
Oracle® Communications Network
Integrity
MSS Integration Cartridge Guide

Release 7.4
F93121-01
July 2024

Oracle Communications Network Integrity MSS Integration Cartridge Guide, Release 7.4

F93121-01

Copyright © 2010, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vii

1 Overview

About the MSS Integration Cartridge 1-1

Limitations 1-1

About Cartridge Dependencies 1-3

Run-Time Dependencies 1-3

Design-Time Dependencies 1-3

Configuration Dependencies 1-3

Configuring the JDBC Data Source Driver 1-3

Configuring MSS as the Import System 1-4

Adding JacORB JAR Files to the Cartridge Project 1-5

Adding MSS appserver Jar Files to the Cartridge Project 1-6

Configuring Custom Ports for Reference Integration Between Network Integrity and
MSS 1-6

Configuring Connection Between Network Integrity and MSS 1-7

Setting Up Cartridge MBeans 1-7

Downloading and Opening the Cartridge Files in Design Studio 1-9

Building and Deploying the Cartridge 1-9

2 About the Cartridge Components

Import from MSS Action 2-1

Equipment DAOs Initializer 2-2

Page Initializer 2-2

Page Creator 2-2

Node Collector 2-3

Device Modeler 2-3

Equipment Hierarchy Collector 2-3

Equipment Hierarchy Modeler 2-3

iii

Hierarchy Persister 2-3

STM Link Discoverer 2-3

VC4 Circuit Discoverer 2-4

VC3 VC12 LOP Discoverer 2-4

Detect Equipment Discrepancies Action 2-4

Equipment Filters Initializer 2-5

Discrepancy Filter 2-5

MSS Auto Resolve Selected Discrepancies 2-5

MSS Circuit Discrepancy Detection Action 2-6

Partial Circuit Discrepancy Filter 2-6

Resolve in MSS Action 2-7

MSS CORBA Property Initializer 2-7

Resolution Framework Initializer 2-8

MSS Resolution Initializer 2-8

Resolution Framework Dispatcher 2-8

About Discrepancy Detection 2-8

About Discrepancy Resolution 2-8

Extra Entity (Entity+) Discrepancy Resolution 2-9

Network Node Creation 2-9

Equipment Creation 2-10

Circuit Creation 2-10

Channel Assignment Creation on a Trail Pipe 2-11

TrailPath Assignment to a Circuit 2-11

PipeTerminationPoint Assignment to a Circuit 2-11

Missing Entity (Entity-) Discrepancy Resolution 2-12

Network Node Deletion 2-12

Equipment Deletion 2-12

Circuit Deletion 2-12

Channel Assignment Deletion on a Trail Pipe 2-12

TrailPath Unassignment from a Circuit 2-13

PipeTerminationPoint Unassignment from a Circuit 2-13

Attribute Value Mismatch (Attribute) Discrepancy Resolution 2-13

Equipment Mismatch 2-13

Circuit Channel Assignment Mismatch 2-13

3 Using the Cartridge

Creating an MSS Import Scan 3-1

Working with Discrepancies 3-2

Detecting Discrepancies in MSS 3-2

Resolving Discrepancies in MSS 3-2

iv

4 About Collected Data

About Collected Data 4-1

About the MSS Extract Process 4-1

Advantages 4-2

Limitations 4-2

Setting Up the MSS Extract Process 4-2

Refreshing Materialized Views 4-4

MSS Equipment Extract Process 4-5

MSS Equipment Extract Process Materialized Views 4-5

MSS Equipment Extract Process Normal Views 4-13

MSS Circuit Extract Process 4-14

MSS Circuit Extract Process Materialized Views 4-14

MSS Circuit Extract Process Normal Views 4-19

Extending the MSS Extract Process 4-20

5 About Cartridge Modeling

About Cartridge Modeling 5-1

About Import Data Modeling 5-1

API Mapping 5-1

Field Mapping 5-2

Data Import Algorithm 5-8

Import Equipment Hierarchy Algorithm 5-9

Build Equipment Hierarchy Algorithm 5-9

Import Circuit Hierarchy Algorithm 5-10

About Discrepancy Resolution Modeling 5-11

Discrepancy Resolution Field Mapping for Equipment 5-11

Discrepancy Resolution Field Mapping for Circuits 5-12

6 About Design Studio Construction

Model Collections 6-1

Actions 6-1

7 About Design Studio Extension

Importing Additional Information from MSS 7-1

v

Preface

This guide describes the functionality and design of the Oracle Communications Network
Integrity MSS Integration cartridge.

Audience
This guide is intended for network administrators who want to understand the design and
functionality of this cartridge. Also, for Network Integrity integrators and developers who want
either to build or to extend similar cartridges.

You should be familiar with the following documents:

• Network Integrity Concepts: for an overview of Network Integrity.

• Network Integrity Developer's Guide: for detailed information about Network Integrity
cartridge components and extensibility.

• Network Integrity Installation Guide: for information about the cartridge deployer to deploy
and undeploy cartridges to the run-time application.

This guide assumes that you are familiar with the following Oracle products and components:

• Oracle Communications Design Studio for Network Integrity

• Oracle Communications MetaSolv Solution (MSS)

• Network Integrity Optical TMF814 CORBA Cartridge

• Network Integrity Circuit Assimilation Cartridge

This guide assumes that you are familiar with the following concepts and technologies:

• TMF814 and Multi Technology Network Management (MTNM) standards and terminology

• Common object request broker architecture (CORBA) standards and terminology

• Development and extensibility of Network Integrity cartridges

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Overview

This chapter provides an overview of the Oracle Communications Network Integrity MSS
Integration cartridge.

About the MSS Integration Cartridge
The MSS Integration cartridge is used to integrate Network Integrity with Oracle
Communications MetaSolv Solution (MSS), to retrieve inventory data from MSS, and to
compare the imported data with discovered network data.

The MSS Integration cartridge includes the following types of actions:

• Import: retrieves specified equipment and circuit information from MSS and model it in the
Oracle Communications Information Model.

• Discrepancy Detection: compares imported MSS data with either discovered equipment
data or assimilated circuit data and reports any differences.

• Resolution: resolves discrepancies on equipment and circuits by correcting entities,
associations, and attributes in MSS.

This cartridge also includes a reference implementation of automatic discrepancy resolution.
Automatic discrepancy resolution enables Network Integrity to automatically correct specific
discrepancies without the user having to interact with the UI. Complete the reference
implementation to specify the types of discrepancies that you want automatically resolved. In
the MSS Integration cartridge, the automatic discrepancy resolution reference implementation
is built with a properties file and with Java. See Network Integrity Developer's Guide for more
information.

Limitations
The MSS Integration cartridge has the following limitations:

• Network Node Resolution: The MSS CORBA createNetworkElement API method is run by
the Resolve in MSS action to create a network node in MSS. You must use MSS to search
for the created node, manually updating it with the type and associating it with the network
system, which allows later resolution actions to create equipment and hierarchies under
the new node. Network Integrity cannot upload entire equipment hierarchies under a new
network node with a single Resolve in MSS action. Subsequent discrepancy detection
actions are likely to detect new entity+ discrepancies on the child entities of the new
network node.

• Port Resolution: There is no API support to create or delete ports. The ports associated to
card equipment are obtained from the equipment specification. There is no API support to
update MSS equipment. Therefore, Network Integrity cannot resolve entity+ or entity-
discrepancies on ports. You must manually resolve such discrepancies from MSS.

• Equipment Resolution: When there is more than one root equipment for a logical device,
the cartridge considers and resolves the first root equipment only.

1-1

• Partial Circuits: The MSS Integration cartridge cannot resolve discrepancies on partial
circuits from Network Integrity. Network Integrity assigns the Ignored state to
discrepancies on partial circuits.

• Network Integrity cannot detect discrepancies on all Information Model fields. See "Field
Mapping" for a list of tables listing the fields used for discrepancy detection.

• The MSS Integration cartridge suppresses discrepancies on empty slots and sub-slots.

• Rack, shelf, and card hierarchy: MSS does not follow a consistent standard for identifying
equipment types. Therefore, the MSS Integration cartridge uses a logical algorithm for
modeling equipment. See "Data Import Algorithm" for more information.

• For discrepancy resolution on customer circuits to work properly, the MSS instance service
type configuration must be aligned with customer circuit bandwidth. Possible customer
circuit bandwidths in SDH networks are E1, E3, and E4. MSS service type configuration
defines the circuit auto-build source higher bandwidth to target lower bandwidth. Network
Integrity cannot define multiple service type definitions with same source higher bandwidth
to different target lower bandwidths.

Table 1-1 lists the service type configurations for each customer circuit type.

Table 1-1 Service Type Configurations for Customer Circuit Types

Circuit
Type

First Level Service
Type

Second Level Service
Type

Third Level Service Type Fourth Level Service
Type

E1 STMX-VC4 (X=1, 4, 16) VC4-TUG3 (Pos=3) TUG3-VC12 (Pos=28) VC12-E1 (Pos=1)

E3 STMX-VC4 VC4-TUG3 (Pos=3) TUG3-VC3 (Pos=3) VC3-E3 (Pos=1)

E4 STMX-VC4 VC4-E4 (Pos=1) N/A N/A

• When uploading customer circuits to MSS to resolve discrepancies, Network Integrity sets
the Customer Account ID and Product Catalog ID a configurable, static value. You must
use MSS to manually assign uploaded circuits with the correct Customer Account ID and
Product Catalog ID. Configure the MSS Customer Account ID and MSS Product Catalog
ID MBean attributes to set the static value that Network Integrity assigns to uploaded
customer circuits. See "Setting Up Cartridge MBeans" for more information. The Customer
Account ID and MSS Product Catalog ID values must be valid values taken from the MSS
database.

• In MSS, it is possible to model a fully-protected HOT circuit in two different ways:

– As a single HOT between two devices, connected by two paths

– As two separate unprotected HOTs between two devices

By default, the MSS Integration cartridge matches against two separate unprotected HOTs
between two devices.

To match against fully-protected HOTs modeled as a single HOT between two devices,
connected by two paths, you can do one of the following:

– Extend the Import from MSS action to separate protected HOT circuits into two
unprotected HOT circuits. The protected HOT circuits must not have the same
originating or terminating port.

– Extend the Assimilate Optical Circuits action on the Network Integrity Optical Circuit
Assimilation Cartridge, adding a processor to find separate HOTs that should be
merged, modeling them as single HOTs with multiple paths.

If you extend the assimilation or the import action, you must also extend your discrepancy
resolution actions to understand the extended circuit model.

Chapter 1
Limitations

1-2

About Cartridge Dependencies
The MSS Integration cartridge has the following dependencies.

Run-Time Dependencies
For the MSS Integration cartridge to work at run time, the following dependencies must be met:

• MSS must be installed.

– MSS must be configured with the MSS Extract Schema. The MSS database must be
populated using the MSS extract process. See "Setting Up the MSS Extract Process"
for more information.

• Network Integrity must be configured with a database connection to the MSS Extract
Schema.

– The data source for the MSS Extract Schema must be created in the Network Integrity
WebLogic server domain.

• Network Integrity must be configured with the common object request broker architecture
(CORBA) Name Service details.

• Network Integrity must be configured with Enterprise Java Bean (EJB) connection details.

Design-Time Dependencies
The MSS Integration cartridge has the following dependencies:

• Abstract_CORBA_Cartridge

• NetworkIntegritySDK

• Optical_Model

• OpticalAssimilation_Cartridge

• ora_uim_model

• TMF814_Model

• TMF814Discovery_Cartridge

Configuration Dependencies
This section describes the necessary configurations you must perform before you can use the
MSS Integration cartridge.

Configuring the JDBC Data Source Driver
1. Log in to the Oracle WebLogic Server Administration Console for Network Integrity using

administrator credentials.

2. Under JDBC, select Data Sources.

The Summary of JDBC Data Sources screen appears.

3. Click the New button.

The Create New Data Source screen appears.

Chapter 1
About Cartridge Dependencies

1-3

4. Do the following:

a. In the Name field, enter a name.

b. In the JNDI Name field, enter a unique JNDI name to be used by Network Integrity. For
example, jdbc/NIMSSDatasource.

c. In the Database Type field, enter Oracle.

d. In the Database Driver field, select Oracle's Driver (Thin) for service connections;
Versions:9.0.1,9.2.0,10,11.

5. Click Next.

The Transaction Options screen appears.

6. Do the following:

a. Select the Support Global Transaction check box.

b. Select the Emulate Two-Phase Commit option.

7. Click Next.

The Connection Properties screen appears.

8. Do the following:

a. In the Database Name field, enter the SID or service name of the database.

b. In the Host Name field, enter the IP address or host name of the system on which the
database running.

c. In the Port field, enter the port number used to communicate with the database.

d. In the Database User Name field, enter the database user name.

e. In the Database User Password field, enter the database user password.

9. Click Next.

The Test Database Connection screen appears.

10. Click the Test Configuration button.

The console displays a success or failure message.

11. Click Next.

12. Select the check box corresponding to the target server.

13. Click Finish.

The data source is created.

Configuring MSS as the Import System
To enable Network Integrity to import data from MSS, MSS must be configured as the import
system in Network Integrity.

To set MSS as your import system:

1. In Network Integrity, in the Tasks pane, click Manage Import Systems.

The Import System screen appears.

2. Click the Create or Edit icon.

Chapter 1
About Cartridge Dependencies

1-4

Note:

The Create icon is available only if no import system is configured. The Edit icon
is available only if an import system is already configured.

The Edit Import System dialog box appears.

3. Do the following:

a. In the Name field, enter a name for your import system.

For example, MSS.

b. In the Address field, enter the unique JNDI name for the JDBC data source.

For example, jdbc/NIMSSDatasource.

See "Configuring the JDBC Data Source Driver" for more information.

c. Click Save and Close.

Adding JacORB JAR Files to the Cartridge Project
The Discrepancy Resolution action uses a third-party object request broker (ORB) called
JacORB to establish CORBA connectivity with MSS. The JacORB JAR files must be manually
added to the /lib directory of the cartridge project.

To add the JacORB JAR files to the cartridge project:

1. Download version 3.9 of JacORB from the JacORB web site:

http://www.jacorb.org
2. Open the JacORB ZIP file and extract the following JAR files from the /lib directory:

• slf4j-api-1.7.14.jar

• slf4j-jdk14-1.7.14.jar

• jacorb-3.9.jar

• jacorb-omgapi-3.9.jar

3. In Design Studio, switch to the Package Explorer view.

4. Copy the extracted JAR files to the MSS_Cartridge/lib cartridge project directory.

5. Add the JacORB JAR files to the cartridge project classpath:

a. Right-click MSS_Cartridge and select Properties.

The Properties for MSS_Cartridge dialog box appears.

b. In the Navigation pane, click Java Build Path.

c. On the Libraries tab, click the Add JARs button.

The Add JARs dialog box appears.

d. Select the new JacORB JAR files and click Add.

The new JacORB JAR files are added to the JARs and class folders on the build
path list.

e. Click OK.

The Properties for MSS_Cartridge dialog box closes.

Chapter 1
About Cartridge Dependencies

1-5

http://www.jacorb.org

f. Save the project.

Adding MSS appserver Jar Files to the Cartridge Project
To add the MSS appserver Jar files to the cartridge project:

1. Extract appserver.jar from MSS_Installation_Home/deploy/nur.ear!/APP.INF/lib/
appserver.jar, where MSS_Installation_Home is the directory where MSS is installed.

2. In Design Studio, switch to the Package Explorer view.

3. Copy the extracted JAR file to the MSS_Cartridge/lib cartridge project directory.

Configuring Custom Ports for Reference Integration Between Network Integrity and
MSS

In situations where the reference integration between Network Integrity and MSS is
implemented in a way that both the products communicate through a firewall that restricts
specific ports, you must configure the jacorb.properties file in MSS and Network Integrity to
open specific ports or a range of ports, which will allow network data to pass through a firewall.

The reference integration between Network Integrity and MSS uses the CORBA IIOP (Internet
Inter-ORB Protocol) Specification and JacORB to establish CORBA connectivity over the
network.

JacORB provides a number of socket factories to allow control over the way sockets are
created on both the client side and the server side. On the server side, JacORB uses
jacorb.net.server_socket_factory and jacorb.ssl.server_socket_factory to control the creation of
sockets. On the client side, JacORB uses jacorb.net.socket_factory and
jacorb.ssl.socket_factory to control the creation of sockets. A factory design pattern is used for
the creation of sockets and server sockets.

You use the jacorb.net.socket_factory property to configure a socket factory that implements
the operations defined in the interface org.jacorb.orb.factory.SocketFactory. You use the
jacorb.net.server_socket_factory property to configure a server socket factory that implements
the operations defined in the interface org.jacorb.orb.factory.ServerSocketFactory, as follows:

jacorb.net.socket_factory=org.jacorb.orb.factory.DefaultSocketFactory
jacorb.net.server_socket_factory=org.jacorb.orb.factory.DefaultServerSocketFactory
jacorb.net.socket_factory=org.jacorb.orb.factory.PortRangeSocketFactory
jacorb.net.server_socket_factory=org.jacorb.orb.factory.PortRangeServerSocketFactory

You can use additional socket factories to specify the maximum and minimum port numbers in
a fixed port range to enable network data to pass through a firewall, as follows:

jacorb.net.socket_factory.port.min
jacorb.net.socket_factory.port.max
jacorb.net.server_socket_factory.port.min
jacorb.net.server_socket_factory.port.max

Configuring JacORB in MSS for Communicating Through a Firewall

To enable MSS to communicate with Network Integrity through a firewall, you must configure
custom ports in MSS by configuring the jacorb.properties file located in the MSS_Home/
server_name/jacORB/etc folder, where MSS_Home is the directory on the server under which
the MSS software is installed and server_name is the name of the WebLogic Administration
server.

To configure JacORB in MSS to communicate through a firewall:

Chapter 1
About Cartridge Dependencies

1-6

1. Navigate to the MSS_Home/server_name/jacORB/etc folder and open the
jacorb.properties file.

2. Configure the following factory properties to specify the maximum and minimum port
numbers in a fixed port range:

jacorb.net.socket_factory.port.min
jacorb.net.socket_factory.port.max
jacorb.net.server_socket_factory.port.min
jacorb.net.server_socket_factory.port.max

3. Save and close the jacorb.properties file.

Configuring JacORB in Network Integrity for Communicating Through a Firewall

To configure JacORB in Network Integrity to communicate through a firewall:

1. Copy the jacorb.properties file from the MSS_Home/server_name/jacORB/etc folder to
the MSS_Cartridge/src folder in Network Integrity.

2. Build and deploy the MSS Integration cartridge.

See the Design Studio Help for information about building and deploying cartridges.

Configuring Connection Between Network Integrity and MSS
In order for CORBA to successfully connect to MSS, you must configure the MSS gateway.ini
file.

To configure the MSS gateway.ini file:

1. Navigate to the MSS_Home/server_name/appserver/gateway folder and open the
gateway.ini file.

2. Uncomment the following line by removing ; at the beginning of the line:

;INFRASTRUCTURESERVER=MetaSolv.CORBA.WDIInfrastructure.WDIRoot,MetaSolv.WDIInfrastruc
ture.WDIRootImpl"

3. Restart the MSS server.

Note:

If the MSS gateway.ini file is not configured, when a connection is attempted from
Network Integrity to MSS, Network Integrity returns the following error message:

Can¿t establish Corba connection with MSS IDL: omg.org/CosNaming/NamingContext/
NotFound1.0"

Setting Up Cartridge MBeans
The MSS Integration cartridge uses generic Network Integrity MBeans to communicate
discrepancy resolution commands with MSS. These MBeans contain property groups and
properties configured with model variables. The default values are set when the cartridge is
deployed. You must use Enterprise Manager to define the MBeans.

The configured MBean values are set in the MSS CORBA Properties Initializer processor
during run time.

Chapter 1
About Cartridge Dependencies

1-7

See Network Integrity System Administrator's Guide for information about setting MBeans
using Enterprise Manager.

Table 1-2 lists the generic Network Integrity MBeans used to communicate with MSS. Set each
MBean with the value required to connect the cartridge to your MSS system.

Table 1-2 Cartridge MBeans Required for Discrepancy Resolution

Attribute Name Property Group MBean Property Name

MSS CORBA Password Resolve in MSS:MSS CORBA Property
Initializer:MSSCORBAConnectionDetails

MSSCORBAPassword

Required to establish the MSS CORBA
connection for MSS equipment upload.

Use the runPropertyEncryptor.sh script to
encrypt this property. See Network Integrity
System Administrator's Guide for more
information.

MSS CORBA IOR Resolve in MSS:MSS CORBA Property
Initializer:MSSCORBAConnectionDetails

MSSCORBAIOR

Required to establish the MSS CORBA
connection for MSS equipment upload.

When integrating Network Integrity cluster with
an MSS cluster, ensure that you set up the
Network Integrity CORBA MBean properties in
such a way that each Network Integrity managed
server in the Network Integrity cluster refers to
the same IOR value of a specific MSS managed
server in the MSS cluster.

MSS CORBA UserId Resolve in MSS:MSS CORBA Property
Initializer:MSSCORBAConnectionDetails

MSSCORBAUserId

Required to establish the MSS CORBA
connection for MSS equipment upload.

MSS EJB JNDI Name Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSSEJBJNDIName

Required to establish the MSS EJB connection
for MSS circuit upload.

MSS EJB URL Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSSEJBURL

Required to establish the MSS EJB connection
for MSS circuit upload.

MSS EJB UserId Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSSEJBUserId

Required to establish the MSS EJB connection
for MSS circuit upload.

MSS EJB Password Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSSEJBPassword

Required to establish the MSS EJB connection
for MSS circuit upload.

Use the runPropertyEncryptor.sh script to
encrypt this property. See Network Integrity
System Administrator's Guide for more
information.

MSS Customer Account
ID

Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSS Customer Account Id

Used to assign customer circuits created by
Network Integrity to a customer account.

MSS Product Catalog ID Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

MSS Product Catalog Id

Used to specify the catalog reference for
customer circuits created by Network Integrity.

Chapter 1
About Cartridge Dependencies

1-8

Table 1-2 (Cont.) Cartridge MBeans Required for Discrepancy Resolution

Attribute Name Property Group MBean Property Name

MSS TUG3-VC12
Channel Positions Count

Resolve in MSS:MSS CORBA Property
Initializer:MSSEJBConnectionDetails

mssTUG3VC12ChannelPositionsCount

Used to specify the number of positions in MSS
service type defined for TUG3 to VC12.

Enable Container
Resolution

MSS Circuit Discrepancy Detection:Partial
Circuit Discrepancy
Filter:ResolutionProperties

enableContainerResolution

Set to false and is used to not display
discrepancies on container entities in Network
Integrity. Network Integrity cannot resolve
discrepancies on containers.

Enable STM Resolution MSS Circuit Discrepancy Detection:Partial
Circuit Discrepancy
Filter:ResolutionProperties

enableSTMResolution

Set to false and is used to not display
discrepancies on STMs in Network Integrity.
Network Integrity cannot resolve discrepancies
on STMs.

Enable HOT Resolution MSS Circuit Discrepancy Detection:Partial
Circuit Discrepancy
Filter:ResolutionProperties

enableHOTResolution

Set to false and is used to not display
discrepancies on HOTs in Network Integrity.
Network Integrity cannot resolve discrepancies
on HOTs.

Password properties should be encrypted using the runPropertyEncryptor.sh script. See
Network Integrity System Administrator's Guide for more information about encrypting
properties.

When encrypting MBean properties, you must enter the property name as it appears in the
MBean Property Name column of Table 1-2. For example, enter MSSCORBAPassword
when encrypting the MSS CORBA Password attribute.

Downloading and Opening the Cartridge Files in Design Studio
To open, view, and extend the MSS Integration cartridge, you must first download the cartridge
ZIP file from the Oracle software delivery web site:

https://edelivery.oracle.com
The MSS Integration cartridge ZIP file has the following structure:

• MSS_Cartridge

• Optical_Model

The MSS_Cartridge project contains the extendable Design Studio files.

See Network Integrity Concepts for guidelines and best practices for extending cartridges. See
Network Integrity Developer's Guide for information about opening files in Design Studio.

Building and Deploying the Cartridge
To build and deploy the MSS Integration cartridge, you must first add JacORB JAR files and
MSS appserver.jar to the cartridge project. See "Adding JacORB JAR Files to the Cartridge
Project" and "Adding MSS appserver Jar Files to the Cartridge Project" for more information.

See Design Studio Help for information about building and deploying cartridges.

Chapter 1
Downloading and Opening the Cartridge Files in Design Studio

1-9

https://edelivery.oracle.com

2
About the Cartridge Components

This chapter provides information about the components of the Oracle Communications
Network Integrity MSS Integration cartridge.

The MSS Integration cartridge contains the following actions:

• Import from MSS Action

• Detect Equipment Discrepancies Action

• MSS Circuit Discrepancy Detection Action

• Resolve in MSS Action

Import from MSS Action
The Import from MSS action connects to Oracle Communications MetaSolv Solution (MSS) to
import specified inventory data. This import action writes the inventory information to
materialized views and models it according to the Oracle Communications Information Model.

The Import from MSS action contains the following processors run in the following order:

1. Equipment DAOs Initializer

2. Page Initializer

3. Page Creator

4. Node Collector

5. Device Modeler

6. Equipment Hierarchy Collector

7. Equipment Hierarchy Modeler

8. Hierarchy Persister

9. STM Link Discoverer

10. VC4 Circuit Discoverer

11. VC3 VC12 LOP Discoverer

Figure 2-1 illustrates the processor workflow of the Import from MSS action.

2-1

Figure 2-1 Import from MSS Action Processor Workflow

Equipment DAOs Initializer
If Run MSS Extract is set to True in the Network Integrity UI, this processor refreshes the
MSS materialized views.

Also, this processor reads the data source information from the Import System values and
initializes the DAOLocator instance. The DAOLocator instance is used by other processors and
actions to retrieve equipment and circuit data.

Page Initializer
This processor counts all the unique network nodes from the MSS extract views, according to
the scope defined in the Network Integrity UI, and determines the number of pages needed to
list all the nodes. By default, a page can contain 50 nodes. This processor produces a
pageCountList iterable object.

Page Creator
This processor creates pages listing unique network node names imported from MSS matching
the filtering criteria set in the Network Integrity UI. This processor outputs the node names list
in a response object.

Chapter 2
Import from MSS Action

2-2

Node Collector
This processor collects all root equipment from MSS for each node on the node name list
produced by the Page Creator processor. The collected root equipment are placed in the
nodesMapByNodeName map, which indexes each node name and its value.

The output iterable object loops over nodeNamesSet, getting one node name per loop.

Device Modeler
This processor models each imported network node as PhysicalDevice and LogicalDevice
entities and outputs a root equipment list for each modeled node.

Equipment Hierarchy Collector
This processor retrieves port information for the equipment hierarchy from
EquipmentPositionHierDAO and EquipmentPortAddressDAO. This processor outputs a map
listing port-to-card IDs.

Equipment Hierarchy Modeler
This processor models root equipment and its floating termination points (FTPs) from the map
as physical port and media interface entities. Its associated ports are derived from the output
map from the Equipment Hierarchy Collector processor and are modeled as physical port and
media interface entities.

This processor builds the equipment hierarchy by parsing the equipment hierarchy string. Slots
and subslots are modeled as EquipmentHolders entities, and cards as Equipment entities. This
processor saves processed card IDs to an index object to avoid processing duplicate card IDs
in a different hierarchy for the same parent.

Note:

The equipment hierarchy string in MSS must define the equipment type for
equipment for this processor to successfully build the hierarchy.

Hierarchy Persister
This processor saves the logical and physical device trees and saves the modeled hierarchy
for each network node.

STM Link Discoverer
This processor discovers synchronous transport module (STM) links from the list of ports
produced by the Equipment Hierarchy Modeler processor.

This processor retrieves the STM Circuit information from CircuitExportDAO and
CircuitPositionDAO and models each as DisPipe entities. The STM links are modeled with a
valid VC4 channel index value.

This processor outputs a list of STM links in an stmSet object.

Chapter 2
Import from MSS Action

2-3

VC4 Circuit Discoverer
This processor retrieves the VC4 circuit information from the STM Link Discoverer processor. It
verifies whether the circuit is a customer circuit. Customer circuits are modeled as E4 circuits
with a VC4 display string. Non-customer circuits are modeled as transport pipes with a VC4
higher order transport display string.

This processor produces a list of CircuitExport DAOs for each transport pipe.

VC3 VC12 LOP Discoverer
This processor queries the lower order pipes (LOPs) from the vc4sForLops list and models
them as E3 circuits with a VC3 display string or as E1 circuits with a VC12 display string,
depending on the layer rate codes.

Detect Equipment Discrepancies Action
The Detect Equipment Discrepancies action compares discovered TMF814 data with the
imported MSS data and returns a list of discrepancies.

This discrepancy detection action extends Discrepancy Detector action (from the
NetworkIntegritySDK cartridge) and inherits all its processors. For information about the
inherited processors, see Network Integrity Developer's Guide.

This action also extends the Auto Resolve Discrepancies action (from the NetworkIntegritySDK
cartridge) to provide automatic discrepancy resolution. For information about the processors
inherited from the Auto Resolve Discrepancies action, see Network Integrity Developer's
Guide.

The Detect Equipment Discrepancies action contains the following processors run in the
following order:

1. Equipment Filters Initializer

2. Discrepancy Detector (inherited)

3. Discrepancy Filter

4. Check Auto Resolve Selected (inherited)

5. MSS Auto Resolve Selected Discrepancies

6. Identify Auto Resolving Discrepancies (inherited)

7. Prepare Resolving Discrepancies (inherited)

Figure 2-2 illustrates the processor workflow of the Detect Equipment Discrepancies action.

Chapter 2
Detect Equipment Discrepancies Action

2-4

Figure 2-2 Detect Equipment Discrepancies Action Processor Workflow

Equipment Filters Initializer
This processor applies the equipment filters set in the Network Integrity UI on the Discrepancy
Detection process. This processor also automatically filters out discrepancies that are not
relevant to MSS equipment.

Discrepancy Filter
This processor collects the discrepancies generated by the Discrepancy Detector processor
and sets the priority and status for discrepancies on physical ports.

Discrepancies on physical ports are labeled Manually correct in MSS, and Network Integrity
sets the status to Ignored because Network Integrity cannot resolve this type of discrepancy.

MSS Auto Resolve Selected Discrepancies
This processor contains the Java class for the automatic discrepancy resolution manager. The
Java implementation class determines the types of discrepancies to be automatically resolved
and the resolution logic.

The MSS Integration cartridge also implements automatic discrepancy resolution with a
properties file.

See Network Integrity Developer's Guide for more information about automatic discrepancy
resolution.

Chapter 2
Detect Equipment Discrepancies Action

2-5

MSS Circuit Discrepancy Detection Action
The MSS Circuit Discrepancy Detection action compares the results of an Assimilate Optical
Circuits scan with the imported MSS data and returns a list of discrepancies. For more
information about the Assimilate Optical Circuits scan action type, see Network Integrity
Optical Circuit Assimilation Cartridge Guide.

This discrepancy detection action inherits all the processors from the Abstract Optical Circuit
Discrepancy Detection action (from the Optical Circuit Assimilation cartridge). For information
about the inherited processors, see Network Integrity Optical Circuit Assimilation Cartridge
Guide.

The MSS Circuit Discrepancy Detection action contains the following processors run in the
following order:

1. Circuit Discrepancy Name Filter Initializer (inherited)

2. Missing Entity Filter Initializer (inherited)

3. Partial Circuit Discrepancy Filter

4. Discrepancy Detector (inherited)

Figure 2-3 illustrates the processor workflow of the MSS Circuit Discrepancy Detection action.

Figure 2-3 MSS Circuit Discrepancy Detection Action Processor Workflow

Partial Circuit Discrepancy Filter
This processor collects the discrepancies generated by the Missing Entity Filter initializer
processor.

Discrepancies on partial pipe entities with a name that begins with GENERATED_ are labeled
Manually correct in MSS, and Network Integrity sets the status to Ignored because Network
Integrity cannot resolve this type of discrepancy.

Chapter 2
MSS Circuit Discrepancy Detection Action

2-6

Resolve in MSS Action
The Resolve in MSS action resolves discrepancies between your network data and the
imported data by updating equipment and circuit hierarchy in MSS.

This discrepancy resolution action inherits all the processors from the Resolve Abstract
CORBA action (from the CORBA cartridge) and inherits all its processors. For information
about the inherited processors, see Network Integrity CORBA Cartridge Guide.

The Resolve in MSS action contains the following processors run in the following order:

1. CORBA Property Initializer (inherited)

2. MSS CORBA Property Initializer

3. CORBA Connection Manager (inherited)

4. Resolution Framework Initializer

5. MSS Resolution Initializer

6. Resolution Framework Dispatcher

Figure 2-4 illustrates the processor workflow of the Resolve in MSS action.

Figure 2-4 Resolve in MSS Action Processor Workflow

MSS CORBA Property Initializer
This processor sets the common object request broker architecture (CORBA) object request
broker (ORB) properties in the JacORB to establish CORBA connectivity with MSS.

Chapter 2
Resolve in MSS Action

2-7

Resolution Framework Initializer
This processor initializes the BaseResolutionElement resolution framework class used to
register the handlers required to resolve discrepancies in MSS.

MSS Resolution Initializer
This processor registers the following entity handlers to the BaseResolutionElement class:

• DeviceHandler

• EquipmentHandler

• PhysicalPortHandler

• DeviceInterfaceHandler

• CircuitHandler

• PipeTerminationPointHandler

• TrailPathHandler

Resolution Framework Dispatcher
This processor runs the BaseResolutionElement class to evaluate and treat discrepancies
using the appropriate registered entity handlers.

About Discrepancy Detection
The MSS Integration cartridge extends the NetworkIntegritySDK cartridge project to detect
discrepancies.

Table 2-1 lists the possible discrepancies that can be reported and the types of entities that
each discrepancy can be found on.

Table 2-1 Discrepancy Types

Discrepancy Type Entity Types

Extra Entity (Entity+) Physical device, equipment, equipment holder, physical port, pipe
(STM/HOT/LOP), pipe termination point, trail path, trail pipe

Missing Entity (Entity-) Physical device, equipment, equipment holder, physical port, pipe
(STM/HOT/LOP), pipe termination point, trail path, trail pipe

Attribute Value Mismatch
(Attribute)

Physical device, logical device, equipment, equipment holder, pipe

For more information about discrepancy detection and automatic discrepancy resolution, see
Network Integrity Developer's Guide.

About Discrepancy Resolution
The MSS Integration cartridge has two distinct discrepancy resolution actions: one for circuits
and another for equipment. The cartridge communicates equipment resolution using a CORBA

Chapter 2
About Discrepancy Detection

2-8

connection and communicates circuit resolution using an Enterprise JavaBean (EJB)
connection.

This section lists the discrepancy types that the MSS Integration cartridge can resolve from
Network Integrity. All other discrepancy types must be resolved manually in MSS.

This action automatically uses the correct handler depending on the type of discrepancy being
resolved. Table 2-2 lists the discrepancy types and the handler used to resolve the
discrepancy.

Table 2-2 Discrepancy Resolution Handlers

Handler Handled Entity Types Discrepancy Type

DeviceHandler Physical device Entity+

EquipmentHandler Equipment, equipment holder Entity+, Attribute value mismatch

PipeTerminationPointHandler Pipe termination point Entity+, Entity-

TrailPathHandler Trail path Entity+, Entity-

CircuitHandler Pipe (customer circuit) Entity+ (LOP, TrailPipe upload), Entity- (LOP,
TrailPipe delete), Attribute value mismatch (for
timeslot)

PhysicalPortHandler Physical port Entity+, Entity-

Each handler runs creation and removal operations to fully resolve discrepancies. For
discrepancies on MSS equipment, the handlers run CORBA API methods and populate Java
classes with the resolution information.

Network Integrity updates the status of discrepancies as they are being resolved:

• Processed: Network Integrity successfully processed the discrepancy.

• Failed: Network Integrity could not successfully process the discrepancy. The
reasonForFailure field explains the cause of the failure. Network Integrity logs exceptions
and failure reasons.

• Ignored: Network Integrity does not support making this resolution in MSS. You must
manually resolve this discrepancy in MSS.

• Not Implemented: Network Integrity could not upload the resolution to MSS. You can
manually resolve this discrepancy in MSS, or extend or develop a handler to resolve the
discrepancy from Network Integrity.

For more information about discrepancy resolution, see Network Integrity Developer's Guide.

Extra Entity (Entity+) Discrepancy Resolution
Entity+ discrepancies occur when an entity exists in your network but is missing from the
imported data. Network Integrity resolves this type of discrepancy by creating the missing
entity in MSS.

Network Node Creation
Entity+ discrepancies occur on physical or logical devices when the corresponding network
node does not exist in MSS. The MSS Integration cartridge resolves this discrepancy by doing
the following:

Chapter 2
About Discrepancy Resolution

2-9

• Queries location_id using the MSS CORBA getLocationI API method. This method belongs
to NetworkLocationSubSession of the InfrastructureSession interface.

• Creates a network node in MSS in the location returned by the getLocation API by running
the MSS CORBA createNetworkElement API method. This method belongs to
NetworkElementSubSession of the EquipmentSession interface.

• You must open the MSS UI and search for the created node, updating it with the type and
manually associating it with the network system, which allows later resolution actions to
create equipment and hierarchies under the new node.

Note:

Creating a network node can cause additional discrepancies on the next Discrepancy
Detection action, such as new Entity+ discrepancies on MSS equipment or
equipment hierarchy belonging to the new network node. This is normal.

Equipment Creation
Entity+ discrepancies occur on equipment when the corresponding rack, shelf, sub-shelf, or
card does not exist in MSS. The MSS Integration cartridge resolves this discrepancy by doing
the following:

• Traverses the Information Model equipment hierarchy. For each equipment found, creates
equipment in MSS using the MSS CORBA installEquipment API method. This method
belongs to InstallationSubSession of the EquipmentSession interface.

• For each root equipment, queries for its parent and obtains network_node_id using the
CORBA getNetworkElement API method. This method belongs to
NetworkElementSubSession of the EquipmentSession interface.

• For each equipment, queries for EquipmentSpecification using the MSS CORBA
queryEquipSpec_v2 API method and obtains equip_spec_id. This method belongs to
SpecificationSubsession of the EquipmentSession interface. NativeEMSName,
discoveredPartNumber, and modelName on modeled Information Model equipment are
used to identify the equipment specification in MSS.

Ensure that the equipment specification for the equipment being created exists in MSS before
uploading the equipment from Network Integrity. Port creation is determined by the card
equipment specification.

Circuit Creation
Entity+ discrepancies occur on circuits when a circuit does not exist in MSS. You must resolve
the discrepancies on equipment, HOTs, and STMs and reconcile the data again before you can
upload the resolution for customer circuits. It is recommended that you limit your first
discrepancy detection scan to equipment, HOTs, and STMs. Expand subsequent scans to
detect all discrepancies.

The MSS Integration cartridge resolves this discrepancy by doing the following:

• Uploads customer circuits to MSS by creating new end-to-end customer connections using
the EJB createNewCustomerConnection API method. This method also assigns ports and
channels to the uploaded circuit if the information is available.

• If the channel information is not available, the MSS Integration cartridge builds the channel
hierarchy at the given circuit position using the EJB autoBuild API method and updates the

Chapter 2
About Discrepancy Resolution

2-10

provisioning information. The method derives the circuit position based on the synchronous
digital hierarchy (SDH).

• Prepares the port and channel assignment containers for the circuit based on the traced
circuit information.

• Calls the EJB updateCircuit and updateProvisioningInfo API methods to pass updated
circuit and provisioning information to MSS.

You can use a wrapper API to call multiple MSS methods in a single transaction.

You can also extend the circuit resolution handler to use custom logic.

STM links and higher-order transport (HOT) circuits cannot be uploaded to or corrected in MSS
with API methods from Network Integrity. Discrepancies on STMs and HOTs must be corrected
manually in MSS.

Because VC4 HOTs span across multiple links in a network, you should follow these guidelines
while creating HOTs in MSS:

1. Create the facility connection for the VC4 rate code.

2. Using CLR/DLR design, assign the channel from the STM links to the HOT.

3. In the network system, create the connection spanning the entire VC4 HOT.

4. Associate the VC4 HOT to the network system.

Channel Assignment Creation on a Trail Pipe
Entity+ discrepancies occur on trail pipes when a circuit in MSS is missing its channel
assignment. This discrepancy occurs when channel assignments are not assigned to the
circuit in MSS or when a circuit is rerouted.

When dealing with unassigned channel assignments, the MSS Integration cartridge resolves
this discrepancy by assigning the circuit to the channel in MSS.

You can identify a rerouted circuit when Network Integrity reports multiple Entity+ and Entity-
discrepancies. By filtering on the circuit name, you can see that the discrepancies are all
related.

The MSS Integration cartridge resolves rerouted circuits by creating or correcting the channel
assignments on trail pipes in MSS.

TrailPath Assignment to a Circuit
Entity+ discrepancies on trail paths are resolved by assigning the trail path to a circuit and
updating the provisioning information. The MSS Integration cartridge resolves this discrepancy
by doing the following:

• Calls the updateCircuit method to assign the entire trail path to the customer circuit.

• Calls the updateProvisioningInfo method to pass and update the provisioning information
on the customer circuit.

PipeTerminationPoint Assignment to a Circuit
Entity+ discrepancies on pipe termination points are resolved by assigning the pipe termination
point to a circuit and updating the circuit with the provisioning information. The MSS Integration
cartridge resolves this discrepancy by doing the following:

• Assigns the pipe termination point to the circuit using the updateCircuit method.

Chapter 2
About Discrepancy Resolution

2-11

• Calls the updateProvisioningInfo MSS method with the PipeTerminationPoint information to
update the circuit.

Missing Entity (Entity-) Discrepancy Resolution
Entity- discrepancies occur when an entity exists in the imported data and not in your network
data. Network Integrity resolves this type of discrepancy by deleting the entity from MSS.

Take special care when resolving Entity- discrepancies, because there can be many underlying
causes. Review the cause carefully, choosing to resolve the root cause (either from Network
Integrity or manually in MSS).

Network Node Deletion
Entity- discrepancies occur on physical or logical devices when the corresponding network
node does not exist in your network. The MSS Integration cartridge resolves this discrepancy
by doing the following:

• Queries the network node using the MSS CORBA getNetworkElement API method. This
method belongs to NetworkElementSubSession of the EquipmentSession interface. This
method may not return the network node if it was deleted while resolving another
discrepancy.

• Searches for root equipment. For each root equipment, traverses the hierarchy and deletes
the lowest-level equipment. See "Equipment Deletion" for more information.

• Deletes the parent network node after all child equipment are deleted. Network nodes are
deleted using the MSS CORBA deleteNetworkElement API method.

Equipment Deletion
Entity- discrepancies occur on equipment when the corresponding rack, shelf, sub-shelf, or
card does not exist in your network. The MSS Integration cartridge resolves this discrepancy
by doing the following:

• Queries the equipment using the MSS CORBA searchEquipmentInstall_v2 API method.
This method belongs to InstallationSubSession of the EquipmentSession interface.

• Uninstalls the equipment from MSS using the MSS CORBA uninstallEquipment API
method at the location obtained from equipment_id.

Circuit Deletion
Entity- discrepancies occur on circuits when an additional circuit exists in MSS. The MSS
Integration cartridge resolves this discrepancy by doing the following:

• Locates the additional circuit in MSS and calls the MSS EJB deleteCircuit API method with
a specific circuit ID or name.

Channel Assignment Deletion on a Trail Pipe
Entity- discrepancies occur on trail pipes when a trail pipe in the network is missing its channel
assignment. This discrepancy occurs when a cross-connect is missing in the network or a
customer circuit is down.

To resolve this discrepancy, you must repair the circuit in the network or release the circuit from
MSS.

Chapter 2
About Discrepancy Resolution

2-12

TrailPath Unassignment from a Circuit
Entity- discrepancies on trail paths are resolved by unassigning the trail path from a circuit and
updating the provisioning information. The MSS Integration cartridge resolves this discrepancy
by doing the following:

• Calls the updateCircuit method to unassign the entire trail path from the customer circuit.

• Calls the updateProvisioningInfo MSS method to update the circuit.

Note:

You must resolve Entity+ discrepancies on trail paths before resolving Entity-
discrepancies on trail paths if the discrepancies are reported on the same circuit. Or,
you can also resolve the Entity+ and the Entity- discrepancies at the same time and
Network Integrity will fix them in the correct order.

PipeTerminationPoint Unassignment from a Circuit
Entity- discrepancies on pipe termination points are resolved by unassigning the pipe
termination point from a circuit:

• Unassigns the pipe termination point from the circuit using the updateCircuit method.

• Updates the circuit using the updateProvisioningInfo MSS method.

Attribute Value Mismatch (Attribute) Discrepancy Resolution
Attribute discrepancies occur when an entity exists in the imported data and in your network
data, but the attribute values in the two sets of information do not match. Network Integrity
resolves this type of discrepancy by correcting the attribute values in MSS.

Equipment Mismatch
The MSS Integration cartridge resolves attribute discrepancies on equipment by running the
MSS CORBA updateEquipment API method. This method belongs to
NetworkElementSubSession of the EquipmentSession interface.

Circuit Channel Assignment Mismatch
This attribute discrepancy appears on trail pipes when a customer circuit is rerouted.

The MSS Integration cartridge resolves attribute discrepancies on circuits by identifying the
timeslot on the circuit and using the following APIs:

• To update a circuit entity attribute, call the MSS EJB updateCircuit() API method.

• To update a channel attribute, call the MSS EJB updateProvisioningInfo() API method.

The MSS Integration cartridge also calls the necessary MSS APIs to unassign the circuit from
its timeslot before setting the new attribute value.

Chapter 2
About Discrepancy Resolution

2-13

3
Using the Cartridge

This chapter provides information on how to use Oracle Communications Network Integrity
when the Oracle Communications Network Integrity MSS Integration cartridge is deployed to
the run-time application.

Creating an MSS Import Scan
The MSS Import Scan action imports inventory data from Oracle Communications MetaSolv
Solution (MSS).

You must already have created a data source in the Network Integrity WebLogic Server
domain that points to the MSS extract database, and MSS must be configured as the import
system. See "Configuration Dependencies" for more information.

To create an MSS Import scan:

1. Create a scan.

See the Network Integrity Help for more information.

2. On the General tab, do the following:

a. From the Scan Action list, select Import from MSS.

The Scan Type field displays Import.

b. (Optional) To refine the scope of the imported data, do any of the following:

• In the Network Location field, specify the network location. Enter either the CLLI
code or the coded location format.

• In the Status field, specify the status of the data to import.

• Filter the imported nodes by name by entering one or more names (separated by
commas) in the Node Name field and choose a value from the Node Name
Qualifier list.

• In the Node ID field, enter one or more node IDs separated by commas.

• In the Scope field, specify the scope of data to be imported.

• In the Run MSS Extract field, specify whether you want to run the MSS extract
procedure before running the MSS Import scan.

See Table 6-2 for more information.

3. Make any other required configurations.

4. Save the scan.

Note:

The Scope tab is automatically set to the MSS Extract Schema configured on the
Import System screen of Network Integrity.

3-1

Working with Discrepancies
This cartridge allows you to detect and resolve discrepancies between your discovered data
and your imported MSS data. When you resolve a discrepancy, the resolution is submitted to
MSS by Network Integrity.

See the Network Integrity Help for information about using Network Integrity to resolve
discrepancies.

See "About Discrepancy Detection" and "About Discrepancy Resolution" for information about
how the MSS Integration cartridge detects and resolves discrepancies.

When the MSS Integration cartridge is deployed to your run-time application, you can use
Network Integrity for:

• Detecting Discrepancies in MSS

• Resolving Discrepancies in MSS

Detecting Discrepancies in MSS
To detect discrepancies between discovered data and imported data from MSS:

1. Create a discovery scan.

2. Create an Import from MSS scan.

3. For your Import from MSS scan, select the Detect Discrepancies option.

4. Run the scans: first the discovery scan, then the import scan.

The scan with Detect Discrepancies enabled must be run last. Discrepancy detection
runs automatically after the import scan completes.

Resolving Discrepancies in MSS
To resolve discrepancies in MSS:

1. Review the scan results for a scan with Detect Discrepancies enabled.

2. On the Scan Details page, click Review Discrepancies.

3. For every discrepancy you want to resolve, right-click on the discrepancy and select
Correct in MSS.

4. Click Submit.

The MSS Integration cartridge calls the appropriate APIs to resolve the discrepancy in
MSS.

Chapter 3
Working with Discrepancies

3-2

4
About Collected Data

This chapter provides information about how the Oracle Communications Network Integrity
MSS Integration cartridge treats collected data.

About Collected Data
The reference integration between Oracle Communications Network Integrity and Oracle
Communications MetaSolv Solution (MSS) uses the MSS extract process that uses fast-
refreshable, read-only materialized views to store the MSS inventory data, which is imported
by the MSS Integration cartridge for discrepancy detection/resolution.

About the MSS Extract Process
The MSS extract process includes the following:

• MSS Equipment Extract Process: The MSS equipment extract process extracts the
relevant equipment information from MSS and stores it into read-only materialized views in
the MSS database, which is imported by the MSS Integration cartridge for discrepancy
resolution.

See "MSS Equipment Extract Process" for more information.

• MSS Circuit Extract Process: The MSS circuit extract process extracts the relevant
circuit information from MSS and stores it into read-only materialized views in the MSS
database, which is imported by the MSS Integration cartridge for discrepancy resolution.

See "MSS Circuit Extract Process" for more information.

The MSS extract process enables you to do the following:

• Retrieve information about:

– Equipment

– Equipment custom attributes

– Port address custom attributes

– Circuits

– Template-based connections

– Service Trails for circuits and connections

– Connection custom attributes, including allocation parameters, such as VLAN ID and
VPI/VCI

• Store the retrieved equipment and circuit information into read-only materialized views
within the EXTRACT schema in the MSS database, which is imported by the MSS
Integration cartridge to do the following:

– Compare the imported MSS data with either the discovered equipment data or
assimilated circuit data and report any differences

– Resolve discrepancies on equipment and circuits by using MSS APIs to correct
entities, associations, and attributes in MSS

4-1

Note:

A materialized view is a complete or partial copy (replica) of one or more target
(master) tables.

Advantages
The MSS extract process has the following advantages:

• Improves the end-to-end performance and reliability of the integrated solution.

• Includes custom attributes (connections, equipment, port addresses, and allocation
parameters) and service trails of virtual connections. The system integrator can use these
attributes to extend the SDH reference integration to support other technologies and meet
specific business requirements.

• Enables the system integrator to extend the MSS extract process without:

– Defining new tables and/or columns within the MSS EXTRACT schema

– Writing any Procedural Language (PL)/Structured Query Language (SQL) logic to
update the tables

• Enables the system integrator to:

– Update the definition of an existing materialized view to retrieve the required data

– Define a new materialized view to store the retrieved data

• Leverages the capability of the Oracle database and its materialized view logs to keep the
retrieved data in sync with the ASAP schema, instead of relying on complex user-written
PL/SQL logic to update the retrieved data.

Limitations
The MSS extract process has the following limitations:

• Equipment and Port Address Custom Attributes Resolution: The MSS extract process
supports the extraction of equipment and port address custom attributes; however, there is
no MSS API support to upload this data to MSS. Therefore, you must manually resolve
such discrepancies in MSS.

• End-to-end Reconciliation of SONET/SDH circuits modeled within the traditional
SONET/SDH Network Design Module: The MSS extract process supports the extraction
of the channelized connectivity that constitutes a synchronous optical networking/
synchronous digital hierarchy (SONET/SDH) network built within the traditional
SONET/SDH Network Design module; however, there is no API support to create or
update the existing SONET/SDH network assignments and their related SONET blocks on
the circuit's design layout report (DLR) in MSS. Therefore, Network Integrity must use
custom logic to resolve such circuit discrepancies in MSS.

Setting Up the MSS Extract Process
Before you run the equipment/circuit extract process, you must set up the MSS extract
process.

Setting up the MSS extract process involves the following steps:

Chapter 4
Setting Up the MSS Extract Process

4-2

• Creating a new EXTRACT schema in the MSS database.

• Creating new materialized views within the EXTRACT schema, which stores information
about equipment and circuits.

• Granting appropriate privileges to the ASAP and EXTRACT user to define and use the new
materialized views.

To set up the MSS extract process:

1. Download the MSS Integration cartridge ZIP file from the Oracle software delivery Web
site:

https://edelivery.oracle.com
The MSS Integration cartridge ZIP file has the following structure:

• MSS_Cartridge

• Optical_Model

2. Connect to the MSS database as the ASAP user through sqlplus at the command prompt.

3. Navigate to the MSS_Cartridge/scripts folder and run the
mss_ni_ext_using_mviews_mstr.sql file with database administrator privileges.

The mss_ni_ext_using_mviews_mstr.sql file is the master file for the refactored MSS
extract process using materialized views.

When you run the mss_ni_ext_using_mviews_mstr.sql master file, the following scripts
are run:

• extr_schema.sql: Creates a new EXTRACT schema in the MSS database if the
EXTRACT schema does not already exist.

• extr_log.sql: Creates materialized view logs within the ASAP schema for the
appropriate master tables that are used by the materialized views within the EXTRACT
schema. The materialized view logs keep track of the changes to the data in the
master tables and can be used to perform a fast refresh (incremental) for all
materialized views without requiring a complete refresh every time the data in the
master tables is modified.

Note:

A materialized view log is a table associated with the master table of a
materialized view.

• extr_grants.sql: Grants the following privileges to the ASAP user to define and use
the new materialized views:

– GRANT CREATE ANY MATERIALIZED VIEW TO ASAP;

– GRANT CREATE TABLE TO EXTRACT;

– GRANT GLOBAL QUERY REWRITE TO EXTRACT;

– GRANT SELECT ON ASAP.TABLE_NAME TO EXTRACT;

– GRANT SELECT ON MLOG$_TABLE_NAME TO EXTRACT;

where:

TABLE_NAME is the name of the master ASAP table from which the data is
extracted. For example, ASAP.EQUIPMENT, ASAP.EQUIPMENT_SPEC,
ASAP.CIRCUIT, ASAP.CIRCUIT_XREF, and so on.

Chapter 4
Setting Up the MSS Extract Process

4-3

https://edelivery.oracle.com

• extr_jklm.sql: Adds the JKLM function to the EXTRACT schema. The JKLM function
calculates JKLM values.

• extr_PKG_VIEW_PARAMETERS.sql: Creates the
EXTRACT.PKG_VIEW_PARAMETERS package that you can use to GET/SET
equipment ID and circuit design ID to retrieve data from the V_MP_HIER and
V_PA_HIER hierarchy views:

– pkg_view_parameters.set_equip_id(e_id in number). For example,
pkg_view_parameters.set_equip_id(45332).

– pkg_view_parameters.set_ckt_id(c_id in number). For example,
pkg_view_parameters.set_ckt_id(1015332).

You must set the equipment ID and circuit design ID in the
EXTRACT.PKG_VIEW_PARAMETERS package before using V_MP_HIER and
V_PA_HIER hierarchy views on the same transaction.

• extr_mviews.sql: Creates materialized views under the EXTRACT schema.

See the following for more information:

– MSS Equipment Extract Process Materialized Views

– MSS Circuit Extract Process Materialized Views

• extr_views.sql: Creates normal views under the EXTRACT schema.

See the following for more information:

– MSS Equipment Extract Process Normal Views

– MSS Circuit Extract Process Normal Views

• extr_index.sql: Creates indexes on materialized views.

Refreshing Materialized Views
Because the MSS data is updated constantly, you must refresh the materialized views at
regular intervals to ensure that the materialized views always contain the latest data.

You can refresh the materialized views in the following ways:

• Through the Network Integrity GUI, do the following:

– When running the MSS Import scan, select the Run MSS Extract check box to refresh
the materialized views.

Note:

The scope of the materialized views to be refreshed is governed by the option
you select from the Scope list of the Import Scan. For example, if you select
Equipment Only from the Scope list, only those materialized views that store
information about MSS equipment are refreshed. If you select Equipment and
STM Links Only from the Scope list, only those materialized views that store
information about MSS equipment/synchronous transport module (STM) links are
refreshed. If you select Equipment, STM Links, and Circuits from the Scope
list, all the materialized views that store information about MSS equipment/STM
links/circuits are refreshed.

• Manually call the following procedure:

Chapter 4
Refreshing Materialized Views

4-4

DBMS_MVIEW.REFRESH('MV_NAME','argument');

where:

– MV_NAME is the name of the materialized view

– argument is one of the following:

* ?: Performs a fast refresh, and if fast refresh is not successful, performs a
complete refresh.

* F: Performs a fast refresh, and if fast refresh is not successful, the materialized
view is not refreshed.

* C: Performs a complete refresh.

Note:

Oracle recommends that you use the ? argument to refresh the
materialized views.

• Using Oracle Scheduler (DBMS_SCHEDULER), you can schedule jobs to run at a
specified time or interval.

MSS Equipment Extract Process
The MSS equipment extract process extracts the relevant equipment information from MSS
and stores it into fast-refreshable, read-only materialized views within the EXTRACT schema in
the MSS database, which is imported by the MSS Integration cartridge to compare the
imported MSS data with discovered network data and resolve discrepancies on equipment in
MSS.

MSS Equipment Extract Process Materialized Views
The MSS equipment extract process retrieves equipment information and stores it in the
following MSS materialized views:

• EXTRACT.MV_EQUIPMENT: Stores the attributes and defining information of an
equipment instance. See Table 4-1 for more information.

• EXTRACT.MV_MOUNTING_POSITION: Stores the slot hierarchy and installed equipment
within an equipment instance. See Table 4-2 for more information.

• EXTRACT.MV_EQUIPMENT_SPEC: Stores the attributes and defining information of an
equipment specification. See Table 4-3 for more information.

• EXTRACT.MV_EQUIPMENT_SPEC_MPOS: Stores information about the number of
mounting positions each equipment specification contains. See Table 4-4 for more
information.

• EXTRACT.MV_PORT_ADDRESS: Stores the port address hierarchy and assigned circuits
for an equipment instance. See Table 4-5 for more information.

• EXTRACT.MV_NETWORK_NODE: Stores the attributes and defining information of a
network element. See Table 4-6 for more information.

• EXTRACT.MV_NS_COMPONENT: Stores the attributes and defining information of a
network component. See Table 4-7 for more information.

Chapter 4
MSS Equipment Extract Process

4-5

• EXTRACT.MV_NETWORK_LOCATION: Stores the attributes and defining information of
a network location. See Table 4-8 for more information.

• EXTRACT.MV_EQUIPMENT_CA: Stores the configurable parameters tied to an
equipment instance which is stored within Custom Attributes. See Table 4-9 for more
information.

• EXTRACT.MV_PORT_ADDRESS_CA: Stores the configurable parameters tied to a port
address which is stored within Custom Attributes. See Table 4-10 for more information.

• EXTRACT.MV_NS_COMP_EQUIP: Stores the attributes and defining information of a
network component tied to an equipment instance. See Table 4-11 for more information.

The following tables describe the contents of the MSS materialized views in which the MSS
equipment extract process stores the inventory data.

Table 4-1 describes the contents of the EXTRACT.MV_EQUIPMENT materialized view.

Table 4-1 EXTRACT.MV_EQUIPMENT Materialized View

Column Name Data Type Description

EQUIPMENT_ID NUMBER(9) The unique table key.

EQUIPMENT_NAME VARCHAR2(15) The name of the equipment.

AVAILABILITY_STATUS CHAR(1) Indicates the current state of this item.

Valid values are:

• I = Installed
• S = Spare
• U = Under Construction

LOCATION_ID NUMBER(9) A unique identifier visible only to the system. Used to store and
retrieve information about the location.

LOCATION_ID_2 NUMBER(9) The location ID that represents the 11-byte CLLI location.

NETWORK_NODE_ID NUMBER(9) Used to uniquely identify a network node.

TIMING_SOURCE VARCHAR2(15) Identifies the origination of the timing signal for this equipment.

Valid values are:

• External
• Loop/Line
• Internal

VERSION_OF_HARDWARE_INS
TALLED

VARCHAR2(20) The version of the hardware equipment to be installed.

SERIAL_NBR VARCHAR2(35) The unique identification for a piece of equipment. Entered/
modified as an attribute residing on a circuit.

EQUIPMENT_SPEC_ID NUMBER(9) An identifier visible only to the system. Used for storing and
retrieving information about an equipment specification.

SOFTWARE_RELEASE_IDENTI
FIER

VARCHAR2(10) The current software release for an operating system. For example,
a Northern Telecom DNX-100 DACS may be at NSR-5 software
release.

Table 4-2 describes the contents of the EXTRACT.MV_MOUNTING_POSITION materialized
view.

Chapter 4
MSS Equipment Extract Process

4-6

Table 4-2 EXTRACT.MV_MOUNTING_POSITION Materialized View

Column Name Data Type Description

EQUIPMENT_ID NUMBER(9) A unique identifier visible only to the system. Used to store and
retrieve information about the equipment.

EQUIPMENT_ID_2 NUMBER(9) Describes the current piece of equipment that is installed in
equipment_id.

MOUNTING_POSITION_NUM
BER

VARCHAR2(8) Identifies the exact location of an assignable item (equipment or
termination) within relay rack or multi-position equipment.

GROUP_IDENTIFIER VARCHAR2(12) Allows you to associate mounting positions and port addresses with
complement information (for example, DIGROUP A) for a piece of
equipment (for example, D4 channel bank).

MOUNTPOS_SEQ NUMBER(5) System generated number to uniquely identify and sequence mounting
positions for an equipment specification or a piece of installed
equipment.

SLOT_NODE_ADDR VARCHAR2(30) Used to build the node address for a given port address when the
software address depends on mounting information.

Table 4-3 describes the contents of the EXTRACT.MV_EQUIPMENT_SPEC materialized view.

Table 4-3 EXTRACT.MV_EQUIPMENT_SPEC Materialized View

Column Name Data Type Description

EQUIPMENT_SPEC_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about an equipment specification.

EQUIPMENT_ACRONYM VARCHAR2(10) Used on the connection layout record (CLR) or design layout report
(DLR). It is an acronym for a material item. For example, FXS is the
acronym for a Foreign Exchange Channel Unit on the subscriber's
end.

VENDOR_PART_NUMBER VARCHAR2(25) The part number for this unit of equipment as assigned by the
manufacturer. For example, 263DB2, 1011, 4420D, and so on.

VENDOR_NAME VARCHAR2(20) The manufacturer of this unit of equipment.

EQUIPSPEC_TYPE VARCHAR2(50) Identifies the equipment type within an equipment category. For a
category of SHELF, the type can be CHANNEL BANK or MUX. You
can define the types within a category.

OCCUPIES_MOUNTING_PO
SITIONS

NUMBER(4) The number of spaces or slots required in a parent piece of equipment
(bay/rack/shelf) to mount this hardware.

Table 4-4 describes the contents of the EXTRACT.MV_EQUIPMENT_SPEC_MPOS
materialized view.

Table 4-4 EXTRACT.MV_EQUIPMENT_SPEC_MPOS Materialized View

Column Name Data Type Description

EQUIPMENT_SPEC_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about an equipment specification.

NBR_OF_MOUNT_POS NUMBER Stores the number of mounting positions an equipment specification
contains, on which other equipment can be installed.

Table 4-5 describes the contents of the EXTRACT.MV_PORT_ADDRESS materialized view.

Chapter 4
MSS Equipment Extract Process

4-7

Table 4-5 EXTRACT.MV_PORT_ADDRESS Materialized View

Column Name Data Type Description

EQUIPMENT_ID NUMBER(9) A unique identifier used to store and retrieve information about equipment.

PORTADDR_SEQ NUMBER(9) System-generated number to uniquely identify and sequence port
addresses for an equipment specification or a piece of installed equipment.

NODE_ADDRESS VARCHAR2(30) Identifies the specific port/channel addressing designation for a port
address. The physical or logical address (software address) associated
with this port. It may be derived from the node address of the equipment
specification.

The node addresses are of the following types:

• The node addresses that remain constant irrespective of the location
of the installed device.

• The node addresses that are dependent on the hierarchy of the
equipment on which they are installed. For example, a DCM card in a
DCM shelf has an address that is dependent on the bay-shelf
combination on which it is installed.

• The node addresses that are entirely dependent on the slot in which
they are installed. For example, a low-speed card installed on a
DDM2000 shelf inherits the node address of its ancestor, A-1-1.

RATE_CODE VARCHAR2(10) Identifies the bit rate associated with a circuit, facility, or equipment. For
example, DS0, DS1, DS3, N/A, and so on.

CIRCUIT_DESIGN_ID NUMBER(9) A unique identifier used for storing and retrieving information about a single
circuit.

PORT_ADDR_STATUS CHAR(1) Describes the current status of the circuit position.

Valid values are:

• 1 = Unassigned
• 2 = Pending installation work order
• 3 = In service
• 4 = Pending removal work order
• 5 = Trouble
• 6 = Reserved
• 7 = Reserved capacity

PORTADDR_TYPE CHAR(1) Indicates whether the port address (or enabled port address) is physical or
virtual. Physical ports are those that have actual wired connections and
include their enabled (software) ports. Virtual ports are those that have no
actual physical appearance or connection and are entirely in the software
of the equipment.

Valid values are:

• P = Physical
• V = Virtual
The existing rows in the TBS database at the time of implementation
default to P.

CIRCUIT_POSITION_NU
MBER_CP

NUMBER(9) The subposition within a mounting position. This column applies only to
plug-in cards that have multi-position capabilities. For such cards, this field
identifies the multiple position number of a transmission facility circuit
(TFC) or a channel number within a carrier system. This number may
correspond to the mounting position of the equipment used to terminate
the TFC. This column on this table is a foreign key describing the circuit
position that this port address enables.

Chapter 4
MSS Equipment Extract Process

4-8

Table 4-5 (Cont.) EXTRACT.MV_PORT_ADDRESS Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID_CP NUMBER(9) An identifier visible only to the system; Used for storing and retrieving
information about a single circuit. This column is a foreign key describing
the circuit position that this port address enables.

NODE_ADDR_LEVELS VARCHAR2(2) Determines how many pieces of equipment (levels up from the
circuit_attachable piece) are used to determine the node address.

ORIG_ASSIGNMENT_IN
D

CHAR(1) Used to designate whether or not an equipment assignment is the original
assignment in a cross-connect chain. This is mainly used in the reconcile
process of the circuit design to identify where the original assignment was
made.

Valid values are:

• Y = Yes
• N (default) = No

A_Z_OTHER_CD CHAR(1) Identifies the location of a piece of equipment residing on a circuit.

Valid values are:

• A = A location
• Z = Z location
• O = On the circuit but not at the A or Z location

EQUIPMENT_ID_VE NUMBER(9) A unique identifier visible only to the system, used to store and retrieve
information about equipment. This plus the portaddr_seq_ve column
indicate that this port_address is virtual and enabled by the port address
referenced.

PORTADDR_SEQ_VE NUMBER(9) System generated number to uniquely identify and sequence port
addresses for an equipment spec or piece of installed equipment. This plus
the equipment_id_ve column indicate that this port_address is virtual and
enabled by the port address referenced.

GROUP_IDENTIFIER VARCHAR2(12) Allows the user to associate mounting positions and port addresses with
complement information (for example, DIGROUP A) for a piece of
equipment (for example, D4 channel bank).

ADDITIONAL_ASSIGNME
NT_SEQ_NBR

NUMBER(2) This assignment sequence is used to keep track of equipment
assignments for multiple assignments of a circuit to the same network.

NETWORK_NODE_ID NUMBER(9,0) Artificial key used to uniquely identify a network node. Allows nodes to be
defined outside the network.

Table 4-6 describes the contents of the EXTRACT.MV_NETWORK_NODE materialized view.

Table 4-6 EXTRACT.MV_NETWORK_NODE Materialized View

Column Name Data Type Description

NETWORK_NODE_ID NUMBER(9) Artificial key used to uniquely identify a network node. Allows nodes to be
defined outside of a network.

TFC_NETWORK_ID NUMBER(9) A system-generated number used to uniquely identify a network node

LOCATION_ID NUMBER(9) A unique identifier for a specific location. This ID is visible only to the
system and it is used to store and retrieve information about the location.

NODE_NAME VARCHAR2(50) An identifier for the network element.

Chapter 4
MSS Equipment Extract Process

4-9

Table 4-6 (Cont.) EXTRACT.MV_NETWORK_NODE Materialized View

Column Name Data Type Description

NODE STATUS CHAR(1) Status of the network node (network location on a SONET ring).

Valid values are:

• 1 = Pending
• 2 = In Service
• 3 = Pending Removal

NODE_SEQUENCE NUMBER(9) Designates the nodes in sequential order to identify the switching or
signaling directions, such as clockwise or counterclockwise.

TARGET_IDENTIFIER VARCHAR2(25) An equipment's network element address for the network node for
communications between network elements and between operating
systems and network elements.

NETWORK_ELEMENT_C
D

CHAR(1) Identifies the scope of the network node or network element. The network
element can be a system (for example, a number of shelf assemblies) as
with a switch or Digital Cross-connect System (DCS) or it can be a single
shelf with a SONET network node.

Values include:

• S = System (for example, DCS)
• N = SONET network node

Table 4-7 describes the contents of the MV_NS_COMPONENT materialized view.

Table 4-7 MV_NS_COMPONENT Materialized View

Column Name Data Type Description

NS_COMP_ID NUMBER(9) An Oracle sequence number that uniquely identifies entities of this type.

NST_COMP_TYPE VARCHAR2(10) A type of component that can be part of a network system. For example, local
digital switch (LDS), central office terminal (COT), remote digital terminal
(RDT), digital cross-connect system (DCS), and so on.

NS_COMP_ACRONYM VARCHAR2(50) A short name for a network system component. The default value comes from
NST Component Type. Examples, of acronyms are host digital terminal (HDT)
and remote services terminal (RST). The name of the NST Component Type
is generic. This attribute allows the acronym represented by the NST
Component Type to be tailored, as it can be different for different types of
equipment. For example, one vendor may refer to an RDT as an RST.

NS_COMP_NM VARCHAR2(50) The name of the network system component. The default value for entities of
this type comes from the NS_CONFIG_COMP_DEFAULT_NM. An example of
this name is Remote Services Terminal.

LOCATION_ID NUMBER(9) A unique identifier for a specific location. This ID is visible only to the system
and it is used to store and retrieve information about the location.

Chapter 4
MSS Equipment Extract Process

4-10

Table 4-7 (Cont.) MV_NS_COMPONENT Materialized View

Column Name Data Type Description

STATUS CHAR(1) Describes the current operational state.

Valid values are:

• 1 = (Pending)
• 2 = (Assigned)
• 3 = (In Progress)
• 4 = (CLR Issued)
• 5 = (DLR Issued)
• 6 = (In Service)
• 7 = (Pending Disconnect)
• 8 = (Disconnected)
• 9 = (Problem)
• A = (Cancelled)

NETWORK_NODE_ID NUMBER(9,0) Unique ID to identify a network node. Foreign key to NETWORK_NODE.
Allows nodes to be defined outside of a network.

Table 4-8 describes the contents of the EXTRACT.MV_NETWORK_LOCATION materialized
view.

Table 4-8 EXTRACT.MV_NETWORK_LOCATION Materialized View

Column Name Data Type Description

LOCATION_ID NUMBER(9) A unique identifier for a specific location. This ID is visible only to the system
and it is used to store and retrieve information about the location.

LOCATION_NAME VARCHAR2(50) The name for a location.

CLLI_CODE VARCHAR2(20) A location identification code that identifies specific locations or terminations.
This code may be free-form and user-defined, or the Common Language
Location Identification (CLLI) code administered by iconectiv.

NETLOC_TYPE_CD CHAR(1) Describes whether this network location represents an end user, terminal
location or a CLLI. This column is used only with the new architecture location
model where the network location table becomes an entity with sub-types
(CLLI location, terminal location, and end user location).

Valid values are:

• E = end user
• C = CLLI
• T = terminal location
• O = Other

Table 4-9 describes the contents of the EXTRACT.MV_EQUIPMENT_CA materialized view.

Table 4-9 EXTRACT.MV_EQUIPMENT_CA Materialized View

Column Name Data Type Description

EQUIP_CA_VALUE_ID NUMBER(9) An Oracle sequence that uniquely identifies entities of this type.

EQUIPMENT_ID NUMBER(9) An Oracle sequence number that uniquely identifies a piece of
equipment.

CA_VALUE VARCHAR2(1500) The value taken on by an attribute, such as 320 for a Local Cell ID.

Chapter 4
MSS Equipment Extract Process

4-11

Table 4-9 (Cont.) EXTRACT.MV_EQUIPMENT_CA Materialized View

Column Name Data Type Description

CA_VALUE_LABEL VARCHAR2(50) The name of the attribute associated to a value, such as Local Cell ID
whose value is 320.

CA_VALUE_UOM VARCHAR2(32) The unit in a system that is used to determine the dimensions, area,
volume, weight, or such of the attribute's value.

CA_USAGE_ID NUMBER(9) An Oracle sequence number that uniquely identifies an entity of this
type.

CA_USAGE_VV_ID NUMBER(9) An Oracle sequence that uniquely identifies the valid value for an
attribute associated to a building block.

MS_BB_ID NUMBER(9) Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key
(building block) to which this CA_Usage applies.

CURRENT_ROW_IND CHAR(1) Indicates whether this row of custom attributed is one of the current in-
service rows for the network component.

CA_ID NUMBER(9) Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA
value.

Table 4-10 describes the contents of the EXTRACT.MV_PORT_ADDRESS_CA materialized
view.

Table 4-10 EXTRACT.MV_PORT_ADDRESS_CA Materialized View

Column Name Data Type Description

PORT_ADDR_CA_VALU
E_ID

NUMBER(10) A system assigned unique identifier for port_addr_ca_value table. It is
populated by an Oracle generated sequence and is hidden to the user.
This information is used internally for tracking purposes

EQUIPMENT_ID NUMBER(9) An Oracle sequence number that uniquely identifies a piece of
equipment.

MS_BB_ID NUMBER(9) Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key
(building block) to which this CA_Usage applies.

CURRENT_ROW_IND CHAR(1) Indicates whether this row of custom attributes is one of the current in-
service rows for the network component.

PORTADDR_SEQ NUMBER(10) System generated number to uniquely identify and sequence port
addresses for an equipment spec or piece of installed equipment.

CA_VALUE VARCHAR2(1500) The value taken on by an attribute, such as 320 for a Local Cell ID.

CA_VALUE_LABEL VARCHAR2(50) The name of the attribute associated to a value, such as Local Cell ID
whose value is 320.

CA_VALUE_UOM VARCHAR2(32) The unit in a system that is used to determine the dimensions, area,
volume, weight, or such of the attribute's value.

CA_USAGE_ID NUMBER(9) An Oracle sequence number that uniquely identifies an entity of this type.

CA_USAGE_VV_ID NUMBER(9) An Oracle sequence that uniquely identifies the valid value for an
attribute associated to a building block.

CA_ID NUMBER(9) Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA
value.

Table 4-11 describes the contents of the EXTRACT.MV_NS_COMP_EQUIP materialized view.

Chapter 4
MSS Equipment Extract Process

4-12

Table 4-11 EXTRACT.MV_NS_COMP_EQUIP Materialized View

Column Name Data Type Description

NS_COMP_ID NUMBER(9) An Oracle sequence number that uniquely identifies entities of this type.

NS_COMP_EQUIP_SEQ NUMBER(3) A number that together with NS_COMP_ID uniquely identifies entities of this
type. This number starts with one for each value of NS_COMP_ID.

EQUIPMENT_ID NUMBER(9) An Oracle sequence number that uniquely identifies entities of this type.

MSS Equipment Extract Process Normal Views
You use normal views to:

• Consolidate the data from multiple fast-refreshable materialized views

• Simplify the presentation of the data

All the MSS extract normal views retrieve data from the EXTRACT schema.

The following normal views enable Network Integrity to consolidate equipment-related data
from the normal/materialized views:

• EXTRACT.V_EQUIPMENT: Network Integrity uses this normal view to consolidate the
required information from the following materialized views:

– EXTRACT.MV_EQUIPMENT

– EXTRACT.MV_EQUIPMENT_SPEC

– EXTRACT.MV_NETWORK_LOCATION

– EXTRACT.MV_NETWORK_NODE

– EXTRACT.MV_NS_COMPONENT

– EXTRACT.MV_NS_COMP_EQUIP

• EXTRACT.V_EQUIPMENT_SPEC: Network Integrity uses this normal view to consolidate
the required information from the following materialized views:

– EXTRACT.MV_EQUIPMENT_SPEC

– EXTRACT.MV_EQUIPMENT_SPEC_MPOS

• EXTRACT.V_EQUIP_LEAF: Network Integrity uses this normal view to consolidate the
required information from the following materialized views:

– EXTRACT.MV_EQUIPMENT

– EXTRACT.MV_PORT_ADDRESS

– EXTRACT.MV_CIRCUIT

– EXTRACT.MV_MOUNTING_POSITION

• EXTRACT.V_NN_FOR_HIER: Network Integrity uses this normal view to consolidate the
required information from the following materialized views:

– EXTRACT.MV_EQUIPMENT

– EXTRACT.MV_NETWORK_NODE

– EXTRACT.MV_NS_COMPONENT

– EXTRACT.MV_NS_COMP_EQUIP

Chapter 4
MSS Equipment Extract Process

4-13

• EXTRACT.V_NETWORK_NODE: Network Integrity uses this normal view to consolidate
the required information from the following materialized views:

– EXTRACT.MV_NETWORK_NODE

– EXTRACT.MV_NS_COMPONENT

– EXTRACT.MV_NETWORK_LOCATION

• EXTRACT.V_PA_HIER: Network Integrity uses this normal view to consolidate the
required information from the following normal/materialized views:

– EXTRACT.MV_EQUIPMENT

– EXTRACT.V_EQUIPMENT_SPEC

– EXTRACT.MV_MOUNTING_POSITION

– EXTRACT.V_NN_FOR_HIER

– EXTRACT.MV_NETWORK_LOCATION

– EXTRACT.MV_PORT_ADDRESS

– EXTRACT.MV_CIRCUIT

• EXTRACT.V_MP_HIER: Network Integrity uses this normal view to consolidate the
required information from the following normal/materialized views:

– EXTRACT.MV_MOUNTING_POSITION

– EXTRACT.V_EQUIPMENT_SPEC

– EXTRACT.MV_EQUIPMENT

– EXTRACT.MV_NETWORK_LOCATION

– EXTRACT.V_NN_FOR_HIER

MSS Circuit Extract Process
The MSS circuit extract process extracts the relevant circuit information from MSS and stores it
into fast-refreshable, read-only materialized views within the EXTRACT schema in the MSS
database, which is imported by the MSS Integration cartridge to compare the imported MSS
data with discovered network data and resolve discrepancies on circuits in MSS.

MSS Circuit Extract Process Materialized Views
The MSS circuit extract process retrieves circuit information and stores it in the following MSS
materialized views:

• EXTRACT.MV_CIRCUIT: Stores the attributes of a circuit. See Table 4-12 for more
information.

• EXTRACT.MV_CIRCUIT_POSITION: Stores the channelization and assignment
information for circuits. See Table 4-13 for more information.

• EXTRACT.MV_CIRCUIT_XREF: Stores information about the circuit cross-reference. See
Table 4-14 for more information.

• EXTRACT.MV_CIRCUIT_TRAIL: Stores the hop-by-hop path for all non-channelized
connectivity, including the allocation parameters such as VLAN ID, VPI/VCI, and DLCI,
stored within custom attributes. See Table 4-15 for more information.

Chapter 4
MSS Circuit Extract Process

4-14

• EXTRACT.MV_CIRCUIT_CA: Stores all of the custom attributes of a template-based
connection such as the Bit Rate, Broadband Service Category, and Capacity Allocation
Thresholds. See Table 4-16 for more information.

• EXTRACT.MV_TFC: Stores additional information about CLF-formatted circuits. See
Table 4-17 for more information.

• EXTRACT.MV_NETWORK_LOCATION: Stores the attributes and defining information of
a network location. See Table 4-8 for more information.

The following tables describe the contents of the MSS materialized views in which the MSS
circuit extract process stores the inventory data.

Table 4-12 describes the contents of the EXTRACT.MV_CIRCUIT materialized view.

Table 4-12 EXTRACT.MV_CIRCUIT Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about a single circuit.

EXCHANGE_CARRIER_CI
RCUIT_ID

VARCHAR2(53) Commonly known as EC ID. This is the circuit number assigned by you
or provided on the order by the OEC (Other Exchange Company).
Oracle recommends that you use the iconectiv COMMON LANGUAGE
CLF, CLS, CLT, and CLM formats for circuits; however, freeform
formatted identifications are also stored here for "Other" facility, serial,
and telephone-type formatted identifications. The other identifications
are identified by "OTF," "OTS," and "OTT" as an ECCKT_Type.

ECCKT_TYPE VARCHAR2(3) The ECCKT type:

• CLF (Common Language Facility)
• CLM (Common Language Message)
• CLT (Common Language Telephone)
• CLS (Common Language Serial)
• OTF (Free format of the CLF; unformatted facility)
• OTS (Free format of the CLS; unformatted serial)
• OTT (Free format of the CLT; unformatted telephone number, used

for PSR dialtone products: line and trunk)
• CLF, CLT, CLS, and CLM values indicate the iconectiv Common

Language Circuit Identification format.

TYPE CHAR(1) The type of circuit.

Valid values are:

• F = Facility (connects two terminating locations with a rate that is
usually higher than DS0 and carries other circuits).

• T = Trunk (connects two serving office switching systems. A serving
office can be a C.O. or MTSO).

• S = Special (a dedicated circuit connecting two end-user locations
or an end-user location to a coded location).

• P = Product (a circuit ID created at the back end in PSR for dial
tone circuits or trunks).

• C = Template-based connections.

Chapter 4
MSS Circuit Extract Process

4-15

Table 4-12 (Cont.) EXTRACT.MV_CIRCUIT Materialized View

Column Name Data Type Description

STATUS CHAR(1) The status for the circuit.

Valid values are:

• 1 = Pending
• 3 = In Progress
• 4 = Record Issued
• 5 = DLR Issued
• 6 = In Service
• 7 = Pending Disconnect
• 8 = Disconnected
• 9 = Problem
• A = Cancelled

RATE_CODE VARCHAR2(10) The rate code associated with the circuit. For example, DS0, DS1, DS3,
N/A, and so on.

SERVICE_TYPE_CATEGOR
Y

VARCHAR(20) A description of the service provided, such as special services (for
IntraLATA and LATA Access), switched services, and facility services.

SERVICE_TYPE_CODE VARCHAR2(10) Identifies the service provided by a circuit:

• For special services, the characters in positions 3 and 4 of the
CLCI-SS format indicate the service that is provided.

• For message services, the characters in positions 5 and 6 of the
CLCI-MSG Trunk Group format indicate the traffic use.

• For facility service, the characters in positions 6 to 11 of the CLFI
format indicate the facility type.

NST_CON_TYPE NUMBER(6) A value that along with the category and name logically identifies a type
of connection used to join two network system component types.

Valid values are:

• 1 = Physical
• 2 = Virtual
• 3 = Group

NST_CON_CATEGORY_CD NUMBER(6) Indicates the category of connector spec type. This value is
denormalized from the value within the NST_CON_TYPE table. Similar
to circuit type. It further defines the type of link or connector.

Valid values are:

• 1 = Facility (connects two terminating locations, with a rate that is
usually higher than DS0, and carries other circuits).

• 2 = Trunk (connects two serving office switching systems. A serving
office can be a C.O. or MTSO).

• 3 = Special (a dedicated circuit connecting two end user locations
or an end user location to a coded location).

• 4 = Product (a circuit ID created at the back end in the PSR for dial
tone circuits or trunks).

• 5 = Virtual circuits.
• 6 = Bandwidth circuits.
• 7 = Virtual connection that is not a PVC.

LOCATION_ID NUMBER(9) The A location ID of the circuit.

LOCATION_ID_2 NUMBER(9) The Z location ID of the circuit.

Table 4-13 describes the contents of the EXTRACT.MV_CIRCUIT_POSITION materialized
view.

Chapter 4
MSS Circuit Extract Process

4-16

Table 4-13 EXTRACT.MV_CIRCUIT_POSITION Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID NUMBER(9) The circuit design ID of the circuit.

CIRCUIT_POSITION_NUMBE
R

NUMBER(5) The channel position of the circuit with respect to the parent circuit.

CIRCUIT_DESIGN_ID_3 NUMBER(9) An identifier visible only to the system, used for storing and retrieving
information about a single circuit. This circuit is assigned to the circuit
represented by Circuit Design ID

ADDITIONAL_ASSIGNMENT_
SEQ_NBR

NUMBER(2) This assignment sequence is used to keep track of equipment
assignments for multiple assignments of a circuit to the same network.

CIRCUIT_NODE_STATUS CHAR(1) Describes the current status of the circuit position.

Valid values are:

• 1 = Unassigned
• 2 = Pending installation work order
• 3 = In Service
• 4 = Pending removal work order
• 5 = Trouble

STS_CHAN_NBR NUMBER(3) The synchronous transport number that is used to identify the actual
designation for the virtual channel assignment. This is used in the
concatenation process of network assignment identification. For example,
12-7-4, where 12 equals the STS assignment.

VTG_CHAN_NBR NUMBER(1) The virtual tributary group (VTG) number that is used to identify the actual
designation for the virtual channel assignment. This is used in the
concatenation process of network assignment identification. For example,
12-7-4, where 7 equals the VTG assignment.

VT_CHAN_NBR NUMBER(1) The virtual tributary (VT) number that is used to identify the actual
designation for the virtual channel assignment. This is used in the
concatenation process of network assignment identification. For example,
12-7-4, where 4 equals the VT assignment.

PROTECTED_PATH_TRI CHAR(1) Distinguishes the primary path from the protection path.

Valid values are:

• Y = Identifies a protected path.
• N = Identifies a primary (working) path.
• Null = Identifies that the assignment is not part of a network path.
The attribute is set when creating a new network assignment block using
the optical network provisioning assistant. It is used in mass reconcile and
reconciliation from the circuit reconciliation window to keep the design
lines in the proper order with the primary path displayed on top of the
protection path in the Connection Design window.

Table 4-14 describes the contents of the EXTRACT.MV_CIRCUIT_XREF materialized view.

Table 4-14 EXTRACT.MV_CIRCUIT_XREF Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about a single circuit.

CIRCUIT_XREF_SEQ NUMBER(3) Sequence number that starts over with every new relationship to circuit.
(Not an Oracle sequence).

Chapter 4
MSS Circuit Extract Process

4-17

Table 4-14 (Cont.) EXTRACT.MV_CIRCUIT_XREF Materialized View

Column Name Data Type Description

CIRCUIT_XREF_ECCKT VARCHAR2(60) ECCKT that needs to be cross-referenced to an ECCKT that was
provisioned.

An ECCKT that another provider provisioned or an alias of one of the
circuits.

LOCATION_ID NUMBER(9) The A location ID for the circuit.

STATUS CHAR(1) The status for the circuit.

Valid values are:

• 1 = Pending
• 3 = In Progress
• 4 = Record Issued
• 5 = DLR Issued
• 6 = In Service
• 7 = Pending Disconnect
• 8 = Disconnected
• 9 = Problem
• A = Cancelled

Table 4-15 describes the contents of the EXTRACT.MV_CIRCUIT_TRAIL materialized view.

Table 4-15 EXTRACT.MV_CIRCUIT_TRAIL Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID_PARE
NT

NUMBER(9) This is a foreign key from the CIRCUIT table. Represents the parent
when connectors are associated with other connectors. For
example, when a connection is allocated to a link, the link is the
parent. Or, when multiple connectors are associated to one another
to create a group, the parent is the group. For example, this occurs
for inverse multiplexing.

CIRCUIT_DESIGN_ID_CHILD NUMBER(9) This is a foreign key from the CIRCUIT table. Represents the child
when connectors are associated with other connectors. For
example, when a connection is allocated to a link, the connection is
the child. Or, when multiple connectors are associated to one
another to create a group, the individual connectors are the children.
For example, this occurs for inverse multiplexing.

CA_ID NUMBER(9) Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the
CA value.

CA_VALUE VARCHAR2(1500) The value taken on by an attribute, such as 320 for a Local Cell ID.

CA_USAGE_ID NUMBER(9) An Oracle sequence number that uniquely identifies an entity of this
type.

CA_VALUE_LABEL VARCHAR2(50) The name of the attribute associated to a value, such as Local Cell
ID whose value is 320.

CA_USAGE_VV_ID NUMBER(9) An Oracle sequence that uniquely identifies the valid value for an
attribute associated to a building block.

MS_BB_ID NUMBER(9) Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key
(building block) to which this CA_Usage applies.

NS_COMP_ID NUMBER(9) An Oracle sequence number that uniquely identifies entities of this
type.

Chapter 4
MSS Circuit Extract Process

4-18

Table 4-16 describes the contents of the EXTRACT.MV_CIRCUIT_CA materialized view.

Table 4-16 EXTRACT.MV_CIRCUIT_CA Materialized View

Column Name Data Type Description

CONN_CA_VALUE_ID NUMBER(9) An Oracle sequence that uniquely identifies an attribute.

CIRCUIT_DESIGN_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about a single circuit.

CA_VALUE_LABEL VARCHAR2(50) The name of the attribute associated to a value, such as Local Cell ID
whose value is 320.

CA_VALUE VARCHAR2(1500) The value taken on by an attribute, such as 320 for a Local Cell ID.

CA_VALUE_UOM VARCHAR2(32) The unit in a system that is used to determine the dimensions, area,
volume, weight, or such of the attribute's value.

CA_USAGE_ID NUMBER(9) An Oracle sequence number that uniquely identifies an entity of this
type.

CA_USAGE_VV_ID NUMBER(9) An Oracle sequence that uniquely identifies the valid value for an
attribute associated to a building block.

MS_BB_ID NUMBER(9) Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key
(building block) to which this CA_Usage applies.

CA_ID NUMBER(9) Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA
value.

CURRENT_ROW_IND CHAR(1) Indicates whether this row of custom attributed is one of the current in-
service rows for the network component.

Table 4-17 describes the contents of the EXTRACT.MV_TFC materialized view.

Table 4-17 EXTRACT.MV_TFC Materialized View

Column Name Data Type Description

CIRCUIT_DESIGN_ID NUMBER(9) An identifier visible only to the system. Used for storing and retrieving
information about a circuit.

VIRTUAL_IND CHAR(1) Indicates whether the circuit is part of a virtual assignment or not.

Valid values are:

• Y: Yes
• N: No

TFC_NETWORK_ID NUMBER(9) The unique ID which identifies a network. A TFC Network maintains information
concerning the various transmission facility circuit network topologies, such as
point-to-point, linear Add/Drop, hubbing, and rings. These fiber networks are
normally SONET-based; however, specific asynchronous facilities can be
included. Other information pertaining to these networks are the Fiber Network
Identification, assignment methods, protection schemes, and switching
directions.

MSS Circuit Extract Process Normal Views
You use normal views to:

• Consolidate the data from multiple fast-refreshable materialized views

• Simplify the presentation of the data

All the MSS extract normal views retrieve data from the EXTRACT schema.

Chapter 4
MSS Circuit Extract Process

4-19

The following normal views enable Network Integrity to consolidate circuit-related data from the
normal/materialized views:

• EXTRACT.V_CIRCUIT: Network Integrity uses this normal view to consolidate the required
information from the following materialized views:

– EXTRACT.MV_CIRCUIT

– EXTRACT.MV_NETWORK_LOCATION

• EXTRACT.V_PA_HIER: Network Integrity uses this normal view to consolidate the
required information from the following normal/materialized views:

– EXTRACT.MV_CIRCUIT

– EXTRACT.MV_MOUNTING_POSITION

– EXTRACT.MV_EQUIPMENT

– EXTRACT.V_EQUIPMENT_SPEC

– EXTRACT.V_NN_FOR_HIER

– EXTRACT.MV_NETWORK_LOCATION

– EXTRACT.MV_PORT_ADDRESS

• EXTRACT.V_CIRCUIT_POSITION: Network Integrity uses this normal view, which uses
the JKLM stored function, to consolidate the information about JKLM values from the
following materialized views:

– EXTRACT.MV_CIRCUIT

– EXTRACT.MV_CIRCUIT_POSITION

Extending the MSS Extract Process
This section provides information on extending the MSS extract process.

The system integrator can extend the Equipment/Circuit extract process by adding additional
columns to the definition of an existing materialized view, create new materialized views, and
create new normal views to retrieve data from new or existing materialized views. When
retrieving data from a table that does not already have a materialized view log, you must first
create the materialized view log in order to incrementally refresh the materialized view. This
process does not require writing any PL/SQL logic.

When creating a new materialized view or extending an existing materialized view, Oracle
recommends that you structure the materialized views to be incrementally (fast) refreshed.

The reference integration also provides normal views to consolidate and simplify the data from
multiple materialized views. See the following sections for more information on the normal
views:

• MSS Equipment Extract Process Normal Views

• MSS Circuit Extract Process Normal Views

You can find more information about materialized view concepts and architecture at the
following Web site:

http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm#i34980

Chapter 4
Extending the MSS Extract Process

4-20

http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm#i34980

5
About Cartridge Modeling

This chapter provides information on how imported data is modeled.

About Cartridge Modeling
To facilitate discrepancy detection and resolution, the Oracle Communications Network
Integrity MSS Integration cartridge models the imported data from Oracle Communications
MetaSolv Solution (MSS) to the Oracle Communications Information Model.

The MSS Integration cartridge uses different modeling logic depending on the action it is
performing. See the following sections for more information:

• About Import Data Modeling

• About Discrepancy Resolution Modeling

About Import Data Modeling
This section explains how Network Integrity models data imported from MSS.

You can configure various parameters in the Network Integrity UI to determine the quantity of
data to import from MSS. Network Integrity logically applies the parameters to filter the
imported data. When no filtering parameters are configured in the UI, Network Integrity imports
all MSS data.

API Mapping
Network Integrity uses APIs to map the imported MSS data to the Information Model, which
allows the MSS data to map directly to TMF814 entities. The MSS Integration cartridge uses
TMF814 specifications to model the MSS data.

Table 5-1 shows the relationship between the imported MSS data, physical TMF814 entities,
and physical Information Model entities.

Table 5-1 MSS Data Modeling to the Physical Information Model Tree

MSS Data Object TMF814 Entity Information Model Entity

Network Node Managed Element (ME) Physical Device, Logical Device

Equipment Equipment Holder (Rack) Equipment

Equipment Equipment Holder (Shelf) Equipment

Equipment Equipment Holder (Sub-Shelf) Equipment

Mounting Position Equipment Holder (Slot) Equipment Holder

Mounting Position Equipment Holder (Sub-Slot) Equipment Holder

Equipment Equipment (Card) Equipment

Port Physical Termination Point (PTP) Physical Port

5-1

Table 5-2 shows the relationship between the imported MSS data, logical TMF814 entities, and
logical Information Model entities.

Table 5-2 MSS Data Modeling to the Logical Information Model Tree

MSS Data TMF814 Entity Information Model Entity

Network Node from
EXTRACT.MV_EQUIPMEN
T

ME LogicalDevice

Port from
EXTRACT.MV_PORT_ADD
RESS

Point Termination Port (PTP) and
Floating Termination Point (FTP)

DeviceInterface

(Port) Circuit and (Rack/
Shelf) Circuit from
EXTRACT.V_PA_HIER

Connection Termination Point
(CTP)

DeviceInterface

N/A LayeredParameters DeviceInterfaceConfigurationItem

Field Mapping
The following tables explain the field mappings for each imported MSS object.

• Table 5-3

• Table 5-4

• Table 5-5

• Table 5-6

• Table 5-7

• Table 5-8

• Table 5-9

• Table 5-10

• Table 5-11

• Table 5-12

• Table 5-13

• Table 5-14

• Table 5-15

Table 5-3 Physical Device Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static EXTRACT.MV_EQUIPMENT.NETWORK_NODE
_ID/
EXTRACT.MV_NETWORK_NODE.NETWORK_
NODE_ID

No

name Static EXTRACT.V_EQUIPMENT.NW_NODE_NAME/
EXTRACT.MV_NETWORK_NODE.NETWORK_
NODE_NAME

No

description Static N/A No

Chapter 5
About Import Data Modeling

5-2

Table 5-3 (Cont.) Physical Device Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

discoveredVendorName Dynamic EXTRACT.V_EQUIPMENT_SPEC.VENDOR_N
AME

No

serialNumber Static EXTRACT.MV_EQUIPMENT.SERIAL_NBR No

physicalLocation Static EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_COD
E/V_NETWORK_NODE.CLLI_CODE

No

softwareRev Dynamic EXTRACT.MV_EQUIPMENT.SOFTWARE_REL
EASE_IDENTIFIER

No

modelName Dynamic EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPE
C_TYPE/
V_NETWORK_NODE.NST_COMP_TYPE

No

nativeEmsName Static EXTRACT.V_EQUIPMENT.NW_NODE_NAME/
EXTRACT.MV_NETWORK_NODE.NETWORK_
NODE_NAME

No

userLabel Dynamic EXTRACT.V_EQUIPMENT.NW_NODE_NAME/
EXTRACT.MV_NETWORK_NODE.NETWORK_
NODE_NAME

No

owner Dynamic EXTRACT.V_EQUIPMENT_SPEC.VENDOR_N
AME

No

Table 5-4 Root Equipment Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for
Discrepancy
Detection

Id Static EXTRACT.V_EQUIPMENT.EQUIPMENT_ID No

name Static EXTRACT.MV_EQUIPMENT_SPEC.EQUIPMENT_AC
RONYM

No

description Static N/A No

discoveredVendorName Dynamic EXTRACT.V_EQUIPMENT_SPEC.VENDOR_NAME Yes

serialNumber Static EXTRACT.MV_EQUIPMENT.SERIAL_NBR Yes

physicalLocation Static EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_CODE No

discoveredPartNumber Dynamic EXTRACT.MV_EQUIPMENT_SPEC.VENDOR_PART_
NUMBER

Yes

hardwareRev Dynamic EXTRACT.MV_EQUIPMENT.VERSION_OF_HARDWA
RE_INSTALLED

No

modelName Dynamic EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPEC_TY
PE

No

nativeEmsName Static EXTRACT.MV_EQUIPMENT_SPEC.EQUIPMENT_AC
RONYM

No

expectedObjectType Dynamic N/A No

serviceState Dynamic EXTRACT.MV_EQUIPMENT.AVAILABILITY_STATUS

Valid values are IN_SERVICE, OUT_OF_SERVICE,
IN_MAINTENANCE, UNKNOWN, TESTING

No

Chapter 5
About Import Data Modeling

5-3

Table 5-4 (Cont.) Root Equipment Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for
Discrepancy
Detection

userLabel Dynamic EXTRACT.MV_EQUIPMENT.EQUIPMENT_NAME No

owner Dynamic EXTRACT.MV_EQUIPMENT_SPEC.VENDOR_NAME No

Table 5-5 Non-Root Equipment Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static Derived From EQUIP_ID_2_HIER with
mounting_position_seq

No

name Static Derived from
EXTRACT.V_MP_HIER.EQUIPMENT_ACRONY
M_HIER

No

description Static N/A No

discoveredVendorName Dynamic Derived from
EXTRACT.V_MP_HIER.VENDOR_NAME_HIER

No

serialNumber Static Derived from
EXTRACT.V_MP_HIER.SERIAL_NBR_HIER

Yes

physicalLocation Static EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_COD
E

This field value corresponds to the root
equipment.

No

discoveredPartNumber Dynamic Derived from
EXTRACT.V_MP_HIER.VENDOR_PART_NUMB
ER_HIER

Yes

hardwareRev Dynamic N/A Yes

modelName Dynamic Derived from
EXTRACT.V_MP_HIER.EQUIPSPEC_TYPE_HI
ER

No

nativeEmsName Static Derived from
EXTRACT.V_MP_HIER.EQUIPMENT_ACRONY
M_HIER

No

expectedObjectType Dynamic N/A No

serviceState Dynamic EXTRACT.V_MP_HIER.AVAILABILITY_STATUS
_HIER

This field is assigned one of the following values:
IN_SERVICE, OUT_OF_SERVICE,
IN_MAINTENANCE, UNKNOWN, TESTING.

No

userLabel Dynamic Derived from
EXTRACT.V_MP_HIER.EQUIPMENT_NAME_HI
ER

No

owner Dynamic Derived from
EXTRACT.V_MP_HIER.VENDOR_NAME_HIER

No

Chapter 5
About Import Data Modeling

5-4

Table 5-6 Equipment Holder Field Mapping

Information
Model Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static Derived From EQUIP_ID_2_HIER with
mounting_position_seq

No

name Static Derived from
V_MP_HIER.EQUIPMENT_ACRONYM_HIER

The slot number is equivalent to mounting position
number.

No

description Static N/A No

serialNumber Static N/A No

physicalLocation Static N/A No

modelName Dynamic EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPEC_TYP
E

No

nativeEmsName Static Derived from
V_MP_HIER.EQUIPMENT_ACRONYM_HIER

No

userLabel Dynamic Derived from V_MP_HIER.EQUIPMENT_NAME_HIER No

owner Dynamic Derived from V_MP_HIER.VENDOR_NAME_HIER No

Table 5-7 Physical Port Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static Derived with parent-id from
EXTRACT.MV_PORT_ADDRESS.PORTADDR_
SEQ

No

name Static Derived from
EXTRACT.MV_PORT_ADDRESS.PORTADDR_
SEQ

Yes

description Static N/A No

portNumber Static N/A No

customerPortName Static N/A No

vendorPortName Static N/A No

serialNumber Static N/A No

physicalLocation Static N/A No

nativeEmsName Static N/A No

direction Dynamic Bidirection No

tpProtectionAssociation Dynamic N/A No

edgePoint Dynamic True No

physicalAddress Static EXTRACT.MV_PORT_ADDRESS.NODE_ADDR
ESS when
EXTRACT.MV_PORT_ADDRESS.PORTADDR_
TYPE value corresponds to physical

No

Chapter 5
About Import Data Modeling

5-5

Table 5-8 Logical Device Field Mapping

Information Model Attribute Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static N/A No

name Static EXTRACT.V_EQUIPMENT.NW_NODE
_NAME

Yes

description Static N/A No

specification Static N/A No

nativeEmsAdminServiceState Static N/A No

nativeEmsServiceState Static N/A No

physicalLocation Static EXTRACT.V_EQUIPMENT.LOC_ID_C
LLI_CODE

No

Table 5-9 Media Interface Field Mapping

Information Model Attribute Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

Id Static N/A No

name Static Derived from
EXTRACT.MV_PORT_ADDRESS.PORTA
DDR_SEQ

No

description Static N/A No

ifType Static PTP, FTP, or CTP, according to the entity
being modeled

No

interfaceNumber Static N/A No

customerInterfaceNumber Static N/A No

vendorInterfaceNumber Static N/A No

nativeEmsName Static N/A No

nativeEmsAdminServiceState Static N/A No

nativeEmsServiceState Static N/A No

mtuSupported Static N/A No

mtuCurrent Static N/A No

physicalAddress Static N/A No

physicalLocation Static N/A No

minSpeed Static N/A No

maxSpeed Static N/A No

nominalSpeed Static N/A No

connectionState Dynamic EXTRACT.MV_CIRCUIT.STATUS No

tpMappingMode Dynamic N/A No

Direction Dynamic Bidirection No

tpProtectionAssociation Dynamic N/A No

edgePoint Dynamic N/A No

Chapter 5
About Import Data Modeling

5-6

Table 5-9 (Cont.) Media Interface Field Mapping

Information Model Attribute Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

userLabel Dynamic N/A No

owner Dynamic N/A No

activeEmsConnectorPresent Static N/A No

Table 5-10 Pipe Field Mapping

Information Model
Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

name Static V_CIRCUIT.EXCHANGE_CARRIER_CIRCUIT_ID Yes

Id Static EXTRACT.MV_CIRCUIT.CIRCUIT_DESIGN_ID No

gapPipe Static Hard-coded to FALSE No

physicalLocation Static EXTRACT.V_CIRCUIT.LOC_A_CLLI_CODE No

layerRate Dynamic EXTRACT.MV_CIRCUIT.RATE_CODE No

Rerouted Dynamic Hard-coded to FALSE No

partial Dynamic Derived: set to FALSE if the number of ports is greater
than one, else it is TRUE.

No

Table 5-11 Transport Pipe Field Mapping

Information
Model Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

name Static V_CIRCUIT.EXCHANGE_CARRIER_CIRCUIT_ID Yes

Id Static EXTRACT.MV_CIRCUIT.CIRCUIT_DESIGN_ID No

gapPipe Static Hard-coded to FALSE No

physicalLocation Static EXTRACT.V_CIRCUIT.LOC_A_CLLI_CODE No

layerRate Dynamic EXTRACT.MV_CIRCUIT.RATE_CODE No

Rerouted Dynamic Hard-coded to FALSE No

partial Dynamic Derived: set to FALSE if the number of ports is greater
than one, else it is TRUE.

No

Table 5-12 STM Link Field Mapping

Information Model
Attribute

Information Model
Support

MSS Inventory Field Used for Discrepancy
Detection

name Static EXTRACT.V_CIRCUIT.EXCHANGE_CAR
RIER_CIRCUIT_ID

Yes

Id Static EXTRACT.MV_CIRCUIT.CIRCUIT_DESI
GN_ID

No

gapPipe Static Hard-coded to FALSE No

physicalLocation Static EXTRACT.V_CIRCUIT.LOC_A_CLLI_CO
DE

No

Chapter 5
About Import Data Modeling

5-7

Table 5-12 (Cont.) STM Link Field Mapping

Information Model
Attribute

Information Model
Support

MSS Inventory Field Used for Discrepancy
Detection

layerRate Dynamic EXTRACT.MV_CIRCUIT.RATE_CODE No

Table 5-13 Trail Path Field Mapping

Information Model
Attribute

Information Model
Support

MSS Inventory Field Used for Discrepancy
Detection

name Static EXTRACT.V_CIRCUIT_POSITION.EXCHA
NGE_CARRIER_CIRCUIT_ID

Yes

gapPipe Static Hard-coded to FALSE No

layerRate Dynamic EXTRACT.V_CIRCUIT_POSITION.RATE_C
ODE

No

channel Dynamic EXTRACT.V_CIRCUIT_POSITION.JKLM Yes

Table 5-14 Trail Pipe Field Mapping

Information Model
Attribute

Information Model
Support

MSS Inventory Field Used for Discrepancy
Detection

name Static EXTRACT.V_CIRCUIT_POSITION.EXCHA
NGE_CARRIER_CIRCUIT_ID

Yes

AEnd Static Derived from the originating port name No

ZEnd Dynamic Derived from the terminating port name No

channel Dynamic EXTRACT.V_CIRCUIT_POSITION.JKLM Yes

Table 5-15 Pipe Termination Point Field Mapping

Information
Model Attribute

Information
Model Support

MSS Inventory Field Used for Discrepancy
Detection

name Static Hierarchical name derived from of the following:

• EXTRACT.V_PA_HIER.EQUIPMENT_ACRONYM_
HIER

• EXTRACT.V_PA_HIER.MTG_POS_NBR_HIER
• EXTRACT.V_PA_HIER.PORTADDR_SEQ

Yes

physicalLocation Static EXTRACT.V_PA_HIER.CLLI_CODE No

Device Dynamic EXTRACT.V_PA_HIER.NW_NODE_NAME Yes

Directionality Dynamic EXTRACT.V_PA_HIER.A_Z_OTHER_CD Yes

Data Import Algorithm
This section explains the various algorithms and logic used to model the imported MSS
inventory data.

Chapter 5
About Import Data Modeling

5-8

Import Equipment Hierarchy Algorithm
This algorithm uses spring framework pagination to incrementally retrieve node names from
each page created by the Page Creator processor. This algorithm uses the following logic:

1. Gets all the node names from EquipmentExportDAO.

2. For each node:

a. Creates a physical and logical device in the Information Model.

b. Gets the root equipment (such as a shelf, or rack) from EquipmentExportDAO.

3. For each root equipment:

a. Verifies that the occupiedMountingPositions attribute value is 0:

• If yes, the equipment is modeled as a rack.

• If no, verifies whether the root equipment has a mounting position. If there is a
mounting position, the equipment is modeled as a shelf.

b. Associates the rack and shelf to the physical device and states the equipment type
(rack or shelf) in the equipment name.

c. Retrieves the child equipment hierarchy from EquipmentPositionHierDAO (child
equipment are represented as EquipmentPositionHier entities).

d. Queries the ports in the root equipment hierarchy from EquipmentPortAddressDAO
(ports are represented as EquipmentPortAddress entities).

e. Creates a list that maps card IDs to their ports.

f. For each EquipmentPortAddress entity, verifies if leafEquipmentId equals
EquipmentId.

• If yes, models the port as a physical port (FTP) and associates it with the parent
equipment. Models a media interface, associates it to the physical port, and sets
the media interface as a child of the logical device.

• If no, fills the card ID and all ports with the leafEquipmentId value as the list of
associated ports.

g. Builds the child equipment hierarchy in the Information Model with the
EquipmentPositionHier entities.

h. Saves the modeling information to the physical and logical trees.

Build Equipment Hierarchy Algorithm
The input for this algorithm is the list of EquipmentPositionHier entities and the map of cards-
to-ports. Each EquipmentPositionHier is an immediate child (either a card or shelf) of the root
equipment. This algorithm uses the following logic:

1. Gets the list of mounting position numbers down the hierarchy for each
EquipmentPositionHier entity.

2. For each mounting position number:

a. Models a shelf object as an equipment entity if its parent is a rack object and the shelf
is not yet built in this hierarchy and associates the child with its parent.

b. Models a card object as an equipment entity if the shelf is already built. Models a slot
object as an equipment holder entity for the card. If the slot is already built, models a

Chapter 5
About Import Data Modeling

5-9

sub-slot object as an equipment holder entity. Associates children objects with their
parent.

c. Gets the list of ports associated with the card from the map of cards-to-ports.

d. Models each port as a physical port and a media interface entity. Associates the media
interface and the physical port with the logical device.

e. Adds the EquipmentPortAddressDAO entities to each port as a collection.

Import Circuit Hierarchy Algorithm
MSS and the MSS Integration cartridge distinguish between the following types of circuits:

• STM (physical circuit, such as STM1 or STM4)

• HOT (logical circuit, such as VC4)

• LOP (logical circuit, such as E1, E3, or E4)

Table 5-16 shows the relationship between the imported MSS data, physical TMF814 entities,
and physical Information Model entities.

Table 5-16 MSS Circuit Data Mapping to Information Model

MSS Data TMF814 Entity Information Model Entity

STM-Type Circuit STM Link Link

LOP-Type Circuit Customer Circuit or LOP Pipe

HOT-Type Circuit HOT Transport Pipe

MSS organizes logical circuits as children to physical circuits. The input for this algorithm is the
list of EquipmentPortAddress entities produced by the Build Equipment Hierarchy algorithm.
This algorithm uses the following logic:

1. For each port entity from the EquipmentPortAddress table:

a. Gets the CircuitPortAddress instance containing the circuit ID corresponding to an
STM link passing through that port.

b. Queries the CircutExport table to get the STM link with the circuit ID.

c. Obtains the aPort and zPort for the STM link from the CircuitPortAddress table.

d. Models the STM link as an optical topological link entity, models its ports as pipe
termination point entities, and associates the ports to their link.

e. Adds the modeled STM link circuit ID to the stmSet collection.

2. Identifies all VC4 HOT circuits for all the STM circuit IDs in the stmSet collection by
querying the trail from CircuitPositionDAO. For each trail:

a. Identifies E4 customer circuits by counting its children in the CircuitPosition table. For
each E4 customer circuit:

• Queries the CircuitExport table for the circuit ID and models the CircuitExport
object as a pipe entity.

• Queries the ports for the circuit from the CircuitPortAddress table, models them as
PTPs, and associates them to their pipe entity.

• Queries the trail path from the CircuitPosition table, models them as trail path
entities, and associates them to their pipe entity.

Chapter 5
About Import Data Modeling

5-10

• Verifies the JKLM value for the trail path, and corrects it if necessary.

b. Identifies VC4 HOT circuits by evaluating the layer rate code. For each VC4 HOT
circuit:

• Models them as transport pipe entities.

• Queries the CircuitExport table for circuit ID and models the CircuitExport object as
a transport pipe entity.

• Queries the parent STM link from the CircuitPosition table, and queries the STM
link ports from the CircuitPortAddress table.

• Determines the start-port and end-port from the STM link ports, models them as
pipe termination points entities, and associates them to their transport pipe entity.

• Queries the trail paths from the CircuitPosition table, models them as trail path
entities, and associates them to their pipe entity.

c. Adds the modeled transport pipe circuit ID to the vc4sForLops list.

3. Queries E1 and E3 trail circuits for each VC4 circuit in the vc4sForLop list. For each trail
circuit:

• Queries circuits from the CircuitExport table and models them as pipe entities.

• Queries customer circuit ports from the CircuitPortAddress table, models them as pipe
termination point entities, and associates the ports to the pipe.

• Queries trail paths from the CircuitPosition table, models them as trail path entities,
and associates them to the pipe.

• Verifies the JKLM value for the trail path, and corrects it if necessary.

About Discrepancy Resolution Modeling
The Discrepancy Resolution action uses different field mappings depending on the type of
entity being resolved.

Discrepancy Resolution Field Mapping for Equipment
The MSS Integration cartridge uses MSS CORBA API methods to resolve equipment
discrepancies. Each API method runs a Type Java object. Table 5-17 explains the field
mapping for physical entities mapping to circuits in the Information Model.

Table 5-17 Equipment Resolution Field Mapping

MSS CORBA API Information Model
Attribute

API Type Field

MetaSolv.CORBA.WDIEquipmentTypes.EquipSpecQue
ry (Equipment entity)

• discoveredVendorNam
e

• discoveredPartNumber

• Manufacturer
• partNumber

MetaSolv.CORBA.WDIEquipmentTypes_v2.EquipmentI
nstallation (Equipment entity)

• serialNumber
• name
• serviceState
• hardwareRev

• EquipmentModification.serialNu
mber

• startingMountingPosition
(derived)

• Status
• ConfigurationModificationSeq.h

ardwareVersion

Chapter 5
About Discrepancy Resolution Modeling

5-11

Table 5-17 (Cont.) Equipment Resolution Field Mapping

MSS CORBA API Information Model
Attribute

API Type Field

MetaSolv.CORBA.WDIEquipmentTypes_v2.Equipment
Update (Equipment entity)

• serialNumber
• hardwareRev

• EquipmentModification.serialNu
mber

• ConfigurationModificationSeq.h
ardwareVersion

MetaSolv.CORBA.WDIEquipmentTypes_v2.EquipInstall
Query (Equipment entity)

• Name
• physicalLocation
• discoveredPartNumber
• modelName

• acronym
• installedAtLocationCode
• partNumber
• type

MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkEle
mentQuery (Equipment entity)

• Name
• physicalLocation

• Name
• networkLocation

MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkEle
mentCreate (PhysicalDevice entity)

• Name
• physicalLocation
• Description

• Name
• locId
• Description

MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkEle
mentResult (PhysicalDevice entity)

• ID • networkNodeId

MetaSolv.CORBA.WDINetworkLocationTypes_v2.Netw
orkLocationQuery (PhysicalDevice entity)

• physicalLocation • locationCode

Discrepancy Resolution Field Mapping for Circuits
Table 5-18 explains the field mapping for circuit entities mapping to circuits in the Information
Model.

Table 5-18 Circuit Resolution Field Mapping

Information Model Entity Information Model Attribute Connection Field

Pipe Specification Name Ratecode

Pipe Termination points Ports

Pipe Channel Circuit positions

Pipe PipeTerminationPoint.Originating.location ALocation

Pipe PipeTerminationPoint.Terminating.location ZLocation

Chapter 5
About Discrepancy Resolution Modeling

5-12

6
About Design Studio Construction

This chapter provides information on the composition of the Oracle Communications Network
Integrity MSS Integration cartridge from the Oracle Communications Design Studio
perspective.

Model Collections
The MSS Integration cartridge models imported data to the TMF814 Generic specification. See
Network Integrity Optical TMF814 CORBA Cartridge Guide for more information.

Actions
The following tables outline the Design Studio construction of the MSS Integration cartridge
and associated components:

• Table 6-1

• Table 6-2

• Table 6-3

• Table 6-4

• Table 6-5

• Table 6-6

Table 6-1 Actions Design Studio Construction

Action Result Category Scan Parameter
Groups

Processors

Import from MSS Device See Table 6-2 See Table 6-3

Detect Equipment Discrepancies Device N/A See Table 6-4

MSS Circuit Discrepancy Detection Circuit N/A See Table 6-5

Resolve in MSS Device N/A See Table 6-6

Table 6-2 Cartridge Scan Parameter Groups Design Studio Construction

Characteristic
Name

Type Description UI Label

NetworkLocation Text box The network location. Enter either the common language location
identifier (CLLI) code, or the coded location from MSS.

Network Location

Status Drop down List: All, Installed equipment, Equipment under maintenance

The status of the root equipment.

Status

NodeNameQualifie
r

Drop down Works in combination with the NodeName parameter to filter the
imported nodes by name and qualifier.

Node Name
Qualifier

6-1

Table 6-2 (Cont.) Cartridge Scan Parameter Groups Design Studio Construction

Characteristic
Name

Type Description UI Label

NodeName Text box The device name or a list of device names. Node Name

NodeId Text box The node ID or a list of node IDs. Node Id

Scope Drop down List:

• Equipment, STM Links, and Circuits
• Equipment and STM Links only
• Equipment only
The scope of data to import from MSS.

Scope

RunMSSExtract Drop down Boolean to determine whether to run MSS incremental extraction
procedure before the scan run.

Run MSS Extract

Table 6-3 Import Processors Design Studio Construction

Processor Name Variable

Equipment DAOs Initializer Input: N/A

Output:

• daoLocator

The data access object (DAO) locator class that performs data lookup on the views.

Page Initializer Input: daoLocator

Output:

• pageCountList

An iterable list object for each page created.
• pageSize

The size of each page.
• filterString

The configurations entered in the Network Integrity UI for filtering the imported data.

Page Creator Input:

• daoLocator, pageSize, filterString
• pageIndex

An instance of the pageCountList iterable object.
Output:

• nodeNameList

A list of imported node names corresponding to the filtered UI configurations.

Node Collector Input: daoLocator, nodeNameList

Output:

• nodesMapByNodeName

A map of node names to a list of corresponding root equipment.
• nodeSet

The list of node names.

Chapter 6
Actions

6-2

Table 6-3 (Cont.) Import Processors Design Studio Construction

Processor Name Variable

Device Modeler Input:

• nodesMapByNodeName
• node

An entry from the nodeSet object.
Output:

• collectedPortsUnderNode

A list of ports belonging to the current node object.
• logicalDevice

A modeled logical device.
• physicalDevice

A modeled physical device.
• rootEquipments

A list of root equipment objects for the current node object.

Equipment Hierarchy
Collector

Input:

• daoLocator, logicalDevice, physicalDevice, nodesMapByNodeName
• rootEquipment

An entry from the current rootEquipments object.
Output:

• cardsToPortsMap

A list mapping ports to their corresponding cards.
• equipmentHierarchyDetails

The equipment hierarchy details for the imported data.

Equipment Hierarchy
Modeler

Input: cardsToPortsMap, equipmentHierarchyDetails, rootEquipment,
collectedPortsUnderNode, physicalDevice, logicalDevice

Output: N/A

Hierarchy Persister Input: logicalDevice, physicalDevice

Output: N/A

STM Link Discoverer Input: collectedPortsUnderNode, daoLocator, physicalDevice

Output:

• stmList

A complete list of synchronous transport modules (STMs).

VC4 Circuit Discoverer Input: stmList, daoLocator, physicalDevice

Output:

• igForCircuits

The circuits inventory group.
• vc4sForLops

A list of VC4 circuits from which lower order pipes (LOPs) are collected.

VC3 VC12 LOP Discoverer Input: daoLocator, igForCircuits, PhysicalDevice, vc4sForLops

Output: N/A

Chapter 6
Actions

6-3

Table 6-4 Equipment Discrepancy Detection Processors Design Studio Construction

Processor Name Variable

Equipment Filters Initializer Input: N/A

Output: N/A

Discrepancy Detector This processor is imported from the NetworkIntegritySDK cartridge project.

Discrepancy Filter Input: N/A

Output: N/A

Check Auto Resolution
Selected

This processor is imported from the NetworkIntegritySDK cartridge project.

MSS Auto Resolve Selected
Discrepancies

Input: autoResolutionManager

Output: N/A

Identify Auto Resolving
Discrepancies

This processor is imported from the NetworkIntegritySDK cartridge project.

Prepare Resolving
Discrepancies

This processor is imported from the NetworkIntegritySDK cartridge project.

Table 6-5 Circuit Discrepancy Detection Processors Design Studio Construction

Processor Name Variable

Circuit Discrepancy Name
Filter Initializer

Input: N/A

Output: isTopLevel

Missing Entity Filter Initializer Input: isTopLevel

Output: N/A

This processor extends the Optical Circuit Discrepancy Detection action on the Optical
Circuit Assimilation cartridge.

Partial Circuit Discrepancy
Filter

Input: N/A

Output: N/A

Discrepancy Detector Input: N/A

Output: N/A

This processor extends the Base Detection cartridge.

Table 6-6 Discrepancy Resolution Processors Design Studio Construction

Processor Name Variable

CORBA Property Initializer Input: N/A

Output:

• corbaSeed

A JavaBean that holds properties related to the CORBA cartridge, for CORBA
connectivity. See Network Integrity CORBA Cartridge Guide for more information.

Chapter 6
Actions

6-4

Table 6-6 (Cont.) Discrepancy Resolution Processors Design Studio Construction

Processor Name Variable

MSS CORBA Property
Initializer

Input: corbaSeed

Output:

• corbaSeed
• mssCORBAConnectionDetails

The property group containing the MBean configuration required to establish CORBA
connectivity with MSS.

• mssEJBConnectionDetails

The property group containing the MBean configuration required to establish EJB
connectivity with MSS.

CORBA Connection
Manager

Input: corbaSeed

Output:

• namingServer

The Naming context for the MSS system.
• orb

The object request broker (ORB) instance.

Resolution Framework
Initializer

Input: mssCORBAConnectionDetails, mssEJBConnectionDetails

Output:

• baseResolutionElement

An instance of the data structure used to run resolution actions in MSS.

MSS Resolution Initializer Input: mssCORBAConnectionDetails, mssEJBConnectionDetails, namingServer, orb,
baseResolutionElement

Output: mssCORBAConnectionDetails, mssEJBConnectionDetails

Resolution Framework
Dispatcher

Input: mssCORBAConnectionDetails, mssEJBConnectionDetails, baseResolutionElement

Output: mssCORBAConnectionDetails, mssEJBConnectionDetails

Chapter 6
Actions

6-5

7
About Design Studio Extension

This chapter provides examples and explanations on how to extend certain aspects of the
Oracle Communications Network Integrity MSS Integration cartridge using Oracle
Communications Design Studio. See Network Integrity Developer's Guide for more information.
See Network Integrity Concepts for guidelines and best practices for extending cartridges.

Importing Additional Information from MSS
The Import from MSS action imports equipment and circuit information from Oracle
Communications MetaSolv Solution (MSS) from specific fields in the MSS materialized views.

You can extend the Import from MSS action to:

• Import additional information from other fields in the MSS Extract Schema.

• Import additional information from fields outside the MSS Extract Schema.

To import additional information from the MSS Extract Schema:

1. Identify the additional fields and the corresponding entities from the MSS Extract Schema
to add to the scope of the Import from MSS action.

2. Determine the required API mapping and the corresponding TMF814 entities for the
additional information. See Network Integrity Optical TMF814 CORBA Cartridge Guide for
more information.

3. Identify the processor that models the additional TMF814 entities.

4. Extend the Import from MSS action to import and model the additional entities.

To import additional information from outside the MSS Extract Schema:

1. Identify the additional fields and the corresponding entities from MSS to add to the scope
of the Import from MSS action.

2. Determine the MSS Extract Schema views for the additional information.

3. Use the custom fields in each of the MSS Extract Schema views to populate the additional
fields for each entity.

4. Extend the MSS extract process to populate the additional information in the custom fields
for each entity. See "Extending the MSS Extract Process" for more information.

5. Identify the additional fields and the corresponding entities from the MSS Extract Schema
to add to the scope of the Import from MSS action.

6. Determine the required API mapping and the corresponding TMF814 entities for the
additional information. See Network Integrity Optical TMF814 CORBA Cartridge Guide for
more information.

7. Identify the processor that models the additional TMF814 entities.

8. Extend the Import from MSS action to import and model the additional entities.

7-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	About the MSS Integration Cartridge
	Limitations
	About Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies
	Configuration Dependencies
	Configuring the JDBC Data Source Driver
	Configuring MSS as the Import System
	Adding JacORB JAR Files to the Cartridge Project
	Adding MSS appserver Jar Files to the Cartridge Project
	Configuring Custom Ports for Reference Integration Between Network Integrity and MSS
	Configuring Connection Between Network Integrity and MSS
	Setting Up Cartridge MBeans

	Downloading and Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the Cartridge Components
	Import from MSS Action
	Equipment DAOs Initializer
	Page Initializer
	Page Creator
	Node Collector
	Device Modeler
	Equipment Hierarchy Collector
	Equipment Hierarchy Modeler
	Hierarchy Persister
	STM Link Discoverer
	VC4 Circuit Discoverer
	VC3 VC12 LOP Discoverer

	Detect Equipment Discrepancies Action
	Equipment Filters Initializer
	Discrepancy Filter
	MSS Auto Resolve Selected Discrepancies

	MSS Circuit Discrepancy Detection Action
	Partial Circuit Discrepancy Filter

	Resolve in MSS Action
	MSS CORBA Property Initializer
	Resolution Framework Initializer
	MSS Resolution Initializer
	Resolution Framework Dispatcher

	About Discrepancy Detection
	About Discrepancy Resolution
	Extra Entity (Entity+) Discrepancy Resolution
	Network Node Creation
	Equipment Creation
	Circuit Creation
	Channel Assignment Creation on a Trail Pipe
	TrailPath Assignment to a Circuit
	PipeTerminationPoint Assignment to a Circuit

	Missing Entity (Entity-) Discrepancy Resolution
	Network Node Deletion
	Equipment Deletion
	Circuit Deletion
	Channel Assignment Deletion on a Trail Pipe
	TrailPath Unassignment from a Circuit
	PipeTerminationPoint Unassignment from a Circuit

	Attribute Value Mismatch (Attribute) Discrepancy Resolution
	Equipment Mismatch
	Circuit Channel Assignment Mismatch

	3 Using the Cartridge
	Creating an MSS Import Scan
	Working with Discrepancies
	Detecting Discrepancies in MSS
	Resolving Discrepancies in MSS

	4 About Collected Data
	About Collected Data
	About the MSS Extract Process
	Advantages
	Limitations

	Setting Up the MSS Extract Process
	Refreshing Materialized Views
	MSS Equipment Extract Process
	MSS Equipment Extract Process Materialized Views
	MSS Equipment Extract Process Normal Views

	MSS Circuit Extract Process
	MSS Circuit Extract Process Materialized Views
	MSS Circuit Extract Process Normal Views

	Extending the MSS Extract Process

	5 About Cartridge Modeling
	About Cartridge Modeling
	About Import Data Modeling
	API Mapping
	Field Mapping
	Data Import Algorithm
	Import Equipment Hierarchy Algorithm
	Build Equipment Hierarchy Algorithm
	Import Circuit Hierarchy Algorithm

	About Discrepancy Resolution Modeling
	Discrepancy Resolution Field Mapping for Equipment
	Discrepancy Resolution Field Mapping for Circuits

	6 About Design Studio Construction
	Model Collections
	Actions

	7 About Design Studio Extension
	Importing Additional Information from MSS

