
Oracle® Communications Network
Integrity
TL1 Cartridge Guide

Release 7.4
F93131-01
July 2024

Oracle Communications Network Integrity TL1 Cartridge Guide, Release 7.4

F93131-01

Copyright © 2020, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

1 Overview

TL1 Cartridge Overview 1-1

Cisco 15454 TL1 Reference Cartridge Overview 1-2

About the Cartridge Dependencies 1-2

Run-Time Dependencies 1-2

Design-Time Dependencies 1-2

Downloading and Opening the Cartridge Files in Design Studio 1-2

Building and Deploying the Cartridge 1-3

2 About the TL1 Cartridge

About Actions and Processors 2-1

TL1 Property Initializer 2-2

TL1 Property Customizer 2-3

TL1 Connection Manager 2-3

About Record and Playback 2-4

About Address Validation 2-4

About Dependent and Independent TL1 Commands 2-5

About the Command Dictionary for the TL1 Cartridge 2-5

Sending Commands Using the Command Dictionary 2-6

TL1 Requests 2-7

TL1 Response 2-8

About the buildCommandSchema.xml Script 2-11

About the buildCommandDocument.xml Script 2-11

About the Command Document and Command Document Templates 2-11

About the Command Dictionary API 2-13

Sending a Command Using the Command Dictionary 2-13

SSH Login Behavior 2-14

iii

Using the TL1 Cartridge 2-14

Creating a Discovery Scan Action Type for TL1 Devices 2-14

About Using Record and Playback 2-15

Viewing and Configuring the Current Record and Playback Mode 2-16

Design Studio Construction 2-17

Actions 2-17

Design Studio Extension 2-20

Sending New Commands and Model Results 2-20

Bypassing the Custom Banner for TL1 Devices 2-24

3 About the Cisco ONS 15454 TL1 Reference Cartridge

About Actions and Processors 3-1

Cisco 15454 TL1 Device Collector 3-2

Cisco 15454 TL1 Device Modeler 3-2

Cisco 15454 TL1 Device Persister 3-2

About Collected Data 3-2

Equipment Collection 3-3

About Cartridge Modeling 3-5

Field Mapping 3-5

Model Correction 3-8

Using the Cisco 15454 TL1 Reference Cartridge 3-8

Setting Up a Scan 3-9

TL1 Gateway Discovery 3-9

Property Groups 3-9

Discovered Results 3-10

Design Studio Construction 3-11

Model Collections 3-11

Actions 3-12

Design Studio Extension 3-13

iv

Preface

This guide explains the functionality and design of the Oracle Communications Network
Integrity TL1 cartridge and the design of the Cisco ONS 15454 SONET TL1 reference
cartridge.

Audience
This guide is intended for Network Integrity administrators, developers, and integrators.

This guide assumes that you are familiar with the following documents:

• Network Integrity Developer's Guide: For an understanding of cartridge deployment,
cartridge development, working with cartridges, working with actions, and the extensibility
SDK.

• Network Integrity Concepts: For an understanding of the Network Integrity architecture and
using Oracle Communications Design Studio for Network Integrity.

This guide assumes that you are familiar with the following concepts:

• Oracle Communications Design Studio and its terminology

• Oracle Communications Information Model

• Transaction Language 1 (TL1) standards and terminology

• Cisco ONS 15454 SONET TL1 commands

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
Overview

This chapter provides an overview of the Oracle Communications Network Integrity TL1
cartridge and the Cisco ONS 15454 SONET TL1 reference cartridge.

TL1 Cartridge Overview
The TL1 cartridge allows you to build deployable cartridges that interact with transaction
language 1 (TL1) devices or systems.

The TL1 cartridge provides the following key features:

• Transmission control protocol (TCP), Telnet protocol, and secure shell (SSH)
communication with TL1 enabled devices, gateways, and element management systems
(EMSs)

• Gateway discovery

• Extensible command dictionary in Oracle Communications Design Studio for defining TL1
requests and responses

• Extensible discovery results model using Design Studio

• Record and playback of TL1 communication

The TL1 cartridge is an abstract cartridge, meaning that Design Studio is used to configure and
assemble the run time cartridge against target systems or devices before deploying it into
Network Integrity. Because there are no globally common commands among all TL1 devices or
agents, you must build a specific extension to the TL1 cartridge to communicate to specific
device or agent families. See Network Integrity Concepts for guidelines and best practices for
extending cartridges.

The TL1 cartridge uses the WebNMS TL1 library (a set of Java-based APIs) to provide
complete support for building TL1 management applications.

The TL1 cartridge ZIP file contains a reference implementation cartridge for discovering Cisco
ONS 15454 SONET TL1 devices. See "Cisco 15454 TL1 Reference Cartridge Overview" for
more information.

The TL1 cartridge connects to TL1 agents using TCP, Telnet, or SSH. Use SSH over TCP and
Telnet as much as possible for security reasons. Reserve TCP and Telnet communication for
devices that do not support SSH. The TL1 cartridge uses a Java secure channel (JSCH) library
(a set of Java-based APIs) to provide SSH support.

The TL1 cartridge formats and parses TL1 requests and responses with the command
dictionary. The command dictionary is a Design Studio cartridge development framework for
defining command requests and responses. The command dictionary provides utilities that
convert populated request types into command strings and convert device responses into
structured data holders. For example, Design Studio is used to map the TL1 responses to the
Oracle Communications Information Model to support discrepancy detection and resolution.

The TL1 cartridge does not provide Discrepancy Detection or Discrepancy Resolution actions.
However, the discovery results from the TL1 cartridge can be used as input for a Discrepancy
Detection or Discrepancy Resolution action run by another cartridge.

1-1

See "About the TL1 Cartridge" for more information about the TL1 cartridge and its
components.

Cisco 15454 TL1 Reference Cartridge Overview
The Cisco 15454 TL1 reference cartridge shows you how to develop a cartridge that extends
the TL1 cartridge to support the discovery of a specific TL1 device, gateway, or EMS. Use the
Cisco 15454 TL1 reference cartridge as a model to develop your own discovery cartridge that
extends the TL1 cartridge.

The Cisco 15454 TL1 reference cartridge extends the TL1 cartridge to support the collection
and modeling of physical equipment data from a Cisco ONS 15454 SONET device using the
TL1 protocol.

See "About the Cisco ONS 15454 TL1 Reference Cartridge" for more information about the
Cisco 15454 TL1 reference cartridge and its components.

About the Cartridge Dependencies
This section provides information about dependencies that the TL1 cartridge and Cisco 15454
TL1 reference cartridge have on other entities.

Run-Time Dependencies
The TL1 cartridge and Cisco 15454 TL1 reference cartridge require that the Address_Handlers
cartridge be deployed to Network Integrity.

Design-Time Dependencies
The TL1 cartridge has the following dependencies:

• Address_Handlers

• Network Integrity SDK

• ora_uim_model

The Cisco 15454 TL1 reference cartridge has the following dependencies:

• Address_Handler

• NetworkIntegritySDK

• ora_uim_model

• TL1 cartridge

Downloading and Opening the Cartridge Files in Design Studio
To review and extend the TL1 cartridge and the Cisco 15454 TL1 reference cartridge,
download the TL1 cartridge ZIP file from the Oracle software delivery web site:

https://edelivery.oracle.com
The TL1 cartridge ZIP file has the following structure:

• Cisco_TL1_Cartridge

• TL1_Cartridge

Chapter 1
Cisco 15454 TL1 Reference Cartridge Overview

1-2

https://edelivery.oracle.com

• Address_Handlers

The Cisco_TL1_Cartridge project and the TL1_Cartridge project contain the extendable
Design Studio files.

See Network Integrity Developer's Guide for information about opening files in Design Studio.

Building and Deploying the Cartridge
See Design Studio Help for information about building and deploying cartridges.

Chapter 1
Building and Deploying the Cartridge

1-3

2
About the TL1 Cartridge

This chapter describes the Oracle Communications Network Integrity TL1 cartridge and its
components.

About Actions and Processors
The TL1 cartridge contains the following actions:

• Discover Abstract Base TL1

• Discover Abstract TL1

The Discover Abstract TL1 action extends the Discover Abstract Base TL1 action, pulling in all
the functionality of that action to establish and manage the TL1 connection.

The Discover Abstract Base TL1 action contains the following processors run in the following
order:

1. TL1 Property Initializer

2. TL1 Connection Manager

Figure 2-1 illustrates the processor workflow of the Discover Abstract Base TL1 action.

Figure 2-1 Discover Abstract Base TL1 Action Processor Workflow

The Discover Abstract TL1 action adds scan parameter groups to the Discover Abstract Base
TL1 action, passing the property values to the TL1Properties object.

The Discover Abstract TL1 action contains the following processors run in the following order:

1. TL1 Property Initializer (inherited)

2. TL1 Property Customizer

3. TL1 Connection Manager (inherited)

Figure 2-2 illustrates the processor workflow of the Discover Abstract TL1 action.

2-1

Figure 2-2 Discover Abstract TL1 Action Processor Workflow

TL1 Property Initializer
This processor is part of the Discover Abstract Base TL1 action.

This processor initializes all the properties required for connecting to TL1 and puts all the
properties into a TL1Properties object (a Java class).

Table 2-1 lists the values that are initialized by the TL1 Property Initializer processor.

Table 2-1 TL1 Properties Initialized by the TL1 Property Initializer Processor

Parameter Description

host Host name or IP address of the TL1 agent.

port Port number of the TL1 agent.

userid The user identification name. It may be from 1 to 10 characters in length. Input is case-sensitive
and can consist of numeric, upper- and lower-case alphabetic characters.

password The user password or private identifier. It may be up to 10 characters in length.

sshUser The user ID used to establish the SSH or Telnet session.

sshPassword The password used to establish the SSH or Telnet session.

knownHostFileLocation The location where the public keys of the TL1 server are stored if SSH is used. Leave blank to
accept all public keys. If a directory is provided, the Network Integrity server must have
permission to write to it, otherwise the TL1 cartridge defaults to accepting all public keys.

timeout The timeout of the underlying socket connection in seconds.

retries The number of retries that are attempted after a timeout. Obtained from the TL1 scan parameter
groups.

loginTargetIdentifier Identifies the routing information necessary for a login message sent by an OS to reach a
network element (NE). Specifying this parameter is optional.

loginCorrelationTag Used to correlate the login input command with a response. The default is empty. Specifying this
parameter is optional.

transportProtocol Identifies the TL1 protocol to use: TCP, SSH, TELNET, or OTHER. The default is SSH.

customTransport An implementation of the WebNMS TL1TransportProvider interface. If customTransport is
specified, transportProtocol must be set to OTHER. The default is empty. Specifying this
parameter is optional.

Chapter 2
About Actions and Processors

2-2

Table 2-1 (Cont.) TL1 Properties Initialized by the TL1 Property Initializer Processor

Parameter Description

connectionCustomizer An implementation of TL1Connection.Customizer that can be configured to handle non-standard
behavior, such as a Telnet banner that is not recognized by the WebNMS TL1 API.

gatewayDiscovery A Boolean value indicating whether the discovery target is a gateway. The default is false.

gatewayCommand The command to retrieve the list of NEs from the gateway. Specifying this parameter is optional.

gatewayNEFilter A filter on the NE ID returned from the TL1 gateway. Specifying this parameter is optional.

gatewayNEFilterQualifier This property works in combination with GatewayNEFilter to match the collected NEs by name
and qualifier. Possible values are EQUALS, EQUALS_IGNORE_CASE, CONTAINS,
CONTAINS_IGNORE_CASE, STARTS_WITH, STARTS_WITH_IGNORE_CASE, ENDS_WITH,
ENDS_WITH_IGNORE_CASE. Specifying this parameter is optional.

gatewayNEIDResponse
SectionPosition

Identifies where the NE ID is located in the GetNEList command response. The default is 1.
Specifying this parameter is optional.

gatewayNEIDResponse
FieldPosition

Identifies the field where the NE ID is located in the GetNEList command response. The default
is 1. Specifying this parameter is optional.

mode Identifies the mode of the Record and Playback feature. Valid values are Normal (no record or
playback), Record (recording mode enabled), and Playback (playback mode enabled).
Specifying this parameter is optional.

recordFileDir Identifies where the cartridge writes and retrieves recorded TL1 data files. Specifying this
parameter is optional.

In addition, the TL1 Property Initializer processor creates the command dictionary and loads it
with all the command documents defined in the cartridge. The TL1 cartridge defines the
following commands in the command dictionary:

• ACT-USER-REQUEST

• CANC-USER-REQUEST

See Network Integrity Developer's Guide for more information about command dictionaries.
See "About the Command Dictionary for the TL1 Cartridge" for more information about using
the command dictionary for TL1.

TL1 Property Customizer
This processor is part of the Discover Abstract TL1 action.

This processor populates the TL1Properties object produced by the TL1 Property Initializer
processor with the parameter values configured in the Network Integrity UI. Table 2-1, lists all
the parameters that are customizable in the Network Integrity UI. The host property is
initialized from the scan address.

TL1 Connection Manager
This processor is part of the Discover Abstract Base TL1 action.

This processor takes the TL1Properties object and command dictionary produced by the TL1
Property Initializer processor to establish a TL1 connection. It provides a TL1Connection object
to any extending cartridges and succeeding processors.

To establish a TL1 connection, this processor performs the following operations:

1. Creates a connection to the TL1 agent using the values in the TL1 Properties object.

Chapter 2
About Actions and Processors

2-3

2. Logs in to the TL1 agent using the credentials in the TL1 Properties object.

3. If a TL1 gateway is configured, issues the TL1 gateway command to retrieve the list of
NEs.

4. If the command is successful, returns the TL1Connection object and the list of NE IDs.

5. When the scan ends, logs out and disconnects from the TL1 agent.

This processor logs any errors and fails the scan if it cannot establish a TL1 connection with
the TL1 agent.

About Record and Playback
The TL1 cartridge can be configured to record all discovered objects.

You enable the Record and Playback feature at run time by setting a managed bean (MBean)
configured on a property group on the Discover Abstract TL1 action.

When recording mode is enabled, the TL1Connection object writes the response data to a TL1
data file in Local_Dir/IP_HostName/Filename.rec, where:

• Local_Dir is a local directory that you can configure in the MBean at runtime. If you do not
set a value in the MBean, Local_Dir is set to Domain_Home/tl1Data, where
Domain_Home is the Network Integrity domain.

• IP_HostName is the host property on the TL1 Properties object.

• Filename is either the command code passed to the TL1 Connection Manager processor
or the full command string.

For example: Local_Dir/10/156/66/191/Filename.rec

When playback mode is enabled, TL1 Connection reads the TL1 data file (created in Record
mode and stored on the local hard drive) and sends the data back to the discovery cartridge
without polling any network devices. The resource adapter does not require a connection to the
network device.

For more information about enabling or disabling the Record and Playback feature, see "About
Using Record and Playback".

You can explicitly disable recording mode on a specific command, such as on commands that
contain sensitive and unencrypted information (for example, plain-text user names and
passwords) by calling the TL1Connection setRecordDisabled method.

The Record and Playback feature is not recommended for clustered environments because it
relies on files being saved and loaded from the file system.

About Address Validation
The Discover Abstract TL1 action expects a valid IP address, host name, or IP address range
in the Scope field on the Scope tab of the Network Integrity UI.

Any Discovery action extending the Discover Abstract TL1 action should use an address
handler to validate entered addresses, such as the IPAddressHandler cartridge provided with
Oracle Communications Design Studio.

Chapter 2
About Record and Playback

2-4

About Dependent and Independent TL1 Commands
The TL1 cartridge can send independent TL1 commands and can send commands that are
dependent on the results of another TL1 command.

For example, the TL1 cartridge can send an independent TL1 command to get the name and
model type of a device. It can then send a dependent command to get additional information
about the device depending on the device type:

• If the device type is 15454, the TL1 cartridge collects additional equipment details.

• If the model type is other than 15454, the TL1 cartridge does not collect additional
equipment details.

You can send multiple independent and dependent commands. Response values are
associated with their request.

About the Command Dictionary for the TL1 Cartridge
The TL1 cartridge uses the command dictionary for formatting TL1 requests and parsing TL1
responses. The command dictionary is a framework for defining data dictionary structures for
command requests and responses. It also provides utilities for converting the populated
request types into command strings and converting device responses into structured data
holders.

The command dictionary uses structures defined in the Design Studio data dictionary to define
command requests and responses. The Design Studio data dictionary generates an XML
schema compiled into Java classes using XML beans. Use the Java request and response
classes to issue TL1 requests and receive TL1 responses.

The data dictionary provides the following functionality:

• Defines the commands once so that a library of commands is available to be used in
multiple cartridges.

• Validates that mandatory parameters are specified and that the request message is valid.
The request definition can specify enumerated values, data types, and ranges to provide
more validation.

• Provides a typed response for custom TL1 components so that parameters can be
accessed based on name instead of position. For example, you can code getAid() rather
than know that the AID is in parameter section 2, in field 3, and code
getSection(2).getField(3).

See "About the Cisco ONS 15454 TL1 Reference Cartridge" for example TL1 commands.

Note:

Oracle recommends that you use the command dictionary when extending the
Discover Abstract TL1 action. You can use the base WebNMS TL1 API methods
instead of the command dictionary. You can send a complete TL1 command string
with TL1Connection.send or you can use syncSend to send a WebNMS
TL1Message. In both cases, a TL1Message is returned and you must extract lines,
parameter blocks, and fields using WebNMS TL1 API operations. Refer to the
WebNMS TL1 documentation for more information.

Chapter 2
About Dependent and Independent TL1 Commands

2-5

The TL1 cartridge defines structures in the data dictionary for TL1 message types: TL1Request
and TL1Response. These must be used when defining new command dictionary Requests and
responses for TL1.

Sending Commands Using the Command Dictionary
To send commands using the command dictionary:

1. In Design Studio, define TL1Request in the data dictionary. The name of the structure
should match the TL1 command name, and the command request name should end with a
request. See "TL1 Requests" for more information.

2. In Design Studio, define the matching TL1Response in the data dictionary. The name of
the structure should match the TL1 command name, and the command response name
should end with a response. See "TL1 Response" for more information.

3. Run the buildCommandSchema.xml Ant script.

Note:

The script must be copied to the extension cartridge before you can run it. See
"About the buildCommandSchema.xml Script" for more information.

4. Add the JAR file generated by the buildCommandSchema.xml script to the /lib directory
in the project classpath.

5. Run the buildCommandDocument.xml Ant script.

Note:

The script must be copied to the extension cartridge before you can run it. See
"About the buildCommandDocument.xml Script" for more information.

6. In the Collector Java implementation, add the generated command document into the run-
time command dictionary by coding the following:

request.getCommandDictionary().addCommandDictionaryDocument(new String[]
{"command_doc.xml"});

where command_doc is the name of the command document in the src directory.

7. In the Java code, build and populate the TL1 request object. For example:

rtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
rtrvEqptRequest.setCTAG("1");
rtrvEqptRequest.setAID("myAID");
rtrvEqptRequest.setTID("myTID");

8. Send the command to the TL1 connection and assign the response.

RtrvEqptResponse eqptResponse =
(RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);
if (!
TL1Constants.COMPLETION_COMPLD.equalsIgnoreCase(eqptResponse.getCompletionCode())) {
 throw new ProcessorException(createErrorMessage(eqptResponse, rtrvEqptRequest,
 request.getCommandDictionary()));

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-6

}

For more examples, refer to the Cisco 15454 TL1 reference cartridge, or see "Design Studio
Extension".

TL1 Requests
TL1 requests must use the TL1Request type as the base for the request structure. When
creating the TL1 request, select TL1Request from the Base list. This type is defined in the TL1
Cartridge BaseTL1Commands data dictionary.

Figure 2-3 shows a request definition for retrieving equipment. The TID and CTAG attributes
are inherited from the base TL1Request, but must add and define the AID attribute.

Figure 2-3 Retrieve Equipment Request Definition

For examples of TL1 requests, see"About the Cisco ONS 15454 TL1 Reference Cartridge".

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-7

TL1 Response
TL1 responses must use the TL1Response type as the base for the response structure. When
creating the TL1 response, select TL1Response from the Base list. This type is defined in the
TL1 Cartridge BaseTL1Commands data dictionary.

Note:

The TL1 response must contain a single TL1ResponseLine child structure. Because
TL1 commands return multiple lines of data, you must set the Maximum list of the
TL1ResponseLine to Unbounded.

The TL1ResponseLine holds child parameter block structures that are of type
TL1NamedParameterBlock or TL1PositionalParameterBlock. TL1 response parameter blocks
are delimited by a colon. The TL1Line in the response must contain a child structure for each
parameter block defined in the TL1 response.

For example, a typical TL1 Response is structured as follows (the number and type of
parameter block defined is dependent on the TL1 command):

ResponseElement TL1Line (Maximum=Unbounded) TL1PositionalParameterBlock
(Maximum=1) Parameter1 Parameter2 Parameter…
n TL1PositionalParameterBlock
(Maximum=1) Parameter1 Parameter2 Parameter…n TL1NamedParameterBlock
(Maximum=1) Parameter1 Parameter2 Parameter…n

In the TL1 specification, parameter blocks have either positional fields or named fields.
Positional fields place importance on the position of the value. Named fields consist of name-
value pairs.

The following positional parameter block consists entirely of values, and does not contain any
field names. Empty values are represented by consecutive commas.

SLOT-15,OC3-IR-4,,,1546.12

The following named parameter block contains name-value pairs.

PLUGTYPE=SX-IR-SW-SN,PN=87-31-00002,HWREV=004K,
FWREV=76-99-00009-004A,SN=013510,CLEI=NOCLEI,TWL1=1546.12,TWL2=1546.92,
TWL3=1547.72,TWL4=1548.51,PLUGINVENDORID=012345,PLUGINPN=ABCDE,
PLUGINHWREV=ABCDE,PLUGINFWREV=01-02-03,PLUGINSN=01234,ILOSSREF=1.0,
PID=CISCO_ONS15454,VID=V01,FPGA=F451,MODULETYPE=101

If a parameter block consists of positional fields and named fields, it is treated as a positional
block.

For the TL1 response to be correctly populated, choose the correct parameter block when
creating the TL1 response in the data dictionary.

Figure 2-4 shows a response definition for a Retrieve Equipment request, demonstrating the
following elements:

• Structure rtrv-eqpt-response is of type TL1Response.

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-8

• The attributes timestamp, SID, CTAG, completionCode, and errorText are inherited from
the base TL1Response.

• The timestamp is the date and time the response was returned.

• The SID is the NE Source Identifier returned by the TL1 agent.

• The CTAG is the Correlation tag value returned from the TL1 agent.

• The completion code contains the completion code returned by the TL1 agent. These are
standard TL1 completion codes: COMPLD, DELAY, DENY, PRTL, RTRV.

• The errorText field contains any error messages returned in the TL1 response from the
agent. If the request completed successfully, the errorText field is empty.

• The child structure responseLine is of type TL1Line and the Maximum attribute is set to
Unbounded to handle multiple lines returned in the TL1 agent response.

• The child structures block1 and block2 are of type TL1PositionalParameterBlock because
the AID, AIDTYPE, EQUIP, ROLE, and STATUS are not named fields in the response.

• The block3 group structure is of type TL1NamedParameterBlock because all fields are
named. If the names of the fields do not match the name of the field returned by the
device, the field will not be mapped. You should specify every field in the named parameter
blocks, because the command response definition may be used by another cartridge.

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-9

Figure 2-4 Retrieve Equipment Request Definition

Some complex TL1 commands return multiple structured lines that contain differing command
blocks. The default TL1 response mapper provided with the TL1 cartridge does not support this
type of response; however, you can treat this scenario in one of the following ways:

• Provide a custom response mapper class that can handle the different line definitions. See
Network Integrity Developer's Guide for more information.

• Use the generic WebNMS TL1 API instead of the command dictionary.

• Create a super-set of all the returned fields. If line 1 has fields A and B, and line 2 has
fields C and D, define a single parameter block that has all four fields A, B, C, and D. On
some lines, the A and B are populated; on other lines, C and D are populated. This
solution only works with named parameter blocks.

The TL1 cartridge defines two commands in the command dictionary:

• ACT-USER: for logging in to the TL1 Session.

• CANC-USER: for logging out of the TL1 Session.

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-10

For examples of TL1 responses, see "About the Cisco ONS 15454 TL1 Reference Cartridge".

About the buildCommandSchema.xml Script
The buildCommandSchema.xml Ant script compiles any schema (XSD) files ending in
Commands.xml found in the datadictionary directory. The schemas are compiled using the
XML Beans framework. The generated Cartridge_NameCommands.jar file is written to the /lib
directory. Add the Cartridge_NameCommands.jar file to the project classpath before running
the buildCommandSchema.xml script.

If the script does not find any schemas when it is run, the script does nothing.

The buildCommandSchema.xml script is located in the base directory of the TL1 cartridge
project.

When extending the TL1 cartridge, copy the buildCommandSchema.xml script to the base
directory of the extending cartridge.

Running the buildCommandSchema.xml script is a prerequisite to running the
buildCommandDocument.xml Ant script.

About the buildCommandDocument.xml Script
The buildCommandDocument.xml Ant script compiles command documents based on
schema (XSD) files ending in Commands.xml found in the datadictionary directory. The
generated Data_Dictionary_Name.xml file (for example, CiscoTL1Commands.xml) is written
to the src directory. The script looks for types in the schema that end with the word "request" or
"response" and correlates them into a single command. See "About the Command Document
and Command Document Templates" for more information.

The buildCommandDocument.xml script is located in the base directory of the TL1 cartridge
project.

When extending the TL1 cartridge, copy the buildCommandDocument.xml script to the base
directory of the extending cartridge.

The JAR file produced by the buildCommandSchema.xml script must be added to the project
classpath before you can run the buildCommandDocument.xml script.

You can create a template file to override any of the values generated in the command
document. The template contains the values to override. See "About the Command Document
and Command Document Templates" for more information.

Add the generated command document to the command dictionary in the runtime operation, as
shown in the following example:

request.getCommandDictionary().addCommandDictionaryDocument(new String[]
{"Cartridge_NameCommands.xml"});

Enter this code into the processor implementation before sending the TL1 commands.

If the script does not find any schemas ending in Commands.xml, the script does nothing.

About the Command Document and Command Document Templates
You can create a command document template file to consistently override specific values
generated in the command document. The buildCommandDocument.xml script
automatically looks for such a template file.

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-11

The command document template file name must consist of the command file name and end
in -template.xml. For example, if the command file name is CiscoTL1Commands.xml, name
the template file CiscoTL1Commands-template.xml. Keep the template in the same directory
as the command document.

The command document describes the list of supported commands. One or more command
documents are added to the command dictionary to configure the supported commands. In the
TL1 Cartridge, the command document is generated by the buildCommandDocument.xml
Ant script. If the generated command document is incorrect, any field can be overridden by
using a template.

The command document template matches the command document schema and structure
exactly and is used as base values by the buildCommandDocument.xml script when
creating the command document XML. As long as the commandDef name matches, the
values specified in the template override the generated values.

You can specify the following information for each command in the command document
template:

• name: A unique name for the command. By default, the data dictionary structure name
(minus the request or response suffix) is used for the name.

• description (optional): A description of what the command does.

• commandTemplate: Defines the template for the command syntax. By default, this is a
velocity template string, but it could be anything depending on the
CommandRequestHandler class. The buildCommandDocument.xml script inserts the
data dictionary structure name (minus the request or response suffix) in this field and
appends any child elements as arguments to the command. The commandTemplate field
is the most likely to need to be overridden in a template file.

• commandRequestType: Identifies the request type. By default, this is the request schema
type and must be unique in the command dictionary. For example:

http://xmlns.oracle.com/communications/sce/dictionary/ CommandParserProject/
Cisco+TL1+Commands/GetAlarmsRequest
This field is generated by buildCommandDocument.xml and populated by the data
dictionary type ending in request.

• commandResponseType (optional): The class name that holds the response data. Not all
commands have responses. The value is used by the registered
CommandResponseHandler interface. For example:

com.oracle.communications.sce.dictionary.CommandParserProject.Cisco_TL1_Commands.GetA
larmsResponse

This field is generated by buildCommandDocument.xml and populated by the data
dictionary type ending in response.

• errorResponseType (optional): The class name that holds the error response data. Not all
commands have responses. This field is not used by the TL1 cartridge.

• requestFormatter (optional): Implements the CommandRequestHandler interface and is
responsible for validating the request object and merging the data in the request object
with the command template and returning a command string. If a
CommandRequestHandler interface is not specified at the command or dictionary level, a
default implementation is used that assumes the request object is an XML object and the
command template is a velocity template. The TL1 cartridge uses the default
implementation of the CommandRequestHandler interface.

• responseParser (optional): Implements the CommandResponseParser interface and is
responsible for populating the response object based on the response string provided. If a

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-12

responseParser is not specified at the command level or the dictionary level, the response
is not parsed. For the TL1 cartridge, there is a single CommandResponseHandler called
oracle.communications.integrity.tl1cartridge.TL1ResponseParser that can format any TL1
response.

About the Command Dictionary API
As a general rule, you should not need to use the command dictionary API.

The addCommandDictionaryDocument() operation is used to add the command document into
the runtime command dictionary, as in the following example:

request.getCommandDictionary().addCommandDictionaryDocument(new String[]
{"Cartridge_NameCommands.xml"});

The CommandDictionary class provides a general interface for:

• Adding command definitions to and removing command definitions from the command
dictionary.

• Retrieving information about dictionaries and loaded commands, such as
getDictionaryNames() and getCommandNames().

• Setting default formatters, parsers, resolver, and types, such as setDefaultResponseType()
and setDefaultRequestFormatter().

The CommandHandler class provides methods for performing the following operations on a
single command:

• Formatting requests.

• Parsing responses.

• Checking for errors and returning messages.

Sending a Command Using the Command Dictionary
TL1 commands can be sent to the TL1 agent over the TL1 connection, and TL1 responses can
be parsed, after the following tasks are completed:

• Define TL1 requests and responses in the Design Studio data dictionary.

• Run the buildCommandSchema.xml script to generate XML Beans JARs.

• Run the buildCommandDocument.xml to generate the command document XML file.

• Add the command document to the runtime command dictionary.

To send a command:

1. Add the tl1Connection to the processor input parameters.

2. Create the request object and populate the parameters. For example:

RtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
rtrvEqptRequest.setCTAG("1");
rtrvEqptRequest.setAID("myAID");
rtrvEqptRequest.setTID("myTID");

3. Send the request instance and cast the response object. For example:

RtrvEqptResponse response =
(RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);

Chapter 2
About the Command Dictionary for the TL1 Cartridge

2-13

4. Check the completion code. For example:

if (!
TL1Constants.COMPLETION_COMPLD.equalsIgnoreCase(eqptResponse.getCompletionCode())) {
 throw new ProcessorException(createErrorMessage(eqptResponse, rtrvEqptRequest,
request.getCommandDictionary()));
}

5. Extract any data necessary for modeling. For example:

for (RtrvEqptLine line : eqptResponse.getRtrvEqptLineArray()) {
 String aid = line.getRtrvEqptBlock1().getAID();
 String equip = line.getRtrvEqptBlock2().getEQUIP();
 String status = line.getRtrvEqptBlock2().getSTATUS();
}

SSH Login Behavior
The following sequence describes the SSH login behavior:

• If the SSH Known Host File Location parameter is not set, the TL1 cartridge accepts all
public keys from target devices.

• If the SSH Known Host File Location parameter is set:

– And Network Integrity cannot write to the specified directory, the behavior is to accept
all public keys from target devices.

– And Network Integrity can write to the specified directory, all public keys are stored in
the directory for each connection to a device, and all public keys are verified when the
cartridge reconnects with a device to ensure that keys match. If the keys do not match,
the public key is replaced.

Using the TL1 Cartridge
This section describes how to use the TL1 cartridge after it is deployed to the server.

Creating a Discovery Scan Action Type for TL1 Devices
You can create a discovery scan to discover TL1 device information in one or more network
systems.

The TL1 cartridge has the following scan parameter groups:

• TL1Parameters: A group of the most commonly configured parameters for TL1 devices.

• TL1AdvancedParameters: A group of additional parameters that do not need to be
configured for most TL1 devices because the default values are accepted by most.

To create a TL1 discovery scan, follow the instructions explained in the Network Integrity Help
and do the following during the creation process:

1. On the General tab, do the following:

a. From the Scan Action list, select the name of your TL1 Discovery action.

The Scan Type field displays Discovery.

b. Configure the following mandatory parameters:

• In the User Name field, enter the user ID to start the TL1 session.

Chapter 2
SSH Login Behavior

2-14

• In the Password field, enter the password for the user ID.

• In the Port field, enter the TL1 connection port.

• In the Timeout field, enter the timeout length of the underlying socket connection
in seconds.

• In the Retries field, enter the number of retries that the cartridge attempts after a
timeout.

c. (Optional) Configure the following optional parameters:

• To retry to connect after a timeout, enter the number of retries in the Retries field.

• To specify the transport protocol used by the TL1 device, select a protocol from the
Transport Protocol list.

• If you selected SSH from the Transport Protocol list, enter the SSH session user
ID and password in the SSH User and SSH Password fields.

• To specify where TL1 server SSH public keys are stored, enter a directory path in
the SSH Known Host File Location field. All public keys are accepted when this
field is left blank.

See Table 2-3 for more information.

d. (Optional) Configure the advanced TL1 parameters:

• To identify the routing information for Network Integrity to send login messages to
an NE, enter the target device in the Login Target Identifier (TID) field.

• To correlate an input command with an output response, enter the TL1 identifier in
the Login CTAG field.

• To indicate whether the TL1 discovery scan is being used to discover the NEs from
specific gateways, select True from the Gateway Discovery list.

• If the Gateway Discovery list is set to True, configure the Gateway NE List
Command field, Gateway NE Filter field, Gateway NEFilter Qualifier list,
Gateway Response ID Section field, and Gateway Response ID field to filter the
TL1 gateway being discovered.

See Table 2-4 for more information.

2. On the Scope tab, do one of the following:

• Enter an IP address.

• Enter a range of IP addresses (for example, 10.156.12.* or 11.155.12.11-23 or
10.156.67.0/24).

• Enter a host name.

The TL1 cartridge supports IPv4 and IPv6 IP address formats.

You can enter multiple addresses.

3. Make any other required configurations.

About Using Record and Playback
The record feature allows you to record TL1 responses from devices for auditing,
demonstration, or debugging the cartridge. The playback feature allows you to replay recorded
files to simulate interaction with the device.

When record mode is enabled, the raw TL1 responses are written to a TL1 data file stored on
the server.

Chapter 2
Using the TL1 Cartridge

2-15

When playback mode is enabled, the TL1 connection reads the TL1 data file (created in
Record mode and stored on the server) and sends the data back to the discovery cartridge.
The resource adapter does not require a connection to the network device.

Record and Playback are not recommended for clustered environments because it relies on
files being saved and loaded from the file system.

A property group on the Discover Abstract TL1 action controls the Record and Playback
feature. MBeans allow you to adjust the record and playback functionality in the runtime
system without the need to restart systems or servers.

The Record and Playback feature mode property has three valid values:

• Normal: The Record and Playback feature recording mode and playback mode are
disabled.

• Record: The Record and Playback feature recording mode is enabled.

• Playback: The Record and Playback feature playback mode is enabled.

Viewing and Configuring the Current Record and Playback Mode
The MBean Browser in Oracle Enterprise Manager is used to view the mode property of the
Record and Playback feature. See Network Integrity System Administrator's Guide for more
information.

To view the current Record and Playback feature mode:

1. In the MBean Browser, navigate to the
oracle.communications.integrity.ActionProperty.ActionProperties MBean.

2. Run the listPropertyGroups operation.

This operation lists the configurable property groups. The Returned Value table displays
the current mode.

To configure the Record and Playback feature mode:

1. In the MBean Browser, navigate to the
oracle.communications.integrity.ActionProperty.ActionProperties MBean.

2. Select the Action_Name:TL1 Property Initializer:RecordPlayback property group, where
Action_Name is the name of the extending action.

3. Run the listProperties action, using the full property group name in the argument.

4. Copy the Action_Name:TL1 Property Initializer:RecordPlayback:mode string from the
Return Value table.

5. Open the setProperty operation and paste the string into the Property field.

6. In the Value field, set the value of the Record and Playback feature to either Normal,
Record, or Playback.

7. Click the Invoke button.

To set the location where the recorded data is saved, open the recordFileDir action property
and specify the desired directory. The directory must exist on the server and must be
accessible by the Oracle WebLogic Server user.

Chapter 2
Using the TL1 Cartridge

2-16

Design Studio Construction
This section provides information about the composition of the TL1 cartridge from the Design
Studio perspective.

Actions
The following tables outline the Design Studio construction of the TL1 cartridge actions and
associated components:

• Table 2-2

• Table 2-3

• Table 2-4

• Table 2-5

• Table 2-6

Table 2-2 TL1 Cartridge Actions

Action Name Result
Category

Address Handler Scan Parameter
Group

Processors

Discover Abstract Base TL1 Device IPAddressHandler N/A • TL1 Property Initializer
• TL1 Connection Manager

Discover Abstract TL1 Device IPAddressHandler See Table 2-3 and
Table 2-4.

• TL1 Property Customizer

Table 2-3 TL1 Cartridge Scan Parameter Groups

Characteristic Name Parameter
Type

Description UI Label

tl1user Text field The user ID to start the TL1 Session. It can consist of
up to 10 alphanumeric case-sensitive characters.

User Name

tl1Password Text field The password associated with the user name. It can
consist of up to 10 alphanumeric case-sensitive
characters.

Password

tl1Port Text field The port used for the TL1 connection. Valid range is 1
through 65535. The default is 6252 (TL1 SSH).

Port

tl1Timeout Text field The timeout of the underlying socket connection in
seconds. The default is 5 seconds.

Timeout (Seconds)

tl1Retries Text field The number of retries that are attempted after a
timeout. The default is 0.

Retries

transportProtocol Drop down Identifies the TL1 protocol to use: TCP, SSH,
TELNET or OTHER. The default is SSH.

Transport Protocol

sshUser Text field The user ID used to establish the SSH session. This
field is mandatory if transportProtocol is set to SSH.

SSH User

sshPassword Text field The password used to establish the SSH session.
This field is mandatory if transportProtocol is set to
SSH.

SSH Password

Chapter 2
Design Studio Construction

2-17

Table 2-3 (Cont.) TL1 Cartridge Scan Parameter Groups

Characteristic Name Parameter
Type

Description UI Label

sshKnownHostFileDir Text field The location where the public keys of the TL1 server
are stored if SSH is used. Leave blank to accept all
public keys. If a directory is provided, the Network
Integrity server must have permission to write to it,
otherwise the TL1 cartridge defaults to accepting all
public keys.

SSH Known Host
File Location

Table 2-4 TL1 Cartridge Advanced Scan Parameter Groups

Characteristic Name Parameter
Type

Description UI Label

tl1LoginTID (optional) Text field Identifies the routing information necessary for a
login message sent by an OS to reach an NE.

Login Target
Identifier (TID)

tl1LoginCTAG (optional) Text field Correlates the login input command with a response.
Default value is 1.

Login CTAG

tl1GatewayFlag Drop down A Boolean value to indicate whether the discovery
target is a gateway. The default is false.

Gateway Discovery

tl1GatewayNEListCommand
(optional)

Text field The command to retrieve the list of NEs from the
gateway. This field is mandatory if tl1GatewayFlag is
set to True.

Gateway NE List
Command

tl1GatewayNEFilter (optional) Text field A filter on the NE ID returned from TL1 gateway. Gateway NE Filter

tl1GatewayNEFilterQualifier
(optional)

Drop down This property works in combination with Gateway
NE Filter to match the collected NEs by name and
qualifier.

Gateway NE Filter
Qualifier

gatewayNEIDResponseSection
Position (optional)

Text field Identifies where the NE ID is located in the
GetNEList command response. The default value is
0.

Gateway Response
ID Section

gatewayNEIDResponseFieldPo
sition (optional)

Text field Identifies the field where the NE ID is located in the
GetNEList command response. The default value is
0.

Gateway Response
ID Field

Table 2-5 TL1 Cartridge Processors

Processor Name Variable

TL1 Property Initializer Input: N/A

Output:

• tl1Properties

A properties class that holds the TL1 connection properties.
• commandDictionary

The command dictionary containing the TL1 commands.

TL1 Property Customizer Input:

• tl1Properties

Customized with values from scan parameter groups.
Output: N/A

Chapter 2
Design Studio Construction

2-18

Table 2-5 (Cont.) TL1 Cartridge Processors

Processor Name Variable

TL1 Connection Manager Input: tl1Properties, commandDictionary

Output:

• tl1Connection

An active connection to the TL1 agent specified in the TL1 Properties.
• gatewayNEList

A list of NE IDs that were returned from the TL1 Gateway. Only the IDs that matched
Gateway NE Filter are returned. If it is not a gateway discovery, there will be a single
empty entry in the list, which is an empty string. This construction allows for the same
set of processors inside a For Each processor to support gateway and non-gateway
discovery.

• gatewayNEDataMap

A map that contains the details of the NE response from the gateway. The key is the NE
ID (that matches the value from gatewayNEList) and the value is the data retrieved from
the gateway for the NE. If it is not a gateway discovery, the map will be empty.

Table 2-6 TL1 Cartridge Data Dictionary Structure

Element Parameters Notes

TL1Request • TID (string)
• CTAG (string)

The TL1Request is the base type of all TL1 Requests. It
is expected that all TL1 command requests extend this
type.

TL1Response • timestamp (dateTime)
• SID (string)
• CTAG (string)
• completionCode (string)
• errorText (string)

The TL1Response is the base type of all TL1
Responses. It is expected that all TL1 command
responses extend this type.

ACT-USER-REQUEST
(TL1Request)

• TID (string)
• CTAG (string)
• userid (string)
• password (string)

The TL1 request is used to log the user in to the TL1
session.

ACT-USER-RESPONSE
(TL1Response)

• timestamp (dateTime)
• SID (string)
• CTAG (string)
• completionCode (string)
• errorText (string)

The TL1 response is the response login of the TL1
session.

CANC-USER-REQUEST
(TL1Request)

• TID (string)
• CTAG (string)
• userid (string)

The TL1 request is used to log the user off from the
TL1 session.

CANC-USER-RESPONSE
(TL1Response)

• timestamp (dateTime)
• SID (string)
• CTAG (string)
• completionCode (string)
• errorText (string)

The TL1 response is the response from logging off the
user from the TL1 session.

TL1ResponseLine N/A The base structure type for a TL1 Response Line.

Chapter 2
Design Studio Construction

2-19

Table 2-6 (Cont.) TL1 Cartridge Data Dictionary Structure

Element Parameters Notes

TL1NamedParameterBlock N/A The base structure type for a named parameter block in
a TL1 Response. All child elements must be named
exactly as they are in the TL1 response. Not all child
parameters from the TL1 message section must be
specified. A subset is possible.

TL1PositionalParameterBlock N/A The base structure type for a positional parameter block
in a TL1 Response. Position (order) of the child
attributes is more important than the name of the
attribute. Because position is important, all parameters
should be specified, but parameters can be truncated
off the end if they are not needed.

Design Studio Extension
This section contains examples and explanations about how to extend certain aspects of the
TL1 cartridge. Refer to Network Integrity Developer's Guide for more information. See Network
Integrity Concepts for guidelines and best practices for extending cartridges.The following
examples are explained in this section:

• Sending New Commands and Model Results

• Bypassing the Custom Banner for TL1 Devices

Sending New Commands and Model Results
This example explains how to create a discovery action that sends new commands and model
results defined in the command dictionary. In this example, the extending action models the
collected data into the Information Model using the TL1Connection and TL1 commands
defined in the command dictionary.

To create a discovery action that sends new commands and model results:

1. Open Design Studio in the Design perspective.

2. Create a new cartridge project called SampleTL1.

3. Open the Package Explorer view and expand TL1_Cartridge.

4. Copy buildCommandDocument.xml and buildCommandSchema.xml from the
TL1_Cartridge directory and paste them in the SampleTL1 directory.

5. In your SampleTL1 cartridge project, create a Discovery action called Discover Sample
TL1 and extend it with the Discover Abstract TL1 action.

6. Create a data dictionary called SampleTL1Commands to hold the TL1 command request
and response definitions.

Ending the dictionary name with Commands ensures that it automatically builds with the
run script.

7. In SampleTL1Commands, define new TL1 request structures:

• Each new TL1 request structure must extend the TL1Request structure: select
TL1Request from the Base list.

Chapter 2
Design Studio Extension

2-20

• Each TL1 request structure name should end with a request so that the run script can
generate a correct command template for the requests and responses.

For example, define a structure named rtrv-eqpt-request.

• Add a child element called AID.

See the Cisco 15454 TL1 reference cartridge for an example command request structure.

8. In SampleTL1Commands, define new TL1 response structures:

• Each new TL1 response structure must extend the TL1Response structure: select
TL1Response from the Base list.

• Each TL1 response structure name should end with a response so that the run script
can generate a correct command template for the requests and responses.

For example, define a structure named rtrv-eqpt-response.

See the Cisco 15454 TL1 reference cartridge for an example command response
structure.

Note:

The response structure must match the response structure being returned by the
TL1 agent.

9. Under rtrv-eqpt-response, add a child structure called rtrv-eqpt-line:

• From the Type list, select TL1ResponseLine.

• From the Maximum list, select Unbounded.

10. Under rtrv-eqpt-line, add a child structure called rtrv-eqpt-block1:

• From the Type list, select TL1PositionalParameterBlock.

The position of the response parameter is significant for this block. See "TL1
Response" for more information about child structure types and parameter blocks.

• Add a child element called AID and set the Type list to String.

11. Continue to add parameter blocks until the response definition resembles Figure 2-5, then
save your changes.

Chapter 2
Design Studio Extension

2-21

Figure 2-5 Response Structure

12. Open the Package Explorer view and run the buildCommandSchema.xml Ant script.

The buildCommandSchema.xml file builds the data dictionary schema using XML Beans
and creates SampleTL1Commands.jar in the /lib directory.

13. Add SampleTL1Commands.jar to the build path.

14. Run the buildCommandDocument.xml Ant file.

The buildCommandDocument.xml file creates SampleTL1Commands.xml in the /src
directory.

15. Open SampleTL1Commands.xml and make note of the commandTemplate field value.

16. Close SampleTL1Commands.xml.

17. Create a command document template by making a copy of SampleTL1Commands.xml
and naming it SampleTL1Commands-template.xml.

18. Open SampleTL1Commands-template.xml and modify the CTAG value from $!
cmd.CTAG to 12345. Also, delete the requestType and responseType elements because
those values are not being overridden.

19. Re-run buildCommandDocument.xml.

20. Open SampleTL1Commands.xml and verify that the commandTemplate field value is set
to the version from the command document template.

21. Open the Discover Sample TL1 action editor.

22. On the Processor tab, add a For Each processor after the TL1 Connection Manager
processor and select gatewayNEList as the parameter to iterate over. Name the iteration
variable neID.

23. Create a new discovery processor named Sample TL1 Collector that creates and sends
TL1 requests to collect data. Place it inside the For Each processor.

24. Open the Sample TL1 Collector processor.

Chapter 2
Design Studio Extension

2-22

25. On the Context Parameters tab, add the following parameters as input:

• The commandDictionary parameter from the TL1 Property Initializer processor.

• The tl1Connection parameter from the TL1 Connection Manager processor.

• The neID parameter from the Discover Sample TL1 processor.

26. Add an output parameter:

• In the Parameter Name field, enter rtrvEqptResponse.

• In the Parameter Type field, enter
com.oracle.xmlns.communications.sce.dictionary.sampleTL1.sampleTL1Comma
nds.RtrvEqptResponse.

27. On the Details tab, click Implementation Class.

The Java implementation for the processor is created.

28. Add the following code to the invoke method of the implementation class:

try {
 request.getCommandDictionary().addCommandDictionaryDocument(new String[]
{"SampleTL1Commands.xml"});

This method adds the commands defined in the XML file to the runtime command
dictionary.

29. Add the following code to the invoke method of the implementation class:

RtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
 rtrvEqptRequest.setCTAG("1");
 rtrvEqptRequest.setAID("myAID");
 rtrvEqptRequest.setTID("myTID");

 RtrvEqptResponse response =
(RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);

 return new SampleTL1CollectorProcessorResponse(response);

} catch (Exception e) {
 throw new ProcessorException(e);
}

This code creates a new RTRV-EQPT request, sets request arguments, sends the request
to the TL1Connection, and gets a response. The RtrvEqptResponse instance is returned
by the processor so that subsequent processors can use the value.

30. Open the Discover Sample TL1 action editor.

31. Create a new discovery processor called Sample TL1 Modeler to model the TL1 response
data output from the Sample TL1 Collector processor. Place it in the For Each processor
after the Sample TL1 Collector processor.

32. Open the Sample TL1 Modeler processor to the Context Parameters tab.

33. Add rtrvEqptResponse from the Sample TL1 Collector processor as an input parameter.

34. Design an implementation for the Sample TL1 Modeler processor that converts the TL1
responses to the Oracle Communications Information Model.

35. Build, deploy, and test your cartridge.

The new processors are run in the order shown in Figure 2-6.

Chapter 2
Design Studio Extension

2-23

Figure 2-6 Sending New Commands and Modeling Results Processor Workflow

Bypassing the Custom Banner for TL1 Devices
Certain TL1 devices display a banner after connecting, which is not handled by the default
WebNMS telnet implementation. This example explains how to create a discovery action that
extends the Discover TL1 action to bypass the custom banner.

For information about the WebNMS TL1 API specification, see the WebNMS documentation.

To bypass the custom banner for TL1 devices:

1. Create a new discovery action that extends the Discover TL1 action.

2. Create a new discovery processor called TL1 Connection Customizer Initializer. Place it
before the TL1 Connection Manager processor.

3. Implement a WebNMS TL1 ConnectionHandler class, SkipBannerConnectionHandler. In
the postConnect method, get the transport provider from the TL1Session and issue
appropriate reads to bypass the banner.

4. In the new processor, register your customizer:

properties.setConnectionCustomizer(new Customizer() {
 @Override
 public void customize(TL1Connection connection) {
 connection.setConnectionHandler(new SkipBannerConnectionHandler());
 }

5. Build, deploy, and test your cartridge.

The new processor is run in the order shown in Figure 2-7.

Chapter 2
Design Studio Extension

2-24

Figure 2-7 TL1 Connection Customizer Extension Cartridge Workflow

Chapter 2
Design Studio Extension

2-25

3
About the Cisco ONS 15454 TL1 Reference
Cartridge

This chapter describes the functionality and design of the Oracle Communications Network
Integrity Cisco ONS 15454 SONET TL1 reference cartridge (Cisco 15454 TL1 reference
cartridge) and how to use and build the cartridge.

About Actions and Processors
The Cisco 15454 TL1 reference cartridge contains the Discover Cisco 15454 TL1 action. The
Discover Cisco 15454 TL1 action discovers Cisco 15454 TL1 devices in your network. This
discovery action extends the Discover Abstract TL1 action to establish the TL1 connection and
set the TL1 properties.

The Discover Cisco 15454 TL1 action scans devices and provides a physical hierarchical
model of the discovered data. This cartridge is designed to discover Cisco ONS 15454 SONET
devices only. The scan fails if you use this cartridge to discover non-Cisco or other Cisco
devices.

This discovery action inherits all the processors from the Discover Abstract TL1 actions. For
more information about the inherited processors, see "About the TL1 Cartridge".

The Discover Cisco 15454 TL1 action contains the following processors run in the following
order:

1. TL1 Property Initializer (inherited)

2. TL1 Property Customizer (inherited)

3. TL1 Connection Manager (inherited)

4. Cisco 15454 TL1 Device Collector

5. Cisco 15454 TL1 Device Modeler

6. Cisco 15454 TL1 Device Persister

Figure 3-1 illustrates the processor workflow of the Discover Cisco 15454 TL1 action.

3-1

Figure 3-1 Discover Cisco 15454 TL1 Action Processors Workflow

Cisco 15454 TL1 Device Collector
This processor retrieves the device data using TL1 protocol and makes it available for
modeling. This processor runs four TL1 commands for each device.

• RTRV-NETYPE: to get network element (NE) level details.

• RTRV-NE-GEN: to get NE level details.

• RTRV-INV: to get card level details.

• RTRV-EQPT: to get card level details.

Cisco 15454 TL1 Device Modeler
This processor models the data collected by the Cisco 15454 TL1 Device Collector processor,
building the hierarchical relationship for physical devices and children equipment, equipment
holders, and physical ports.

Cisco 15454 TL1 Device Persister
The Cisco 15454 TL1 Device Persister persists the physical device tree to the Network
Integrity database.

About Collected Data
This section discusses the data that is collected for modeling, listing, and explaining each
request and response command.

Chapter 3
About Collected Data

3-2

Equipment Collection
This section shows the TL1 request definition and sample TL1 responses that the processors
could receive from a device.

The RTRV-NETYPE request resembles the following example:

RTRV-NETYPE:[<TID>]::<CTAG>;

The RTRV-NETYPE response line is made up of a positional parameter block with the
following format:

SID DATE TIME
M CTAG COMPLD
"<VENDOR>,<MODEL>,<NETYPE>,<SW_ISSUE>"
;

Example 3-1 shows an example RTRV-NETYPE response.

Example 3-1 RTRV-NETYPE Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"CISCO,ONS15454,ADM&MSPP&MSTP,5.00.00"
;

The RTRV-NE-GEN request resembles the following example:

RTRV-NE-GEN:[<TID>]::<CTAG>;

The RTRV-NE-GEN response line is made up of one named parameter block with the following
format:

SID DATE TIME
M CTAG COMPLD
"[IPADDR=<IPADDR>],[IPMASK=<IPMASK>],[DEFRTR=<DEFRTR>],[IPV6ADDR=<ipv6addr>],
[IPV6PREFLEN=<ipv6preflen>],[IPV6DEFRTR=<ipv6defrtr>],[IPV6ENABLE=<ipv6enable>],
[IIOPPORT=<IIOPPORT>],[NTP=<NTP>],[NAME=<NAME>],[SWVER=<SWVER>],[LOAD=<LOAD>],
[PROTSWVER=<PROTSWVER>],[PROTLOAD=<PROTLOAD>],[DEFDESC=<DEFDESC>],[PLATFORM=<PLATFORM>],
[SECUMODE=<SECUMODE>],[SUPPRESSIP=<SUPPRESSIP>],[MODE=<MODE>],
[MSPUBVLANID=<MSPUBVLANID>],[MSINTLVLANID=<MSINTLVLANID>],[AUTOPM=<AUTOPM>],
[SERIALPORTECHO=<SERIALPORTECHO>],[OSIROUTINGMODE=<OSIROUTINGMODE>],
[OSIL1BUFSIZE=<OSIL1BUFSIZE>],[OSIL2BUFSIZE=<OSIL2BUFSIZE>], [NET=<NET>] >],
[BKUPNTP=<BKUPNTP>]"
;

Example 3-2 shows an example RTRV-NE-GEN response.

Example 3-2 RTRV-NE-GEN Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
IPADDR=192.168.100.52,IPMASK=255.255.255.0,DEFRTR=192.168.100.1,IPV6ADDR="[3ffe:0501:0008
:0000:0260:97ff:fe40:efab]",IPV6PREFLEN=64,IPV6DEFRTR="[3ffe:0501:0008:0000:0260:97ff:fe4
0:e000]",IPV6ENABLE=NO,IIOPPORT=57970,NTP=192.168.100.52,NAME="NODENAME",SWVER=2.01.03,LO
AD=02.13-E09A-08.15,PROTSWVER=2.01.02,PROTLOAD=02.12-E09A-09.25,DEFDESC=\"NE DEFAULTS
FEATURE\",PLATFORM=15454-
ANSI,SECUMODE=NORMAL,SUPPRESSIP=YES,PROXYSRV=N,FIREWALL=N,MSPUBVLANID=1,MSINTLVLANID=2,AU
TOPM=NO,SERIALPORTECHO=Y,OSIROUTINGMODE=ES,OSIL1BUFSIZE=512,OSIL2BUFSIZE=512"
;

Chapter 3
About Collected Data

3-3

The RTRV-INV request resembles the following example:

RTRV-INV:[<TID>]:<AID>:<CTAG>[::::];

The RTRV-INV response line is made up of three parameter blocks: a positional block,
followed by an empty block, followed by a named block. The response line has the following
format:

SID DATE TIME
M CTAG COMPLD
"<AID>,<AIDTYPE>::[PLUGTYPE=<PLUGTYPE>],[PN=<PN>],[HWREV=<HWREV>],[FWREV=<FWREV>],
[SN=<SN>],[CLEI=<CLEI>],[TWL=<TWL>],[PLUGINVENDORID=<PLUGINVENDORID>],
[PLUGINPN=<PLUGINPN>],[PLUGINHWREV=<PLUGINWREV>],[PLUGINFWREV=<PLUGINFWREV>],
[PLUGINSN=<PLUGINSN>],[ILOSSREF=<ILOSSREF>],[PID=<PID>],[VID=<VID>],[FPGA=<FPGA>],
[MODULETYPE=<MODULETYPE>]"
;

Example 3-3 shows an example RTRV-INV response.

Example 3-3 RTRV-INV Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"SLOT-15,OC3-IR-4::PLUGTYPE=SX-IR-SW-
SN,PN=87-31-00002,HWREV=004K,FWREV=76-99-00009-004A,SN=013510,CLEI=NOCLEI,TWL1=1546.12,TW
L2=1546.92,TWL3=1547.72,TWL4=1548.51,PLUGINVENDORID=012345,PLUGINPN=ABCDE,PLUGINHWREV=ABC
DE,PLUGINFWREV=01-02-03,PLUGINSN=01234,ILOSSREF=1.0,PID=CISCO_ONS15454,VID=V01,FPGA=F451,
MODULETYPE=101"
;

The RTRV-EQPT request resembles the following example:

RTRV-EQPT:[<TID>]:<AID>:<CTAG>[::::];

The RTRV-EQPT response line is made up of four parameter blocks:

• Block 1 uses the TL1PositionalParameterBlock format and models the following element:

– AID

• Block 2 uses the TL1PositionalParameterBlock format and models the following elements:

– AIDTYPE

– EQUIP

– ROLE

– STATUS

• Block 3 uses the TL1NamesParameterBlock format. This block does not need to model
any values. The CARDNAME element is modeled in this block as a container.

• Block 4 uses the TL1PositionalParameterBlock format and models the following element:

– PST

– SST

The response line has the following format:

SID DATE TIME
M CTAG COMPLD
"<AID>:<AIDTYPE>,<EQUIP>,[<ROLE>],[<STATUS>]:[<PROTID>],[<PRTYPE>],[<RVRTV>],[<RVTM>],
[<CARDNAME>],[<IOSCFG>],[<CARDMODE>],[<PEERID>],[<REGENNAME>],[<PEERNAME>],[<TRANSMODE>],
[<RETIME>],[<SHELFROLE>],[<FRPROLE>],[<FRPSTATE>],[<FRPHOLDOFFTIME>],[<ADMINCVLAN>],

Chapter 3
About Collected Data

3-4

[<ADMINSVLAN>],[<CFMSTATE>],[<CCTIMER>],[<SWITCHWITHCRCALARM>],[<CRCTHR>],
[<CRCPOLLINTRVL>],[<CRCSOAKCOUNT>]:<PST>,[<SST>]"
;

Note:

This format, taken from Cisco documentation, does not show the third parameter
block as named block, but is inferred from the example response provided.

Example 3-4 shows an example RTRV-EQPT response.

Example 3-4 RTRV-EQPT Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"SLOT-1:10GE-XP,UNEQUIP,,NA:CARDMODE=10GEXP-
L2ETH,FRPROLE=SLAVE,FRPSTATE=DISABLED,FRPHOLDOFFTIME=DISABLED,ADMINCVLAN=0,ADMINSVLAN=0,C
FMSTATE=N,CCTIMER=ONE-
SEC,SWITCHWITHCRCALARM=Y,CRCTHR=10E-2,CRCPOLLINTRVL=60,CRCSOAKCNT=10:OOS-AU,AINS&UEQ"
"SLOT-2:GE-XP,UNEQUIP,,NA:CARDMODE=GEXP-
L2ETH,FRPROLE=SLAVE,FRPSTATE=DISABLED,FRPHOLDOFFTIME=DISABLED,ADMINCVLAN=0,ADMINSVLAN=0,C
FMSTATE=N,CCTIMER=ONE-
SEC,SWITCHWITHCRCALARM=Y,CRCTHR=10E-2,CRCPOLLINTRVL=60,CRCSOAKCNT=10:OOS-AU,AINS&UEQ"
;

About Cartridge Modeling
The Cisco 15454 TL1 reference cartridge models collected data according to the Information
Model. Collected data is modeled into the following entities:

• PhysicalDevice

• Equipment

• PhysicalPort

• EquipmentHolder

Static field model entities are compliant with version 1.0.1 of the Information Model. Dynamic
field model entities are application specific.

Field Mapping
The following tables explain the field mappings for each Information Model object.

• Table 3-1

• Table 3-2

• Table 3-3

• Table 3-4

• Table 3-5

Chapter 3
About Cartridge Modeling

3-5

Table 3-1 Physical Device Field Mapping

Information Model
Attribute

Information
Model Support

TL1 Data Source Type

ID Static N/A String

Name Static RTRV-NE-GEN: NAME String

Description Static RTRV-NE-GEN: DEFDESC String

Serial Number Static N/A String

Native EMS Name Static RTRV-NE-GEN: NAME String

Physical Location Static N/A String

Software Version Dynamic RTRV-NE-GEN: SWVER String

Protect Software Version Dynamic RTRV-NE-GEN: PROTSWVER String

Model Name Dynamic RTRV-NETYPE: MODEL String

Values: ONS15454, ONS15600,
Unknown

NE Type Dynamic RTRV-NETYPE: NETYPE String

Values: ADM, DCS, MSPP, MSTP

Discovered Vendor Name Dynamic RTRV-NETYPE: VENDOR String

Table 3-2 Equipment (Shelf) Field Mapping

Information Model Attribute Information Model Support TL1 Data Source Type

ID Static N/A String

Name Static N/A String

Programmatically generated.

Description Static N/A String

Serial Number Static N/A String

Native EMS Name Static N/A String

Programmatically generated.

Physical Location Static N/A String

Note:

A shelf is not an entity that can be directly discovered. Therefore, shelves do not
have any characteristics defined beyond the existing entity attributes.

Table 3-3 Equipment (Card) Field Mapping

Information Model Attribute Information Model
Support

TL1 Data Source Type

ID Static N/A String

Name Static RTRV-INV: AIDTYPE String

Chapter 3
About Cartridge Modeling

3-6

Table 3-3 (Cont.) Equipment (Card) Field Mapping

Information Model Attribute Information Model
Support

TL1 Data Source Type

Description Static N/A String

Serial Number Static RTRV-INV: SN String

Native EMS Name Static RTRV-INV: AIDTYPE String

Physical Location Static N/A String

Discovered Part Number Dynamic RTRV-INV: PN String

Firmware Revision Dynamic RTRV-INV: FWREV String

Hardware Revision Dynamic RTRV-INV: HWREV String

Note:

Equipment is modeled only if RTRV-EQPT:EQUIP for that equipment is set to EQUIP.

Although the TL1 <AID> field is not modeled, it is used to determine the slot the
equipment is mounted in.

Table 3-4 Equipment Holder Field Mapping

Information Model
Attribute

Information
Model Support

TL1 Data
Source

Type

ID Static N/A String

Name Static N/A String

Programmatically generated. SLOT-# to match the RTRV-INV:
AID values.

Description Static N/A String

Serial Number Static N/A String

Native EMS Name Static N/A String

Programmatically generated. SLOT-# to match the RTRV-INV:
AID values.

Physical Location Static N/A String

Note:

Equipment holders cannot be discovered directly, so they are automatically created
and populated. Because the cartridge is for a Cisco ONS 15454 SONET device, the
cartridge will create the shelf with 17 slots ready to be populated with card
equipment. For other models, a mapping file can be used to list how many slots each
model has based on the RTRV-NETYPE: MODEL field.

Because equipment holders are not discoverable, they are created without a
specification.

Chapter 3
About Cartridge Modeling

3-7

Table 3-5 Physical Port Field Mapping

Information Model
Attribute

Information
Model Support

TL1 Data
Source

Type

ID Static N/A String

Name Static N/A String

Description Static N/A String

Serial Number Static N/A String

Native EMS Name Static N/A String

Physical Location Static N/A String

Port Number Static N/A String

Custom Port Name Static N/A String

Note:

Physical ports cannot be discovered directly, so they are automatically created and
populated using the value provided in the Cisco15454Cards property group that
maps card types to the number of ports. No ports are created on the parent card if no
entry exists in the property group.

Model Correction
Model correction occurs when the TL1 information received through discovery does not
conform to the Information Model or is incomplete and therefore cannot be saved to the
Network Integrity database.

The Cisco 15454 TL1 reference cartridge applies model corrections in the following cases:

• Missing EquipmentHolder under Equipment: TL1 does not directly discover slots.
EquipmentHolder entities are created automatically under the shelf of the Cisco 15454.
Because this Cisco 15454 shelf is specific to a model, the cartridge creates the 17 slots
automatically.

• Missing Equipment (Shelf) under PhysicalDevice: TL1 does not discover card and node
level details. The existence of a shelf is not explicit and must be derived.

• Missing PhysicalPort under Equipment: TL1 does not directly discover ports. PhysicalPort
entities are created automatically under the cards of the Cisco 15454 depending on
configured property values, as shown in the example below:

PhysicalDevice (Cisco 15454 Physical Device)
 Equipment (Cisco 15454 Shelf)
 EquipmentHolder (Specificationless entity)
 Equipment (Cisco 15454 Card)
 PhysicalPort (Specificationless entity)

Using the Cisco 15454 TL1 Reference Cartridge
This section describes how to use the Cisco 15454 TL1 reference cartridge.

Chapter 3
Model Correction

3-8

Setting Up a Scan
The Cisco 15454 TL1 reference cartridge does not introduce any new scan parameter groups.
Because the Cisco 15454 TL1 reference cartridge extends the TL1 cartridge, the configurable
scan parameter groups are those from the TL1 cartridge.

TL1 Gateway Discovery
The Cisco ONS 15454 SONET device can act as a TL1 gateway, through which the Cisco
15454 TL1 reference cartridge can discover other devices connected to the gateway. When
discovering a TL1 gateway, you can configure and filter the list of returned NEs in the Network
Integrity UI.

To discover TL1 devices through a Cisco ONS 15454 SONET TL1 gateway, create a TL1
discovery scan in the same way that you create a discovery scan for TL1 devices. See "Using
the TL1 Cartridge" for the procedure. When setting the values in the General tab in the Scan
Action Parameters area, do the following to set the Advanced TL1 scan parameter groups:

• Set the Gateway Discovery list to True.

• In the Gateway NE List Command field, enter the following TL1 request: RTRV-MAP-
NETWORK:[<TID>]::<CTAG>;.

The RTRV-MAP-NETWORK request collects the list of devices that are in the span of
control of the device that is acting as a TL1 gateway.

• In the Gateway Response ID Section field, enter 0.

• In the Gateway Response ID field, enter 1.

The response line has the following format:

SID DATE TIME
M CTAG COMPLD
"<IPADDR>,<NODENAME>,<PRODUCT>"
;

Example 3-5 shows an example RTRV-MAP-NETWORK response.

Example 3-5 RTRV-MAP-NETWORK Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"172.20.222.225,TID-000,15454"
;

Property Groups
The Cisco 15454 TL1 reference cartridge uses a property group called Cisco15454Cards as a
mapping table for the modeling processor to create physical ports on the cards. You can
modify, add, or remove properties in this property group using the Enterprise Manager MBean
Browser.

In the MBean Browser, this property group is found at the following location:

Discover Cisco 15454 TL1:Cisco 15454 TL1 Device Modeler:Cisco15454Cards

See Network Integrity System Administrator's Guide for more information about property
groups and the MBean Browser.

Chapter 3
Using the Cisco 15454 TL1 Reference Cartridge

3-9

Table 3-6 shows the preconfigured values for the Cisco15454Cards property group.

Table 3-6 Cisco15454Cards Property Group Values

Name Example Value

OC3IR4 4

10GEXP 4

The discovered card name is taken from the AIDTYPE field in the RTRV-INV TL1 response.
When adding new entries, remove spaces and dashes from the card name. For example, if the
AIDTYPE is OC3-IR-4, enter the name in the property group as OC3IR4.

If the AIDTYPE of a card cannot be found in the table, no physical port is created under the
card.

Discovered Results
Discovered results have a result group for each device.

Table 3-7 lists the specifications that are used to model entities discovered by the Cisco 15454
TL1 reference cartridge in the Information Model.

Table 3-7 Cisco 15454 TL1 Reference Cartridge Discovery Specifications

Specification Information Model Entity

Cisco 15454 Physical Device PhysicalDevice

Cisco 15454 Shelf Equipment

Cisco 15454 Card Equipment

The tree below shows the hierarchy of the modeled devices:

PhysicalDevice (Cisco 15454 Physical Device)
 Equipment (Cisco 15454 Shelf)
 EquipmentHolder (Specificationless entity)
 Equipment (Cisco 15454 Card)
 PhysicalPort (Specificationless entity)

Physical device and shelf entities are modeled explicitly as Cisco model-specific specifications.

Cards are modeled using a generic Cisco 15454 card specification, instead of a card-specific
specification. Depending on the inventory system used, you might want to explicitly model
each card type as a specification.

Equipment holder (slot) entities are modeled without a specification because slots are not
directly discoverable. Therefore, no parameters beyond the base entity attributes are
populated. Because a slot is not a physical object, there is no need to explicitly define a
specification for it. By creating a slot without a specification, you can extend the cartridge to
assign any custom specification you require.

Ports are not directly discoverable. You can use and develop a property group to model ports
on cards. See "Property Groups" for more information.

Figure 3-2 shows a sample set of discovered data from the Cisco 15454 TL1 reference
cartridge.

Chapter 3
Using the Cisco 15454 TL1 Reference Cartridge

3-10

Figure 3-2 Sample Discovery Data from Cisco 15454 TL1 Reference Cartridge

Design Studio Construction
This section provides information about the composition of the TL1 cartridge from the Oracle
Communications Design Studio perspective.

Model Collections
Table 3-8 shows the Design Studio construction of the Cisco 15454 model collection.

Table 3-8 Cisco 15454 Model Collection

Specification Name Information Model Entity Type

Cisco 15454 Physical Device PhysicalDevice

Cisco 15454 Shelf Equipment

Cisco 15454 Card Equipment

Chapter 3
Design Studio Construction

3-11

Actions
The following tables outline the Design Studio construction of the Cisco 15454 TL1 reference
cartridge actions and associated components:

• Table 3-9

• Table 3-10

• Table 3-11

Table 3-9 TL1 Cartridge Actions

Action Name Result
Category

Address
Handler

Scan Parameter
Groups

Processors

Discover Cisco 15454 TL1 Device IPAddressH
andler

TL1 cartridge
parameters. See
Table 2-3 and
Table 2-4.

• TL1 Property Initializer
• TL1 Property Customizer
• TL1 Connection Manager
• Cisco 15454 TL1 Device Collector
• Cisco 15454 TL1 Device Modeler
• Cisco 15454 TL1 Device Persister

Table 3-10 TL1 Cartridge Processors

Processor Name Variable

TL1 Property Initializer See "About the TL1 Cartridge" for more information.

TL1 Connection Manager See "About the TL1 Cartridge" for more information.

TL1 Property Customizer See "About the TL1 Cartridge" for more information.

Cisco 15454 TL1 Device Collector Input:

• neName

The name of the NE returned from the gateway command.
• tl1Connection
• gatewayNEDataMap
• tl1Properties
• commandDictionary
Output:

• eqptResponse

The response from RTRV-EQPT.
• invResponse

The response from RTRV-INV.
• netypeResponse

The response from RTRV-NEYPE.
• negenResponse

The response from RTRV-NE-GEN.

Cisco 15454 TL1 Device Modeler Input: neName, gatewayNEDataMap, eqtResponse, invResponse, netypeResponse,
negenResponse

Output: physicalTree

Cisco 15454 TL1 Device Persister Input: physicalTree

Output: N/A

Chapter 3
Design Studio Construction

3-12

Table 3-11 Property Groups

Property Group Type Property Processor

Cisco15454Cards Managed and Map OC3IR4 Cisco 15454 TL1 Device Modeler

Cisco15454Cards Managed and Map 10GEXP Cisco 15454 TL1 Device Modeler

Design Studio Extension
The source code to this cartridge is provided. You can change any part of the code to
customize this cartridge to fit your environment, or you can use the code as an example on
which to model your own custom TL1 device cartridge.

For more information about extensibility, see Network Integrity Developer's Guide and Network
Integrity Concepts.

Chapter 3
Design Studio Extension

3-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	TL1 Cartridge Overview
	Cisco 15454 TL1 Reference Cartridge Overview
	About the Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies

	Downloading and Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the TL1 Cartridge
	About Actions and Processors
	TL1 Property Initializer
	TL1 Property Customizer
	TL1 Connection Manager

	About Record and Playback
	About Address Validation
	About Dependent and Independent TL1 Commands
	About the Command Dictionary for the TL1 Cartridge
	Sending Commands Using the Command Dictionary
	TL1 Requests
	TL1 Response
	About the buildCommandSchema.xml Script
	About the buildCommandDocument.xml Script
	About the Command Document and Command Document Templates
	About the Command Dictionary API
	Sending a Command Using the Command Dictionary

	SSH Login Behavior
	Using the TL1 Cartridge
	Creating a Discovery Scan Action Type for TL1 Devices
	About Using Record and Playback
	Viewing and Configuring the Current Record and Playback Mode

	Design Studio Construction
	Actions

	Design Studio Extension
	Sending New Commands and Model Results
	Bypassing the Custom Banner for TL1 Devices

	3 About the Cisco ONS 15454 TL1 Reference Cartridge
	About Actions and Processors
	Cisco 15454 TL1 Device Collector
	Cisco 15454 TL1 Device Modeler
	Cisco 15454 TL1 Device Persister

	About Collected Data
	Equipment Collection

	About Cartridge Modeling
	Field Mapping

	Model Correction
	Using the Cisco 15454 TL1 Reference Cartridge
	Setting Up a Scan
	TL1 Gateway Discovery
	Property Groups
	Discovered Results

	Design Studio Construction
	Model Collections
	Actions

	Design Studio Extension

