
Oracle® Communications Offline
Mediation Controller
Cloud Native Installation and Administration
Guide

Release 15.1
G20498-01
April 2025

Oracle Communications Offline Mediation Controller Cloud Native Installation and Administration Guide, Release 15.1

G20498-01

Copyright © 2023, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 Overview of the Offline Mediation Controller Cloud Native Deployment

About the Offline Mediation Controller Cloud Native Deployment 1-1

Offline Mediation Controller Cloud Native Deployment Architecture 1-1

2 Planning Your Installation

Overview of the Offline Mediation Controller Deployment Package 2-1

About Offline Mediation Controller Pods and Images 2-1

About Offline Mediation Controller Services 2-1

3 Preparing Your Offline Mediation Controller Cloud Native Environment

Tasks for Preparing Your Offline Mediation Controller Cloud Native Environment 3-1

Setting Up Your Environment 3-1

Downloading Packages for the Offline Mediation Controller Cloud Native Helm Charts 3-3

Pulling Offline Mediation Controller Images from the Oracle Container Registry 3-4

Downloading Offline Mediation Controller Images from Oracle Software Delivery Website 3-5

4 Installing the Offline Mediation Controller Cloud Native Deployment
Package

About Deploying into Kubernetes 4-1

Automatically Pulling Images from Private Docker Registries 4-1

Automatically Rolling Deployments by Using Annotations 4-2

About StatefulSet Implementation 4-3

About Sidecars 4-3

About the Node Manager Sidecar 4-3

About the Admin Server Sidecar 4-3

iii

Configuring Sidecars 4-3

About Data Persistent Volume (PV) Configuration 4-4

Offline Mediation Controller Persistent Volume Claim Configuration 4-4

Configuring Offline Mediation Controller Services 4-5

Deploying Offline Mediation Controller Services 4-12

Installing the Offline Mediation Controller Web-Based UI 4-13

Prerequisites 4-13

About the Offline Mediation Designer UI Helm Chart 4-13

Deploying the Offline Mediation Designer UI 4-15

5 About Integrating Offline Mediation Controller REST Services Manager
with Cloud Native

About Offline Mediation Controller REST Services Manager 5-1

About Offline Mediation Controller REST Services Manager Cloud Native Architecture 5-1

Installing Offline Mediation Controller REST Services Manager 5-3

Setting Up Prerequisite Software 5-3

Configuring the Offline Mediation Controller Core and REST Services Manager
Connection 5-4

Configuring the REST Services Manager Server 5-4

Configuring and Loading Custom Validators 5-5

About the Offline Mediation Controller REST Services Manager Keys 5-5

6 Offline Mediation Controller REST Services Manager Security

About Authentication and Authorization 6-1

Setting Up OAuth Using Oracle Identity Cloud Service 6-1

Creating a Confidential OAuth Application 6-2

Creating Groups 6-2

Creating a Resource Server 6-3

Creating a Confidential Client Application 6-4

Assigning the Authenticator App Role to the Confidential Client Application 6-5

Creating the Public Client 6-6

Generating Two-Legged Access Tokens 6-7

Configuring IDCS in REST Services Manager 6-7

Setting Up OAuth Using Oracle Access Management 6-7

Preparing the Environment 6-8

Configuring Oracle Unified Directory as the Identity Store 6-8

Creating a User Using Oracle Unified Directory 6-9

Fetching User Details from Oracle Unified Directory 6-10

Testing Oracle Unified Directory as the Identity Store in Oracle Access Management 6-12

Generating the Access Token 6-12

iv

Creating an OAuth Identity Domain 6-12

Creating a Resource Server 6-13

Creating an OAuth Client 6-14

Generating Access Tokens with Two-Legged Flows 6-15

Generating Access Tokens with Three-Legged Flow 6-16

Configuring Offline Mediation Controller Cloud Native for Oracle Access Management 6-16

Accessing an Offline Mediation Controller REST Services Manager Endpoint 6-17

SSL-Enabled Actions for IDCS and Oracle Access Management 6-18

7 Upgrading Offline Mediation Controller

Upgrading Offline Mediation Controller to 15.1 7-1

Sample Workflow Payload JSON File 7-3

8 Connecting Your Administration Client

About Administration Client 8-1

Connecting Administration Client 8-1

Configuring Administration Server Cloud Native 8-2

Postinstallation Tasks for Administration Client 8-2

Verifying the Administration Client Connection 8-3

9 Enabling TLS 1.3 Support in Offline Mediation Controller

About TLS 1.3 Compatibility 9-1

Enabling TLS 1.3 Support Automatically 9-1

Manually Enabling TLS 1.3 Support 9-2

10

Uninstalling Your Offline Mediation Controller Cloud Native Deployment

Uninstalling Your Offline Mediation Controller Cloud Native Deployment 10-1

11

Automated Scaling of Node Manager Pods Using HPA

About Automated Scaling of Node Manager Pods 11-1

Enabling Scaling Replication 11-1

Configuring HPA 11-2

Configuring Global HPA Values 11-2

Configuring Node Manager Set HPA Values 11-3

v

12

Monitoring and Maintaining Offline Mediation Controller Cloud Native

Using Prometheus Operator to Monitor Offline Mediation Controller Cloud Native 12-1

Enabling the Automatic Scraping of Metrics 12-2

Using the Sample Grafana Dashboards 12-3

Offline Mediation Controller REST Services Manager Metrics 12-3

Automating Workflows Using RSM Request Automation 12-4

Setting Up REST Services Manager Request Automation 12-4

Creating a Workflow Payload File 12-5

Managing a Helm Release 12-7

Tracking a Release's Status 12-8

Updating a Release 12-8

Checking a Release's Revision 12-8

Rolling Back a Release to a Previous Revision 12-9

Rolling Back an Offline Mediation Controller Cloud Native Upgrade 12-9

Integrating Oracle Unified Directory with Offline Mediation Controller Cloud Native 12-10

13

Deploying into Oracle Cloud Infrastructure

Deploying into Oracle Cloud Infrastructure 13-1

14

Building Your Own Images

Building Offline Mediation Controller Images 14-1

Building the Offline Mediation Controller Base Image 14-1

Building Your Offline Mediation Controller Image 14-2

vi

Preface

This guide provides general information on how to configure and install Oracle
Communications Offline Mediation Controller in a cloud native environment.

Audience
This document is intended for DevOps administrators and those involved in installing and
maintaining an Oracle Communications Offline Mediation Controller cloud native deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Overview of the Offline Mediation Controller
Cloud Native Deployment

You can configure Oracle Communications Offline Mediation Controller to run as a cloud native
application in a containerized and orchestrated deployment architecture.

Topics in this document:

• About the Offline Mediation Controller Cloud Native Deployment

• Offline Mediation Controller Cloud Native Deployment Architecture

About the Offline Mediation Controller Cloud Native Deployment
Oracle Communications Offline Mediation Controller supports its deployment on a cloud native
environment. This allows you to harness the benefits of cloud with the services of Offline
Mediation Controller. For more information about Offline Mediation Controller, see "Overview of
Offline Mediation Controller" in Offline Mediation Controller User's Guide.

You can also set up your own cloud native environments. You use the cloud native deployment
package to automate the deployment of Offline Mediation Controller products and speed up
the process to get services up and running, with product deployments preconfigured to
communicate with each other through Helm charts.

Offline Mediation Controller Cloud Native Deployment
Architecture

Figure 1-1 shows the pods and other components in a typical Offline Mediation Controller cloud
native deployment.

1-1

Figure 1-1 Offline Mediation Controller Cloud Native Deployment Architecture

Chapter 1
Offline Mediation Controller Cloud Native Deployment Architecture

1-2

2
Planning Your Installation

The Oracle Communications Offline Mediation Controller cloud native deployment package
includes Docker images and Helm charts to help you deploy and manage pods of product
services in Kubernetes.

Topics in this document:

• Overview of the Offline Mediation Controller Deployment Package

• About Offline Mediation Controller Pods and Images

• About Offline Mediation Controller Services

Overview of the Offline Mediation Controller Deployment
Package

The Offline Mediation Controller cloud native deployment package includes the following:

• Ready-to-use images and Helm charts to help you orchestrate containers in Kubernetes.

• Sample Dockerfiles and scripts that you can use as a reference for building your own
images.

You can use the images and Helm charts to help you deploy and manage pods of Offline
Mediation Controller product services in Kubernetes. Communication between pods of services
of Offline Mediation Controller products is preconfigured in the Helm charts.

About Offline Mediation Controller Pods and Images
Table 2-1 lists the pods and images for Offline Mediation Controller whose containers are
created, and services are exposed through them.

Table 2-1 Offline Mediation Controller Pods and Images

Pod Replica Type Image Name Container Port

ocomc-admin-server-0 Single oc-cn-ocomc-
core:15.1.0.0.0

55105

nm-cc-0 Multiple oc-cn-ocomc-
core:15.1.0.0.0

55109

ocomc-
rsm-54c56bf4c4-7b8td

Multiple oc-cn-ocomc-
rsm:15.1.0.0.0

8080

mediation-
ui-6dc7556f9-9cbgf

Single oc-cn-ocomc-
mediation-ui:15.1.0.0.0

8080

About Offline Mediation Controller Services
Table 2-2 lists the services for Offline Mediation Controller.

2-1

Table 2-2 Offline Mediation Controller Services

Service Service Type Port Notes

nm-cc-0 ClusterIP 55105 Client on same worker
node.

nm-cc-0-metrics ClusterIP 9090 Client on same worker
node.

nm-epdc-0 ClusterIP 55109 Client on same worker
node.

nm-epdc-0-metrics ClusterIP 9090 Client on same worker
node.

ocomc-admin-server ClusterIP 31200, 31201, 31202 Client on same worker
node.
31200 is the default
service port, 31201 is
the firewall port and
31202 is the callback
port.

ocomc-rsm NodePort 31250 Client on Windows
system.

To connect to the Administration Server running in a Kubernetes cluster, you must install the
Administration Client outside of the Kubernetes cluster and then connect it to the service and
port of the Administration Server.

• If the Administration Client is installed on the same node where the Administration Server
pod is running, use a clusterIP service type with the Administration Server.

• If the Administration Client is located remotely or is on a Windows system, use a NodePort
service type with the Administration Server.

For more information about connecting the Administration Client, see "Connecting Your
Administration Client".

Chapter 2
About Offline Mediation Controller Services

2-2

3
Preparing Your Offline Mediation Controller
Cloud Native Environment

You prepare your system for the Oracle Communications Offline Mediation Controller cloud
native deployment by installing all prerequisite software and downloading the Offline Mediation
Controller Helm charts and images.

Topics in this document:

• Tasks for Preparing Your Offline Mediation Controller Cloud Native Environment

• Setting Up Your Environment

• Downloading Packages for the Offline Mediation Controller Cloud Native Helm Charts

• Pulling Offline Mediation Controller Images from the Oracle Container Registry

• Downloading Offline Mediation Controller Images from Oracle Software Delivery Website

Tasks for Preparing Your Offline Mediation Controller Cloud
Native Environment

To prepare your system for the Offline Mediation Controller cloud native deployment:

1. If you want to integrate Offline Mediation Controller with Elastic Charging Engine (ECE)
and the Billing and Revenue Management (BRM) cloud native deployment package, set up
the ECE and BRM cloud native deployment prior to setting up Offline Mediation Controller.
See BRM Cloud Native Deployment Guide.

2. Set up your Offline Mediation Controller environment by installing and configuring all
prerequisite software. See "Setting Up Your Environment".

3. Download the Helm charts for the Offline Mediation Controller cloud native deployment.
See "Downloading Packages for the Offline Mediation Controller Cloud Native Helm
Charts".

4. Download the Offline Mediation Controller cloud native images in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling Offline Mediation Controller
Images from the Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading Offline
Mediation Controller Images from Oracle Software Delivery Website".

Setting Up Your Environment
Set up your environment with the following technologies installed, configured, and tuned for
performance, networking, security, and high availability. Make sure backup nodes are available
in case of system failure in any of the cluster's active nodes.

• Podman: The Podman tool is used to containerize Offline Mediation Controller products.

3-1

For more information, see the Podman documentation (https://docs.podman.io/en/latest/
index.html).

• Kubernetes: Kubernetes is an open-source system for automating the deployment,
scaling, and management of containerized applications. It groups containers into logical
units for easy management and discovery. When you deploy Kubernetes, you get a
physical cluster with machines called nodes. A reliable cluster must have multiple worker
nodes spread over separate physical infrastructures, and a very reliable cluster must have
multiple primary nodes spread over different physical infrastructures.

Set up a Kubernetes cluster for your BRM cloud native deployment, securing access to the
cluster and its objects with the help of service accounts and proper authentication and
authorization modules. Also, set up the following in your cluster:

– Volumes: A container’s file system lives only as long as the container does. When a
container terminates and restarts, file system changes are also lost. You shouldn't
access the container file system or pods frequently, and sharing data between
container and host systems is not easy. Volumes appear as a directory in the container
file system and provide a way to share data. The Offline Mediation Controller cloud
native deployment package uses persistent volumes for sharing data in and out of
containers but doesn't enforce any particular type. You can choose from the volume
type options available in Kubernetes.

You can choose an external incubator to create persistent volumes, but ensure it
supports the ReadWriteMany access mode and PVC sharing between pods.

– A networking model: Kubernetes assumes that pods can communicate with other
pods, regardless of which host they land on. Every pod has a different IP address, so
you don't need to explicitly create a link between pods. You rarely need to deal with
mapping container ports to host ports. While Kubernetes doesn't offer a solution to
support its assumption, several implementations meet the fundamental requirements
of Kubernetes’ networking model. Choose the networking element depending on the
cluster requirement.

For more information about Kubernetes, see Kubernetes Concepts (https://kubernetes.io/
docs/concepts/).

Note:

Secure your cluster according to standard DevOps practices.

• Fluentd: Fluentd forms your logging layer, collecting log files from your Offline Mediation
Controller service pods and transforming them. The Fluentd-concat plugin is used to
concatenate multiline log files. You set up Fluentd on your Kubernetes nodes. Configure all
applications to redirect their logs to STDOUT so Fluentd can parse your log files.

For more information about Fluentd, see Fluentd Overview (https://docs.fluentd.org/
quickstart).

• Helm: Helm is a package manager that helps you install and maintain software on a
Kubernetes system. In Helm, a package is called a chart, which consists of YAML files and
templates rendered into Kubernetes manifest files. The BRM cloud native deployment
package includes Helm charts that help create Kubernetes objects, such as ConfigMaps,
Secrets, controller sets, and pods, with a single command.

For more information about Helm, see Helm Introduction to Helm (https://helm.sh/docs/
using_helm/).

Chapter 3
Setting Up Your Environment

3-2

https://docs.podman.io/en/latest/index.html
https://docs.podman.io/en/latest/index.html
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://docs.fluentd.org/quickstart
https://docs.fluentd.org/quickstart
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/

• Oracle Database: An Oracle database must be installed and accessible through the
Kubernetes network so that the pods can perform database operations. It can be either a
CDB or a non-CDB.

For the complete list of software compatible with the Offline Mediation Controller cloud native
deployment package, see "Offline Mediation Controller Cloud Native Deployment Software
Compatibility" in Offline Mediation Controller Compatibility Matrix.

Downloading Packages for the Offline Mediation Controller Cloud
Native Helm Charts

To download the Offline Mediation Controller cloud native Helm charts:

1. Go to https://edelivery.oracle.com.

2. Sign into the Oracle Software Delivery website using an Oracle account.

3. Search for and select Oracle Communications Offline Mediation Controller Cloud
Native Deployment Option 15.1.0.x.0 and then click Continue.

4. Make sure all packages are selected, and then click Continue.

5. Accept the Oracle standard terms and restrictions, and then click Continue.

6. Select the Docker Helm chart packages and then click Download.

Each package is downloaded to a separate Zip file.

7. Extract the following Helm chart and Docker archive files from each Zip file:

• Offline Mediation Controller Dockerfiles: oc-cn-ocomc-core-docker-
files-15.1.0.x.0.tgz

• Offline Mediation Controller Core and REST Services Manager Helm Chart: oc-cn-
ocomc-helm-chart-15.1.0.x.0.tgz

• Offline Mediation Designer UI Helm Chart: oc-cn-ocomc-mediation-ui-helm-
chart-15.1.0.x.0.tgz

• Ingress Controller Sample Helm Chart: oc-cn-ocomc-nginx-ingress-controller-
sample-helm-chart-15.1.0.x.0.tgz

• Apache Relying Party Sample Helm Chart: oc-cn-ocomc-apache-relying-party-
sample-helm-chart-15.1.0.x.0.tgz

8. Extract the Helm charts and Docker files from the archive files by running these
commands:

tar xvzf oc-cn-ocomc-core-docker-files-15.1.0.x.0.tgz

tar xvzf oc-cn-ocomc-helm-chart-15.1.0.x.0.tgz

tar xvzf oc-cn-ocomc-mediation-ui-helm-chart-15.1.0.x.0.tgz

tar xvzf oc-cn-ocomc-nginx-ingress-controller-sample-helm-chart-15.1.0.x.0.tgz

tar xvzf oc-cn-ocomc-apache-relying-party-sample-helm-chart-15.1.0.x.0.tgz

Chapter 3
Downloading Packages for the Offline Mediation Controller Cloud Native Helm Charts

3-3

https://edelivery.oracle.com

Pulling Offline Mediation Controller Images from the Oracle
Container Registry

To pull Offline Mediation Controller cloud native images from the Oracle Container Registry, do
the following:

1. In a web browser, go to https://container-registry.oracle.com.

2. Sign into the Oracle Container Registry using an Oracle account.

Note:

To pull images for licensed software on the Oracle Container Registry, you must
have an Oracle account. You can create an Oracle account at https://
profile.oracle.com/myprofile/account/create-account.jspx.

3. Select the Oracle Communications Cloud Scale Monetization container.

The Oracle Communications Cloud Scale Monetization page appears.

4. Click one of the following repository names:

• oc-cn-ocomc-core: Offline Mediation Controller image

• oc-cn-ocomc-rsm: Offline Mediation Controller REST Services Manager image

• oc-cn-ocomc-mediation-ui: Offline Mediation Controller Offline Mediation Designer
UI image

The repository page appears.

5. Accept the Oracle terms and restrictions by:

a. For non-CPU repositories, selecting your desired language.

b. Clicking Continue.

c. Scrolling to the bottom of the terms and restrictions page, and clicking Accept.

If successful, you will see something similar to this:

6. On your host system, log in to the Oracle Container Registry using the Podman command-
line interface (CLI):

podman login container-registry.oracle.com

Chapter 3
Pulling Offline Mediation Controller Images from the Oracle Container Registry

3-4

https://container-registry.oracle.com
https://profile.oracle.com/myprofile/account/create-account.jspx
https://profile.oracle.com/myprofile/account/create-account.jspx

7. When prompted for a user name and password, enter your Oracle credentials.

8. Pull the Offline Mediation Controller cloud native image from the registry:

podman pull container-registry.oracle.com/communications_monetization/imageName:tag

where:

• imageName is the name of the software image: oc-cn-ocomc-core or oc-cn-ocomc-
rsm.

• tag is the tag name for the image, such as 15.1.0.x.0.

For example, to pull the Offline Mediation Controller cloud native image from the registry:

podman pull container-registry.oracle.com/communications_monetization/oc-cn-ocomc-
core:15.1.0.x.0

The image is pulled from the Oracle Container Registry and stored locally, where it is ready
to be used to deploy containers.

9. Confirm the images were pulled from the Oracle Container Registry:

podman images

If successful, you will see something similar to this:

REPOSITORY
TAG IMAGE ID CREATED
container-registry.oracle.com/communications_monetization/oc-cn-ocomc-core
15.1.0.x.0 133dd3580b87 2 seconds ago
container-registry.oracle.com/communications_monetization/oc-cn-ocomc-rsm
15.1.0.x.0 136dd3593b47 3 seconds ago
container-registry.oracle.com/communications_monetization/ocomc-mediation-ui
15.1.0.x.0 136dd3598k23 5 minutes ago

10. Log out of the registry to prevent unauthorized access and to remove any record of sign-in
credentials that Podman might store for future operations:

podman logout container-registry.oracle.com

Downloading Offline Mediation Controller Images from Oracle
Software Delivery Website

To download Offline Mediation Controller cloud native images from the Oracle Software
Delivery website:

1. Go to https://edelivery.oracle.com.

2. Sign in to the Oracle Software Delivery website using an Oracle account.

3. Search for and select Oracle Communications Offline Mediation Controller Cloud
Native Deployment Option 15.1.0.x.0.

4. Download Zip files for the following:

• Oracle Communications Offline Mediation Controller Cloud Native Deployment Option
REST Services Manager 15.1.0.x.0

• Oracle Communications Offline Mediation Controller Cloud Native Deployment Option
15.1.0.x.0

5. From the Zip files, extract the following archive files:

• Offline Mediation Controller image (oc-cn-ocomc-core-15.1.0.x.0.tar)

Chapter 3
Downloading Offline Mediation Controller Images from Oracle Software Delivery Website

3-5

https://edelivery.oracle.com

• Offline Mediation Controller REST Services Manager image (oc-cn-ocomc-
rsm-15.1.0.x.0.tar)

• Offline Mediation Designer UI image (oc-cn-ocomc-mediation-ui-helm-
chart-15.1.0.x.0.tar)

6. Load the files as images into your Podman system using the following command:

podman load --input fileName

where fileName is oc-cn-ocomc-core-15.1.0.x.0.tar, oc-cn-ocomc-rsm-15.1.0.x.0.tar, or
oc-cn-ocomc-mediation-ui-helm-chart-15.1.0.x.0.tar.

If you use an internal registry to access images from different Kubernetes nodes, push the
images from your local system to the registry server. For example, if the registry is identified by
RepoHost:RepoPort, you would push the Offline Mediation Controller REST Services Manager
image to the registry using the Podman CLI like this:

1. Tag the Offline Mediation Controller REST Services Manager image with the registry
server:

podman tag ocomc-rsm:15.1.0.x.0 RepoHost:RepoPort/oc-cn-ocomc-rsm:15.1.0.x.0
2. Push the image to the registry server:

podman push RepoHost:RepoPort/oc-cn-ocomc-rsm:15.1.0.x.0

Chapter 3
Downloading Offline Mediation Controller Images from Oracle Software Delivery Website

3-6

4
Installing the Offline Mediation Controller
Cloud Native Deployment Package

Learn how to install the Oracle Communications Offline Mediation Controller cloud native
deployment package on a cloud native environment.

Topics in this document:

• About Deploying into Kubernetes

• Automatically Pulling Images from Private Docker Registries

• Automatically Rolling Deployments by Using Annotations

• About StatefulSet Implementation

• About Sidecars

• About Data Persistent Volume (PV) Configuration

• Offline Mediation Controller Persistent Volume Claim Configuration

• Configuring Offline Mediation Controller Services

• Deploying Offline Mediation Controller Services

• Installing the Offline Mediation Controller Web-Based UI

About Deploying into Kubernetes
Helm is the recommended package manager for deploying Offline Mediation Controller cloud
native services into Kubernetes. A Helm chart is a collection of files that describe a set of
Kubernetes resources. It includes YAML template descriptors for all Kubernetes resources and
a values.yaml file that provides default configuration values for the chart.

The Offline Mediation Controller cloud native deployment package includes oc-cn-ocomc-
core-helm-chart-15.1.0.x.0.tgz.

When you install the Helm chart, it generates valid Kubernetes manifest files by replacing
default values from values.yaml with custom values from override-values.yaml and creates
Kubernetes resources. Helm calls this a new release. You use the release name to track and
maintain this installation.

Automatically Pulling Images from Private Docker Registries
You can automatically pull images from your private Docker registry by creating an
ImagePullSecrets, which contains a list of authorization tokens (or Secrets) for accessing a
private Docker registry. You then add references to the ImagePullSecrets in your Offline
Mediation Controller Helm chart's override-values.yaml file. This allows pods to submit the
Secret to the private Docker registry whenever they want to pull images.

Automatically pulling images from a private Docker registry involves these high-level steps:

4-1

1. Create a Secret outside of the Helm chart by entering this command:

kubectl create secret docker-registry SecretName --docker-
server=RegistryServer --docker-username=UserName --docker-
password=Password -n NameSpace

where:

• SecretName is the name of your Kubernetes Secret.

• RegistryServer is your private Docker registry's fully qualified domain name (FQDN)
(repoHost:repoPort).

• UserName and Password are your private Docker registry's user name and password.

• NameSpace is the namespace you will use for installing the Offline Mediation
Controller Helm chart.

For example:

kubectl create secret docker-registry my-docker-registry --docker-
server=example.com:2660/ --docker-username=xyz --docker-password=password -n oms

2. Add the imagePullSecrets key to your override-values.yaml file for oc-cn-ocomc-core:

imagePullSecrets: SecretName
3. Add the ocomc.imageRepository key to your override-values.yaml file:

imageRepository: "RegistryServer"
4. Deploy oc-cn-ocomc-core.

Automatically Rolling Deployments by Using Annotations
Whenever a ConfigMap entry or a Secret file is modified, you must restart its associated pod.
This updates the container's configuration, but the application is notified about the
configuration updates only if the pod's deployment specification has changed. Thus, a
container could be using the new configuration, while the application keeps running with its old
configuration.

You can configure a pod to automatically notify an application when a Container's configuration
has changed. To do so, configure a pod to automatically update its deployment specification
whenever a ConfigMap or Secret file changes by using the sha256sum function. Add an
annotations section similar to this one to the pod's deployment specification:

kind: Deployment
spec:
 template:
 metadata:
 annotations:
 checksum/config: {{ include (print $.Template.BasePath "/
configmap.yaml") . | sha256sum }}

For more information, see Chart Development Tips and Tricks in the Helm documentation
(https://helm.sh/docs/howto/charts_tips_and_tricks/#automatically-roll-deployments).

Chapter 4
Automatically Rolling Deployments by Using Annotations

4-2

https://helm.sh/docs/howto/charts_tips_and_tricks/#automatically-roll-deployments

About StatefulSet Implementation
You can implement StatefulSet deployment for Node Managers in Kubernetes. StatefulSets
ensure that each pod has a stable and unique network identity and consistent storage,
simplifying scaling through the Horizontal Pod Autoscaler. You can use the StatefulSet
controller to create and delete pods and confirm that each new pod receives a consistent
identity and associated resources. You can also customize the deployed StatefulSets to meet
your specific requirements.

About Sidecars
Offline Mediation Controller cloud native uses Kubernetes sidecars to interact with the Offline
Mediation Controller REST Services Manager. For more information about sidecars, see
"Sidecar Containers" in the Kubernetes documentation.

Offline Mediation Controller cloud native deploys two types of sidecars:

• Node Manager Sidecar

• Admin Server Sidecar

About the Node Manager Sidecar
You can use Node Manager sidecars to perform tasks related to the Node Managers.

• If the Node Manager is running, you can register it with the Administration Server. This
ensures that the Node Manager can immediately participate in cluster activities.

• If the replication function is enabled, you can manage the replication for new Node
Managers. New Node Managers replicate the node chain and inherit necessary state and
data from the parent Node Manager through this replication process.

• You can persist the registration and replication process of the new Node Managers to
preserve them across pod restarts. This ensures that after a pod restart, the sidecar can
resume its operations accurately.

About the Admin Server Sidecar
You can use admin server sidecars to perform tasks related to the Admin server.

• If the import on install function is enabled, you can check whether all Node Managers
involved in the import process are available and registered. If a Node Manager is
unavailable, the sidecar waits until it is available. The sidecar runs the upload and imports
APIs after all the Node Managers are available. It also continues to monitor the import
process until it completes successfully.

• In the event of a failure during the import process, you can diagnose and resolve issues.
The sidecar handles error scenarios and marks the import as a dangling request.

• You can persist the states of the operations to preserve them across pod restarts. This
ensures that after a pod restart, the sidecar can resume its operations accurately.

Configuring Sidecars
You can configure debugging and analysis of applications using the following entries in the
respective ConfigMap files:

Chapter 4
About StatefulSet Implementation

4-3

https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/

• SIDE_CAR_INTERVAL: You can define the frequency at which the sidecar should handle
its closed-loop operations. The value is in milliseconds, and the default value is 10000.

• SIDECAR_NODE_MANAGER_AUTO_REGISTRATION_DISABLE: You can define
whether to register a Node Manager with the administration server on startup. The value
can be either TRUE or FALSE. The default value is set to FALSE.

Note:

The names of the ConfigMap files depend on the names of the Node Manager sets
which are set using the ocomcCore.ocomc.nodeManagerConfigurations.sets key.

About Data Persistent Volume (PV) Configuration
You can control the sharing of the data Persistent Volume (PV) across Node Managers with
more granularity using the
ocomcCore.ocomc.nodeManagerConfigurations.storage.data.scope key. You can set the
scope key to one of these values:

• Application: The data PV is shared across all applications. All sets and their pods share
the same data PV.

• Set: Each set has a dedicated data PV that is shared across only the pods within that set.
The data PV is isolated for each set, meaning no two pods from different sets can access
the same data PV.

• Pod: Each pod has a dedicated data PV. It provides data PV isolation between each pod,
regardless of the sets that they belong to.

Offline Mediation Controller Persistent Volume Claim
Configuration

Table 4-1 lists the Persistent Volume Claims (PVCs) used by the Offline Mediation Controller
server.

Table 4-1 List of PVCs in Offline Mediation Controller Server

PVC Name Default Pod Internal File System

pvc-vol-install-admin-server home/ocomcuser/install

pvc-vol-install-SET_NAME-SET_ORDINAL_INDEX

For example, pvc-vol-install-nm-cc-0

home/ocomcuser/install

pvc-vol-keystore home/ocomcuser/keystore

pvc-vol-suspense (Optional PVC) home/ocomcuser/suspense

• pvc-vol-data (Application scoped)
• pvc-SET_NAME-vol-data (Set scoped)

For example, pvc-nm-cc-vol-data
• pvc-SET_NAME-vol-data-SET_NAME-

SET_ORDINAL_INDEX (Pod scoped)

For example, pvc-nm-cc-vol-data-nm-cc-0

home/ocomcuser/data

Chapter 4
About Data Persistent Volume (PV) Configuration

4-4

Table 4-1 (Cont.) List of PVCs in Offline Mediation Controller Server

PVC Name Default Pod Internal File System

pvc-vol-external home/ocomcuser/external

pvc-vol-backup

Note: The pvc-vol-backup is only created when the
ocomc.storage.backup.enabled attribute is set to
true.

home/ocomcuser/backup

To share these PVCs between Offline Mediation Controller pods, you must use a persistent
volume provisioner that:

• Provides ReadWriteMany access and sharing between the pods

• Mounts all external volumes with a user (ocomcuser) that has a UID and GID of 1000 and
that has full permissions

• Has its volume reclaim policy set to avoid data and configuration loss in a mounted file
system

• Is configured to share data, external KeyStore volumes, and wallets between Offline
Mediation Controller pods and the Administration Client

You must place all CDR files inside the vol-data PVC and then configure the internal file
system path of the vol-data PVC in your Administration Client. The ocomcuser user must
have read and write permissions for all CDRs.

You must place all necessary third-party and cartridge JAR files in home/ocomcuser/external/
3rd_Party and home/ocomcuser/external/cartridges directories inside the vol-external PVC,
and then restart the pods. After the PVC is mounted, the JAR files are copied to home/
ocomcuser/install/ocomc/3rd_Party and home/ocomcuser/install/ocomc/cartridges.

The Offline Mediation Controller wallet files will be created and used through the shared vol-
keystore PVC.

The Node Managers can be deployed in the specific Kubernetes node by setting the affinity in
the values.yaml file.

Configuring Offline Mediation Controller Services
The Offline Mediation Controller unified Helm chart (oc-cn-ocomc-core-helm-chart)
configures and deploys all of your product services. YAML descriptors in the oc-cn-ocomc/
templates directory use the oc-cn-ocomc/values.yaml file for most of the values. You can
override the values by creating an override-values.yaml file.

The unified Helm chart includes both Offline Mediation Controller Core and REST Services
Manager under a single Helm chart. It contains both Core and REST Services Manager Helm
charts as subcharts within it. You can use the following keys to toggle deployment between
Offline Mediation Controller Core or REST Services Manager by setting their values to either
true or false:

• Use charts.enableCore to enable Offline Mediation Controller Core.

• Use charts.enableRSM to enable Offline Mediation Controller REST Services Manager.

Table 4-2 lists the keys that directly impact Offline Mediation Controller services. Add these
keys to your override-values.yaml file with the same path hierarchy.

Chapter 4
Configuring Offline Mediation Controller Services

4-5

Note:

• If you are using a Windows-based client, the adminsvrIp, nmExternalPort,
adminsvrExternalPort, and adminsvrFirewallPort keys must be set. To
connect with the Windows-based client, use external services with a NodePort
type. In this case, the adminsvrIp will be the worker node IP. Restart the pod
after setting adminsvrIp.

• If graphical desktop support such as VNC is available on a worker node, the
client can be installed on the same worker node in which Administration Server
and Node Manager pods are running. In this case, set the service type to
ClusterIP and do not set the nmExternalPort, adminsvrExternalPort, and
adminsvrFirewallPort keys.

Table 4-2 Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

enableCustomizationFi
leUpload

global Whether to allow custom file uploads during
imports (true) or not (false). The default value is
false.

enableTestNodeChain global Whether node chain testing is enabled (true) or not
(false). The default value is false.

RSMcontainer.imageR
epository

global The repository where the RSM image needs to be
pulled from.

RSMcontainer.imageP
ullPolicy

global The image pull policy for the RSM image.

RSMcontainer.image global The name of the RSM image.

runMigrationDataJob global.statefulSetUpgr
ade

Whether to initiate a job for migrating data from an
older setup to a new 15.1 setup. The default value
is false.

payloadFilePath global.statefulSetUpgr
ade

The path to the payload file used to migrate data
from an older setup to a new 15.1 setup.

restartCount ocomcCore.ocomc Increment the current value by 1 to trigger a restart
of all Offline Mediation Controller components. The
starting value is 0.

sslEnabled ocomcCore.ocomc Whether to enable SSL for secure communication
between components (true) or not (false). The
default value is true.

forceGenSslcert ocomcCore.ocomc Whether to regenerate the SSL certificates for the
Administration Server and Node Manager (true) or
not (false). The default value is false.

upgradeEnabled ocomcCore.ocomc Set to true when using a new version of the Offline
Mediation Controller image with an existing
installation to trigger the upgrade process. The
default value is false.

rsmURL ocomcCore.ocomc The URL of the Offline Mediation Controller REST
Services Manager for integration. The default
values is http://ocomc-rsm:8080.

Chapter 4
Configuring Offline Mediation Controller Services

4-6

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

cartrdigeFolder ocomcCore.ocomc The directory where Offline Mediation Controller
cartridge packs are installed.

Set this key to /home/ocomcuser/ext/cartridges
unless you are creating custom images.

storageClass ocomcCore.ocomc.sto
rage

The Kubernetes storage class for persistent
volumes.

keytore.name ocomcCore.ocomc.sto
rage

The name of the KeyStore volume used for storing
sensitive credentials. The default value is
keystore-vol.

external.name ocomcCore.ocomc.sto
rage

The name of the external volume used for
additional storage. The default value is external-
vol.

external.capacity ocomcCore.ocomc.sto
rage

The capacity of the external volume.

backup.enabled ocomcCore.ocomc.sto
rage

Whether to create a backup PV (true) or not
(false).

backup.name ocomc.Core.ocomc.so
rage

The name of the backup PV.

backup.accessModes ocomcCore.ocomc.sto
rage

The permission access mode of the backup PV.
The default value is ReadWriteMany.

backup.capacity ocomcCore.ocomc.sto
rage

The capacity of the backup PV.

fsGroup ocomcCore.ocomc.sec
urityContext

The file system group ID for security contexts.

runAsUser ocomcCore.ocomc.sec
urityContext

The user ID under which the process runs.

runAsGroup ocomcCore.ocomc.sec
urityContext

The group ID under which the process runs.

enabled ocomcCore.ocomc.aut
hentication

Whether to enable authentication for accessing
system resources (true) or not (false).

uniPass ocomcCore.ocomc.sec
rets

Use this key to apply a uniform password to all
Offline Mediation Controller cloud native services,
including:
• Database Schemas
• Offline Mediation Controller Root Login
• Oracle Wallets
To override this password for a specific service,
specify a different password in the service's key.

Note: Use this key for test or demonstration
systems only.

walletPass ocomcCore.ocomc.sec
rets

The string password for opening the wallet.

nmKeypass ocomcCore.ocomc.sec
rets

The password for the Node Manager domain SSL
identity key.

nmKeystorepass ocomcCore.ocomc.sec
rets

The Offline Mediation Controller Secrets required
for SSL and installation.

Chapter 4
Configuring Offline Mediation Controller Services

4-7

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

adminKeypass ocomcCore.ocomc.sec
rets

The password for the Administration Server
domain SSL Identity Key.

adminKeystorepass ocomcCore.ocomc.sec
rets

The password for the Administration Server
domain SSL Identity Store.

rsmOAuthToken ocomcCore.ocomc.sec
rets

The access token used by Administration Server to
communicate with the REST Services Manager
when it is running with security enabled.

image.pullPolicy ocomcCore.ocomc.ad
minServerConfiguratio
ns

The pull policy of the Administration Server
container image.

image.pullSecret ocomcCore.ocomc.ad
minServerConfiguratio
ns

The location of your imagePullSecrets, which
stores the credentials (or Secret) for accessing
your private Docker registry.

image.repository ocomcCore.ocomc.ad
minServerConfiguratio
ns

The repository location for the Administration
Server container image.

image.name ocomcCore.ocomc.ad
minServerConfiguratio
ns

The name of your Administration Server container
image.

restartCount ocomcCore.ocomc.ad
minServerConfiguratio
ns

Increment the current value by 1 to trigger a restart
of the Administration Server. The starting value is
0.

log.level ocomcCore.ocomc.ad
minServerConfiguratio
ns

The logging level for the Administration Server.
There are three possible levels:

• INFO
• DEBUG
• WARN

The default value is INFO.

log.pattern ocomcCore.ocomc.ad
minServerConfiguratio
ns

The pattern in which log messages are generated.

clientTimeout ocomcCore.ocomc.ad
minServerConfiguratio
ns

The time to wait for Kubernetes commands to
complete.

type ocomcCore.ocomc.ad
minServerConfiguratio
ns.service

The service type: ClusterIP, NodePort, or
LoadBalancer.

appPort ocomcCore.ocomc.ad
minServerConfiguratio
ns.service

The application port for the Administration Server.

firewallPort ocomcCore.ocomc.ad
minServerConfiguratio
ns.service

The firewall port for the Administration Server.

callbackPort ocomcCore.ocomc.ad
minServerConfiguratio
ns.service

The callback port for the Administration Server.

name ocomcCore.ocomc.ad
minServerConfiguratio
ns.storage.install

The name of the install volume used for the
Administration Server installation.

Chapter 4
Configuring Offline Mediation Controller Services

4-8

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

capacity ocomcCore.ocomc.ad
minServerConfiguratio
ns.storage.install

The storage capacity allocated for the
Administration Server install volume, such as 1Gi.

enabled ocomcCore.ocomc.ad
minServerConfiguratio
ns.import

Whether to enable the feature that triggers import
on initial setup of Offline Mediation Controller
through the REST Services Manager.

import.mappingFile ocomcCore.ocomc.ad
minServerConfiguratio
ns.import

The path to the mapping file for import, if enabled.

gcOptions ocomcCore.ocomc.ad
minServerConfiguratio
ns

The garbage control (GC) options for the
Administration server.

memoryOptions ocomcCore.ocomc.ad
minServerConfiguratio
ns

The memory-related options to pass to the
Administration Server process.

eceIntegration.* ocomcCore.ocomc.no
deManagerConfiguarti
ons

The details for connecting to ECE. Add these keys
only if you are integrating Offline Mediation
Controller with ECE:

• enabled: Specifies that integration with ECE is
enabled.

• image.repository: The Docker registry URL
for the ECE image.

• image.name: The name of the ECE image.
• image.pull.Policy: The pull policy of the ECE

image. The default value is IfNotPresent,
which specifies not to pull the image if it's
already present. Applicable values are
IfNotPresent and Always.

• clusterName: The ECE cluster name. The
default is BRM.

• persistenceEnabled: Whether ECE will
persist its cache data in the Oracle database:
true or false. The default is false.

• coherenceClusterPort: The value indicating
the Coherence port used by the ECE
component.

data.name ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The name of the volume for data storage.

data.accessModes ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The permission access mode of the data PV.

data.capacity ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The capacity of the volume.

Chapter 4
Configuring Offline Mediation Controller Services

4-9

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

data.scope ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The scope of the volume. Possible values are:
• Application: Only one data PV would be

deployed and would be shared by all the Node
Manager Pod.

• Set: Each Node Manager set would have their
dedicated PV (all the pods in the set would
share the same data PV).

• Pod: Each Node Manager pod will get a
dedicated data PV.

replication.enabled ocomcCore.ocomc.no
deManagerConfigurati
ons.scaling

Whether to enable auto-replication of Node
Manager pods upon scaling (true) or not (false).

createServiceAccount ocomcCore.ocomc.no
deManagerConfigurati
ons.scaling.hpa.servic
eAccount

Whether to create a service account (true) or not
(false).

serviceAccount.name ocomcCore.ocomc.no
deManagerConfigurati
ons.scaling.hpa

The service account to be used by Offline
Mediation Controller. If the service account does
not exist, set the createServiceAccount key to
true.

serviceAccount.enable
d

ocomcCore.ocomc.no
deManagerConfigurati
ons.scaling.hpa

Whether to enable the Kubernetes Horizontal Pod
Autoscaler (HPA) for dynamic scaling of the Node
Manager.

hpaScaleDownEnabled ocomcCore.ocomc.no
deManagerConfigurati
ons.scaling.hpa

Whether to allow HPA to scale down pods when
the relevant metrics fall below the specified
threshold (true) or not (false).

restartCount ocomcCore.ocomc.no
deManagerConfigurati
ons

Increment the current value by 1 to trigger a restart
of all Node Manager components. The starting
value is 0.

level ocomcCore.ocomc.no
deManagerConfigurati
ons.log

The logging level for Node Managers. There are
three possible levels:

• INFO
• DEBUG
• WARN

The default value is INFO.

jmxEnabled ocomcCore.ocomc.no
deManagerConfigurati
ons

Whether to enable JMX monitoring for Node
Manager diagnostics (true) or not (false).

jmxPort ocomcCore.ocomc.no
deManagerConfigurati
ons

The port used for JMX monitoring connections.

cpu ocomcCore.ocomc.no
deManagerConfigurati
ons.resources.request
s

The minimum CPU resources allocated for Node
Manager pods.

memory ocomcCore.ocomc.no
deManagerConfigurati
ons.resources.request
s

The minimum memory allocated for Node Manager
pods.

Chapter 4
Configuring Offline Mediation Controller Services

4-10

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

cpu ocomcCore.ocomc.no
deManagerConfigurati
ons.resources.limits

The maximum CPU resources for Node Manager
pods.

memory ocomcCore.ocomc.no
deManagerConfigurati
ons.resources.limits

The maximum memory limit for Node Manager
pods.

serviceMonitor.enable
d

ocomcCore.ocomc.no
deManagerConfigurati
ons

Enable or disable service monitor being deployed.

serviceMonitor.interval ocomcCore.ocomc.no
deManagerConfigurati
ons

The interval for service monitoring scraping.

serviceMonitor.labels.a
pp

ocomcCore.ocomc.no
deManagerConfigurati
ons

The app label to be added for service monitor.

serviceMonitor.labels.r
elease

ocomcCore.ocomc.no
deManagerConfigurati
ons

The release label to be added for service monitor.

metrics.enabled ocomcCore.ocomc.no
deManagerConfigurati
ons

Enable or disable metrics.

suspenseManagementI
ntegration*

ocomcCore.ocomc.no
demanagerConfigurati
ons

The details for integrating to suspense
management. Add these keys only if you are
integrating Offline Mediation Controller with
suspense management:
• enabled: Whether to enable or disable

suspense management integration.
• createPV: Whether to enable or disable PV

creation for Suspense Management. This
determines if Offline Mediation Controller
should use an existing shared suspense PV.

• storage.suspense.name: The name of the
volume for suspense storage.

• storage.suspense.accessModes: The
access modes for the suspense storage
volume.

• storage.suspense.capacity: The storage
capacity allocated for the suspense volume.

external.name ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The name of the volume for external storage.

external.accessModes ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The access modes for the external storage.

external.capacity ocomcCore.ocomc.no
deManagerConfigurati
ons.storage

The storage capacity allocated for the external
volume.

jvmOpts ocomcCore.ocomc.no
deManagerConfigurati
ons

The JVM options for the Node Manager.

Chapter 4
Configuring Offline Mediation Controller Services

4-11

Table 4-2 (Cont.) Offline Mediation Controller Server Keys

Key Path in values.yaml
File

Description

affinity ocomcCore.ocomc.no
deManagerConfigurati
ons

The Node Manager affinity rules for pod
scheduling.

sets ocomcCore.ocomc.no
deManagerConfigurati
ons

The various Node Manager sets to be deployed.
Each set would have a dedicated StatefulSet.

type ocomcCore.ocomc.no
deManagerConfigurati
ons.service

The type of Kubernetes service used to expose the
Node Manager.

port ocomcCore.ocomc.no
deManagerConfigurati
ons.service

The port number exposed by the Node Manager
service inside the cluster.

nodePort ocomcCore.ocomc.no
deManagerConfigurati
ons.service

The NodePort value for exposing the Node
Manager service externally. Applies only if
service.type is set to NodePort.

rdm.threadCount ocomcCore.ocomc.no
deManagerConfigurati
ons.service

The number of RDM threads for the Node
Manager.

Deploying Offline Mediation Controller Services
To deploy Offline Mediation Controller services on your cloud native environment, do this:

Note:

To integrate the Offline Mediation Controller cloud native deployment with the ECE
and BRM cloud native deployments, they must use the same namespace.

1. Validate the content of your charts by entering this command from the helmcharts
directory:

helm lint --strict oc-cn-ocomc-core-helm-chart

You'll see this if the command completes successfully:

1 chart(s) linted, no failures

2. Run the helm install command from the helmcharts directory:

helm install ReleaseName oc-cn-ocomc-core-helm-chart --namespace NameSpace
--values OverrideValuesFile

where:

• ReleaseName is the release name, which is used to track this installation instance.

Chapter 4
Deploying Offline Mediation Controller Services

4-12

• NameSpace is the namespace in which to create Offline Mediation Controller
Kubernetes objects. To integrate the Offline Mediation Controller cloud native
deployment with the ECE and BRM cloud native deployments, they must use the same
namespace.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the chart's values.yaml file.

For example, if the override-values.yaml file is in the helmcharts directory, the command
for installing Offline Mediation Controller cloud native services would be:

helm install ocomc oc-cn-ocomc-core-helm-chart --namespace ocgbu --values
override-values.yaml

Installing the Offline Mediation Controller Web-Based UI
Offline Mediation Designer is a web-based UI that runs on top of Offline Mediation Controller.
You can use it to create, design, and manage nodes, node chains, and Node Managers within
mediation processes.

Prerequisites
Before deploying the Offline Mediation Designer UI, you must first install the following software.

About Installing an Ingress Controller

You use ingress controllers to expose services outside the Kubernetes cluster, enabling clients
to communicate with Offline Mediation Controller cloud native. Ingress controllers route
external traffic to services within the Kubernetes cluster using the rules you define.

The Offline Mediation Controller cloud native deployment package includes a sample NGINX
Ingress Controller (oc-cn-ocomc-nginx-ingress-controller-sample-helm-
chart-15.1.0.x.0.tgz) that you can install and configure for the Offline Mediation Designer UI.
The archive file includes a Helm chart and a README file explaining how to configure the
NGINX Controller for your system.

For information about NGINX Ingress Controller, see the NGINX documentation: https://
docs.nginx.com/nginx-ingress-controller/.

About Installing the Relying Party

Relying Party applications authenticate users by working with a trusted Identity Provider, such
as Oracle Identity Cloud Service (IDCS). The relying party delegates user authentication to the
identity provider, which can be an OpenID Connect provider, a Security Assertion Markup
Language (SAML) identity provider, or any other authentication service.

The Offline Mediation Controller cloud native deployment package includes a sample Apache
Relying Party (oc-cn-ocomc-apache-relying-party-sample-helm-chart-15.1.0.x.0.tgz) that
you can install and configure for the Offline Mediation Designer UI. The archive file includes a
Helm chart and a README file explaining how to configure the software for your system.

About the Offline Mediation Designer UI Helm Chart
The Offline Mediation Controller cloud native deployment package includes the oc-cn-ocomc-
mediation-ui-helm-chart-15.1.0.x.0.tgz file. It is a Helm chart archive used for deploying the

Chapter 4
Installing the Offline Mediation Controller Web-Based UI

4-13

https://docs.nginx.com/nginx-ingress-controller/
https://docs.nginx.com/nginx-ingress-controller/

Offline Mediation Designer UI on a Kubernetes cluster. Extract the Helm chart and files from
the archive by entering this command:

tar zxvf oc-cn-ocomc-mediation-ui-helm-chart-15.1.0.x.0.tgz

The following files and directories are extracted:

profiles/
profiles/client-side-auth-idcs.yaml
profiles/client-side-auth-oam.yaml
profiles/deploy-oci.yaml
profiles/relying-party.yaml
mediation-ui-charts.tgz

The profiles directory contains these sample YAML files that you can copy and modify to meet
your configuration requirements:

• replying-party.yaml: Use this file for deploying the Offline Mediation Designer UI with
client-side authentication disabled, meaning that the UI sits behind a relying party.

• client-side-auth-idcs.yaml: Use this file as a reference for deploying the Offline Mediation
Designer UI with client-side authorization enabled and the API secured by IDCS.

• client-side-auth-oam.yaml: Use this file as a reference for deploying the Offline Mediation
Designer UI with client-side authorization enabled and the API secured by Oracle Access
Management.

Table 4-3 lists the keys that impact Offline Mediation Designer UI referenced in the above
YAML files.

Table 4-3 List of UI keys

Key Description

security.clientSideAuthEnabled Controls whether client-side authentication is enabled (true) or not (false). Set it to
false if the Offline Mediation Designer UI is deployed in conjunction with a relying
party.

Note: When set to false, it is not necessary to set the authorizationUrl,
authorizationEndpoint, clientId, scope, redirectUri, and postLogoutRedirectUri
keys. This configuration is instead managed within the relying party service.

security.authorizationURL (Only used when security.clientSideAuthEnabled is set to true)

The URL of the IdP (Identity Provider). Different IdPs have different values for the
URL:
• For Oracle Access Management: https://OAMHostname:Port/oauth2/rest
• For IDCS: https://IDCSidentifier/identity.oraclecloud.com/oauth2/v1
• For other IdPs: http://hostname:port/realms/Realm/protocol/openid-connect

security.authorizatonEndpoint (Only used when security.clientSideAuthEnabled is set to true)

The name of the endpoint for initiating the authorization flow, which is added to the
URL specified in authorizationURL. For Oracle Access Management and IDCS, the
value is authorized. Other IDPs may have different values, such as auth.

During the authorization flow, a POST call is made to https://
IDCSidentifier.identity.oraclecloud.com/oauth2/v1/authorize for IDCS and https://
OAMHostname:Port/oauth2/rest /authorize for Oracle Access Management.

security.logoutEndpoint The value for the logout endpoint to initiate the logout process. Typically, this is the
user logout endpoint configured in the IDP.

Chapter 4
Installing the Offline Mediation Controller Web-Based UI

4-14

Table 4-3 (Cont.) List of UI keys

Key Description

security.clientId (Only used when security.clientSideAuthEnabled is set to true)

The unique identifier of the client application requesting authorization. This must
match the value of the client created in the IDP.

security.scope (Only used when security.clientSideAuthEnabled is set to true)

The permissions being requested.

security.redirectUri (Only used when security.clientSideAuthEnabled is set to true)

The URI where the user is redirected after authorization.

Note: The redirectUri key must match one of the values for the redirectURIs in the
client created in the IDP. Typically, this is the URL of the mediation UI.

security.postLogoutRedirectUri (Only used when security.clientSideAuthEnabled is set to true)

The URI where the user is redirected after log out.

security.mediationUri The URL of the Offline Mediation Controller API service. This is the URL that the UI
will use to make call to the API so it must be accessible through the browser. Typically,
this should point to the ingress controller URL as all calls from the UI should be made
through the ingress controller and get forwarded accordingly.

Before proceeding to deploy the web-based UI, you must do the following steps:

1. Make a copy of the appropriate YAML file you wish to use and update it according to your
configuration requirements. For example, if you want to use the relying-party.yaml file,
run the following command:

cp profiles/relying-party.yaml my-custom-profile.yaml
2. Make a copy of the deployment configuration file using the following command:

cp profiles/deploy-oci.yaml deploy-mediation-ui.yaml
3. If you are using a private registry, update the deploy-mediation-ui.yaml file with image

registry and secret details. For example:

image:
 repository: my-docker-registry

imagePullSecret:
 imagePullSecrets:
 - name: my-docker-secret

service:
 type: NodePort
 nodePort: 31503

Deploying the Offline Mediation Designer UI
To deploy the Offline Mediation Designer UI in your cloud native environment, do the following:

1. Validate the content of your charts by entering this command from the helmcharts
directory:

helm lint --strict oc-cn-ocomc

Chapter 4
Installing the Offline Mediation Controller Web-Based UI

4-15

2. Run the helm install command from the helmcharts directory:

helm -n namespace install mediation-ui mediation-ui-charts.tgz -f deploy-
mediation-ui.yaml -f mediation-ui-values.yaml

where namespace is the namespace in which to create the Offline Mediation Controller
Kubernetes objects.

Afterward, you can access the Offline Mediation Designer UI at the following URL:

https://hostname/webApps/mediation/

where hostname is the host name of the configured ingress controller deployment.

Chapter 4
Installing the Offline Mediation Controller Web-Based UI

4-16

5
About Integrating Offline Mediation Controller
REST Services Manager with Cloud Native

You can integrate an external application with Oracle Communications Offline Mediation
Controller cloud native by using Offline Mediation Controller REST Services Manager.

Topics in this document:

• About Offline Mediation Controller REST Services Manager

• About Offline Mediation Controller REST Services Manager Cloud Native Architecture

• Installing Offline Mediation Controller REST Services Manager

• About the Offline Mediation Controller REST Services Manager Keys

About Offline Mediation Controller REST Services Manager
The Offline Mediation Controller REST Services Manager allows you to perform the same
operations as the NMShell application using external client applications. For example, it allows
your external application to do the following in Offline Mediation Controller:

• Manage Nodes

• Manage Node Managers

• Retrieve a list of node chains

• Compile and save the NPL rules file

• Export node configurations and customizations

About Offline Mediation Controller REST Services Manager
Cloud Native Architecture

Figure 5-1 shows all the components of the Offline Mediation Controller REST Services
Manager cloud native architecture.

5-1

Figure 5-1 Offline Mediation Controller REST Services Manager Cloud Native
Architecture

The components in this figure include:

• REST Services Manager Deployment: The primary deployment of REST Services
Manager with all the necessary components and configurations.

• REST Services Manager HTTP and HTTPS Service: This service exposes REST
Services Manager to ports, allowing access to REST Services Manager through HTTP and
HTTPS protocols.

• Validator ConfigMap: There is a unique ConfigMap for each market segment.

• REST Services Manager App ConfigMap: The ConfigMap contains the
application.yaml file, which holds the configurations required to initiate the REST
Services Manager server.

Chapter 5
About Offline Mediation Controller REST Services Manager Cloud Native Architecture

5-2

• REST Services Manager Logging ConfigMap: The ConfigMap holds the log4j2.yaml
file, encompassing logging-related configurations.

• Admin Server Keystore Secret: This secret contains the administration server KeyStore
file in a Base64-encoded format.

• RSM HTTPS TLS Secret: This secret contains the HTTPS TLS store utilized by REST
Services Manager when the HTTPS protocol is enabled.

• REST Services Manager App Secret: This secret contains all confidential information
necessary to launch the REST Services Manager server.

• vol-external: This is an optional PV reference. REST Services Manager will incorporate it
only if the flag rsm.pvc.ocomcExternal.enabled in the override-values.yaml file is set to
true. When enabled, the REST Services Manager will share the vol-external PV of the
OCOMC core deployment. It is mandatory to enable this flag if the node chain solution
includes cartridges containing sensitive information such as FTP or database passwords.

• rsm-vol-external: This PV is optional and can be enabled by setting the flag
rsm.pvc.external.enabled to true in the values.yaml file. When enabled, the REST
Services Manager will load custom cartridges from the specified PV into the classpath. The
source directory for it can be configured in the override-values.yaml file.

Installing Offline Mediation Controller REST Services Manager
The Offline Mediation Controller REST Services Manager can be installed along with core
Offline Mediation Controller components using a unified Helm chart.

To install Offline Mediation Controller REST Services:

1. Configure and install all required third-party software. See "Setting Up Prerequisite
Software".

2. Configure the Offline Mediation Controller server and REST Services Manager connection.
See "Configuring the Offline Mediation Controller Core and REST Services Manager
Connection".

3. Configure the REST Services Manager server. See "Configuring the REST Services
Manager Server".

4. Load custom validators. See "Configuring and Loading Custom Validators".

5. Deploy Offline Mediation Controller REST Services Manager. See "Deploying Offline
Mediation Controller Services".

Setting Up Prerequisite Software
As part of preparing your environment for Offline Mediation Controller REST Services
Manager, you install and set up various components and services in ways that are best suited
for your cloud native environment. The following shows the high-level prerequisite tasks for
deploying Offline Mediation Controller REST Services Manager:

1. Ensure that you have downloaded the latest software that is compatible with Offline
Mediation Controller cloud native. See "Offline Mediation Controller Cloud Native System
Requirements" in Offline Mediation Controller Compatibility Matrix.

2. Ensure that your environment setup is complete. See "Setting Up Your Environment".

3. Download the Offline Mediation Controller cloud native Helm chart. See "Downloading
Packages for the Offline Mediation Controller Cloud Native Helm Charts".

Chapter 5
Installing Offline Mediation Controller REST Services Manager

5-3

Configuring the Offline Mediation Controller Core and REST Services
Manager Connection

To configure the Offline Mediation Controller core and REST Services Manager connection:

1. In your override-values.yaml file for oc-cn-ocomc-helm-chart, set the following keys:

• ocomcRSM.rsm.adminServerConnection.hostname: Specify the hostname where
the Offline Mediation Controller Admin Server is running.

• ocomcRSM.rsm.adminServerConnection.port: Specify the port where Offline
Mediation Controller Admin Server listens.

2. If Offline Mediation Controller core uses SSL, do the following:

a. Copy your adminClientTruststore.jks file from the vol-keystore PV of Offline
Mediation Controller core to the oc-cn-ocomc/rsm/ocomc-rsm-keystore directory.

b. In your override-values.yaml file, set the following keys:

• ocomcRSM.rsm.adminServerConnection.ssl.enabled: Set this key to true. This
enables SSL between REST Services Manager and the Admin Server.

• ocomcRSM.rsm.adminServerConnection.ssl.keystoreName: Specify the name
of your KeyStore file, such as adminClientTruststore.jks.

3. If authentication is enabled for Offline Mediation Controller core, set the following keys in
your override-values.yaml file:

• ocomcRSM.rsm.adminServerConnection.username: Specify the user name for
logging in to the Admin Server.

• ocomcRSM.rsm.adminServerConnection.password: Specify the password for
logging in to the Admin Server.

Configuring the REST Services Manager Server
To configure the Offline Mediation Controller REST Services Manager Server:

1. Enable HTTPS in REST Services Manager by doing the following:

a. Copy your generated .p12 KeyStore file to the REST Services Manager Helm chart
directory (oc-cn-ocomc/charts/oc-cn-ocomc-rsm/ocomc-rsm-keystore).

b. Set the following keys in your override-values.yaml file for oc-cn-ocomc:

• ocomcRSM.rsm.https.enabled: Set this to true.

• ocomcRSM.rsm.https.ketsotreName: Specify the name of the KeyStore file with
the extension.

• ocomcRSM.rsm.https.keystorePassPhrase: Specify the KeyStore passphrase.

2. Expose REST Services Manager through a NodePort by setting the following keys in your
override-values.yaml file:

• ocomcRSM.rsm.service.type: Set this to NodePort.

• ocomcRSM.rsm.service.nodePort: Specify the port number.

• ocomcRSM.rsm.https.service.nodePort: If the HTTPS port is enabled, specify the
port for exposing the HTTPS port outside the cluster.

Chapter 5
Installing Offline Mediation Controller REST Services Manager

5-4

3. Enable Oracle Access Management authentication by setting the following keys in your
override-values.yaml file:

a. ocomcRSM.rsm.security.provider: Set this to OAM.

b. ocomcRSM.rsm.security.configuration.oam: Fill in the Oracle Access Management
and Oracle Unified Directory configuration details.

4. Set the log levels to the appropriate level in the
ocomcRSM.rsm.logging.packagingLogging keys in your override-values.yaml file.

Configuring and Loading Custom Validators
In Offline Mediation Controller REST Services Manager, you can configure custom validators.

To load custom validators:

1. Enable custom validators for Offline Mediation Controller RSM. In your override-
values.yaml file for oc-cn-ocomc-helm-chart, set the
ocomcRSM.rsm.customisation.nodeConfigValidator.validators.enabled key to true.

2. Create a subdirectory within the RSM Helm chart directory (oc-cn-ocomc-rsm/ocomc-
rsm-validator) with the name of the market segment for the validator. For example, create
a directory named oc-cn-ocomc-rsm/ocomc-rsm-validator/my-market.

3. Copy the validator YAML files into the directory created in the previous step.

4. In your override-values.yaml file, set the
ocomcRSM.rsm.customisation.nodeConfigValidator.validators.marketSegments key
to a list of supported market segments.

About the Offline Mediation Controller REST Services Manager
Keys

Table 5-1 lists the keys that directly impact Offline Mediation Controller REST Services
Manager. Add these keys to your override-values.yaml file with the same path hierarchy.

Table 5-1 Offline Mediation Controller REST Services Manager Keys

Key Path in values.yaml file Description

imagePullSecrets - The location of your imagePullSecrets, which stores the
credentials (or Secret) for accessing your private Docker
registry.

name ocomcRSM.rsm The name to use for the deployment. The final name of the
deployment is derived using the name provided.

fullname ocomcRSM.rsm The final name of the deployment to use. This would be used
for the deployment without any modification.

replicas ocomcRSM.rsm The total number of REST Services Manager pods to run in
the deployment.

restartCount ocomcRSM.rsm Tracks the number of restarts. To restart the pods, increment
the value by 1 and run the helm upgrade command.

serviceMonitor.enabled ocomcRSM.rsm Whether to enable the service monitor for REST Services
Manager metrics.

Chapter 5
About the Offline Mediation Controller REST Services Manager Keys

5-5

Table 5-1 (Cont.) Offline Mediation Controller REST Services Manager Keys

Key Path in values.yaml file Description

imageRepository ocomcRSM.rsm.container The repository from where the REST Services Manager
image can be pulled.

Note: The repository URI should not end with a trailing
slash.

imagePullPolicy ocomcRSM.rsm.container The image pull policy to use for the deployment. The default
value is IfNotPresent, which specifies not to pull the image if
it's already present. Applicable values are IfNotPresent and
Always.

image ocomcRSM.rsm.container The REST Services Manager image name and tag
concatenated with a colon (:). Ensure to align with the REST
Services Manager image version to be deployed.

enabled ocomcRSM.rsm.https Whether REST Services Manager should run with HTTPS.

keystoreName ocomcRSM.rsm.https The KeyStore file name with its extension to use for HTTPS.
The file must be present in the oc-cn-ocomc-rsm/ocomc-
rsm-keystore directory.

keystorePassPhrase ocomcRSM.rsm.https The passphrase for the HTTPS KeyStore file.

extRsmKeystoreSecret ocomcRSM.rsm.https The external KeyStore Secret name.

service.nodePort ocomcRSM.rsm.https The node port to use for HTTPS service. This would be used
when the service type of REST Services Manager is set to
NodePort.

hostname ocomcRSM.rsm.adminServ
erConnection

The host name for accessing the Administration Server.

port ocomcRSM.rsm.adminServ
erConnection

The port at which the Administration Server is listening on.

username ocomcRSM.rsm.adminServ
erConnection

The user name to use for logging into the Administration
Server.

password ocomcRSM.rsm.adminServ
erConnection

The password for the specified user to use during login.

ocomcExternal.enabled ocomcRSM.rsm.pvc Whether REST Services Manager shares the same external
PV of the Offline Mediation Controller core.

Enabling this is mandatory when REST Services Manager is
involved in creating node chain solutions involving cartridges
with sensitive password information (FTP or database
passwords). The mount path is /app/volumes/ocomc-ext.

ocomcExternal.name ocomcRSM.rsm.pvc The name of the external volume in Offline Mediation
Controller Core.

external.enabled ocomcRSM.rsm.pvc Whether to create an external PV for REST Services
Manager. The mount path is /app/volumes/ext.

name ocomcRSM.rsm.storageCla
ss

The storage class to use if REST Services Manager's
external PV is enabled.

cartridgeFolder ocomcRSM.rsm.configEnv The directory path where REST Services Manager retrieves
and loads cartridges from.

nodeTypeMapper.enabled ocomcRSM.rsm.customisat
ion

Whether to load custom nodeMappers into REST Services
Manager. The content of the file needs to be added to oc-cn-
ocomc-rsm/templates/configmap-nodetypemapper.yaml.

nodeConfigValidator.validat
ors.enabled

ocomcRSM.rsm.customisat
ion

Whether to load custom validators into REST Services
Manager.

Chapter 5
About the Offline Mediation Controller REST Services Manager Keys

5-6

Table 5-1 (Cont.) Offline Mediation Controller REST Services Manager Keys

Key Path in values.yaml file Description

nodeTypeMetadata.enabled ocomcRSM.rsm.customisat
ion

Whether to load custom node type metadata files into REST
Services Manager.

transformers.enabled ocomcRSM.rsm.customisat
ion.nodeConfigTransformer

Whether to enable custom transformers.

requestAutomation.enabled ocomcRSM.rsm.jobs Whether to enable a request automation job (true) or not
(false).

requestAutomation.resourc
es.limits.cpu

ocomcRSM.rsm.cpu The CPU limit for job replicas.

requestAutomation.resourc
es.limits.memory

ocomcRSM.rsm.jobs The memory limit for job replicas.

requestAutomation.resourc
es.requests.memory

ocomcRSM.rsm.jobs The memory limit for job replicas.

requestAutomation.resourc
es.requests.memory

ocomcRSM.rsm.jobs The minimum memory for job replicas.

service.type ocomcRSM.rsm.service The Kubernetes service type to use.

nodePort ocomcRSM.rsm.service The NodePort that REST Services Manager should be
exposed to if service type is set to NodePort.

limits.cpu ocomcRSM.rsm.resources The CPU limit for REST Services Manager pods.

limits.memory ocomcRSM.rsm.resources The memory limit for REST Services Manager pods.

requests.cpu ocomcRSM.rsm.resources The minimum CPU for REST Services Manager pods.

requests.memory ocomcRSM.rsm.resources The minimum memory for REST Services Manager pods.

rsmTrustStore.enabled ocomcRSM.rsm.rsmTrustSt
ore

Whether to enable a custom TrustStore for SSL/TLS.

trustStoreName ocomcRSM.rsm.rsmTrustSt
ore

The TrustStore file name.

extRSMTruststoreSecret ocomcRSM.rsm.rsmTrustSt
ore

The external TrustStore Secret name.

trustStorePassPhrase ocomcRSM.rsm.rsmTrustSt
ore

The passphrase for the TrustStore.

provider ocomcRSM.rsm.security The security provider for user authentication.

jvmOpts ocomcRSM.rsm The required JVM configuration for REST Services Manager.

terminationGracePeriodSec
onds

ocomcRSM.rsm The termination grace period for the pod. This is optional.

format.type ocomcRSM.rsm.logging The logging layout to use. The value should be a supported
log4j logging layout.

format.pattern ocomcRSM.rsm.logging The logging pattern to use.

rootLevel ocomcRSM.rsm.logging The REST Services Manager's root logging level.

packageLogging ocomcRSM.rsm.logging The logging levels specific to individual packages.

Chapter 5
About the Offline Mediation Controller REST Services Manager Keys

5-7

6
Offline Mediation Controller REST Services
Manager Security

Learn how to implement the security capabilities supported by the Oracle Communications
Offline Mediation Controller REST Services Manager. Offline Mediation Controller REST
Services Manager supports stringent authorization and authentication requirements.

Topics in the document:

• About Authentication and Authorization

• Setting Up OAuth Using Oracle Identity Cloud Service

• Setting Up OAuth Using Oracle Access Management

• SSL-Enabled Actions for IDCS and Oracle Access Management

About Authentication and Authorization
Offline Mediation Controller REST Services Manager uses the OAuth 2.0 protocol to
authenticate a client application's identity and to authorize the client application to access its
REST API. It does this by validating an OAuth access token that is passed in the header of the
client's HTTP/HTTPS request to the Offline Mediation Controller REST Services Manager. See
REST API Reference for Offline Mediation Controller for more information.

Your client must pass this OAuth access token in the header of every HTTP/HTTPS request
sent to Offline Mediation Controller REST Services Manager. To set up authentication and
authorization for your client, you can use either Oracle Identity Cloud Service or Oracle Access
Management.

Setting Up OAuth Using Oracle Identity Cloud Service
You can set up your client application to use OAuth authentication at either the user or the
application level to access the Offline Mediation Controller REST Services Manager API. For a
typical Offline Mediation Controller setup, you create several integrated applications in Oracle
Identity Cloud Service (IDCS).

To set up OAuth authentication using IDCS, perform the following steps:

1. Creating a Confidential OAuth Application

2. Creating Groups

3. Creating a Resource Server

4. Creating a Confidential Client Application

5. Creating the Public Client

6. Generating Two-Legged Access Tokens

7. Configuring IDCS in REST Services Manager

6-1

Creating a Confidential OAuth Application
You use the Administration Application to create other Oracle Identity Cloud Service
applications that are used by the Offline Mediation Controller.

To create the Administration Application in IDCS:

1. Open your Oracle Identity Cloud Service domain.

The Overview in the Domain window appears.

2. From the Identity domain navigation pane, click Integrated applications and then Add
application.

3. Select Confidential Application and then click Launch workflow.

The Add Confidential Application window appears.

4. Click Next or Configure OAuth.

5. Specify the name of the application, such as OCOMC Admin App, and add an optional
description.

6. In the Client configuration card, select Configure this application as a client now.

The Client configuration area expands.

7. Under Allowed grant types, select the Client Credentials option.

8. Under Token issuance policy, select Add app roles.

The App roles area appears.

9. Click Add roles.

The Add app roles dialog box appears.

10. Select the Application Administrator role and click Add.

11. Click Next or Configure policy.

12. Under Web tier policy, select Skip and do later and click Finish.

The application is created.

13. Click Activate and then, in the confirmation pop-up, click Activate application.

The application is activated.

Write down the clientId and clientSecret. You will need it for the following procedures.

Creating Groups
You manage user access to the Offline Mediation Controller functionality using groups. The
Offline Mediation Controller resource server contains scopes for Designer, Operator, and
Viewer users.

To create groups on the IDCS Cloud Console:

1. Open your Oracle Identity Cloud Service domain.

The Overview in the Domain window appears.

2. From the Identity domain navigation pane, click Groups.

The Groups in the Domain window appears.

3. Click Create Group.

Chapter 6
Setting Up OAuth Using Oracle Identity Cloud Service

6-2

The Create Group dialog box appears.

4. Create the Designer group by doing the following:

a. In the Name field, enter Designer.

b. Select the users to assign to the group.

c. Click Create.

Note:

You can edit the group and assign users at a later stage as well.

5. Repeat step 4 to create the Operator and Viewer groups.

Creating a Resource Server
To create a Resource Server on IDCS:

1. Generate an access token using this cURL command:

curl --location 'https://idcs_hostname/oauth2/v1/token'
--header 'Content-Type: application/x-www-form-urlencoded'
--header 'Authorization: Basic *******encoded_client'
--data-urlencode 'grant_type=client_credentials'
--data--urlencode 'scope=urn:opc:idm:__myscopes__'

where:

• idcs_hostname is the hostname of your Identity Cloud Service instance.

• encoded_client is the base64-encoded string of the clientId:clientSecret that you
created.

For more information, see "Generate Access Token and Other OAuth Runtime Tokens to
Access the Resource" in REST API for Oracle Identity Cloud Service.

2. Create an Offline Mediation Controller Resource Server application. This example creates
a confidential application named OCOMC-ResourceServer with the following values:

• The allowed grants are client_credentials and refresh_token

• The audience is ocomc

• The application scopes are Designer, Operator, and Viewer

curl --location 'https://idcs_hostname/admin/v1/Apps'
--header 'Authorization: Bearer *******access_token'
--header 'Content-Type: application/json'
--data '{"schemas":["urn:ietf:params:scim:schemas:oracle:idcs:App"],
"basedOnTemplate":{"value":"CustomWebAppTemplateId"},
"displayName":"OCOMC-ResourceServer","description":"Resource Server for protecting
the mediation backend API","name":"OCOMC-ResourceServer",
"clientType":"confidential","isAliasApp":false,"isOPCService":false,"active":true,
"isOAuthClient":true,"isUnmanagedApp":true,"isWebTierPolicy":false,
"isOAuthResource":true,"allowedGrants":["client_credentials","refresh_token"],
"allowOffline":true,"allUrlSchemesAllowed":true,"trustScope":"Account",
"accessTokenExpiry":1800,"refreshTokenExpiry":3600,"audience":"ocomc",
"scopes":[{"description":"Scope for Operator role in
OCOMC","requiresConsent":false,"value":"Operator"}, {"description":"Scope for
Designer role in OCOMC","requiresConsent":false,"value":"Designer"},

Chapter 6
Setting Up OAuth Using Oracle Identity Cloud Service

6-3

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-oauth2-v1-token-post.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-oauth2-v1-token-post.html

{"description":"Scope for Viewer role in
OCOMC","requiresConsent":false,"value":"Viewer"}]}'

where:

• idcs_hostname is the hostname of your Identity Cloud Service instance.

• access_token is the access token returned in step 1.

For more information, see "Create an App" in REST API for Oracle Identity Cloud
Service.

Creating a Confidential Client Application
To create a confidential client application, use cURL to send an HTTP/HTTPS request to the
Oracle IDCS URL. The following command creates a confidential client application named
OCOMC-RestClient with the following values:

• The allowed grants are client_credentials and refresh_token.

• The allowed operation is introspect.

• The application scopes are Designer, Operator, and Viewer.

• The allowed scopes specify the fully qualified server (FQS) value in the format
AudienceScope. If you have changed the default audience, update it here. The default
value is ocomcScope. For example, ocomcDesigner, or ocomcOperator.

curl --location 'https://idcs_hostname/admin/v1/Apps'
--header 'Authorization: Bearer *******access_token'
--header 'Content-Type: application/json'
--data '{"schemas":["urn:ietf:params:scim:schemas:oracle:idcs:App"],
"basedOnTemplate":{"value":"CustomWebAppTemplateId"},"displayName":"OCOMC-
RestClient","name":"OCOMC--RestClient","clientType":"confidential","isAliasApp":false,
"isOPCService":false,"active":true,"isOAuthClient":true,"isUnmanagedApp":false,"isWebTier
Policy":false,"isOAuthResource":false,"allowedGrants":
["client_credentials","refresh_token"],"allowOffline":true,
"allUrlSchemesAllowed":true,"trustScope":"Explicit",
"redirectUris":["https://omdUI_hostname/webApps/mediation"],
"postLogoutRedirectUris":["https://omdUI_hostname/webApps/mediation"],
"allowedOperations":["introspect"],
"allowedScopes":[{"fqs":"ocomcOperator","value":"Operator","description":"RSM Operator
scope","requiresConsent":false},
{"fqs":"ocomcDesigner","designer_value":"Designer","description":"RSM Designer
scope","requiresConsent":false},{"fqs":"ocomcViewer","value":"Viewer","description":"RSM
Viewer scope","requiresConsent":false}]}'

where:

• idcs_hostname is the hostname of your Identity Cloud Service instance.

• access_token is the access token.

• omdUI_hostname is the hostname of the server where the Offline Mediation Controller UI
is deployed. If this is specified incorrectly, you will get errors from IDCS after logging in.

• designer_value is the scope or role of the user.

Write down the clientId, which appears as the name field, once you create your Confidential
Client Application. You will need it for the following procedures as clientId_conf_app.

For information, see "Create an App" in REST API for Oracle Identity Cloud Service.

Chapter 6
Setting Up OAuth Using Oracle Identity Cloud Service

6-4

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-admin-v1-apps-post.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-admin-v1-apps-post.html

Assigning the Authenticator App Role to the Confidential Client Application
You need to assign the App Role Authenticator Client to the Confidential Application once it
has been created. To assign the Authenticator App Role:

1. Generate an access token.

2. Create the Authenticator Client role using this cURL command:

curl --location 'https://idcs_hostname/admin/v1/AppRoles?
filter=displayName%20eq%20%22Authenticator%20Client%22'
--header 'Authorization: Bearer access_token*****'
--header 'Content-Type: application/json'

If successful, you will see a response similar to this:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 1,
 "Resources": [
 {
 "id": "1234567890abcdef1234567890abcdef",
 "meta": {
 "resourceType": "AppRole",
 "location": "https://www.example.com/admin/v1/AppRoles/
1234567890abcdef1234567890abcdef"
 },
 "adminRole": true,
 "availableToUsers": false,
 "uniqueName": "IDCSAppId_Authenticator Client",
 "app": {
 "value": "IDCSAppId",
 "name": "IDCSApp",
 "display": "IDCS Application",
 "$ref": "https://www.example.com/admin/v1/Apps/IDCSAppId"
 },
 "availableToGroups": false,
 "displayName": "Authenticator Client",
 "public": false,
 "availableToClients": true,
 "ocid": "ocid1.domainapprole.oc1.phx.xxxx",
 "idcsLastModifiedBy": {
 "value": "UnAuthenticated"
 },
 "idcsCreatedBy": {
 "value": "UnAuthenticated"
 },
 "schemas": [
 "urn:ietf:params:scim:schemas:oracle:idcs:AppRole"
]
 }
],
 "startIndex": 1,
 "itemsPerPage": 50
}

Write down the resource ID value. This is the ID for the Authenticator Client role. For
information, see "Create an AppRole" in REST API for Oracle Identity Cloud Service.

Chapter 6
Setting Up OAuth Using Oracle Identity Cloud Service

6-5

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-admin-v1-approles-post.html

3. Assign the Authenticator Client role to the Confidential Client application using this
command:

curl --location 'https://idcs_hostname/admin/v1/Grants'
--header 'Authorization: Bearer access_token*******'
--header 'Content-Type: application/json'
--data '{"app":{"value":"IDCSAppId"},
"entitlement":{"attributeName":"appRoles","attributeValue":"auth_client_roleID"},
"grantMechanism":"ADMINISTRATOR_TO_APP","grantee":
{"value":"clientId_conf_app","type":"App"},
"schemas":["urn:ietf:params:scim:schemas:oracle:idcs:Grant"]}'

where:

• auth_client_roleID is the resource ID of the Authenticator client role from 2.

• clientId_conf_app is the client ID of the Confidential Application that you received in
response, when creating your Confidential Client Application.

For information, see "Add a Grantee to an AppRole" in REST API for Oracle Identity Cloud
Service.

Note:

REST Services Manager caches the roles of the Confidential Application at startup. If
you add or remove the Authenticator Client role after REST Services Manager has
been started, restart the REST Services Manager to ensure that the new role is
picked up correctly.

Creating the Public Client
The Offline Mediation Controller UI uses the Public Client when the UI is deployed with client-
side authentication enabled to manage the user login flow.

To create the Public Client:

1. Generate an access token.

2. Create a Public Client using cURL.

This example command creates a public client named OCOMC-Public-Client with the
following values:

• The allowed grants are refresh_token and authorization_code

• The application scopes are Designer, Operator, and Viewer

curl --location 'https://idcs_hostname/admin/v1/Apps'
--header 'Authorization: Bearer access_token********'
--header 'Content-Type: application/json'
--data '{"schemas":["urn:ietf:params:scim:schemas:oracle:idcs:App"],
"basedOnTemplate":{"value":"CustomWebAppTemplateId"},"displayName":"OCOMC-Public-
Client","description":"Public client used by OCOMC Web UI","name":"OCOMC-Public-
Client","clientType":"public","isAliasApp":false,"isOPCService":false,"active":true,"
isOAuthClient":true,"isUnmanagedApp":false,"isWebTierPolicy":false,"isOAuthResource":
false,"allowedGrants":
["authorization_code","refresh_token"],"allowOffline":true,"allUrlSchemesAllowed":tru
e,"trustScope":"Explicit","redirectUris":["https://omdUI_hostname/webApps/
mediation"],
"postLogoutRedirectUris":["https://omdUI_hostname/webApps/mediation/"],

Chapter 6
Setting Up OAuth Using Oracle Identity Cloud Service

6-6

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-admin-v1-grants-post.html

"allowedScopes":[{"fqs":"ocomcOperator"},{"fqs":"ocomcDesigner"},
{"fqs":"ocomcViewer"}]}'

Once the applications have been created, ensure that the appropriate users have been
assigned to their respective groups.

Generating Two-Legged Access Tokens
To generate two-legged access tokens, use cURL to send an HTTP/HTTPS request to the
Oracle IDCS URL.

curl --location 'https://domain_url/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Authorization: Basic encoded_client********\ \
--data-urlencode 'grant_type=client_credentials' \
--data-urlencode 'scope=scope'

where:

• domain_url is the hostname of your Identity Cloud Service instance.

• encoded_client is the base64-encoded string of the clientId:clientSecret that you created.

• scope is the concatenation of the primary audience (that you set when creating the
Resource Server, for example ocomc) and the scope, such as Designer.

If successful, IDCS generates a token specific to the user with the specified scope. For
information, see "Generate Access Token and Other OAuth Runtime Tokens to Access the
Resource" in REST API for Oracle Identity Cloud Service.

Configuring IDCS in REST Services Manager
To configure Oracle IDCS in your REST Services Manager cloud native environment:

1. Open your override-values.yaml file for oc-cn-ocomc-helm-chart.

2. Set the rsm.security.provider key to IDCS.

Note:

Do not leave the key empty, or RSM will run without authentication.

3. Set the rsmOAuthToken key to the RSM OAuth 2.0 token.

4. Add your security information under the security.configuration.idcs section:

• idcsUri: Set this to the IDCS domain URL.

• idcsClientId:Set this to the client ID for your IDCS client application.

• idcsClientSecret: Set this to the client secret in Base64-encoded format.

• idcsIntrospectEndpointUri: Set this to the IDCS introspect URL for token validation.

5. To enable rsm-automation jobs, add the valid RSM OAuth token to the
jobs.requestAutomation.config.rsmAuthToken key.

Setting Up OAuth Using Oracle Access Management
Setting up OAuth using Oracle Access Management involves these high-level steps:

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-7

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-oauth2-v1-token-post.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/op-oauth2-v1-token-post.html

1. Preparing the Environment

2. Configuring Oracle Unified Directory as the Identity Store

3. Creating a User Using Oracle Unified Directory

4. Fetching User Details from Oracle Unified Directory

5. Testing Oracle Unified Directory as the Identity Store in Oracle Access Management

6. Generating the Access Token

7. Configuring Offline Mediation Controller Cloud Native for Oracle Access Management

8. Accessing an Offline Mediation Controller REST Services Manager Endpoint

Preparing the Environment
Ensure that both Oracle Access Management and Oracle Unified Directory are installed and
configured before integrating with Offline Mediation Controller.

When installing Oracle Access Management, ensure that:

• OAuth 2.0 and REST Endpoints are public.

– You must configure all /oauth2/rest/** endpoints as public resources.

– You use these endpoints for token introspection, which allows Oracle Access
Management to validate and process OAuth tokens.

• OpenID Configuration Endpoint is public.

– The /.well-known/openid-configuration endpoint must be public.

– This endpoint provides metadata about the OpenID Provider, which is essential for the
Offline Mediation Designer UI.

When installing Oracle Unified Directory, ensure that you enable the HTTP service and expose
port 8080. For more information, see "Getting Started with Oracle Access Management 12c
Series – Overview" in the Oracle Access Management documentation.

Configuring Oracle Unified Directory as the Identity Store
To configure Oracle Unified Directory as the identity store in Oracle Access Management:

1. Launch a browser and log in to the Oracle Access Management Console: http://
oam_hostname:7001/oamconsole.

2. Click the Configuration tab on the top right and then click User Identity Stores.

The OCOMCStore tab appears.

3. Set the following values in the OCOMCStore tab:

a. Store Name: Set this to OUDStore

b. Store Type: Set this to OUD: Oracle Unified Directory

c. Location: Set this to hostName:hostLDAPPort

d. Bind DN: Set this to cn=Directory Manager

e. Password: Set this to the Oracle Unified Directory password

f. Login ID Attribute: Set this to uid

g. User Password Attribute: Set this to userPassword

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-8

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/tutorial-oam-overview/
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/tutorial-oam-overview/

h. User Search Base: Set this to ou=People,dc=ocomcexample.com

i. Group Name Attribute: Set this to cn

j. Group Search Base: Set this to ou=Groups,dc=ocomcexample.com

4. Click Test Connection on the top right side of the tab.

If the connection works, click OK in the Connection Status window. If not, correct the
values and test again.

5. Click Apply on the top right to save the definition.

6. Click the User Identity Store tab.

7. From the Default Store list, select OUDStore and then click Apply.

8. Under the Plug-ins tile, click Application Security and then Authentication Modules.

9. Click Search.

The LDAP module appears.

10. Click the LDAP module and set User Identity Store to OUDStore.

11. Click the Launch Pad tab and, in the Access Manager tile, click the Authentication
Schemes link.

12. On the Search Authentication Schemes page, click Search.

The search results appear.

13. Select the LDAPScheme row in the search results and click Edit.

14. In LDAPScheme, click Duplicate.

This creates a new scheme with the name 'Copy of LDAP Scheme'.

15. Set the following values in the scheme:

a. Name: Set this to LDAPOUDScheme

b. Description: Set this to LDAP Scheme Over OUD

c. Authentication Module: Set this to LDAP

16. Click Apply.

17. Click the Set As Default option and then click OK in the confirmation pop-up box.

Note:

Oracle Unified Directory must be running over either HTTP or HTTPS. This is a
required configuration for the Offline Mediation Controller service to establish
successful communication with Oracle Unified Directory endpoints.

Creating a User Using Oracle Unified Directory
To create a user using Oracle Unified Directory:

1. Create a user.ldif file:

dn: uid=ocomcuser,ou=People,dc=Distinguished Name
sn: ocomcuser
cn: ocomcuser

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-9

userPassword: password
objectClass: top
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
uid: ocomcuser

2. To create a user in the OUD Store, run the following commands:

cd oud_home/instance_name/OUD/bin
./ldapmodify -a -h OUD_hostname -p OUD_port -D "cn=Directory Manager" -w password -f
path/add_user.ldif

3. Create an add_group.ldif file to create a group:

dn: ou=Designer,ou=groups,dc=ocomcexample.com
objectclass: top
objectclass: groupOfUniqueNames
cn: Designer
ou: groups
description: example description.

4. To add the group in the OUD Store, run the following commands:

cd oud_home/instance_name/OUD/bin
./ldapmodify -a -h OUD_hostname -p OUD_port -D "cn=Directory Manager" -w password -f
path/add_user.ldif

5. Create an add_user_to_group.ldif file:

dn: ou=PSA Designer,ou=Groups,dc=ocomcexample.com
changetype: modify
add: member
member: uid=ocomcuser,ou=People,dc=ocomcexample.com

or with the values:

dn: ou=Designer,ou=Groups,dc=ocomcexample.com
changetype: modify
add: member
member: uid=ocomcuser,ou=People,dc=ocomcexample.com

6. To add the user to the group in the OUD Store, run the following commands:

cd oud_home/instance_name/OUD/bin
./ldapmodify -a -h OUD_hostname -p OUD_port -D "cn=Directory Manager" -w password -f
path/add_user_to_group.ldif

Fetching User Details from Oracle Unified Directory
To fetch user details from Oracle Unified Directory, use cURL to send an HTTP/HTTPS request
to the Oracle Access Management URL:

curl -X POST \
 http://OUD_hostname:OUD_port/rest/v1/directory \
 -H "Content-Type: application/json" \
 -H "Authorization: Basic encoded_password" \
 -d '{
 "msgType": "urn:ietf:params:rest:schemas:oracle:oud:1.0:SearchRequest",
 "base": "ou=Groups,dc=ocomcexample.com",
 "scope": "sub",

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-10

 "filter": "(&(objectclass=*)(member=uid=<UID>,ou=People,dc=ocomcexample.com))"
 }'

where:

• OUD_hostname and OUD_port are the hostname and port where Oracle Unified Directory
is running.

• encoded_password is the Base64-encoded password in the format BindDN:password.

You will receive a response similar to this sample:

{
 "msgType": "urn:ietf:params:rest:schemas:oracle:oud:1.0:SearchResponse",
 "totalResults": 1,
 "searchResultEntries": [
 {
 "dn": "ou=PSA Operators,ou=Groups,dc=ocomcexample.com",
 "attributes": {
 "cn": "All Operator Users",
 "ou": [
 "PSA Users",
 "PSA Operators"
],
 "member": "uid=ocomcuser,ou=People,dc=ocomcexample.com",
 "objectClass": [
 "top",
 "groupofNames"
]
 }
 }
]
}

Or you may receive a response similar to this sample:

{
 "msgType": "urn:ietf:params:rest:schemas:oracle:oud:1.0:SearchResponse",
 "totalResults": 1,
 "searchResultEntries": [{
 "dn": "ou=Operator,ou=Groups,dc=ocomcexample.com",
 "attributes": {
 "cn": "All Operator Users",
 "ou": [
 "PSA Users",
 "PSA Operators"
],"member": "uid=ocomcuser,ou=People,dc=ocomcexample.com",
 "objectClass": [
 "top",
 "groupofNames"
]
 }
 }
]
}

For more information, see "Add, Delete, Search, Modify or Compare an OUD entry" in REST
API for Oracle Unified Directory Data Management.

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-11

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/ouddr/op-rest-v1-directory-post.html

Note:

You can create the User in any format but it should contain one of these:

• "dn" : "ou=PSA Scope,...."

• "dn" : "ou=Scope,..."

For example:

ou = PSA Operators
ou = PSA Designer
ou = PSA Viewers

Testing Oracle Unified Directory as the Identity Store in Oracle Access
Management

To test whether Oracle Unified Domain has been successfully integrated with Oracle Access
Management, go to http://OAM_hostname:OAM_port/. This action redirects you to the login
page. If you can log in using any user from Oracle Unified Domain, the integration is
successful.

Generating the Access Token
To generate an access token, you must create an OAuth identity domain, an OAuth resource
server, and an OAuth client.

To enable OAuth service in Oracle Access Management:

1. Go to the Available Services option in the Configuration tab in the OAM Console.

2. Click Enable Service for OAuth and OpenIDConnect Service.

Creating an OAuth Identity Domain
An identity domain corresponds to the notion of a tenant. All clients and resource servers are
created under an identity domain.

To create an identity domain, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl --location 'http://OUD_hostname:OAM_hostname:OAM_port/oam/services/
rest/ssa/api/v1/oauthpolicyadmin/oauthidentitydomain' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic encoded_password' \
--data '{
 "name": "domain_name",
 "identityProvider": "oud_storename",
 "description": "domain_name",
 "tokenSettings": [
 {
 "tokenType": "SSO_LINK_TOKEN",
 "tokenExpiry": 3600,
 "lifeCycleEnabled": false,
 "refreshTokenEnabled": false,

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-12

 "refreshTokenExpiry": 3600,
 "refreshTokenLifeCycleEnabled": false
 },
 {
 "tokenType": "ACCESS_TOKEN",
 "tokenExpiry": 3600,
 "lifeCycleEnabled": false,
 "refreshTokenEnabled": true,
 "refreshTokenExpiry": 3600,
 "refreshTokenLifeCycleEnabled": false
 },
 {
 "tokenType": "AUTHZ_CODE",
 "tokenExpiry": 3600,
 "lifeCycleEnabled": false,
 "refreshTokenEnabled": true,
 "refreshTokenExpiry": 3600,
 "refreshTokenLifeCycleEnabled": false
 }
],
 "errorPageURL": "/oam/pages/servererror.jsp",
 "consentPageURL": "/oam/pages/consent.jsp"
}'

where:

• encoded_password is the Base64-encoded format of username:password.

• domain_name is the name of the Oracle Access Management identity domain that you
want to create.

• oud_storename is the name of Oracle Unified Directory store added in Oracle Access
Management server.

For more information, see "Add a new OAuth Identity Domain" in REST API for OAuth in
Oracle Access Manager.

Creating a Resource Server
A resource server hosts protected resources. The resource server can accept and respond to
protected resource requests using access tokens.

To create a resource server, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl --location 'http://OAM_hostname:OAM_port/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/application' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic encoded_password' \
--data '{
 "name": "resource_server",
 "description": "OIDC Resource Server for OCOMC",
 "scopes": [
 {
 "scopeName": "Operator",
 "description": "Scope for Operator role in OCOMC"
 },

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-13

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-oauthidentitydomain-post.html

 {
 "scopeName": "Designer",
 "description": "Scope for Designer role in OCOMC"
 },
 {
 "scopeName": "Viewer",
 "description": "Scope for Viewer role in OCOMC"
 }
],
 "resourceServerNameSpacePrefix": "ResourceServer",
 "tokenAttributes": [
 {
 "attrName":"sessionId",
 "attrValue":"$session.id",
 "attrType":"DYNAMIC"
 },
 {
 "attrName":"resSrvAttr",
 "attrValue":"RESOURCECONST",
 "attrType":"STATIC"
 }
],
 "idDomain": "domain_name",
 "audienceClaim": {
 "subjects": [
 "ab0",
 "ResourceServer"
]
 }
}'

where:

• encoded_password is the Base64-encoded password in the format username:password.

• resource_server is the name of the resource server that you want to create.

For more information, see "Add a new Resource Server" in REST API for OAuth in Oracle
Access Management.

Creating an OAuth Client
A client is an application that makes protected resource requests on behalf of the resource
owner and with the resource owner's authorization.

To create an OAuth client, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl
--location 'http://OAM_hostname:OAM_port/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/client' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic encoded_password' \
--data '{
 "id": "client_id",
 "secret": "client_secret",
 "scopes": [

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-14

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-application-post.html

 "ResourceServer.Operator",
 "ResourceServer.Designer",
 "ResourceServer.Viewer"
],
 "defaultScope": "ResourceServer.Operator",
 "clientType": "client_type",
 "idDomain": "id_domain",
 "description": "Client entry for OAUTH OIDC Domain",
 "name": "client_name",
 "grantTypes": [
 "PASSWORD",
 "CLIENT_CREDENTIALS",
 "JWT_BEARER",
 "REFRESH_TOKEN",
 "AUTHORIZATION_CODE"
],
 "redirectURIs": [
 {
 "url": "redirect_url",
 "isHttps": True
 }
]
}'

where:

• encoded_password is the Base64-encoded authorization password in form of username :
password.

• client_id and client_secret are the client ID and client secret.

• client_type is one of these client types:

– CONFIDENTIAL_CLIENT is a client that requires a secret for authentication.

– PUBLIC_CLIENT is a client that does not require a secret. This is used by UI
applications to exchange an authorization code for a token.

• id_domain is the name of the identity domain under which the client is created.

• client_name is the name of the client.

• redirect_url is the URL for your client application.

For more information, see "Add a new OAuth Client" in REST API for OAuth in Oracle Access
Management.

Generating Access Tokens with Two-Legged Flows
To generate an access token with two-legged flow, using client credentials, use cURL to send
an HTTP/HTTPS request to the Oracle Access Management URL:

curl --location 'http://OAM_hostname:OAM_port'/oauth2/rest/token' \
--header 'X-OAUTH-IDENTITY-DOMAIN-NAME: domain_name' \
--header 'Authorization: Basic encoded_password' \
--data-urlencode 'grant_type=client_credentials' \
--data-urlencode 'scope=resource_server.Scope_name'

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-15

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-client-post.html

For more information, see "Create Access Token Flow" in REST API for OAuth in Oracle
Access Management.

Generating Access Tokens with Three-Legged Flow
To generate three-legged OAuth authentication:

1. Open the following URL in a browser:

http://OAM_hostname:OAM_port/oauth2/rest/authorize?
response_type=code&domain=domain_name&client_id=client_name&scope=Scope&sta
te=code1234&redirect_uri=redirect_url

2. Enter your user credentials in the Oracle Access Manager login screen.

3. Click Allow.

4. Copy the authorization code from the browser URL.

5. Generate the OAuth access token by submitting a cURL request to the Create Access
Token Flow endpoint in the Oracle Access Manager OAuth REST API. For example:

curl --location 'http://OAM_hostname:OAM_port/oauth2/rest/token' \
--header 'X-OAUTH-IDENTITY-DOMAIN-NAME: domain_name' \
--data-urlencode 'client_id=client_name' \
--data-urlencode 'grant_type=AUTHORIZATION_CODE' \
--data-urlencode 'code=authorization_code' \
--data-urlencode 'code_verifier=zY6trXrusqzdjIQ6v8WsSiHZ5kPKUlqiCagRLnv' \
--data-urlencode 'redirect_uri=http://localhost:8080/webApps/mediation/'

For more information, see REST API for OAuth in Oracle Access Manager.

Configuring Offline Mediation Controller Cloud Native for Oracle Access
Management

To configure the Offline Mediation Controller cloud native environment to connect with Oracle
Access Management, add the following keys to your override-values.yaml file for oc-cn-
ocomc-helm-chart:

provider: "OAM"
configuration:
 oam:
 clientId: client_id
 clientSecret: client_secret
 tokenEndpointUri: http://OAM_hostname:14100/oauth2/rest/token
 authorizationEndpointUri: http://OAM_hostname:7777/oauth2/rest/authorize
 introspectEndpointUri: http://OAM_hostname:7777/oauth2/rest/token/
introspect
 oauthIdentityDomainName: IDStore
 oudHostName: oud_hostname
 oudAdminUserName: oud_adminuser
 oudAdminUserPassword: oud_password
 oudHttpPort: oud_httpport
 oudHttpsPort: oud_httpsport

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-16

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/oroau/op-oauth2-rest-token-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/oroau/index.html

 oudUsersBaseDn: user_basedn
 oudGroupsBaseDn: group_basedn

where:

• client_id is the client ID to be used for connecting with the OAM server.

• client_secret is the client secret to be used for connecting with the Oracle Access
Management server. This must be encoded in Base64 format.

• OAM_hostname is the host name of the server where Oracle Access Management is
running.

• oud_hostname is the host name of the Oracle Unified Directory server.

• oud_adminuser is the admin username for the Oracle Unified Directory server.

• oud_password is the admin password encoded in Base64 format.

• oud_httpport is the HTTP port for the Oracle Unified Directory server.

• user_basedn is the Oracle Unified Directory server Base-DN to be used by Offline
Mediation Controller REST Services Manager.

• group_basedn is the Oracle Unified Directory server groups-DN to be used by Offline
Mediation Controller REST Services Manager.

Note:

Oracle Unified Directory must be running over either HTTP or HTTPS. This is a
required configuration for the Offline Mediation Controller service to establish
successful communication with Oracle Unified Directory endpoints.

Accessing an Offline Mediation Controller REST Services Manager
Endpoint

After your system is configured, you can access an Offline Mediation Controller REST Services
Manager endpoint using the access token with the required scope.

You can pass the generated access token as part of the request header. For example:

curl --location 'http://ocomc_host:port/v1/nodeManagers' \
 --header 'Authorization: Bearer access_token

where:

• ocomc_host and port are the host name and port for the Offline Mediation Controller REST
server.

• access_token is the OAuth access token for your Offline Mediation Controller API client.

For more information, see REST API Reference for Offline Mediation Controller.

Chapter 6
Setting Up OAuth Using Oracle Access Management

6-17

https://docs.oracle.com/en/industries/communications/offline-mediation-controller/15.1/rest-api/index.html

SSL-Enabled Actions for IDCS and Oracle Access Management
If you are running Oracle Access Management or IDCS with SSL enabled, you can
communicate with external services using the following commands:

echo | openssl s_client -showcerts -servername serverName -connect
serviceName:servicePort 2>/dev/null | awk '/-----BEGIN CERTIFICATE-----/,/-----END
CERTIFICATE-----/' > certs.pem
example
echo | openssl s_client -showcerts -servername idcs-12345678.identity.oraclecloud.com -
connect idcs-12345678.identity.oraclecloud.com:443 2>/dev/null | awk '/-----BEGIN
CERTIFICATE-----/,/-----END CERTIFICATE-----/' > idcs_certs.pem
command to import cert to trustStore
keytool -importcert -trustcacerts -keystore trustStoreName -storepass password -alias
aliasName -file fileName
example
keytool -importcert -trustcacerts -keystore idcs_trustStore.jks -storepass storePass -
alias idcs-certs -file idcs_certs.pem
if user have couple of certificates in .pem file, they can split certificates and then
import them individually
#example
csplit -z idcs_certs.pem '/-----BEGIN CERTIFICATE-----/' '{*}'

Ensure that the required certificates are imported into the TrustStore. The following fields must
be updated in the REST Services Manager charts under the rsmTrustStore section:

rsmTrustStore:
 enabled: enabledValue
 trustStoreName: trustStoreName
 extRsmTruststoreSecret: extRsmTruststoreSecret
 trustStorePassPhrase: trustStorePassPhrase

where:

• enabledValue is the action to enable or disable the TrustStore configuration.

• trustStoreName is the name of the TrustStore file containing the trusted certificates. This
file should include CA (Certificate Authority) certificates necessary for establishing secure
SSL/TLS connections with external services. Ensure the file is present at oc-cn-ocomc-
rsm/ocomc-rsm-keystore.

• extRsmTruststoreSecret is the secret name containing the external RSM TrustStore file.

• trustStorePassPhrase is the Base64-encoded passphrase for accessing the TrustStore.

Chapter 6
SSL-Enabled Actions for IDCS and Oracle Access Management

6-18

7
Upgrading Offline Mediation Controller

Learn how to upgrade your existing Oracle Communications Offline Mediation Controller cloud
native deployment to the latest release.

Topics in this document:

• Upgrading Offline Mediation Controller to 15.1

In this document, the Offline Mediation Controller release running on your production system is
called the existing release. The release you are upgrading to is called the new release. For
example, if you are upgrading from Offline Mediation Controller 12.0 Patch Set 8 to Offline
Mediation Controller 15.1, 12.0 Patch Set 8 is the existing release and 15.1 is the new release.

Upgrading Offline Mediation Controller to 15.1
When you upgrade your Offline Mediation Controller cloud native services, it upgrades all core
services in your Offline Mediation Controller cloud native environment.

Supported upgrade paths to 15.1:

• Offline Mediation Controller 12.0 Patch Set 8

• Offline Mediation Controller 15.0.0.0.0

• Offline Mediation Controller 15.0.1.0.0

To upgrade your Offline Mediation Controller cloud native services to the 15.1 release:

1. Ensure that you back up your data to prevent data loss.

2. Download the Helm charts for the Offline Mediation Controller cloud native deployment
15.1 version specification. For more information, see "Downloading Packages for the
Offline Mediation Controller Cloud Native Helm Charts".

3. Download the Offline Mediation Controller cloud native images in one of these ways:

a. From the Oracle Container Registry. To do so, see "Pulling Offline Mediation Controller
Images from the Oracle Container Registry".

b. From the Oracle Software Delivery website. To do so, see "Downloading Offline
Mediation Controller Images from Oracle Software Delivery Website".

4. Extract the Offline Mediation Controller Helm chart from the archive:

tar xvzf oc-cn-ocomc-15.1.0.0.0.tgz

If you are extracting an interim patch, the file name will also have the interim patch number
appended to it, such as oc-cn-ocomc-helm-chart-15.1.0.0.0-12345678.tgz.

5. Enable data migration in the Offline Mediation Controller existing release:

a. Download the latest Helm charts for your existing Offline Mediation Controller release.

b. Edit your override-values.yaml file and set the
ocomc.statefullSetUpgrade.runMigrationDataJob key to true.

c. Run the helm upgrade command from the oc-cn-ocomc directory:

7-1

helm upgrade --install ReleaseName oc-cn-ocomc -f OverrideValuesFile
6. Configure and deploy the Offline Mediation Controller 15.1 release:

a. Configure the new Helm charts for Offline Mediation Controller 15.1.0.0.

b. Run the helm upgrade command from the oc-cn-ocomc-helm-chart directory:

helm upgrade --install ReleaseName oc-cn-ocomc-helm-chart -f OverrideValuesFile
7. Import your custom JAR files.

8. Check the status of the pods, especially the REST Services Manager pod.

9. Validate the stability of the application.

10. To import node chains:

a. Open your override-values.yaml file for the 15.1 version of oc-cn-ocomc-helm-
chart.

b. Enable RSM request automation by setting the rsm.jobs.requestAutomation key to
true.

c. Configure the following keys under rsm.jobs.requestAutomation.config:

• apiUrl: Set this to the URL of your Offline Mediation Controller RSM service, such
as http://ocomc-rsm:8080.

• payloadFile: Specify the absolute path to your workflow payload JSON file.

• loggingDir: Define the directory where log files should be written.

d. Set the global.statefulSetUpgrade.runMigrationDataJob key to true.

e. Ensure that the global.RSMcontainer keys are set properly.

f. Save and close your override-values.yaml file.

g. Create a workflow payload JSON file that imports node chains from the previous
release setup to the new release setup. You can use the sample JSON file to start
with. See "Sample Workflow Payload JSON File".

h. Edit the JSON file.

i. Under the customizationMapping and configurationMapping sections, map all
Node Managers from the old setup to your new setup.

j. Set customJarsToRemove to the list of custom JAR files to remove.

k. Save and close your JSON file.

l. Move the workflow payload JSON file to the external PersistentVolumeClaim (/home/
ocomcuser/external) or to migration-pvc (/home/ocomcuser/migration). This
location must match the one specified in your override-values.yaml file’s payloadFile
key.

11. Run the helm upgrade command from the oc-cn-ocomc-helm-charts directory:

helm upgrade NameSpace oc-cn-ocomc-helm-charts -values OverrideValuesFile -n
ReleaseName

where:

a. NameSpace is the namespace in which to create Offline Mediation Controller
Kubernetes objects.

b. OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the chart's values.yaml file.

Chapter 7
Upgrading Offline Mediation Controller to 15.1

7-2

c. ReleaseName is the release name, which is used to track this installation instance.

Note:

• If there are configuration keys present in the sub-charts, or from previous
installations during upgrades, which are not found in the new values.yaml file,
add them to your override-values.yaml file.

• A failure in the above steps may lead to the loss of data.

Sample Workflow Payload JSON File
This sample specifies to import node chains from the previous release setup to the new
release setup.

{
 "workflow": {
 "flow": [
 {
 "id": "UPLOAD_IMPORT_FILE_ACTION",
 "request": "UPLOAD_IMPORT_FILE",
 "onResponse": {
 "environment": {
 "IMPORT_ID": "/importId"
 },
 "statusMapping": {
 "2**": ["START_IMPORT_ACTION"]
 }
 }
 },
 {
 "id": "START_IMPORT_ACTION",
 "request": "START_IMPORT",
 "onResponse": {
 "environment": {
 "IMPORT_TASK_ID": "/importTaskId"
 },
 "statusMapping": {
 "202": ["CHECK_IMPORT_COMPLETION_ACTION"]
 }
 }
 },
 {
 "id": "CHECK_IMPORT_COMPLETION_ACTION",
 "request": "CHECK_IMPORT_STATUS",
 "retry": {
 "maxRetries": "5",
 "interval": "10000"
 },
 "onResponse": {
 "environment": {
 "END_TIME": "/importTaskItem/endTime",
 "START_TIME": "/importTaskItem/startTime"
 },
 "statusMapping": {
 "5**": ["RETRY"]
 },
 "dataMapping": [

Chapter 7
Upgrading Offline Mediation Controller to 15.1

7-3

 {
 "path": "/importTaskItem/taskFinished",
 "equals": "true",
 "then": []
 },
 {
 "path": "/importTaskItem/taskFinished",
 "equals": "false",
 "then": ["RETRY"]
 }
]
 }
 }
]
 },
 "headers": {},
 "environment": {},
 "requests": [
 {
 "id": "UPLOAD_IMPORT_FILE",
 "method": "POST",
 "uri": "/v1/imports/uploadImportFile",
 "headers": {},
 "multipartForm": {
 "configurationFile": "FILE::/home/ocomcuser/migration/nodeChains/
exported_node_chains.xml",
 "customizationFile": "FILE::/home/ocomcuser/migration/nodeChains/
exported_node_chains.nmx"
 }
 },
 {
 "id": "START_IMPORT",
 "method": "POST",
 "uri": "/v1/imports/{{ENV:IMPORT_ID}}/tasks",
 "headers": {},
 "payload": {
 "customizationMapping": [
 {
 "sourceTriplet": {
 "ip": "node-mgr-app",
 "name": "nm1",
 "port": 32170
 },
 "destinationTriplet": {
 "ip": "nm-cc-0",
 "name": "nm-cc-0",
 "port": 55109
 }
 },
 {
 "sourceTriplet": {
 "ip": "node-mgr-app-2",
 "name": "nm2",
 "port": 32172
 },
 "destinationTriplet": {
 "ip": "nm-epdc-0",
 "name": "nm-epdc-0",
 "port": 55109
 }
 },
 {

Chapter 7
Upgrading Offline Mediation Controller to 15.1

7-4

 "sourceTriplet": {
 "ip": "node-mgr-app-100",
 "name": "nm100",
 "port": 32270
 },
 "destinationTriplet": {
 "ip": "nm-epdc-0",
 "name": "nm-epdc-0",
 "port": 55109
 }
 }
],
 "configurationMapping": [
 {
 "sourceTriplet": {
 "ip": "node-mgr-app",
 "name": "nm1",
 "port": 32170
 },
 "destinationTriplet": {
 "ip": "nm-cc-0",
 "name": "nm-cc-0",
 "port": 55109
 }
 },
 {
 "sourceTriplet": {
 "ip": "node-mgr-app-2",
 "name": "nm2",
 "port": 32172
 },
 "destinationTriplet": {
 "ip": "nm-epdc-0",
 "name": "nm-epdc-0",
 "port": 55109
 }
 },
 {
 "sourceTriplet": {
 "ip": "node-mgr-app-100",
 "name": "nm100",
 "port": 32270
 },
 "destinationTriplet": {
 "ip": "nm-epdc-0",
 "name": "nm-epdc-0",
 "port": 55109
 }
 }
],
 "regenerateNodeIds": false,
 "skipConfiguration": false,
 "skipCustomization": false,
 "skipRestart": false,
 "customJarsToRemove": [],
 "importType": "NODE_MANAGER"
 }
 },
 {
 "id": "CHECK_IMPORT_STATUS",
 "method": "GET",
 "uri": "/v1/imports/{{ENV:IMPORT_ID}}/tasks/{{ENV:IMPORT_TASK_ID}}",

Chapter 7
Upgrading Offline Mediation Controller to 15.1

7-5

 "headers": {},
 "payload": {}
 }
]
}

Chapter 7
Upgrading Offline Mediation Controller to 15.1

7-6

8
Connecting Your Administration Client

Learn how to connect your Oracle Communications Offline Mediation Controller cloud native
deployment with an on-premises version of Offline Mediation Controller Administration Client.

Topics in this document:

• About Administration Client

• Connecting Administration Client

• Configuring Administration Server Cloud Native

• Postinstallation Tasks for Administration Client

• Verifying the Administration Client Connection

About Administration Client
Administration Client is a GUI application that you use for creating node chains and editing rule
files. You also use Administration Client for administrating Offline Mediation Controller. For
example, you can use it to manage users and define instances of system components.

For more information about using Administration Client, see "About Configuring Nodes and
Node Chains" in Offline Mediation Controller User's Guide.

Connecting Administration Client
Although Offline Mediation Controller can be deployed on a cloud native environment, you
must install an on-premises version of Administration Client to work with it.

To set up a connection between your on-premises Administration Client and the Administration
Server on a cloud native environment, do the following:

1. Configure the Administration Server cloud native service to connect to your Administration
Client. See "Configuring Administration Server Cloud Native".

2. Install an on-premises version of Administration Client on one of the following:

• On a physical server that is reachable to the Kubernetes node where the
Administration Server pod is running.

• If graphical desktop support such as VNC is available on a worker node, you can
install Administration Client on the same worker node in which the Administration
Server and Node Manager pods are running.

See "Installing Offline Mediation Controller Administration Client" in Offline Mediation
Controller Installation Guide.

3. Perform postinstallation tasks on the Administration Client machine. See "Postinstallation
Tasks for Administration Client".

4. Verify that your Administration Client can connect to the Administration Server. See
"Verifying the Administration Client Connection".

8-1

After your Administration Client has connected successfully, ensure that you place all CDR files
inside the vol-data PVC and that all CDRs have read and write permission for the ocomcuser
user.

Configuring Administration Server Cloud Native
When configuring your Offline Mediation Controller Administration Server cloud native service,
ensure that you do the following:

1. Expose the Administration Server pod (admin-server-app):

• If your Administration Client is located remotely or is on a Windows system, set the
Administration Server's service type to NodePort.

• If your Administration Client is installed on the same worker node in which the
Administration Server pod is running, set the Administration Server's service type to
clusterIP.

2. Open your override-values.yaml file for oc-cn-ocomc-core-helm-chart.

3. If your Administration Client is installed remotely or on a Windows system, set these
additional keys:

• service.type: Set this to NodePort.

• service.appPort: Set this to the external port of the Administration Server.

• service.firewallPort: Set this to the Administration Server firewall port.

• service.callbackPort: Set this to the appropriate callback port.

4. Save and close your override-values.yaml file.

5. Deploy Offline Mediation Controller by following the instructions in "Deploying Offline
Mediation Controller Services".

The following shows sample override-values.yaml entries for an Administration Client that is
installed remotely or on a Windows system:

adminServerConfigurations:
 service:
 type: NodePort
 appPort: 31200
 firewallPort: 31201
 callbackPort: 31202

Postinstallation Tasks for Administration Client
After you install Administration Client, perform the following postinstallation tasks:

1. Copy all Offline Mediation Controller cartridges and your custom cartridges from the cloud
native environment's /home/ocomcuser/ext/cartridges directory to the Administration
Client's OMC_home/cartridges directory.

2. In the Administration Client machine's /etc/hosts file, add the IP address of the
Kubernetes node where Administration Server is running. For example:

IPAddress Hostname
198.51.100.1 myhost.example.com

3. In your Administration Client, specify the location of the Offline Mediation Controller wallet.

Chapter 8
Configuring Administration Server Cloud Native

8-2

a. Go to the OMC_home/bin/ directory and open either the UDCEnvironment.bat file
(Windows) or the UDCEnvironment file (UNIX).

b. Set the OCOMC_WALLET_LOCATION parameter to the externally mounted wallet
PV.

c. Save and close the file.

d. Restart Offline Mediation Controller. See "Starting Offline Mediation Controller" in
Offline Mediation Controller Installation Guide.

4. Ensure that the Offline Mediation Controller Administration Client machine has access to
the wallet files used by the Kubernetes deployment. The checksum of the wallet file
referred by Administration Client must match with the wallet file in the Kubernetes PV.

5. If SSL is enabled, copy the adminClientTruststore.jks file from vol-external PVC on the
cloud native environment to the Administration Client's OMC_home/config/GUI directory.

Verifying the Administration Client Connection
Start your Administration Client to verify it can connect to your Administration Server on the
cloud native environment.

To verify the Administration Client connection:

1. Start Administration Client.

a. Go to the OMC_home/bin directory.

b. Run the following command:

./gui -f

Administration Client starts in the foreground.

2. In the Welcome to Oracle Communications Offline Mediation Controller dialog box, do
the following:

• In the Host field, enter admin-server-app.

• In the Port field, enter the Administration Server node port number.

• Enter your user name and password.

3. Click Connect.

If the Administration Client successfully connects to the Administration Server, you will see
the Offline Mediation Controller Administration Client window.

Chapter 8
Verifying the Administration Client Connection

8-3

9
Enabling TLS 1.3 Support in Offline Mediation
Controller

Learn how to enable TLS 1.3 support in Oracle Communications Offline Mediation Controller
deployments, enhancing communication security. TLS 1.3 offers improved security features
compared to older protocols.

Topics in this document:

• About TLS 1.3 Compatibility

• Enabling TLS 1.3 Support Automatically

• Manually Enabling TLS 1.3 Support

About TLS 1.3 Compatibility
Before enabling TLS 1.3, it is important to understand some potential compatibility
considerations. When it comes to backwards compatibility, TLS 1.3 can negotiate with older
clients (TLS 1.2 and below) but has some key differences:

• TLS 1.3 uses a half-close policy, while TLS 1.2 and above earlier use a duplex-close
policy. Applications that depend on the latter duplex-close policy may encounter
compatibility issues when upgrading to TLS 1.3.

• The signature_algorithms_cert extension warrants the use of predefined signature
algorithms for certificate authentication.

• The DSA signature algorithm is not supported in TLS 1.3. A server cannot negotiate with a
TLS 1.3 connection if it is configured to only use DSA certificates.

• The supported cipher suites for TLS 1.3 are not the same for TLS 1.2 and earlier versions.
Applications with hard-coded cipher suites that are no longer supported may not be able to
use TLS 1.3 without modifications to its code.

• Session resumption and key update behaviors are different for TLS 1.3 and TLS 1.2.
Although the compatibility impact should be minimal, it is a potential risk if an application
depends on the handshake details of the TLS protocols.

Enabling TLS 1.3 Support Automatically
To enable support for TLS 1.3 automatically for your Offline Mediation Controller cloud native
deployment:

1. Ensure you are using the latest Offline Mediation Controller 15.1 image.

2. In your override-values.yaml file, set the ocomcCore.forceGenSslcert key to true.

3. Run the helm upgrade command for oc-cn-ocomc-core-helm-chart-15.1.0.0.0.

These steps automatically generate new certificates in the Offline Mediation Controller image
using the latest JDK available. If you encounter compatibility issues, enable TLS 1.3 support
manually.

9-1

Manually Enabling TLS 1.3 Support
To manually enable TLS 1.3 in your Offline Mediation Controller cloud native deployment:

1. Generate a new KeyStore using the keytool utility. If generating externally, use the latest
Java version.

2. Use a signature algorithm supported by TLS 1.3 during certificate generation.

3. Load the newly generated KeyStore into the appropriate TrustStore.

4. Restart all Offline Mediation Controller components after loading the new KeyStore.

Chapter 9
Manually Enabling TLS 1.3 Support

9-2

10
Uninstalling Your Offline Mediation Controller
Cloud Native Deployment

Learn how to uninstall your Oracle Communications Offline Mediation Controller cloud native
deployment.

Topics in this document:

• Uninstalling Your Offline Mediation Controller Cloud Native Deployment

Uninstalling Your Offline Mediation Controller Cloud Native
Deployment

When you uninstall a Helm chart from your Offline Mediation Controller cloud native
deployment, it removes only the Kubernetes objects that it created during installation.

Before you uninstall the Offline Mediation Controller Helm chart, back up all data inside
mounted file systems.

To uninstall, enter this command:

helm delete ReleaseName -n Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• NameSpace is the namespace in which the Offline Mediation Controller Kubernetes
objects reside.

10-1

11
Automated Scaling of Node Manager Pods
Using HPA

Learn how to configure the automatic scaling of Node Manager pods in Oracle
Communications Offline Mediation Controller cloud native.

Topics in this document:

• About Automated Scaling of Node Manager Pods

• Enabling Scaling Replication

• Configuring HPA

About Automated Scaling of Node Manager Pods
Offline Mediation Controller cloud native supports the Kubernetes Horizontal Pod Autoscaler
(HPA), enabling dynamic scaling of Node Manager pods to handle varying workloads. With this
feature, the Node Manager pods are replicated as the application scales up, distributing the
load evenly and ensuring optimal resource utilization during processing.

Offline Mediation Controller uses StatefulSets to run groups of Node Manager pods. You can
configure Offline Mediation Controller to automatically scale Node Manager pods in
StatefulSets at the following levels:

• Global Level: Provides a default, system-wide approach to HPA. These settings apply to
all Node Manager StatefulSets unless explicitly overridden.

• Node Manager Set Level: Offers control for the pods in each Node Manager StatefulSet.
Set-level configuration takes precedence over the global level.

Enabling Scaling Replication
When HPA scaling is enabled, new Node Manager instances are created, and the node chain
is replicated to distribute the load across the scaled instances. You control replication using the
scaling.replication.enabled flag, which ensures that new nodes share the load during scale-
up events. Each new instance replicates the node chain and participates in load distribution. In
addition to scaling up, you can also configure Node Manager pods to scale down when
resource usage decreases. You control the scale-down behavior using the
scaling.hpa.hpaScaleDownEnabled key.

Scaling a Node Manager up or down triggers a restart for nodes with routes linked to that Node
Manager since the routes are modified.

Note:

To enable REST Services Manager authentication, you must set the
ocomc.secrets.rsmOAuthToken key in your override-values.yaml file.

11-1

Configuring HPA
The Node Manager scaling and resource configurations can be managed at both global and
Node Manager set levels.

• Global Configuration: Provides a default, system-wide approach to HPA. When defined
in the global nodeManagerConfigurations block, these settings apply to all Node
Manager sets unless explicitly overridden.

• Node Manager Set Configuration: Offers control for each Node Manager set.

Note:

RDM configurations, such as thread count, require appropriate tuning when HPA is
enabled.

Configuring Global HPA Values
The nodeManagerConfigurations block in the override-values.yaml file defines the global
settings for Node Managers. These settings can be overridden at the Node Manager set level if
needed. For example, if the global log level configuration is set to WARN, you can configure
the nm-voice-cc set to use the DEBUG log level instead.

To configure global HPA values:

1. Set the scaling.hpa.enabled key to true.

2. Configure the following global HPA parameters:

• scaling.replication.enabled: Set to true to specify if the node chain needs to be
replicated from the root Node Manager (that is, the first pod of the StatefulSet).

• scaling.hpa.maxReplicas: Specify the maximum number of pod replicas allowed.

• scaling.hpa.metrics: Define the scaling triggers based on resource utilization.

• scaling.serviceAccount.createServiceAccount: Set to true to create a dedicated
service account for scaling operations.

• scaling.serviceAccount.name: Specify the name for the service account to be used
for scaling operations.

• scaling.hpa.hpaScaleDownEnabled: Set to true to enable scaling down of Node
Manager pods when resource usage decreases.

For example:

nodeManagerConfigurations:
 scaling:
 replication:
 enabled:
 hpa:
 enabled: true
 maxReplicas: 3
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:

Chapter 11
Configuring HPA

11-2

 type: Utilization
 averageUtilization: 50
 - type: Resource
 resource:
 name: memory
 target:
 type: Utilization
 averageUtilization: 70

This example specifies to scale resource utilization as follows:

• CPU Utilization Metric: The HPA monitors CPU usage for each Node Manager pod. If
the average CPU utilization across all replicas exceeds 50%, the HPA initiates scaling
by adding more instances (up to the maximum specified in maxReplicas).

• Memory Utilization Metric: The memory usage of each pod is monitored. If the
average memory utilization reaches 70%, the HPA triggers scaling to ensure that
enough instances are available to handle the workload.

3. Run the helm upgrade command to update the Offline Mediation Controller Helm release
with the values you have set:

helm upgrade ReleaseName oc-cn-ocomc-core-helm-chart --values OverrideValuesFile -n
Namespace

where:

• ReleaseName is the release name, which is used to track the installation instance.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the chart's values.yaml file.

• Namespace is the namespace in which to create Offline Mediation Controller
Kubernetes objects.

Configuring Node Manager Set HPA Values
Each Node Manager set can have its own specific configuration. If a configuration is not
explicitly defined for a set, it inherits the values from the global nodeManagerConfigurations
block.

To configure HPA values for Node Manager sets:

1. In your override-values.yaml file, locate the sets block.

2. For each Node Manager set, use the scaling.hpa.enabled key to enable scaling.

3. Configure the following HPA parameters:

• name: Specify the name of the Node Manager set.

• replicas: Specify the maximum number of pod replicas for this set.

• resources: Define the minimum and maximum CPU and memory resources that the
Node Manager contains.

For example:

sets
 nm-cc:
 name: "nm-cc"
 replicas: 1
 resources:
 requests:

Chapter 11
Configuring HPA

11-3

 cpu: "800m"
 memory: "5Gi"
 limits:
 cpu: "800m"
 memory: "5Gi"
 scaling:
 hpa:
 enabled: true
 gcOptions: "${GLOBAL_OPTS}
 memoryOptions: "-Xms4g -Xmx4g"

4. Run the helm upgrade command to update the Offline Mediation Controller Helm release:

helm upgrade ReleaseName oc-cn-ocomc-core-helm-chart --values OverrideValuesFile -n
Namespace

Chapter 11
Configuring HPA

11-4

12
Monitoring and Maintaining Offline Mediation
Controller Cloud Native

Learn how to monitor and maintain your Oracle Communications Offline Mediation Controller
cloud native deployment.

Topics in this document:

• Using Prometheus Operator to Monitor Offline Mediation Controller Cloud Native

• Automating Workflows Using RSM Request Automation

• Managing a Helm Release

• Rolling Back an Offline Mediation Controller Cloud Native Upgrade

• Integrating Oracle Unified Directory with Offline Mediation Controller Cloud Native

Using Prometheus Operator to Monitor Offline Mediation
Controller Cloud Native

Offline Mediation Controller cloud native tracks and exposes the following metric data in
Prometheus format:

• Node Manager-level statistics, which include:

– The total network account records (NARs) processed

– The current NARs processed

– The current processing rate

– The average processing rate

Node Manager sets expose metrics through a configurable service port. In your override-
values.yaml file, each set includes a metrics section where the port for metrics can be
specified using the metrics.service.port key. For example:

sets:
 nm-cc
 name: "nm-cc"
 replicas: 1
 metrics:
 service:
 port: 31300

• JVM metrics for all Offline Mediation Controller components, which include:

– Performance on the Node Manager level

– JVM parameters

JVM metrics are exposed through the endpoint http://hostname:JVMport/metrics, where
JVMport is the port number where the JVM metrics are exposed. They are exposed on the

12-1

same port as the Node Manager metrics for each set, which is configured using
metrics.service.port in your override-values.yaml file.

• REST Services Manager metrics, which include:

– JVM metrics

– Service status

– Total uptime

– Garbage collection events

– Memory usage statistics

– Thread count

– Class loader statistics

REST Services Manager metrics are exposed through the Helidon framework's http://
RSM_hostname:RSM_port/metrics endpoint, where RSM_hostname is the host name of
the machine on which REST Services Manager is installed. The endpoint exposes metrics
information in both JSON format (according to the MicroProfile Metrics specification) and
plain text format suitable for Prometheus.

To monitor Offline Mediation Controller more easily, you can configure an external centralized
metrics service, such as Prometheus Operator, to scrape metrics from each endpoint and store
them for analysis and monitoring. You can then set up a visualization tool, such as Grafana, to
display your metric data in a graphical format.

For the list of compatible Prometheus Operator and Grafana software versions, see "Offline
Mediation Controller Cloud Native Deployment Software Compatibility" in Offline Mediation
Controller Compatibility Matrix.

Enabling the Automatic Scraping of Metrics
You can configure the Prometheus Operator ServiceMonitor to automatically scrape Offline
Mediation Controller metrics and Offline Mediation Controller REST Services Manager metrics.
For more information about Prometheus Operator and ServiceMonitors, see the prometheus-
operator documentation on the GitHub website (https://github.com/prometheus-operator/
prometheus-operator/tree/main/Documentation/getting-started).

To enable the automatic scraping of Offline Mediation Controller metrics:

1. Install Prometheus Operator on your cloud native environment.

2. In your override-values.yaml file for oc-cn-ocomc, set the following keys:

• ocomcCore.ocomc.nodeManagerConfigurations.serviceMonitor.enabled: Set this
key to true.

• ocomcCore.ocomc.nodeManagerConfigurations.serviceMonitor.interval: Set this
to the interval at which to scrape metrics. The default is 10s.

• ocomcCore.ocomc.nodeManagerConfigurations.serviceMonitor.labels.app: Set
this to the app label you want applied to the ServiceMonitor resource. This label is
used by Prometheus to discover the ServiceMonitor via label selectors.

• ocomcCore.ocomc.nodeManagerConfigurations.serviceMonitor.labels.release:
Set this to the release label you want applied to the ServiceMonitor resource. This
label is used by Prometheus to discover the ServiceMonitor via label selectors.

• ocomcCore.ocomc.nodeManagerConfigurations.metrics.service.type: Set this to
the service type, such as NodePort or ClusterIP. The default is ClusterIP.

Chapter 12
Using Prometheus Operator to Monitor Offline Mediation Controller Cloud Native

12-2

https://github.com/prometheus-operator/prometheus-operator/tree/main/Documentation/getting-started
https://github.com/prometheus-operator/prometheus-operator/tree/main/Documentation/getting-started

• (For REST Services Manager) ocomcRSM.rsm.serviceMonitor.enabled: Set this key
to true.

3. Run the helm upgrade command to update the Offline Mediation Controller Helm release:

helm upgrade ReleaseName oc-cn-ocomc --values OverridingValuesFile -n NameSpace

where:

• ReleaseName is the release name, which is used to track the installation instance.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the chart's values.yaml file.

• NameSpace is the namespace in which to create Offline Mediation Controller
Kubernetes objects.

Using the Sample Grafana Dashboards
The Offline Mediation Controller package includes sample Grafana Dashboard templates that
you can use for visualizing metrics. To use the sample dashboards, import the following JSON
files from the OMC_home/sampleData/dashboards directory into Grafana:

• OCOMC_JVM_Dashboard.json: This dashboard lets you view JVM-related metrics for
Offline Mediation Controller.

• OCOMC_Node_Manager_Summary.json: This dashboard lets you view NAR processing
metrics for the Node Manager.

• OCOMC_Node_Summary.json: This dashboard lets you view NAR processing metrics for
all nodes.

• OCOMC_Summary_Dashboard.json: This dashboard lets you view NAR-related metrics
for all Offline Mediation Controller components.

• OCOMC_RSM_JVM_Dashboard.json: This dashboard lets you view JVM-related metrics
for Offline Mediation Controller RSM.

For information about importing dashboards, see "Manage Dashboards" in the Grafana
Dashboards documentation.

Offline Mediation Controller REST Services Manager Metrics
You can use various metrics to monitor the performance and health of Offline Mediation
Controller REST Services Manager.

Table 12-1 describes the metrics mapped to their variable names in the /metrics endpoint
response.

Table 12-1 Metrics Mapped to Variable Names

Variable Name Metric Description

up The status of the service, indicating whether it is up and running.

base_jvm_uptime_seconds The total uptime of the JVM in seconds since it was started.

base_gc_total The total number of garbage collection events that have occurred using
the copy and mark/sweep algorithms.

base_gc_time_seconds The total time spent in garbage collection using the copy and mark/sweep
algorithms., measured in seconds.

base_memory_usedHeap_bytes The amount of memory currently used in the heap, measured in bytes.

Chapter 12
Using Prometheus Operator to Monitor Offline Mediation Controller Cloud Native

12-3

https://grafana.com/docs/grafana/latest/dashboards/manage-dashboards/

Table 12-1 (Cont.) Metrics Mapped to Variable Names

Variable Name Metric Description

base_memory_commitedHeap_bytes The amount of memory that has been committed for use in the heap,
measured in bytes.

base_memory_maxHeap_bytes The maximum amount of memory that can be allocated for the heap,
measured in bytes.

base_thread_count The current number of threads that are actively running in the JVM.

base_classloader_loadedClasses_count The number of classes currently loaded into memory by the class loader.

base_classloader_loadedClasses_total The total number of classes that have been loaded into memory since the
JVM started.

base_classloader_unloadedClasses_total The total number of classes that have been unloaded from memory since
the JVM started.

Automating Workflows Using RSM Request Automation
The RSM Request Automation feature enables response-driven execution of workflows within
the Offline Mediation Controller cloud native environment. It is implemented as a Kubernetes
job that dynamically executes workflows based on a structured JSON payload file. This file
defines the sequence of API requests to run, response handling, and any conditional logic that
determines the execution flow. This feature also allows users to execute any API exposed by
the REST Services Manager.

With this feature, you can:

• Automatically define and execute a sequence of steps based on predefined rules and
conditions.

• Use data from API responses to set environment variables for subsequent requests.

• Leverage predefined flows for error handling and retries.

• Support multipart file uploads as part of API requests.

• Apply conditions based on response data to control execution the process flow.

• Chain requests based on the output of previous ones.

Setting Up REST Services Manager Request Automation
To set up the REST Services Manager Request Automation feature in your Offline Mediation
Controller cloud native deployment:

1. In your override-values.yaml file for oc-cn-ocomc-rsm, set the
rsm.jobs.requestAutomation.enabled key to true.

2. Configure the following keys under rsm.jobs.requestAutomation.config:

• apiUrl: Set this to the URL of your Offline Mediation Controller REST Services
Manager service, such as http://ocomc-rsm:8080.

• payloadFile: Specify the absolute path to your workflow payload JSON file.

• loggingDIr: Define the directory where log files should be written.

• (Optional) rsmOAuthToken: Set this to the REST Services Manager OAuth 2.0 token.

The following shows an example configuration:

Chapter 12
Automating Workflows Using RSM Request Automation

12-4

jobs:
 requestAutomation:
 enabled: true
 config:
 apiUrl: "http://ocomc-rsm:8080"
 payloadFile: "/app/config/workflow-payload.json"
 loggingDir: "/app/volumes/ocomc-ext/logs

3. Create a JSON workflow payload file following the workflow file syntax. See "Creating a
Workflow Payload File" for details.

4. Move the JSON workflow payload file to the directory specified in the payloadFile key.

5. Run a helm install or helm upgrade command to deploy your changes.

Creating a Workflow Payload File
The workflow payload file defines your automation workflow in JSON format.

The following is an example of the workflow file structure:

{
 "workflow": {
 "flow": [
 {
 "id": "UPLOAD_IMPORT_FILE_ACTION",
 "request": "UPLOAD_IMPORT_FILE",
 "onResponse": {
 "environment": {
 "IMPORT_ID": "/importId"
 }
 }
 },
 {
 "id": "START_IMPORT_ACTION",
 "request": "START_IMPORT",
 "onResponse": {
 "statusMapping": {
 "2**": ["CHECK_IMPORT_COMPLETION_ACTION"]
 }
 }
 }
]
 },
 "headers": {},
 "environment": {},
 "requests": [
 {
 "id": "UPLOAD_IMPORT_FILE",
 "method": "POST",
 "uri": "/imports/uploadImportFile",
 "headers": {},
 "multipartForm": {
 "configurationFile": "FILE::/path/to/export.xml"
 }
 },
 {
 "id": "START_IMPORT",
 "method": "POST",
 "uri": "/imports/{{ENV:IMPORT_ID}}/tasks",
 "headers": {},
 "payload": {}
 }

Chapter 12
Automating Workflows Using RSM Request Automation

12-5

]
}

The following is a breakdown of the syntax used within the workflow file, covering the key
elements and options.

Table 12-2 describes the structure of the workflow section, which defines the sequence of
actions to be executed.

Table 12-2 Workflow Section

Element Description

flow An array defining the sequence of actions to run.

id A unique identifier for the action within the workflow.

request The ID of the API request to run (defined in the requests section).

onResponse How to process the API response and subsequent actions.

Table 12-3 describes the elements used in the OnResponse section to handle API responses
and determine subsequent actions.

Table 12-3 OnResponse Section

Element Description

environment Specifies the environment variables to set based on the response. The
value from /importId in the response is assigned to the environment
variable IMPORT_ID. These variables can later be accessed in requests
using the {{ENV:VARIABLE_NAME}} syntax.

"onResponse": {
 "environment": {
 "IMPORT_ID": "/importId"
 }
}

statusMapping Maps HTTP status codes to specific actions, such as ABORT. In this
case, if a 5xx error is encountered, the transaction is halted and
terminated.

"statusMapping": {
 "5**": ["ABORT"]
}

retry Configures automatic retries for a request.
• maxRetries: The maximum number of retry attempts (integer).
• interval: The time interval (in milliseconds) between retries.

"retry": {
 "maxRetries": "5",
 "interval": "10000"
}

maxRetrics Specifies the maximum number of retry attempts.

Chapter 12
Automating Workflows Using RSM Request Automation

12-6

Table 12-3 (Cont.) OnResponse Section

Element Description

dataMapping Specifies conditions based on values in the API response.

• path: A specific field in the JSON response, such as /
importTaskItem/taskFinished.

• equals: The value to compare against (string).
• then: An array of actions to take when the condition is true, such as

retry the request if the task is not finished.

"dataMapping": [
 {
 "path": "/importTaskItem/taskFinished",
 "equals": "true",
 "then": []
 },
 {
 "path": "/importTaskItem/taskFinished",
 "equals": "false",
 "then": ["RETRY"]
 }
]

Table 12-4 describes the elements required to define individual API requests that can be
referenced within a workflow.

Table 12-4 Requests Section

Element Description

id A unique identifier for the request.

method The HTTP method, such as GET, POST, PUT, or DELETE.

uri The URI or endpoint for the API request. The
{{ENV:VARIABLE_NAME}} syntax injects values from environment
variables.

headers Any required HTTP headers.

payload The data to be sent in the request body (for methods like POST).

multipartForm Defines files to be uploaded as part of the request. The FILE:: prefix
indicates sending a file from a local path.

Managing a Helm Release
After you install a Helm chart, Kubernetes manages all of its objects and deployments. All pods
created through oc-cn-ocomc are wrapped in a Kubernetes controller, which creates and
manages the pods and performs health checks. For example, if a node fails, a controller can
automatically replace a pod by scheduling an identical replacement on a different node.

Administrators can perform these maintenance tasks on a Helm chart release:

• Tracking a Release's Status

• Updating a Release

• Checking a Release's Revision

Chapter 12
Managing a Helm Release

12-7

• Rolling Back a Release to a Previous Revision

Tracking a Release's Status
When you install a Helm chart, it creates a release. A release contains Kubernetes objects,
such as ConfigMap, Secret, Deployment, Pod, PersistentVolume, and so on. Not every object
is up and running immediately. Some objects have a start delay, but the Helm install command
completes immediately.

To track the status of a release and its Kubernetes objects, enter this command:

helm status ReleaseName -n Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• NameSpace is the namespace in which the Offline Mediation Controller Kubernetes
objects reside.

Updating a Release
To update any key value after a release has been created, enter this command. This command
updates or re-creates the impacted Kubernetes objects, without impacting other objects in the
release. It also creates a new revision of the release.

helm upgrade ReleaseName oc-cn-ocomc-helm-chart --values OverridingValueFile
--values NewOverridingValueFile -n Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• OverridingValueFile is the path to the YAML file that overrides the default configurations in
the oc-cn-ocomc/values.yaml file.

• NewOverridingValueFile is the path to the YAML file that has updated values. The values
in this file are newer than those defined in values.yaml and OverridingValueFile.

• Namespace is the namespace in which the Offline Mediation Controller Kubernetes objects
reside.

Checking a Release's Revision
Helm keeps track of the revisions you make to a release. To check the revision for a particular
release, enter this command:

helm history ReleaseName -n Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• Namespace is the namespace in which the Offline Mediation Controller Kubernetes objects
reside.

Chapter 12
Managing a Helm Release

12-8

Rolling Back a Release to a Previous Revision
To roll back a release to any previous revision, enter this command:

helm rollback ReleaseName RevisionNumber -n Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• RevisionNumber is the value from the Helm history command.

• Namespace is the namespace in which the Offline Mediation Controller Kubernetes objects
reside.

Rolling Back an Offline Mediation Controller Cloud Native
Upgrade

If you encounter errors after upgrading, you can roll back to a previous version of Offline
Mediation Controller.

The following procedure assumes that you have upgraded Offline Mediation Controller from
12.0 Patch Set 5 (Revision 1), to 12.0 Patch Set 6 (Revision 2), and then to 15.1 (Revision 3).
To roll back your upgrade from 15.1 to 12.0 Patch Set 6, you would do this:

1. Check the revision history of the Offline Mediation Controller release:

helm history ReleaseName -n Namespace

You should see something similar to this:

REVISION UPDATED STATUS CHART
APP VERSION DESCRIPTION
1 Thu May 30 07:12:46 2030 superseded oc-cn-ocomc-helm-
chart 12.0.0.5.0 Initial install
2 Thu May 30 08:32:09 2030 superseded oc-cn-ocomc-helm-
chart 12.0.0.6.0 Upgraded successfully
3 Thu May 30 09:50:00 2030 deployed oc-cn-ocomc-helm-
chart 15.1.0.0.0 Upgraded successfully

2. Roll back the release to Offline Mediation Controller 12.0 Patch Set 6:

helm rollback ReleaseName 2 -n BrmNamespace

If successful, you will see this:

Rollback was a success! Happy Helming!

3. Check the revision history of the Offline Mediation Controller release:

helm history ReleaseName -n BrmNamespace

Chapter 12
Rolling Back an Offline Mediation Controller Cloud Native Upgrade

12-9

If successful, you should see something similar to this:

REVISION UPDATED STATUS CHART
APP VERSION DESCRIPTION
1 Thu May 30 07:12:46 2030 superseded oc-cn-ocomc-helm-
chart 12.0.0.5.0 Initial install
2 Thu May 30 08:32:09 2030 superseded oc-cn-ocomc-helm-
chart 12.0.0.6.0 Upgraded successfully
3 Thu May 30 09:50:00 2030 superseded oc-cn-ocomc-helm-
chart 15.1.0.0.0 Upgraded successfully
4 Thu May 30 11:25:00 2030 deployed oc-cn-ocomc-helm-
chart 12.0.0.6.0 Roll back to 2

Integrating Oracle Unified Directory with Offline Mediation
Controller Cloud Native

After verifying the Oracle Unified Directory deployment, follow these steps to integrate it with
Offline Mediation Controller cloud native:

1. Open a terminal session within the running pod:

kubectl exec -it oud-ds-rs-0 -n oudns -- /bin/bash
2. Inside the Oracle Unified Directory container, create a temporary directory (tempdir) to hold

configuration files.

3. From the Offline Mediation Controller installation directory, copy the oudConfig and
populateDir.ldif files to tempdir.

4. Inside tempdir, create a file named populateDirTemp.ldif. This file updates the user
information in Oracle Unified Directory to match the Offline Mediation Controller
requirements. Add the following content:

dn: uid=Admin,ou=People,dc=ocomcexample.com
changetype: modify
replace: userpassword
userpassword: adminpassword

5. Run the tempdir/oudConfig script with the Oracle Unified Directory container:

sh oudConfig -i oud_instance_path -h oud_host -p oud_admin_port -d "oud_binddn" -w
oud_admin_password -b "dc=ocomcexample.com" -l oud_ldapport

Note:

If the command fails with a "host not found" error, replace the host name with
localhost in both the above and below commands.

6. Locate the values.yaml file in your Offline Mediation Controller installation directory, such
as /scratch/username/ocomc. Under the ocomcCore/lcmc.configEnv section, add the
following fields, adjusting values if necessary to match your setup:

adminsvrAuthMode: true

adminsvrAuthuser: "true"

adminsvrLdapurl: "ldap://oud-ds-rs-lbr-ldap.oudns.svc.cluster.local:1389"

Chapter 12
Integrating Oracle Unified Directory with Offline Mediation Controller Cloud Native

12-10

oudRootUserDn: cn=Directory Manager

oudPath: /u01/oracle/user_projects/oud-ds-rs-0/OUD

oudLdapPort: 1389

oudBaseDn: dc=ocomcexample.com

adminConnectPort: 4444

hostName: oud-ds-rs-0.oud-ds-rs.oudns.svc.cluster.local

Note:

Upgrade the Offline Mediation Controller Helm installation after configuring the
values.yaml file.

7. Log in to Offline Mediation Controller through Administration Client.

Chapter 12
Integrating Oracle Unified Directory with Offline Mediation Controller Cloud Native

12-11

13
Deploying into Oracle Cloud Infrastructure

Learn how to deploy Oracle Communications Offline Mediation Controller cloud native services
into Oracle Cloud Infrastructure.

Topics in this document:

• Deploying into Oracle Cloud Infrastructure

Deploying into Oracle Cloud Infrastructure
Oracle Cloud Infrastructure is a set of complementary cloud services that enable you to run a
wide range of applications and services in a highly available hosted environment. It offers high-
performance compute capabilities (as physical hardware instances) and storage capacity in a
flexible overlay virtual network that is securely accessible from your on-premises network.
Among many of its services, the Offline Mediation Controller cloud native deployment is tested
in an Oracle Cloud Infrastructure environment using its database and container engine for
Kubernetes services on a bare metal instance.

Deploying the Offline Mediation Controller cloud native services into Oracle Cloud
Infrastructure involves these high-level steps:

Note:

These are the bare minimum tasks for deploying Offline Mediation Controller cloud
native services in Oracle Cloud Infrastructure. Your steps may vary from the ones
listed below.

1. Sign up for Oracle Cloud Infrastructure.

2. Create a Kubernetes cluster and deselect the Tiller (Helm) Enabled option. The version of
Helm used by Oracle Cloud Infrastructure isn't compatible with the Offline Mediation
Controller cloud native software requirements.

3. Install and configure the Oracle Cloud Infrastructure Command Line Interface (CLI).

CLI is a small footprint tool that you can use on its own or with the Console to complete
OCI tasks. It's needed here to download the kubeconfig file.

4. Install and configure kubectl on your system to perform operations on your cluster in
Oracle Cloud Infrastructure.

5. The kubeconfig file (by default named config and stored in the $HOME/.kube directory)
provides the necessary details to access the cluster using kubectl and the Kubernetes
Dashboard.

Download kubeconfig to access your cluster on Oracle Cloud Infrastructure by entering
this command:

oci ce cluster create-kubeconfig --cluster-id ClusterId --file $HOME/.kube/
config --region RegionId

13-1

where ClusterId is the Oracle Cloud Identifier (OCID) of the cluster, and RegionId is the
region identifier such as us-phoenix-1 and us-ashburn-1.

6. Set the $KUBECONFIG environment variable to the downloaded kubeconfig file by
entering this command:

export KUBECONFIG=$HOME/.kube/config

7. Verify access to your cluster. You can enter this command and then match the output
Internal IP Addresses and External IP Addresses against the nodes in your cluster in the
Oracle Cloud Infrastructure Console.

kubectl get node -o wide

8. Download and configure Helm in your local system. To install Tiller on your cluster in
Oracle Cloud Infrastructure, enter this command:

helm init

9. If you are using a password-protected registry for Docker images, Kubernetes can't pull the
images unless the authentication details are provided.

There are many ways to enable Kubernetes to pull images from a password-protected
Docker registry. For example, you could do this on each worker node:

a. Log in to the Docker registry by entering this command:

docker login -u UserName RepoHost:RepoPort

b. Copy the config.json file where Docker has stored the authentication details
to /var/lib/kubelet.

10. Place the Offline Mediation Controller cloud native Helm chart on your system where you
have downloaded and configured kubectl and Helm. Then, follow the instructions in
"Installing the Offline Mediation Controller Cloud Native Deployment Package".

Chapter 13
Deploying into Oracle Cloud Infrastructure

13-2

14
Building Your Own Images

You can build your own images of Oracle Communications Offline Mediation Controller using
the guidance provided in this chapter.

The Docker build commands in this chapter reference Dockerfile and related scripts as is from
the oc-cn-ocomc-docker-files-15.1.0.x.0.tgz package. Ensure that you use your own version
of Dockerfile and related scripts before running the build command.

Topics in this document:

• Building Offline Mediation Controller Images

Sample Dockerfiles included in the Offline Mediation Controller cloud native deployment
package (oc-cn-ocomc-docker-files-15.1.0.x.0.tgz) are examples that depict how default
images are built for Offline Mediation Controller. If you want to build your own images, refer to
the sample Dockerfiles shipped with the product as a reference. Create your own Dockerfiles
and then build your images.

Caution:

The Dockerfiles and related scripts are provided for reference only. You can refer to
them to build or extend your own Docker images. Support is restricted to core
product issues only and no support will be provided for custom Dockerfiles and
scripts.

Building Offline Mediation Controller Images
To build images for Offline Mediation Controller, unpack oc-cn-ocomc-docker-
files-15.1.0.x.0.tgz to create the directory structure in docker_files/.

Building your own Offline Mediation Controller images involves these high-level steps:

1. You build the Offline Mediation Controller base image. See "Building the Offline Mediation
Controller Base Image".

2. You build custom images for Offline Mediation Controller. See "Building Your Offline
Mediation Controller Image".

Building the Offline Mediation Controller Base Image
All images from the Offline Mediation Controller cloud native deployment package use Oracle
Linux, JDK 1.8, and a few utilities as the base image. Oracle Linux is available from Oracle
Container Registry (http://container-registry.oracle.com). You can pull the image from it. To
build the base Offline Mediation Controller image, do this:

1. Extract the Docker file package (oc-cn-ocomc-docker-files-15.1.0.x.0.tgz).

tar xvzf oc-cn-ocomc-docker-files-15.1.0.x.0.tgz
2. Place the jdk*.tar.gz in the docker_files/jdk/ directory.

14-1

http://container-registry.oracle.com

3. Build the Offline Mediation Controller base image by entering this command from the
docker_files/jdk/ directory:

docker build -t oc-cn-oraclelinuxjdk:15.1.0.x.0 -f Dockerfile.jdk --build-arg
PROXY=ProxyHost:Port .

For example:

docker build -t oc-cn-oraclelinuxjdk:15.1.0.x.0 -f Dockerfile.jdk --build-arg
PROXY=http://www-proxy.example.com:80 .

Building Your Offline Mediation Controller Image
To build your Offline Mediation Controller image:

1. Update the Offline Mediation Controller base image (oc-cn-oraclelinuxjdk:15.1.0.x.0) in
the docker_files/OCOMC/Dockerfile directory.

2. Move the Offline Mediation Controller 15.1x.0 package
(OCOMC-15.1.0.x.0_generic_full.jar) to the docker_files/OCOMC/container-scripts
directory.

3. Build the Offline Mediation Controller image by entering this command from the
docker_files/OCOMC/ directory:

docker build -t Image:Tag -f Dockerfile .

For example:

docker build -t oc-cn-ocomc:15.1.0.x.0 -f Dockerfile .
4. Tag and push the image to your private registry server, if required.

Chapter 14
Building Offline Mediation Controller Images

14-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the Offline Mediation Controller Cloud Native Deployment
	About the Offline Mediation Controller Cloud Native Deployment
	Offline Mediation Controller Cloud Native Deployment Architecture

	2 Planning Your Installation
	Overview of the Offline Mediation Controller Deployment Package
	About Offline Mediation Controller Pods and Images
	About Offline Mediation Controller Services

	3 Preparing Your Offline Mediation Controller Cloud Native Environment
	Tasks for Preparing Your Offline Mediation Controller Cloud Native Environment
	Setting Up Your Environment
	Downloading Packages for the Offline Mediation Controller Cloud Native Helm Charts
	Pulling Offline Mediation Controller Images from the Oracle Container Registry
	Downloading Offline Mediation Controller Images from Oracle Software Delivery Website

	4 Installing the Offline Mediation Controller Cloud Native Deployment Package
	About Deploying into Kubernetes
	Automatically Pulling Images from Private Docker Registries
	Automatically Rolling Deployments by Using Annotations
	About StatefulSet Implementation
	About Sidecars
	About the Node Manager Sidecar
	About the Admin Server Sidecar
	Configuring Sidecars

	About Data Persistent Volume (PV) Configuration
	Offline Mediation Controller Persistent Volume Claim Configuration
	Configuring Offline Mediation Controller Services
	Deploying Offline Mediation Controller Services
	Installing the Offline Mediation Controller Web-Based UI
	Prerequisites
	About the Offline Mediation Designer UI Helm Chart
	Deploying the Offline Mediation Designer UI

	5 About Integrating Offline Mediation Controller REST Services Manager with Cloud Native
	About Offline Mediation Controller REST Services Manager
	About Offline Mediation Controller REST Services Manager Cloud Native Architecture
	Installing Offline Mediation Controller REST Services Manager
	Setting Up Prerequisite Software
	Configuring the Offline Mediation Controller Core and REST Services Manager Connection
	Configuring the REST Services Manager Server
	Configuring and Loading Custom Validators

	About the Offline Mediation Controller REST Services Manager Keys

	6 Offline Mediation Controller REST Services Manager Security
	About Authentication and Authorization
	Setting Up OAuth Using Oracle Identity Cloud Service
	Creating a Confidential OAuth Application
	Creating Groups
	Creating a Resource Server
	Creating a Confidential Client Application
	Assigning the Authenticator App Role to the Confidential Client Application

	Creating the Public Client
	Generating Two-Legged Access Tokens
	Configuring IDCS in REST Services Manager

	Setting Up OAuth Using Oracle Access Management
	Preparing the Environment
	Configuring Oracle Unified Directory as the Identity Store
	Creating a User Using Oracle Unified Directory
	Fetching User Details from Oracle Unified Directory
	Testing Oracle Unified Directory as the Identity Store in Oracle Access Management
	Generating the Access Token
	Creating an OAuth Identity Domain
	Creating a Resource Server
	Creating an OAuth Client
	Generating Access Tokens with Two-Legged Flows
	Generating Access Tokens with Three-Legged Flow

	Configuring Offline Mediation Controller Cloud Native for Oracle Access Management
	Accessing an Offline Mediation Controller REST Services Manager Endpoint

	SSL-Enabled Actions for IDCS and Oracle Access Management

	7 Upgrading Offline Mediation Controller
	Upgrading Offline Mediation Controller to 15.1
	Sample Workflow Payload JSON File

	8 Connecting Your Administration Client
	About Administration Client
	Connecting Administration Client
	Configuring Administration Server Cloud Native
	Postinstallation Tasks for Administration Client
	Verifying the Administration Client Connection

	9 Enabling TLS 1.3 Support in Offline Mediation Controller
	About TLS 1.3 Compatibility
	Enabling TLS 1.3 Support Automatically
	Manually Enabling TLS 1.3 Support

	10 Uninstalling Your Offline Mediation Controller Cloud Native Deployment
	Uninstalling Your Offline Mediation Controller Cloud Native Deployment

	11 Automated Scaling of Node Manager Pods Using HPA
	About Automated Scaling of Node Manager Pods
	Enabling Scaling Replication
	Configuring HPA
	Configuring Global HPA Values
	Configuring Node Manager Set HPA Values

	12 Monitoring and Maintaining Offline Mediation Controller Cloud Native
	Using Prometheus Operator to Monitor Offline Mediation Controller Cloud Native
	Enabling the Automatic Scraping of Metrics
	Using the Sample Grafana Dashboards
	Offline Mediation Controller REST Services Manager Metrics

	Automating Workflows Using RSM Request Automation
	Setting Up REST Services Manager Request Automation
	Creating a Workflow Payload File

	Managing a Helm Release
	Tracking a Release's Status
	Updating a Release
	Checking a Release's Revision
	Rolling Back a Release to a Previous Revision

	Rolling Back an Offline Mediation Controller Cloud Native Upgrade
	Integrating Oracle Unified Directory with Offline Mediation Controller Cloud Native

	13 Deploying into Oracle Cloud Infrastructure
	Deploying into Oracle Cloud Infrastructure

	14 Building Your Own Images
	Building Offline Mediation Controller Images
	Building the Offline Mediation Controller Base Image
	Building Your Offline Mediation Controller Image

