
Oracle® Communications Network
Integrity
Developer's Guide

Release 7.4
F93117-01
July 2024

Oracle Communications Network Integrity Developer's Guide, Release 7.4

F93117-01

Copyright © 2010, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

1 Using Design Studio to Extend Network Integrity

Installing Design Studio 1-1

Configuring Design Studio for Network Integrity 1-1

Configuring Network Integrity Preferences 1-1

Network Integrity Project Dependencies 1-2

Configuring Data Dictionary Preference Settings 1-2

About Design Studio Perspectives 1-2

About Design Studio Views 1-2

Studio Design Perspective Views 1-2

Java Perspective Views 1-3

About Projects 1-3

About the Project Architecture 1-3

Working with Projects 1-4

Building and Packaging Projects 1-4

About the Project Build Order 1-5

About Build Artifacts 1-5

Packaging Projects 1-6

Deploying and Undeploying Cartridges 1-6

Creating a Design Studio Environment Project 1-6

Creating a Design Studio Environment For Network Integrity 1-7

Deploying a Cartridge 1-7

Undeploying a Cartridge 1-7

Redeploying a Cartridge 1-7

Debugging and Testing Cartridges 1-8

Starting the WebLogic Server in Test Mode 1-8

Configuring Remote Debugger in Design Studio 1-8

Sealing and Unsealing Projects 1-9

Exporting and Importing Cartridges 1-9

iii

Exporting a Cartridge with Source Code 1-10

Exporting a Cartridge Without Source Code 1-10

About Specifications 1-12

Working with Specifications 1-13

About Model Collections 1-13

About Specification Helpers 1-13

Associating Contiguous Slots to a Card 1-14

About Source Control 1-16

Working with Source Control for Network Integrity 1-16

Tips and Tricks 1-18

About Java Errors in the Generated Controller Class 1-18

Renaming or Deleting Actions and Processors 1-18

Adding External Libraries to a Java Build Path 1-18

About “Missing Required Library" Errors for External Libraries 1-19

Error Marker on Cartridge but not on any Entities 1-19

2 Working with Actions

About Actions 2-1

About Actions and Processors 2-1

About Action within Actions 2-2

About the Generated Action MDB and Controller 2-3

About Scan Parameter Groups 2-4

Extending the Create Scan Page 2-5

Extending the Scan Details Page 2-6

About Conditions 2-7

About Generated Classes and the Implementation Class 2-7

Adding Dependent Actions with Conditions as Processors 2-8

Creating Condition Examples 2-8

About Model Collections in Actions 2-8

About For Each Processors 2-8

About Result Categories 2-9

About Import Actions 2-10

About Discovery Actions 2-10

About Discovery Action Address Handlers 2-11

About the Address_Handlers Cartridge 2-11

Implementing Address Handlers 2-12

About the AddressHandler Interface 2-12

About Dynamic Address Handlers 2-13

About Discovery Action Result Categories 2-16

About the Discovery Action in the Network Integrity UI 2-16

About Discovery Action Scan Parameter Groups 2-17

iv

About scanMode Parameter 2-17

Customizing Response Timeout for Devices in SNMP Discovery Scan 2-18

About Assimilation Actions 2-18

About Discrepancy Detection Actions 2-19

About Discrepancy Detection 2-19

Identifying and Resolving Missing Entity Discrepancies at the Root-level 2-20

About Result Sources 2-20

About Result Source and Scan Types 2-21

Generated Action MDB and Controller 2-21

About Discrepancy Resolution Actions 2-21

About the Resolution Action Label 2-22

About Result Sources 2-23

Generated Action and MDB Controller 2-24

3 Working with Processors

About Processors 3-1

About Context Parameters 3-2

Specifying Context Parameters before Creating Implementation Class 3-2

About Properties and Property Groups 3-2

About Generated Code 3-3

About the Location for Generated Code 3-3

About the Processor Interface 3-3

About the PropertyGroup and Properties Classes 3-4

Implementing a Processor 3-4

About the Processor Finalizer 3-5

About the ProcessorFinalizer Interface 3-5

About Memory Considerations 3-6

Implementing an Import Processor 3-6

Implementing a Discovery Processor 3-7

Implementation Code Example 3-8

Implementing the SNMP Processor 3-9

About the Generated Implementation and XML Beans 3-9

Supporting New MIBs 3-10

Implementing an Assimilation Processor 3-10

About Discrepancy Detection Processors 3-12

Discrepancy Detection Processor Patterns 3-12

Reusing the Base Detect Discrepancy Action 3-12

About the Base Detection Project and the Default Comparison Algorithm 3-13

Adding New Filters and Handlers 3-14

About Filters 3-14

About Handlers 3-15

v

Filters and CimType 3-16

Filter and Handler Examples 3-16

Adding Post-Processors 3-20

About Discrepancy Resolution Processors 3-20

Creating a Discrepancy Resolution Processor 3-21

Implementing a Discrepancy Resolution Processor 3-21

About the Implementation Interface 3-21

About Input Parameters for the Invoke Method 3-21

Return Type of Invoke Method 3-22

About the General Flow of the Discrepancy Resolution Processor 3-22

Fetching Discrepancies 3-22

Grouping Discrepancies 3-23

Handling Discrepancies 3-23

Reporting the Resolution Result 3-23

Handling Discrepancies Asynchronously 3-24

4 Working with Discrepancies

About Discrepancies 4-1

About the Compare and Reference Sides 4-1

About Discrepancy Types 4-2

Attribute Value Mismatch 4-2

Extra Entity and Missing Entity 4-2

Extra Association and Missing Association 4-4

Ordering Error and Association Ordering Error 4-6

About Discrepancy Status 4-7

About Discrepancy Detail 4-8

5 Working with the POMS SDK

About POMS 5-1

Working with POMS Entities 5-2

Working with POMS Relationships 5-2

One-to-one Relationships 5-2

One-to-Many or Many-to-Many Relationships 5-2

Ordered and Unordered Relationships 5-3

Bi-directional Relationships 5-3

Relationship Entities 5-3

Working with Specifications and Characteristics 5-4

Working with the POMS Finder 5-4

Find by Entity 5-4

Find by JPQL 5-5

vi

Find with Paged Results 5-6

POMS SDK Interfaces 5-6

About Persist Results 5-7

6 Working with the Extensibility SDK

About Extensibility Scenarios 6-1

Extending MIB II SNMP Discovery for Updated Vendor and Interface Type 6-2

Extending an Existing Cartridge to Discover and Reconcile New Characteristics 6-4

Extending the MIB II SNMP Discovery to Change Interface Name Value 6-7

Multiple Vendor SNMP Discovery 6-10

Multiple Protocol Discoveries 6-13

7 Working with Automatic Discrepancy Resolution

About Automatic Discrepancy Resolution 7-1

About the Automatic Discrepancy Resolution Solution 7-1

Action and Processors 7-1

Scan Parameter Groups and the Network Integrity UI 7-2

Reference Implementations 7-2

Implementing Automatic Discrepancy Resolution 7-3

Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution 7-3

Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution 7-3

Completing the Automatic Discrepancy Resolution Implementation 7-4

Completing Automatic Discrepancy Resolution Using a Properties File 7-5

Completing Automatic Discrepancy Resolution with a Custom Processor 7-6

8 Working with CPU Utilization-enabled Discovery

About CPU Utilization-enabled Discovery 8-1

About CPU Utilization-enabled Discovery Solution 8-1

Action and Processors 8-1

About the Mechanism of Comparing CPU Usage Values 8-1

Scan Parameter Groups and the Network Integrity UI 8-2

Reference Implementations 8-2

Implementing CPU Utilization-enabled Discovery 8-2

Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution 8-2

9 Working with Application Context Work-Managers

ManagedExecutorService Work-Manager Configuration 9-1

Defining new MES Work-Manager within Network Integrity 9-1

vii

Using MES Work-Manager within Network Integrity 9-2

Accessing MES Work-Manager within Network Integrity 9-2

Persist Results using Multi-Threading 9-2

Discovery Scan using Multi-Threading 9-3

Import Scan using Multi-Threading 9-3

10

Working with the Network Integrity Web Service

About the Network Integrity Web Service 10-1

Security 10-1

Model Based 10-2

Concurrency with UI and other Web Service Clients 10-2

Listing of Network Integrity Web Service Operations 10-2

Network Integrity Web Service Operations 10-8

Create 10-9

Entity Type Support 10-10

Get 10-10

Entity Type Support 10-11

Get All 10-12

Entity Type Support 10-12

Delete 10-12

Entity Type Support 10-13

Update 10-14

Entity Type Support 10-15

Find 10-15

Entity Type Support 10-15

From and To Range 10-16

Ascending and Descending 10-16

Attribute Criteria 10-16

Multiple Attribute Criteria 10-17

Extended Attribute Criteria 10-17

Criteria Operators 10-18

Between/Not Between Operator 10-21

Data Criteria 10-21

Conjunction Criteria 10-21

Find Response 10-23

Network Integrity Web Service Special Function Operations 10-23

Start Scan 10-23

Stop Scan 10-24

Get Latest Scan Status 10-24

Submit Discrepancies For Resolution Processing 10-25

Network Integrity Web Service Scenarios 10-26

viii

Creating a Scan 10-26

Starting, Stopping, and Monitoring a Scan 10-27

Retrieving Scan Results 10-27

Working with Discrepancies 10-27

Network Integrity Web Service Samples 10-28

Contents of the Network Integrity Web Service Samples ZIP File 10-28

Sample Java Client 10-28

Sample Soap UI Project 10-29

Submitting Request to the Server 10-30

Specifying User Name and Password in Request 10-30

11

Working with Scan Run Complete Notifications

About Clients for Monitoring Scan Run Complete Notification Messages 11-1

Implementing Custom Code to Stop a Scan 11-2

12

Working with JCA Resource Adapters

About Resource Adapters 12-1

Understanding JCA Resource Adapter Connectivity Options 12-2

Understanding JCA Resource Adapters with Network Integrity 12-2

About Productized SNMP JCA Resource Adapter 12-3

Installing the SNMP JCA Resource Adapter 12-3

Extending the SNMP JCA Resource Adapter 12-3

Record and Playback Mode 12-4

Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge 12-5

About Third Party or Customized JCA Resource Adapters 12-5

Building a JCA Resource Adapter in WebLogic 12-6

Invoking a Third Party or Customized JCA Resource Adapter 12-6

13

Working with Reports Extensibility

About Oracle Analytics Publisher 13-1

Downloading Oracle Analytics Server 13-1

Installing Oracle Analytics Server 13-2

Running OAS jar 13-2

Completing OAS Installation 13-2

RCU Setup 13-3

Domain Creation 13-3

Reports Provided with Network Integrity 13-3

Scan History Report 13-4

Discovery Scan Summary Report 13-4

ix

Device Discrepancy Detection Summary Report 13-4

Device Discrepancy Detection Detail Report 13-4

Discrepancy Corrective Action Report 13-5

Configuring Oracle Analytics Server 13-5

Uploading Data Models 13-7

Uploading Reports 13-7

14

Working with SOA Extensibility

About SOA Extensibility 14-1

Purpose of Documentation 14-1

Extensibility Tasks 14-1

Extensibility Tasks 14-2

Installing Oracle Weblogic Server 14-2

Installing Oracle JDeveloper 14-3

Installing Oracle Application Runtime 14-3

Installing Oracle SOA Suite 14-4

Creating SOA Metadata Service Schemas 14-5

Updating JDeveloper for Latest SOA Composite Editor 14-6

Creating WebLogic Domain with SOA Products 14-7

Creating and Updating Sample SOA Application Using Network Integrity Web Service 14-8

Starting and Stopping SOA Servers 14-10

Building and Deploying the SOA Application 14-10

Testing Sample SOA application 14-11

Testing Network Integrity SOA Application Using EM 14-11

Testing Network Integrity SOA Application Using soa-infra 14-11

Testing Network Integrity SOA Application Using SOAP UI Tool 14-12

15

Localizing Network Integrity

Software Requirements 15-1

Setting the Language Preference in Internet Explorer 15-2

Determining the Locale ID 15-2

Localizing Network Integrity 15-3

About the Localization Pack 15-3

Creating the Localization Pack 15-3

Deploying the Cartridge Containing the Localized Files 15-6

Testing the Network Integrity Localization 15-6

Localizing Network Integrity Help 15-6

About Network Integrity Help 15-7

About the Help Files 15-7

Localizing the Network Integrity Help Files 15-8

x

Extracting the Help Files 15-8

Translating the Help Files 15-8

Creating the Localized Help JAR File 15-10

Configuring the Oracle Help File 15-11

Deploying the Localized Help System 15-13

Testing the Network Integrity Help Localization 15-13

A Network Integrity Plug-in Validation Error Messages

Error Message Classifications and Conditions A-1

Design Studio Logging A-8

xi

Preface

This guide explains how to extend Oracle Communications Network Integrity through standard
Java practices using Oracle Communications Service Catalog and Design - Design Studio,
which is an Eclipse-based integrated development environment. This guide includes
references to both applications, and often directs the reader to see the Design Studio Help and
the Network Integrity Help for instructions on how to perform specific tasks.

This guide should be read after reading Oracle Communications Network Integrity Concepts,
because this guide assumes that the reader has a conceptual understanding of Network
Integrity. This guide should be read from start to finish because the information presented in a
chapter often builds upon information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations. The
guidelines and examples may not be applicable in every situation.

Audience
This guide is intended for developers who implement code to extend Network Integrity. The
developers should have a good working knowledge of XML and Java development and, in
particular, JDO, standard Java practices, and J2EE principles.

You should read Oracle Communications Network Integrity Concepts before reading this guide.

You should have a good working knowledge of Design Studio.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Using Design Studio to Extend Network
Integrity

This chapter provides information on Oracle Communications Service Catalog and Design -
Design Studio, an Eclipse-based integration development environment. Design Studio comes
with features specific to Oracle Communications Network Integrity that enable you to extend
Network Integrity.

This chapter contains the following sections:

• Installing Design Studio

• About Design Studio Perspectives

• About Design Studio Views

• About Projects

• Working with Projects

• About Specifications

• Working with Specifications

• About Source Control

• Working with Source Control for Network Integrity

• Tips and Tricks

Installing Design Studio
Use Design Studio to extend Oracle products. Different features are available for the different
Oracle features, and each feature provides JAR files that are unique to the product.

See Design Studio Installation Guide for information about installing Design Studio and the
Design Studio for Network Integrity feature.

Configuring Design Studio for Network Integrity
Configuring Design Studio for Network Integrity requires:

• Configuring Network Integrity Preferences

• Network Integrity Project Dependencies

• Configuring Data Dictionary Preference Settings

Configuring Network Integrity Preferences
Configuring Network Integrity preferences in Design Studio includes specifying a default
cartridge package name for all created cartridge projects and specifying the default MIB
directory.

1-1

To configure Network Integrity preferences, see the Design Studio Modeling Network Integrity
Help.

Network Integrity Project Dependencies
All Network Integrity cartridge projects have dependencies on several other Network Integrity
cartridge projects. Before creating a new Network Integrity cartridge project or importing
productized Network Integrity cartridge projects, import the following projects into Design
Studio:

• ora_uim_model

• ora_uim_mds

• ora_ni_uim_ocim

• NetworkIntegritySDK: this cartridge project contains common software components and
libraries required for creating and extending Network Integrity projects.

These projects are available in the Oracle Communications Network Integrity 7.4.0 Software
Developer Kit (included with the Oracle Communications Network Integrity 7.4.0 software) on
the Oracle software delivery website:

https://edelivery.oracle.com
See the Design Studio Help for information about importing projects into Design Studio.

Configuring Data Dictionary Preference Settings
You configure data dictionary preference settings to specify the horizontal depth to which any
data dictionary tree can expand.

To configure data dictionary preferences, see the Design Studio Help.

About Design Studio Perspectives
Perspectives define your Workbench layout and provide different functionality for working with
different types of resources. Several perspectives are available within Design Studio. The
Java, Studio Design, and Studio Environment perspectives are commonly used when
extending Network Integrity.

For instructions on how to open a perspective, see the Design Studio Help.

About Design Studio Views
Within a given perspective, views further define the Workbench layout and provide different
presentations of resources. Several views are available within Design Studio, and the available
views are dependent upon the perspective.

For instructions on how to open a view in Design Studio, see the Design Studio Help.

Studio Design Perspective Views
When extending Network Integrity in the Studio Design perspective, you commonly use the
Studio Projects view, Solutions view, and the Package Explorer view.

See the Design Studio Help for more information about perspective views.

Chapter 1
About Design Studio Perspectives

1-2

https://edelivery.oracle.com

Java Perspective Views
When extending Network Integrity in the Java perspective, you commonly use the Navigator
view, Package Explorer view, and Error Log view.

About Projects
Projects contain Network Integrity artifacts that you create and define in Design Studio, such
as custom actions and processors.

Everything you create in Design Studio resides in a project. The name you choose for the
project becomes the name of the integrity archive (IAR) file, and everything you create within
that project is automatically placed in the IAR file.

When extending Network Integrity, you can create one or many projects, depending on how
you choose to organize the extensions.

Network Integrity projects are packaged extensions to the core application. They represent the
necessary components needed for the following:

• Discovering network elements, either from a Network Management System (NMS) or
through direct contact with the Network Element (NE)

• Importing network elements from an inventory system

• Assimilating network data using business logic

• Detecting discrepancies between the network and the inventory system

• Resolving discrepancies, either within the network, or in the inventory system

Network Integrity projects provide the ability to support new functionality as business cases
arise, such as:

• New protocols, such as Command Line Interface (CLI) and Transport Layer Security (TLS)

• New standards, such as a new RFC

• New vendor devices, such as Juniper, Huawei

• New operational or business support systems

See the Design Studio Help for more information about creating projects.

About the Project Architecture
A Network Integrity cartridge project typically contains the following entities:

• Zero or more actions:

– Zero or more discovery actions

* At least one discovery, file transfer, or file parser processor

– Zero or more assimilation actions

* At least one assimilation processor

– Zero or more import actions

* At least one import, file transfer, or file parser processor

– Zero or more discrepancy detection actions

Chapter 1
About Projects

1-3

* At least one discrepancy detection processor

– Zero or more discrepancy resolution actions

* At least one discrepancy resolution processor

• Zero or more model collections

• Zero or more specifications

• Zero or more scan parameter groups

Alternatively, your project can contain address handler entities. A project containing address
handler entities cannot contain any other entity types. This allows for a clear segregation of
responsibility. So, for example, you create a project called Address Handlers where different
address handler types exist (for example: IP Address, URL, and so on) and simply reference
those from within their discovery and import cartridge projects.Projects can also reuse actions
from other projects to extend behavior. For example, a Juniper-specific SNMP cartridge project
(that is, containing Juniper MIBs) could extend a generic SNMP cartridge project (MIB II
only).After all components are defined, projects are packaged into an IAR file and can be
deployed to a running Network Integrity system as a cartridge.

See "Building and Packaging Projects" and "Deploying and Undeploying Cartridges" for more
information.

After a cartridge is deployed, it is available to Network Integrity.

To determine whether a cartridge is deployed in Network Integrity:

1. From the Network Integrity main menu, click Help, and then select About.

The Network Integrity components dialog appears.

2. Select the Components tab.

The Network Integrity product version is displayed with the versions of all cartridges
deployed in Network Integrity.

Working with Projects
When working with projects, see the following:

• Building and Packaging Projects

• Deploying and Undeploying Cartridges

• Debugging and Testing Cartridges

• Sealing and Unsealing Projects

• Exporting and Importing Cartridges

Building and Packaging Projects
Design Studio packages project information into cartridges that can be deployed into Network
Integrity.

Projects can be developed by customers, systems integrators, Professional Services staff, and
third-party vendors.

Chapter 1
Working with Projects

1-4

About the Project Build Order
When Design Studio builds a Network Integrity project, the build process takes place in the
following order:

• Generation of Java source code: Generators are invoked to generate Java source codes
from Network Integrity models, EJB descriptor files, XML schemas for the SNMP
processor, and the Meta Model XML file.

• Java Source Compilation: Eclipse compiles the Java source (including generated Java
source and implemented Java source) into classes.

• Building: Builders are invoked to build UI hints, the Data Dictionary, and specifications.

• Validation: Validators are invoked to validate Network Integrity model entities. Validation
errors are raised and an error marker displayed on the related entities in Design Studio. If
any validation errors are raised, the packaging stage does not take place.

• Packaging: Packagers are invoked to package the cartridge deployment model XML file,
the UI hints Metadata Archive (MAR) file, specification Data Access Object (DAO) files,
dependent JAR files, the manifest file for JAR files library for EJB, and the final IAR file for
the Network Integrity cartridge.

About Build Artifacts
Design Studio generates various build artifacts for a Network Integrity project after a successful
build. The generated directories are listed in the following order in the directory structure:

• Out: This directory contains all the compiled Java classes.

• Generated: Contains the following build artifacts:

– Generated Java sources for actions and processors. If the project is sealed without
Java source, the JAR file is displayed instead.

– SNMP schema artifacts for the SNMP processor.

• cartridgeBuild: contains various build artifacts for the Network Integrity cartridge.

• cartridgeBin: contains the final packaged Network Integrity cartridge as an IAR file which
can be deployed to the Network Integrity server through the cartridge management web
service (CMWS).

The following directories comprise the normal directory structure for a Network Integrity project.
Do not modify these directories:

• dataDictionary: contains the Data dictionary

• doc: contains documents

• lib: Copy any third party JAR library into this directory.

Switch to the Packager Explorer view, and modify the Java class path to include any JAR
files that have been added to this directory.

Select the project, and click F5 to refresh the project in Design Studio to get the modified
Java class path affected.

• model: contains all Network Integrity models

• out: output directory for compiled Java classes

• resources: contains resources related to Network Integrity. This directory is empty by
default

Chapter 1
Working with Projects

1-5

• src: the Java source directory.

Packaging Projects
Packaging a project is the last stage in building a cartridge. The cartridge is packaged as an
IAR file, which can be deployed to the Network Integrity server through the CMWS.

The IAR file contains the following build artifacts:

IAR root/
 <cartridge-ejb-jar>.jar - This jar contains manifest.mf file to refer to
the jars under cartridgeLib/<cartridgeName>.
 oracle.communications.platform.entity.impl.SpecificationDAO
 oracle.communications.platform.entity.impl.CharacteristicSpecUsageDAO
 oracle.communications.platform.entity.impl.CharacteristicSpecificationDAO
 <cartridgeName_A>.mar
 <cartridgeName_B>.mar
 …
 <cartridgeName_N>.mar - Multiple MAR files if this cartridge is reusing
Actions from other cartridges.
 <Action_Name_A>_MetaModel.xml
 <Action_Name_B>_MetaModel.xml
 …
 <Action_Name_N>_MetaModel.xml - Meta Model XML file per Action.
 /META-INF/
 cartridge.xml
 manifest.xml
 /cartridgeLib/<cartridgeName>/*.jar (any dependent jar files used by
this cartridge, if available)

If a project contains only abstract entities, no IAR file is generated.

Deploying and Undeploying Cartridges
Network Integrity cartridges can be directly deployed or undeployed from Design Studio.

Use the Oracle Cartridge Deployer to deploy or undeploy any productized Network Integrity
cartridge into a production system.

Note:

Before deploying or undeploying cartridges, ensure that:

• You are logged out of the WebLogic Server Administration Console.

• No one else is deploying or undeploying cartridges on the same server.

• Network Integrity is not running a scan that makes use of the cartridge.

Creating a Design Studio Environment Project
Design Studio projects are collections of folders and files that represent the content you are
working on. They are used for builds, version management, sharing, and resource
organization. Projects map to directories in the file system. When you create a project, you
specify a location for it in the file system. Design Studio uses the files and folders in a project to
build a cartridge that you can import into Network Integrity. See "Building and Packaging
Projects" for more information. To deploy or undeploy a cartridge from Design Studio, you must

Chapter 1
Working with Projects

1-6

first create a Studio Environment Project. When you create a project, you specify its name and
location for its corresponding file structure.

See the Design Studio Help for more information on creating an environment project.

Creating a Design Studio Environment For Network Integrity
Having created a Studio Environment Project, you then create the environment. An
environment represents a connection to a particular server.

See the Design Studio Modeling Network Integrity Help for more information about creating
Design Studio environments.

When creating and working with your environment, consider the following:

• When specifying the name of your environment, incorporate the name of the server.

• If you are using SSL, the CMWS URL must be specified with https. Also, you must
configure the Environment editor SSL tab with the location of the keystore file.

• Configure the Environment editor Properties tab for the following properties:

– wladmin.host.name: The host name or IP address where the Oracle WebLogic
Administration Server is running.

– wladmin.host.port: The port number on which the Oracle WebLogic Administration
Server is running.

– wladmin.server.name: The Oracle WebLogic Administration Server name.

Deploying a Cartridge
The Design Studio Network Integrity feature provides the ability to deploy a cartridge into
Network Integrity. For instructions on how to deploy a cartridge, see the Design Studio Help.

Undeploying a Cartridge
The Design Studio Network Integrity feature provides the ability to undeploy a cartridge into
Network Integrity. For instructions on how to undeploy a cartridge, see the Design Studio Help.

When a cartridge is undeployed, Network Integrity removes all the scan configurations and
scan results associated with the cartridge and all the specifications associated with the
cartridge (except those specifications still in use by other cartridges).If a cartridge has a
dependency on other deployed cartridges, the cartridge cannot be undeployed. For example,
you cannot undeploy the Address_Handlers cartridge if the cartridges using Address_Handlers
are still deployed in Network Integrity. You must undeploy all dependent cartridges from
Network Integrity before Address_Handlers can be undeployed.

The Network Integrity CMWS Adapter automatically performs dependency checks at
deployment or undeployment time and returns error messages if deployment or undeployment
cannot be performed.

Redeploying a Cartridge
The Design Studio Network Integrity feature provides the ability to deploy a cartridge into
Network Integrity, including previously deployed cartridges. For instructions on how to deploy a
cartridge, see the Design Studio Help.

You can redeploy a Network Integrity cartridge using Design Studio only if the version of the
redeployed cartridge (build number) is equal to, or greater than, the version of the deployed

Chapter 1
Working with Projects

1-7

cartridge. For example, my_cartridge is already deployed with a build number of 28 (b28). If
my_cartridge is up-versioned to b30, you can deploy it without undeploying my_cartridge (b28)
and deploying it again.

Redeployment removes the deployed cartridge and deploys the new cartridge instead.
Network Integrity does not allow more than one version of the same cartridge to be deployed at
the same time.

Debugging and Testing Cartridges
This section provides information about debugging and testing cartridges in Network Integrity.

Starting the WebLogic Server in Test Mode
To debug a deployed Network Integrity cartridge, start the WebLogic Managed Server in debug
mode (not the Administration Server).

Use the following procedure to start the WebLogic Managed Server in debug mode:

1. Stop both the Administration Server and Managed Server if they are still running.

2. Go to directory <WEBLOGIC_HOME>/user_projects/domains/<DOMAIN>/bin.

3. Copy the existing startWebLogic.sh script to a new script file, startWebLogic_Debug.sh.

4. Use a text editor to open startWebLogic_Debug.sh.

5. After the line ${JAVA_HOME}/bin/java ${JAVA_VM} –version, add the following two lines:

echo "Launching Java with debug port: 10171"

JAVA_OPTIONS="-Xdebug -Djava.compiler=NONE -Xnoagent -
Xrunjdwp:transport=dt_socket,server=y,address=10171,suspend=n $JAVA_OPTIONS"

The debug port does not have to be 10171 if the port specified is available.

6. Save this change.

7. Copy the existing startManagedWebLogic.sh script to a new script file,
startManagedWebLogic_Debug.sh.

8. Use a text editor to open startManagedWebLogic_Debug.sh.

9. Find the two lines that are referring to startWebLogic.sh.

10. Replace startWebLogic.sh with startWeblogic_Debug.sh. This change is to start the
WebLogic Managed Server in debug mode by invoking the startWebLogic_Debug.sh
script.

11. Save this change.

12. Start the Administration Server by running the usual start-up script, startWebLogic.sh.

13. Start the Managed Server in debug mode by running the new script,
startManagedWebLogic_Debug.sh.

Configuring Remote Debugger in Design Studio
The Managed Server is now in debug mode. The next step is to configure the debugger in
Eclipse to start remote-debugging the Network Integrity cartridges.

1. From the Design Studio main menu, select Run then Debug Configurations, then open
the Debug Configurations dialog to switch Design Studio to the Java perspective.

Chapter 1
Working with Projects

1-8

2. From the left panel, select Remote Java Application.

3. Click New to create a remote Java application debug configuration.

4. Enter a name for this new debug configuration.

5. In the Connect tab, click the Browse.

6. Select an available project that contains the cartridge that to debug.

7. Ensure that the default setting for Connection Type is Standard (Socket Attach).

8. Enter the host IP address where the Network Integrity system (WebLogic Managed
Server) is running.

9. Enter the debug port, which should match the debug port entered in "Starting the
WebLogic Server in Test Mode".

10. Keep the default settings for the rest of the tab.

11. Click Apply to save this new remote Java application debug configuration.

Now the developer can start to debug the Network Integrity cartridge (which should be already
deployed on the Network Integrity system) from Design Studio by picking up the debug
configuration just created. There is no difference from debugging a normal local Java
application in Eclipse. We can put a break point in the cartridge Java source and start
debugging from there. For instructions on how to debug a Java program in Eclipse, see the
Eclipse Help topics Java development user guide, Getting Started, Basic tutorial, and
Debugging your programs.

Sealing and Unsealing Projects
Some Network Integrity production cartridges are distributed as sealed projects. Unsealing
Network Integrity production cartridges violates the license, support, and maintenance
agreements with Oracle.

You may encounter build problems if you unseal a sealed cartridge in your workspace. The
error logs may indicate that some dependent JAR files are missing from the workspace. The
main cause for this is that the sealed cartridge may not have included any source code, and
that a Clean operation may delete the JAR file, and then is not able to recreate it. The solution
is to delete the unsealed cartridge, and re-import the sealed cartridge.

See the Design Studio Help for more information about sealing and unsealing cartridges.

Exporting and Importing Cartridges
This section provides an overview of exporting and importing Network Integrity cartridges.

Cartridge projects can be exported to archive files. This allows the cartridge projects to be
distributed as a single or a set of archive files, rather than as the many files of a cartridge
project. Once a project is exported to an archive file, the archive file can be distributed and
then imported into a different Design Studio or Eclipse workspace.

Before exporting a cartridge project, you should decide whether you want to include your
source code in the archive file. Cartridges can be extended without distributing source code.
However, if you want to allow the user to modify the actual distributed cartridge, then you must
distribute the source code.

Cartridges can also be exported in both sealed and unsealed states. If you are distributing a
cartridge without source code, Oracle recommends you seal the cartridge before exporting it.
This prevents the user from changing the cartridge model and therefore breaking the cartridge.

Chapter 1
Working with Projects

1-9

See the Design Studio Help for more information about sealing and unsealing cartridges.

Network Integrity production cartridges are distributed as sealed cartridges. Unsealing Network
Integrity production cartridges violates the license, support, and maintenance agreements with
Oracle.

See the following:

• Exporting a Cartridge with Source Code

• Exporting a Cartridge Without Source Code

Exporting a Cartridge with Source Code
To export a cartridge project containing source code:

1. From the Design Studio File menu, select Export.

The Export Select dialog appears.

2. From the list of export destinations, expand the General node and select Archive File.

3. Click Next.

The Export Archive file dialog appears.

4. Enter a destination archive file:

a. Select the projects that you want to include in the archive.

b. Specify the name and location of the archive file.

c. In the Options section, accept the defaults.

d. Click Finish to create an archive file containing the exported projects at the specified
location.

Exporting a Cartridge Without Source Code
Before exporting a cartridge project without source code, the project's classpath must be
modified.

See the following:

• Modifying the Classpath

• Exporting the Cartridge

Modifying the Classpath

To modify the classpath:

1. Open the Navigator view.

2. Use the Navigator view to rename the projects output directory out, to classes.

3. From the Design Studio Window menu, select Show View, and select the Package
Explorer view.

4. Right-click the project and select Properties.

The Properties dialog appears.

5. From the list of properties, select Java Build Path.

The Properties dialog box displays the Java Build Path information.

Chapter 1
Working with Projects

1-10

6. Select the Source tab.

The Source tab displays the folders on the build path for the selected project.

7. Remove the source directories that are part of the classpath:

a. Select the source folders on the build path.

b. Click Remove.

8. Select the Libraries tab, and click Add Class Folder to add the class folder classes to the
classpath.

Figure 1-1 shows how the class folder is added to the classpath.

Figure 1-1 Adding the Class Folder

9. Select the Order and Export tab, and check the box corresponding to the classes class
folder.

10. Click OK to complete the modification of the project classpath.

After changing the classpath, if you wish to continue development on the cartridge, you
should restore the classpath to its original configuration.

Exporting the Cartridge

To export the cartridge project:

1. From the Design Studio File menu, select Export.

The Export Select dialog appears.

Chapter 1
Working with Projects

1-11

2. From the list of export destinations, expand the General node and select Archive File.

3. Click Next.

The Export Archive file dialog appears.

4. Enter a destination archive file:

a. Select the projects that you want to include in the archive.

b. For the projects for which you are not including source code, expand the project tree
and deselect the source directories which you previously removed from the classpath.

c. Specify the name and location of the archive file.

d. In the Options section, accept the defaults.

e. Click Finish to create an archive file containing the exported projects at the specified
location.

About Specifications
Network Integrity cartridges persist their results to persistent object modeling service (POMS)
in the Oracle Communications Information Model. The Information Model defines a base set of
entities and their relationships. Use specifications to extend the Information Model. Most
cartridges must extend the Information Model entities and therefore must make use of
specifications.

Scan parameter groups are a special type of specification. A specification used for model
extension is associated with a single Information Model entity type. Multiple specification types
can be defined for each Information Model entity type. The elements that comprise the
specification are called characteristics.

Specifications can be shared between cartridge projects. Specifications created in a cartridge
project are automatically related to all actions in the same cartridge project. You cannot add
specifications to a model collection in the same cartridge project, but you can make the
cartridge project containing the model collection dependent on another project that contains
the specifications you want to add. Network Integrity ensures that when multiple cartridges are
deployed together, their shared specifications are compatible.

When cartridge code persist information to POMS, it creates Information Model entities and
usually a specific type of specification is attached to each Information Model entity to hold
additional attributes. Within the Network Integrity UI, an Information Model entity and its
specification are represented as a single object.

All action types must define which specification types (and by extension, which Information
Model entities) they use by creating specifications in the cartridge project or adding
specifications to the model collection. The Model tab defines the list of model collections on
the action. Design Studio generates special classes for specifications, called specification
helpers.

Characteristics on specifications appear in the Network Integrity UI as displayed information.
Specification characteristics are always read-only in the Network Integrity UI. By configuring
characteristics on specification, the following read-only fields can appear in the Network
Integrity UI:

• Label: Specifies the label that displays in the UI

• Tool Tip: Specifies a short message when the pointer hovers over the field

Chapter 1
About Specifications

1-12

Working with Specifications
Working with specifications requires the following high-level steps:

1. Add specifications to your cartridge project:

a. Create or copy specifications and configure them to collect the information you want.

b. Add existing specifications from dependent cartridge projects to the model collection.

2. Configure characteristics on new and copied specifications to appear in the Network
Integrity UI.

To stop using a specification, remove it from the model collection or delete it from the cartridge
project.

See the Design Studio Modeling Network Integrity Help for more information about
specifications.

About Model Collections
Use model collections to add specifications that exist in other cartridge projects. Specifications
from other cartridge projects inherit any changes and configurations you make to them in their
original cartridge project.

See the Design Studio Modeling Network Integrity Help for more information about creating
and using model collections.

About Specification Helpers
Design Studio generates specification helper classes to the following package:

• Cartridge Default Package.Model Collection Name.Model Collection Name

The names of the specification helpers are based on the names of the specifications. For
example if the name of the specification is deviceGeneric, then the name of the specification
helper is DeviceGeneric.

Specification helpers have getter and setter methods for each element in the specification. The
specification helper also has a constructor which takes a POMS entity interface object. A code
sample which illustrates the use of a specification helper is shown below. In the example, the
DeviceGeneric class is the specification helper.

// create a Logical Device entity which uses
// the Device Generic specification.
LogicalDevice logicalDevice = PersistenceHelper.makeEntity(LogicalDevice.class);
DeviceGeneric logicalDeviceExt = new DeviceGeneric(logicalDevice);

// Set static attribute values to LogicalDevice.
logicalDevice.setId(makeLDevID(scanResponse));
logicalDevice.setName(rfc1213Mib.getSysName());
logicalDevice.setDescription(rfc1213Mib.getSysDescr());

// Set dynamic attributes/characteristics.
logicalDeviceExt.setMgmtIPAddress(scanResponse.getManagementIP());
logicalDeviceExt.setSysObjectId(rfc1213Mib.getSysObjectID());

Chapter 1
Working with Specifications

1-13

Associating Contiguous Slots to a Card
Sometimes a single card may need multiple holders. The number of holders determines the
number of contiguous slots needed when adding the card to a shelf. This can be determined in
Network Integrity by using Design Studio to configure equipment holder and card specification.

To determine the number of holders required by a card on Network Integrity:

1. Open Design Studio and navigate to your cartridge project.

2. To configure the equipment holder, in the specification tab of the Equipment Holder
Specification, enable the Enter ID Manually option.

3. To configure the card specification, create a new characteristic within the card equipment
specification to store the value of required holders and set the default value as the number
of holders the card requires. See Design Studio Modeling Network Integrity Help for more
information on adding a characteristic to a specification.

4. Save your cartridge project and build it.

5. Import the saved specifications into the model collection of the Discovery Cartridge.

6. In the Discovery Cartridge, within the specification helper class, the following code can be
used to read the number of required holders for a card. If characteristic is available with
default value set, value of characteristic can be read and required number of holders can
be created.

 int numberOfHolders=1;
 Specification holderspecification = (Specification)
persistenceMgr.getObjectById(
 Specification.class,
HelperSingletonHolder.SPECIFICATION_ID);
 Set<CharacteristicSpecUsage> usages =
holderspecification.getCharacteristicSpecUsages();
 for (CharacteristicSpecUsage usage : usages) {
 CharacteristicSpecification tmpCharSpec =
usage.getCharacteristicSpecification();

 if(tmpCharSpec.getName().equals("requiredHolders"))
 {

 Set<CharacteristicSpecValueUsage> values =
usage.getValues();
 for(CharacteristicSpecValueUsage valueUsage : values)
 {
 DiscreteCharSpecValueUsage charusage =
(DiscreteCharSpecValueUsage) valueUsage;

 boolean isdefault = charusage.getDefaultValue();
 if(isdefault)
 {
 String defaultvalue = charusage.getValue();
 numberOfHolders = Integer.parseInt(defaultvalue);
 }
 }
 }
 }

Chapter 1
Associating Contiguous Slots to a Card

1-14

7. Generate the required number of slots based on the value of required holders by
generating unique global IDs for them.

8. Associate the generated slots to the card. You can use the below HelperSingletonHolder
class to fetch the specification of the card.

private static class HelperSingletonHolder {
 private static final long SPECIFICATION_ID;

 static {
 oracle.communications.inventory.api.entity.Specification
specification =
oracle.communications.integrity.scanCartridges.sdk.helper.BaseSpecification
Helper
 .loadSpecification(

oracle.communications.integrity.fttxsnmpcartridge.modelcollections.fttxsnmp
cartridge.equipment.GenericEquipmentSpecification.SPEC_NAME,
 new java.util.HashMap<String,
oracle.communications.inventory.api.entity.CharacteristicSpecification>());
 SPECIFICATION_ID = specification.getEntityId();
 }

 }

Figure 1-2 shows a sample discovery scan result wherein a single card entity is associated to
three contiguous slots.

Figure 1-2 Sample Discovery Scan Result for a Card requiring Three Holders

Figure 1-3 shows the sample reconciliation results in UIM.

Chapter 1
Associating Contiguous Slots to a Card

1-15

Figure 1-3 Sample Reconciliation Results on UIM

If a card with multiple holders is deleted on UIM after reconciliation, then a discovery scan will
generate Entity+ discrepancies on the holders it is associated to. In this case, reconciling one
discrepancy will create a card that is associated to the all the holders, thereby ignoring the
other two discrepancies.

About Source Control
See Design Studio Developer's Guide for information about source control.

Working with Source Control for Network Integrity
When developing cartridge projects for Network Integrity, you may store your work in various
source control systems. The eclipse platform, upon which Design Studio is based, provides
support for integrating with source control systems. Plug-ins are available for most common
source control systems. The exact behavior of Design Studio when used in an environment

Chapter 1
About Source Control

1-16

where the files are backed by a source control system depends on the source control system
and the source control Team plug-in that the developer is using.

This section describes which files must be source controlled and which files must be writable to
continue working.

Table 1-1 describes the structure of the directories and the files in a Design Studio for Network
Integrity project and recommends how they should be handled with respect to a source control
system.

Table 1-1 Source Control Handling for Various Files and Directories

Directory or File Description Source Control Handling

ProjectDir/ Project's top level directory. Under source control. All files directly under this
directory must be source controlled.

ProjectDir/cartridgeBin/ Cartridge bin directory is where the
deployable IAR files are located.

This directory should be source controlled but
the contents should not.

ProjectDir/cartridgeBuild/ Cartridge build directory contains files
which are outputs of the cartridge build
process.

This directory should be source controlled but
the contents should not.

ProjectDir/dataDictionary/ This directory contains the files where the
data dictionary information is stored.

This directory and its contents should be source
controlled.

ProjectDir/doc/ This directory contains documentation
files.

This directory and its contents should be source
controlled.

ProjectDir/generated/ This directory contains generated
artifacts of the build process.

This directory should be source controlled.
Except for the src sub-directory, the contents of
this directory should not be source controlled.

ProjectDir/generated/src/ This directory contains generated
artifacts of the build process.

This directory should be source controlled, but it
contents should not.

ProjectDir/integrityLib/ This directory contains jars that are part
of the Network Integrity server Enterprise
Archive (EAR). These jars are in the
project's classpath.

This directory should be source controlled. The
files in this directory should not be source
controlled.

ProjectDir/integrityLib/
packaged

This directory contains jars that are
created by Design Studio for Network
Integrity and which are packaged into the
cartridge IAR file. The jars are added to
the Network Integrity EAR when the
cartridge is deployed. These jars are in
the project's classpath.

This directory should be source controlled. The
files in this directory should not be source
controlled.

ProjectDir/lib/ This directory contains jars and other files
that are not part of the Network Integrity
server EAR. Some of these files are part
of the project classpath.

This directory should be source controlled. The
mds.mar file is output to this directory. The
mds.mar file should not be source controlled.
The user may also want to source control other
files in this directory.

ProjectDir/mdsArtifacts/ This directory contains files that are both
input and outputs of the UI Hints
infrastructure.

This directory should be source controlled. The
following files under this directory should also be
source controlled:

• MDSAvailablePagePanels.xml
• MDSAvailablePagePanels.xsd
• MDSMetaData.xml
The remaining files in this directory should not be
source controlled.

Chapter 1
Working with Source Control for Network Integrity

1-17

Table 1-1 (Cont.) Source Control Handling for Various Files and Directories

Directory or File Description Source Control Handling

ProjectDir/model/ This directory contains files that are used
to persist the information about
cartridges, actions, processors, model
collections and address handlers.

This directory and its contents should be source
controlled.

ProjectDir/out/ This directory contains output classes. This directory should not be source controlled.

ProjectDir/resources/ This directory is not used. This directory does not need to be source
controlled.

ProjectDir/src/ This directory contains the user supplied
code for the cartridge.

This directory and its contents should be source
controlled.

Design Studio for Network Integrity assumes that all files and directories of a cartridge project
are writable. Some source control systems and team plug-ins automatically manage the files
and directories to make them writable as the software needs to write to them. If this is not the
case for your chosen source control/Team plug-in combination, then you should manually
ensure that this is the case before working with a source controlled project.

Tips and Tricks
This section provides tips and tricks for working with processors in Design Studio and
compiling and building Network Integrity cartridges.

About Java Errors in the Generated Controller Class
Compile errors in the generated Controller class of an action usually mean that there are errors
in the configuration of the processor table of that action. Look for a Design Studio Error on an
action or processor involved in the processor chain. Correct the error, then save all files and
perform a clean operation to regenerate all generated files.

Renaming or Deleting Actions and Processors
When renaming an action or a processor, Design Studio only renames and refactors the
generated Java source code. Likewise, when deleting an action or a processor, Design Studio
only deletes the generated Java source code. These changes result in errors remaining in the
processor implementation code and they must be corrected manually.

Adding External Libraries to a Java Build Path
To add an external library to the project for use by a processor, you must first copy the JAR file
into the lib directory of the cartridge project. Then, you must add an entry for this library into the
project's Java Build Path. This can only be done in the Package Explorer or the Navigator view.

From either view, right-click the project and select Properties. In the Properties dialog, select
Java Build Path in the left side, and select the Libraries tab. Now you can select Add
External Jars to add your libraries.

Chapter 1
Tips and Tricks

1-18

About “Missing Required Library" Errors for External Libraries
You have copied the required library JAR files into the lib directory of your cartridge project,
and you have added these libraries into your project's Java Build Path. If you are still getting
missing required library errors, refresh your cartridge project to cause Design Studio to
notice the added library.

To refresh your project, go to the menu Windows, then Show View, then open Package
Explorer, then right-click your project, and select Refresh. Follow this by cleaning and building
the project.

Error Marker on Cartridge but not on any Entities
If there is an error marker on the cartridge itself, but there are no error marker on any cartridge
entities (actions, processors, Model Collections, and so on), then try checking the cartridge
project using the Package Explorer view or the Navigator view. Sometimes the error markers
are on some generated artifacts instead.

If there are no error markers on anything else, then try a Refresh and Rebuild operation. Go
into Package Explorer or Navigator view, right-click the top-level project, and select Refresh.
Then, choose the menu Project, then Clean, and choose to clean and rebuild all projects.

Chapter 1
Tips and Tricks

1-19

2
Working with Actions

This chapter provides information about Oracle Communications Network Integrity actions,
result categories, and discrepancies.

This chapter contains the following sections:

• About Actions

• About Import Actions

• About Discovery Actions

• About Assimilation Actions

• About Discrepancy Detection Actions

• About Discrepancy Resolution Actions

About Actions
Actions are entities that represent a particular software function that a deployed cartridge
performs at run time. A cartridge project usually contains multiple actions.

At run time, when an action is deployed to Network Integrity (by deploying a Network Integrity
cartridge from Oracle Communications Service Catalog and Design - Design Studio, or by
using the Oracle Cartridge Deployer), an action is implemented as a J2EE Message Driven
Bean (MDB).

Actions are of different types:

• Import action: Used for importing data, typically from an inventory system, and persisting
the inventory data in the Results Model using POMS entity managers.

• Discovery action: Used for discovering data, typically from a network, and persisting the
discovered data in the Results Model using POMS entity managers.

• Assimilation action: Used for post-processing previously discovered data, and persisting
the data in the Results Model using POMS entity managers. The assimilation action cannot
produce import results.

• Discrepancy detection action: Used for finding discrepancies between discovered
entities and imported entities.

• Discrepancy resolution action: Used for fixing discrepancies in an external system, or a
network.

See the Design Studio Modeling Network Integrity Help for more information about creating
actions.

About Actions and Processors
An action performs a certain function that is supported by a Network Integrity project. To
implement this function, a processor is introduced to implement an atomic sub-function, which
is part of the functions performed by the action. For example, an SNMP discovery action has at
least one processor that performs SNMP polling on network devices and another processor

2-1

that models the discovered raw SNMP data into the Results Model and persists it using POMS
entity managers.

An action contains one or more processors. Each processor is responsible for an atomic
function. By chaining the processors inside an action, the action can perform a complex
function, such as discovering a network, importing an inventory system, assimilating
discovered data, or detecting and resolving discrepancies.

When an action is invoked, the processors are run in the sequence they were placed inside the
action. The code-generated action controller controls processing.

See "Working with Processors " for more information about processors.

About Action within Actions
You can add an entire action as a processor in an action. If the action you want to add belongs
to another cartridge project, you must make your project dependent on the one containing the
action you want to add.

You cannot modify the order in which the processors from an imported action are run, but you
can place new processors in between its processors.

For example, Table 2-1 shows two actions.

Table 2-1 Example Action Used as a Processor in Another Action

Action A Action B

Action A consists of the following processors:

1. Processor A1

2. Processor A2

3. Processor A3

Action B consists of the following processors:

1. Processor B1

2. Action A

3. Processor B2

The full representation of Action B in Table 2-1 is:

1. Processor B1

2. Action A:

a. Processor A1

b. Processor A2

c. Processor A3

3. Processor B2

In this example, action B actually contains five processors. The sequence of the processors
from action A cannot be changed in action B. However, new processors can be inserted
between the processors from action A.

For example, the Cisco SNMP cartridge contains a discovery action, which extends the
discovery action from the MIB-II SNMP cartridge.

Figure 2-1 shows the processors contained inside the Discover Generic Cisco SNMP action
(from the Cisco SNMP Cartridge).

Chapter 2
About Actions

2-2

Figure 2-1 Discover Generic Cisco Action Processors

This discovery action contains Discover MIB II SNMP as the imported action. By importing the
Discover MIB II SNMP action, the Discover Generic Cisco action automatically gets the MIB II
discovery functions (logical device discovery) provided by the productized MIB-II SNMP
cartridge.

In addition, the Discover Generic Cisco action discovers physical devices (through Cisco
SNMP Physical Collector processor and Cisco SNMP Physical Modeler processor), modeling
the logical side (through the Cisco SNMP Logical Collector processor and Cisco SNMP Logical
Modeler processor).

About the Generated Action MDB and Controller
Every action becomes a J2EE Message Driven Bean (MDB) at run time. The controller
controls the execution sequence of the processors inside an action.

Both the Action MDB and controller classes are code-generated. No further Java coding is
necessary for either the MDB or the controller class. These two classes are transparent to a
Network Integrity cartridge developer using Design Studio. At design time, the cartridge
developer should not have to implement any Java code for an action because all required Java
implementations for actions are code-generated.

The generated Action MDB and controller classes can be found at the following directory:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_Type\Act
ion_Implementation_Prefix

where the elements on the path are defined as follows:

• Studio_Workspace: Eclipse Workspace root

• NI_Project_Root: Network Integrity project root

• Project_Default_Package: The default package configured in the Project editor

• Action_Type: Select from the available action types:

– assimilationactions

– detectionactions

– discoveryactions

– importactions

– resolutionactions

• Action_Implementation_Prefix: action implementation prefix in lowercase.

The generated MDB class is named: ActionNameMessageDrivenBean.java.

Chapter 2
About Actions

2-3

The generated controller class is named ActionNameMessageDrivenBeanController.java.

During design time, compilation errors or warnings against this Java class might occur. These
errors and warnings are cleared after properly implementing and configuring the action (and its
processors).

Figure 2-2 shows the directory that contains the generated MDB and controller classes.

Figure 2-2 Generated MDB and Controller Class Directory

About Scan Parameter Groups
Scan parameter groups are a special type of specification that adds fields to the Network
Integrity UI. You can add fields to the Create Scan page, allowing the Network Integrity user to
pass scan parameter values to run-time scans. You can add fields to the Scan Details page,
displaying the configured scan parameter values on configured scans.

Add and configure characteristics on scan parameter groups to create input fields for scan
parameters in the Network Integrity UI.

You can add scan parameter groups to the following types of actions:

• Assimilation actions

Chapter 2
About Actions

2-4

• Discovery actions

• Import actions

See the Design Studio Modeling Network Integrity Help for more information about creating
and configuring scan parameter groups.

Extending the Create Scan Page
In Design Studio, you can configure characteristics on scan parameter groups to appear as
input fields on the Create Scan page of the Network Integrity UI. These input fields allow the
Network Integrity user to pass scan parameters to run-time scans.

For example, if a network device requires a login and password for Network Integrity to
establish a connection, you can add input fields for the user name and password to the Create
Scan page. Network Integrity users can enter the user name and password and save the
values to the scan. Each scan run passes the user name and password parameter values to
the network device to establish a connection.

See the Design Studio Modeling Network Integrity Help for more information about adding and
configuring characteristics on scan parameter groups.

Figure 2-3 shows the Create Scans page. The Scan Action Parameters section lists all the
input fields defined by characteristics on scan parameter groups in Design Studio.

Chapter 2
About Actions

2-5

Figure 2-3 The Create Scans Page

Extending the Scan Details Page
In Design Studio, you can configure characteristics on scan parameter groups to appear as
read-only fields on the Scan Details page of the Network Integrity UI. These fields display the
saved scan parameter values on the scan.

See the Design Studio Modeling Network Integrity Help for more information about adding and
configuring characteristics on scan parameter groups.

Figure 2-4 shows the Scan Details page.

Chapter 2
About Actions

2-6

Figure 2-4 The Scan Details Page

About Conditions
Design Studio sets conditions for processors used in action executions in Network Integrity.

An action can contain conditions. By creating and applying conditions to processors, at run
time you can dynamically control which processors should be run inside an action based on
the condition (whether true or false). Conditions are implemented as a Java class that
implements the condition interface. Design Studio generates the code for the condition
interface. You then implement the condition interface. Conditions can be applied to one or
more processors. Conditions can be set to be either true or false. One processor can also have
multiple conditions applied. In this case, the processor are run if all the conditions are true

See the Design Studio Modeling Network Integrity Help for more information about creating
conditions and applying them to processors.

About Generated Classes and the Implementation Class
When a condition is configured for an action, Design Studio generates two classes:

• Condition interface, which takes the name
ConditionName_Implementation_PrefixCondition.java

• Request, which takes the name ConditionName_Implementation_PrefixRequest.java

The generated classes are available at:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_Type\Act
ion_Implementation_Prefix

Note:

This directory also contains generated action MDB and controller classes.

The following is a sample generated condition interface which defines one method,
checkCondition. In this sample, ValidDeviceRequest is the generated request class for the
condition:

Chapter 2
About Actions

2-7

public interface ValidDeviceCondition {

 /**
 * @param context
 * @param request
 * @return @see boolean
 * @throws ProcessorException
 */
 public boolean checkCondition(DiscoveryProcessorContext context,
 ValidDeviceRequest request) throws ProcessorException;
}

Design Studio also generates the skeleton implementation class for this condition interface. To
open the Java editor and start the Java implementation, click the Implementation Class link.

Adding Dependent Actions with Conditions as Processors
When you add an action from a dependent cartridge project, the action comes with its
conditions. The conditions cannot be removed from any processors to which they are applied
in the dependent cartridge project.

You can add and remove additional conditions to processors belonging to actions from
dependent cartridge projects.

By adding new conditions to dependent action processors, you can change whether an
imported processor is run.

Creating Condition Examples
See the following for examples of setting conditions in Network Integrity:

• Multiple Vendor SNMP Discovery

• Multiple Protocol Discoveries

About Model Collections in Actions
Use model collections to gather specifications from other, dependent cartridges and make
them available to actions in the current cartridge project.

Adding a model collection to an action enables the generation of the Specification Helper
classes for specifications from other cartridge projects. These classes are by the action for
modeling the discovered data into the Oracle Communications Information Model and
persisting it using POMS entity managers.

If an action is imported into another action in a different cartridge project, the Network Integrity
packager uses the model collections to determine how to build the specification DAO files so
that all specifications (from both the imported action and the current action) are included.

See "About Model Collections" for more information about model collections.

About For Each Processors
An action can contain a For Each processor. The action controller sets the execution sequence
of the processors based on the order in which the processors are configured. Usually a
processor is invoked only once, and when it has run, the controller invokes the next processor,
until all processors in an action are invoked. However, one or more processors may be run

Chapter 2
About Actions

2-8

repeatedly. For example, when importing an inventory system, it is typical to first get a list of
devices from the inventory system, then go through the list of devices and import each device
singly into Network Integrity. In this example, the processor importing a single device is
repeatedly run for all the devices in the returned device list. You can use For Each processors
to create a loop, containing one or more processors, to repeatedly run the processors. Design
Studio for Network Integrity supports nested For Each processors.

A For Each processor expects a collection as the input parameter so that it can iterate through
the collection and, for each object in the collection, invoke the processors inside the loop.
There must be a preceding processor that outputs an array or a Java object that implements
java.lang.Iterable (for example, java.util.List) as an output parameters to create a For Each
processor.

See the Design Studio Modeling Network Integrity Help for more information about creating For
Each processors.

About Result Categories
Result category is a mandatory field for the following action types:

• Discovery action

• Import action

• Assimilation action

Result category is the identifier for a result group. An action configured with a result category
persists the results to the corresponding result group after being deployed and run in Network
Integrity. The result category is visible in the Network Integrity UI when displaying the scan
results.

Figure 2-5 shows the result category in the Network Integrity UI. The discovered device is
stored under the result category, Device.

Tip:

Provide an appropriate result category when configuring an action, because this
value is displayed in the Network Integrity UI.

Figure 2-5 Result Category in Network Integrity UI

Result categories identify a result group that an action adds the results to the result group. The
result category value configured for the action must match the result group name in the Java
implementation (the addToResult method) for the discovered data. See Network Integrity
Information Model Reference for information about using result categories in modeling results.

For more information about this Java implementation, see "Working with Processors ".

Chapter 2
About Actions

2-9

Design Studio does not explicitly validate this result category name against the actual result
group name specified in the Java implementation.

The result category and action define a result source for the following action types:

• Discrepancy detection action

• Discrepancy resolution action

Both actions work on results (to perform discrepancy detection or resolution, respectively)
based on the result source.

For example, a discovery action persists discovered data in two result categories:

• Device

• Workstation

A discrepancy detection action works on discovered data stored in the result categories that
match the result groups in the Java implementation. If the result category configured for the
discovery action does not match the actual result group name in the Java implementation, but
the discovery detection action is configured with the result source based on the result category
configured in Design Studio, the discrepancy detection action is not able to find the results to
perform discrepancy detection at run time. In other words the result group name does not
match the result category defined in result source.

About Import Actions
Import actions are used to import data from an inventory system into Network Integrity. The
data is stored in the Oracle Communications Information Model representation and is flagged
as having come from the inventory system. The Network Integrity GUI displays and reports on
the data discovered by an import action. The data can also subsequently be processed by
discrepancy actions that compare network-discovered data to inventory-discovered data, and
reports differences between them.

Import actions are edited in Design Studio. As a result of the editing, Design Studio generates
most of the required deployment artifacts. However, you must supply some Java
implementation. After this is done, and all error problems are cleared, and if the import action is
not abstract, Design Studio automatically packages the action into a cartridge Integrity ARtifact
(IAR) file that can be easily deployed into the Network Integrity server. Then, on the Network
Integrity server, an import scan can be created and run, and the scan results viewed or
reported on.

See the Design Studio Modeling Network Integrity Help for more information about creating
and configuring import actions and processors.

See "Implementing an Import Processor" for more information.

About Discovery Actions
The discovery action discovers data, typically from the network, and persists it to the Oracle
Communications Information Model. The discovery action accesses the network using a
variety of technologies and protocols, such as simple network management protocol (SNMP).

Because SNMP is such an important protocol for network discovery, Network Integrity provides
specific features to allow streamlined development of SNMP network discovery cartridges
within Design Studio for Network Integrity. See "Implementing the SNMP Processor" for more
information.

See "Implementing a Discovery Processor" for more information.

Chapter 2
About Import Actions

2-10

See the Design Studio Modeling Network Integrity Help for more information about creating
and configuring discovery actions and processors.

About Discovery Action Address Handlers
Discovery scans are often used to scan multiple devices in the network. A discovery scan can
use a variety of protocols to perform a scan. To facilitate scan processing, Network Integrity
supports an address expansion and validation software component called an address handler.
Address handlers perform two functions:

• They validate that a user-supplied address string is syntactically correct for a protocol.

• They expand address strings which represent multiple addresses, into a collection of
individual addresses.

This allows the user to configure a scan of multiple addresses using a compact, efficient
notation; for example: the notation 10.156.67.1-254 expresses the range of addresses
from 10.156.67.1 to 10.156.67.254, which is 254 addresses.

Discovery actions can optionally specify an address handler to use. It is best practice to create
an address handler whenever address validation is desired. Addresses are validated when a
scan configuration for the discovery action is saved, and also when the scan is run.

In addition, address strings representing multiple addresses are expanded into a collection of
addresses when the scan runs. When an address string is expanded into multiple addresses,
Network Integrity calls into the discovery action multiple times until each individual address has
been scanned. The scanning of multiple addresses is done in parallel.

Address handlers are created in Design Studio for Network Integrity. Design Studio for Network
Integrity generates some artifacts for the address handlers. However, you should supply
implementation code to complete the address handler.

Address handlers become stateless session beans in the run-time environment. Cartridge
projects containing address handlers must be deployed before any cartridge project that uses
the address handlers are deployed.

Note:

Address handlers cannot be created in the same cartridge project as actions. To add
address handlers to actions, you must make the cartridge project that contains the
actions dependent on the project that contains the address handlers.

You can download the and import the Address_Handler cartridge project which contains
several basic address handlers. See "About the Address_Handlers Cartridge" for more
information.

See the Design Studio Modeling Network Integrity Help for information about creating address
handlers.

About the Address_Handlers Cartridge
Network Integrity provides the Address_Handlers cartridge which implements the following
address handlers:

• IPAddressHandler validates and expands both IPv4 and IPv6 address.

It validates and expands the following IP address formats:

Chapter 2
About Discovery Actions

2-11

– Single IP addresses; for example: 10.156.67.123

– IP address ranges using “-"; for example: 10.156.67.10-125

– IP address ranges using “*"; for example: 10.156.67.*, equal to 10.156.67.0-255

– IP addresses using Classless Inter-Domain Routing (CIDR); for example:
10.156.67.0/24

• URLAddressHandler validates URL syntax addresses.

• File TransferAddressHandler validates addresses and paths used by the file transfer
processor, as follows.

– Allows the field to contain one or two tokens delimited by "/"

– Using a single token identifies:

* The absolute path to files that are local to the Network Integrity server, for
example: /tmp

– Using two tokens identifies:

* The remote location and absolute path

* Host_name/path, for example: someserver.us.com/tmp/test

* IPV4Address/path, for example: 10.156.58.63/tmp/test

* IPV6Address/path

– Validates the proper format of IPV4 and IPV6Address

Note:

The file transfer processor does not support address expansion and relative paths.

• Corba URLAddressHandler validates that the address entered in Network Integrity is a
properly formatted IPv4 or IPv6 CorbaLoc URL. For more information, see Network
Integrity CORBA Cartridge Guide.

Implementing Address Handlers
You must specify the implementation class for an address handler. See the Design Studio
Modeling Network Integrity Help for more information.

About the AddressHandler Interface
Address handlers must implement the AddressHandler interface which is shown and described
in the following section:

package oracle.communications.integrity.api;

import java.util.List;
import oracle.communications.integrity.common.AddressHandlerException;
import oracle.communications.integrity.common.AddressesStatus;

/**
 * AddressHandler is common interface which should be implemented by the
 * class implementing the Address expansion and validation of addresses.
 */

Chapter 2
About Discovery Actions

2-12

public interface AddressHandler {

 /**
 * This method expands the list of address or addressRange provided.
 * @param addressRangeList - a list of String representing either an address or an
address range
 * @return List - a list of Strings each of which represents an individual address
 * @throws AddressHandlerException
 */
 public List<String> expandAddressRange(List<String> addressRangeList) throws
AddressHandlerException;

 /**
 * This method validates the list of address provided.
 * @param address
 * @return AddressesStatus
 * @throws AddressHandlerException
 */
 public AddressesStatus validate(List<String> address) throws
AddressHandlerException;

 /**
 * This method validates the single address provided.
 * @param address
 * @return boolean
 * @throws AddressHandlerException
 */
 public boolean validate(String address) throws AddressHandlerException;

 /**
 * This method counts the number of addresses after expansion of address parameter
passed.
 * Here maxCountLimit can be NULL. If maxCountLimit is NULL, method return the total
count of expanded address.
 * If maxCountLimit is specified, method does not count the expanded address
 * beyound that limit and returns the maxCountLimit + 1.
 * @param addressRangeList
 * @param maxCountLimit
 * @return int
 * @throws AddressHandlerException
 */
 public int countExpandedAddresses(List<String> addressRangeList, Integer
maxCountLimit) throws AddressHandlerException;
}

About Dynamic Address Handlers
When you configure a Network Integrity discovery scan, you specify one or more addresses as
the scope for the discovery scan.

The discovery scan scope can point to one or more addresses.

When the network changes, you likely need to modify the discovery scope to add or remove
addresses.

You can create an address handler that references a file at run time, dynamically populating
the discovery scan scope.

See the Design Studio Modeling Network Integrity Help for information about creating an
address handler.

The following sections explain how to implement a dynamic address handler.

Chapter 2
About Discovery Actions

2-13

Validating the Address Handler

Validation methods are invoked to validate user-entered addresses. In this sample, an address
is expected to be a path to a file (absolute, or relative to the WebLogic Server Network Integrity
domain). This validation method checks each address, and the result indicates which
addresses (if any) are not valid:

@Override
public boolean validate(String address) throws AddressHandlerException {
 File file = new File(address);
 if (!file.exists() || !file.isFile()) {
 return false;
 }
 return true;
}

You must also implement a list variant of the validation method without additional validation
logic. The following sample shows the method for implementing a list variant.

@Override
public AddressesStatus validate(List<String> addresses)
 throws AddressHandlerException {
 AddressesStatus result = new AddressesStatus();
 for (String address : addresses) {
 if (!validate(address)) {
 result.getInvalidAddressList().add(address);
 }
 }
 result.setAllAddressValid(result.getInvalidAddressList().isEmpty());
 return result;
}

Expanding Address Handlers

When you run a scan, the address handler invokes address expansion methods to derive
individual address from ranges of addresses.

The expandAddressRange method takes the addresses (as entered on the Scope tab) and
returns a list of expanded addresses.

The file is read line by line and the following logic is applied:

• Remove leading and trailing white space

• Ignore empty lines

• Ignore comments (starting with #)

• When a line starts with $, it indicates a malformed address and the address expansion
fails.

The explicit validate method is not invoked for expanded addresses.

The use of a LinkedHashSet avoids issues with duplicate addresses in the file, while still
preserving the order. In this sample, each input address references a file.

@Override
public List<String> expandAddressRange(List<String> addresses)
 throws AddressHandlerException {
 Set<String> expandedAddresses = new LinkedHashSet<String>();
 for (String address : addresses) {
 expandedAddresses.addAll(readAddressesFromFile(address));
 }

Chapter 2
About Discovery Actions

2-14

 return new ArrayList(expandedAddresses);
}
public List<String> readAddressesFromFile(String path)
 throws AddressHandlerException {
 try {
 BufferedReader reader = new BufferedReader(new FileReader(path));
 try {
 List<String> addresses = new ArrayList<String>();
 String address = null;
 while ((address = reader.readLine()) != null) {
 // ignore blank lines, and comment lines (starting with #)
 address = address.trim();
 if (! address.isEmpty() && ! address.startsWith("#")) {
 // Address validation applies only to addresses entered as Scope for scan. In
this example, further validation may be of interest in case file content is malformed.
This illustrates how to reject an illegal dynamic address
 if (address.startsWith("$")) {
 throw new AddressHandlerException("Illegal address \"" + address + "\" found
in file \"" + path + "\"");
 }
 addresses.add(address);
 }
 }
 return addresses;
 } finally {
 reader.close();
 }
} catch (IOException ex) {
 throw new AddressHandlerException("Unable to read addresses from file \"" + path +
"\"", ex);
 }
}

The following sample shows a method that returns the count of the expanded addresses. For
certain types of address handlers, counting is more efficient than expansion. For example,
a /24 IP address range is 256 addresses. In this sample, addresses are expanded and
counted.

@Override
public int countExpandedAddresses(List<String> addresses, Integer maxCount)
 throws AddressHandlerException {
 return expandAddressRange(addresses).size();
}

Testing the Dynamic Address Handler

To test a dynamic address handler, create a discovery action in Design Studio that uses the
dynamic address handler you implemented. See the Design Studio Modeling Network Integrity
Help for information about creating actions.

To test the dynamic address handler:

1. Deploy the cartridge containing the dynamic address handler and the discovery action.

2. Create an address.txt address file that is accessible to the application server. The file is
created in the Weblogic domain home directory with the following content:

Some Address
Another Address
Address 3

3. In Network Integrity UI, create a scan and select the discovery action you created.

Chapter 2
About Discovery Actions

2-15

4. In the Scope tab, specify the addresses.txt file.

5. Run the scan.

6. On the Scan Results page, click Display Addresses to see the expanded addresses that
were read from the file.

7. Edit the addresses.txt file and change the last address:

Some Address
Another Address
New Address

8. Run the scan again and view the addresses to see the new addresses that were read from
the file.

About Discovery Action Result Categories
A discovery action must be configured with a valid result category. For example, a discovery
action that discovers devices should be configured with the Device result category.

See "About Result Categories" for more information.

See the Design Studio Modeling Network Integrity Help for more information about adding a
result category to a discovery action.

About the Discovery Action in the Network Integrity UI
After successfully building a discovery action in Design Studio (see "Building and Packaging
Projects"), deploy the cartridge to Network Integrity (see "Deploying and Undeploying
Cartridges").

When the cartridge containing the discovery action is successfully deployed to Network
Integrity, log on to the Network Integrity UI and configure a scan using the deployed discovery
action.

The recently deployed discovery action is available in the Scan Action list when creating a
scan configuration. See the Network Integrity Help for more information about creating a scan.

Figure 2-6 displays a discovery action called Discover Sample Device.

Figure 2-6 Creating a New Scan Configuration

Chapter 2
About Discovery Actions

2-16

About Discovery Action Scan Parameter Groups
You can configure scan parameter groups for a discovery action. Add characteristics to scan
parameter groups to appear in the Network Integrity UI as scan parameters. For example,
consider the following scan parameters:

• Port: The port number that a discovery command is sent to.

• Username: The user name to make the connection.

• Password: The password to make the connection.

• Scan Mode: The scan mode to be assigned to the scan.

Note:

While performing SNMP scans, the mode from the Global property file takes
precedence over individual scan modes.

When a scan is created using Discover Sample Device (see "About the Discovery Action in the
Network Integrity UI"), the Scan Action Parameters section on the Create Scan page is filled
with SNMP scan parameters.

About Discovery Action Scan Parameter Groups displays the Scan Action Parameters area
with SNMP scan parameters configured.

Figure 2-7 Configured SNMP Scan Parameters

To make configuration items available in the Network Integrity UI, add and configure
characteristics on scan parameter groups. See Design Studio Modeling Network Integrity Help
for more information.

See "About Scan Parameter Groups" for more information.

About scanMode Parameter
You can choose and assign a scan mode to each SNMP scan by using a configurable
scanMode parameter. However, if a scan mode is already set in the Global property file, then

Chapter 2
About Discovery Actions

2-17

that mode takes precedence regardless of the mode chosen on the user interface. If the Global
property file does not exist, then the mode chosen on the interface is applied to the scan. The
scan will be run on the mode chosen on the UI if the scan mode set on the Global property file
is custom.

You can set the scanMode parameter with the required value while editing the corresponding
SNMP scan or creating a new SNMP scan. While creating a new SNMP scan, the parameter
value is set to normal by default.

Customizing Response Timeout for Devices in SNMP Discovery Scan
You can customize response timeout for devices in SNMP discovery scan using Response
Timeout field on Edit Scan or Create Scan pages.

Setting the response timeout for a scan enables you to stop any device or devices that take
longer than the required time, without disturbing the scan.

You can set the response timeout only for SnmpParameters group of a Discovery Scan.

To customize the response timeout for a Discovery scan:

1. Go to Manage Scans.

2. Select the required SNMP Discovery scan from Search Results.

OR, click the Create icon to create a new scan.

3. From the Edit Scan or Create Scan page, enter the corresponding SNMP Discovery scan
details.

4. Under Scan Action Parameters section, select SnmpParameters from Select
Parameter Group list.

5. Set the required timeout value in Response Timeout.

Note:

The default value of the Response Timeout parameter is 60 seconds.

6. Click Save and Close.

The scan is set with the required response timeout value.

About Assimilation Actions
Assimilation actions perform additional processing on existing Network Integrity network data
to derive additional, often higher level, information from the data. For example, an assimilation
action might be used to derive connectivity relationships between endpoints discovered by
previous scans. Assimilation actions cannot manipulate or edit scan results.

Assimilation scans are different from other types of scans in that they do not retrieve their data
from external sources. Instead, assimilation scans work on the scan results of other discovery,
import, or assimilation scans. When you run an assimilation scan, the scan selects other scans
as inputs to the assimilation scan in the Scope page of the Network Integrity GUI. You can
select discovery, import, or other assimilation scans as input.As with other scan types, the data
from assimilation actions is stored in the Oracle Communications Information Model
representation. The data from assimilation scans is flagged as having come from the network.
The Network Integrity GUI displays and reports on the data discovered by an assimilation

Chapter 2
About Assimilation Actions

2-18

action. The data can also subsequently be processed by discrepancy actions, which compare
network discovered data to inventory discovered data and report where differences are found.

Assimilation actions are edited in Design Studio. As a result of the editing, Design Studio
generates most of the required deployment artifacts. However, you must supply some Java
implementation. After this is done, and all error problems are cleared, and if the assimilation
action is not abstract, Design Studio automatically packages the action into a cartridge Integrity
ARtifact (IAR) file, which can be easily deployed into the Network Integrity server. Then, on the
Network Integrity server, an assimilation scan can be created and run, and the scan results
viewed or reported on.

See "Implementing an Assimilation Processor" for more information.

See the Design Studio Help for more information on creating assimilation actions and
processors.

About Discrepancy Detection Actions
The discrepancy detection action is a Network Integrity operation that compares discovery and
import scan results, and reports on their differences by generating discrepancies.

A discrepancy detection action can be run immediately following a discovery, import, or
assimilation scan. (Select the Detect Discrepancy check box in the scan configuration to set
the trigger.) The entity results from the triggering scan become the Compare entities for the
detection action. The action then uses a matching algorithm to find from the other side, and
precedes with the comparisons.

See "About the Compare and Reference Sides" for a fuller description of the two sides of
entities of discrepancy detection.

See "About the Base Detection Project and the Default Comparison Algorithm" for a
description of the comparison algorithm.

Create a discrepancy detection action whenever new discovery, import, or assimilation actions
are created, because every detection action is configured to receive results from specific
actions only. See "About Result Sources" for more information.

See "About Discrepancy Detection Processors" for more information.

See the Design Studio Modeling Network Integrity Help for more information about creating
discrepancy detection actions and processors.

About Discrepancy Detection
Discrepancy detection triggers immediately after a scan is finished. A scan is configured to use
a single type of action, and therefore only generates Discovery results (representing network
entities) or Import results (representing inventory system entities). Therefore, when the
discrepancy detection action triggers, it has immediate access to one side of results: the
compare entities.

For the other side of the results, the detection action searches the Network Integrity database
for results with the following criteria:

• The results must come from the opposite system from the triggered scan. For example, if
the detection action triggers from a discovery scan, then the detection action searches the
database for Import result.

• The results have a matching name and result category (as configured by result source).

• The results must come from the most recent scan result.

Chapter 2
About Discrepancy Detection Actions

2-19

If no matching results are found, then EXTRA_ENTITY discrepancies are generated for each
root entity on that result.

Identifying and Resolving Missing Entity Discrepancies at the Root-level
Network Integrity supports identifying and resolving the missing entity discrepancies at root-
level entities such as Physical Device and Logical Device.

The UIM integration cartridge contains the required matcher and a resolution procedure, where
the missing entity is handled as follows:

1. Run the Import scan for Node A and Node B that are available in UIM.

2. Run the Discovery scan for Node A and Node B with discrepancy enabled.

Note:

If NI discovers Node B, then NI will show the discrepancy on Node A as a
missing entity.

3. Click Review Discrepancies to view the list of discrepancies, select the corresponding
discrepancy Entity-.

4. From Actions, select Correct in UIM to remove Node A in UIM.

About Result Sources
A result source specifies a list of scan actions that can trigger a discrepancy detection action.
The triggering action must be a discovery, import, or assimilation action. By default, results
from all categories are included in the discrepancy detection. It is possible to choose a subset
of the categories to apply the discrepancy detection.

For example, Figure 2-8 illustrates a Cisco router discovery action that produces results in 2
categories: Device and VPN. Two separate detection actions are written to compare the
results. Each detection action specifies a result source with the same action, but different result
category. For example, the device discrepancy detection action receives results of Device
category only.

Figure 2-8 Discrepancy Detection Actions (Example 1)

Chapter 2
About Discrepancy Detection Actions

2-20

A result source that does not specify a result category matches every result category
generated by the scan action. Figure 2-9 illustrates a Cisco discrepancy detection action that
receives both device and VPN categories of results.

Figure 2-9 Discrepancy Detection Action (Example 2)

The result source is a mandatory field; there must be at least one entry in the table. Design
Studio marks the discrepancy detection action with an error during a project build if the table
has no entries.

Note:

No two discrepancy detection actions can have the same result source.

About Result Source and Scan Types
Typically a result source configuration detection action has a single action as the result source:
usually the discovery action. This detection action triggers when a scan is configured using that
exact discovery action, and the Detect Discrepancy option is checked. This detection action
does not trigger by scans configured with any other discovery or import action. Do not set the
Detect Discrepancy option on the Import scan, because this might not trigger a detection
action at all.

Generated Action MDB and Controller
The detection action is implemented as an MDB. See "About the Generated Action MDB and
Controller" for more information.

About Discrepancy Resolution Actions
A discrepancy resolution action is an extendable Network Integrity operation which acts on an
external system to resolve a discrepancy. For example, a resolution action updates a mismatch
in an inventory system using information gathered from the network or generates a trouble
ticket to kick off a network configuration change process.

A discrepancy resolution action operation is initiated by the Network Integrity user on the
Manage Discrepancy page, using the following steps:

Chapter 2
About Discrepancy Resolution Actions

2-21

1. The user identifies the desired resolution action on selected discrepancies. Each
discrepancy can have only one resolution action set.

2. The user submits the discrepancies with identified resolution actions to the system.

On receiving the submitted discrepancies, Network Integrity groups them based on their scan
origin, result category, and resolution label, and then invokes the appropriate discrepancy
resolution action.

The action then examines each discrepancy in detail, using the contained information to figure
out the appropriate steps to resolve the problem.

As with other types of actions, a discrepancy resolution action is made up of a sequence of
discrepancy resolution processors. The processors are shown in the Processor table in Design
Studio. At the beginning of an action operation, these processors are invoked serially from top
of the table to bottom. The first processor is given the list of submitted discrepancies marked.
This processor determines a subset of these discrepancies to handle (which can range from
none to all), performs the resolution operation, and sets their status to Processed or Failed.
Then, the next processor is given the remaining discrepancies for processing, and so on.

The action is complete when all the processors are invoked. If there are any discrepancies
which remain unhandled at the end, their status is automatically set to Not Implemented.

The following sections in this chapter describe general information about implementing a
resolution action. For a detailed discussion of a working sample, see the following documents
included with the cartridges:

• Network Integrity Cisco Router and Switch UIM Integration Cartridge Guide

• Network Integrity MIB-II UIM Integration Cartridge Guide

See "About Discrepancy Resolution Processors" for more information.

See the Design Studio Modeling Network Integrity Help for more information about creating
discrepancy resolution actions and processors.

About the Resolution Action Label
The Resolution Action Label identifies the discrepancy resolution action in the Network
Integrity UI. It is displayed as a command in the Actions menu of the Discrepancy Search
Results table of the Review Discrepancies page.

Figure 2-10 displays the label corresponding to the command.

Chapter 2
About Discrepancy Resolution Actions

2-22

Figure 2-10 Resolution Action Label in Actions Menu of Network Integrity UI

This label is a mandatory field. Design Studio reports an error if this label has no value. The
use of a command phrase as the label string is recommended. Some example labels are:

• Correct in Inventory System

• Open a Trouble Ticket

The label input field allows you to choose either a label from another discrepancy resolution
action defined within your workspace, or to type in a new label. A label can be shared by
multiple actions; this implies that multiple actions are sharing a single menu item in the Actions
menu of the Discrepancies page.

Network Integrity determines the correct action to invoke based on a combination of the label
and the result source.

Note:

No two discrepancy resolution actions can have the same label and the same result
source.

About Result Sources
The result source is a list of discrepancy filtering criteria. Each criterion represents a single
source of discrepancy, and is specified by a combination of the originating scan action and a
result category. A resolution action only receives discrepancies from the specified result
categories which were created by scans using the specified actions.

Figure 2-11 shows an example of result sources being applied in Network Integrity.

Chapter 2
About Discrepancy Resolution Actions

2-23

Figure 2-11 Result Source Example 1

A criterion that does not specify any result category matches all result categories generated by
the scan action in the criterion.

Figure 2-12 shows a representation of the discrepancy types.

Figure 2-12 Result Category Example

The result source is a mandatory field; there must be at least one entry in the table. Design
Studio marks a discrepancy resolution action with an error during a project build if this table
has no entries.

Note:

No two discrepancy resolution actions can have the same label and the same result
source.

Generated Action and MDB Controller
The discrepancy resolution action is implemented as an MDB, just like any other Network
Integrity action.

Chapter 2
About Discrepancy Resolution Actions

2-24

See "About the Generated Action MDB and Controller" for more information.

Chapter 2
About Discrepancy Resolution Actions

2-25

3
Working with Processors

This chapter provides information about Oracle Communications Network Integrity processors.
This chapter contains the following sections:

This chapter contains the following sections:

• About Processors

• Implementing a Processor

• Implementing an Import Processor

• Implementing a Discovery Processor

• Implementing the SNMP Processor

• Implementing an Assimilation Processor

• About Discrepancy Detection Processors

• About Discrepancy Resolution Processors

About Processors
In Network Integrity, processor entities are the building-blocks for actions, as they implement
atomic sub-functions for actions.

For example, an SNMP processor is included in an action to poll network devices; a modeler
processor is included in an action to model raw SNMP data from a network device and add it to
a database. Combined, these two processors comprise a discovery action that polls SNMP-
enabled network devices and persists the modeled SNMP data.

By adding multiple processors to an action, the action performs several complex function by
running the processors according to the sequence in which they were added to the action.

Processors are of different types:

• Import processor: Part of an import action.

• Discovery processor: Part of a discovery action that can discover anything.

• SNMP processor: Part of a discovery action that is prebuilt to discover only SNMP-
enabled devices.

• Assimilation processor: Part of an assimilation action.

• File transfer processor: Used to retrieve files from local or remote directories. For more
information, see Network Integrity File Transfer and Parsing Guide.

• File parsing processor: Used to parse data retrieved by the File Transfer processor so
that the data is available to other processors. For more information, see Network Integrity
File Transfer and Parsing Guide.

• Discrepancy detection processor: Part of a discrepancy detection processor action.

• Discrepancy resolution processor: Part of a discrepancy resolution action.

Unlike actions, processors are not visible in Network Integrity.

3-1

About Context Parameters
Configure input and output parameters for processors.

Input and output parameters are optional for a processor.

After adding input and output parameters for the processor, Oracle Communications Service
Catalog and Design - Design Studio generates the request and response Java classes based
on the input and output parameters.

Specifying Context Parameters before Creating Implementation Class
When creating a processor, it is a good practice to properly configure the context parameters
before saving the processor. This way Design Studio properly generates the skeleton
implementation Java class for the processor with the correct input and output parameters. If
the input and output context parameters are modified later, the generated Interface changes,
but Design Studio does not automatically update the implementation class. The user must
manually update the implementation class to comply with the changed interface.

About Properties and Property Groups
A property group is a logical container configured on a processor. A property group can be
added to multiple processors. Property group names must be unique within a processor.

Properties are added to property groups and are assigned property values to pass to the
processor.

Property groups do not inherently pass any values to the processor other than the values
belonging to its properties.

Property groups and properties are configured on processors on the Properties tab of the
Processor editor.

Property groups can be configured as Managed groups, where the values for the properties it
contains can be set at run time using the MBean interface. See Network Integrity System
Administrator's Guide for more information. Only managed groups can contain sensitive
properties.

Property groups can be configured as Map groups, where the property group produces a
simplified API for properties that are used as maps.

Design Studio generates a Java class for the property group so that you can extend a cartridge
to access the property values it contains using getter and setter methods.

A property consists of a name-value pair that is passed to the processor through the property
group. Property names must be unique within the property group.

The property value can be set in the following ways:

• At design time, by setting the property with a static value.

• At deployment time, by setting the property with a cartridge model variable.

• At run time, using the MBean interface, by configuring its property group as a managed
group.

You can configure properties as sensitive. To be configured as sensitive, the properties must
be contained in managed property groups and their values must be encrypted. See Network
Integrity System Administrator's Guide for information about how to encrypt property values.

Chapter 3
About Processors

3-2

You can set the encrypted value of a sensitive property with a model variable at deployment
time, or you can set it at run time using the MBean interface.

For more information about setting sensitive properties, see the Design Studio Modeling
Network Integrity Help.

For more information on adding property groups to a processor, adding properties to a property
group, and setting cartridge model variables, see the Design Studio Help.

About Generated Code
This section describes code generation for processors in Network Integrity:

• About the Location for Generated Code

• About the Processor Interface

• About the PropertyGroup and Properties Classes

About the Location for Generated Code
Design Studio code-generates the relevant Java classes for the processor. The generated
code is located at:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Processor_Type
\Processor_Implementation_Prefix

where:

• Studio_Workspace is the Eclipse Workspace root

• NI_Project_Root is the Network Integrity project root

• Project_Default_Package is the default package configured in the Project editor

• Processor_Type is run time following action types:

– discoveryprocessors

– importprocessors

– assimilationprocessors

– detectionprocessors

– resolutionprocessors

• Processor_Implementation_Prefix is the action implementation prefix in lowercase.

About the Processor Interface
Every processor has a generated interface. The generated processor interface class is named
Processor_NameProcessorInterface.java.

In general, the generated processor interface has the invoke method defined. The interface
has two forms of invoke methods, depending on whether there is an output parameter defined
for the processor.

// Signature for processor which does not have output parameters
public void invoke(<Processor_Specific_Context> context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

// Signature for processor which has output parameters

Chapter 3
About Processors

3-3

public ExampleProcessorResponse invoke(<Processor_Specific_Context> context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

The generated processor interface has a slightly different signature, depending on the type of
processor: for example, Processor_Specific_Context differs between processor types. See
individual chapters on specific processors for more information.

About the PropertyGroup and Properties Classes
A properties class is always code-generated for the processor, whether the processor has
property groups and properties configured or not. The properties class is used as an input
parameter for the constructor of the generated request class.

The generated properties class is named Processor_NameProcessorProperties.java.

The generated properties class has a public method, String[] getValidProperties(). This
method returns a string array that contains a list of valid property group names configured for
this processor. If the processor has no property groups configured, this method returns an
empty array.

If the processor has property groups and properties configured, for each property group a
PropertyGroup class is code-generated.

The generated PropertyGroup class is named PropertyGroup_NamePropertyGroup.java.

The generated PropertyGroup class represents the configured property group and all of its
properties. The generated properties class has the getter methods to get each PropertyGroup
directly, and has all the setter methods to modify the property values.

The generated PropertyGroup class has a public method, String[] getValidProperties(). This
method returns a string array that contains a list of valid properties names configured for this
property group. If the property group has no property configured, this method returns an empty
array.

If the property group is not configured as a Map group, the generated PropertyGroup class
provides getter methods for all the properties configured in this property group.

If the property group is configured as a Map group, the generated PropertyGroup class does
not provide getter methods for all the properties configured in this property group. Instead, the
API for the property group resembles a Java Map, where the property values are retrieved and
set using the property name passed as a value.

Implementing a Processor
Implementing a processor is done in the Processor editor Details tab. See the Design Studio
Help for specific configuration details.

You can click the Implementation Class link to open the Java editor for this implementation
Java class. Design Studio auto-generates the skeleton Java implementation class, which
implements the processor interface with an empty implementation method.

You must decide whether to complete implementing the method. If you modify the processor
(for example, by adding output parameters or removing parameters), the implementation class
displays a compiling error. This is expected because the skeleton implementation class is

Chapter 3
Implementing a Processor

3-4

regenerated. You must modify the implementation class to match the changed processor
interface.

When you delete a processor, you must manually delete the implementation class of the
processor. Design Studio does not automatically delete an implementation class when you
delete a processor.

For information about how to implement a processor, see the individual processor section.

About the Processor Finalizer
When a processor deals with resources (for example, sockets and files), it is necessary to
clean up the resources used or created while the processor runs. Using a finalizer on the
processor ensures that the used or created resources get cleaned up, whether the action fails
or is successful. When implemented, the finalizer cleans up the resources used or created by
the processor. It is not mandatory to implement the finalizer if the processor does not deal with
a resource, or if the resource is used only within the processor (in which case the processor
implementation should make sure the local resource is closed properly). The processor must
implement the finalizer if the processor allocates a resource that is to be output for use by
other processors.

Finalizers that are not inside a For Each loop are called by the action controller class (code-
generated) before it completes. Finalizers that are inside a For Each loop are called by the
action controller class at the end of the For Each loop. In all cases, finalizers are called in the
reverse order to which they are registered (finalizers registered first are called last; finalizers
registered last are called first).

About the ProcessorFinalizer Interface
The processor implementation class must implement the interface
oracle.communications.sce.integrity.sdk.processor.ProcessorFinalizer to have the action
controller clean up the resources that are used or created by the processor. If a processor
does not use or create a resource, it does not implement the ProcessorFinalizer interface.

The processor defines only one method:

public void close(boolean failed);

The processor that implements the ProcessorFinalizer interface must implement this method to
close all the resources used or created during the execution of this processor. This method
takes an input parameter as Boolean. If there is an exception during the execution of the
processors, the action controller calls the finalizer by passing True to this method; otherwise
the action controller calls the finalizer by passing False to the method, in the successful case.
The processor might implement the close logic differently for both successful and failed
scenarios: for example, if it is a failed scenario, the close method might log an error message
before closing the resources.

The following code shows how to implement the ProcessorFinalizer for a sample processor:

public class SampleProcessorImpl implements SampleProcessorInterface, ProcessorFinalizer
{
 public SampleProcessorResponse invoke(SampleProcessorRequest request)
 throws ProcessorException {
 // Implement the Processor here…
 }

 public void close(boolean failed) {
 if(failed) {
 // something is failed, log extra error message here.

Chapter 3
Implementing a Processor

3-5

 }
 // close the InputStream here.
 try {
 myInputStream.close()
 } catch(IOException ioe) {
 // log the IOException here…
 }
 }
}

About Memory Considerations
The action controller class calls the finalizers for both successful and failed scenarios. The
finalizers that are not inside a For Each loop do not begin until the end of the action. The
finalizers that are inside a For Each loop do not begin until the end of the loop. When a
processor that implements the ProcessorFinalizer completes the execution, it is still in the
scope of the action. The processor does not get purged by the garbage collector to release the
memory.

If a processor implements the ProcessorFinalizer, it is a good practice to limit the number of
member variables for that processor and ensure that the processor is not using a large amount
of memory. If the processor uses a lot of memory, it is a good practice to release the memory
as soon as it is no longer required. For example, if a processor is using a large HashMap, and
it also implements the ProcessorFinalizer, the processor should clear the contents of the
HashMap when it is done using it and assign the null pointer to this HashMap.

Implementing an Import Processor
Many deployment artifacts for the import action and its processors are generated automatically
while editing. However, you must supply implementations for the import processors using the
invoke method.

Two forms of this method are shown in the following code fragments:

// Signature for processor which does not have output parameters
public void invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

The parameters and return type of the invoke method are:

• Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set its values and return the
ProcessorResponse object.

• Processor_NameProcessorRequest: This is a value object that has the following getters:

Chapter 3
Implementing an Import Processor

3-6

– If scan parameter groups are specified for the import action, there is a getter that
returns a scan parameter groups value object.

– If properties are defined for the import processor, there is a getter that returns a
Processor_NameProcessorProperties value object.

– There is a getter for each input parameter that is defined for the processor.

– There is a getter method called getScopeAddress. This method is not useful for
import processor implementation. Instead, the inventory system address and
authentication information should be retrieved using the POMS API.

See "Working with the POMS SDK" for more information.

This class is generated by Design Studio.

• DiscoveryProcessorContext context: This is an SDK type that has the following methods:

– getActionName: Returns the name of the action that the processor is running under.

– getProcessorName: Returns the name of the processor.

– persistResults: Causes POMS objects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

– addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: this is the name of a result group under which the results
are persisted.

* String resultGroupType: this is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: this is the root of result object graph to be persisted.

– getResultGroup: Used to get an existing result group from your current scan if you
must access the graph of POMS objects previously added to a result group. This
method takes two parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

Implementing a Discovery Processor
Configuration of the discovery action and its discovery processors results in the generation of
many deployment artifacts. However, you must supply implementations for the discovery
processors.

The implementation needs to implement the invoke method. Two forms of this method are
shown:

// Signature for processor which does not have output parameters
public void invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException
{
 // TODO Auto-generated method stub
}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException
{

Chapter 3
Implementing a Discovery Processor

3-7

 // TODO Auto-generated method stub
 return null;
}

The parameters and return type of the invoke method are:

• Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set it values and return the
ProcessorResponse object.

• Processor_NameProcessorRequest: This is a value object that has the following getters:

– If scan parameter groups are specified for the discovery action, there is a getter that
returns a scan parameter groups value object.

– If properties have been defined for the discovery processor, there is a getter that
returns a Processor_NameProcessorProperties value object.

– There is a getter method for each input parameter that is defined for the processor.

– There is a getter method named getScopeAddress(). This method returns the scope
address configured for this discovery action.

This class is generated by Design Studio.

• DiscoveryProcessorContext context: This is an SDK type, which has the following
methods:

– getActionName: Returns the name of the action that the processor is running under.

– getProcessorName: Returns the name of the processor.

– persistResults: Causes POMS objects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

– addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: This is the root of result object graph to be persisted.

– getResultGroup: Used to get an existing result group from your current scan if you
must access the graph of POMS objects previously added to a result group. This
method takes two parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

Implementation Code Example
The following Java code snippet demonstrates how to implement the invoke method for a
discovery processor, and how to add results to the result group using the addToResult()
method.

Chapter 3
Implementing a Discovery Processor

3-8

public SampleProcessorResponse invoke(
 DiscoveryProcessorContext context,
 SampleProcessorRequest request) throws ProcessorException {
 SampleProcessorResponse modelerResponse = new SampleProcessorResponse();
 SampleDevice device;

 // Get the input Sample Response Document from the Request.
 // This input response document models the sample device.
 SampleResponseType response = request.getSampleResponseDocument();

 try {
 // Make the Sample Device
 device = makeSampleDevice(response);
 // Add the device to the result group "Device", which matches
 // the result category configured in the Discovery Action.
 context.addToResult(device.getName(), "Device", device);
 modelerResponse.setSampleDevice(device);

 } catch (Exception e) {
 // Handle exception here…
 }
 return modelerResponse;
}

Implementing the SNMP Processor
There is no coding required for the SNMP processor. The Processor Interface, Request/
Response, Properties, and the relevant helper classes of an SNMP processor are all code -
generated and fully implemented.

The only configuration required for the SNMP processor is to configure the list of polled object
IDs (OIDs). Before configuring the OIDs for the SNMP processor, the MIB directory must be
properly specified for the Network Integrity preference. If the MIB directory is not properly
specified in the preference, you cannot configure the SNMP processor.

See the Design Studio Modeling Network Integrity Help for more information about configuring
SNMP processors.

About the Generated Implementation and XML Beans
The SNMP processor is a completely code-generated discovery processor. Along with the
usual discovery processor implementations (see "Implementing a Discovery Processor"),
Design Studio also generates the strongly-typed SNMP XML response document schema
based on the OIDs configured for the SNMP processor.

The generated SNMP XML response document schemas are available at the following
directory:

Project_Root\generated\SNMP_Processor_Name_snmpdiscoveryprocessor.

Under this directory, the following sub-directories exist:

• lib: Contains the compiled XML Beans JAR file for the strongly-typed SNMP XML response
document schemas

• snmpClasses: Contains the XML Beans Java classes for the strongly-typed SNMP XML
response document schemas

• snmpSchemas: Contains the generated strongly-typed SNMP XML response document
schemas

Chapter 3
Implementing the SNMP Processor

3-9

• xmlSrc: Contains the compiled XML Beans Java source for the generated strongly-typed
SNMP XML response document schemas.

It is recommended to first look at the schemas generated in this directory to understand how to
access the compiled XML Beans object for the SNMP response document.

The remaining implementations for the SNMP processor are at the following directory:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\snmpdiscoveryp
rocessors\SNMP_Processor_Implementation_Prefix

The SNMP processor always has an output parameter, which is the SNMP XML response
document (XML Beans object). This is available in the Response class for the SNMP
processor.

Supporting New MIBs
When the productized Network Integrity cartridges are imported into Design Studio (see
"Exporting and Importing Cartridges"), Network Integrity cartridges are bundled with a set of
MIB files, which is the same set of MIB files bundled with the SNMP Resource Adapter (see
"Working with JCA Resource Adapters").

If you must create a Network Integrity cartridge to poll certain MIB OIDs for certain specific
devices, which are not part of the bundled MIB files, you must get the MIB file (or set of MIB
files) that has the definitions of those MIB OIDs required to implement the new cartridge.

The new MIB files must be manually copied to the MIB directory configured in the Design
Studio preference (see the Design Studio Modeling Network Integrity Help). After the new MIB
files are copied to the MIB directory, the new MIB files are available to be loaded in Design
Studio. There is no need to restart Design Studio.

Note:

The MIB files in Design Studio and on the SNMP resource adapter must match. See
"Working with JCA Resource Adapters" for information about supporting new MIBs
for the SNMP resource adapter.

Implementing an Assimilation Processor
Many deployment artifacts for the assimilation action and its processors are generated
automatically while editing. However, you must supply implementations for the assimilation
processors using the invoke method.

Two forms of this method are shown in the following code fragments:

// Signature for processor which does not have output parameters
public void invoke(AssimilationProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(AssimilationProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

Chapter 3
Implementing an Assimilation Processor

3-10

 return null;
}

The parameters and return type of the invoke method are:

• Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set its values and return the
ProcessorResponse object.

• Processor_NameProcessorRequest: This is a value object, which has the following
getters:

– If scan parameter groups are specified for the assimilation action, there is a getter that
returns a scan parameter groups value object.

– If properties are defined for the assimilation processor, there is a getter that returns a
Processor_NameProcessorProperties value object.

– There is a getter for each input parameter that is defined for the processor.

This class is generated by Design Studio.

• AssimilationProcessorContext context: this is an SDK type, which has the following
methods:

– getActionName: Returns the name of the action under which the processor is
running.

– getProcessorName: Returns the name of the processor

– persistResults: Causes POMS objects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

– addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: This is the root of result object graph to be persisted.

– getLatestReultGroupsInScope: Returns an IteratorDisResultGroup, which is the
latest results in scope. This is essentially the discovery or assimilation scan inputs to
the assimilation action.

– getLatestScanRunsInScope: Returns an IteratorDisScanRun, which is the latest
scan runs in scope.

This is also essentially the discovery or assimilation scan inputs to the assimilation
action but includes several other objects from the Network Integrity model.

These additional Network Integrity model objects might be useful in performing out
assimilation processing in some cases.

– getPreviousAssimilationScanRun: Returns the latest completed scan run for the
current assimilation scan. Use this to look at previous results, comparing current scope
with previous scope.

– haveAllLatestScansInScopeChanged: Returns true if any of the following conditions
are met; false otherwise:

Chapter 3
Implementing an Assimilation Processor

3-11

* This is the first scan run for the assimilation scan.

* The latest scan run of every scan that is in the scope of both the previous
assimilation run and the current assimilation run is more recent than the previous
assimilation run.

– haveLatestScanInScopeChanged: Returns true if any of the following conditions are
met; false otherwise:

* This is the first scan run for the assimilation scan.

* At least one scan run in scope is more recent than latest assimilation scan run.

* The scope of the assimilation scan has changed between this run and the previous
run.

This function avoids unnecessary assimilation processing.

– getResultGroup: Used to get an existing result group from your current scan if you
need to access the graph of POMS objects previously added to a result group. This
method takes two parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

About Discrepancy Detection Processors
The discrepancy detection processor is the atomic sub-function of a discrepancy detection
action. The typical tasks of a detection processor are different than the scan-related processors
(discovery, import, and assimilation) and include the following:

• Create and add filters to alter the default behavior of the base discrepancy detection
action.

• Perform post-processing on the set of discrepancies produced by the base discrepancy
detection action.

See "Discrepancy Detection Processor Patterns" for more information about the various
patterns for detection action-processor implementation.

Discrepancy Detection Processor Patterns
There are several patterns of processor used inside a discrepancy detection action. Each
successive pattern introduces a new level of flexibility, power, and complexity. The patterns are
listed below, in order from the simplest to the most complex:

1. Reusing the base detect discrepancy action.

2. Adding new filters and handlers.

3. Adding post-processors.

Reusing the Base Detect Discrepancy Action
This usage pattern provides a baseline comparison algorithm between the compare and the
reference sides. A discrepancy detection action using this pattern has the ability to compare
exact entity attributes and associations, and can generate five of the seven types of
discrepancy. (Ordering Errors and Association Ordering Errors are not detected by the baseline
comparison algorithm, because it assumes that there are no ordered relationships.)

Chapter 3
About Discrepancy Detection Processors

3-12

To use this pattern, use following steps:

1. Create a discrepancy detection action.

2. Add the Detect Discrepancies action as a processor. The Detect Discrepancies action
belongs to the NetworkIntegritySDK project, which all Network Integrity cartridge project
are dependent on by default.

3. Set the result source.

See the Design Studio Modeling Network Integrity Help for information about the tasks above.

About the Base Detection Project and the Default Comparison Algorithm
The Base Detection project contains a reusable discrepancy detection action called Detect
Discrepancies. This discrepancy detection action is abstract and cannot be deployed by itself.
It is intended to be imported by virtually all other discrepancy detection actions. The Detect
Discrepancies action implements a general comparison algorithm that can work with all entity
types and specifications, and can detect and report all seven types of discrepancy.

This ability enables a cartridge developer to build a working discrepancy detection cartridge for
arbitrary discovered data without writing code. Its behavior is customizable, by using the
techniques described in the following processor patterns.

The default comparison algorithm is outlined below.

1. The detector loops over the compare root entities.

2. The detector checks if each compare root entity should be considered for discrepancy
detection. If it should not, the root entity is ignored, and the detector begins processing the
next compare.

3. A rootEntityHandler finds the matching reference root entity for the compare root entity.
The default rootEntityLoader uses the Name field to find the matching reference root
entity. If no reference root entity is found, an EXTRA_ENTITY discrepancy is generated.

4. The attributes of the matching entities are compared, and an
ATTRIBUTE_VALUE_MISMATCH discrepancy is generated for each attribute with different
values. If an attribute contains an ordered list of values, an ORDERING_ERROR
discrepancy is generated if the order of the values does not match.

5. The associations of the matching entities are compared, and an EXTRA_ASSOCIATION or
MISSING_ASSOCIATION discrepancy is generated for unmatched target entities of an
association. The default relationship handler uses the Name field to match related entities
of the compare and reference sides. If an association is an ordered association, an
ASSOCIATION_ORDERING_ERROR discrepancy is generated if the order of the
matching associated entities is different.

6. The child relationship of the matching entities is compared, and an EXTRA_ENTITY or
MISSING_ENTITY discrepancy is generated for unmatched child entities. The default
relationship handler uses the Name field to match child entities of the compare and
reference sides. If a child relationship is an ordered association, then an
ORDERING_ERROR discrepancy is generated if the order of the matching child entities is
different.

7. The comparison continues by applying the above algorithm to all children entities
recursively, until all entities have been checked. The comparison also stops at a given
entity if one of the following is true: the entity is a compare root entity, or the entity is
flagged as a shadow entity.

The Detect Discrepancy action creates discrepancies with a default severity of CRITICAL for
EXTRA_ENTITY and MISSING_ENTITY, and WARNING for the other types.

Chapter 3
About Discrepancy Detection Processors

3-13

Adding New Filters and Handlers
This usage pattern builds on the Reuse pattern by adding filters and handlers to customize the
general comparison algorithm. The following changes can be achieved:

• Which root discovery entities are of interest.

• How to match discovery entities to import entities.

• Which attributes are not significant for a particular entity type.

• How to compare a particular attribute.

• Which relationships to consider for a particular entity type.

• What severity to apply to a discrepancy.

• Define a relationship as ordered (to automatically add ORDERING checks).

• Set a default/suggested resolution action (such as Ignore or Correct in UIM).

To use this pattern, follow the Reuse pattern to create your detection action, and then create
one new detection processor, and move it above the discrepancy detector processor in the
table. This new processor becomes the filter initializer processor for the detection action. (For
example, in Figure 3-1, a new action follows this pattern by having its own Sample Filter
Initializer processor placed above the imported discrepancy detector processor.)

Figure 3-1 Sample Filter Initializer

The main task of a filter initializer Processor is to register filters and handlers for use by the
subsequent discrepancy detector processor. Handlers are code that implements various
behaviors used during discrepancy detection. Filters are code that manipulates the handlers to
be used by discrepancy detection.

About Filters
There are four different types of filters that can be added by the processor:

• AttributeFilter: This filter is called during the assignment of attribute handlers for the given
entity type. This filter can add, modify and remove handlers from the given
attributeHandlers.

Chapter 3
About Discrepancy Detection Processors

3-14

• RelationshipFilter: This filter is called during the assignment of relationship handlers for a
given entity type. This filter can add, modify and remove handlers from the given
relationshipHandlers.

• DiscrepancyFilter: This filter is called during assignment of discrepancy handlers for a
given entity type. This filter can modify or remove the default discrepancyHandler.

• RootEntityFilter: This filter is called during the assignment of the root entity handler for a
given entity type. This filter can replace the default rootEntityHandler with another one.

About Handlers
There are four types of handlers that can be manipulated by their associated filters:

• AttributeHandler: This handler can change the mapping of attributes, or change the
behavior of the comparison operation. For example, a string comparison is normally case-
sensitive. An attributeHandler can be added to cause a case-insensitive comparison to be
used instead.

Network Integrity provides a DefaultAttributeHandler class which implements the
necessary AttributeHandler interface and the default case-sensitive string comparison
behavior. To override this behavior, create a class which subclasses
DefaultAttributeHandler, and then override the following method:

protected boolean equalsNonNull(Object a1, Object a2);
• RelationshipHandler: This handler can change the mapping of relationships. For

example, a relationship comparison would normally check the identically-named
relationship on the reference entity. A relationshipHandler can be added which causes a
differently-named relationship to be used instead.

Network Integrity provides a DefaultRelationshipHandler class that implements the
necessary RelationshipHandler interface, and has knowledge of all relationships for each
supported Oracle Communications Information Model entity type. The following method
can be overridden by a new subclass to alter the default behavior.

protected Object getKey(DiscrepancyEnabled entity)

This method gets a key value that distinguishes a single entity from a set of entities within
a single relationship. The DefaultRelationshipHandler implementation returns the value
of the Name attribute for the input entity.

• DiscrepancyHandler: This handler can change the fields of a discrepancy immediately
after it is generated. It can also completely remove the discrepancy. An example of its use
is to adjust the severity value of a discrepancy of a DeviceInterface entity based on its
Speed value.

Network Integrity provides a non-accessible default DiscrepancyHandler implementation
which does nothing. To override this behavior, create a class which implements the
DefaultHandler interface, and implement the following method.

DisDiscrepancy processDiscrepancy(DiscrepancyEnabled currentEntity,
 DisDiscrepancy generatedDiscrepancy)

The overridden method should alter the input generatedDiscrepancy, and then return it.

• RootEntityHandler: This handler changes the algorithm for finding a matching reference
entity for an input compare entity. An example of its use is to change the default
comparison criteria to using the ID field to find the match, instead of the default of using
Name field.

Chapter 3
About Discrepancy Detection Processors

3-15

See "Using Root Entity Filter and Handler" for a full example of the proper setup and usage
of a root entity handler.

Filters and CimType
Filters register against one or more types of Information Model entities produced by a
Discovery, Import, or Assimilation scan. Filters can also register against one of more
specifications of an entity type, for more fine-grained control.

In Java code, the entity type and specification are designated by using the class CimType. To
register a filter against an entity type (for example, Equipment), use the single parameter
constructor for CimType:

CimType eqType = new CimType(Equipment.class);

To register a filter against a particular specification (for example, cevSensorClock, an
Equipment specification defined in the Cisco UIM cartridge), use the two-parameter constructor
for CimType:

CimType clockEqType = new CimType(Equipment.class, "cevSensorClock");

It is possible to take advantage of the inheritance model of the Information Model entity classes
to register quickly against several classes with one call. For example, all Information Model
entities that support discrepancy detection inherit from the class DiscrepancyEnabled.
Therefore, the following code CimType can register a filter against everything:

CimType allType = new CimType(DiscrepancyEnabled.class);

Filter and Handler Examples
The following examples demonstrate the types of filters and handlers. The prerequisite tasks
for all examples are to:

1. Create a discrepancy detection action.

2. Set the result source.

3. Add the detect discrepancy action as a processor.

4. Create a filter initializer processor.

5. Move the new processor above the discrepancy detector processor.

Using Attribute Filter and Handler (Static Attribute)

The following code fragments shows how to add an attribute filter to ignore the static attribute
description on LogicalDevices. The result of this code is that the new detection action does
not generate any description Attribute Value Change discrepancies on LogicalDevices.

1. Define the filter class and remove the handler for the attribute description.

private class LogicalDeviceAttributeFilter implements AttributeFilter {
 public void filterAttributes(CimType cimType, Map<String, AttributeHandler>
attributeHandlers) {
 attributeHandlers.remove(“description");
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

Chapter 3
About Discrepancy Detection Processors

3-16

3. In the invoke method, create the CIMType object to name the entity type, and add the
custom filter.

CimType ldType = new CimType(LogicalDevice.class);
detector.addFilter(ldType, new LogicalDeviceAttributeFilter());

Using Attribute Filter and Handler (Characteristic)

The following code fragments show how to add an attribute filter to ignore the characteristic
systemObjectId on LogicalDevice entities with the specification DemoLogicalDevice. The
main difference between this example and the previous example is step 3, where the
specification name must be included in the CimType constructor.

1. Define the filter class and remove the handler for the attribute systemObjectId.

private class DemoLogicalDeviceAttributeFilter implements AttributeFilter {
 public void filterAttributes(
 CimType cimType,
 Map<String, AttributeHandler> attributeHandlers) {
 attributeHandlers.remove(“systemObjectId");
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();
3. In the invoke method, create the CIMType object to name the entity type and the

specification, and add the custom filter.

CimType ldType = new CimType(LogicalDevice.class, "DemoLogicalDevice");
detector.addFilter(ldType, new DemoLogicalDeviceAttributeFilter());

Using Relationship Filter and Handler

In this example, the discrepancy detection action skips the physicalPorts relationship of all
Equipment entities. By using the following code fragment, the new detection action no longer
examines any children ports of equipment.

1. Define the filter class and remove the relationship handler for the relationship
physicalPorts.

private class EquipmentRelationshipFilter implements RelationshipFilter {
 public void filterRelationships(
 CimType cimType,
 Map<String, RelationshipHandler> relationshipHandlers) {
 relationshipHandlers.remove("physicalPorts");
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();
3. In the invoke method, create the CIMType object to name the entity type, and add the

custom filter.

CimType eqType = new CimType(Equipment.class);
detector.addFilter(eqType, new EquipmentRelationshipFilter());

Using Discrepancy Filter and Handler

This example sets the severity to Minor on every Missing Entity and Extra Entity discrepancy
generated by the new detection action. Use the following code fragment for this task:

Chapter 3
About Discrepancy Detection Processors

3-17

1. Define the filter class and add a new discrepancy handler. This handler performs a
discrepancy type check, and sets the severity accordingly.

private class CustomDiscrepancyFilter implements DiscrepancyFilter {
 public DiscrepancyHandler filterDiscrepancies(
 CimType cimType,
 DiscrepancyHandler handler) {
 return new DiscrepancyHandler() {
 public DisDiscrepancy processDiscrepancy(
 DiscrepancyEnabled cimBase,
 DisDiscrepancy disDiscrepancy) {
 if (DisDiscrepancyType.EXTRA_ENTITY ==
 disDiscrepancy.getType()
 ||
 DisDiscrepancyType.MISSING_ENTITY ==
 disDiscrepancy.getType()) {
 disDiscrepancy.setSeverity(DisDiscrepancySeverity.MINOR);
 }
 return disDiscrepancy;
 }
 }; // end return new()
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();
3. In the same invoke method, create the CIMType object to name the entity type, and add

the custom filter.

CimType allType = new CimType(DiscrepancyEnabled.class);
detector.addFilter(allType, new CustomDiscrepancyFilter());

Using Root Entity Filter and Handler

This advanced technique in this example changes the matching algorithm that finds the
matching reference entity for any compare entity. The default algorithm finds matches based
on a comparison of the value of the name attribute. This example changes the comparison to
use the nativeEmsName attribute instead.

Note:

This feature is used in the MIB II UIM cartridge.

The example is in two parts. The first part alters the root entity handler to match compare root
entities with reference root entities using the nativeEmsName attribute. The second part use
relationship handlers to make the discrepancy detector use nativeEmsName attribute to
distinguish the children.

First, the root entity filter and handler code fragments are as follows:

1. Define a method in the new processor to create the root entity filter. This filter creates a
new root entity handler and returns it.

private RootEntityFilter getRootEntityFilter() {
 return new RootEntityFilter() {
 @Override
 public RootEntityHandler filterRootEntities(
 CimType arg0, RootEntityHandler arg1) {

Chapter 3
About Discrepancy Detection Processors

3-18

 return new MatchRootEntityByNativeEmsNameInsteadOfName();
 }
 };
}

2. Define a private class that extends from DefaultRootEntityHandler. This class is the one
created in step 1. Override the getReferenceRootEntity() method as follows. Notice the
use of a string array containing the string nativeEmsName to specify the use of this
attribute. Also notice the use of a RuntimeException to report problems.

private class MatchRootEntityByNativeEmsNameInsteadOfName
 extends DefaultRootEntityHandler {
 @Override
 public DiscrepancyEnabled getReferenceRootEntity(DiscrepancyEnabled compareRoot)
{
 try {
 PomsManagerFactory factory = new PomsManagerFactory();
 DisResultGroupManager DisResultGroupManager =
 factory.getDisResultGroupManager();
 DisResultGroup g = DisResultGroupManager.getDisResultGroup(
 (Persistent) compareRoot);
 return new ReferenceRootFinder(g).
 findReferenceRoot((Persistent) compareRoot,
 new String[] { "nativeEmsName" });
 } catch (Exception e) {
 logger.log(Level.SEVERE,
 "Error while getting reference root, compareRoot " +
 compareRoot, e);
 throw new RuntimeException(
 "Error while getting reference root, Aborting discrepancy
generation",
 e);
 }
 }
}

3. In the invoke method of the processor, create the CIMType object to cover all entity types,
and add the root entity filter defined in step 1.

CimType allType = new CimType(DiscrepancyEnabled.class);
context.getRootEntityLoader().addFilter(allType, getRootEntityFilter());

Part two adds a relationship filter to each entity type that the detection processor expects to
encounter. This code fragment example shows a change to a single entity type. It changes the
LogicalDevice to DeviceInterface child relationship to match using nativeEmsName instead of
name. Normally, this code pattern needs to be repeated once for each entity type. (See the
MIB II UIM and Cisco UIM cartridge packs for a full example.)

1. Define the relationship handler as a class inside the processor's class. This class should
inherit from DefaultRelationshipHandler, and override the getKey() method to return

public class MatchDevIntfByNativeEmsName extends DefaultRelationshipHandler {
 @Override
 protected Object getKey(DiscrepancyEnabled entity) {
 return ((DeviceInterface) entity).getNativeEmsName();
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();
3. In the same invoke method, create the CIMType object to name the entity type, and add

the custom filter.

Chapter 3
About Discrepancy Detection Processors

3-19

CimType ldType = new CimType(LogicalDevice.class);
detector.addFilter(ldType, new RelationshipFilter() {
 @Override
 public void filterRelationships(
 CimType cimType,
 Map<String, RelationshipHandler> relationshipHandlers) {
 relationshipHandlers.put("deviceInterface",
 new MatchDevIntfByNativeEmsName());
 } // end filterRelationships
 } // end new RelationshipFilter
); // end addFilter

Adding Post-Processors
This usage pattern builds on the Reuse pattern and adds processors after the discrepancy
detector processor. These post-processors access the full set of detected discrepancies
using the getDiscrepancies() method of the DiscrepancyDetectionProcessorContext object
(context). Because they are not persisted until all processors in the action have run, the
discrepancies can be manipulated completely by the post-processors. They can be modified or
removed. Also, new discrepancies can be added.

Although all fields of a discrepancy can be modified by using setters, there are many fields that
should not be altered. The following discrepancy fields can be safely changed by post-
processors:

• priority, notes, discrepancyOwner

• severity, compareValue, referenceValue

• operation + operationIdentifiedBy + status (status set to OPERATION_IDENTIFIED)
(Must be set together.)

Any other discrepancy fields should not be altered; otherwise, discrepancy resolution actions
may suffer errors and failures.

An example of the use of post-processors is to automatically assign all CRITICAL severity
discrepancies to a specific department (using the discrepancyOwner field). The following
code snippet from a post-processor shows how this is done.

@Override
public void invoke(DiscrepancyDetectionProcessorContext context,
 DiscrepancyPostProcessorProcessorRequest request)
 throws ProcessorException {

 for (DisDiscrepancy discrepancy : context.getDiscrepancies()) {
 if (discrepancy.getSeverity().equals(
 DisDiscrepancySeverity.CRITICAL)) {
 discrepancy.setDiscrepancyOwner("Sherlock Holmes");
 }
 }
}

About Discrepancy Resolution Processors
The only type of processor available to the discrepancy resolution action is the discrepancy
resolution processor.

As with other types of actions, the list of processors are invoked serially from top of the table to
bottom. The first processor is given the list of submitted discrepancies. This processor
determines a subset of these discrepancies to handle (which can range from none to all),
perform the resolution operation, and set their status to either Processed or Failed.

Chapter 3
About Discrepancy Resolution Processors

3-20

Then, the next processor is given the remaining discrepancies for processing, and so on. The
action is complete when all the processors are invoked. If there are any discrepancies which
remain at the end, their status is set to Not Implemented.

The discrepancy resolution processor is the Java implementation of a discrepancy resolution
action. The processor performs the following tasks:

• Filter through its input list of discrepancies to process only those discrepancies it can
handle

• Communicate with the discovery or import system to correct a discrepancy

• Report the status of a correction operation

See "Implementing a Processor" for more information.

Creating a Discrepancy Resolution Processor
See the Design Studio Modeling Network Integrity Help for information about creating a
discrepancy resolution processor.

Implementing a Discrepancy Resolution Processor
This section provides details about the discrepancy resolution processor implementation.

About the Implementation Interface
The processor implementation class derives from a Design Studio-generated interface class.
There is a single abstract method that the implementation class must implement. The abstract
method has the following interface:

public <Processor_Name>Response invoke(
 DiscoveryResolutionProcessorContext context,
 <Processor_Name>Request request)
 throws ProcessorException
{
}

About Input Parameters for the Invoke Method
Table 3-1 describes the methods provided to the developer by the first parameter, context,
outlined in "About the Implementation Interface".

Table 3-1 Methods from the context Parameter

Context method Return Object Class Description

getActionName() String Getter for the name of the action.

getProcessorName() String Getter for the name of this processor.

getUnhandledDiscrepancies() Collection DisDiscrepancy Getter for a list of unprocessed discrepancies for this
invocation.

getAllDiscrepancies() Collection DisDiscrepancy Getter for a list of processed and unprocessed
discrepancies for this invocation.

discrepancyProcessed(DisDiscrep
ancy disc)

void Sets the status of the input discrepancy to
OPERATION_PROCESSED.

Chapter 3
About Discrepancy Resolution Processors

3-21

Table 3-1 (Cont.) Methods from the context Parameter

Context method Return Object Class Description

discrepancyFailed(DisDiscrepancy
disc, String failureMessage)

void Sets the status of the input discrepancy to
OPERATION_FAILED, and also sets the failure
message.

discrepancyReceived(DisDiscrepa
ncy disc)

void Sets the status of the input discrepancy to
OPERATION_RECEIVED.

The second parameter, request, contains getters for each item in the Input Parameters table. It
also contains a getter to retrieve the groups and items listed in the Properties tabbed page.

Return Type of Invoke Method
The return type of the invoke method varies, depending on the output parameters setting in
the Context Parameters tabbed page.

If there is no output parameter, then the return type is void.

If there are one or more output parameters, then the return type is a generated class with the
name Processor_NameResponse. This Response class has getters and setters for each item
in the Output Parameters table.

About the General Flow of the Discrepancy Resolution Processor
The usual pattern for implementing a discrepancy resolution processor is as follows:

1. Fetch the list of unhandled discrepancies using context.getUnhandledDiscrepancies()

2. Allocate discrepancies based on logical groupings; for example: all discrepancies on a
single card and on its children port.

Keep discrepancies that can be handled by this processor, and ignore or remove other
discrepancies.

3. For each group, perform operations to fix the discrepancies, Then, based on operation
results, set their status to Processed or Failed.

An error message can be saved in the Failure Reason field of the discrepancy, which is
displayed in the Network Integrity UI.

4. Set output parameters.

Fetching Discrepancies
The discrepancy resolution processor can use the context input parameter to fetch the list of
discrepancies to process. In the general flow, the processor uses the method
getUnhandledDiscrepancies() on context to retrieve a list of discrepancies that are not yet
handled by any previous processors.

It is also possible to retrieve the original full list of discrepancies by using the method
getAllDiscrepancies(), but this list includes discrepancies that are already handled by a prior
resolution processor.

It is possible to make updates to already handled discrepancies, such as updating the Notes
field to add more text.

Chapter 3
About Discrepancy Resolution Processors

3-22

See "About Discrepancies" for more information about the attributes of a Discrepancy object.

Grouping Discrepancies
Usually, a single resolution processor is responsible for handling the discrepancies of a single
entity type; for example: logical device or device interface only, or more frequently an explicit
set of specifications of an entity type.

Sometimes, a processor specializes in handling discrepancies of a very specific nature.
Therefore, the next logical task is to examine each unhandled discrepancy, to determine how it
should be handled by this processor.

A processor frequently uses one or more of the following discrepancy attributes as criteria for
handling. Of course, it may use all other attributes as criteria for determining special handling,
if necessary.

See "About Discrepancies" for a detailed explanation of these attributes:

• Type: Indicates the error being reported; for example: attribute mismatch, missing entity,
and so on.

• externalEntityType, staticEntityType: Indicates the type and specification of the target
entity.

• attributeOrRelationshipName: Indicates the attribute or the association that has the
discrepancy.

• compareValue, referenceValue: Each attribute indicates the value of an attribute on one
side of the comparison.

• compareEntity, referenceEntity: Each attribute is a reference to one entity being compared;
see "About the Compare and Reference Sides" and "About Discrepancy Types" for
important information on what entity each attribute is actually referencing.

• childTargetEntity: This is an additional entity reference used only for Association or Entity
discrepancy types; see "About Discrepancy Types" for more information.

Handling Discrepancies
Now that the target has been identified and grouped, the processor can decide whether to
proceed with the handling. If the processor can resolve this discrepancy, then the processor
can make appropriate API calls necessary to make the desired resolution on the system, and
report the result.

See "Reporting the Resolution Result".

Alternatively, the processor can decide to skip the discrepancy, and begin processing the next
one. The skipped discrepancy subsequently appears in the unhandled list of discrepancies for
the next processor.

Reporting the Resolution Result
When a discrepancy has resolved successfully, simply pass this discrepancy into the context
using the method discrepancyProcessed. This sets the discrepancy status to Processed.

context.discrepancyProcessed(discrepancy);

If the processor fails to resolve a discrepancy, it should set the discrepancy status to Failed
using the method discrepancyFailed in the context.

Chapter 3
About Discrepancy Resolution Processors

3-23

This method takes an additional String argument, which the processor can set a short
message to be displayed in the UI. The string is stored in the reasonForFailure attribute of the
discrepancy.

Note:

This error message is limited to a maximum of 255 characters.

context.discrepancyFailed(discrepancy, "Sample error message.");

If the processor needs to make a series of asynchronous invocations to handle a discrepancy,
it can set the discrepancy status to Received at the end of the first invocation.

This indicates to Network Integrity and to Network Integrity users that the discrepancy
resolution is in progress. This is done using the method discrepancyReceived in the context.

context.discrepancyReceived(discrepancy);

See "About Discrepancy Status" for an explanation of the transition rules for status values.

Handling Discrepancies Asynchronously
There are situations in which a discrepancy resolution operation cannot be completed within a
single invocation. For example, the CORBA interface for an external system to create a trouble
ticket requires the caller to supply a callback object for the notification of the final operation
result and ticket ID.

In this example, the resolution processor code can prepare the callback object and make the
initial CORBA call to submit the trouble ticket, and then it must return from the invoke method.
The subsequent resolution handling code must reside in the callback object, and receives the
notification, updating the discrepancy status accordingly.

In such cases, the processor should set the status of the discrepancy to RECEIVED using
context.discrepancyReceived() at the end of the handling code in the processor's invoke
method. This indicates to Network Integrity and to Network Integrity users that resolution
processing is in progress, and that additional status updates arrive later.

You must also save the entityID of the discrepancy (using discrepancy.getEntityId()) during
the processor's invoke method. When the subsequent resolution handing operation reaches
its conclusion, the status of the original discrepancy must be updated to PROCESSED or
FAILED. This is done through the Network Integrity web service by first retrieving the
discrepancy using the entityID, and then updating the status of the discrepancy.

The topic of how to save the entityID and how to create the subsequent code invocation is
beyond the scope of this guide. You may use any techniques available in J2EE to perform
these tasks.

Chapter 3
About Discrepancy Resolution Processors

3-24

4
Working with Discrepancies

This chapter provides an overview of discrepancies in Oracle Communications Network
Integrity.

About Discrepancies
When Network Integrity detects a difference while comparing import and discovery data, it
generates a discrepancy. The discrepancy captures all vital information about the difference,
such as the entity and the name of the attribute or relationship containing the difference, the
type of difference, and the values on both sides (that is to say, on the Compare, and the
Reference sides).

These topics are further explored in:

• About the Compare and Reference Sides

• About Discrepancy Types

• About Discrepancy Status

• About Discrepancy Detail

About the Compare and Reference Sides
When dealing with discrepancies, the data from the two sides are named Compare and
Reference. The significance is that the Compare side is the side of the scan that triggered the
discrepancy comparison.

If a scan using a discovery action was also configured to detect discrepancies, the
discrepancies created by that scan have discovery data on the Compared side, and import
data on the Reference side.

On the other hand, if a scan uses an import action with detect discrepancies configured, the
Compared fields of a discrepancy contain import data, and the Reference fields contain
discovery data.

The discrepancy field CompareSource holds a value that indicates the origin of the compare-
side data. The value is NETWORK for a discovery or an Assimilation scan, or INVENTORY for
an import scan.

Table 4-1 shows CompareSource values for different discrepancy origins.

Table 4-1 Listing CompareSource Values for Different Discrepancy Origins

Discrepancy
Origin

Compared Side CompareSource Reference Side ReferenceSource

Discovery Scan Discovery Data NETWORK Import Data INVENTORY

Import Scan Import Data INVENTORY Discovery Data NETWORK

Assimilation Scan Discovery Data NETWORK Import Data INVENTORY

4-1

About Discrepancy Types
There are seven types of discrepancy; they can be divided into four groups of related issues.

• Attribute Value Mismatch. See "Attribute Value Mismatch".

• Extra Entity, Missing Entity. See "Extra Entity and Missing Entity".

• Extra Association, Missing Association. See "Extra Association and Missing Association".

• Ordering Error, Association Ordering Error. See "Ordering Error and Association Ordering
Error".

Network Integrity does not allow new discrepancy types to be defined.

Attribute Value Mismatch
This discrepancy indicates that an entity exists in both the Compare and Reference results, but
an attribute was found not to have the same value on both sides.

Each discrepancy reports a mismatch problem on a single attribute. An entity can have
multiple Attribute Value Mismatch discrepancies reported, if it has several mismatched
attributes on both sides.

Table 4-2 shows discrepancy attributes and descriptions.

Table 4-2 Attribute Value Mismatch: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the target entity whose attribute has a mismatched value.

referenceEntity This is the matching entity on the other side of the discrepancy detection.

childTargetEntity Not used. This has no value.

attributeOrRelationshipName This holds the name of the attribute containing the mismatch.

compareValue The value of the attribute on the target entity.

referenceValue The value of the attribute on the matching entity on the other side.

Extra Entity and Missing Entity
This discrepancy indicates that an entity (and any dependent children) is present on one side
of the comparison, but is absent from the other side.

An Extra Entity discrepancy indicates that the entity is present in the Compared side, but not in
the Reference side.

In Figure 4-1, the example for the Extra Entity discrepancy shows an FDDI card in slot 7
present on the Compared side that is missing on the Reference side.

A Missing Entity discrepancy indicates the reverse: the entity is absent is the Compared side,
but present in the Reference side.

In Figure 4-1, the example for the Missing Entity discrepancy shows that slot 7 is missing an
FDDI card on the Compared side that is present on the Reference side.

Chapter 4
About Discrepancies

4-2

Figure 4-1 Examples of Extra Entity and Missing Entity

Table 4-3 shows discrepancy attributes and descriptions.

Table 4-3 Discrepancy Attributes and Descriptions

DisDiscrepancy Attribute Description

compareEntity This is the parent entity on one side of the comparison.

referenceEntity This is the parent entity on the other side of the comparison.

childTargetEntity This is the extra child entity on one side.

The entity exists on the Compared entity tree when the discrepancy type is Extra Entity.

The entity exists on the Reference entity tree when the discrepancy type is Missing
Entity.

attributeOrRelationshipName This holds the name of the association on the parent entity, which references the
childTargetEntity.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

When resolving an Extra/Missing Entity discrepancy, the processor is tasked with either adding
or removing an object from its target system. The processor must consider the system that it is
managing (Import/Inventory or Discovery/Network), and examine the following discrepancy
fields to determine the appropriate action:

• DiscrepancyType

• CompareSource

For example: A discrepancy resolution processor is created to make corrections to an
inventory system. When this processor receives an Extra Entity discrepancy, it must check the
value of CompareSource. If this value is NETWORK, the extra entity occurs in the network,
and therefore it must be missing from the inventory system. The processor takes the corrective
action of creating this entity in the inventory system.

However, if the discrepancy type is still Extra Entity, and CompareSource value is
INVENTORY, the extra entity occurs in inventory.

Table 4-4 shows the resolution operations for the example processor, given the actual factors
to be considered. The Present in columns indicate the system has the extra entity. The
Resolution Operation column lists the appropriate inventory operation to resolve this
discrepancy.

Chapter 4
About Discrepancies

4-3

Table 4-4 Appropriate Resolution Operations for Sample Processor

Discrepancy Type Compare Source Referece Source Present in
Network

Present in
Inventory

Resolution
Operation

Extra Entity Network Inventory Yes No Add the network
entity into
Inventory.

Missing Entity Network Inventory No Yes Remove the
inventory entity.

Note:

Table 4-4 assumes that the discrepancy detection action was triggered from a
Discovery scan.

If the discrepancies are generated by a discrepancy detection action that listens for results
from Import scans, the compare source and reference source are reversed, and subsequently,
the appropriate inventory operations are reversed as well. (This situation is not usual, but is
certainly possible.) See Table 4-5 for this example.

Table 4-5 Appropriate Resolution Operations for Sample Processor (Import Scan)

Discrepancy Type Compare Source Referece Source Present in
Network

Present in
Inventory

Resolution
Operation

Extra Entity Inventory Network No Yes Remove the
inventory entity.

Missing Entity Inventory Network Yes No Add the network
entity into
Inventory.

Network Integrity does not report Missing Entity discrepancies on the circuit of a root entity
when the root entity is absent from either the Compared side or the Reference side.

For example, if a discovery scan finds Device1 with circuits A and B in the network, and the
same device exists in inventory, but with circuits A, B, and C, Network Integrity reports a
Missing Entity discrepancy on circuit C in the network.

In the above example, Network Integrity can fully compare the results for Device1 from the
Compared side and the Reference side.

However, by default, when Device1 is not listed in the discovery results, Network Integrity does
not report Missing Entity discrepancies on the device.

You can build a discrepancy detection action or extend the base discrepancy detection action
to report missing Entity discrepancies on root entities. See "About Discrepancy Detection
Actions" for more information.

Extra Association and Missing Association
This discrepancy indicates that an association in one entity (source) referencing another entity
(target) is present on one side of the comparison, but is absent from the other side.

Chapter 4
About Discrepancies

4-4

An Extra Association discrepancy indicates that the association is present in the Compared
side, but not in the Reference side.

In Figure 4-2, the example for the Extra Association discrepancy shows a Mapped Device
Interface association from Port 1 to Interface 2 present on the Compared side that is missing
on the Reference side.

A Missing Association discrepancy indicates the reverse: the association is absent in the
Compared side, but is present in the Reference side.

In Figure 4-2, the example for the Missing Association discrepancy shows that the Mapped
Device Interface association from Port 1 to Interface 2 is missing on the Compared side but is
present on the Reference side.

Each discrepancy indicates a problem with a single direction of association. If two entities have
a bidirectional association with each other, and this bidirectional association is completely
missing on one side, two discrepancies are generated by Network Integrity.

Figure 4-2 Examples of Extra Association and Missing Association

Table 4-6 shows discrepancy attributes and descriptions.

Table 4-6 Extra Association and Missing Association: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the source entity on one side of the comparison.

referenceEntity This is the source entity on the other side of the comparison.

childTargetEntity This is the target entity of the association.

The entity exists on the Compared side when the discrepancy type is Extra Association.

It exists on the Reference side when the discrepancy type is Missing Entity.

attributeOrRelationshipName This holds the name of the association on the source entity which references the
childTargetEntity.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

The processor must examine the discrepancy to determine whether the appropriate resolution
operation is to add the association, or to remove it.

Table 4-7 shows the appropriate operation, given the values of discrepancy type, compare
source, and reference source within the discrepancy.

Chapter 4
About Discrepancies

4-5

Table 4-7 Appropriate Resolution Operations for Sample Processor

Discrepancy Type Compare Source Reference
Source

Present in
Network

Present in
Inventory

Resolution
Operation

Extra Association Network Inventory Yes No Add the
association into
the inventory
entity.

Missing Association Network Inventory No Yes Remove the
association from
the inventory
entity.

If the discrepancies are generated by a discrepancy detection action that listens for results
from Import scans, the compare source and reference source are reversed, and subsequently,
the appropriate inventory operation are reversed as well. (This situation is not usual, but is
certainly possible.)

Table 4-8 shows the appropriate operation for this particular situation.

Table 4-8 Appropriate Resolution Operations for Sample Processor (Import Scan)

Discrepancy Type Compare Source Reference Source Present in
Network

Present in
Inventory

Resolution
Operation

Extra Association Inventory Network No Yes Remove the
association from
the inventory entity.

Missing
Association

Inventory Network Yes No Add the
association into the
inventory entity.

Ordering Error and Association Ordering Error
In some cases, the ordering of child or associated entities is significant. This discrepancy
indicates that matched entities appear in different orders between the two sides. The only
difference between the two types of discrepancy is that an Ordering Error indicates a problem
with a parent/child association, while an Association Ordering Error indicates a problem with
some other association.

Table 4-9 shows discrepancy attributes and descriptions.

Table 4-9 Ordering Error and Association Ordering Error: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the source/parent entity on one side of the comparison.

referenceEntity This is the source/parent entity on the other side of the comparison.

childTargetEntity Not used. This has no value.

attributeOrRelationshipName This holds the name of the association having the ordering problem.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

Chapter 4
About Discrepancies

4-6

About Discrepancy Status
The discrepancy status field identifies the state of a discrepancy within its life cycle. Table 4-10
lists the possible discrepancy statuses.

Table 4-10 Discrepancy Statuses

Status Status Change Trigger Valid Follow-On Statuses

Opened NA Ignored, Identified

Ignored UI command Opened, Identified

Identified UI command Submitted, Ignored, Opened

Submitted Programmatic operation Received, Failed, Processed, Not Implemented

Received Programmatic operation Failed, Processed

Failed UI command Ignored, Identified

Not Implemented NA NA

Processed NA NA

Figure 4-3 shows the discrepancy status lifecycle diagram.

Figure 4-3 Discrepancy Status Life Cycle

Every discrepancy begins with a status of OPENED when it is first detected. It can then be
moved to one of two states by a user using a web UI operation:

• IDENTIFIED, by using a resolution action menu item

• IGNORED, by using the Ignore menu item

Chapter 4
About Discrepancies

4-7

When a discrepancy is in the IDENTIFIED state, a user can use the Submit operation to move
it to the SUBMITTED state. At this point, the discrepancy has moved out of user control, and
into the control of a resolution action.

The resolution action processes the submitted discrepancy, and reports the outcome by setting
the status to:

• PROCESSED, or

• FAILED

If the status is PROCESSED, the operation has succeeded, and the discrepancy can no longer
be acted upon. If the status is FAILED, it becomes available for the user to specify an operation
again, just like when it was first opened.

A resolution action may set a discrepancy status to RECEIVED immediately after the submit
operation. This status indicates that the resolution operation is in progress, and reports its final
operation status later.

About Discrepancy Detail
Table 4-11 lists all the attributes of a discrepancy. The Java type of a discrepancy is
DisDiscrepancy. Use Java getter and setter patterns to retrieve and set the attribute's value.
For example use the getPriority() method to get the value of priority, and setPriority(String)
method to change its value.

Although the setters for all attributes are public, most fields should not be directly set by the
processors. The following fields are safe to be used by processor Java implementations:

• priority

• notes

• discrepancyOwner

The status and failureReason fields should be set using the context methods when inside a
processor invoke method. Otherwise, they can also be set using setters.

Table 4-11 Discrepancy Attributes

DisDiscrepancy Attribute Type Description

type DisDiscrepancyType
(Enum)

The discrepancy type.

Valid values are:

• ATTRIBUTE_VALUE_MISMATCH
• EXTRA_ENTITY
• MISSING_ENTITY
• EXTRA_ASSOCIATION
• MISSING_ASSOCIATION
• ORDERING_ERROR
• ASSOCIATION_ORDERING_ERROR

severity DisDiscrepancySeverity
(Enum)

The severity of the discrepancy.

The values are (from most severe to least):

• CRITICAL
• MAJOR
• MINOR
• WARNING

entityName String The name of the entity for which this discrepancy is raised.

Chapter 4
About Discrepancies

4-8

Table 4-11 (Cont.) Discrepancy Attributes

DisDiscrepancy Attribute Type Description

externalEntityType String The name of the specification, if the entity has a specification.
Otherwise, the same value as staticEntityType.

staticEntityType String The name of the base entity type of the entity.

attributeOrRelationshipName String This holds the name of the attribute or relationship having the
discrepancy.

compareEntity long (Weak Reference) This is the entityID of the entity for which this discrepancy is
raised.

compareSystem DisSource (Enum) Indicates whether the compare data comes from Network
(Discovery) or Inventory (Import) system. Valid values are
NETWORK and INVENTORY.

compareValue String This is used by attribute value mismatch discrepancies to hold the
value of the attribute on the compare side.

compareSource String The source value of the compareEntity. This value is copied from
the Source field of the Scan configuration used to discover/import
this entity into Network Integrity.

referenceEntity long (Weak Reference) This is the entityID of the entity of the discrepancy on the opposite
side to the compareEntity.

referenceSystem DisSource (Enum) This indicates whether the reference data comes from Network
(Discovery) or Inventory (Import) system. Valid values are
NETWORK and INVENTORY.

referenceValue String This is used by attribute value mismatch discrepancies to hold the
value of the attribute on the reference side.

referenceSource String This is the source value of the referenceEntity. This value is copied
from the Source field of the Scan configuration used to discover/
import this entity into Network Integrity.

childTargetEntity long (Weak Reference) Used by Extra/Missing discrepancies to indicate the child/target
entityID of the entity of an association.

ancestorEntityName String This is the name of the ancestor (parent) entity for the discrepancy.

ancestorEntityType String This is the name of the specification, if the ancestor entity has a
specification. Otherwise, it takes the same value as
ancestorStaticEntityType.

ancestorStaticEntityType String This is the name of the base entity type of the ancestor entity.

parentResultGroup DisResultGroup This is a reference of the parent scan result detail (that is, the
result group) of the compareEntity.

path String This is the path to the entity for this discrepancy.

It is a comma-delimited list of entity IDs that describes the path
from the root entity.

For Missing Entity and Missing Association discrepancies, it is the
path to the compareEntity followed by the entityID of the
referenceEntity.

For other discrepancy types, it is the path to the compareEntity.

priority String This is a user-editable field used to indicate the priority of this
discrepancy.

This would typically be used for customer-specific categorization,
enabling a finer control than using severity alone.

notes String This is a user-editable field for comments.

Chapter 4
About Discrepancies

4-9

Table 4-11 (Cont.) Discrepancy Attributes

DisDiscrepancy Attribute Type Description

discrepancyOwner String This is a user-editable field used to indicate an external owner of
the discrepancy.

It may be used for other purposes if desired.

operation String This holds the name of the resolution action being invoked.

operationIdentifiedBy String This is the ID of the user who identified the resolution action (the
UI action to set the resolution operation, before the submit
operation).

operationSubmittedBy String This is the ID of the user who submitted the resolution action.

submittedTime Date This is the timestamp when the status changed to
OPERATION_SUBMITTED.

status DisDiscrepancyStatus
(Enum)

This is the current status of this discrepancy.

Valid values are:

• DISCREPANCY_OPENED
• DISCREPANCY_IGNORED
• OPERATION_IDENTIFIED
• OPERATION_SUBMITTED
• OPERATION_RECEIVED
• OPERATION_NOT_IMPLEMENTED
• OPERATION_PROCESSED
• OPERATION_FAILED

lastStatusChangeTime Date This is the timestamp when the status attribute was last updated.

reasonForFailure String This holds the error message set by the processor using
context.discrepancyFailed() method.

entityID long This is an Internal identifier.

Chapter 4
About Discrepancies

4-10

5
Working with the POMS SDK

This chapter provides information about how the persistent object modeling service (POMS)
manages persistent data in Oracle Communications Network Integrity.

This chapter contains the following sections:

• About POMS

• Working with POMS Entities

• Working with POMS Relationships

• Working with Specifications and Characteristics

• Working with the POMS Finder

• About Persist Results

About POMS
POMS manages all persisted data for Network Integrity. You use POMS for most cartridge
development, but you rarely need to deal explicitly with persistence details.

POMS includes the Java definition of the entities and relationships described in Oracle
Communications Information Model Reference.

While POMS includes both interface and implementation classes for the entities, you work only
with interfaces. These interfaces provide getters and setters for attributes and relationships.
Use the PersistenceHelper POMS SDK class to instantiate entities.

You can use the POMS SDK Finder class to find and retrieve existing persisted entities.

POMS is built on the EclipseLink Java persistence API (JPA) platform. You do not usually need
to know EclipseLink or JPA to use the POMS SDK. The exception is find operations where you
may have to know Java Persistence Query Language (JPQL). See "Working with the POMS
Finder" for more information about the find operations.

Table 5-1 describes the POMS SDK APIs.

Table 5-1 POMS SDK API Description

POMS SDK APIs Description

Entities The POMS SDK represents modelled entities as Java interfaces with getters
and setters for attributes and relationships. See "Working with POMS
Relationships".

Specifications and
characteristics

The POMS SDK includes APIs that allow you to operate on specifications and
characteristics. See "Working with Specifications and Characteristics".

PersistenceHelper The POMS SDK provides methods to instantiate a POMS entity or POMS
Finder. See "Working with POMS Entities" and "POMS SDK Interfaces".

Finder The POMS SDK provides various methods to define a query and retrieve
matching persisted entities. See "Working with the POMS Finder" and "POMS
SDK Interfaces".

5-1

Working with POMS Entities
The POMS Java interface for an entity has the same name as the entity described in the model
document. For example, entity Equipment becomes:

public interface Equipment

Attributes are accessed with familiar Java getters and setters. For example. The Equipment
name attribute is defined by:

public java.lang.String getName();
public void setName(java.lang.String name);

An entity may contain enumerated values for certain attributes. POMS implements these as
Java enumerations. For example, the EMSServiceState from LogicalDevice has the
following:

public enum EMSServiceState {
 UNKNOWN("UNKNOWN"),
 IN_SERVICE("IN_SERVICE"),
 OUT_OF_SERVICE("OUT_OF_SERVICE"),
 TESTING("TESTING"),
 IN_MAINTENANCE("IN_MAINTENANCE");

public oracle.communications.inventory.api.entity.EMSServiceState
getNativeEmsServiceState();
public void
setNativeEmsServiceState(oracle.communications.inventory.api.entity.EMSServiceState
nativeEmsServiceState);

When creating results, for example in a discovery processor, you must instantiate POMS
entities. Use the PersistenceHelper class, passing the desired entity class to the makeEntity
method:

Equipment equipment = PersistenceHelper.makeEntity(Equipment.class);

Working with POMS Relationships
Related entities are also accessed with getters and setters.

One-to-one Relationships
When a relationship refers to a single entity, the entity is accessed directly. For example, the
mapped physical and logical devices:

public oracle.communications.inventory.api.entity.LogicalDevice getMappedLogicalDevice();
public void
setMappedLogicalDevice(oracle.communications.inventory.api.entity.LogicalDevice
mappedLogicalDevice);

One-to-Many or Many-to-Many Relationships
When a relationship refers to multiple entities, the entities are accessed through a collection.
For example, the equipment to physical port relationship:

public java.util.List<oracle.communications.inventory.api.entity.PhysicalPort>
getPhysicalPorts();

Chapter 5
Working with POMS Entities

5-2

public void
setPhysicalPorts(java.util.List<oracle.communications.inventory.api.entity.PhysicalPort>
 physicalPorts);

A getter never returns null for the collection. If there are no related entities, an empty collection
is returned. That means the developer can safely add entities without creating a collection. For
example:

equipment.getPhysicalPorts().add(physicalPort);

Ordered and Unordered Relationships
POMS uses a List for the collection because the Oracle Communications Information Model
defines an ordered relationship for physical ports on equipment. In other cases, order does not
matter and so POMS uses a Set for the collection. For example, the parent relationship from
Equipment to EquipmentHolder:

public
java.util.Set<oracle.communications.inventory.api.entity.EquipmentHolderEquipmentRel>
getParentEquipmentHolders();
public void
setParentEquipmentHolders(java.util.Set<oracle.communications.inventory.api.entity.Equipm
entHolderEquipmentRel> equipmentHolders);

Bi-directional Relationships
Certain relationships in the model are bi-directional. POMS includes accessors on entities on
both sides of a bi-directional relationship, and the relationship can be set from either side. The
physical device to logical device relationship described in the "One-to-one Relationships"
example is bi-directional. The other side of this relationship, on the logical device, is defined
as:

public java.util.List<oracle.communications.inventory.api.entity.PhysicalDevice>
getMappedPhysicalDevices();
public void
setMappedPhysicalDevices(java.util.List<oracle.communications.inventory.api.entity.Physi
calDevice> mappedPhysicalDevices);

This is a many-to-one relationship, so there is a collection on the logical device side and single
entity on the physical device side. To relate a physical and logical device, you can either set
from the physical device:

physicalDevice.setMappedLogicalDevice(logicalDevice);

or set from the logical device:

logicalDevice.getMappedPhysicalDevices ().add(physicalDevice);

Relationship Entities
In some cases, the model defines an intermediate relationship entity instead of relating two
entities directly. For example, the Information Model defines EquipmentEquipmentRel to
relate two pieces of equipment. To create this type of relationship, instantiate the relationship
entity and set the related entities. For the equipment to equipment example:

EquipmentEquipmentRel parentEquipmentRel =
PersistenceHelper.makeEntity(EquipmentEquipmentRel.class);
parentEquipmentRel.setChildEquipment(equipment);
parentEquipmentRel.setParentEquipment(parentEquipment);

Chapter 5
Working with POMS Relationships

5-3

Working with Specifications and Characteristics
You can use the generated specification helper classes to avoid directly dealing with
specifications and characteristics. See "About Specifications" and "Working with
Specifications" for a description of the underlying API and for more information on when to
directly manipulate specifications.

You can determine if an entity supports characteristics and specification by referencing the
model documentation, or by checking the POMS interface. Entities that support characteristics
and specifications extend the CharacteristicExtensible interface. For example:

oracle.communications.inventory.api.CharacteristicExtensible
<oracle.communications.inventory.api.entity.EquipmentCharacteristic>;

The specification and characteristics are related entities like any other, characteristics being
multi-valued:

public oracle.communications.inventory.api.entity.EquipmentSpecification
getSpecification();
public void
setSpecification(oracle.communications.inventory.api.entity.EquipmentSpecification
specification);

public java.util.Set<oracle.communications.inventory.api.entity.EquipmentCharacteristic>
getCharacteristics();
public void
setCharacteristics(java.util.Set<oracle.communications.inventory.api.entity.EquipmentCha
racteristic> characteristics);

As a convenience, POMS also lets you access a characteristic by name through the map
returned by getCharacteristicMap:

public java.util.Map<String,
oracle.communications.inventory.api.entity.EquipmentCharacteristic>
getCharacteristicMap();

Working with the POMS Finder
You can use the POMS Finder to retrieve previously persisted data, however, you do not
typically need to use the Finder.

The most basic use of the Finders is "Find by Entity". More powerful and flexible queries are
possible with the Java Persistence Query Language (JPQL). You can also control whether
entities are returned completely or a with a subset of attributes. You can also use paging to
return data in manageable chunks where queries might return a large volume of data.

Find by Entity
To find entities matching an example entity, instantiate an entity of the appropriate type and set
one or more attributes. Use the findByEntity method to return a collection of matching entities.
Here is an example that looks for the specification for a Cisco 3640 physical device:

Finder finder = PersistenceHelper.makeFinder();
PhysicalDeviceSpecification example =
 PersistenceHelper.makeEntity(PhysicalDeviceSpecification.class);
example.setName("Cisco3640");

Collection<PhysicalDeviceSpecification> specifications =

Chapter 5
Working with Specifications and Characteristics

5-4

 finder.findByEntity(example, "name");
if (specifications.size() == 1) {
 System.out.println("found specification");
}

Find by JPQL
Java Persistence Query Language (JPQL) is a powerful way to express queries. The following
examples can be understood without knowing JPQL, especially if the developer is familiar with
SQL; however, you must learn JPQL to build their own queries.

For an introduction to JPQL, use the following link:

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html.

To perform a JPQL query use the following workflow:

1. Instantiate a Finder.

2. Initialize any parameters (these parameters are bound to variables in the JPQL
expression).

3. Specify the desired result type.

4. Use the findByJPQL method to return matching results.

In following example queries, the first is equivalent to the example in the "Find by Entity"
section and returns a particular specification. The second uses a join in the JPQL expression
to return all physical devices that use this specification.

Finder finder = PersistenceHelper.makeFinder();
finder.addParameter("name", "Cisco3640");
finder.setRsultClass(PhysicalDeviceSpecification.class);
Collection< PhysicalDeviceSpecification> specifications = finder.findByJPQL(
 "SELECT o FROM PhysicalDeviceSpecification o " +
 "WHERE o.name = :name");

finder.setRsultClass(PhysicalDevice.class);
Collection< PhysicalDevice> cisco3640Devices = finder.findByJPQL(
 "SELECT o FROM PhysicalDevice o JOIN o.specification s " +
 "WHERE s.name = :name");

A JPQL query does not need to return complete entities. It can return one or more attributes
from matched entities. To return only name and ID from a physical device, the developer would
modify the previous example as follows:

Collection cisco3640Devices = finder.findByJPQL(
 "SELECT o.name,o.id FROM PhysicalDevice o JOIN o.specification s WHERE
s.name = :name");
for (Oject device : cisco3640Devices) {
 Object[] attributes = (cisco3640DevicesObject[]) device;
 System.out.println("Found Cisco 3640 named " + attributes[0] + " with id " +
 attributes[1]);
}

The code snippet also shows how to iterate over the results. Since the returned type is not a
POMS entity, the attribute values are available as Object arrays. You would not set the result
class in this case.

While JPQL and the Finder support operations that modify persisted data (update, delete, and
so on), you should never modify POMS data with JPQL. The Finder is intended only for read
operations.

Chapter 5
Working with the POMS Finder

5-5

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html

Find with Paged Results
When working with a large number of entities, process them in smaller batches to reduce
memory usage. The Finder supports paged results. Initialize the Finder normally, then specify
the range of value to retrieve. This modifies the original physical device example to page
through devices 20 at a time:

int pageSize = 20;
int start = 0;
while (true) {
 finder.setRange(start, start + pageSize - 1);
 Collection<Physicaldevice> cisco3640Devices = finder.findByJPQL(
 "SELECT o FROM PhysicalDevice o JOIN o.specification s WHERE s.name = :name");
 for (PhysicalDevice device : cisco3640Devices) {
 System.out.println(device.getName());
 if (cisco3640Devices.size()) < pageSize) {
 break;
 }
 start += pageSize;
 }
}

POMS SDK Interfaces
The following are the PersistenceHelper API methods:

public static < E extends Object > E makeEntity(Class< E > entity);
public static oracle.communications.platform.persistence.Finder makeFinder() ;

The following are the Finder API methods:

/**
 * Set the result Class to query.
 *
 * @param resultClass
 * the interface of each result in the result set
 */
 public void setResultClass(Class resultClass);

/**
 * Set the range of the result set to return, starting of the zero-based
 * start index and ending at the end index, exclusive. For example,
 * setRange(0,5) returns 5 results indexed at 0 thru 4.
 *
 * <p>
 * Setting the range is meaningless if the order of the results is not
 * consistent. setOrdering is assumed.
 *
 * @param start
 * zero-based start index
 * @param end
 * ending index, exclusive
 * @see javax.jdo.Query#setRange
 */
 public void setRange(long start, long end);

 /**
 * Add the parameter name and value that are used to define the filter.
 *
 * <p>

Chapter 5
Working with the POMS Finder

5-6

 * Parameter names beginning with an underscore ('_') are illegal. They may
 * conflict with additional parameters used internally by this Finder.
 *
 * @param names
 * the parameter name to be declared
 * @param param
 * the parameter value to be bound to the query
 * @throws java.lang.IllegalArgumentException
 * if illegal parameters are passed
 */
 public void addParameter(String name, Object param);
/**
 * Find entities by example.
 * Any non-null attributes in the example entity is used as the search criteria,
however
 * the attribute names in the mustUseAttributes argument are used as criteria if the
 * attribute is null.
 *
 * <p>
 * This is a convenience method that performs a simple query in one call.
 * Incremental query construction is not over-written by calling this
 * method.
 *
 * @param entity
 * the example entity which non-null attributes are used as the search
criteria.
 * @param attributes
 * list of attribute names which must be used as search criteria even if
their values
 * in the example entity are null.
 * @param <E>
 * a oracle.communications.platform.persistence.Persistent type
 * @return Collection of results of the matching entities
 */
 public < E extends Persistent > Collection< E > findByEntity(E entity, String ...
mustUseAttributes);
/**
 * This method returns the result of executing a JPQL search using the passed
expression.
 * The caller can pass the query parameter with {@link #addParameter(Integer,
Object) addParameter} or
 * {@link #addParameter(String, Object) addParameter}.
 *
 * @param jpql The JPQL
 * @return Collection of search results
 */
 public Collection findByJPQL(String jpql);

About Persist Results
The persistResults method is available in the context of discovery, import and assimilation scan
action types. This method persists in-memory result entities to the database and invalidates
the entities. You may or may not need to explicitly call this method, depending on the sort of
results that your action produces for a given invocation.

If the result set is small (for example, one result group for a particular device), then there is no
need to call this method. Your result entities are automatically persisted when the action
completes.

If the result set is large (for example multiple devices imported from an inventory system), call
persistResults to write the information to the database, reducing memory consumption. In the

Chapter 5
About Persist Results

5-7

context of an import action, you would likely want to call the persistResults after results for
each device are modeled.

Since persistResults invalidates any in-memory entities, you should not hold a reference to any
result entity across a call to persist results.

Chapter 5
About Persist Results

5-8

6
Working with the Extensibility SDK

This chapter provides information about the extensibility SDK for Oracle Communications
Network Integrity.

This chapter contains the following sections:

• About Extensibility Scenarios

• Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

• Extending an Existing Cartridge to Discover and Reconcile New Characteristics

• Extending the MIB II SNMP Discovery to Change Interface Name Value

• Multiple Vendor SNMP Discovery

• Multiple Protocol Discoveries

About Extensibility Scenarios
Cartridge projects and actions in Network Integrity are extensible using Oracle
Communications Service Catalog and Design - Design Studio for Network Integrity. The
productized and sample cartridges provided by Network Integrity are designed to be
completely extensible and re-usable.

When you make a cartridge project dependent on another, you allow the dependent cartridge
project access to the extensible elements from the base cartridge project.

The following sections are examples of some common extensibility scenarios.

Each of the scenarios follows a detailed example but is meant to demonstrate the many
extensibility features and methods within Network Integrity cartridge development. The
following concepts are demonstrated in the scenarios:

• Re-using existing actions

• Conditional execution using conditions

• The use of specifications and characteristics to extend the model

• The use of input and output parameters

• The use of scan parameter groups and characteristics to extend the Network Integrity UI

• Using filters to modify default discrepancy detection behavior

• What extension points are available in productized cartridges

The scenarios are made up of high-level steps. For more detailed steps, see the Design Studio
Help or the Design Studio Modeling Network Integrity Help.

See the following extensibility scenarios:

• Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

Describes how to update the vendor number and interface type mapping tables in the MIB
II SNMP Discovery cartridge.

6-1

• Extending an Existing Cartridge to Discover and Reconcile New Characteristics

Describes how to extend an existing cartridge to discover new data from a device and
reconcile this data with an Inventory system.

• Extending the MIB II SNMP Discovery to Change Interface Name Value

Describes how to extend the MIB II SNMP Discovery action to map the SNMP variable
ifName to the interface entity name rather than the entity interface description.

• Multiple Vendor SNMP Discovery

Describes how to extend an existing cartridge to discover device data from multiple
vendors.

• Multiple Protocol Discoveries

Describes how to extend an existing cartridge to discover data using multiple protocols.

Extending MIB II SNMP Discovery for Updated Vendor and
Interface Type

This scenario describes the steps required to update the vendor number and interface type
mapping tables in the MIB II SNMP Discovery cartridge. The vendor number table translates
an enterprise object identifier number to a vendor name. The interface type table translates an
ifType value into a human readable name. These mapping tables are created and output by
the MIB II Properties Initializer processor.

The following tasks are performed in this example:

• Adds a new interface type (#333, “tachyonEther")

• Adds a new vendor number (#90210, “West Beverly Hills School District")

• Changes an existing vendor name (#34416, from “Ottawa Area Intermediate School
District" to “Ottawa Area Middle School District")

The following cartridges must be loaded in the Design Studio and not have any errors:

• Address_Handlers

• MIB_II_Model

• MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend the MIB II SNMP Discovery cartridge project for updated vendor and interface type
information:

1. Create a Network Integrity cartridge project called Vendor_Type_Update. Make your
cartridge project dependent on the MIB_II_SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Updated MIB II SNMP.

3. In Discover Updated MIB II SNMP, add the Discover MIB II SNMP action as a processor.

4. Create a discovery processor called MIB II Properties Updater and place it after the MIB
II Properties Initializer processor. This processor will be used to update the two mapping
tables.

Chapter 6
Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

6-2

5. Open the Processor editor Context Parameters tab for MIB II Properties Updater and add
snmpIfTypeMap and snmpVendorNameMap as input parameters. These parameters are
the output from the MIB II Property Initializer processor.

6. Create the implementation class for this discovery processor. See "Implementing a
Processor" for instructions on how to add an implementation class to a processor.

7. Add the implementation code into the body of the invoke method of the discovery
processor implementation class, similar to the following:

// Rename 34416 from "Ottawa Area Intermediate School District"
// to "Ottawa Area Middle School District"
// Add a new vendor ID 90210 = West Beverly Hills School District
//
Map<String, String> vendorNameMap = request.getSnmpVendorNameMap();
vendorNameMap.put("34416", "Ottawa Area Middle School District");
vendorNameMap.put("90210", "West Beverly Hills School District");

// Add a new interface type 333 as tachyonEther.
//
Map<String, String> ifTypeMap = request.getSnmpIfTypeMap();
ifTypeMap.put("333", "tachyonEther");

8. Build, deploy, and test your cartridge.

Figure 6-1 shows the processor workflow of the Discover Updated MIB II SNMP action and the
placement of the MIB II Properties Updater processor.

This discovery action inherits all the processors from the Discover MIB II SNMP action. See
MIB-II SNMP Cartridge Guide for more information.

Figure 6-1 Discover Updated MIB II SNMP Action

Chapter 6
Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

6-3

Extending an Existing Cartridge to Discover and Reconcile New
Characteristics

This scenario describes the steps required to extend an existing cartridge project to discover
new data from a device and reconcile this data with an inventory system.

For this scenario the following data is discovered and stored on the physical device:

• Running Configuration Last Saved Date

• Running Configuration Last Modified Date

• Startup Configuration Last Modified Date

The following cartridges must be loaded in the Design Studio and not have any errors:

• Address_Handlers

• ora_ni_uim_cisco_device_sample

• ora_ni_uim_devices

• Cisco_Model

• Cisco_SNMP_Cartridge

• Cisco_UIM_Cartridge

• Cisco_UIM_Model

• MIB_II_Model

• MIB_II_SNMP_Cartridge

• MIB_II_UIM_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend a cartridge project to discover and reconcile new characteristics:

1. Create a new UIM cartridge project called Disco_Recon_Specs.

2. From the ora_ni_uim_cisco_device_sample cartridge project, copy and rename the
following specifications to Disco_Recon_Specs:

• cisco3640, rename it to cisco3640Custom

• cat6509, rename it to cat6509Custom

• cisco7206, rename it to cisco7206Custom

3. Open the Data Schema editor for Disco_Recon_Specs and create the following
characteristics:

• runningConfigLastSavedDate

• runningConfigLastChangedDate

• startupConfigLastChangedDate

4. Add the new characteristics to the renamed specifications.

5. Create a new Network Integrity cartridge project called Disco_Recon_Char. Make
Disco_Recon_Char dependent on Disco_Recon_Specs and Cisco_UIM_Cartridge.

6. Add the renamed specifications to the model collection for Disco_Recon_Char.

Chapter 6
Extending an Existing Cartridge to Discover and Reconcile New Characteristics

6-4

7. Create a discovery action in Disco_Recon_Char and name it Discover Extended Cisco.

8. In Discover Extended Cisco, add the Discover Enhanced Cisco SNMP action as a
processor.

9. In Discover Extended Cisco, create an SNMP processor called Custom Cisco Collector.

10. Perform a web search and download a MIB file called CISCO-CONFIG-MAN-MIB. Do the
following:

a. Copy the MIB file to the MIB directory.

To find the MIB directory, in Design Studio, on the Windows menu, select
Preferences. In the Preferences dialog box, expand Oracle Communications
Design Studio, then select Network Integrity. The MIB directory is displayed in the
dialog box.

b. Copy the MIB file to the SNMP Adapter on the Network Integrity server. See
"Extending the SNMP JCA Resource Adapter" for more information.

c. On the Processor editor SNMP tab, load the CISCO-CONFIG-MAN-MIB file and add
the following MIB object IDs to Custom Cisco Collector from CISCO-CONFIG-MAN-
MIB.private.enterprises.cisco.ciscoMgmt.ciscoConfigManMIB.ciscoConfigManMIBObje
cts.ccmHistory:

• ccmHistoryRunningLastChanged

• ccmHistoryRunningLastSaved

• ccmHistoryStartupLastChanged

11. Create a discovery processor named Custom Cisco Modeler to map the new fields to the
specifications and characteristics:

a. On the Processor editor Context Parameters tab, add the following input parameters:

• physicalDevice: output by the Cisco SNMP Physical Modeler processor

• the document output by Custom Cisco Collector processor

12. Create the implementation class for Custom Cisco Modeler. See "Implementing a
Processor" for more information.

13. Add the following implementation code into the invoke method that was auto-generated:

Note:

Import statements are required to successfully compile the following code, the
imports should all be resolvable by Eclipse with the existing classpath. No
classpath changes are necessary.

// Get the running config and startup config values from the SNMP response document
// Keep the values in local variables
CiscoConfigManMibMib configMib =
request.getCustomCiscoCollectorResponseDocument().getDiscoveryResult().getCiscoConfig
ManMibResults();
String runningConfigChanged =
Long.toString(configMib.getCcmHistoryRunningLastChanged());
String runningConfigSaved = Long.toString(configMib.getCcmHistoryRunningLastSaved());
String startupConfigChanged =
Long.toString(configMib.getCcmHistoryStartupLastChanged());

if (request.getPhysicalDevice() != null) {

Chapter 6
Extending an Existing Cartridge to Discover and Reconcile New Characteristics

6-5

 // Get the physical device.
 PhysicalDevice physicalDevice = request.getPhysicalDevice();

 // Get the specification name on the physical device
 String specName = physicalDevice.getSpecification().getName();
 if (specName != null) {

 // Change the specification to the custom specification type
 // and set the new fields
 if (specName.equals(Cisco3640.SPEC_NAME)) {
 Cisco3640Custom custom = new Cisco3640Custom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 } else if (specName.equals(Cat6509.SPEC_NAME)) {
 Cat6509Custom custom = new Cat6509Custom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 } else if (specName.equals(Cisco7206VXR.SPEC_NAME)) {
 Cisco7206VXRCustom custom = new Cisco7206VXRCustom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 }
 }
}

Figure 6-2 shows the processor workflow of the Discover Extended Cisco action and the
placement of the Custom Cisco Collector and Custom Cisco Modeler processors.

This discovery action inherits all the processors from the Discover Enhanced Cisco SNMP
action. See Cisco Router and Switch UIM Cartridge Guide for more information.

Figure 6-2 Discover Extended Cisco Action

Chapter 6
Extending an Existing Cartridge to Discover and Reconcile New Characteristics

6-6

14. Create a discrepancy detection action named Detect Extended Cisco:

a. On the Action editor Result Source tab, add the Discover Extended Cisco action as
the result source. This indicates that the extended discrepancy detection action applies
to extended discovery results.

b. On the Action editor Processors tab, add the Detect Enhanced Cisco Discrepancies
action as a processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about the
Detect Enhanced Cisco Discrepancies action.

15. Create a discrepancy resolution action named Resolve Extended Cisco in UIM:

a. On the Action editor Details tab, enter Correct in UIM in the Resolution Action Label
field.

b. On the Action editor Result Source tab, add the Discover Extended Cisco action as
the result source.

c. On the Action editor Processor tab, add the Resolve Cisco in UIM action as a
processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about the
Resolve Cisco in UIM action.

16. (Optional) Create an import action.

The existing Import Cisco from UIM action available in the Cisco UIM cartridge imports the
extended devices types with new characteristics. Create this import action if you want to
deploy the Extensibility cartridge without also deploying the Cisco UIM cartridge.

a. Create an import action called Import Extended Cisco from UIM. See the Design
Studio Modeling Network Integrity Help for information about how to create an import
action, and how to extend existing import actions.

b. On the Action editor Processors tab add the Import Cisco from UIM action as a
processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about the
Import Cisco from UIM action.

Extending the MIB II SNMP Discovery to Change Interface Name
Value

This scenario describes the steps required to extend the MIB II SNMP discovery action to map
the ifName to the interface name rather than the interface description. In addition, this scenario
exposes a scan parameter that the end-user can use to control the behavior of the interface
name mapping.

Chapter 6
Extending the MIB II SNMP Discovery to Change Interface Name Value

6-7

Note:

Changing how the name field is mapped affects how generic discrepancy detection
looks up import entities because the lookup is done using name field (this can be
modified using discrepancy detection filters, see "About Filters" for details). If the
interface name field is modified for discovery, but is not modified on the import data,
many ‘extra entity' discrepancies are produced because discrepancy detection is
unable to find the interface of the import side.

Avoid this issue by ensuring that the name field for discovery and import are identical,
or by using a different field than name to look up the interface on the import side. An
example of using a different field is in the Detect MIB II UIM Discrepancies action in
the MIB_II_UIM_Cartridge. This discrepancy detection action overrides the default
lookup to use the NativeEMSName instead of the name field.

The following high-level steps are involved in this scenario:

• Create new Network Integrity cartridge project

• Create new discovery action that re-uses an existing discovery action

• Create new scan parameter groups with new characteristics

• Add new processor to change mapping of interface name

The following cartridges must be loaded in the Design Studio and not have any errors:

• Address_Handlers

• MIB_II_Model

• MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend the MIB II SNMP cartridge to change the interface name value:

1. Create a Network Integrity cartridge project called InterfaceName. Make your cartridge
project dependent on the MIB_II_SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Custom MIB II SNMP.

3. In Discover Custom MIB II SNMP, add the Discover MIB II SNMP action as a processor.

4. Create a scan parameter group called MIBIICustomParameters. Add the scan parameter
group to the Discover Custom MIB II SNMP action.

5. For MIBIICustomParameters, create a characteristic called mapIfDescToInterfaceName.

6. Add two enumeration values to mapIfDescToInterfaceName:

a. Open the Data Schema editor for mapIfDescToInterfaceName.

b. Click the Enumerations subtab.

c. Add an enumeration called True and another called False.

d. In the Default column, set True to be the default value.

7. On the Scan Parameter Group editor Layouts tab for MIBIICustomParameters, do the
following:

a. Select mapIfDescToInterfaceName.

Chapter 6
Extending the MIB II SNMP Discovery to Change Interface Name Value

6-8

The UI Settings area displays the scan parameter values for
mapIfDescToInterfaceName.

b. In the Display Name field, enter Map Description to Interface Name.

This is the name that will appear in the Network Integrity UI for the scan parameter.

8. Save all changes.

9. In the Discover Custom MIB II SNMP action, create a discovery processor called Custom
Interface Name Modeler.

10. Open the Processor editor Context Parameters tab for Custom Interface Name Modeler
and add logicalDevice as an input parameter. This parameter is the output from the MIB II
SNMP Modeler processor.

11. On the Processor editor Details tab, create the implementation class for the discovery
processor.

12. Add the implementation code similar to the following:

Note:

Import statements are required to successfully compile the following code, the
imports should all be resolvable by Eclipse with the existing classpath, no
classpath changes are necessary.

@Override
public void invoke(DiscoveryProcessorContext context,
 CustomInterfaceNameModelerProcessorRequest request)
 throws ProcessorException {

 // if the user specified they do not want the ifDesc as the name of the interface
then use the ifName instead

 if
("false".equalsIgnoreCase(request.getMibiiCustomParameters().getMapIfDescToInterfaceN
ame())) {
 List<DeviceInterface> deviceInterfaces =
request.getLogicalDevice().getDeviceInterfaces();
 changeInterfaceNameToIFName(deviceInterfaces);
 }
 }

private void changeInterfaceNameToIFName(List<DeviceInterface> deviceInterfaces) {
 // loop through every interface and change the mapping.
 for (DeviceInterface deviceInterface : deviceInterfaces) {
 // the Discover MIB II SNMP Discovery Action is inserting the ifName into the
VendorInterfaceNumber so the following code copies that to the name field
 deviceInterface.setName(deviceInterface.getVendorInterfaceNumber());
 // Change interface name on any sub-interfaces as well
 changeInterfaceNameToIFName(deviceInterface.getSubInterfaces());
 }
}

13. To register discrepancy detection and discrepancy resolution on the new Discover Custom
MIB II SNMP discovery action, add new result sources to the Detect MIB II UIM
Discrepancies and Resolve MIB II in UIM in the MIB_II_UIM_Cartridge that register for
results from the Discover Custom MIB II SNMP discovery action. See "About Discrepancy
Detection Actions" and "About Discrepancy Detection Processors" for details.

Chapter 6
Extending the MIB II SNMP Discovery to Change Interface Name Value

6-9

(Alternatively, the Detect MIB II UIM Discrepancies and Resolve MIB II in UIM actions
could be extended in the InterfaceName_Cartridge. See "Extending an Existing Cartridge
to Discover and Reconcile New Characteristics" Extensibility Scenario for details on doing
this).

Figure 6-3 shows the processor workflow of the Discover Custom MIB II SNMP action and
the placement of the Custom Interface Name Modeler processor.

This discovery action inherits all the processors from the Discover MIB II SNMP action.
See MIB-II SNMP Cartridge Guide for more information.

Figure 6-3 Discover Custom MIB II SNMP Action

Multiple Vendor SNMP Discovery
This scenario describes the steps required to extend an existing cartridge to discover data from
devices from multiple vendors.

The following cartridges must be loaded in the Design Studio and not have any errors:

• Address_Handlers

• ora_ni_uim_devices

• MIB_II_Model

• MIB_II_SNMP_Cartridge

• MIB_II_UIM_Cartridge

• Cisco_Model

• Cisco_SNMP_Cartridge

• Cisco_UIM_Cartridge

• Cisco_UIM_Model

There are multiple scenarios, depending on your objectives.

Chapter 6
Multiple Vendor SNMP Discovery

6-10

One way is you want to discover devices from a single vendor. You should then extend the
MIBII SNMP cartridge by reusing the Discover MIB II SNMP action and adding an SNMP
Collector and an SNMP Modeler for the vendor. The SNMP Collector polls vendor-specific
MIBs and the SNMP Modeler models the devices based on the collected SNMP OIDs.

Another way is you want to discover multiple vendor devices, for example, Cisco and Juniper
devices. You should extend the Enhanced Cisco SNMP action in the Cisco UIM cartridge.

Use the sysObjectId from RFC1213MIB to determine a device vendor. For example, Cisco
devices have the sysObjectId value that starts with 1.3.6.1.4.1.9, and Juniper device have the
sysObjectId value starting with 1.3.6.1.4.1.2636. Set up a range of IP addresses and scan
those IP addresses by polling the sysObjectId. Based on the sysObjectValue returned,
configure two conditions: one returns true if the sysObjectId value starting with 1.3.6.1.4.1.9
(meaning it is a Cisco device), or return false if otherwise; the other return true if the
sysObjectId value starting with 1.3.6.1.4.1.2636 (meaning it is a Juniper device), or return false
if otherwise.

The Cisco UIM cartridge contains the Discover Enhanced Cisco SNMP action. Create a
discovery action by reusing this Discover Enhanced Cisco SNMP action, which gives this new
discovery action all the functions to discover the enhanced Cisco devices (including the MIB II
SNMP discovery). Extend this discovery action to support Juniper devices by creating a
Juniper SNMP collector and a Juniper modeler to this discovery action. The two conditions
determine when to run the Cisco related collectors and modelers and when to run the Juniper
collector and modeler based on the device type.

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend a cartridge to discover devices from multiple vendors:

1. Create a Network Integrity cartridge project called Multi-Vendor. Make your cartridge
project dependent on the Cisco_UIM_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Vendor.

3. In Discover Multi-Vendor, add the Discover Enhanced Cisco SNMP action as a processor.

4. Manually copy the JUNIPER-MIB to the MIB directory and to the SNMP adapter on the
Network Integrity server. See "Supporting New MIBs" and "Extending the SNMP JCA
Resource Adapter" for more information.

5. Create an SMMP processor called Juniper SNMP Collector and add it to Discover Multi-
Vendor as the last processor.

6. In Juniper SNMP Collector, add the OID jnxBoxDescr (from JUNIPER-MIB).

In a production environment, you would add more OIDs to poll and model more
information.In this example, only the description field is polled.

7. Create an SNMP processor called Juniper SNMP Modeler and add it to Discover Multi-
Vendor as the last processor. This processor takes the SNMP output parameter from
Juniper SNMP Collector as its input parameter. Implement this processor by implementing
the invoke method. In this example, only the description field for the Juniper device is
logged. In a realistic scenario, the complete model of the Juniper device would exist in this
invoke method.

The following is the Java snippet for the invoke method.

@Override
public void invoke(DiscoveryProcessorContext context,
JuniperProcessorProcessorRequest request) throws ProcessorException {
 logger.log(Level.INFO, "Processing Juniper device " + request.getScopeAddress());
 JuniperSNMPCollectorResponseType responseDoc =

Chapter 6
Multiple Vendor SNMP Discovery

6-11

request.getJuniperSNMPCollectorResponseDocument();
 DiscoveryResultType result = responseDoc.getDiscoveryResult();
 JuniperMibMib juniperMibResults = result.getJuniperMibResults();
 if(juniperMibResults != null) {
 logger.log(Level.INFO, "Juniper Device Description: " +
juniperMibResults.getJnxBoxDescr());
 }
}

8. Create a Cisco condition that checks the sysObjectId to determine whether a device is a
Cisco device or not. This condition takes the mibiisnmpCollectorResponseDocument
(an output parameter from MIB II SNMP Collector) as the input parameter. The following is
a Java snippet for this Cisco condition:

public class CiscoConditionImpl implements CiscoCondition {
 private static final String CISCO_PREFIX = "1.3.6.1.4.1.9.";
@Override
 public boolean checkCondition(DiscoveryProcessorContext context,
 CiscoRequest request) throws ProcessorException {
 MIBIISNMPCollectorResponseType snmpResponse = request
 .getMibiisnmpCollectorResponseDocument();
 logger.log(Level.INFO, "CiscoConditionImpl"
 + context.getProcessorName());
 if (snmpResponse != null
 && snmpResponse.getDiscoveryStatus() == DiscoveryStatus.SUCCESS) {
 logger.log(Level.INFO, "CiscoConditionImpl discovery succeeded");
 if (snmpResponse.getDiscoveryResult().getRfc1213MibResults() != null) {
 String sysObjectId = snmpResponse.getDiscoveryResult()
 .getRfc1213MibResults().getSysObjectID();
 logger.log(Level.INFO, "CiscoConditionImpl raw sys object id:" +
 sysObjectId);
 if (sysObjectId != null) {
 if (sysObjectId.startsWith(".")) {
 sysObjectId = sysObjectId.substring(1);
 }
 return sysObjectId.startsWith(CISCO_PREFIX);
 }
 }
 }
 return false;
 }
}

9. Create a Juniper condition, that checks the sysObjectId to determine whether a device is a
Juniper device. This condition takes the mibiisnmpCollectorResponseDocument (an
output parameter from MIB II SNMP Collector) as the input parameter. This Juniper
condition is similar to the Cisco condition. The difference is that the sysObjectId for Juniper
device starts with 1.3.6.1.4.1.2636..

10. Apply the Cisco condition to the following processors and set Equals to true:

• Cisco SNMP Logical Collector

• Cisco SNMP Physical Collector

• Cisco SNMP Logical Modeler

• Cisco SNMP Physical Modeler

• Cisco Enhanced Modeler

By applying the Cisco condition, the processors are invoked only if the device is a Cisco
device.

11. Apply the Juniper condition to the following Juniper processors and set Equals to true:

Chapter 6
Multiple Vendor SNMP Discovery

6-12

a. Juniper SNMP Collector

b. Juniper SNMP Modeler

Note:

In this example, only a single Juniper OID is collected and the value of the collected
Juniper OID in the Juniper SNMP Modeler is logged. In a realistic scenario, several
Juniper OIDs are collected to model a Juniper device. See "Extending an Existing
Cartridge to Discover and Reconcile New Characteristics" on how to map new SNMP
OIDs to new Characteristics and how to update UIM related actions for importing,
discrepancy detection and resolution with the new Characteristics.

Figure 6-4 shows the processor workflow of the Discover Multi-Vendor action and the
placement of the Juniper SNMP Collector and Juniper Modeler processors.

This discovery action inherits all the processors from the Discover Enhanced Cisco SNMP
action. See Cisco Router and Switch UIM Integration Cartridge Guide for more information.

Figure 6-4 Discover Multi-Vendor Action

Multiple Protocol Discoveries
This scenario describes the steps required to extend an existing cartridge to discover data
using multiple protocols.

The following cartridges must be imported into the Design Studio and build without errors:

• Address_Handlers

Chapter 6
Multiple Protocol Discoveries

6-13

• Cisco_Model

• Cisco_SNMP_Cartridge

• Cisco_UIM_Cartridge

• Cisco_UIM_Model

• MIB_II_Model

• MIB_II_SNMP_Cartridge

• MIB_II_UIM_Cartridge

In this scenario, a range of devices can be discovered. Some devices are SNMP-enabled;
some devices support an alternate protocol (for example, TL1). With a list of IP addresses for
each of these devices, the discovery action can dynamically discover a device using either
SNMP or the alternate protocol.

The Cisco UIM Sample cartridge contains the sample Discover Enhanced Cisco SNMP action.
Create a discovery action that reuses the Discover Enhanced Cisco SNMP action. This
discovery action can be extended to support the alternate protocol by creating a discovery
processor that implements the alternate protocol to this discovery action. To use a JCA
resource adapter for this alternate protocol, see "Working with JCA Resource Adapters".

Create a condition that checks whether the SNMP polling to a device is successful or not. If a
device supports SNMP, this condition returns true; otherwise if the device supports the
alternate protocol, this condition returns false. By applying this condition to the processors, the
discovery action can dynamically discover a device using either SNMP or the alternate
protocol.

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend a cartridge to discover devices using multiple protocols:

1. Create a discovery action called Discover MultiProtocol and make it dependent on the
Cisco_UIM_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Protocol.

3. In Discover Multi-Protocol, add the Discover Enhanced Cisco SNMP action as a processor.

4. Create a discovery processor called Alternate Protocol Collector to implement the
alternate protocol to discover a device and add it to Discover Multi-Protocol as the last
processor.

5. Implement Alternate Protocol Collector by implementing the invoke method. In this
example, one line is logged indicating that this processor implements an alternate protocol.
In a realistic scenario, implement the alternate protocol to discover a device in this invoke
method. The following is the Java snippet for the invoke method:

@Override
 public void invoke(DiscoveryProcessorContext context,
 AlternateProtocolCollectorProcessorRequest request)
 throws ProcessorException {
 logger.log(Level.INFO, "SNMP Failed - using alternate protocol to discover
device " + request.getScopeAddress());
 }

6. Create a condition called SnmpSucceeds that checks the SNMP results from MIB II
Collector to determine whether the SNMP discovery on a device is successful or not. This
condition takes mibiisnmpCollectorResponseDocument (an output parameter from MIB II
SNMP Collector) as the input parameter. The following is a Java snippet for this
SnmpSucceeds condition:

Chapter 6
Multiple Protocol Discoveries

6-14

public class SnmpSucceedsConditionImpl implements SnmpSucceedsCondition {
 @Override
 public boolean checkCondition(DiscoveryProcessorContext context,
 SnmpSucceedsRequest request) throws ProcessorException {
 MIBIISNMPCollectorResponseType snmpResponse =
request.getMibiisnmpCollectorResponseDocument();
 return snmpResponse != null && snmpResponse.getDiscoveryStatus() ==
DiscoveryStatus.SUCCESS;
 }
}

7. Apply the SnmpSucceeds condition to the following processors and set the Equals to be
true:

• MIB II SNMP Modeler

• Cisco SNMP Logical Collector

• Cisco SNMP Physical Collector

• Cisco SNMP Logical Modeler

• Cisco SNMP Physical Modeler

• Cisco Enhanced Modeler

By applying the SnmpSucceeds condition, these processors are invoked only if the
SnmpSucceeds condition returns true.

8. Apply the SnmpSucceeds condition to the Alternate Protocol Collector processor and set
the Equals to be false.

Note:

In this example, only the message is logged to indicate that an alternate protocol is
used in the Alternate Protocol Collector processor. In a realistic scenario, the
alternate protocol would be implemented and the network data collected using this
protocol and model the collected network data. See "Extending an Existing Cartridge
to Discover and Reconcile New Characteristics" section on how to map the collected
network data (in that section, the network data is SNMP OID) to new Characteristics
and how to update UIM related actions for importing, discrepancy detection and
resolution with the new Characteristics.

Figure 6-5 shows the processor workflow of the Discover MultiProtocol action and the
placement of the Alternate Protocol Collector processor.

This discovery action inherits all the processors from the Discover Enhanced Cisco SNMP
action. See Cisco Router and Switch UIM Integration Cartridge Guide for more information.

Chapter 6
Multiple Protocol Discoveries

6-15

Figure 6-5 Discover MultiProtocol Action

Chapter 6
Multiple Protocol Discoveries

6-16

7
Working with Automatic Discrepancy
Resolution

This chapter explains how to design a discrepancy detection action that allows Oracle
Communications Network Integrity to automatically resolve specific types of discrepancies.

About Automatic Discrepancy Resolution
Automatic discrepancy resolution enables Network Integrity to automatically resolve specific
discrepancies without the user having to interact with the UI. Discrepancies are resolved as
part of the discrepancy detection scan.

Network Integrity identifies automatically resolved discrepancies. In the scan results,
automatically resolved discrepancies have the value autoResolve in the Submitted By and
Resolved By columns.

The NetworkIntegritySDK cartridge project contains an abstract action that makes up the
framework for automatic discrepancy resolution.

Using the Design Studio for Integrity feature, extend cartridges that detect discrepancies with
the abstract automatic discrepancy resolution action. Oracle Communications Service Catalog
and Design - Design Studio creates the framework implementation for you to complete.

You can complete the implementation by creating either a custom processor or with a
properties file.

After you deploy your cartridges with the new implementation into the run-time application,
users of Network Integrity can configure scans that automatically resolve all the discrepancies
matching the implementation you created.

About the Automatic Discrepancy Resolution Solution
This section describes the components that make up the automatic discrepancy resolution
framework. Also, this section identifies reference implementations that you can use as
examples to help create your own solution.

Action and Processors
The NetworkIntegritySDK cartridge project contains an abstract discrepancy detection action
called Auto Resolve Discrepancies. This abstract action contains the framework for automatic
discrepancy resolution.

The Auto Resolve Discrepancies action has the following processors:

• Check Auto Resolution Selected: this processor verifies whether a scan is configured with
the Auto Resolve Discrepancies option enabled. If enabled, this processor sets a flag to
run the next processors.

• Identify Auto Resolving Discrepancies: this processor identifies the discrepancies that
match the customized implementation.

7-1

• Prepare Resolving Discrepancies: this processor puts all the identified discrepancies in the
DISCREPANCY_SUBMITTED state.

The automatic discrepancy resolution implementation can be completed with either a custom
processor or with a properties file. If you complete the implementation with a custom
processor, you must create a new discrepancy detection processor in the action that extends
the Auto Resolve Discrepancies action.

Figure 7-1 illustrates the processor workflow of the automatic discrepancy resolution solution.
The DD Processor for Java Implementation processor is not required for an implementation
that uses a properties file.

Figure 7-1 Auto Resolve Discrepancies Processor Workflow

Scan Parameter Groups and the Network Integrity UI
NetworkIntegritySDK contains a scan parameter group called AutoResolutionParameter. This
scan parameter group adds the Auto Resolve Discrepancies check box to the Network
Integrity UI Scan Configuration screen.

Reference Implementations
The Network Integrity MSS Integration cartridge demonstrates a complete reference
implementation of automatic discrepancy resolution using a custom processor and a properties
file.

The Network Integrity Optical UIM Integration cartridge demonstrates a complete reference
implementation of automatic discrepancy resolution using a custom processor.

The Network Integrity Optical TMF814 CORBA cartridge includes the
AutoResolutionParameter scan parameter group.

Chapter 7
About the Automatic Discrepancy Resolution Solution

7-2

Implementing Automatic Discrepancy Resolution
This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding automatic discrepancy
resolution.

If your existing cartridge solution is made up of unsealed cartridges, see "Implementing
Automatic Discrepancy Resolution in an Unsealed Cartridge Solution".

If your existing cartridge solution contains one or more sealed cartridges, see "Implementing
Automatic Discrepancy Resolution in a Sealed Cartridge Solution".

Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge
Solution

See the Design Studio for Network Integrity Help for information about any of the steps in this
section.

To implement automatic discrepancy resolution when working with unsealed cartridges:

1. In your cartridge with a fully implemented discrepancy detection action:

• Add the abstract Auto Resolve Discrepancies action from NetworkIntegritySDK as a
processor to a discrepancy detection action.

• Move the processors belonging to Auto Resolve Discrepancies to the end of the
Action Processors list.

2. In your cartridge with a fully implemented import or discovery action, add the
AutoResolutionParameter scan parameter group.

Add the scan parameter group to the action that is the result source for discrepancy
detection action.

3. Complete and customize the implementation for automatic discrepancy resolution. See
"Completing the Automatic Discrepancy Resolution Implementation" for more information.

4. Save and close all files.

5. Build, deploy, and test your cartridge.

Implementing Automatic Discrepancy Resolution in a Sealed Cartridge
Solution

See the Design Studio for Network Integrity Help for information about any of the steps in this
section.

To implement automatic discrepancy resolution when working with a sealed cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

• All sealed and unsealed cartridges being extended by the new cartridge

Chapter 7
Implementing Automatic Discrepancy Resolution

7-3

Note:

The new cartridge needs to extend a discovery action and a discrepancy
detection action. These actions may belong to one or more cartridges. At
least one of these cartridges is sealed.

• ora_ni_uim_device

• NetworkIntegritySDK

• Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

• Specify IPAddressHandler as the address handler.

• Specify Device as the result category.

• Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.

• Add the AutoResolutionParameter scan parameter group.

• Add or create any additional scan parameter groups required to configure the new
discovery action.

5. Create a new discrepancy detection action in the new cartridge.

6. For the new discrepancy detection action:

• Add ddAction as a processor.

Where ddAction is a discrepancy detection action from another cartridge that uses the
result source from discoveryAction.

• Add the abstract Auto Resolve Discrepancies action as a processor.

• Move the processors belonging to Auto Resolve Discrepancies to the end of the
Action Processors list.

• Specify the new discovery action as the result source.

7. For the discrepancy resolution action whose result source is ddAction, add the new
discrepancy detection action as a result source.

8. Complete and customize the automatic discrepancy resolution implementation for the new
cartridge. See "Completing the Automatic Discrepancy Resolution Implementation" for
more information.

9. Save and close all files.

10. Build, deploy, and test your cartridge.

Completing the Automatic Discrepancy Resolution
Implementation

You can complete the automatic discrepancy resolution implementation in the following ways:

• Completing Automatic Discrepancy Resolution Using a Properties File

• Completing Automatic Discrepancy Resolution with a Custom Processor

Chapter 7
Completing the Automatic Discrepancy Resolution Implementation

7-4

Completing Automatic Discrepancy Resolution Using a Properties File
Create a file called autoResolve.properties in the /src directory in the cartridge with the
automatic discrepancy resolution action. Use this properties file to configure the discrepancies
that can be automatically resolved.

The autoResolve.properties file is a list of property/value pairs. The accepted properties are:

• extraEntities, for resolving extra entity discrepancies.

• missingEntities, for resolving missing entity discrepancies.

• mismatches, for resolving attribute value mismatch discrepancies.

• extraAssociation, for resolving extra association discrepancies.

• missingAssociation, for resolving missing association discrepancies.

See "About Discrepancy Types" for more information about discrepancies.

The properties file uses the following syntax:

property=res_label1:entity_type1[spec_name1:attrib_list1|spec_name2:attrib_list2]{}...

where:

• property is one of the accepted properties. Each property can appear once in the
properties file. Each property can specify multiple resolution labels, entity types,
specification names, and attribute lists.

• res_label is the resolution label you want Network Integrity to use to resolve the
discrepancy. You can specify multiple resolution labels to resolve discrepancies to different
inventory systems.

• entity_type is a type of entity (for example, an Equipment or a Physical Device entity).

• spec_name is the specification for the entity type. You can omit spec_name if the same
resolution label applies to all specifications for the entity type.

• attrib_list is a comma-separated list of attributes on the entity or specification to be
resolved.

Example 7-1 demonstrates an automatic discrepancy resolution implementation completed
using a properties:

Example 7-1 Sample autoResolve.properties File

extraEntities=Correct in MSS:Equipment[tmf814EquipmentGeneric]{}Correct in UIM:PhysicalDevice[cisco3640|
cisco7206VXR]
missingEntities=Correct in MSS:Equipment{}Correct in UIM:PhysicalDevice[cisco3640]
mismatches=Correct in MSS:Equipment[:serialNumber]{}Correct in
UIM:PhysicalDevice[cisco3640:softwareVer,serialNumber|cisco7206VXR:hardwareRev]
extraAssociations=Correct in UIM:LogicalDevice

Example 7-1 demonstrates a properties file that does all of the following:

• The line starting with extraEntities resolves in MSS all extra entity discrepancies on
equipment entities with the tmf814EquipmentGeneric specification, and resolves in UIM all
extra entity discrepancies on physical device entities with the cisco3640 or cisco7206VXR
specifications.

• The line starting with missingEntities resolves in MSS all missing entity discrepancies on
equipment, and resolves in UIM all missing entity discrepancies on physical device entities
with the cisco3640 specification.

Chapter 7
Completing the Automatic Discrepancy Resolution Implementation

7-5

• The line starting with mismatches resolves in MSS all serial number attribute value
mismatch discrepancies on equipment entities, and resolves in UIM all software version
and serial number attribute value mismatch discrepancies on physical device entities with
the cisco3640 specification, and all hardware revision attribute value mismatch
discrepancies on physical device entities with the cisco7206VXR specification.

• The line starting with extraAssociation resolves in UIM all extra association discrepancies
on logical device entities.

See the reference implementation properties file in the MSS Integration cartridge to use as a
starting point. The reference properties file includes comments, examples, syntax, and tips to
help you complete your implementation.

Completing Automatic Discrepancy Resolution with a Custom Processor
See the Design Studio for Network Integrity Help for information about any of the steps in this
section.

To implement automatic discrepancy resolution with a custom processor:

1. In the action that contains the Auto Resolve Discrepancies action, create a new
discrepancy detection processor.

2. Move the new processor after the Check Auto Resolution Selected processor.

3. Add autoResolutionManager as an input parameter for the new discrepancy detection
processor.

4. Create and complete the implementation class for the new discrepancy detection
processor.

See the reference implementation class from the Optical UIM Integration cartridge to use
as a starting point. The reference implementation class includes comments, examples,
syntax, and tips to help you complete your own implementation.

Chapter 7
Completing the Automatic Discrepancy Resolution Implementation

7-6

8
Working with CPU Utilization-enabled
Discovery

This chapter explains how to design a discovery action that allows Oracle Communications
Network Integrity to discover devices based on their CPU utilization.

About CPU Utilization-enabled Discovery
CPU utilization-enabled discovery provides the mechanism to manage the discovery of devices
based on their CPU utilization. This is an optional feature that enables you to configure the
CPU utilization threshold value in cartridges, which enables the scan to skip the devices that
are running above the specified CPU utilization threshold value.The NetworkIntegritySDK
cartridge project contains an abstract action with two processors and one scan parameter
group that constitute the framework for CPU utilization-enabled discovery. See "Action and
Processors" and "Scan Parameter Groups and the Network Integrity UI" for more
information.Using Design Studio for this feature, extend cartridges to run discovery using the
Abstract CPU Utilization Discovery action.After you deploy your cartridges with the new
implementation into the run-time application, users of Network Integrity can configure scans
that discover only those devices that are running below the user-specified CPU utilization
threshold value.

About CPU Utilization-enabled Discovery Solution
This section describes the components and the framework that make up the incremental
TMF814 discovery. Also, this section identifies reference implementations that you can use as
examples to help create your own solution.

Action and Processors
The NetworkIntegritySDK cartridge project contains an abstract discovery action called
Abstract CPU Utilization Discovery, which contains the framework for CPU utilization-enabled
discovery.

The Abstract CPU Utilization Discovery action has the following processors:

• CPU Property Initializer: This processor initializes the cpuProperties file that contains
the deviceCPUValue variable, which is required to store the CPU utilization value of the
device obtained by the network.

• CPU Utilization Compare Processor: This processor is responsible for comparing the
user-specified threshold value with the CPU utilization value of the device obtained by the
network.

About the Mechanism of Comparing CPU Usage Values
The NetworkIntegritySDK cartridge project contains the framework that compares the CPU
utilization threshold value specified by the user and the CPU utilization value obtained from the
network device. The user-specified CPU utilization threshold value is obtained by the CPU

8-1

Utilization Parameters scan parameter group. The Device CPU Set Processor uses the
cpuProperties file to set the CPU value of the device in the deviceCPUValue variable. This
value is used as an input for the CPU Utilization Compare Processor to compare the CPU
utilization value specified by the user and that of the device.

Scan Parameter Groups and the Network Integrity UI
A new scan parameter group, CPU Utilization Parameters, has been added in the
NetworkIntegritySDK cartridge. The CPU Utilization Parameters scan parameter group is
available for selection in the Select Parameter Group list under the Scan Action Parameters
area.

In the Network Integrity UI Scan Configuration screen, selecting the CPU Utilization
Parameters scan parameter group displays the CPU Utilization % field, which enables you to
specify the CPU utilization threshold value between 1 to 99.

Reference Implementations
The Network Integrity Cisco Router and Switch SNMP cartridge demonstrates a complete
reference implementation of discovery based on CPU utilization. The Cisco Router and Switch
SNMP cartridge includes the CPU Utilization Parameters scan parameter group from the
NetworkIntegritySDK cartridge. See Network Integrity Cisco Router and Switch SNMP
Cartridge Guide for more information.

Implementing CPU Utilization-enabled Discovery
This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding CPU utilization-enabled
discovery. You can implement CPU utilization-enabled discovery in a sealed cartridge solution.

Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge
Solution

You can implement CPU utilization-enabled discovery for any device that supports polling for
CPU utilization.

See the Design Studio for Network Integrity Help for information about any of the steps in this
section.

To implement CPU utilization-enabled discovery when working with a sealed cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

• All sealed and unsealed cartridges being extended by the new cartridge

Note:

The new cartridge needs to extend a discovery action and a discrepancy
detection action. These actions may belong to one or more cartridges. At
least one of these cartridges is sealed.

• ora_ni_uim_device

Chapter 8
Implementing CPU Utilization-enabled Discovery

8-2

• NetworkIntegritySDK

• Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

• Specify IPAddressHandler as the address handler.

• Specify Device as the result category.

• Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.

• Add Abstract CPU Utilization Discovery action as a processor.

• Add the CPU Utilization Parameters scan parameter group.

• Add or create any additional scan parameter groups required to configure the new
discovery action.

• Add new processors to obtain the CPU usage value of the device from the network.
Set the deviceCPUValue variable in cpuProperties file for the Device CPU Set
Processor as follows:

request.getCpuProperties().setDeviceCPU(deviceCPUValue);

This sets the value of the deviceCPUValue variable, which is used by the CPU
Utilization Compare Processor (from NetworkIntegritySDK cartiridge) to compare the
user-specified CPU utilization threshold value with CPU utilization value (set in
deviceCPUValue variable) of the device.

5. Complete and customize the incremental discovery implementation for the new cartridge.

6. Save and close all files.

7. Build, deploy, and test your cartridge.

Chapter 8
Implementing CPU Utilization-enabled Discovery

8-3

9
Working with Application Context Work-
Managers

This chapter provides information about the use of WebLogic's ManagedExecutorService
work-manager in Oracle Communications Network Integrity.

This chapter contains the following sections:

• ManagedExecutorService Work-Manager Configuration

• Persist Results using Multi-Threading

• Discovery Scan using Multi-Threading

• Import Scan using Multi-Threading

ManagedExecutorService Work-Manager Configuration
A ManagedExecutorService extends the Java SE ExecutorService to provide methods for
submitting tasks for execution in a Java EE environment. A ManagedExecutorService is
usually used to run short-duration asynchronous tasks such as processing of asynchronous
methods in Enterprise JavaBean (EJB). When tasks are executed using
ManagedExecutorService, they run in managed threads, within the context of the application
that submitted them. Each task also has its own explicit transaction and does not participate in
the application component’s transaction.

Defining new MES Work-Manager within Network Integrity
You can define a new ManagedExceutorService work-manager for Network Integrity inside
weblogic-application.xml under the META-INF folder of NetworkIntergrity.ear. The scope of this
work-manager is limited to the application context.

<work-manager>
 <name>wm/workManager</name>
 <max-threads-constraint>
 <name>WorkManager_maxthreads</name>
 <count>5</count>
 <queue-size>1000</queue-size>
 </max-threads-constraint>
 </work-manager>
 <managed-executor-service>
 <name>wmMES</name>
 <dispatch-policy>wm/workManager</dispatch-policy>
 </managed-executor-service>
 <resource-env-description>
 <resource-env-ref-name> java:app/env/ wmMES </resource-env-
ref-name>
 <resource-link> wmMES </resource-link>
</resource-env-description>

9-1

• max-threads-constraint: Defines the maximum number of active threads that the work-
manager will utilise.

• max-threads-constraint – name: Name of the max-threads-constraint.

• max-threads-constraint – count: Number of asynchronous threads.

• max-threads-constraint – queue-size: Size of the queue where all the submitted tasks
are held until they get picked up by JVM processor.

Using MES Work-Manager within Network Integrity
To make the work-manager available to Network Integrity, the below configuration must be
added inside the application.xml under META_INF folder of NetworkIntegrity.ear file.

<resource-env-ref>
 <resource-env-ref-name>java:app/env/wmMES</resource-env-ref-name>
 <resource-env-ref-
type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-
type>
</resource-env-ref>

Accessing MES Work-Manager within Network Integrity
You can use the below sample code snippet to access MES work-manager inside any java
class to process the tasks asynchronously.

private ManagedExecutorService mes;
 private static String MANAGED_EXECUTOR_SERVICE_IMPORT_JNDI =
"java:app/env/wnMES";
 InitialContext ctx =
oracle.communications.platform.util.Utils.getInitialContext();
 mes = (ManagedExecutorService)
ctx.lookup(MANAGED_EXECUTOR_SERVICE_IMPORT_JNDI);

Persist Results using Multi-Threading
Network Integrity core has an API persistResults() which persists the entities from the result
group.

The process of storing the entities happens in a sequence. If the data volume is high, you may
need to store the results simultaneously. You can enable the parallel processing by enabling
the PersistResultsInParallel parameter. It is disabled by default. For more information on
enabling this parameter, see “NIConfigurationService MBean” in Network Integrity System
Administrator's Guide. When this parameter is enabled, Network Integrity will persist multiple
entities in a separate asynchronous task by using the MES work-manager configuration.

Network Integrity uses the below MES work-manager configuration by default. You may
change the thread count based on the requirement.

<work-manager>
 <name>wm/IntegrityWorkManager</name>
 <max-threads-constraint>
 <name>IntegrityWorkManager_maxthreads</name>
 <count>5</count>

Chapter 9
Persist Results using Multi-Threading

9-2

 </max-threads-constraint>
 </work-manager>

Discovery Scan using Multi-Threading
The below work-manager configuration is used by NI discovery scans enabled by multi-
threading feature. You may adjust the configuration based on your requirements.

<work-manager>
 <name>wm/IntegrityDiscoverWorkManager</name>
 <max-threads-constraint>
 <name>IntegrityDiscoverWorkManager_maxthreads</name>
 <count>5</count>
 <queue-size>50000</queue-size>
 </max-threads-constraint>
 </work-manager>

<resource-env-ref>
 <resource-env-ref-name>java:app/env/integrityDiscoverMES</
resource-env-ref-name>
 <resource-env-ref-
type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-
type>
</resource-env-ref>

Import Scan using Multi-Threading
The below work-manager configuration is used by NI import scans enabled by multi-threading
feature. You may adjust the configuration based on your requirements.

<work-manager>
 <name>wm/IntegrityImportWorkManager</name>
 <max-threads-constraint>
 <name>IntegrityImportWorkManager_maxthreads</name>
 <count>5</count>
 <queue-size>50000</queue-size>
 </max-threads-constraint>
 </work-manager>

<resource-env-ref>
 <resource-env-ref-name>java:app/env/integrityImportMES</
resource-env-ref-name>
 <resource-env-ref-
type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-
type>
</resource-env-ref>

Chapter 9
Discovery Scan using Multi-Threading

9-3

10
Working with the Network Integrity Web
Service

This chapter provides information about the Oracle Communications Network Integrity Web
service.

This chapter contains the following sections:

• About the Network Integrity Web Service

• Network Integrity Web Service Operations

• Network Integrity Web Service Special Function Operations

• Network Integrity Web Service Scenarios

• Network Integrity Web Service Samples

About the Network Integrity Web Service
The Network Integrity Web service enables Oracle Communications products and third party
applications to interact with Network Integrity and reduces integration complexity by providing a
standards-based interface. With the API, clients can externally manage Network Integrity
through Web services.

At a high-level the Network Integrity Web service supports:

• Configuring all types of scans

• Running discovery and reconciliation scans

• Retrieving scan results including any found discrepancies

• Initiating corrective actions such as reconciling discrepancies in Inventory systems.

Most operations that can be done in the Network Integrity UI can be done through the Web
service. One operation that is currently not possible is to create or update the Import System
configured in the Network Integrity UI. This is a one-time setup that must be done in the
Network Integrity UI and cannot be done through the Web service.

The Network Integrity Web service is standards based using JAX-WS over HTTP.

Security
The Network Integrity Web service uses the same security as the Network Integrity UI. Any
user who is able to login into the Web UI can also use the Web service. This is assigned using
NetworkIntegrityRole.

10-1

Note:

All Network Integrity Web service requests (Soap UI requests and automated Web
service requests) must include a time stamp to access Network Integrity Web
service.

Model Based
The Network Integrity Web service operates on the Network Integrity Model. Knowledge of the
entities, attributes and relationships in the Network Integrity model is essential for using the
Web service.

For Network Integrity entity, attribute and relationship names, see Network Integrity Information
Model Reference.

For cartridge entity, parameter, and relationship names and descriptions, see your cartridge
documentation.

Concurrency with UI and other Web Service Clients
Web service operations take immediate effect in the system and therefore there is scope for
collisions with users working in the Network Integrity UI. If the Web service operation collides
with an update that another user has done in the Network Integrity UI or another Web service
client, then an error is returned to a client. For example, if a Web service client deletes a
DisConfig (scan) while a user is editing the same scan in the Network Integrity UI, the user
receives an error when that user attempt to save changes. If two clients (Web service client or
Network Integrity UI user) are trying to update/delete the same entity, the last client to commit
changes receives the error.

Listing of Network Integrity Web Service Operations
All Network Integrity Web service operations must include a time stamp to satisfy the Web
service security policy. See "Security" for more information.

Table 10-1 describes the DisConfig operations. See Network Integrity Information Model
Reference for more information on the DisConfig entity.

Table 10-1 DisConfig Operations

Operation Description

createDisConfig This operation creates a new scan in the system (DisConfig is equivalent to scan in the Network
Integrity UI).

deleteDisConfig This operation deletes a scan from the system. All results and discrepancies produced by this scan are
deleted as well. A fault is returned if the delete fails.

This delete operation returns a fault if the scan to be deleted has discrepancies in the Received or the
Submitted state. Add <v1:forceDelete>YES</v1:forceDelete> to the delete request to force the scan
to delete and bypass this particular fault.

findDisConfig This operation finds scans in the system based on search criteria provided in the request. Full scan
data is returned but client applications can limit the amount of data returned, or support paging, by
providing a fromRange and toRange in the request. A fault with a faultstring is returned if the find fails.

Chapter 10
About the Network Integrity Web Service

10-2

Table 10-1 (Cont.) DisConfig Operations

Operation Description

getDisConfig This operation gets the details about a scan. It requires the DisConfig entity ID to be passed in the
request, and returns the full details of the scan including scan parameters, Scope Addresses, and
Schedule information in the response, if found. If not found, a fault is the response.

updateDisConfig This operation updates a scan in the system. All the values for the scan are required in the request.
The client application should perform a get operation and update the required values for the update
operation. A fault with a faultstring is returned if the update fails.

Table 10-2 describes the DisScanRun operations. See Network Integrity Information Model
Reference for more information on the DisScanRun entity.

Table 10-2 DisScanRun Operations

Operation Description

findDisScanRun This operation finds scan results in the system based on search criteria provided in the request
(DisScanRun is equivalent to scan results in the Network Integrity UI). Full scan result data is
returned but client applications can limit the amount of data returned, or support paging, by providing
a fromRange and toRange in the request. A fault with a faultstring is returned if the find fails.

deleteDisScanRun This operation deletes scan results from the system. All results and discrepancies attached to the
scan results are deleted as well. A fault with a faultstring is returned if the delete fails.

getDisScanRun This operation gets all the details about an instance of scan results. The operation requires the
Discrepancy entity id to be passed in the request, and returns the full details of the Discrepancy
including references to the compare and reference Oracle Communications Information Model entities
which the discrepancy was found on. If not found, a fault is the response.

Table 10-3 describes the DisBlackoutSchedule operations. See Network Integrity Information
Model Reference for more information on the DisBlackoutSchedule entity.

Table 10-3 DisBlackoutSchedule Operations

Operation Description

createDisBlackoutSchedule This operation creates a new blackout schedule in the system. A recurrence rule, duration,
and start time are required in the request. The blackout schedule can be assigned to scan
configurations on creation, or they can be associated later with an update operation.

deleteDisBlackoutSchedule This operation deletes a blackout schedule in the system. If any scans are associated with
the blackout schedule then the associations are removed as well. A fault with a faultstring
is returned if the delete fails.

getAllDisBlackoutSchedule This operation returns the full details of all the blackout schedules in the system. An empty
response is returned if no blackout schedules exist in the system.

getDisBlackoutSchedule This operation requires the blackout schedule entity id to be passed in the request, and
returns the full details of the blackout schedule in the response if found. If not found, a fault
is the response.

updateDisBlackoutSchedule This operation updates a blackout schedule in the system. All the values for the blackout
schedule are required in the request, not just the values changing. A fault with a faultstring
is returned if the update fails.

Table 10-4 describes the DisTag operations. See Network Integrity Information Model
Reference for more information on the DisTag entity.

Chapter 10
About the Network Integrity Web Service

10-3

Table 10-4 DisTag Operations

Operation Description

createDisTag This operation creates a new tag, a name for the tag is required. The parent tag entity id can be
provided in the creation or can be add after in an update request. A fault with a faultstring is returned
if the delete fails.

deleteDisTag This operation deletes the specified tag and all child tags. The entity id of the tag to be deleted is
required. If any scans are associated with the tag then the associations are removed as well. A fault
with a faultstring is returned if the delete fails.

getDisTag This operation requires the tag entity id to be passed in the request, and returns the full details of the
tag including all child tags in the response, if found. If not found, a fault is the response.

getAllRootDisTags This operation returns the full details of all the tags configured in the system. The root tags returned
also include the details of children tag entities. A fault with a faultstring is returned if an error occurs.

updateDisTag This operation updates a tag, an entity id and name for the tag is required. All the values for the
blackout schedule are required in the request, not just the values that are changing. Modifications to
the hierarchy must be performed on the child tag, for example, to make a child tag a root tag call the
update operation with no parent tags specified. A fault with a faultstring is returned if the update fails.

Table 10-5 describes the DisDiscrepancy operations. See Network Integrity Information Model
Reference for more information on the DisDiscrepancy entity.

Table 10-5 DisDiscrepancy Operations

Operation Description

findDisDiscrepancy This operation finds Discrepancies in the system based on search criteria provided in the
request. The search criteria available in the Web service operation is the same as the criteria
available in the Network Integrity UI (DisScanRun is equivalent to scan results in the Network
Integrity UI). Full Discrepancy data is returned but client applications can limit the amount of data
returned, or support paging, by providing a fromRange and toRange in the request. A fault with a
faultstring is returned if the find fails.

getDisDiscrepancy This operation gets all the details about a Discrepancy. The operation requires the Discrepancy
entity id to be passed in the request, and returns the full details of the Discrepancy including
references to the compare and reference Information Model entities which the discrepancy was
found on. If not found, a fault is the response.

updateDisDiscrepancy This operation updates a discrepancy in the system. All the values for DisDiscrepancy are
required in the request, not just the values changing. The valid values of status are:

• DISCREPANCY_OPENED
• DISCREPANCY_IGNORED
• OPERATION_IDENTIFIED
• OPERATION_SUBMITTED
• OPERATION_RECEIVED
• OPERATION_NOT_IMPLEMENTED
• OPERATION_PROCESSED
• OPERATION_FAILED
The operation value is equivalent to resolution action value in the Network Integrity UI and the
valid values are dependent on what discrepancy resolution are currently installed in the system.
A fault with a faultstring is returned if the update fails.

Table 10-6 describes the DisPlugin operations. See Network Integrity Information Model
Reference for more information on the DisPlugin entity.

Chapter 10
About the Network Integrity Web Service

10-4

Table 10-6 DisPlugin Operation

Operation Description

getAllDisAssimilationPlugin This operation returns details about all assimilation plugins deployed in the
system (AssimilationPlugin is equivalent to assimilation/scan action in the
Network Integrity UI).

getAllDisInventoryImportPlugin This operation returns details about all import plugins deployed in the system
(InventoryImportPlugin is equivalent to import/scan action in the Network
Integrity UI).

getAllDisNetworkDiscoveryPlugin This operation returns details about all discovery plugins deployed in the
system (NetworkDiscoveryPlugin is equivalent to discovery/scan action in the
Network Integrity UI).

getAllDisDiscrepancyDetectionPlugin This operation returns details about all discrepancy detection plugins deployed
in the system (Discrepancy Detection Plugin is equivalent to a discrepancy
detection action)

getAllDisDiscrepancyResolutionPlugin This operation returns details about all discrepancy resolution plugins deployed
in the system (Discrepancy Resolution Plugin is equivalent to a discrepancy
resolution action)

getDisAssimilationPlugin This operation returns details about an assimilation plugin deployed in the
system (AssimilationPlugin is equivalent to assimilation/scan action in the
Network Integrity UI). The request requires an Assimilation Plugin entity id to
be passed, and returns the full details of the Assimilation Plugin in the
response if found. If not found, a fault is the response.

getDisInventoryImportPlugin This operation returns details about an import plugin deployed in the system
(InventoryImportPlugin is equivalent to import/scan action in the Network
Integrity UI). The request requires an Import Plugin entity id to be passed, and
returns the full details of the Import Plugin in the response if found. If not found,
a fault is the response.

getDisNetworkDiscoveryPlugin This operation returns details about a discovery plugin deployed in the system
(NetworkDiscoveryPlugin is equivalent to discovery/scan action in the Network
Integrity UI). The request requires a Discovery Plugin entity id to be passed,
and returns the full details of the Discovery Plugin in the response if found. If
not found, a fault is the response.

getDisDiscrepancyDetectionPlugin This operation returns details about an discrepancy detection plugin deployed
in the system (Discrepancy Detection Plugin is equivalent to a discrepancy
detection action). The request requires an Discrepancy Detection Plugin entity
id to be passed, and returns the full details of the Discrepancy Detection Plugin
in the response if found. If not found, a fault is the response.

getDisDiscrepancyResolutionPlugin This operation returns details about an discrepancy resolution plugin deployed
in the system (Discrepancy Resolution Plugin is equivalent to a discrepancy
resolution action). The request requires an Discrepancy Resolution Plugin
entity id to be passed, and returns the full details of the Discrepancy
Resolution Plugin in the response if found. If not found, a fault is the response.

Table 10-7 describes the DefaultDisInvetoryConfig operations.

Table 10-7 DefaultDisInventoryConfig

Operation Description

getDefaultDisInventoryConfig This operation returns the inventory system configured in the Network Integrity system.
This is the inventory system configuration that is entered in the “Manage Import System"
task of the Network Integrity UI. The Import System cannot be created or updated
through the Web service; it must be done using the Network Integrity UI.

Chapter 10
About the Network Integrity Web Service

10-5

Table 10-8 describes the Special operations.

Table 10-8 Special Operations

Operation Description

startScan This operation starts a scan. The response returns a reference to the scan result entity so that
the client application can monitor the progress of the scan. (DisScanRun is equivalent to the
scan results in the Network Integrity UI). If the scan is already running or in the process of
stopping then the startScan operation fails. If the scan could not be started, a fault with a reason
is the response.

stopScan This operation stops a scan that is running. The scan is set to a STOPPING state immediately
and then transition to STOPPED when actually ended. If the scan is not currently running, this
call is a no-op. If the scan could not be set to Stopping, a fault with a reason is the response.

submitDisDiscrepancyR
esolutionOperations

This operation submits the list of discrepancies provided in the request for resolution processing.
The status of the discrepancies must be 'OPERATION_IDENTIFIED' to submit them, otherwise a
fault is returned. A fault with a faultstring is returned if the operation fails.

getLatestScanStatus This operation returns the scan status for the most recent execution of a scan. This operation is
more efficient than getDisScanRun and therefore is more appropriate for client applications that
are monitoring the status of a scan (DisConfig is equivalent to scan in the Network Integrity UI).
A fault with a faultstring is returned if the operation fails.

Table 10-9 describes the Information Model entity operations. Information Model entities are
described in Oracle Communications Information Model Reference and Network Integrity
Information Model Reference.

Table 10-9 Information Model Entity Operations

Operation Description

getRootEntity This operation gets all the details about a discovered, imported, or assimilated root
Information Model entity. The root entity id for the request is obtained from either a
getDisScanRun operation response or findDisScanRun operation response. The id is
found in the 'rootEntityRefsRef' element in the result groups. Multiple ids can be passed in
the request. The response entity can be many different types depending on what the
cartridge persisted in the result group. An example root entity type is Physical Device or
Logical Device, but other Information Model types are possible. If not found, a fault is the
response.

getResultEntity A generic operation to get any type of Information Model entity given an entityId and the
entity type. Multiple entities can be retrieved in a single request. If not found, a fault is the
response.

getSpecification This operation gets all the details about specification deployed in the system. Most
Information Model entities support specifications which is blueprint for what
characteristics are supported, among other things. All the characteristics defined in this
specification are returned. Specifications are deployed to the system when cartridges
containing them are deployed. If not found, a fault is the response.

getLogicalDevice This operation requires the LogicalDevice entity id to be passed in the request, and
returns the full details of the LogicalDevice if found. If not found, a fault is the response.

getDeviceInterface This operation requires the DeviceInterface entity id to be passed in the request, and
returns the full details of the DeviceInterface if found. If not found, a fault is the response.

getMediaInterface This operation requires the MediaInterface entity id to be passed in the request, and
returns the full details of the MediaInterface if found. If not found, a fault is the response.

getLogicalDeviceAccount This operation requires the LogicalDeviceAccount entity id to be passed in the request,
and returns the full details of the LogicalDeviceAccount if found. If not found, a fault is the
response.

Chapter 10
About the Network Integrity Web Service

10-6

Table 10-9 (Cont.) Information Model Entity Operations

Operation Description

getPhysicalDevice This operation requires the PhysicalDevice entity id to be passed in the request, and
returns the full details of the PhysicalDevice if found. If not found, a fault is the response.

getEquipment This operation requires the Equipment entity id to be passed in the request, and returns
the full details of the Equipment if found. If not found, a fault is the response.

getEquipmentHolder This operation requires the EquipmentHolder entity id to be passed in the request, and
returns the full details of the EquipmentHolder if found. If not found, a fault is the
response.

getPhysicalPort This operation requires the PhysicalPort entity id to be passed in the request, and returns
the full details of the PhysicalPort if found. If not found, a fault is the response.

getPhysicalConnector This operation requires the PhysicalConnector entity id to be passed in the request, and
returns the full details of the PhysicalConnector if found. If not found, a fault is the
response.

getCustomObject This operation requires the CustomObject entity id to be passed in the request, and
returns the full details of the CustomObject if found. If not found, a fault is the response.

getCustomNetworkAddress This operation requires the CustomNetworkAddress entity id to be passed in the request,
and returns the full details of the CustomNetworkAddress if found. If not found, a fault is
the response.

getTelephoneNumber This operation requires the TelephoneNumber entity id to be passed in the request, and
returns the full details of the TelephoneNumber if found. If not found, a fault is the
response.

getInventoryGroup This operation requires the InventoryGroup entity id to be passed in the request, and
returns the full details of the InventoryGroup if found. If not found, a fault is the response.

getService This operation requires the Service entity id to be passed in the request, and returns the
full details of the Service if found. If not found, a fault is the response.

getNetwork This operation requires the Network entity id to be passed in the request, and returns the
full details of the Network if found. If not found, a fault is the response.

getNetworkNode This operation requires the NetworkNode entity id to be passed in the request, and
returns the full details of the NetworkNode if found. If not found, a fault is the response.

getNetworkEdge This operation requires the NetworkEdge entity id to be passed in the request, and
returns the full details of the NetworkEdge if found. If not found, a fault is the response.

getPipe This operation requires the Pipe entity id to be passed in the request, and returns the full
details of the Pipe if found. If not found, a fault is the response.

getPipeTerminationPoint This operation requires the PipeTerminationPoint entity id to be passed in the request,
and returns the full details of the PipeTerminationPoint if found. If not found, a fault is the
response.

getPipeDirectionality This operation requires the PipeDirectionality entity id to be passed in the request, and
returns the full details of the PipeDirectionality if found. If not found, a fault is the
response.

getTrailPath This operation requires the TrailPath entity id to be passed in the request, and returns the
full details of the TrailPath if found. If not found, a fault is the response.

getGeographicPlace This operation requires the GeographicPlace entity id to be passed in the request, and
returns the full details of the GeographicPlace if found. If not found, a fault is the
response.

getGeographicAddress This operation requires the GeographicAddress entity id to be passed in the request, and
returns the full details of the GeographicAddress if found. If not found, a fault is the
response.

Chapter 10
About the Network Integrity Web Service

10-7

Table 10-9 (Cont.) Information Model Entity Operations

Operation Description

getGeographicAddressRange This operation requires the GeographicAddressRange entity id to be passed in the
request, and returns the full details of the GeographicAddressRange if found. If not found,
a fault is the response.

getGeographicLocation This operation requires the GeographicLocation entity id to be passed in the request, and
returns the full details of the GeographicLocation if found. If not found, a fault is the
response.

getGeographicSite This operation requires the GeographicSite entity id to be passed in the request, and
returns the full details of the GeographicSite if found. If not found, a fault is the response.

getNetworkNodeRole This operation requires the NetworkNodeRole entity id to be passed in the request, and
returns the full details of the NetworkNodeRole if found. If not found, a fault is the
response.

getPhysicalConnectorRole This operation requires the PhysicalConnectorRole entity id to be passed in the request,
and returns the full details of the PhysicalConnectorRole if found. If not found, a fault is
the response.

getPipeRole This operation requires the PipeRole entity id to be passed in the request, and returns the
full details of the PipeRole if found. If not found, a fault is the response.

getPhysicalPortRole This operation requires the PhysicalPortRole entity id to be passed in the request, and
returns the full details of the PhysicalPortRole if found. If not found, a fault is the
response.

getDeviceInterfaceRole This operation requires the DeviceInterfaceRole entity id to be passed in the request, and
returns the full details of the DeviceInterfaceRole if found. If not found, a fault is the
response.

getLogicalDeviceRole This operation requires the LogicalDeviceRole entity id to be passed in the request, and
returns the full details of the LogicalDeviceRole if found. If not found, a fault is the
response.

getCustomObjectRole This operation requires the CustomObjectRole entity id to be passed in the request, and
returns the full details of the CustomObjectRole if found. If not found, a fault is the
response.

getPhysicalDeviceRole This operation requires the PhysicalDeviceRole entity id to be passed in the request, and
returns the full details of the PhysicalDeviceRole if found. If not found, a fault is the
response.

getEquipmentRole This operation requires the EquipmentRole entity id to be passed in the request, and
returns the full details of the EquipmentRole if found. If not found, a fault is the response.

getNetworkEdgeRole This operation requires the NetworkEdgeRole entity id to be passed in the request, and
returns the full details of the DeviNetworkEdgeRole ceInterface if found. If not found, a
fault is the response.

getPlaceRole This operation requires the PlaceRole entity id to be passed in the request, and returns
the full details of the PlaceRole if found. If not found, a fault is the response.

getNetworkRole This operation requires the NetworkRole entity id to be passed in the request, and returns
the full details of the NetworkRole if found. If not found, a fault is the response.

Network Integrity Web Service Operations
Most of the operations defined in the Network Integrity Web service follow the naming pattern
of:

• Create

Chapter 10
Network Integrity Web Service Operations

10-8

• Get

• Get All

• Delete

• Update

• Find

However, a few of the Web service operations do not follow this pattern. See "Network Integrity
Web Service Special Function Operations" for more information.

Create
Each create operation inserts a new entity into the system. For example, the
createDisBlackoutSchedule operation creates a new blackout schedule in the system.

If successful, the changes are immediately available in the system and can be viewed in the
Network Integrity UI.

The request for each create operation is named create<EntityType>Request. The request
contains the full details of the new entity to be created. Multiple entities cannot be created in a
single request, only a single entity is supported.

The following fields should not be supplied in the create request as they are populated
automatically by the system.

• entityId

• entityVersion

• lastModifiedDate

• lastModifiedUser

• createdDate

• createdUser

The response from each create operation is named create<EntityType>Response and
contains the entityId of the created entity if the operation was successful. The entityId returned
is used in subsequent get and delete operations.

If a create operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 10-1 Create Request

<v1:createDisTagRequest>
 <v1:disTag>
 <v13:name>Sample Tag</v13:name>
 <v13:description>Created through Web Service</v13:description>
 </v1:disTag>
</v1:createDisTagRequest>

Example 10-2 Create Response

<ns118:createDisTagResponse>
 <ns118:disTagRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns118:disTagRef>
</ns118:createDisTagResponse>

Chapter 10
Network Integrity Web Service Operations

10-9

Example 10-3 Create Failure (a name was not specified for the tag)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>ILLEGAL_NAME</faultstring>
 <detail>
 <ns158:crudFault>
 <ns152:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each create operation supports the following entity types:

• DisBlackoutSchedule

• DisTag

• DisConfig

Get
Each get operation retrieves an entity from the system. The get request requires a unique
entity id and the entity details are returned in the response. For example, the
getDisBlackoutSchedule operation returns all the details of a specific blackout schedule in the
system.

The request for each get operation is named get<EntityType>Request. The request contains
a single entityId of the entity to be retrieved. Only one entityId can be specified in the request,
multiples are ignored. The exception to this is the getRootEntity and getResultEntity
operations; these operations accept multiple entity id values.

If the entityId provided is not found in the system a fault is returned, not an empty response.

The response from each get operation is named get<EntityType>Response and contains the
details of the entity retrieved from the system.

If a get operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 10-4 Get Request

<v1:getDisTagRequest>
 <v1:disTagRef>
 <v11:entityId>9586</v11:entityId>
 </v1:disTagRef>
</v1:getDisTagRequest>

Example 10-5 Get Response

<ns118:getDisTagResponse>
 <ns118:disTag>
 <ns2:entityId>9586</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns12:parentRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns12:parentRef>
 <ns12:name>Sample Child Tag</ns12:name>
 <ns12:description>Child Created through WS</ns12:description>

Chapter 10
Network Integrity Web Service Operations

10-10

 </ns118:disTag>
</ns118:getDisTagResponse>

Example 10-6 Get Failure (entity id was not found)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Cannot find Tag with entity Id 9586</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each get operation supports the following entity types:

• DisBlackoutSchedule

• DisTag

• DisConfig

• DisDiscrepancy

• DisInventoryImportPlugin

• DisNetworkDiscoveryPlugin

• DisAssimilationPlugin

• DisDiscrepancyResolutionPlugin

• DisDiscrepancyDetectionPlugin

• DisScanRun

• RootEntity

• ResultEntity

• Specification

• DefaultDisInventoryConfig

• DeviceInterface

• PhysicalDevice

• EquipmentHolder

• MediaInterface

• Equipment

• LogicalDevice

• PhysicalPort

• PhysicalConnector

• CustomObject

Chapter 10
Network Integrity Web Service Operations

10-11

Get All
Each get all operation retrieves all entities of a certain type from the system. For example, the
getAllDisBlackoutSchedule operation returns all the details of all the blackout schedules
currently in the system.

These operations are only available for entities that would not typically have many entries in
the system and that do not support a find operation.

The request for each get all operation is named getAll<EntityType>Request. The request
does not support any request parameters.

The response from each get all operation is named getAll<EntityType>Response and
contains the details of all the entities retrieved from the system.

If a get all operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details. Since the get all operations do not take any input parameters, they should
only fail due to environment or authentication issues.

Example 10-7 Get All Request

<v1:getAllRootDisTagsRequest/>

Example 10-8 Get All Response

<ns118:getAllRootDisTagsResponse>
 <ns118:rootDisTags>
 <ns2:entityId>9584</ns2:entityId>
 <ns2:entityVersion>3</ns2:entityVersion>
 …etc
 </ns118:rootDisTags>
 <ns118:rootDisTags>
 <ns2:entityId>9585</ns2:entityId>
 <ns2:entityVersion>3</ns2:entityVersion>
 …etc
 </ns118:rootDisTags>
</ns118:getAllRootDisTagsResponse>

Entity Type Support
Each get all operation supports the following entity types:

• DisBlackoutSchedule

• RootDisTag

• DisInventoryImportPlugin

• DisNetworkDiscoveryPlugin

• DisAssimilationPlugin

• DisDiscrepancyResolutionPlugin

• DisDiscrepancyDetectionPlugin

Delete
Each delete operation removes an entity from the system. For example, the
deleteDisBlackoutSchedule operation removes a particular blackout schedule from the system.

Chapter 10
Network Integrity Web Service Operations

10-12

If successful, the result of a delete operation is immediately viewable in the Network Integrity
UI.

The request for each delete operation is named delete<EntityType>Request. The request
contains a single entityId of the entity to be deleted. Only one entityId can be specified in the
request, multiples are ignored.

If the entityId provided is not found in the system, or if the entity cannot be deleted, a fault is
returned.

Note:

The deleteDisConfig operation has an additional optional parameter you can enter in
the delete request to force a scan to be deleted, even if it has associated
discrepancies in the Running or Submitted state. See Table 10-1 for more
information.

The response from each delete operation is named delete<EntityType>Response and
contains the entityId of the entity deleted, which matches the id in the request.

If a delete operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 10-9 Delete Request

<v1:deleteDisTagRequest>
 <v1:disTagRef>
 <v11:entityId>9579</v11:entityId>
 </v1:disTagRef>
</v1:deleteDisTagRequest>

Example 10-10 Delete Response

<ns118:deleteDisTagResponse>
 <ns118:disTagRef>
 <ns2:entityId>9579</ns2:entityId>
 </ns118:disTagRef>
</ns118:deleteDisTagResponse>

Example 10-11 Delete Failure (entity id was not found)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Cannot find Tag with Entity Id9579</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each delete operation supports the following entity types:

• DisBlackoutSchedule

• DisTag

Chapter 10
Network Integrity Web Service Operations

10-13

• DisConfig

• DisScanRun

Update
Each update operation modifies an existing entity in the system. For example, the
updateDisBlackoutSchedule operation updates a blackout schedule currently in the system.

If successful, the update is immediately available in the system and can be viewed in the
Network Integrity UI.

The request for each update operation is named update<EntityType>Request. The request
must contain the full details of the new entity to be created, not just the fields that have
changed. Multiple entities cannot be updated in a single request, only a single entity is
supported. Unlike the create operation, the entityId must be supplied in the update operation
to uniquely identity which entity to modify.

The entity version passed in the request must match the version that is held on the server. The
entity version is incremented by the system every time the entity is modified. The entity version
ensures that the entity has not been changed by some other user between when the entity was
last retrieved and when updated. If the entity has been changed by some other user a fault is
returned as follows: Entity Version Mismatch: Input Version=1::Latest Version=2

Because the full details of the entity are required in the update request, the recommended
steps are to do a get, get all, or find operation to get the details of the entity, and then copy
these details into the update request, and modify the desired fields.

The following fields should not be supplied in the update request as they are populated
automatically by the system or are not currently used.

• lastModifiedDate

• lastModifiedUser

• createdDate

• createdUser

Each response from the update operation is named update<EntityType>Response and
contains the entityId of the updated entity if the operation was successful.

If the update operation fails, the response contains a fault with a faultCode, faultString, and
extra CrudFault details.

Example 10-12 Update Request

<v1:updateDisTagRequest>
 <v1:disTag>
 <v11:entityId>9586</v11:entityId>
 <v11:entityVersion>1</v11:entityVersion>
 <v12:parentRef>
 <v2:entityId>9584</v2:entityId>
 </v12:parentRef>
 <v11:name>Sample Child Tag</v11:name>
 <v11:description>Modified through WS</v11:description>
 </v1:disTag>
</v1:updateDisTagRequest>

Example 10-13 Update Response

<ns118:updateDisTagResponse>
 <ns118:disTagRef>

Chapter 10
Network Integrity Web Service Operations

10-14

 <ns2:entityId>9586</ns2:entityId>
 </ns118:disTagRef>
</ns118:updateDisTagResponse>

Example 10-14 Update Failure (wrong entity version supplied)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Entity Version Mismatch: Input Version=2::Latest Version=3</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each update operation supports the following entity types:

• DisBlackoutSchedule

• DisTag

• DisConfig

• DisDiscrepancy

Find
Each find operation retrieves a list of entities that match filter search criteria. For example, the
findDisConfig operation retrieves a list DisConfig entities currently in the system that match a
given set of search criteria.

Each find operation is equivalent in capability to the Search screens in the Network Integrity
UI.

The request for each find operation is named find<EntityType>Request. The find request can
contain:

• From and To Ranges

• Sorting Fields (Ascending and Descending)

• Attribute Criteria

• Extended Attribute Criteria

• Criteria Operator (Equals, Contains, etc.)

• Conjunction Criteria (AND/OR)

Entity Type Support
Each find operation supports the following entity types:

• DisConfig

• DisScanRun

• DisDiscrepancy

Chapter 10
Network Integrity Web Service Operations

10-15

From and To Range
The fromRange and toRange are used to limit the number of rows returned to a client. These
fields support paging in UIs through the Web service. It is also useful to improve performance
and memory usage by retrieving many rows in smaller, more manageable chunks.

If the fromRange is not provided the default value is 0 which means the find returns the first
row on. If the toRange is not provided in the request then the find operation is unbounded and
returns all rows to the end.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator> EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Ascending and Descending
The ascending and descending fields control how the entity results are sorted in the response.
The ascending and descending fields hold the name of the attribute to be sorted on. Multiple
ascending and descending fields can be specified to add more than one level of sorting. If both
an ascending and descending sort field are not provided in the request then the order of the
entities returned is not sorted, and returned in the order they are persisted.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Attribute Criteria
The attribute criteria specifies the field and value to match when performing the find operation.
In addition, an operator needs to be specified in the attribute criteria to determine how the
match is done (for example, EQUALS, NOT_EQUALS, etc.).

Zero or more attribute criteria are contained within an entity's ConjunctionCriteriaItem.

The <EntityType>ConjunctionCriteriaItem element defines a list of valid
<attributeName>AttributeCriteria child elements. For example, the

Chapter 10
Network Integrity Web Service Operations

10-16

disConfigConjunctionCriteriaItem has an attributeCriteria for every attribute that is searchable,
namely the nameAttributeCriteria, descriptionAttributeCriteria, enabledAttributeCriteria, etc.

For each attribute criteria the value to match and the operator to use to perform the match. The
operators that are valid depend on the attribute type. For a list of valid operators, see the
operator section below.

You can use wildcards in the value field for attributes that are text types. The supported
wildcard characters are “*'", “%", and “_". “*" and “%" both represent a match of zero or more
characters. “_"represents a match of any single character. Wildcard characters can be escaped
with a backslash “\". To insert a backslash in the query, insert two backslashes “\\".

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Multiple Attribute Criteria
Multiple criteria for the same attribute can be passed in a single find operation. In the example
below the find request is looking for scans that start with the name Cisco or Juniper. It is
necessary to specify the ‘OR' conjunction in this scenario or no rows is returned.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <nameAttributeCriteria>
 <value>Juniper*</value>
 <operator> EQUALS </operator>
 </nameAttributeCriteria>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Extended Attribute Criteria
Extended Attribute Criteria allow the client application to find entities based on the attribute
values on related entities. For example, to find all scans with a certain Scope Address would
not be possible without extended criteria because the scope address is not defined on the
DisConfig entity. Multiple criteria for the same attribute can be passed in a single find
operation.

Chapter 10
Network Integrity Web Service Operations

10-17

In the example below, the scope relationship on the DisConfig entity is followed, and then the
addresses relationship if followed on the DisScope, to specify the addresses to match against.
This search finds DisConfig entities that have either the address 10.156.68.136 or
10.156.68.140 in the scope. The schemas for the Web service define all the relationships and
attributes that can be specified in the find operation.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <disConfigConjunctionCriteriaItem>
 <disConfigExtendedCriteriaItem>
 <scope>
 <disScopeConjunctionCriteriaItem>
 <disScopeExtendedCriteriaItem>
 <addresses>
 <disAddressConjunctionCriteriaItem>
 <addressAttributeCriteria>
 <value>10.156.68.136</value>
 <operator>EQUALS</operator>
 </addressAttributeCriteria>
 <addressAttributeCriteria>
 <value>10.156.68.140</value>
 <operator>EQUALS</operator>
 </addressAttributeCriteria>
 <conjunction>OR</conjunction>
 </disAddressConjunctionCriteriaItem>
 </addresses>
 </disScopeExtendedCriteriaItem>
 </disScopeConjunctionCriteriaItem>
 </scope>
 </disConfigExtendedCriteriaItem>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Criteria Operators
The following are the allowed search operators for each entity and attribute. If the Web service
clients sends the wrong operator for a search criteria the Web service search request fails and
the client gets a message, which shows the allowed operators for that search criteria.

DisConfig

Table 10-10 shows the allowed search operators for DisConfig attributes.

Table 10-10 Allowed Search Operators for DisConfig Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH FALSE TRUE

Tag Y Y Y N/A N/A

Name Y Y N/A N/A N/A

ScanAction Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

Description Y Y N/A N/A N/A

Source Y Y N/A N/A N/A

Chapter 10
Network Integrity Web Service Operations

10-18

Table 10-10 (Cont.) Allowed Search Operators for DisConfig Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH FALSE TRUE

NetworkAddress Y N/A N/A N/A N/A

Enabled N/A N/A N/A Y Y

Run Reconciliation N/A N/A N/A Y Y

DisScanRun

Table 10-11, Table 10-12, and Table 10-13 show the allowed search operators for DisScanRun.

Table 10-11 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH

Tag Y Y Y

Name Y Y N/A

Status Y Y N/A

ScanType Y Y N/A

Source Y Y N/A

ScanAction Y Y N/A

Table 10-12 Allowed Search Operators for DisScanRun Attributes

Attribute Name BEFORE AFTER ON_OR_AFTER ON_OR_BEFORE BETWEEN NOT_BETWEE
N

ScanStartTime Y Y Y Y Y Y

ScanEndTime Y Y Y Y Y Y

DiscrepancyDetectionSta
rtTime

Y Y Y Y Y Y

DiscrepancyDetectionEn
dTime

Y Y Y Y Y Y

Table 10-13 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS NOT_EQUA
L

GREATER_THAN LESS_THAN BETWEEN NOT_BETWEEN

MinorDiscrepancies Y Y Y Y Y Y

MajorDiscrepancies Y Y Y Y Y Y

CriticalDiscrepancies Y Y Y Y Y Y

WarningDiscrepancies Y Y Y Y Y Y

DisDiscrepancy

Table 10-14 and Table 10-15 show the allowed search operators for DisDiscrepancy.

Chapter 10
Network Integrity Web Service Operations

10-19

Table 10-14 Allowed Search Operators for DisDiscrepancy Attributes

Attribute Name EQUALS NOT_EQU
AL

STARTS_W
ITH

IS_BLANK IS_NOT_BLA
NK

Tag Y Y Y N/A N/A

Severity Y Y N/A N/A N/A

Status Y Y N/A N/A N/A

ResolutionAction Y Y N/A Y Y

Owner Y Y N/A Y Y

Priority Y Y N/A Y Y

EntityName Y Y N/A N/A N/A

ScanResultDetailName Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

EntityName Y Y N/A N/A N/A

ScanResultDetailName Y Y N/A N/A N/A

ScanName Y Y N/A N/A N/A

EntityType Y Y N/A N/A N/A

CorrectedBy Y Y N/A N/A N/A

SubmittedBy Y Y N/A N/A N/A

ParentEntityNamw Y Y N/A N/A N/A

ParentEntityType Y Y N/A N/A N/A

Discovery/ImportValue Y Y N/A N/A N/A

Discovery/ImportSource Y Y N/A N/A N/A

ScanResultDetailCategory Y Y N/A N/A N/A

Type Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

Table 10-15 Allowed Search Operators for DisDiscrepancy Attributes

Attribute Name BEFORE AFTER ON_OR_AFTER ON_OR_BEFORE BETWEEN NOT_BETWEE
N

ScanStartTime Y Y Y Y Y Y

ScanEndTime Y Y Y Y Y Y

DiscrepancyDetectionSta
rtTime

Y Y Y Y Y Y

DiscrepancyDetectionEn
dTime

Y Y Y Y Y Y

SubmittedTime Y Y Y Y Y Y

LastStatusChangeTime Y Y Y Y Y Y

Chapter 10
Network Integrity Web Service Operations

10-20

Between/Not Between Operator
When specifying the BETWEEN and NO_BETWEEN operators, two attribute criteria must be
supplied or a fault is returned. The error message returned is Incorrect number of values or
incorrect format specified for attribute criteria: numberWarning.

The following example searches for scan results that found between 10 and 100 discrepancy
warnings.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:fromRange>0</v11:fromRange>
 <v11:toRange>20</v11:toRange>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:disScanRunExtendedCriteriaItem>
 <v14:counts>
 <v119:disDiscrepancyCountsConjunctionCriteriaItem>
 <v120:warningAttributeCriteria>
 <v121:value>10</v121:value>
 <v121:value>100</v121:value>
 <v121:operator>BETWEEN</v121:operator>
 </v120:warningAttributeCriteria>
 </v119:disDiscrepancyCountsConjunctionCriteriaItem>
 </v14:counts>
 </v12:disScanRunExtendedCriteriaItem>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>
</v1:findDisScanRunRequest>

Data Criteria
Date fields must be in the format mm/dd/yyyy mm:dd:ss AM/PM. The server time is always
used for dates in Network Integrity. The following example searches for scan runs that started
after the August 11th, 2010 10:00 am. Because the AFTER operator is used, scans that match
this start time exactly are not included in the response. If operator ON_OR_AFTER was used
then exact match start time scans are included in the response.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:fromRange>0</v11:fromRange>
 <v11:toRange>20</v11:toRange>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:discoveryBeginTimeAttributeCriteria>
 <v13:value>08/11/2010 10:00:00 AM</v13:value>
 <v13:operator>AFTER</v13:operator>
 </v12:discoveryBeginTimeAttributeCriteria>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>
</v1:findDisScanRunRequest>

Conjunction Criteria
The conjunction must be either AND or OR. Only the top level conjunction is used,
conjunctions on lower level elements are ignored.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>

Chapter 10
Network Integrity Web Service Operations

10-21

 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <nameAttributeCriteria>
 <value>Juniper*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

The conjunction appears at many levels in the find hierarchy. The conjunction at lower levels
controls how the criteria at lower levels are evaluated logically.

In the following example the inner conjunction is OR because this request is designed to find
any ScanRun that has discrepancy, regardless of severity. Notice the outer conjunction that
has the value AND, this has no effect on the extended attribute criteria.

To change this find so it only finds scans that have a discrepancy of every severity, the inner
conjunction on the disDiscrepancyCountsConjunctionCriteriaItem element would be changed
to AND.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:disScanRunExtendedCriteriaItem>
 <v14:counts>
 <v119:disDiscrepancyCountsConjunctionCriteriaItem>
 <v120:criticalAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:criticalAttributeCriteria>
 <v120:majorAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:majorAttributeCriteria>
 <v120:minorAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:minorAttributeCriteria>
 <v120:warningAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:warningAttributeCriteria>
 <v120:conjunction>OR</v120:conjunction>
 </v119:disDiscrepancyCountsConjunctionCriteriaItem>
 </v14:counts>
 </v12:disScanRunExtendedCriteriaItem>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>

Chapter 10
Network Integrity Web Service Operations

10-22

Find Response
Each find response contains all the details of the entities that matched the attribute criteria.
The response only contains the number of entities defined by the from an to range.
Subsequent find operations may be called to get all the entities depending on the number of
rows matching the search criteria and the from and to range specified.

<ns118:findDisConfigResponse>
 <ns118:disConfigs>
 <ns2:entityId>9612</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns4:tagsRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns4:tagsRef>
 <ns4:tagsRef>
 <ns2:entityId>9586</ns2:entityId>
 </ns4:tagsRef>
 <ns7:parameterGroups>
 <ns2:entityId>9606</ns2:entityId>
 .
 .
 .
 <ns7:enabled>YES</ns7:enabled>
 <ns7:dataSource>TRUE</ns7:dataSource>
 <ns7:startScanReady>true</ns7:startScanReady>
 </ns118:disConfigs>
</ns118:findDisConfigResponse>

Network Integrity Web Service Special Function Operations
There are a few Network Integrity Web service operations that do not follow the standard
pattern and are designed for a special purpose.

The Network Integrity Web service special function operations are:

• Start Scan

• Stop Scan

• Get Latest Scan Status

• Submit Discrepancies For Resolution Processing

Start Scan
The startScan operation starts a scan for a given DisConfig entityId. This operation is identical
to the start scan operation in the Network Integrity UI. The request expects a DisConfig entityId
and the response contains the entityId of the DisScanRun that was created for the scan.

Example 10-15 Request:

<v1:startScanRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:startScanRequest>

Chapter 10
Network Integrity Web Service Special Function Operations

10-23

Example 10-16 Response:

<ns118:startScanResponse>
 <ns118:disScanRunRef>
 <ns2:entityId>14721</ns2:entityId>
 </ns118:disScanRunRef>
</ns118:startScanResponse>

Stop Scan
The stopScan operation stops a scan for a given DisConfig entityId. This operation is identical
to the stop scan operation in the Network Integrity UI. The request expects a DisConfig entityId
and the response contains the entityId of the DisScanRun that was created for the scan.

Example 10-17 Request:

<v1:stopScanRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:stopScanRequest>

Example 10-18 Response:

<ns118:stopScanResponse>
 <ns118:disScanRunRef>
 <ns2:entityId>13846</ns2:entityId>
 </ns118:disScanRunRef>
</ns118:stopScanResponse>

Get Latest Scan Status
The getLatestScanStatus returns the status of the latest run of a scan. The operation is
equivalent to the information displayed in the Status section of the Manage Scans page of the
Network Integrity UI. In addition to the status of the scan the operation returns information
about the number of addresses being discovered, the number of discrepancies found, and the
start time and duration of the scan.

This method is more efficient to call to monitor the running of a scan rather than call
findDisScanRun many times.

Example 10-19 Request:

<v1:getLatestScanStatusRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:getLatestScanStatusRequest

Example 10-20 Response (Running Scan)

<ns118:getLatestScanStatusResponse>
 <ns118:scanStatus>
 <ns120:discrepancySeverityCounts>
 <ns2:entityId>0</ns2:entityId>
 <ns2:entityVersion>0</ns2:entityVersion>
 <ns56:numberWarning>0</ns56:numberWarning>
 <ns56:numberMinor>0</ns56:numberMinor>
 <ns56:numberMajor>0</ns56:numberMajor>
 <ns56:numberCritical>0</ns56:numberCritical>
 </ns120:discrepancySeverityCounts>

Chapter 10
Network Integrity Web Service Special Function Operations

10-24

 <ns120:discoveryWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>0</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>2</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:17:05</ns121:startTime>
 <ns121:duration/>
 </ns120:discoveryWorkCounts>
 <ns120:discrepancyWorkCounts>
 <ns121:totalNoOfWorkItems>0</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>0</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:duration/>
 </ns120:discrepancyWorkCounts>
 <ns120:jobStateString>Running</ns120:jobStateString>
 <ns120:discrepancyDetectionEnabled>true</ns120:discrepancyDetectionEnabled>
 </ns118:scanStatus>
</ns118:getLatestScanStatusResponse>

Example 10-21 Response (Completed Scan)

<ns118:getLatestScanStatusResponse>
 <ns118:scanStatus>
 <ns120:discrepancySeverityCounts>
 <ns2:entityId>15456</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns55:numberWarning>1</ns55:numberWarning>
 <ns55:numberMinor>0</ns55:numberMinor>
 <ns55:numberMajor>0</ns55:numberMajor>
 <ns55:numberCritical>0</ns55:numberCritical>
 </ns120:discrepancySeverityCounts>
 <ns120:discoveryWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>2</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:59:26</ns121:startTime>
 <ns121:endTime>07/16/2010 11:59:52</ns121:endTime>
 <ns121:duration>26s</ns121:duration>
 </ns120:discoveryWorkCounts>
 <ns120:discrepancyWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>2</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:59:52</ns121:startTime>
 <ns121:endTime>07/16/2010 11:59:55</ns121:endTime>
 <ns121:duration>3s</ns121:duration>
 </ns120:discrepancyWorkCounts>
 <ns120:jobStateString>Completed</ns120:jobStateString>
 <ns120:discrepancyDetectionEnabled>true</ns120:discrepancyDetectionEnabled>
 </ns118:scanStatus>
 </ns118:getLatestScanStatusResponse>

Submit Discrepancies For Resolution Processing
The submitDisDiscrepancyResolutionProcessing operation takes a list of discrepancy
entityIds and submits these discrepancies to be processed by a resolution action. This is the
same as the Submit discrepancies operation in the Network Integrity UI.

Chapter 10
Network Integrity Web Service Special Function Operations

10-25

The discrepancies submitted must have a discrepancy status of IDENTIFIED and have an
Operation populated or else a fault is returned. The status and operation of the discrepancy
can be updated using the updateDisDiscrepancy operation.

This operation is a two step operation in the Network Integrity UI to first add discrepancies to
the queue, and then submit them. In the Web service this is a single operation.

If the operation is successful, the entityIds of the discrepancies submitted is returned in the
response.

After submitting the discrepancies the status of the discrepancies is set to SUBMITTED.

Example 10-22 Request

<v1:submitDisDiscrepancyResolutionOperationsRequest>
 <!--1 or more discrepancies: -->
 <v1:disDiscrepancyRef>
 <v11:entityId>15448</v11:entityId>
 </v1:disDiscrepancyRef>
</v1:submitDisDiscrepancyResolutionOperationsRequest>

Example 10-23 Response

<ns118:submitDisDiscrepancyResolutionOperationsResponse>
 <ns118:disDiscrepancyRef>
 <ns2:entityId>15448</ns2:entityId>
 </ns118:disDiscrepancyRef>
</ns118:submitDisDiscrepancyResolutionOperationsResponse>

Example 10-24 Failure (one or more discrepancies not in IDENTIFIED status)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>DISCREPANCY_RESOLUTION_INVALID_STATUS</faultstring>
 <detail>
 <ns127:crudFault>
 <ns119:rootStackTrace/>
 </ns127:crudFault>
 </detail>
</ns2:Fault>

Network Integrity Web Service Scenarios
The following sections describe how to use the Web service in an end-to-end fashion.

Creating a Scan
A scan is created using the createDisConfig operation, but there may be data and entities to be
created or retrieved before calling the createDisConfig operation.

Prerequisites:

• A plugin entity id is required to create a scan. The list of discovery, import, and assimilation
plugins that are deployed in the system can be determined by calling
getAllDisInventoryImportPlugin, getAllDisNetworkDiscoveryPlugin, and
getAllDisAssimilationPlugin.

• The plug-in entity may define one or more plug-in parameters (for example,
SnmpParameters) that it expects to be passed. If it does then the plug-in returned in the
previous step has one or more specificationsRef elements in the response. The expected
plug-in parameters can be determined by calling getSpecification to determine the

Chapter 10
Network Integrity Web Service Scenarios

10-26

available plug-in parameters. Some plug-in parameters are optional and some are
mandatory.

For more information about the parameters returned by getSpecification, see your plug-in
or cartridge documentation.

• If the scan is to be tagged on creation then the tag entity ids must be retrieved using one of
getAllRootDisTags, getDisTag, createDisTag.

• If the scan is to have blackout schedules on creation then the blackout entity ids must be
retrieved using one of getAllDisBlackoutSchedule, getDisBlackoutSchedule,
createDisBlackoutSchedule.

The response from the createDisConfig operation, if successful, is an entity id for the scan.
The entity id is used for deleting, retrieving, starting, and stopping the scan.

Starting, Stopping, and Monitoring a Scan
The scan can be started using startScan operation and the DisConfig entity id that was
returned when it was created. (It is also possible to do a findDisConfig operation to get the
entity id).

The start scan operation returns the scan run entity id from that you can use to monitor the
status and results of the scan.

It is also possible to monitor the scan progress using the DisConfig entity id and the
getLatestScanStatus. This operation is more efficient and reports the current status of the scan
along with other details.

An in-progress scan can be stopped using the stopScan operation and the DisConfig entity id.
When the operation returns the scan is transitioned to STOPPING state, and asynchronously
transitions to STOPPED when all scan processes have ended.

Retrieving Scan Results
The starting point for retrieving scan results is the DisScanRun entity. The entity id of the
DisScanRun is returned when the scan was started, or can be determined by performing the
findDisScanRun operation.

If the scan successfully discovers data the DisScanRun has one or more resultGroups that
contain one or more rootEntityRefsRef. These ids are used in the getRootEntity call to retrieve
the root of the discovered data. The getRootEntity operation, unlike other get calls, accepts
multiple entity ids for retrieving all root entities in a single call.

The getRootEntity operation does not retrieve the complete tree of results for performance
reasons and to limit scope of entity traversal. The response from getRootEntity often contains
references to other entities. These entities can be retrieved using the generic getResultEntity
operation, or by type-specific get operations (getLogicalDevice, getEquipment,
getPhysicalDevice, getLogicalDevice, getEquipmentHolder, and so on).

Most result data entities have specifications. To get details about the specification the entity is
using, the getSpecification operation can be called using the specificationRef on the entity.

Working with Discrepancies
The starting point for working with discrepancies is the DisScanRun entity. The entity id of the
DisScanRun is returned when the scan was started, or can be determined by performing the
findDisScanRun operation.

Chapter 10
Network Integrity Web Service Scenarios

10-27

The list of discrepancies created in discrepancy detection is in the DisScanRun entity as
discrepanciesRef ids. The DisDiscrepancy entity can be retrieved using the getDisDiscrepancy
operation passing the discrepanciesRef from the DisScanRun entity. The discrepancies can
also be found using the findDisDiscrepancy operation with search criteria.

Several fields on the discrepancy, including the status, operation (resolution action), owner,
priority, reasonForFailure, and notes can be updated using the updateDisDiscrepancy
operation.

Discrepancies can be submitted for resolution by calling the
submitDisDiscrepancyResolutionOperations operation. The operation takes a list of
discrepancies to be submitted in the request. Discrepancies must be in the status of
IDENTIFIED and have an operation populated to be submitted.

Network Integrity Web Service Samples
Network Integrity includes example requests and responses of calling the Web service. Find
these examples in the Network Integrity Web Service Samples ZIP file.

Contents of the Network Integrity Web Service Samples ZIP File
Table 10-16 describes the directories, files, and file contents for the Network Integrity Web
Service Samples ZIP file.

Table 10-16 Network Integrity Web Service Samples ZIP File Contents

Directory/File Description

build.xml An example ANT build script that shows how to run the client with an
SSL keystore as a VM argument.

WSDL-Documentation.html Generated WSDL documentation that shows all the available
operations. A short description of each operation is provided. Full
WSDL source is included for reference.

IntegrityWebserviceSoapUIProject.xml SoapUI Project File

integrity-schema\wsdl\
NetworkIntegrityControlService.wsdl

Web Service Definition (WSDL)

integrity-schema\referenceSchema Supporting XML Schema files

integrity-schema\schema Supporting XML Schema files

integrity-ws-client.jar Jar file containing Java Client type generated from the WSDL

jaxb-bindings.xml JAXB Binding file to adjust generated package names when
generating client classes from WSDL. These bindings are required if
not using the provided integrity-ws-client.jar and generating client
class files using a Web service client generation tool.

src\oracle\integrity\ws\client\NetworkIntegrityControl
Service.java

This is a client side proxy class to get port types. This is the class
where policy files and other authentication details are set.

src\oracle\integrity\ws\test\SampleNIClient.java An example client java class that makes a Web service call.

Sample Java Client
Included in the Web Service Samples ZIP file is a sample java client. The sample java code is
included in the src directory and contains:

Chapter 10
Network Integrity Web Service Samples

10-28

• a sample client side proxy for getting a port type and setting the required policies and
authentication.

• a client class that calls the getAllDisNetworkDiscoveryPlugin operation and prints the result
to standard out.

To compile the sample JAVA code, the following JAR files are necessary:

• weblogic.jar: available in WL_Home/server/lib/

• wseeclient.jar: available in WL_Home/server/lib/

• jrf.jar: available in MW_Home/oracle_common/modules/oracle.jrf_11.1.1/

• integrity-ws-client.jar: included the Network Integrity Web Service Samples ZIP file.

Note:

The required Web service policy, Wssp1.2-2007-Https-UsernameToken-Plain.xml
is included in the wseeclient.jar.

To run the sample JAVA code, you must run it with a full installation of WebLogic Server and
ADF, because the JAR files referenced during compile require other JAR files. Set your
classpath to point to the above JAR files in their installed location on your system. This can be
done by installing WebLogic and ADF on your development system or run the client on your
Network Integrity server.

If you plan on running a Web service client to communicate with a Network Integrity server that
does not have a valid SSL certificate, you must download your server certificate and save it to
a file to be used by your client. Then use the following VM argument when running your client.
In this example, a file called jssecacerts has the SSL key that was downloaded.

 -Djavax.net.ssl.trustStore=jssecacerts

Sample Soap UI Project
A SoapUI project is provided in the Cartridge Developer package to give examples of all the
Web service calls and examples of the responses. The SoapUI project tests various Web
service call scenarios.

To install the Soap UI, use the following procedure:

1. Download and Install SoapUI 3.5.1 (newer versions of SoapUI may work with the bundled
project file, but it has not been tested)

2. Start the SoapUI application.

3. From the File menu, select Import Project.

4. Select the IntegrityWebserviceSoapUIProject.xml file and click Open.

Also in the project is a NetworkIntegrityControlMockService that simulates the real Web
service. For each operation there is one or more example responses provided in the mock
service. The number of example requests in the binding does not always match the number of
responses because the responses would be the same structure with a different id returned (for
example, create blackout response).

You can use the provided example requests or create new requests right-clicking the operation
and selecting “New Request". This creates a new request with all fields populated with a

Chapter 10
Network Integrity Web Service Samples

10-29

question mark. Many of the example requests in the project require modification to run
successfully because the entityIds in the example does not match other systems.

The NetworkIntegrityControlMockService views examples of Web service responses for
different scenarios. The mock service can also be started to respond to Web service calls with
mock responses. See the SoapUI documentation for more information.

Submitting Request to the Server
To submit a request to the server you must do the following:

1. Ensure the request is valid and all mandatory attributes are set.

2. Ensure the username and password are set in the request. See the next section on how to
add the username and password to the request for how this is done.

3. Add a new endpoint by clicking on the drop down at the top of the request and select add
new endpoint.

4. Add a new endpoint with the following format:

https://Managed_Server:Port/NetworkIntegrityApp-NetworkIntegrityControlWebService-
context-root/NetworkIntegrityControlServicePortType

5. Click Play to submit the request.

Specifying User Name and Password in Request
To add the user name and password to a request.

1. Click Aut tab at the bottom of the request.

2. Enter the user name and password that has access to login to the Network Integrity UI.

3. Right click the request and select Add WSS Username Token.

4. Accept the default PasswordText and select OK.

The following structure is added to the request.

<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wsse:Username>niuser</
wsse:Username>

 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">niuser123</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#Base64Binary">ZS2K4yCoqOoQg6KL9DetBw==</wsse:Nonce>
 <wsu:Created>2010-09-13T01:21:17.578Z</
wsu:Created>

 </
wsse:UsernameToken>

</wsse:Security>

5. Delete the Nonce and Created elements in the above example (highlighted in bold) to
reduce errors on future calls.

Chapter 10
Network Integrity Web Service Samples

10-30

11
Working with Scan Run Complete Notifications

This chapter describes an Oracle Communications Network Integrity event notification, Scan
Complete Notification, which allows external components to receive asynchronous event
notification messages about the completion of scans.

You can develop a client to monitor event notifications, to and trigger follow-on actions.

About Clients for Monitoring Scan Run Complete Notification
Messages

You can develop a message-driven bean (MDB) or Java messaging system (JMS) client that
listens to the Network Integrity event notification JMS topic (oracle/communications/
integrity/EventNotificationTopic) for scan-complete notification messages. For example, you
can write post-processing logic that listens for messages that trigger other scans or send
emails or SMS messages using the MDB/JMS client.

Develop the MDB/JMS client to listen to the Network Integrity application server for the JMS
topic. The client must belong to the NetworkIntegrityRole group to access the JMS topic. See
Network Integrity System Administrator's Guide for more information on the
NetworkIntegrityRole group.

Table 11-1 lists the properties used by EventNotificationTopic for client filtering.

Table 11-1 EventNotificationTopic Properties for Client Filtering

Property Description

Status Indicates the final scan run state:

• COMPLETED
• STOPPED
• FAILED

Scan Action Name Indicates the name of the scan action.

Scan Action Type Indicates the type of the scan action:

• NETWORK_DISCOVERY
• INVENTORY_IMPORT
• ASSIMILATION

Discrepancy Detection A Boolean that indicates whether discrepancy detection was enabled on the
scan action:

• 1: discrepancy detection enabled.
• 0: discrepancy detection not disabled.

Notification messages also contain other properties which may be useful to you. For example,
the ScanRunId can be obtained from the message body, which retrieves additional information
about the scan run.

The following example is a sample MDB/JMS client implementation model:

11-1

package model;

import javax.annotation.Resource;
import javax.annotation.security.RunAs;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;

import javax.jms.JMSException;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

import weblogic.javaee.MessageDestinationConfiguration;

@MessageDriven(activationConfig =
 { @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "oracle/communications/integrity/NIXATCF"),
 @ActivationConfigProperty(propertyName = "destinationName", propertyValue =
"oracle/communications/integrity/EventNotificationTopic"),
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Topic")
 } , mappedName = "oracle/communications/integrity/EventNotificationTopic")

@MessageDestinationConfiguration(connectionFactoryJNDIName = "oracle/communications/
integrity/NIXATCF")
@RunAs("NetworkIntegrityRole")
public class MyEjbTestBean implements MessageListener {
 @Resource
 javax.ejb.MessageDrivenContext context;
 public void onMessage(javax.jms.Message message) {
 TextMessage text = (TextMessage)message;
 try {
 // write post-processing logic here
 // like trigger other scans, or send e-mails or SMS messages
 System.out.println("entered mdb.... ");
 System.out.println("received the following message: ");
 System.out.println("Status : "+text.getStringProperty("Status"));
 System.out.println("Scan_Action_Name :
"+text.getStringProperty("Scan_Action_Name"));
 System.out.println("Scan_Action_Type :
"+text.getStringProperty("Scan_Action_Type"));
 System.out.println("Discrepancy_Detection :
"+text.getBooleanProperty("Discrepancy_Detection"));
 System.out.println("scan txt : "+text.getText());

 } catch (JMSException e) {
 //Add log statements here
 }
 }
}

Implementing Custom Code to Stop a Scan
A Network Integrity discovery cartridge typically comprises actions that include processors,
which run sequentially in an iterative manner based on conditions (True or False).

The action controller sets the running sequence of the processors based on the order in which
the processors are configured. Usually a processor is invoked only once and after its
completion, the controller invokes the next processor, until all processors in an action are
invoked. However, one or more processors may be run repeatedly in an iterative manner.

Chapter 11
Implementing Custom Code to Stop a Scan

11-2

For example, when importing an inventory system, it is typical to first get a list of devices from
the inventory system, then go through the list of devices, and then import each device
individually into Network Integrity. In this example, the processor importing a single device is
repeatedly run for all the devices in the returned device list.

A running scan does not stop immediately when you click Stop Scan. If a processor in a scan
had already started before you clicked Stop Scan, the processor continues to run until its
completion; the next processor in the sequence looks for the value of the condition and the
custom code in its invoke method to stop the processor; if the condition is True, the scan is
stopped before the next processor starts and all the results of the scan are deleted.

You can add the custom code to any processor depending on its functionality and your
requirements. The amount of time that a scan will take to stop depends on how you configure
the processors and how you implement the custom code to stop the processors.

To stop a scan when you click Stop Scan, Oracle recommends that you add the following
custom code to the beginning of the processor's invoke method and ensure that this code
resides outside the try/catch block:

if(((BaseDiscoveryController)context).isScanStopped()){
logger.info("Scan is stopped, interrupting data collection");
// Add custom code here to close any open resources, such as connections, sockets,
// sessions, and so on.
throw new ProcessorException("Scan is interrupted");
}

Chapter 11
Implementing Custom Code to Stop a Scan

11-3

12
Working with JCA Resource Adapters

This chapter provides overview information about the J2EE Connector Architecture (JCA)
simple network management protocol (SNMP) resource adapter included with Oracle
Communications Network Integrity and other third party or customized JCA resource adapters
that may be used with Network Integrity.

This chapter contains the following sections:

• About Resource Adapters

• About Productized SNMP JCA Resource Adapter

• About Third Party or Customized JCA Resource Adapters

About Resource Adapters
A JCA resource adapter is a system-level software driver used by a Java application to
connect to an Enterprise Information System (EIS). The resource adapter can be configured to
use any protocol required by the EIS for connectivity. The resource adapter plugs into an
application server (for example Oracle Fusion Middleware) and provides connectivity between
an EIS (for example, a database system), the application server, and the enterprise application
(see Figure 12-1).

JCA defined a standard architecture for connecting a J2EE platform to heterogeneous EISs.
Examples of EISs include Enterprise Resource Planning (ERP) and mainframe transaction
processing (TP). The connector architecture defines a Common Client Interface (CCI) for EIS
access. The CCI defines a client API for interacting with heterogeneous EISs and enables an
EIS vendor to provide a standard resource adapter for its EIS.

An application server that support JCA, like Fusion Middleware, can ensure seamless
connectivity to multiple EISs. In the same way, any EIS with a JCA resource adapter can plug
into an application server that supports JCA.

For details about the JCA 1.5 specification and additional JCA documentation, see:

http://java.sun.com/j2ee/connector/download.html

12-1

http://java.sun.com/j2ee/connector/download.html

Figure 12-1 JCA Functional Blocks

Understanding JCA Resource Adapter Connectivity Options
A resource adapter provides the following types of connectivity between an application and an
EIS.

• Outbound communication: The resource adapter allows an application to connect to an
EIS system and perform work. The application initiates all communication. The resource
adapter serves as a passive library for connecting to an EIS, and runs in the context of the
application threads.

• Inbound communication: The resource adapter allows an EIS to call application
components and perform work. The EIS initiates all communication. The resource adapter
can request threads from the application server or create its own threads.

• Bi-directional communication: The resource adapter supports both outbound and
inbound communication.

Understanding JCA Resource Adapters with Network Integrity
This chapter describes productized SNMP JCA resource adapter and 3rd party or customized
JCA resource adapters, and their use within Network Integrity.

Network Integrity administrators can configure the productized SNMP JCA resource adapter
included with the Network Integrity software. Network Integrity system integrators can extend
this SNMP JCA resource adapter with additional MIB files at run time to poll additional SNMP
object identifiers (OIDs).

In addition to the productized JCA resource adapter for use with SNMP, Network Integrity
system integrators can also use any standard J2EE JCA resource adapters (3rd party or
customized) in their customized Network Integrity cartridge. They can deploy these resource

Chapter 12
About Resource Adapters

12-2

adapters wherever the Network Integrity application is deployed. These adapters can be
standalone, or clustered within a Weblogic server.

Network Integrity cartridges can:

• use a deployed resource adapter

• communicate with various network devices

• send commands

• collect data through various protocols (for example, SNMP, TLI, or CORBA)

See Oracle Communications Design Studio Developer's Guide for details on creating a
Network Integrity cartridge project. See Network Integrity Installation Guide for details on
deploying an SNMP JCA resource adapter.

About Productized SNMP JCA Resource Adapter
The SNMP discovery processor uses the SNMP JCA resource adapter, contained in the
Network Integrity software to poll the SNMP enabled network devices.

The SNMP JCA resource adapter implements the connector architecture to provide SNMP
functions for Network Integrity. Oracle Fusion Middleware (the application server) is the
container for the SNMP JCA resource adapter and provides connection pool management.
The SNMP JCA resource adapter provides outbound communication only to Enterprise
Information Systems (network devices) and transaction management is not required.

The SNMP JCA resource adapter supports all SNMP-enabled network devices provided a
proper set of MIB files are installed.

SNMP JCA resource adapter has record and playback functions for user who want to collect
and view raw SNMP data and later reuse the data for testing purposes. For details on how to
configure the SNMP resource adapter to run in record and playback mode, see "Record and
Playback Mode".

Installing the SNMP JCA Resource Adapter
The SNMP resource adapter installs as part of the Network Integrity Installer. See Network
Integrity Installation Guide for more details.

Extending the SNMP JCA Resource Adapter
The SNMP resource adapter is installed with the following pre-bundled MIB files:

• ATM-MIB

• ATM-TC-MIB

• CISCO-CONFIG-MAN-MIB

• CISCO-ENTITY-VENDORTYPE-OID-MIB

• CISCO-FRAME-RELAY-MIB

• CISCO-PRODUCTS-MIB

• CISCO-SMI

• CISCO-TC

• CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB

Chapter 12
About Productized SNMP JCA Resource Adapter

12-3

• CISCO-VTP-MIB

• ENTITY-MIB

• IANAifType-MIB

• IF-MIB

• INET-ADDRESS-MIB

• IP-MIB

• RFC1155-SMI

• RFC1213-MIB

• RFC1315-MIB

• RMON-MIB

• SNMP-FRAMEWORK-MIB

• SNMPv2-CONF

• SNMPv2-MIB

• SNMPv2-SMI

• SNMPv2-TC

• enterprise-numbers.txt

If a device is not supported by the MIB files included with the SNMP JCA resource adapter,
then the user must install additional MIB file(s) that support such a device. These additional
MIB files provide the corresponding MIB OIDs and definitions for the device that the user wants
to poll. Ensure that the same MIB file(s) are available in Design Studio for the corresponding
cartridge development. The MIB file(s) on both Design Studio and the SNMP JCA resource
adapter must match. Manually copy these MIB files to the SNMP JCA resource adapter.

To copy new MIB files to the SNMP JCA resource adapter, use the following steps:

1. Log in to the server where Network Integrity is installed.

2. Go to directory NI_HOME/integrity/snmpAdapter/mibs, where NI_HOME is the location
chosen using the NI installer during the Network Integrity installation.

3. Copy the new MIB files to this directory.

Tip:

There is no need to restart the server. The SNMP JCA resource adapter
automatically loads the new MIB files when needed.

4. Perform an update operation of 'snmpadapter' application in Admin console.

Record and Playback Mode
SNMP JCA resource adapter supports record and playback mode.

When the SNMP JCA resource adapter is configured to run in record mode, the resource
adapter polls a network device, and the device returns the polled data to the resource adapter.
The SNMP JCA adapter then returns the SNMP data to the discovery cartridge and also writes
the SNMP data to a file that it stores on a local hard drive.

Chapter 12
About Productized SNMP JCA Resource Adapter

12-4

When the SNMP JCA resource adapter is configured to run in playback mode, the resource
adapter does not require a connection to the network device. Instead the resource adapter
reads the SNMP data file (created in Record mode and stored on the local hard drive) and
sends the SNMP data back to discovery cartridge.

To switch the mode of SNMP resource adapter, use the following steps to create a
configuration file.:

1. Log in to the server where Network Integrity is installed.

2. Go to directory NI_DOMAIN_HOME/config.

3. Create a directory called snmpAdapterConfig.

4. Within the new directory, create a file called snmpAdapter.properties.

5. Add the following content to the file:

#MODE=normal
MODE=record
#MODE=playback

Tip:

Enable a mode by removing the comment symbol (#) from the beginning of the
line. In the above example, record mode is enabled.

The SNMP JCA resource adapter creates the record files in NI_Domain/snmpData. The exact
directory and filename depends on the IP address. For example, device 10.156.66.191 is
stored at NI_Domain/snmpData/10/156/66/191/10.156.66.191_XXXXX.rec, where XXXX is
the name of the request set by the scan element.

Playback mode loads recorded SNMP results and send them back to the Network Integrity
cartridge without actually polling the network devices.

There is no need to restart the Weblogic server after changing the SNMP resource adapter
properties file. SNMP JCA resource adapter dynamically switches the mode based on the
current configuration in the properties file.

For clustered environment, the user manually creates and modifies the properties file for every
SNMP JCA resource adapter installed on every node.

Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge
Design Studio creates (code-generates) the complete implementation of the SNMP processor
for discovery action. This SNMP processor can perform SNMP discoveries of SNMP enabled
network devices.

After the SNMP processor discovers a device, the processor can use the SNMP JCA resource
adapter to perform SNMP polling on the discovered network devices.

There is no coding effort to use the SNMP resource adapter in a Network Integrity cartridge.

About Third Party or Customized JCA Resource Adapters
The following sections provides information on building JCA resource adapters and on invoking
third party or custom Resource adapters.

Chapter 12
About Third Party or Customized JCA Resource Adapters

12-5

Building a JCA Resource Adapter in WebLogic
To create a JCA resource adapter for use in a customized Network Integrity cartridge, see:

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13732/toc.htm
This Fusion Middleware document provides detailed instructions for creating a resource
adapter in Weblogic.

Invoking a Third Party or Customized JCA Resource Adapter
The following workflow describes the steps required to implement third party or customized
JCA resource adapters in Network Integrity.

1. Deploy third party or customized JCA resource adapters into the Network Integrity system.

2. Implement a Design Studio discovery processor to invoke the third party or customized
JCA resource adapter.

a. Locate the following code auto-generated from the discovery processor.

@Override
public SampleProcessorResponse invoke(DiscoveryProcessorContext context
 SampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

b. Use the SampleProcessorRequest generated class to obtain the address scope,
property group, and other attributes.

Tip:

This class provides important elements used when invoking a resource
adapter. For example, to use a TL1 resource adapter to make a TL1 request,
the TL1 resource adapter needs to know which device it should
communication with. This information is obtained from the
SampleProcessorRequest in the following sources:

• IP address: available from the address scope

• port number: available from the property group

• login information for the TL1 session including username and password:
available from the property group

c. Use the data provided by SampleProcessorRequest to implement the Java code to
invoke the JCA resource adapter.

Depending on the resource adapter, the way to invoke a resource adapter can different.
Typically the invoke process requires several JNDI name lookups to get some JCA Connection
Factory and Interaction Specification classes. From the JCA Connection Factory, the user can
create Interaction. Next is to do the execution from Interaction by passing the Interaction
Specification.

If user is using an existing 3rd party resource adapter, it should come with a developer guide
that provides the detailed instruction on how to implement the client code to invoke this

Chapter 12
About Third Party or Customized JCA Resource Adapters

12-6

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13732/toc.htm

resource adapter. If a user creates a customized resource adapter from scratch, the user
should have all the knowledge on how to invoke this customized JCA resource adapter.

The following code snippet demonstrates how to invoke a JCA resource adapter that
implements Common Client Interface (CCI):

…
context = new InitialContext();
SampleAdapterConnectionSpecImpl cspec =
 (SampleAdapterConnectionSpecImpl)context.lookup(JNDI_SAMPLE_CONN_SPEC);
cxFactory = (ConnectionFactory) context.lookup(JNDI_SAMPLE_CONN_FACTORY);
connection = cxFactory.getConnection(cspec);
ispec = (SampleAdapterInteractionSpec)context.lookup(JNDI_SAMPLE_INTER_SPEC);
interaction = connection.createInteraction();
RecordFactory recordFactory = cxFactory.getRecordFactory();
IndexedRecord input =
recordFactory.createIndexedRecord(SampleAdapterIndexedRecord.INPUT);
input.add(request);
IndexedRecord output =
recordFactory.createIndexedRecord(SampleAdapterIndexedRecord.OUTPUT);
interaction.execute(ispec, input, output);
out=(String)output.get(SampleAdapterIndexedRecord.MESSAGE_FIELD);
…

In this example, the “out" contains the collected results as an XML document as String.
However, different resource adapter have different output. To detail all possible kinds of output
is beyond the scope of this document.

The final output should be wrapped inside the SampleProcessorResponse class (code-
generated) and return as the returned value of this invoke method.

Chapter 12
About Third Party or Customized JCA Resource Adapters

12-7

13
Working with Reports Extensibility

This chapter provides overview information about the Oracle Analytics Publisher (OAP) which
comes with Oracle Analytics Server (OAS) and reports extensibility for Oracle Communications
Network Integrity.

This chapter contains the following sections:

• About Oracle Analytics Publisher

• Downloading Oracle Analytics Server

• Installing Oracle Analytics Server

• Reports Provided with Network Integrity

• Configuring Oracle Analytics Server

About Oracle Analytics Publisher
Oracle Analytics Publisher is available with Oracle Analytics Server and can be deployed as an
integrated product or standalone. NI is certified with OAP 6.4.0 which is installed along with
OAS.

Downloading Oracle Analytics Server
You can download the latest version of OAS from the Oracle Analytics Server website:

https://www.oracle.com/solutions/business-analytics/analytics-server/analytics-server.html

You can also download OAS from the Oracle software delivery website:

http://edelivery.oracle.com/

To download OAS from the Oracle software delivery website:

1. Log in to e-delivery.

2. Search for "Oracle Analytics Server".

The search results display the different versions available.

3. Select the latest version to add it to the cart.

4. Choose the platform to be downloaded as Linux x86-64.

5. Optional: If not already installed, you can select FMW 12.2.1.4 to be downloaded.

6. Click on Download.

7. Move the downloaded files to the Linux Machine.

8. Unzip the downloaded files.

The unzipped directory should contain the Oracle Analytics Server executable jar.

13-1

https://www.oracle.com/solutions/business-analytics/analytics-server/analytics-server.html
http://edelivery.oracle.com/

Installing Oracle Analytics Server
To install OAS:

1. Run the OAS jar. See "Running OAS jar" for more information on this step.

2. Complete the installation process. See "Completing OAS Installation" for more information
on this step.

3. Setup the RCU. See "RCU Setup" for more information on this step.

4. Create a domain. See "Domain Creation" for more information on this step.

You can verify the installation by logging into the console using the URL given below:

http://<server name>:<port number>/console

After you have successfully installed Oracle Analytics Server and can start it from the domain
home, you can access the following components using the URLs listed below:

1. Publish: http://<server name>:<port number>/xmlpserver

2. Analytics: http://<server name>:<port number>/analytics

3. Data Visualization: http://<server name>:<port number>/dv

Running OAS jar
1. Open the terminal in your Linux machine and change the directory to the path of the OAS

jar file.

cd <patch of OAS jar file>

2. Run the following command to launch the OAS installation process:

java -jar Oracle_Analytics_Server_Linux_6.4.0.jar

Note:

Ensure that JAVA_HOME is defined before running the OAS jar. To verify, run the
echo $JAVA_HOME command in the terminal. The output displays the location of the
jdk. If JAVA_HOME is not defined, export it first.

Completing OAS Installation
1. Click Next on the Welcome screen.

2. Select Skip Auto Updates and click Next.

3. Click on Browse and select Oracle Home (which has FMW 12.2.1.4 installation).

4. Click on Open and click Next.

5. Once the Prerequisite Checks for verifying the installation environment are complete, click
on Next.

Chapter 13
Installing Oracle Analytics Server

13-2

6. Click on Install.

7. Once the Installation is complete, click on Next and then click on Finish.

RCU Setup
1. Navigate to $ORACLE_HOME/oracle_common/bin.

2. Run the ./rcu command to initiate the repository creation process.

3. Select Create Repository, then System Load and Product Load.

4. Add the database details and click on Next.

5. Add a prefix (OASTEST in this case) and select Oracle Business Intelligence. Then click
on Next.

6. Click on Next in Map Tablespaces.

7. Click on Create.

8. After the repository is created, click on Finish.

Domain Creation
1. Navigate to the directory $ORACLE_HOME/bi/bin.

2. Run the following command: ./config.sh.

3. Click Next on the Welcome screen.

4. Select Oracle Analytics Server and Oracle Analytics Publisher and click on Next.

5. After all the Prerequisite Checks are done, click Next.

6. Add a Unique Domain Name and add Username, Password for login to OAS. Click Next.

7. Click on Use Existing Schemas.

8. Add the database details and RCU details that were created in step 6 and click Next.

9. Add an available port. If the default ports (9500-9999) are not available, click Next.

10. Select Clean Installation (selected by default) and click Next.

11. Click on Save Response file for future reference and click Configure.

12. Once the configuration is successful, click on Next and then click Finish.

Reports Provided with Network Integrity
Network Integrity includes the following reports:

• Scan History Report

• Discovery Scan Summary Report

• Device Discrepancy Detection Summary Report

• Device Discrepancy Detection Detail Report

• Discrepancy Corrective Action Report

Chapter 13
Reports Provided with Network Integrity

13-3

Scan History Report
The Scan History Report shows the discovery and discrepancy summaries for each scan for
each scan configuration falling within the specified start and end dates. This report is
accompanied by the following graphs:

• Discovery Scan History: A graph showing a history of the run discovery scans.

• Discrepancy Scan History: A graph showing a history of the run discrepancy scans.

• Discrepancy Severity History: A graph showing a history of the discrepancies by
severity.

The following fields are used to generate this report:

• Start Time: the date stamp indicating when a scan started.

• End Time: the date stamp indicating when a scan finished.

Discovery Scan Summary Report
The Discovery Scan Summary Report shows the summary of the latest scan for each scan
configuration, per vendor and per device type. This report generates a pie-chart, illustrating the
summary findings, for each scan configuration.

The following fields are used to generate this report:

• Vendor: The name of the vendor for the discovered device.

• Device Type: The type of device discovered.

Device Discrepancy Detection Summary Report
The Device Discrepancy Detection Summary Report shows the summary of the latest scan for
each scan configuration. This report generates a pie-chart that shows the accuracy of the
latest scans for each scan configuration.

The following fields are used to generate this report:

• Vendor: The name of the vendor for the discovered device.

• Device Type: The type of device discovered.

Device Discrepancy Detection Detail Report
The Device Discrepancy Detection Detail Report lists details of all discrepancies for the latest
scan for each scan configuration.

The following fields are used to generate this report:

• Vendor: The name of the vendor for the discovered device.

• Root device name: The name of the root device in the scan result tree.

• Root device type: The type of the root device in the scan result tree.

• Owner: The user name of the owner of the discrepancy.

• Parent entity type: The type of the parent entity on which discrepancy occurred.

• Parent entity name: The name of the parent entity on which discrepancy occurred.

Chapter 13
Reports Provided with Network Integrity

13-4

• Entity type: The type of the entity on which discrepancy occurred.

• Inventory value: The value of the field on the inventory side on which discrepancy
occurred.

• Network value: The value of the field on the network side on which discrepancy occurred.

• Severity: The severity of the discrepancy (for example, major, critical, minor, warning).

• Discrepancy type: The type discrepancy (for example, entity+, entity-, attribute).

• Description: The description of the discrepancy.

• Status: The status of the discrepancy (for example, processed, failed, ignored).

• Scan name: The name of the scan in which the discrepancy is found.

Discrepancy Corrective Action Report
The Discrepancy Corrective Action Report shows corrective actions against specified
discrepancies for the latest scan for each scan configuration. Discrepancies against which no
actions are taken are not considered in this report.

The following fields are used to generate this report:

• Submitted By: The user who submitted the discrepancy for correction.

• Action: The action taken against the discrepancy.

• Discrepancy Status: Status of the discrepancy.

• Owner: The user name of the owner of the discrepancy.

• Priority: The priority of the discrepancy.

• Failure Reason: The reason for failure for the corrected discrepancy.

• Discrepancy Type: The type discrepancy (for example, entity+, entity-, attribute).

• Entity Type: The type of the entity on which discrepancy occurred.

• Inventory Value: The value of the field on the inventory side on which discrepancy
occurred.

• Network Value: The value of the field on the network side on which discrepancy occurred.

Configuring Oracle Analytics Server
To configure Oracle Analytics Server and generate reports:

1. Set up the Data Source in OAS:

a. Log in to the Publisher using the url http://<server name>:<port number>/xmlpserver

b. Click on the Image Icon at the top-right and click on Administration.

c. Under the Data Sources click on JDBC Connection.

d. Under JDBC tab click on Add Data Source.

e. In the Update Data Source screen, enter the following details:

i. For Connection String, enter jdbc:oracle:thin:@[Host_name]:[Port]:[SID].

ii. For the Database Driver Class enter oracle.jdbc.driver.OracleDriver. This is the
default entry.

f. Click on Test Connection.

Chapter 13
Configuring Oracle Analytics Server

13-5

g. After the confirmation that the connection is successfully established, click on Apply to
save the connection details.

2. Create the folder structure:

a. Click on Catalog in the navigation bar.

b. Under Shared Folders create a folder with the name BIPubReports. Under this folder,
create another folder with the name Data Models.

Note:

You can create a folder by clicking the "+" icon and selecting Folder.

3. Upload the existing data models and reports.

Network Integrity provides some sample reports and data models bundled along with its
installer. On successful installation of Network Integrity, the reports will be copied in the
path $NI_HOME/integrityreports/IntegrityReports.zip. Unzip the zip folder and upload the
data models and reports provided. See "Uploading Data Models" and "Uploading Reports"
for more information.

4. Set the data source for reports:

a. Click on the Data Model folder in OAS.

All data models should appear.

b. Click on Edit under any one of the reports.

A new page with data model configurations opens.

c. Click on the Settings icon and click on Edit Data Set.

d. Select the data source. The list of data sources is populated from the JDBC
connection data source added in step 1.

e. Click on OK.

f. Click on each entry in List of Values and change the data source for each one of them.

5. Validate the change of data source:

a. Click on Data Tab.

b. Optional: Add parameters. This step is used as a filter.

c. Click on View.

d. Click on Table View.

6. Generate the Scan History Report:

a. Navigate to the Catalog and select the folder BIPubReports.

b. Click on the report for which the data source has been set.

c. Select the parameters and click on Apply.

The report will be generated.

d. Export the report in the required format by clicking on the icon as shown in the figure
below.

Chapter 13
Configuring Oracle Analytics Server

13-6

Figure 13-1 Exporting a report into required format

Uploading Data Models
1. Select Data Model folder and click on Upload.

2. Select the files inside Data Models folder ending with .xdmz extension.

3. Click on Upload.

4. Repeat the above steps 1 to 3 for all the xdmz data models.

Uploading Reports
1. Select the BiPubReports folder and click on Upload.

2. Select the files which end with .xdoz extension.

3. Click on Upload.

4. Repeat the above steps 1 to 3 for all xdoz reports.

Chapter 13
Configuring Oracle Analytics Server

13-7

14
Working with SOA Extensibility

This chapter provides overview information about Service-Oriented Architecture (SOA)
extensibility for Oracle Communications Network Integrity.

This chapter contains the following sections:

• About SOA Extensibility

• Extensibility Tasks

About SOA Extensibility
SOA extensibility topics covered in this chapter include creating an SOA development
environment, setup, development, and testing of the Network Integrity SOA application.

The Business Process Execution Language (BPEL) provides enterprises with an industry
standard for business-process orchestration and execution. Using BPEL, you design a
business process that integrates a series of discrete services into an end-to-end process flow.

The Oracle BPEL Process Manager is a tool for designing and running business processes.
This product creates, deploys, and manages cross-application business processes with both
automated and human workflow steps in a service-oriented architecture.

The Sample Network Integrity SOA application provides a BPEL process that contains two
parallel sequences. These sequences automate search and update Network Integrity
discrepancies.

The following shows how this automation occurs:

1. Search for Network Integrity discrepancies of type attribute mismatch for
nativeEmsServiceState and update their resolution to Correct in UIM, if those
discrepancies' network value is In service and import value is Out of service.

2. Search for Network Integrity discrepancies of type attribute mismatch for physicalAddress
and update their priority to High and discrepancy owner to given input value.

Purpose of Documentation
The developer should learn to install SOA, setup SOA Development environment, and use it
for Network Integrity SOA application extensibility.

Extensibility Tasks
The tasks involve setting up of developer environment to update and extend the Network
Integrity SOA application for future requirements.

Required software includes:

1. Oracle WebLogic Server

2. Oracle JDeveloper

3. Oracle Application Development Framework

14-1

4. Oracle Application Runtime Framework

5. Oracle Fusion Middleware Repository Creation Utility

6. SOA suite

7. Oracle Database

Extensibility Tasks
To implement SOA extensibility, use the following tasks:

• Installing Oracle Weblogic Server

• Installing Oracle JDeveloper

• Installing Oracle Application Runtime

• Installing Oracle SOA Suite

• Creating SOA Metadata Service Schemas

• Updating JDeveloper for Latest SOA Composite Editor

• Creating WebLogic Domain with SOA Products

• Creating and Updating Sample SOA Application Using Network Integrity Web Service

• Starting and Stopping SOA Servers

• Building and Deploying the SOA Application

• Testing Sample SOA application

• Testing Network Integrity SOA Application Using EM

• Testing Network Integrity SOA Application Using soa-infra

• Testing Network Integrity SOA Application Using SOAP UI Tool

Installing Oracle Weblogic Server
To install Oracle Weblogic Server, use the following procedure:

1. Download Oracle WebLogic Server.

2. Run ./wls1036_linux32.bin

3. Click Next.

4. Enter the WL_Home directory location to create a home directory for Oracle Fusion
Middleware.

5. Click Next.

6. Select the I wish to receive security updates via Oracle Support check box and click
Next. (Optional)

7. Select Custom for the installation type.

8. Click Next.

9. Select the WebLogic Server check box to install all WebLogic Server components.

10. Click Next.

11. Select the Sun JDK check box.

12. Click Next.

Chapter 14
Extensibility Tasks

14-2

13. Review the installation directories.

14. Click Next.

15. Review the installation summary of the products and JDKs to be installed.

16. Click Next. This step begins the installation.

17. When the installation is complete, deselect Run Quickstart.

18. Click Done.

19. Setup BEA_HOME, JAVA_HOME, WL_HOME environment variables and update PATH
with the Java executable location. For example,

export BEAHOME=/opt/beahome
export WL_HOME=$BEAHOME/wlserver_10.3
export JAVA_HOME=$BEAHOME/jdk160_33_R27.6.5-32

export PATH=$JAVA_HOME/bin:$PATH

Installing Oracle JDeveloper
To install Oracle JDeveloper, use the following procedure:

1. Download Oracle JDeveloper
(Oracle_JDeveloper_11g_and_Oracle_Application_Development_Framework_11g.zip
) software from the Oracle software delivery website:

https://edelivery.oracle.com/
2. Unzip the installer to any directory.

3. Open a console.

4. Change the console directory to the unzipped installer directory.

5. Run the installer using the following command:

java –jar jdevstudio11116install.jar

The Installer starts extracting the setup files and Installation wizard opens when it reaches
to 100%.

6. Click Next.

7. Select Use the existing Middleware Home to select the Middleware home you created in
"Installing Oracle Weblogic Server".

8. Select JDeveloper Studio and ADF too install all JDeveloper Studio and ADF
components.

9. Click Next.

10. Select the existing Sun SDK.

11. Click Next.

12. Confirm JDeveloper and WLS home directories and click Next.

13. Review the Installation summary and click Next. This step begins the installation.

14. Click Done when the installation is complete.

Installing Oracle Application Runtime
To install Oracle Application Runtime, use the following procedure:

Chapter 14
Extensibility Tasks

14-3

https://edelivery.oracle.com/

1. Download Oracle Application Development Runtime software from the Oracle software
delivery website:

https://edelivery.oracle.com/
2. Unzip the installer to any directory.

3. Open a console.

4. Change the console directory to the unzipped installer directory.

5. Run the installer using the following command:

. Disk1/runInstaller
6. Enter the JAVA HOME location to launch installation wizard.

7. Click Next.

8. Click Next button after Prerequisite Checks are complete.

Tip:

Install the required system package if a check fails.

9. Click Browse and navigate to WL_Home.

10. Click Next.

11. Click Install.

12. Click Next after the installation is complete.

13. Click Finish.

Installing Oracle SOA Suite
To install Oracle SOA Suite, use the following procedure:

1. Download Oracle SOA Suite software from the Oracle software delivery website:

https://edelivery.oracle.com/
2. Unzip the installer to any directory.

3. Open the console and change to unzipped folder directory.

4. Run the installer using the following command:

. Disk1/runInstaller
5. Enter the JAVA HOME location to launch installation wizard.

6. Click Next.

7. Click Next after Prerequisite Checks are complete.

Tip:

Install the required system package if a check fails.

8. Click Browse and navigate to WL_Home. Do not modify the Oracle Home Directory
name.

Chapter 14
Extensibility Tasks

14-4

https://edelivery.oracle.com/
https://edelivery.oracle.com/

9. Click Next.

10. Click Install.

11. Click Next after the installation is complete.

12. Click Finish.

Creating SOA Metadata Service Schemas
To creates a metadate service (MDS) schema for the Business Activity Monitoring (BAM) and
SOA servers, use the following procedure:

1. Download Oracle Fusion Middleware Repository Creation Utility software from the Oracle
software delivery website:

https://edelivery.oracle.com/
2. Unzip the Repository Creation Utility (RCU) to any directory.

3. Open the console and change to unzipped folder directory.

4. Run the installer using the following command:

./rcuHome/bin/rcu
5. Click Next.

6. Select Create in the Create Repository screen

7. Click Next.

8. Enter database details as required.

9. Click Next.

10. Click OK.

11. Select Create a new Prefix in the Select Components screen and enter a prefix in the
text box.

12. Select the following from the Component list:

• Metadata Service

• SOA Infrastructure

• Business Activity Monitoring

• User Messaging Service

These components are required for the SOA and BAM servers.

Tip:

Remember the Schema Owners for subsequent procedures.

13. Click Next.

14. Enter passwords for all components in the Schema Passwords screen.

Chapter 14
Extensibility Tasks

14-5

https://edelivery.oracle.com/

Tip:

Remember the Schema Passwords for subsequent procedures.

15. Click Next.

16. Review the Schema Owner, Tablespace Type, and Tablespace Name for each
Component in the Summary screen.

17. Click Next to accept the settings.

18. Click OK to create the tablespaces.

19. Click OK when the prerequisites are complete.

20. Click Create in the Summary screen to create the tablespaces. This step can take up to
ten minutes.

21. Click Close after the tablespaces are created.

Updating JDeveloper for Latest SOA Composite Editor
SOA design time in JDeveloper requires a JDeveloper extension called SOA Composite editor.
While this is normally updated over the network when using release-level software, you can
also perform the update manually if you have the extension file. JDeveloper periodically
prompts you to accept an automatic network update. Since this is released software, you have
the option to click OK to update to a newer version.

To update JDeveloper for the latest SOA Composite editor, use the following procedure:

1. Start JDeveloper Studio.

2. Select Default Role.

3. Deselect Show this dialog every time.

4. Click OK.

5. Click No for Migrate from previous release. After starting JDeveloper, wait for the
Integrated Weblogic Domain to be created. This domain is created the first time you run
JDeveloper after installation. It is not used by SOA. Watch for the completion message for
setting up the domain in the JDeveloper Messages log window at the bottom of the
JDeveloper IDE:

[12:37:11 PM] Creating Integrated Weblogic domain...
[12:38:05 PM] Extending Integrated Weblogic domain...
[12:38:14 PM] Integrated Weblogic domain processing
 completed successfully.

Now you can update the SOA Composite editor extension. These instructions show you
how to update the extension over the network.

6. Select Help | Check For Updates.

7. Click Next.

8. Select Search Update Centers.

9. Select Oracle Fusion Middleware Products.

10. Click Next. The system searches the update center for extensions.

11. From the list of extensions, select Oracle SOA Composite Editor.

Chapter 14
Extensibility Tasks

14-6

12. Click Next to begin downloading. When the extension finishes downloading, it is listed with
the version number detail.

13. Click Finish.

14. Restart JDeveloper when prompted.

15. Click No for Migrate from previous release.

16. When JDeveloper is running again, select Help then About.

17. Select the Version tab and review the version.

Creating WebLogic Domain with SOA Products
To creates an Oracle WebLogic domain with the required products for SOA applications, use
the following procedure:

1. Open the console and change to unzipped folder directory.

2. Run the following command:

./<BEAHOME>/wlserver_10.3/common/bin/config.sh
3. When the Welcome screen appears, select Create a new WebLogic domain.

4. Click Next.

5. Select Generate a domain, SOA Suite, Enterprise Manager, and Business Activity
Monitoring. Dependent products are selected automatically.

6. Click Next.

7. Enter domain1 for the domain name.

8. Click Next.

9. Enter the user name weblogic and a password.

10. Click Next.

11. Select Sun SDK 1.6_33 and leave Development Mode checked.

12. Click Next.

13. Select the check boxes for the components that you want to change.

14. Enter the password for the Schema Password.

15. Change the Service, Host Name, and Port values as required.

16. Click Next.

17. Review the Schema Owners for the individual component schemas and confirm that the
owners match those selected in the "Creating SOA Metadata Service Schemas"
procedure.

Chapter 14
Extensibility Tasks

14-7

Tip:

To change the Schema Owner field, use the following steps:

a. Remove the check boxes for all Component Schema items.

b. Select the check box for the Component Schema that you want to change.

c. Change the Schema Owner field.

d. Remove the check box for the component schema item you changed.

18. Click Next to begin a data source connection test.

19. Click Next if all connection tests are successful. If the connection tests are not successful,
click Previous and correct any errors.

20. Click Next.

21. Click Create in the Configuration Summary screen.

22. Click Done when the domain has been created.

When a domain is created, the Configuration Wizard creates one admin server and two
managed servers with the following details:

• Admin Server

Name: admin_server

Port: 7001

• SOA Server

Name: soa_server1

Port: 8001

• BAM Server

Name: bam_server1

Port: 9001

See the startManagedServer_readme.txt file in the domain folder to start the servers.

Creating and Updating Sample SOA Application Using Network Integrity
Web Service

To update an SOA application using the Network Integrity SOA application, use the following
procedure:

1. Download the Sample Network Integrity SOA application (NetworkIntegrity-
SOA_Sample_App-version.zip) software from the Oracle software delivery website:

https://edelivery.oracle.com/
2. Unzip the application to any directory.

3. Start Oracle Jdeveloper.

4. From the Jdeveloper main menu, choose File then Open then browse to
NISOAApplication folder and select NISOAApplication.jws.

5. Click Open.

Chapter 14
Extensibility Tasks

14-8

https://edelivery.oracle.com/

The NISOAApplication.jws contains the NIDiscrepancyService project. The main
components for this project are:

• NetworkIntegrityControlService.wsdl: This is the Network Integrity Sample Web
Services WSDL file.

• xds: This folder contains Network Integrity Sample Web Service schema files.

• composite.xml: This file describes the entire composite assembly of services, service
components, references, and wires

In the project, composite.xml file is automatically created when the SOA project was
created. In this application only service components (including Network Integrity
Sample Web Service) are used.

• NIBPELDiscrepancyProcess.bhel: This file contains a list of variables and the main
sequences in which he Network Integrity Web Service calls to update the Network
Integrity Discrepancies are defined. There are two parallel sequences named as
Sequence_1 and Sequence_2 to update Attribute mismatch discrepancies for
nativeEMSServiceState (go to step 6) and physicalAddress (go to step 8)
respectively.

It is necessary that both client side artifacts (wsdl and schema) and server side artifacts
are in sync and of same version.

6. To search for natieEMSServiceState attribute mismatch discrepancies (Sequence_1),
search for the following discrepancies:

• TYPE = ATTRIBUTE_VALUE_MISMATCH

• ATTRIBUTEORRELATIONSHIPNAME = nativeEmsServiceState

• STATUS = DISCREPANCY_OPENED

• COMPARESOURCE = INVENTORY

• REFERENCESOURCE = NETWORK using findDiscrepancy webservice
operation.

7. Loop over each discrepancy and submit to updateDiscrepancy if COMPAREVALUE =
'IN_SERVICE' and REFERENCEVALUE ='OUT_OF_SERVICE' to update OPERATION
as 'Correct in UIM' and STATUS as 'OPERATION_IDENTIFIED'.

8. To search for physicalAddress attribute mismatch discrepancies, search for the following
discrepancies:

• TYPE = ATTRIBUTE_VALUE_MISMATCH

• ATTRIBUTEORRELATIONSHIPNAME = physicalAddress

• STATUS = DISCREPANCY_OPENED using findDiscrepancy webservice
operation.

9. Loop over each discrepancy and submit to updateDiscrepancy by setting PRIORITY to
High and DISCREPANCYOWNER to given value.

10. Right-click composite.xml and select Configure WS Policies to add appropriate security
client policy to the Network Integrity Web Service component.

11. Update NetworkIntegrityControlService.wsdl's SOAP address location with Network
Integrity Web Service URL. For example:

<soap:address location="https://<host_address>:<ssl_port>/NetworkIntegrityApp-
NetworkIntegrityControlWebService-context-root/
NetworkIntegrityControlServicePortType"/>

Chapter 14
Extensibility Tasks

14-9

This should be done before building the SOA application or use deployment plan while
deploying the SOA application to update the SOAP address location with the Network
Integrity Web Service URL. This configuration is required for SOA application to
communicate with Network Integrity Web Services.

Starting and Stopping SOA Servers
To start and stop SOA servers, use the following procedure:

1. To start the Administration Server run to following command: <domain>/startWeblogic.sh

2. To start the SOA managed server, run the following command (here soa_server1 is name
of SOA managed server): <domain>/bin/startManagedServer.sh soa_server1

3. To enter the WebLogic console, use:

http://Host_Address:7001/console
4. To enter the Enterprise Manager console, use:

http://Host_Address:7001/em
5. To enter SOA Infra, use:

http://Host_Address:8001/soa-infra
6. Press Ctrl + C to stop the servers.

Building and Deploying the SOA Application
To build and deploy the SOA application, use the following procedure:

1. In Jdeveloper, go to Application Navigator then right-click NIDiscrepancyService project.

2. Click Make NIDiscrepancyService.jpr in the menu to build the project. The project should
build successfully without any compilation errors or warnings.

3. Start the Administration and SOA servers that are created as part SOA domain creation
(see "Starting and Stopping SOA Servers" and "Creating WebLogic Domain with SOA
Products").

4. Create a standalone server connection for the SOA server.

5. Right-click NIDiscrepancyService and select 'Deploy' to Application server.

6. The SOA suite provides an ant script to deploy and undeploy the SOA archive (SAR) file
(deployable SOA application jar) in the BEA HOME. Use the following to deploy and
undeploy the SAR file:

• To deploy, use the following:

ant -f <BEAHOME>/Oracle_SOA1/bin/ant-sca-deploy.xml
-DserverURL=<http://soa_server_host:soa_server_port>
-DsarLocation=<SOA archive file path>

For example,

ant -f /home/beahome/Oracle_SOA1/bin/ant-sca-deploy.xml
-DserverURL=http://<localhost>:8001
-DsarLocation=/home/example/beahome/mywork/NISOAApplication/NIDiscrepancyService/
deploy/sca_NIDiscrepancyComposite_rev1.0.jar

• To undeploy, use the following:

ant -f <BEAHOME>/Oracle_SOA1/bin/ant-sca-deploy.xml undeploy
-DserverURL= <http://soa_server_host:soa_server_port>

Chapter 14
Extensibility Tasks

14-10

-DcompositeName=<SOA composite name>
-Drevision=<SOA composite version>

For example,

ant -f /home/beahome/Oracle_SOA1/bin/ant-sca-deploy.xml undeploy
-DserverURL=http://<localhost>:8001
-DcompositeName=NIDiscrepancyComposite
-Drevision=1.0

Testing Sample SOA application
To test a sample SOA application, use the following three tools:

• Testing Network Integrity SOA Application Using EM

• Testing Network Integrity SOA Application Using soa-infra

• Testing Network Integrity SOA Application Using SOAP UI Tool

Note:

Oracle Enterprise Manager (EM) can also helpful in debugging and auditing of BPEL
sequence exceptions.

Testing Network Integrity SOA Application Using EM
To test a sample SOA application with EM, use the following procedure:

1. Log on to the Enterprise manager as admin.

2. Expand the SOA folder to the deployed composite (NIDiscrepancyComposite).

3. Click Test to test composite.

4. Enter any value for the input argument for SOA Web Service.

5. Click Test Webservice. Wait for a response.

6. Click Launch Message Flow Trace to see detailed output.

7. Click NIBPELDiscrepancyProcess to view the Audit Trail, Flow, and so on.

8. Expand the payloads to see detailed input and output of each Web Service invoked.

Testing Network Integrity SOA Application Using soa-infra
To test a sample SOA application with soa-infra, use the following procedure:

1. Log on to soa-infra using the following URL:

http://Host_Address:8001/soa-infra
2. Enter any input required for the test.

3. Click Invoke.

Chapter 14
Extensibility Tasks

14-11

Testing Network Integrity SOA Application Using SOAP UI Tool
To test a sample SOA application with the Simple Object Access Protocol (SOAP) UI tool, use
the following procedure:

1. Create a SOAP UI project at the following URL:

http://Host_Address:8001/soa-infra/services/default/NIDiscrepancyComposite/
nibpeldiscrepancyprocess_client_ep?WSDL

2. Enter any input required for the test.

3. Create a request run.

Chapter 14
Extensibility Tasks

14-12

15
Localizing Network Integrity

This chapter provides information on localizing the Oracle Communications Network Integrity
UI and Help. Localization is the process of translating a UI or Help system from the original
language in which it was written into a different language for use in a specific country or region.
For example, the Network Integrity UI and Network Integrity Help are written in English. If your
company is based in France and you purchase Network Integrity, you may want to localize
Network Integrity to display the UI and Help in French.

Localizing Network Integrity involves modifying a specific set of files that Network Integrity uses
to display text in the UI and in the Help.

This chapter contains the following sections:

• Software Requirements

• Setting the Language Preference in Internet Explorer

• Determining the Locale ID

• Localizing Network Integrity

• Localizing Network Integrity Help

Note:

The procedures in this chapter use Windows syntax for directory paths and
commands. If you are working on a Unix or Linux platform, adapt the syntax
accordingly.

Note:

Before localizing your Network Integrity environment, you must identify a strategy for
maintaining future localizations. Oracle does not provide a delta file in which you can
readily see the details of what changed between releases.

Software Requirements
The following software is required to localize Network Integrity:

Design Studio

Localizing the Network Integrity UI involves working with the Network Integrity localization pack
that you import into Oracle Communications Service Catalog and Design - Design Studio,
modify, and deploy into Network Integrity. Design Studio also provides various editors, such as
an XML editor and an HTML editor, that you can use to translate files for localization.

15-1

Java

Using Help Indexer requires that you have Java installed. The java command should be in your
path.

Setting the Language Preference in Internet Explorer
For a localized version of Network Integrity to display correctly in Internet Explorer, users need
to configure language preferences.

To configure language preferences in Internet Explorer:

1. From the Tools menu, select Internet Options.

The Internet Options window appears.

2. Click Languages.

The Language Preferences window appears.

3. The language you plan to use must display at the top of the list to have priority.

If the language you plan to use is listed:

a. Select the language.

b. Click Move Up or Move Down to place the language you plan to use at the top of the
list.

If the language you plan to use is not listed:

a. Click Add.

The Add Language window appears.

b. Select a language.

c. Click OK.

The Language Preference window returns.

d. Select the language you have added, and click Move Up to move it to the top of the
list.

4. Click OK.

Determining the Locale ID
A locale ID is a standardized ID that represents a language and region in which the language
is spoken. For example, fr_CA is the locale ID for French spoken in Canada, and es_MX is the
locale ID for Spanish spoken in Mexico.

Localizing Network Integrity involves copying and renaming existing files to include a locale ID.
The renamed files that include a locale ID become the translated version of the original files.

To determine the locale ID:

1. From Internet Explorer, select Tools, then select Internet Options.

The Internet Options window appears.

2. Click Languages.

The Languages window appears.

Chapter 15
Setting the Language Preference in Internet Explorer

15-2

3. Click Add.

The Add Language window appears.

Languages are listed alphabetically. Several languages are spoken in more than just one
country, so the locale ID reflects the language and the country in which the language is
spoken. For example, there multiple locale IDs for French:

• fr-BE for French spoken in Belgium

• fr-CA for French spoken in Canada

• fr-FR for French spoken in France

• fr-LU for French spoken in Luxembourg

• fr-MC for French spoken in Monaco

• fr-CH for French spoken in Switzerland

4. Locate the language to which you are localizing and determine the appropriate locale ID.

5. Close the Add Language, Languages, and Internet Option windows.

Localizing Network Integrity
The following sections describe localizing Network Integrity:

• About the Localization Pack

• Creating the Localization Pack

• Deploying the Cartridge Containing the Localized Files

• Testing the Network Integrity Localization

About the Localization Pack
The Network Integrity UI makes use of the full depth of i18n support provided by the
Application Development Framework (ADF) stack. The application UI is fully internationalized
by making use of XML Localization Interchange File Format (XLF) files to keep all display
strings separate from other code artifacts. Various parts of the ADF stack (ADF Faces, ADF
Model, and ADF Data Control) are also built with full i18n support. A localization pack is a
collection of XLF files and other property files, that together localize the UI to another
language. A localization pack can be built into a cartridge that can be deployed into Network
Integrity.

The expected outcome is that the user can successfully create, build, and deploy a localization
pack.

Creating the Localization Pack
Use the following procedure to create a localization pack:

1. Download localization.iar from the localization pack in the Oracle Communications
Network Integrity 7.3.2 Software Developer Kit (included with the Oracle Communications
Network Integrity 7.3.2 software) on the Oracle software delivery website:

https://edelivery.oracle.com

Chapter 15
Localizing Network Integrity

15-3

https://edelivery.oracle.com

Note:

The localization pack also contains a partial sample traditional Chinese
localization, for your reference, where parts of the Scan Configuration Creation
page are translated into traditional Chinese.

2. Extract the META-INF/MANIFEST.MF file to a temporary location.

3. Open MANIFEST.MF and edit the value of Bundle-Name: Localization and Bundle-
Description: Localization as follows:

Bundle-Name: Localization : localization_pack_name
Bundle-Description: Localization : localization pack description

Where localization_pack_name is the name of the localization pack you are creating, and
where localization pack description describes the localization pack you are creating.

4. Save MANIFEST.MF and return it to localization.iar/META-INF.

5. Extract META-INF/cartridge.xml to a temporary location.

6. Open cartridge.xml and edit the values of the name and languageCode tags:

<localizations>
 <localization>
 <name>Locale_Name</name>
 <languageCode>Locale_ID</languageCode>
 </localization>
</localizations>

Where Locale_Name is the locale of the localization pack you are creating; for example,
French, and where Locale_ID is the standardized locale ID that represents a language
and region in which the language is spoken. For example, fr-CA is the locale ID for French
spoken in Canada, and es-MX is the locale ID for Spanish spoken in Mexico. A locale ID
can also represent a language without specifying the region in which the language is
spoken. For example:

<localizations>
 <localization>
 <name>French</name>
 <languageCode>fr</languageCode>
 </localization>
</localizations>

7. Save cartridge.xml and return it to localization.iar/META-INF.

8. Extract localization.iar/localization.jar to a temporary location.

9. Extract localization.jar/oracle to a temporary location.

10. Edit all the XLF files found in localization.jar/oracle or any of its nested folders:

a. Edit the name of each XLF file to add an underscore and the locale ID before the file
extension, as shown in the following example:

DisAddressMsgBundle_fr.xlf

Chapter 15
Localizing Network Integrity

15-4

Note:

Compound locale IDs, such as fr-CA, should be added to the XLF file name
with an underscore in the place of the hyphen, as in the following example:

DisAddressMsgBundle_fr_CA.xlf

b. Open each XLF file and edit the file tag so that the source-language attribute is set to
the locale ID, as in the following example:

<file source-language="fr"
original="oracle.communications.inventory.api.entity.PhysicalPortMsgBundle"
datatype="xml">

Note:

The source-language attribute for compound locale IDs, such as fr-CA,
should be set to the first two characters only, as in the following example:

<file source-language="fr"
original="oracle.communications.inventory.api.entity.PhysicalPortMsgBund
le" datatype="xml">

c. Open each XLF file, locate each trans-unit tag and edit its child source tag with the
translated value for the desired localization.

11. Edit all the PROPERTIES files found in localization.jar/oracle or any of its nested folders:

a. Edit the name of each PROPERTIES file to add an underscore and the locale ID
before the file extension, as shown in the following example:

IntegrityUIBundle_fr.properties

Note:

Compound locale IDs, such as fr-CA, should be added to the XLF file name
with an underscore in the place of the hyphen, as in the following example:

IntegrityUIBundle_fr_CA.properties

b. Open each PROPERTIES file and edit the value for each key with the translated value
for the desired localization. For example, edit the
INTEGRITY_MANAGE_SCAN_CONFIG key, as in the following example:

INTEGRITY_MANAGE_SCAN_CONFIG=new_value

Where new_value is the translated value for the key for the desired localization.

c. (Optional) To enter extended character values (such as Chinese characters), you must
use Unicode Escapes (only one character is allowed per escape sequence). Save
each PROPERTIES file with UTF-8 encoding, then convert each PROPERTIES file to
Unicode Escapes using the native2ascii tool provided with your JDK by entering the
following command:

native2ascii -encoding UTF-8 input_file_name output_file_name

Chapter 15
Localizing Network Integrity

15-5

Where input_file_name is the name of the PROPERTIES file being converted, and
where output_file_name is the name of the converted file.

See the partial sample Chinese localization included in the localization pack for an
example.

12. Return all XLF and PROPERTIES files to localization.jar.

13. Return localization.jar to localization.iar.

14. Deploy localization.iar using the cartridge deploy tool.

15. (Optional) To localize link names in the Link panel in the Network Integrity UI, you must
edit the MBean with the translated values for the desired localization. See Network
Integrity System Administrator's Guide for more information about viewing and editing the
MBean.

16. (Optional) To localize cartridge-specific scan parameters, see the Design Studio Help.
Cartridge-specific scan parameters can be localized within Design Studio, where you can
set multiple language preferences and then assign a language preference to a scan
parameter group.

Deploying the Cartridge Containing the Localized Files
After the translations are complete, build the localization pack to create a cartridge that can be
deployed into Network Integrity. Every cartridge should be cleaned and rebuilt prior to
deploying.

See the Design Studio Help and the Network Integrity Installation Guide for more information
about deploying cartridges.

Note:

When a cartridge containing localizable XLF files is deployed into Network Integrity,
the NetworkIntegrity.ear file automatically redeploys, resulting in the localization
changes being applied to the UI.

Testing the Network Integrity Localization
When running the Network Integrity UI, the user chooses the appropriate language from the
web browser. This is usually done using the Character or Text Encoding menu of the browser,
or from a Language preference setting. The UI displays the selected language after the
corresponding localization pack is deployed. Otherwise, the UI displays the default English
language.

There may be parts of the UI that are supplied by third parties, which are not fully
internationalized. Those parts always display in English.

Localizing Network Integrity Help
The following sections describe localizing Network Integrity Help:

• About Network Integrity Help

• Localizing the Network Integrity Help Files

• Deploying the Localized Help System

Chapter 15
Localizing Network Integrity Help

15-6

• Testing the Network Integrity Help Localization

About Network Integrity Help
Network Integrity Help uses Oracle Help for the Web. Oracle Help is a browser-based Help
system that runs as a web application based on a Java servlet. You do not need specialized
knowledge of Oracle Help to localize Network Integrity Help; you can use the information in this
chapter, supplemented by the Oracle Help documentation. See Oracle Fusion Middleware
Developer's Guide for Oracle Help for more information.

Network Integrity Help consists of a set of files, as described in the following sections.

About the Help Files
This section provides information about the Help files, including their location, a brief
description of their purpose, and whether or not they require configuring or translating for
localization. For details about configuring or translating the content of the Help files, see
"Localizing the Network Integrity Help Files".

Oracle Help File

An Oracle Help configuration file is located in the NI_Home/integrity/ NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/ helpsets directory. The
ohwconfig.xml configuration file contains references to each Help system deployed into an
application. Upon installation, the ohwconfig.xml file references the default Network Integrity
Help system (English) deployed into Network Integrity. This file requires configuration for
localization.

Network Integrity Help Files

The Network Integrity Help files are located in the NI_Home/integrity/ NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib/
Network_Integrity_Help.jar file, which contains the following Help files:

• *.htm files: Each HTML file is a separate Help topic. The text in all of the HTML files
requires translation.

• Network_Integrity_Help.hs: This file describes the Help system. When Network Integrity
Help is initiated through the Network Integrity UI, Network_Integrity_Help.hs is the
starting point. This file does not require translation.

• toc.xml: This file defines the Table of Contents (TOC) that appears in the left pane of the
Oracle Help window. The text in this file requires translation.

• map.xml: This file associates Help IDs with the HTML file names. The TOC uses the IDs
to link entries to Help topics. This file does not require translation.

• search.idx: This file is used when you perform a text search of the Help content. The file
defines a search index that searches the Help content in the HTML files. After the HTML
files are translated, the search index must be regenerated using the Java-based Help
Indexer. For more information, see "Software Requirements".

• target.db: This file contains cross-reference information used for navigating between Help
topic headings. This file does not require translation.

• dcommon/html/cpyr.htm: This file defines the Help copyright page, and requires
translation. (The dcommon directory contains standard Oracle support files, including a
CSS file, several graphics files, and the Help copyright page, but only the Help copyright
page requires translation.)

Chapter 15
Localizing Network Integrity Help

15-7

Localizing the Network Integrity Help Files
To localize Network Integrity Help, perform the work described in the following sections:

• Extracting the Help Files

• Translating the Help Files

• Creating the Localized Help JAR File

• Configuring the Oracle Help File

Extracting the Help Files
Use the default Help system installed with Network Integrity as the starting point for your
localization.

To extract the Help files:

1. Copy the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib/
Network_Integrity_Help.jar file to a local directory, such as tempDir.

2. Open the tempDir/Network_Integrity_Help.jar file.

3. Select all objects in the Network_Integrity_Help.jar file and extract them into the same
directory in which the Network_Integrity_Help.jar file resides (tempDir).

4. Click the File column heading in the tempDir directory to sort the objects by file type.

The following objects are present:

• dcommmon directory

• img directory

• META-INF directory

• target.db

• Network_Integrity_Help.jar

• Network_Integrity_Help.hs

• numerous *.htm files

• search.idx

• map.xml

• toc.xml

You do not need to do anything with the img or META-INF directories, or with the target.db,
Network_Integrity_Help.hs, or map.xml files.

Translating the Help Files
To translate the Help files, perform the translations described in the following sections:

• Translating the Copyright Page

• Translating the Help Topics

• Translating the Table of Contents

Chapter 15
Localizing Network Integrity Help

15-8

Translating the Copyright Page

The copyright page text is defined in the tempDir/dcommon/html/cpyr.htm file. Translate the
content of the title, heading, and paragraph elements (<title>, <h1> - <h6>, <p>) to the local
language.

For example, translate the bolded content in Example 15-1:

Example 15-1 Excerpt from cpyr.htm

<title>Oracle Legal Notices</title>
<link rel="stylesheet" href="../css/blafdoc.css" type="text/css" />
</head>
<body>
<h1>Oracle Legal Notices</h1>

<h2>Copyright Notice</h2>
<p>Copyright © 1994-2012, Oracle and/or its affiliates. All rights reserved.</p>

Translating the Help Topics

The Help topics text is defined in the numerous tempDir/*.htm files, and each file requires
translating.Translate the content of the title, heading, paragraph, and table data elements
(<title>, <h1> - <h6>, <p>, <td>) to the local language.

For example, translate the bolded content in Example 15-2. Elements that are not text, such as
the HTML tags themselves, should not be changed.

Example 15-2 Excerpt from olh_integ_scans002.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="OAC_IGNORE_SKIP_NAV" content="true" />
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta http-equiv="Content-Script-Type" content="text/javascript" />
<title>Creating a Scan</title>
<meta name="generator" content="Oracle DARB XHTML Converter (Mode = ohj/ohw) - Version
5.1.2 Build 040" />
<meta name="date" content="2011-12-20T20:51:30Z" />
<meta name="robots" content="noarchive" />
<meta name="doctitle" content="Creating a Scan" />
<meta name="relnum" content="Release 7.1" />
<meta name="partnum" content="E23703-01" />
<meta name="topic-id" content="CreateScansMain" />
<link rel="copyright" href="./dcommon/html/cpyr.htm" title="Copyright" type="text/
html" />
<link rel="stylesheet" href="./dcommon/css/blafdoc.css" title="Oracle BLAFDoc"
type="text/css" />
<link rel="contents" href="toc.htm" title="Contents" type="text/html" />
</head>
<body>
<p><a id="CreateScansMain"
name="CreateScansMain"></p>
<div class="sect2">
<h1>Creating a Scan</h1>
<p>To create a scan:</p>

<p>From the Tasks panel, click Manage Scans.</p>

Chapter 15
Localizing Network Integrity Help

15-9

<p>The Manage Scans page appears.</p>

Translating the Table of Contents

The TOC text is defined in the tempDir/toc.xml file. Each item in the TOC is defined by a
<tocItem> element. Translate the content to the local language.

For example, translate the bolded content of the text attribute in Example 15-3. Do not change
the content of the target attribute.

Example 15-3 Excerpt from toc.xml

<tocitem target="olh_integ_main001.htm-sthref3" text="Getting Started with Network
Integrity" />

Note:

Oracle Help automatically translates the Help window menu options, field names, and
informational, warning, and error messages. The translation is based on the locale
defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and the
ohwconfig.xml file defines a single locale of French, Oracle Help translates the Help
window menu options, field names, and messages to French.

That said, Oracle recommends that the language preference with the highest priority
be the same language defined as the locale in the ohwconfig.xml file.

Creating the Localized Help JAR File
After translating the Help files and regenerating the search index, create a new JAR file
containing the localized Help files.

To create the new JAR file:

1. In Windows Explorer, navigate to the tempDir directory. This is the directory containing the
Network_Integrity_Help.jar file, the translated Help files, and the regenerated search
index file.

2. Copy the Network_Integrity_Help.jar file, and paste it in the same directory (tempDir).

3. Select the copied version of the Network_Integrity_Help.jar file and rename it
Network_Integrity_Help.jar_locale.jar, where locale is the standardized ID that
represents a language and region in which the language is spoken. For example, fr-CA is
the locale for French spoken in Canada, and es-MX is the locale for Spanish spoken in
Mexico.

For more information, see "Determining the Locale ID".

4. Open the Network_Integrity_Help_locale.jar file.

5. Select and delete all of the objects in the JAR file.

6. Add the localized Help files to the Network_Integrity_Help_locale.jar file. (This includes
all of the directories and all of the files in tempDir, with the exception of
Network_Integrity_Help.jar and Network_Integrity_Help_locale.jar.

7. Save and close the Network_Integrity_Help_locale.jar file.

Chapter 15
Localizing Network Integrity Help

15-10

You can verify that you included all of the directories and files by checking the number of
objects in the Network_Integrity_Help.jar file and in the Network_Integrity_Help_locale.jar
file; the two JAR files should contain the same number of objects. To determine the number of
objects in each JAR file, select all of the objects in each JAR file; this provides a count of all
objects selected.

Configuring the Oracle Help File
After translating the Help files, regenerating the search index, and creating a localized Help
JAR file, configure the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/ helpsets/ohwconfig.xml file to
reflect the localized Help JAR file.

To configure the ohwconfig.xml file:

1. Open the ohwconfig.xml file.

The file defines the default Help system (English):

<locales>
 <!-- English: -->
 <locale language="en">
 <books>
 <helpSet id="integrity"
 jar="../WEB-INF/lib/Network_Integrity_Help.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>

2. Update the <locale> element to reflect the localized Help system:

<locales>
 <!-- French Canadian: -->
 <locale language="fr">
 <books>
 <helpSet id="integrity_fr_ca"
 jar="../WEB-INF/lib/Network_Integrity_Help_fr_ca.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>

You do not need to change the location attribute value, which is the name of the file that
resides in the specified JAR file.

About Multiple Locales

Oracle Help can support multiple locales. For multiple locales, each localized Help system is
configured with a <locale> element in the ohwconfig.xml file. For example, the following
results in both French and Spanish Help systems being available in Network Integrity upon
redeployment:

<locales>
 <!-- French: -->
 <locale language="fr">
 <books>
 <helpSet id="integrity_fr_ca"
 jar="../WEB-INF/lib/Network_Integrity_Help_fr_ca.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>

Chapter 15
Localizing Network Integrity Help

15-11

</locales>
<locales>
 <!-- Spanish: -->
 <locale language="es">
 <books>
 <helpSet id="integrity_es_mx"
 jar="../WEB-INF/lib/Network_Integrity_Help_es_mx.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>
<parameters>
 <combineBooks>false</combineBooks>
 <useLabelInfo>true</useLabelInfo>
 <cacheSize>3</cacheSize>
</parameters>

When multiple locales are defined, the language preference for all locales must be set. If not
set, only the first locale defined in the ohwconfig.xml file displays in Network Integrity Help.
See "Setting the Language Preference in Internet Explorer" for more information.

When multiple locales are defined, the <parameters> element configuration values are applied:

• <combineBooks>

To merge Help systems, set <combineBooks> to true. The Help navigational views behave
as a single, integrated Help system.

To use separate Help systems, set <combineBooks> to false. The separate Help
navigational views are accessed based on the language preference with the higher priority.

Regardless of the <combineBooks> value, each locale that is defined in the
ohwconfig.xml file must be specified as a language preference. See "Setting the
Language Preference in Internet Explorer" for more information.

Note:

Oracle Help automatically translates the Help window menu options, field names,
and informational, warning, and error messages. The translation is based on the
first locale defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and the
ohwconfig.xml file defines the locales of French and Spanish, Oracle Help
translates the Help window menu options, field names, and messages to French.

However, when multiple locales are defined, the language preference for all
locales must be specified. Otherwise, only the first locale defined in the
ohwconfig.xml file displays in Network Integrity Help. So, when the language
preferences are set, Oracle Help translates the Help window menu options, field
names, and messages to the language preference with the highest priority.

• <useLabelInfo>

If <useLabelInfo> is set to true, author-defined labels are used for the navigators of
merged Help systems.

If <useLabelInfo> is set to false, default labels such as Contents, Index, and Search are
used for the navigators of merged Help systems.

• <cacheSize>

Chapter 15
Localizing Network Integrity Help

15-12

<cacheSize> indicates the number Help systems kept in memory at one time. The default
value is 3.

See Oracle Fusion Middleware Developer's Guide for Oracle Help for more information.

Deploying the Localized Help System
The original Help system, located in the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib/
Network_Integrity_Help.jar file, is deployed when you deploy the NetworkIntegrity.ear file.

To deploy the localized Help system:

1. Repackage the NI_Home/integrity/NetworkIntegrity.ear file to include the localized Help
files. To do this:

a. Delete the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib/
Network_Integrity_Help.jar file.

b. Copy the tempDir/Network_Integrity_Help.jar_locale.jar file to the NI_Home/
integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib directory.

Note:

If your Network Integrity Help is supporting multiple locales, each JAR file
defined by each <locale> element in the ohwconfig.xml file must be present
in the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/ WEB-INF/lib
directory.

2. Deploy the repackaged NetworkIntegrity.ear file.

For instructions on how to deploy the NetworkIntegrity.ear file, see Network Integrity
System Administrator's Guide.

Testing the Network Integrity Help Localization
After you deploy the localized Help system, test your Network Integrity environment to verify
that the localized Help system is working correctly.

In Network Integrity, open the Help. Tests should include the following:

• Navigate to several topics from links in the Table of Contents to ensure that the correct
topics appear and display correctly.

• Test several links within Help topics to ensure they are working.

• Search for several terms and verify that you get the expected results.

• If testing multiple locales that function as a single Help system, verify translations for all
locales.

• If testing multiple locales that function as separate Help systems, change the language
preference priority to verify translations for each locale.

Chapter 15
Localizing Network Integrity Help

15-13

A
Network Integrity Plug-in Validation Error
Messages

This appendix provides information about the Oracle Communications Network Integrity plug-in
validation error messages.

This appendix contains the following sections:

• Error Message Classifications and Conditions

• Design Studio Logging

Error Message Classifications and Conditions
Table A-1 lists the error messages, error classifications, and error conditions for the Network
Integrity plug-in.

Note:

Text inside {} represents a variable that is replaced based on the current error
condition.

Table A-1 Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Action names must start with a letter. Error Occurs when you create an action without a letter
as the first character in the name.

The character {character} is not valid in an
implementation prefix.

Error Occurs when the implementation prefix of an
action or processor contains characters that
cannot be part of a Java identifier.

Processor {processor name} already has more than
one parent action assigned.

Error Occurs if an attempt is made to associate a
processor to a second action. A processor can
have only one parent.

Processor Parameter: {parameter name} not found in
Parameter list for Processor {processor name}.

Informational Occurs if an attempt is made to rename an input
or output parameter of a processor, which no
longer exists in the Parameter list.

Processor property group: {property group name} not
found in property group list for Processor {processor
name}.

Informational Occurs if an attempt is made to rename a
property group of a processor, which no longer
exists in the property group list.

Action condition {condition name} not found in
condition list for action {action name}.

Informational Occurs if an attempt is made to rename a
condition of an action, which no longer exists in
the condition list.

The generated implementation prefix for this entity
conflicts with the implementation prefix of entity
\"{entity name}\". Choose a different name.

Error Occurs when an implementation prefix of an
action or a processor conflicts with an existing
prefix.

A-1

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Cannot get cartridge from action: {action name}. Error Occurs when Oracle Communications Service
Catalog and Design - Design Studio is unable to
determine the cartridge to which the current
action belongs as part of dependency checks
before building.

SNMP Parameters cannot be added to the discovery
action because the project does not have a data
dictionary.

Warning Occurs when an SNMP processor is created and
no data dictionary exists with the project. To
correct this, create a Data Dictionary, and then
create the SNMP processor.

SNMP Parameters cannot be added to the discovery
action because a Data Dictionary Element matching
the name SnmpParameters was found but it is not
assigned the Scan Parameter Group Specification
type.

Warning Occurs when a SNMP processor is created and
the project's Data Dictionary exists with an
SnmpParameters structure that is not of Type
scan parameter group. To correct, delete the
conflicting SnmpParameters or change its Entity
Type to scan parameter group.

SNMP Processor has not specified any OIDs Error Occurs if an SNMP processor has not specified
any OIDs.

Processor implementation has not been specified Error Occurs if the processor's Implementation Class is
not specified on the processor's Details tab.

Processor implementation is missing Error Occurs if the processors implementation class,
which is specified on the processor's Details tab,
is missing in Design Studio.

Processor implementation package does not match
Processor interface package

Error Occurs if the package defined in the processor's
Implementation Class does not match the
package of the processor's generated interface.

MIB Directory has not been specified. See Oracle
Design Studio Network Integrity preferences.

Error Occurs if the MIB Directory is not specified in the
Oracle Design Studio Network Integrity
Preferences (Window -> Preferences -> Oracle
Design Studio -> Network Integrity).

MIB directory mib directory does not exist. See
Oracle Design Studio Network Integrity preferences

Error Occurs if the MIB Directory as specified in the
Oracle Design Studio Network Integrity
Preferences (Window -> Preferences -> Oracle
Design Studio -> Network Integrity) does not
exist.

MIB module mib module name does not exist Error Occurs if the MIBs specified as part of the SNMP
processor are not available in the MIB Directory.

Processor is not used in an action Warning Occurs if the processor is not used by an action.

Action has not specified a result category. At least
one result category must be specified

Error Occurs if the action has not defined at least one
result category.

Action has not specified a result source. At least one
result source must be specified

Error Occurs if the Discrepancy detection action does
not contain at least one result source.

Result source action action name cannot be found Error Occurs if the discrepancy detection action's result
source action cannot be found. For example, the
action has been deleted.

Result source action name result source name
cannot be found

Error Occurs if the discrepancy detection action's result
source cannot be found. For example, it has been
deleted from the action.

Appendix A
Error Message Classifications and Conditions

A-2

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Scan Parameter Group group_name does not exist Error Occurs if the Data Dictionary Structure
referenced by an action's scan parameter group
has been deleted.

Data dictionary element for Scan Parameter Group
group_name is invalid

Error Occurs if the Data Dictionary Structure or its
Elements are invalid. For example, the Entity
Type is not a scan parameter group.

SNMP Processor requires "SnmpParameters" Scan
Parameter Group

Error Occurs if the SnmpParameters scan parameter
group is not available in the workspace. To
correct, ensure the MIB_II_SNMP_Cartridge is
imported in the workspace. Next, remove and re-
add the SNMP processor to the discovery action.

Address handler implementation has not been
specified

Error Occurs if the Implementation Class for an
AddressHandler is not specified.

Address handler implementation is missing Error Occurs if the Implementation class itself is not in
Design Studio.

Address handler implementation package does not
match interface package

Error Occurs if the package defined in the
AddressHandler's Implementation Class does not
match the package of the AddressHandler's
generated interface.

Specification specification name does not exist Error Occurs if the Specification referenced by a
processor's Model Collection does not exist. For
example, it has been deleted.

Data dictionary element for specification specification
name is invalid

Error Occurs if the Data Dictionary Element is invalid.
For example, POMS does not support it.

Stale imported Action action name. The imported
Action's Processors have changed since they were
imported.

Error Occurs when imported action's processors have
changed. For example, the ordering of the
processors in the owning action has changed.

Action contains no Processors Warning Occurs when an action exists without any
processors.

Cartridge contains neither Actions nor address
handlers

Error Occurs when a new Integrity Project contains no
actions or address handlers.

Provider has not been specified Warning Occurs when the cartridge Provider has not be
specified on the Network Integrity cartridge
Properties tab.

Cartridge cannot contain both actions and address
handlers

Error Occurs when an Integrity project contains both
address handlers and actions, which is invalid.

Condition implementation has not been specified for
condition condition name

Error Occurs when the Implementation Class has not
been provided for a condition within an action.

Condition implementation is missing for condition
condition name

Error Occurs if the Implementation class itself is not in
Design Studio.

Model Collection is not associated with any Actions.
A model collection must be associated with at least
one Action.

Error Occurs when the Model Collection is not
associated to at least one action.

Resolution Action has not specified a Resolution
Action Label.

Error Occurs when the resolution action does not have
a Resolution Action Label, which is used as the
resolution string in the UI for resolving
discrepancies.

Appendix A
Error Message Classifications and Conditions

A-3

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Retrieving Cartridge Model Error Occurs when a given action's processors do not
have a Provider.

Action action name is not a valid Action and cannot
be added.

Error Occurs when selecting an invalid action when
adding processors to an action.

Action action name does not contain any Processors.
Actions must contain at least one processor to be
eligible for inclusion in another Action.

Error Occurs when importing an action, which contains
no processors.

The are no output parameters on any of the
Processors that are of a type that can be iterated
over.

Error Occurs when adding a For Each to an action,
which has processors that do not have an output
parameter that allows iteration.

The order of Processors from Imported Actions can
not be changed.

Error Occurs when the order of processors from
imported actions is changed.

Processor processor name uses parameter
parameter name and Processor processor name
outputs this parameter, continuing may make the
Action invalid. Do you want to continue?

Confirmation Occurs when changing the order (Moving Down)
of processors within an action resulting in
invalidating the flow of parameters thus making
the action as a whole invalid.

Processor processor name has a condition that uses
parameter parameter name and Processor processor
name outputs this parameter, continuing may make
the Action invalid. Do you want to continue?

Confirmation Occurs when changing the order of processors
(Moving Down) within an action resulting in
invalidating one or more conditions.

Processor processor name outputs parameter
parameter name and Processor processor name
uses this parameter, continuing may make the Action
invalid. Do you want to continue?

Confirmation Occurs when changing the order (Moving Up) of
processors within an action resulting in
invalidating the flow of parameters thus making
the action as a whole invalid.

Processor processor name outputs parameter
parameter name and Processor processor name has
a condition that uses this parameter, continuing may
make the Action invalid. Do you want to continue?

Confirmation Occurs when changing the order of processors
(Moving Up) within an action resulting in
invalidating one or more conditions.

Action should not be null Error Occurs when adding or removing elements
(processors, For Each blocks, and so on) from an
action, which is null.

The condition could not be added because the
following action name are read only

Error Occurs when attempting to add a condition to an
action, which is read only.

The condition could not be removed because the
following action name are read only

Error Occurs when attempting to remove a condition
from an action, which is read only.

The condition interface condition interface name has
not been generated. It is recommended to save and
build the Action before creating the implementation
so that the interface is generated. Continue creating
the implementation class anyway?

Confirmation Occurs if the condition interface has not been
generated before the implementation class being
generated.

Condition 'condition name} has relations. Are you
sure you want to delete it?

Warning Occurs when the condition to be deleted has
relationship to a processor.

A condition called condition name already exists on
this plug-in, specify a different name.

Error Occurs when attempting to create a condition
with a name that already exists within the action.

The condition name must have a length greater than
0 but not exceeding 50 characters

Error Occurs when the length of the target condition
name is not within the valid range of 1 – 50
characters.

Appendix A
Error Message Classifications and Conditions

A-4

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

This output parameter type is used by a for each,
therefore the parameter type must be an iterable
type.

Error Occurs when the output parameter type used as
an input to a For Each is not iterable.

Processor processor name is not writable, so
references to this output parameter is not updated.

Error Occurs when trying to modify a processor, which
is read only.

Input parameters are referencing this output
parameter. Changing the name or type may generate
compile errors. Do you want to continue?

Warning Occurs when changing the name of an output
parameter, which has referencing input
parameters on processors whose java classes
are already generated.

Input parameters are referencing this output
parameter. Removing it generates compile and
validation errors. Do you want to continue?

Warning Occurs when removing an output parameter,
which has referencing input parameters on
processors whose java classes are already
generated.

There are no output parameters available from
preceding Processors to be selected

Informational Occurs when selecting a processor's input
parameters and no preceding processor has an
output Parameters.

No uses of output parameter parameter name were
found.

Informational Occurs when viewing the usage of an output
parameter, which is not used as an input
parameter.

The provided name already exists. Enter a different
name.

Error Occurs when adding a condition using a name
that already exists.

The name cannot exceed 50 characters Error Occurs when adding a condition with a name that
exceeds 50 characters.

The name must start with a letter. Error Occurs when creating an Element (for example,
processor, address handler) with an invalid name
(i.e. starts with a digit) using the Design Studio
Model Entity Wizard.

Action names must start with a letter. Error Occurs when creating an action with an invalid
name.

A value for implementation prefix is required when
the use default option is not selected.

Error Occurs when creating an action and no
implementation prefix is specified when the
default option is not selected.

The implementation prefix must begin with a letter. Error Occurs when specifying an action's or
processor's Implementation Prefix starting with a
character other than a letter.

Error trying to lookup interface in project. Error Occurs when Design Studio is attempting to
create a class that implements an interface,
which does not exist in the Project.

An error occurred attempting to create a Java class.
Details...

Error Occurs when Design Studio is unable to create a
Java class likely due to a Java Model problem or
permissions.

The generated interface interface name could not be
found in your project. It is recommended to save and
build before creating the implementation so that the
interface is available. Continue creating the
implementation class anyway?

Warning Occurs when generating the implementation
before the interface is available. For example,
when creating a new processor, it is
recommended to save and build before creating
the implementation class.

Appendix A
Error Message Classifications and Conditions

A-5

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

The required interface, interface name, could not be
found. Please clean and build the project.

Error Occurs when selecting the implementation before
the interface is available. For example, when
creating a new processor, it is recommended to
save and build before selecting the
implementation class.

The package rename cannot be performed because
the following entities are not writable:

Error Occurs when modified the default package on the
Project editor Properties tab and the underlying
classes are read only.

Project name should not contain spaces. Error Occurs when attempting to create a Integrity
Project with a name that contains spaces.

A Default Cartridge Package is required Error Occurs if there is no Default Cartridge Package
specified under the Oracle Design Studio ->
Network Integrity section in the Design Studio
Preferences located under Window ->
Preferences.

Spaces are not allowed in the package name Error Occurs if the Default Cartridge Package value
contains spaces.

This removes all generated UI hints artifacts. Do you
wish to continue?

Confirmation Occurs when clicking the Clean UI Hints button
located on the UI Hints tab of the Network
Integrity cartridge element.

The UI Hints could not be cleaned, please ensure the
mds.mar file is not read only

Error Occurs when attempting to clean the UI Hints
while the mds.mar file is read only. The mds.mar
is located in the cartridge lib directory.

Spaces are not allowed in the package name Error Occurs when attempting to rename the Default
Package property on the Properties tab of the
Network Integrity cartridge element.

Please fix fields with errors. Error Occurs when creating an output parameter with
an invalid Type.

The first character in a parameter name should be
lowercase

Warning Occurs when adding output parameters to a
processor and the parameter name begins with
an invalid character (i.e. uppercase).

A {field name} value must be entered. Error Occurs when adding output parameters, property
groups and properties to a processor and no
name value is specified.

Parameter parameter name could not be added
because a parameter with the same name already
exists. Remove the parameter with the same name
and retry the operation.

Error Occurs when adding an output or input parameter
using a name that already exists in the Parameter
list. Names must be unique in the parameter list
since the name generates the getter methods.

The name parameter name already exists as a
parameter, enter a different name

Error Occurs when adding an output parameter using a
name that already exists.

The name cannot contain spaces Error Occurs when adding an output parameter or
property group to a processor and the name
contains spaces.

The name cannot start with a number Error Occurs when adding an output parameter or
property group to a processor and the name
starts with a number.

Parameter Type parameter type may produce
warnings in generated code. Do you want to
continue?

Confirmation Occurs if the parameter type of an output or input
parameter may cause compile warnings.

Appendix A
Error Message Classifications and Conditions

A-6

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

The parameter type parameter type produces the
following warning in generated code. Do you want to
continue?

Confirmation Occurs if the generated code contains warnings
based on the parameter type of an output or input
parameter.

The name must be a valid java identifier that does not
contain special characters

Error Occurs when adding an output parameter or
property group to a processor and the name
contains a special character (for example, %).

The name parameter name is a reserved word in
Java, enter a different name

Error Occurs when adding an output parameter or
property group to a processor and the name is
equivalent to a reserved word in Java and
therefore would cause compiling errors.

Type parameter type could not be found in the project Error Occurs if the parameter type of an output or input
parameter could not be found in the Integrity
Project.

A property group with the name property group name
already exists on this input

Error Occurs when adding a property group using a
name that already exists.

A Property with the name property name and value
property value already exists, please choose a
different name/value combination

Error Occurs when adding or modifying a Property
using a name and value that already exists.

One or more errors exist with the fields Error Occurs when creating a property group with an
invalid name.

A property group with the name property group name
already exists, please choose a different name

Error Occurs when modifying a property group
changing its name to a name that already exists.

One or more errors exist with the fields Error Indicates a problem with result groups or result
source.

A field name value must be entered. Error Occurs when creating a result category or
condition with no name.

The result category name must have a length greater
than 0 but not exceeding 255 characters

Error Occurs when modifying a result category
changing its name to have a length of 0 or greater
than 255 characters.

Data dictionary named data dictionary name could
not be found.

Error Occurs when the data dictionary elements of a
model collection cannot be found.

The MIB File mib filename could not be loaded
because of the following error: Details...

Error Occurs when a file other than a MIB File is
selected when clicking the Load MIB button
within an SNMP processor.

A valid MIB Module called mib module name could
not be found in MIB File: mib filename

Error Occurs when the target MIB File attempting to be
loaded by a SNMP processor does not contain
any MIB Modules.

The MIB directory mib directory either does not exist
or is not accessible. Either create this directory or
change the configured MIB Directory in the Network
Integrity Preferences Page (Preferences then Oracle
Design Studio then Network Integrity)

Error Occurs when the configured MIB Directory as
specified in the Network Integrity Preferences
Page is not accessible.

The following error occurred loading MIB mib
filename: Details...

Error Occurs when the target MIB File is corrupt.

Selected node: oid, is not readable, only readable
nodes are supported.

Error Occurs when attempting to load an OID, which is
not readable.

Selected node: oid, is not supported (only scalar and
table column are supported).

Error Occurs when attempting to load an OID, which is
not scalar or a table column.

Appendix A
Error Message Classifications and Conditions

A-7

Design Studio Logging
When developing cartridge projects within Design Studio for Network Integrity it is likely that
the developer requires logging for traceability during normal cartridge operation and for
debugging. This section outlines how to introduce logging into the developer's implementation.
This section addresses logging that is visible inside the WebLogic log files. It does not discuss
introducing Design Studio logging (for example, Design Studio Error Logs).

Network Integrity uses the java.util.logging package for logging messages. For an overview of
the Java logging framework, visit Oracle's site on the subject at

http://download.oracle.com/javase/6/docs/api/index.html
To create an instance of the appropriate logger add a static variable to an implementation class
passing in the name of the current class. For example,

private static final Logger logger = Logger
 .getLogger(DiscrepancyDetectorImpl.class.getName());

When the above is defined, invoke logging according to the API specification. For example,

logger.log(Level.SEVERE, "Error while detecting discrepancies.", e);

To redirect the Network Integrity logs produced by the above into a WebLogic log file use the
following procedure:

1. Insert the following 2 XML fragments into the file <DOMAIN_HOME> /config/fmwconfig/
servers/<TargetServer>/logging.xml.<TargetServer>. <TargetServer> represents the
name of the WebLogic Server where the Network Integrity application is running.

a. The following fragment goes inside the <log_handlers> block and defines the log
handler and log file location. If required, change the log handler; however, this value
must match the value referenced in the fragment in step 1.b. If necessary, change the
location where the log file is generated.

 <log_handler name='ni-handler'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path' value='${domain.home}/servers/${weblogic.Name}/
logs/ni-weblogic.log'/>
 <property name='maxFileSize' value='10485760'/>
 <property name='maxLogSize' value='104857600'/>
 </log_handler>

b. This fragment goes inside the <loggers> block (at the end) and defines the logger
name. This name refers to the Java package of a customer's implementation code, the
log level and the handler. The handler must match the value configured in step 1.a (for
example, ni-handler). If necessary, tailor the log level. Consult Table A-2 that maps
the Java log levels to the ODL log levels (for example, TRACE:32) used in the
logging.xml file.

 <logger name="oracle.communications.integrity" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>
 <logger name="oracle.communications.activation" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>
 <logger name="oracle.communications.inventory" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>

2. Save logging.xml.

Appendix A
Design Studio Logging

A-8

http://download.oracle.com/javase/6/docs/api/index.html

When determining what level to set in the logging.xml (step 1) use Table A-2 to map the Java
Log Levels to ODL Log Levels.

Table A-2 Java Log Level to ODL Log Level Mapping

Java Log Level ODL Message
Type:Log Level

ODL Description

SEVERE.intValue()+100 INTERNAL_ERROR:1 The program has experienced an error for some
internal or unexpected non-recoverable
exception.

SEVERE ERROR:1 A problem requiring attention from the system
administrator has occurred.

WARNING WARNING:1 An action occurred or a condition was
discovered that should be reviewed and may
require action before an error occurs.

INFO NOTIFICATION:1 A report of a normal action or event. This could
be a user operation, such as “login completed"
or an automatic operation such as a log file
rotation.

CONFIG NOTIFICATION:16 A configuration-related message or problem.

FINE TRACE:1 A trace or debug message used for debugging
or performance monitoring. Typically contains
detailed event data.

FINER TRACE:16 A fairly detailed trace or debug message.

FINEST TRACE:32 A highly detailed trace or debug message.

For more information on ODL visit

http://download.oracle.com/docs/cd/B31017_01/web.1013/b28952/logging.htm

Appendix A
Design Studio Logging

A-9

http://download.oracle.com/docs/cd/B31017_01/web.1013/b28952/logging.htm

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Using Design Studio to Extend Network Integrity
	Installing Design Studio
	Configuring Design Studio for Network Integrity
	Configuring Network Integrity Preferences
	Network Integrity Project Dependencies
	Configuring Data Dictionary Preference Settings

	About Design Studio Perspectives
	About Design Studio Views
	Studio Design Perspective Views
	Java Perspective Views

	About Projects
	About the Project Architecture

	Working with Projects
	Building and Packaging Projects
	About the Project Build Order
	About Build Artifacts
	Packaging Projects

	Deploying and Undeploying Cartridges
	Creating a Design Studio Environment Project
	Creating a Design Studio Environment For Network Integrity
	Deploying a Cartridge
	Undeploying a Cartridge
	Redeploying a Cartridge

	Debugging and Testing Cartridges
	Starting the WebLogic Server in Test Mode
	Configuring Remote Debugger in Design Studio

	Sealing and Unsealing Projects
	Exporting and Importing Cartridges
	Exporting a Cartridge with Source Code
	Exporting a Cartridge Without Source Code

	About Specifications
	Working with Specifications
	About Model Collections
	About Specification Helpers

	Associating Contiguous Slots to a Card
	About Source Control
	Working with Source Control for Network Integrity
	Tips and Tricks
	About Java Errors in the Generated Controller Class
	Renaming or Deleting Actions and Processors
	Adding External Libraries to a Java Build Path
	About “Missing Required Library" Errors for External Libraries
	Error Marker on Cartridge but not on any Entities

	2 Working with Actions
	About Actions
	About Actions and Processors
	About Action within Actions
	About the Generated Action MDB and Controller
	About Scan Parameter Groups
	Extending the Create Scan Page
	Extending the Scan Details Page

	About Conditions
	About Generated Classes and the Implementation Class
	Adding Dependent Actions with Conditions as Processors
	Creating Condition Examples

	About Model Collections in Actions
	About For Each Processors
	About Result Categories

	About Import Actions
	About Discovery Actions
	About Discovery Action Address Handlers
	About the Address_Handlers Cartridge
	Implementing Address Handlers
	About the AddressHandler Interface
	About Dynamic Address Handlers

	About Discovery Action Result Categories
	About the Discovery Action in the Network Integrity UI
	About Discovery Action Scan Parameter Groups
	About scanMode Parameter
	Customizing Response Timeout for Devices in SNMP Discovery Scan

	About Assimilation Actions
	About Discrepancy Detection Actions
	About Discrepancy Detection
	Identifying and Resolving Missing Entity Discrepancies at the Root-level
	About Result Sources
	About Result Source and Scan Types
	Generated Action MDB and Controller

	About Discrepancy Resolution Actions
	About the Resolution Action Label
	About Result Sources
	Generated Action and MDB Controller

	3 Working with Processors
	About Processors
	About Context Parameters
	Specifying Context Parameters before Creating Implementation Class

	About Properties and Property Groups
	About Generated Code
	About the Location for Generated Code
	About the Processor Interface
	About the PropertyGroup and Properties Classes

	Implementing a Processor
	About the Processor Finalizer
	About the ProcessorFinalizer Interface

	About Memory Considerations

	Implementing an Import Processor
	Implementing a Discovery Processor
	Implementation Code Example

	Implementing the SNMP Processor
	About the Generated Implementation and XML Beans
	Supporting New MIBs

	Implementing an Assimilation Processor
	About Discrepancy Detection Processors
	Discrepancy Detection Processor Patterns
	Reusing the Base Detect Discrepancy Action
	About the Base Detection Project and the Default Comparison Algorithm
	Adding New Filters and Handlers
	About Filters
	About Handlers
	Filters and CimType
	Filter and Handler Examples
	Adding Post-Processors

	About Discrepancy Resolution Processors
	Creating a Discrepancy Resolution Processor
	Implementing a Discrepancy Resolution Processor
	About the Implementation Interface
	About Input Parameters for the Invoke Method
	Return Type of Invoke Method

	About the General Flow of the Discrepancy Resolution Processor
	Fetching Discrepancies
	Grouping Discrepancies
	Handling Discrepancies
	Reporting the Resolution Result
	Handling Discrepancies Asynchronously

	4 Working with Discrepancies
	About Discrepancies
	About the Compare and Reference Sides
	About Discrepancy Types
	Attribute Value Mismatch
	Extra Entity and Missing Entity
	Extra Association and Missing Association
	Ordering Error and Association Ordering Error

	About Discrepancy Status
	About Discrepancy Detail

	5 Working with the POMS SDK
	About POMS
	Working with POMS Entities
	Working with POMS Relationships
	One-to-one Relationships
	One-to-Many or Many-to-Many Relationships
	Ordered and Unordered Relationships
	Bi-directional Relationships
	Relationship Entities

	Working with Specifications and Characteristics
	Working with the POMS Finder
	Find by Entity
	Find by JPQL
	Find with Paged Results
	POMS SDK Interfaces

	About Persist Results

	6 Working with the Extensibility SDK
	About Extensibility Scenarios
	Extending MIB II SNMP Discovery for Updated Vendor and Interface Type
	Extending an Existing Cartridge to Discover and Reconcile New Characteristics
	Extending the MIB II SNMP Discovery to Change Interface Name Value
	Multiple Vendor SNMP Discovery
	Multiple Protocol Discoveries

	7 Working with Automatic Discrepancy Resolution
	About Automatic Discrepancy Resolution
	About the Automatic Discrepancy Resolution Solution
	Action and Processors
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing Automatic Discrepancy Resolution
	Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution
	Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution

	Completing the Automatic Discrepancy Resolution Implementation
	Completing Automatic Discrepancy Resolution Using a Properties File
	Completing Automatic Discrepancy Resolution with a Custom Processor

	8 Working with CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery Solution
	Action and Processors
	About the Mechanism of Comparing CPU Usage Values
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing CPU Utilization-enabled Discovery
	Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution

	9 Working with Application Context Work-Managers
	ManagedExecutorService Work-Manager Configuration
	Defining new MES Work-Manager within Network Integrity
	Using MES Work-Manager within Network Integrity
	Accessing MES Work-Manager within Network Integrity

	Persist Results using Multi-Threading
	Discovery Scan using Multi-Threading
	Import Scan using Multi-Threading

	10 Working with the Network Integrity Web Service
	About the Network Integrity Web Service
	Security
	Model Based
	Concurrency with UI and other Web Service Clients
	Listing of Network Integrity Web Service Operations

	Network Integrity Web Service Operations
	Create
	Entity Type Support

	Get
	Entity Type Support

	Get All
	Entity Type Support

	Delete
	Entity Type Support

	Update
	Entity Type Support

	Find
	Entity Type Support
	From and To Range
	Ascending and Descending
	Attribute Criteria
	Multiple Attribute Criteria
	Extended Attribute Criteria
	Criteria Operators
	Between/Not Between Operator
	Data Criteria
	Conjunction Criteria
	Find Response

	Network Integrity Web Service Special Function Operations
	Start Scan
	Stop Scan
	Get Latest Scan Status
	Submit Discrepancies For Resolution Processing

	Network Integrity Web Service Scenarios
	Creating a Scan
	Starting, Stopping, and Monitoring a Scan
	Retrieving Scan Results
	Working with Discrepancies

	Network Integrity Web Service Samples
	Contents of the Network Integrity Web Service Samples ZIP File
	Sample Java Client
	Sample Soap UI Project
	Submitting Request to the Server
	Specifying User Name and Password in Request

	11 Working with Scan Run Complete Notifications
	About Clients for Monitoring Scan Run Complete Notification Messages
	Implementing Custom Code to Stop a Scan

	12 Working with JCA Resource Adapters
	About Resource Adapters
	Understanding JCA Resource Adapter Connectivity Options
	Understanding JCA Resource Adapters with Network Integrity

	About Productized SNMP JCA Resource Adapter
	Installing the SNMP JCA Resource Adapter
	Extending the SNMP JCA Resource Adapter
	Record and Playback Mode
	Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge

	About Third Party or Customized JCA Resource Adapters
	Building a JCA Resource Adapter in WebLogic
	Invoking a Third Party or Customized JCA Resource Adapter

	13 Working with Reports Extensibility
	About Oracle Analytics Publisher
	Downloading Oracle Analytics Server
	Installing Oracle Analytics Server
	Running OAS jar
	Completing OAS Installation
	RCU Setup
	Domain Creation

	Reports Provided with Network Integrity
	Scan History Report
	Discovery Scan Summary Report
	Device Discrepancy Detection Summary Report
	Device Discrepancy Detection Detail Report
	Discrepancy Corrective Action Report

	Configuring Oracle Analytics Server
	Uploading Data Models
	Uploading Reports

	14 Working with SOA Extensibility
	About SOA Extensibility
	Purpose of Documentation

	Extensibility Tasks
	Extensibility Tasks
	Installing Oracle Weblogic Server
	Installing Oracle JDeveloper
	Installing Oracle Application Runtime
	Installing Oracle SOA Suite
	Creating SOA Metadata Service Schemas
	Updating JDeveloper for Latest SOA Composite Editor
	Creating WebLogic Domain with SOA Products
	Creating and Updating Sample SOA Application Using Network Integrity Web Service
	Starting and Stopping SOA Servers
	Building and Deploying the SOA Application
	Testing Sample SOA application
	Testing Network Integrity SOA Application Using EM
	Testing Network Integrity SOA Application Using soa-infra
	Testing Network Integrity SOA Application Using SOAP UI Tool

	15 Localizing Network Integrity
	Software Requirements
	Setting the Language Preference in Internet Explorer
	Determining the Locale ID
	Localizing Network Integrity
	About the Localization Pack
	Creating the Localization Pack
	Deploying the Cartridge Containing the Localized Files
	Testing the Network Integrity Localization

	Localizing Network Integrity Help
	About Network Integrity Help
	About the Help Files

	Localizing the Network Integrity Help Files
	Extracting the Help Files
	Translating the Help Files
	Creating the Localized Help JAR File
	Configuring the Oracle Help File

	Deploying the Localized Help System
	Testing the Network Integrity Help Localization

	A Network Integrity Plug-in Validation Error Messages
	Error Message Classifications and Conditions
	Design Studio Logging

