
Oracle® Communications Network
Integrity
Optical TMF814 CORBA Cartridge Guide

Release 7.5
G13620-02
April 2025

Oracle Communications Network Integrity Optical TMF814 CORBA Cartridge Guide, Release 7.5

G13620-02

Copyright © 2010, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 Overview

About the Optical TMF814 CORBA Cartridge 1-1

About Cartridge Dependencies 1-1

Run-Time Dependencies 1-1

Design Studio Dependencies 1-2

Opening the Cartridge Files in Design Studio 1-2

Building and Deploying the Cartridge 1-2

2 About the Cartridge Components

Discover Abstract TMF814 Action 2-1

TMF814 Property Initializer 2-2

TMF814 Session Manager 2-4

TMF814 Device Recorder Initializer 2-4

TMF814 ME Collector 2-5

TMF814 Updated ME Discoverer 2-5

TMF814 Device Modeler 2-5

TMF814 Equipment Collector 2-5

TMF814 Equipment Modeler 2-5

TMF814 PTP Collector 2-5

TMF814 PTP Modeler 2-5

TMF814 CTP Discoverer for PTP 2-6

TMF814 FTP Collector 2-6

TMF814 FTP Modeler 2-6

TMF814 CTP Discoverer for FTP 2-6

TMF814 Device Persister 2-7

TMF814 Device Recorder Persister 2-7

Update ME Notification Status 2-7

iii

TMF814 SNC Discoverer 2-7

TMF814 Cross-Connect Discoverer 2-7

TMF814 SNC CC Discoverer 2-8

Update SNC Notification Status 2-8

TMF814 Topological Link Collector 2-8

TMF814 Updated Topological Link Collector 2-8

TMF814 Topological Link Modeler 2-8

TMF814 Pipe Persister 2-8

Update TL Notification Status 2-8

Discover TMF814 Action 2-8

TMF814 CORBA Property Initializer 2-10

TMF814 Property Customizer 2-10

TMF814 MultiThread Device Modeler 2-10

TMF814 MultiThread TL Modeler 2-10

Abstract TMF814 Optical Transmission Devices 2-11

ProcessDiscoveryScanInput 2-11

ProcessNMSConnectionParams 2-12

ConnectTMF814CollectorService 2-12

CollectTMF814ManagedElements 2-12

ProcessTMF814ManagedElement 2-12

DisconnectTMF814CollectorService 2-13

Discover TMF814 Optical Transmission Devices 2-13

About Recording Mode 2-13

Enabling Recording Mode 2-13

3 Using the Cartridge

Creating a Discover TMF814 Scan 3-1

Creating a Discover TMF814 Optical Transmission Devices Scan 3-2

4 About Collected Data

About Collected Data 4-1

Multi Technology Network Management Hierarchy 4-1

Layer Parameters 4-5

TMF814 APIs 4-5

CORBA APIs 4-5

APIs for Cross-Connect Collection 4-6

APIs for Topological Link Collection 4-6

Handling Vendor Variations 4-6

FTP Collection API Variations 4-6

Cross-Connect Collection API Variation 4-7

iv

Topological Link Collection API Variation 4-7

Cross-Connect Protection Role 4-7

5 About Cartridge Modeling

About Cartridge Modeling 5-1

About the Oracle Communications Information Model 5-1

About the Physical Tree 5-1

About the Logical Tree 5-2

Field Mapping 5-3

About Building the Information Model Tree 5-8

Containment Relationships 5-8

Adding an Equipment and an Equipment Holder to the Tree 5-9

Adding a Physical Port and an Interface to the Tree 5-10

Adding a Sub-Interface to the Tree 5-10

Cartridge Modeling for Cross-Connect Data 5-10

A and Z Channels 5-13

Cartridge Modeling for Topological Link Data 5-14

About the SDH and DWDM Device Modeling 5-15

About the Physical Tree 5-15

About the Logical Tree 5-16

Default Specification Mapping 5-16

Specification Mapping Customization 5-21

Result Groups 5-22

6 About Model Correction

Equipment Holder as a Child of a Physical Device 6-1

Sub-Slots of Slots 6-1

Huawei U2000 MSTP End Port 6-1

7 About Design Studio Construction

Model Collections 7-1

Actions 7-1

8 About Design Studio Extension

Initializing a Custom Object Request Broker 8-1

Extending the Discover TMF814 Action to Collect Vendor-Specific Information 8-2

Collecting Vendor-Specific Details for CTPs 8-3

Adding New Managers 8-5

v

Creating a Custom Equipment Reconciliation Cartridge 8-6

Creating a Custom Circuit Reconciliation Cartridge 8-6

Customizing the JKLM Value Calculation 8-7

Adding New CORBA API Calls 8-8

Collecting and Modeling Protection Role Information 8-13

Discovering Custom Device or Result Group Names 8-14

vi

Preface

This guide explains the functionality and design of the Oracle Communications Network
Integrity Optical TMF814 CORBA cartridge.

Audience
This guide is intended for Network Integrity administrators, developers, and integrators.

This guide assumes that you are familiar with the following documents:

• Network Integrity Developer's Guide: for basic understanding of cartridges

• Network Integrity Installation Guide: for information about deploying and undeploying
cartridges

• Network Integrity CORBA Cartridge Guide: for an understanding of the functionality and
design of the Network Integrity Cartridge for CORBA (CORBA cartridge)

This guide assumes that you are familiar with the following concepts:

• TMF814 standards and terminology

• Common object request broker architecture (CORBA) standards and terminology

• Oracle Communications Design Studio

• Oracle Communications Information Model

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter describes the Oracle Communications Network Integrity Optical TMF814 CORBA
cartridge.

About the Optical TMF814 CORBA Cartridge
The Optical TMF814 CORBA cartridge is used to discover your network using a TMF814
common object request broker architecture (CORBA) interface. This cartridge provides
discovery actions capable of discovering both physical (equipment) and logical (interface)
hierarchy details of managed elements (MEs). It uses the TMF814 CORBA interface as a
discovery protocol to connect and retrieve details from network management systems (NMSs)
or element management systems (EMSs).

Using this cartridge, you can configure Network Integrity to capture and retrieve data about a
network system from equipment and system vendors that have adopted the TMF814 standard.

The Optical TMF814 CORBA cartridge can be used to discover the following network systems:

• Synchronous optical networking (SONET)

• Synchronous digital hierarchy (SDH)

• Dense wavelength-division multiplexing (DWDM)

• Asynchronous transfer mode (ATM)

• Ethernet

This cartridge supports versions 2.0, 2.1, 3.0, and 3.2 of the TMF814 implementation for the
ManagedElementMgr and EquipmentInventoryMgr managers.

This cartridge translates MTNM objects obtained during discovery into the Oracle
Communications Information Model and then writes the objects to the Network Integrity
database.

To ensure scalability, this cartridge processes MEs individually. The duration of the discovery
actions is proportional to the number and size of MEs to be discovered. It is not possible to
pause and resume a scan, though a scan can be stopped.

About Cartridge Dependencies
This section provides information on dependencies that the Oracle Communications Network
Integrity Optical TMF814 CORBA cartridge has on other entities.

Run-Time Dependencies
There are no run-time dependencies for this cartridge.

1-1

Design Studio Dependencies
To load the Optical TMF814 CORBA cartridge into Oracle Communications Design Studio, the
following cartridge must be installed:

• Network Integrity cartridge for CORBA (CORBA cartridge), including all of its
dependencies

Opening the Cartridge Files in Design Studio
To review and extend the Optical TMF814 CORBA cartridge, download a ZIP file from the
Oracle software delivery web site:

https://edelivery.oracle.com/
Download the Optical TMF814 CORBA cartridge ZIP file for Network Integrity, which contains
the Design Studio cartridge files.

The Optical TMF814 CORBA cartridge ZIP file has the following structure:

• \UIM_Cartridge_Projects\ora_ni_uim_ocim

• \UIM_Cartridge_Projects\TMF814_Model

• \Network_Integrity_Cartridge_Projects\TMF814Discovery_Cartridge

• \Network_Integrity_Cartridge_Projects\Abstract_CORBA_Cartridge

• \UIM_Cartridge_Projects\ora_ni_uim_device_ports_interfaces_connectors

• \UIM_Cartridge_Projects\ora_uim_network_device

• \UIM_Cartridge_Projects\ora_ni_uim_sdh_optical

• \UIM_Cartridge_Projects\ora_ni_uim_device_dwdm_optical

The TMF814Discovery_Cartridge project contains the extendable Design Studio files.

You must open the files in Design Studio before you can review and extend the cartridge.

Network Integrity Concepts for guidelines and best practices for extending cartridges. See
Network Integrity Developer's Guide for information about opening files in Design Studio.

Building and Deploying the Cartridge
See Design Studio Modeling Network Integrity for information about building and deploying
cartridges.

Chapter 1
Opening the Cartridge Files in Design Studio

1-2

https://edelivery.oracle.com/

2
About the Cartridge Components

This chapter provides information about the components that make up the Oracle
Communications Network Integrity Optical TMF814 CORBA cartridge.

The Optical TMF814 CORBA cartridge contains the following actions:

• Discover Abstract TMF814 Action

• Discover TMF814 Action

• Abstract TMF814 Optical Transmission Devices

• Discover TMF814 Optical Transmission Devices

See "About Design Studio Construction" for information about how the actions are built.

The Optical TMF814 CORBA cartridge supports a recording mode for recording TMF814 data.
See "About Recording Mode" for more information.

Discover Abstract TMF814 Action
This is an abstract action that can be extended in Oracle Communications Design Studio to
discover specified network and connectivity objects, using specified ORB Properties and ORB
Arguments. This action uses the IncrementalScanParameters scan parameter group. This
action supports incremental discovery based on NMS notifications received by Network
Integrity.

The Discover Abstract TMF814 action contains the following processors run in the following
order:

1. TMF814 Property Initializer

2. TMF814 Session Manager

3. TMF814 Device Recorder Initializer

4. TMF814 ME Collector

5. TMF814 Updated ME Discoverer

6. TMF814 Device Modeler

7. TMF814 Equipment Collector

8. TMF814 Equipment Modeler

9. TMF814 PTP Collector

10. TMF814 PTP Modeler

11. TMF814 CTP Discoverer for PTP

12. TMF814 FTP Collector

13. TMF814 FTP Modeler

14. TMF814 CTP Discoverer for FTP

15. TMF814 Device Persister

2-1

16. TMF814 Device Recorder Persister

17. Update ME Notification Status

18. TMF814 SNC Discoverer

19. TMF814 Cross-Connect Discoverer

20. TMF814 SNC CC Discoverer

21. Update SNC Notification Status

22. TMF814 Topological Link Config Initializer

23. TMF814 Topological Link Collector

24. TMF814 Updated Topo Link Collector

25. TMF814 Topological Link Modeler

26. TMF814 Pipe Persister

27. Update TL Notification Status

Figure 2-1 illustrates the processors workflow of the Discover Abstract TMF814 action.

Figure 2-1 Discover Abstract TMF814 Action Processors

Note:

The Abstract TMF814 action is configured with the isIncrementalScanEnabled
condition. When this condition is met, the corresponding processors will run.

TMF814 Property Initializer
This processor initializes properties required by other processors in the Discover Abstract
TMF814 action. All properties are populated into a JavaBean class named tmf814Properties.
These properties can be customized by other processors. Table 2-1 lists the available
properties.

Chapter 2
Discover Abstract TMF814 Action

2-2

Table 2-1 TMF814 Property Initializer Properties and Values

Property Name Description Value

Username Indicates the EMS user name, used while getting the EMS session
from the session factory.

Extending cartridges may
supply a default value.

Password Indicates the EMS password, used while getting the EMS session
from the session factory.

Extending cartridges may
supply a default value.

collectCTP Indicates the type of CTPs to collect:

• A current TP is a CTP that is, or can be cross-connected in the
current mapping configuration.

• An in-use TP is a CTP that is used by a subnetwork
connection (SNC) in any state, or a CTP that is terminated and
mapped.

• A potential contained TP (contained in a PTP or CTP) is a CTP
that is capable of supporting all possible mapping
configurations at the specified layer rates and is contained by
the specified termination.

Valid values: NONE,
CURRENT, IN_USE,
POTENTIAL

collectEquipment Indicates whether to collect Equipment and Equipment Holder
details. If this value is FALSE, only MEs and connection termination
points (CTPs) associated with floating termination points (FTPs)
are collected and modeled.

Valid values: TRUE, FALSE

collectTP Indicates whether to collect physical termination points (PTPs) or
floating termination points (FTPs), or both.

Valid values: ALL, NONE,
ONLY_PTP, ONLY_FTP

crossConnectCollection
Type

Indicates the method used to collect cross-connects:

• A value of USE_SNC collects cross-connects using multi layer
subnetwork (MLSN) Manager APIs.

• A value of USE_ME_MANAGER collects cross-connects using
ME Manager APIs.

Cross-connects are not collected if the value is set to NONE.

Ensure the correct value is used, according to your vendor
specifications.

Valid values: USE_SNC,
USE_ME_MANAGER,
NONE

crossConnectModelCust
omizerImplClass

Allows you to customize cross-connect modeling. N/A

ctpCollectionDepth Indicates the hierarchical depth to which CTPs are collected
(because TPs can contain several levels of child TPs), depending
on the API used by the vendor to call CTPs.

Valid values: positive
integers

ctpModelCustomizerImp
lClass

A class implementing the
oracle.communications.integrity.tmf814discovery.model.ctp.CTPMo
delCustomizer interface.

To discover additional attributes for CTPs, add a similar
implementation interface to the system.

N/A

discovererFactoryImplCl
ass

A default implementation of the Discoverer Factory class, used to
provide a custom collection mechanism.

N/A

emsManagerName Name of the EMSMgr_I manager used to obtain the manager from
EmsSession_I.getManager.

N/A

equipmentFetchSize Indicates the number of Equipment or Holders to fetch at a time. Valid values: positive integer

equipmentInventoryMan
agerName

Indicates the name of the Equipment inventory manager. N/A

includeHigherOrderCCs Specifies whether higher-order cross-connects of other SNCs are
collected.

Valid values: TRUE, FALSE

Chapter 2
Discover Abstract TMF814 Action

2-3

Table 2-1 (Cont.) TMF814 Property Initializer Properties and Values

Property Name Description Value

layerRateList Filters TPs based on layer rates while collecting in-use and
potential CTPs. An empty list indicates to the element management
system (EMS) to report all CTPs of all rates.

Valid values: Comma
separated list of layer rates
as numerical values.

managedElementManag
erName

Indicates the name of the ME manager. N/A

meFetchSize Indicates number of MEs to fetch at a time, as opposed to obtaining
them all at once.

N/A

mlsnManagerName Name of the MultiLayerSubnetworkMgr_I manager used to obtain
the manager from EmsSession_I.getManager.

N/A

modelCollectionType Indicates whether to model logical or physical devices, or both. Valid values: logical,
physical, both (=null)

namingService EMS naming service. N/A

namingServiceFormat The EMS naming service format. A value of STRINGIFIED
indicates that the namingService property value is a CORBA
stringified object reference. A value of PLAIN indicates that the
namingService property value is in a specific format.

Valid values: PLAIN,
STRINGIFIED

rootPOA Indicates the name of the root Portable Object Adapter (POA) N/A

topologicalLinkCollectio
nType

Indicates the method used to collect topological links:

• A value of BETWEEN_SN collects topological links between
subnetworks only.

• A value of INSIDE_SN collects topological links inside
subnetworks only.

• A value of ALL collects all topological links.
Topological links are not collected if value is set to NONE.

Ensure the correct value is used, according to your vendor
specifications.

Possible values: ALL,
BETWEEN_SN,
INSIDE_SN, NONE

tpFetchSize Indicates the number of TPs to fetch at a time, as opposed to
obtaining them all at once.

N/A

XCPipeFlushSize Cross-connect Information Model objects are flushed to the
database in batches. This value indicates number of modeled
objects flushed to DB in each batch.

Valid value: integer

TMF814 Session Manager
This processor creates a session manager instance (of type
oracle.communications.integrity.tmf814discovery.session.SessionManager) that is responsible
for managing the EmsSession and TMF814Object managers, as well as creating and
managing the emsMgr.EMSMgr_I and multiLayerSubnetwork.MultiLayerSubnetworkMgr_I
managers.

This processor also populates the discovered EMS version and updates the TMF814
properties Java bean object.

TMF814 Device Recorder Initializer
This processor initializes Recording Mode (if it has been enabled). See "About Recording
Mode" for more information.

Chapter 2
Discover Abstract TMF814 Action

2-4

TMF814 ME Collector
This processor retrieves a list of MEs using the TMF814 ME Manager. It outputs an Iterable for
each ME. To deal with a large number of objects, these iterators can retrieve MEs in chunks
(pagination) instead of all at one time.

Pagination is internal to the produced Iterable. The meFetchSize property set in
tmf814Properties indicates the number of MEs to be retrieved at a time.

This processor can filter MEs based on name-matching criteria provided through scan
parameters. Only those MEs that are matched by specified criteria are considered for further
processing.

TMF814 Updated ME Discoverer
This processor retrieves a list of MEs from the NMS notifications based on the matched filter
and updates discoveryIterator from the request with this list. It provides an output that has
notificationMENames, notificationManager, and notificationNMSDetails. The
nmsNotificationCount property set in IncrementalScanParameter provides the number of
ME notifications to be retrieved.

TMF814 Device Modeler
This processor is run for each Iterable produced by the TMF814 ME Collector processor. It
creates the logical and physical device entities. Device entities are not added to the result by
this processor.

This processor can be configured to model either physical or logical objects by setting the
modelCollectionType property. By default, both types of objects are modeled.

TMF814 Equipment Collector
This processor retrieves a list of Equipment and EquipmentHolders objects for the MEs using
the Equipment Inventory Manager. It outputs an Iterable for each EquipmentOrHolder object.

TMF814 Equipment Modeler
This processor is run for each Iterable produced by the TMF814 Equipment Collector
processor. It creates the equipment and equipment holder entities and adds them to the
Physical Tree. This processor returns either Information Model Equipment or Equipment
Holder, depending on which is modeled. See "About Cartridge Modeling" for more information.

TMF814 PTP Collector
This processor is run for each Iterable from the TMF814 Equipment Collector processor. This
processor collects all the PTPs for each equipment object. It outputs an Iterable for each PTP.

TMF814 PTP Modeler
This processor is run for each Iterable from the TMF814 PTP Collector processor. This
processor models each PTP as a Physical Port or Device Interface object and adds them to
either the Physical or Logical Tree.

Chapter 2
Discover Abstract TMF814 Action

2-5

TMF814 CTP Discoverer for PTP
This processor recursively retrieves and models CTPs for each input PTP obtained from the
Iterable produced by the TMF814 PTP Collector processor. The following operation is run for
each PTP:

1. Using an input PTP, a TMF814 operation is run to obtain all its contained CTPs.

2. Each CTP is modeled as a Device Interface object.

3. (Optional) The CTP customizer is run.

Note:

The ctpModelCustomizerImplClass class is used to configure the CTP
customizer. This class is set by the TMF814 Property Initializer processor.

4. The CTP is added to the Logical Tree.

Depending on the ctpCollectionDepth parameter value, a TMF814 operation is run for each
collected CTP to obtain and process its child CTPs.

TMF814 FTP Collector
This processor retrieves a list of all FTPs and outputs an Iterable for each FTP object. A
property set in tmf814Properties specifies whether to collect FTP details. The produced
Iterable is similar to the one explained for the TMF814 ME Collector processor.

TMF814 FTP Modeler
This processor is run for each Iterable produced by the TMF814 FTP Collector processor. This
processor creates Device Interface objects for the input FTPs and adds them to the Logical
Tree.

TMF814 CTP Discoverer for FTP
This processor recursively retrieves and models CTPs for each input FTP obtained from the
Iterable produced by the TMF814 FTP Collector processor. The following operation is run for
each FTP:

1. Using an input FTP, a TMF814 operation is run to obtain all its contained CTPs.

2. Each CTP is modeled as a Device Interface object.

3. (Optional) The CTP customizer is run.

Note:

The ctpModelCustomizerImplClass class is used to configure the CTP
customizer. This class is set by the TMF814 Property Initializer processor.

4. The CTP is added to the Logical Tree.

Chapter 2
Discover Abstract TMF814 Action

2-6

Depending on the ctpCollectionDepth parameter value, the above TMF814 operation is run for
each collected CTP to obtain and process its child CTPs.

TMF814 Device Persister
This processor adds the logical and physical devices to the result and persists it. This
processor closes and discards any CORBA iterators used.

TMF814 Device Recorder Persister
This processor persists the recorded data to a file, if the Recording Mode is enabled. See
"About Recording Mode" for more information.

Update ME Notification Status
This processor uses notificationMENames, notificationManager, and
notificationNMSDetails as input and updates the ME notifications with PROCESSED status.

TMF814 SNC Discoverer
This processor uses customProperties, notificationManager, notificationNmsDetails, and
tmf814Properties as input. It provides emsName, notificationSNCNames and sncList, and
lists of SNCs from the SNC notifications based on the matched filter, as output.

TMF814 Cross-Connect Discoverer
This processor collects and models cross-connects according to the following operation:

1. Run TMF814 operation to collect cross-connects.

2. For each collected cross-connect:

a. Model the cross-connect according to the Optical Model for Network Integrity. See
Network Integrity Developer's Guide for more information.

b. (Optional) Run the Cross-connect Customizer processor.

Note:

The crossConnectModelCustomizerImplClass is used to configure the Cross-
connect Customizer processor.

c. Add modeled entity to the result group.

d. Send last result group, or any result group equal to the configured flush size to the
Network Integrity database.

Cross-connect collection is controlled by the crossConnectCollectionType parameter.

Cross-connects are modeled as pipe entities and sent to the Network Integrity database in
batches. Batch sizes are configurable using the XCPipeFlushSize property.

Cross-connect modeling can be extended by creating a Cross-connect Customizer processor.
See "About Design Studio Extension" for more information.

Chapter 2
Discover Abstract TMF814 Action

2-7

TMF814 SNC CC Discoverer
This processor uses customProperties, snc, tpDetailMap, tmf814Properties,
tmfNameToDeviceNameMap as input. It discovers and models cross-connects for each snc
in the for-loop. The cross-connect modeling is similar to the TMF814 Cross-Connect
Discoverer processor.

Update SNC Notification Status
This processor uses notificationMENames, notificationManager, and
notificationNMSDetails as input and updates SNC notifications with the PROCESSED status.

TMF814 Topological Link Collector
This processor collects all the EMS STM links and returns an Iterable that collects Topological
Link objects. The produced Iterable is similar to the one explained for the TMF814 ME
Collector processor.

TMF814 Updated Topological Link Collector
This processor searches topological link names from the TopologicalLink notifications based
on filter match and collects all the EMS STM links based on the topologicalLink names. It
returns an Iterable that collects the Topological Link objects. The produced Iterable is similar to
the one explained for the TMF814 ME Collector processor.

TMF814 Topological Link Modeler
This processor is run for each Iterable produced by the TMF814 Topological Link Collector
processor. This processor models each input topological link object according to the Optical
Model for Network Integrity, and adds it to the result group. See Network Integrity Developer's
Guide for more information.

TMF814 Pipe Persister
This processor persists all the cross-connect and topological link pipes and writes the recorded
data to corresponding files. See "About Recording Mode" for more information about the
recorded data files.

Update TL Notification Status
This processor uses notificationMENames, notificationManager, and
notificationNMSDetails as input and updates the TopologicalLink notifications with
PROCESSED status.

Discover TMF814 Action
This action, which extends the Discover Abstract TMF814 actions, is a complete and
deployable action, configured using scan parameters, so you have full control over what is and
is not discovered. This action can be extended to add new scan parameters, but the original
scan parameters must remain. This action can also be extended to discover additional types of
network and connectivity objects.

Chapter 2
Discover TMF814 Action

2-8

This discovery action inherits all the processors from the following actions:

• The Discover Abstract CORBA action

For information about the inherited processors in this action, see Network Integrity CORBA
Cartridge Guide.

• The Discover Abstract TMF814 action

For information about the inherited processors in this action, see "Discover Abstract
TMF814 Action".

The Discover TMF814 action contains the following processors run in the following order:

1. CORBA Property Initializer (inherited)

2. TMF814 CORBA Property Initializer

3. CORBA Connection Manager (inherited)

4. TMF814 Property Initializer (inherited)

5. TMF814 Property Customizer

6. TMF814 Session Manager (inherited)

7. TMF814 Device Recorder Initializer (inherited)

8. TMF814 ME Collector (inherited)

9. TMF814 Updated ME Discoverer (inherited)

10. TMF814 MultiThread Device Modeler

11. TMF814 Device Modeler (inherited)

12. TMF814 Equipment Collector (inherited)

13. TMF814 Equipment Modeler (inherited)

14. TMF814 PTP Collector (inherited)

15. TMF814 PTP Modeler (inherited)

16. TMF814 CTP Discoverer for PTP (inherited)

17. TMF814 FTP Collector (inherited)

18. TMF814 FTP Modeler (inherited)

19. TMF814 CTP Discoverer for FTP (inherited)

20. TMF814 Device Persister (inherited)

21. TMF814 Device Recorder Persister (inherited)

22. Update ME Notification Status (inherited)

23. TMF814 SNC Discoverer (inherited)

24. TMF814 Cross-Connect Discoverer (inherited)

25. TMF814 SNC CC Discoverer (inherited)

26. Update SNC Notification Status (inherited)

27. TMF814 Topological Link Config Initializer (inherited)

28. TMF814 Topological Link Collector (inherited)

29. TMF814 Updated Topo Link Collector (inherited)

30. TMF814 MultiThread TL Modeler

Chapter 2
Discover TMF814 Action

2-9

31. TMF814 Topological Link Modeler (inherited)

32. TMF814 Pipe Persister (inherited)

33. Update TL Notification Status (inherited)

Figure 2-2 illustrates the processors workflow of the Discover Abstract TMF814 action.

Figure 2-2 Discover TMF814 Action Processors

TMF814 CORBA Property Initializer
This processor reads the ORBProperties and ORBArguments parameters from the UI and
passes them to the CORBA Connection Manager processor through the corbaSeed.
ORBProperties and ORBArguments are used during ORB initialization.

See Network Integrity CORBA Cartridge Guide for information about ORBProperties and
ORBArguments.

TMF814 Property Customizer
This processor takes scan parameters for a specific scan and assigns them to properties in the
TMF814 Property Initializer processor. See Table 7-3 for a list of available scan parameters.

TMF814 MultiThread Device Modeler
This processor models logical and physical device entities, collects and models equipments,
collects and models PTPs and respective CTPs, and collects and models FTPs and the
corresponding CTPs. It creates logical and physical device entities and persists to the result.

This processor verifies whether a scan is configured with the Parallel Process option enabled.
If not enabled, the processor skips the process.

This processor uses WebLogic's ManagedExecutorService work-manager concept to
process it in parallel. For more information, seeNetwork Integrity Developer's Guide.

TMF814 MultiThread TL Modeler
This processor models topological link objects according to the Optical Model for Network
Integrity, and adds it to the result group and persists the results.

Chapter 2
Discover TMF814 Action

2-10

This processor verifies whether a scan is configured with the Parallel Process option enabled.
If not enabled, it skips the process.

This processor uses WebLogic's ManagedExecutorService work-manager concept to
process it in parallel. For more information, see Network Integrity Developer's Guide.

Abstract TMF814 Optical Transmission Devices
This is an abstract action that can be extended in Oracle Communications Service Catalog and
Design - Design Studio to discover specified network objects.

This action contains scan parameter groups. This action can be extended to add new scan
parameters, but the original scan parameters must remain.

The Abstract TMF814 Optical Transmission Devices contains processors that are run in the
following order:

1. ProcessDiscoveryScanInput

2. ProcessNMSConnectionParams

3. ConnectTMF814CollectorService

4. CollectTMF814ManagedElements

5. ProcessTMF814ManagedElement

6. DisconnectTMF814CollectorService

ProcessDiscoveryScanInput
This processer initializes parameters required by other processors. The processor collects
TMF814 Transmission Scan Params values and stores into class called
OpticalScanInputParams.

Table 2-2 OpticalScanInputParams parameters and values

Parameter Description TMF814 Transmission Scan
Parameter

circleName NMS Circle identifier Nms Circle NameNms
Notification Circle

vendorName NMS Vendor identifier Nms Vendor Name

Nms Notification Vendor

scopeAddress Scope Address Address provided in scope

technology Technology, accepted values
DWDM, SDH

Tech Domain

meNames List of names of devices Me Name

isFullNetworkScan Set to true to perform a full
network scan

Full Network Scan

isFetchCTP Set to true to fetch CTPs Fetch CTP

isIncrementalScan Set to true to perform incremental
discovery

Incremental Scan

nmsNotificationCount Count of notification to be
processed

NMS Notification Count

Chapter 2
Abstract TMF814 Optical Transmission Devices

2-11

ProcessNMSConnectionParams
This processor validates EmsConnection parameters and stores them into the class
EmsConnectionConfigInput.

Table 2-3 EmsConnectionConfigInput parameters and values

Parameter Description Ems Connection Parameter

emsType Vendor specific type used to
connect with EMS system.

Ems Type

emsInstanceName Instance name used to connect
with EMS system.

Ems Instance Name

emsUserName User name used to connect with
EMS system.

Ems UserName

emsPassword Password of the user name used
to connect with EMS system.

Ems Password

emsClass EMS class used for naming
service.

Ems Class

emsVersion EMS version used for naming
service.

Ems Version

emsSessionFactory EMS session factory identifier
used for naming service.

Ems Session Factory

ior/corbla loc Unique identifier of port and ip
used to connect to EMS system.

scope address

ConnectTMF814CollectorService
This processor accepts data within the EmsConnectionConfigInput and
OpticalScanInputParams classes as input. It establishes a connection with TMF814 Collector
Service and the output as TMF814CorbaNMSCollectorService object. This object can be used
to invoke the TMF814's server calls to connect network elements.

CollectTMF814ManagedElements
This processor accepts the data from OpticalScanInputParams and
TMF814CorbaNMSCollectorService as input and collects managed elements from the NMS.

This processor stores details of the optical scan input parameters and notifications in class
commonDataHolderVO. It provides the list of collected managed elements along with the
commonDataHolderVO class object as output.

ProcessTMF814ManagedElement
This processor creates physical and logical device hierarchies for discovered network objects.
It accepts data from the commonDataHolderVO, managedElementList,
opticalScanInputParams and TMF814CorbaNMSCollectorService objects as inputs.

For each managed element, a separate thread is invoked to collect and process the device
hierarchy. The thread count is controlled by NI work manager value. Devices are modeled and
persisted based on the input parameters the processor accepts.

Chapter 2
Abstract TMF814 Optical Transmission Devices

2-12

DisconnectTMF814CollectorService
This processor closes the connection with EMS using TMF814 Collector Service.

Discover TMF814 Optical Transmission Devices
This discovery action extends the Abstract TMF814 Optical Transmission Devices abstract
action and is a complete and deployable action. The Discover TMF814 Optical Transmission
Devices action can be configured using scan parameters and provides control over what
devices can and cannot be discovered. It can be extended to add new scan parameters, but
the original scan parameters must remain. This action can also be extended to discover
additional types of network and connectivity objects.

It inherits all the processors from the Abstract TMF814 Optical Transmission Devices. The
TMF814 Optical Transmission Devices contains processors that run in the following order:

1. ProcessDiscoveryScanInput

2. ProcessNMSConnectionParams

3. ConnectTMF814CollectorService

4. CollectTMF814ManagedElements

5. ProcessTMF814ManagedElement

6. DisconnectTMF814CollectorService

About Recording Mode
The Optical TMF814 CORBA cartridge can be configured to record all discovered MEs,
topological links, and cross-connects. The recorded files (ME_Name.me for MEs,
EMS_Name.ems for topological links, and EMS_Name.cc for cross-connects) are saved to the
WL_Domain_Home/corbaData/Scan_Name/EMS_Name directory, where:

• ME_Name is the name of the managed element.

• EMS_Name is the name of the EMS.

• Domain_Home is the directory where your WebLogic domain is configured.

• Scan_Name is the name of the scan.

If the TMF814 scan action type has been configured to not discover MEs, topological links, or
cross-connects, the corresponding file is not generated.

Recording Mode is controlled with the tmf814.properties file in the WeLogic_Domain_Home/
config/corbaConfig/ directory. Recording Mode can be enabled or disabled by an
administrator without needing any server or application restart. The recording processor reads
this file each time it is run.

Enabling Recording Mode
To enable recording mode:

1. Open the WebLogic_Home/config.corbaConfig/tmf814.properties file.

2. Search for the line: MODE=NORMAL

3. Change NORMAL to RECORD.

Chapter 2
Discover TMF814 Optical Transmission Devices

2-13

4. Set the CHUNK SIZE entry to the number of cross-connects written to EMS_Name.cc at a
time.

Chapter 2
About Recording Mode

2-14

3
Using the Cartridge

This chapter explains how to use the Oracle Communications Network Integrity Optical
TMF814 CORBA cartridge.

Creating a Discover TMF814 Scan
The Optical TMF814 CORBA cartridge allows you to create a Discover TMF814 scan.

To create a Discover TMF814 scan:

1. Create a scan, as explained in the Network Integrity Help.

2. On the General tab, do the following:

• From the Scan Action list, select one of the following:

– To discover entities from a generic TMF814 element or network management
system, select Discover TMF814.

– To discover entities from a Huawei U2000, select Discover Huawei U2000.

The Scan Type field displays Discovery.

• Enter the following TMF814 scan action parameters:

– In the Username field, enter the username for the target element or network
management system (EMS or NMS).

– In the Password field, enter the password for the target EMS or NMS.

– In the EMS Naming Service field, enter the EMS session factory CORBA object
name.

– From the EMS Naming Service Format list, specify whether the EMS session
factory CORBA object name uses the Plain or the Stringified format.

– From the Collect Equipment list, specify whether you want to collect equipment
holder objects.

– From the Collect Termination Points list, specify the type of termination points
(TPs) you want to collect. To not collect any TPs, select None.

– From the Collect Connection TP list, specify the type of connection TPs you want
to collect. To not collect any connection TPs, select None.

– (Optional) To set the number of equipment objects to retrieve with each EMS call,
enter a value in the Equipment Fetch Size field. Leave this field blank to retrieve
all equipment objects in a single EMS call.

– (Optional) To set the number of TPs to retrieve with each EMS call, enter a value
in the Termination Point Fetch Size field. Leave this field blank to retrieve all TPs
in a single EMS call.

– (Optional) To set the depth to which contained TPs are collected, enter a value in
the Contained TP Collection Depth field. Leave this field blank to retrieve all
contained TPs.

3-1

– (Optional) To pass custom object request broker (ORB) properties to the Discover
Abstract TMF814 action, enter name value pairs in the ORB Properties field,
separated by a semicolon, as in the following example:

Property_1=value_1;Property_2=value_2;Property_n=value_n
– (Optional) To pass custom ORB arguments to the Discover Abstract TMF814

action, enter name-value pairs in the ORB Arguments field, separated by a
semicolon, as in the following example:

Argument_1=value_1;Argument_2=value_2;Argument_n=value_n
– (Optional) To filter the discovered managed elements (MEs) by name, enter a

name in the Managed Element Name(s) field and set the Managed Element
Name Qualifier list.

– (Optional) To filter the discovered network elements (NEs) by name, enter a name
in the Network Element Name(s) field and set the Network Element Name
Qualifier list.

– In the Cross Connect Collection Type field, specify how cross-connect objects
are collected. To not collect any cross-connect objects, select None.

– In the Topological Link Collection Type field, specify how topological links are
collected. To not collect any topological links, select None.

See Table 7-3 for more information.

3. On the Scope tab, do one of the following:

• Enter the EMS CORBA Loc URL

• Import the IOR file

• Enter the content of the IOR file

Note:

All entries on the Scope tab must be unique. All entries are validated against the
CorbaURLAddressHandler address handler.

4. Make any other required configurations.

Creating a Discover TMF814 Optical Transmission Devices Scan
To create a Discover TMF814 Optical Transmission Devices Scan:

1. Create a new scan.

See Network Integrity Online Help for more information.

2. On the General tab, do the following:

a. From the Scan Action list, select Discover TMF814 Optical Transmission Devices.

The Scan Type field displays Discovery.

b. Select the Detect Discrepancies checkbox.

c. Select the Enabled checkbox.

3. Enter the values for the following Ems Connection scan parameters:

Chapter 3
Creating a Discover TMF814 Optical Transmission Devices Scan

3-2

a. In the Ems User Name field, enter the username for the target element management
system.

b. In the Ems Password field, enter the password for the target element management
system.

c. In the Ems Type field, select ECI or HUAWEI2000 based on EMS vendor.

d. In the Ems Instance Name field, enter name of EMS instance connection is required.

e. In the Ems Vendor field, provide the vendor name for name resolution; not mandatory
if EMS uses a naming service.

f. In the Ems Class field, provide the vendor name for name resolution; not mandatory if
EMS uses a naming service.

g. In the Ems Version field, provide the vendor name for name resolution; not mandatory
if EMS uses a naming service.

h. In the Ems Session Factory field, provide the vendor name for name resolution; not
mandatory if EMS uses a naming service.

4. Enter the following TMF814 Transmission Scan Params:

a. In the Me Name field, enter comma separated values of names of managed elements
to be discovered.

b. Select the Full Network Scan checkbox to perform a full network discovery.

c. In the Nms Vendor Name field, enter the NMS Vendor identifier value.

d. In the Nms Circle Name field, enter the NMS Circle identifier value.

e. In the Tech Domain, select SDH or DWDM based on requirement.

f. Select the Fetch CTP checkbox, to discover and model CTPs.

5. On the Scope tab, do one of the following:

• Enter the EMS CORBA Loc URL.

• Import the IOR file.

• Enter the contents of the IOR file.

Note:

All entries on the Scope tab must be unique. All entries are validated against the
CorbaURLAddressHandler address handler.

6. Make any other required configurations.

7. Run the scan.

You can also create a Discover TMF814 Optical Transmission Devices Scan for running
incremental scans. The prerequisites for incremental discovery are:

• Collect the physical layer notification from CORBA based NMS/EMS system using the
NMS listener.

• It is necessary to run an incremental import scan so that the notification status is updated
from INITIAL to IMPORTED.

To create a Discover TMF814 Optical Transmission Devices (Incremental) Scan:

1. Create a new scan.

Chapter 3
Creating a Discover TMF814 Optical Transmission Devices Scan

3-3

See Network Integrity Online Help for more information.

2. On the General tab, do the following:

a. From the Scan Action list, select Discover TMF814 Optical Transmission Devices.

The Scan Type field displays Discovery.

b. Select Detect Discrepancies checkbox.

c. Select Enabled checkbox.

3. Enter the following Ems Connection scan parameters:

a. In the Ems User Name field, enter the username for the target element management
system.

b. In the Ems Password field, enter the password for the target element management
system.

c. In the Ems Type field, select ECI or HUAWEI2000 based on EMS vendor.

d. In the Ems Instance Name field, enter name of EMS instance connection is required.

e. In the Ems Vendor field, provide the vendor name for name resolution; not mandatory
if EMS uses a naming service.

f. In the Ems Class field, provide the vendor name for name resolution; not mandatory if
EMS uses a naming service.

g. In the Ems Version field, provide the vendor name for name resolution; not mandatory
if EMS uses a naming service.

h. In the Ems Session Factory field, provide the vendor name for name resolution; not
mandatory if EMS uses a naming service.

4. Enter values for the following Incremental Scan Parameters (this is only required for
incremental discovery):

a. Select the Incremental Scan checkbox to perform incremental discovery.

b. In the Nms Notification Vendor field, enter the Nms Vendor identifier value.

c. In the Nms Notification Circle field, enter the Nms Circle identifier value.

d. In the Nms Notification Count field, enter the count of notification to be processed.

5. On the Scope tab, do one of the following:

• Enter the EMS CORBA Loc URL.

• Import the IOR file.

• Enter the content of the IOR file.

Note:

All entries on the Scope tab must be unique. All entries are validated against the
CorbaURLAddressHandler address handler.

6. Make any other required configurations.

7. Run the scan.

Chapter 3
Creating a Discover TMF814 Optical Transmission Devices Scan

3-4

4
About Collected Data

This chapter explains how the Oracle Communications Network Integrity Optical TMF814
CORBA cartridge treats collected data.

About Collected Data
The Oracle Communications Network Integrity Optical TMF814 CORBA cartridge uses a
standard TMF814 common object request broker architecture (CORBA) interface, which
models network elements using the Multi Technology Network Management (MTNM) standard.

Table 4-1 lists MTNM objects and corresponding TMF814 IDL API class definitions.

Table 4-1 MTNM IDL Class Definitions

MTNM Object Name TMF814 IDL API Class Definition

Managed Element (ME) ManagedElement_T

Equipment Holder (Rack) EquipmentHolder_T

Equipment Holder (Shelf) EquipmentHolder_T

Equipment Holder (Slot) EquipmentHolder_T

Equipment Holder (Sub Slot) EquipmentHolder_T

Equipment (Card) Equipment_T

Physical Termination Point (PTP) TerminationPoint_T

Floating Termination Point (FTP) TerminationPoint_T

Connection Termination Point (CTP) TerminationPoint_T

Cross-connect CrossConnect_T

Topological Link TopologicalLink_T

LayeredParameters LayeredParameters_T

A CTP can have a child CTP with infinite nesting levels. LayeredParameters are not top-level
MTNM objects. They are the property of a termination point (TP).

Multi Technology Network Management Hierarchy
The following example demonstrates the MTNM hierarchy:

Managed Element
 Equipment Holder(rack 1)
 Equipment Holder (shelf 1)
 Equipment Holder (sub shelf 1)
 Equipment Holder (slot 1)
 Equipment Holder(sub slot 1)
 Equipment(card 1)
 Termination Point (PTP){0…*}
 Termination Point (CTP){0…*}
 Equipment Holder(sub slot 2)

4-1

 Equipment(card 2)
 Termination Point (PTP){0…*}
 Termination Point (CTP){0…*}
 Termination Point (CTP){0…*}

The following tables describe the properties of each MTNM object collected by the Optical
TMF814 CORBA cartridge.

Table 4-2 Managed Elements Properties

Property Name Description

name The name of the managed element (ME) that is assigned by the element management system
(EMS) upon creation.

userLabel Identifies the label assigned to the ME by the operator.

nativeEMSName Indicates how the ME is referred to on EMS displays.

owner Provided by the network management system (NMS).

location Indicates the geographical location of the ME.

version The active software version of the ME.

productName Identifies the ME product or type name.

communicationState Indicates the viability of EMS-ME messaging. Possible values are CS_AVAILABLE,
CS_UNAVAILABLE.

emsInSyncState Indicates if the EMS is able to keep the current EMS data synchronized with the current ME data
and generate all appropriate notifications. The EMS sets this attribute to FALSE to indicate that it
requires re-synchronization with ME data and that it is not able to generate the appropriate
notifications while doing so.

supportedRates This attribute is a list of potential cross-connection rates at which it is possible to have cross-
connections within the ME.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field is common
to all MTNM-managed objects. This field consists of a list of name and value pairs that call
additional information, which allows EMS or NMS to give additional information that is not explicitly
modeled at the MTNM interface. Some parameter names and values may be predefined.

Table 4-3 Equipment Properties

Property Name Description

name The name of the Equipment that is assigned by the EMS upon creation.

nativeEMSName Indicates how the Equipment is referred to on EMS displays.

userLabel A label assigned to the Equipment by the operator.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting for this instance is active.

expectedEquipmentObjectType Defines the type of expected Equipment. Leave empty if there is no expected
Equipment. Example value: MBP_300.

installedEquipmentObjectType Defines the type of installed Equipment. Leave empty if there is no installed Equipment.

installedPartNumber Indicates the part number of the installed Equipment.

installedSerialNumber Indicates the serial number of the installed Equipment.

installedVersion Indicates the firmware version of the installed Equipment.

serviceState Indicates the current state of the Equipment. Possible values are IN_SERVICE,
OUT_OF_SERVICE, OUT_OF_SERVICE_BY_MAINTENANCE, SERV_NA.

Chapter 4
About Collected Data

4-2

Table 4-3 (Cont.) Equipment Properties

Property Name Description

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field
is common to all MTNM-managed objects. This field consists of a list of name and value
pairs calling additional information and allowing EMSs or NMSs to give additional
information that is not explicitly modeled at the MTNM interface. Some parameter
names and values may be predefined.

Table 4-4 Equipment Holder Properties

Property Name Description

name Equipment Holder unique name. The EMS is responsible for the uniqueness of the
name within the context of the ME.

nativeEMSName Indicates how the Equipment Holder is referred to on EMS displays.

userLabel Provided by the NMS.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting is active for the instance.

holderType Indicates the type of Equipment Holder. Valid values are: rack, shelf, sub_shelf, slot,
sub_slot.

holderState Indicates the state of the Equipment Holder directly contained equipment. Possible
values are: EMPTY (0), INSTALLED_AND_EXPECTED (1),
EXPECTED_AND_NOT_INSTALLED (2), INSTALLED_AND_NOT_EXPECTED (3),
MISMATCH_OF_INSTALLED_AND_EXPECTED (4), UNAVAILABLE (5), UNKNOWN
(6).

expectedOrInstalledEquipment The Equipment object expected or installed in the Equipment Holder, if any. A value of
NULL indicates that the Equipment Holder is empty or that it contains only other
Equipment Holders.

acceptableEquipmentTypeList Represents the types of Equipment objects that can be directly supported by the
Equipment Holder.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field
is common to all MTNM-managed objects. This field consists of a list of name and
value pairs that call additional information, which allow EMS or NMS to give additional
information that is not explicitly modeled at the MTNM interface. Some parameter
names and values may be predefined.

Table 4-5 PTP, FTP, and CTP Properties

Property Name Description

name Indicates the assigned TP name when created by the EMS. The EMS is responsible for
guaranteeing the uniqueness of the name within the context of the ME. The naming for CTPs,
PTPs, and FTPs is deterministic.

nativeEMSName Indicates how the TP is referred to on EMS displays.

userLabel The user label of the TP is set with NMS data (typically the end-to-end trail data).

owner Indicates the ownership of the TP so that adminstrativeState can be managed.

direction Indicates the direction of the TP. Possible values are: D_NA (0), D_BIDIRECTIONAL (1),
D_SOURCE (2), D_SINK (3).

Chapter 4
About Collected Data

4-3

Table 4-5 (Cont.) PTP, FTP, and CTP Properties

Property Name Description

tpProtectionAssociation Indicates the associated TP indication. The NMS is responsible for running the
multiLayerSubnetwork::MultiLayerSubnetworkMgr_I::getAssociatedTP() service to obtain any
related TP.

edgePoint Indicates if the TP is an edge point of one or more subnetworks.

ingressTransmissionDescri
ptorName

Indicates whether a CTP references an ingress (incoming) Traffic Descriptor or Transmission
Descriptor.

egressTransmissionDescrip
torName

Indicates whether a CTP references an egress (outgoing) Traffic Descriptor or Transmission
Descriptor.

connectionState Indicates the connection state of the source. A value of TPCS_BI_CONNECTED indicates that
the source is connected to one entity and the sink is connected to the other. Possible values
are: TPCS_NA, TPCS_SOURCE_CONNECTED, TPCS_SINK_CONNECTED,
TPCS_BI_CONNECTED, TPCS_NOT_CONNECTED.

tpMappingMode Indicates and controls the connection of the named connection point at a specified LayerRate
to the dedicated G.805 TCP and associated G.805 Termination Function at the same
LayerRate within the CTP or FTP. Possible values are: TM_NA(0),
TM_NEITHER_TERMINATED_NOR_AVAILABLE_FOR_MAPPING (1),
TM_TERMINATED_AND_AVAILABLE_FOR_MAPPING (2).

type Possible value are: TPT_PTP (0), TPT_CTP (1), TPT_TPPool (2).

transmissionParams A list of transmission parameters that can be set or retrieved on the TP at a specified layer.
This attribute must contain the complete set of layer rates represented by a PTP, CTP, or FTP,
even if they have no parameters associated with them. The Layer Rates are listed in the order
of their client-server relationship.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field is
common to all MTNM-managed objects. This field consists of a list of name and value pairs
that call additional information, which allows the EMS or NMS to give additional information
that is not explicitly modeled at the MTNM interface. Some parameter names and values may
be predefined.

Table 4-6 Cross-Connect Properties

Property Name Description

active Indicates if the cross-connect is active in the ME.

ccType Indicates the cross-connect type. Possible values are: ST_SIMPLE, ST_ADD_DROP_A,
ST_ADD_DROP_Z, ST_INTERCONNECT, ST_DOUBLE_INTERCONNECT,
ST_DOUBLE_ADD_DROP, ST_OPEN_ADD_DROP, ST_EXPLICIT

direction Directionality of the cross connection. Possible values are: CD_UNI, CD_BI

aEndNameList Names of CTPs, FTPs, and group termination points (GTPs) at the aEnd of the cross-connect.

zEndNameList Names of CTPs, FTPs, and GTPs at the zEnd of the cross-connect.

additionalInfo Represents a list of name value pairs that allow EMSs or NMSs to give additional information that is
not explicitly modeled at the MTNM interface, but some parameter names and values may be
predefined. Some predefined parameter names may include: ConnectionId, Fixed, RouteActualState,
RouteAdminState, RouteExclusive, RouteId, RouteIntended, RouteInUseBy.

Chapter 4
About Collected Data

4-4

Table 4-7 Topological Link Properties

Property Name Description

name Indicates the name of the Topological Link, assigned by the EMS upon creation.

userLabel Indicates the topological link user label (end-to-end trail data) in NMS data.

nativeEMSName Indicates how the topological link is referred to on EMS displays.

owner Provided by the NMS.

direction Indicates the direction of the topological link. A topological link can be unidirectional even if both its
ends are bidirectional TPs. Possible values are CD_UNI (unidirectional) and CD_BI (bidirectional).

rate Indicates the layer rate (bandwidth) of the topological link.

aEndTP Indicates the name of the aEnd for the PTP, CTP, or FTP.

zEndTP Indicates the name of the zEnd for the PTP, CTP, or FTP.

additionalInfo Represents a list of name/value pairs that allow EMSs or NMSs to give additional information that is not
explicitly modeled at the MTNM interface, but some parameter names and values may be predefined.
Some predefined parameter names may include: AlarmReporting, AllocatedNumber, ASAPpointer,
FragmentServerLayer, NetworkAccessDomain.

Layer Parameters
The Optical TMF814 CORBA cartridge collects layer parameters for TPs. In the MTNM model,
these layer parameters are encapsulated by TPs as transmission parameters. For details on
layered parameters see the TMF814 documentation.

TMF814 APIs
This section describes the APIs used by the Optical TMF814 CORBA cartridge to collect data.

CORBA APIs
Table 4-8 lists the APIs used by the Optical TMF814 CORBA cartridge.

Table 4-8 TMF814 ManagedElement and Equipment CORBA APIs

API Used Operations

org.tmforum.mtnm.emsSes
sionFactory.EmsSessionFa
ctory_I

• getEmsSession(): used to obtain the EmsSession objects.

org.tmforum.mtnm.emsSes
sion.EmsSession_I

• getManager(): used to obtain managers.
• endSession(): used to close the EMS session.

org.tmforum.mtnm.manage
dElementManager.Manage
dElementMgr_I

• getAllFTPs(): used to obtain all FTPs, but not obtain any PTPs.
• getAllPTPs(): used to obtain all PTPs.
• getContainedInUseTPs(): used to obtain all contained in-use TPs.
• getContainedPotentialInUseTPs(): used to obtain all contained

potential CTPs for a given TP.

org.tmforum.mtnm.nmsSes
sion.NmsSession_I

• EmsSessionFactory_I.getEmsSession: required nmsSesion while
getting a Ems session so a dummy implementation is provided.

Chapter 4
About Collected Data

4-5

Table 4-8 (Cont.) TMF814 ManagedElement and Equipment CORBA APIs

API Used Operations

org.tmforum.mtnm.equipme
nt.EquipmentInventoryMgr_
I

• getAllEquipment(): used to obtain all Equipment.
• getAllSupportedPTP(): used to obtain all the PTPs for a given

Equipment.

APIs for Cross-Connect Collection
Table 4-9 lists the APIs used for cross-connect collection.

Table 4-9 TMF814 Cross-Connect Collection APIs

API Used Operations

managedElementManager.Manage
dElementMgr_I

• getAllCrossConnections(MEName, layerRate, how_many, CClist, CCIter)

multiLayerSubnetwork.MultiLayerSu
bnetworkMgr_I

• getAllTopLevelSubnetworks(how_many, holder, iter)
• getAllSubnetworkConnections(SN_Name, layerRateList, how_many, holder, iter)
• getRoute(SNC_Name, includeHigherOrderCCs, route)

APIs for Topological Link Collection
There are two levels of Topological Links that can be retrieved using two different APIs.
Table 4-10 lists the APIs used for cross-connect collection.

Table 4-10 TMF814 Topological Link Collection APIs

APIs Used Operations

emsMgr.EMSMgr_I • getAllTopLevelTopologicalLinks(how_many, topoList, topoIt)

multiLayerSubnetwork.MultiLayerSu
bnetworkMgr_I

• getAllTopologicalLinks(SN_Name, how_many, topoList, topoIterator)

The EMSMgs API is used when the entire network is treated as a subnetwork. The MLSN API
is used when each ME is treated as a subnetwork.

Handling Vendor Variations
This section explains how the Optical TMF814 CORBA cartridge handles some of the
particular data collected from some vendors.

FTP Collection API Variations
The ManagedElementMgr_I.getAllFTP() operation, from MTNM version 3.0, is the preferred
API to get all FTPs of a ME. For the vendors and devices that do not support MTNM version
3.0, the getAllPTP() operation is used. The getAllPTP() operation returns both PTPs and FTPs.
While modeling FTPs, PTPs are filtered out.

Chapter 4
Handling Vendor Variations

4-6

Cross-Connect Collection API Variation
Cross-connects are collected using different APIs depending on the vendor. Use the
crossConnectCollectionType parameter to specify the collection method, based on vendor
device specifications. See "APIs for Cross-Connect Collection" for more information.

Topological Link Collection API Variation
Topological links are collected using different APIs depending on the vendor. Use one or both
methods as required by the vendor or vendor device. Use the topologicalLinkCollectionType
parameter to specify the collection method. See "APIs for Topological Link Collection" for more
information.

Cross-Connect Protection Role
The productized Optical TMF814 CORBA cartridge does not discover protection role
information on cross-connect segments because vendors and devices differ in the way this
information is accessed. You must extend the Optical TMF814 CORBA cartridge to collect and
model protection role information. See "Collecting and Modeling Protection Role Information"
for more information.

Chapter 4
Handling Vendor Variations

4-7

5
About Cartridge Modeling

This chapter explains how the Oracle Communications Network Integrity Optical TMF814
CORBA cartridge models collected data.

About Cartridge Modeling
The Oracle Communications Network Integrity Optical TMF814 CORBA cartridge models
collected data according to the Oracle Communications Information Model. Collected data is
modeled into the following entities:

• DeviceInterfaceConfiguration

• DeviceInterfaceConfigurationItem

• Equipment

• EquipmentHolder

• EquipmentEquipmentRel

• EquipmentHolderEquipmentRel

• InventoryGroup

• LogicalDevice

• MediaInterface

• PhysicalDevice

• PhysicalDeviceEquipmentRel

• PhysicalPort

• Pipe

• PipeTerminationPoint

• PipePipeTerminationPointRel

See Oracle Communications Information Model Reference for more information about the
Information Model.

About the Oracle Communications Information Model
The Information Model has Physical and Logical Tree models. Physical device hierarchy is
modeled in the Physical Tree. Logical device hierarchy is modeled in the Logical Tree.

This section details how the Multi Technology Network Management (MTNM) model is mapped
to the Information Model.

About the Physical Tree
Table 5-1 shows how MTNM objects are mapped to Physical Tree entities.

5-1

Table 5-1 MTNM to Information Model Mapping for Physical Tree

MTNM Object Information Model
Entity

Specification

Manage Element (ME) Physical Device tmf814MEGeneric

Equipment Holder (Rack) Equipment tmf814EquipmentGeneric

Equipment Holder (Shelf) Equipment tmf814EquipmentGeneric

A shelf is modeled as Equipment since the
Information Model does not allow a holder
within a holder.

Equipment Holder (sub Shelf) Equipment tmf814EquipmentGeneric

Equipment Holder (Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment Holder (Sub Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment (Card) Equipment tmf814EquipmentGeneric

Physical Termination Point (PTP) Physical Port tmf814PortGeneric

Topological Link Pipe tmf814TopologicalLinkGeneric

aEndTP, zEndTP (of a
topological link object)

PipeTerminationPoint tmf814PortTerminationPointGeneric

Cross-connect InventoryGroup tmf814XCGeneric

aEndName, zEndName (of a
cross-connect

Pipe tmf814XCSegmentGeneric

A pair of related aEndName and
zEndName objects are treated as a cross-
connect segment.

aEndName, zEndName (of a
cross-connect segment)

PipeTerminationPoint tmf814PortTerminationPointGeneric

About the Logical Tree
Logical devices are created as root objects. Root objects are placeholder objects for top-level
interfaces. PTPs and floating termination points (FTPs) are modeled as Device Interfaces.
Contained termination points (TPs) of a PTP or FTP are modeled as sub-device-interfaces of a
PTP or FTP device interface.

TPs that are discovered by the TMF814 API are modeled in the Logical Tree according to the
following structure:

Logical Device (container for top level device interfaces){1}

 Device Interface (Device Interface corresponding to PTP/FTP) {0...*}

 Sub Device Interface (CTPs of PTP/FTP) {0...*}

 Sub Device Interface (child CTPs with infinite nesting) {0...*}

Layer parameters of a TP are modeled using the DeviceInterfaceConfigurationItem interface
and its child interface configuration items. This cartridge models only Generally Applicable
Parameters, which are defined and explained in the TMF814 documentation.

Each TP layer is represented by the DeviceInterfaceConfigurationItem interface. All TP layers
are contained in an artificial parent DeviceInterfaceConfigurationItem interface, as shown in the
following example:

Chapter 5
About the Oracle Communications Information Model

5-2

Device Interface (represents a CTP/PTP/FTP)

 DeviceInterfaceConfigurationItem (just a container configuration item){1}

 DeviceInterfaceConfigurationItem (one configuration item per layer rate){0..*}

Table 5-2 shows how MTNM objects are mapped to Information Model entities in the Logical
Tree.

Table 5-2 MTNM-to-Information Model Mapping for Logical Tree

MTNM Object Information
Model Entity

Specification

ME LogicalDevice
(artificial)

tmf814DeviceGeneric

Logical device acts as a container for top level interfaces. Its name is same as
ME name.

PTP DeviceInterface tmf814TPInterfaceGeneric

PTP as Interface is a container for child CTP.

FTP DeviceInterface tmf814TPInterfaceGeneric

FTP as Interface is a container for child CTP.

Connection
Termination Point
(CTP)

DeviceInterface tmf814TPLayersGeneric

CTP is a channel and is modeled as a sub Device Interface.

LayeredParameters DeviceInterfaceCo
nfigurationItem

Managed Element

Layered Parameters are modeled as configuration items of a Device Interface.

Field Mapping
The following tables explain the field mappings for each Information Model object.

Table 5-3 Physical Device Field Mapping

Information Model
Attribute

Information
Model
Support

TMF Attribute Type UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A PhysicalDeviceSpecification

Programmatically set to
tmf814MEGeneric specification.

TMF814 MEGeneric

discoveredVendorName Dynamic manufacturer Text

Comes from additional
information (not a TMF
attribute).

Discovered Vendor
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static location Text Physical Location

softwareRev Dynamic version Text Software Version

modelName Dynamic productName Text Model Name

Chapter 5
About the Oracle Communications Information Model

5-3

Table 5-3 (Cont.) Physical Device Field Mapping

Information Model
Attribute

Information
Model
Support

TMF Attribute Type UI Label

nativeEmsName Static nativeEmsName Text Native EMS Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5-4 Equipment Field Mapping

Information
Model
Attribute

Information
Model
Support

TMF Attribute Type and Values UI Label

Id Static N/A N/A ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentSpecification

Programmatically set to
tmf814EquipmentGeneric specification.

TMF814 Equipment
Generic (displayed as
Entity Type)

discoveredVend
orName

Dynamic manufacturer Text

Comes from additional information (not a
TMF attribute).

Discovered Vendor
Name

serialNumber Static installedSerialNum
ber

Text Serial Number

physicalLocatio
n

Static N/A Text Physical Location

discoveredPart
Number

Dynamic installedPartNumb
er

Text Discovered Part
Number

hardwareRev Dynamic installedVersion Text Hardware Rev

modelName Dynamic installedEquipment
ObjectType

Text Model Name

nativeEmsNam
e

Static nativeEmsName Text Native EMS Name

expectedObject
Type

Dynamic expectedEquipmen
tObjectType

Text Expected Object Type

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_SERVICE,
IN_MAINTENANCE, UNKNOWN,
TESTING

Each value corresponds to a TMF814
value: IN_SERVICE, OUT_OF_SERVICE,
OUT_OF_SERVICE_BY_MAINTENANCE,
SERV_NA. TMF814 does not have
equivalent for TESTING.

Service State

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Chapter 5
About the Oracle Communications Information Model

5-4

Table 5-5 EquipmentHolder Field Mapping

Information
Model Attribute

Information
Model
Support

TMF Attribute Type UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentHolderSpecification

Programmatically set to
tmf814EquipmentHolderGener
ic specification.

TMF814
Equipment Holder
Generic (displayed
as Entity Type)

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical Location

modelName Dynamic expectedOrInstalledEquipment Text Model Name

nativeEmsName Static nativeEmsName Text Native EMS Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5-6 Physical Port Field Mapping

Information Model
Attribute

Information
Model
Support

TMF
Attribute

Type UI Label

Id Static N/A Text ID

name Static name Text

/rack=1/shelf=1/slot=3/domain=sdh/port=1

Name

description Static N/A Text Description

specification Static N/A PhysicalPortSpecification

Programmatically set to tmf814PortGeneric
specification.

TMF814 Port
Generic
(displayed as an
Entity Type)

portNumber Static N/A Integer Port Number

customerPortName Static N/A Text Customer Port
Name

vendorPortName Static N/A Text Vendor Port
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical
Location

nativeEmsName Static N/A Text Native EMS
Name

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE, SINK Direction

tpProtectionAssociation Dynamic tpProtectionA
ssociation

List: TPPA_NA, TPPA_PSR_RELATED Protection
Association

edgePoint Dynamic edgePoint boolean Edge Point

Chapter 5
About the Oracle Communications Information Model

5-5

Table 5-6 (Cont.) Physical Port Field Mapping

Information Model
Attribute

Information
Model
Support

TMF
Attribute

Type UI Label

physicalAddress Static String Text Physical
Address

Table 5-7 Logical Device Field Mapping

Information Model
Attribute

Information
Model Support

TMF
Attribute

Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A LogicalDeviceSpecification TMF814 Device Generic
(displayed as Entity Type)

nativeEmsAdminSer
viceState

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS Admin
Service State

nativeEmsServiceSt
ate

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS Service State

nativeEmsName Static nativeEmsN
ame

Text Native EMS Name

physicalLocation Static N/A Text Physical Location

Table 5-8 Device Interface Field Mapping

Information Model
Attribute

Information
Model
Support

TMF Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A DeviceInterfaceSpecification

Programmatically set to
tmf814TPInterfaceGeneric specification.

TMF 814
TPInterface
Generic
(displayed as
Entity Type)

ifType Static Tp_type List: CTP, PTP, FTP Interface Type

interfaceNumber Static N/A Text Interface Number

customerInterfaceNum
ber

Static N/A Text Customer
Interface Number

vendorInterfaceNumbe
r

Static N/A Text Vendor Interface
Number

nativeEmsName Static N/A Text Native EMS
Name

Chapter 5
About the Oracle Communications Information Model

5-6

Table 5-8 (Cont.) Device Interface Field Mapping

Information Model
Attribute

Information
Model
Support

TMF Attribute Type and Values UI Label

nativeEmsAdminServi
ceState

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS
Admin Service
State

nativeEmsServiceStat
e

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS
Service State

mtuSupported Static N/A Float Supported MTU

mtuCurrent Static N/A integer Current MTU

physicalAddress Static N/A Text Physical Address

physicalLocation Static N/A Text Physical Location

minSpeed Static N/A Float Minimum Speed

maxSpeed Static N/A Float Maximum Speed

nominalSpeed Static N/A Float Nominal Speed

connectionState Dynamic connectionState List: TPCS_BI_CONNECTED, TPCS_NA,
TPCS_SOURCE_CONNECTED,
TPCS_SINK_CONNECTED,
TPCS_BI_CONNECTED,
TPCS_NOT_CONNECTED

Connection State

tpMappingMode Dynamic tpMappingMode List: TM_NA (0),
TM_NEITHER_TERMINATED_NOR_AVA
ILABLE_FOR_MAPPING (1),
TM_TERMINATED_AND_AVAILABLE_F
OR_MAPPING (2)

Termination Mode

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE,
SINK

Direction

tpProtectionAssociatio
n

Dynamic tpProtectionAssoci
ation

List: TPPA_NA, TPPA_PSR_RELATED Protection
Association

edgePoint Dynamic edgePoint Boolean Edge Point

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

nativeEmsConnectorP
resent

Static N/A Text Native EMS
Connector
Present

Table 5-9 DeviceInterfaceConfigurationItem Field Mapping

Information
Model Attribute

Information
Model
Support

TMF Attribute Type and Values UI Label

name Static N/A Text

Name is always set to LayerName

Name

value Static Layer Text Value

Chapter 5
About the Oracle Communications Information Model

5-7

Table 5-9 (Cont.) DeviceInterfaceConfigurationItem Field Mapping

Information
Model Attribute

Information
Model
Support

TMF Attribute Type and Values UI Label

specification Static InventoryConfigurat
ionSpec

Text

Programmatically set to
tmf814TPLayersGeneric specification.

TMF814 TPLayer
Generic (displayed as
Entity Type)

clientType Dynamic clientType Text Client Type

potentialFutureSet
upIndicator

Dynamic potentialFutureSet
upIndicator

List: RSU_POINT_TO_POINT,
RSU_BROADCAST,
RSU_ANY_CONFIG

Potential Future Setup
Indicator

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_SERVICE,
IN_MAINTENANCE, UNKNOWN,
TESTING

Each value is mapped to TMF814
specific values: IN_SERVICE,
OUT_OF_SERVICE,
OUT_OF_SERVICE_BY_MAINTENANC
E, SERV_NA. TMF814 does not have
equivalent for TESTING.

Service State

TCAParameterProfi
lePointer

Dynamic TCAParameterProfi
lePointer

Text TRA Parameter Profile
Pointer

trailTraceExpected
Rx

Dynamic trailTraceExpected
Rx

Text Trail Trace Expected
Rx

trailTraceMonitor Dynamic trailTraceMonitor Text Trail Trace Monitor

transmissionDescri
ptorPointer

Dynamic transmissionDescri
ptorPointer

Text Transmission
Descriptor Pointer

allocatedNumber Dynamic allocatedNumber Number Allocated Number

dynamicAllocation
Enabled

Dynamic dynamicAllocation
Enabled

Text Dynamic Allocation
Enabled

About Building the Information Model Tree
Collected TMF814 objects contain raw hierarchical details, but not at the object level. After the
TMF814 objects are modeled as Information Model entities, they are added to the Physical or
Logical Tree. This section describes the algorithm used for building the Trees.

Containment Relationships
To find containment relationship among discovered objects, the algorithm uses the Name
attribute of TMF814 objects. The structure of the name is hierarchical and reflects the
containment relationship between objects in a simple way. Table 5-10 describes the convention
used for the field name.

Table 5-10 Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs

ME name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

Chapter 5
About the Oracle Communications Information Model

5-8

Table 5-10 (Cont.) Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs

PTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="FTP"; value="FTPName"

CTP, as child of a PTP or FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

name="CTP"; value="CTPName"

name="FTP"; value="FTPName"

EquipmentHolder name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

Equipment name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

name="Equipment"; value="EquipmentName"

The Equipment Holder tuple values are hierarchical and have the following structure:

[/remote_unit=<ru>][/rack=<r>][/shelf=<sh>[/sub_shelf=<ssh>][/slot=<sl>[/
[remote_]sub_slot=<ssl>]]]]

Adding an Equipment and an Equipment Holder to the Tree
The TMF814 Equipment Modeler processor is run for each EquipmentOrHolder TMF814
object. After modeling, the Equipment or Equipment Holder object is added to the Information
Model Physical Tree.

It is possible that a child node can appear before its parent node is available. The algorithm
handles this by using a placeholder node, which takes the place of the real node until the real
node is available.

If the input object is a TMF814 Equipment Holder:

1. The EquipmentHolder tuple value is obtained from the name property. The tuple value is
the hierarchical name of the Equipment Holder.

2. The name is split into two substrings at the last index of the / delimiter. This gives two
placeholders:

• The first placeholder gives the hierarchical name of the parent node, which is most
likely another Equipment Holder.

• The second placeholder is the shorter name for the Equipment Holder.

index = lastIndexOf(name , "/");
first = substring(name, 0, index)//First token
second = substring(name, index +1, name.length)

Chapter 5
About the Oracle Communications Information Model

5-9

3. If the first placeholder is empty, the Equipment Holder is a top-level object, and thus a
parent node. The parent node is the node representing the physical device in the Tree.

4. If first placeholder is not empty, the Physical Tree is hierarchically searched from the root
until the node representing the full hierarchical name is found. A placeholder is created for
it while the Physical Tree is being searched.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into /rack=1, /
rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is searched for /rack=1. If
it is found, the search continues for /rack=1/shelf=2. If it is not found, a placeholder is
created for it. /rack=1/shelf=2/slot=3 is also not available, so a placeholder is created for
it as well. The parent node is /rack=1/shelf=2/slot=3.

5. Parent nodes are verified to determine if they have any child nodes with a placeholder. If
they do, the placeholder is released and is used for another node.

6. Nodes are created or replaced in the Physical Tree.

If the output object is TMF814 Equipment:

1. The EquipmentHolder tuple value is obtained from the name property.

2. The Physical Tree is hierarchically searched until the node representing the full hierarchical
name is found. If the name is not found, a placeholder node is created for it.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into /rack=1, /
rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is searched for /rack=1. If
it is found, the search continues for /rack=1/shelf=2. If it is not found, a placeholder is
created for it. /rack=1/shelf=2/slot=3 is also not available, so a placeholder is created for
it as well. Parent node is /rack=1/shelf=2/slot=3.

3. Parent nodes are verified to determine if they have any child nodes with a placeholder. If
they do, the placeholder is released and is used for another node.

4. Nodes are created or replaced in the Physical Tree.

After all nodes are modeled in the Physical Tree. Any remaining placeholder nodes are
modeled as artificial objects.

Adding a Physical Port and an Interface to the Tree
TPs are modeled as physical ports. An associated artificial device interface is created for each
physical port. A device interface is added as a direct child of a logical device.

The algorithm for adding equipment holders to the Tree can be applied to adding a physical
port to the Physical Tree. See "Adding an Equipment and an Equipment Holder to the Tree" for
more information.

Adding a Sub-Interface to the Tree
CTPs are modeled as Sub-Interfaces. They are added to the Logical Tree by the TMF814 CTP
Discoverer for PTP and TMF814 CTP Discoverer for FTP processors, under the context of a
PTP (top-level interface).

Cartridge Modeling for Cross-Connect Data
This section explains how the Optical TMF814 CORBA cartridge models the collected cross-
connect data.

Only the cross-connect data required for assimilation is modeled. Of the data required for
assimilation, only the data meeting the following conditions is modeled.

Chapter 5
About the Oracle Communications Information Model

5-10

The Optical TMF814 CORBA cartridge models cross-connects as one of the following types:

• ST_SIMPLE: Cross-connects with only one segment, as shown in Figure 5-1.

Figure 5-1 ST_SIMPLE Type Cross-Connect Model Mapping

Some vendors represent a bidirectional cross-connect as two unidirectional cross-
connects, meaning one has A1-Z1 as its ends and other has Z1-A1 as its ends. Such
cross-connects are modeled as bidirectional.

• ST_EXPLICIT: The cross-connect object is modeled as multiple pipe objects, as shown in
Figure 5-2.

Figure 5-2 ST_EXPLICIT Type Cross-Connect Model Mapping

The number of objects into which a single cross-connect is modeled depends on
aEndNameList and zEndNameList size. The explicit subnetwork connection (SNC) type
has an n-entry aEndNameList and zEndNameList pairing. The tuples are pairs matched by
index, for example (A1,Z1), (A2, Z2), ...,(An,Zn). A pipe object is modeled for each pair.
These multiple pipes are grouped by a parent Inventory Group object.

• ST_ADD_DROP_A: The cross-connect object is modeled as two pipe segments with
aEndPoint repeating on both cross-connects segment, as shown in Figure 5-3.

Chapter 5
About the Oracle Communications Information Model

5-11

Figure 5-3 ST_ADD_DROP_A Type Cross-Connect Model Mapping

• ST_ADD_DROP_Z: The cross-connect object is modeled as two pipe segments with
zEndPoint repeating on both cross-connects segment, as shown in Figure 5-4.

Figure 5-4 ST_ADD_DROP_Z Type Cross-Connect Model Mapping

Other cross-connects types, such as ST_INTERCONNECT, ST_DOUBLE_INTERCONNECT,
ST_DOUBLE_ADD_DROP, and ST_OPEN_ADD_DROP are not modeled by this cartridge
without extending the cartridge.

The following tables list the model mapping of cross-connect objects:

• Table 5-11

• Table 5-12

• Table 5-13

Table 5-11 Model Mapping for the Inventory Group Object

Information
Model Attribute

Information
Model Support

TMF Attribute Type UI Label

name Static N/A Text

Value is hard-coded to Cross Connect

Name

layerRate Dynamic N/A Text Layer Rate

Chapter 5
About the Oracle Communications Information Model

5-12

Table 5-11 (Cont.) Model Mapping for the Inventory Group Object

Information
Model Attribute

Information
Model Support

TMF Attribute Type UI Label

type Dynamic ccType Text Type

active Dynamic active Text Active

Table 5-12 Model Mapping for the Pipe Object

Information
Model Attribute

Information
Model Support

TMF Attribute Type UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean, always set to True. Gap Pipe

protectionRole Dynamic N/A Text

The value is derived. Possible values are
PRIMARY, BACKUP.

Protection Role

Table 5-13 Model Mapping for the PipeTerminationPoint Object

Information
Model Attribute

Information
Model Support

TMF
Attribute

Type UI Label

name Static N/A Text

The name of the PTP (port) cross-connect endpoint.

Name

device Dynamic N/A Text Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text Layer Rate

channel Dynamic N/A Text

Channel values are derived. See "A and Z Channels"
for more information.

Channel

A and Z Channels
The following example SDH implementation shows how the channel is calculated for each
PipeTerminationPoint.

Example CTP Name JKLM tuples:

• /sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

• /direction=src/sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

• /sts1_au3-j=2-k=2/vt15_tu11-l=1-m=2

JKLM values are collected from the CTPName tuple. Each CTP tuple can be split into a
number of tokens separated by a slash. Each token can be further split into a number of
subtokens separated by a hyphen.

If the CTPName tuple does not have any JKL or M value it is treated as a dropdown port.

Example 5-1 shows how the JKLM values are parsed. This example assumes that the aEnd
and zEnd of a cross-connect are a CTP with the formatting shown below:

Chapter 5
About the Oracle Communications Information Model

5-13

Example 5-1 Parsed JKLM Values

Pattern pattern = Pattern.compile("/");
Matcher subTokenMatcher = Pattern.compile("\\-j=\\d+|\\-k=\\d+|\\-l=\\d+|\\-m=\
\d+").matcher("");
String STS3C_AU4 = "sts3c_au4=";

String[] jklm = new String[]{"0", "0", "0", "0"};
Scanner scaner = new Scanner(ctpName);
scaner.useDelimiter(pattern);
while(scaner.hasNext()){
 String token = scaner.next();
 subTokenMatcher.reset(token);
 while(subTokenMatcher.find()){
 String subToken = subTokenMatcher.group();
if(subToken.startsWith("-")){
 String val = token.substring(subTokenMatcher.start() +1,
subTokenMatcher.end());
 jklm[val.charAt(0) % 106] = val.substring(2, val.length());
 }else{
 jklm[subToken.charAt(0) % 106] = subToken.substring(2, subToken.length());
 }
 }
 if(jklm[0].equalsIgnoreCase("0") && token.startsWith(STS3C_AU4)){
 jklm[0] = token.split("=")[1];;
 }
}
return jklm;

The Optical TMF814 CORBA cartridge can be extended to populate JKLM values that are
implemented differently by some vendors. See "Customizing the JKLM Value Calculation" for
more information.

Cartridge Modeling for Topological Link Data
This section explains how the Optical TMF814 CORBA cartridge models collected topological
link data.

Topological links are modeled Information Model pipe entities. Topological Link endpoints
(aEndTP and zEndTP) are modeled as pipe termination point entities.

Some vendors represent bidirectional topological links as two unidirectional topological links
(two links sharing the same aEnd and zEnd ports). Such links are merged and modeled as one
bidirectional topological link.

The following tables list the model mapping of topological link objects.

Table 5-14 Model Mapping for the Pipe Object for Topological Links

Information Model
Attribute

Information
Model Support

TMF
Attribute

Type UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean

This value is always set to False for topological
link objects.

Gap Pipe

layerRate Dynamic rate Text Layer Rate

Chapter 5
About the Oracle Communications Information Model

5-14

Table 5-14 (Cont.) Model Mapping for the Pipe Object for Topological Links

Information Model
Attribute

Information
Model Support

TMF
Attribute

Type UI Label

nativeEMSName Dynamic nativeEMS
Name

Text Native EMS Name

owner Dynamic owner Text Owner

Table 5-15 Model Mapping for the PipeTerminationPoint Object for Topological Links

Information Model
Attribute

Information
Model Support

TMF Attribute Type UI Label

name Static name Text Name

device Dynamic N/A Text

The value is derived from the device.

Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text

This value is derived from the line layer
rate for the endPort represented by the
PortTerminationPoint.

Layer Rate

channel Dynamic N/A Text

This attribute is not used.

Channel

About the SDH and DWDM Device Modeling
The Information Model has SDH and DWDM Physical and Logical Tree models. Physical
device hierarchy is modeled in the Physical Tree. Logical device hierarchy is modeled in the
Logical Tree.

This section details how the Multi-Technology Network Management (MTNM) model is mapped
to the Information Model.

About the Physical Tree
The following table provides information about MTNM to Information Model Mapping for
Physical Device for SDH and DWDM devices.

Table 5-16 MTNM to Information Model Mapping for Physical Device

MTMN Object Information Model Entity Specification

Manage Element (ME) Physical Device Specification is set based on
device type.

Equipment Holder (Rack) Equipment SDH or DWDM Rack based on
technology selected.

Equipment Holder (Shelf) Equipment Specification is set based on
device type.

Equipment Holder (sub Shelf) Equipment Specification is set based on
device type.

Chapter 5
About the SDH and DWDM Device Modeling

5-15

Table 5-16 (Cont.) MTNM to Information Model Mapping for Physical Device

MTMN Object Information Model Entity Specification

Equipment Holder (Slot) Equipment Holder SDH or DWDM BaseSlot based
on technology selected.

Equipment Holder (Sub Slot) Equipment Holder SDH or DWDM SubSlot based on
technology selected.

Equipment (Card) Equipment SDH or DWDM Base Card/ SDH
or DWDM Sub Card based on
technology selected.

Physical Termination Point (PTP) Physical Port Specification is set based on
layer rate.

About the Logical Tree
The following table describes the MTNM-to-Information model mapping for logical device for
SDH and DWDM devices.

Table 5-17 MTNM-to-Information Model Mapping for Logical Device

MTNM Object Information Model Entity Specification

ME Logical Device Specification is set based on
device type.

PTP Device Interface Specification is set based on
layer rate.

CTP Device Interface Specification is set based on
layer rate.

Default Specification Mapping
Table 5-18 describes specifications based on device type.

Table 5-18 Specifications Based on Device Type

Device Type Physical Device
Specification

Logical Device
Specification

Rack/Shelf/Sub-Shelf
Specification

SDH_GENERIC Optical Physical Device Optical Logical Device SDH Generic Chassis

SDH BG20 SDH BG20 PD SDH BG20 LD SDH BG20 Chassis

SDH BG20B SDH BG20B PD SDH BG20B LD SDH BG20B Chassis

SDH BG20E SDH BG20E PD SDH BG20E LD SDH BG20E Chassis

SDH BG30 SDH BG30 PD SDH BG30 LD SDH BG30 Chassis

SDH BG30B SDH BG30B PD SDH BG30B LD SDH BG30B Chassis

SDH BG30E SDH BG30E PD SDH BG30E LD SDH BG30E Chassis

SDH BG40 SDH BG40 PD SDH BG40 LD SDH BG40 Chassis

SDH BG64 SDH BG64 PD SDH BG64 LD SDH BG64 Chassis

SDH BG64B SDH BG64B PD SDH BG64B LD SDH BG64B Chassis

SDH BG64E SDH BG64E PD SDH BG64E LD SDH BG64E Chassis

SDH NPT1010 SDH NPT1010 PD SDH NPT1010 LD SDH NPT1010 Chassis

Chapter 5
About the SDH and DWDM Device Modeling

5-16

Table 5-18 (Cont.) Specifications Based on Device Type

Device Type Physical Device
Specification

Logical Device
Specification

Rack/Shelf/Sub-Shelf
Specification

SDH NPT1020 SDH NPT1020 PD SDH NPT1020 LD SDH NPT1020 Chassis

SDH NPT1020E SDH NPT1020E PD SDH NPT1020E LD SDH NPT1020E
Chassis

SDH NPT1021 SDH NPT1021 PD SDH NPT1021 LD SDH NPT1021 Chassis

SDH NPT1021E SDH NPT1021E PD SDH NPT1021E LD SDH NPT1021E
Chassis

SDH NPT1022 SDH NPT1022 PD SDH NPT1022 LD SDH NPT1022 Chassis

SDH NPT1050 SDH NPT1050 PD SDH NPT1050 LD SDH NPT1050 Chassis

SDH NPT1050E SDH NPT1050E PD SDH NPT1050E LD SDH NPT1050E
Chassis

SDH NPT1050EP SDH NPT1050EP PD SDH NPT1050EP LD SDH NPT1050EP
Chassis

SDH NPT1050i SDH NPT1050i PD SDH NPT1050i LD SDH NPT1050i Chassis

SDH NPT1050P SDH NPT1050P PD SDH NPT1050P LD SDH NPT1050P
Chassis

SDH NPT1200 SDH NPT1200 PD SDH NPT1200 LD SDH NPT1200 Chassis

SDH NPT1200E SDH NPT1200E PD SDH NPT1200E LD SDH NPT1200E
Chassis

SDH NPT1200EP SDH NPT1200EP PD SDH NPT1200EP LD SDH NPT1200EP
Chassis

SDH NPT1200i SDH NPT1200i PD SDH NPT1200i LD SDH NPT1200i Chassis

SDH NPT1200iE SDH NPT1200iE PD SDH NPT1200iE LD SDH NPT1200iE
Chassis

SDH NPT1200P SDH NPT1200P PD SDH NPT1200P LD SDH NPT1200P
Chassis

SDH NPT1300 SDH NPT1300 PD SDH NPT1300 LD SDH NPT1300 Chassis

SDH NPT1300E SDH NPT1300E PD SDH NPT1300E LD SDH NPT1300E
Chassis

SDH NPT1800E SDH NPT1800E PD SDH NPT1800E LD SDH NPT1800E
Chassis

SDH NPT1800TX SDH NPT1800TX PD SDH NPT1800TX LD SDH NPT1800TX
Chassis

SDH OPT9601 SDH OPT9601 PD SDH OPT9601 LD SDH OPT9601 Chassis

SDH OPT9603 SDH OPT9603 PD SDH OPT9603 LD SDH OPT9603 Chassis

SDH OPT9608 SDH OPT9608 PD SDH OPT9608 LD SDH OPT9608 Chassis

SDH SDM-4R SDH SDM-4R PD SDH SDM-4R LD SDH SDM-4R Chassis

SDH SDM-16FR SDH SDM-16FR PD SDH SDM-16FR LD SDH SDM-16FR
Chassis

SDH T6325 SDH T6325 PD SDH T6325 LD SDH T6325 Chassis

SDH T6350 SDH T6350 PD SDH T6350 LD SDH T6350 Chassis

SDH uADM1-63 SDH uADM1-63 PD SDH uADM1-63 LD SDH uADM1-63 Chassis

SDH XDM40 SDH XDM40 PD SDH XDM40 LD SDH XDM40 Chassis

SDH XDM50 SDH XDM50 PD SDH XDM50 LD SDH XDM50 Chassis

SDH XDM100 SDH XDM100 PD SDH XDM100 LD SDH XDM100 Chassis

SDH XDM300 SDH XDM300 PD SDH XDM300 LD SDH XDM300 Chassis

Chapter 5
About the SDH and DWDM Device Modeling

5-17

Table 5-18 (Cont.) Specifications Based on Device Type

Device Type Physical Device
Specification

Logical Device
Specification

Rack/Shelf/Sub-Shelf
Specification

SDH XDM400 SDH XDM400 PD SDH XDM400 LD SDH XDM400 Chassis

SDH XDM500 SDH XDM500 PD SDH XDM500 LD SDH XDM500 Chassis

SDH XDM900 SDH XDM900 PD SDH XDM900 LD SDH XDM900 Chassis

SDH XDM1000 SDH XDM1000 PD SDH XDM1000 LD SDH XDM1000 Chassis

SDH XDM2000 SDH XDM2000 PD SDH XDM2000 LD SDH XDM2000 Chassis

SDH XDM3000 SDH XDM3000 PD SDH XDM3000 LD SDH XDM3000 Chassis

OPTIXDWDMOTM DWDM Tx OptiX DWDM
OTM PD

DWDM Tx OptiX DWDM
OTM LD

DWDM Tx Rack

DWDM Tx OptiX DWDM
OTM Chassis

OPTIXDWDMOLA DWDM Tx OptiX DWDM
OLA PD

DWDM Tx OptiX DWDM
OLA LD

DWDM Tx Rack

DWDM Tx OptiX DWDM
OLA Chassis

OPTIXOSN6800 DWDM Tx OptiX OSN
6800 PD

DWDM Tx OptiX OSN
6800 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
6800 Chassis

OPTIXDWDMOEQ DWDM Tx OptiX DWDM
OEQ PD

DWDM Tx OptiX DWDM
OEQ LD

DWDM Tx Rack

DWDM Tx OptiX DWDM
OEQ Chassis

OPTIXDWDMOADM DWDM Tx OptiX DWDM
OADM PD

DWDM Tx OptiX DWDM
OADM LD

DWDM Tx Rack

DWDM Tx OptiX DWDM
OADM Chassis

OPTIXOSN1500 DWDM Tx OptiX OSN
1500 PD

DWDM Tx OptiX OSN
1500 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1500 Chassis

OPTIXOSN8800T64 DWDM Tx OptiX OSN
8800 T64 PD

DWDM Tx OptiX
OSN8800 T64 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
8800 T64 Chassis

OPTIXOSN8800T16 DWDM Tx OptiX OSN
8800 T16 PD

DWDM Tx OptiX OSN
8800 T16 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
8800 T16 Chassis

OPTIXOSN8800T32 DWDM Tx OptiX OSN
8800 T32 PD

DWDM Tx OptiX OSN
8800 T32 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
8800 T32 Chassis

OPTIXOSN3500 DWDM Tx OptiX OSN
3500 PD

DWDM Tx OptiX OSN
3500 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
3500 Chassis

OPTIXOSN8800 DWDM Tx OptiX OSN
8800 PD

DWDM Tx OptiX OSN
8800 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
8800 Chassis

OPTIXOSN6800 DWDM Tx OptiX OSN
6800 PD

DWDM Tx OptiX OSN
6800 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
6800 Chassis

Chapter 5
About the SDH and DWDM Device Modeling

5-18

Table 5-18 (Cont.) Specifications Based on Device Type

Device Type Physical Device
Specification

Logical Device
Specification

Rack/Shelf/Sub-Shelf
Specification

OPTIXOSN1832X8 DWDM Tx OptiX OSN
1832 X8 PD

DWDM Tx OptiX OSN
1832 X8 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1832 X8 Chassis

OPTIXOSN1800V DWDM Tx OptiX OSN
1800 V PD

DWDM Tx OptiX OSN
1800 V LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1800 V Chassis

OPTIXOSN7500II DWDM Tx OptiX OSN
7500II PD

DWDM Tx OptiX OSN
7500II LD

DWDM Tx Rack

DWDM Tx OptiX OSN
7500II Chassis

OPTIXOSN750 DWDM Tx OptiX OSN
7500 PD

DWDM Tx OptiX OSN
7500 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
7500 Chassis

OPTIXOSN1800 DWDM Tx OptiX OSN
1800 PD

DWDM Tx OptiX OSN
1800 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1800 Chassis

OPTIXOSN9800U32 DWDM Tx OptiX OSN
9800 U32 PD

DWDM Tx OptiX OSN
9800 U32 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
9800 U32 Chassis

OPTIXMETRO1000V3 DWDM Tx OptiX Metro
1000V3 PD

DWDM Tx OptiX Metro
1000V3 LD

DWDM Tx Rack

DWDM Tx OptiX Metro
1000V3 Chassis

OPTIXRTN320 DWDM Tx OptiX RTN
320 PD

DWDM Tx OptiX RTN
320 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
320 Chassis

OPTIXRTN905 DWDM Tx OptiX RTN
905 PD

DWDM Tx OptiX RTN
905 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
905 Chassis

OPTIXRTN910 DWDM Tx OptiX RTN
910 PD

DWDM Tx OptiX RTN
910 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
910 Chassis

OPTIXRTN910A DWDM Tx OptiX RTN
910A PD

DWDM Tx OptiX RTN
910A LD

DWDM Tx Rack

DWDM Tx OptiX RTN
910A Chassis

OPTIXRTN950 DWDM Tx OptiX RTN
950 PD

DWDM Tx OptiX RTN
950 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
950 Chassis

OPTIXRTN950A DWDM Tx OptiX RTN
950A PD

DWDM Tx OptiX RTN
950A LD

DWDM Tx Rack

DWDM Tx OptiX RTN
950A Chassis

OPTIXRTN980 DWDM Tx OptiX RTN
980 PD

DWDM Tx OptiX RTN
980 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
980 Chassis

Chapter 5
About the SDH and DWDM Device Modeling

5-19

Table 5-18 (Cont.) Specifications Based on Device Type

Device Type Physical Device
Specification

Logical Device
Specification

Rack/Shelf/Sub-Shelf
Specification

OPTIXOSN1832X16 DWDM Tx OptiX OSN
1832 X16 PD

DWDM Tx OptiX OSN
1832 X16 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1832 X16 Chassis

OPTIXOSN1832X4E DWDM Tx OptiX OSN
1832 X4 E PD

DWDM Tx OptiX OSN
1832 X4 E LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1832 X4 E Chassis

OPTIXOSN1832X8E DWDM Tx OptiX OSN
1832 X8 E PD

DWDM Tx OptiX OSN
1832 X8 E LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1832 X8 E Chassis

OPTIXOSN500 DWDM Tx OptiX OSN
500 PD

DWDM Tx OptiX OSN
500 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
500 Chassis

OPTIXOSN550 DWDM Tx OptiX OSN
550 PD

DWDM Tx OptiX OSN
550 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
550 Chassis

OPTIXOSN9800U64 DWDM Tx OptiX OSN
9800 U64 PD

DWDM Tx OptiX OSN
9800 U64 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
9800 U64 Chassis

OPTIXOSN9800 DWDM Tx OptiX OSN
9800 PD

DWDM Tx OptiX OSN
9800 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
9800 Chassis

OPTIXOSN1800IE DWDM Tx OptiX OSN
1800 I E PD

DWDM Tx OptiX OSN
1800 I E LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1800 I E Chassis

OPTIXOSN1800IIE DWDM Tx OptiX OSN
1800 II E PD

DWDM Tx OptiX OSN
1800 II E LD

DWDM Tx Rack

DWDM Tx OptiX OSN
1800 II E Chassis

OPTIXOSN1832X4 DWDM Tx OptiX OSN
1832 X4 PD

DWDM Tx OptiX OSN
1832 X4 LD

DWDM Tx Rack

DWDM Tx OptiX OSN
9800 X4 Chassis

OPTIXRTN320 DWDM Tx OptiX RTN
320 PD

DWDM Tx OptiX RTN
320 LD

DWDM Tx Rack

DWDM Tx OptiX RTN
320 Chassis

Table 5-19 describes specifications based on layer rate.

Table 5-19 Specifications Based on Layer Rate

Layer Rate Physical Port Specification Device Interface Specification

STM-1 STM1 STM-1 Interface

STM-4 STM4 STM-4 Interface

STM-16 STM16 STM-16 Interface

STM-64 STM64 STM-64 Interface

STM-256 STM256 STM-256 Interface

Chapter 5
About the SDH and DWDM Device Modeling

5-20

Table 5-19 (Cont.) Specifications Based on Layer Rate

Layer Rate Physical Port Specification Device Interface Specification

E1 E1 E1 Interface

E3 E3 E3 Interface

E4 E4 E4 Interface

VC4 E4 VC4 Interface

VC3 E3 VC3 Interface

VC12 E1 VC12 Interface

VC4_1 to VC4_64 E4 VC4_1 to VC4_64

VC3_1 to VC3_40 E3 VC3_1 to VC3_40

VC12_1 to VC12_63 E12 VC12_1 to VC12_63

1GigE 1 GigE 1GigE

10GigE 10 GigE 10GigE

40GigE 40 GigE 40GigE

100GigE 100 GigE 100GigE

10M Ethernet 10M

100M FE FE

OMS OMS OMS

OTS OTS OTS

WDM WDM WDM

IF IF IF

LAG LAG LAG

ODU0 WDM ODU0

ODU1 WDM ODU1

ODU2 WDM ODU2

ODU3 WDM ODU3

ODU4 WDM ODU4

ODUC1 WDM ODUC1

ODUC2 WDM ODUC1

ODUFlex WDM ODUFlex

OTU2 WDM OTU2

OTU3 WDM OTU3

OTU4 WDM OTU4

OTUC1 WDM OTUC1

OTUC2 WDM OTUC2

Specification Mapping Customization
The TMF814Discovery_Cartridge\src folder has a *.properties file where specification
mapping is done based on technology.

• \UIM_Cartridge_Projects\ora_ni_uim_ocim: SDH and DWDM common chars are
available here.

• \UIM_Cartridge_Projects\ora_ni_uim_device_ports_interfaces_connectors: SDH and
DWDM domain device interface, ports, physical connectors are available here.

Chapter 5
Specification Mapping Customization

5-21

• \UIM_Cartridge_Projects\ora_ni_uim_SDH_optical: SDH domain device hierarchy
components are available here.

• \UIM_Cartridge_Projects\ora_ni_uim_device_DWDM_optical: DWDM domain device
hierarchy components are available here.

If TMF814 Transmission Scan Params technology is selected as SDH then
SDHSpecificationMapper.properties is loaded for specification.

If TMF814 Transmission Scan Params technology is selected as DWDM then
DWDMSpecificationMapper.properties is loaded for specification.

Customization is possible and a new properties file can be added for specification mapping, to
make an entry in the
oracle.communications.integrity.tmf814discovery.transmission.optical.modeller.spec.Op
ticalTransmissionDefaultSpecificationMapper constructor.

Existing specification can be used from modelling cartridges available for reference. The same
needs to be added in the TMF814 Optical Transmission Model Collection for reference in
Network integrity.

If a new specification is not added in TMF814 Optical Transmission Model Collection, Network
Integrity will not be able to model the entity with expected specification.

Result Groups
Topological link pipe entities and cross-connect inventory group entities are both added to the
same device result group, but in separate group containers.

Topological links span multiple devices. When the aEnd and zEnd ports are managed by MEs
belonging to different EMSs, the topological link is modeled according to the device name that
appears first in a sorted list.

The Link result group models a root entity container with the name Links as the parent for all
topological links associated with a device. The topological link appears on the lower device of
the two endpoints, as shown in Figure 5-5.

The cross-connect result group models a root entity container with the name Cross-connects
as the parent for all cross-connects associated with the device, as shown in Figure 5-5.

Chapter 5
Result Groups

5-22

Figure 5-5 Result Group Model Diagram

Figure 5-6 shows an example grouping for links and cross-connects with the following
particularities:

• A populated result group for each device

• The appropriate cross-connects added to each device group

• The topological link is added only to the ME1 device group

Figure 5-6 Example Result Group Model and Configuration

Chapter 5
Result Groups

5-23

Chapter 5
Result Groups

5-24

6
About Model Correction

This chapter explains how some Multi Technology Network Management (MTNM) data is
corrected to conform to Oracle Communications Information Model. Model correction occurs
when the data received by the discovery action types does not conform to the Information
Model. The Oracle Communications Network Integrity Optical TMF814 CORBA cartridge
performs model corrections for the following:

• Equipment Holder as a Child of a Physical Device

• Sub-Slots of Slots

• Huawei U2000 MSTP End Port

Equipment Holder as a Child of a Physical Device
The MTNM model supports an Equipment Holder (rack) as a child of a physical device
(managed element [ME]). The Information Model supports only Equipment as a child of
physical device. Model correction is used to map a rack, shelf and sub-shelf as equipment.

Sub-Slots of Slots
When a slot has sub-slots, the sub-slots usually contain a card. The MTNM model and
TMF814 consider the card as a sibling of the sub-slots. In a network, this card is the parent of
sub-slots and the child of the slot. In cases where MTNM does return this sibling, model
correction is used to add artificial equipment.

Huawei U2000 MSTP End Port
For Huawei U2000 MSTP devices, the physical port name of end ports is populated with the
TMF name. Model correction is used to change the name to contain the native EMS name.

6-1

7
About Design Studio Construction

This chapter explains how the Oracle Communications Network Integrity Optical TMF814
CORBA cartridge is built from the Oracle Communications Design Studio perspective.

Model Collections
Table 7-1 shows the Design Studio construction of the Generic TMF814 model collection.

Table 7-1 Generic TMF814 Model Collection

Specification Name Dynamic Entity Type

tmf814MEGeneric Physical Device Specification

tmf814DeviceGeneric Logical Device Specification

tmf814EquipmentGeneric Equipment Specification

tmf814EquipmentHolderGeneric Equipment Holder Specification

tmf814PortGeneric Physical Port Specification

tmf814TPInterfaceGeneric Device Interface Specification

This specification applies for all types of termination points (TPs).

tmf814TPLayersGeneric Device Interface Configuration Specification

Actions
The following tables outline the Design Studio construction of the Optical TMF814 CORBA
cartridge actions and associated components.

Note:

Parameter values are case-sensitive and must be entered in capital letters when
commands are run from a command line interface.

7-1

Table 7-2 Actions Design Studio Construction

Action Name Result
Category

Address
Handler

Scan Parameter Group Processors

Discover Abstract
TMF814 action

Device N/A IncrementalSacnParameter • TMF814 Property Initializer
• TMF814 Session Manager
• TMF814 Device Recorder Initializer
• TMF814 ME Collector
• TMF814 Updated ME Discoverer
• TMF814 Device Modeler
• TMF814 Equipment Collector
• TMF814 Equipment Modeler
• TMF814 PTP Collector
• TMF814 PTP Modeler
• TMF814 CTP Discoverer for PTP
• TMF814 FTP Collector
• TMF814 FTP Modeler
• TMF814 CTP Discoverer for FTP
• TMF814 Device Persister
• TMF814 Device Recorder Persister
• Update ME Notification Status
• TMF814 SNC Discoverer
• TMF814 Cross-Connect Discoverer
• TMF814 SNC CC Discoverer
• Update SNC Notification Status
• TMF814 Topological Link Config

Initializer
• TMF814 Topological Link Collector
• TMF814 Updated Topo Link Collector
• TMF814 Topological Link Modeler
• TMF814 Pipe Persister
• Update TL Notification Status

Discover TMF814
action

Device N/A TMF814Parameters. See
Table 7-3

AutoResolutionParameter.
See Network Integrity
Developer's Guide.

Parallel Process Parameters.
See Network Integrity
Developer's Guide .

• TMF814 CORBA Property Initializer
• TMF814 Property Customizer
• TMF814 MultiThread Device Modeler
• TMF814 MultiThread TL Modeler

Discover Huawei
U2000 action

Device N/A Parallel Process Parameters.
See Network Integrity
Developer's Guide.

• Huawei Customizer
• Huawei MSTP EndPoint Collector
• Huawei MSTP EndPoint Modeler
• TMF814 Huawei MultiThread Device

Modeler

Chapter 7
Actions

7-2

Table 7-3 TMF814 Scan Parameters Design Studio Construction

Parameter Name Parameter
Type

Description UI Label

UserName Text box User name of the element management system (EMS) or
network management system (NMS) used for getting
details.

Username

Password Secret text Password of EMS or NMS system. Password

EMSNamingService Text box EMS Naming Service

The EMS session factory CORBA object name.

Ems Naming
Service

EMSNamingServiceForm
at

Drop down List: PLAIN, STRINGIFIED

The EMS session factory CORBA object name format.

Ems Naming
Service Format

CollectEquipment Drop down List: TRUE, FALSE Collect Equipment

CollectTP Drop down List: ALL, ONLY PTP, ONLY FTP, NONE Collect
Termination Points

CollectCTP Drop down List: CURRENT, IN USE, POTENTIAL, NONE Collect Connection
TP

EquipmentFetchSize Text box Number of equipment objects to fetch at a time for each
EMS call.

Equipment Fetch
Size

TPFetchSize Text box Number of contained TP objects to fetch at a time for each
EMS call.

Termination Point
Fetch Size

CTPCollectionDepth Text box The depth (level of children objects) to which contained TPs
are collected.

Contained TP
Collection Depth

ORBProperties Text box Semicolon separated name value pairs for ORB Properties. Orb Properties

ORBArguments Text box Semicolon separated name value pairs for ORB
Arguments.

Orb Arguments

ManagedElementName Text box Name of ME. This parameter works in combination with
Managed Element Name Qualifier. This parameter helps to
filter the scan.

Managed Element
Name

ManagedElementNameQ
ualifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE, CONTAINS,
CONTAINS_IGNORE_CASE, STARTS_WITH,
STARTS_WITH_IGNORE_CASE, ENDS_WITH,
ENDS_WITH_IGNORE_CASE

This parameter works in combination with Managed
Element Name to filter the collected MEs by name and
qualifier.

Managed Element
Name Qualifier

NetworkElementNames Text Box Name of NE. This parameter works in combination with
Network Element Names Qualifier. This parameter helps to
filter the scan.

Network Element
Names

NetworkElementNameQu
alifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE, CONTAINS,
CONTAINS_IGNORE_CASE, STARTS_WITH,
STARTS_WITH_IGNORE_CASE, ENDS_WITH,
ENDS_WITH_IGNORE_CASE
COMMA_DELIMITED_NAMES,
COMMA_DELIMITED_NAMES_IGNORE_CASE

This parameter works in combination with Network Element
Name to filter the collected NEs by name and qualifier.

Network Element
Name Qualifier

CrossConnectCollectionTy
pe

Drop down List: USE_SNC, USE_ME_MANAGER, NONE

This parameter controls how cross-connects are collected.
Select None to disable cross-connect collection.

Cross-connect
Collection Type

Chapter 7
Actions

7-3

Table 7-3 (Cont.) TMF814 Scan Parameters Design Studio Construction

Parameter Name Parameter
Type

Description UI Label

TopologicalLinkCollection
Type

Drop down List: ALL, BETWEEN_SN, INSIDE_SN, NONE

This parameter controls how topological links are collected.
Select None to disable topological link collection.

Topological Link
Collection Type

Table 7-4 Discovery Processor Design Studio Construction

Discovery
Processors

Variable

CORBA Property
Initializer

Input: N/A

Output:

• corbaSeed(oracle.communications.integrity.abstractcorbacartridge.CorbaSeed)

A JavaBean that holds properties related to the CORBA cartridge. See "About the CORBA
Cartridge" in Network Integrity CORBA Cartridge Guide for more information.

TMF814 CORBA
Property Initializer

Input: corbaSeed

Output: corbaSeed

CORBA
Connection
Manager

Input: corbaSeed

Output:

• namingServer(org.omg.CosNaming.NamingContextExt)
• orb(org.omg.CORBA.ORB)
See Network Integrity CORBA Cartridge Guide for more information.

TMF814 Property
Initializer

Input: N/A

Output:

• tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Properties)

A JavaBean that contains the set of TMF814 properties. See Table 2-1 for a list of properties.
• tpDetailMap(oracle.communications.integrity.tmf814discovery.model.tp.TPNameMap)

A map listing properties to PTP names.

TMF814 Property
Customizer

Input:

• tmf814Properties
• orb
• namingServer
Output: tmf814Properties

Huawei
Customizer

Input:

• customProperties
• tmfNameToDeviceNameMap

(oracle.communications.integrity.tmf814discovery.model.DeviceNameMapping)
Output:

• tmfNameToDeviceNameMap

(oracle.communications.integrity.tmf814discovery.model.DeviceNameMapping)

TMF814 Session
Manager

Input: tmf814Properties

Output:

• sessionManager(oracle.communications.integrity.tmf814discovery.session.SessionManager)

A session manager instance responsible for creating emsMgr and multiLayerSubnetwork, and for
managing EMSSession and TMF814 Object managers.

Chapter 7
Actions

7-4

Table 7-4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processors

Variable

TMF814 Device
Recorder Initializer

Input: tmf814Properties, customProperties

Output:

• recordMode(boolean)

A Boolean indicating whether Recording Mode is enabled.

TMF814 ME
Collector

Input: N/A

Output:

• meIterable

Iterable object for each collected ME.

TMF814 Device
Modeler

Input:

• tmf814Properties
• customProperties
• managedElement(org.tmforum.mtnm.managedElement.ManagedElement_T)

One instance of the meIterable. This processor is run once for each instance of manamedElement.
Output:

• physicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.PhysicalTree)

A representation of the Information Model Physical Tree containing a physical device as the root
object, to which child objects can be added.

• logicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.LogicalTree)

A representation of the Information Model Logical Tree containing a logical device as the root
object, to which child objects can be added.

TMF814
Equipment
Collector

Input: tmf814Properties, customProperties, sessionManager, physicalTree, managedElement

Output:

• equipmentOrHolderIterable(java.lang.Iterable<org.tmforum.mtnm.equipment.EquipmentOrHolder_
T>)

Iterable object that iterates for each collected Equipment object or Holder object.

TMF814
Equipment
Modeler

Input:

• tmf814Properties
• physicalTree
• equipmentOrHolder(org.tmforum.mtnm.equipment.EquipmentOrHolder_T)

One instance of the equipmentOrHolderIterable. This processor is run once for each instance of
equipmentOrHolder.

Output:

• equipment(oracle.communications.inventory.api.entity.Equipment)

Returned value if input is equipment.
• equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

Returned value if input is equipment holder.

Chapter 7
Actions

7-5

Table 7-4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processors

Variable

TMF814 PTP
Collector

Input:

• tmf814Properties
• customProperties
• equipment(oracle.communications.inventory.api.entity.Equipment)

A modeled Information Model equipment object.
• equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

A modeled Information Model equipment holder object.
Output:

• ptpIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.TerminationPoint_T>)

Iterable object for each collected PTP belonging to an Equipment object.

TMF814 PTP
Modeler

Input:

• tmf814Properties
• equipment

An Information Model object that is modeled as the parent for all ports.
• physicalTree
• logicalTree
• tpDetailMap
• ptp(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)

A PTP object, modeled as a Physical Port in the Physical Tree, and as a Device Interface in the
Logical Tree.

Output:

• deviceInterface(oracle.communications.inventory.api.entity.DeviceInterface)

A modeled Information Model interface object.
• physicalPort(oracle.communications.inventory.api.entity.PhysicalPort)

A modeled Information Model port object.

TMF814 CTP
Discoverer for
PTP

Input:

• tmf814Properties

Provides the CTP flag, termination point (TP) fetch size, and CTP depth properties.
• customProperties
• deviceInterface
• logicalTree
• physicalPort
• ptp

Parent PTP for which all CTPs are discovered.
Output: n/a

TMF814 FTP
Collector

Input:

• tmf814Properties

Provides the CTP flag and TP fetch size properties.
• customProperties
• logicalTree
• managedElement

The name of the ME is used to fetch the FTP.
Output:

• terminationPointIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.TerminationPoint_T
>)

Iterable object for each collected FTP.

Chapter 7
Actions

7-6

Table 7-4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processors

Variable

TMF814 FTP
Modeler

Input:

• tmf814Properties
• logicalTree
• tpDetailMap
• terminationPoint(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)
Output:

• deviceInterface

Modeled Information Model object for a TP. TPs are modeled and added to the Logical Tree as
direct child objects of a logical device.

TMF814 CTP
Discoverer for FTP

Input:

• tmf814Properties
• customProperties
• terminationPoint

TPs for which CTPs are fetched and modeled.
• deviceInterface

Parent Information Model object for all top level CTPs.
• logicalTree
Output: n/a

TMF814 Device
Persister

Input:

• tmf814Properties
• physicalTree
• logicalTree
• managedElement
Output: n/a

TMF814 Device
Recorder Persister

Input: tmf814Properties

Output: n/a

TMF814 Cross-
Connect
Discoverer

Input: tmf814Properties, customProperties, tpDetailMap

Output: n/a

TMF Topological
Link Collector

Input: tmf814Properties, customProperties, tpDetailMap

Output:

• topologicalLinkIterable(java.util.Iterable)

Iterable object that iterates for each collected topological link object.
• tlPipeMap(java.util.Map<java.lang.String,java.utilList<oracle.communications.inventory.api.entity.Pi

pe>>)

A map listing all collected topological links by their container group.

TMF814
Topological Link
Modeler

Input:

• tmf814Properties
• tpDetailMap
• topologicalLink(org.tmforum.mtnm.topologicalLink.TopologicalLink_T)
• tlPipeMap
Output:

• linkPipe(oracle.communications.inventory.api.entity.Pipe)

A modeled topological link as a pipe entity.

Chapter 7
Actions

7-7

Table 7-4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processors

Variable

TMF814 Pipe
Persister

Input: tmf814Properties, tpDetailMap, tlPipeMap

Output: n/a

Chapter 7
Actions

7-8

8
About Design Studio Extension

This chapter contains examples and explanations on how to extend certain aspects of the
Oracle Communications Network Integrity Optical TMF814 CORBA cartridge using Oracle
Communications Design Studio. See Network Integrity Developer's Guide for more information.
For guidelines and best practices for extending cartridges see Network Integrity Concepts.

The following examples are explained in this section:

• Initializing a Custom Object Request Broker

• Extending the Discover TMF814 Action to Collect Vendor-Specific Information

• Collecting Vendor-Specific Details for CTPs

• Adding New Managers

• Creating a Custom Equipment Reconciliation Cartridge

• Creating a Custom Circuit Reconciliation Cartridge

• Customizing the JKLM Value Calculation

• Adding New CORBA API Calls

• Collecting and Modeling Protection Role Information

• Discovering Custom Device or Result Group Names

Initializing a Custom Object Request Broker
This example explains how you can initialize a custom object request broker (ORB) instead of
using the default ORB provided by the Network Integrity Cartridge for CORBA (CORBA
cartridge).

To initialize a custom ORB:

1. Open Oracle Communications Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the CORBA cartridge project.

4. Create a discovery action that uses the CORBA Abstract Discovery action as a processor.

5. Create a discovery processor named Custom CORBA Property Initializer and add it after
the CORBA Property Initializer processor.

This processor overrides org.omg.CORBA.ORBClass,
org.omg.CORBA.ORBSingletonClass, and any additional parameters specific to ORB
implementation from the CORBAProperties JavaBean.

6. Create a discovery processor named Custom ORB Manager to perform custom lookup.

7. (Optional) Disable NamingContextExt lookup.

This operation may set the Naming Service Connection Flag to false, causing custom
lookup to fail.

8-1

Extending the Discover TMF814 Action to Collect Vendor-
Specific Information

This example explains how to model vendor-specific information. No new common object
request broker architecture (CORBA) calls are required to the server because this data is
already collected. In this example, managementIP of a managed element (ME) is used as the
desired vendor-specific information.

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project named TMF814SampleVendorExtension.

3. Make TMF814SampleVendorExtension dependent on the Optical TMF814 CORBA
cartridge project and the TMF814_Model cartridge.

4. Create a discovery action named TMF814 Sample Vendor Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 Sample Vendor Extension
action.

6. Create a Physical Device specification named customTMF814MEGeneric and add all the
same characteristics as tmf814MEGeneric.

7. Add the managementIP characteristic to customTMF814MEGeneric.

8. Create a new discovery processor named Custom Device Modeler and insert it after the
TMF814 Device Modeler processor. Specify physical device and managed element as
input parameters to the processor.

9. In the Custom Device Modeler processor implementation, add code to populate physical
device with managementIP, as shown in the following example:

//Get ME form request
ManagedElement_T me = request.getManagedElement();
PhysicalDevice dev = request.getPhysicalDevice();

//Create CustomTMF814MEGeneric spec isntance
CustomTMF814MEGeneric customDevice = new CustomTMF814MEGeneric(dev);

//TMFAdditionalInfoHelper is helper calls bundled with this cartridge

String managementIP = TMFAdditionalInfoHelper.getAdditionalInfo (me.additionalInfo,
"managementIP");

customDevice.setManagementIP(managementIP);
10. Build, deploy, and test your cartridge.

Your new Custom Device Modeler processor is run in the order shown in Figure 8-1.

Chapter 8
Extending the Discover TMF814 Action to Collect Vendor-Specific Information

8-2

Figure 8-1 Custom Device Modeler Processor Workflow

Collecting Vendor-Specific Details for CTPs
This example explains how to model vendor-specific details about connection termination
points (CTPs). CTP collection is handled differently from other objects because both the
collecting and the modeling are handled by the same processor. In this example, vendorState
of a CTP is used as the sought vendor-specific information.

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project named TMF814SampleVendorExtension.

3. Make TMF814SampleVendorExtension dependent on the Optical TMF814 CORBA
cartridge project and the TMF814 Model cartridge.

4. Create a discovery action named TMF814 Sample Vendor Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 Sample Vendor Extension
action.

6. In the Studio Projects view, expand the TMF814_Model project.

7. Expand the Device Interface specifications and copy the tmf814TPInterfaceGeneric
specification.

8. Copy the Device Interface into your project and call it customTMF814TPInterfaceGeneric.

9. Add a characteristic named vendorState to the customTMF814TPInterfaceGeneric
specification.

10. Change to the Java perspective.

11. In the TMF814SampleVendorExtension project, add a class that implements the
oracle.communications.integrity.tmf814discovery.model.ctp.CTPModelCustomizer
interface, as shown in the following example:

Chapter 8
Collecting Vendor-Specific Details for CTPs

8-3

/**
* This is a CTP model customizer.
*/

package com.vendor.ctp;
import oracle.communications.integrity.tmf814discovery.model.ctp.CTPModelCustomizer;
import oracle.communications.integrity.tmf814discovery.model.ocimtree.LogicalTree;
import oracle.communications.inventory.api.entity.DeviceInterface;
import org.tmforum.mtnm.terminationPoint.TerminationPoint_T;

public class CTPModelCustomizerImpl implements CTPModelCustomizer {

 /**
 * Overriding customize method.
 * @param inter, modeled DeviceInterface
 * @param tp, TerminationPoint_T tmf object
 * @param tree
 */

 public void customize(DeviceInterface inter, TerminationPoint_T tp,
LogicalTree<Object> tree) {
 //1. Get vendor data from termination point.
 //2. Create new specification
 //3. Set vendor specific data to Information Model data.
 }
}

12. Switch back to the Design Studio perspective.

13. Register the CTPModelCustomizerImpl class:

a. Add a new discovery processor to the TMF814 Sample Vendor Extension action. This
processor should be added after TMF814 Property Customizer. Name the processor
Vendor Property Customizer.

b. For the Vendor Property Customizer processor, set the following context parameters:

• Input:
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814
Properties)

• Output:
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814
Properties)

c. Create a Java implementation for the Vendor Property Customizer processor by
adding code similar to the following example to the processor implementation:

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorCont
ext;
import oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;

public class VendorPropertyCustomizerProcessorImpl implements
VendorPropertyCustomizerProcessorInterface {

 @Override
 public VendorPropertyCustomizerProcessorResponse invoke(
 DiscoveryProcessorContext context,
 VendorPropertyCustomizerProcessorRequest request) throws ProcessorException {
 //Get properties from request
 TMF814Properties prop = request.getTmf814Properties();

Chapter 8
Collecting Vendor-Specific Details for CTPs

8-4

 //Set fully qualified name of above CTP customizer implementation class.
 prop.setCtpModelCustomizerImplClass("com.vendor.ctp.CT
PModelCustomizerImpl");
 //Create processor response and set the prop to the response
 VendorPropertyCustomizerProcessorResponse response = new
VendorPropertyCustomizerProcessorResponse();
 response.setTmf814Properties(prop);
 return response;
 }
}

14. Save and close all files.

15. Build, deploy, and test your cartridge.

Adding New Managers
To add a new manager:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a discovery action named TMF814 New Manager Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 New Manager Extension
action.

6. Create a new processor named My Manager Initializer and insert it after the TMF814
Session Manager processor.

7. For the My Manager Initializer processor, set the following context parameters:

• input:
sessionManager(oracle.communications.integrity.tmf814discovery.session.SessionMa
nager)

• output: all managers initialized by the processor

8. Add the necessary logic to initialize the managers in the generated
MyManagerInitilizerImpl class invoke() method.

The following example shows the logic to initialize a new manager named My Manager:

oracle.communications.integrity.tmf814discovery.session.SessionManager
sessionManager = request.getSessionManager();

//This method in sessionManager tries to create a manager identified by //specified
manager name using currently active Ems Session.

org.omg.CORBA.Object obj = sessionManager.getManager("My_Manager_Name");

//Narrow the generic CORBA object to specific type.
My_Manager myManaer = My_Manager_IHelper.narrow(obj);

9. Add all the managers to the response object of the invoke() method.

All the processors following the TMF814 Manager Initializer processor can make use of the
newly initialized managers.

Chapter 8
Adding New Managers

8-5

Note:

If the new managers are used to collect new objects, you should design
corresponding collector, discoverer, and modeler processors.

If you wish to record the results, the discoverer processor needs to extend the
TMF814 Device Recorded Initializer and TMF814 Device Recorder Persister
processors. The postProcess() method needs to be run after each object is
fetched. Update the writeRecord() method Java class for any new objects.

Creating a Custom Equipment Reconciliation Cartridge
You can create a custom equipment reconciliation cartridge that discovers your TMF814
equipment and reconciles it with your inventory system.

To create a custom equipment reconciliation cartridge:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a discovery action named TMF814 Equipment Reconciliation.

5. Add either the Discover TMF814 action Discover Abstract TMF814 action as a processor
in the TMF814 Equipment Reconciliation action.

6. Create an import action to import your inventory data into Network Integrity.

7. Create a discrepancy detection action to compare your discovered TMF814 equipment
data with your imported inventory equipment data.

8. Create a discrepancy resolution action to correct discrepancies between your discovered
TMF814 equipment data and your imported inventory equipment data.

9. Build, deploy, and test your cartridge.

See "About the Optical UIM Integration Cartridge" in Network Integrity Optical UIM Integration
Cartridge Guide for more information if you use Oracle Communications Unified Inventory
Management (UIM) as your inventory system.

Creating a Custom Circuit Reconciliation Cartridge
You can create a custom circuit reconciliation cartridge that discovers your TMF814 circuit data
and reconciles it with your inventory system.

Some element management systems (EMSs) and network management systems (NMSs) use
a device model where the connection termination point (CTP) circuit name is assigned to the
userLabel attribute. The following example requires that the EMS or NMS device model use
the userLabel attribute of a CTP to hold the circuit name.

To create a custom circuit reconciliation cartridge:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Create an import action that does the following:

• Retrieves physical devices

Chapter 8
Creating a Custom Equipment Reconciliation Cartridge

8-6

• Retrieves logical devices

• Maps circuit channel assignments by setting the userLabel attribute of the channel
subinterface to the circuit name

4. Create a discrepancy detection action.

5. (Optional) Extend the discrepancy detection action to allow Network Integrity to search and
group the discrepancy results by doing the following:

a. Extend the initializer processor to register a filter against the device interface.

b. Extend the action to run the filter when a discrepancy is detected against an interface.
Populate either the Priority or Owner field with the corresponding circuit name.

Tip:

In the event of an attribute mismatch discrepancy, obtain the circuit name
from the compareEntity entity.

In the event of a missing or extra entity, obtain the circuit name from the
childTargetEntity entity.

This action obtains the circuit name and adds it to either the Owner or Priority field in the
Network Integrity UI, allowing you to search for and sort by the circuit name.

6. Create a discrepancy resolution action to handle circuit discrepancies.

Note:

A channel assignment discrepancy may exist due to an incorrect userLabel
attribute on the subinterface, or an extra or missing entity on the subinterface.

If the circuit exists in the network but is missing from the inventory system, the
discrepancy detection action returns multiple discrepancies. The reconciliation
action may need to perform additional operations to correct a missing circuit.

7. Build, deploy, and test your cartridge.

Customizing the JKLM Value Calculation
You can customize the JKLM value calculation used to model collected cross-connect data.

To customize the JKLM value calculation:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a discovery action that uses the Discovery TMF814 action as a processor.

5. Create a new processor called XCModelCustomizer and insert it after the TMF814
Property Customizer processor.

6. For the XCModelCustomizer processor, set the following context parameters:

Chapter 8
Customizing the JKLM Value Calculation

8-7

• input:
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Pro
perties)

7. Develop a new MyXCCustomizer.java Java class by implementing the
oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer class with
the customize() method.

8. Develop the customize() method of the MyXCCustomizer.java class to customize the JKLM
values for each cross-connect type.

9. Develop the invoke() method of the MyXCCustomizer.java class to set the new class in the
setXCModelCustomizerImplClass class, as shown in the following example:

request.getTmf814Properties().setXCModelCustomizerImplClass("MyXCCustomizer")

10. Build, deploy and test your cartridge.

The XCModelCustomizer processor is run in the order shown by Figure 8-2. All the
processors following the XCModelCustomizer processor can make use of the newly
initialized managers.

Figure 8-2 Customized JKLM Value Calculation Processors Workflow

Adding New CORBA API Calls
This example explains how arbitrary TMF814 objects that are not collected by default by the
Optical TMF814 CORBA cartridge can be collection and modeled.

This example shows the collection and modeling of the GTP_T object, though this is the
general approach for any object.

To add new CORBA API calls:

Chapter 8
Adding New CORBA API Calls

8-8

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a discovery action with name Discover Custom TMF814 Objects.

5. Add the Discover TMF814 action as a processor in the Discover Custom TMF814 Objects
action.

6. Create a new discovery processor named TMF814 GTP Collector and insert it before the
TMF814 Device Persister processor.

7. Configure the TMF814 GTP Collector processor to have the following input parameters:

• managedElement(org.tmforum.mtnm.managedElement.ManagedElement_T)

• sessionManager(oracle.communications.integrity.tmf814discovery.session.SessionMa
nager)

• tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Pro
perties)

8. Configure the TMF814 GTP Collector processor to have the following output parameters:

• gtpIterable(oracle.communications.integrity.tmf814discovery.collection.

TMF814DiscoveryIterable< org.tmforum.mtnm.terminationPoint.GTP_T >)

9. Create the TMF814GTPCollectorProcessorImpl Java class to resemble the following
example:

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorContext;
import oracle.communications.integrity.tmf814discovery.beans.CustomProperties;
import oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;
import
oracle.communications.integrity.tmf814discovery.collection.TMF814DiscoveryIterable;
import oracle.communications.integrity.tmf814discovery.discoverers.DiscovererRequest;
import oracle.communications.integrity.tmf814discovery.discoverers.factory.Type;
import oracle.communications.integrity.tmf814discovery.session.SessionManager;
import oracle.communications.sce.integrity.sdk.processor.ProcessorFinalizer;

import org.tmforum.mtnm.globaldefs.NameAndStringValue_T;
import org.tmforum.mtnm.terminationPoint.GTP_T;

import com.oracle.tmf814discovery.discoverers.GTPDiscoverer;

public class TMF814GTPCollectorProcessorImpl implements
TMF814GTPCollectorProcessorInterface, ProcessorFinalizer {
 private GTPDiscoverer discoverer;

 @Override
 public TMF814GTPCollectorProcessorResponse invoke(DiscoveryProcessorContext
context, TMF814GTPCollectorProcessorRequest request) throws ProcessorException {

 //Get SessionManager from request
 SessionManager mgr = request.getSessionManager();
 NameAndStringValue_T[] meName = request.getManagedElement().name;
 TMF814Properties prop = request.getTmf814Properties();

 //Create GTPDiscoverer, this has the API calls to get GTP objects from Ems
sytem.
 discoverer = new GTPDiscoverer(meName, prop, mgr);

Chapter 8
Adding New CORBA API Calls

8-9

 DiscovererRequest req= new DiscovererRequest(request.getTmf814Properties(), new
CustomProperties());
 TMF814DiscoveryIterable<GTP_T> gtpIterable = new
TMF814DiscoveryIterable<GTP_T>(Type.OTHER,req, discoverer);

 //Create iterable for GTP and set to resposne
 TMF814GTPCollectorProcessorResponse res = new
TMF814GTPCollectorProcessorResponse();
 res.setGtpIterable(gtpIterable);
 return res;
 }
 @Override
 public void close(boolean arg0) {
 if(discoverer != null){
 discoverer.destroy();
 }
 }
}

package com.oracle.tmf814discovery.discoverers;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;
import oracle.communications.integrity.tmf814discovery.discoverers.TMF814Discoverer;
import oracle.communications.integrity.tmf814discovery.session.SessionManager;

import org.tmforum.mtnm.globaldefs.NameAndStringValue_T;
import org.tmforum.mtnm.globaldefs.ProcessingFailureException;
import org.tmforum.mtnm.managedElementManager.ManagedElementMgr_I;
import org.tmforum.mtnm.terminationPoint.GTP_T;
import org.tmforum.mtnm.terminationPoint.GTPiterator_I;
import org.tmforum.mtnm.terminationPoint.GTPiterator_IHolder;
import org.tmforum.mtnm.terminationPoint.GTPlist_THolder;

public class GTPDiscoverer implements TMF814Discoverer<GTP_T>{
 protected static final Logger logger =
Logger.getLogger(GTPDiscoverer.class.getName());

 private int fetchSize;
 private boolean isInitialTMFOperInvoked = false;
 private TMF814Properties tmf814Properties;
 private boolean isEOD = false; //Is End Of Discovery reached.

 private NameAndStringValue_T[] meName = null; //parent ME name
 private GTPiterator_I gtpIter = null;
 private ManagedElementMgr_I meMgr;

 public GTPDiscoverer(NameAndStringValue_T[] meName, TMF814Properties prop,
SessionManager sessionMgr) throws ProcessorException {
 this.tmf814Properties = prop;
 this.meName = meName;
 this.meMgr = sessionMgr.getManagedElementMgr();
 this.fetchSize = 1000;
 }

Chapter 8
Adding New CORBA API Calls

8-10

 /**
 *Every time the discover() method is called, certain number of objects
 *are called. Number of object to return is up the implementation.
 *Empty iterator is returned indicating that there are no objects
 *to discover/retrieve further.
 */

 @Override
 public java.util.Iterator<GTP_T> discover(){
 if(isEOD){
 return Collections.<GTP_T>emptyList().iterator();
 }

 List<GTP_T> result;
 if(! isInitialTMFOperInvoked) {
 //Initialize GTP iteraror
 result = fetchInitialElements();
 isInitialTMFOperInvoked = true;
 }else{
 //Once GTP iteraror is initialized, fetchMoreElements is called by the
iterable.
 result = fetchMoreElements();
 }
 if(result.isEmpty() || (getFetchSize() > result.size())){
 isEOD= true;
 destroy();
 }
 return result.iterator();
 }

 private int getFetchSize() {
 return fetchSize;
 }

 public List<GTP_T> fetchInitialElements() {
 GTPlist_THolder gtpListHolder = new GTPlist_THolder();
 GTPiterator_IHolder gtpIterHolder = new GTPiterator_IHolder();
 try {
 meMgr.getAllGTPs(meName, new short[]{}, 2000, gtpListHolder, gtpIterHolder);
 gtpIter = gtpIterHolder.value;
 if (gtpListHolder.value != null) {
 return Arrays.<GTP_T>asList(gtpListHolder.value);
 }
 } catch (Exception e) {
 logger.log(Level.SEVERE, "getAllGTP: Error while getting initial gtps", e);
 }
 return Collections.<GTP_T>emptyList();
 }

 public List<GTP_T> fetchMoreElements() {
 if(gtpIter != null){
 GTPlist_THolder gtpListHolder = new GTPlist_THolder();
 try {
 gtpIter.next_n(2000, gtpListHolder);
 } catch (ProcessingFailureException e) {
 logger.log(Level.SEVERE, "getAllGTP(next_n): Error while getting more gtps",
e);
 }
 if(gtpListHolder.value != null && gtpListHolder.value.length > 0){
 return Arrays.<GTP_T>asList(gtpListHolder.value);
 }
 }

Chapter 8
Adding New CORBA API Calls

8-11

 return Collections.<GTP_T>emptyList();
 }

 @Override
 public void destroy() {
 if (gtpIter != null) {
 try{
 gtpIter.destroy();
 }catch (ProcessingFailureException e) {
 logger.log(Level.INFO, "exception while closing gtp iterator", e);
 }
 gtpIter = null;
 }
 }
}

10. Create a For Each processor after the TMF814 GTP Collector processor.

11. Specify the following values for the For Each processor:

• In the Select Collection Name field, enter gtpIterable.

• In the Variable Name field, enter gtp.

12. Within the For Each processor, create a processor named TMF814 GTP Modeler. The
TMF814 GTP Modeler processor is responsible for modeling each input GTP_T as an
Oracle Communications Information Model object and adding it to the result.

13. Configure the TMF814 GTP Modeler processor to have the following input parameters:

• gtp(org.tmforum.mtnm.terminationPoint.GTP_T)

14. Configure the TMF814 GTP Modeler processor to have the following output parameters:

• Modeled Information Model representation of gtp.

15. Design the TMF814 GTP Modeler processor to find the correct Information Model mapping
object for the TMF814 GTP object and add to the result.

16. Build, deploy, and test your cartridge.

The TMF814 GTP Collector and TMF814 GTP Modeler processors are run in the order
shown by Figure 8-3.

Chapter 8
Adding New CORBA API Calls

8-12

Figure 8-3 New CORBA API Calls Processor Workflow

Collecting and Modeling Protection Role Information
You can extend the Optical TMF814 CORBA cartridge to collect protection role information on
cross-connect segments. The protection role status can be made available to other cartridges
and follow-on actions.

Because there are no known APIs to obtain protection data from devices, this scenario
assumes that the protection role information is available from another source of data, such as
in a CVS file.

To collect protection role data on cross-connect segments:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a discovery action that uses the Discover TMF814 action as a processor.

5. Create a discovery processor called XCModelCustomizer and insert it after the TMF814
Property Customizer processor.

6. Configure the new processor to have the following input parameter:

• tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Pro
perties)

7. Develop a new MyXCCustomizer.java Java class by implementing the
oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer class with
the customize() method.

8. Develop the customize() method of the MyXCCustomizer.java class to populate the
protection role for each cross-connect segment, as shown in the example below:

Chapter 8
Collecting and Modeling Protection Role Information

8-13

import oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer;
import oracle.communications.inventory.api.entity.InvGroupRef;
import oracle.communications.inventory.api.entity.InventoryGroup;
import oracle.communications.inventory.api.entity.Pipe;

import org.tmforum.mtnm.subnetworkConnection.CrossConnect_T;

public class MyXCCustomizer implements XCModelCustomizer {
 public static final String PROTECTIONROLE = "protectionRole";
 @Override
 public InventoryGroup customize(CrossConnect_T xc, InventoryGroup ccGroup) {
 Set<InvGroupRef> segmentRelSet = ccGroup.getMembers();
 for(InvGroupRef ref : segmentRelSet){
 Pipe pipe = ref.getPipe();
 //Get protection information for this segment from a data source.
 String prorectionRole = /*Get it from external source*/
 pipe.getCharacteristicMap().get(PROTECTIONROLE).setValue(prorectionRole);
 }
 return ccGroup;
 }
}

9. Develop the invoke() method of the MyXCCustomizer.java class to set the new class in the
setXCModelCustomizerImplClass class, as in the following example:

request.getTmf814Properties().setXCModelCustomizerImplClass("MyXCCustomizer")

10. Build, deploy and test your cartridge.

All the processors following the XCModelCustomizer processor can make use of the
information.

Discovering Custom Device or Result Group Names
You can customize the way discovered devices and result groups are named to match how
they are named in your inventory system.

To customize how discovered devices and result groups are named:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge project.

4. Create a new discovery action that uses the Discover TMF814 action as a processor.

5. Create a discovery processor and insert it after the TMF814 Property Initializer processor.

6. Set the new processor to use tmfNameToDeviceMap, the output from the TMF814
Property Initializer processor, as its input.

7. Map each device or result group to tmfNameToDeviceMap, as in the following example:

nameToNativeEmsMap1.addMapping(tmf814_Name, custom_Name)

Where tmf814_Name is the ManagedElement tuple value of ManagedElement_T.name
and custom_Name is the custom name of the device.

8. Build, deploy and test your cartridge.

Chapter 8
Discovering Custom Device or Result Group Names

8-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	About the Optical TMF814 CORBA Cartridge
	About Cartridge Dependencies
	Run-Time Dependencies
	Design Studio Dependencies

	Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the Cartridge Components
	Discover Abstract TMF814 Action
	TMF814 Property Initializer
	TMF814 Session Manager
	TMF814 Device Recorder Initializer
	TMF814 ME Collector
	TMF814 Updated ME Discoverer
	TMF814 Device Modeler
	TMF814 Equipment Collector
	TMF814 Equipment Modeler
	TMF814 PTP Collector
	TMF814 PTP Modeler
	TMF814 CTP Discoverer for PTP
	TMF814 FTP Collector
	TMF814 FTP Modeler
	TMF814 CTP Discoverer for FTP
	TMF814 Device Persister
	TMF814 Device Recorder Persister
	Update ME Notification Status
	TMF814 SNC Discoverer
	TMF814 Cross-Connect Discoverer
	TMF814 SNC CC Discoverer
	Update SNC Notification Status
	TMF814 Topological Link Collector
	TMF814 Updated Topological Link Collector
	TMF814 Topological Link Modeler
	TMF814 Pipe Persister
	Update TL Notification Status

	Discover TMF814 Action
	TMF814 CORBA Property Initializer
	TMF814 Property Customizer
	TMF814 MultiThread Device Modeler
	TMF814 MultiThread TL Modeler

	Abstract TMF814 Optical Transmission Devices
	ProcessDiscoveryScanInput
	ProcessNMSConnectionParams
	ConnectTMF814CollectorService
	CollectTMF814ManagedElements
	ProcessTMF814ManagedElement
	DisconnectTMF814CollectorService

	Discover TMF814 Optical Transmission Devices
	About Recording Mode
	Enabling Recording Mode

	3 Using the Cartridge
	Creating a Discover TMF814 Scan
	Creating a Discover TMF814 Optical Transmission Devices Scan

	4 About Collected Data
	About Collected Data
	Multi Technology Network Management Hierarchy
	Layer Parameters
	TMF814 APIs
	CORBA APIs
	APIs for Cross-Connect Collection
	APIs for Topological Link Collection

	Handling Vendor Variations
	FTP Collection API Variations
	Cross-Connect Collection API Variation
	Topological Link Collection API Variation
	Cross-Connect Protection Role

	5 About Cartridge Modeling
	About Cartridge Modeling
	About the Oracle Communications Information Model
	About the Physical Tree
	About the Logical Tree
	Field Mapping
	About Building the Information Model Tree
	Containment Relationships
	Adding an Equipment and an Equipment Holder to the Tree
	Adding a Physical Port and an Interface to the Tree
	Adding a Sub-Interface to the Tree

	Cartridge Modeling for Cross-Connect Data
	A and Z Channels

	Cartridge Modeling for Topological Link Data

	About the SDH and DWDM Device Modeling
	About the Physical Tree
	About the Logical Tree
	Default Specification Mapping

	Specification Mapping Customization
	Result Groups

	6 About Model Correction
	Equipment Holder as a Child of a Physical Device
	Sub-Slots of Slots
	Huawei U2000 MSTP End Port

	7 About Design Studio Construction
	Model Collections
	Actions

	8 About Design Studio Extension
	Initializing a Custom Object Request Broker
	Extending the Discover TMF814 Action to Collect Vendor-Specific Information
	Collecting Vendor-Specific Details for CTPs
	Adding New Managers
	Creating a Custom Equipment Reconciliation Cartridge
	Creating a Custom Circuit Reconciliation Cartridge
	Customizing the JKLM Value Calculation
	Adding New CORBA API Calls
	Collecting and Modeling Protection Role Information
	Discovering Custom Device or Result Group Names

