
Oracle® Communications Network
Integrity
UIM Integration Cartridge Guide

Release 7.5
G13605-01
December 2024

Oracle Communications Network Integrity UIM Integration Cartridge Guide, Release 7.5

G13605-01

Copyright © 2020, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 Overview

About the UIM Integration Cartridge 1-1

About the UIM Sample Web Service 1-1

About Cartridge Dependencies 1-1

Run-Time Dependencies 1-2

Design-Time Dependencies 1-2

Opening the Cartridge Files in Design Studio 1-2

Building and Deploying the Cartridge 1-3

2 About the Cartridge Components

Abstract Import from UIM Action 2-1

Import UIM Initializer 2-2

Logical Device UIM Finder 2-3

Physical Device UIM Finder 2-4

Logical Device UIM MultiThread Importer 2-4

Physical Device UIM MultiThread Importer 2-4

Logical Device UIM Importer 2-5

Linked Physical Device UIM Importer 2-5

Logical Device UIM Persister 2-5

Physical Device UIM Importer 2-5

Linked Logical Device UIM Importer 2-5

Physical Device UIM Persister 2-5

Import from UIM Action 2-6

Scan Parameter UIM Initializer 2-7

Abstract Incremental Import from UIM 2-7

ME Names Collector 2-8

UpdateNotificationStatus 2-8

iii

Incremental Import from UIM 2-8

Incremental Scan Parameter UIM Initializer 2-10

Abstract Detect UIM Discrepancies Action 2-10

UIM Discrepancies Filter Initializer 2-11

Abstract Resolve in UIM Action 2-11

UIM Resolution Framework Initializer 2-13

UIM Resolution Initializer 2-14

UIM Resolution Framework Dispatcher 2-14

Supported Creation Scenarios in UIM 2-15

Creation of a Logical Device and a Physical Device 2-15

Creation of a Logical Device 2-16

Creation of a Device Interface 2-16

Creation of a Physical Device 2-16

Creation of an Equipment 2-16

Creation of an Equipment Holder 2-16

Creation of a Physical Port 2-16

Creation of an Association Between Logical Device and Physical Device 2-16

Creation of an Association Between Device Interface and Physical Port 2-17

Teardown, Deletion, and Removal Scenarios in UIM 2-17

Teardown of Association Between Device Interface and Physical Port 2-17

Teardown of Association Between Logical Device and Physical Device 2-17

Deletion of a Physical Port 2-17

Deletion of an Equipment Holder 2-18

Deletion of a Device Interface 2-18

Removal of an Equipment from a Physical Device Tree 2-18

Mismatched Data Scenarios 2-18

Mismatch of Logical Device Data 2-19

Mismatch of Device Interface Data 2-19

Mismatch of Physical Device Data 2-19

Mismatch of Equipment Data 2-19

Mismatch of Equipment Holder Data 2-19

Mismatch of Physical Port Data 2-19

Working with Foreign IDs 2-20

Scenario 1: Physical Device Tree Uses Foreign IDs 2-20

Scenario 2: Logical Device Tree Uses Foreign IDs 2-21

Swapping Cards 2-21

Running Multiple Scenarios Simultaneously 2-22

3 Using the Cartridge

About Wild Card Searching 3-1

Creating an Import from UIM Scan 3-2

iv

Creating a Reconciliation Solution 3-2

Populating UIM with Discovered Data 3-3

Performing Ongoing Reconciliation with UIM 3-3

About UIM Auto-Termination 3-4

4 About Cartridge Modeling

UIM Integration Cartridge UML Representation 4-1

Oracle Communications Information Model Information 4-1

Device Hierarchy 4-2

Characteristics 4-2

Logical Mapping 4-2

Logical Device 4-2

Device Interface 4-3

Physical Mapping 4-3

Physical Device 4-3

Equipment 4-4

Equipment Holder 4-4

Physical Port 4-4

5 About Design Studio Construction

Actions 5-1

Characteristics 5-2

Scan Parameter Groups 5-3

Processors 5-4

6 Working with the UIM Sample Web Service

About the NI UIM Client 6-1

Generating the NI UIM Client JAR File 6-1

UIM Connection Client Example 6-1

About the UIM Sample Web Service Operations 6-2

Installing the UIM Sample Web Service 6-3

Configuring the Network Integrity UI for the UIM Sample Web Service 6-4

About CRUD Operations 6-5

About Find Qualifiers 6-6

About the <specType> Entity 6-6

Supported Entity Types 6-6

Response Messages 6-6

UIM Sample Web Service Entity Operations 6-7

Enabling Debugging for the Web Service 6-8

v

UIM Sample Web Service to Update Logical Devices Code Example 6-9

vi

Preface

This guide describes the functionality and design of the Oracle Communications Network
Integrity UIM Integration cartridge.

Audience
This guide is intended for network administrators who want to understand the design and
functionality of this cartridge and for Network Integrity developers who want either to build or to
extend similar cartridges.

The developers should have a good working knowledge of specifications, Network Integrity,
Oracle Communications Unified Inventory Management (UIM), and Oracle Communications
Design Studio for both UIM and Network Integrity.

You should be familiar with the following documents, included with this release:

• Network Integrity Concepts

• Network Integrity Developer's Guide

• Network Integrity Installation Guide

This guide assumes that you are familiar with the following:

• Oracle Communications Design Studio

• Oracle Communications Information Model

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

viii

1
Overview

This chapter provides an overview of the Oracle Communications Network Integrity UIM
Integration cartridge.

About the UIM Integration Cartridge
The UIM Integration cartridge provides discrepancy detection, discrepancy resolution, and
import functionality for integration with Oracle Communications Unified Inventory Management
(UIM). The UIM Integration cartridge supports logical device and physical device hierarchies.

The cartridge contains an abstract import action that is extended by the deployable Import
action. The abstract import action supports extensibility where custom scan parameters are
required for selective import of data. The deployable import action has scan parameters to
control import of logical device and physical device trees, and to specify matching criteria for
devices.

The import action allows logical device and physical device trees in UIM to be imported to
Network Integrity for comparison of objects with discovered data.

The cartridge contains an abstract discrepancy detection action that supports UIM-specific
behavior like matching by nativeEMSName and excluding Device Interface Configuration. The
discrepancy detection action provides the mechanism to allow a filtered comparison of logical
and physical trees between data that is discovered and data that is imported from UIM.

The cartridge contains an abstract discrepancy resolution action that supports resolution of
both logical device and physical device trees. The discrepancy resolution action allows the
discovered logical device and physical device trees to be created and updated in UIM. For
more information about discrepancy detection and discrepancy resolution, see "Using Design
Studio to Extend Network Integrity" in Network Integrity Developer's Guide.

About the UIM Sample Web Service
The UIM Sample web service enables Network Integrity to communicate with UIM and perform
Create, Read, Update, and Delete operations on entity instances in UIM.

See "Working with the UIM Sample Web Service " for more information about the UIM Sample
Web Service and web service operations.

About Cartridge Dependencies
This section provides information about dependencies that the UIM Integration cartridge has
on other entities.

The Network_Integrity_Cartridge_Projects\UIM_Integration_Cartridge\ project is
dependent on the UIM_Cartridge_Projects\ora_ni_uim_webservice\ project being available
in Oracle Communications Design Studio for compilation if you intend to modify the web
service.

The UIM_Integration_Cartridge project contains the buildUimClient.xml file, which is
dependent on the UIM_Cartridge_Projects\ora_ni_uim_webservice\wsdl\NI_Uim.wsdl file.

1-1

The buildUimClient.xml file must have target ALL run if you are modifying the web service
and must be successful before you compile the UIM Integration cartridge.

Run-Time Dependencies
For the UIM Integration cartridge to work at run time:

• You must deploy the Address_Handlers and ora_ni_uim_ocim cartridges to Network
Integrity.

• UIM must be installed and be accessible to Network Integrity.

The following component must be deployed to UIM:

• UIM Integration web service

• ora_ni_uim_ocim

Design-Time Dependencies
The UIM Integration cartridge has the following dependencies:

• NetworkIntegritySDK

• ora_ni_uim_ocim

Opening the Cartridge Files in Design Studio
To review and extend the UIM Integration cartridge, download the Oracle Communications
Network Integrity UIM Integration Cartridge software from the Oracle software delivery website:

https://edelivery.oracle.com/
The software contains the Network Integrity UIM Integration Cartridge ZIP file, which has the
following structure:

• \UIM_Cartridge_Projects\

• \Network_Integrity_Cartridge_Projects\

Note:

These are Java projects that can be loaded into Eclipse and that contain identical
software. These folders are duplicated depending on which Network Integrity
software cartridges you want to use.

The Network_Integrity_Cartridge_Projects\UIM_Integration_Cartridge project contains the
extendable Design Studio files.

You can find the WSDL and schema files within the Java projects.

The WSDL and schemas are located in the following paths:

• ora_ni_uim_webservice\wsdl\NI_Uim.wsdl

• ora_ni_uim_webservice\wsdl\schemas

• ora_ni_uim_webservice\wsdl\referenceschemas

Chapter 1
Opening the Cartridge Files in Design Studio

1-2

https://edelivery.oracle.com/

See "About Network Integrity" in Network Integrity Concepts for guidelines and best practices
for extending cartridges.

See "Using Design Studio to Extend Network Integrity" in Network Integrity Developer's Guide
for information about opening files in Design Studio.

Building and Deploying the Cartridge
See "Getting Started with Design Studio for Network Integrity (1)" in SCD Design Studio
Modeling Network Integrity for information about building and deploying cartridges.

Chapter 1
Building and Deploying the Cartridge

1-3

2
About the Cartridge Components

This chapter describes the components of Oracle Communications Network Integrity UIM
Integration cartridge.

The UIM Integration cartridge is composed of the following actions, each containing
processors:

• Abstract Import from UIM Action

• Import from UIM Action

• Abstract Incremental Import from UIM

• Incremental Scan Parameter UIM Initializer

• Abstract Detect UIM Discrepancies Action

• Abstract Resolve in UIM Action

Abstract Import from UIM Action
The Abstract Import from UIM action imports data from Oracle Communications Unified
Inventory Management (UIM). This is an abstract action without any scan parameters. Using
various filter criteria, this action interacts with the UIM Integration web service to find devices
and then to import and model logical devices and physical devices.

The Abstract Import from UIM action contains the following processors run in the following
order:

1. Import UIM Initializer

2. Logical Device UIM Finder

3. Physical Device UIM Finder

4. Logical Device UIM MultiThread Importer

5. Physical Device UIM MultiThread Importer

6. Logical Device UIM Importer

7. Linked Physical Device UIM Importer

8. Logical Device UIM Persister

9. Physical Device UIM Importer

10. Linked Logical Device UIM Importer

11. Physical Device UIM Persister

Figure 2-1 shows the processor workflow of the Abstract Import from UIM action.

2-1

Figure 2-1 Abstract Import from UIM Action Processor Workflow

Import UIM Initializer
This processor outputs variable filters of type DeviceFilter with default values populated;
uimImportContext of type UIMImportContext, which contains a context used by multiple
processors; and uimLogicalDeviceIDs and uimPhysicalDeviceIDs of type Set.

Table 2-1 shows the available filter properties with default values. The Effective Type column
indicates how the value is used, including whether wildcards are supported. Note that the value
Text* in the Effective Type column is multi-value and a comma-separated list.

Table 2-1 Filter Properties

Property Name Java Type Effective Type Default Notes

logicalDeviceName String Text* N/A Supports comma-separated list for
multiple values.

physicalDeviceName String Text* N/A Supports comma-separated list for
multiple values.

logicalDeviceSpecification String Text N/A The specification name(s) for a logical
device. Supports comma-separated
list for multiple values.

physicalDeviceSpecification String Text N/A The specification name(s) for a
physical device. Supports comma-
separated list for multiple values.

Chapter 2
Abstract Import from UIM Action

2-2

Table 2-1 (Cont.) Filter Properties

Property Name Java Type Effective Type Default Notes

logicalDeviceInventoryState String Enum N/A Available values:

• INSTALLED
• UNAVAILABLE

physicalDeviceInventoryState String Enum N/A Available values:

• INSTALLED
• UNAVAILABLE

networkLocationEntityCode String Text* N/A Supports comma-separated list for
multiple values. This can be used to
search for devices at a particular
location, a specific device at a specific
location, and all devices with a
particular entity code across multiple
network locations.

queryLogicalDevices boolean Boolean true If false, it does not perform a logical
device query.

queryPhysicalDevices boolean Boolean true If false, it does not perform a physical
device query.

importRelatedPhysicalOrLogicalDe
vice

boolean Boolean true If false, it imports devices that
explicitly match filter criteria. It does
not automatically import related
device for a matched device. For
example, if you want to import only
logical devices, set Query Physical
Devices to "false" and Import Related
Physical or Logical Device to "false".

logicalDeviceCharacteristics Map<String,
String>

Text, Text*

(name, value)

null A map of characteristic name to
characteristic value.This allows
searching on multiple, arbitrary
characteristic name/value pairs. An
extending action typically does not
allow you to enter the name. The
name is set internally for a field that
specifies the value (for example,
Mgmt IP Address).

physicalDeviceCharacteristics Map<String,
String>

Text, Text*

(name, value)

null A map of characteristic name to
characteristic value.This allows
searching on multiple, arbitrary
characteristic name/value pairs. An
extending action typically does not
allow you to enter the name. The
name is set internally for a field that
specifies the value (for example,
Mgmt IP Address).

Logical Device UIM Finder
This processor uses the filters uimImportContext, uimLogicalDeviceIDs, and
uimPhysicalDeviceIDs as input parameters; performs one or more Logical Device find
operations through the UIM web service API; and updates uimLogicalDeviceIDs and
uimPhysicalDeviceIDs.

Chapter 2
Abstract Import from UIM Action

2-3

This processor uses the following filter properties:

• logicalDeviceName

• logicalDeviceSpecification

• logicalDeviceInventoryState

• networkLocationEntityCode

• queryLogicalDevices

• importRelatedPhysicalOrLogicalDevice

• logicalDeviceCharacteristics

Physical Device UIM Finder
This processor uses the filters uimImportContext, uimLogicalDeviceIDs, and
uimPhysicalDeviceIDs as input parameters; performs one or more physical device find
operations through the UIM web service API; and updates uimLogicalDeviceIDs and
uimPhysicalDeviceIDs.

This processor uses the following filter properties:

• physicalDeviceName

• physicalDeviceSpecification

• physicalDeviceInventoryState

• queryPhysicalDevices

• importRelatedPhysicalOrLogicalDevice

• physicalDeviceCharacteristics

Logical Device UIM MultiThread Importer
This processor uses the filters uimImportContext, uimLogicalDeviceIDs as input parameters,
imports and models the specified device(s). It stores the results associated with logical devices
in Network Integrity. Instead of using hardcoded specifications for logical device and device
interface, the UIM specification name is mapped to a Network Integrity specification name.
When creating a device interface, this processor instantiates either DeviceInterface or
MediaInterface based on the type received from UIM.

This processor verifies whether a scan is configured with the Parallel Process option enabled.
If not, it skips the process.

This processor uses WebLogic’s Managed Executor Service work manager concept to process
it in parallel. For more information, see Working with application context work-managers in
"Using Design Studio to Extend Network Integrity" in Developer's Guide.

Physical Device UIM MultiThread Importer
This processor uses the filters, uimImportContext, uimLogicalDeviceIDs, and
uimPhysicalDeviceIDs as input parameters, imports and models the specified device(s). It
stores the results associated with physical devices in Network Integrity. Instead of using
hardcoded specifications for physical entities, the UIM specification name is mapped to a
Network Integrity specification name.

Chapter 2
Abstract Import from UIM Action

2-4

This processor verifies whether a scan is configured with the Parallel Process option enabled.
If not, it skips the process.

This processor uses weblogic’s Managed Executor Service work manager concept to process
it in parallel. For more information, see Working with application context work-managers
"Using Design Studio to Extend Network Integrity" in Developer's Guide.

Logical Device UIM Importer
This processor uses the filters uimImportContext, uimPhysicalDeviceIDs, and
uimLogicalDeviceID (from uimLogicalDeviceIDs For loop) as input parameters; imports and
models the specified device; and outputs ldev (the modeled logical device) and uimLDev (the
UIM web service logical device).

Instead of using hardcoded specifications for logical device and device interface, the UIM
specification name is mapped to a Network Integrity specification name.

When creating a device interface, this processor instantiates either DeviceInterface or
MediaInterface based on the type received from UIM.

Linked Physical Device UIM Importer
This processor uses the filters uimImportContext, uimPhysicalDeviceIDs, ldev, and uimLDev as
input parameters; imports and models the specified physical device; outputs pdev (the
modeled physical device).

Instead of using hardcoded specifications for physical entities, the UIM specification name is
mapped to a Network Integrity specification name.

This processor removes the processed physical device from uimPhysicalDeviceIDs.

Logical Device UIM Persister
This processor stores the results associated with logical devices in Network Integrity.

Physical Device UIM Importer
This processor uses the filters uimImportContext and uimPhysicalDeviceID (from
uimPhysicalDeviceIDs For loop) as input parameters, imports and models the specified
physical device, and outputs pdev (the modeled physical device).

Instead of using hardcoded specifications for physical entities, the UIM specification name is
mapped to a Network Integrity specification name.

Linked Logical Device UIM Importer
This processor uses the filters, uimImportContext, pdev, uimLogicalDeviceIDs, and uimPDev
as input parameters, imports and models the specified logical device. Instead of using
hardcoded specifications for logical entities, the UIM specification name is mapped to a
Network Integrity specification name.

Physical Device UIM Persister
This processor stores results associated with physical devices in Network Integrity.

Chapter 2
Abstract Import from UIM Action

2-5

Import from UIM Action
The Import from UIM action extends the Abstract Import from UIM action by adding scan
parameters. This action initializes filters from the scan parameters.

The import functionality is implemented to:

• Retrieve all the logical device IDs that match the filter, and the physical device IDs of
associated devices.

• Retrieve all the physical device IDs that match the filter, and the logical device IDs of
associated devices.

• Iterate over each logical device ID to:

– Retrieve and model the logical device

– Retrieve and model the associated physical device (if any)

– Persist the logical and physical device trees

• Iterate over each physical device ID not already processed to:

– Retrieve and model the physical device

– Retrieve and model the associated logical device (if any)

– Persist the logical and physical device trees

This import action extends the Abstract Import from UIM action and inherits all its processors.
See "Abstract Import from UIM Action" for more information.

The Import from UIM action contains the following processors run in the following order:

1. Import UIM Initializer (inherited)

2. Scan Parameter UIM Initializer

3. Logical Device UIM Finder (inherited)

4. Physical Device UIM Finder (inherited)

5. Logical Device UIM MultiThread Importer (inherited)

6. Physical Device UIM MultiThread Importer (inherited)

7. Logical Device UIM Importer (inherited)

8. Linked Physical Device UIM Importer (inherited)

9. Logical Device UIM Persister (inherited)

10. Physical Device UIM Importer (inherited)

11. Linked Logical Device UIM Importer (inherited)

12. Physical Device UIM Persister (inherited)

Figure 2-2 shows the workflow of processors of the Import from UIM action.

Chapter 2
Import from UIM Action

2-6

Figure 2-2 Import from UIM Action Processor Workflow

Scan Parameter UIM Initializer
This processor uses filters as input parameters and sets filter values based on the scan
parameters. For more information about the scan parameter groups associated with this
action, see "Scan Parameter Groups".

Abstract Incremental Import from UIM
The Abstract Incremental Import from UIM action extends the Abstract Import from UIM action
by adding scan parameters.

This action extends the Abstract Import from UIM action and inherits all its processors. For
more information, see "Abstract Import from UIM Action".

The Abstract Incremental Import from UIM action contains the following processors run in the
following order:

1. Import UIM Initializer (inherited)

2. ME Names Collector

3. Logical Device UIM Finder (inherited)

4. Physical Device UIM Finder (inherited)

5. Logical Device UIM MultiThread Importer (inherited)

6. Physical Device UIM MultiThread Importer (inherited)

7. Logical Device UIM Importer (inherited)

Chapter 2
Abstract Incremental Import from UIM

2-7

8. Linked Physical Device UIM Importer (inherited)

9. Logical Device UIM Persister (inherited)

10. Physical Device UIM Importer (inherited)

11. Linked Logical Device UIM Importer (inherited)

12. Physical Device UIM Persister (inherited)

13. UpdateNotificationStatus

Figure 2-3 shows the workflow of processors of the Abstract Incremental Import from UIM
action.

Figure 2-3 Abstract Incremental Import from UIM action

ME Names Collector
This processor uses the filter incrementalimportScanParams as input, collects managed
element names from NMS notifications and outputs meNames.

UpdateNotificationStatus
This processor uses incrementalimportScanParams and meNames as input and updates NMS
notifications with appropriate status.

Incremental Import from UIM
The Incremental Import from UIM action extends the Abstract Incremental Import from UIM
action by adding scan parameters.

Chapter 2
Incremental Import from UIM

2-8

The incremental import functionality is implemented to:

• Retrieve all the logical device IDs from the NMS notifications with status ‘INITIAL’ and the
physical device IDs of associated devices.

• Retrieve all the physical device IDs from the NMS notifications with status ‘INITIAL’ and the
logical device IDs of associated devices.

• Iterate over each logical device ID to:

– Retrieve and model the logical device.

– Retrieve and model the associated physical device (if any).

– Persist the logical and physical device trees.

• Iterate over each physical device ID not already processed to:

– Retrieve and model the physical device.

– Retrieve and model the associated logical device (if any).

– Persist the logical and physical device.

• Update the NMS notifications with status ‘IMPORTED’ for imported devices.

The Incremental Import from UIM action extends the Abstract Import from UIM action and
inherits all its processors. See "Abstract Import from UIM Action" for more information. The
Abstract Incremental Import from UIM action contains the following processors run in the
following order.

1. Import UIM Initializer (inherited)

2. Incremental Scan Parameter UIM Initializer

3. ME Names Collector (inherited)

4. Logical Device UIM Finder (inherited)

5. Physical Device UIM Finder (inherited)

6. Logical Device UIM MultiThread Importer (inherited)

7. Physical Device UIM MultiThread Importer (inherited)

8. Logical Device UIM Importer (inherited)

9. Linked Physical Device UIM Importer (inherited)

10. Logical Device UIM Persister (inherited)

11. Physical Device UIM Importer (inherited)

12. Linked Logical Device UIM Importer (inherited)

13. Physical Device UIM Persister (inherited)

14. UpdateNotificationStatus (inherited)

Figure 2-4 shows the workflow of processors of the Incremental Import from UIM action.

Chapter 2
Incremental Import from UIM

2-9

Figure 2-4 Incremental Import from UIM Action

Incremental Scan Parameter UIM Initializer
This processor uses incrementalimportScanParams as input, and sets filter values based on
the scan parameters.

Abstract Detect UIM Discrepancies Action
The Abstract Detect UIM Discrepancies action detects discrepancies between discovered data
and the data imported from UIM.This discrepancy detection action extends the Detect
Discrepancies action (from the NetworkIntegritySDK cartridge) and inherits all its processors.
For information about the inherited processors in this action, see "Using Design Studio to
Extend Network Integrity" in Network Integrity Developer's Guide.

The Abstract Detect UIM Discrepancies action contains the following processors run in the
following order:

1. UIM Discrepancies Filter Initializer

2. Discrepancy Detector (inherited)

Figure 2-5 illustrates the processor workflow of the Abstract Detect UIM Discrepancies action.

Chapter 2
Abstract Detect UIM Discrepancies Action

2-10

Figure 2-5 Abstract Detect UIM Discrepancies Action Processor Workflow

UIM Discrepancies Filter Initializer
This processor implements the following filters:

• Ignore the ID field on all entities.

• Treat Media Interface and Device Interface as the same objects.

• Ignore DeviceInterfaceConfigurationItem.

• Instead of the name field, use the nativeEMSName field as the comparator across all
entities to determine whether the objects from discovery and import are same.

• On a logical device, ignore the networkLocationEntityCode and deviceIdentifier fields.

Abstract Resolve in UIM Action
The Abstract Resolve in UIM action resolves discrepancies between Network Integrity
discovery data and UIM import data by constructing and updating logical device and physical
device trees in UIM. The implementation instantiates a class called BaseResolutionElement,
which acts as a triage system. Handlers registered into BaseResolutionElement deal with
particular entities.

When you submit one or more discrepancies to be resolved to UIM, the batch of discrepancies
is sent to the BaseResolutionElement, which sets the order and priority of the discrepancies.
BaseResolutionElement then calls entity handlers to dispatch the resolution to UIM. The entity
handlers use ora_ni_uim_webservice to communicate with UIM.

In UIM, you can create an entity only if the specification on which the entity is based already
exists. The NI discrepancy detection process uses entity specifications to discern information
about entities based on them.

Chapter 2
Abstract Resolve in UIM Action

2-11

When modeling your inventory solution, Oracle recommends that you follow a consistent
naming convention when defining entity specifications within both the Import and Discovery
processors to allow the discrepancy resolution process to resolve entity discrepancies more
efficiently.

The Network Integrity discrepancy resolution process creates the entities in a hierarchical
fashion within UIM and each entity in the hierarchy is created using a separate transaction. If
any failure occurs during the discrepancy resolution process, the process stops and displays
an error message.

Table 2-2 lists the handlers called by BaseResolutionElement and their corresponding
discrepancy types and definitions.

Table 2-2 Handler Discrepancy Types

Handler Discrepancy Type

Logical Device Handler Entity+ (Entity is missing from UIM)

Attribute Value Mismatch (Entity has field value that differs)

Assoc+ (Peer entities are missing association between them)

Assoc- (Peer entities not discovered to be peers in discovery)

Device Interface Handler Entity+

Entity- (Entity is in UIM but not discovered)

Attribute Value Mismatch

Assoc+

Assoc-

Physical Device Handler Entity+

Attribute Value Mismatch

Assoc+

Assoc-

Equipment Handler Entity+

Entity-

Attribute Value Mismatch

Assoc+

Assoc-

Equipment Holder Handler Entity+

Entity-

Attribute Value Mismatch

Assoc+

Assoc-

Physical Port Handler Entity+

Entity-

Attribute Value Mismatch

Assoc+

Assoc-

The Abstract Detect UIM Discrepancies action contains the following processors run in the
following order:

1. UIM Resolution Framework Initializer

2. UIM Resolution Initializer

Chapter 2
Abstract Resolve in UIM Action

2-12

3. UIM Resolution Framework Dispatcher

Figure 2-6 illustrates the processor workflow of the Abstract Resolve in UIM action.

Figure 2-6 Abstract Resolve in UIM Action Processor Workflow

UIM Resolution Framework Initializer
The UIM Resolution Framework Initializer processor instantiates BaseResolutionElement and
the web service connection class.

BaseResolutionElement evaluates discrepancies, which are then processed serially to UIM.
Ordering is enforced to ensure, for example you create a Logical Device before you create a
DeviceInterface.

This processor produces uimResolutionContext of type UimResolutionContext as output.

This processor configures a default specification mapper that does not map and return the
specification name that is passed in.

Table 2-3 shows the order of execution of discrepancies.

Table 2-3 Discrepancy Execution Order

Discrepancy Type Entity Type

Attribute Value Mismatch All

Assoc- DeviceInterfacePhysicalPort

Assoc- LogicalDevicePhysicalDevice

Chapter 2
Abstract Resolve in UIM Action

2-13

Table 2-3 (Cont.) Discrepancy Execution Order

Discrepancy Type Entity Type

Entity- DeviceInterface

Equipment

EquipmentHolder

PhysicalPort

Entity- LogicalDevicePhysicalDevice

Entity+ LogicalDevicePhysicalDevice

Entity+ DeviceInterface

Equipment

EquipmentHolder

PhysicalPort

Assoc+ LogicalDevice

PhysicalDevice

Assoc+ DeviceInterface

PhysicalPort

UIM Resolution Initializer
This processor registers the following handlers required for physical and logical device
resolution:

• LogicalDeviceHandler

• PhysicalPortHandler

• DeviceIntefaceHandler

• PhysicalDeviceHandler

• EquipmentHandler

• EquipmentHolderHandler

UIM Resolution Framework Dispatcher
This processor uses the registered entity handlers to trigger BaseResolutionElement to
evaluate and treat discrepancies.

The entity handler creates a web service message and populates data into the body of the
message. The entity handler connects to UIM. UIM receives the web service message. If a
success message is returned, the discrepancy is marked Success. If a fail or exception
message is returned, the discrepancy is marked Fail.

Note:

There is no transaction handling across the web service. If a discrepancy is
successful, a subsequent discrepancy failure in the batch does not roll back the
former. Each discrepancy is an independent event.

Chapter 2
Abstract Resolve in UIM Action

2-14

The position of the object being treated in the hierarchy is significant. For example, for an
Entity+ discrepancy on a logical device, you create a logical device and all child interfaces.
Even if the creation of one of the child entities fails, the remaining entities continue to be
created, but a Failed message is sent to the discrepancy resolution result.

For an Entity+ discrepancy on a device interface, the handler creates the device interface and
all of its child sub device interfaces.

Supported Creation Scenarios in UIM
This section describes the following creation scenarios, which are supported in UIM:

• Creation of a Logical Device and a Physical Device

• Creation of a Logical Device

• Creation of a Device Interface

• Creation of a Physical Device

• Creation of an Equipment

• Creation of an Equipment Holder

• Creation of a Physical Port

• Creation of an Association Between Logical Device and Physical Device

• Creation of an Association Between Device Interface and Physical Port

Creation of a Logical Device and a Physical Device
If UIM does not contain pre-existing logical devices and physical devices, Network Integrity
displays Entity+ for the root logical device and the root physical device.

Resolution of these two entities creates the entire logical device tree. The logical device tree
attempts to create associations to the physical device tree (which does not exist), but the
creation of association fails.

Resolution creates the physical device tree. The physical device tree creates associations to
the logical device tree. The creation of the association is succeeds, and the tree is complete.

Creation of the logical device tree includes logical device and child device interfaces or sub
interfaces.

Creation of the physical device tree includes physical device and child equipment, equipment
holders, and physical ports.

Creation of any object in the tree is dependent on the ID not being occupied. If the ID is
occupied, then the object is not created. If any objects fail to be created, the root object which
initiated the creation is marked Fail or Partial Fail in the log file. However, it is possible that
some parts of the tree are completely created and available in UIM.

Successfully created objects are not rolled back when creation of an object fails because of an
occupied ID. The subsequent import, discovery, and discrepancy detection actions indicate
which objects exist and which objects do not exist, allowing you to continue resolution
operations.

Before objects are created in UIM, no search is carried out to see if the object with the same
name or nativeEmsName already exists in UIM. UIM does not validate uniqueness of name.
When you find an object with the name you need and which does not have child objects, use it.
Do not create a new object with the same name.

Chapter 2
Abstract Resolve in UIM Action

2-15

Custom handling is required when two objects are found with the same name; when an object
is found with child objects, and when an object is found in a tree.

Creation of a Logical Device
When a logical device is discovered, and when it does not exist in UIM, Network Integrity
displays Entity+ for the logical device.

Resolution creates the logical device and child objects. As each object is created, it is
associated to the physical device tree.

Creation of a Device Interface
When a logical device exists in UIM without a device interface, Network Integrity displays
Entity+ for the device interface.

Resolution creates the device interface and child objects. As each object is created, it is
associated to the physical port object.

Creation of a Physical Device
When a logical device tree exists in UIM, and when the physical device does not exist, Network
Integrity displays Entity+ for the physical device.

Resolution creates the physical device and child objects. As each object is created, it is
associated to the logical device tree.

Creation of an Equipment
When a parent of an equipment exists in UIM, but the equipment does not exist, Network
Integrity displays Entity+ for the equipment.

Resolution creates the equipment and child objects. As each object is created, it is associated
to the logical device tree.

Creation of an Equipment Holder
When a parent (an equipment) of an equipment holder exists in UIM, but the equipment holder
does not exist, Network Integrity displays Entity+ for the equipment holder.

Resolution creates the equipment holder and child objects of the equipment holder. As each
object is created, it is associated to the logical device tree.

Creation of a Physical Port
When a parent (an equipment) of a physical port exists in UIM, but the physical port does not
exist, Network Integrity displays Entity+ for the physical port.

Resolution creates the physical port. The physical port is associated to the device interface.

Creation of an Association Between Logical Device and Physical Device
When a logical device and physical device exist in UIM, but the association between them
does not exist, Network Integrity displays two instances of Assoc+: one from the physical
device and the other from the logical device.

Chapter 2
Abstract Resolve in UIM Action

2-16

Resolution of Assoc+ creates the logical-device-to-physical-device association. Resolution
then creates the physical-device-to-logical-device association. The web service detects the
association and returns a Success message.

Creation of an Association Between Device Interface and Physical Port
When a device interface and physical port exist in UIM, but the association between them does
not exist, Network Integrity displays two instances of Assoc+: one from the device interface
and the other from the physical port.

Resolution of Assoc+ creates the device-interface-to-physical-port association. Resolution
then creates the physical-port-to-device-interface association. The web service detects the
association and returns a success message.

Teardown, Deletion, and Removal Scenarios in UIM
This section describes the following teardown, deletion, and removal scenarios, which are
supported in UIM:

• Teardown of Association Between Device Interface and Physical Port

• Teardown of Association Between Logical Device and Physical Device

• Deletion of a Physical Port

• Deletion of an Equipment Holder

• Deletion of a Device Interface

• Removal of an Equipment from a Physical Device Tree

Teardown of Association Between Device Interface and Physical Port
When a device interface and physical port exist in UIM with incorrect associations between
them, Network Integrity displays two instances of Assoc-: one from the device interface and
the other from the physical port.

Resolution of Assoc- creates the device-interface-to-physical-port association. Resolution then
deletes the physical-port-to-device-interface association. The web service detects that the
association does not exist and returns a Success message.

Teardown of Association Between Logical Device and Physical Device
When a logical device and physical device exist in UIM with incorrect associations between
them, Network Integrity displays two instances of Assoc-: one from the logical device and the
other from the physical device.

Resolution of Assoc- creates the logical-device-to-physical-device association. Resolution
then deletes the physical-device-to-logical-device association. The web service detects that the
association does not exist and returns a Success message.

Deletion of a Physical Port
When a physical port (a child of an equipment) exists in UIM, but it is not discovered, Network
Integrity displays Entity-.

Resolution of Entity- deletes the physical port.

Chapter 2
Abstract Resolve in UIM Action

2-17

Note:

A physical port does not exist in isolation. It must exist under a parent object.

Deletion of an Equipment Holder
When an equipment holder (a child of an equipment) exists in UIM, but it is not discovered,
Network Integrity displays Entity-.

Resolution of Entity- deletes the equipment holder.

Note:

An equipment holder does not exist in isolation. It must exist under a parent object.

Deletion of a Device Interface
When a device interface (a child of a logical device or of a device interface) exists in UIM, but it
is not discovered, Network Integrity displays Entity-.

Resolution of Entity- deletes the device interface.

Note:

A device interface does not exist in isolation. It must exist under a parent object.

Removal of an Equipment from a Physical Device Tree
When an equipment (a child of another equipment or of a physical device) exists in UIM, but is
not discovered, Network Integrity displays Entity-.

Resolution of Entity- unlinks the equipment from the parent.

Note:

An equipment can exist in isolation. This equipment continues to exist in UIM until an
administrator manually deletes it.

Mismatched Data Scenarios
The following fields are ignored for mismatched data:

• ID, which is not a discovered field

• nativeEmsName, which is used for matching objects, and not treated for mismatch

• DeviceInterfaceConfigurationItem, which exists only in Network Integrity, but not in UIM

Chapter 2
Abstract Resolve in UIM Action

2-18

The following sections describe mismatched data scenarios:

• Mismatch of Logical Device Data

• Mismatch of Device Interface Data

• Mismatch of Physical Device Data

• Mismatch of Equipment Data

• Mismatch of Equipment Holder Data

• Mismatch of Physical Port Data

Mismatch of Logical Device Data
When a logical device in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Resolution updates the mismatched logical device attribute in UIM and sets the value in UIM to
the discovered value.

Mismatch of Device Interface Data
When a device interface in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Resolution updates the mismatched device interface attribute in UIM and sets the value in UIM
to the discovered value.

Mismatch of Physical Device Data
When a physical device in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Resolution updates the mismatched physical device attribute in UIM and sets the value in UIM
to the discovered value.

Mismatch of Equipment Data
When an equipment in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Resolution updates the mismatched equipment attribute in UIM and sets the value in UIM to
the discovered value.

Mismatch of Equipment Holder Data
When an equipment holder in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Resolution updates the mismatched equipment holder attribute in UIM and sets the value in
UIM to the discovered value.

Mismatch of Physical Port Data
When a physical port in UIM has data that does not match the discovered data, Network
Integrity displays Mismatch.

Chapter 2
Abstract Resolve in UIM Action

2-19

Resolution updates the mismatched physical port attribute in UIM and sets the value in UIM to
the discovered value.

Working with Foreign IDs
A foreign ID is an ID that is available in UIM, but it does not originate from Network Integrity.
This ID is auto-generated in UIM. The ID can also be entered manually for an entity created in
UIM, rather than through resolution.

For mismatch scenarios and teardown scenarios (Entity- or Assoc-), there is no distinction
between working with foreign IDs and Network Integrity-generated IDs. For creation scenarios
(Entity+ and Assoc+), there are precautions to creating objects if those objects must have
associations to pre-existing objects in UIM with foreign IDs. The following sections describe the
resolution behavior.

Scenario 1: Physical Device Tree Uses Foreign IDs
The discovery action discovers a logical device tree and physical device tree and builds the
associations.

In the following example, LD indicates a logical device; PD indicates a physical device; E
indicates an equipment; DI indicates a device interface; PP indicates a physical port.

• Discovery assigns IDs generated by Network Integrity to all objects:

– LD (x) and PD (y)

– DI (x1) E (y1)

– DI (x2) and PP (y2)

• The import action, which uses foreign IDs, imports only the physical device tree; the logical
device tree does not exist.

• Network Integrity generates: PD (z), E (z1), PP (z2), x, xN ID, y, and yN ID.

• UIM generates z and zN ID (foreign IDs).

• Discrepancy detection generates:

– Entity+ for missing logical devices in UIM

– Assoc+ for missing associations between physical devices and logical devices in UIM

– Assoc+ for missing associations between physical ports and device interfaces in UIM

Use Case 1: Submitting Entity+ Discrepancies Only

When you submit only Entity+ discrepancies for treatment:

1. Network Integrity creates the logical device using the ID x it generated.

2. Network Integrity attempts to create the association between LD(x) and PD(y). Because
PD(y) does not exist in UIM, the Entity+ resolution is marked Partial Fail. PD(z) is not
accessible in the discrepancy object at the time of resolution.

3. Network Integrity attempts to create DI(x1) and succeeds.

4. Network Integrity attempts to create DI(x2) and succeeds. The association to PP(y2) fails.
A partial failure occurs.

5. The resolution on the Entity+ is marked Fail (Entity+ creates the root object and all child
objects).

Chapter 2
Abstract Resolve in UIM Action

2-20

6. The logical device tree exists in UIM without associations to the physical device tree. The
failure or partial failure is valid.

7. Run the import, discovery, and resolution actions. Assoc+ is treated and the trees are
synchronized.

Use Case 2: Submitting Entity + and Assoc+ Discrepancies Together

When you submit Entity+ and Assoc+ together for treatment:

1. Network Integrity creates the logical device using the ID x it generated.

2. Network Integrity attempts to create the association between LD(x) and PD(y). Because
PD(y) does not exist in UIM, the Entity+ resolution is marked Partial Fail. PD(z) is not
accessible in the discrepancy object at the time of resolution.

3. Network Integrity attempts to create DI(x1) and succeeds.

4. Network Integrity attempts to create DI(x2) and succeeds. The association to PP(y2) fails.
A partial failure occurs.

5. The resolution on Entity+ is marked Fail (Entity+ creates the root object and all child
objects).

6. Network Integrity treats Assoc+ on PD(z). Network Integrity succeeds in associating the
physical device to the logical device.

7. Network Integrity treats Assoc+ on PP(z2). Network Integrity succeeds in associating the
physical port to the device interface.

8. The two Assoc+ discrepancies are marked Successful.

9. The logical device tree is present in UIM with associations to the physical device tree.
Treatment of Assoc+ completes the tree lineage.

10. Run the import, discovery, and resolution actions.

Network Integrity does not show any discrepancies.

Scenario 2: Logical Device Tree Uses Foreign IDs
This scenario is a reversal of Scenario 1. Use cases 1 and 2 described in Scenario 1 are true
for this scenario if the logical device and physical device scenarios outlined in "Scenario 1:
Physical Device Tree Uses Foreign IDs" are reversed.

In this scenario, the import action imports only the logical device tree; the physical device tree
does not exist; the logical device tree uses foreign IDs; discrepancy detection generates
Entity+ for the missing physical devices in UIM.

Handling of foreign IDs may take up to two passes of import, discovery, and resolution actions
to completely synchronize Network Integrity with UIM. If you require handling of foreign IDs in a
single pass, modify the resolution to consider the auxiliary object (associated object).

Swapping Cards
This section describes swapping cards on a physical device tree.

Swapping of cards is not supported out-of-the-box, but it can be done with custom handling.
This example uses manual IDs so that creation of an entity with the same ID fails.

In this example, A(1), B(2), C(3), D(4), E(5) and F(6) represent cards on devices.

1. Discover the logical and physical trees for a and create them in UIM.

Chapter 2
Abstract Resolve in UIM Action

2-21

2. Swap two cards on the device: C(3) and F(6). Discovery shows devices in the following
order:

• A(1)

• B(2)

• F(6)

• D(4)

• E(5)

• C(3)

3. Import data from UIM.

4. Discover the device again.

The following discrepancies are displayed:

• Entity- on B (indicating card C is missing in discovery, but present in import)

• Entity+ on B (indicating card F is present in discovery, but missing in import)

• Entity- on E (indicating card F is missing in discovery, but present in import)

• Entity+ on E (indicating card C is present in discovery, but missing in UIM)

5. Submit resolutions.

• Entity- is prioritized before Entity+.

• Entity- unlinks F(6) and C(3) from the parent in UIM and succeeds.

• Entity+ attempts to create C(3) and F(6).

• Entity+ fails because C(3) and F(6) exist. Because C(3) and F(6) exist, the required
IDs are occupied. Entity+ fails.

6. Run the import and discovery actions again.

Discrepancy detection displays a pair of Entity+ discrepancies.

7. Submit the resolutions.

• Entity+ attempts to create C(3) and F(6).

• Entity+ fails because C(3) and F(6) exist. Because C(3) and F(6) exist, the required
IDs are occupied. Entity+ fails.

8. Delete C(3) and F(6) manually from UIM.

9. Run the import, discovery, and resolution actions.

10. Submit the identified discrepancies for resolution.

Resolution creates C(3) and F(6) and links them to the tree.

11. At this point, custom handling is required. Modify resolution handling to search for objects
by name or by nativeEmsName before they are created. If the objects are found, use them.
Do not create new objects.

See "Creation of a Logical Device and a Physical Device" for further information.

Running Multiple Scenarios Simultaneously
When you select all discrepancies for resolution, Network Integrity and UIM incorporate
prioritization to ensure correct ordering, and create all selected events in the following order:

Chapter 2
Abstract Resolve in UIM Action

2-22

• Mismatch

• Assoc-

• Entity-

• Entity+

• Assoc+

When you select a batch of discrepancies, ensure that dependencies between the
discrepancies in the selected batch meet. If a dependency is not met, then resolution fails. For
example, when an equipment exists in an equipment holder, but it does not belong there,
unlink the equipment (Entity-) before you create, and link the correct one (Entity+).

Chapter 2
Abstract Resolve in UIM Action

2-23

3
Using the Cartridge

This chapter provides instructions for using the Oracle Communications Network Integrity UIM
Integration cartridge in Network Integrity and Oracle Communications Design Studio.

About Wild Card Searching
Network Integrity UI search and Oracle Communications Unified Inventory Management (UIM)
UI search support wildcards and all searches are case-insensitive.

Table 3-1 shows the special search characters supported in the Network Integrity search
panels.

Table 3-1 Supported Special Search Characters

Special Character Meaning Example

% Match 0 or more characters abc% is equivalent to "Starts With abc"

%xyz is equivalent to "Ends With xyz"

%lmn% is equivalent to "Contains lmn"

* same as % abc* is equivalent to "Starts With abc"

*xyz is equivalent to "Ends With xyz"

lmn is equivalent to "Contains lmn"

_ Match a single character Among other things, a_c will match a2c and
abc

\ Used to match special
characters

\& matches &

* matches *

_ matches _

\\ matches \

A % or * wildcard at the start and/or end of a search string is always used to map the
remaining string with the appropriate qualifier (Begins With, Ends With, and Contains).

The * wildcard is always mapped to the % wild card for use by UIM. Similarly * is mapped to *
for use by UIM.

Embedded wildcards (for example, A%Z) are passed directly to the UIM search operations.
The result is the same as when performing the equivalent search from the UIM UI. In particular,
wildcard matches are not supported for equals (A%Z will not match A2Z) but are supported for
other qualifiers (A%Z% will match A2Z, AtoZ!, etc.).

Wildcards at start and/or end of value are mapped to one of the existing search qualifiers as
described in the following table. In all cases, any leading or trailing wildcard is removed leaving
"Something" as the value for search.

Table 3-2 shows the qualifiers for the wildcard pattern.

3-1

Table 3-2 Wildcard Pattern Qualifiers

Wildcard Pattern Qualifier

Something% BEGINS_WITH_IGNORE_CASE

%Something ENDS_WITH_IGNORE_CASE

%Something% CONTAINS_IGNORE_CASE

Something EQUALS_IGNORE_CASE

Multi-valued fields result in multiple searches. For example, if logicalDeviceName is Device1,
Device2 and networkLocationEntityCode is Place1*, Place2* then 4 searches are performed
(Device1/Place1*, Device1/Place2*, Device2/Place1*, and Device2/Place2*).

The comma can be escaped. A value 'a,b' searches for a, then b while a value 'a\,b' searches
once for 'a,b'.

Creating an Import from UIM Scan
The Import from UIM scan imports devices from UIM and models them into physical device
and logical device models.

To create an Import from UIM import scan:

1. Create a new scan.

See "Using Network Integrity" in Network Integrity Online Help for more information.

2. On the General tab, do the following:

• From the Scan Action list, select Import From UIM.

The Scan Type field displays Import.

• In the Scan Action Parameters section, enter filter values.

3. Make any other required configurations.

4. Save and run the scan.

Creating a Reconciliation Solution
This section describes how to build a deployable cartridge that includes discovery, discrepancy
detection, and reconciliation actions for integration with UIM.

Before you perform this procedure, ensure that the Network Integrity UIM Integration cartridge
and its dependencies are imported into Design Studio.

To create a reconciliation solution:

1. In Design Studio, create a new UIM Model cartridge project and add Logical Device and
Physical Device specifications.

2. Create a new Network Integrity cartridge project.

3. In the Network Integrity cartridge project, create a new discovery action.

4. Make the Network Integrity cartridge project dependent on the UIM cartridge project.

5. Add the logical and physical devices specifications from the UIM Model cartridge project to
the model collection in the Network Integrity cartridge project.

Chapter 3
Creating an Import from UIM Scan

3-2

6. Add the model collection to the discovery action.

7. Create a discovery processor to model the new specifications.

8. Create a new discrepancy detection action.

9. Extend the Abstract Detect UIM Discrepancies action.

10. Set the result source to the new discovery action.

11. Create a new discrepancy resolution action.

12. Extend the Abstract Resolve in UIM action.

13. Set the result source to the new discovery action.

14. Set the Resolution Action label to Correct in UIM.

Populating UIM with Discovered Data
To populate UIM with discovered network data:

1. In Network Integrity, configure a discovery scan with the Discrepancy Detection option
enabled.

2. Run the discovery scan.

The scan generates discrepancies for each missing logical and physical entity.

3. Submit the discrepancy resolutions for the entities you want to import to UIM.

4. Verify that UIM is populated with the submitted data.

5. In Network Integrity, configure and run an import scan.

The import scan imports data from UIM.

6. Rerun the discovery scan with the Discrepancy Detection option enabled.

The scan does not detect any discrepancies as UIM contains the discovered data.

Performing Ongoing Reconciliation with UIM
Before you perform this procedure, ensure that:

• UIM is running

• UIM Integration and Network Integrity discovery cartridges are deployed

• The Import Systems tab is configured for UIM

• Import scans are configured

• Discovery scans are configured with Discrepancy Detection enabled

To perform ongoing reconciliation with UIM:

1. In Network Integrity, run the import scan.

2. Run the discovery scan.

3. Select the discrepancies that are found during the discovery scan and correct them in UIM.

4. Submit the discrepancies for resolution.

5. Run the import scan.

The import scan imports data from UIM.

Chapter 3
Populating UIM with Discovered Data

3-3

6. Run the discovery scan.

The scan does not detect any discrepancies.

About UIM Auto-Termination
UIM supports auto-termination of connectivity to device interfaces. For this feature, UIM
expects a complete subinterface hierarchy under a STM interface.

To create STM interfaces in UIM for the purpose of auto-termination, you must ensure that the
discovered interface hierarchy is complete before performing the Correct in UIM action for
entity- discrepancies of logical devices or STM device interfaces.

To discover the complete interface hierarchy, configure the discovery scan with the Collect
CTP scan parameter set to Potential.

Note:

If you run a discovery scan with the Collect CTP scan parameter value set to
Potential and upload discrepancies to UIM, all future discovery scans with a different
Collect CTP parameter value generate entity- discrepancies. You can ignore these
discrepancies.

Chapter 3
Performing Ongoing Reconciliation with UIM

3-4

4
About Cartridge Modeling

This chapter describes how the Oracle Communications Network Integrity UIM Integration
cartridge is modeled in Oracle Communications Design Studio.

UIM Integration Cartridge UML Representation
Figure 4-1 displays a Unified Modeling Language (UML) diagram depicting the object
relationship being rendered.

Figure 4-1 UIM Integration Cartridge UML Representation

Oracle Communications Information Model Information
Oracle Communications Unified Inventory Management (UIM) does not support Device
Interface Configuration and Media Interface entities. The Device Interface Configuration entity
is excluded from integration. MediaInterface in Network Integrity is mapped to DeviceInterface
in UIM.

The Media Interface entity may be realized as either DeviceInterface or MediaInterface in
Network Integrity. It can be realized only as DeviceInterface in UIM.

Attributes that are defined in the Oracle Communications Information Model, supported by
Network Integrity, but not supported by UIM are implemented as characteristics in UIM and are
mapped from attribute to characteristic and from characteristic to attribute. These
characteristics are not mandatory in UIM. If they are not present, the value is empty on import
and is not set during resolution. All other attributes are mapped directly.

4-1

Device Hierarchy
The UIM Integration cartridge supports both logical device and physical device hierarchies.
The cartridge supports physical-to-logical mapping relationships (physical-device-to-logical-
device mapping and physical-port-to-device-interface mapping).The cartridge supports both
Device Interface and Media Interface entities. In UIM, Media Interface is represented as Device
Interface with additional characteristics.

Characteristics
Table 4-1 shows characteristics included in the ora_ni_uim_ocim cartridge.

Table 4-1 Characteristics in the ora_ni_uim_ocim Cartridge

Characteristic UI Label Field Type Notes

nativeEmsName Native EMS Name Text N/A

nativeEmsAdminServiceState Native EMS Admin Service State Text Available values:

• UNKNOWN
• IN_SERVICE
• OUT_OF_SERVICE
• TESTING
• IN_MAINTAINANCE

nativeEmsServiceState Native EMS Service State Text Available values:

• UNKNOWN
• IN_SERVICE
• OUT_OF_SERVICE
• TESTING
• IN_MAINTAINANCE

mtuCurrent MTU Current Text N/A

mtuSupported MTU Supported Text N/A

nativeEmsConnectorPresent Native EMS Connector Present Check box N/A

Logical Mapping
The UIM Integration cartridge supports the following logical mappings.

• Logical Device

• Device Interface

Logical Device
Table 4-2 shows characteristics for the Logical Device specification.

Table 4-2 Logical Device Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

Chapter 4
Device Hierarchy

4-2

Table 4-2 (Cont.) Logical Device Characteristics

Characteristic Information Model Support Field Type

nativeEmsAdminServiceState Static Text

nativeEmsServiceState Static Text

physicalLocation Static Text

Device Interface
Table 4-3 shows characteristics for the Device Interface specification.

Table 4-3 Device Interface Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

nativeEmsAdminServiceState Static Text

nativeEmsServiceState Static Text

physicalLocation Static Text

ifType Static Text

minSpeed Static Text

maxSpeed Static Text

nominalSpeed Static Text

physicalAddress Static Text

mtuCurrent Static Text

mtuSupported Static Text

nativeEmsConnectorPresent Static Check box

Physical Mapping
The UIM Integration cartridge supports the following physical mappings.

• Physical Device

• Equipment

• Equipment Holder

• Physical Port

Physical Device
Table 4-4 shows characteristics for the Physical Device specification.

Table 4-4 Physical Device Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

Chapter 4
Physical Mapping

4-3

Equipment
Table 4-5 shows characteristics for the Equipment specification.

Table 4-5 Equipment Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

physicalLocation Static Text

Equipment Holder
Table 4-6 shows characteristics for the Equipment Holder specification.

Table 4-6 Equipment Holder Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

physicalLocation Static Text

Physical Port
Table 4-7 shows characteristics for the Physical Port specification.

Table 4-7 Physical Port Characteristics

Characteristic Information Model Support Field Type

nativeEmsName Static Text

physicalLocation Static Text

serialNumber Static Text

physicalAddress Static Text

Chapter 4
Physical Mapping

4-4

5
About Design Studio Construction

This chapter describes how the Oracle Communications Network Integrity UIM Integration
cartridge is built from the Oracle Communications Design Studio perspective.

Actions
The following tables describe the Design Studio construction of actions and associated
components in the UIM Integration cartridge.

Note:

Parameter values are case-sensitive and must be entered in capital letters when
commands are run from a command-line interface.

Table 5-1 Describes how actions in the UIM Integration cartridge are constructed in Design
Studio.

Table 5-1 Design Studio Construction of Actions

Action Result
Category

Address
Handler

Scan Parameter Groups Processors

Abstract Import from
UIM

Device N/A Parallel Process
Parameters

See "Using Design Studio
to Extend Network
Integrity" in Network
Integrity Developer's
Guide for more
information.

• Import UIM Initializer
• Logical Device UIM Finder
• Physical Device UIM Finder
• Logical Device UIM MultiThread

Importer
• Physical Device UIM MultiThread

Importer
• Logical Device UIM Importer
• Linked Physical Device UIM Importer
• Logical Device UIM Persister
• Physical Device UIM Importer
• Linked Logical Device UIM Importer
• Physical Device UIM Persister

Import from UIM Device N/A UIMImportParameters.
See Table 5-6.

• Processors inherited from the Abstract
Import from UIM action

• Scan Parameter UIM Initializer

Abstract Detect UIM
Discrepancies

Device N/A N/A • Processors inherited from the Detect
Discrepancies action

• UIM Discrepancies Filter Initializer

Abstract Resolve in
UIM

Device N/A N/A • UIM Resolution Framework Initializer
• UIM Resolution Initializer
• UIM Resolution Framework Dispatcher

5-1

Table 5-1 (Cont.) Design Studio Construction of Actions

Action Result
Category

Address
Handler

Scan Parameter Groups Processors

Abstract Incremental
Import from UIM

Device N/A N/A • Processors inherited from the Abstract
Import from UIM action

• ME Names Collector
• UpdateNotificationStatus

Incremental Import
from UIM

Device N/A UIMIncrementalImportPar
ameters. See Table 5-5

• Processors inherited from the Abstract
Incremental Import from UIM action.

• Incremental Scan Parameter UIM
Initializer

Characteristics
Oracle Communications Unified Inventory Management (UIM) requires certain characteristics
to model attributes that are native in Network Integrity. Some of these characteristics are part
of UIM Integration, delivered in the ora_ni_uim_ocim cartridge. Other attributes are part of
UIM, delivered in the ora_uim_model cartridge.

These characteristics have the Ignore Characteristic in Network Integrity tag. They appear
as characteristics in UIM, but not in Network Integrity. The UIM Integration cartridge needs to
handle these characteristics differently.

Table 5-2 shows UIM integration characteristics.

Table 5-2 UIM Integration Characteristics

Characteristic Source Enumerations

nativeEmsName ora_ni_uim_ocim N/A

nativeEmsAdminServiceState ora_ni_uim_ocim Available values:

• UNKNOWN
• IN_SERVICE
• OUT_OF_SERVICE
• TESTING
• IN_MAINTAINANCE

nativeEmsServiceState ora_ni_uim_ocim Available values:

• UNKNOWN
• IN_SERVICE
• OUT_OF_SERVICE
• TESTING
• IN_MAINTAINANCE

physicalLocation ora_uim_model N/A

ifType ora_uim_model N/A

minSpeed ora_uim_model N/A

maxSpeed ora_uim_model N/A

nominalSpeed ora_uim_model N/A

physicalAddress ora_uim_model N/A

mtuCurrent ora_ni_uim_ocim N/A

Chapter 5
Actions

5-2

Table 5-2 (Cont.) UIM Integration Characteristics

Characteristic Source Enumerations

mtuSupported ora_ni_uim_ocim N/A

nativeEmsConnectorPresent ora_ni_uim_ocim N/A

serialNumber ora_uim_model N/A

To integrate Network Integrity cartridges with UIM and to include the attributes listed in
Table 5-2, add the characteristics listed in the following table to your UIM cartridge
specifications.

Table 5-3 displays characteristics that entities should include for integration with UIM.

Table 5-3 Characteristics for UIM Integration

UIM Entity Characteristics to Include

LogicalDevice • nativeEmsName
• nativeEmsAdminServiceState
• nativeEmsServiceState
• physicalLocation

DeviceInterface • nativeEmsName
• nativeEmsAdminServiceState
• nativeEmsServiceState
• physicalLocation
• ifType
• minSpeed
• maxSpeed
• nominalSpeed
If the Interface is to mimic a MediaInterface in Network Integrity, the
following will also be required:

• physicalAddress
• mtuCurrent
• mtuSupported
• nativeEmsConnectorPresent

PhysicalDevice nativeEmsName

Equipment • nativeEmsName
• physicalLocation

EquipmentHolder • nativeEmsName
• physicalLocation

PhysicalPort • nativeEmsName
• physicalLocation
• serialNumber
• physicalAddress

Scan Parameter Groups
The Import from UIM action uses the UIMImportParameters scan parameter group. Table 5-4
outlines the Design Studio construction of this scan parameter group.

Chapter 5
Scan Parameter Groups

5-3

Table 5-4 UIMImportParameters Scan Parameter Group Design Studio Construction

Characteristic Name Parameter Type Description UI Label

adminState Dropdown The status of the device in the inventory system. Inventory State

importLogicalDevices Check box Use this box to indicate whether to import logical
devices. By default, this box is checked in the UI.

Import Logical
Devices

importPhysicalDevices Check box Use this box to indicate whether to import physical
devices. By default, this box is checked in the UI.

Import Physical
Devices

logicalDeviceSpecification String The specification name(s) for logical devices. This
field supports wildcard characters. Values are
comma separated in case multiple specifications
given.

Logical Device
Specification

name String Use to filter imported devices by device name.
This field supports wildcard characters.

Name

networkLocationEntityCode String The network or entity location code. This field
supports wildcard characters.

Network/Entity
Location

physicalDeviceSpecification String The specification name(s) for physical devices.
This field supports wildcard characters. Values are
comma separated in case multiple specifications
given.

Physical Device
Specification

The Incremental Import from UIM action uses the UIMIncrementalImportParameters scan
parameter group. Table 5-5 outlines the Design Studio construction of this scan parameter
group.

Table 5-5 UIMIncrementalImportParameters Scan Parameter Group Design Studio Construction

Characteristic Name Parameter Type Description UI Label

importLogicalDevices Check box Use this box to indicate whether to import logical
devices. By default, this box is checked in the UI.

Import Logical
Devices

importPhysicalDevices Checkbox Use this box to indicate whether to import physical
devices. By default, this box is checked in the UI.

Import Physical
Devices

nmsNotificationCircle String Use this field to provide NMS circle/oss name Nms Notification
Circle

nmsNotificationVendor String Use this field to provide NMS vendor name Vendor

nmsNotificationCount Int Use this field to provide how many NMS
notifications to be fetched

Nms Notification
Count

Processors
Table 5-6 describes how processors are constructed in Design Studio.

Chapter 5
Processors

5-4

Table 5-6 Design Studio Construction of Processors

Processor Variable

Import UIM Initializer Input: N/A

Output:
• filters
• uimImportContext
• uimLogicalDeviceIDs
• uimPhysicalDeviceIDs

Scan Parameter UIM Initializer Input: filters

Output: N/A

Logical Device UIM Finder Input:
• filters
• ldev
• uimLDev
• uimImportContext
• uimLogicalDeviceIDs
• uimPhysicalDeviceIDs

Physical Device UIM Finder Input:
• filters
• uimImportContext
• uimLogicalDeviceIDs
• uimPhysicalDeviceIDs

Logical Device UIM Importer Input:
• filters
• uimImportContext
• uimLogicalDeviceID
• uimPhysicalDeviceIDs

Output:
• ldev
• uimLDev

Linked Physical Device UIM Importer Input:
• filters
• uimImportContext
• uimLogicalDeviceID
• uimPhysicalDeviceIDs
• ldev
• uimLDev

Output: pDev

Logical Device UIM Persister Input: N/A

Output: N/A

Physical Device UIM Importer Input:
• uimImportContext
• uimPhysicalDeviceID

Output: pDev

Physical Device UIM Persister Input: N/A

Output: N/A

UIM Discrepancies Filter Initializer Input: N/A

Output: N/A

Chapter 5
Processors

5-5

Table 5-6 (Cont.) Design Studio Construction of Processors

Processor Variable

Discrepancy Detector Input: N/A

Output: N/A

UIM Resolution Framework Initializer Input: N/A

Output:
• baseResolutionElement
• uimResolutionContext

UIM Resolution Initializer Input:
• baseResolutionElement
• uimResolutionContext

Output: N/A

UIM Resolution Framework Dispatcher Input:
• baseResolutionElement
• uimResolutionContext

Output: N/A

Logical Device UIM MultiThread Importer Input:
• filters
• uimImportContext
• uimLogicalDeviceIDs

Physical Device UIM MultiThread
Importer

Input:
• filters
• uimImportContext
• uimLogicalDeviceIDs
• uimPhysicalDeviceIDs

Linked Logical Device UIM Importer Input:
• filters
• uimImportContext
• uimLogicalDeviceIDs
• pdev
• uimPDev

ME Names Collector Input: incrementalimportScanParams

Output: meNames

UpdateNotificationStatus Input:
• incrementalimportScanParams
• meNames

Incremental Scan Parameter UIM
Initializer

Input: incrementalimportScanParams

Chapter 5
Processors

5-6

6
Working with the UIM Sample Web Service

This chapter provides information about the Oracle Communications Network Integrity UIM
Sample Web Service.

About the NI UIM Client
This section provides instructions for building the Oracle Communications Unified Inventory
Management (UIM) Sample web service client JAR file. This file is used by the UIM Integration
cartridge. This client JAR is available in the ora_ni_uim_webservice project.

Generating the NI UIM Client JAR File
Building the UIM Sample web service client JAR is required only when you want to modify the
web service and have the UIM Integration cartridge use it. To use the web service in client
software, you must generate the NI_UimClient.jar file.

To generate the JAR file:

1. Set up the host.properties file. See "Installing the UIM Sample Web Service" for
instructions.

2. Execute the All target using the buildUimClient.xml ANT file.

3. Copy the NI_UimClient.jar file from the webarchive\ora_ni_uim_webservices_cartproj
folder into the UIM Integration cartridge lib directory.

The NI_UimClient.jar file is generated, which can then be used in client software.

UIM Connection Client Example
Example 6-1 shows the code that you can use to connect the NI UIM Client to UIM.

Example 6-1 Client UIM Connection Code

String userId = dis.getUsername();
String passWd = dis.getPassword();
if (userId == null || passWd == null) {
 logger.warning("Configuration error: Username/Password values are required for UIM
Inventory System.");
 throw new ProcessorException(
 "Configuration error: Username/Password values are required for UIM
Inventory System.");
}

try {
 logger.finest("invoke new NI_Uim_Impl");

 NI_Uim service = new NI_Uim_Impl();
 if (service == null) {
 logger.severe("UIM Web Service initialization error: NI_Uim == null");
 throw new ProcessorException("UIM Web Service initialization error: NI_Uim ==
null");
 }

6-1

 logger.finest("invoke service.getNI_UimHTTPPort");

 NI_UimPort port = service.getNI_UimHTTPPort(userId.getBytes(), passWd.getBytes());
 if (port == null) {
 logger.severe("UIM Web Service initialization error: NI_UimPort == null");
 throw new ProcessorException("UIM Web Service initialization error: NI_UimPort
== null");
 }

 logger.finer("UIM WS Endpoint = " + dis.getAddress());
 logger.finest("Setting endpoint on the WS port.");
 Stub stub = (Stub) port;
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, dis.getAddress());

 // Success. Save the connection objects.
 //
 uim_service = service;
 uim_port = port;
}

When uim_port is established, the web service calls are available through uim_port.

Note:

For the full source code for this fragment, view
oracle.communications.integrity.mibiiuimcartridge.resolutionprocessors.re
solutionframeworkinitializer.uimWebService.

About the UIM Sample Web Service Operations
This section provides information about web service operations for the UIM Sample web
service provided in the ora_ni_uim_webservice project.

The web service assumes that all specifications comply with the Oracle Communications
Information Model. The web service assumes that all specifications in UIM that the web service
interacts with contain the characteristics listed in Table 6-1.

Table 6-1 UIM Sample Web Services Entity Characteristics Requirements

Entity Characteristics

PhysicalDevice nativeEMSName

Equipment physicalLocation

nativeEMSName

EquipmentHolder nativeEMSName

physicalLocation

PhysicalPort nativeEmsName

physicalLocation

physicalAddress

serialNumber

Chapter 6
About the UIM Sample Web Service Operations

6-2

Table 6-1 (Cont.) UIM Sample Web Services Entity Characteristics Requirements

Entity Characteristics

LogicalDevice nativeEMSName

nativeEMSAdminServiceState

nativeEMSServiceState

physicalLocation

DeviceInterface nativeEMSName

nativeEMSAdminServiceState

nativeEMSServiceState

physicalLocation

ifType

minSpeed

maxSpeed

nominalSpeed

MediaInterface nativeEMSName

nativeEMSAdminServiceState

nativeEMSServiceState

physicalLocation

ifType

minSpeed

maxSpeed

nominalSpeed

mtuCurrent

mtuSupported

nativeEMSConnectorPresent

physicalAddress

Installing the UIM Sample Web Service
Before you install the UIM Sample Web Service, ensure that the following are installed:

• Oracle Communications Service Catalog and Design - Design Studio for UIM. See SCD
Design Studio Installation Guide.

• Oracle WebLogic Server and UIM, or UIM resources, in an environment accessible to
Design Studio. See "Unified Inventory Management Installation Overview " in UIM
Installation Guide for information about installing UIM. See UIM Developer's Guide for
information about installing UIM resources.

To install the UIM Sample Web Service on UIM:

1. Rename the etc\COMPUTERNAME.properties file to host.properties, where host is the
environment name of the computer.

Chapter 6
About the UIM Sample Web Service Operations

6-3

Note:

Obtain the environment name for the computer by entering the hostname
command at the prompt. The output from this command is the computer
environment name.

This enables the loaded Java project to reflect the environment.

2. Open the host.properties file and set the property fields to reference your WebLogic
domain and UIM instance.

3. Set the READ.TIMEOUT value in milliseconds with the desired value. This value describes
the duration after which the NI-UIM webservice requests will time-out if no response is
received.

4. Save and close the file.

5. (Optional) If you wish to develop the web service in Design Studio, set the following Java
Build Path Variables:

• UIM_LIB: Example C:/wls1036/user_projects/domains/UIM/UIM/lib

• POMS_LIB: Example C:/OracleCommunications/commsplatform/ws

• POMS_PLIB: Example C:/OracleCommunications/POMSClient/lib

• FMW_LIB: Example C:/wls1036/modules

6. In the build.xml file, run the following ANT targets to get the web service ready to build
and deploy:

• clean

• extract.ear

7. Edit the META-INF\application.xml file and add the following code fragment:

<module>
 <web>
 <web-uri>NI_Uim.war</web-uri>
 <context-root>NI_Uim</context-root>
 </web>
</module>

8. In the build.xml file, run the following ANT targets to build the web service and update the
EAR file:

• generate-from wsdl

• build-service

• update.ear

9. Redeploy custom.ear using the WebLogic console.

10. (Optional) If you are installing the Network Integrity UIM Sample Web Service on a UIM
instance that is not located on the same server as Design Studio, do not run update.ear.
For information about installing UIM on a remote server, see UIM Developer's Guide.

Configuring the Network Integrity UI for the UIM Sample Web Service
To configure the Network Integrity UI for the UIM Sample Web Service:

1. Log in to Network Integrity.

Chapter 6
About the UIM Sample Web Service Operations

6-4

2. Click Manage Import System. The Import System Details page is displayed.

3. In the Name field, enter the name of the import system.

4. In the Address field, enter the following address:

http://UIM_IPAddress:UIM_Port/NI_Uim/NI_UimHTTP

If UIM is installed with SSL enabled, the UIM URL requires HTTPS.

5. In the User Name field, enter the UIM user name.

6. In the Password field, enter the password of UIM.

Note:

You must configure the WebLogic domain to accept UIM Sample Web Service
connections using HTTPS. See "Unified Inventory Management Installation Overview
" in UIM Installation Guide and "Unified Inventory Management System
Administration Overview" in UIM System Administrator's Guide for more information.

About CRUD Operations
The UIM Sample Web Service provides Create, Read, Update, and Delete (CRUD) operations
on the following entities:

• Logical Device Entity

• Device Interface Entity

• Media Interface Entity

• Physical Device Entity

• Equipment Entity

• Equipment Holder Entity

• Physical Port Entity

• Channelized Connectivity Entity

The UIM Sample Web Service provides create-association operations between peer entities
using:

• linkLogicalPhysicalDeviceRequest: This operation supports horizontal associations. The
operation provides associations between the logical device and the physical device.

• linkLogicalPhysicalInterfaceRequest: This operation supports horizontal associations. The
operation provides associations between the interface and the physical ports.

The UIM Sample Web Service provides create-parent-and-child associations between entities
using link.

The UIM Sample Web Service provides delete associations between parent and child entities
and delete associations between peer entities. For these operations, the UIM Sample Web
Service uses unLink, which deletes vertical and horizontal associations.

The UIM Sample Web Service provides operations to retrieve an entire device tree using:

• getPhysicalDeviceTree

• getLogicalDeviceTree

Chapter 6
About the UIM Sample Web Service Operations

6-5

About Find Qualifiers
The UIM Sample Web Service defaults to the following attribute values for find-entity
operations (see findLogicalDeviceRequest and findPhysicalDeviceRequest) if these qualifiers
are not already set:

• id field: EQUALS

• Name: BEGINS_WITH

• Mgmt Ip Address: EQUALS

About the <specType> Entity
The <specType> element is commonly used throughout the UIM Sample Web Service
examples (see Example 6-2). The <specType> element is used to identify the entity type. This
stages the operations to be executed for a particular Oracle Communications Unified Inventory
Management (UIM) API. Set the <name> element to the name of the specification you are
using.

Example 6-2 <specType> Element

<specType>
 <name>?</name>
 <entityType>PHYSICALDEVICE</entityType>
</specType>

Supported Entity Types
The <entityType> element supports the following values:

• LOGICALDEVICE

• DEVICEINTERFACE

• MEDIAINTERFACE

• PHYSICALDEVICE

• EQUIPMENT

• EQUIPMENTHOLDER

• PHYSICALPORT

Response Messages
The following response messages can appear:

• SUCCESS: This message appears with a return value and indicates that an operation has
succeeded and is committed to UIM.

• FAILURE: This error message indicates that the operation failed but the UIM rollback was
successful.

• Exception messages indicate that an operation failed and the UIM rollback failed. This
throws exceptionsInventoryFaultType and ValidationFaultType.

Use the following code pattern to inspect a response and detect an operation FAILURE.

Chapter 6
About the UIM Sample Web Service Operations

6-6

CreateLogicalDeviceRequestType createLogicalDeviceRequestType = new
CreateLogicalDeviceRequestType();

createLogicalDeviceRequestType.setLogicalDevice(wsLogicalDevice);

UIMWebService.checkResponse(uimPort.createLogicalDevice(createLogicalDeviceRequestType));

UIM Sample Web Service Entity Operations
Table 6-2 describes the files included in the UIM Sample Web Service project.

Table 6-2 UIM Sample Web Service Project Files

File Description

NI-Uim-soapui-project.xml SoapUI project file that contains sample requests and responses.

WSDL-Documentation.html Generated WSDL documentation that shows all the available
operations. A short description of each operation is provided.

Table 6-3 shows how the UIM Sample Web Service processes various entities.

Table 6-3 Entity Operation Coding Patterns

Entity Operations Signature Patterns

createLogicalDeviceRequest

createDeviceInterfaceRequest

createMediaInterfaceRequest

createPhysicalDeviceRequest

createEquipmentRequest

createEquipmentHolderRequest

createPhysicalPortRequest

Web service:

• Passes in a fully specified entity
• Returns the ID of each entity if successful

updateLogicalDeviceRequest

updateDeviceInterfaceRequest

updateMediaInterfaceRequest

updatePhysicalDeviceRequest

updateEquipmentRequest

updateEquipmentHolderRequest

updatePhysicalPortRequest

Web service:

• Passes in a fully specified entity; however, all parameters
must be specified, not just those parameters being
updated

• Returns the ID of each entity if successful

findLogicalDeviceRequest

findDeviceInterfaceRequest

findMediaInterfaceRequest

findPhysicalDeviceRequest

findEquipmentRequest

findEquipmentHolderRequest

findPhysicalPortRequest

Web service:

• Passes in filters and filter qualifiers
• Returns 0, 1, or n entity IDs
• Checks for null ID elements when 0 entity IDs are

returned
• Returns ID. For finddevice operations, it may also return

the IDs of related devices.

Chapter 6
About the UIM Sample Web Service Operations

6-7

Table 6-3 (Cont.) Entity Operation Coding Patterns

Entity Operations Signature Patterns

getLogicalDeviceRequest

getDeviceInterfaceRequest

getMediaInterfaceRequest

getPhysicalDeviceRequest

getEquipmentRequest

getEquipmentHolderRequest

getPhysicalPortRequest

Web service:

• Passes in the ID of the entity to be retrieved
• Returns the fully specified entity

link Web service:

• Passes in the parent and child ID
• Returns the parent ID if successful

unlink Web service:

• Passes in the parent and child IDs
• Assumes the parent ID is the logical entity and the child

ID is the physical entity when used to delete associations
between peer LogicalDevice to PhysicalDevice, and peer
DeviceInterface to PhysicalPort

• Returns the parent ID if successful

getPhysicalDeviceTree

getLogicalDeviceTree

Web service:

• Passes in the ID
• Returns the entire device tree. See the schemas to

understand how this works with unlimited number of
descendent child objects.

Note:

Oracle Communications Network Integrity does not support delete operations on the
PhysicalDevice, LogicalDevice, and Equipment entities. Log in to UIM as
administrator to delete these entities.

Enabling Debugging for the Web Service
To enable debugging for the UIM Sample Web Service, which is displayed on the Oracle
WebLogic Server console:

1. Open the domain\UIM\config\loggingconfig.xml file.

2. Add the following text to the file:

<logger name="oracle.communications.inventory.webservice.adapter.ni"
additivity="false">
 <level value="debug" />
 <appender-ref ref="stdout"/>
 <appender-ref ref="rollingFile"/>
</logger>

Chapter 6
About the UIM Sample Web Service Operations

6-8

UIM Sample Web Service to Update Logical Devices Code
Example

Example 6-3 shows a fragment of code used to update a logical device using the UIM Sample
Web Service. The fragment shows how handling is accomplished for the UIM Sample Web
Service.

Example 6-3 Update Logical Device Coding Fragment

String errorMessageTask = "";
try {
 if (connect() == null) {
 failAll(context, attributeValueMismatchList, UIM_CONNECTION_FAILURE);
 return;
 }

 errorMessageTask = "findLogicalDevice";
 Range range = new Range();
 range.setStartRange(0);
 range.setEndRange(2);
 FindLogicalDeviceRequestType findLogicalDeviceRequestType = new
FindLogicalDeviceRequestType();
 findLogicalDeviceRequestType.setId(importedLogicalDevice.getId());
 findLogicalDeviceRequestType.setIdQualifier(SearchQualifier.equals);
 findLogicalDeviceRequestType.setRange(range);

 GetIdsResponseType uimLogicalDevices =
uimPort.findLogicalDevice(findLogicalDeviceRequestType);

 if (uimLogicalDevices.getId() != null) {
 String[] Ids = uimLogicalDevices.getId();
 if (Ids.length != 1) {
 String msg = "Found " + Ids.length + " logicalDevices matching
importedLogicalDevice.getId()="
 + importedLogicalDevice.getId() + ", expecting 1";
 logger.log(Level.SEVERE, msg);
 failAll(context, attributeValueMismatchList, msg);
 return;
 }
 }

 errorMessageTask = "getLogicalDevice";
 GetLogicalDeviceRequestType getLogicalDeviceRequestType = new
GetLogicalDeviceRequestType();
 getLogicalDeviceRequestType.setId(importedLogicalDevice.getId());
 GetLogicalDeviceResponseType getLogicalDeviceResponseType = uimPort
 .getLogicalDevice(getLogicalDeviceRequestType);

 NILogicalDevice wsLogicalDevice = getLogicalDeviceResponseType.getLogicalDevice();

 for (DisDiscrepancy discrepancy : attributeValueMismatchList) {

 String attrName = discrepancy.getAttributeOrRelationshipName();

 if (attrName.equals(NAME)) {
 wsLogicalDevice.setName(discoveredLogicalDevice.getName());
 } else if (attrName.equals(DESCRIPTION)) {
 wsLogicalDevice.setDescription(discoveredLogicalDevice.getDescription());
 } else if (attrName.equals(LogicalDeviceHelper.MGMT_IP_ADDRESS)) {

Chapter 6
UIM Sample Web Service to Update Logical Devices Code Example

6-9

 copyCharacteristic(discoveredLogicalDevice, wsLogicalDevice,
LogicalDeviceHelper.MGMT_IP_ADDRESS);
 } else if (attrName.equals(LogicalDeviceHelper.NATIVE_EMS_ADMIN_SERVICE_STATE)) {
 wsLogicalDevice.setNativeEmsAdminServiceState(LogicalDeviceHelper
 .convertEmsServiceState(discoveredLogicalDevice.getNativeEmsAdminServ
iceState()));
 } else if (attrName.equals(LogicalDeviceHelper.NATIVE_EMS_SERVICE_STATE)) {

wsLogicalDevice.setNativeEmsServiceState(LogicalDeviceHelper.convertEmsServiceState(disco
veredLogicalDevice
 .getNativeEmsServiceState()));
 } else if (attrName.equals(LogicalDeviceHelper.SYS_OBJECT_ID)) {
 copyCharacteristic(discoveredLogicalDevice, wsLogicalDevice,
LogicalDeviceHelper.SYS_OBJECT_ID);
 } else {
 copyCharacteristic(discoveredLogicalDevice, wsLogicalDevice, attrName);
 }
 }
 UpdateLogicalDeviceRequestType updateLogicalDeviceRequestType = new
UpdateLogicalDeviceRequestType();
 updateLogicalDeviceRequestType.setLogicalDevice(wsLogicalDevice);

 errorMessageTask = "updateLogicalDevice";
 checkResponse(uimPort.updateLogicalDevice(updateLogicalDeviceRequestType));
 passAll(context, attributeValueMismatchList);
} catch (Exception e) {
 failAll(context, attributeValueMismatchList, errorMessageTask + LOCAL_ENTITY +
discoveredLogicalDevice.getId(), e);
}
logger.exiting(LOG_MYCLASSNAME, "handleAttributeValueMismatch");

Chapter 6
UIM Sample Web Service to Update Logical Devices Code Example

6-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	About the UIM Integration Cartridge
	About the UIM Sample Web Service
	About Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies

	Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the Cartridge Components
	Abstract Import from UIM Action
	Import UIM Initializer
	Logical Device UIM Finder
	Physical Device UIM Finder
	Logical Device UIM MultiThread Importer
	Physical Device UIM MultiThread Importer
	Logical Device UIM Importer
	Linked Physical Device UIM Importer
	Logical Device UIM Persister
	Physical Device UIM Importer
	Linked Logical Device UIM Importer
	Physical Device UIM Persister

	Import from UIM Action
	Scan Parameter UIM Initializer

	Abstract Incremental Import from UIM
	ME Names Collector
	UpdateNotificationStatus

	Incremental Import from UIM
	Incremental Scan Parameter UIM Initializer

	Abstract Detect UIM Discrepancies Action
	UIM Discrepancies Filter Initializer

	Abstract Resolve in UIM Action
	UIM Resolution Framework Initializer
	UIM Resolution Initializer
	UIM Resolution Framework Dispatcher
	Supported Creation Scenarios in UIM
	Creation of a Logical Device and a Physical Device
	Creation of a Logical Device
	Creation of a Device Interface
	Creation of a Physical Device
	Creation of an Equipment
	Creation of an Equipment Holder
	Creation of a Physical Port
	Creation of an Association Between Logical Device and Physical Device
	Creation of an Association Between Device Interface and Physical Port

	Teardown, Deletion, and Removal Scenarios in UIM
	Teardown of Association Between Device Interface and Physical Port
	Teardown of Association Between Logical Device and Physical Device
	Deletion of a Physical Port
	Deletion of an Equipment Holder
	Deletion of a Device Interface
	Removal of an Equipment from a Physical Device Tree

	Mismatched Data Scenarios
	Mismatch of Logical Device Data
	Mismatch of Device Interface Data
	Mismatch of Physical Device Data
	Mismatch of Equipment Data
	Mismatch of Equipment Holder Data
	Mismatch of Physical Port Data

	Working with Foreign IDs
	Scenario 1: Physical Device Tree Uses Foreign IDs
	Scenario 2: Logical Device Tree Uses Foreign IDs

	Swapping Cards
	Running Multiple Scenarios Simultaneously

	3 Using the Cartridge
	About Wild Card Searching
	Creating an Import from UIM Scan
	Creating a Reconciliation Solution
	Populating UIM with Discovered Data
	Performing Ongoing Reconciliation with UIM
	About UIM Auto-Termination

	4 About Cartridge Modeling
	UIM Integration Cartridge UML Representation
	Oracle Communications Information Model Information
	Device Hierarchy
	Characteristics
	Logical Mapping
	Logical Device
	Device Interface

	Physical Mapping
	Physical Device
	Equipment
	Equipment Holder
	Physical Port

	5 About Design Studio Construction
	Actions
	Characteristics

	Scan Parameter Groups
	Processors

	6 Working with the UIM Sample Web Service
	About the NI UIM Client
	Generating the NI UIM Client JAR File
	UIM Connection Client Example

	About the UIM Sample Web Service Operations
	Installing the UIM Sample Web Service
	Configuring the Network Integrity UI for the UIM Sample Web Service
	About CRUD Operations
	About Find Qualifiers
	About the <specType> Entity
	Supported Entity Types
	Response Messages
	UIM Sample Web Service Entity Operations
	Enabling Debugging for the Web Service

	UIM Sample Web Service to Update Logical Devices Code Example

