
Oracle® Communications Network
Integrity
File Transfer and Parsing Guide

Release 7.4
F93118-01
July 2024

Oracle Communications Network Integrity File Transfer and Parsing Guide, Release 7.4

F93118-01

Copyright © 2010, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Overview

File Transfer and Parsing Processors 1-1

Reference Cartridges 1-1

2 The File Transfer Processor

About the File Transfer Processor 2-1

File Transfer Output Parameters 2-1

Scan Parameter Groups 2-1

File Transfer Input Parameters 2-3

Setting File Transfer Properties 2-4

FTP and SFTP Limitations 2-4

3 The File Parser Processor

About the File Parser Processor 3-1

About the XML API 3-2

About ASCII Record API 3-3

ASCII Parsing Examples 3-5

Example: CSV File with Header, Body, and Trailer Records 3-5

Example: ASCII File with Multi-line Records 3-7

4 The ASCII Reference Cartridge

About Alcatel 1359IOO Remote Inventory Data Handoff 4-1

Modeling a Physical Device Hierarchy 4-2

Cartridge Dependencies 4-3

Run-Time Dependencies 4-3

iii

Design-Time Dependencies 4-3

Opening ASCII Reference Cartridge Files 4-3

Opening Files in Design Studio 4-3

Compiling and Deploying the Cartridge 4-3

About the Cartridge Components 4-4

Discover Alcatel 1359 IOO RI File 4-4

Alcatel 1359IOO RI File Collector 4-5

Alcatel 1359IOO RI File Parser 4-5

Alcatel 1359IOO RI Modeler 4-6

Alcatel 1359IOO RI Persister 4-6

About Collected Data 4-7

About Cartridge Modeling 4-8

Hierarchy Mapping 4-8

Oracle Communications Information Model Information 4-9

Field Mapping 4-9

Model Correction 4-10

About Model Correction Code 4-10

Design Studio Construction 4-11

Design Studio Extension 4-12

5 The XML Reference Cartridge

Modeling a Physical Device Hierarchy 5-1

Cartridge Dependencies 5-2

Run Time Dependencies 5-2

Design-Time Dependencies 5-2

Opening XML Reference Cartridge Files 5-3

Opening Files in Design Studio 5-3

Compiling and Deploying the Cartridge 5-3

About the Cartridge Components 5-3

Discover Ericsson Xml 5-3

Ericsson Xml Initializer 5-4

Ericsson Xml File Collector 5-4

Ericsson Xml File Parser 5-5

Ericsson Xml Managed Element Collector 5-5

Ericsson Xml Device Modeler 5-5

Ericsson Xml Device Persister 5-5

About Collected Data 5-5

About Cartridge Modeling 5-7

Hierarchy Mapping 5-7

Oracle Communications Information Model 5-8

Field Mapping 5-8

iv

Model Correction 5-9

About Model Correction Code 5-9

Design Studio Construction 5-10

Design Studio Extension 5-12

v

Preface

This guide describes Oracle Communications Network Integrity file transfer and parsing
functionality.

Audience
This guide is intended for Network Integrity cartridge developers who want to either build or
extend cartridges similar to the samples provided in this guide, and who want to use Network
Integrity processors to transfer and parse files.

It is recommended that you be familiar with the following documents:

• Network Integrity Concepts

• Network Integrity Developer's Guide

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter provides an overview of Oracle Communications Network Integrity file transfer
and parsing functionality. This functionality is provided by processors and cartridges.

File Transfer and Parsing Processors
In some networks, the following entities can write files to the file system:

• devices

• users

• third-party applications

These files contain data that you can collect and model. Use Network Integrity to collect and
model this data, to retrieve all the remote files and process them using processors. Network
Integrity provides two processor types to help you develop cartridges, and then transfer and
parse the required files. The processors are part of Oracle Communications Design Studio and
include configuration options that help you create the cartridges that you need. This
functionality applies to any domain.

The two processor types are:

• The file transfer processor transfers files from a remote device or EMS to a Network
Integrity file system. This processor can also be used to access files on a local file system,
which is shared between all the nodes in a Network Integrity cluster.

• The file parser processor parses or interrogates the contents of a file. The file parser can
parse ASCII and XML files. See "The File Parser Processor" for more information.

Note:

Files that cannot be parsed by the file parser processor can still be parsed by adding
custom parsing code to a discover, import, or assimilation processor implementation.

Reference Cartridges
This guide provides two reference cartridges that serve as examples of creating a processor
chain, which retrieves and parses ASCII files or XML files.

• The ASCII Reference Cartridge

• The XML Reference Cartridge

1-1

2
The File Transfer Processor

This chapter describes the Oracle Communications Network Integrity file transfer processor.

About the File Transfer Processor
The file transfer processor is similar to other Network Integrity processors, with the following
exceptions:

• The complete implementation is generated.

• It can be added to discovery, import, and assimilation actions.

File Transfer Output Parameters
The output parameter that the file transfer processor produces can then be used by the file
parser processor as input for the parsing process.

The file transfer processor outputs a single parameter. This output parameter holds a collection
of file objects, each of which points to the local version of the transferred file. This collection of
files is used as input for a file parser processor, but can also be used by any type of processor
in the action. The file collection output parameter can also be used as input to a For Each
structure in the action to loop over the files individually.

The name of the output parameter is system-generated and based on the name of the file
transfer processor. For example, the Sample File Transfer processor outputs
sampleFileTransferFileCollection.

The type of the output parameter is always java.util.Collection<java.io.File>.

The Processor editor Context Parameters tab is read-only for file transfer processors, the
Usage button shows which processors are using the output parameter.

Scan Parameter Groups
When a cartridge is deployed with scan parameter groups that are generated from a file
transfer processor, they appear in the Network Integrity UI as scan parameters, as shown in
Figure 2-1.

2-1

Figure 2-1 Scan Parameters in Network Integrity UI

Table 2-1 describes the default characteristics in the file transfer scan parameter group.

Table 2-1 Characteristics in the File Transfer Processor Scan Parameter Group

Characteristic Name Default Mandatory Description

Transfer Type FTP Yes Select how files should be transferred: FTP, SFTP, Local.

File Pattern N/A No A pattern to match file names. The pattern supports
wildcard characters. The supported wildcard characters
are "*", "%", and "_". "*" and "%" represent a match of zero
or more characters. "_" represents a match of any single
character. Wildcard characters can be escaped with a
backslash.

Port N/A No The port used to connect to the remote server. The default
is 21 for FTP, and 22 for SFTP.

User Name N/A No The user name to connect to the remote location.

Password N/A No The password to connect to the remote location.

Session Timeout 60 No The amount of time in seconds before an idle connection
is timed out. The valid range is from 1 to 3600.

Source File Management Rename No Select the action to take on source files when the file
transfer is complete. Options are: Delete, Rename,
Nothing.

Rename Suffix Processed No The suffix to add to the source file if the source file
management characteristic has a value of Rename.

Chapter 2
File Transfer Output Parameters

2-2

Note:

Do not modify the characteristics listed in Table 2-1. You can create new
characteristics in the generated scan parameter group, but the auto-generated
characteristics must not be modified.

File Transfer Input Parameters
You can configure the file transfer processor to use Java objects that are available in the action
context as input. This allows predecessor processors to programmatically control the behavior
of the file transfer processor at run time.

The input parameters that the file transfer processor uses depend on the options configured in
Oracle Communications Design Studio. For example, if the Parameter Source option is set to
Context Parameter the file transfer processor requires an input parameter of the following
type:
oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTransferProperties

If you select Use Scope Address the file transfer processor uses the Scope Address entered
in the Network Integrity UI.

If Use Scope Address is not selected, a String input parameter is required for the address.
The address value must be in the form of host/path. Where host is either a host name, IPv4 or
IPv6 address, and path is the directory path to where the files are located. For example,
192.168.1.1/tmp/test. If the file transfer processor is only retrieving files from the local file
system, do not specify the host. For example, /tmp/test.

Note:

Only discovery actions have the Use Scope Address option because only discovery
actions contain a scope address. For assimilation and import actions, there is no
scope address, so the address must come from a context parameter.

Table 2-2 summarizes the required input parameters based on the configuration.

Table 2-2 Input Parameters Based on Configuration

Parameter Source Use Scope
Address

Required Input Context Parameters

Scan parameter group Checked None

Scan parameter group Unchecked String

Context Parameter Checked oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTran
sferProperties

Context Parameter Unchecked oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTran
sferProperties

String

Chapter 2
File Transfer Output Parameters

2-3

Setting File Transfer Properties
Context parameters of type
oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTransferProperties can
be set in a predecessor action processor so that some or all of the properties can be defined in
the action. That is, the action can be configured to specify all the file transfer properties,
instead of prompting the user to enter values.

The File Transfer Property Initializer processor creates and populates a FileTransferProperties
object. The object can then be used by the file transfer processor to transfer the file.

Example 2-1 shows the invoke method implementation of the file transfer property initializer.
The code demonstrates how to programmatically set file transfer properties. In this example,
the values are static, but the values can come from scan parameter groups defined on the
action, or they can come from the result of an external system API call.

Example 2-1 Invoke Method Implementation

@Override
public FileTransferPropertyInitializerProcessorResponse invoke(
 DiscoveryProcessorContext context,
 FileTransferPropertyInitializerProcessorRequest request) throws
ProcessorException {
 FileTransferProperties ftProperties = new FileTransferProperties();

 ftProperties.setFilePattern("*.txt");
 ftProperties.setUser("someUser");
 ftProperties.setPassword("<password>");
 ftProperties.setPort(21);
 ftProperties.setSessionTimeOut(120);
 ftProperties.setFileTransferType(FileTransferTypeT.FTP);
 ftProperties.setSrcFileManagement(SrcFileManagementTypeT.DELETE);

 return new FileTransferPropertyInitializerProcessorResponse(ftProperties);}

FTP and SFTP Limitations
Network Integrity can fail to complete a file transfer using FTP or SFTP when the Source File
Management is set to Rename and if the scope location already contains a file with the
processed name. This is an inherent problem with FTP and SFTP. Ensure that the scope
location does not contain a renamed file.

For example, to transfer and rename the file sample.txt from a remote location, ensure that
the location does not also contain a file named sample.txtProcessed.

Chapter 2
FTP and SFTP Limitations

2-4

3
The File Parser Processor

This chapter provides information about the Oracle Communications Network Integrity file
parser processor.

About the File Parser Processor
The file parser processor is code-generated and can parse XML and structured ASCII files into
Java representations, which can then be processed by other processors. For information about
the ASCII reference cartridge, see "The ASCII Reference Cartridge". For information about the
XML reference cartridge, see "The XML Reference Cartridge".

File parser processors can be used within discovery, import, and assimilation actions.

The file parser processor receives a collection of files as its input. The input context parameter
is of type java.util.Collection<java.io.File>. The input context parameter typically comes from
a file transfer processor, but it can come from any processor that outputs the proper type. A
processor with a custom implementation, which outputs a java.util.Collection<java.io.File>
context parameter, can supply input to the file transfer processor as well.

The file parser processor returns an iterator output context parameter. For XML files, the
iterator is of type DocumentWrappers. For ASCII files, the iterator is of type RecordWrappers.
The iterator is typically used as an input parameter to a For Each processor. The For Each
processor returns individual document or record wrappers on each iteration of the For Each
loop.

Note:

The names of the DocumentWrapper and RecordWrapper classes are derived from
the name of the processor. For example, if the name of a processor that is used to
parse XML documents is "XML File Parser," the name of the DocumentWrapper
class is "XMLFileParserDocument." If the name of a processor that is used to parse
ASCII files is "ASCII File Parser," the name of the RecordWrapper class is
"ASCIIFileParserWrapper."

The file parser processor uses the iterator pattern to help reduce resource usage. It ensures
that only one file is open at a time, and it also helps to reduce memory usage. When parsing
ASCII files, only a single record is loaded into memory at a time. When parsing XML files, only
a single document is loaded into memory at a time. However, for large XML files, the memory
use might still be significant.

Note:

For very large XML files, consider using a processor with a custom implementation
that uses a SAX-style parser.

3-1

If a processor throws an exception while using the iterator, the exception is caught by the
action controller class. The action controller class calls the close method with a wasError
parameter value of true, which causes the file parser processor to rename the current file to
the same name but with a ".error" extension. This allows the file to be analyzed. A log file is
also produced if this event occurs.

About the XML API
When configured to parse XML files, one of the main configuration parameters of the file
parser processor is the name of an XML schema file that describes the documents to be
parsed. From the schema file, the file parser processor generates an API to allow the
interrogation and manipulation of the data in the XML files. The XML API consists of:

• A document wrapper class, which wraps an XMLBeans document and provides:

– A method for checking if the document is valid. When a document is parsed, it is
automatically validated against the schema. The isValid method determines if the
document is a valid document.

– If the document is not valid, it might have failed to be parsed. This usually means that
the XML is not well formed. The method getParseException retrieves the exception
that was thrown by the XMLBeans parser, which can sometimes be useful in
diagnosing the reason for the parsing failure.

– Schemas that have multiple top-level elements defined support different document
types. The getDocumentType method determines the type of the document. The
method returns a DocumentType enumeration value.

– Methods for getting the wrapped XMLBeans document. There is a getter method for
each document type, supported by the schema. If the user calls the wrong document
getter method, null is returned.

– The getFile method returns the file associated with the XML wrapper document.

– A constructor that takes a java.io.File. The constructor is used by the iterator. It is not
normally used by clients of the document wrapper class.

• The XMLBeans classes are the second and main part of the XML API. The schema is
automatically compiled into XMLBeans. The XMLBeans provide the remainder of the XML
API. XMLBeans is an open-source technology. Documentation on XMLBeans and its APIs
can be found at:

http://xmlbeans.apache.org/
Example 3-1 shows sample code that demonstrates the use of the XML API generated by the
file parser. This code is located in the modeler processor implementation class, as seen in the
code below. This code is supplied by the cartridge developer.

Example 3-1 File Parser-generated XML API

package com.oracle.integrity.xmlexamplecartridge.discoveryprocessors.xmlmodeller;

import java.util.logging.Level;
import java.util.logging.Logger;

import
com.oracle.integrity.xmlexamplecartridge.fileparserprocessors.examplexmlparserprocessor.E
xampleXMLParserProcessorDocument;

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorContext;

Chapter 3
About the XML API

3-2

http://xmlbeans.apache.org/

public class XMLModellerProcessorImpl implements XMLModellerProcessorInterface {
 private static Logger logger = Logger
 .getLogger(XMLModellerProcessorImpl.class.getName());

 @Override
 public void invoke(DiscoveryProcessorContext context,
 XMLModellerProcessorRequest request) throws ProcessorException {
 logger.log(Level.FINE, "Entering XMLModellerProcessorImpl");

 ExampleXMLParserProcessorDocument documentWrapper = request
 .getXmlDocument();
 if (!documentWrapper.isValid()) {
 logger.log(Level.WARNING, "Document for file '"
 + documentWrapper.getFile()
 + "' is invalid. Parse exception: "
 + documentWrapper.getParseException());
 } else if (!(documentWrapper.getDocumentType() ==
 ExampleXMLParserProcessorDocument.DocumentType.
BulkCmConfigDataFileDocument)) {
 logger.log(Level.WARNING, "Document for file '"
 + documentWrapper.getFile()
 + "' is invalid. Parse exception: "
 + documentWrapper.getParseException());
 } else {
 // Get the XMLBeans document class
 BulkCmConfigDataFileDocument bulkCmConfigDataFileDocument = documentWrapper
 .getBulkCmConfigDataFileDocument();
 /*
 * Additional code, not shown here, would use the XMLBeans API to
 * access the information in the document.
 */
 }
 logger.log(Level.FINE, "Leaving XMLModellerProcessorImpl");
 }
}

About ASCII Record API
When configured for structured ASCII files, the cartridge developer supplies the rules for
parsing the ASCII file. Included are the rules for parsing the header, body, and trailer records,
and their fields. The header and trailer rules are optional, because, in some cases, they might
not be required. From the rules, the file parser processor generates a Java API, which allows
easy access to the information in the ASCII files. The RecordWrapper class is that API.

The RecordWrapper class provides the following:

• The getRecordType method returns the type of the wrapped record: Body, Header, and
Trailer, for valid records, and Unknown for a record that fails to parse correctly. If a header
record is not configured, the header value is not included in the RecordWrapper API. The
same is true for trailer records.

• The methods getBodyRecord, getHeaderRecord, and getTrailerRecord return the wrapped
BodyRecord, HeaderRecord, and TrailerRecoder classes. The BodyRecord,
HeaderRecord, and TrailerRecord classes provide getter methods for retrieving each of the
included fields of the record. If a record is configured to be ignored, its corresponding
getter method is not available in the RecordWrapper API. Also, if the wrong get record
method is called, the method returns null. (For example, if the RecordWrapper wraps a
HeaderRecord, the getBodyRecord returns null.)

• The method getFile returns the file associated with the record.

Chapter 3
About ASCII Record API

3-3

• The method getRecordPosition returns, the character offset of the record within its file.

The sample code in Example 3-2 demonstrates the use of the ASCII API generated by the file
parser processor. This code is located in the modeler processor implementation class. This
code is supplied by the cartridge developer.

Example 3-2 File Parser-generated ASCII API

package com.oracle.integrity.asciicarparser.discoveryprocessors.asciimodeller;

import java.util.logging.Level;
import java.util.logging.Logger;

import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCIICarsWra
pper;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCIICarsWra
pper.BodyRecord;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCIICarsWra
pper.HeaderRecord;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCIICarsWra
pper.TrailerRecord;

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorContext;

public class ASCIIModellerProcessorImpl implements
 ASCIIModellerProcessorInterface {
 private static Logger logger = Logger
 .getLogger(ASCIIModellerProcessorImpl.class.getName());

 @Override
 public void invoke(DiscoveryProcessorContext context,
 ASCIIModellerProcessorRequest request) throws ProcessorException {
 logger.log(Level.FINE, "Entering ASCIIModellerProcessorImpl");

 ParseASCIICarsWrapper carWrapper = request.getCarRecord();

 if (carWrapper.getRecordType() == ParseASCIICarsWrapper.RecordType.Header) {
 // For this example, our columns are "Make", "Model" and "Year".
 // Here we are verifying that the header of the file is correct.
 if ((!headerRecord.getMakeColumn().equals("Make"))
 || (!headerRecord.getModelColumn().equals("Model"))
 || (!headerRecord.getYearColumn().equals("Year"))) {
 throw new ProcessorException("Error in header columns");
 }
 } else if (carWrapper.getRecordType() == ParseASCIICarsWrapper.RecordType.Body) {
 BodyRecord bodyRecord = carWrapper.getBodyRecord();

 logger.log(Level.FINE, "Car body record: " + bodyRecord.getMake()
 + " " + bodyRecord.getModel() + " " + bodyRecord.getYear());
 } else if (carWrapper.getRecordType() ==
ParseASCIICarsWrapper.RecordType.Trailer) {
 TrailerRecord trailerRecord = carWrapper.getTrailerRecord();

 // For this example, the trailer record configuration has a single
 // field defined called "All" with Aggregate Extra Fields option
 // selected. This returns the full record as a single field.
 logger.log(Level.FINE, "Car trailer record: "

Chapter 3
About ASCII Record API

3-4

 + trailerRecord.getAll());
 } else {
 throw new ProcessorException("Error parsing: "
 + carWrapper.getFile());
 }
 logger.log(Level.FINE, "Entering ASCIIModellerProcessorImpl");
 }
}

ASCII Parsing Examples
The ASCII parsing examples in this section show how the files might be configured and how
the information is then displayed in the file parser processor user interface.

Example: CSV File with Header, Body, and Trailer Records
Example 3-3 shows a CSV file with header, body, and trailer records.

Example 3-3 CSV File with Header, Body, and Trailer Records

 Make,Model,Year
 Lamborghini,Murcielago,2003
 Lamborghini,Gallardo,2007
 Lamborghini,LP 640,2007
 ===========================

Figure 3-1 shows how the header record definition might be configured. With this definition, the
API would include getMakeColumn, getModelColumn, and getYearColumn methods on the
HeaderRecord, which could be used to validate that the correct type of file is being read.

Note:

Using the Aggregate Extra Fields option causes the full line of data to be returned by
the getAll method.

Chapter 3
ASCII Parsing Examples

3-5

Figure 3-1 Car Header Record Definition

Figure 3-2 shows how the body record definition might be configured. With this definition, the
API would include getMake, getModel, and getYear methods on the BodyRecord, which could
be used to field values from the body record.

Figure 3-2 Car Body Record Definition

Chapter 3
ASCII Parsing Examples

3-6

Figure 3-3 shows how the trailer record might be configured. With this definition, the API would
include a getAll method on the TrailerRecord.

Figure 3-3 Car Trailer Record Definition

Example: ASCII File with Multi-line Records
Example 3-4 shows an ASCII file that has multi-line records.

Example 3-4 ASCII File with Multi-line Records

 1, John
 Doe,8000

 2,Dave
 Smith,8001

 3,Jim
 Yong,8002

 4,Kate
 May,8003

Figure 3-4 and Figure 3-5 show how the body record definitions can be configured for this
record structure. In this example, the record delimiter is a blank line. The Ignore option is set
on the RecordNumber field. With this definition, the API would include getFirstName,
getLastName, and getID methods on the BodyRecord.

Chapter 3
ASCII Parsing Examples

3-7

Figure 3-4 Multi-line First Line Body Record Definition

Figure 3-5 Multi-line Second Line Body Record Definition

Chapter 3
ASCII Parsing Examples

3-8

4
The ASCII Reference Cartridge

This chapter describes the functionality and design of the Oracle Communications Network
Integrity ASCII Reference cartridge.

The ASCII Reference cartridge uses ASCII file processing technology. The cartridge uses an
Alcatel 1359IOO Remote Inventory Data as its example. This guide assumes that you are
familiar with remote inventory data handoff in Alcatel 1359IOO Information Content
Description.

About Alcatel 1359IOO Remote Inventory Data Handoff
Alcatel 1359IOO uses a TCP/IP connection to exchange a set of messages between EOS and
a generic IOO agent.

For a discovery action, the focus is on the remote inventory data handoff. Remote Inventory
Data Handoff (RIDH) allows the export of the main identification data relevant to hardware
products (physical boards) installed into the network elements (NEs) managed by the EML.
The identification data is stored in permanent memory devices (EEPROM) included in each
product part list.

This IOO application enables the EOS to retrieve all the remote inventory data stored in the
1353NM.

RI_DATA_NOTIFICATION primitives provide the EOS with the list of hardware components
currently installed in the Network Elements (NE), and notify a change if the remote inventory
file is updated on the 1353NM. Each RI_DATA_NOTIFICATION primitive refers to a single
board.

RI_DATA_NOTIF primitives are sent after all the RI_DATA_NOTIFICATIONs referring to the
boards installed in a single network element, to give the EOS an End Of File indicator (the
inventory of the NEX is completely uploaded).

This reference implementation deals only with RI_DATA_NOTIF, because the Alcatel 1359 IOO
Information Content Description document does not show RI_DATA_NOTIFICATION in the
sample Remote Inventory Data. The Alcatel 1359 IOO Information Content Description
document only shows RI_DATA_NOTIF. RI_DATA_NOTIFICATION does not appear in the RI
Data Handoff document.

RI_DATA_NOTIF primitives have different parameters for Q3 and QB3* NEs. In this reference
implementation, QB3* NE is used as example.

The CSV format of RI_DATA_NOTIF is as follows (QB3* NE):

RI_DATA_NOTIF
[<riDataList or riDataUnsol> |
<neName attribute value> |
<neLocationName attribute value> |
<protocolType attribute value> |
<blockNumber attribute value> |
<blockLabel attribute value> | (unique to SND NE's)
<alcatelCompany attribute value> |
<unitType attribute value> |
<unitPartNumber attribute value> |

4-1

<softwarePartNumber attribute value> |
<cleiCode attribute value> |
<manufacPlant attribute value> |
<serialNumber attribute value> |
<manufacDate attribute value> |
<operatorInvData attribute value>]

The CSV format for the last notification received for each remote inventory file is as follows:

RI_DATA_NOTIF
[<riDataList or riDataUnsol > |
<neName attribute value> |
<protocolType attribute value> |
{ <uploadTime attribute value> } |
< numberOfCards attribute value>]

The ASCII Reference cartridge is designed to be used on a standalone basis to display the
physical device hierarchy in Network Integrity. The ASCII Reference cartridge provides no
integration with other products, but can be extended.

Modeling a Physical Device Hierarchy
The samples in this section do not directly deal with the TCP/IP protocol, as described in
Alcatel 1359IOO document, to get the Remote Inventory Data. Instead, it is assumed that the
remote inventory data is retrieved using the IOO protocol and stored as CSV files by an
external process. The samples use the ASCII Reference Cartridge to retrieve the IOO CSV file,
parse it, and model it into Oracle Communications Information Model. Each RI_DATA_NOTIF
record contains one board for an NE. All the boards belonging to one NE must be aggregated
as a list of child equipment of the NE (NE is modeled as Physical Device).

Figure 4-1 shows a sample discovered physical device hierarchy. This hierarchy is displayed in
the Network Integrity user interface, in the Scan Result Detail page.

Figure 4-1 Sample Discovered Physical Device Hierarchy

Chapter 4
Modeling a Physical Device Hierarchy

4-2

Cartridge Dependencies
This section provides information about dependencies that the ASCII Reference cartridge has
on other entities.

Run-Time Dependencies
For the ASCII Reference cartridge to work at run time, you must deploy the Address_Handlers
cartridge to Network Integrity.

Design-Time Dependencies
The ASCII Reference cartridge has the following dependencies:

• Address_Handlers

• NetworkIntegritySDK

• ora_uim_model

Opening ASCII Reference Cartridge Files
This section provides information about downloading and opening the ASCII Reference
cartridge files in Design Studio. After you open the files, you can review and extend them.

You can download a ZIP file that contains the individual Design Studio files. You can open
these files in Design Studio to review and extend the cartridge ZIP files.

Opening Files in Design Studio
To review and extend the ASCII Reference cartridge, you must first download the Oracle
Communications Network Integrity File Transfer and Parsing software from the Oracle software
delivery website:

https://edelivery.oracle.com
The software contains the ASCII Reference cartridge ZIP file, which has the following
structure:

• \Network_Integrity_Cartridge_Projects\ASCII_Reference_Cartridge

For information about opening files in Design Studio, see the Design Studio Help and Network
Integrity Developer's Guide.

Compiling and Deploying the Cartridge
This section provides information about compiling and deploying the ASCII Reference
cartridge.

To compile and deploy the ASCII Reference cartridge:

1. Import projects into Design Studio for Network Integrity.

2. Clean and build the cartridge.

3. Deploy the cartridge.

Chapter 4
Cartridge Dependencies

4-3

https://edelivery.oracle.com

For more information about deploying and undeploying, see Network Integrity Developer's
Guide.

About the Cartridge Components
The ASCII Reference Cartridge contains the following actions:

• Discover Alcatel 1359 IOO RI File

Discover Alcatel 1359 IOO RI File
The Discover Alcatel 1359IOO RI action reads one or more Alcatel 1359IOO RI CSV file
instances in a directory, and from it provides hierarchical physical device model instances.

The Discover Alcatel 1359 IOO RI File action contains the following processors run in the
following order:

1. Alcatel 1359IOO RI File Collector

2. Alcatel 1359IOO RI File Parser

3. Alcatel 1359IOO RI Modeler

4. Alcatel 1359IOO RI Persister

Figure 4-2 illustrates the processor workflow of the Discover Alcatel 1359 IOO RI File action.

Figure 4-2 Discover Alcatel 1359IOO RI File Action Processor Workflow

Chapter 4
About the Cartridge Components

4-4

Alcatel 1359IOO RI File Collector
The Alcatel 1359IOO RI File Collector processor is used to retrieve Alcatel 1359IOO RI CSV
files, which are then made available to the next processor in the chain.

Note:

This processor is automatically generated from Design Studio input data.

Alcatel 1359IOO RI File Parser
The Alcatel 1359IOO RI File Parser processor is used to read the RI CSV files, parse the CSV
file to get a list of RI records, and make them available to the next processor.

Each Alcatel IOO RI data record consists of multiple lines (refer to the sample IOO RI data in
"About Collected Data"). To parse the multiple lines of record, each line must be defined as a
sub-record. The last record in the IOO RI CSV file is the end of data record, which is
configured as the trailer record. Like the data record, the trailer record, is a multi-line record, so
each line is configured as a sub-record of the trailer record. See the Alcatel 1359IOO RI File
Parser processor in Design Studio for information about how to configure the ASCII parsing
rules for Alcatel 1359IOO RI CSV file.

The following diagram shows the ASCII parsing rules configuration tab of the Alcatel 1359IOO
RI File Parser in Design Studio.

Chapter 4
About the Cartridge Components

4-5

Figure 4-3 ASCII Parser in Design Studio

Note:

This processor is automatically generated from Design Studio by configuring a set of
proper ASCII parsing rules.

Alcatel 1359IOO RI Modeler
The Alcatel 1359IOO RI Modeler processor is used to model each individual RI record that is
parsed by the Alcatel1359IOORIFileParser processor and aggregate all of them into a single
physical device entity. This processor demonstrates how to do aggregation when modeling
data in Network Integrity.

Alcatel 1359IOO RI Persister
The Alcatel 1359IOO RI Persister processor is used to persist the physical device tree to the
Network Integrity database.

Chapter 4
About the Cartridge Components

4-6

About Collected Data
This section shows a sample Alcatel 1359IOO RI CSV file that is provided to the
Alcatel1359IOORIFileParser processor. This CSV file is generated by an external process,
which uses the IOO protocol (TCP/IP connection) to get the RI records from EOS and save
them to an ASCII file. This ASCII file is collected by the Alcatel1359IOORIFileCollector
processor.

One ASCII file contains the information of all the boards for one NE. The ASCII file ends with
the end of data record (the last record in the following sample ASCII file) to indicate that there
are no more boards from that NE.

RI_DATA_NOTIF
[riDataList|
Palermo|
Zen|
QB3*|
1|
Palermo/r01sr1/board#01|
AITA|
A2S1|
3AL78818AAAC01
----------|
FA|
FA003650914|
00/08/31|
--]

RI_DATA_NOTIF
[riDataList|
Palermo|
Zen|
QB3*|
8|
Palermo/r01sr1/board#08|
AITA|
PREA4ETH|
3AL79631AAAC03
----------|
FA|
FA024658237|
03/05/07|
--]

RI_DATA_NOTIF
[riDataList|
Palermo|
Zen|
QB3*|
9|
Palermo/r01sr1/board#09|
AITA|
SYNTH1N|
3AL79090BAAA01
----------|
EZ|
EZ004150316|

Chapter 4
About Collected Data

4-7

00/10/06|
EXP RAM 32MB----------------------------------]

RI_DATA_NOTIF
[riDataList|
Palermo|
QB3*|
{2010/12/10 12:25:32}|
3]

About Cartridge Modeling
This section provides information about modeling the ASCII Reference cartridge.

Figure 4-4 shows a Unified Modeling Language (UML) diagram depicting the object
relationship being rendered.

Figure 4-4 Information Model Entities UML Diagram

Hierarchy Mapping
The physical device object is established and seeded with data sourced by "neName" attribute
inside the RI record.

The Equipment object (board) is established and seeded from "blockLabel" attribute. Artificial
chassis are created to the NE so that slot (equipment holder) can be created under.

The EquipmentHolder object is established and seeded from "blockNumber" attribute and
modeled as slot: Block Number = Slot Number - 1.

Chapter 4
About Cartridge Modeling

4-8

Oracle Communications Information Model Information
All entities shown in Figure 4-4 (for example, physical device, and equipment) are Information
Model 1.0-compliant for static fields. The dynamic fields (sometimes referred to as
characteristics) are application-specific.

Field Mapping
This section provides information about field mappings used in the cartridge.

• Text: Implies Text [255].

• static: The Information Model 1.0 defines this field to be static on the entity specification.
The specification provides getters/setters for this field.

• dynamic: This is a dynamic field where the entity specification treats the field as a name/
value pair. The specification does not provide getter/setters but generically has a get/
setCharacteristics method holding a HashSet of entries.

Table 4-1 Physical Device Mappings

Physical Device Information
Model
Support

RI Record
Attribute

Field Type

Id static N/A Text

Name static neName Text

Description static N/A Text

Specification static N/A N/A, Programmatically set to
Alcatel1359IOORIPhysicalDevice

neLocationName static neLocationName Text

protocolType dynamic protocolType Text

nativeEmsName static neName Text

discoveredVendorName dynamic N/A Text, hard-coded to be set to Alcatel

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 4-2 Equipment Mappings

Equipment Information Model
Support

RI Record Attribute Field Type

Id static N/A Text

Name static blockLabel Text, Extract the last part of blockLabel

Description static blockLabel Text

Specification static N/A N/A

alcatelCompany dynamic alcatelCompany Text, Programmatically set to
Alcatel1359IOORIPhysicalDevice

unitType dynamic unitType Text

unitPartNumber dynamic unitPartNumber Text

Chapter 4
About Cartridge Modeling

4-9

Table 4-2 (Cont.) Equipment Mappings

Equipment Information Model
Support

RI Record Attribute Field Type

softwarePartNumber dynamic softwarePartNumber Text

cleiCode dynamic cleiCode Text

manufacPlant dynamic manufacPlant Text

manufacDate dynamic manufacDate Text

operatorInvData dynamic operatorInvData Text

serialNumber static serialNumber Text

nativeEmsName static blockLabel Text

discoveredVendorName dynamic N/A Text, hard-coded to be set to Alcatel

Physical Location yes N/A Text

Table 4-3 EquipmentHolder Mappings

EquipmentHolder Information Model
Support

RI Record Attribute Field Type

Id static N/A Text

Name static blockNumber Text, SlotNumber = blockNumber + 1

Specification static N/A N/A, Programmatically set to
Alcatel1359IOORIEquipmentHolder

nativeEmsName static blockNumber Text, SlotNumber = BlockNumber +1

Description yes N/A Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Model Correction
This section provides Alcatel 1359IOO RI to Oracle Communications Information Model
correction information.

About Model Correction Code
Model correction occurs when the Alcatel 1359IOO RI information received through discovery
does not conform to Information Model and therefore cannot be persisted, as it is within
Network Integrity. See "About Cartridge Modeling" for supported hierarchy.

The ASCII Reference Cartridge applies the model corrections as outlined below.

EquipmentHolder under physical device:

 PhysicalDevice
 EquipmentHolder

The ASCII Reference Cartridge adds an equipment entity as follows:

Chapter 4
Model Correction

4-10

 PhysicalDevice
 Equipment-named Alcatel 1359IOO RI Artificial Chassis
 EquipmentHolder

Design Studio Construction
This section provides information about using Design Studio to construct the ASCII Reference
cartridge.

The ASCII Reference cartridge contains the following specifications:

• Alcatel1359IOORIPhysicalDevice

• Alcatel1359IOOBoard

• Alcatel1359IOORIEquipentHolder

• Alcatel1359IOOArtificialChassis

Table 4-4 Discover Alcatel 1359IOO RI File Action Construction

Result
Category

Address Handler Scan Parameter Group
Characteristics

Model Processors

Device FileTransfer
AddressHandler

ftaFileTransferType

ftaFilePattern

ftaPort

ftaUser

ftaPassword

ftaSessionTimeOut

ftaSourceFileManagement

ftaRenameSuffix

Alcatel 1326 IOO RI
Model

Alcatel 1359IOO RI File Collector

Alcatel 1359IOO RI File Parser

Alcatel 1359IOO RI Modeler

Alcatel 1359IOO RI Persister

In Figure 4-2 the first two chevrons indicate code-generated processors from Design Studio
user input.

• Alcatel 1359IOO RI File Collector is an instance of the file transfer processor

• Alcatel 1359IOO RI File Parser is an instance of the file parser processor

Table 4-5 Action Conditions for Discover Alcatel 1359IOO RI File Action

Condition Name Notes

checkPhysicalDevice This condition returns a false result if the physical device from the Alcatel 1359IOO RI
Modeler is null.

Table 4-6 Discover Alcatel 1359IOO RI File Action Processors

Processor Name Variables

Alcatel 1359IOO RI
File Collector

Input: N/A

Output:

• alcatel1359IOORIFileCollectorFileCollection. java.util.Collecton

A collection of files found in the path specified in the scope field.

Chapter 4
Design Studio Construction

4-11

Table 4-6 (Cont.) Discover Alcatel 1359IOO RI File Action Processors

Processor Name Variables

Alcatel 1359IOO RI
File Parser

Input: alcatel1359IOORIFileCollectorFileCollection

Output:

• alcatel1359IOORIFileParserIterable

An iterable to iterate over each discovered file.

Alcatel 1359IOO RI
Modeler

Input: riFile

Output: physicalDevice

This processor can be extended to enhance an individual physical device tree. Any processor that
uses its output parameter must check if this value is null before using it. The physical device is null if it
does not contain information from all the boards.

Alcatel 1359IOO RI
Persister

Input: N/A

Output: N/A

Context is persisted for performance

Design Studio Extension
This section provides information about Design Studio extensions to the ASCII Reference
cartridge.

The source code for this cartridge is provided. You can change any part to customize this
cartridge to fit your environment.

The Alcatel 1359IOO RI Modeler aggregates the information for all the boards before
completely modeling a physical device. Before a physical device is completely modeled, this
processor outputs a null physical device. The action has a condition applied on the Alcatel
1359IOO RI Persister, which checks the physical device to determine whether it is null or not.
The persister does not get invoked if PhysicalDevice is null (which means it is not completely
modeled at that time). A new processor that is to further modify PhysicalDevice must apply the
same condition (checkPhysicalDevice) to make sure that the physical device is ready and not
null.

For more information on extensibility, see Network Integrity Developer's Guide.

Chapter 4
Design Studio Extension

4-12

5
The XML Reference Cartridge

This chapter describes the functionality and design of the Oracle Communications Network
Integrity XML Reference cartridge.

The XML Reference cartridge uses the XML File processing technology. The cartridge uses an
Ericsson XML device file as its example.

The XML Reference cartridge is designed to be used on a standalone basis to display the
physical device hierarchy in the Network Integrity UI. The XML Reference Cartridge provides
no integration with other products but can be extended.

This section assumes that you are familiar with the following:

• Network Inventory Organizer (NIO) Export Interface (v 155 19-APR 901 219 Uen F
2006-06-01)

• 3GPP TS 32.615v630

(http://www.3gpp.org/ftp/specs/html-info/32615.htm)

• 3GPP TS 32.625v660

(http://www.3gpp.org/ftp/specs/html-info/32625.htm)

• 3GPP TS 32.695v600

(http://www.3gpp.org/ftp/specs/html-info/32695.htm)

Modeling a Physical Device Hierarchy
Using a CLI command, Ericsson devices can deliver XML device inventory to the local file
system. These XML device files can be transferred to Network Integrity for processing.

See Ericsson SMO CLI, Software Management, Organizer Command Line Interface, User
Guide, 2/1553-APR 901 007 for reference.

The cartridge reads the XML device file and produces a physical device hierarchy that
represents the discovered device and includes a physical device instance, equipment, and
equipment holders. (Physical Ports are not rendered in the XML file and so are not supported.)

Figure 5-1 shows a sample discovered physical device hierarchy. This hierarchy is displayed in
the Network Integrity user interface, in the Scan Result Detail page.

5-1

http://www.3gpp.org/ftp/specs/html-info/32615.htm
http://www.3gpp.org/ftp/specs/html-info/32625.htm
http://www.3gpp.org/ftp/specs/html-info/32695.htm

Figure 5-1 Sample Discovered Physical Device Hierarchy

Cartridge Dependencies
This section provides information about dependencies that the XML Reference cartridge has
on other entities.

Run Time Dependencies
For the XML Reference cartridge to work at run time, you must deploy the Address_Handlers
cartridge to Network Integrity.

Design-Time Dependencies
The XML Reference cartridge has the following dependencies:

• Address_Handlers

• NetworkIntegritySDK

• ora_uim_model

Chapter 5
Cartridge Dependencies

5-2

Opening XML Reference Cartridge Files
This section provides information about downloading and opening the XML Reference
Cartridge files in Design Studio. After you open the files, you can review and extend them.

You can download a ZIP file that contains the individual Design Studio files. You can open
these files in Design Studio to review and extend the cartridge ZIP files.

Opening Files in Design Studio
To review and extend the XML Reference cartridge, download the Oracle Communications
Network Integrity File Transfer and Parsing software from the Oracle software delivery website:

https://edelivery.oracle.com
The software contains the XML Reference cartridge ZIP file, which has the following structure:

• \Network_Integrity_Cartridge_Projects\XML_Reference_Cartridge

For information about opening files in Design Studio, see the Design Studio Help and Network
Integrity Developer's Guide.

Compiling and Deploying the Cartridge
This section provides information about compiling and deploying the XML Reference Cartridge.

To compile and deploy the XML Reference Cartridge:

1. Import projects into Design Studio for Network Integrity.

2. Clean and build the cartridge.

3. Deploy the cartridge.

For more information about deploying and undeploying, see Network Integrity Developer's
Guide.

About the Cartridge Components
The XML Reference cartridge contains the following actions:

• Discover Ericsson Xml

Discover Ericsson Xml
The Discover Ericsson Xml action reads one or more XML device file instances, and provides
multiple hierarchical device model instances. (XML device file instances could contain multiple
devices.)

The Discover Ericsson Xml action contains the following processors run in the following order:

1. Ericsson Xml Initializer

2. Ericsson Xml File Collector

3. Ericsson Xml File Parser

4. Ericsson Xml Managed Element Collector

Chapter 5
Opening XML Reference Cartridge Files

5-3

https://edelivery.oracle.com

5. Ericsson Xml Device Modeler

6. Ericsson Xml Device Persister

Figure 5-2 illustrates the processor workflow of the Discover Ericsson Xml action.

Figure 5-2 Discover Ericsson Xml Action Processor Workflow

Ericsson Xml Initializer
The Ericsson Xml Initializer instantiates a helper class, and then makes it available to other
processors in the chain.

Ericsson Xml File Collector
The Ericsson Xml File Collector processor is used to retrieve XML device files and make them
available to the next processor in the chain.

Note:

This processor is automatically generated from Design Studio input data.

Chapter 5
About the Cartridge Components

5-4

Ericsson Xml File Parser
The Ericsson Xml file parser processor is used to read the XML device files, validate them
against a loaded schema, and convert the XML device file to an XML bean, making it available
for parsing to the next processor.

Note:

This processor is automatically generated from Design Studio input data.

Ericsson Xml Managed Element Collector
The Ericsson Xml Managed Element Collector processor is used to process the XML device
file and locate managed elements (MEs). These MEs are then inserted into a list for further
processing.

Note:

One or more managed elements are contained within nested subNetworks in the
XML device file. This processor is capable of finding all managed elements.
SubNetworks are not modeled.

Ericsson Xml Device Modeler
The Ericsson Xml Device Modeler processor is used to model the data collected from the
Ericsson Xml Managed Element Collector. Modeling includes building the hierarchical
relationship of physical device and children equipment and equipment holders from an
individual ME.

Ericsson Xml Device Persister
The Ericsson Xml Device Persister is used to persist the physical device tree to the Network
Integrity database.

About Collected Data
This section shows a sample XML device file that is provided to the processor.

<?xml version="1.0" encoding="UTF-8"?>
<bulkCmConfigDataFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.3gpp.org/ftp/specs/archive/32_series/
32.615#configData ../../../eclipseWorkSpace/XMLReferenceCartridge/schemas/configData.xsd"
 xmlns="http://www.3gpp.org/ftp/specs/archive/32_series/32.615#configData"
 xmlns:xn="http://www.3gpp.org/ftp/specs/archive/32_series/32.625#genericNrm"
 xmlns:in="http://www.3gpp.org/ftp/specs/archive/32_series/32.695#inventoryNrm">
 <fileHeader fileFormatVersion="32.615 V6.3" vendorName="Ericsson AB"/>
 <configData
dnPrefix="DC=150.132.36.75,SubNetwork=NRO_RootMo,ManagementNode=ONRM,IRPAgent=ONRM_IrpAge
nt">
 <xn:SubNetwork id="NRO_RootMo">

Chapter 5
About Collected Data

5-5

 <xn:SubNetwork id="RNC106">
 <xn:ManagedElement id="RNC106">
 <xn:attributes>
 <xn:managedElementType>RNC</xn:managedElementType>
 <xn:userLabel>RNC106</xn:userLabel>
 <xn:vendorName>Ericsson AB</xn:vendorName>
 </xn:attributes>
 <in:InventoryUnit id="1B">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>SUBRACK</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ 605 107/3_R1A</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>X911033101</in:serialNumber>
 <in:dateOfManufacture>2005-10-22</in:dateOfManufacture>
 <in:unitPosition>1B</in:unitPosition>
 <in:manufacturerData>ProductName=CBM,SlotCount=28</
in:manufacturerData>
 </in:attributes>
 <in:InventoryUnit id="0">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>FAN</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>BKV 301 487/1_R3A</
in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber/>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="1">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192108/4_R2B</
in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>TU87600308</in:serialNumber>
 <in:dateOfManufacture>2005-12-01</in:dateOfManufacture>
 <in:unitPosition>1</in:unitPosition>
 <in:manufacturerData>ProductName=SCB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="2">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192109/3_R1B</
in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>TU87153523</in:serialNumber>
 <in:dateOfManufacture>2005-10-07</in:dateOfManufacture>
 <in:unitPosition>2</in:unitPosition>
 <in:manufacturerData>ProductName=SXB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="3">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192109/3_R1B</
in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>

Chapter 5
About Collected Data

5-6

 <in:serialNumber>TU87153427</in:serialNumber>
 <in:dateOfManufacture>2005-10-07</in:dateOfManufacture>
 <in:unitPosition>3</in:unitPosition>
 <in:manufacturerData>ProductName=SXB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 </in:InventoryUnit>
 </xn:ManagedElement>
 </xn:SubNetwork>
 </xn:SubNetwork>
 </configData>
 <fileFooter dateTime="2006-09-06T08:03:04+02:00"/>
</bulkCmConfigDataFile>

About Cartridge Modeling
This section provides information about modeling the XML Reference cartridge.

Figure 5-3 shows a Unified Modeling Language (UML) diagram depicting the object
relationship.

Figure 5-3 XML UML Diagram

Hierarchy Mapping
The physical device object is established and seeded with data sourced by ManagedElement.

The Equipment object is established and seeded from InventoryUnit, where the
vendorUnitFamilyType = PIU (Plug In Unit). All other InventoryUnits are discarded, that is
(vendorUnitFamilyType = OTHER, FAN).

Chapter 5
About Cartridge Modeling

5-7

The EquipmentHolder object is established and seeded from InventoryUnit, where the
vendorUnitFamilyType =SUBRACK.

Note:

Modeling limits InventoryUnit to two (2) levels deep. If an XML file instance has more
than two levels of InventoryUnit below ManagedElement, the third to nth levels are
ignored, and customization is required to model those levels.

Oracle Communications Information Model
All entities shown in Figure 5-3 (for example, physical device and equipment) are Information
Model 1.0-compliant for static fields. The dynamic fields (sometimes referred to as
characteristics) are application-specific.

Field Mapping
This section provides information about field mappings used in the cartridge.

• Text: Implies Text [255].

• static: The Information Model 1.0 defines this field to be static on the entity specification.
The specification provides getters/setters for this field.

• dynamic: This is a dynamic field where the entity specification treats the field as a name/
value pair. The specification does not provide getter/setters but generically has a get/
setCharacteristics method holding a HashSet of entries.

Table 5-1 Physical Device Mappings

Physical Device Information
Model Support

Xml Object Field Type

Id static N/A Text

Name static id Text

Description static xmlFile Source Text

Specification static N/A Programmatically set to
EricssonCPPPhysicalDevice

discoveredVendorName dynamic vendorName Text

modelName dynamic managedElementType Text

nativeEmsName static userLabel Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 5-2 Equipment Mappings

Equipment Information
Model Support

XML Object Field Type

Id static N/A Text

Chapter 5
About Cartridge Modeling

5-8

Table 5-2 (Cont.) Equipment Mappings

Equipment Information
Model Support

XML Object Field Type

Name static manufacturerData Text, Extract ProductName

Description static manufacturerData Text

Specification static N/A Programmatically set to
EricssonCPPEquipment

discoveredModelNumber dynamic vendorUnityTypeNumber Text

discoveredVendorName dynamic vendorName Text

serialNumber static serialNumber Text

nativeEmsName static manufacturerData +
unitPosition

Text, Extract ProductName, append
unitPosition which is occupied slot
number

Physical Location yes N/A Text

Table 5-3 EquipmentHolder Mappings

EquipmentHolder Information
Model Support

XML Object Field Type

Id static N/A Text

Name static manufacturerData +
slotNumber

Text

Specification static N/A Programmatically set to
EricssonCPPEquipmentHolder

nativeEmsName static slotNumber Text

manufacturerData contains SlotCount. SlotCount
is used to generate the required number of slots
and slotNumber is a slot instance.

Description yes N/A Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Model Correction
This section provides 3GPP to Information Model correction information.

About Model Correction Code
Model correction occurs when the 3GPP information received through discovery does not
conform to the Information Model and therefore cannot be persisted, as it is within Network
Integrity. For information about supported hierarchy, see "About Cartridge Modeling".

The XML Reference Cartridge applies the model corrections as outlined below.

EquipmentHolder under physical device:

 PhysicalDevice
 EquipmentHolder

Chapter 5
Model Correction

5-9

The XML Reference Cartridge adds an equipment entity as follows:

 PhysicalDevice
 Equipment-named Artificial Equipment
 EquipmentHolder

Design Studio Construction
This section provides information about using Design Studio to construct the XML Reference
cartridge.

The XML Reference cartridge contains the following specifications:

• EricssonCPPPhysicalDevice

• EricssonCPPEquipment

• EricssonCPPEquipmentHolder

• EricssonXmlFileCollectorProperties

Table 5-4 Discover Ericsson Xml Action Construction

Result
Category

Address Handler Scan Parameter Groups Model Processors

Device FileTransfer
AddressHandler

ftaFileTransferType

ftaFilePattern

ftaPort

ftaUser

ftaPassword

ftaSessionTimeOut

ftaSourceFileManagement

ftaRenameSuffix

Ericsson
CPP Model

Ericsson Xml Initializer

Ericsson Xml File collector

Ericsson Xml File Parser

Ericsson Xml Managed Element Collector

Ericsson Xml Device Modeler

Ericsson Xml Device Persister

Figure 5-4 shows the discover DiscoverEricssonXml action chain.

Chapter 5
Design Studio Construction

5-10

Figure 5-4 Discovery XML Action Chain

In Figure 5-4, the chevrons that correspond to EricssonXmlFileCollector and
EricssonXmlFileParser indicate the code-generated processors from Design Studio user input.

• EricssonXmlFileCollector is an instance of the file transfer processor.

• EricssonXmlFileParser is an instance of the file parser processor.

Table 5-5 Discover Ericsson Xml Action Processors

Processor Name Variable

Ericsson Xml Initializer Input: N/A

Output:

• physicalDeviceHelper

The output is a helper class used in proceeding chain.

Ericsson Xml File
Collector

Input: N/A

Output:

• ericssonXmlFileCollectorFileCollection <java.util.Collecton>

The output is a collection of files found in the path specified in the scope field.

Chapter 5
Design Studio Construction

5-11

Table 5-5 (Cont.) Discover Ericsson Xml Action Processors

Processor Name Variable

Ericsson Xml File Parser Input:

• ericssonXmlFileCollectorFileCollection

The input is a collection of files.
• XmlSchema: schemas/configData.xsd

The schema is used to validate XML file instances.
Output: N/A

Ericsson Xml Managed
Element Collector

Input: XmlFile

Output:

• managedElements <java.util.ArrayList>

The output is a list containing the managedElements.
The processor is wrapped in a For each loop to execute this processor for each XML file.

Ericsson Xml Device
Modeler

Input: ManagedElement, physicalDeviceHelper

Output: physicalDevice

The processor is wrapped in a For-each loop to execute this processor for each ME.

This processor can be extended to enhance an individual physical device tree.

Ericsson Xml Device
Persister

Input: N/A

Output: N/A

Context is persisted for performance.

Note:

configData.xsd is the root document of the XSD formed from documents
configData.xsd, genericNrm.xsd, inventoryNrm.xsd, and sessionLog.xsd. These
documents had to first be stitched and validated after retrieval from:

http://www.3gpp.org
See "The ASCII Reference Cartridge" for 3GPP URLs. Stitching implies that
schemaLocation had to be input into the configData.xsd and inventoryNrm.xsd. In
addition, all unused namespaces are removed.

Design Studio Extension
This section provides information about Design Studio extensions to the XML Reference
cartridge.

The source code for this cartridge is provided. You can change any part to customize this
cartridge to fit your environment.

For more information on extensibility, see Network Integrity Developer's Guide.

Chapter 5
Design Studio Extension

5-12

http://www.3gpp.org

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	File Transfer and Parsing Processors
	Reference Cartridges

	2 The File Transfer Processor
	About the File Transfer Processor
	File Transfer Output Parameters
	Scan Parameter Groups
	File Transfer Input Parameters
	Setting File Transfer Properties

	FTP and SFTP Limitations

	3 The File Parser Processor
	About the File Parser Processor
	About the XML API
	About ASCII Record API
	ASCII Parsing Examples
	Example: CSV File with Header, Body, and Trailer Records
	Example: ASCII File with Multi-line Records

	4 The ASCII Reference Cartridge
	About Alcatel 1359IOO Remote Inventory Data Handoff
	Modeling a Physical Device Hierarchy
	Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies

	Opening ASCII Reference Cartridge Files
	Opening Files in Design Studio

	Compiling and Deploying the Cartridge
	About the Cartridge Components
	Discover Alcatel 1359 IOO RI File
	Alcatel 1359IOO RI File Collector
	Alcatel 1359IOO RI File Parser
	Alcatel 1359IOO RI Modeler
	Alcatel 1359IOO RI Persister

	About Collected Data
	About Cartridge Modeling
	Hierarchy Mapping
	Oracle Communications Information Model Information
	Field Mapping

	Model Correction
	About Model Correction Code

	Design Studio Construction
	Design Studio Extension

	5 The XML Reference Cartridge
	Modeling a Physical Device Hierarchy
	Cartridge Dependencies
	Run Time Dependencies
	Design-Time Dependencies

	Opening XML Reference Cartridge Files
	Opening Files in Design Studio

	Compiling and Deploying the Cartridge
	About the Cartridge Components
	Discover Ericsson Xml
	Ericsson Xml Initializer
	Ericsson Xml File Collector
	Ericsson Xml File Parser
	Ericsson Xml Managed Element Collector
	Ericsson Xml Device Modeler
	Ericsson Xml Device Persister

	About Collected Data
	About Cartridge Modeling
	Hierarchy Mapping
	Oracle Communications Information Model
	Field Mapping

	Model Correction
	About Model Correction Code

	Design Studio Construction
	Design Studio Extension

