ensure that the WDT fragment is enclosed in a define
block as follows:

{{- define "osm-domain.custom-extension-support" -}}
custom model fragment goes here
{{- end }}

(Optional) Parameterizing the WDT Fragment

Chapter 7
Common WDT Extension Mechanism

7-3

Instead of hard coding the values into the WDT, you can parameterize the content so
that specific values can be driven from the Helm chart. Determine which values fall
into this category and then apply the following changes:

To parameterize the WDT fragment:

1. Update the WDT to use a parameter as illustrated in the following example:

Host: 'external.provider.hostname'

becomes....

Host: '{{ .Values.custom.extension.host }}'

2. Add values to the application instance in either the project specification or the
instance specification found in the source control at spec_Path.

custom:
 enabled: true
 <extension>:
 host: provide_explicit_value_here

The custom area of the specification file is where you can add as much content as
needed for your extension use cases. Oracle recommends that you keep the yaml
structure as flat as possible.

Loading the WDT Fragment

The sample _custom-domain-model.tpl already has conditional inclusions for
some of the samples provided in the toolkit. JMS, JDBC, and custom application
archives can be enabled by providing the appropriate flag in the instance specification
and including the specific .tpl file in the project specification. For the samples, you do
this task as described in "Using the Sample Scripts to Extend the WDT Model".

Load the model fragment into extension_Directory/_custom-domain-model.tpl as
follows:

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
custom-<extension>-support.<index>.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}
{{- end }}

Note:

See the yaml naming convention that is specified by wdt - filename.yaml.
The index used determines the loading order when there are multiple yaml
files. Indexes below 70 are reserved for internal Oracle use.

The WDT may only need to be used conditionally. It is important to be able to exclude
the fragment based on the values provided in the project specification. In this case,
_custom-domain-model.tpl should include the condition that needs to be met for
the WDT to be included.

Chapter 7
Common WDT Extension Mechanism

7-4

Note:

Including the WDT in extension_Directory, which makes it available during
instance creation, but not used does not pose any problems for Helm.

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.<extension>.enabled }}
custom-extension-support.index.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}
{{- end }}
{{- end }}

Listing the TPL Files in the Project

For each WDT fragment that is created in a .tpl file, it needs to be listed in the project
specification.

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl
 - new_wdt.tpl

Debugging Helm Chart Changes

When making changes to existing yaml files or creating new WDT fragments, it is
useful to test the changes before attempting to create an instance.

You can use the following scripts provided with the toolkit to debug Helm chart
changes:

• $OSM_CNTK/scripts/lint-osm-instance-chart.sh

• $OSM_CNTK/scripts/create-instance-dry-run.sh

You can now create an OSM instance.

Using the Sample Scripts to Extend the WDT Model
This section provides instructions for extending the WDT model by using the sample
scripts that are provided with the toolkit. You add custom WDT metadata to create your
own OSM instances.

The toolkit includes sample scripts for the following:

• Adding a JDBC Datasource

• Adding a JMS System Resource

• Deploying a Custom Application ear to an OSM WebLogic domain

• Extending the WDT Metadata for an External Authenticator

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-5

The general and common extension process described in "Common WDT Extension
Mechanism" must be repeated for each of the use cases described in this section.

Adding a JDBC Datasource
The WDT fragment describing a JDBCSystemResource is provided in the $CNTK/
samples/customExtension/_custom-jdbc-support.tpl sample file.

To incorporate this fragment into your OSM instance:

1. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-jdbc-support.tpl to the customExtPath in your source control repository.

3. Parameterize the WDT fragment. The fragment has already been parameterized
and uses values specified in the shape file. You must update the remaining values
enclosed in angular brackets. By default, this WDT reads the JDBC values from
the shape that is provided during instance creation.

Note:

Kubernetes Secrets can also be used to provide sensitive data such
as username and password. See "Accessing Kubernetes Secrets from
WDT Metadata" for details.

resources:
 JDBCSystemResource:
 '<custom-conn-pool>':
 JdbcResource:
 JDBCDriverParams:
 URL: 'jdbc:oracle:thin:@<db-host>:<db-port>/<db-service>'
 PasswordEncrypted: '<password>'
 #PasswordEncrypted: '@@SECRET:my_secret_name:my_db_password@@'
 Properties:
 user:
 Value: '<user>'
 #Value: '@@SECRET:my_secret_name:my_db_user@@'
 oracle.net.CONNECT_TIMEOUT:
 Value: {{ default "10000" .Values.jdbc.oracleNetConnectTimeout }}
 oracle.jdbc.ReadTimeout:
 Value: {{ default "3660000" .Values.jdbc.oracleJdbcReadTimeout }}
 JDBCConnectionPoolParams:
 InitialCapacity: {{ default "0" .Values.jdbc.initialCapacity }}
 MaxCapacity: {{ default "15" .Values.jdbc.maxCapacity }}
 MinCapacity: {{ default "0" .Values.jdbc.minCapacity }}
 ShrinkFrequencySeconds: {{ default

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-6

"900" .Values.jdbc.shrinkFrequencySeconds }}
 TestFrequencySeconds: {{ default
"300" .Values.jdbc.testFrequencySeconds }}
 TestConnectionsOnReserve: {{ default
"true" .Values.jdbc.testConnectionsOnReserve }}
 SecondsToTrustAnIdlePoolConnection: {{ default
"10" .Values.jdbc.secondsToTrustAnIdlePoolConnection }}
 StatementCacheSize: {{ default
"30" .Values.jdbc.statementCacheSize }}
 ConnectionCreationRetryFrequencySeconds: {{ default
"30" .Values.jdbc.connectionCreationRetryFrequencySeconds }}
 IgnoreInUseConnectionsEnabled: {{ default
"true" .Values.jdbc.ignoreInUseConnectionsEnabled }}
 InactiveConnectionTimeoutSeconds: {{ default
"0" .Values.jdbc.inactiveConnectionTimeoutSeconds }}
 StatementCacheType: '{{ default
"LRU" .Values.jdbc.statementCacheType }}'
 CountOfTestFailuresTillFlush: {{ default
"5" .Values.jdbc.countOfTestFailuresTillFlush }}
 CountOfRefreshFailuresTillDisable: {{ default
"5" .Values.jdbc.countOfRefreshFailuresTillDisable }}
 RemoveInfectedConnections: {{ default
"false" .Values.jdbc.removeInfectedConnections }}
 ConnectionReserveTimeoutSeconds: {{ default
"10" .Values.jdbc.connectionReserveTimeoutSeconds }}
 StatementTimeout: {{ default
"3630" .Values.jdbc.statementTimeout }}

4. The fragment is already configured for conditional loading based on the presence
of the jdbc flag in the project specification. Set the jdbc flag to true.

custom:
 enabled: true
 jdbc: true

5. Add the JDBC .tpl file to the project specification:

custom:
 enabled: true
 jdbc: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jdbc-support.tpl

You can now create the OSM instance.

Adding a JMS System Resource
The WDT fragment describing a JMS System Resource is provided in the $CNTK/
samples/customExtension/_custom-jms-support.tpl sample file.

To incorporate this fragment into your OSM instance:

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-7

1. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-jms-support.tpl to the customExtPath in your source control repository.
While this sample shows WDT for a JMS Queue and JMS Topic, any other JMS
entity can be supplied instead. See "Using the WDT Model Tools" for details on
establishing the correct WDT.

3. Parameterize the WDT fragment. The fragment has not been parameterized. The
text enclosed in angular brackets must be replaced with specific values.
Alternatively, update the WDT to parameterize content and provide actual values
in the project specification.

4. The fragment is already configured for conditional loading based on the
presence of the jms flag in the project specification. See the $CNTK/charts/osm/
templates/_custom-domain-model.tpl template. Set the jms flag to true.

custom:
 enabled: true
 jms: true

5. Add the jms tpl file to the project specification:

custom:
 enabled: true
 jms: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jms-support.tpl

You can now create the OSM instance.

Deploying Entities to an OSM WebLogic Domain
You can deploy any WebLogic Server deployable entity, such as an application EAR or
WAR to an OSM WebLogic domain.

To deploy an entity to an OSM WebLogic Domain:

1. Package the entity, for example, the application ear into an archive file and place it
inside the container image used for creating OSM instances.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-8

Note:

The WebLogic domain tooling expects application binaries to be
available at the correct path within the archive. A script is provided for
your convenience that packages the application into the correct path.

cp application.ear samples/customExtensions
cd samples/customExtensions
./make-custom-archive.sh archive_file_name.zip application.ear

2. Build a new container image:

cd samples/customExtensions
docker build -t "image_name:tag" --
build-arg base_image=osm_base_image --build-arg
archive=archive_file_name.zip .

3. Upload the generated image to your private Docker repository.

4. Add the domain configuration.
In addition to copying the archive file into the base image, you must supply custom
configuration, which can be passed in by any one of following two mechanisms:

• Inside the container image.
This mechanism keeps the ear file together with the domain configuration
in one location. This is best suited to applications that can be considered
standard or fixed for all variants of a domain that are required (test,
development, and production).

Advantage: You do not need to add the custom domain configuration every
time you create a domain.

Disadvantage: If you want to change the configuration, it requires a change to
the base image. In domains that are already up, an image change triggers a
full restart of the domain.

To add the domain configuration using this mechanism:

a. Save your fragment in a YAML file that includes an index 70 or above. For
example, custom-application-extension.70.yaml.

b. Edit Dockerfile to copy the YAML file to the u01/wdt/models directory
along with the archive.

• Using the extension mechanism.
This approach allows for per instance control over the application. This is best
suited to situations where the application configuration needs to be dictated by
the specific domain instance (for example, test vs. production).

Advantage: Keeps all "variable" (per instance) configuration in one place at
domain creation.

Disadvantage: Domain creation for every instance that uses the application
must remember to add the configuration.

To use the extension mechanism:

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-9

a. Enable the extension mechanism by setting the custom flag to true and
add the custom-domain-model to the list of included wdtFiles in the
project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

b. Provide the WDT fragment by copying $CNTK/samples/
customExtensions/_custom-application-support.tpl to the
customExtPath in your source control repository.

c. Parameterize the WDT fragment. The fragment has already been
parameterized.

appDeployments:
 Application:
 {{- .Values.custom.application_name }}:
 SourcePath: 'wlsdeploy/
applications/{{- .Values.custom.binary_name }}.ear'
 ModuleType: ear
 StagingMode: nostage
 PlanStagingMode: nostage
 Target: '@@PROP:CLUSTER_NAME@@'

d. Provide the values in the instance specification:

custom:
 enabled: true
 application: true
 #additional values here
 application_name: myApplication
 binary_name: myApp

e. Add the application flag and set it to true. The fragment is
already configured for conditional loading based on the presence of the
application flag in the project specification. See $CNTK/charts/osm/
templates/_custom-domain-model.tpl in the toolkit.

custom:
 enabled: true
 application: true

f. Add the application tpl file to the project specification:

custom:
 enabled: true
 application: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-application-support.tpl

You can now create the OSM instance.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-10

Extending the WDT Metadata for an External Authenticator
The OSM cloud native toolkit provides out-of-the-box configuration for a WebLogic
domain using OpenLDAP as the authenticator. Using a different provider (even a
different LDAP provider) requires different WDT metadata, which is a significant
undertaking. The configuration required to support an alternate WLS provider would
need to be investigated and developed independently using an existing WebLogic
domain. Oracle's WDT Discover Domain Tool can analyze an existing domain and
generate the corresponding WDT model. The WDT model fragment can then be used
to configure the OSM domain using the toolkit extension mechanism.

See the following documentation for information on configuring a WebLogic domain
with alternative authentication providers:

• Configuring WebLogic to use LDAP

• Configuring Active Directory (AD) as an Authentication Provider in WebLogic

After the WDT is determined, it is provided during the creation process in the same
way as other WDT metadata fragments. This section describes the process for setting
up external authentication for OSM cloud native.

To set up external authentication:

1. Disable OpenLDAP by editing the project specification in customExPath:

authentication:
 openldap:
 enabled: false

2. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository at customExtPath.

3. Enable the extension mechanism by setting the custom flag to true in the project
specification and including the _custom-domain-model.tpl

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

4. Determine and provide the WDT model fragment for the security provider in the
WebLogic domain. Once you know the WDT fragment that needs to be supplied,
save it into a file in your source control repository at the customExtPath (_custom-
provider-support.tpl).

{{- define "osm.custom-provider-support" -}}
topology:
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 '!DefaultAuthenticator':
 '!DefaultIdentityAsserter':
 YouLDAPProviderStartHere:
 <specific details here>

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-11

https://docs.oracle.com/cd/E82085_01/141/rib_implementation_guide/appendixA.htm#sthref138

 DefaultAuthenticator:
 DefaultAuthenticator:
 ControlFlag: SUFFICIENT
 UseRetrievedUserNameAsPrincipal: true
 DefaultIdentityAsserter:
 DefaultIdentityAsserter:
{{- end }}

Note:

You can review the fragment for an OpenLDAP provider that
is included in the toolkit: $OSM_CNTK/charts/osm/templates/_osm-
openldap-support.tpl

The security configuration WDT should respect sensitive data by using secrets.
See "Accessing Kubernetes Secrets from WDT Metadata" for details on how to
access secret data from within your WDT fragment.

5. (Optional) Update any parameters that should not be hard coded in the WDT
fragment. Add these values to the project specification under the "custom" section.

6. Load the model fragment by editing your custom_extension_path/ _custom-
domain-model.tpl file:

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-provider-support" $root | nindent 2 }}
{{- end }}

If you would like conditional inclusion of the
fragment...something like this instead

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.provider.flag}}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-<provider>-support" $root | nindent 2 }}
{{- end }}
{{- end }}

Note:

Remember the yaml naming convention that is specified by wdt -
filename.yaml. The index used determines the loading order when there
are multiple yaml files. Indexes below 70 are reserved for internal Oracle
use.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-12

7. Add the tpl file that has the authentication provider WDT into the project
specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-provider-support.tpl

You can now create an OSM instance.

Accessing Kubernetes Secrets from WDT Metadata
The process of handling sensitive data inside a WDT fragment involves the following:

• Creating Kubernetes secrets

• Declaring the secrets in the specification file

• Referencing the secrets from the WDT fragment

To access Kubernetes secrets from WDT metadata:

1. Create the secret.
Secrets must be created in the correct Kubernetes namespace. The namespace is
already created when registering the namespace and aligns to your project name.

To create the secret using the command line, run the following command:

$kubectl -n project_Name create secret generic secret_Name \
 --from-literal=key1=$value \
 --from-literal=key2=$value

2. Add the secret in the custom section of the instance specification in your source
repository:

Custom secrets
replace the empty secret names with one or more secrets
instance:
 customSecrets:
 enabled: true
 secretNames:
 - mysecret1
 - mysecret2

Once you have created and declared your custom secrets, they can be referenced
from elsewhere in the WDT model.

3. Access the secret from inside a WDT fragment:

Field1: '@@SECRET:secret_name:key1@@'
Field2: '@@SECRET:secret_name:key2@@'

where secret_name represents the secret name and key represents one of the
keys in the secret.

Chapter 7
Accessing Kubernetes Secrets from WDT Metadata

7-13

Troubleshooting WDT Issues
This section provides details about some procedures that you may have to run in order
to resolve issues with WDT.

Starting and Terminating a WDT Pod

The OSM image includes the WDT tools that are often needed to debug or discover
a WDT fragment. You can start a temporary pod that provides access to these tools.
Before starting the pod, download the container image of the OSM base image to
ensure that the download time does not exceed the duration of the Kubernetes pod
creation timeout.

kubectl run wdt --generator=run-pod/v1 \
 --image OSM_base_image -- sleep infinity

When the pod is no longer needed, you can delete it:

kubectl delete pod wdt

Validating a Model YAML File

To validate a model YAML file:

1. Copy a model yaml into your temporary pod:

kubectl cp model_file wdt:/tmp/model_file

2. Run the following command and wait for the prompt:

kubectl exec -ti wdt /bin/bash

3. Validate the model file you copied:

cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME -model_file /tmp/
model_file

4. When you are done validating, exit the pod:

exit

The line numbers returned by the validateModel script are exclusive of the comment
lines. Either strip the comments first or do the calculation to get the "real" line number
in the file.

This process can be iterated by first reviewing the WDT errors and warnings, fixing the
YAML file, and then re-running the above procedure. Repeat this as required.

Chapter 7
Troubleshooting WDT Issues

7-14

Note:

Model files can contain fragments of models, but each model element must
have its full parentage, starting from section. For example, following is the
sample if the fragment is the model element JmsResource:

resources:
 JMSSystemResource:
 JmsResource:
 model-fragment-to-validate

Displaying Valid Attributes and Child Attributes of a WDT Model

To display the attributes of a WDT model, run the following commands:

kubectl exec -ti wdt /bin/bash
wait for prompt
cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME \
 -print-usage path
exit

The path here is the WDT path to the model element of
interest. For example, to see all the attributes and child attributes
for SAFImportedDestinations, the path is resources:/JMSSystemResource/
JmsResource/SAFImportedDestinations.

A common way to construct the path is to look for the element in a discovered model
file and determine its yaml path. Another way is to start off with a path of section:,
where section is one of "domainInfo", "topology", "resources" or "appDeployments".
By iteratively discovering the child attributes, the final path can be built-up.

To shorten this search process, add the -recursive flag to the validateModel.sh
script command line. Care should be taken as the output can be quite large at the
higher levels.

Chapter 7
Troubleshooting WDT Issues

7-15

8
Exploring Alternate Configuration Options

The OSM cloud native toolkit provides samples and documentation for setting up your
OSM cloud native environment using standard configuration options. However, you
can choose to explore alternate configuration options for setting up your environment,
based on your requirements. This chapter describes alternate configurations you
can explore, allowing you to decide how best to configure your OSM cloud native
environment to suit your needs.

You can choose alternate configuration options for the following:

• Setting Up Authentication

• Working with Shapes

• Injecting Custom Configuration Files

• Choosing Worker Nodes for Running OSM Cloud Native

• Working with Ingress, Ingress Controller, and External Load Balancer

• Using an Alternate Ingress Controller

• Reusing the Database State

• Setting Up Persistent Storage

• Setting Up Database Optimizer Statistics

• Leveraging Oracle WebLogic Server Active GridLink

• Managing Logs

• Managing OSM Cloud Native Metrics

The sections that follow provide instructions for working with these configuration
options.

Setting Up Authentication
By default, OSM uses the WebLogic embedded LDAP as the authentication provider
and all OSM system users are created in embedded LDAP during instance creation.
For human users, you may set up an optional authentication for the users who
access OSM through user interfaces. See "Planning and Validating Your Cloud
Environment" for information on the components that are required for setting up your
cloud environment. The OSM cloud native toolkit provides samples that you use to
integrate components such as OpenLDAP, WebLogic Kubernetes Operator (WKO),
and Traefik. This section describes the tasks you must do for configuring optional
authentication for OSM cloud native human users.

Perform the following tasks using the samples provided with the OSM cloud native
toolkit:

• Install and configure OpenLDAP. This is required to be done once for your
organization.

8-1

• Install OpenLDAP clients. This is required to be performed on each host that
installs and runs the toolkit scripts and when a Kubernetes cluster is shared by
multiple hosts.

• In the OpenLDAP server, create the root node for each OSM instance

Installing and Configuring OpenLDAP

OpenLDAP enables your organization to handle authentication for all instances of
OSM. You install and configure OpenLDAP once for your organization.

To install and configure OpenLDAP:

1. Run the following command, which installs OpenLDAP:

$ sudo -s yum -y install "openldap" "migrationtools"

2. Specify a password by running the following command:

$ sudo -s slappasswd
New password:
Re-enter new password:

3. Configure OpenLDAP by running the following commands:

$ sudo -s
$ cd /etc/openldap/slapd.d/cn=config
$ vi olcDatabase\=\{2\}hdb.ldif

4. Update the values for the following parameters:

Note:

Ignore the warning about editing the file manually.

• olcSuffix: dc=osmcn-ldap,dc=com

• olcRootDN: cn=Manager,dc=osmcn-ldap,dc=com

• olcRootPW:ssha
where ssha is the SSHA that is generated

5. Update the dc values for the olcAccess parameter as follows:

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external, cn=auth"
read by dn.base="cn=Manager,dc=osmcn-ldap,dc=com" read by * none

6. Test the configuration by running the following command:
sudo -s slaptest -u

Ignore the checksum warnings in the output and ensure that you get a success
message at the end.

Chapter 8
Setting Up Authentication

8-2

7. Run the following commands, which restart and enable LDAP:

sudo -s systemctl restart slapd
sudo -s systemctl enable slapd
sudo -s cp -rf /usr/share/openldap-servers/
DB_CONFIG.example /var/lib/ldap/DB_CONFIG
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/cosine.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/nis.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/
inetorgperson.ldif

8. Create a root node named domain, which will be the top parent for all OSM
instances.

9. Run the following command to create a new file named base.ldif:

sudo -s vi /root/base.ldif

10. Add the following entries to the base.ldif file:

dn: ou=Domains,dc=osmcn-ldap,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Domains

11. Run the following commands to update the values in the base.ldif file:

ldapadd -x -W -D "cn=Manager,dc=osmcn-ldap,dc=com" -f /root/
base.ldif
ldapsearch -x cn=Manager -b dc=osmcn-ldap,dc=com

12. Open the LDAP port 389 on all Kubernetes nodes in the cluster.

Installing OpenLDAP Clients

In environments where the Kubernetes cluster is shared by multiple hosts, you must
install the OpenLDAP clients on each host. You use the scripts in the toolkit to
populate the LDAP server with users and groups.

On the host on which you want to create a basic OSM instance, run the following
command, which installs the OpenLDAP clients:

sudo -s yum -y install openldap-clients

Creating the Root Node

You must create the root node for each OSM instance before additional OSM non-
automation user and OSM group can be created.

The toolkit provides a sample script ($OSM_CNTK/samples/credentials/manage-
osm-ldap-credentials.sh) that you can use to create the root node in the LDAP tree
for the OSM instance.

Run the $OSM_CNTK/samples/credentials/manage-osm-ldap-credentials.sh script
by passing in -o account.

Chapter 8
Setting Up Authentication

8-3

Working with Shapes
The OSM cloud native toolkit provides the following pre-configured shapes:

• charts/osm/shapes/dev.yaml. This can be used for development, QA and user
acceptance testing (UAT) instances.

• charts/osm/shapes/devsmall.yaml. This can be used to reduce CPU
requirements for small development instances.

• charts/osm/shapes/prod.yaml. This can be used for production, pre-production,
and disaster recovery (DR) instances.

• charts/osm/shapes/prodlarge.yaml. This can be used for production, pre-
production and disaster recovery (DR) instances that require more memory for
OSM cartridges and order caches.

• charts/osm/shapes/prodsmall.yaml. This can be used to reduce CPU
requirements for production, pre-production and disaster recovery (DR) instances.
For example, it can be used to deploy a small production cluster with two
managed servers when the order rate does not justify two managed servers
configured with a prod or prodlarge shape. For production instances, Oracle
recommends two or more managed servers. This provides increased resiliency to
a single point of failure and can allow order processing to continue while failed
managed servers are being recovered.

You can create custom shapes using the pre-configured shapes. See "Creating
Custom Shapes" for details.

The pre-defined shapes come in standard sizes, which enable you to plan your
Kubernetes cluster resource requirement.

The following table lists the sizing requirements of the shapes for a managed server:

Table 8-1 Sizing Requirements of Shapes for a Managed Server

Shape Kube Request Kube Limit JVM Heap (GB)

prodlarge 80 GB RAM, 15 CPU 80 GB RAM, 15 CPU 64
prod 48 GB RAM, 15 CPU 48 GB RAM, 15 CPU 31
prodsmall 48 GB RAM, 7.5 CPU 48 GB RAM, 7.5 CPU 31
dev 8 GB RAM, 2 CPU 8 GB RAM 5
devsmall 8 GB RAM, 0.5 CPU 8 GB RAM 5

The following table lists the sizing requirements of the shapes for an admin server:

Table 8-2 Sizing Requirements of Shapes for an Admin Server

Shape Kube Request Kube Limit JVM Heap (GB)

prodlarge 8 GB RAM, 2 CPU 8 GB RAM 4
prod 8 GB RAM, 2 CPU 8 GB RAM 4
prodsmall 8 GB RAM, 2 CPU 8 GB RAM 4
dev 3 GB RAM, 1 CPU 4 GB RAM 1
devsmall 3 GB RAM, 0.5 CPU 4 GB RAM 1

Chapter 8
Working with Shapes

8-4

These values are encoded in the specifications and are automatically part of the
individual pod configuration. The Kubernetes schedulers evaluate the Kube request
settings to find space for each pod in the worker nodes of the Kubernetes cluster.

To plan the cluster capacity requirement, consider the following:

• Number of development instances required to be running in parallel: D

• Number of managed servers expected across all the development instances: Md
(Md will be equal to D if all the development instances are 1 MS instances)

• Number of production (and production-like) instances required to be running in
parallel: P

• Number of managed servers expected across all production instances: Mp

• Assume use of "dev" and "prod" shapes

• CPU requirement (CPUs) = D * 1 + Md * 2 + P * 2 + Mp * 15

• Memory requirement (GB) = D * 4 + Md * 8 + P * 8 + Mp * 48

Note:

The production managed servers take their memory and CPU in large
chunks. Kube scheduler requires the capacity of each pod to be satisfied
within a particular worker node and does not schedule the pod if that
capacity is fragmented across the worker nodes.

The shapes are pre-tuned for generic development and production environments. You
can create an OSM instance with either of these shapes, by specifying the preferred
one in the instance specification.

Name of the shape. The OSM cloud native shapes are devsmall, dev,
prodsmall, prod, and prodlarge.
Alternatively, custom shape name can be specified (as the filename
without the extension)

Creating Custom Shapes
You create custom shapes by copying the provided shapes and then specifying the
desired tuning parameters. Do not edit the values in the shapes provided with the
toolkit.

In addition to processor and memory sizing parameters, a custom shape can be used
to tune:

• The number of threads allocated to OSM work managers

• OSM connection pool parameters

• Order cache sizes and inactivity timeouts

For more details on the recommend approach to tune these parameters, see "OSM
Pre-Production Testing and Tuning" in OSM Installation Guide.

To create a custom shape:

1. Copy one of the pre-configured shapes and save it to your source repository.

Chapter 8
Working with Shapes

8-5

2. Rename the shape and update the tuning parameters as required.

3. In the instance specification, specify the name of the shape you copied and
renamed:

shape: custom

4. Create the domain, ensuring that the location of your custom shape is included in
the comma separated list of directories passed with -s.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s
spec_Path

Note:

While copying a pre-configured shape or editing your custom shape, ensure
that you preserve any configuration that has comments indicating that it must
not be deleted.

Injecting Custom Configuration Files
Sometimes, a solution cartridge may require access to a file on disk. A common
example is for reading of property files or mapping rules.

A solution may also need to provide configuration files for reference via parameters
in the oms-config.xml file for OSM use (for example, for operational order jeopardies
and OACC runtime configuration).

To inject custom configuration files:

1. Make a copy of the OSM_CNTK/samples/customExtensions/custom-file-
support.yaml file.

2. Edit it so that it contains the contents of the files. See the comments in the file for
specific instructions.

3. Save it (retaining its name) into the directory where you save all extension files.
Say extension_directory. See "Extending the WebLogic Server Deploy Tooling
(WDT) Model" for details.

4. Edit your project specification to reference the desired files in the customFiles
element:

#customFiles:
- mountPath: /some/path/1
configMapSuffix: "path1"
- mountPath: /some/other/path/2
configMapSuffix: "path2"

When you run create-instance.sh or upgrade-instance.sh, provide the
extension_directory in the "-m" command-line argument. In your oms-config.xml file
or in your cartridge code, you can refer to these custom files as mountPath/filename,
where mountPath comes from your project specification and filename comes from your
custom-file-support.yaml contents. For example, if your custom-file-support.yaml

Chapter 8
Injecting Custom Configuration Files

8-6

file contains a file called properties.txt and you have a mount path of /mycompany/
mysolution/config, then you can refer to this file in your cartridge or in the oms-
config.xml file as /mycompany/mysolution/config/properties.txt.

While working with custom configuration files, consider the following usage guidelines:

• The files created are read-only for OSM and for the cartridge code.

• The mountPath parameter provided in the project specification should point to
a new directory location. If the location is an existing location, all of its existing
content will occlude with the files you are injecting.

• Do not provide the same mountPath more than once in a project specification.

• The custom-file-support.yaml file in your extension_directory is part of your
configuration-as-code, and must be version controlled as with other extensions
and specifications.

To modify the contents of a custom file, update your custom-file-support.yaml file in
your extension_directory and invoke upgrade-instance.sh. Changes to the contents
of the existing files are immediately visible to the OSM pods. However, you may need
to perform additional actions in order for these changes to take effect. For example, if
you changed a property value in your custom file, that will only be read the next time
your cartridge runs the appropriate logic.

If you wish to add files for a running OSM cloud native instance, update your custom-
file-support.yaml file as described above and invoke upgrade-instance.sh. While
this same procedure can work when you need to remove custom files for a running
OSM instance, it is strongly recommended that you do this as described in the
following procedure to avoid "file not found" type of errors:

1. Update the instance specification to set the size to 0 and then run upgrade-
instance.sh.

2. Update the instance specification to set the size to the initial value and remove the
file from your custom-file-support.yaml file.

3. Update the customFiles parameter in your project specification and run upgrade-
instance.sh.

Choosing Worker Nodes for Running OSM Cloud Native
By default, OSM cloud native has its pods scheduled on all worker nodes in the
Kubernetes cluster in which it is installed. However, in some situations, you may want
to choose a subset of nodes where pods are scheduled.

For example, these situations include:

• Licensing restrictions: Coherence could be limited to be deployed on specific
shapes. Also, there could be a limit on the number of CPUs where Coherence is
deployed.

• Non license restrictions: Limitation on the deployment of OSM on specific worker
nodes per each team for reasons such as capacity management, chargeback,
budgetary reasons, and so on.

Chapter 8
Choosing Worker Nodes for Running OSM Cloud Native

8-7

To choose a subset of nodes where pods are scheduled, you can use the configuration
in the project specification yaml file.

If OSM cloud native instances must be targeted to a subset of worker
nodes in the
Kubernetes cluster, tag those nodes with a label name and value, and
choose
that label+value here.
key : any node label key
values : list of values to choose the node.
If any of the values is found for the above label key,
then that
node is included in the pod scheduling algorithm.
#
This can be overriden in instance specification if required.
osmcnTargetNodes: {} # This empty declaration should be removed if
adding items here.
#osmcnTargetNodes:
nodeLabel:
oracle.com/licensed-for-coherence is just an indicative example,
any label and its values can be used for choosing nodes.
key: oracle.com/licensed-for-coherence
values:
- true

Consider the following when you update the configuration:

• There is no restriction on node label key. Any valid node label can be used.

• There can be multiple valid values for a key.

• You can override this configuration in the instance specification yaml file, if
required.

Working with Ingress, Ingress Controller, and External Load
Balancer

A Kubernetes ingress is responsible for establishing access to back-end services.
However, creating an ingress is not sufficient. An Ingress controller connects the
back-end services with the front-end services based on Ingress rules. In OSM cloud
native, an ingress controller can be configured in the project specification.

valid values are TRAEFIK, GENERIC, OTHER
ingressController: "TRAEFIK"

To create an ingress, run the following:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

To delete an ingress, run the following:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

8-8

The Traefik ingress controller works by creating an operator in its own "traefik"
namespace and exposing a NodePort service. However, all ingress controllers do not
behave the same way. In order to accommodate all types of ingress controllers, by
default, the instance.yaml file provides the loadBalancerPort parameter.

If an external load balancer is used, it needs to be connected to the NodePort
service of the Ingress controller. Hence, externalLoadBalancerIP also needs to
be present in instance.yaml.

For the Traefik ingress controller, do the following:

• If an external load balancer is not configured, fetch loadBalancerPort by
running the following command:

$kubectl -n $TRAEFIK_NS get service traefik-operator --
output=jsonpath="{..spec.ports[?(@.name=='http')].nodePort}"

• If an external load balancer is used, fetch loadBalancerPort by running the
following command:

kubectl -n $TRAEFIK_NS get service traefik-operator --
output=jsonpath="{..spec.ports[?(@.name=='http')].port}"

Populate the values in instance.yaml before invoking create-instance.sh command
to create an instance:

If external hardware or software load balancer is used, set this
value to that frontend host IP.
If OCI load balancer is used, then set externalLoadBalancerIP from
OCI LBaaS
#externalLoadBalancerIP: ""

For Traefik Ingress Controller:
If external load balancer is used, then this would be 80, else
traefik pod's Nodeport (30305)
loadBalancerPort: 80

Note:

If you choose Traefik or any other ingress controller such as Traefik,
you can move the loadBalancerPort and externalLoadBalancerIP
parameters to project.yaml.

Using an Alternate Ingress Controller
By default, OSM cloud native supports Traefik and provides sample files for
integration. However, you can use any Ingress controller that supports host-based
routing and session stickiness with cookies. OSM cloud native uses the term "generic"
ingress for scenarios where you want to leverage the Ingress capabilities that the
Kubernetes platform may provide.

Chapter 8
Using an Alternate Ingress Controller

8-9

To use a generic ingress controller, you must create the ingress object and configure
your OSM instance to use it. The toolkit uses an ingress Helm chart ($OSM_CNTK/
samples/charts/ingress-per-domain/templates/traefik-ingress.yaml) and scripts
for creating the ingress objects. If you want to use a generic ingress controller, these
samples can be used as a reference and customized as necessary.

If your OSM cloud native instance needs to secure incoming communications, then
look at the $OSM_CNTK/samples/charts/ingress-per-domain/templates/traefik-
ingress.yaml file. This file demonstrates the configuration for a TLS-enabled Traefik
ingress that can be used as a sample.

The host-based rules and the corresponding back-end Kubernetes service mapping
are provided using the following definitions:

• domainUID: Combination of project-instance. For example, sr-quick.

• clusterName: The name of the cluster in lowercase. Replace any hyphens "-" with
underscore "_". The default name of the cluster in values.yaml is c1.

The following table lists the service name and service ports for Ingress rules:

Table 8-3 Service Name and Service Ports for Ingress Rules

Rule Service Name Service Port Purpose

instance.project.loadBala
ncerDomainName

domainUID-cluster-
clusterName

8001 For access to OSM
through UI, XMLAPI,
Web Services, and so on.

t3.instance.project.loadBa
lancerDomainName

t3.instance.project.loadBa
lancerDomainName

30303 OSM T3 Channel access
for WLST, JMS, and SAF
clients.

admin.instance.project.lo
adBalancerDomainName

domainUID-admin 7001 For access to OSM
WebLogic Admin Console
UI.

Ingresses need to be created for each of the above rules per the following guidelines:

• Before running create-instance.sh, ingress must be created.

• After running delete-instance.sh, ingress must be deleted.

You can develop your own code to handle your ingress controller or copy the sample
ingress-per-domain chart and add additional template files for your ingress
controller with a new value for the type (NGINX for example).

• The reference sample for creation is: $OSM_CNTK/scripts/config-ingress.sh

• The reference sample for deletion is: $OSM_CNTK/scripts/delete-ingress.sh

You must update the value of the ingressController parameter in the instance
specification at $SPEC_PATH/project-instance.yaml

#valid values are TRAEFIK, GENERIC, OTHER
ingressController: "GENERIC"

If any of the supported Ingress controllers or even a generic ingress does not meet
your requirements, you can choose "OTHER".

By choosing this option, OSM cloud native does not create or manage any ingress
required for accessing the OSM cloud native services. However, you may choose to

Chapter 8
Using an Alternate Ingress Controller

8-10

create your own ingress objects based on the service and port details mentioned in the
above table.

Note:

Regardless of the choice of Ingress controller, it is mandatory to provide the
value of loadBalancerPort in one of the specification files. This is used
for establishing front-end cluster.

Reusing the Database State
When an OSM instance is deleted, the state of the database remains unaffected,
which makes it available for re-use. This is common in the following scenarios:

• When an instance is deleted and the same instance is re-created using the same
project and the instance names, the database state is unaffected. For example,
consider a performance instance that does not need to be up and running all
the time, consuming resources. When it is no longer actively being used, its
specification files and PDB can be saved and the instance can be deleted. When
it is needed again, the instance can be rebuilt using the saved specifications
and the saved PDB. Another common scenario is when developers delete and
re-create the same instance multiple times while configuration is being developed
and tested.

• When a new instance is created to point to the data of another instance with a
new project and instance names, the database state is unaffected. A developer,
who might want to create a development instance with the data from a test
instance in order to investigate a reported issue, is likely to use their own instance
specification and the OSM data from PDB of the test instance.

Additionally, consider the following components when re-using the database state:

• The OSM DB (schema and data)

• The RCU DB (schema and data)

Recreating an Instance
You can re-create an OSM instance with the same project and instance names,
pointing to the same database. In this case, both the OSM DB and the RCU
DB are re-used, making the sequence of events for instance re-creation relatively
straightforward.

To recreate an instance, the following pre-requisites must be available from the original
instance and made available to the re-creation process:

• PDB

• The project and instance specification files

Reusing the OSM Schema

To reuse the OSM DB, the secret for the PDB must still exist:

project-instance-database-credentials

Chapter 8
Reusing the Database State

8-11

project-instance-database-credentials.

This is the osmdb credential in the manage-instance-credentials.sh script.

Reusing the RCU

To reuse the RCU, the following secrets for the RCU DB must still exist:

• project-instance-rcudb-credentials. This is the rcudb credential.

• project-instance-opss-wallet-password-secret. This is the opssWP
credential.

• project-instance-opss-walletfile-secret. This is the opssWF credential.

If the opssWP and opssWF secrets no longer exist and cannot be re-created from
offline data, then drop the RCU schema and re-create it using the OSM DB Installer.

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s spec_Path

Creating a New Instance
If the original instance does not need to be retained, then the original PDB can be
re-used directly by a new instance. If however, the instance needs to be retained, then
you must create a clone of the PDB of the original instance. This section describes
using a newly cloned PDB for the new instance.

If possible, ensure that the images specified in the project specification (project.yaml)
match the images in the specification files of the original instance.

Reusing the OSM Schema

To reuse the OSM DB, the following secret for the PDB must be created using the
new project and instance names. This is the osmdb credential in manage-instance-
credentials.sh and points to your cloned PDB:

project-instance-database-credentials

If your new instance must reference a newer OSM DB installer image in its
specification files than the original instance, it is recommended to invoke an in-place
upgrade of OSM schema before creating the new instance.

To upgrade or check the OSM schema:

Upgrade the OSM schema to match new instance's specification files
Do nothing if schema already matches
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path
-c 1

You can choose a strategy for the RCU DB from one of the following options:

• Create a new RCU

• Reuse RCU

Creating a New RCU

Chapter 8
Reusing the Database State

8-12

If you only wish to retain the OSM schema data (cartridges and orders), then you can
create a new RCU schema.

The following steps provide a consolidated view of RCU creation described in
"Managing Configuration as Code".

To create a new RCU, create the following secrets:

• project-instance-rcudb-credentials. This is the rcudb credential and
describes the new RCU schema you want in the clone.

• project-instance-opss-wallet-password-secret. This is the opssWP
credential unique to your new instance

After these credentials are in place, prepare the cloned PDB:

Create a fresh RCU DB schema while preserving OSM schema data
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path
-c 7

With this approach, the RCU schema from the original instance is still available in the
cloned PDB, but is not used by the new instance.

Reusing the RCU

Using the manage-instance-credentials.sh script, create the following secret using
your new project and instance names:

project-instance-rcudb-credentials

The secret should describe the old RCU schema, but with new PDB details.

• Reusing RCU Schema Prefix

Over time, if PDBs are cloned multiple times, it may be desirable to avoid
the proliferation of defunct RCU schemas by re-using the schema prefix and
re-initializing the data. There is no OSM metadata or order data stored in the RCU
DB so the data can be safely re-initialized.

project-instance-opss-wallet-password-secret. This is the opssWP
credential unique to your new instance.

To re-install the RCU, invoke DB Installer:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s
spec_path -c 5

• Reusing RCU Schema and Data

In order to reuse the full RCU DB from another instance, the original opssWF
and opssWP must be copied to the new environment and renamed following the
convention: project-instance-opss-wallet-password-secret and project-instance-
opss-walletfile-secret.

This directs Fusion MiddleWare OPSS to access the data using the secrets.

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s spec_path

Chapter 8
Reusing the Database State

8-13

Setting Up Persistent Storage
OSM cloud native can be configured to use a Kubernetes Persistent Volume to store
data that needs to be retained even after a pod is terminated. This data includes
application logs, JFR recordings and DB Installer logs, but does not include any sort of
OSM state data. When an instance is re-created, the same persistent volume need not
be available. When persistent storage is enabled in the instance specification, these
data files, which are written inside a pod are re-directed to the persistent volume.

Data from all instances in a project may be persisted, but each instance does not
need a unique location for logging. Data is written to a project-instance folder, so
multiple instances can share the same end location without destroying data from other
instances.

The final location for this data should be one that is directly visible to the users of
OSM cloud native. The development instances may simply direct data to a shared file
system for analysis and debugging by cartridge developers. Whereas, formal test and
production instances may need the data to be scraped by a logging toolchain such
as EFK, that can then process the data and make it available in various forms. The
recommendation therefore is to create a PV-PVC pair for each class of destination
within a project. In this example, one for developers to access and one that feeds into
a toolchain.

A PV-PVC pair would be created for each of these "destinations", that multiple
instances can then share. A single PVC can be used by multiple OSM domains. The
management of the PV and PVC lifecycles is beyond the scope of OSM cloud native.

The OSM cloud native infrastructure administrator is responsible for creating and
deleting PVs or for setting up dynamic volume provisioning.

The OSM cloud native project administrator is responsible for creating and deleting
PVCs as per the standard documentation in a manner such that they consume the
pre-created PVs or trigger the dynamic volume provisioning. The specific technology
supporting the PV is also beyond the scope of OSM cloud native. However, samples
for PV supported by NFS are provided.

Creating a PV-PVC Pair

The technology supporting the Kubernetes PV-PVC is not dictated by OSM cloud
native. Samples have been provided for NFS and can either be used as is, or as a
reference for other implementations.

To create a PV-PVC pair supported by NFS:

1. Edit the sample PV and PVC yaml files and update entries with enclosing brackets

Note:

PVCs need to be ReadWriteMany.

vi $OSM_CNTK/samples/nfs/pv.yaml
 vi $OSM_CNTK/samples/nfs/pvc.yaml

Chapter 8
Setting Up Persistent Storage

8-14

2. Create the Kubernetes PV and PVC.

kubectl create -f $OSM_CNTK/samples/nfs/pv.yaml
kubectl create -f $OSM_CNTK/samples/nfs/pvc.yaml

Enable storage in the instance specification and specify the name of the PVC created:

The storage volume must specify the PVC to be used for persistent
storage.
storageVolume:
 enabled: true
 pvc: storage-pvc

After the instance is created, you should see the following directories in your PV mount
point, if you have enabled logs:

[oracle@localhost project-instance]$ dir
db-installer logs performance

Setting Up Database Optimizer Statistics
As part of the setup of a highly performant database for OSM, it is necessary to set
up database optimizer statistics. OSM DB Installer can be used to set up the database
partition statistics, which ensures a consistent source of statistics for new partitions so
that the database generates optimal execution plans for queries in those partitions.

About the Default Partition Statistics

The OSM DB Installer comes with a set of default partition statistics. These statistics
come from an OSM system running a large number of orders (over 400,000) for
a cartridge of reasonable complexity. These partition statistics are usable as-is for
production.

Setting Up Database Partition Statistics

To use the provided default partition statistics, no additional input, in terms of
specification files, secrets or other runtime aspects, is required for the OSM cloud
native DB Installer.

The OSM cloud native DB Installer is invoked during the OSM instance creation, to
either create or update the OSM schema. The installer is configured to automatically
populate the default partition statistics (to all partitions) for a newly created OSM
schema when the "prod", "prodsmall", or "prodlarge" (Production) shape is declared
in the instance specification. The statistics.loadPartitionStatistics field within these
shape files is set to true to enable the loading.

If you want to load partition statistics for a non-production shape, or if you want to
reload statistics due to a DB or schema upgrade, use the command with 11 to load the
statistics to all existing partitions in the OSM schema:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH
-c 11

Chapter 8
Setting Up Database Optimizer Statistics

8-15

If you create new partitions, to import the default partition statistics to these new
partitions, run the following command on the DB Installer.

Note:

The partition name is specified in -b parameter with a comma delimited list of
partition names.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH
-b the_newly_created_partition_1,the_newly_created_partition_2 -c 11

If you create new partitions, and want to copy or load the partition statistics data from
an existing partition to these new partitions, run the following command on the DB
Installer.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance
-s $SPEC_PATH -a existing_partition_name -b
the_newly_created_partition_1,the_newly_created_partition_2 -c 11

Leveraging Oracle WebLogic Server Active GridLink
If you are using a RAC database for your OSM cloud native instance, by default, OSM
uses WebLogic Multi-DataSource (MDS) configurations to connect to the database.

If you are licensed to use Oracle WebLogic Server Active GridLink (AGL) separately
from your OSM license (consult any additional WebLogic licenses you possess that
may apply), you can configure OSM cloud native to use AGL configurations where
possible. This will better distribute load across RAC nodes.

To enable the use of AGL, find the "db:" section in your instance specification YAML
file and add the "aglLincensed" line as shown below and then create or upgrade your
instance as usual:

db:
 aglLicensed: true

Managing Logs
OSM cloud native generates traditional textual logs. By default, these log files are
generated in the managed server pod, but can be re-directed to a Persistent Volume
Claim (PVC) supported by the underlying technology that you choose. See "Setting Up
Persistent Storage" for details.

By default, logging is enabled. When persistent storage is enabled, logs are
automatically re-directed to the Persistent Volume.

The storage volume must specify the PVC to be used for persistent
storage. If enabled, the log, metric and JFR data will be directed here.
storageVolume:

Chapter 8
Leveraging Oracle WebLogic Server Active GridLink

8-16

 enabled: true
 pvc: storage-pvc

• The OSM application logs can be found at: pv-directory/project-instance/logs

• The OSM DB Installer logs can be found at: pv_directory/project-instance/db-
installer

Managing OSM Cloud Native Metrics
All managed server pods running OSM cloud native carry annotations added by
WebLogic Operator and an additional annotation by OSM cloud native.

osmcn.metricspath: /OrderManagement/metrics
osmcn.metricsport: 8001
prometheus.io/scrape: true

Configuring Prometheus for OSM Cloud Native Metrics
Configure the scrape job in Prometheus as follows:

- job_name: 'osmcn'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
['__meta_kubernetes_pod_annotationpresent_osmcn_metricspath']
 action: 'keep'
 regex: 'true'
 - source_labels:
[__meta_kubernetes_pod_annotation_osmcn_metricspath]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels:
['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'drop'
 regex: 'false'
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_osmcn_metricsport]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace

Chapter 8
Managing OSM Cloud Native Metrics

8-17

Note:

OSM cloud native has been tested with Prometheus and Grafana installed
and configured using the Helm chart prometheus-community/kube-
prometheus-stack available at: https://prometheus-community.github.io/
helm-charts.

Viewing OSM Cloud Native Metrics Without Using Prometheus
The OSM cloud native metrics can also be viewed at:

http://instance.project.domain_Name:LoadBalancer_Port/OrderManagement/
metrics

By default, domain_Name is set to osm.org and can be modified in project.yaml.
This only provides metrics of the managed server that is serving the request. It does
not provide consolidated metrics for the entire cluster. Only Prometheus Query and
Grafana dashboards can provide consolidated metrics.

Viewing OSM Cloud Native Metrics in Grafana
OSM cloud native metrics scraped by Prometheus can be made available for further
processing and visualization. The OSM cloud native toolkit comes with sample
Grafana dashboards to get you started with visualizations.

Import the dashboard JSON files from $OSM_CNTK/samples/grafana into your
Grafana environment.

The sample dashboards are:

• OSM by Instance: Provides a view of OSM cloud native metrics for one or more
instances in the selected project namespace.

• OSM by Server: Provides a view of OSM cloud native metrics for one or more
managed servers for a given instance in the selected project namespace.

• OSM by Order Type: Provides a view of OSM cloud native metrics for one or
more order types for a given cartridge version in the selected instance and project
namespace.

Exposed OSM Order Metrics
The following OSM metrics are exposed via Prometheus APIs.

Chapter 8
Managing OSM Cloud Native Metrics

8-18

https://prometheus-community.github.io/helm-charts
https://prometheus-community.github.io/helm-charts

Note:

• All metrics are per managed server. Prometheus Query Language can
be used to combine or aggregate metrics across all managed servers.

• All metric values are short-lived and indicate the number of orders (or
tasks) in a particular state since the managed server was last restarted.

• When a managed server restarts, all the metrics are reset to 0. These
metrics do not refer to the exact values, which can be queried via OSM
APIs such as Web Services and XML API.

Order Metrics

The following table lists order metrics exposed via Prometheus APIs.

Table 8-4 Order Metrics Exposed via Prometheus APIs

Name Type Help Text Notes

osm_orders_created Counter Counter for the number of Orders
Created

N/A

osm_orders_completed Counter Counter for the number of Orders
Completed

N/A

osm_orders_failed Counter Counter for the number of Orders
Failed

N/A

osm_orders_cancelled Counter Counter for the number of Orders
Cancelled

N/A

osm_orders_aborted Counter Counter for the number of Orders
Aborted

N/A

osm_orders_in_progress Gauge Gauge for the number of orders
currently in the In Progress state

N/A

osm_orders_amending Gauge Gauge for the number of orders
currently in the Amending state

N/A

osm_short_lived_orders Histogram Histogram that tracks the duration
of all orders in seconds with
buckets for 1 second, 3 seconds, 5
seconds, 10 seconds, 1 minute, 3
minutes, 5 minutes, and 15 minutes.
Enables focus on short-lived orders.

Buckets for 1 second,
3 seconds, 5 seconds,
10 seconds, 1 minute, 3
minutes, 5 minutes, and
15 minutes.

osm_medium_lived_orde
rs

Histogram Histogram that tracks the duration
of all orders in minutes with
buckets for 5 minutes, 15 minutes,
1 hour, 12 hours, 1 day, 3 days, 1
week, and 2 weeks.
Enables focus on medium-lived
orders.

Buckets for 5 minutes,
15 minutes, 1 hour, 12
hours, 1 day, 3 days, 7
days, and 14 days.

osm_long_lived_orders Histogram Histogram that tracks the duration
of all orders in days with buckets
for 1 week, 2 weeks, 1 month, 2
months, 3 months, 6 months, 1 year
and 2 years. Enables focus on long-
lived orders.

Buckets for 7 days, 14
days, 30 days, 60 days, 90
days, 180 days, 365 days,
and 730 days.

Chapter 8
Managing OSM Cloud Native Metrics

8-19

Table 8-4 (Cont.) Order Metrics Exposed via Prometheus APIs

Name Type Help Text Notes

osm_order_cache_entries
_total

Gauge Gauge for the number of entries
in the cache of type order,
orchestration, historical order,
closed order, and redo order

N/A

osm_order_cache_max_e
ntries_total

Gauge Gauge for the maximum number
of entries in the cache of
type order,orchestration, historical
order, closed order, and redo order

N/A

Labels For All Order Metrics

The following table lists labels for all order metrics.

Table 8-5 Labels for All Order Metrics

Label Name Sample Value Notes Source of the Label

cartridge_nam
e_version

SimpleRabbits_1.7.0
.1.0

Combined Cartridge Name and
Version

OSM Metric Label Name/Value

order_type SimpleRabbitsOrde
r

OSM Order Type OSM Metric Label Name/Value

server_name ms1 Name of the Managed Server OSM Metric Label Name/Value
instance 10.244.0.198:8081 Indicates the Pod IP and Pod port

from which this metric is being
scraped.

Prometheus Kubernetes SD

job omscn Job name in Prometheus
configuration which scraped this
metric.

Prometheus Kubernetes SD

namespace quick Project Namespace Prometheus Kubernetes SD
pod_name quick-sr-ms1 Name of the Managed Server Pod Prometheus Kubernetes SD
weblogic_clust
erName

c1 OSM Cloud Native WebLogic Cluster
Name

WebLogic Operator Pod Label

weblogic_clust
erRestartVersi
on

v1 OSM Cloud Native WebLogic
Operator Cluster Restart Version

WebLogic Operator Pod Label

weblogic_crea
tedByOperator

true WebLogic Operator Pod Label to
identify operator created pods

WebLogic Operator Pod Label

weblogic_dom
ainName

domain WebLogic Operator pod label WebLogic Operator pod label

weblogic_dom
ainRestartVers
ion

v1 OSM Cloud Native WebLogic
Operator Domain Restart Version

WebLogic Operator Pod Label

weblogic_dom
ainUID

quick-sr OSM Cloud Native WebLogic
Operator Domain UID

WebLogic Operator Pod Label

weblogic_mod
elInImageDo
mainZipHash

md5.3d1b561138f3a
e3238d67a023771cf
45.md5

Image md5 hash WebLogic Operator Pod Label

weblogic_serv
erName

ms1 WebLogic Operator Pod Label for
Name of the Managed Server

WebLogic Operator Pod Label

Chapter 8
Managing OSM Cloud Native Metrics

8-20

Task Metrics

The following metrics are captured for Manual or Automated Task Types only. All other
Task Types are currently not being captured.

Table 8-6 Task Metrics Captured for Manual or Automated Task Types Only

Name Type Help Text

osm_tasks_created Counter Counter for the number of Tasks
Created

osm_tasks_completed Counter Counter for the number of Tasks
Completed

Labels for all Task Metrics

A task metric has all the labels that an order metric has. In addition, a task metric has
two more labels.

Table 8-7 Labels for All Task Metrics

Label Sample Value Notes Source of Label

task_name RabbitRunTask Task Name OSM Metric Label Name/
Value

task_type A A for Automated
M for Manual

OSM Metric Label Name/
Value

Managing WebLogic Monitoring Exporter (WME) Metrics
OSM cloud native provides a sample Grafana dashboard that you can use to visualize
WebLogic metrics available from a Prometheus data source.

You use the WebLogic Monitoring Exporter (WME) tool to expose WebLogic server
metrics. WebLogic Monitoring Exporter is part of the WebLogic Kubernetes Toolkit.
It is an open source project, based at: https://github.com/oracle/weblogic-monitoring-
exporter. You can include WME in your OSM cloud native images. Once an OSM
cloud native image with WME is generated, creating an OSM cloud native instance
with that image automatically deploys a WME WAR file to the WebLogic server
instances. While WME metrics are available through WME Restful Management API
endpoints, OSM cloud native relies on Prometheus to scrape and expose these
metrics. This version of OSM supports WME 1.3.0. See WME documentation for
details on configuration and exposed metrics.

The following topics provide a sample integration:

• Generating the WME WAR File

• Deploying the WME WAR File

• Enabling Prometheus for WebLogic Monitoring Exporter (WME) Metrics

• Configuring the Prometheus Scrape Job for WME Metrics

• Viewing WebLogic Monitoring Exporter Metrics in Grafana

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-21

https://github.com/oracle/weblogic-monitoring-exporter
https://github.com/oracle/weblogic-monitoring-exporter

Generating the WME WAR File
To generate the WME WAR file, run the following commands, which update the wls-
exporter.war WAR file with the exporter-config.yaml configuration file.

mkdir -p ~/wme
cd ~/wme

curl -x $http_proxy -L https://github.com/oracle/weblogic-monitoring-
exporter/releases/download/v1.3.0/wls-exporter.war -o wls-exporter.war
curl -x $http_proxy https://raw.githubusercontent.com/
oracle/weblogic-monitoring-exporter/v1.3.0/samples/kubernetes/end2end/
dashboard/exporter-config.yaml -o exporter-config.yaml

jar -uvf wls-exporter.war exporter-config.yaml

Deploying the WME WAR File
After the WME WAR file is generated and updated, you can deploy it as a custom
application archive.

For details about deploying entities, see "Deploying Entities to an OSM WebLogic
Domain".

You can use the following sample to deploy the WME WAR file to the admin server
and the managed servers in a cluster:

appDeployments:
 Application:
 'wls-exporter':
 SourcePath: 'wlsdeploy/applications/wls-exporter.war'
 ModuleType: war
 StagingMode: nostage
 PlanStagingMode: nostage
 Target: '@@PROP:ADMIN_NAME@@ , @@PROP:CLUSTER_NAME@@'

Enabling Prometheus for WebLogic Monitoring Exporter (WME)
Metrics

To enable Prometheus for gathering and exposing WebLogic Monitoring Exporter
metrics on server pods running OSM cloud native, add the following to your custom
shape specification or project specification:

For AdminServer pod
prometheus.io/path: /wls-exporter/metrics
prometheus.io/port: 7001
prometheus.io/scrape: true

For Managed Server pods
prometheus.io/path: /wls-exporter/metrics

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-22

prometheus.io/port: 8001
prometheus.io/scrape: true

Configuring the Prometheus Scrape Job for WME Metrics
Configure the scrape job in Prometheus as follows in the
scrapeJobConfiguration.yaml file:

Note:

In the basic_auth section, specify the WebLogic username and password.

- job_name: 'basewls'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'keep'
 regex: 'true'
 - source_labels:
[__meta_kubernetes_pod_label_weblogic_createdByOperator]
 action: 'keep'
 regex: 'true'
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 basic_auth:
 username: weblogic_username
 password: weblogic_password

Viewing WebLogic Monitoring Exporter Metrics in Grafana
WebLogic Monitoring Exporter metrics scraped by Prometheus can be made available
for further processing and visualization. The OSM cloud native toolkit comes with

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-23

sample Grafana dashboards to get you started with visualizations. The OSM and
WebLogic by Server sample dashboard provides a combined view of OSM cloud
native and WebLogic Monitoring Exporter metrics for one or more managed servers for
a given instance in the selected project namespace.

Import the dashboard JSON file from $OSM_CNTK/samples/grafana into your
Grafana environment, selecting Prometheus as the data source.

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-24

9
Integrating OSM

Typical usage of OSM involves the OSM application coordinating activities across
multiple peer systems. Several systems interact with OSM for various purposes.
This chapter examines the considerations involved in integrating OSM cloud native
instances into a larger solution ecosystem.

This section describes the following topics and tasks:

• Connectivity with traditional OSM instances

• Connectivity with OSM cloud native instances

• Configuring SAF

• Applying the WebLogic patch for external systems

• Configuring SAF for External Systems

• Setting up Secure Communication with SSL/TLS

Connectivity With Traditional OSM Instances
OSM interacts with external systems that fall broadly in the following categories:

• Human user interaction

• Upstream systems that inject orders and check status

• Peer systems and downstream systems that receive requests and provide updates

Human User Interaction

Human users interact with OSM using the following user interfaces:

• Task Web Client

• Order Management Web Client

These user interfaces connect to OSM through HTTP and HTTPS. Some deployments
involve custom user interfaces built for specific purposes. These too interact with
OSM using the Web Services API (WSAPI) or XML API (XMLAPI), with requests and
responses transmitted over HTTP and HTTPS.

Order Submission and Status Check

Order capture systems, CRM systems, and middleware applications such as
Application Integration Architecture (AIA) submit orders into OSM. They can sign
up for order updates through the event/milestone framework. This interaction can
theoretically happen through Web Services API,XML API calls over HTTP/HTTPS.
However, for reasons of scalability, resilience and load management, the strong
recommendation is to conduct this interaction over JMS. This typically involves SAF as
well, to avoid foreign JMS injection. JMS, whether native or with SAF, runs over the T3
protocol.

OSM itself can be the upstream system here. For instance, consider an OSM instance
functioning as Central Order Management (COM). This would need to send orders to

9-1

another OSM instance functioning as Service Order Management (SOM) and receive
updates from it. This too would be via JMS with SAF, running over T3.

There are additional use cases where monitoring systems (or similarly tasked
components) can query OSM. These typically take the form of searches for orders
that fit some business criteria, and reporting back status and perhaps some additional
operationally significant information. OSM is optimized to process orders and therefore
processes such requests at some impact. However, many deployments still opt for
such interactions. These typically happen as WSAPI or XMLAPI calls over HTTP/
HTTPS.

Connectivity with Peer Systems

As OSM processes orders, the logic encoded in the cartridges drives requests to
other systems, such as those for billing or inventory or work-force management. These
requests can be one-way messages but are much more likely to follow a "request -
response" pattern, where the remote system sends one or more responses back to
OSM. These responses can arrive immediately or at a later (perhaps much later) time.
The communication model OSM recommends for this is JMS (with SAF), which runs
over T3.

Technical Connectivity

Over the three categories of interaction, we can distill the following connectivity types:

• OSM APIs invoked via HTTP/HTTPS

• OSM APIs invoked via JMS and SAF

• OSM conversing via JMS and SAF

OSM initiates HTTP/HTTPS messages if explicitly coded to do so in cartridges. This
is an anti-pattern for OSM cartridge development as it causes high impact to the
throughput capability of OSM. Normally, OSM responds to incoming requests over
HTTP/HTTPS (API call responses).

With JMS messages, OSM can be both the originator of a "request-response"
transaction or the recipient of one. To support this, OSM can host SAF agents that
provide the ability to send JMS messages to remote systems, and OSM can host
queues that are targeted by SAF agents on those remote systems.

Security Requirements

OSM Cloud Native supports HTTP and T3. In addition, SAF configuration from
one WebLogic domain to another domain very often requires additional security
arrangements, including the availability of credentials to authenticate such a
connection.

Connectivity With OSM Cloud Native
Functionally, the interaction requirements of OSM do not change when OSM is run in
a cloud native environment. All of the categories of interaction that are applicable for
connectivity with traditional OSM instances are applicable and must be supported for
OSM cloud native.

Chapter 9
Connectivity With OSM Cloud Native

9-2

Connectivity Between the Building Blocks
The following diagram illustrates the connectivity between the building blocks in an
OSM cloud native environment using an example:

Figure 9-1 Connectivity Between Building Blocks in OSM Cloud Native Environment

Invoking the OSM cloud native Helm chart creates a new OSM instance. In the above
illustration, the name of the instance is "dev2" in the project "mobilecom". The instance
consists of the WebLogic cluster that has one Admin Server and three Managed
Servers and a Kubernetes Cluster Service.

The Cluster Service contains endpoints for both HTTP and T3 traffic. The instance
creation script creates the OSM cloud native Ingress object. The Ingress object
has metadata to trigger the Traefik ingress controller as a sample. Traefik
responds by creating new front-ends with the configured "hostnames" for the cluster
(dev2.mobilecom.osm.org and t3.dev2.mobilecom.osm.org in the illustration)
and the admin server (admin.dev2.mobilecom.osm.org) and links them up to
new back-end constructs. Each back-end routes to each member of the Cluster
Service (MS1, MS2, and MS3 in the example) or to the Admin Server. The
dev2.mobilecom.osm.org front-end is linked to the back-end pointing to the HTTP
endpoint of each managed server, while the t3.dev2.mobilecom.osm.org front-end
links to the back-end pointing to the T3 endpoint of each managed server.

The prior installation of Traefik has already exposed Traefik itself via a selected port
number (30305 in the example) on each worker node.

Chapter 9
Connectivity With OSM Cloud Native

9-3

Inbound HTTP Connectivity
An OSM instance is exposed outside of the Kubernetes cluster for HTTP access via
an Ingress Controller and potentially a Load Balancer.

Because the Traefik port (30305) is common to all OSM cloud native instances in the
cluster, Traefik must be able to distinguish between the incoming messages headed
for different instances. It does this by differentiating on the basis of the "hostname"
mentioned in the HTTP messages. This means that a client (User Client B in the
illustration) must believe it is talking to the "host" dev2.mobilecom.osm.org when it
sends HTTP messages to port 30305 on the access IP. This might be the Master node
IP, or IP address of one of the worker nodes, depending on your cluster setup. The
"DNS Resolver" provides this mapping.

In this mode of communication, there are concerns around resiliency and load
distribution. For example, If the DNS Resolver always points to the IP address of
Worker Node 1 when asked to resolve dev2.mobilecom.osm.org, then that Worker
node ends up taking all the inbound traffic for the instance. If the DNS Resolver is
configured to respond to any *.mobilecom.osm.org requests with that IP, then that
worker node ends up taking all the inbound traffic for all the instances. Since this latter
configuration in the DNS Resolver is desired, to minimize per-instance touches, the
setup creates a bottleneck on Worker node 1. If Worker node 1 were to fail, the DNS
Resolver would have to be updated to point *.mobilecom.osm.org to Worker node 2.
This leads to an interruption of access and requires intervention. The recommended
pattern to avoid these concerns is for the DNS Resolver to be populated with all the
applicable IP addresses as resolution targets (in our example, it would be populated
with the IPs of both Worker node 1 and node 2), and have the Resolver return a
random selection from that list.

An alternate mode of communication is to introduce a load balancer configured to
balance incoming traffic to the Traefik ports on all the worker nodes. The DNS
Resolver is still required, and the entry for *.mobilecom.osm.org points to the load
balancer. Your load balancer documentation describes how to achieve resiliency and
load management. With this setup, a user (User Client A in our example) sends a
message to dev2.mobilecom.osm.org, which actually resolves to the load balancer
- for instance, http://dev2.mobilecom.osm.org:8080/OrderManagement/Login.jsp.
Here, 8080 is the public port of the load balancer. The load balancer sends this to
Traefik, which routes the message, based on the "hostname" targeted by the message
to the HTTP channel of the OSM cloud native instance.

By adding the hostname resolution such that admin.dev2.mobilecom.osm.org also
resolves to the Kubernetes cluster access IP (or Load Balancer IP), User Client B can
access the WebLogic console via http://admin.dev2.mobilecom.osm.org/console
and the credentials specified while setting up the "wlsadmin" secret for this instance.

Chapter 9
Connectivity With OSM Cloud Native

9-4

Note:

Access to the WebLogic Admin console is provided for review and
debugging use only. Do not use the console to change the system state
or configuration. These are maintained independently in the WebLogic
Operator, based on the specifications provided when the instance was
created or last updated by the OSM cloud native toolkit. As a result, any such
manual changes (whether using the console or using WLST or other such
mechanisms) are liable to be overwritten without notice by the Operator. The
only way to change state or configuration is through the tools and scripts
provided in the toolkit.

Inbound JMS Connectivity
JMS messages use the T3 protocol. Since Ingress Controllers and Load Balancers do
not understand T3 for routing purposes, OSM cloud native requires all incoming JMS
traffic to be "T3 over HTTP". Hence, the messages are still HTTP, but contain a T3
message as payload. OSM cloud native requires the clients to target the "t3 hostname"
of the instance - t3.dev2.mobilecom.osm.org, in the example. This "t3 hostname"
should behave identically as the regular "hostname" in terms of the DNS Resolver and
the Load Balancer. Traefik however not only identifies the instance this message is
meant for (dev2.mobilecom) but also that it targets the T3 channel of instance.

The "T3 over HTTP" requirement applies for all inbound JMS messages - whether
generated by direct or foreign JMS API calls or generated by SAF. The procedure in
SAF QuickStart explains the setup required by the message producer or SAF agent to
achieve this encapsulation. If SAF is used, the fact that T3 is riding over HTTP does
not affect the semantics of JMS. All the features such as reliable delivery, priority, and
TTL, continue to be respected by the system. See "Applying the WebLogic Patch for
External Systems".

An OSM instance can be configured for secure access, which includes exposing
the T3 endpoint outside the Kubernetes cluster for HTTPS access. See "Configuring
Secure Incoming Access with SSL" for details on enabling SSL.

Inbound JMS Connectivity Within the Same Kubernetes Cluster
For all inbound JMS connectivity, use the T3 hostname:
t3.dev2.mobilecom.osm.org. This URL applies to clients outside of the
Kubernetes cluster in which OSM cloud native is deployed. This requires configuring
Ingress Controller and DNS Resolver to access the URL.

However, there can be situations where OSM cloud native needs to be accessed from
within the same Kubernetes cluster where it is deployed. For example, an upstream
application sending orders or a downstream application sending status updates could
be deployed in the same Kubernetes cluster. It could also be another OSM cloud
native instance deployed in the same Kubernetes cluster either sending or receiving
Create Order requests. For such requirements, there is no need for the request to be
routed via an Ingress Controller or a load balancer and resolved via a DNS Resolver.

OSM cloud native exposes a T3 channel exclusively for such connections and can be
accessed via t3://project-instance-cluster-c1.project.svc.cluster.local:31313.

Chapter 9
Connectivity With OSM Cloud Native

9-5

This saves the various network hops typically involved in routing a request from an
external client to OSM cloud native deployed in a Kubernetes cluster.

The following diagram illustrates inbound JMS connectivity within the same
Kubernetes cluster using an example.

For the example, the URL is t3://mobilecom-dev2-cluster-
c1.mobilecom.svc.cluster.local:31313.

Note:

The protocol is T3 as there is no need for wrapping in HTTP. Note that the
port is different.

Figure 9-2 Inbound JMS Connectivity in a Kubernetes Cluster

If SSL is enabled for domains, communication between the domains within the
Kubernetes cluster is not secured because the ingress is not involved. See "Setting
Up Secure Communication with SSL" for further details.

Outbound HTTP Connectivity
No specific action is required to ensure the HTTP messages from OSM cloud native
instance reach out of the Kubernetes Cluster.

Chapter 9
Connectivity With OSM Cloud Native

9-6

When a domain inside a Kubernetes cluster sends REST API or Web Service requests
over HTTP to a domain that is outside the cluster that is enabled with SSL, then you
should set up some required configuration. For instructions, see "Configuring Access
to External SSL-Enabled Systems".

Outbound JMS Connectivity
JMS messages originating from the OSM cloud native instance such as requests to
peer systems from cartridge automation plug-ins or event notifications to upstream
system from notification plug-ins, always end up on local queues. The OSM cloud
native Helm chart allows for the specification of SAF connections to remote systems
in order to get these messages to their destinations. The project specification contains
all the SAF connections that must exist for the cartridge(s) to do their job. The
instance specification provides a specific endpoint for each of these SAF connections.
This allows for a canonical expression of the SAF connectivity requirements, which
are uniquely fulfilled by each instance by pointing to the appropriate upstream,
downstream, peer systems or emulators, and so on.

When a domain inside a Kubernetes cluster sends JMS messages to a domain that
is outside the cluster that is SSL-enabled, then see "Configuring Access to External
SSL-Enabled Systems" for instructions on setting up some required configuration.

Configuring SAF
OSM cloud native requires SAF for the OSM cartridge automation functionality to send
messages to external systems through JMS. The SAF configuration in OSM cloud
native has two distinct aspects - the project and the instance. At the project level,
the project specification can be used to define all the SAF connections that any OSM
cloud native instance must make. This list is governed by the cartridges that constitute
the project. At the instance level, each of these SAF connections must be given a
specific remote endpoint.

Configuring the Project Specification

The project specification lists out all the SAF connections that are required for the set
of solution cartridges that the project requires in order to function. These are listed
under the safDestinationConfig element of the project specification.

The following sample shows a basic SAF specification that describes the need to
interact via SAF with external-system-identifier. It specifies that the project
is interested in accessing two queues on that remote system: remote-queue-1
and remote-queue-2. On that system, these queues can be addressed using the
JNDI prefix prefix-1. Further, remote-queue-1 is also mapped locally as local-
queue-1. Whether this is necessary or not depends on the addressing system
coded into the OSM cartridge's external sender automation plugins. OSM cloud native
supports both local names and remote names for SAF destinations.

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1

Chapter 9
Configuring SAF

9-7

 - queue:
 remoteJndi: remote_queue_2

If the queues of an external system are spread across more than one JNDI prefix, the
jndiPrefix element can be repeated as many times as necessary. In this example,
prefix_1 applies to remote_queue_1 and remote_queue_2, while prefix_2
applies to remote_queue_3.

The following sample shows SAF project specification with multiple JNDIs:

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1
 - queue:
 remoteJndi: remote_queue_2
 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_3

It is possible for an external system to not use a JNDI prefix, which is configured by
leaving the value empty for jndiPrefix. However, at most, one of the jndiPrefix
entries in a destinations list can be empty, as the jndiPrefixes in this list have to be
unique. If there are more than one external system that the project's solution cartridges
interact with via SAF, these can be named and listed as follows:

safDestinationConfig:
 - name: external_system_identifier_1
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 - name: external_system_identifier_2
 destinations:
 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_2

Note:

Using the provided configuration, OSM cloud native automatically computes
names for some entities required for completing the SAF setup. You may
find such entities when you log into WebLogic Administration Console for
troubleshooting purposes and are not to be confused.

Chapter 9
Configuring SAF

9-8

Configuring the Instance Specification

The project specification lays out the connectivity requirements of the solution
cartridges in the project. However, each instance needs to provide its own set of
endpoints to satisfy those connections. For example, the project specification may
require connectivity to a remote UIM system to send inventory related commands via
JMS and SAF. It is the instance specification that directs this requirement to a specific
UIM installation valid for use with this instance. Another instance of the same project
might target a different UIM installation or an emulator.

The instance specification contains the T3 URL of the external system along with the
name of a Kubernetes secret that provides the credentials required to interact with
that system. The T3 URL can be specified using any of the standard mechanisms
supported by WebLogic. The Kubernetes secret must contain the fields username and
password, carrying credentials which have permission to inject JMS messages into the
remote system.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_pass

Here, the external_system_identifier needs to match the
external_system_identifier specified in the project specification. The instance
specification must have an entry for each of the external_system_identifier
entries listed in the project specification.

If the external system is an OSM cloud native instance deployed in the same
Kubernetes cluster, use the T3 URL as described in "Inbound JMS Connectivity Within
the Same Kubernetes Cluster".

If SSL is enabled for the external system, use the T3 URL as described in "Configuring
Access to External SSL-Enabled Systems".

Configuring Domain Trust

For details about global trust, see "Enabling Global Trust" in Oracle Fusion Middleware
Administering Security for Oracle WebLogic Server.

Because the shared password provides access to all domains that participate in
the trust, strict password management is critical. Trust should be enabled when
SAF is configured as it is needed for inter-domain communication using distributed
destinations. In a Kubernetes cluster where the pods are transient, it is possible that
a SAF sender will not know where it can forward messages unless domain trust is
configured.

If trust is not configured when using SAF, you may experience unstable SAF behavior
when your environment has pods that are growing, shrinking, or restarting.

To enable domain trust, in your instance specification file, for domainTrust, change
the default value to true:

domainTrust:
 enabled: true

If you are enabling domain trust, then you must create a Kubernetes secret (exactly as
specified) to store the shared trust password by running the following command:

Chapter 9
Configuring SAF

9-9

Note:

This step is not required if you are not enabling domain trust in the instance
specification.

kubectl create secret generic -n project project-instance-global-trust-
credentials --from-literal=password=pwd

The same password must be used in all domains that connect to this one through SAF.

Usage in OSM Cartridge Automation

The OSM cartridge automation external sender plugins are unaffected by the switch
to OSM cloud native. The plugins continue to address their destinations as before,
using JNDI prefix and remote queue name, or JNDI prefix and local queue name. The
project specification must reflect what the cartridge developer has actually coded into
the automation plug-in in Design Studio.

Inbound SAF Requirements

The OSM cloud native Helm charts create all the entities required for inbound
SAF to be processed as T3 over HTTP. No additional configuration is required in
the OSM cloud native specification files. However, if the OSM cartridge automation
receiver plugins are set up to read from local JNDI prefix and queue name, these
must be added to the project specification as standard solution queues under
uniformDistributedQueues (not as safConnectionConfig).

Applying the WebLogic Patch for External Systems
When an external system is configured with a SAF sender towards OSM cloud native,
using HTTP tunneling, a patch is required to ensure the SAF sender can connect
to the OSM cloud native instance. This is regardless of whether the connection
resolves to an ingress controller or to a load balancer. Each such external system
that communicates with OSM through SAF must have the WebLogic patch 30656708
installed and configured, by adding -Dweblogic.rjvm.allowUnknownHost=true
to the WebLogic startup parameters.

For environments where it is not possible to apply and configure this patch, a
workaround is available. On each host running a Managed Server of the external
system, add the following entries to the /etc/hosts file:

0.0.0.0 project-instance-ms1
0.0.0.0 project-instance-ms2
0.0.0.0 project-instance-ms3
0.0.0.0 project-instance-ms4
0.0.0.0 project-instance-ms5
0.0.0.0 project-instance-ms6
0.0.0.0 project-instance-ms7
0.0.0.0 project-instance-ms8
0.0.0.0 project-instance-ms9
0.0.0.0 project-instance-ms10
0.0.0.0 project-instance-ms11
0.0.0.0 project-instance-ms12

Chapter 9
Applying the WebLogic Patch for External Systems

9-10

0.0.0.0 project-instance-ms13
0.0.0.0 project-instance-ms14
0.0.0.0 project-instance-ms15
0.0.0.0 project-instance-ms16
0.0.0.0 project-instance-ms17
0.0.0.0 project-instance-ms18

You should add these entries for all the OSM cloud native instances that the external
system interacts with. Set the IP address to 0.0.0.0. All the eight managed servers
possible in the OSM cloud native instance must be listed regardless of how many are
actually configured in the instance specification.

Configuring SAF On External Systems
To create SAF and JMS configuration on your external systems to communicate with
the OSM cloud native instance, use the configuration samples provided as part of the
SAF sample as your guide.

It is important to retain the "Per-JVM" and "Exactly-Once" flags as provided in the
sample.

All connection factories must have the "Per-JVM" flag, as must SAF foreign
destinations.

Each external queue that is configured to use SAF must have its QoS set to "Exactly-
Once".

Enabling Domain Trust

To enable domain trust, in your domain configuration, under Advanced, edit the
Credential and ConfirmCredential fields with the same password you used to create
the global trust secret in OSM cloud native.

Setting Up Secure Communication with SSL
When OSM cloud native is involved in secure communication with other systems,
either as the server or as the client, you should additionally configure SSL/TLS. The
configuration may involve the WebLogic domain, the ingress controller or the URL
of remote endpoints, but it always involves participating in an SSL handshake with
the other system. The procedures for setting up SSL use self-signed certificates for
demonstration purposes. However, replace the steps as necessary to use signed
certificates.

If an OSM cloud native domain is in the role of the client and the server, where
secure communications are coming in as well as going out, then both of the following
procedures need to be performed:

• Configuring Secure Incoming Access with SSL

• Configuring Access to External SSL-enabled Systems

Configuring Secure Incoming Access with SSL
This section demonstrates how to secure incoming access to OSM cloud native. In this
scenario, SSL termination happens at the ingress. The traffic coming in from external

Chapter 9
Configuring SAF On External Systems

9-11

clients must use one of the HTTPS endpoints. When SSL terminates at the ingress,
it also means that communication within the cluster, such as SAF between the OSM
cloud native instances, is not secured.

The OSM cloud native toolkit provides the sample configuration for Traefik ingress. If
you use Voyager or other ingress, you can look at the $OSM_CNTK/samples/charts/
ingress-per-domain/templates/traefik-ingress.yaml file to see what configuration is
applied.

Generating SSL Certificates for Incoming Access
The following illustration shows when certificates are generated.

Figure 9-3 Generating SSL Certificates

When OSM cloud native dictates secure communication, then it is responsible for
generating the SSL certificates. These must be provided to the appropriate client.
When an OSM cloud native instance in a different Kubernetes cluster acts as the
external client (Domain Z in the illustration), it loads the T3 certificate from Domain A
as described in "Configuring Access to External SSL-Enabled Systems".

Setting Up OSM Cloud Native for Incoming Access
The ingress controller routes unique hostnames to different backend services. You can
see this if you look at the ingress controller YAML file (obtained by running kubectl get
ingress -n project ingress_name -o yaml):

Note:

Traefik 2.x moved to using IngressRoute (a CustomResourceDefinition)
instead of the Ingress object. If you are using Traefik, in the following
commands, change all references of ingress to ingressroute.

rules:
- host: instance.project.osm.org

Chapter 9
Setting Up Secure Communication with SSL

9-12

 http:
 paths:
 - backend:
 serviceName: project-instance-cluster-c1
 servicePort: 8001
- host: t3.instance.project.osm.org
 http:
 paths:
 - backend:
 serviceName: project-instance-cluster-c1
 servicePort: 30303
- host: admin.instance.project.osm.org
 http:
 paths:
 - backend:
 serviceName: project-instance-admin
 servicePort: 7001

To set up OSM cloud native for incoming access:

1. Generate key pairs for each hostname corresponding to an endpoint that OSM
cloud native exposes to the outside world:

Create a directory to save your keys and certificates. This is
for sample only. Proper management policies should be used to store
private keys.

mkdir $SPEC_PATH/ssl

Generate key and certificates
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/osm.key -out $SPEC_PATH/ssl/osm.crt -subj "/
CN=instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
$SPEC_PATH/ssl/admin.key -out $SPEC_PATH/ssl/admin.crt -subj "/
CN=admin.instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/t3.key -out $SPEC_PATH/ssl/t3.crt -subj "/
CN=t3.instance.project.osm.org"

Create secrets to hold each of the certificates. The secret name
must be in the format below. Do not change the secret names

kubectl create secret -n project tls project-instance-osm-tls-cert
--key $SPEC_PATH/ssl/osm.key --cert $SPEC_PATH/ssl/osm.crt
kubectl create secret -n project tls project-instance-admin-tls-
cert --key $SPEC_PATH/ssl/admin.key --cert $SPEC_PATH/ssl/admin.crt
kubectl create secret -n project tls project-instance-t3-tls-cert
--key $SPEC_PATH/ssl/t3.key --cert $SPEC_PATH/ssl/t3.crt

2. Edit the instance specification and set incoming to true:

ssl:
 incoming: true

Chapter 9
Setting Up Secure Communication with SSL

9-13

3. After running create-ingress.sh, you can validate the configuration by describing
the ingress controller for your instance. You should see each of the certificates you
generated, terminating one of the hostnames:

kubectl get ingress -n project

Once you have the name of your ingress, run the following command:

kubectl describe ingress -n project ingress

TLS:
 project-instance-osm-tls-cert terminates instance.project.osm.org
 project-instance-t3-tls-cert terminates
t3.instance.project.osm.org
 project-instance-admin-tls-cert terminates
admin.instance.project.osm.org

4. Create your instance as usual.

Configuring Incoming HTTP and JMS Connectivity for External Clients
This section describes how to configure incoming HTTP and JMS connectivity for
external clients.

Note:

Remember to have your DNS resolution set up on any remote hosts that will
connect to the OSM cloud native instance.

Incoming HTTPS Connectivity

External Web clients that are connecting to OSM cloud native must be configured
to accept the certificates from OSM cloud native. They will then connect using the
HTTPS endpoint and port 30443.

Incoming JMS Connectivity

For external servers that are connected to OSM cloud native through SAF, the
certificate for the t3 endpoint needs to be copied to the host where the external domain
is running.

If your external WebLogic configuration uses "CustomIdentityAndJavaSTandardTrust",
then you can follow these instructions exactly to upload the certificate to the Java
Standard Trust. If, however, you are using a CustomTrust, then you must upload the
certificate into the custom trust keystore.

The keytool is found in the bin directory of your jdk installation. The alias should
uniquely describe the environment where this certificate is from.

./keytool -importcert -v -trustcacerts -alias alias
-file /path-to-copied-t3-certificate/t3.crt -keystore /path-to-jdk/
jdk1.8.0_202/jre/lib/security/cacerts -storepass default_password

Chapter 9
Setting Up Secure Communication with SSL

9-14

For example
./keytool -importcert -v -trustcacerts -alias osmcn -file /scratch/
t3.crt -keystore /jdk1.8.0_202/jre/lib/security/cacerts -storepass
default_password

Update the SAF remote endpoint (on the external OSM instance) to use HTTPS and
30443 port (still t3 hostname).

From the SAF sample provided with the toolkit, the external system would configure
the following remote endpoint URL:

https://t3.dev.supracom.osm.org:30443/
oracle.communications.ordermanagement.SimpleResponseQueue

Configuring Access to External SSL-Enabled Systems
In order for OSM cloud native to participate successfully in a handshake with an
external server for SAF connectivity, the SSL certificates from the external domain
must be made available to the OSM cloud native setup. See "Enabling SSL on an
External WebLogic Domain" for details about how you could do this for an on-premise
WebLogic domain. If you have an external system that is already configured for SSL
and working properly, you can skip this procedure and proceed to "Setting Up OSM
Cloud Native for Outgoing Access".

Loading Certificates for Outgoing Access
In outgoing SSL, the certificates come from the external domain, whether on-premise
or in another Kubernetes cluster. These certificates are then loaded into the OSM
cloud native trust.

The following illustration shows information about loading certificates into OSM cloud
native setup.

Chapter 9
Setting Up Secure Communication with SSL

9-15

Figure 9-4 SSL Certificates for Outgoing Connectivity

Enabling SSL on an External WebLogic Domain
These instructions are specific to enabling SSL on a WebLogic domain that is external
to the Kubernetes cluster where OSM cloud native is running.

To enable SSL on an external WebLogic domain:

1. Create the certificates. Perform the following steps on the Linux host that has the
on-premise WebLogic domain:

a. Use the Java keytool to generate public and private keys for the server. When
the tool asks for your username, use the FQDN for your server.

path-to-jdk/jdk1.8.0_202/bin/keytool -genkeypair -keyalg RSA -
keysize 1024 -alias alias -keystore keystore file -keypass
private key password -storepass keystore password -validity 360

b. Export the public key. This certificate will then be used in the OSM cloud
native setup.

path-to-jdk/jdk1.8.0_202/bin/keytool -exportcert -rfc -alias
alias -storepass password -keystore keystore -file certificate

2. Configure WebLogic server for SSL. Follow steps 3 to 17 (skip step 7) in the OSM
- Encrypting Database Tablespaces and WebLogic Protocols (Doc ID 2399723.1)
KM note on My Oracle Support.

Chapter 9
Setting Up Secure Communication with SSL

9-16

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1

3. Validate that SSL is configured properly on this server by importing the certificate
to a trust store. For this example, the Java trust store is used.

path-to-jdk/jdk1.8.0_202/bin/keytool -importcert -trustcacerts
-alias alias -file certificate -keystore path-to-jdk/
jdk1.8.0_202/jre/lib/security/cacerts -storepass default_password

4. Verify that t3s over the specified port is working by connecting using WLST.
Navigate to the directory where the WLST scripts are located.

Set the environment variables. Some shells don't set the
variables correctly so be sure to check that they are set afterward
path-to-FMW/Oracle/Middleware/Oracle_Home/oracle_common/common/bin/
setWlsEnv.sh

ensure CLASSPATH and PATH are set
echo $CLASSPATH

java -
Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=default_passw
ord weblogic.WLST

once wlst starts, connect using t3s
wls:offline> connect('<admin user>','<admin password>','t3s://
<server>:7002')

If successful you will see the prompt
wls:>domain_name/serverConfig>

#when finished disconnect
disconnect()

Setting Up OSM Cloud Native for Outgoing Access
To set up OSM cloud native for outgoing access:

1. Set up custom trust using the following steps:

a. Load the certificate from your remote server into a trust store and make it
available to the OSM cloud native instance.
Use the Java keytool to create a jks file (truststore) that holds the certificate
from your SSL server:

keytool -importcert -v -alias alias -file /path-to/
certificate.cer -keystore /path-to/truststore.jks -storepass
password

Note:

Repeat this step to add as many trusted certificates as required.

Chapter 9
Setting Up Secure Communication with SSL

9-17

b. Create a Kubernetes secret to hold the truststore file and the passphrase. The
secret name should match the truststore name.

manually
kubectl create secret generic trust_secret_name -n project --
from-file=truststore.jks --from-literal=passphrase=password

verify
k get secret -n project trust_secret_name -o yaml

c. Edit the instance specification, setting the trust name.

SSL trust and identity
ssl:
 trust:
 name: trust_secret_name # The name of the secret holding
the remote server truststore contents and passphrase
 identity:
 useDemoIdentity: true

leave remaining fields commented out

When custom trust is enabled, the useDemoIdentity field can be left to true
for development instances. This configures the WebLogic server to use the
demo identity that is shipped with WebLogic. For production instances, follow the
additional steps for custom identity in the next step.

2. (Optional) Set up custom identity using the following steps:

a. Create the keystore.

keytool -genkeypair -keyalg RSA -keysize 1024 -alias <alias>
-keystore identity.jks -keypass private_key_password -storepass
keystore_password -validity 360

b. Create the secret.

kubectl create secret generic secretName -n project --from-
file=keystore.jks --from-literal=passphrase=password

verify
k get secret -n project secretName -o yaml

c. Edit the specification file:

identity:
 useDemoIdentity: false
 name: alias # only valid when useDemoIdentity is false.
Secret name that contains the identity store file.
 alias: secretName # only valid when useDemoIdentity is false.

Chapter 9
Setting Up Secure Communication with SSL

9-18

3. Configure SAF by updating the SAF connection configuration in the OSM cloud
native instance specification file to reflect t3s and the SSL port:

safConnectionConfig:
 - name: simple
 t3Url: t3s://remote_server:7002
 secretName: simplesecret

4. Create the OSM cloud native instance as usual.

Adding Additional Certificates to an Existing Trust
You can add additional certificates to an existing trust while an OSM cloud native
instance is up and running.

To add additional certificates to an existing trust:

1. Set up OSM cloud native for outgoing access. See "Configuring Access to
External SSL-Enabled Systems" for instructions.

2. Copy the certificates from your remote server and load them into the existing
truststore.jks file you had created:

keytool -importcert -v -alias alias -file /path-to/certificate.cer
-keystore /path-to/truststore.jks -storepass password

3. Re-create your Kubernetes secret using the same name as you did previously:

manually
kubectl create secret generic trust_secret_name -n project --from-
file=truststore.jks --from-literal=passphrase=password

verify
k get secret -n project trust_secret_name -o yaml

4. Upgrade the instance to force WebLogic Operator to re-evaluate:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
$SPEC_PATH

Debugging SSL
To debug SSL, do the following:

• Verify Hostname

• Enable SSL logging

Verifying Hostname

When the keystore is generated for the on-premise server, if FQDN is not specified,
then you may have to disable hostname verification. This is not secure and should
only be done in development environments.

Chapter 9
Setting Up Secure Communication with SSL

9-19

To do so, add the following Java option to the managed server in the project
specification:

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-
Dweblogic.security.SSL.ignoreHostnameVerification=true"

Enabling SSL Logging

When trying to establish the handshake between servers, it is important to enable SSL
specific logging.

Add the following Java options to your managed server in the project specification.
This should be done for your external server as well.

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.StdoutDebugEnabled=true
-Dssl.debug=true -Dweblogic.security.SSL.verbose=true -
Dweblogic.debug.DebugSecuritySSL=true -Djavax.net.debug=ssl"

Chapter 9
Setting Up Secure Communication with SSL

9-20

10
Running the SAF Sample for OSM Cloud
Native

It is highly recommended that you explore OSM cloud native support of SAF using
a predefined set of configurations and instructions. This activity not only serves to
quickly identify issues with your cloud environment but also enables you to familiarize
yourself with setting up the connectivity for your own projects, which are likely to be
more complex than the SAF sample this section describes.

This chapter describes how to run the SAF sample for OSM cloud native.

The SAF sample for OSM cloud native consists of the following components:

• SimpleProvisioningCartridge sample cartridge available as a par file, ready to
be deployed using the OSM cloud native DB Installer. This cartridge implements a
flow that consists of sending a JMS message to a remote system and receiving a
JMS message in response. The order then ends.

• Configuration fragments for a project and an instance. These can be added
to your project and instance specifications and contain all the SAF connection
specifications as well as endpoint identification.

• A simple emulator that is available as a JAR file, along with instructions and
configuration samples. This emulator can be set up on a WebLogic system
outside the Kubernetes cluster and functions as a "remote system" in the SAF
communication. The emulator simply echos the message given to it.

The SAF sample can be run as a separate project and instance, derived from
the samples in the OSM cloud native toolkit. Alternatively, it can be added on
to the specifications of a basic OSM instance. A project can consist of multiple
cartridges. If you add the specifications to a basic OSM instance, the project consists
of SimpleRabbits and SimpleProvisioningCartridge; instances of this project can
consume both types of orders.

For the SAF sample, you need the following:

• A Linux host capable of running WebLogic Server 12.2.1.4 outside of the
Kubernetes cluster.

• Traffic should be routable between the Kubernetes cluster and this host.

• If you are not using a centralized DNS resolution server, edit the /etc/hosts file of
the Linux host to add resolution for your OSM cloud native instance. For example,
use kubernetes access IP address quick.sr.osm.org t3.quick.sr.osm.org
admin.quick.sr.osm.org.

For further details, see "Planning and Validating Your Cloud Environment".

Running the SAF sample involves the following tasks:

• Preparing the WebLogic system to run the emulator

• Deploying the emulator on the WebLogic system

• Deploying the SimpleProvisioning sample cartridge

10-1

• Preparing the OSM instance

• Validating the SAF endpoints

• Submitting OSM orders

Preparing the WebLogic System to Run the Emulator
Install WebLogic 12.2.1.4 on the Linux host. The specific patchset does not matter as
long as it contains the patch referenced in "Applying the WebLogic Patch for External
Systems".

To prepare the WebLogic system to run the emulator:

1. Start WebLogic server and create a domain accepting all the default settings. Do
not enable JRF or any other Fusion MiddleWare capabilities for this sample. Name
the domain simple.

2. Stop the WebLogic server and find the domain home for simple.

3. Edit the domain-home/config/config.xml file and delete the line: admin-server-
nameAdminServer/admin-server-name.

4. Locate and open the samples/saf-sample/emulated-weblogic-resources/
config/config_fragment.xml configuration fragment XML file in the OSM cloud
native toolkit.

5. Copy the contents under the domain element and append them to the end of
the domain element in the domain-home/config/config.xml file just before </
domain>.
This creates a persistent store for JMS as well as a JMS server and a SAF agent.
The SAF agent is used in sending emulator responses back to the OSM cloud
native instance.

6. Copy the samples/saf-sample/emulated-weblogic-resources/config/jms folder
in the toolkit to <domain-home>/config. This creates a folder jms under the
target config directory with the specific JMS configuration. This also creates JMS
queues and SAF entities.

7. Configure the SAF system to connect to your OSM cloud native instance. The
instance does not need to be up at this point, but you should have decided on a
project name, instance name, and the WebLogic username and password. If you
want to reuse the basic OSM instance, you should already have these ready.
Edit the <domain-home>/config/jms/simple_osm_jms_module-jms.xml file
and update the fields underlined in the following fragment. The password is
entered as plain text and gets auto-encrypted during WLS startup:

 <saf-login-context>
 <loginURL>{osm_cn_t3_url}</loginURL>
 <username>{osm_weblogic_username}</username>
 <password-encrypted>{osm_weblogic_password}</password-
encrypted>
 </saf-login-context>

osm_cn_t3_url is:

• If Oracle Cloud Infrastructure Load Balancer is not used: http://
t3.instance.project.osm.org:30305

Chapter 10
Preparing the WebLogic System to Run the Emulator

10-2

• If Oracle Cloud Infrastructure Load Balancer is used: http://
t3.instance.project.osm.org:80

8. Start WebLogic. At this point, if you see errors from SAF/JMS about your OSM
cloud native instance, you can ignore them. These errors go away once the OSM
cloud native instance is up and configured for the SAF sample.

Deploying the Emulator on the WebLogic System
To deploy the emulator on the WebLogic system:

1. Find the samples/saf-sample/emulator-mdb/emulator-mdb-1.0.0.jar emulator
MDB jar file in the OSM cloud native toolkit.

2. Open the WebLogic Console for the simple domain.

3. In Deployments, upload the emulator MDB jar file.

4. Complete the deployment using the defaults and ensure that the MDB file is
shown with State "Active" and Health "OK".

Deploying the SimpleProvisioning Sample Cartridge
The SimpleProvisioning sample cartridge contains the following:

• process_1 process

• A manual creation task

• An automation task with the following:

– qQuerySender XQuery Sender

– Receiver XQuery Automator

To deploy the SimpleProvisioning cartridge:

1. Identify a PDB for use with the SAF sample.
This must be ready to host an OSM cloud native instance with RCU DB schema
and OSM DB schema in place. You can use a fresh PDB and run the OSM
cloud native DB Installer, or reuse or clone the PDB from the basic OSM cloud
native instance. If you reuse the PDB in the basic OSM cloud native instance, you
must use the basic OSM cloud native project and instance specification files in
subsequent steps and delete the basic OSM cloud native instance.

2. Deploy the SimpleProvisioning cartridge using the script in the toolkit:

./scripts/manage-cartridges.sh -p project_name -i instance_name
-s $SPEC_PATH -f $OSM_CNTK/samples/saf-sample/cartridge-resources/
cartridge-par/SimpleProvisioning.par -c parDeploy

Preparing the OSM Cloud Native Instance
To prepare the OSM cloud native instance for the SAF sample:

1. Obtain a starter project specification. This can be the samples/project.yaml
sample in the toolkit or you can reuse the project specification created for the
basic OSM cloud native instance.

Chapter 10
Deploying the Emulator on the WebLogic System

10-3

a. Configure a UDQ (SimpleResponseQueue) to receive the response from an
external WebLogic domain by replacing the following line:

uniformDistributedQueues: {}

with the following:

uniformDistributedQueues:
 - name: SimpleResponseQueue
 jndiName:
oracle.communications.ordermanagement.SimpleResponseQueue
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 expirationPolicy: Discard
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'

If uniformDistributedQueues already exists in your project.yaml file, do
not create a new element. Instead, append the item SimpleResponseQueue
from the above snippet to the end of the existing list of items for
uniformDistributedQueues.

b. Configure the SAF Queue (RequestQueue) by replacing the following line:

safDestinationConfig: {}

with the following:

safDestinationConfig:
 - name: simple
 destinations:
 - jndiPrefix: simple.
 queues:
 - queue:
 localJndi: RequestQueue
 remoteJndi: RequestQueue

The cartridge deployed for this sample uses this SAF queue to send
messages to the external WebLogic domain.
If safDestinationConfig already exists in your project.yaml file, do not
create a new element. Instead, append the item simple from above to the
end of the existing list of items for safDestinationConfig.

2. Obtain a starter instance specification. This can be the samples/instance.yaml
sample in the toolkit or you can reuse the instance specification created for your
basic OSM instance.

a. If you start with the instance.yaml sample, you must use your experience with
creating a basic OSM cloud native instance to set up the DB server, NFS for
logs (optional), authentication, and so on.

Chapter 10
Preparing the OSM Cloud Native Instance

10-4

b. Configure the connection to the external OSM WebLogic domain by replacing
the following line:

safConnectionConfig: {}

with the following:

safConnectionConfig:
 - name: simple
 t3Url: t3://{simple_weblogic_hostname}:{simple_weblogic_port}
 secretName: simplesecret

Replace the value of {simple_weblogic_hostname} and
{simple_weblogic_port} with the hostname and port where simple
WebLogic domain is installed. If safConnectionConfig already exists in
your project-instance.yaml, do not create a new element. Instead, append
the item simple from the above to the end of the existing list of items for
safConnectionConfig.

3. Create a secret to contain the credentials for the simple WebLogic domain by
running the following command. Name the secret as simpleSecret as specified
in the above steps for the SAF connection and Replace the username and
password with the values for the simple WebLogic domain.

kubectl -n project create secret generic simplesecret
--from-literal=username='simple_domain_weblogic_username' --from-
literal=password='simple_domain_weblogic_password'

4. Bring up the OSM cloud native instance. If you are not reusing the basic OSM
instance, you will have to first create all the required secrets.

5. If you used a clone of the PDB of the basic OSM cloud native instance, you must
replicate the opssWF and opssWP secrets from your basic OSM instance and set
rcu.db.preexisting to true in your instance specification file. Failing to do this
results in your new instance not being able to process the cloned PDB.

6. Once the OSM cloud native instance is up, do the following:

a. Log in to the OSM Orchestration UI.

b. Go to Administer Workgroups.

c. Choose the OSM user you will be using to inject orders and add this user to
the "SimpleProvisioningRole" workgroup.

This allows your chosen user to create orders in the SimpleProvisioning
cartridge.
Both SAF endpoints, one on simple and one in this OSM cloud native instance
should now be active. You can confirm this by validating the setup.

Validating the SAF Endpoints
To validate the SAF endpoints:

1. On the simple WebLogic domain, log in to the WebLogic console and do the
following:

Chapter 10
Validating the SAF Endpoints

10-5

a. Navigate to Remote Endpoints. You should see a remote endpoint called
simple_osm_saf_agent with the URL pointing to your OSM cloud native
instance.

b. Navigate to Deployments. You should see the emulator MDB shown with
State "Active" and Health "OK".

2. On the OSM cloud native instance, log in to the WebLogic console and navigate to
Remote Endpoints. You should see the following remote endpoints pointing to the
simple WebLogic domain:

osm_simple_jms_module!osm_saf_destinations_simple.!<saf_queuex|
saf_topicx>@osm_saf_agent@ms1

Submitting Orders
You can submit orders with HTTP and T3 over HTTP.

Submitting Orders with HTTP
To submit orders with HTTP:

1. Submit orders using the OSM Task Web Client or SoapUI:

a. If you wish to use SoapUI, find the sample order payload for
the SimpleProvisioning cartridge in the toolkit at samples/saf-sample/
cartridge-resources/CreateOrderBySpec.xml.

b. In the OSM Task Web client, create a new order of type SimpleProvisioning.

2. In the order data, find the "data" element and replace MsgText with a unique
value.

3. Submit the order.

4. Examine the order in OSM Task Web Client of the OSM cloud native instance. It
is very likely that the order completes very quickly and therefore does not appear
in the Worklist. Use Query to look for completed orders and find the order. The
completed order should show the response from the emulator.

If there are any issues with connectivity, the order does not complete successfully.
Examine the message count on the queues in both OSM cloud native and in the
simple WebLogic domain to see where the sequence was disrupted.

Submitting Orders with T3 over HTTP
To submit orders with T3 over HTTP, install SoapUI and HermesJMS and set them
up to connect to your cloud native environment. SoapUI uses plain HTTP to submit
orders. By using SoapUI with HermesJMS, orders can also be submitted as JMS
messages using T3 over HTTP.

Consider the following when setting up SoapUI and HermesJMS:

Chapter 10
Submitting Orders

10-6

• Java 8: If you use Java 8, you must find your Hermes installation location and the
hermes.sh file within that location in the bin directory. Edit this file to replace the
existing invocation of JAVACMD with the following:

"$JAVACMD" -
Dorg.xml.sax.parser=com.sun.org.apache.xerces.internal.parsers.SAXPa
rser
-
Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.
internal.jaxp.DocumentBuilderFactoryImpl
-
Djavax.xml.parsers.SAXParserFactory=com.sun.org.apache.xerces.intern
al.jaxp.SAXParserFactoryImpl
-XX:NewSize=512m -Xmx2048m $HERMES_OPTS -
Dlog4j.configuration=file:$HERMES_HOME/bin/log4j.props
-Dhermes.home=$HERMES_HOME -Dhermes=$HERMES_CFG -
Dhermes.libs=$HERMES_LIB -classpath
$LOCALCLASSPATH hermes.browser.HermesBrowser

• WebLogic Libraries: When you create a session in HermesJMS preferences,
create a Classpath Group that includes the WebLogic jar files weblogic.jar,
wlclient.jar and wlthint3client.jar. These jar files are found in the
standard WebLogic installation. Provide the full path to each jar file in the
HermesJMS preferences.

• Connection Properties: When you set up a Connection Factory in your
HermesJMS Session, add the following properties to it to point to your OSM cloud
native instance:

Table 10-1 Connection Properties for HermesJMS Session

Property Value

providerURL http://t3.instance.project.osm.org:access-
port
access-port is the Traefik (ingress
controller) NodePort or the Load
Balancer port.

binding oracle/communications/
ordermanagement/osm/
ExternalClientConnectionFactory

initialContextFactory weblogic.jndi.WLInitialContextFactory
securityPrincipal osm-user-name
securityCredentials password-for-osm-user-name

With these in place, you should now be able to discover the JMS queues and
topics from your OSM cloud native instance

• Target JMS Queue: Add a JMS endpoint using the Session created. Specify the
"Send/Publish Destination" as oracle/communications/ordermanagement/
WebServiceQueue. If you wish to see the responses, specify the "Receive/
Subscribe Destination" as oracle/communications/ordermanagement/
SoapUIResponseQueue. You need to have first specified this response queue
as an additional queue in your project specification.

Chapter 10
Submitting Orders

10-7

HermesJMS submits the order requests into the OSM cloud native
WebServiceQueue distributed queue and optionally shows you responses in the
SoapUIResponseQueue distributed queue.

• SoapUI Test Case: When you create a test case with the sample order payload,
do the following:

– Choose Basic authentication and specify the osm-user-name and password-
for-osm-user-name as earlier.

– If you use responses, set the JMSReplyTo JMS Property to oracle/
communications/ordermanagement/SoapUIResponseQueue

– Add "JMS Headers" properties with name-value as:

_wls_mimehdrContent_Type : text/xml; charset="utf-8"
URI : /osm/wsapi

This setup can now submit orders into the OSM cloud native instance as JMS
messages. The SoapUI project and configuration can be saved to serve as a
template for future reuse.

Chapter 10
Submitting Orders

10-8

11
Upgrading the OSM Cloud Native
Environment

This chapter describes the tasks you perform in order to apply a change or upgrade to
a component in the cloud native environment.

Creating a detailed upgrade plan can be a complex process. It is useful to start
by mapping your use case to an upgrade path. These upgrade paths identify a
set of sequenced activities that align to a CD stage. Once you know the activity
sequence, you can then look for the detailed steps involved in each to come up with
the comprehensive set of steps to be performed.

Upgrade paths consist of activities that fall into the following two main categories:

• Operational Procedures

• Component Upgrade Procedures

Operational Procedures

There are many different operational procedures and all of these affect the operating
state of OSM. OSM cloud native provides the mechanism to change the operational
state as described in "Running Operational Procedures".

The flowcharts in this chapter use the following image to depict an operational
procedure:

Component Upgrade Procedures

These are the actual set of steps to perform a component upgrade and can be one of
the following types:

• OSM Cloud Native Procedures: OSM cloud native owns the component and
therefore the upgrade procedure for that component. OSM cloud native provides
the mechanism to perform the upgrade via the scripts that are bundled with the
OSM cloud native toolkit.
An example of this is a change to a value in an OSM cloud native specification file
(shape, project, and instance).

The flowcharts in this chapter use the following image to depict an OSM cloud
native owned procedure.

• External Procedures: These procedures are for components that are part of
the OSM cloud native operating environment, but are out of the control of OSM
cloud native. OSM cloud native does not determine how to apply the upgrade,

11-1

but provides recommendations on the operational state of OSM accompanying the
upgrade.
An example would be updating the operating system on a worker node.

The flowcharts in this chapter use the following image to depict an external
upgrade procedure.

• Miscellaneous upgrade procedures: There are some procedures that require
special handling and are not captured in any of the upgrade paths. These are
described in "Miscellaneous Upgrade Procedures".

Rolling Restart
Occasionally, you may need to restart OSM managed servers in a rolling fashion,
one at a time. This does not result in downtime, but only reduced capacity for a
limited period. A rolling restart can be triggered by invoking the restart-instance.sh
script. This script can restart the whole instance in a rolling fashion, or only the
admin server or all the managed servers in a rolling fashion. Some operations may
automatically trigger rolling restart. These include online cartridge deployment and
certain changes (image updates, tuning parameter changes, and so on) pushed via
the upgrade-instance.sh script.

Identifying Your Upgrade Path
In order to prepare your detailed plan for an upgrade, you need to be able to map your
upgrade use case to an upgrade path. Some common use cases are detailed in the
following charts. If your use case is not listed, see "Upgrade Path Flow Chart", which
guides you through the decision making process to prepare a specific upgrade path.

Table 11-1 Common Upgrade Paths

Upgrade Type Component Upgrade Path Requires Changing
Image?

Cartridge
Management

Deploy new cartridge version Online change, online
cartridge deployment
OR
Offline change, offline
cartridge deployment

No

Cartridge
Management

Redeploy a cartridge against
an existing cartridge version

Offline change, offline
cartridge deployment

No

Cartridge
Management

Fast undeploy cartridge
version

Offline change, offline
cartridge deployment
OR
Online change, online
cartridge deployment

No

Cartridge
Management

Purge cartridge version Online Change, external
procedure, Manual restart

No

Chapter 11
Rolling Restart

11-2

Table 11-1 (Cont.) Common Upgrade Paths

Upgrade Type Component Upgrade Path Requires Changing
Image?

Configuration
and Tuning

OSM cluster size (scaling up or
down)

Online change, application
upgrade

Not applicable

Configuration
and Tuning

Java parameters (memory, GC,
and so on)

Online change, application
upgrade

Not applicable

Configuration
and Tuning

WebLogic domain
configuration (WDT such as
JMS Queue configuration)

Online change, application
upgrade

No

Configuration
and Tuning

OSM configuration parameters
(traditionally, oms-config.xml)

Online change, application
upgrade

No

Database
Storage
Management

Create partition and clone
database statistics

Offline Change, PDB upgrade No

Database
Storage
Management

Online row-based order purge Online Change, external
procedure

No

Database
Storage
Management

Purge partition Online Change, external
procedure

No

Security
parameters

New, renamed or deleted
secrets passed to cartridges

Online change, application
upgrade

No

Security
parameters

Secrets value (For example,
changing password)

Online change, external
procedure, Manual restart

No

Software
Upgrade and
Patching

OSM release or patch upgrade
with Database change

Offline change, PDB upgrade Yes

Software
Upgrade and
Patching

Fusion MiddleWare upgrade Online change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

OSM patch upgrade without
Database change

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

Fusion MiddleWare overlay
patches (for example, PSU or
one-off patch)

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

Java upgrade Online Change, application
upgrade

Yes

Software
Upgrade and
Patching

Linux Online Change, application
upgrade

Yes

Software
Upgrade and
Patching

Custom code or third-party
tool (custom image)

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

OSM cloud native toolkit The release dictates the
constraints.

Not applicable

Shared
infrastructure

Operating system or hardware
on worker node

Online change, external
procedure

No

Chapter 11
Identifying Your Upgrade Path

11-3

Table 11-1 (Cont.) Common Upgrade Paths

Upgrade Type Component Upgrade Path Requires Changing
Image?

Shared
infrastructure

Docker Online change, external
procedure

No

Shared
infrastructure

WebLogic Operator minor
upgrade (backward
compatible)

Online change, external
procedure

No

Shared
infrastructure

WebLogic Operator major
upgrade (non-backward
compatible)

Online change, external
procedure

No

Once you understand the activities in your upgrade path, you can begin to map out the
sequence of activities that you need to perform.

Offline Change Upgrade Paths
Offline changes are defined as those requiring OSM to be shutdown before the change
can be applied.

All offline upgrades must start with a Scale Down procedure and end with a Scale
Up procedure. You can find the explicit steps to perform these activities in Running
Operational Procedures.

Once the cluster has been scaled down, you will need to perform either an external
procedure (referencing documentation for the component) or follow an OSM cloud
native owned procedure. See "OSM Cloud Native Upgrade Procedures" for details.

Figure 11-1 Offline Change Upgrade Paths

Chapter 11
Identifying Your Upgrade Path

11-4

As an example, if your use case is to re-deploy an existing cartridge version, then the
upgrade path would be "Offline change, offline cartridge deployment", the second flow
in the above flow chart. The actual steps involve the following:

• Scale Down

– Edit the instance specification file to set cluster size to 0.

– Run upgrade-instance.sh.

• Offline cartridge deployment

– Edit the project specification file to change the cartridge version.

– Run manage-cartridges.sh with option sync.

• Scale Up

– Edit the instance specification file to return cluster size to original (1-18).

– Run upgrade-instance.sh.

Online Change Upgrade Paths
Online changes are changes for which OSM can remain running while the component
upgrade is performed. There is, therefore, no operational procedure at the start of the
flow, but some paths include a rolling restart after the upgrade procedure is performed.

The component upgrade will either be an external procedure (referencing
documentation for the component) or follow an OSM cloud native owned procedure
described in "OSM Cloud Native Upgrade Procedures".

If explicit post-upgrade operational activities are required, you can find details in
"Running Operational Procedures".

The following flowchart illustrates online change upgrade paths:

Chapter 11
Identifying Your Upgrade Path

11-5

Figure 11-2 Online Change Upgrade Paths

Exceptions
The following require shutdown:

• Some OSM patches

• Some Oracle Fusion MiddleWare overlay patches

• Some custom code or 3rd party

• Oracle Fusion MiddleWare version upgrades

Unsupported Tasks
Adding, modifying, and deleting users or groups from embedded LDAP are not
supported through an upgrade procedure.

To make changes to users and groups, the instance must be deleted and re-created.

OSM Cloud Native Upgrade Procedures
The OSM cloud native owned upgrade procedures are:

• PDB upgrade

• OSM application upgrade

• Online cartridge deployment

Chapter 11
OSM Cloud Native Upgrade Procedures

11-6

• Offline cartridge deployment

Change or upgrade procedures that are dictated by OSM cloud native are applied
using the scripts and the configuration provided in the toolkit.

PDB Upgrade Procedure
Changes impacting the PDB can be found in any of the specification files - project,
instance or shape.

Examples include updating the OSM DB Installer image.

To perform a PDB upgrade procedure:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/install-osmdb.sh with the command appropriate for
your use case.
To see a list of options, invoke with -h.

OSM Application Upgrade
Changes impacting the OSM application can be found in any of the specification files -
project, instance or shape.

Examples include changing an existing value, changing the OSM image or supplying
something new such as a secret or a new WDT extension.

To perform OSM application upgrade:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/upgrade-instance.sh to push out the changes you
just made to the running instance. This also triggers introspection for upgrade
paths where introspection is required.

3. In upgrade paths where a manual restart is required, restart the instance. See
"Restarting the Instance" for details.

Offline Cartridge Deployment
Offline deployment mode supports deployment of new cartridges, deployment of new
versions of existing cartridges, fast undeploy and re-deployment of existing cartridge
versions with changes.

Changes impacting the cartridges can be found in the project specification file.

In order to perform an offline deployment, you must not have managed servers
running.

To perform an offline cartridge deployment:

1. Scale down your managed server count. See “Scaling Down the Cluster” for more
details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

Chapter 11
OSM Cloud Native Upgrade Procedures

11-7

• Run the following command:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path –c sync

3. Scale up your managed server count. See “Scaling Up the Cluster” for more
details.

Online Cartridge Deployment
Online deployment mode supports deployment of new cartridges, deployment of new
versions of existing cartridges and fast undeploy. It does not support re-deployment of
existing cartridges.

The changes impacting the cartridges can be found in the project specification file.

In order to perform an online deployment, you must have a minimum of two managed
servers running.

To perform an online cartridge deployment:

1. If necessary, scale up your managed server count (2 or more). See “Scaling Up
the Cluster” for more details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

• Invoke the following script:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path -c sync -o

Note:

If the changes to the cartridges in the project specification include more than
one kind of update (new cartridge, new version, existing version, undeploy),
if it includes redeploy of existing versions, then you must use offline cartridge
deployment. Alternatively, if possible, break up the operational activity into
two parts: one set of changes that satisfy the online deployment and then
following that, a second set with all the cartridge redeployment changes to be
done offline.

Upgrades to Infrastructure
From the point of view of OSM instances, upgrades to the cloud infrastructure fall into
two categories: rolling upgrades and one-time upgrades.

Note:

All infrastructure upgrades must continue to meet the supported types and
versions listed in the OSM documentation's certification statement.

Chapter 11
Upgrades to Infrastructure

11-8

Rolling upgrades are where, with proper high-availability planning (like anti-affinity
rules), the instance as a whole remains available as parts of it undergo temporary
outages. Examples of this are Kubernetes worker node OS upgrades, Kubernetes
version upgrades and Docker version upgrades.

One-time upgrades affect a given instance all at once. The instance as a whole suffers
either an operational outage or a control outage. Examples of this are WebLogic
Operator upgrade and perhaps Ingress Controller upgrade.

Kubernetes and Docker Infrastructure Upgrades

Follow standard Kubernetes and Docker practices to upgrade these components. The
impact at any point should be limited to one node - master (Kubernetes and OS)
or worker (Kubernetes, OS, and Docker). If a worker node is going to be upgraded,
drain and cordon the node first. This will result in all pods moving away to other
worker nodes. This is assuming your cluster has the capacity for this - you may
have to temporarily add a worker node or two. For OSM instances, any pods on the
cordoned worker will suffer an outage until they come up on other workers. However,
their messages and orders are redistributed to surviving managed server pods and
processing continues at a reduced capacity until the affected pods relocate and
initialize. As each worker undergoes this process in turn, pods continue to terminate
and start up elsewhere, but as long as the instance has pods in both affected and
unaffected nodes, it will continue to process orders.

WebLogic Operator Upgrade

To upgrade the WebLogic Operator, follow the Operator documentation. As long as
the target version can co-exist in a Kubernetes cluster with the current version, a
phased cutover can be performed. In this, you will perform a fresh install of the new
version of the Operator into a new namespace. RBAC will be arranged here, identical
to your existing Operator namespace. Once the new Operator is functioning, for each
OSM cloud native project, un-register it from the old Operator and register it with the
new Operator. This can be done at your convenience on a per-project basis. When
all projects have been switched to the new Operator, the old Operator can be safely
deleted.

export WLSKO_NS=old-namespace $OSM_CNTK/scripts/unregister-namespace -p
project -t wlsko
export WLSKO_NS=new-namespace $OSM_CNTK/scripts/register-namespace -p
project -t wlsko

All instances with the transitioned project are impacted by this operation. However,
there is no order processing outage during the transition. There is a control outage
- where no changes can be pushed to the instances (upgrade-instance.sh or delete-
instance.sh). Also, during the control outage, the termination of a pod does not
immediately trigger healing. However, once the transition of the project is complete,
the new Operator will react to any changed state (whether in the cluster, like pod
termination, or in pushed changes, like instance upgrades) and run the required
actions.

Ingress Controller Upgrade

Follow the documentation of your chosen Ingress Controller to perform an upgrade.
Depending on the Ingress Controller used and its deployment in your Kubernetes
environment, the OSM instances it serves may see a wide set of impacts, ranging from
no impact at all (if the Ingress Controller supports a clustered approach and can be
upgraded that way) to a complete outage.

Chapter 11
Upgrades to Infrastructure

11-9

To take the sample of Traefik that OSM cloud native toolkit uses as an Ingress
Controller illustration:

An approach identical to that of WebLogic Operator upgrade can be followed for
Traefik upgrade. The new Traefik can be installed into a new namespace, and one-by-
one, projects can be unregistered from the old Traefik and registered with the new
Traefik.

export TRAEFIK_NS=old-namespace $OSM_CNTK/scripts/unregister-namespace
-p project -t traefik
export TRAEFIK_NS=new-namespace $OSM_CNTK/scripts/register-namespace -p
project -t traefik

During this transition, there will be an outage in terms of the outside world interacting
with OSM. Any data that flows through the ingress will be blocked until the new Traefik
takes over. This includes GUI traffic, order injection, API queries, and SAF responses
from external systems. This outage will affect all the instances in the project being
transitioned.

Miscellaneous Upgrade Procedures
This section describes miscellaneous upgrade scenarios.

Network File System (NFS)

If an instance is created successfully, but a change to the NFS configuration is
required, then the change cannot be made to a running OSM instance. In this case,
the procedure is as follows:

1. Perform a fast delete. See "Running Operational Procedures" for details.

2. Update the nfs details in the instance specification.

3. Start the instance.

Running Operational Procedures
This section describes the tasks you perform on the OSM server in response to a
planned upgrade to the OSM cloud native environment. You must consider if the
change in the environment fundamentally affects OSM processing to the extent that
OSM should not run when the upgrade is applied or OSM can run during the upgrade
but must be restarted to properly process the change.

The operational procedures are performed using the OSM cloud native specification
files and scripts.

The operational procedures you perform for upgrading your cloud environment are:

• Trigger introspection

• Scaling down the cluster

• Scaling up the cluster

• Restarting the cluster

• Fast delete

– Shutting down the cluster

Chapter 11
Miscellaneous Upgrade Procedures

11-10

– Starting up the cluster

Triggering Introspection
When any of the specification files have changed, invoke the upgrade-instance.sh
script to trigger the operator's introspector to examine the change and apply it to the
running instance.

Scaling Down the Cluster
The scaling down procedure described here is only in the context of the upgrade flow
diagram. Hence, scaling down is down to 0 managed servers. A generalized scaling
can change the cluster size down to a value between 0 and 18 (both inclusive) in any
desired increment or decrement.

To scale down the cluster, edit the instance specification and change the
clusterSize parameter to 0. This terminates all the managed server pods, but
leaves the admin server up and running.

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
$SPEC_PATH

Scaling Up the Cluster
The scaling up procedure described here is only in the context of the upgrade flow
diagram. Hence, scaling up is up to the initial cluster size. A generalized scaling can
change the cluster size up to a value between 0 and 18 (both inclusive) in any desired
increment or decrement.

To scale up the cluster, edit the instance specification and change the value of the
clusterSize parameter to its original value to return the cluster to its previous
operational state.

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
$SPEC_PATH

Restarting the Instance
The OSM cloud native toolkit provides a script (restart-instance.sh) that you can use
to perform different flavors of restarts on a running instance of OSM cloud native.

Following is the usage of the restart-instance.sh script

restart-instance.sh parameters
 -p projectName : mandatory
 -i instanceName : mandatory
 -s specPath : mandatory; locations of specification files
 -m customExtPath : optional; locations of custom extension files
 -r restartType : mandatory; what kind of restart is requested

Chapter 11
Running Operational Procedures

11-11

 # specPath and customExtPath take a colon(:) delimited list of
directories
 # restartType can take the following values:
 * full: Restarts the whole instance (rolling restart)
 * admin: Restarts the WebLogic Admin Server only
 * ms: Restarts all the Managed Servers (rolling restart)

 # or just -h for help

For example, to restart a complete cluster, run the following command:

$OSM_CNTK/scripts/restart-instance.sh -p project -i instance -s
$SPEC_PATH -r full

Fast Delete
When the entire domain, including the admin server, needs to be taken offline, then
the full shutdown and full startup procedures follow. This can be used to perform a
"fast delete" or "dehydration" of the domain, instead of a full delete-instance operation
where you may have to be concerned about the secrets and other pre-requisites being
deleted. To quickly restore the domain, simply perform the startup procedure.

Shutting Down the Cluster

To shut down the cluster, edit the instance specification and add or modify the value of
the serverStartPolicy parameter to NEVER. This terminates all the pods.

Operational control parameters
scope - domain or cluster
serverStartPolicy: NEVER

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
$SPEC_PATH

Starting Up the Cluster

To start up the cluster, edit the instance specification and comment out or modify the
value of the serverStartPolicy parameter to IF_NEEDED. This starts up all the
pods.

Operational control parameters
scope - domain or cluster
serverStartPolicy: IF_NEEDED

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s
$SPEC_PATH

Chapter 11
Running Operational Procedures

11-12

Upgrade Path Flow Chart
When comparing and contrasting the different flows, identifying common steps or
divergences, it can be useful to have a combined view of the flowcharts along with the
main decision points. This can be useful when trying to automate parts of the process.

The first decision to make is whether OSM can be running when you apply the
change. Typically, OSM needs to be shutdown for PDB impacting scenarios and the
exceptions listed in the "Exceptions" section.

The following flowchart illustrates the flow for offline upgrades and various scenarios.

Figure 11-3 Upgrade Path Flow for Offline Changes

The following flowchart illustrates the flow for online upgrades and various scenarios.

Chapter 11
Upgrade Path Flow Chart

11-13

Figure 11-4 Upgrade Path Flow for Online Changes

Chapter 11
Upgrade Path Flow Chart

11-14

12
Moving to OSM Cloud Native from a
Traditional Deployment

You can move to an OSM cloud native deployment from your existing OSM traditional
deployment. This chapter describes tasks that are necessary for moving from a
traditional OSM deployment to an OSM cloud native deployment.

Supported Releases
You can move to OSM cloud native from all supported traditional OSM releases. In
addition, you can move to OSM cloud native within the same release, starting with
OSM release 7.4.1.0.1.

Performing Pre-move and Post-move Tasks
Some OSM releases require running some tasks before and after moving to OSM
cloud native. These tasks are described in the documentation of the target version of
the OSM cloud native release. As mentioned in the documentation, before and after
moving to OSM cloud native, perform these tasks.

Some of the patch readme files describe potential error conditions and workarounds
listed in the Known Issues with Workaround section. Monitor and apply these too if
required. An example of this (documented in the 7.3.5.1.x Patch Readmes) is the error
condition where OM_DB_STATS_PKG remains in an invalid state. If you encounter
this issue, apply the appropriate workaround to grant the required permissions and
rebuild the package.

About the Move Process
The move to OSM cloud native involves offline preparation as well as maintenance
outage. This section outlines the general process as well as the details of the steps
involved in the move to OSM cloud native. However, there are various places where
choices have to be made. It is recommended that a specific procedure be put together
after taking into account these choices in your deployment context.

The OSM cloud native application layer runs on different hardware locations (within a
Kubernetes cluster) than the OSM traditional application layer.

The process of moving to OSM cloud native involves the following sets of activities:

• Pre-move development activities, which include the following tasks:

– Building OSM cloud native images (cloud native task)

– Creating project specification OSM cloud native (cloud native and solution
task)

– Creating instance specification OSM cloud native (cloud native and solution
task)

12-1

– Rebuilding cartridges using Design Studio and OSM SDK (solution task)

– Creating an OSM cloud native instance for testing (cloud native task)

– Validating your solution cartridges (solution task)

– Deleting the test OSM cloud native instance (cloud native task)

– Finalizing your specifications (cloud native and solution task)

• Data synchronization activities, which include the following tasks:

– Preparing a new database server (database task)

– Synchronizing the current database server (database task)

• Tasks for moving to OSM cloud native, which include the following:

– Quiescing the OSM traditional instance (solution task)

– Exporting JMS messages (WebLogic Server administration task)

– Backing up the database (database task)

– Upgrading the database (database task)

– Upgrading the OSM schema and cartridges (database task)

– Creating an OSM cloud native instance (cloud native task)

– Importing JMS messages (WebLogic Server administration task)

– Performing a smoke test (solution task)

– Switching all upstream systems (solution task)

The following diagram illustrates these activities.

Note:

In the diagram, the short form of "OSM CN" stands for "OSM cloud native".

Chapter 12
About the Move Process

12-2

Figure 12-1 Move to OSM Cloud Native Process

Pre-move Development Activities
In preparation to move your traditional OSM instance into an OSM cloud native
environment, you must do the following activities:

1. Build OSM cloud native images. This task includes creating the OSM Docker
image and the DB Installer Docker image by using the OSM cloud native
download packages. See "Creating OSM Cloud Native Images" for details.

2. Analyze your solution and create a project specification for your OSM cloud native
instance. This specification includes details of JMS queues and topics, as well as
SAF connections. See "Configuring the Project Specification" for details. If your
solution requires model extensions or custom files, create the additional YAML
files for those as well.

3. Create an instance specification for your OSM cloud native instance. Preferably,
create a test instance, pointing to a test PDB. You can later change this
specification to point to the migrated database. Similarly, any SAF endpoint
details should be pointing to the test components or emulators. When creating
the specification, choose your cloud native production shape - prodsmall, prod,
prodlarge. Alternatively, create a custom production shape by copying and
modifying one of these. See "Creating Custom Shapes" for details about custom
shapes.

4. If your OSM cartridges were built against an OSM deployment that is older than
7.3.5, use Design Studio to rebuild them with the OSM SDK of the target release.
Select the Design Studio version based on its compatibility matrix.

Chapter 12
Pre-move Development Activities

12-3

5. Create an OSM cloud native test instance and test your specifications. To do
this, create your cartridge users document and follow the process (create instance
secrets, install the RCU schema, install the OSM schema, deploy your cartridges,
bring up OSM, create ingress, and run test orders) to bring up the OSM cloud
native instance as described in "Creating a Basic OSM Instance".

6. Validate the solution.

7. Shut down your test instance and remove the associated secrets, PDB, and
ingress.

8. Finalize your specifications for the move by picking up any changes from your test
activity and re-create instance secrets to use the migrated database. Change the
instance specification to:

a. Point to the migrated database location once it is known.

b. Switch SAF endpoints to the actual components, instead of emulators.

c. Arrange for the same number of managed servers in your OSM cloud native
instance.

OSM cloud native requires the use of standard sizing for managed servers.
This is represented as a set of "shapes". As a result, it is possible that your
OSM cloud native instance needs a different number of managed servers to
handle your workload as compared to your OSM traditional instance. For the
purpose of this migration activity, it is recommended to start with the same
number of managed servers, perform the import and smoke tests, and then
scale (scale-up or scale-down) the OSM cloud native instance to the desired
size.

If it is not possible to arrange for the same number of managed servers in your
OSM cloud native instance as there are in your OSM traditional instance, it
is recommended that you get as close as you can. You can then import the
JMS messages from the leftover managed servers into one of the OSM cloud
native managed servers. For example, consider an OSM traditional instance
with four managed servers (ms1, ms2, ms3, and ms4). The analysis may
show that you only need two managed servers (cn-ms1 and cn-ms2) of prod
shape in your OSM cloud native instance. You can import all JMS messages
from ms1 into cn-ms1, and from ms2 into cn-ms2. And then, import the
remaining messages from ms3 to cn-ms1 and from ms4 to cn-ms2. Try to
spread the load as evenly as possible.

Moving to an OSM Cloud Native Deployment
Moving to an OSM cloud native deployment from an OSM traditional deployment
requires performing the following tasks:

1. Quiesce the OSM traditional instance. See "Quiescing the Traditional Instance of
OSM".

2. Export JMS messages. See "Exporting and Importing JMS Messages".

3. Take a back up and upgrade the database. See "Upgrading the Database".

4. Upgrade the OSM schema and cartridges. See "Upgrading the OSM Schema and
Cartridges".

5. Create the OSM cloud native instance. See "Creating Your Own OSM Cloud
Native Instance".

Chapter 12
Moving to an OSM Cloud Native Deployment

12-4

6. Import JMS messages. See "Importing JMS Messages".

7. Perform a smoke test. See "Performing a Smoke Test". Once the OSM cloud
native instance passes smoke test and is optionally resized to the desired target
value, shut down the OSM traditional instance fully.

8. Switch all upstream systems to the OSM cloud native instance. See "Switching
Integration with Upstream Systems".

Quiescing the Traditional Instance of OSM
At the start of the maintenance window, the OSM traditional instance must be
quiesced. This involves stopping database jobs, stopping all upstream and peer
systems from sending messages (for example, http/s, JMS, and SAF) to OSM, and
ensuring all human users are logged out. It also involves pausing the JMS queues so
that no messages get queued or dequeued. The result is that OSM is up and running,
but completely idle.

Exporting and Importing JMS Messages
Irrespective of the persistence mechanism you use (file-based or JDBC) in your
OSM traditional instance, you must still export and import outstanding messages
as described in this section. If file-based persistence is used, this procedure
accomplishes a switch to JDBC-based persistence. On the other hand, if JDBC-based
persistence is already in use, this procedure brings the setup (in WebLogic and in the
database) in line with OSM cloud native requirements.

Overall, this procedure consists of exporting the JMS messages to disk, switching over
to the OSM cloud native instance, and importing the JMS messages from disk. Due
to the configuration in the OSM cloud native instance, the imported messages will
get populated into the appropriate database tables of the OSM cloud native instance
rather than their original location. The time taken for the export and import depends on
the number of messages that are in the persistent store to begin with.

See the following topics for further details:

• Exporting JMS Messages

• Importing JMS Messages

Exporting JMS Messages
Before exporting JMS messages, validate that your OSM traditional instance has the
WebLogic patch 31169032 (or its equivalent for your WebLogic version) installed. This
patch is required to properly export OSM JMS messages. If it is not installed, follow
the standard WebLogic patch procedures to procure and install the patch.

To export JMS messages:

1. Login to the WebLogic Console and navigate to the list of OSM queues.

2. For each queue, open its Monitoring tab to get the list of current destinations
for the queue. The Monitoring tab shows as many destinations as the number of
managed servers.

3. Select each destination and click Show Messages. If there are any messages
pending in this destination of this queue, click the Export button to export all the

Chapter 12
Moving to an OSM Cloud Native Deployment

12-5

messages to a file. Use the queue name and destination in the filename for ease
of tracing.
Future-dated orders result in pending messages in
OrchestrationDependencyQueue.

4. If you have defined other JMS Modules as part of your solution, repeat steps 2 and
3 for each of those modules.

Importing JMS Messages
Before importing JMS messages, ensure that your OSM cloud native instance is
up and running, but quiesced (queues paused and database jobs stopped). It is
recommended that your OSM cloud native instance has the same number of managed
servers as your OSM traditional instance.

To import JMS messages:

1. Transfer all the exported files into the Admin Server pod using the kubectl cp
command.

2. Log in to the WebLogic Console and navigate to JMS Modules where the OSM
queues are listed.

3. For each queue for which you have an export file, open its Monitoring tab.

4. For each destination on this queue for which you have an export file, find the same
destination in the list

5. Select the destination and click Show Messages. Click Import to specify the
filename and import the messages.

6. If your export contains files that came from a custom JMS module in your OSM
traditional instance, you should still see those queues in osm_jms_module in your
OSM cloud native instance. If you do not, check that your project specification is
up to date.

Upgrading the Database
To upgrade the database, you perform the following tasks:

• Upgrading the Database Server

• Preparing the Required Database Entities for OSM Cloud Native

Upgrading the Database Server
You may need to upgrade the database server itself to the version supported by the
OSM cloud native release you are moving to. To identify the required version of the
database server and to determine if you need a database server upgrade, see OSM
Compatibility Matrix.

If you do need a database server upgrade, choose one of the following options:

• Option A: Create an additional database server: Create a second database
server of the target database version (with required patches), seeded with an
RMAN backup of the OSM traditional database. Enable Oracle Active DataGuard
to continuously synchronize data from the OSM traditional database to this new
database. Use this new database for the OSM cloud native instance. For further
details, see Mixed Oracle Version support with Data Guard Redo Transport

Chapter 12
Moving to an OSM Cloud Native Deployment

12-6

Services (Doc ID 785347.1) knowledge article on My Oracle Support. The exact
mechanisms to be used are subject to circumstances such as resource availability,
size of data, timing, and so on but the goal is to have a second database server
running the target database version but always containing the data from the OSM
traditional database.
This option has the following advantages:

– Allows switching from a standalone database to a Container DB and
Pluggable DB model that is required for OSM cloud native, without impacting
other users of the existing database.

– Reduces the duration of a service outage since you can avoid having to
backup the database and upgrade it as part of the maintenance window.

– Preserves the OSM traditional database unchanged reducing the risk and
cost associated with reverting to OSM traditional instance, if that becomes
necessary.

• Option B: Retain the existing DB server: You can retain the existing database
server, upgrading it in-place to the target database version and patches.

If you choose option A, the upgrade process must pause after the export of JMS
messages, and ensure the Active DataGuard sync is complete (if there are pending
redo logs). Then, before proceeding, the sync must be turned off and the new
database must be brought online fully.

Preparing the Required Database Entities for OSM Cloud Native
To meet the OSM cloud native pre-requisites, you will have to create an RCU schema
in the database using the DB Installer, with command 7.

To ensure a clean start for OSM cloud native managed servers, delete the leftover LLR
tables. When OSM cloud native managed servers start, these tables are recreated
with the required data automatically.

To delete the LLR tables:

1. Connect to the database using the OSM cloud native user credentials

2. Get the list of tables to delete:

select 'drop table '||tname||' cascade constraints PURGE;' from tab
where tname like ('WL_LLR_%');

3. For the tables listed, run the commands for dropping a table.

Upgrading the OSM Schema and Cartridges
To upgrade the OSM schema and cartridges, do the following:

• Migrate the OSM schema: To migrate the schema of your OSM traditional
instance into a schema that is compatible with OSM cloud native, run the OSM
cloud native DB Installer with command 12.

• Upgrade the OSM Schema to the target version: If you are running a version
of OSM traditional instance that is older than the target OSM cloud native version,
use the OSM cloud native DB Installer with command 1 to upgrade the OSM
schema to the correct version.

Chapter 12
Moving to an OSM Cloud Native Deployment

12-7

• Rebuild solution cartridges: Depending on the version of your current OSM
traditional deployment, you may have to rebuild your solution cartridges using the
latest release of Design Studio and the target OSM SDK. This is a preparatory
step, and the new cartridge lineup would be reflected in the project specification
that is also created as part of the preparatory step. All cartridges built targeting
OSM versions prior to release version 7.3.5 require rebuilding. This rebuild is the
same requirement that exists for OSM traditional deployments as well.

Switching Integration with Upstream Systems
After you shut down the OSM traditional instance fully, do the following:

• Ensure that the OSM cloud native instance has its JMS and SAF objects
unpaused and its DB jobs restarted.

• Configure the upstream and peer systems to resume sending messages. See
"Integrating OSM" for more details.

Reverting to Your OSM Traditional Deployment
During the move to OSM cloud native, if there is a need to revert to your OSM
traditional deployment, the exact sequence of steps that you need to perform depend
on the options you have chosen while moving to OSM cloud native.

In general, the OSM traditional deployment application layer should be undisturbed
through the upgrade process. If Option A was followed for upgrading the database, the
OSM traditional instance can simply be started up again, still pointing to its database.

If however, Option B was followed for upgrading the database, the following steps are
required before the OSM traditional instance can be spun up:

• Revert the database server version to the earlier version (if a database server
upgrade was performed as part of the switch to OSM cloud native)

• Restore the database contents from the backup taken as part of Option B for
upgrading the database.

Cleaning Up
Once the OSM cloud native instance is deemed operational, you can release the
resources used for the OSM traditional application layer.

If Option A was adopted for the database, then you can delete the database used for
OSM traditional instance and release its resources as well. If Option B was followed
and your OSM traditional instance was using JDBC persistent stores, the tables
corresponding to these are now defunct and you can delete these as well.

Chapter 12
Reverting to Your OSM Traditional Deployment

12-8

13
Debugging and Troubleshooting

This chapter provides information about debugging and troubleshooting issues that
you may face while setting up OSM cloud native environment and creating OSM cloud
native instances.

This chapter describes information about the following:

• Setting Up Java Flight Recorder (JFR)

• Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration
Console

• Common Error Scenarios

• Known Issues

Setting Up Java Flight Recorder (JFR)
The Java Flight Recorder (JFR) is a tool that collects diagnostic data about running
Java applications. OSM cloud native leverages JFR. See Java Platform, Standard
Edition Java Flight Recorder Runtime Guide for details about JFR.

You can change the JFR settings provided with the toolkit by updating the appropriate
values in the instance specification.

To analyze the output produced by the JFR, use Java Mission Control. See Java
Platform, Standard Edition Java Mission Control User's Guide for details about Java
Mission Control.

JFR is turned on by default in all managed servers. You can disable this feature by
setting the enabled flag to false.

You can customize how much data is maintained, by changing the max_age
parameter in the instance specification:

Java Flight Recorder (JFR) Settings
jfr:
 enabled: true
 max_age: 4h

Data that is generated by the JFR is saved in the container in /pvMount/project-
instance/$server_name/repository.

Persisting JFR Data

JFR data can be persisted outside of the container by re-directing it to persistent
storage through the use of a PV-PVC. See "Setting Up Persistent Storage" for details.

13-1

Once the storage has been set up, enable storageVolume and set the PVC name.
Once enabled, JFR data is re-directed automatically.

The storage volume must specify the PVC to be used for persistent
storage.

storageVolume:
 enabled: true
 pvc: storage-pvc

Troubleshooting Issues with Traefik, OSM UI, and WebLogic
Administration Console

This section describes how to troubleshoot issues with access to the OSM UI clients,
WLST, and WebLogic Administration Console.

It is assumed that Traefik is the Ingress controller being used and the domain name
suffix is osm.org. You can modify the instructions to suit any other domain name
suffix that you may have chosen.

The following table lists the URLs for accessing the OSM UI clients and the WebLogic
Administration Console, when the Oracle Cloud Infrastructure load balancer is used
and not used:

Table 13-1 URLs for Accessing OSM Clients

Client If Not Using Oracle Cloud
Infrastructure Load Balancer

If Using Oracle Cloud
Infrastructure Load Balancer

OSM Task Web Client http://
instance.project.osm.org:30305
/OrderManagement

http://
instance.project.osm.org:80/
OrderManagement

WLST http://
t3.instance.project.osm.org:303
05

http://
t3.instance.project.osm.org:80

WebLogic Admin
Console

http://
admin.instance.project.osm.or
g:30305/console

http://
admin.instance.project.osm.or
g:80/console

Error: Http 503 Service Unavailable (for OSM UI Clients)

This error occurs if the managed servers are not running.

To resolve this issue:

1. Check the status of the managed servers and ensure that at least one managed
server is up and running:

kubectl -n project get pods

2. Log into WebLogic Admin Console and navigate to the Deployments section and
check if the State column for oms shows Active. The value in the Targets column
indicates the name of the cluster.

Chapter 13
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

13-2

If the application is not Active, check the managed server logs and see if there are
any errors. For example, it is likely that the OSM DB Connection pool could not be
created. The following could be the reasons for this:

• DB connectivity could not be established due to reasons such as password
expired, account locked, and so on.

• DB Schema heath check policy failed.

There could be other reasons for the application not becoming Active.

Resolution: To resolve this issue, address the errors that prevent the application
from becoming Active. Depending on the nature of the corrective action you take,
you may have to perform the following procedures as required:

• Upgrade the instance, by running upgrade-instance.sh

• Upgrade the domain, by running upgrade-domain.sh

• Delete and create a new instance, by running delete-instance.sh followed by
create-instance.sh

Security Warning in Mozilla Firefox

If you use Mozilla Firefox to connect to an OSM cloud native instance via HTTP, your
connection may fail with a security warning. You may notice that the URL you entered
automatically change to https://. This can happen even if HTTPS is disabled for the
OSM instance. If HTTPS is enabled, it only happens if you are using a self-signed (or
otherwise untrusted) certificate.

If you wish to continue with the connection to the OSM instance using HTTP, in
the configuration settings for your Firefox browser (URL: "about:config"), set the
network.stricttransportsecurity.preloadlist parameter to FALSE.

Error: Http 404 Page not found

This is the most common problem that you may encounter.

To resolve this issue:

1. Check the Domain Name System (DNS) configuration.

Note:

These steps apply for local DNS resolution via the hosts file. For any
other DNS resolution, such as corporate DNS, follow the corresponding
steps.

The hosts configuration file is located at:

• On Windows: C:\Windows\System32\drivers\etc\hosts

• On Linux: /etc/hosts

Check if the following entry exists in the hosts configuration file of the client
machine from where you are trying to connect to OSM:

Chapter 13
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

13-3

• Local installation of Kubernetes without Oracle Cloud Infrastructure load
balancer:

Kubernetes_Cluster_Master_IP instance.project.osm.org
t3.instance.project.osm.org admin.instance.project.osm.org

• If Oracle Cloud Infrastructure load balancer is used:

Load_balancer_IP instance.project.osm.org
t3.instance.project.osm.org admin.instance.project.osm.org

Resolve the DNS configuration.

2. Check the browser settings and ensure that *.osm.org is added to the No proxy
list, if your proxy cannot route to it.

3. Check if the Traefik pod is running and install or update the Traefik Helm chart:

kubectl -n traefik get pod
NAME READY STATUS RESTARTS AGE
traefik-operator-657b5b6d59-njxwg 1/1 Running 0
128m

4. Check if Traefik service is running:

kubectl -n traefik get svc
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
oci-lb-service-traefik LoadBalancer 10.96.136.31
100.77.18.141 80:31115/TCP 20d <---- Is
expected in OCI environment only --
traefik-operator NodePort 10.98.176.16
<none> 443:30443/TCP,80:30305/TCP 141m
traefik-operator-dashboard ClusterIP 10.103.29.101
<none> 80/TCP 141m

If the Traefik service is not running, install or update the Traefik Helm chart.

5. Check if Ingress is configured, by running the following command:

kubectl -n project get ing
NAME
HOSTS
 ADDRESS PORTS AGE
project-instance-traefik
instance.project.osm.org,t3.instance.project.osm.org,admin.instance.
project.osm.org 80 89m

If Ingress is not running, install Ingress by running the following commands:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s
specPath

6. Check if the Traefik back-end systems are registered, by using one of the following
options:

Chapter 13
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

13-4

• Run the following commands to check if your project namespace is being
monitored by Traefik. Absence of your project namespace means that your
managed server back-end systems are not registered with Traefik.

$ cd $OSM_CNTK
$ source scripts/common-utils.sh
$ find_namespace_list 'namespaces' traefik traefik-operator
"traefik","project_1", "project_2"

• Check the Traefik Dashboard and add the following DNS entry in your hosts
configuration file:

Kubernetes_Access_IP traefik.osm.org

Add the same entry regardless of whether you are using Oracle
Cloud Infrastructure load balancer or not. Navigate to: http://
traefik.osm.org:30305/dashboard/ and check the back-end systems
that are registered. If you cannot find your project namespace, install or
upgrade the Traefik Helm chart. See "Installing the Traefik Container Image".

Reloading Instance Backend Systems

If your instance's ingress is present, yet Traefik does not recognize the URLs of your
instance, try to unregister and register your project namespace again. You can do this
by using the unregister-namespace.sh and register-namespace.sh scripts in the
toolkit.

Note:

Unregistering a project namespace will stop access to any existing instances
in that namespace that were working prior to the unregistration.

Debugging Traefik Access Logs

To increase the log level and debug Traefik access logs:

1. Run the following command:

$ helm upgrade traefik-operator traefik/traefik --version
9.11.0 --namespace traefik --reuse-values --set
logs.access.enabled=true

A new instance of the Traefik pod is created automatically.

2. Look for the pod that is created most recently:

$ kubectl get po -n traefik
NAME READY STATUS
RESTARTS AGE
traefik-operator-pod_name 1/1 Running 0
0 5s

$ kubectl -n traefik logs -f traefik-operator-pod_name

Chapter 13
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

13-5

3. Enabling access logs generates large amounts of information in the logs. After
debugging is complete, disable access logging by running the following command:

$ helm upgrade traefik-operator traefik/traefik --version
9.11.0 --namespace traefik --reuse-values --set
logs.access.enabled=false

Cleaning Up Traefik

Note:

Clean up is not usually required. It should be performed as a desperate
measure only. Before cleaning up, make a note of the monitoring
project namespaces. Once Traefik is re-installed, run $OSM_CNTK/scripts/
register-namespace.sh for each of the previously monitored project
namespaces.

Warning: Uninstalling Traefik in this manner will interrupt access to all OSM
instances in the monitored project namespaces.

To clean up the Traefik Helm chart, run the following command:

helm uninstall traefik-operator -n traefik

Cleaning up of Traefik does not impact actively running OSM instances. However, they
cannot be accessed during that time. Once the Traefik chart is re-installed with all
the monitored namespaces and registered as Traefik back-end systems successfully,
OSM instances can be accessed again.

Setting up Logs

As described earlier in this guide, OSM and WebLogic logs can be stored in the
individual pods or in a location provided via a Kubernetes Persistent Volume. The PV
approach is strongly recommended, both to allow for proper preservation of logs (as
pods are ephemeral) and to avoid straining the in-pod storage in Kubernetes.

Within the pod, logs are available at: /u01/oracle/user_projects/domains/domain/
servers/ms1/logs.

Note:

Replace ms1 with the appropriate managed server or with "admin".

When a PV is configured, logs are available at the following path starting from the root
of the PV storage:

project-instance/logs.

The following logs are available in the location (within the pod or in PV) based on the
specification:

• admin.log - Main log file of the admin server

Chapter 13
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

13-6

• admin.out - stdout from admin server

• admin_nodemanager.log: Main log from nodemanager on admin server

• admin_nodemanager.out: stdout from nodemanager on admin server

• admin_access.log: Log of http/s access to admin server

• ms1.log - Main log file of the ms1 managed server

• ms1.out - stdout from ms1 managed server

• ms1_nodemanager.log: Main log from nodemanager on ms1 managed server

• ms1_nodemanager.out: stdout from nodemanager on ms1 managed server

• ms1_access.log: Log of http/s access to ms1 managed server

All the logs in the above list for "ms1" are repeated for each running managed server,
with the logs being named for their originating managed server in each case.

In addition to these logs:

• Each JMS Server configured will have its log file with the name <server>_ms<x>-
jms_messages.log (for example: osm_jms_server_ms2-jms_messages.log).

• Each SAF agent configured will have its log file with the name <server>_ms<x>-
jms_messages.log (for example: osm_saf_agent_ms1-jms_messages.log).

OSM Cloud Native and Oracle Enterprise Manager

OSM cloud native instances contain a deployment of the Oracle Enterprise Manager
application, reachable at the admin server URL with the path "/em". However, the use
of Enterprise Manager in this Kubernetes context is not supported. Do not use the
Enterprise Manager to monitor OSM. Use standard Kubernetes pod-based monitoring
and OSM cloud native logs and metrics to monitor OSM.

Recovering an OSM Cloud Native Database Schema
When the OSM DB Installer fails during an installation, it exits with an error message.
You must then find and resolve the issue that caused the failure. You can re-run the
DB Installer after the issue (for example, space issue or permissions issue) is rectified.
You do not have to rollback the DB.

Note:

Remember to uninstall the failed DB Installer helm chart before rerunning it.
Contact Oracle Support for further assistance.

It is recommended that you always run the DB Installer with the logs directed to a
Persistent Volume so that you can examine the log for errors. The log file is located at:
filestore/project-instance/db-installer/{yyyy-mm-dd}-osm-db-installer.log.

In addition, to identify the operation that failed, you can look in the filestore/
project-instance/db-installer/InstallPlan-OMS-CORE.csv CSV file. This file shows
the progress of the DB Installer.

When you install the Oracle Database schema for the first time and if the database
schema installation fails, do the following:

Chapter 13
Recovering an OSM Cloud Native Database Schema

13-7

1. Delete the new schema or use a new schema user name for the subsequent
installation.

2. Restart the installation of the database schema from the beginning.

To recover a schema upgrade failure, do the following:

1. Find the issue that caused the upgrade failure. See "Finding the Issue that Caused
the OSM Cloud Native Database Schema Upgrade Failure" for details.

2. Fix the issue. Use the information in the log or error messages to fix the issue
before you restart the upgrade process. For information about troubleshooting log
or error messages, see OSM Cloud Native System Administrator's Guide.

3. Restart the schema upgrade procedure from the point of failure. See "Restarting
the OSM Database Schema Upgrade from the Point of Failure" for details.

Finding the Issue that Caused the OSM Cloud Native Database
Schema Upgrade Failure

There are several files where you can look to find information about the issue. By
default, these files are generated in the managed server pod, but can be re-directed
to a Persistent Volume Claim (PVC) supported by the underlying technology that you
choose. See "Setting Up Persistent Storage" for details.

To access these files after the DB installer pod is deleted, re-direct all logs to the PVC.

See the following files for details about the issue:

• The database installation plan action spreadsheet file: This file contains a
summary of all the installation actions that are part of this OSM database schema
installation or upgrade. The actions are listed in the order that they are performed.
The spreadsheet includes actions that have not yet been completed. To find the
action that caused the failure, check the following files and review the Status
column:

– filestore/project-instance/db-installer/InstallPlan-OMS-CORE.csv

– filestore/project-instance/db-installer/InstallPlan-OMS_CLOUD-CORE.csv

The failed action is the first action with a status that is FAILED. The
error_message column of that row contains the reason for the failure.

• The database installation log file: This file provides a more detailed description of
all the installation actions that have been run for this installation. The issue that
caused the failure is located in the filestore/project-instance/db-installer/{yyyy-
mm-dd}-osm-db-installer.log file. The failed action, which is the last action that
was performed, is typically listed at the end of log file.

The following database tables also contain information about the database installation:

• semele$plan_actions: This contains the same information as the database plan
action spreadsheet. Compare this table to the spreadsheet in cases of a database
connection failure.

• semele$plan: This contains a summary of the installation that has been
performed on this OSM database schema.

Chapter 13
Recovering an OSM Cloud Native Database Schema

13-8

Restarting the OSM Database Schema Upgrade from the Point of
Failure

In most cases, restarting the OSM database schema upgrade consists of pointing the
installer to the schema that was partially upgraded, and then re-running the installer.

Note:

This task requires a user with DBA role.

Consider the following when preparing to restart an upgrade:

• Most migration actions are part of a single transaction, which is rolled back in the
event of a failure. However, some migration actions involve multiple transactions.
In this case, it is possible that some changes were committed.

• Most migration actions are repeatable, which means that they can safely be re-run
even if they were committed. However, if a failed action is not repeatable and it
committed some changes, either reverse all the changes that were committed and
set the status to FAILED, or complete the remaining changes and set the status to
COMPLETE.

To restart the upgrade after a failure:

1. Determine which action has failed and the reason for the failure.

2. If the status of the failed action is STARTED, check the database to see whether
the action is completed or still running. If it is still running, either end the session or
wait for the action to finish.

Note:

The transaction might not finish immediately after the connection is lost,
depending on how fast the database detects that the connection is lost
and how long it takes to roll back.

3. Fix the issue that caused the failure.

Note:

If the failure is caused by a software issue, contact Oracle Support. With
the help of Oracle Support, determine whether the failed action modified
the schema and whether you must undo any of those changes. If you
decide to undo any changes, leave the action status set to FAILED or
set it to NOT STARTED. When you retry the upgrade, the installer starts
from this action. If you manually complete the action, set the status to
COMPLETE, so that the installer starts with the next action. Do not leave
the status set to STARTED because the next attempt to upgrade will not
be successful.

Chapter 13
Recovering an OSM Cloud Native Database Schema

13-9

4. Restart the upgrade by running the installer.
The installer restarts the upgrade from the point of failure.

Resolving Improper JMS Assignment
While running OSM cloud native with more than one managed server, sometimes, the
incoming orders and the resulting workload may not get distributed evenly across all
managed servers.

While there are multiple causes for improper distribution (including the use of an
incorrect JMS connection factory to inject order creation messages), one possible
cause is the improper assignment of JMS servers to managed servers. For
even distribution of workload, each managed server that is running must host its
corresponding JMS server.

The following figure shows an example of improper JMS assignment.

Figure 13-1 Example of Improper JMS Assignment

In the figure, osm_jms_server@ms7 is incorrectly running on ms6 even though its
native host ms7 is running. It can be normal for more than one JMS server to be
running on a managed server as long as the additional JMS servers do not have a
native managed server that is online.

Workaround

As a workaround, terminate the Kubernetes pod for the managed server that has been
left underutilized. In the above example, the pod for ms7 should be terminated. The
WebLogic Operator recreates the managed server pod, and that should trigger the
migration of osm_jms_server@ms7 back to ms7.

Resolution

To resolve this issue, tune the time setting for InitialBootDelaySeconds and
PartialClusterStabilityDelaySeconds. See the WebLoigic Server documentation for
more details.

To tune the time setting:

Chapter 13
Resolving Improper JMS Assignment

13-10

1. Add the following Clustering fragment to the instance specification:

Clustering:
 InitialBootDelaySeconds: 10
 PartialClusterStabilityDelaySeconds: 30

2. Increase the value for the following parameters from the base WDT model:

• InitialBootDelaySeconds. The default value in base WDT is 2.

• PartialClusterStabilityDelaySeconds. The default value in base WDT is 5.

Note:

The default values for these parameters in WebLogic Server are 60 and
240 respectively. The actual values required depend on the environmental
factors and must be arrived at by tuning. Higher values can result in slower
placement of JMS servers. While this is not a factor during OSM startup, it
will mean more time could be taken when a managed server shuts down
before its JMS server migrates and comes up on a surviving managed
server. Orders with messages pending delivery in that JMS server will be
impacted by this, but the rest of the system is unaffected.

Common Problems and Solutions
This section describes some common problems that you may experience because
you have run a script or a command erroneously or you have not properly
followed the recommended procedures and guidelines regarding setting up your
cloud environment, components, tools, and services in your environment. This section
provides possible solutions for such problems.

Domain Introspection Pod Does Not Start

Upon running create-instance.sh or upgrade-instance.sh, no change is observed.
Running kubectl get pods -n project --watch shows that the introspector
pod did not start at all.

The following are the potential causes and mitigations for this issue:

• WebLogic Kubernetes Operator (WKO) is not up or not healthy: Confirm if WKO
is up by running kubectl get pods -n $WLSKO_NS. There should be one
WKO pod in the RUNNING state. If there is a pod, check its logs. If a pod is not
there, check if WKO is uninstalled. You may need to terminate an unhealthy pod or
reinstall WKO.

• Project is not registered with WKO.
Run the following command:

kubectl get cm -n $WLSKO_NS -o yaml weblogic-operator-cm | grep
targetNamespaces

Your project namespace must be listed in the list that the command returns. If it is
not listed, run $OSM_CNTK/scripts/register-namespace.sh.

Chapter 13
Common Problems and Solutions

13-11

Other causes are infrastructure related issues such as worker capacity and user
RBAC.

Domain Introspection Pod Status

While the introspection is running, you can check the status of the introspection pod by
running the following command:

kubectl get pods -n namespace

healthy status looks like this

NAME READY STATUS RESTARTS
AGE
project-instance-introspect-domain-job-hzh9t 1/1 Running
0 3s

The READY field is showing 1/1, which indicates that the pod status is healthy.

If there is an issue accessing the image specified in the instance specification, then it
shows the following:

NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ErrImagePull
0 5s

OR

NAME READY
STATUS RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1
ImagePullBackOff 0 45s

This shows that the introspection pod status is not healthy. If the image can be pulled,
it is possible that it took a long time to pull the image.

To resolve this issue, verify that the image name and the tag and that it is accessible
from the repository by the pod.

You can also try the following:

• Increase the value of podStartupDeadlineSeconds in the instance
specification.
Start with a very high timeout value and then monitor the average time it takes,
because it depends on the speed with which the images are downloaded and how
busy your cluster is. Once you have a good idea of the average time, you can
reduce the timeout values accordingly to a value that includes the average time
and some buffer.

• Pull the container image manually on all Kubernetes nodes where the OSM cloud
native pods can be started up.

Domain Introspection Errors Out

Some times, the domain introspector pod runs, but ends with an error.

Chapter 13
Common Problems and Solutions

13-12

To resolve this issue, run the following command and look for the causes:

kubectl logs introspector_pod -n project

The following are the possible causes for this issue:

• RCU Schema is pre-existing: If the logs shows the following, then RCU schema
could be pre-existing:

WLSDPLY-12409: createDomain failed to create the domain:
Failed to write domain to /u01/oracle/user_projects/domains/domain:
wlst.writeDomain(/u01/oracle/user_projects/domains/domain) failed :
Error writing domain:
64254: Error occurred in "OPSS Processing" phase execution
64254: Encountered error:
oracle.security.opss.tools.lifecycle.LifecycleException: Error
during configuring DB security store. Exception
oracle.security.opss.tools.lifecycle.LifecycleException: The schema
FMW1_OPSS is already in use for security store(s). Please create a
new schema..
64254: Check log for more detail.

This could happen because the database was reused or cloned from an OSM
cloud native instance. If this is so, and you wish to reuse the RCU schema as well,
provide the required secrets. For details, see "Reusing the Database State".
If you do not have the secrets required to reuse the RCU instance, you must use
the OSM cloud native DB Installer to create a new RCU schema in the DB. Use
this new schema in your rcudb secret. If you have login details for the old RCU
users in your rcudb secret, you can use the OSM cloud native DB Installer to
delete and re-create the RCU schema in place. Either of these options gives you a
clean slate for your next attempt.

Finally, it is possible that this was a clean RCU schema but the introspector ran
into an issue after RCU data population but before it could generate the wallet
secret (opssWF). If this is the case, debug the introspector failure and then use the
OSM cloud native DB Installer to delete and re-create the RCU schema in place
before the next attempt.

• Fusion MiddleWare cannot access the RCU: If the introspector logs show the
following error, then it means that Fusion MiddleWare could not access the
schema inside the RCU DB.

WLSDPLY-12409: createDomain failed to create the domain: Failed to
get FMW infrastructure database defaults from the service table:
Failed to get the database defaults: Got exception when auto
configuring the schema component(s) with data obtained from shadow
table:
Failed to build JDBC Connection object:

Typically, this happens when wrong values are entered while creating secrets for
this deployment. Less often, the cause is a corrupted RCU DB or an invalid one.
Re-create your secrets, verifying the credentials and drop and re-create the RCU
DB.

Recovery After Introspection Error

Chapter 13
Common Problems and Solutions

13-13

If the introspection fails during instance creation, once you have gathered the required
information and have a solution, delete the instance and then re-run the instance
creation script with the fixed specification, model extension, or other environmental
failure cause.

If the introspection fails while upgrading a running instance, then do the following:

1. Make the change to fix the introspection failure. Trigger an instance upgrade. If
this results in successful introspection, the recovery process stops here.

2. If the instance upgrade in step 1 fails to trigger a fresh introspection, then do the
following:

a. Rollback to the last good Helm release by first running the helm history
-n project project-instance command to identify the version in the output
that matches the running instance (that is, before the upgrade that led to
introspection failure). The timestamp on each version helps you identify the
version. Once you know the "good" version, rollback to that version by
running: helm rollback -n project project-instance version. Monitor
the pods in the instance to ensure only the Admin server and the appropriate
number of Managed Server pods are running.

b. Upgrade the instance with the fixed specification.

Instance Deletion Errors with Timeout

You use the delete-instance.sh script to delete an instance that is no longer required.
The script attempts to do this in a graceful manner and is configured to wait up to 10
minutes for any running pods to shut down. If the pods remain after this time, the script
times out and exits with an error after showing the details of the leftover pods.

The leftover pods can be OSM pods (Admin Server, Managed Server) or the
DBInstaller pod.

For the leftover OSM pods, see the WKO logs to identify why cleanup has not run.
Delete the pods manually if necessary, using the kubectl delete commands.

For the leftover DBInstaller pod, this happens only if install-osmdb.sh is interrupted
or if it failed in its last run. This should have been identified and handled at that time
itself. However, to complete the cleanup, run helm ls -n project to find the failed
DBInstaller release, and then invoke helm uninstall -n project release. Monitor
the pods in the project namespace until the DBInstaller pod disappears.

OSM Cloud Native Toolkit Instance Create/Update Scripts Timeout; Pods Show
Readiness "0/1"

If your create-instance.sh or upgrade-instance.sh scripts timeout, and you see that
the desired managed server pods are present, but one or more of them show "0/1" in
the "READY" column, this could be because OSM hit a fatal problem while starting up.
The following could be the causes for this issue:

• A mismatch in the OSM schema found and the expected version: If this is the
case, the OSM managed server log shows the following issue:

Error: The OSM application is not compatible with the schema code
detected in the OSM database.
Expected version[7.4.0.0.68], found version[7.4.0.0.70]
This likely means that a recent installation or upgrade was not
successful.

Chapter 13
Common Problems and Solutions

13-14

Please check your install/upgrade error log and take steps to
ensure the schema is at the correct version.

To resolve this issue, check the container image used for the DB installer and the
OSM domain instances. They should match.

• OSM internal users are missing: This can happen if there are issues with
the configuration of the external authentication provider and the standard OSM
users (for example, oms-internal) and the group association is not loaded. The
managed server log shows something like the following:

<Error> <Deployer> <BEA-149205> <Failed to initialize the
application "oms" due to error
weblogic.management.DeploymentException: The
ApplicationLifecycleListener "com.mslv.oms.j2ee.LifecycleListener"
of application "oms"
has a run-as user configured with the principal name "oms-internal"
but a principal of that name
could not be found. Ensure that a user with that name exists.

To resolve this issue, review your external authentication system to validate users
and groups. Review your configuration to ensure that the instance is configured for
the correct external authenticator.

OSM Cloud Native Pods Do Not Distribute Evenly Across Worker Nodes

In some occasions, OSM cloud native pods do not distribute evenly across the worker
nodes.

To resolve this issue, prime all the worker nodes with the image using the OSM cloud
native sample utility script:

$ $OSM_CNTK/samples/image-primer.sh -p project image-name:image-tag

This should be done only once for a given image name+tag combination, regardless
of which project uses that image or how many instances are created with it.

This script is offered as a sample and may need to be customized for your
environment. If you are using an image from a repository that requires pull credentials,
edit the image-primer.sh script to uncomment these lines and add your pull secret:

#imagePullSecrets:
 #- name: secret-name

If you are planning to target OSM cloud native to specific worker nodes, edit the
sample to ensure only those nodes are selected (typically by using a specific label
value) as per standard Kubernetes configuration. See the Kubernetes documentation
for DaemonSet objects.

User Workgroup Association Lost

During cartridge deployment, if users are not present in LDAP or if LDAP is not
accessible, the user workgroup associations could get deleted.

Chapter 13
Common Problems and Solutions

13-15

To resolve this issue, restore the connectivity to LDAP and the users. You may need to
redo the workgroup associations.

Changing the WebLogic Kubernetes Operator Log Level

Some situations may require analysis of the WKO logs. These logs can be certain
kinds of introspection failures or unexpected behavior from the operator. The default
log level for the Operator is INFO.

You can change this level if required in two ways:

• Upgrade the Helm chart:

helm upgrade --namespace $WLSKO_NS --reuse-values --set
"javaLoggingLevel=FINE" --wait $WLSKO_NS ${WLSKO_HOME}/kubernetes/
charts/weblogic-operator

• Remove the operator and reinstall it. See the Deleting and Re-creating the WLS
Operator section that follows. Use the -l option when you run install-operator.sh.

To see the possible values for the log level, consult the WLS operator documentation
or run install-operator.sh -h.

Deleting and Re-creating the WLS Operator

You may need to delete a WLS operator and re-create it. You do this when you want
to use a new version of the operator where upgrade is not possible, or when the
installation is corrupted.

When the controlling operator is removed, the existing OSM cloud native instances
continue to function. However, they cannot process any updates (when you run
upgrade-instance.sh) or respond to the Kubernetes events such as the termination of
a pod.

Normally, the remove-operator.sh script fails if there are OSM cloud native projects
registered with the operator. But you can use the -f flag to force the removal. When
this is done, the script prints out the list of registered projects and reminds you to
manually re-register them (by running register-namespace.sh) after reinstalling the
operator.

You can install the operator as usual and then register all the projects again, one by
one by running register-namespace.sh -p project -t wlsko.

Lost or Missing opssWF and opssWP Contents

For an OSM instance to successfully connect to a previously initialized set of DB
schemas, it needs to have the opssWF (OPSS Wallet File) and opssWP (OPSS
Wallet-file Password) secrets in place. The $OSM_CNTK/scripts/manage-instance-
credentials.sh script can be used to set these up if they are not already present.

If these secrets or their contents are lost, you can delete and recreate the RCU
schemas (using $OSM_CNTK/scripts/install-osmdb.sh with command code 5). This
deletes data (such as some user preferences and so on) stored in the RCU schemas.
On the other hand, if there is a WebLogic domain currently running against that DB
(or its clone), the "exportEncryptionKey" offline WLST command can be run to dump
out the "ewallet.p12" file. This command also takes a new encryption password. See
Oracle Fusion MiddleWare WLST Command Reference for Infrastructure Security for
details. The contents of the resulting ewallet.p12 file can be used to recreate the
opssWF secret, and the encryption password can be used to recreate the opssWP

Chapter 13
Common Problems and Solutions

13-16

secret. This method is also suitable when a DB (or the clone of a DB) from a traditional
OSM installation needs to be brought into OSM cloud native.

Clock Skew or Delay

When submitting JMS message over the Web Service queue, you might see the
following in the SOAP response:

Security token failed to validate.
weblogic.xml.crypto.wss.SecurityTokenValidateResult@5f1aec15[status:
false][msg UNT Error:Message older than allowed MessageAge]

Oracle recommends synchronizing the time across all machines that are involved in
communication. See "Synchronizing Time Across Servers" for more details. Implement
Network Time Protocol (NTP) across the hosts involved, including the Kubernetes
cluster hosts.

It is also possible to temporarily fix this through configuration by adding the
following properties to java_options in the project specification for each managed
server.managedServers: project:

#JAVA_OPTIONS for all managed servers at project level java_options:
-Dweblogic.wsee.security.clock.skew=72000000
-Dweblogic.wsee.security.delay.max=72000000

Known Issues
This section describes known issues that you may come across, their causes, and the
resolutions.

Email Plugin
The OSM Email plugin is currently not supported. Users who require this capability can
create their own plugin for this purpose.

SituationalConfig NullPointerException

In the managed server logs, you might notice a stacktrace that indicates a
NullPointerException in situational config.

This exception can be safely ignored.

Connectivity Issues During Cluster Re-size

When the cluster size changes, whether from the termination and re-creation of a pod,
through an explicit upgrade to the cluster size, or due to a rolling restart, transient
errors are logged as the system adjusts.

These transient errors can usually be ignored and stop after the cluster has stabilized
with the correct number of Managed Servers in the Ready state.

If the error messages were to persist after a Ready state is achieved, then looking
for secondary symptoms of a real problem would be appropriate. Such connectivity
errors could result in orders that were inexplicably stuck or were otherwise processing
abnormally.

While not an exhaustive list, some examples of these transient errors you may see in a
managed server log are:

Chapter 13
Known Issues

13-17

• An MDB is unable to connect to a JMS destination. The specific MDB and JMS
destination can vary, such as:

– <The Message-Driven EJB OSMInternalEventsMDB is unable to
connect to the JMS destination mslv/oms/oms1/internal/jms/events.

– <The Message-Driven EJB DeployCartridgeMDB is unable to
connect to the JMS destination mslv/provisioning/internal/ejb/
deployCartridgeQueue.

• Failed to Initialize JNDI context. Connection refused; No available router to
destination. This type of error is seen in an instance where SAF is configured.

• Failed to process events for event type[AutomationEvents].

• Consumer destination was closed.

Upgrade Instance failed with spec.persistentvolumesource: Forbidden: is
immutable after creation.

You may come across the following error when you run the commands for upgrading
the OSM Helm chart:

Error: UPGRADE FAILED: cannot patch "<project>-<instance>-nfs-pv" with
kind
PersistentVolume: PersistentVolume "<project>-<instance>-nfs-pv" is
invalid: spec.persistentvolumesource:
Forbidden: is immutable after creation
Error in upgrading osm helm chart

Once created, the Persistent Volume Claim cannot be changed.

To resolve this issue:

1. Disable NFS by setting the nfs.enabled parameter to false and run the
upgrade-instance script. This removes the PV from the instance.

2. Enable it again by changing nfs.enabled: to true with the new values of NFS
and then run upgrade-instance.

JMS Servers for Managed Servers are Reassigned to Remaining Managed
Servers

When scaling down, the JMS servers for managed servers that do not exist are getting
reassigned to remaining managed servers.

For example, for a SimpleResponseQueue when there is only 1 managed server
running, you can notice something like the following in the logs:

Jun 15, 2020 11:01:32,821 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationL
istener> <BEA-000000> <
All local JMS destinations: ms1
JNDI
 JMS Server WLS Server Migratable Target Local Member
Type Partition
--
---- ------------------ ---------- ----------------- --------

Chapter 13
Known Issues

13-18

----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms1
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQ
ueue osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1.

When scaled to 2 Managed Servers, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationL
istener> <BEA-000000> <
All local JMS destinations: ms1
JNDI
 JMS Server WLS Server Migratable Target Local Member
Type Partition
--
---- ------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms1
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQ
ueue osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms2
ms2 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponseQ
ueue osm_jms_server@ms2 ms2 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1 and osm_jms_server@ms2 is
targeting ms2.

After scaling back to 1 managed server, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationL
istener> <BEA-000000> <
All local JMS destinations: ms1
JNDI
 JMS Server WLS Server Migratable Target Local Member
Type Partition
--
---- ------------------ ---------- ----------------- --------

Chapter 13
Known Issues

13-19

----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms1
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQ
ueue osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms2
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponseQ
ueue osm_jms_server@ms2 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that the JMS Server osm_jms_server@ms2 is not deleted and is targeting
ms1.

This is completely expected behavior. This is a WebLogic feature and not to be
mistaken for any inconsistency in the functionality.

Chapter 13
Known Issues

13-20

A
Differences Between OSM Cloud Native
and OSM Traditional Deployments

If you are moving from a traditional deployment of OSM to a cloud native deployment,
this section describes the differences between OSM cloud native and OSM traditional.

• Embedded LDAP

You no longer need to create human users using the embedded LDAP capabilities
of WebLogic Server.

By default, OSM uses the WebLogic embedded LDAP as the authentication
provider and all OSM system users are created in embedded LDAP during
the creation of the instance. The OSM cloud native toolkit provides a sample
configuration that uses OpenLDAP to demonstrate how to integrate with external
LDAP server for human users.

A sample script for populating users to OpenLDAP can be found
at: $OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh. See
"Provisioning Cartridge User Accounts" for more details.

• Credential Store for Automation Code

The existing Fusion MiddleWare Credential Store framework has been replaced
with Kubernetes Secrets in OSM cloud native. See "Provisioning Cartridge User
Accounts" for more details on configuration differences. However, the automation
plugin code in your cartridges that accesses this information using the automation
framework APIs continues to receive the credentials transparently.

• Credential Store for Custom Code

If you use custom code that relies on the OPSS Keystore Service, then port the
code. This mechanism is no longer supported. The recommended replacement is
Kubernetes Secrets. Kubernetes Secrets can be specified as custom secrets in
OSM cloud native and are mounted into the instance's pods for your code to use
and access.

• XMLIE Operations

The following operations are still available using XMLIE. However, these should
not be used in OSM cloud native. See the following table that describes the
replacement mechanism for using these operations.

Table A-1 Replacement Mechanisms for XMLIE Operations

Operation Replacement Mechanism

credStoreAdmi
n

Sample script in $OSM_CNTK/samples/credentials/manage-
cartridge-credentials.sh. Use the secret option in the user text
file. See "Provisioning Cartridge User Accounts" for more details.

userAdmin Sample script in $OSM_CNTK/samples/credentials/manage-
cartridge-credentials.sh. Use the ldap option in the user text
file. See "Provisioning Cartridge User Accounts" for more details.

A-1

Table A-1 (Cont.) Replacement Mechanisms for XMLIE Operations

Operation Replacement Mechanism

import OSM DB Installer. Additionally, this operation relies on a pre-built
par file, instead of an XML model file. It can use a local file or pull
it from a remote repository. See "Working with Cartridges" for more
details.

fastUndeploy OSM DB Installer. See "Working with Cartridges" for more details.

• WebLogic Domain Configuration

In a traditional deployment of OSM, the WebLogic domain configuration is done
using WLST or the WebLogic Admin Console. In OSM cloud native, domain
configuration is done by providing WDT metadata in the instance creation process.
See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for details.

Do not perform WebLogic administrative activities such as changing the
configuration, shutting down and restarting the server directly on the WebLogic
Server cluster of the OSM cloud native instance. The same applies to the
activities done using WebLogic Server Admin Console, WLST invocation, or any
mechanism, other than those supplied by the specification files for updating and
upgrading the OSM cloud native instance.

• Incoming SAF and Outgoing SAF

For incoming SAF agents, the originator must use T3 over HTTP tunneling.

Outgoing SAF mechanism has not changed.

• OSM Solution Cartridges

Your OSM cartridges work normally in OSM cloud native.

For cartridges that might access a custom property file, this can be done by
injecting custom files into the specifications. See "Injecting Custom Configuration
Files" for details. An alternative is to use a database table instead. This has the
advantage of becoming part of backups and replication automatically.

Using custom tables or datasources needs to be declared by providing the
necessary WDT extensions. See "Extending the WebLogic Server Deploy Tooling
(WDT) Model" for details.

• OSM Workgroups: OSM Workgroups, including user and workgroup associations,
are still managed through the orchestration UI.

• OSM User Interfaces: All OSM user interfaces are still available with both OSM
traditional and OSM cloud native deployments. The UIs can be accessed using the
default hostname: instance.project.osm.org and port 30305, which is the default
but configurable and the path that is necessary for the specific UI. For example, to
access the Order Management UI, use:

http://instance.project.osm.org:30305/OrderManagement/Login.jsp

• OSM API: Accessing OSM through the traditional APIs such as the Web Services
API, the REST API, and the XML API has not changed.

• Order Partitioning Realm Configuration: Runtime configuration of order
partitioning realms is not supported. In traditional OSM deployments, this is
specified in the oms-config.xml file as a set of files against the

Appendix A

A-2

oracle.communications.ordermanagement.OrderPartitioningRealmConfigFile
URLs parameter.

• OSM Runtime Parameters: Some OSM runtime parameters can be controlled
using the oms-config.xml file. This configuration is still available in OSM cloud
native, but is managed differently. See "Configuring OSM Runtime Parameters" for
more details.

– Operational Order Jeopardies: Configuration to support operational order
jeopardies is specified in the oms-config.xml file as a set of files against the
oracle.communications.ordermanagement.order.OperationalOverrideFile
URLs parameter. These configuration files are custom files and must be
injected properly. See "Injecting Custom Configuration Files" for details.

– OACC Runtime Configuration: This is specified in the oms-config.xml
file as a set of files against the AutomationConcurrencyModels parameter.
These configuration files are custom files and must be injected properly. See
"Injecting Custom Configuration Files" for details.

Appendix A

A-3

	Contents
	Preface
	Audience
	Documentation Accessibility

	1 Overview of the OSM Cloud Native Deployment
	About the OSM Cloud Native Deployment
	OSM Cloud Native Architecture
	About the WebLogic Domain
	About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration Config Map
	About Oracle WebLogic Server Deploy Tooling (WDT)
	About Projects and Instances
	About Specification Layers
	About Helm Overrides

	About the OSM Cloud Native Toolkit

	2 Planning and Validating Your Cloud Environment
	Required Components for OSM Cloud Native
	Planning Your Cloud Native Environment
	Setting Up Your Kubernetes Cluster
	Synchronizing Time Across Servers
	Provisioning Oracle Multitenant Container Database (CDB)
	Provisioning an Empty PDB
	Provisioning a Seed OSM PDB

	About Container Image Management
	Installing Helm
	Setting Up Oracle WebLogic Server Kubernetes Operator
	About Load Balancing and Ingress Controller
	Using Domain Name System (DNS)
	Configuring Kubernetes Persistent Volumes
	About NFS-based Persistence
	About Authentication
	Management of Secrets
	Using Kubernetes Monitoring Toolchain
	About Application Logs and Metrics Toolchain
	Role of Continuous Integration (CI) Pipelines
	Role of Continuous Delivery (CD) Pipelines

	Planning Your Container Engine for Kubernetes (OKE) Cloud Environment
	Compute Disk Space Requirements
	Connectivity Requirements
	Using Load Balancer as a Service (LBaaS)
	About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones
	Using Persistent Volumes and File Storage Service (FSS)
	Leveraging Oracle Cloud Infrastructure Services

	Validating Your Cloud Environment
	Performing a Smoke Test
	Validating Common Building Blocks in the Kubernetes Cluster
	Running Oracle WebLogic Kubernetes Operator Quickstart

	3 Creating OSM Cloud Native Images
	Downloading the OSM Cloud Native Image Builder
	Prerequisites for Creating OSM Images
	Configuring the OSM Cloud Native Images
	Creating OSM Cloud Native Images

	4 Creating a Basic OSM Cloud Native Instance
	Installing the OSM Cloud Native Artifacts and the Toolkit
	Cloning the WebLogic Kubernetes Operator (WKO) GIT Repository
	Installing WebLogic Kubernetes Operator (WKO) and Traefik Container Images
	Installing the WebLogic Kubernetes Operator Container Image
	Installing the Traefik Container Image

	Creating a Basic OSM Instance
	Setting Environment Variables
	Registering the Namespace
	Creating Secrets
	Assembling the Specifications
	Installing the OSM and RCU Schemas
	Configuring the Project Specification
	Tuning the Project Specification

	Configuring the Instance Specification
	Creating an Ingress
	Creating an OSM Instance
	Validating the OSM Instance
	Scaling the OSM Application Cluster
	Deploying the Sample Cartridge
	Submitting Orders
	Deleting and Recreating Your OSM Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts

	Next Steps

	5 Planning Infrastructure
	Sizing Considerations
	Managing Configuration as Code
	Creating Source Control Repository
	Managing OSM Instances
	Deciding on the Scope
	About the Repository Directory Structure
	Deployment Considerations
	Setting the Repository Path During Instance Creation

	Setting Up Automation
	Securing Operations in Kubernetes Cluster

	6 Creating Your Own OSM Cloud Native Instance
	Configuring OSM Runtime Parameters
	Preparing Cartridges
	Working with Kubernetes Secrets
	About Mandatory Secrets
	About Optional Secrets
	About Custom Secrets
	Accommodating the Scope of Secrets

	Mechanism for Creating Custom Secrets

	Adding JMS Queues and Topics
	Generating Error Queues for Custom Queues and Topics
	Creating a JMS Template
	Working with Cartridges
	Deploying Cartridges Using the OSM Cloud Native Toolkit
	Deploying Cartridges Using Design Studio

	Provisioning Cartridge User Accounts

	7 Extending the WebLogic Server Deploy Tooling (WDT) Model
	About the Custom WDT Extension Mechanism
	Using the WDT Model Tools
	WDT Discover Domain Tool
	WDT Validate Model Tool

	Common WDT Extension Mechanism
	Using the Sample Scripts to Extend the WDT Model
	Adding a JDBC Datasource
	Adding a JMS System Resource
	Deploying Entities to an OSM WebLogic Domain
	Extending the WDT Metadata for an External Authenticator

	Accessing Kubernetes Secrets from WDT Metadata
	Troubleshooting WDT Issues

	8 Exploring Alternate Configuration Options
	Setting Up Authentication
	Working with Shapes
	Creating Custom Shapes

	Injecting Custom Configuration Files
	Choosing Worker Nodes for Running OSM Cloud Native
	Working with Ingress, Ingress Controller, and External Load Balancer
	Using an Alternate Ingress Controller
	Reusing the Database State
	Recreating an Instance
	Creating a New Instance

	Setting Up Persistent Storage
	Setting Up Database Optimizer Statistics
	Leveraging Oracle WebLogic Server Active GridLink
	Managing Logs
	Managing OSM Cloud Native Metrics
	Configuring Prometheus for OSM Cloud Native Metrics
	Viewing OSM Cloud Native Metrics Without Using Prometheus
	Viewing OSM Cloud Native Metrics in Grafana
	Exposed OSM Order Metrics

	Managing WebLogic Monitoring Exporter (WME) Metrics
	Generating the WME WAR File
	Deploying the WME WAR File
	Enabling Prometheus for WebLogic Monitoring Exporter (WME) Metrics
	Configuring the Prometheus Scrape Job for WME Metrics
	Viewing WebLogic Monitoring Exporter Metrics in Grafana

	9 Integrating OSM
	Connectivity With Traditional OSM Instances
	Connectivity With OSM Cloud Native
	Connectivity Between the Building Blocks
	Inbound HTTP Connectivity
	Inbound JMS Connectivity
	Inbound JMS Connectivity Within the Same Kubernetes Cluster
	Outbound HTTP Connectivity
	Outbound JMS Connectivity

	Configuring SAF
	Applying the WebLogic Patch for External Systems
	Configuring SAF On External Systems
	Setting Up Secure Communication with SSL
	Configuring Secure Incoming Access with SSL
	Generating SSL Certificates for Incoming Access
	Setting Up OSM Cloud Native for Incoming Access
	Configuring Incoming HTTP and JMS Connectivity for External Clients

	Configuring Access to External SSL-Enabled Systems
	Loading Certificates for Outgoing Access
	Enabling SSL on an External WebLogic Domain
	Setting Up OSM Cloud Native for Outgoing Access

	Adding Additional Certificates to an Existing Trust
	Debugging SSL

	10 Running the SAF Sample for OSM Cloud Native
	Preparing the WebLogic System to Run the Emulator
	Deploying the Emulator on the WebLogic System
	Deploying the SimpleProvisioning Sample Cartridge
	Preparing the OSM Cloud Native Instance
	Validating the SAF Endpoints
	Submitting Orders
	Submitting Orders with HTTP
	Submitting Orders with T3 over HTTP

	11 Upgrading the OSM Cloud Native Environment
	Rolling Restart
	Identifying Your Upgrade Path
	Offline Change Upgrade Paths
	Online Change Upgrade Paths
	Exceptions
	Unsupported Tasks

	OSM Cloud Native Upgrade Procedures
	PDB Upgrade Procedure
	OSM Application Upgrade
	Offline Cartridge Deployment
	Online Cartridge Deployment

	Upgrades to Infrastructure
	Miscellaneous Upgrade Procedures
	Running Operational Procedures
	Triggering Introspection
	Scaling Down the Cluster
	Scaling Up the Cluster
	Restarting the Instance
	Fast Delete

	Upgrade Path Flow Chart

	12 Moving to OSM Cloud Native from a Traditional Deployment
	Supported Releases
	Performing Pre-move and Post-move Tasks
	About the Move Process
	Pre-move Development Activities
	Moving to an OSM Cloud Native Deployment
	Quiescing the Traditional Instance of OSM
	Exporting and Importing JMS Messages
	Exporting JMS Messages
	Importing JMS Messages

	Upgrading the Database
	Upgrading the Database Server
	Preparing the Required Database Entities for OSM Cloud Native

	Upgrading the OSM Schema and Cartridges
	Switching Integration with Upstream Systems

	Reverting to Your OSM Traditional Deployment
	Cleaning Up

	13 Debugging and Troubleshooting
	Setting Up Java Flight Recorder (JFR)
	Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console
	Recovering an OSM Cloud Native Database Schema
	Finding the Issue that Caused the OSM Cloud Native Database Schema Upgrade Failure
	Restarting the OSM Database Schema Upgrade from the Point of Failure

	Resolving Improper JMS Assignment
	Common Problems and Solutions
	Known Issues

	A Differences Between OSM Cloud Native and OSM Traditional Deployments

