
Oracle® Communications MetaSolv
Solution
Custom Extensions Developer's Reference

Release 8.0
G32677-01
November 2025

Oracle Communications MetaSolv Solution Custom Extensions Developer's Reference, Release 8.0

G32677-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Extensions Overview

About Custom Extensions 1

Extensions 1

Execution Points 1

Building Block 2

Process Point 2

Action Type 2

Extension Logic 2

Invocation Methods 2

MetaSolv Solution UI 3

Web Service Clients 4

CORBA API Clients 4

Polling Servers 4

Polling Servers and Supported Execution Points 4

2 Defining An Extension

Defining an Extension in the UI 1

Type of Extension 1

Name of Extension 1

Execution Mode 2

Associating an Execution Point With an Extension 2

Defining the Extension Parameters 2

Configuring an Extension 2

Configuring Gateway.ini 2

Additional Configurations 3

Invoking an Extension 3

3 Identifying An Execution Point

Component Options 1

Building Block Options 1

Process Point Options 2

Action Type Options 3

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page i of vii

Component Combinations 3

4 Coding The Extension Logic

Inheriting From the Extension Framework 1

Accessing Data Passed From the Execution Point 1

Overview 1

Class Details 2

Policy Class 2

Entity Class 2

A Supported Execution Points

Execution Points A-2

Assign Queues A-3

Business Example A-3

Execution Point Definition A-3

Data Passed / Data Returned A-3

UI Invocation A-4

WebService API Invocation A-4

CORBA API Invocation A-4

Assign Task Jeopardy A-4

Business Example A-4

Execution Point Definition A-5

Data Passed A-5

UI Invocation A-5

WebService API Invocation A-5

CORBA API Invocation A-5

Change Task Completion Date A-6

Business Example A-6

Execution Point Definition A-6

Data Passed A-6

UI Invocation A-6

WebService API Invocation A-7

CORBA API Invocation A-7

Complete Task A-7

Business Example A-7

Execution Point Definition A-7

Data Passed A-7

UI Invocation A-8

WebService API Invocation A-8

CORBA API Invocation A-8

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page ii of vii

Additional Invocations A-8

Generate Tasks A-8

Business Example A-8

Execution Point Definition A-9

Data Passed A-9

UI Invocation A-9

WebService API Invocation A-9

CORBA API Invocation A-9

Late Task A-10

Business Example A-10

Execution Point Definition A-10

Data Passed A-10

UI Invocation A-11

WebService API Invocation A-11

CORBA API Invocation A-11

Additional Invocations A-11

Potentially Late Task A-11

Business Example A-12

Execution Point Definition A-12

Data Passed A-12

UI Invocation A-12

WebService API Invocation A-12

CORBA API Invocation A-13

Additional Invocations A-13

Provisioning Plan Default A-13

Business Example A-13

Execution Point Definition A-13

Data Passed / Data Returned A-13

UI Invocation A-14

WebService API Invocation A-14

CORBA API Invocation A-14

Reject Task A-14

Business Example A-14

Execution Point Definition A-14

Data Passed A-15

UI Invocation A-15

WebService API Invocation A-15

CORBA API Invocation A-15

System Task Failure A-15

Business Example A-16

Execution Point Definition A-16

Data Passed A-16

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page iii of vii

UI Invocation A-16

WebService API Invocation A-17

CORBA API Invocation A-17

Additional Invocations A-17

Gateway Event Failure A-17

Business Example A-17

Execution Point Definition A-17

Data Passed A-17

UI Invocation A-18

WebService API Invocation A-18

CORBA API Invocation A-18

Additional Invocations A-19

Email CLR/DLR/TCO A-19

Business Example A-19

Execution Point Definition A-19

Data Passed A-19

UI Invocation A-20

WebService API Invocation A-20

CORBA API Invocation A-20

Additional invocations A-20

Select Port Address A-20

Business Example A-20

Execution Point Definition A-20

Data Passed / Data Returned A-21

UI Invocation A-21

WebService API Invocation A-22

CORBA API Invocation A-22

Additional invocations A-22

Select Component or Element for Physical Connection A-22

Business Example A-22

Execution Point Definition A-22

Data Passed / Data Returned A-23

UI Invocation A-23

WebService API Invocation A-23

CORBA API Invocation A-23

Additional invocations A-23

Select Component or Element for Virtual Connection A-24

Business Example A-24

Execution Point Definition A-24

Data Passed / Data Returned A-24

Returned data validation A-25

UI Invocation A-25

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page iv of vii

WebService API Invocation A-25

CORBA API Invocation A-25

Additional invocations A-26

Select Network System A-26

Business Example A-26

Execution Point Definition A-26

Data Passed / Data Returned A-26

Returned data validation A-27

UI Invocation A-27

WebService API Invocation A-28

CORBA API Invocation A-28

Additional invocations A-28

Select Customer Edge Component A-28

Business Example A-28

Execution Point Definition A-28

Data Passed / Data Returned A-29

Returned data validation A-29

UI Invocation A-29

WebService API Invocation A-30

CORBA API Invocation A-30

Additional invocations A-30

Select End Component For Physical Connection A-30

Business Example A-30

Execution Point Definition A-30

Data Passed / Data Returned A-31

Returned data validation A-31

UI Invocation A-32

WebService API Invocation A-32

CORBA API Invocation A-32

Additional invocations A-32

Select Equipment For CE A-32

Business Example A-32

Execution Point Definition A-32

Data Passed / Data Returned A-33

Returned data validation A-33

UI Invocation A-33

WebService API Invocation A-34

CORBA API Invocation A-34

Additional invocations A-34

Connection Id Automation A-34

Business Example A-34

Execution Point Definition A-34

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page v of vii

Data Passed / Data Returned A-34

Returned Data Validation A-35

UI Invocation A-35

WebService API Invocation A-35

CORBA API Invocation A-35

Additional invocations A-35

DS0/DS1 Automated Design A-35

Business Example A-36

Execution Point Definition A-36

Data Passed / Data Returned A-36

Returned data validation A-37

UI Invocation A-37

WebService API Invocation A-37

CORBA API Invocation A-37

Additional Invocations A-37

Manage Allocation Parameters A-37

Business Example A-37

Execution Point Definition A-37

Data Passed / Data Returned A-38

UI Invocation A-38

WebService API Invocation A-39

CORBA API Invocation A-39

Additional Invocations A-39

Select Dedicated Plant A-39

Business Example A-40

Execution Point Definition A-40

Data Passed / Data Returned A-40

Returned data validation A-41

UI Invocation A-41

WebService API Invocation A-42

CORBA API Invocation A-42

Additional Invocations A-42

Create/Update End User Location A-42

Business Example A-43

Execution Point Definition A-43

Data Passed / Data Returned A-44

Returned data validation A-47

UI Invocation A-47

WebService API Invocation A-52

CORBA API Invocation A-52

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page vi of vii

B Extensions Sample Code

Using Sample Code as a Reference for Best Practices B-1

Exception Handling B-1

E-mail Notification B-1

CORBA API Invocation B-1

Running the Sample Code B-1

AssignWorkQueues B-2

ProvPlanDefault B-3

ExtensionFrameworkOneWayTest B-4

SampleExtensionException B-4

InvokeCorbaAPIExtension B-5

SelectComponent B-6

SelectPort B-7

SelectComponentForVirtual B-7

SelectNetworkSystemForNetDesign B-8

SelectCustEdgeCompForNetDesign B-10

SelectConnectionEndPoints B-12

SelectCustEdgeEquipForNetDesign B-14

DS0/DS1 Automated Design B-15

ConnectionIdAutomation B-25

DedicatedPlantSelection B-30

Create/Update End User Location B-31

Sample Address Validation Return Data Format B-33

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page vii of vii

About This Content

This document explains how to extend the Oracle Communications MetaSolv Solution (MSS)
business logic with custom business through the use of custom extensions.

Audience

This document is for individuals who are responsible for developing software to integrate an
external application with MSS. This document assumes the reader has a working knowledge of
Oracle Database, Oracle WebLogic Server, and Java JEE.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 1 of 1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Extensions Overview

This chapter provides basic information about custom extensions and how you can use them
to invoke API calls and send messages that support your business processes.

About Custom Extensions
A custom extension enables you to extend Oracle Communications MetaSolv Solution
functionality with additional business logic specific to your organization. In other words,
extensions provide the ability to make calls to external systems and to send email and JMS
messages at predefined execution points, over and above the functionality supported by the
MetaSolv Solution application and APIs.

You can develop custom extensions that simply send data to another system, or that send and
receive data. An extension that sends data and does not expect a response from an external
system is called asynchronous. An example of an asynchronous extension is an email
message. You may choose to develop an asynchronous extension that sends an email when a
particular process or event occurs in MetaSolv Solution.

An extension that sends data and expects a response from an external system is called
synchronous. An example of an execution point that can be used to develop a synchronous
extension is Assign Queues. You may choose to develop a synchronous extension that runs a
custom Java class when a particular process occurs in MetaSolv Solution. The Java class runs
as its own transaction, separate from the process that initiated it.

Developing a custom extension involves several tasks. These tasks, listed below, appear in a
conceptual order to help you understand extensions. In reality, these tasks would probably be
performed by different people, and at varying times.

1. Define the extension.

2. Identify execution points.

3. Code the extension logic.

Extensions
The first step in developing a custom extension is to define the extension in the MetaSolv
Solution user interface (UI). The extension name that you define is the name of the Java class
that will contain your custom logic.

Execution Points
The second step in developing a custom extension is to define the point at which you want the
custom extension logic to run; that is, the process or action that triggers the invocation of your
custom code. You define this execution point by identifying three key pieces of information:

• Building Block

• Process Point

• Action Type

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 1 of 5

Building Block
A building block type is a predefined item in MetaSolv Solution, such as a gateway event, with
which you can associate an extension. Building blocks further describe building block types.
For example, using the building block type of Gateway Event enables you to associate an
extension with a gateway event. You then further define this item by selecting the building
block of All Gateway Events. This means you can associate the extension with all gateway
events, as opposed to specific events.

Process Point
A process point describes general processing that takes place in MetaSolv Solution, for
example, gateway event maintenance. To continue with the example used for building blocks,
you can associate a process point of GW (gateway) Event Maintenance with the extension.
This means the extension logic is triggered when MetaSolv Solution processes some type of
gateway event maintenance.

Like building blocks, process points are predefined in MetaSolv Solution.

Action Type
An action type is a specific task or process that takes place in MetaSolv Solution. When you
associate an action type with an extension, you are identifying the specific action that triggers
the extension logic to run for a particular extension. To conclude the previous example, you
can associate the action type of GW (gateway) Event Failed with the extension. This means
the extension logic is triggered when MetaSolv Solution processes a gateway event and it fails
to successfully complete.

Like building blocks and process points, action types are predefined in MetaSolv Solution.

Extension Logic
The next step in developing a custom extension is to code a free-form Java class that provides
additional functionality to support your business processes. As examples, you can code a Java
class to:

• Make calls to external systems

• Send email notifications

• Send JMS messages

• Invoke other MetaSolv Solution API calls

Invocation Methods
This section is not listed as a step in the above "About Custom Extensions" because identifying
the execution points is what defines the invocation methods. Therefore, this is not actually a
step that you need to perform. However, it is important to understand the information contained
in this section, so it is included in the overview because it addresses, at a high level, how
custom extension logic is invoked. See "Supported Execution Points" for specific information
regarding invocations for supported execution points.

Chapter 1
Extension Logic

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 2 of 5

After you define the extension, associate the execution point, and code the logic for your
custom extension, it is invoked from one or more of the places listed below. The invocations
are dependent upon the execution points associated with your extension.

• MetaSolv Solution UI

• Web Service Clients

• CORBA API Clients

• Polling Servers

Figure 1-1 shows the architecture of MetaSolv Solution and how the various system
components interact to support custom extension functionality.

Figure 1-1 Architecture Supporting Extension Functionality

MetaSolv Solution UI
You can invoke extension logic through the UI when the specified action, defined by an
execution point (combination of building block, process point, and action type), occurs. For

Chapter 1
Invocation Methods

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 3 of 5

example, a user assigning a jeopardy code to a task is a specific action that can invoke an
extension, if that action is defined as an execution point. Specifically, you would choose the
execution point combines the building block type of Task Type, process point of Task
Maintenance, and action type of Assign Jeopardy.

Web Service Clients
You can invoke extension logic through a call to an WebService API method when the
specified action, defined by an execution point (combination of building block, process point,
and action type), occurs. For example, a third party calling the addTaskJeopardyRequest
method to assign a jeopardy code to a task is a specific action that can invoke an extension, if
that action is defined as an execution point. Specifically, you would choose the execution point
that combines the building block type of Task Type, process point of Task Maintenance, and
action type of Assign Jeopardy.

CORBA API Clients
You can invoke extension logic through a call to a CORBA API method when the specified
action, defined by an execution point (combination of building block, process point, and action
type), occurs. For example, a third party calling the deleteTaskJeopardy method to remove a
jeopardy code from a task is a specific action that can invoke an extension, if that action is
defined as an execution point. Specifically, you would choose the execution point that
combines the building block type of Task Type, process point of Task Maintenance, and action
type of Assign Jeopardy.

Polling Servers
You can invoke extension logic through polling servers as well. These servers, which need to
be configured in the gateway.ini file, are listed on the following page. See "Additional
Configurations" for detailed information regarding these configurations.

Polling servers can invoke extension logic if the action of the polling server is defined as an
execution point. For example, a task that is defined as a system task with a task execution
point of Ready is automatically picked up by the System Task Server when the task status
becomes Ready. If the task completion logic that runs on the server fails, extension logic can
be invoked if it defines that as an execution point. Specifically, you would choose the execution
point that combines the building block type of Task Type, process point of Task Maintenance,
and action type of System Task Failure.

Polling Servers and Supported Execution Points
The following polling servers can invoke an extension that is defined with the specified
execution points. See "Supported Execution Points" for more information about the supported
execution points.

• Background Processor

– System Task Failure

• Gateway Event Server

– Gateway Event Failure

• Integration Server

– Gateway Event Failure

– Late Task

Chapter 1
Invocation Methods

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 4 of 5

– Potentially Late Task

• System Task Server

– System Task Failure

Note

The Background Processor is not a Java-based polling server. Rather, it is a
PowerBuilder application that runs in the background.

Chapter 1
Invocation Methods

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 5 of 5

2
Defining An Extension

This chapter explains how to define a custom extension in the user interface (UI). Online Help
for defining an extension is available in the help topics listed below.

Open the online Help and type the following window or procedure names in the Search field:

• Extensions window

• Extension Summary window

• Extension Parameters window

• Opening the Extension Summary window

• Creating a new Extension

• Editing an existing Extension

• Deleting an existing Extension

• Associating an Execution Point to an Extension

• Disassociating an Execution Point from an Extension

• Editing an Extension Parameter

• Filtering the Extensions list

Defining an Extension in the UI
For specific UI instructions on how to define the extension, see the online Help procedures
Creating a new Extension, Associating a Process Point to an Extension, and Editing an
Extension Parameter.

Type of Extension
When defining an extension, you must select the Type from a drop-down. The following types
display in the drop-down, which is defaulted to Logic.

• Logic

Logic is the only type of extension that is supported at this time. Logic extensions define
associated execution points that, when triggered, invoke the custom extension logic Java
class defined by the extension name.

• Viewable

Viewable extensions are not supported at this time.

Name of Extension
When defining an extension, you must define the name of the extension. The name of the
extension is the name of the Java class that is to be invoked when an associated execution
point is triggered. When naming your extension, be sure to follow Java class naming standards
such as starting with an upper case letter, using upper and lower case letters to distinguish

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 1 of 4

words, no spaces, etc. Also, do not include the .java file type extension in the name of the
extension. For example, if you are defining an extension to call the Java class
MySpecificLogic.java, name the extension MySpecificLogic.

Execution Mode
When defining an extension, you must select the Execution Mode from a drop-down. The
following execution modes display in the drop-down, which is defaulted to Synchronous.

• Synchronous

A synchronous extension runs and returns specified data. The calling process must wait
for the extension to finish before continuing.

• Asynchronous

An asynchronous extension runs and does not return any data, allowing processing to
continue without waiting for the extension to finish.

Associating an Execution Point With an Extension
When defining an extension, you must associate one or more execution points with the
extension. Execution points are predefined combinations of a building block, process point,
and action type. These execution points have "hooks" in the code that, when triggered, invoke
the extension Java class. See "Identifying An Execution Point" for more information.

Defining the Extension Parameters
When defining an extension, the parameter IDs and their corresponding default names are
displayed on the Extension Parameters window. The types of extension parameters are
predefined for each execution point, such as String, int, etc. The corresponding default
parameter names may be edited so that is has meaning to your particular usage of it.

Configuring an Extension
This section describes how to configure a custom extension in the gateway.ini file and
additional information regarding configuration requirements.

Configuring Gateway.ini
To enable custom extensions, the following changes must be made in the gateway.ini file
located in the MSLV_Home/server/appserver/gateway directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

Specifying the CLASSPATH tells the framework where to find your custom extension Java
class, which must reside in the path specified in the gateway.ini.

1. Save a copy of the gateway.ini file.

2. Open the original gateway.ini file for editing.

3. Add the following line at the end of [Custom] section within the file. (If your gateway.ini file
does not have the [Custom] section, you need to add it.)

• For Windows operating systems

CLASSPATH=MSLV_Home/server/appserver/samples/customExtension;

Chapter 2
Configuring an Extension

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 2 of 4

• For Unix operating systems

CLASSPATH=MSLV_Home//server//appserver//samples//customExtension;

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

4. Save and close the file.

Additional Configurations
See MetaSolv Solution Installation Guide for more information on the configuration
requirements for using custom extensions.

Note

You need to manually modify the loggingconfig.xml file and integration.XML file to
avoid encountering an error that appears on your Appserver console. Additionally,
when using custom extensions, you must manually modify the gateway.ini file. See
MetaSolv Solution Installation Guide for more information.

If you have performed a full installation, these configurations are already in place. The
configurations described in MetaSolv Solution Installation Guide need to be set up only if you
have upgraded from a release prior to 6.0.12.

Note

Regarding step 3 in "Configuring Gateway.ini", a full installation puts the classpath for
custom extensions in the gateway.ini file, but you still need to specify the correct path
to your server. For an upgrade, you need to add the classpath for custom extensions
to gateway.ini file as well as specify the correct path to your server.

Invoking an Extension
Certain execution points are invoked by polling servers. See "Polling Servers" for more
information. Three of these servers are Java-based servers that need to run as part of the
appserver. This is accomplished by configuring the gateway.ini file to define the appropriate
servers within the [Servers] section as follows:

• Gateway Event Server

EVENTPROC=MetaSolv.eventServer.S3Startup

• Integration Server

INTEGRATIONSERVER=com.mslv.integration.integrationServer.S3Startup

• System Task Server

SYSTEMTASKSERVERPROC=com.mslv.core.api.internal.WM.systemTaskServer.System
TaskServer

Chapter 2
Invoking an Extension

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 3 of 4

The remaining server, the Background Processor, is not part of the appserver and, therefore, is
not configured through the gateway.ini file. To start the background processor, run
jmaster.exe located in the MSS directory.

Chapter 2
Invoking an Extension

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 4 of 4

3
Identifying An Execution Point

This chapter explains how to identify an execution point. Once identified, you can then
associate execution points with an extension. See "Defining An Extension" for more
information. Online Help for identifying execution points is available in the help topics listed
below.

Open the online Help and type the following window or procedure names in the Search field:

• Execution Point Search and Results window

• Execution Points window

• Searching for an Execution Point

• Toggling between Execution Point Search and Results

• Filtering the Execution Points list

Component Options
An execution point is defined by a combination of three components: its building block, process
point, and action type. Oracle Communications MetaSolv Solution predefines a number of
options for each of these components, along with the combinations of options that represent
valid execution points. This section describes the options that are available for each
component.

Building Block Options
Building blocks are grouped into building block types. Both building blocks and building block
types are MetaSolv Solution defined data. The following table lists building block types that
appear in the drop-down list on the Execution Point Search window.

Building block type options:

• Task Type

• Gateway Event

• Connection

• Network System

• Address

Table 3-1 lists the building blocks defined by MetaSolv Solution that can be used with
extensions. The building blocks available for selection depend on the building block type
chosen. The building block ID, an Oracle generated number, is included in the information
because it is part of the data that is passed from an execution point to an extension Java class.

Table 3-1 Building Block Options

Building block Building block ID

All Task Types 1001

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 1 of 4

Table 3-1 (Cont.) Building Block Options

Building block Building block ID

All Gateway Events 1002

[specific task type] [depends on task type]

All Connections 409

All Network Systems 410

All End User Locations -

Specific task types are user defined data stored on the TASK_TYPE table. To support the
Complete Task execution point for individual task types, the building block id field (ms_bb_id)
was added to the TASK_TYPE table. A row is inserted into the TASK_TYPE table when a new
task type is created in Work Management. However, the ms_bb_id field is not populated with
the row insertion, rather, it is populated when the task is selected from the Name list in the
Execution Point Search window. The Name list displays all task types when you select Task
Type in the Building Block Type list.

Note

This document does not provide the building block ids for each task type because they
are based on user data. Building block ids are not displayed in the application,
therefore, they must be manually looked up on the TASK_TYPE table.

Process Point Options
Table 3-2 lists the process points defined by MetaSolv Solution that can be used with
extensions. The process points available for selection depend on the building block chosen.
The process point ID, an Oracle generated number, is included in the information because it is
part of the data that is passed from an execution point to an extension Java class.

Table 3-2 Process Point Options

Process point Process point ID

Task Generation 1

Task Maintenance 101

GW Event Maintenance 102

PCONDES Maintenance 103

VCONDES Maintenance 105

Network System Design 107

Connection Design 108

Print 140

EUL Maintenance 123

PSR 124

Chapter 3
Component Options

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 2 of 4

Action Type Options
Table 3-3 lists the action types defined by MetaSolv Solution that can be used with extensions.
The action types available for selection depend on the process point chosen.The action type
ID, an Oracle generated number, is included in the information because it is part of the data
that is passed from an execution point to an extension Java class.

Table 3-3 Action Type Options

Action type Action type ID

Generate 32

Assign Jeopardy 41

Reject 42

Assign Queues 43

Change Completion Date 44

System Task Failure 45

Late 46

Potentially Late 47

GW Event Failure 51

Provision Plan Default 52

Complete 53

Select Component or Element 54

Select Port Address 55

Email 56

Select Network System 60

Select Customer Edge Component 61

Select End Component For Physical Connection 62

Select Equipment For CE 63

DS0/DS1 Automated Design 70

Connection Id Automation 71

Manage Allocation Parameters 72

Select Dedicated Plant 57

Update 91

Create 92

Component Combinations
As explained in each of the previous component sections, there are dependencies between the
components. Specifically, action types are dependent on process points, which are dependent
on building blocks, which are dependent on building block types.

Table 3-4 shows the current valid combinations that result from these dependencies. For
example, if you choose a building block type of Task Type, your only choice of building block is
currently All Task Types. If you then choose the process point of Task Generation, your only
action type choices are Generate or Provision Plan Default.

Chapter 3
Component Combinations

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 3 of 4

Table 3-4 Valid Combinations

Building block
type

Building block Process point Action type

Task Type All Task Types Task Generation • Generate
• Provision Plan Default

Task Type All Task Types Task Maintenance • Assign Jeopardy
• Reject
• Assign Queues
• Change Completion

Date
• System Task Failure
• Late
• Potentially Late
• Complete

Task Type [specific task type] Task Maintenance • Complete

Gateway Event All Gateway Events GW Event Maintenance • GW Event Failed

Connection All Connections Print • Email

Connection All Connections PCONDES Maintenance • Select Component or
Element

• Select Port Address
• Select Dedicated Plant

Connection All Connections VCONDES Maintenance • Select Component or
Element

Connection All Connections Connection Design • Connection Id
Automation

• DS0/DS1 Automated
Design

• Manage Allocation
Parameters

• Select Dedicated Plant

Network System All Network Systems Network System Design • Select Network System
• Select Customer Edge

Component
• Select End Component

For Physical Connection
• Select Equipment For

CE

Address All End User
Locations

PSR • Create
• Update

Address All End User
Locations

EUL Maintenance • Create
• Update

Chapter 3
Component Combinations

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 4 of 4

4
Coding The Extension Logic

This chapter provides information about coding the extension Java class. Sample code is
provided with your installation of Oracle Communications MetaSolv Solution, and the sample
code provides concrete code examples of extension Java classes. See "Extensions Sample
Code " for detailed information about the sample code.

Inheriting From the Extension Framework
All extension Java classes must extend the extension framework through the class
ExtensionRoot located in the package com.metasolv.custom.common.extension. Extending
the extension framework is necessary to access the data passed from the execution point.
Therefore, all new extension Java classes should contain the following lines of code, or some
derivation of them:

import com.metasolv.custom.common.extension.ExtensionRoot
public class MyExtension extends ExtensionRoot

A derivation of the code could be that the extension Java class directly, or indirectly, extends
ExtensionRoot. For example, all of the sample source code extends SampleExtensionRoot
rather than ExtensionRoot. That is because SampleExtensionRoot extends ExtensionRoot,
adding a middle layer to the inheritance that provides common functionality used by all the
sample classes. You may wish to create a similar class, or even use the SampleExtensionRoot
class, depending on what you are developing.

All of the sample source code implements the class Extension. This is really not necessary
because ExtensionRoot implements Extension. Therefore, by inheritance, any class that
extends ExtensionRoot implements Extension.

Accessing Data Passed From the Execution Point
This section provides an overview about methods of accessing data passed from the execution
point, and provides class details.

Overview
Extension Java classes cannot define input parameters. Rather, data passed from the
execution point can be accessed by the extension Java class through the extension
framework. Specifically, the class ExtensionRoot defines the following methods:

protected final Policy getPolicy()
protected final Entity[] getParameter()

Though these methods are defined as protected, they are available to the extension Java class
because it inherits from the class in which the methods are defined (ExtensionRoot). From
these two methods, the following data can be retrieved:

• Execution mode

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 1 of 3

The execution mode tells you if the execution point that invoked the extension class is
defined as synchronous or asynchronous. This information was entered in the UI when
defining the extension.

• Execution point

The execution point tells you the point at which the extension class was invoked. This
information is passed in the form of building block ID, process point ID, and action type ID.
The unique combination defines a specific execution point such as Assign Queues or
Reject Task.

• Execution point data

The execution point data is the specific data that is associated with each supported
execution point. This information is passed in the form of a name/value pair array. See
"Supported Execution Points" for the specific data that is passed from each execution
point.

Class Details
This section provides details about the policy and entity class.

Policy Class
As mentioned in the "Overview" section, the method getPolicy() returns Policy. However, it
actually returns an instance of the class PlugInPolicy, which extends Policy. Therefore, you can
caste the returned Policy to PlugInPolicy, which makes an instance of the class PlugInPolicy
available to the extension Java class.

The class PlugInPolicy defines the following methods:

public String getExecutionMode();
public PlugInExecutionPoint getExecutionPoint();

Calling the method getExecutionMode() from the extension Java class returns a String that
indicates if the execution mode is synchronous or asynchronous. Calling the method
getExecutionPoint() returns an instance of the class PlugInExecutionPoint.

The class PlugInExecutionPoint defines the following methods:

int getBuildingBlock();
int getProcessPoint();
int getActionType();

Calling these methods returns the combination of building block ID, process point ID, and
action type ID that defines an execution point. See "Supported Execution Points" for more
information.

Entity Class
As mentioned in the "Overview" section, the method getParameter() returns an Array of Entity
classes. Another class, ExtensionData, extends the class Entity. Since ExtensionData is a child
of Entity, Entity can be casted to ExtensionData. Casting Entity to ExtensionData makes the
Array of ExtensionData available to the extension Java class.

The class ExtensionData defines the following method:

public NameValuePair[] getNameValuePairs()

Chapter 4
Accessing Data Passed From the Execution Point

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 2 of 3

Calling this method from the extension Java class returns an Array of NameValuePair classes.
The name/value pairs represent the specific data that is defined for each supported execution
point. See "Supported Execution Points" for more information.

Finally, the class NameValuePair defines the following methods:

public String getName();
public String[] getValue();

Calling these methods returns the String name and the String values. It is important to note
that all value data is of type String.

Chapter 4
Accessing Data Passed From the Execution Point

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Page 3 of 3

A
Supported Execution Points

The preceding chapters described what custom extensions are and how to create them. As
mentioned earlier, Oracle Communications MetaSolv Solution predefines the components used
to define execution points: the building blocks, process points, and action types. This means
there are specific execution points that are available for your use.

In addition to predefining "Component Combinations" associated with each execution point,
MetaSolv Solution provides functionality that supports the invocation of a custom extension
Java class for each valid combination. This functionality includes:

• "Hooks" that are triggered by an execution point. These "hooks" call the extension
framework, which determines what extension class to invoke based on which extensions
the execution point is associated with.

• Parameters for each execution point. The parameters are used to pass data that is
pertinent to the execution point to the extension class. This data is then available to the
extension class and can be used to code your specific business logic.

The supported execution points are listed in Table A-1. The execution points are grouped by
building block, and ordered alphabetically. The number of supported execution points
correlates to the number of valid component combinations, and the execution point names
correlate to the action type of each valid combination.

Table A-1 Supported Execution Points

Building Block Execution Point

Task • Assign Queues
• Assign Task Jeopardy
• Change Task Completion Date
• Complete Task
• Generate Tasks
• Late Task
• Potentially Late Task
• Provisioning Plan Default
• Reject Task
• System Task Failure

Gateway Event Gateway Event Failure

Connection • Email CLR/DLR/TCO
• Select Port Address
• Select Component or Element for Physical Connection
• Select Component or Element for Virtual Connection
• DS0/DS1 Automated Design
• Connection Id Automation
• Manage Allocation Parameters
• Select Dedicated Plant

Network System • Select Network System
• Select Customer Edge Component
• Select End Component For Physical Connection
• Select Equipment For CE

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-1 of A-52

Table A-1 (Cont.) Supported Execution Points

Building Block Execution Point

Address • Create
• Update

This appendix provides detailed information for each supported execution point, which
includes:

• A brief description of the execution point.

• A business example of how you might use the execution point.

• The options you should choose when searching for the execution point to associate it with
an extension.

• The data that is sent from the execution point to the extension Java class, and, in the case
of a synchronous call, the data that is returned from the extension Java class to the
execution point. The data is housed in an Array of name/value pairs. All value data in the
name/value pair is of type String.

• How the extension Java class is invoked by the execution point, whether it is by the UI,
web services, CORBA APIs, or polling servers.

Execution Points
This section provides information about the following execution points:

• Assign Queues

• Assign Task Jeopardy

• Change Task Completion Date

• Complete Task

• Generate Tasks

• Late Task

• Potentially Late Task

• Provisioning Plan Default

• Reject Task

• System Task Failure

• Gateway Event Failure

• Email CLR/DLR/TCO

• Select Port Address

• Select Component or Element for Physical Connection

• Select Component or Element for Virtual Connection

• Select Network System

• Select Customer Edge Component

• Select End Component For Physical Connection

• Select Equipment For CE

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-2 of A-52

• DS0/DS1 Automated Design

• Connection Id Automation

• Manage Allocation Parameters

• Select Dedicated Plant

• Create/Update End User Location

Assign Queues
MetaSolv Solution provides the ability to assign a provisioning plan to an order. A provisioning
plan defines tasks, and assigns work queues to the tasks within the provisioning plan. This
execution point enables you to extend logic in the way the work queues are assigned to tasks
within a provisioning plan when tasks are generated for an order.

Business Example
You built provisioning plans and assigned default work queues to the tasks in every plan.
However, for a specific task type, you would like to do the following:

• Assign it to the ABC queue at certain hours of the day, depending on the workload.

• Assign it to the XYZ queue at certain hours of the day, depending on the workload.

• Send an email notification to the owner of each work queue when a task is assigned to
them.

You can use the Assign Queues execution point to extend logic to accomplish those tasks.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-2
when searching for an execution point to associate with the extension:

Table A-2 Assign Queues Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Queues (43)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-3 shows the data that is passed to the extension Java class.

Table A-3 Assign Queues Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-3 of A-52

Table A-3 (Cont.) Assign Queues Name/Value Pair Input Data

Data Description Data Name

Task type Array taskType

Task number Array taskId

Table A-4 shows the data that is returned by the extension Java class.

Table A-4 Assign Queues Name/Value Pair Return Data

Data Description Data Name

Work queue ID Array workQueueId

The work queue ID Array is returned in the same order as the input Arrays of task types and
corresponding task numbers.

UI Invocation
After you assign a provisioning plan to an order, you click the Queues button to assign the
tasks to the appropriate work queues. The execution point is triggered when you click the
Queues button on the Task List tab of the Tasks window.

When you click the Queues button, the task list is sent to the extension. The data received
back populates the Work Queue field for each task. This logic overrides the default work
queues that were assigned to the provisioning plan when it was established. However, you can
still select a different work queue for any or all tasks, should you need to do so after the
extension logic runs.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

OrderManagement - > assignProvisionPlanProcedureRequest

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

WorkManagement -> generateAndSaveTasks

Assign Task Jeopardy
MetaSolv Solution provides the ability to add, change, and delete jeopardy information for
tasks. This execution point enables you to extend logic that runs when jeopardy information on
a task changes (in the form of add, change, or delete).

Business Example
You assigned a provisioning plan and, from your Work Queue, set up a jeopardy code on a
task. The task ends up going into jeopardy. When the jeopardy status changes, the extension
logic runs and sends an email notification to the appropriate person regarding the task
jeopardy status.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-4 of A-52

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-5
when searching for an execution point to associate with the extension.

Table A-5 Assign Task Jeopardy Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Jeopardy (41)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-6 shows the data passed to the extension Java class.

Table A-6 Assign Task Jeopardy Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId

UI Invocation
From the Work Queue window, select a task, right-click, and select Jeopardy Status. This
opens the Task Jeopardy Codes window where jeopardy codes can be added, changed, or
deleted. Click OK or the Apply button to trigger the Assign Task Jeopardy execution point.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

OrderManagement > addTaskJeopardyRequest

CORBA API Invocation
The CORBA API methods through which the Java class extension is invoked are:

• Work Management > addTaskJeopardy

• Work Management > deleteTaskJeopardy

• Work Management > updateTaskJeopardy

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-5 of A-52

Change Task Completion Date
MetaSolv Solution provides the ability to change a task due date. This execution point enables
you to extend logic that runs when a task due date is changed.

Business Example
You entered an order, assigned a provisioning plan, and then supplemented the order to
change the due date. The extension logic runs and sends an email notification to the
appropriate person regarding the task due date change.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-7
when searching for an execution point to associate with the extension.

Table A-7 Change Task Completion Date Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Change Completion Date (44)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-8 shows the data passed to the extension Java class.

Table A-8 Change Task Completion Date Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task Type taskType

Task number taskId

Work Queue ID workQueueId

New revised completion date newRevisedCompletionDate

UI Invocation
From the Work Queue window, select a task, right-click, and select Service Request Tasks.
This opens the Task List tab of the Tasks window, where task due dates can be changed.
Click OK or the Apply button to trigger the Change Task Completion Date execution point,
which only runs if any task due dates were actually changed.

Additionally, you can supplement an order to bring up the Tasks window where task due dates
can be changed.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-6 of A-52

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Order Management > processSuppOrder

CORBA API Invocation
The Change Task Completion Date execution point is not triggered by the CORBA API.

Complete Task
MetaSolv Solution provides the ability to complete a task assigned to an order. This execution
point enables you to extend logic that runs when a task completes, either manually from the UI
or automatically from the System Task Server.

Business Example
You entered a PSR order and assigned a provisioning plan comprised of three tasks. The
second task is defined as an execution point and associated to an extension. When the task
completes, the extension logic runs and sends an email notification to the appropriate person
regarding the task completion.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shows in Table A-9
when searching for an execution point to associate with the extension.

Table A-9 Complete Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

or

[specific task type] (dynamic)

Process Point Task Maintenance (101)

Action Type Complete (53)

Data Passed
This is required to be a synchronous call because existing logic must know if the extension
logic ran successfully before continuing. While no task related data needs to be returned from
the extension Java class, it must indicate success or failure.

Table A-10 shows the data passed to the extension Java class.

Table A-10 Complete Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-7 of A-52

Table A-10 (Cont.) Complete Task Name/Value Pair Input Data

Data Description Data Name

Task number taskId

UI Invocation
From the Work Queue window within Work Management, select a task, right-click and select
Complete. The extension logic runs after the task completion logic runs successfully, but
before the commit. If the task completion logic fails, the extension logic does not run. If the
extension logic fails, the task does not complete and a rollback occurs.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Order Management > updateOrderManagementRequest

The updateOrderManagementRequest method defines a choice of input structures. To
complete a task, use the input structure CompleteTaskProcedureValue.

CORBA API Invocation
The CORBA API methods through which the Java class extension is invoked are:

• Work Management > completeTask

• Work Management > completeTaskOnDate

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where the task
is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Generate Tasks
MetaSolv Solution provides the ability to generate tasks for an order. This execution point
enables you to extend logic that runs after tasks are generated. Order management also
provides the ability to split a PSR order, a process that also generates tasks for the new order
created as a result of the split. This execution point also enables you to extend logic that runs
after tasks are generated as a result of a split.

Business Example
You entered a PSR order and assigned a provisioning plan. Two of the service items on the
order are delayed, and you split the order so the remaining items can be completed. When the
order is split, tasks are generated for the new order that is created as a result of the split. The
extension logic runs and sends an email notification to the appropriate person regarding the
tasks being generated due to the split. Both the original order and the split order information is
made available to the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-8 of A-52

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-11
when searching for an execution point to associate with the extension.

Table A-11 Generate Tasks Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Generate (32)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-12 shows the data passed to the extension Java class.

Table A-12 Generate Tasks Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Split document number splitDocumentNumber

The document is always passed to the extension Java class, but the split document number
may or may not be passed, depending on what triggered the task generation. If a split order
triggered the task generation, then the split document number, in addition to the document
number, is passed to the extension Java class.

UI Invocation
From the Product Service Request window within Order Management, select Options from the
menu bar, and then select Task Generation Maintenance. This opens the Plan Selection tab
of the Tasks window. Select a provisioning plan from the list. Click the Task List tab, and select
work queues for each task. Click OK or the Apply button to trigger the Generate Tasks
execution point, which happens immediately following the creation of the tasks for the order.

WebService API Invocation
The Generate Tasks execution point is not triggered by the WebService API.

CORBA API Invocation
The Generate Tasks execution point is not triggered by the CORBA API.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-9 of A-52

Late Task
MetaSolv Solution considers a task late when the current GMT date is greater than the revised
completion date on the task. This execution point enables you to extend logic that runs when a
task becomes late.

This execution point is triggered only once when the task is determined to be late. It may be
triggered again if the revised completion date is updated on the task. There are new fields on
the Task table that indicate if an extension has been invoked.

At the point you define this extension, there could be a large number of late tasks already
existing in the database. Invoking this extension for each of these tasks can affect system
performance. You can manage the system load by modifying the setup values in the
integration.xml file. The maxThreads should always be set to 1. However, the
queueMaxCapacity can be lowered and the dbPollingInterval increased to allow breaks in the
system processing so the late task extensions can be invoked. The following excerpt from the
integeration.xml file illustrates this concept:

<LateTaskExtensionEvent event_name="LateTaskExtensionEvent">
<maxThreads>1</maxThreads>
<queueMaxCapacity>100</queueMaxCapacity>
<dbPollingInterval>5</dbPollingInterval>
</LateTaskExtensionEvent>

Business Example
You entered an order and assigned a provisioning plan. One of the tasks becomes late. The
extension logic runs and sends an email notification to the appropriate person regarding the
late task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-13
when searching for an execution point to associate with the extension.

Table A-13 Late Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Late (46)

Data Passed
This is required to be a synchronous call because existing logic must know if the extension
logic ran successfully before continuing. While no task related data needs to be returned from
the extension Java class, it must indicate success or failure.

Table A-14 the data passed to the extension Java class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-10 of A-52

Table A-14 Late Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText

UI Invocation
The Late Task execution point is not triggered by the UI.

WebService API Invocation
The Late Task execution point is not triggered by the WebService API.

CORBA API Invocation
The Late Task execution point is not triggered by the CORBA API.

Additional Invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Potentially Late Task
MetaSolv Solution provides the ability to define the potentially late window of time for each task
type. MetaSolv Solution considers a task potentially late when the revised completion date on
the task, minus the time defined as the potentially late window, is less than the current GMT
date. This comparison takes into account the calendar that is set up by the organization. The
calendar relationship is determined from the task's work queue, which is then associated with
an employee, and each employee is associated with organization. For an organization, the
calendar may reflect non-work days, which would be considered in determining if a task was
potentially late.

This execution point enables you to extend logic that runs when a task becomes potentially
late. Note the following regarding the Potentially Late Task execution point:

• This execution point is triggered only once when the task is determined to be potentially
late. It may be triggered again if the revised completion date is updated on the task. There
are new fields on the Task table that indicate if an extension has been invoked.

• If the potentially late server event is disabled during the window of time for a potentially late
task, and the task passes from a potentially late task to a late task, the Potentially Late
Task execution point trigger does not trigger. When the server event is enabled, and the
task is now late, then the Late Task execution point is triggered.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-11 of A-52

Business Example
You entered an order and assigned a provisioning plan with a task that defines a potentially
late window. The task becomes potentially late. The extension logic runs and sends an email
notification to the appropriate person regarding the potentially late task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-15
when searching for an execution point to associate with the extension.

Table A-15 Potentially Late Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Potentially Late (47)

Data Passed
This is required to be a synchronous call because existing logic must know if the extension
logic ran successfully before continuing. While no task related data needs to be returned from
the extension Java class, it must indicate success or failure.

Table A-16 shows the data passed to the extension Java class.

Table A-16 Potentially Late Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText

UI Invocation
The Potentially Late Task execution point is not triggered by the UI.

WebService API Invocation
The Potentially Late Task execution point is not triggered by the WebService API.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-12 of A-52

CORBA API Invocation
The Potentially Late Task execution point is not triggered by the CORBA API.

Additional Invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Provisioning Plan Default
MetaSolv Solution provides the ability to assign a provisioning plan to an order. This execution
point enables you to extend logic to default the appropriate provisioning plan to an order, rather
than having to specify a particular provisioning plan.

Business Example
You built provisioning plans and assigned default work queues to the tasks in every plan. An
extension could be added for defaulting a provisioning plan, allowing you to put logic around
the default. For example, you can reduce the number of errors that are made in assigning a
provisioning plan to an order by basing the assignment on specific data. Additionally, when the
extension logic runs, you can send an email notification to the appropriate person regarding
the defaulted provisioning plan.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-17
when searching for an execution point to associate with the extension.

Table A-17 Provision Plan Default Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Provision Plan Default (52)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-18 shows the data passed to the extension Java class.

Table A-18 Provisioning Plan Default Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-13 of A-52

Table A-18 (Cont.) Provisioning Plan Default Name/Value Pair Input Data

Data Description Data Name

Organization organization

Jurisdiction jurisdiction

Service type group serviceTypeGroup

Order status status

Table A-19 shows the data returned by the extension Java class.

Table A-19 Provisioning Plan Default Name/Value Pair Return Data

Data Description Data Name

Provision plan ID provisionPlanId

UI Invocation
From a Service Request window (ISR, PSR, etc.) within Order Management, select Options
from the menu bar, and then select Task Generation Maintenance. This opens the Plan
Selection tab of the Tasks window. The Provisioning Plan Default execution point is triggered
just prior to the Tasks window being displayed. If custom logic is run, and a valid provisioning
plan is returned from the extension, that plan is automatically populated in the drop-down list
and the display proceeds to the Task Gantt tab. The user may return to the Plan Selection tab
to change the selected plan.

WebService API Invocation
The Provisioning Plan Default execution point is not triggered by the WebService API.

CORBA API Invocation
The Provisioning Plan Default execution point is not triggered by the CORBA API.

Reject Task
MetaSolv Solution provides the ability to reject a task. This execution point enables you to
extend logic that runs when a specified task is rejected.

Business Example
You assigned a provisioning plan and, from your Work Queue, reject a task. The extension
logic runs and sends an email notification to the appropriate person regarding the rejected
task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-20
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-14 of A-52

Table A-20 Reject Task Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Reject (42)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-21 shows the data passed to the extension Java class.

Table A-21 Reject Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId

Previous task status priorTaskStatus

Reject reason note

UI Invocation
From the Work Queue window, select a task, right-click, and select Reject Task. This opens
the Reject Task window where you select, from a list of predecessor tasks, the task to be set
back to Ready status. All tasks between the initial selection and this second selection (tasks in
that provisioning plan for that order) are set back to Pending status. Click OK to trigger the
Reject Task execution point. A list of affected tasks is sent to the extension.

WebService API Invocation
The Reject Task execution point is not triggered by the WebService API.

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

Work Management > rejectTask

System Task Failure
MetaSolv Solution provides the ability to define a task as a system task. This indicates that the
task's completion logic automatically runs on the System Task Server when the task becomes
Ready or when the task start date is reached. However, the system task's completion logic
may fail. When a system task cannot be completed, the System Task Server rolls back the

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-15 of A-52

transaction, transfers the task to the Exception queue, and logs information to the Server Log
table. The server log entries associated with a task can be viewed from the work queue by
selecting the task, and then clicking the Server Log tab. Tasks are not completed if a gateway
event is in error or if a why-missed code cannot be defaulted.

This execution point enables you to extend logic that runs when a system task fails to
complete. This execution point is asynchronous so that the continuation of the System Task
Server process is not jeopardized.

Business Example
You entered an order and assigned a provisioning plan with a system task. The task becomes
Ready, the System Task Server picks up the task and attempts to complete it, but fails. The
extension logic runs and sends an email notification to the appropriate person regarding the
failed system task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-22
when searching for an execution point to associate with the extension.

Table A-22 System Task Failure Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type System Task Failure (45)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-23 shows the data passed to the extension Java class.

Table A-23 System Task Failure Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Error text for failure errorText or note

UI Invocation
The System Task Failure execution point is not triggered by the UI.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-16 of A-52

WebService API Invocation
The System Task Failure execution point is not triggered by the WebService API.

CORBA API Invocation
The System Task Failure execution point is not triggered by the CORBA API.

Additional Invocations
• This execution point is triggered by the System Task Server.

For this to occur, the System Task Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

• This execution point is triggered by the Background Processor.

For this to occur, the Background Processor must be running. See "Invoking an Extension"
for specific information on how to run the Background Processor.

Gateway Event Failure
MetaSolv Solution provides the ability to change the status of a gateway event to Error. This
execution point enables you to extend logic that runs after the gateway event status change
has completed. This execution point is asynchronous so the continuation of the Gateway Event
Server process is not jeopardized.

Business Example
You entered an order and assigned a provisioning plan with a task that has an auto-complete
gateway event associated with it. When the task becomes Ready, the gateway event
automatically fires, but fails. The gateway event status is set to Error, and the extension logic
runs and sends an email notification to the appropriate person regarding the failed gateway
event.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-24
when searching for an execution point to associate with the extension.

Table A-24 Gateway Event Failure Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Gateway Events (1002)

Process Point GW Event Maintenance (102)

Action Type GW Event Failed (51)

Data Passed
This is required to be an asynchronous call. Data cannot be returned from the extension Java
class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-17 of A-52

The data passed to the Gateway Event Failure extension depends on the gateway event type.
There are four types of gateway events listed below. Table A-25 shows all the data inputs, but
these vary based on gateway event type.

• Service Request or Order Type

• Service Item or Item Level Type

• Equipment Type

• Design Type

Table A-25 shows the data passed to the extension Java class.

Table A-25 Gateway Event Failure Data Value Input by Event Type

data value Order Type Item Level Type Equipment Type Design Type

documentNumber yes yes no no

taskId yes yes no no

taskType yes yes no no

gatewayName yes yes yes yes

gatewayEventType yes yes yes yes

gatewayEventId yes yes yes yes

gatewayEventName yes yes yes yes

gatewayEventVersion yes yes yes yes

serviceItemId yes yes no no

errorText yes, if exists yes, if exists yes, if exists yes, if exists

UI Invocation
The Gateway Event Failure execution point is not triggered by the UI.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Order Management > updateOrderManagementRequest

Note

The updateOrderManagementRequest method defines several choices of input
structures. The invocation is applicable only when the input structure chosen is
TaskGWEventValue.

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

Work Management > updateGWEvent

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-18 of A-52

Additional Invocations
• This execution point is triggered by the Gateway Event Server.

For this to occur, the Gateway Event Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

• This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Email CLR/DLR/TCO
MetaSolv Solution provides the ability to perform a process from the connection print window.
This execution point enables you to extend logic that activates upon clicking of the OK button
on the print window after closing the email recipient's window. To open the email recipient's
window, in the Preference window, set the Enable HTML Email option to true and select the
Email option in the Print window. The Enable HTML Email preference is located under
Preferences > Inventory Management > Connection Design.

You can modify the sample code to fit the email protocol used at a customer site. The sample
extension uses the ByteArrayDataSource method in the mailapi.jar file. The sample email
extension exists in the SendEmailAttachment folder.

If required, download the mailapi.jar file from the Oracle Web site. After downloading, you can
include the JAR in the CLASSPATH of the appserver environment.

Business Example
You can use this custom extension in several ways. One possible use of this extension is to
retrieve the saved HTML files from the database and email the files to the appropriate
recipients. Other possibilities include displaying the HTML files on an Intranet or providing
access to the HTML files from other applications. The HTML attachment exists as a CLOB in
the Email_Job_Attachment table.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-26
while searching for an execution point to associate with the extension.

Table A-26 Email CLR/DLR/TCO Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Connections (409)

Process Point Print (140)

Action Type Email(56)

Data Passed
As this is an asynchronous call, therefore extension Java class does not return data.

Table A-27 shows the data passed to the extension Java class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-19 of A-52

Table A-27 Email CLRD/DLR/TCO Name/Value Pair Input Data

Data Description Data Name

JobId jobid

UI Invocation
From the Connection print window, select the Email check box and click OK. The execution
occurs on the Print window but the logic waits until the user clicks OK on the Recipient window
and the Recipient window closes. If the user clicks Cancel on the Recipients window, the
extension does not run.

WebService API Invocation
The Email CLR/DLR/TCO execution point is not triggered by the WebService API.

CORBA API Invocation
The Email CLR/DLR/TCO execution point is not triggered by the CORBA API.

Additional invocations
This execution point is not triggered anywhere else.

Select Port Address
MetaSolv Solution provides the ability to automatically design physical connections through the
PCONDES task. This execution point enables you to extend logic that is triggered when the
PCONDES task is run, either manually from the UI or automatically from the System Task
Server. The extension logic enables you to select the appropriate port address to use in the
physical design of the connection. It runs prior to the existing PCONDES auto-provisioning
logic. If a port address is successfully selected by the extension logic, the existing PCONDES
auto-provisioning logic is bypassed. If a port address is not selected by the extension logic, the
existing PCONDES auto-provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections. When
the status of the PCONDES task becomes Ready, the System Task Server processes the task.
The extension logic runs and, based on the selection logic in the extension and the information
on the order, the appropriate port address is selected for the design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-28
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-20 of A-52

Table A-28 Select Port Address Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Port Address Element(55)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-29 shows the data that is passed to the extension Java class.

Table A-29 Select Port Address Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Rate code rateCode

Network system component ID nsCompId

Network system ID nsId

Network system component key Array nsCompKey (String Array comprised of nsCompId and
nsId)

Pass nsCompId and nsId, or pass an Array of nsCompKeys; do not pass both sets of data. If
the input data is comprised of the Array of nsCompKeys, custom logic can be written to select
which component id is used. Having this option of input data allows for you to customize your
extension code to account for things like load balancing between different elements. For
example, if there are three valid elements from which to choose, custom code can select the
element which has the most or least capacity available, depending on your specific business
requirements.

Table A-30 shows the data that is returned by the extension Java class.

Table A-30 Select Port Address Name/Value Pair Return Data

Data Description Data Name

Equipment ID equipmentId

Port Address Sequence portAddrSeq

UI Invocation
From the Work Queue window within Work Management, select a PCONDES task, right-click
and select Auto Provision. The extension logic runs prior to the existing PCONDES auto

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-21 of A-52

provision logic. If a port address is successfully selected by the extension logic, the existing
PCONDES auto provision logic is bypassed. However, if a port address is not selected by the
extension logic, the existing PCONDES auto provision logic still runs.

WebService API Invocation
The Select Port Address execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Port Address execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Select Component or Element for Physical Connection
MetaSolv Solution provides the ability to automatically design physical connections through the
PCONDES task. This execution point enables you to extend logic that is triggered when the
PCONDES task is run, either manually from the UI or automatically from the System Task
Server. The extension logic enables you to select the appropriate component or element to use
in the physical design of the connection. It runs prior to the existing PCONDES auto-
provisioning logic. If a component or element is successfully selected by the extension logic,
the existing PCONDES auto-provisioning logic is bypassed. If a component or element is not
selected by the extension logic, the existing PCONDES auto-provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections. When
the status of the PCONDES task becomes Ready, the System Task Server processes the task.
The extension logic runs and, based on the selection logic in the extension and the information
on the order, the appropriate component or element is selected for the design of the physical
connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-31
when searching for an execution point to associate with the extension.

Table A-31 Select Component or Element for Physical Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Component or Element(54)

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-22 of A-52

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-32 shows the data that is passed to the extension Java class.

Table A-32 Select Component or Element for Physical Connection Name/Value Pair
Input Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Table A-33 shows the data that is returned by the extension Java class.

Table A-33 Select Component or Element for Physical Connection Name/Value Pair
Return Data

Data Description Data Name

Network system component key Array nsCompKey (String Array comprised of nsCompId
and nsId)

UI Invocation
From the Work Queue window within Work Management, select a PCONDES task, right-click
and select Auto Provision. The extension logic runs prior to the existing PCONDES auto
provision logic. If a component or element is successfully selected by the extension logic, the
existing PCONDES auto provision logic is bypassed. However, if a component or element is
not selected by the extension logic, the existing PCONDES auto provision logic still runs.

WebService API Invocation
The Select Component or Element for Physical Connection execution point is not triggered by
the WebService API.

CORBA API Invocation
The Select Component or Element for Physical Connection execution point is not triggered by
the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-23 of A-52

Select Component or Element for Virtual Connection
MetaSolv Solution provides the ability to automatically design virtual connections through the
VCONDES task. This execution point enables you to extend logic that is triggered when the
VCONDES task is run, either manually from the UI or automatically from the System Task
Server. The extension logic enables you to select the appropriate component or element to use
in the virtual design of the connection. It runs prior to the existing VCONDES auto-provisioning
logic. If a component or element is successfully selected by the extension logic, the existing
VCONDES auto-provisioning logic is bypassed. If a component or element is not selected by
the extension logic, the existing VCONDES auto-provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the VCONDES task as a
system task. The VCONDES task is used to automatically design virtual connections. When
the status of the VCONDES task becomes Ready, the System Task Server processes the task.
The extension logic runs and, based on the selection logic in the extension and the information
on the order, the appropriate component or element is selected for the design of the virtual
connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-34
when searching for an execution point to associate with the extension.

Table A-34 Select Component or Element for Virtual Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point VCONDES Maintenance (105)

Action Type Select Component or Element (54)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-35 shows the data that is passed to the extension Java class.

Table A-35 Select Component or Element for Virtual Connection Name/Value Pair Input
Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

Connection Spec nstCompTypeConId

Network Configuration Type nstConfigTypeId

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-24 of A-52

Table A-35 (Cont.) Select Component or Element for Virtual Connection Name/Value
Pair Input Data

Data Description Data Name

Component Type networkComponentType

Table A-36 shows the data that is returned by the extension Java class.

Table A-36 Select Component or Element for Virtual Connection Name/Value Pair
Return Data

Data Description Data Name

Network system component key Array nsCompKey

(String Array comprised of nsCompId and nsId)

Returned data validation
The data returned by the VCONDES Maintenance - Select Component custom extension must
adhere to certain rules. All components (NS_ID/NS_COMP_ID combination) must pass the
following validation logic:

• The NS_COMP_ID must exist in the database.

• The component type of the returned NS_COMP_ID must match the
networkComponentType input parameter.

• The NS_ID must exist in the database.

• The network configuration type of the returned NS_ID must match the nstConfigTypeId
input parameter.

UI Invocation
From the Work Queue window within Work Management, open the Service Request Virtual
Connections window by double-clicking a VCONDES task and then select Auto Provision
from the Options menu. The extension logic runs prior to the existing VCONDES auto
provision logic. If a component or element is successfully selected by the extension logic, the
existing VCONDES auto provision logic is bypassed. However, if a component or element is
not selected by the extension logic, the existing VCONDES auto provision logic still runs.

WebService API Invocation
The Select Component or Element for Virtual Connection execution point is not triggered by
the WebService API.

CORBA API Invocation
The Select Component or Element for Virtual Connection execution point is not triggered by
the CORBA API.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-25 of A-52

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
VCONDES task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Select Network System
MetaSolv Solution provides the ability to automatically design physical connections through the
NETDESIGN task. This execution point enables you to extend logic that is triggered when the
NETDESIGN task is run automatically from the System Task Server. The extension logic
enables you to select the appropriate network system to use in the physical design of the
connection. It runs prior to the NETDESIGN task. If a network system is successfully selected
by the extension logic, the existing NETDESIGN auto-provisioning logic is bypassed. If a
network system is not selected by the extension logic, the existing NETDESIGN auto-
provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server processes
the task. The extension logic runs and, based on the selection logic in the extension and the
information on the order, the appropriate network system is selected for the design of the
physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-37
when searching for an execution point to associate with the extension.

Table A-37 Select Network System Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Network System (60)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-38 shows the data that is passed to the extension Java class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-26 of A-52

Table A-38 Select Network System Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-39 shows the data that is returned by the extension Java class.

Table A-39 Select Network System Name/Value Pair Return Data

Data Description Data Name

Activity code activityCd

ArrayList of CaContainer objects, which contains
CA names and values

CaList

Short name of network system nsNmShort

Long name of network system nsNmLong

Description desc100

Network system ID nsId

Hard/soft code hardSoftCdExtension

Network system customer system ID nsCustomerSysId

Network system provider system ID nsProviderSysId

template name templateName

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Network System custom
extension must adhere to certain rules. Network System details returned by the extension must
pass the following validation logic:

• SHORT_NAME is mandatory, and the length of the value should be less than 20
characters.

• ACTIVITY_IND must be either "N" (new) or "C"(change).

• NS_ID must exist in the database.

• STATUS must be "Pending" or "Inservice"

• HARD_SOFT_ASSIGN_CD must be "soft" or "hard" or "none".

• NS_TEMPLATE_NAME is mandatory and must exist in the database.

• DESC_100 must be less than 100 characters.

• LONG_NAME must be less than 50 characters.

• CUSTOMER_SYS_ID and PROVIDER_SYS_ID accepts a maximum of 20 characters.

• Customer attribute (CA) Name must exist in the database.

UI Invocation
UI invocation of the Select Network System execution point is not available. While the
NETDESIGN task can be defined as a manual task and accessed from the Work Queue

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-27 of A-52

window within Work Management, if accessed in this manner, the execution point is not
invoked.

WebService API Invocation
The Select Network System execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Network System execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
NETDESIGN task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Select Customer Edge Component
MetaSolv Solution provides the ability to automatically design physical connections through the
NETDESIGN task. This execution point enables you to extend logic that is triggered when the
NETDESIGN task is run automatically from the System Task Server. The extension logic
enables you to select the customer edge component to use in the physical design of the
connection. It runs prior to the existing NETDESIGN auto-provisioning logic. If a customer
edge component is successfully selected by the extension logic, the existing NETDESIGN
auto-provisioning logic is bypassed. If a customer edge component is not selected by the
extension logic, the existing NETDESIGN auto-provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server processes
the task. The extension logic runs and, based on the selection logic in the extension and the
information on the order, the appropriate customer edge component is selected for the design
of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-40
when searching for an execution point to associate with the extension.

Table A-40 Select Customer Edge Component Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Customer Edge Component (61)

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-28 of A-52

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-41 shows the data that is passed to the extension Java class.

Table A-41 Select Customer Edge Component Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-42 shows the data that is returned by the extension Java class.

Table A-42 Select Customer Edge Component Name/Value Pair Return Data

Data Description Data Name

Activity code activityCd

ArrayList of CaContainer objects, which define CA
names and values

CaList

Customer Edge name nsCompName

Customer edge location name locationName

Customer edge type nsCompType

Network component ID nsCompIdThruExtension

Customer edge number, which is used along with
nsCompName to uniquely differentiate each
customer edge

ceNumberThruExt

Network system component network element ID nsCompNetworkElementId

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Customer Edge Component
custom extension must adhere to certain rules. All components must pass the following
validation logic:

• ACTIVITY_IND must be either "N" (new) or "C" (change).

• CE_NAME is mandatory must be unique.

• CE_LOCATION_NAME must exist in the database.

• CE_TYPE must exist in the database.

• Customer attribute (CA) Name must exist in the database.

• COMP_ID must exist in the database.

UI Invocation
UI invocation of the Select Customer Edge Component execution point is not available. While
the NETDESIGN task can be defined as a manual task and accessed from the Work Queue
window within Work Management, if accessed in this manner, the execution point is not
invoked.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-29 of A-52

WebService API Invocation
The Select Customer Edge Component execution point is not triggered by the WebService
API.

CORBA API Invocation
The Select Customer Edge Component execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
NETDESIGN task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Select End Component For Physical Connection
MetaSolv Solution provides the ability to automatically design physical connections through the
NETDESIGN task. This execution point enables you to extend logic that is triggered when the
NETDESIGN task is run automatically from the System Task Server. The extension logic
enables you to select an end component for the physical connection to use in the physical
design of the connection. It runs prior to the existing NETDESIGN auto-provisioning logic. If an
end component for the physical connection is successfully selected by the extension logic, the
existing NETDESIGN auto-provisioning logic is bypassed. If an end component for the physical
connection is not selected by the extension logic, the existing NETDESIGN auto-provisioning
logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server processes
the task. The extension logic runs and, based on the selection logic in the extension and the
information on the order, the appropriate end component for the physical connection is
selected for the design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-43
when searching for an execution point to associate with the extension.

Table A-43 Select End Component For Physical Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select End Component For Physical Connection (62)

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-30 of A-52

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-44 shows the data that is passed to the extension Java class.

Table A-44 Select End Component For Physical Connection Name/Value Pair Input
Data

Data Description Data Name

Document number documentNumber

Table A-45 shows the data that is returned by the extension Java class.

Table A-45 Select End Component For Physical Connection Name/Value Pair Return
Data

Data Description Data Name

String object that contains the connection identifier
(ecckt)

HashMap key

End points for connection defines the following details: HashMap value: EndPointsForConnection
Object

Activity indicator activityInd

One end of the connection customEdgeName

Other end of the connection providerEdgeName

Used along with customer edge name to uniquely
differentiate CE

customerEdgeNumber

Used along with provider edge name to uniquely
differentiate PE

providerEdgeNumber

Network system name in which PE is present providerEdgeNetwork SystemName

Network system name which needs to be embedded as
part of the VPN network

providerEdgeParent NetworkName

Connection identifier / name conEcckt

Returned data validation
The data returned by the NETDESIGN Maintenance - Select End Component For Physical
Connection custom extension must adhere to certain rules. End components of each
connection must pass the following validation logic:

• ACTIVITY_IND must be "N" or "C".

• CE_NAME must be the same as what is returned from the Select Customer Edge
Component extension.

• PE_NAME must exist in the database.

• PE_NETWORK_NAME must exist in the database and component with PE_NAME must
be part of this network.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-31 of A-52

• CONNECTION_ECCKT must exist in the database and it must be part of the order given in
the input parameter.

UI Invocation
UI invocation of the Select End Component For Physical Connection execution point is not
available. While the NETDESIGN task can be defined as a manual task and accessed from the
Work Queue window within Work Management, if accessed in this manner, the execution point
is not invoked.

WebService API Invocation
The Select End Component For Physical Connection execution point is not triggered by the
WebService API.

CORBA API Invocation
The Select End Component For Physical Connection execution point is not triggered by the
CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
NETDESIGN task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Select Equipment For CE
MetaSolv Solution provides the ability to automatically design physical connections through the
NETDESIGN task. This execution point enables you to extend logic that is triggered when the
NETDESIGN task is run automatically from the System Task Server. The extension logic
enables you to select the equipment for the customer edge to use in the physical design of the
connection. It runs prior to the existing NETDESIGN auto-provisioning logic. If equipment for
the customer edge is successfully selected by the extension logic, the existing NETDESIGN
auto-provisioning logic is bypassed. If equipment for the customer edge is not selected by the
extension logic, the existing NETDESIGN auto-provisioning logic still runs.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server processes
the task. The extension logic runs and, based on the selection logic in the extension and the
information on the order, the appropriate equipment for the customer edge is selected for the
design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-46
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-32 of A-52

Table A-46 Select Equipment For CE Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Equipment For CE (63)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-47 shows the data that is passed to the extension Java class.

Table A-47 Select Equipment For CE Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-48 shows the data that is returned by the extension Java class.

Table A-48 Select Equipment For CE Name/Value Pair Return Data

Data Description Data Name

CE name that the equipment needs to be
associated with

customerEdgeName

Used along with customer edge name to uniquely
differentiate CE

customerEdgeNumber

Equipment ID which must be associated with the
CE

equipIdThruExtension

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Equipment For CE custom
extension must adhere to certain rules. All components and equipment returned from the
extension must pass the following validation logic:

• EQUIPMENT_ID must exist in the database.

• CUSTOMEREDGE_NAME must exist in the database, and must be same as that of CE
returned from the Select Customer Edge Component extension.

UI Invocation
UI invocation of the Select Equipment For CE execution point is not available. While the
NETDESIGN task can be defined as a manual task and accessed from the Work Queue
window within Work Management, if accessed in this manner, the execution point is not
invoked.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-33 of A-52

WebService API Invocation
The Select Equipment For CE execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Equipment For CE execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
NETDESIGN task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Connection Id Automation
MetaSolv Solution provides the ability to automate the generation of Connection Id for the
circuits created in PSR orders through the CKTID task. This execution point enables you to
extend logic that is triggered when the CKTID task is run automatically from the System Task
Server. The extension logic enables you to provide the required information to be used in the
Connection Id generation.

Business Example
You enter a PSR order and assign a provisioning plan that defines the CKTID task as a system
task. The CKTID task is used to automatically generate the Connection Id for the appropriate
products on the PSR order. When the status of the CKTID task becomes Ready, the System
Task Server processes the task. The extension logic runs and based on the information in the
extension and the information on the order, the appropriate Connection Ids are generated
automatically.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-49
when searching for an execution point to associate with the extension.

Table A-49 Connection Id Automation Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point Connection Design (108)

Action Type Connection Id Automation (71)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-50 shows the data that is passed to the extension Java class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-34 of A-52

Table A-50 Connection Id Automation Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Service Item ID circuitDesignId

Table A-51 shows the data that is returned by the extension Java class.

Table A-51 Connection Id Automation Name/Value Pair Return Data

Data Description Data Name

A Java container object that contains information
that is used in the automated generation of the
connection ID.

ConnectionIdAutomationData

Returned Data Validation
The data returned by the Connection Id Automation execution point must adhere to certain
rules. See "Connection Id Automation" for detailed parameter-level validation information.

UI Invocation
UI invocation of the Connection Id Automation execution point is not available. While the
CKTID task can be defined as a manual task to design the connections and accessed from the
Work Queue window within Work Management, if accessed in this manner, the execution point
is not invoked.

WebService API Invocation
The Connection Id Automation execution point is not triggered by the WebService API.

CORBA API Invocation
The Connection Id Automation execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
CKTID task is defined as a System Task. For this to occur, the System Task Server must be
configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

DS0/DS1 Automated Design
MetaSolv Solution provides the ability to automate the provisioning of Facility circuits with rate
codes DS0 and DS1 through the AUTODSGN task. This execution point enables you to extend
logic that is triggered when the AUTODSGN task is run automatically from the System Task
Server. The extension logic enables you to provide the assignment information to use in the
provisioning of the connection. If the assignment information is not provided in the extension,
the default auto-provisioning logic runs. The default auto-provisioning logic makes an

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-35 of A-52

equipment port assignment at either end of the circuit and makes a "next-available" channel
assignment to a parent circuit, which is coterminous with the circuit being auto-provisioned.

Business Example
You enter a PSR order and assign a provisioning plan that defines the AUTODSGN task as a
system task. The AUTODSGN task is used to automatically provision the Facility circuits with
rate codes DS0 and DS1.

When the status of the AUTODSGN task becomes Ready, the System Task Server processes
the task. The extension logic runs and, based on the assignment information in the extension
and the circuit information on the order, the appropriate DS0 and DS1 facility circuits are
automatically provisioned. After the assignments are made, the extension logic would also
create design issues using the appropriate information from the order. The status of the circuits
will be changed to Record Issued.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-52
when searching for an execution point to associate with the extension.

Table A-52 DS0/DS1 Automated Design Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point Connection Design (108)

Action Type DS0/DS1 Automated Design (70)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-53 shows the data that is passed to the extension Java class.

Table A-53 DS0/DS1 Automated Design Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Circuit Design ID circuitDesignId

Table A-54 shows the data that is returned by the extension Java class.

Table A-54 DS0/DS1 Automated Design Name/Value Pair Return Data

Data Description Data Name

A Java container object that holds the assignment
information to use in the automated provisioning of
the circuit.

provisioningInfoContainer

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-36 of A-52

Returned data validation
The data returned by the DS0/DS1 Automated Design execution point must adhere to certain
rules. See "DS0/DS1 Automated Design" for detailed parameter-level validation information.

UI Invocation
UI invocation of the DS0/DS1 Automated Design execution point is not available. While the
AUTODSGN task can be defined as a manual task to design the connections and accessed
from the Work Queue window within Work Management, if accessed in this manner, the
execution point is not invoked.

WebService API Invocation
The DS0/DS1 Automated Design execution point is not triggered by the WebService API.

CORBA API Invocation
The DS0/DS1 Automated Design execution point is not triggered by the CORBA API.

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where the
AUTODSGN task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. See "Invoking an Extension" for specific configuration
information.

Manage Allocation Parameters
MetaSolv Solution provides the ability to manage allocation parameters during connection
design. This execution point allows you to extend the logic to manage the allocation
parameters. You can generate, update, and remove these parameters, allowing customization
of the allocation process.

This execution point allows you to continue using MSS to design your services, and to maintain
a more robust logical resource inventory. While the values are displayed and stored within
MSS, the resource pools can be managed externally. Integrating with other applications like
Oracle UIM offers extended design capabilities and a comprehensive logical resource
management solution.

Business Example
You can order Ethernet Virtual Circuits using Service Requests (PSR, ASR, ISR, and EWO)
and assign a provisioning plan. When designing the virtual connection, this execution point is
triggered by selecting the Generate Virtual Channels option. This execution point can also be
used for redesigning existing virtual connections, especially after modifying hard connections in
the Virtual Connection Design.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-55
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-37 of A-52

Table A-55 Manage Allocation Parameters Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point Connection Design (108)

Action Type Manage Allocation Parameters (72)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-56 shows the data that is passed to the extension Java class.

Table A-56 Manage Allocation Parameters Name/Value Pair Input Data

Data Description Data Name

An array of Java object that contains information that is
used in the management of allocation parameters

ManageAllocationParameters

Table A-57 shows the data that is returned by the extension Java class.

Table A-57 Manage Allocation Parameter Name/Value Pair Return Data

Data Description Data Name

An array of Java object that contains information that is
used in the management of allocation parameters

ManageAllocationParameters

UI Invocation
This execution point is triggered while performing the following activities:

• Selecting the Generate Virtual Channels option from the Options menu within the
schematic design of a virtual connection. The Generate Virtual Channels option is
enabled only for ordered virtual circuits when an extension is defined for the new Manage
Allocation Parameters action type.

• Selecting the Remove Connection right-click option within the schematic design of a
virtual connection.

• Clicking the Redesign Connection link within the schematic design of a virtual
connection.

• Selecting the Group Disconnect option from the Options menu within the Service
Request Connections window while working the DLRD task of a Disconnect order.

• Selecting the Assignment Cancel option from the Options menu within the Service
Request Connections window while working the DLRD task for a canceled New order.

• Selecting the Change Cancel option from the Options menu within the Service Request
Connections window while working the DLRD task for a canceled Change order.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-38 of A-52

• Selecting the Disconnect Cancel option from the Options menu within the Service
Request Connections window while working the DLRD task for a canceled Disconnect
order.

WebService API Invocation
The Manage Allocation Parameters execution point is not triggered by the WebService API.

CORBA API Invocation
The Manage Allocation Paramters execution point is not triggered by the CORBA API.

Additional Invocations
This execution point can also be triggered by the background processor while performing the
following activities:

• Assigning GRPDISC task as System task.

• Sending Assignment Cancel, Change Cancel, and Disconnect Cancel operation to the
background processor in the Service Request Connections window.

Select Dedicated Plant
MetaSolv Solution provides the ability to implement your custom logic to determine the
appropriate dedicated plant assignment for the service being provisioned through the
Automated Design (AUTODSGN) or Physical Connection Design (PCONDES) tasks, in
scenarios where the core logic does not meet your business requirements.

For example, consider a scenario where a dedicated plant, DP1, has a priority of 1 and another
dedicated plant, DP2, has its priority set as 2 on the Plant Administration tab of the Product
Catalog window. If you determine that DP2 is more suitable for the service being provisioned,
you can create and implement your custom logic to change the priority of DP2 to 1. As a result,
the core logic processes the information returned by the extension and selects DP2 when
provisioning the service.

During service provisioning, the core logic first queries for a dedicated plant reservation for the
order. If a reserved dedicated plant is found, the reservation is redeemed and the assignment
is made. Otherwise, the core logic queries for all the dedicated plants at the service address on
the order.

In addition, the core logic filters the following:

• Dedicated plants that are already assigned.

• Dedicated plants that have blocking condition codes on the cable pair or port address.

• Dedicated plants that have non-owned reservations on the cable pair or port address.

The core logic calls the custom extension logic only if multiple dedicated plants (both
supported and unsupported) are available.

The custom extension logic can use the Item Spec ID or Spec Name values to determine
which dedicated plant must be selected. For items that require manual design, this logic does
not provide any output dedicated plant and displays an error message. In this case, the
AUTODSGN and PCONDES tasks fail and an error message is logged. You can view this error
on the Server Logs tab in the Work Queue Manager window.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-39 of A-52

After calling the custom extension, the core logic goes through all of the dedicated plants in the
same order as they are populated within the OutputDedicatedPlantList parameter. The core
logic then validates whether each dedicated plant is valid for the service being provisioned and
assigns the service to the supporting dedicated plant based on its priority. If no supporting
dedicated plants are returned by the custom extension, the AUTODSGN and PCONDES tasks
fail and an error message is logged. You can view this error on the Server Logs tab in the
Work Queue Manager window.

Business Example
You enter a PSR order and assign a provisioning plan that defines the AUTODSGN or
PCONDES tasks as a system task. When the status of the AUTODSGN or PCONDES tasks
becomes Ready, the System Task Server processes the tasks. The extension logic runs and
based on the information in the extension and the information on the order, the extension logic
validates whether each dedicated plant is valid for the service being provisioned and assigns
the service to the supporting dedicated plant based on its priority.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-58
when searching for an execution point to associate with the extension.

Table A-58 Select Dedicated Plant Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance (103), Connection Design
(108)

Action Type Select Dedicated Plant

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the extension
Java class.

Table A-59 shows the data that is passed to the extension Java class.

Table A-59 Select Dedicated Plant Name/Value Pair Input Data

Data Description Data Name

Order being processed. documentNumber

Circuit design ID of the service being designed. circuitDesignId

Service item being designed. ServItemId

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-40 of A-52

Table A-59 (Cont.) Select Dedicated Plant Name/Value Pair Input Data

Data Description Data Name

List of available dedicated plants.

You must set the following attributes for this parameter:

• ded_cc_grp_id: Unique key of the available dedicated
plants.

• last_modified_date: Last modified date of the available
dedicated plants.

• supports_product: True or False.
• equipment_id: Equipment ID of the card used to build

the available dedicated plants.
• item_spec_id: Specification ID of the service being

designed.
• item_spec_nm: Specification name of the service

being designed.
• priority_seq: Priority sequence of the equipment set

within the Plant Administration tab.

InputDedicatedPlantList

This parameter is not populated. numberOfBondedPairs

Table A-60 shows the data that is returned by the extension Java class.

Table A-60 Select Dedicated Plant Name/Value Pair Return Data

Data Description Data Name

List of dedicated plants to assign.

This parameter contains the following attributes:

• ded_cc_grp_id: Unique key of the available dedicated
plants.

• last_modified_date: Last modified date of the available
dedicated plants.

• supports_product: True or False.
• equipment_id: Equipment ID of the card used to build

the available dedicated plants.
• item_spec_id: Equipment specification ID of the

service being designed.
• item_spec_nm: Equipment specification name of the

service being designed.
• priority_seq: Priority sequence of the equipment set on

the Plant Administration tab.

OutputDedicatedPlantList

Error message to be sent to the server log. ErrorMessage

Returned data validation
The data returned by the Select Dedicated Plant execution point must adhere to certain rules.
See "DedicatedPlantSelection" for detailed parameter-level validation information.

UI Invocation
UI invocation of the Select Dedicated Plant execution point is not available.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-41 of A-52

WebService API Invocation
The Select Dedicated Plant execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Dedicated Plant execution point is not triggered by the CORBA API.

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where the
AUTODSGN/PCONDES tasks are defined as a System Task. For this to occur, the System
Task Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Create/Update End User Location
This execution point enables you to implement your custom logic that validates the end user
location address information and returns the following return codes that determine the behavior
of the application based on the custom logic:

• Success: Creates or updates the end user location.

• Failure: Does not create or update the end user location.

• Warning: Provides you with options that enable you to do one of the following:

– Create or update end user location address information with the data returned by your
custom logic

– Create or update end user location address information with the original data you
entered in the MSS application

This execution point is triggered when you do any of the following:

• Create or update end user location address information in the PSR Ordering Dialog

• Create or update service locations on a PSR order

• Create or update end user location address information on the PRILOC/SECLOC Info tab
of the Product Service Request window

• Create or update end user location address information in the End User Location
Maintenance window

Custom Extension Success Scenario Example

The following list includes examples of situations when the custom extension logic may return
the Success return code based on your custom logic:

• No matching address already exists

• The address information you enter is correct

When the extension returns the Success return code, the MSS application creates or updates
the end user location.

Custom Extension Failure Scenario Example

The following list includes examples of situations when the custom extension logic may return
the Failure return code based on your custom logic:

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-42 of A-52

• A matching address already exists

• The address information you enter is incorrect

• No new end user location should be created with the data you enter

When the extension returns the Failure return code, the return text that you specified in your
custom logic is displayed, and the MSS application does not create or update the end user
location address information.

Custom Extension Warning Scenario Example

The following list includes examples of situations when the custom extension logic may return
the Warning return code based on your custom logic:

• A partially matching address already exists

• The address information you enter is partially correct

When the extension returns the Warning return code, one of the following occurs:

• In the End User Location window and on the PRILOC/SECLOC Info tab of the Product
Service Request window, the Custom Address Validation window is displayed, which
displays those values in red that are different than the values you specified in the input. Do
one of the following:

– Click OK to create or update the end user location address information with the data
returned by your custom logic

– Click Override to create or update the end user location address information with the
original data you entered in the MSS application

• At the top of the PSR Ordering Dialog, only those values are displayed in red that are
different than the values you specified in the input. Do one of the following:

– Click Next to create or update the end user location address information with the data
returned by your custom logic

– Click Override to create or update the end user location address information with the
original data you entered in the MSS application

Note

You can limit user access to the Override option in the Security Permissions
window.

Business Example
You enter a PSR order and click Add Service Location to add a new end user location. In the
End User Location Maintenance window, enter the required information in the fields and click
OK. The execution point is triggered and it returns Success, Failure, or Warning return codes
that determine the behavior of the application based on your custom logic. See Table A-64 for
more information about the MSS UI windows from where you can trigger the execution point.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-61
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-43 of A-52

Table A-61 Create/Update Execution Points

Field Name Option

Execution Mode Synchronous

Building Block All End User Locations

Process Point EUL Maintenance (123), PSR (124)

Action Type Update (91), Create (92)

Data Passed / Data Returned
This is a synchronous call, therefore data should be returned from the extension Java class.

Table A-62 shows the data that is passed to the extension Java class.

Table A-62 Create/Update Name/Value Pair Input Data

Data Name Data
Type

Data Description

addressId String Unique identifier for an address.

This is 0 or null for a new end user location that you want to create.

addressComponents String Address components, such as House Number, Street Name, City
Name, and so on. Specify this information as String in the following
format:

<ADDRESS>
 <sfname></sfname>
 <structureFormatComponents>
 <id></id>
 <name></name>
 <componentType></componentType>
 <value></value>
 </structureFormatComponents>
</ADDRESS>

eulName String Name of the end user location.

countryId String ID of a country.

locationId String ID of the location.

This is 0 or null for a new end user location that you want to create.

addressFormat String Address structure format for the address.

Table A-63 shows the data that is returned by the extension Java class.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-44 of A-52

Table A-63 Create/Update Name/Value Pair Return Data

Data Name Data
Type

Mandatory/
Optional

Data Description

returnCode String Mandatory Return code that you want the extension logic to
return:

• Success
• Failure
• Warning

returnText String Mandatory if you
specify the
returnCode as
Failure;
otherwise, it is
optional.

Text that you want the extension logic to return for the
Success, Failure, and Warning return codes.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-45 of A-52

Table A-63 (Cont.) Create/Update Name/Value Pair Return Data

Data Name Data
Type

Mandatory/
Optional

Data Description

returnAddrComp
onents

String The
returnAddrCompo
nents or
returnAddrId is
mandatory if you
specify the
returnCode as
Warning.

The
returnAddrCompo
nents is ignored if
you specify
returnAddrId.

Returns only those address components that are
different than the address components you specified in
the input.

Address components, such as House Number, Street
Name, City Name, and so on, that are returned as
String by the extension logic in the following format:

<ADDRESS>
 <sfname></sfname>
 <structureFormatComponents>
 <id></id>
 <name></name>
 <componentType></componentType>
 <value></value>
 </structureFormatComponents>
</ADDRESS>

where:

• sfname: Indicates the address format of the end
user location. Refer to the
SF_STRUCT_FORMAT_NM column in the
SF_COMP table.

• id: Indicates the structure format component ID
for an address component in the end user
location. Refer to the SF_COMP_ID column in the
SF_COMP table.

• name: Indicates the structure format component
name for an address component in the end user
location. Refer to the COMP_NM column in the
SF_COMP table.

• componentType: Indicates the structure format
component type for an address component in the
end user location. Refer to the COMP_TYPE
column in the SF_COMP table.

• value: Indicates the value of the structure format
component based on the componentType.

For example:

The Street Name address component of type N
has the actual value, for example, ABC Street.

The State Code address component of type G has
the value ID, for example, 123, which indicates the
value ID of the state and not the actual name of
the state.

returnAddrId String The
returnAddrCompo
nents or
returnAddrId is
mandatory if you
specify the
returnCode as
Warning.

Unique identifier returned for an address.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-46 of A-52

Returned data validation
The data returned by the Create and Update execution points must adhere to certain rules.
See "Create/Update End User Location" for detailed parameter-level validation information.

UI Invocation
Table A-64 lists the MSS UI windows that trigger the execution point when you create or
update end user locations.

Table A-64 MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

EUL
Maintenance
(123)

Create
(92)

End User Location Maintenance Window
The execution point is triggered when you do the
following:

• When creating a new end user location, in the
End User Location Maintenance window, enter
the required information in the fields and click
OK.

See "Creating or Updating an End User
Location from the End User Location
Maintenance Window" for more information.

Address
(411)

All End
User
Locations

EUL
Maintenance
(123)

Update
(91)

End User Location Maintenance Window
The execution point is triggered when you do the
following:

• When updating an end user location, in the End
User Location Maintenance window, update the
existing information in the fields and click OK.

See "Creating or Updating an End User
Location from the End User Location
Maintenance Window" for more information.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-47 of A-52

Table A-64 (Cont.) MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

PSR (124) Create
(92)

End User Location Maintenance Window
The execution point is triggered when you do the
following:

• When creating a service location, in the End
User Location Maintenance window, enter the
required information in the fields and click OK.

See "Creating or Updating a Service Location
on a PSR order" for more information.

PSR Ordering Dialog
The execution point is triggered when you do one
the following:

• In the PSR Ordering Dialog, click the add a
new customer location link and enter the
required information in the fields, and then
either click Add Another or click Next.

See "Creating or Updating an End User
Location from the PSR Ordering Dialog" for
more information.

PRILOC/SECLOC Assignment Window
The execution point is triggered when you do the
following:

• In the PRILOC/SECLOC Assignment window,
click the address icon.

In the Address Maintenance window, enter the
required information in the fields and click OK.

See "Creating or Updating an End User
Location on the PRILOC/SECLOC Info Tab on
a PSR Order" for more information.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-48 of A-52

Table A-64 (Cont.) MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

PSR (124) Update
(91)

End User Location Maintenance Window
The execution point is triggered when you do the
following:

• When updating a service location, in the End
User Location Maintenance window, update the
existing information in the fields and click OK.

See "Creating or Updating a Service Location
on a PSR order" for more information.

PSR Ordering Dialog
The execution point is triggered when you do one
the following:

• In the PSR Ordering Dialog, click an existing
location and update the existing information in
the fields and click Next.

See "Creating or Updating an End User
Location from the PSR Ordering Dialog" for
more information.

PRILOC/SECLOC Assignment Window
The execution point is triggered when you do the
following:

• In the PRILOC/SECLOC Assignment window,
click the address icon.

In the Address Maintenance window, update
the existing information in the fields and click
OK.

See "Creating or Updating an End User
Location on the PRILOC/SECLOC Info Tab on
a PSR Order" for more information.

Creating or Updating an End User Location from the End User Location Maintenance
Window

To create or update an end user location from the End User Location Maintenance window:

1. On the navigation bar, select Application Setup, click Location and Geography Setup,
and then click End User Locations.

The End User Location Search window is displayed.

2. Do one of the following:

• To create a new end user location, click Add New.

• To update an existing end user location, specify your search criteria and click Search,
and then double-click the end user location.

The End User Location Maintenance window is displayed.

3. Enter the required information in the fields and click OK.

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-49 of A-52

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

Creating or Updating a Service Location on a PSR order

To create or update a service location on a PSR order:

1. Open a PSR order.

2. Under Order Maintenance, click Services.

3. Do one of the following:

• To add a new service location, click Add Service Location.

The End User Location Search window is displayed.

– Click New Location.

• To update an existing service location, right-click a service location and select Update
Service Location.

The End User Location Maintenance window is displayed.

4. Enter the required information in the fields and click OK.

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

Creating or Updating an End User Location from the PSR Ordering Dialog

To create or update an end user location from the PSR Ordering Dialog:

1. Open a PSR order.

2. Under Order Maintenance, click Services.

3. Select a product from the hierarchy.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-50 of A-52

4. Under Service Item Actions, click the Configure Product link.

The PSR Ordering Dialog is displayed.

5. In the Do you want to include any of these existing locations? window, do one of the
following:

• To add a new location, click the add a new customer location link and enter the
required information in the fields and do one of the following:

– Click Add Another

– Click Next

• To update an existing location, click an existing location and update the fields as
required and click Next.

The execution point is triggered.

6. The end user location address information is sent to the custom logic (extension Java
class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, at the top of the PSR
Ordering Dialog, only those values are displayed in red that are different than the
values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

Creating or Updating an End User Location on the PRILOC/SECLOC Info Tab on a PSR
Order

To create or update an end user location on the PRILOC/SECLOC Info tab on a PSR order:

1. Open a PSR order.

2. Under Order Maintenance, click Services.

3. Expand the circuit product node and select a circuit.

4. Click the PRILOC/SECLOC Info tab.

5. Under the PRILOC section, do one of the following:

• To assign a new primary/secondary location, click the Assign link.

• To edit an existing primary/secondary location, click the Edit link.

The PRILOC/SECLOC Assignment window is displayed.

6. On the PRILOC tab, select the End User option and complete the required fields.

7. On the SECLOC tab, select the End User option and complete the required fields.

8. Click the address icon.

The Address Maintenance window is displayed.

9. Complete the required fields and click OK.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-51 of A-52

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

WebService API Invocation
The Create and Update execution points are not triggered by the WebService API.

CORBA API Invocation
The Create and Update execution points are not triggered by the CORBA API.

Appendix A
Execution Points

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix A-52 of A-52

B
Extensions Sample Code

This appendix provides information about the extensions sample code that comes with your
installation.

Using Sample Code as a Reference for Best Practices
This section provides information regarding best practices for writing Java classes to extend
the Oracle Communications MetaSolv Solution application logic. The best practices are
explained by referencing the provided sample code. The sample code demonstrates how to
throw an exception, send an email notification, and call a CORBA API method from an
extension class.

Exception Handling
The mss_ext_samples.jar file contains the class SampleExtensionException.java. This class
provides sample code that throws an exception from an extension class. The result of an
extension class throwing an exception is an entry in the appserver log appserverlog.xml file
(for 6.3.1.452 or earlier) or the appserver.log file (for 6.3.1.558 or later) that shows the error
text provided by the extension class. The appserver log file located in the MSLV_Home/server/
appserver/logs directory. No error is shown to the user.

Below is a sample of the message text logged to the appserver log file when this class runs:

PlugInReturn object returned from Extension contained errors:
Testing Extension Exception - Sample Error Message
processPoint 101 ActionType 46 BuildingBlock 1001 Caller USER.

E-mail Notification
The mss_ext_samples.jar file contains the class ExtensionFrameworkOneWayTest.java. This
class provides sample code that sends an email notification from an extension class.

CORBA API Invocation
The mss_ext_samples.jar file contains the class InvokeCorbaAPIExtension.java. This class
provides sample code that invokes a CORBA API method from an extension class. The
sample code calls the CORBA API method getOrganization, which is defined in the
TaskCompletionSubsession of the Work Management CORBA API.

Running the Sample Code
The extensions sample code provides concrete examples of how to code specific logic in the
extension Java class such as error handling, sending an email notification, and making an API
call. When the sample code is run, it also provides concrete examples of the outcome of these
actions. You can define any of the sample classes as an extension in the UI, associate an
execution point with the extension, and then trigger the execution point to invoke the sample
class extension and see the outcome.

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-1 of B-34

The extension sample code provided with your installation of MetaSolv Solution is listed below,
including the first release in which it is supported. All sample code related files are located in
the mss_ext_samples.jar file. The installer copies the mss_ext_samples.jar file to your
MSLV_Home/appserver/samples directory, where MSLV_Home is the directory in which
MetaSolv Solution is installed.

• For a full installation, the contents of the mss_ext_samples.jar file are extracted into the
appropriate path under your MSLV_Home directory. The appropriate path for each file is
identified by the path specified in the .jar file.

• For an upgrade, you must manually extract the contents of the mss_ext_samples.jar file
into the appropriate path under your MSLV_Home directory. The appropriate path for each
file can be identified by the path specified in the .jar file.

Sample code options:

• AssignWorkQueues

• ProvPlanDefault

• ExtensionFrameworkOneWayTest

• SampleExtensionException

• InvokeCorbaAPIExtension

For each sample, the following file types exist in the mss_ext_samples.jar file. (The only
exception is the InvokeCorbaAPIExtension sample, which does not have a supporting XML file
because there is no input data needed for this sample.)

• .java: the extension Java source file

• .class: the corresponding compiled Java class file

• .xml: the supporting xml file that defines sample input data and sample configuration data
that is passed to the extension logic

For example, the following three files that support the AssignWorkQueues sample exist in the
mss_ext_samples.jar file:

• AssignWorkQueues.java

• AssignWorkQueues.class

• AssignWorkQueues.xml

AssignWorkQueues
The AssignWorkQueues sample is provided to show extension logic that assigns specific work
queues, and uses a synchronous example. The sample logic shows how to return the specific
data that the Assign Queues execution point is expecting. When the sample code is run, it also
shows the outcome of this action. Specifically, the data that was passed back to the execution
point is logged for your viewing.

To run the AssignWorkQueues sample code:

1. Through the UI, define a synchronous extension with the name AssignWorkQueues.

2. Through the UI, associate the Assign Queues execution point with the extension by
searching for the following criteria:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Queues

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-2 of B-34

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed.

server is the name of the WebLogic server.

5. Look at the AssignWorkQueues.xml file to understand what the expected results should
be in step 7. Specifically, the AssignWorkQueues.xml file defines four tasks and the
corresponding work queues to which the tasks are assigned. The work queues are
returned by the AssignWorkQueues extension logic.

6. Through the UI, trigger the execution point by assigning work queues.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

ProvPlanDefault
The ProvPlanDefault sample is provided to show extension logic that defaults a provisioning
plan, and uses a synchronous example. The sample logic shows how to return the specific
data that the Provisioning Plan Default execution point is expecting. When the sample code is
run, it also shows the outcome of this action. Specifically, the data that was passed back to the
execution point is logged for your viewing.

To run the ProvPlanDefault sample code:

1. Through the UI, define a synchronous extension with the name ProvPlanDefault.

2. Through the UI, associate the Provisioning Plan Default execution point with the extension
by searching for the following criteria:

• Building Block: All Task Types

• Process Point: Task Generation

• Action Type: Provision Plan Default

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Look at the ProvPlanDefault.xml file to understand what the expected results should be in
step 7. Specifically, the ProvPlanDefault.xml file defines a specific provisioning plan ID
that is returned by the ProvPlanDefault extension logic.

6. Through the UI, trigger the execution point by assigning a provisioning plan to an order.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-3 of B-34

ExtensionFrameworkOneWayTest
The ExtensionFrameworkOneWayTest sample is provided to show extension logic that sends
an email notification. When the sample code is run, it shows the outcome of this action, and
the notification is logged for your viewing. This sample also shows:

• How to read an XML file and determine what execution point invoked it.

• How to send an email notification.

• How to read the input name/value pair Array and put that data into an email.

To run the ExtensionFrameworkOneWayTest sample code:

1. Through the UI, define an extension with the name ExtensionFrameworkOneWayTest.

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Look at the ExtensionFrameworkOneWayTest.xml file to understand what the expected
results should be in step 7. Modify the data, such that the email recipient is a valid address
that can check for the mail notification, and the SmtpServerKey value is valid for your
location.

6. Through the UI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in designated email inbox, and by looking in the appserver
log file located in the MSLV_Home/server/appserver/logs directory.

SampleExtensionException
The SampleExtensionException sample is provided to show extension logic that sends an
email notification and throws an exception. The code always throws an exception. When the
sample code is run, it shows the outcome of this action in the form of the email notification, and
in the form of a logged error if the extension is defined as synchronous.

Note

If the extension is defined as asynchronous, the extension framework does not log an
error, but it does send an email notification.

If the extension is defined as synchronous, the extension framework logs an error to
the log file, in addition to sending the email notification.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-4 of B-34

Perform the following steps to run the SampleExtensionException sample code:

1. Through the UI, define a synchronous extension with the name
SampleExtensionException.

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Look at the SampleExtensionException.xml file to understand what the expected results
should be in step 7. Modify the data, such that the email recipient is a valid address that
can check for the exception notification, and the SmtpServerKey value is valid for your
location.

6. Through the UI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in the appserver log file located in the MSLV_Home/server/
appserver/logs directory.

InvokeCorbaAPIExtension
The InvokeCorbaAPIExtension sample is provided to show how to code CORBA API calls in
the extension logic. When the sample code is run, it also shows the outcome of this action.
Specifically, the sample calls the CORBA API method getOrganization(), so the organization is
logged for your viewing.

To run the InvokeCorbaAPIExtension sample code:

1. Through the UI, define an extension with the name InvokeCorbaAPIExtension.

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-5 of B-34

5. Through the UI, trigger the execution point that was selected in step 2.

6. Verify the outcome by looking in the appserver log file located in the MSLV_Home/server/
appserver/logs directory.

SelectComponent
The SelectComponent sample is provided to show extension logic that selects a component or
element, and uses a synchronous example. The sample logic shows how to return the specific
data that the Select Component or Element execution point is expecting. When the sample
code is run, it also shows the outcome of this action. Specifically, the data that was passed
back to the execution point is logged for your viewing.

This sample is very specific in its function. Other samples are open-ended and can apply to
several execution points. This sample code calls specific methods to accomplish the
component selection. Java documentation is provided in the sample code to give you
additional information about the methods that the sample code calls.

To run the SelectComponent sample code:

1. Through the UI, define a synchronous extension with the name SelectComponent.

2. Through the UI, associate the Select Component or Element execution point with the
extension by searching for the following criteria:

• Building Block: All Connections

• Process Point: PCONDES Maintenance

• Action Type: Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Through the UI:

• Set up a DSLAM network location.

• Add a network element of type DSL Multiplexer to the DSLAM network location.

• Add a DSL card with an available port matching the rate code of the ordered service to
the DSL Multiplexer.

• Enter a PSR order with an end user location that has the same zip code as the
DSLAM network location.

• On the PSR order, add a service to the end user location that can be auto provisioned.

• Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the UI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-6 of B-34

SelectPort
The SelectPort sample is provided to show extension logic that selects a port address, and
uses a synchronous example. The sample logic shows how to return the specific data that the
Select Port Address execution point is expecting. When the sample code is run, it also shows
the outcome of this action. Specifically, the data that was passed back to the execution point is
logged for your viewing.

This sample is very specific in its function. Other samples are open-ended and can apply to
several execution points. This sample code calls specific methods to accomplish the port
selection. Java documentation is provided in the sample code to give you additional
information about the methods that the sample code calls.

To run the SelectPort sample code:

1. Through the UI, define a synchronous extension with the name SelectPort.

2. Through the UI, associate the Select Port Address execution point with the extension by
searching for the following criteria:

• Building Block: All Connections

• Process Point: PCONDES Maintenance

• Action Type: Select Port Address

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Through the UI:

• Set up a DSLAM network location.

• Add a network element of type DSL Multiplexer to the DSLAM network location.

• Add a DSL card with an available port matching the rate code of the ordered service to
the DSL Multiplexer.

• Enter a PSR order with an end user location that has the same zip code as the
DSLAM network location.

• On the PSR order, add a service to the end user location that can be auto provisioned.

• Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the UI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

SelectComponentForVirtual
The SelectComponentForVirtual sample is provided to show extension logic that selects a
component or element for a virtual connection using a synchronous call. The sample logic
reads the values (NS_ID and NS_COMP_ID) from the corresponding XML file. Even though

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-7 of B-34

the sample logic uses values from an XML file instead of performing actual logic to retrieve
those values, it does demonstrate how to format the return data as required by the calling
method. When the sample code is run, it shows the outcome of this action by logging the input
parameters to the console.

To run the SelectComponentForVirtual sample code:

1. Through the UI, define a synchronous extension with the name
SelectComponentForVirtual.

2. Through the UI, associate the Select Component or Element execution point with your
newly created extension by searching for the following criteria:

• Building Block-All Connections

• Process Point-VCONDES Maintenance

• Action Type-Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectComponentForVirtual.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the directory
in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

The keys in this file represent the desired Network System (NS_ID) and Component
(NS_COMP_ID) for the virtual connection to be provisioned to. This file is read by the
custom extension in step 6, and therefore you must modify these key values to represent
the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order with one or more virtual connections.

• Assign a provisioning plan to the order that defines the VCONDES task.

• Open the Service Request Virtual Circuits window by opening the VCONDES task.

• Select one or more connections and then select Auto Provision from the Options
menu.

• Verify the outcome by looking in the UI, and by looking in the server.mss.xml file
located in the MSLV_Home/server/appserver/logs directory.

SelectNetworkSystemForNetDesign
The use of the Select Network System execution point is demonstrated through the
SelectNetworkSystemForNetDesign sample code.

The SelectNetworkSystemForNetDesign sample is provided to show extension logic that
selects a network system for a network design automation. The sample logic reads the
expected values (which are listed below in sample XML file) from the corresponding XML file,
but shows how to return the data that the Select Network System execution point is expecting.
Even though the sample logic uses values from an XML file instead of performing actual logic
to retrieve those values, it does demonstrate how to format the return data as required by the
calling method.

To run the SelectNetworkSystemForNetDesign sample code:

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-8 of B-34

1. Through the UI, define a synchronous extension with the name
SelectNetworkSystemForNetDesign.

2. Through the UI, associate the SelectNetworkSystem execution point with your newly
created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Network System

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectNetworkSystemForNetDesign.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the directory
in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

The keys in this file are listed below in the provided sample data. The sample data
represents the network system properties that would be designed as part of automation of
NETDSGN task. This file is read by the custom extension in step 6, so you must modify the
key values provided in the sample data to represent the actual corresponding data in your
database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign this
task to the SYSTEM work queue.

The following example shows the SelectNetworkSystemForNetDesign.xml file format when
using the SelectNetworkSystem execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<RETURNDATA KEY="NS_ID" VALUE="user input value"/>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="user input value"/>
<RETURNDATA KEY="NS_TEMPLATE_NAME" VALUE="user input value"/>
<RETURNDATA KEY="SHORT_NAME" VALUE="user input value"/>
<RETURNDATA KEY="LONG_NAME" VALUE="user input value"/>
<RETURNDATA KEY="DESC_100" VALUE="user input value"/>
<RETURNDATA KEY="HARD_SOFT_ASSIGN_CD" VALUE="user input value"/>
<RETURNDATA KEY="CUSTOMER_SYS_ID" VALUE="user input value"/>
<RETURNDATA KEY="PROVIDER_SYS_ID" VALUE="user input value"/>
<CUSTOM_ATTRIBUTE NAME="user input value">
<VALUE>user input value</VALUE>
</CUSTOM_ATTRIBUTE>
<CUSTOM_ATTRIBUTE NAME="user input value">
<!-- to delete existing CA value below tag should be used(applicable
for multi-valued CA's)-- >
<VALUE DELETE="TRUE">CA Value</VALUE>
</CUSTOM_ATTRIBUTE>
<!—- add custom attribute tags as needed, depending on CA's that are
populated for the network system -->
</SAMPLEDATA>

Table B-1 describes the keys in the SelectNetworkSystemForNetDesign.xml file.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-9 of B-34

Table B-1 SelectNetworkSystemForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C" for new
and change
activities

NS_TEMPLATE_

NAME

Network system template name For New activity,
this field is
mandatory

String N/A

SHORT_NAME Network system name Few New activity,
this field is
mandatory

String N/A

LONG_NAME Long name for network system Optional String N/A

DESC_1OO Network system description Optional String N/A

NS_ID Network system ID (can be
populated in update activity)

Optional Int N/A

HARD_SOFT_ASSIGN_C
D

Hard soft value Optional String HARD/SOFT/
NONE

CUSTOMER_SYS_ID Customer system ID N/A String N/A

PROVIDER_SYS_ID Provider system ID Optional String N/A

NAME

(custom attribute name)

CA name Mandatory if CA
has to be
populated

String N/A

VALUE

(custom attribute value)

CA value Mandatory if CA
has to be
populated

String N/A

SelectCustEdgeCompForNetDesign
The use of the Select Customer Edge Component execution point is demonstrated through the
SelectCustEdgeCompForNetDesign sample code.

The SelectCustEdgeCompForNetDesign sample is provided to show extension logic that
selects a customer edge components for a network design automation. The sample logic reads
the expected values (which are listed below in sample XML file) from the corresponding XML
file, but shows how to return the data that the Select Customer Edge Component execution
point is expecting. Even though the sample logic uses values from an XML file instead of
performing actual logic to retrieve those values, it does demonstrate how to format the return
data as required by the calling method.

To run the SelectCustEdgeCompForNetDesign sample code:

1. Through the UI, define a synchronous extension with the name
SelectCustEdgeCompForNetDesign.

2. Through the UI, associate the Select Customer Edge Component execution point with your
newly created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Customer Edge Component

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-10 of B-34

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectCustEdgeCompForNetDesign.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the directory
in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

The keys in this file are listed below in the provided sample data. This data represents the
customer edge component properties that would be designed as part of NETDSGN task
automation. This file is read by the custom extension in step 6, so you must modify the key
values provided in the sample data to represent the actual corresponding data in your
database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign this
task to SYSTEM work queue.

The following example shows the SelectCustEdgeCompForNetDesign.xml file format when
using the Select Customer Edge Component execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<CUSTOMEREDGE>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="N"/>
<RETURNDATA KEY="CE_NAME" VALUE="user input value"/>
<RETURNDATA KEY="CE_LOCATION_NAME" VALUE="user input value"/>
<RETURNDATA KEY="CE_TYPE" VALUE="CUST_SITE"/>
<RETURNDATA KEY="CE_NUMBER" VALUE="12"/>
<CUSTOM_ATTRIBUTE NAME=" user input value ">
<VALUE>CA Value</VALUE>
<!-- to delete existing CA value below tag should be
used(applicable for multi-valued CA's)-- >
<VALUE DELETE="TRUE">CA Value</VALUE>
</CUSTOM_ATTRIBUTE>
<!-— add custom attribute tags as many as you want depending on CA's
that need to be populated for network systems -->
</CUSTOMEREDGE>
<!—- add custom attribute tags as needed, depending on CA's that are
populated for the network system -->
</SAMPLEDATA>

Table B-2 describes the keys in the SelectCustEdgeCompForNetDesign.xml file.

Table B-2 SelectCustEdgeCompForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C" for new
and change
activities

CE_NAME Customer edge component name For New activity,
this field is
mandatory

String N/A

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-11 of B-34

Table B-2 (Cont.) SelectCustEdgeCompForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

CE_NUMBER Integer number used with
CE_NAME to uniquely identify each
CE

Optional Int N/A

CE_LOCATION_

NAME

CLLI code of customer edge
location. It should be the same as
location name on the order.

For New activity,
this field is
mandatory.

String N/A

CE_TYPE Type of customer edge component For New activity,
this field is
mandatory.

String Sample data:
CUST_SITE,
CE_RTR

NS_COMP_ID Network component ID (can be
populated in update activity)

Optional Int N/A

NETWORK_ELEMENT_ID Network element ID Optional String N/A

NAME

(custom attribute name)

CA name Mandatory if CA
has to be
populated

String N/A

NAME

(custom attribute value)

CA value Mandatory if CA
has to be
populated

String N/A

SelectConnectionEndPoints
The use of the Select End Component For Physical Connection execution point is
demonstrated through the SelectConnectionEndPoints sample code.

The SelectConnectionEndPoints sample is provided to show extension logic that selects a
connection end point for each physical connection present on a PSR order. The sample logic
reads the expected values (which are listed below in a sample XML file) from the
corresponding XML file, but shows how to return the data that the Select End Component For
Physical Connection execution point is expecting. Even though the sample logic uses values
from an XML file instead of performing actual logic to retrieve those values, it does
demonstrate how to format the return data as required by the calling method.

Perform the following steps to run the SelectConnectionEndPoints sample code:

1. Through the UI, define a synchronous extension with the name
SelectConnectionEndPoints.

2. Through the UI, associate the Select End Component For Physical Connection execution
point with your newly created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - SelectEndComponentForPhysicalConnection

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectConnectionEndPoints.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the directory

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-12 of B-34

in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

The keys in this file represent the desired Network System (NS_ID) and Component
(NS_COMP_ID) for the virtual connection to be provisioned to. This file is read by the
custom extension in step 6, and therefore you must modify these key values to represent
the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign this
task to SYSTEM work queue.

The following example shows the SelectConnectionEndPoints.xml file format when using
the Select End Component For Physical Connection execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<CONNECTION>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="(N)ew or (C)hange"/>
<RETURNDATA KEY="CE_NAME" VALUE="customer edge comp name"/>
<RETURNDATA KEY="CE_NUMBER" VALUE="customer edge number"/>
<RETURNDATA KEY="PE_NAME" VALUE="provider edge name"/>
<RETURNDATA KEY="PE_NUMBER" VALUE="provider edge number"/>
<RETURNDATA KEY="PE_NETWORK_NAME" VALUE="network system name of PE"/>
<RETURNDATA KEY="CONNECTION_ECCKT" VALUE="connection name"/>
<RETURNDATA KEY="PE_PARENT_NETWORK_NAME" VALUE="outer network of PE"/>
<!— CONNECTION tags can be added as needed, depending on the number of
physical connections on the order. -->
</SAMPLEDATA>

Table B-3 describes the keys in the SelectConnectionEndPoints.xml file.

Table B-3 SelectConnectionEndPoints Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C"

CE_NAME Customer edge component name.

This should be the CE_NAME
value returned from the
SelectCusotmerEdgeComponent
exeution point.

This is one end of the connection.

For New activity,
this field is
mandatory.

String N/A

CE_NUMBER Integer number used with
CE_NAME to uniquely identify
each CE.

This should be the CE_NUMBER
value returned from the
SelectCustomerEdgeComponent
execution point.

Optional Int N/A

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-13 of B-34

Table B-3 (Cont.) SelectConnectionEndPoints Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

PE_NAME Provider edge component name.

This is the other end of the
connection.

For New activity,
this field is
mandatory.

String N/A

PE_NUMBER Integer number used with
PE_NAME to uniquely identify
each PE.

Optional Int N/A

PE_NETWORK_NAME Represents immediate parent
network system of PE.

This network should have a
component with PE_NAME and
PE_NUMBER values.

For New activity,
this field is
mandatory.

String N/A

PE_PARENT_

NETWORK_NAME

This field is useful when multiple
layers of embedded networks exist
for PE.

Optional String N/A

CONNECTION_

ECCKT

Connection name Mandatory String N/A

SelectCustEdgeEquipForNetDesign
The use of the Select Equipment For CE execution point is demonstrated through the
SelectCustEdgeEquipForNetDesign sample code.

The SelectCustEdgeEquipForNetDesign sample is provided to show extension logic that
selects an equipment and customer edge component so that the customer edge can be
associated with equipment. The sample logic reads the expected values (which are listed
below in a sample XML file) from the corresponding XML file, but shows how to return the data
that the Select Equipment For CE execution point is expecting. Even though the sample logic
uses values from an XML file instead of performing actual logic to retrieve those values, it does
demonstrate how to format the return data as required by the calling method.

To run the SelectCustEdgeEquipForNetDesign sample code:

1. Through the UI, define a synchronous extension with the name
SelectCustEdgeEquipForNetDesign.

2. Through the UI, associate the Select Equipment For CE execution point with your newly
created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Equipment For CE

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectCustEdgeEquipForNetDesign.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the directory
in which the MetaSolv Solution software is installed and server is the name of the
WebLogic server.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-14 of B-34

The keys in this file represent the desired Network System (NS_ID) and Component
(NS_COMP_ID) for the virtual connection to be provisioned to. This file is read by the
custom extension in step6, and therefore you must modify these key values to represent
the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign this
task to SYSTEM work queue.

The following example shows the SelectCustEdgeEquipForNetDesign.xml file format when
using the Select Equipment For CE execution point:

<?xml version="1.0" encoding="UTF-8"?>
<SAMPLEDATA>
<CUSTOMEREDGE NAME="CE name"
CE_NUMBER="CE number"
EQUIPMENT_ID="equipment id" />
</CUSTOMEREDGE>
<!—- add CUSTOMEREDGE tags as needed, depending on number of equipments
associated with customer edge comp -->
</SAMPLEDATA>

Table B-4 describes the keys in the SelectCustEdgeEquipForNetDesign.xml file.

Table B-4 SelectCustEdgeEquipForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

CE_NAME Customer edge component name.

This should be the CE_NAME value returned
from the SelectCusotmerEdgeComponent
execution point.

Mandatory String N/A

CE_NUMBER Integer number used with CE_NAME to
uniquely identify each CE.

This should be the CE_NUMBER value
returned from the
SelectCusotmerEdgeComponent execution
point.

Optional Int N/A

EQUIPMENT_ID Equipment ID Mandatory Int N/A

DS0/DS1 Automated Design
The use of the DS0/DS1 Automated Design execution point is demonstrated through the
FacilityAutomatedDesign sample code.

The FacilityAutomatedDesign sample logic in the Java file shows the users how to provide the
desired input assignment information (which is listed in the tables below). The sample logic
demonstrates how to format and pass the data as required by the calling method.

To run the FacilityAutomatedDesign sample code:

1. Through the UI, define a synchronous extension with the name FacilityAutomatedDesign.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-15 of B-34

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

• Building Block: Connection

• Process Point: Connection Design

• Action Type: DS0/DS1 Automated Design

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the FacilityAutomatedDesign file in the MSLV_Home/server/appserver/
samples/customExtension/com/metasolv/custom/vendor/extension/
FacilityAutomatedDesign directory, where MSLV_Home is the directory in which the
MetaSolv Solution software is installed and server is the name of the WebLogic server.

The parameters in this file are listed below in the provided sample data. The sample data
represents the assignments that would be designed as part of automation of the
AUTODSGN task. This file is read by the custom extension in step 6, so you must modify
the parameter values provided in the sample data to represent the actual corresponding
data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

• Assign a provisioning plan to the order that defines the AUTODSGN task and assign
this task to SYSTEM work queue.

Table B-5 describes the input parameters that need to be set in
com.mslv.core.pi.internal.NetProv.ConnDesign.containerData.ProvisioningContainer.

Table B-5 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ProvisioningContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

networkBlocks Collection of all the Network
Assignment containers -
NetworkAssignmentData.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Optical
Provisioning
needs to be done.

faciltyBlocks Collection of all the Facility
Assignment containers -
ChannelContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Facility
Assignment
needs to be done.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-16 of B-34

Table B-5 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ProvisioningContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

equipmentBlocks Collection of all the Equipment
Assignment containers -
PortContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Equipment
Assignment
needs to be done.

cableBlocks Collection of all the Cable Pair
Assignment containers -
CablePairBlockContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Cable Pair
Assignment
needs to be done.

crossReferenceBlock
s

Collection of all the Cross
Reference containers -
CrossReferenceContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Cross Reference
needs to be
added.

miscInfoBlocks Collection of all the
Miscellaneous Information. The
miscellaneous information has to
be passed in a String variable.
Only 16 characters can be added
in one design line and the rest
will be wrapped in the
subsequent lines. The first 160
characters will be taken for the
assignment if the length exceeds
160 characters.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Miscellaneous
Information needs
to be added.

foreignInfoBlocks Collection of all the Foreign Info
containers -
ForeignInfoContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
Foreign Info
needs to be
added.

notesBlocks Collection of all the Notes
containers - NotesContainer.

Optional Vector If not provided in
the Custom
Extension code,
AUTODSGN
assumes no
notes are to be
added.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-17 of B-34

Table B-6 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NetworkAssignmentData.

Table B-6 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NetworkAssignmentData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

channelAssignments Collection of all the Channel
Assignment containers - one
element for one channel position.

At least one element is
mandatory

Vector of
ChannelAssignm
entData

If no element is
present in the
ChannelAssign
ments Vector,
the AUTODSGN
task will error
out.

portAssignments Collection of all the Port
Assignment containers.

Optional Vector of
PortAssignmentD
ata

N/A

commonNetworkNsId Network ID of common Network
System

Mandatory Int Should be a
valid Network
system ID,
otherwise the
AUTODSGN
task will error
out.

origCompId Originating Component ID Mandatory Int Should be a
valid Component
Id within the
Network
specified above,
otherwise the
AUTODSGN
task will error
out.

termCompId Terminating Component ID Mandatory Int Should be a
valid Component
ID within the
Network
specified above,
otherwise the
AUTODSGN
task will error
out.

additionalAssignment
SeqNbr

Additional assignment sequence
number

Optional Int N/A

blockType WP: Working Path

PP: Protect Path (implies wp + pp)

Mandatory String WP and PP are
the only valid
values,
otherwise the
AUTODSGN
task will error
out.

Table B-7 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelAssignmentData.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-18 of B-34

Table B-7 Input Parameters to Set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelAssignmentData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

parentCircuitDesignId Circuit Design ID of the Parent
Connection.

Mandatory Int Should be a valid
Circuit Design ID
within the Network
specified above,
otherwise the
AUTODSGN task
will error out.

circuitPositions Circuit positions from the root
parent circuit.

Mandatory ArrayList If given positions
are not valid, the
AUTODSGN task
will error out.

protectPathIndicator Y: Yes (for protect path segment)

N: No (for working path segment)

Mandatory Char If not populated
with one of the
mentioned values,
the AUTODSGN
task will error out.

mainNetworkNsId Network System ID. Optional Int Should be a valid
Network System ID.

sameChannelIndicator Same channel Indicator. Optional Char N/A

Table B-8 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortAssignmentData.

Table B-8 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortAssignmentData.

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

Root Equipment id This represents base equipment (rack)
on which required CARD is mounted.

Mandatory long If this is provided
in input, but does
not exist in the
inventory, the
AUTODSGN task
will error out.

associatedToOrig True: port associated at Originating
Node.

False: Port associated at Terminating
Node

Mandatory Boolean N/A

Port Sequence Port on the equipment to which the
connection needs to be assigned.

Mandatory long If not provided, the
AUTODSGN task
will error out.

mountingPositions List of mounting position numbers. This
represents position of CARD with
respect to RACK (root equipment) to
which connection has to be assigned.

Optional ArrayList N/A

Table B-9 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelContainer.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-19 of B-34

Table B-9 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

parentCircuitId Circuit Design ID of the Parent
Connection.

Mandatory Int Should be a valid
Circuit Design ID,
otherwise the
AUTODSGN task
will error out.

channelPositionNbr Circuit position to which the child
circuit should be assigned.

Mandatory Int If given position is
not valid, the
AUTODSGN task
will error out.

Table B-10 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortContainer.

Table B-10 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

equipmentId The equipment on which the port
assignment has to be made.

Mandatory Int If this is provided in
input, but does not
exist in the
inventory, the
AUTODSGN task
will error out.

Port Sequence Port on the equipment to which the
connection needs to be assigned.

Mandatory Int If given port address
is not valid, the
AUTODSGN task
will error out.

aZOtherCd The code which identifies the side of
the port assignment.

Mandatory Char The valid values are
A, Z and O.

Table B-11 describes the input parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer.

Table B-11 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

sideOfCircuitInd The indicator which determines the
side of the circuit where the cable
pair assignment has to be made. The
valid values are A, Z and I.

Mandatory Char If the value is
anything other than
A, Z and I, the
AUTODSGN task
will error out.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-20 of B-34

Table B-11 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

sideOfCircuitSequenc
eNumber

The sequence number to identify the
specific cable pair assignment within
a Cable Pair Block. There can be
multiple cable pair assignments
under the sideOfCircuitindicator 'I'.

Conditional Boolean Mandatory if the
sideOfCircuitInd is 'I'

cablePairSetVector Collection of all the Cable Pair Set
information.

Mandatory Vector of
CablePairS
etContainer

N/A

Table B-12 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairSelfContainer

Table B-12 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairSetContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

additionaldBLoss Allows the user to enter additional
DB Loss for that Cable Pair Set.

Optional Float N/A

additionalResistance Allows the user to enter additional
Resistance for that Cable Pair Set.

Optional Float N/A

cableContainerVector Collection of all the Cable pair
information.

Mandatory Vector of
CableContai
ner

N/A

Table B-13 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer.

Table B-13 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

cableId The cable ID of the desired Cable. Mandatory Int If this does not exist in the
inventory, the
AUTODSGN task will
error out.

cableComplementId The Cable Complement ID of the
desired Cable complement.

Mandatory Int If this does not exist in the
inventory, the
AUTODSGN task will
error out. The
Complement should have
the above mentioned
cable ID associated to it.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-21 of B-34

Table B-13 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

pairFibreChannelIden
tifier

The identifier of the desired pair or
fibre.

Mandatory Int The pair should exist for
the specified Cable and
Cable Complement and
be in unassigned status. If
not, the AUTODSGN task
will error out.

functionCode The Function code for the pair. Conditional

This code is optional if
the user preference,
Functional Code is
Required, is set to N.

String If the specified value is
not one from the valid
value list - T, R, S1, S2,
X1, X2 - the AUTODSGN
task will error out.

pendingDate The pending date of the pair. Optional String Should be a valid date, if
not the AUTODSGN task
will error out.

remarks Remarks for the pair. Optional String The terminal pair should
be in unassigned status. If
not, the AUTODSGN task
will error out.

terminalPairsOriginati
ng

The terminal pairs to be assigned
on the Originating end if the
Originating location is a Terminal
Pair.

Optional Int [] The terminal pair should
be in unassigned status. If
not, the AUTODSGN task
will error out.

terminalPairsTerminat
ing

The terminal pairs to be assigned
on the Terminating end if the
Terminating location is a Terminal
Pair.

Optional Int [] If this does not exist in the
inventory, the
AUTODSGN task will
error out.

separationsRouteCod
e

The Identifier of the Separations
route code to be assigned to the
Pair assignment.

Optional String If this does not exist in the
inventory, the
AUTODSGN task will
error out.

srLocationdId The originating location of the
Separations Route.

Conditional Int It is mandatory if the
separations route code is
populated in the
container. Also, if the
combination of
Separations Route code,
Originating location ID
and terminating location
ID is invalid, the
AUTODSGN task will
error out.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-22 of B-34

Table B-13 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

srLocationdId2 The terminating location of the
Separations Route.

Conditional Int It is mandatory if the
separations route code is
populated in the
container. Also, if the
combination of
Separations Route code,
Originating location ID
and terminating location
ID is invalid, the
AUTODSGN task will
error out.

numOfWires The number of wires to be
assigned.

Optional Int N/A.

Table B-14 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContainer.

Table B-14 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

crossReferenceType The type of the Cross reference. Optional String If not provided, the
value will be taken from
the preference. If
provided, the value
should be one from the
valid value list -
SYNONYM,
ALIASCUSTOMER,
ALIASPROVIDER,
CHILD, CKR.

crossReferenceValue The Cross Reference value to be
assigned.

Mandatory String If not provided, the
AUTODSGN task will
error out.

status The status of the Cross reference
circuit.

Optional Char N/A

accessProviderServCe
nter

The ICSC (Inter-Exchange Carrier
Service Provider Code) value to
be assigned.

Optional String The value should be a
valid ICSC, if not, the
AUTODSGN task will
error out.

accessCust The CCNA (Customer Carrier
Naming Abbreviation) value to be
assigned.

Optional String The value should be a
valid CCNA, if not, the
AUTODSGN task will
error out.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-23 of B-34

Table B-14 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

associatedLocationId The location ID corresponding to
the Location to be assigned. For
End User locations, the ID in the
location_id_sr column from
End_user_location table should
be used.

Optional Int The value should be a
valid Location ID, if not,
the AUTODSGN task
will error out.

Table B-15 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerDataForeignInfoContainer.

Table B-15 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ForeignInfoContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

AZTransmissionLevel The value to be entered in the
AZTransmissionLevel column of
the Design line.

Optional String N/A

noteIndicator The value to be entered in the
note indicator column.

Optional Char If the value is
one in the
following list - I,
O, D or 0 - the
AUTODSGN
task will error
out.

equipTypeFacilityDesig The value to be entered in the
equipTypeFacilityDesig column of
the Design line.

Optional String N/A

incrementalMileage The value to be entered in the
incrementalMileage column of the
Design line.

Optional String N/A

location The value to be entered in the
location column of the Design
line.

Optional String N/A

miscInfo The value to be entered in the
miscInfo column of the Design
line.

Optional String N/A

relayRackFacilityType The value to be entered in the
relayRackFacilityType column of
the Design line.

Optional String N/A

signalVoice The value to be entered in the
signalVoice column of the Design
line.

Optional String N/A

unitChannel The value to be entered in the
unitChannel column of the Design
line.

Optional String N/A

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-24 of B-34

Table B-15 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ForeignInfoContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

ZATransmissionLevel The value to be entered in the
ZATransmissionLevel column of
the Design line.

Optional String N/A

Table B-16 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NoteContainer.

Table B-16 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NotesContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

noteIndicator The value to be entered in
the note indicator column.

Mandatory Char If this is not provided in
input, the AUTODSGN task
will error out. If the value is
one in the following list - I,
O, D or 0 - the AUTODSGN
task will error out.

noteText The value to be entered as a
note to the circuit.

Mandatory String If this is not provided in
input, the AUTODSGN task
will error out.

ConnectionIdAutomation
The use of the Connection Id Automation execution point is demonstrated through the
ConnectionIdAutomation sample code.

The ConnectionIdAutomation sample is provided to show extension logic that receives the
information required for the Connection Id generation. The sample logic reads the expected
values (which are listed below in a sample XML file) from the corresponding XML file, but
shows how to return the data that the Connection Id Automation execution point is expecting.
Even though the sample logic uses values from an XML file instead of performing actual logic
to retrieve those values, it does demonstrate how to format the return data as required by the
calling method.

Perform the following steps to run the ConnectionIdAutomation sample code:

1. Through the UI, define a synchronous extension with the name ConnectionIdAutomation.

2. Through the UI, associate the Connection Id Automation execution point with your newly
created extension by searching for the following criteria:

• Building Block: Connection

• Process Point: Connection Design

• Action Type: Connection Id Automation

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-25 of B-34

4. Navigate to the ConnectionIdAutomation.xml file in the MSLV_Home/server/ appserver/
samples/customExtension/xml directory, where MSLV_Home is the directory in which
the MetaSolv Solution software is installed and server is the name of the WebLogic server.

The keys in this file represent the desired information using which the Connection Id
should be generated. This file is read by the custom extension in step 6, and therefore you
must modify these key values to represent the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the CKTID task and assign this
task to SYSTEM work queue.

Notes:

• The CKTID Task Automation is applicable only to the circuits that are ordered through
PSR.

• The out-of-the-box algorithm applies the automated circuit id generation to traditional
circuits (CIRCUIT and INTRNCKT Item types) and template-based connections
(CONNECTOR item types).

• The out-of-the-box functionality for traditional circuits generates either CLS or CLF type
circuits.

• The out-of-the-box functionality for template-based connections uses the current process
to generate OTS type circuits.

• The only valid connection formats for the custom extension and out-of-the-box functionality
are CLS, CLF, OTF, and OTS.

• The only valid circuit types are C, F, and S.

• If the custom extension does not pass back an ID for CLS or CLF formats, the core code
builds the correctly formatted ID.

• If the custom extension does not pass back an ID for OTS, the core code appends the
Constant for Freeformat Circuit ID preference with “/" and a unique serial number to
generate a unique ID.

• Network Location A and Z typically comes from the order information.

• If CE process point is not defined, then out-of-the-box functionality generates the
Connection ID and other mandatory data that is required for circuit generation.

• The information that is populated on the order is used for the out-of-the-box functionality
and for the extension logic. If the extension does not populate information that is populated
on the order, the order information is used. If the extension populates the information
differently than the order, the extension information is used. If the extension does populate
the information differently than the order, the order information remains intact and the
process does not update the original order information.

• Prior to 6.2.1, the current logic is used for template-based connections. If you have defined
a stored procedure to define the Connection ID, it continues to still define the Connection
ID. If you have not defined a stored procedure, the current default logic is run. You can
completely customize all the circuit information on a template-based connection using the
new extension.

• Currently, when you double-click the CKTID task and if there are CONNECTORS included
in the task, the InvAutoIdProcess method is called to automatically generate the

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-26 of B-34

Connection ID. The code verifies if this extension has been implemented, if it has, then the
InvAutoIdProcess method is not run. An extension is considered implemented if an
Extension Point has been associated to the Extension Summary.

• If the custom extension does not pass back an ID for OTS, the core code appends the
Constant for Freeformat Circuit ID preference with “/" and a unique serial number to
generate a unique ID.

The following fields are populated on the PSR Order:

• Document Number

• Serv Item Id

• Item Type Cd

• Item Alias

• Rate Code

• Framing

• Line Coding

• Framing ANSI indicator

• Jurisdiction Code

• Service Type Category

• Service Type Code

• Network Location A (Originating Location)

• Network Location Z (Terminating Location)

Note

There is currently an inconsistency between traditional and template-based
connections and that is being addressed on another task.

The following example shows the ConnectionIdAutomation.xml file format when using the
Connection Id Automation execution point:

<?xml version="1.0" encoding="UTF-8"?>
<SAMPLEDATA>
<RETURNDATA KEY="NETWORK_LOCATION_A" VALUE=""/>
<RETURNDATA KEY="NETWORK_LOCATION_Z" VALUE=""/>
 <RETURNDATA KEY="RATE_CODE" VALUE="DS1"/>
 <RETURNDATA KEY="SERVICE_TYPE_CATEGORY" VALUE="CLCI-SS LATA Access"/>
 <RETURNDATA KEY="SERVICE_TYPE_CODE" VALUE="DO"/>
 <RETURNDATA KEY="CONNECTION_TYPE" VALUE="S"/>
 <RETURNDATA KEY="CONNECTION_FORMAT" VALUE="CLS"/>
 <RETURNDATA KEY="FRAMING" VALUE="CBIT"/>
 <RETURNDATA KEY="LINE_CODING" VALUE="2B1Q"/>
 <RETURNDATA KEY="FRAMING_ANSI_INDICATOR" VALUE="Y"/>
 <RETURNDATA KEY="ALLOW_LOWER_RATES_INDICATOR" VALUE="Y"/>
 <RETURNDATA KEY="JURISDICTION_CODE" VALUE="0"/>
 <RETURNDATA KEY="PROTECTED_CIRCUIT_INDICATOR" VALUE="N"/>
 <RETURNDATA KEY="PARTITION_GROUP_ID" VALUE=""/>
 <RETURNDATA KEY="PREFIX" VALUE="EX"/>
 <RETURNDATA KEY="MODIFIER" VALUE="--"/>
 <RETURNDATA KEY="SERIAL_NUMBER" VALUE=""/>
 <RETURNDATA KEY="SUFFIX" VALUE=""/>

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-27 of B-34

 <RETURNDATA KEY="TELCO_ID" VALUE="QFWU"/>
 <RETURNDATA KEY="SEGMENT" VALUE=""/>
 <RETURNDATA KEY="NETWORK_CHANNEL_SERVICE_CODE" VALUE=""/>
 <RETURNDATA KEY="NETWORK_CHANNEL_OPTION_CODE" VALUE=""/>
 <RETURNDATA KEY="FACILITY_DESIGNATION" VALUE=""/>
 <RETURNDATA KEY="FACILITY_TYPE" VALUE=""/>
 <RETURNDATA KEY="GENERATED_CONNECTION_ID" VALUE=""/>
</SAMPLEDATA>

Table B-17 describes the input parameters that need to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData.

Table B-17 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Sample/
Valid
Values

NETWORK_LOC
ATION_A

Location ID value of the primary location on the
network location table. Network Location A typically
comes from the order information.

Mandatory Int N/A

NETWORK_LOC
ATION_Z

Location ID value of the secondary location on the
network location table. Network Location Z typically
comes from the order information.

Conditional.

Mandatory for circuit
type F or S.

Optional for circuit type
C.

Int N/A

RATE_CODE The rate code of the circuit. Optional String N/A

SERVICE_TYPE
_CATEGORY

The service type category of the circuit. Mandatory String N/A

SERVICE_TYPE
_CODE

The service type code of the circuit. Mandatory String N/A

CONNECTION_T
YPE

The circuit type of the connection. Mandatory Char Valid
values:

• C
• F
• S

CONNECTION_F
ORMAT

The format of the connection to be created. Mandatory String Valid
values:

• CLF
• CLS
• OTS
• OTF

LINE_CODING The line coding value to be assigned to the circuit. Optional String N/A

FRAMING The framing value to be assigned to the circuit. Optional String N/A

FRAMING_ANSI
_INDICATOR

The framing ANSI value to be assigned to the
circuit.

Optional Char N/A

ALLOW_LOWER
_RATES_INDICA
TOR

The allow lower rate indicator to be stored for the
circuit.

Default is N.

Optional Char N/A

JURISDICTION_
CODE

The Jurisdiction code of the circuit. Mandatory String N/A

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-28 of B-34

Table B-17 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Sample/
Valid
Values

FACILITY_DESIG
NATION

The facility designation of the circuit to be created.

If the custom extension does not pass back a
designation the core algorithm is used to generate
the designation.

The core algorithm queries all designations between
the two network locations, adds one, and compares
the value to make sure it is within the CLF
Designation Range if it exists. If no range has been
set up, the range is 0-999999.

Conditional.

Mandatory for only CLF.

String N/A

FACILITY_TYPE The type of facility for the circuit.

Defaults to service type code ID if not provided.

Conditional.

Mandatory for only CLF.

String N/A

MODIFIER The modifier to be used for the connection ID
generation in CLS format.

Conditional.

Mandatory for only CLS.

String N/A

TELCO_ID The Telco ID to be used for the connection ID
generation in CLS format.

If this is not provided in the extension, the value in
the preference, Service Request > Connection >
Default Telco Id for Automation to default the Telco
ID, is considered.

Conditional.

Mandatory for only CLS.

String N/A

SERIAL_NUMBE
R

The serial number to be used for the connection ID
generation in CLS format.

The system wide sequence is used to generate
Serial Number if not provided.

Conditional.

Mandatory for only CLS.

String N/A

PARTITION_GRO
UP_ID

Enables you to assign partition group to the
connection.

Conditional.

The field is mandatory if
the security preference,
Use Partition Level
Security for Access to
Inventory Data, is set
to Y. If the extension
does not pass a value
the system defaults the
value to 101 – All
Access.

Int N/A

PROTECTED_CI
RCUIT_INDICAT
OR

The serial number to be used for the connection ID
generation.

Default is N.

Optional Char N/A

NETWORK_CHA
NNEL_SERVICE
_CODE

The network channel service code to be used for the
connection ID generation.

Optional String N/A

NETWORK_CHA
NNEL_OPTION_
CODE

The network channel option code to be used for the
connection ID generation.

Optional String N/A

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-29 of B-34

Table B-17 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Sample/
Valid
Values

PREFIX The prefix value to be used for the connection ID
generation in CLS format.

If the value is not provided, the system uses the
system preference value under Service Request >
Connection > Default Prefix for CLS Circuit IDs.

If preference also is not set, prefix will be 2 empty
spaces.

Conditional.

Mandatory for only CLS.

String N/A

SUFFIX The suffix value to be used for the connection ID
generation in CLS format.

Conditional.

Mandatory for only CLS.

String N/A

SEGMENT The segment value to be used for the Connection ID
generation in CLS format.

Conditional.

Mandatory for only CLS.

String N/A

GENERATED_C
ONNECTION_ID

This parameter holds the generated connection ID.

If the custom extension does not pass back an ID for
CLS or CLF formats, the core code builds the
correctly formatted ID.

If the custom extension does not pass back an ID for
OTS, the core code appends the Constant for
Freeformat Circuit ID preference with “/" and a
unique serial number to generate a unique ID.

Conditional.

Required for OTF.

Optional for CLS, CLF,
and OTF.

String N/A

DedicatedPlantSelection
The DedicatedPlantSelection sample code demonstrates the use of the Select Dedicated Plant
action type.

The DedicatedPlantSelection sample code provides information about how to provide the input
information and return the data.

The sample code reverses the prioritized sort order of the input dedicated plant list and
populates this reversed list in the output dedicated plant list.

To run the DedicatedPlantSelection sample code:

1. Create a synchronous extension with the name DedicatedPlantSelection.

2. Associate the Select Dedicated Plant execution point with the DedicatedPlantSelection
extension by searching for the following criteria:

For the PCONDES Task:

• Building Block Type = Connection

• Building Block Name = All Connections

• Process Point = PCONDES Maintenance

• Action Type = Select Dedicated Plant

For the AUTODSGN task:

• Building Block Type = Connection

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-30 of B-34

• Building Block Name = All Connections

• Process Point = Connection Design

• Action Type = Select Dedicated Plant

3. Ensure that the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by verifying the loggingconfig.xml file located
in the MSLV_Home/server/appserver/config directory.

5. Do one of the following:

• To automate the PCONDES task:

– Enter a PSR order for physical connections.

– Assign a provisioning plan to the order that contains the PCONDES task and
assign this task to the SYSTEM work queue.

• To automate the AUTODSGN task:

– Enter a PSR order for circuits that have either a DS0 or N/A rate code and have
been ordered as either a Circuit or Line product.

– Assign a provisioning plan to the order that contains the AUTODSGN task and
assign this task to the SYSTEM work queue.

Table B-18 lists the input parameters that you must set in
com.mslv.core.api.internal.NetProv.containerData.design.DedicatedPlantExtensionDa
ta.

Table B-18 Input parameters to be set in
com.mslv.core.api.internal.NetProv.containerData.design.DedicatedPlantExtensionData

Parameter Name Description

OutputDedicatedPlantList List of dedicated plants to assign.

This parameter contains the following attributes:

• ded_cc_grp_id: Unique key of the available dedicated plants.
• last_modified_date: Last modified date of the available dedicated plants.
• supports_product: True or False.
• equipment_id: Equipment ID of the card used to build the available dedicated plants.
• item_spec_id: Equipment specification ID of the service being designed.
• item_spec_nm: Equipment specification name of the service being designed.
• priority_seq: Priority sequence of the equipment set on the Plant Administration tab.

ErrorMessage Error message to be sent to the server log.

Create/Update End User Location
The use of the Create/Update End User Location execution point is demonstrated through the
SampleAddressValidation sample code.

The SampleAddressValidation sample is provided to show extension logic that receives the
information required for validating the end user locations when you do any of the following:

• Create or update end user location address information in the PSR Ordering Dialog

• Create or update service locations on a PSR order

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-31 of B-34

• Create or update end user location information on the PRILOC/SECLOC Info tab of the
Product Service Request window

• Create or update end user location address information in the End User Location
Maintenance window

The sample logic reads the expected values from the corresponding XML file and shows how
to return the data that the Create and Update execution points are expecting. In addition, the
sample logic can also access any third party systems, run direct database queries, and so on.

To run the SampleAddressValidation sample code:

1. Define a synchronous extension and specify a name for the extension. For example,
SampleAddressValidation.

The extension name that you define must match the name and letter case of the Java
class (for example, SampleAddressValidation.class) that contains your custom logic.

The SampleAddressValidation.class and SampleAddressValidation.java files are
located at:

MSLV_Home/server/appserver/samples/customExtension/com/metasolv/custom/
vendor/extension/SampleAddressValidation

where:

• MSLV_Home is the directory in which the MetaSolv Solution software is installed

• server is the name of the WebLogic server

2. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

3. Associate the Create/Update End User Location execution point with the
SampleAddressValidation extension by searching using the following criteria:

• Building Block Type = Address

• Building Block Name = All End User Locations

• Process Point = PSR, EUL Maintenance

• Action Type = Create, Update

4. Navigate to the SampleAddressValidation.xml file in the MSLV_Home/server/appserver/
samples/customExtension/xml directory.

The SampleAddressValidation.xml file is read by the custom extension when it is
triggered, and therefore you must modify the file and format the return data as required by
the calling method. See "Sample Address Validation Return Data Format" for more
information.

5. Trigger the execution point by doing one of the following:

• Create or update end user location address information in the PSR Ordering Dialog

• Create or update service locations on a PSR order

• Create or update end user location address information on the PRILOC/SECLOC Info
tab of the Product Service Request window

• Create or update end user location address information in the End User Location
Maintenance window

6. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-32 of B-34

Sample Address Validation Return Data Format
The following are examples of the return data format in the SampleAddressValiation.xml file
for custom extension success, failure, and warning scenarios:

Success Scenario Sample Data

<SAMPLEDATA>
 <RETURNCODE>SUCCESS</RETURNCODE>
 <RETURNTEXT>This is a success message.</RETURNTEXT>
 <ADDRESS></ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

Failure Scenario Sample Data

<SAMPLEDATA>
 <RETURNCODE>FAILURE</RETURNCODE>
 <RETURNTEXT>This is a failure message.</RETURNTEXT>
 <ADDRESS></ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

Warning Scenario Sample Data 1

<SAMPLEDATA>
 <RETURNCODE>WARNING</RETURNCODE>
 <RETURNTEXT>This is a warning message.</RETURNTEXT>
 <ADDRESS>
 <sfname>MSAG</sfname>
 <structureFormatComponents>
 <id>33</id>
 <name>Street Name</name>
 <componentType>N</componentType>
 <value>Demo Street</value>
 </structureFormatComponents>
 </ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

In sample data 1 for the warning scenario, if you leave the <ADDRESSID> tag blank, the
values within the <ADDRESS> tag are considered by the custom extension.

Warning Scenario Sample Data 2

<SAMPLEDATA>
 <RETURNCODE>WARNING</RETURNCODE>
 <RETURNTEXT>This is a warning message.</RETURNTEXT>
 <ADDRESS>
 <sfname>MSAG</sfname>
 <structureFormatComponents>
 <id>33</id>
 <name>Street Name</name>
 <componentType>N</componentType>
 <value>Demo Street</value>
 </structureFormatComponents>
 </ADDRESS>
 <ADDRESSID>153</ADDRESSID>
</SAMPLEDATA>

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-33 of B-34

In sample data 2 for the warning scenario, if you specify a value within the <ADDRESSID> tag,
the values within the <ADDRESS> tag are ignored by the custom extension.

Appendix B
Running the Sample Code

Custom Extensions Developer's Reference
G32677-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 18, 2025
Appendix B-34 of B-34

	Contents
	About This Content
	1 Extensions Overview
	About Custom Extensions
	Extensions
	Execution Points
	Building Block
	Process Point
	Action Type

	Extension Logic
	Invocation Methods
	MetaSolv Solution UI
	Web Service Clients
	CORBA API Clients
	Polling Servers
	Polling Servers and Supported Execution Points

	2 Defining An Extension
	Defining an Extension in the UI
	Type of Extension
	Name of Extension
	Execution Mode
	Associating an Execution Point With an Extension
	Defining the Extension Parameters

	Configuring an Extension
	Configuring Gateway.ini
	Additional Configurations

	Invoking an Extension

	3 Identifying An Execution Point
	Component Options
	Building Block Options
	Process Point Options
	Action Type Options

	Component Combinations

	4 Coding The Extension Logic
	Inheriting From the Extension Framework
	Accessing Data Passed From the Execution Point
	Overview
	Class Details
	Policy Class
	Entity Class

	A Supported Execution Points
	Execution Points
	Assign Queues
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Assign Task Jeopardy
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Change Task Completion Date
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Complete Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Generate Tasks
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Late Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Potentially Late Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Provisioning Plan Default
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Reject Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	System Task Failure
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Gateway Event Failure
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Email CLR/DLR/TCO
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Port Address
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Component or Element for Physical Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Component or Element for Virtual Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Network System
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Customer Edge Component
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select End Component For Physical Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Equipment For CE
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Connection Id Automation
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned Data Validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	DS0/DS1 Automated Design
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Manage Allocation Parameters
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Select Dedicated Plant
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Create/Update End User Location
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	B Extensions Sample Code
	Using Sample Code as a Reference for Best Practices
	Exception Handling
	E-mail Notification
	CORBA API Invocation

	Running the Sample Code
	AssignWorkQueues
	ProvPlanDefault
	ExtensionFrameworkOneWayTest
	SampleExtensionException
	InvokeCorbaAPIExtension
	SelectComponent
	SelectPort
	SelectComponentForVirtual
	SelectNetworkSystemForNetDesign
	SelectCustEdgeCompForNetDesign
	SelectConnectionEndPoints
	SelectCustEdgeEquipForNetDesign
	DS0/DS1 Automated Design
	ConnectionIdAutomation
	DedicatedPlantSelection
	Create/Update End User Location
	Sample Address Validation Return Data Format

