
Oracle® Communications Messaging
Server
System Administrator's Guide

8.1
F15146-03
January 2025

Oracle Communications Messaging Server System Administrator's Guide, 8.1

F15146-03

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxvii

Documentation Accessibility xxvii

Diversity and Inclusion xxvii

Part I Monitoring and Managing Messaging Server

1 Messaging Server System Administration Overview

About Messaging Server 1-1

About Messaging Server Configuration 1-1

Overview of Messaging Server Administration Tasks 1-1

About Messaging Server Administration Tools 1-2

Directory Placeholders Used in This Guide 1-2

2 Overview of Messaging Server Unified Configuration

What Is Messaging Server Unified Configuration? 2-1

Unified Configuration Files 2-2

Enabling Unified Configuration in Messaging Server 2-3

To Determine if Unified Configuration Is Deployed 2-4

Understanding Unified Configuration Limitations 2-4

Using the Repository of Previous Configurations 2-5

To List Configurations 2-5

To Compare Configurations 2-5

Using Legacy Configuration Tools with Unified Configuration 2-5

Separating Roles and Instances 2-6

More About Unified Configuration Options 2-6

Options That Have Passwords 2-6

Restricted Options 2-6

Obsolete Options 2-7

Option Relationships 2-7

Unified Configuration Option Names 2-7

iii

Example of Legacy Configuration and Unified Configuration 2-9

Using Recipes 2-9

To Run a Recipe 2-10

Helpful Commands 2-10

To Show Settings 2-10

To Get Help 2-10

3 Stopping and Starting Messaging Server

Starting and Stopping Services 3-1

To Start and Stop Messaging Server Services 3-1

To Start Up, Shut Down, or View the Status of Messaging Services 3-2

To Specify What Services Can Be Started 3-2

Starting and Stopping a Messaging Server Running in MTA-only Mode 3-3

Stopping and Starting Messaging Services in an HA Environment 3-3

Automatic Restart of Failed or Unresponsive Services 3-5

Overview of Messaging Server Monitoring Processes 3-5

Automatic Restart in High Availability Deployments 3-6

4 Configuring General Messaging Capabilities

Modifying Your Passwords 4-1

Managing Mail Users, Mailing Lists and Domains 4-2

Overview of Messaging Server and LDAP 4-2

To Remove a User from Messaging Server by Using Delegated Administrator 4-2

To Remove a Domain from Messaging Server using Delegated Administrator 4-3

Scheduling Automatic Tasks 4-3

Overview of Scheduling Automatic Tasks 4-3

Scheduler Examples 4-4

Pre-defined Automatic Tasks 4-4

Configuring a Greeting Message 4-4

To Create a New User Greeting 4-4

To Set a Per-Domain Greeting Message 4-5

Setting a User-Preferred Language 4-6

Overview of Setting a User-Preferred Language 4-6

To Set a Domain Preferred Language 4-7

To Specify a Site Language 4-7

Encryption Settings 4-7

Setting a Failover LDAP Server 4-7

iv

5 Configuring and Administering Multiplexor Services

Multiplexor Services in Unified Configuration Overview 5-1

Multiplexor Services 5-2

Multiplexor Benefits 5-2

About Messaging Multiplexor 5-3

How the Messaging Multiplexor Works 5-3

Encryption (SSL) Option 5-4

Certificate-Based Client Authentication 5-5

To Enable Certificate-based Authentication for Your IMAP or POP Service 5-5

User Pre-Authentication 5-5

MMP Virtual Domains 5-6

About SMTP Proxy 5-7

Setting Up the Messaging Multiplexor 5-7

Before You Configure MMP 5-7

Multiplexor Configuration 5-8

To Configure the MMP 5-8

Multiplexor Configuration Options 5-8

Starting the Multiplexor 5-8

Modifying an Existing MMP 5-9

Configuring MMP with SSL or Client Certificate-Based Login 5-9

To Configure MMP with SSL 5-9

To Configure MMP with Client Certificate-based Login 5-10

A Sample Topology 5-10

MMP Tasks 5-11

To Configure Mail Access with MMP 5-11

To Set a Failover MMP LDAP Server 5-11

6 MTA Concepts

The MTA Functionality 6-1

MTA Architecture and Message Flow Overview 6-3

Dispatcher and SMTP Server (Slave Program) 6-3

The Dispatcher 6-4

Creation and Expiration of Server Processes 6-5

To Start and Stop the Dispatcher 6-5

MTA Configuration Overview 6-6

Rewrite Rules 6-6

Channels 6-7

Master and Slave Programs 6-7

Channel Message Queues 6-8

Channel Definitions 6-9

v

The MTA Directory Information 6-10

The Job Controller 6-10

To Start and Stop the Job Controller 6-12

On Demand Mail Relay 6-12

Priority Message Handling 6-13

MTA Command-line Utilities 6-15

7 LMTP Delivery

Overview of LMTP 7-1

LMTP Delivery Features 7-1

LMTP Client and Server to Detect and Respond to Certain Conditions 7-1

Support for LMTP Client and Server to Use UID Extension 7-2

Messaging Processing in a Two-Tiered Deployment Without LMTP 7-3

Messaging Processing in a Two-Tiered Deployment With LMTP 7-4

LMTP Architecture 7-4

Configuring LMTP 7-5

Before You Begin 7-5

To Configure the Front-end MTA Relay with LMTP 7-5

To Configure Back-End Stores with LMTP and a Minimal MTA 7-8

LMTP Protocol as Implemented 7-11

8 Vacation Automatic Message Reply

Vacation Autoreply Overview 8-1

Configuring Autoreply 8-1

To Configure Autoreply on the Back-end Store System 8-2

To Configure Autoreply on a Relay 8-2

To Share Autoreply Information Between Relays 8-3

Vacation Autoreply Theory of Operation 8-3

Vacation Autoreply Attributes 8-4

Other Auto Reply Tasks and Issues 8-6

To Send Autoreply Messages for Email That Have Been Automatically Forwarded from
Another Mail Server 8-6

9 Using and Configuring MeterMaid for Access Control

Overview of MeterMaid 9-1

How MeterMaid Works 9-1

Options for MeterMaid 9-2

Limit Excessive IP Address Connections Using Metermaid – Example 9-7

Configuring check_metermaid.so Clients to Access Multiple MeterMaid Servers 9-8

Considerations for Distributing Load Across Multiple MeterMaid Servers 9-9

vi

Configuring check_metermaid.so to Access Multiple MeterMaid Servers 9-9

10

Implementing Greylisting by Using MeterMaid

About Greylisting 10-1

Basic Greylisting Implementation 10-2

Enhancing Greylisting Functionality 10-3

Preloading the Greylisting Table with Outbound Transactions 10-3

Matching a Range of IP Addresses 10-4

Simplifying the Sender Address 10-4

Providing an Opt-In Mechanism 10-5

Whitelisting Based on User's Addressbook 10-6

Combining Functionality: A Complex Example 10-6

Mapping Table Notes 10-9

11

MeterMaid Reference

configutil Options 11-1

Table Types 11-1

greylisting Tables 11-1

simple Tables 11-1

throttle Tables 11-1

check_metermaid.so Reference 11-1

adjust Routine 11-2

adjust_and_test Routine 11-3

fetch Routine 11-4

greylisting Routine 11-5

remove Routine 11-5

store Routine 11-6

test Routine 11-7

throttle Routine 11-8

12

Administering Event Notification Service

ENS Publisher in Messaging Server 12-1

Configuring the ENS Publisher in Unified Configuration 12-1

Administering Event Notification Service 12-1

Starting and Stopping ENS 12-1

Event Notification Service Configuration Options 12-1

ENS SSL Support 12-2

ENS Support for Password Based Authentication 12-3

vii

13

Messaging Server Specific Event Notification Service Information

Event Notification Types and Options 13-1

Event Types 13-1

Options 13-2

Mandatory Event Reference Options 13-3

Optional Event Reference Options 13-3

Available Options for Each Event Type 13-5

Payload 13-7

Payload Configuration Options 13-7

Examples 13-8

Implementation Notes 13-8

14

Event Notification Service API Reference

ENS C API Overview 14-1

API Basic Usage 14-2

Client API ens_sopen 14-2

API Usage Notes 14-3

Event Notification Service Java (JMS) API 14-3

Sample ENS-JMS Consumer Program 14-3

Sample ENS-JMS Consumer Using Automatic Failover and Properties File 14-5

15

Configuring IMAP IDLE

Benefits of Using IMAP IDLE 15-1

Configuring IMAP IDLE with ENS in Unified Configuration 15-1

Prerequisites for Configuring IMAP IDLE with ENS 15-1

To Configure IMAP IDLE with ENS 15-1

To Disable IMAP IDLE 15-2

16

Lemonade Profile 1 Support

Introduction to Lemonade 16-1

Lemonade Features 16-1

Support for BURL 16-2

IMAP URLAUTH Support 16-3

IMAP CATENATE Support 16-3

IMAP Conditional Store Operation Support 16-3

IMAP ANNOTATE Support 16-3

Controlling IMAP CAPABILITIES Vector 16-4

viii

Support for SMTP Submission Service Extension for Future Message Release 16-4

17

Managing Logging

Overview of Logging 17-1

What Is Logging and How Do You Use it? 17-1

Types of Logging Data 17-1

Types of Messaging Server Log Files 17-2

Tools for Managing Logging 17-3

Tracking a Message Across the Various Log Files 17-4

Managing MTA Message and Connection Logs 17-5

Understanding the MTA Log Entry Format 17-5

Enabling MTA Logging 17-9

Specifying Additional MTA Logging Options 17-9

MTA Message Logging Examples 17-12

Enabling Dispatcher Debugging 17-22

Managing Message Store, Admin, and Default Service Logs 17-24

msconfig Logging Options 17-24

Understanding Service Log Characteristics 17-24

Understanding Service Log File Format 17-26

Defining and Setting Service Logging Options 17-27

Searching and Viewing Service Logs 17-29

Working With Service Logs 17-30

Implementing and Configuring Message Store Transaction Logging 17-31

Overview of Message Store Transaction Logging 17-31

Message Store Transaction Logging Log Entries 17-32

Configuring Message Store Transaction Logging 17-32

Message Store Transaction Log Examples 17-33

Other Message Store Logging Features 17-35

Message Store Logging Examples 17-35

Using Message Store Log Messages 17-37

MMP Logging 17-37

18

Monitoring Messaging Server

Automatic Monitoring and Restart 18-1

Daily Monitoring Tasks 18-1

Checking Postmaster Mail 18-1

Monitoring and Maintaining the Log Files 18-2

Setting Up the msprobe Utility 18-2

Utilities and Tools for Monitoring 18-2

Monitoring Using msstatbot Tool 18-10

ix

Stats Available from the msstatbot Tool 18-11

Installing the msstatbot Tool 18-11

Configuration 18-11

Notes 18-13

Assumptions 18-13

Starting and Stopping Statistics Monitoring 18-13

Querying the Node Statistics 18-14

Log Files 18-15

Uninstalling the msstatbot Tool 18-15

19

Monitoring the MTA

Monitoring the Size of the Message Queues 19-1

Symptoms of Message Queue Problems 19-1

To Monitor the Size of the Message Queues 19-1

Checking for Held messages 19-1

Monitoring Rate of Delivery Failure 19-1

Symptoms of Rate of Delivery 19-2

To Monitor the Rate of Delivery Failure 19-2

Monitoring Inbound SMTP Connections 19-2

Symptoms of Unauthorized SMTP Connections 19-2

To Monitor Inbound SMTP Connections 19-2

Monitoring the Dispatcher and Job Controller Processes 19-3

Symptoms of Dispatcher and Job Controller Processes Down 19-3

To Monitor Dispatcher and Job Controller Processes 19-3

20

SNMP Support

SNMP Implementation 20-1

SNMP Operation in Messaging Server 20-2

Configuring SNMP Support for Oracle Solaris 10 20-3

Net-SNMP Configuration 20-3

Messaging Server Subagent Configuration 20-4

Running as a Standalone SNMP Agent 20-5

Monitoring Multiple Instances of Messaging Server 20-5

Using Standalone Agents for High-availability Failover 20-5

Distinguishing Multiple Instances Through SNMP v3 Context Names 20-6

Messaging Server's Net-SNMP-based SNMP Subagent Options 20-6

Monitoring from an SNMP Client 20-7

SNMP Information from the Messaging Server 20-8

applTable 20-8

assocTable 20-10

x

mtaTable 20-10

mtaGroupTable 20-11

mtaGroupAssociationTable 20-12

mtaGroupErrorTable 20-13

21

Short Message Service (SMS)

Introduction 21-1

One-Way SMS 21-1

Two-Way SMS 21-2

Requirements 21-2

SMS Channel Theory of Operation 21-2

Directing Email to the Channel 21-2

The Email to SMS Conversion Process 21-3

Sample Email Message Processing 21-6

The SMS Message Submission Process 21-6

Site-defined Address Validity Checks and Translations 21-9

Site-defined Text Conversions 21-10

Message Header Entries 21-10

Message Body Entries 21-11

Example SMS Mapping Table 21-11

SMS Channel Configuration 21-13

Adding an SMS Channel 21-13

Adding the Channel Definition and Rewrite Rules 21-14

To Add Channel Definition and Rewrite Rules 21-14

Controlling the Number of Simultaneous Connections 21-15

Setting SMS Channel Options 21-15

Available Options 21-16

Email to SMS Conversion Options 21-18

SMS Gateway Server Option 21-21

SMS Options 21-21

SMPP Options 21-26

Localization Options 21-28

Formatting Templates 21-31

Adding Additional SMS Channels 21-32

Adjusting the Frequency of Delivery Retries 21-33

Sample One-Way Configuration (MobileWay) 21-33

Debugging 21-34

Configuring the SMS Channel for Two-Way SMS 21-34

SMS Gateway Server Theory of Operation 21-35

Function of the SMS Gateway Server 21-35

Behavior of the SMPP Relay and Server 21-36

xi

Remote SMPP to Gateway SMPP Communication 21-36

SMS Reply and Notification Handling 21-37

Routing Process for SMS Replies 21-38

SMS Gateway Server Configuration 21-38

Setting Up Bidirectional SMS Routing 21-39

Set the SMS Address Prefix 21-39

Set the Gateway Profile 21-39

Configure the SMSC 21-39

Enabling and Disabling the SMS Gateway Server 21-40

Starting and Stopping the SMS Gateway Server 21-40

SMS Gateway Server Configuration File 21-40

Configuring Email-To-Mobile on the Gateway Server 21-40

A Gateway Profile 21-40

An SMPP Relay 21-41

An SMPP Server 21-42

Configuring Mobile-to-Email Operation 21-42

Configure a Mobile-to-Email Gateway Profile 21-42

Configure a Mobile-Email SMPP Server 21-43

Configuration Options 21-43

Global Options 21-43

Thread Tuning Options 21-44

Historical Data Tuning 21-45

Miscellaneous 21-46

SMPP Relay Options 21-46

SMPP Server Options 21-48

Gateway Profile Options 21-49

Configuration Example for Two-Way SMS 21-53

SMS Gateway Server Storage Requirements 21-55

SMS Configuration Examples 21-57

22

Configuring Messaging Server for One-Way SMS

23

Configuring Messaging Server for Two-Way SMS

24

Using the iSchedule Channel to Handle iMIP Messages

Inviting Users on Internal and External Calendar Systems Background 24-1

Manually Accepting External Invitations 24-1

Automatically Accepting External Invitations 24-1

xii

Message Server iMIP Configuration Overview 24-2

Configuring the iSchedule Channel for iMIP Messages in Unified Configuration 24-2

Using the iSchedule Recipe to Automate Configuring the iSchedule Channel in Unified
Configuration 24-3

Manually Configuring the iSchedule Channel in Unified Configuration 24-3

Verifying the Calendar Server Configuration 24-5

Modifying iSchedule Channel Options 24-5

To Enable or Disable iMIP Message Processing 24-5

To Modify the iSchedule Service URL 24-6

Configuring the iSchedule Channel in Legacy Configuration 24-6

Troubleshooting the iSchedule Configuration 24-7

25

Handling sendmail Clients

To Create the sendmail Configuration File on Oracle Solaris 8 Platforms 25-1

To Create the sendmail Configuration File on Oracle Solaris 9 Platforms 25-1

26

Handling Forged Email by Using the Sender Policy Framework

About Sender Policy Framework 26-1

SPF Theory of Operations 26-1

SPF Limitations 26-3

SPF Pre-Deployment Considerations 26-3

Setting up the Technology 26-3

Reference Information 26-3

Testing SPF by Using spfquery 26-5

Syntax 26-5

Example with Debugging Enabled 26-6

Handling Forwarded Mail in SPF by Using the Sender Rewriting Scheme (SRS) 26-7

27

Classic Message Store Directory Layout

About the Classic Message Store Directory Layout 27-1

28

Monitoring LDAP Directory Server

Symptoms of slapd Problems 28-1

To Monitor slapd 28-1

29

Monitoring System Performance

Monitoring End-to-end Message Delivery Times 29-1

xiii

Monitoring CPU Usage 29-1

30

Monitoring the Message Store

General Message Store Monitoring Procedures 30-1

Checking Hardware Space 30-1

Checking Log Files 30-1

Checking User IMAP/POP/Webmail Session by Using Telemetry 30-1

Checking stored Processes 30-2

Checking Database Log Files 30-3

Checking User Folders 30-3

Checking for Core Files 30-3

Monitoring imapd, popd and httpd 30-3

Symptoms of imapd, popd and httpd Problems 30-3

To Monitor imapd, popd and httpd 30-4

Monitoring the stored Process 30-4

Symptoms of stored Problems 30-4

To Monitor stored 30-5

Monitoring the State of Message Store Database Locks 30-5

Symptoms of Message Store Database Lock Problems 30-5

To Monitor Message Store Database Locks 30-5

To Monitor Mailbox Quotas and Usage 30-5

To Monitor Message Store Database Statistics with imcheck 30-6

Gathering Message Store Counter Statistics by Using counterutil 30-6

To Get a Current List of Available Counter Objects 30-7

counterutil Output 30-7

Gathering Alarm Statistics by Using counterutil 30-8

IMAP, POP, HTTP, and MMP Connection Statistics by Using counterutil 30-8

Disk Usage Statistics by Using counterutil 30-9

Server Response Statistics 30-9

31

Monitoring User Access to the Message Store

32

Message Archiving

Microsoft Exchange Envelope Journaling 32-1

Archiving Overview 32-1

Message Archiving Systems: Compliance and Operational 32-2

xiv

33

Unified Messaging

Using Messaging Server to Manage Unified Messaging 33-1

What Is the Challenge? 33-1

The Oracle Solution 33-1

Open Standards and Regulatory Requirements 33-1

Architectural Overview of a Unified Messaging Application 33-2

Message Deposit 33-2

Message Retrieval via Telephone User Interface 33-4

Message Retrieval via PC 33-6

Message Retrieval Through an IMAP Client 33-6

Message Retrieval Through Convergence 33-7

Designing and Coding Your Unified Messaging Application 33-8

Planning the Message-Type Configuration 33-8

Coding and Configuring Your UM System 33-9

Mailbox Administration and Operations 33-10

Sample IMAP Sessions Using Message-Type Flags 33-11

Administering Quotas for Message Types 33-12

Expiring Messages by Message Type 33-14

Delivering Notifications for Message Types 33-15

Notifications for Particular Message States 33-16

How Do You Implement Notifications for Message Types? 33-16

Notification Properties for Message Types 33-18

Additional Unified Messaging Support Features 33-20

Set IMAP Flag Based on Header Value at Delivery 33-20

Modifications to IMAP Commands to Provide Message Counts 33-20

IMAP Unauthenticate 33-21

Modify IMAP APPEND to bypass quotas 33-21

SMTP Future Release 33-21

34

Messaging Server Command-Line Reference

configtoxml Command 34-1

Syntax 34-1

Options 34-1

Example 34-2

Notes on the configtoxml Command 34-2

Part II Improving Performance

xv

35

Messaging Server Tuning and Best Practices

Log Files Tips 35-1

LMTP Tips 35-2

Message Store Tips 35-3

MTA Tips 35-3

Performance Tuning Tips 35-3

36

Tuning the mboxlist Database Cache in Unified Configuration

Setting the Mailbox Database Cache Size 36-1

To Adjust the Mailbox Database Cache Size 36-2

To Monitor the Mailbox Database Cache Size 36-3

37

Best Practices for Messaging Server and ZFS

Before You Begin 37-1

Configuration Recommendations for ZFS and Messaging Server 37-1

mboxlist Database, Message File and Index Cache Files Overview 37-1

Index Cache Record File System 37-2

Access Time Record 37-2

ZFS Pool Space Utilization 37-2

To Configure ZFS and Messaging Server 37-2

ZFS Administration Recommendations 37-3

Part III Troubleshooting

38

Troubleshooting the MTA

Troubleshooting Overview 38-1

Standard MTA Troubleshooting Procedures 38-1

Check the MTA Configuration 38-1

Check the Message Queue Directories 38-2

Check the Ownership of Critical Files 38-2

Check that the Job Controller and Dispatcher Are Running 38-2

Check the Log Files 38-3

Running a Channel Program Manually 38-4

Starting and Stopping Individual Channels 38-5

To Stop Outbound Processing (dequeueing) for a Specific Channel 38-5

To Stop Inbound Processing from a Specific Domain or IP Address (Enqueuing to a
Channel) 38-5

An MTA Troubleshooting Example 38-6

xvi

Identify the Channels in the Message Path 38-6

Manually Start and Stop Channels to Gather Data 38-7

Common MTA Problems and Solutions 38-9

TLS Problems 38-9

Changes to Configuration Files or MTA Databases Do Not Take Effect 38-9

The MTA Sends Outgoing Mail but Does Not Receive Incoming Mail 38-10

Dispatcher (SMTP Server) Won't Start Up 38-10

Timeouts on Incoming SMTP Connections 38-10

To Identify the Causes of Timeouts on Incoming SMTP Connections 38-10

Messages Are Not Dequeued 38-11

Creating a New Channel 38-12

MTA Messages Are Not Delivered 38-14

Messages are Looping 38-15

Diagnosing and Cleaning up .HELD Messages 38-15

Received Message is Encoded 38-17

Server-Side Rules (SSR) Are Not Working 38-18

Testing Your SSR Rules 38-18

Common Syntax Problems 38-18

Slow Response After Users Press Send Email Button 38-19

Abnormal Job Controller Terminations Seen in job_controller Logs 38-19

General Error Messages 38-19

Errors in mm_init 38-20

Compiled Configuration Version Mismatch 38-22

Swap Space Errors 38-22

File Open or Create Errors 38-22

Illegal Host/Domain Errors 38-23

Errors in SMTP channels, os_smtp_* errors 38-23

39

Troubleshooting the Message Store

Repairing Mailboxes and the Mailboxes Database (reconstruct Command) 39-1

Reduced Message Store Performance 39-1

Convergence Not Loading Mail Page 39-2

Command Using Wildcard Pattern Does Not Work 39-2

Unknown/invalid Partition 39-2

User Mailbox Directory Problems 39-2

Store Daemon Not Starting 39-3

User Mail Not Delivered Due to Mailbox Overflow 39-3

IMAP Events Become Slow 39-4

xvii

Part IV Managing the Message Store and Mailboxes

40

Managing Mailboxes

To Manage Mailboxes with mboxutil 40-1

Examples 40-1

To Move Mailboxes to a Different Disk Partition 40-2

To Remove Orphan Accounts 40-3

To Find a Mailbox's Directory Using hashdir 40-3

To Find Out How Many Users Have Read Messages in a Shared Folder 40-4

41

Backing Up and Restoring the Message Store

Mailbox Backup and Restore Overview 41-1

To Create a Mailbox Backup Policy 41-2

Peak Business Loads 41-2

Full and Incremental Backups 41-2

Parallel or Serial Backups 41-2

To Create Backup Groups 41-2

Pre-defined Backup Group 41-4

To Run the imsbackup Utility 41-4

Running the imsbackup Utility 41-4

Incremental Backup 41-4

Excluding Bulk Mail When You Perform Backups 41-5

To Restore Mailboxes and Messages 41-5

Considerations for Partial Restore 41-5

To Restore Messages from a Mailbox that Has Been Incrementally Backed-up 41-7

To Use StorageTek Enterprise Backup Software 41-8

To Back Up Data By Using StorageTek Enterprise Backup Software 41-8

Restoring Data Using StorageTek Enterprise Backup Software 41-10

To Use a Third Party Backup Software (Besides StorageTek Enterprise Backup Software) 41-10

Troubleshooting Backup and Restore Problems 41-11

Message Store Disaster Backup and Recovery 41-11

42

Administering Very Large Mailboxes

Very Large Mailboxes Overview 42-1

The Structure of a Mailbox 42-1

Mailbox Size Limit 42-2

Mailbox Migration 42-2

Pre-Deployment Preparations 42-2

xviii

Checking Mailbox Data 42-2

43

Message Store Message Expiration

imexpire Overview 43-1

To Deploy the Message Expiration Feature 43-2

To Define Message Expiration Policy 43-2

Examples of Message Expiration Policy 43-2

To Set Rules Implementing Message Expiration Policy 43-3

Expiration Rules Guidelines 43-3

Localized Mailbox Names in imexpire 43-6

Setting imexpire Rules Textually 43-7

Example imexpire Rules 43-7

Setting imexpire Folder Patterns 43-8

44

Configuring Message Expiration (Tasks)

To Set imexpire Rules Textually 44-1

To Set Expiration Rules by Using the msconfig Command 44-2

To Set imexpire Folder Patterns 44-2

To Schedule Message Expiration and Logging Level 44-3

Expire and Purge Log and Scheduling Options 44-3

To Set imexpire Logging Levels 44-4

To Exclude Specified Users from Message Expiration 44-5

45

Configuring POP, IMAP, and HTTP Services

General Configuration 45-1

Enabling and Disabling Services 45-1

Specifying Port Numbers 45-1

Ports for Encrypted Communications 45-2

IMAP Over SSL 45-2

POP Over SSL 45-2

HTTP Over SSL 45-2

Service Banner 45-2

Login Requirements 45-3

To Set the Separator for POP Clients 45-3

To Allow Log In without Using the Domain Name 45-3

Password-Based Login 45-3

Certificate-Based Login 45-4

Performance Options 45-4

Number of Processes 45-4

xix

Number of Connections per Process 45-5

Number of Threads per Process 45-6

Dropping Idle Connections 45-6

Logging Out HTTP Clients 45-6

Client Access Controls 45-7

To Configure POP Services 45-7

To Configure IMAP Services 45-8

Configuring IMAP IDLE 45-9

To Configure the mshttpd Process for Use by Convergence 45-9

Configuring Your HTTP Service 45-10

46

Handling Message Store Overload

Overview of Managing Message Store Load 46-1

Message Store Load Throttling 46-1

Job Controller Stress Handling 46-1

Default Job Controller Configuration 46-2

47

Managing Message Store Partitions and Adding Storage

Message Store Partition Overview 47-1

To Add a Message Store Partition 47-2

To Change the Default Message Store Partition 47-2

Adding More Physical Disks to the Message Store 47-3

48

Managing Message Store Quotas

Message Store Quota Overview 48-1

Quota Overview 48-1

Quota Theory of Operations 48-2

Message Store Quota Attributes and Options 48-3

To Specify a Default User Quota 48-4

To Specify Individual User Quotas 48-5

To Specify Domain Quotas 48-5

To Set Up Quota Notification 48-6

To Disable Quota Notification 48-7

To Enable or Disable Quota Enforcement 48-7

To Enable Quota Enforcement at the User level 48-7

To Perform Quota Enforcement at the Domain Level 48-7

Disabling Quota Enforcement 48-8

To Set a Grace Period 48-8

xx

Netscape Messaging Server Quota Compatibility Mode 48-8

49

Managing Message Types in the Message Store

To Configure Message Types 49-1

Sending Notification Messages for Message Types 49-2

Administering Quotas by Message Type 49-2

Before You Set Message-Type Quotas 49-2

Methods of Setting Message-Type Quotas 49-2

Example of a Message-Type Quota Root 49-3

Expiring Messages by Message Type 49-4

Example: Sample Rules for Expiring Different Message Types 49-4

50

Managing Shared Folders

Shared Folders Overview 50-1

Specifying Sharing Attributes for Private Shared Folders 50-2

To Create a Public Shared Folder 50-3

To Grant Folder Access Rights Based on Group Membership 50-4

To Set or Change a Shared Folder's Access Control Rights 50-5

Shared Folder Examples 50-5

Enabling or Disabling Listing of Shared Folders 50-6

Setting Up Distributed Shared Folders 50-6

Setting Up Distributed Shared Folders-Example 50-6

Monitoring and Maintaining Shared Folder Data 50-7

To Monitor Shared Folder Usage 50-8

To List Users and Their Shared Folders 50-8

To Remove Inactive Users 50-9

To Set Access Rights 50-9

51

Upgrading the Classic Message Store

Architecture and Components 51-1

Classic Message Store Component Version Compatibilities 51-3

Upgrading the Mailboxes 51-4

Upgrading and Downgrading the Berkeley Database (BDB) 51-4

Database BTREE File 51-5

Database Log Files 51-5

IMAPD, MSHTTPD and Convergence 51-5

Upgrading from Messaging Server 32-bit to 64-bit 51-6

Migrating from x86 to SPARC 51-6

stored -r 51-6

xxi

ims_db_upgrade 51-6

Downgrading 51-7

Significant Changes in the Classic Message Store Between Versions 51-7

Changes from Messaging Server 6.3 to Messaging Server 7.0 51-7

Changes to store.idx 51-7

Classic Message Store Maintenance Queue and impurge 51-7

Mailbox Self-Healing (Auto-Repair) 51-8

Changes from Messaging Server 7 to Messaging Server 7 Update 1 51-8

Berkeley Database Upgrade 51-8

Changes from Messaging Server 7 Update 1 to Messaging Server 7 Update 5 51-8

Changes to the Owner's Seen and Deleted Flags 51-9

Immediate flag update and state sharing 51-9

Change to the service.imap.capability.condstore option 51-9

Changes to the Berkeley Database 51-9

Changes to mboxlist and lockdir BDB environments 51-10

52

Message Store Automatic Recovery On Startup

Overview of Automatic Recovery on Startup 52-1

Automatic Startup and Recovery Theory of Operations 52-1

Error Messages Signifying reconstruct Is Needed 52-2

Message Store Database Snapshot Theory of Operations 52-2

Message Store Database Snapshot Interval and Location 52-2

Message Store Database Snapshot Options 52-3

53

Message Store Maintenance Queue

Message Store Maintenance Queue Overview 53-1

Displaying the Maintenance Queue 53-2

Deleting, Expunging, Purging, and Cleaning Up Messages 53-2

Mailbox Self Healing (Auto Repair) 53-3

Maintenance Queue Configuration Options 53-3

The impurge Command 53-3

54

Message Store Message Type Overview

About Message Type 54-1

Planning the Message-Type Configuration 54-1

Defining and Using Message Types 54-2

Message Types in IMAP Commands 54-2

xxii

55

Migrating Mailboxes to a New System

Tools Summary for Relocating Messaging Server Users to a New Mailhost 55-1

Migrating Mailboxes from an x86 Host to a SPARC Host 55-1

Moving Mailboxes to Another Messaging Server While Online 55-2

Advantages 55-2

Disadvantages 55-2

Incremental Mailbox Migration While Online 55-2

Online Migration Overview 55-3

To Migrate User Mailboxes from One Messaging Server to Another While Online 55-3

To Move Mailboxes Using an IMAP Client 55-7

To Move Mailboxes by Using the imsimport Command 55-8

Migrating Mailboxes from Microsoft Exchange Server to Oracle Communications Messaging
Server 55-9

56

Monitoring Disk Space

Disk Space Overview 56-1

Symptoms of Insufficient Disk Space 56-1

Monitoring Disk Space 56-1

Monitoring the Message Store 56-2

Monitoring Message Store Partitions 56-2

57

Protecting Mailboxes from Deletion or Renaming

58

Reducing Message Store Size Due to Duplicate Storage

Relinker Overview 58-1

Using relinker in the Command Line Mode 58-2

Using Relinker in the Realtime Mode 58-3

Configuring Relinker 58-3

59

Specifying Administrator Access to the Message Store

Overview of Message Store Administrators 59-1

Adding an Administrator Entry 59-1

Modifying or Deleting an Administrator Entry 59-1

xxiii

60

Constructing Valid Message Store UIDs and Folder Names

Message Store User ID 60-1

Message Store Mailbox Name for Commands 60-1

Valid UIDs 60-1

61

Message Store Automatic Failover with Database Replication

Overview of Message Store Database Replication 61-1

Configuration Options 61-3

Configuration Options 61-3

Command-line Utilities 61-4

Configuring Message Store Database Replication 61-4

To Configure a Three Node Cluster for HA 61-5

To Change the DB Replication Local Instance Port 61-5

Message Store Automatic Failover 61-6

Basic Requirements 61-6

Overview of Message Store Automatic Failover 61-6

Configuring Message Store Automatic Failover 61-7

To Configure the LMTP Server 61-7

To Configure the Client 61-8

62

Administering Message Store Database Snapshots (Backups)

To Specify Message Store Database Snapshot Interval and Location 62-1

Message Store Database Snapshot Recovery and Verification 62-2

Message Store Database Snapshot Rolling Backup 62-2

Message Store Database Recovery 62-3

63

Classic Messaging Server and Tiered Storage Overview

Overview of Messaging Server Storage 63-1

Message Store and ZFS 63-2

How the Message Store Works 63-2

Messaging Server Disk Throughput 63-3

Messaging Server Disk Capacity 63-4

Disk Sizing for MTA Message Queues 63-4

MTA Message Queue Performance 63-4

MTA Message Queue Availability 63-4

MTA Message Queue Available Disk Sizing 63-5

Performance Considerations for a Message Store Architecture 63-5

Messaging Server Directories (General Recommendations for Storage) 63-5

MTA Queue Directory 63-6

xxiv

Messaging Server Log Directory 63-6

Mailbox Database Files 63-6

Message Store Index Files 63-6

Message Files 63-6

Mailbox List Database Temporary Directory 63-7

Multiple Store Partitions 63-8

Setting Disk Stripe Width 63-9

MTA Performance Considerations 63-9

MTA and RAID Trade-offs 63-10

Background: Communication Services Logical Architectures Overview 63-10

Two-tiered Logical Architecture 63-10

Benefits of a Two-tiered Architecture 63-10

Horizontal Scalability Strategy 63-12

Scaling Front-end and Back-end Services 63-12

Implementing Local Message Transfer Protocol (LMTP) for Messaging Server 63-12

Background: "How Email Works" Introduction to Messaging Server 63-13

What Does Messaging Server Enable Users to Do? 63-13

A User Decides to Send an Email 63-14

User Receives an Email 63-15

User Access Mailbox 63-16

64

Message Store Command Reference

configutil 64-1

Notes on the configutil Utility 64-5

counterutil 64-6

deliver 64-7

hashdir 64-8

imcheck 64-9

imdbverify 64-12

imexpire 64-13

iminitquota 64-16

immonitor-access 64-17

impurge 64-22

imquotacheck 64-22

imsasm 64-28

imsbackup 64-30

imsconnutil 64-31

imscripter 64-33

imsexport 64-37

imsimport 64-38

imsrestore 64-40

xxv

mboxutil 64-41

mkbackupdir 64-45

msprobe 64-48

msuserpurge 64-49

readership 64-49

reconstruct 64-51

rehostuser 64-55

relinker 64-57

stored 64-59

Part V Managing the Cassandra Message Store

65

Overview of Cassandra Message Store

About the Cassandra Message Store 65-1

Differences in Cassandra Message Store and Classic Message Store 65-1

Scaling Your Cassandra Message Store Deployment Horizontally 65-2

Adding an Access-Tier Node (IMAP/LMTP Server/enpd) 65-2

Managing Your Cassandra Message Store Availability 65-3

Removing an Access-Tier Node (IMAP/LMTP Server/enpd) 65-3

66

About Elasticsearch

Elasticsearch Indexing and Search 66-1

Enabling Elasticsearch 66-1

Differences Between Elasticsearch and Brute-Force IMAP Searching 66-2

Wildcard Search 66-2

Special Characters and Searching 66-3

Words Not Indexed by Elasticsearch 66-4

xxvi

Preface

This guide explains how to administer Oracle Communications Messaging Server and its
accompanying software components.

Audience
This document is intended for system administrators whose responsibility includes Messaging
Server. This guide assumes you are familiar with the following topics:

• Messaging protocols

• Oracle Directory Server Enterprise Edition and LDAP

• System administration and networking

• General deployment architectures

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xxvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Monitoring and Managing Messaging Server

Part I of Messaging Server System Administrator's Guide describes how to monitor and
manage Oracle Communications Messaging Server.

Part I contains the following chapters:

• Messaging Server System Administration Overview

• Overview of Messaging Server Unified Configuration

• Stopping and Starting Messaging Server

• Configuring General Messaging Capabilities

• Configuring and Administering Multiplexor Services

• MTA Concepts

• LMTP Delivery

• Vacation Automatic Message Reply

• Using and Configuring MeterMaid for Access Control

• Implementing Greylisting by Using MeterMaid

• MeterMaid Reference

• Administering Event Notification Service

• Messaging Server Specific Event Notification Service Information

• Event Notification Service API Reference

• Configuring IMAP IDLE

• Lemonade Profile 1 Support

• Managing Logging

• Monitoring Messaging Server

• Monitoring the MTA

• SNMP Support

• Short Message Service (SMS)

• Configuring Messaging Server for One-Way SMS

• Configuring Messaging Server for Two-Way SMS

• Using the iSchedule Channel to Handle iMIP Messages

• Handling sendmail Clients

• Handling Forged Email by Using the Sender Policy Framework

• Classic Message Store Directory Layout

• Monitoring LDAP Directory Server

• Monitoring System Performance

• Monitoring the Message Store

• Monitoring User Access to the Message Store

• Message Archiving

• Unified Messaging

• Messaging Server Command-Line Reference

1
Messaging Server System Administration
Overview

This chapter provides an overview of Oracle Communications Messaging Server, and
describes the basic administration tasks and tools used to perform those tasks.

About Messaging Server
Oracle Communications Messaging Server is an extensible framework of cooperative modules
that creates an enterprise-wide, open standards–based, scalable electronic message handling
system. This system is the combination of user message and transfer agents, message stores,
and access units that together provide electronic messaging.

Messaging Server provides several messaging capabilities, including:

• Message Store. Provides a modular and scalable repository of user messages.

• Message Transfer Agent. Responsible for routing, transfer, and delivery of internet mail
messages. Oracle Communications Messaging Server includes a fast, scalable, and
flexible MTA that replaces the Sendmail utility bundled with most UNIX systems.

• Message Access. Provides client access to messages over standard protocols IMAP and
POP3. HTTP-based access is offered for web clients and Lemonade Profile 1 is supported
for mobile devices.

About Messaging Server Configuration
Messaging Server provides a set of tools called Unified Configuration to configure and
administer the product. Unlike in legacy configurations, Unified Configuration uses validation to
verify configuration accuracy, and employs a single tool to configure the entire Messaging
Server configuration (with a few exceptions). See "Overview of Messaging Server Unified
Configuration" for more information.

Note:

This guide describes how to administer Messaging Server by using Unified
Configuration.

Overview of Messaging Server Administration Tasks
A Messaging Server administrator is responsible for the day-to-day tasks of maintaining and
managing Messaging Server and its users. The tasks also include managing Messaging
Server components and potentially other Unified Communications Suite components.

You perform the following tasks as a Messaging Server administrator:

• Stopping and starting Messaging Server

1-1

• Managing user accounts

• Monitoring Messaging Server

• Tuning Messaging Server performance

• Migrating data to Messaging Server

• Backing up and restoring files

• Troubleshooting Messaging Server

About Messaging Server Administration Tools
Messaging Server provides the msconfig command-line utility for administering the server.
See "Messaging Server Command-Line Reference" for more information. In addition,
Messaging Server provides command-line utilities to manage the message store and the mail
transfer agent (MTA). See Messaging Server Reference for more information.

Directory Placeholders Used in This Guide
Table 1-1 lists the placeholders that are used in this guide:

Table 1-1 Messaging Server Directory Placeholders

Placeholder Directory

MessagingServer_home Specifies the installation location for the Messaging Server software.
The default is /opt/sun/comms/messaging64.

ConfigRoot Specifies the location of the configuration files. The default
is /var/opt/sun/comms/messaging64/config.

DataRoot Specifies the location of the data files. The default is /opt/sun/comms/
messaging64/data.

Chapter 1
About Messaging Server Administration Tools

1-2

2
Overview of Messaging Server Unified
Configuration

This chapter introduces Oracle Communications Messaging Server Unified Configuration,
describes its capabilities, and provides initial guidelines on how to transition from a legacy
configuration. Unified Configuration provides the ability to configure Messaging Server in a way
that is much less error-prone and much easier to script and reuse across multiple hosts.

What Is Messaging Server Unified Configuration?
Unified Configuration is an improved process to configure and administer Messaging Server.
Unlike in legacy configurations, Unified Configuration uses validation to verify configuration
accuracy, and employs a single tool to configure the entire Messaging Server configuration
(with a few exceptions).

Table 2-1 describes how Unified Configuration improves upon issues with legacy configuration.

Table 2-1 Legacy Versus Unified Configuration

Legacy Configuration Unified Configuration Improvement

Dealing with many
configuration files (with
inconsistent formats) and
hand-editing them can lead to
errors and invalid
configurations.

Unified Configuration “unifies" configuration management. The
msconfig command tool administers Messaging Server configuration.
Validation checking prevents introducing some configuration errors.

Configuration settings
themselves are often
complicated and not straight-
forward.

Unified Configuration reduces redundancy and host specific-
configurations, so that, for example, you can use the same settings for
many options among the MMP, MTA, and message store configurations.

When problems arise, there
are support challenges due
to the many Messaging
Server configuration files.
Additionally, because
passwords are contained in
the configuration files, it
makes it difficult for
customers to just send these
files to Oracle Support
without first removing the
passwords.

Unified Configuration uses only three text files to store configuration
data, with most data stored in the config.xml file. Passwords are stored
in a separate file, removing the need for customers to edit configuration
files before sending to Oracle Support. In addition, Unified Configuration
provides an audit trail of configuration changes. The changes (currently
the last 100 changes) are actually stored in a repository, referred to as a
graveyard. Storing of changes further enables you to restore an entire
configuration, and to roll-back and roll-forward between configurations.

See "Unified Configuration Files" for more information.

It is difficult to separate
instance-specific details from
details shared by functionally
similar machines.

Unified Configuration separates tasks for single instances (referred to as
instance) of Messaging Server from global tasks for a group (referred to
as role) of Messaging Server machines. The intention is that the role
contain configuration information suitable for sharing with other hosts
that have the same function in the deployment. At present, there is no
mechanism to automatically share role configuration.

See "Separating Roles and Instances" for more information.

2-1

Table 2-1 (Cont.) Legacy Versus Unified Configuration

Legacy Configuration Unified Configuration Improvement

Customers must create their
own procedures and scripts
with their own tools to
manage a deployment.

New customers can write automation scripts by using the Unified
Configuration recipe language. The recipe language introduces the
ability to robustly change a configuration in a reproducible fashion in a
way that can be sensitive to what was previously in the configuration.
When you use recipes, you are able to use the Unified Configuration
history and administrative undo features. In addition, Oracle can use the
recipe language to automate configuration changes that are otherwise
complex, interconnected, and require lots of documentation. The
SpamAssassin.rcp, HAConfig.rcp, and LMTPSingleSystem.rcp
recipes, available in the MessagingServer_home/lib/recipes directory,
are good examples.

See "Using Recipes" for more information.

Unified Configuration Files
Table 2-2 describes the Unified Configuration file names, file management tool, file format,
character set, XML schema, ownership, and file permissions. The Unified Configuration files
are located in the ConfigRoot directory by default.

Table 2-2 Unified Configuration File Properties

Configuration
File

Description File
Management
Tool

File Format Char
Set

File
Owners
hip

Recommended
File Permissions

restricted.cnf Contains protected Messaging
Server UID and GID
information.

Text editor option=value ASCII root 0644

xpass.xml Contains obfuscated
passwords (BASE64
encoded). This is the only file
within Unified Configuration
where password information is
stored.

msconfig utility XML 1.0 UTF-8 mailsrv 0600

config.xml Contains most of the non-
password configuration
information. In addition, when
necessary, you could send this
entire file to Oracle Support to
help with resolving problems.

msconfig utility XML 1.0 UTF-8 mailsrv 0640

Chapter 2
Unified Configuration Files

2-2

Table 2-2 (Cont.) Unified Configuration File Properties

Configuration
File

Description File
Management
Tool

File Format Char
Set

File
Owners
hip

Recommended
File Permissions

configlib.xml Contains static, default
mapping tables that are mostly
concerned with character sets
and language issues,
including:

• DISPOSITION_LANGUA
GE

• DOMAIN_DC
• LANGUAGE_LOCALES
• LDAP_USERS_LANGUA

GE
• LDAP_USERS2_LANGU

AGE
• NOTIFICATION_LANGU

AGE

Managed by
Oracle (that is,
the file is not to
be edited)

XML 1.0 UTF-8 mailsrv 0644

Notes:

• When you perform the initial Messaging Server configuration, the restricted.cnf file sets
the UID under which to run Messaging Server. After initial configuration, there should rarely
be a need to edit this file. A legacy configuration can also use the restricted.cnf file for
enhanced security.

• Never edit the configlib.xml file. Doing so causes an unsupported configuration.

Note:

About MTA Tailor Options

In legacy configuration, you use the MTA tailor file of option settings (imta_tailor) to
set various MTA installation and operational parameters. In Unified Configuration, the
MTA tailor file is obsolete and no longer used. Unified Configuration replaces the
MTA tailor options that specified locations of MTA directories or files with rationalized,
consistent locations, which are based off the installation main location and located by
using the SERVERROOT environment variable. Legacy configuration MTA tailor
options that set other sorts of MTA operational parameters have typically been
replaced with Unified Configuration options of the form mta.option-name.

Enabling Unified Configuration in Messaging Server
There are two ways to enable Unified Configuration:

1. When migrating to Unified Configuration: Use the MessagingServer_home/bin/
configtoxml program to migrate a legacy configuration to Unified Configuration. When you
run configtoxml, your old configuration is converted to Unified Configuration.

• The legacy configuration is saved in the ConfigRoot/legacy-config directory.

Chapter 2
Enabling Unified Configuration in Messaging Server

2-3

• If necessary, you can use the configtoxml -undo command to restore a saved legacy
configuration.

2. For a new Messaging Server instance: Run the init-config command to enable Unified
Configuration by default.

• The presence of a config.xml file in the config directory indicates that Unified
Configuration is enabled.

• When you perform a fresh installation of Messaging Server and choose to configure a
Unified Configuration, you cannot revert that Unified Configuration to a legacy
configuration. If, however, you upgrade Messaging Server and convert to a Unified
Configuration (by running the configtoxml command), you can revert back to the
legacy configuration.

• A Unified Configuration is more simple than a legacy configuration. In addition, where
appropriate, modern default values are established and seldom used features are
removed (for example, the tcp_tas channel is not present in Unified Configuration).

• Legacy configuration files such as dispatcher.cnf, option.dat, and so on, are ignored
when Unified Configuration is enabled.

To Determine if Unified Configuration Is Deployed
The following example shows how to determine if Unified Configuration is deployed on your
system:

cd /opt/sun/comms/messaging64/bin
imsimta version
...
Using /opt/sun/comms/messaging64/config/config.xml
SunOS host2.example.com 5.10 Generic_142901-03 i86pc i386 i86pc

In this example, the presence of the config.xml file indicates that Unified Configuration has
been enabled on this host.

If you are using a compiled configuration and see in that the status is not compiled, you should
recompile the configuration. For example:

/opt/sun/comms/messaging64/bin/imsimta version
...
Using /opt/sun/comms/messaging64/config/config.xml (not compiled)
SunOS host1.example.com 5.10 Generic_147441-09 i86pc i386 i86pc

/opt/sun/comms/messaging64/bin/imsimta cnbuild

See Messaging Server Reference for more information.

Understanding Unified Configuration Limitations
In general, Unified Configuration has consolidated all the various Messaging Server files.
Nevertheless, the current Unified Configuration implementation has a few limitations:

• The channel sieves and channel header trimming option files have not yet been converted
to XML.

• Some files, such as localized templates for DSNs and NDNs, might remain in their current
format and not be converted to XML.

• The content of the conversions file is a mono-block in XML.

Chapter 2
Understanding Unified Configuration Limitations

2-4

• The msconfig tool does not issue a warning when an option that requires a restart is
modified. The configutil tool does issue such a warning.

Using the Repository of Previous Configurations
The repository of previous configurations, known as the graveyard, is stored in the ConfigRoot/
old-configs/ directory. The move from current configuration to the graveyard is performed
when a new configuration is written to disk. The graveyard maintains the most recent 100
configurations. With the graveyard, you can restore an old configuration by reverting to a
previous configuration. Furthermore, you can compare differences between any two
configurations, for example, between the active configuration and a previous configuration, or
two old configurations.

To List Configurations
• Use the msconfig history command to show a list of configurations currently in the

graveyard.

To Compare Configurations
• To compare configurations, use the msconfig differences m _n command, where m and n

are the numbers of the previous configurations from the history command that you want to
compare.

Using Legacy Configuration Tools with Unified Configuration
Once Unified Configuration in enabled, legacy configuration tools might work differently than in
previous releases. Specifically:

• Scripts that directly alter legacy configuration files do not work in a Unified Configuration.

• The configutil command can still set, get, and delete a legacy configuration. Additionally,
in Unified Configuration, configutil options can also automatically perform:

– Option name translations

– Option value translations

– Option value validations

Note:

Use of the configutil command is deprecated in Unified Configuration mode. Some
configuration changes that were previously possible with the configutil command are
only possible by using the msconfig command, for example, some changes to
notification configuration.

• The "mkbackupdir" command, which creates and synchronizes the backup directory with
the information in the message store, works with Unified Configuration.

• The imsmita program command, which manipulates the program delivery options, does not
work with Unified Configuration. You must use the msconfig command instead.

Chapter 2
Using the Repository of Previous Configurations

2-5

– This command issues an error and exits with 1 when Unified Configuration is being
used.

• All other utilities only consume options and continue to work with both Unified
Configuration and legacy configurations.

Separating Roles and Instances
Unified Configuration separates tasks for single instances (referred to as instance) of
Messaging Server from global tasks for a group (referred to as role) of Messaging Server
machines. The intention is that the role contain configuration information suitable for sharing
with other hosts that have the same role in the deployment.

Note:

At present, there is no mechanism to automatically share role configuration.

Any configuration option can be an instance setting, a role setting, or both. When the same
option is in both the role and instance, the instance value takes precedence. Both the init-
config and msconfig commands put a given setting in either the instance or the role based on
the likely scope for the option. Normally, you use the default location (instance or role)
determined by the msconfig command and not explicitly specify one or the other.

Initial configuration generates an instance and role, as does migrating from a legacy
configuration to Unified Configuration.

More About Unified Configuration Options
This section provides information about password, restricted, and obsolete options.

Options That Have Passwords
The password options have the following characteristics:

• Options can be marked as being a password.

• By default, password values are not displayed.

• The passwords are stored in obfuscated form in the xpass.xml file. Because Messaging
Server stores passwords in a separate file, you do not need to edit configuration files to
remove them before sharing with Oracle Support.

Restricted Options
Some configuration options are marked “restricted" by Oracle. Additionally, the XML schema
exposes the entire configuration, so there are no longer any hidden configuration options.

Options may be restricted for several reasons, including:

• The option has complex and subtle consequences and would cause harm in all but a very
few rare circumstances.

• The option might be a legacy option that should not be used in new systems.

• The option might be a placeholder for a feature that has not yet been implemented.

Chapter 2
Separating Roles and Instances

2-6

Restricted options have the following characteristics:

• The msconfig command displays a warning when you attempt to set a restricted option. In
addition, the msconfig command requires an extra step to actually set the restricted
option.

• The restriction is noted within the configuration file itself, which helps you to be aware of
any special circumstances. For example:

<delimiter_char v="127" xannotation="RESTRICTED USAGE OPTION: user remark"
xauthor="dcn@example.com" xmtime="2010-05-12T17:42:19-08:00"/>

The user remark text is any optional remark added by the administrator when the
configuration was updated. The “RESTRICTED USAGE OPTION" is text inserted by Oracle
into the remark field when the option is restricted.

Caution:

If you set a restricted option without being advised to do so by Oracle Support, your
configuration is considered unsupported by Oracle.

Obsolete Options
When an option has been marked by Oracle as being obsolete, the configuration no longer
uses it. However, you cannot remove it from the XML Schema as that would make existing
configurations invalid.

When marked as obsolete, the option:

• Remains in the XML Schema

• Can no longer be set or changed

• Can only be deleted from a configuration

Option Relationships
Unified Configuration enables some relationships between options to be expressed so that
when a particular option is set, other unnecessary options can be automatically removed. For
example, if you set the mx option on a channel (for MX mail forwarding records), any of the
nomx, randommx, and other related “mx" options are removed. In addition, Unified
Configuration uses the concept of default relationships to help with configuration. For example,
option X and option Y might have a default relationship such that when X is not set, the value
is taken from Y; or when Y is not set, then Y's default value is value. Furthermore, Unified
Configuration has the capability to know in which release an option became available and warn
when a certain configuration is not release-suitable. In general, option relationships help to
reduce configuration mistakes.

Unified Configuration Option Names
Unified Configuration uses a “unified" option naming convention that is reminiscent of legacy
configutil option names.

In general, this option naming convention uses the following structure:

[role.]group[.sub-group|.sub-group].option

Chapter 2
More About Unified Configuration Options

2-7

[instance.]group[.sub-group|.sub-group].option

The following example shows a group.sub-group.option convention:

imap.logfile.flushinterval

In this example, imap is the group, logfile is the sub-group, and flushinterval is the option.

This example shows a group.option convention:

mta.mm_debug

In this example, mta is the group and mm_debug is the option.

Characteristics about option names to keep in mind:

• Many groups only appear once (for example, imap and pop).

• Some groups may appear many times. For example:

channel
mapping
sectoken
alias
task

• The group or sub-group can include a :name portion used for “named" groups. For
example:

channel:tcp_local.slave_debug
partition:primary.path

Characteristics about instances and roles to keep in mind:

• An option in the “instance" overrides the same option in the “role." For example, IMAP is
effectively disabled by this configuration:

instance.imap.enable = 0
role.imap.enable = 1

• There actually is no option called imap.enable. It is either role.imap.enable or
instance.imap.enable.

• When setting options, you typically do not specify either “role" or “instance." The msconfig
command applies heuristics to determine whether “role" or “instance" applies. Here is a
sample, basic config.xml file that shows how the configuration uses instance and role:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xconfig...>
<role name="store">
<base>
<defaultdomain v="example.com"/> role.base.defaultdomain
</base>
<imap>
<enable v="1"/> role.imap.enable
<numprocesses v="2"/> role.imap.numprocesses
</imap>
<mapping name="ABC">
<rule pattern="x*y" template="$N"/> role.mapping:ABC.rule
<rule pattern="*" template="$Y"/> role.mapping:ABC.rule
</mapping>
</role>
<instance name="ims" roleref="store">
<base>
<hostname v="wassonite.example.com"/> instance.base.hostname
</base>

Chapter 2
More About Unified Configuration Options

2-8

<mta>
<mm_debug v="5"/> instance.mta.mm_debug
</mta>
</instance>
</xconfig>

In the preceding example, some option names that you would see upon listing them with the
msconfig show command are displayed in bold. Also, you can see that the default domain
(defaultdomain), number of IMAP processes (numprocesses), and mappings (mapping
name) have been defined for the store role; and that the host name (hostname) and MTA
logging debug level (mm_debug) have been set for the store instance.

Tip:

Use the configutil -H command to translate the legacy configutil option names to
Unified Configuration names. For example:

configutil -H -o logfile.imap.expirytime
Configuration option: logfile.imap.expirytime
Unified Config Name: imap.logfile.expirytime

Example of Legacy Configuration and Unified Configuration
Unified Configuration greatly simplifies the configuration process, as shown in this example of
configuring the SMTP server for debugging.

In a legacy configuration, you must perform the following steps:

1. Edit the imta.cnf file and modify the tcp_local channel entry:

tcp_local identnonenumeric inner loopcheck maysaslserver maytlsserver mx \
pool SMTP_POOL remotehost saslswitchchannel tcp_auth smtp sourcespamfilter1 \
switchchannel master_debug
tcp_local-daemon

2. Edit the option.dat file and add the following option:

mm_debug=3
3. Edit (or create if it does not exist) the tcp_local_option file and add the following option:

trace_level=2
4. Check permissions on all files, especially the tcp_local_option file.

In Unified Configuration, the equivalent steps to the preceding task are the following:

% msconfig
msconfig> set channel:tcp_local.slave_debug
msconfig# set mm_debug 3
msconfig# set channel:tcp_local.options.trace_level 2
msconfig# write

Using Recipes
You use recipe files, which are expressed by using a programming language, to automate
configuration tasks, typically by scripting them. Recipes are located in the
MessagingServer_home/lib/recipes directory. The primary inspiration for the recipe language
is the Icon programming language designed by Ralph Griswald. As such, it supports C-like

Chapter 2
Example of Legacy Configuration and Unified Configuration

2-9

expressions, operators, and assignments, Sieve-like conditionals, and loops. The available
data types are integers, strings, and lists.

Recipes typically operate in three phases. First, several checks are done to make sure the
right conditions exist for the recipe to be effective. Next the recipe asks several questions to
determine exactly what changes should be made. Finally, the recipe implements the requested
changes. Note that while this is the typical ordering, recipes are not constrained to use it and
may use other approaches if appropriate.

By using the recipe language, you can more easily script complex configuration changes. For
more information on writing recipes, see the help text for the recipe language by typing
msconfig -help and choosing help for the Recipe_language topic, or refer to the discussion
on recipe language in Messaging Server Reference.

To Run a Recipe
To run a recipe, type the following command:

msconfig run recipe_name

Helpful Commands
This section provides some helpful commands to get started with Unified Configuration.

To Show Settings
Use the msconfig show command to display current settings. For example, to show all
currently enabled options:

msconfig show *enable
role.watcher.enable = 1
role.schedule.enable = 1
role.store.enable = 1
role.store.purge.enable = 1
role.imap.enable = 1
role.pop.enable = 1
role.mta.enable = 1
role.dispatcher.service:SMTP.enable = 1
role.dispatcher.service:SMTP_SUBMIT.enable = 1
role.mmp.enable = 0
role.ens.enable = 1
role.http.enable = 1

To Get Help
Use the msconfig help command to display help text.

Chapter 2
Helpful Commands

2-10

3
Stopping and Starting Messaging Server

This chapter describes how to stop and start Oracle Communications Messaging Server
services.

Starting and Stopping Services
Topics in this section:

• To Start and Stop Messaging Server Services

• To Start Up, Shut Down, or View the Status of Messaging Services

• Starting and Stopping a Messaging Server Running in MTA-only Mode

To stop and start Messaging Server services installed in a highly available environment, see
"Stopping and Starting Messaging Services in an HA Environment".

To Start and Stop Messaging Server Services
Start and stop Messaging Server services from the command line by using the following
commands:

MessagingServer_home/bin/start-msg
MessagingServer_home/bin/stop-msg

Though you can use the command template to start and stop services individually
(MessagingServer_home/bin/stop-msg service (where service can be mta, imap, pop, store,
http, ens, sched, purge, mfagent, snmp, mmp, sms, metermaid, cert, dispatcher,
job_controller or watcher)), do not do so except in specific tasks as described. Certain
services have dependencies on other services and must be started in a prescribed order.
Complications can arise when trying to start services on their own. For this reason, you should
start and stop all the services together by using the start-msg and stop-msg commands.

Note:

You must first enable services before starting or stopping them. See "Enabling and
Disabling Services" for more information.

3-1

Note:

If a server process crashes, other processes might hang as they wait for locks held
by the server process that crashed. If you are not using automatic restart (see
"Automatic Restart of Failed or Unresponsive Services"), and if any server process
crashes, it is generally safer to stop all processes, then restart all processes. This
includes the POP, IMAP, and MTA processes, as well as the stored (message store)
process, and any utilities that modify the message store, such as mboxutil, deliver,
reconstruct, readership, or upgrade.

To Start Up, Shut Down, or View the Status of Messaging Services
Do not shut down individual services except in the specific tasks as described. Certain services
have dependencies on other services and must be started in a prescribed order. Complications
can arise when trying to start services on their own. For this reason, you should start and stop
all the services together by using the start-msg and stop-msg commands.

However, when you make a configuration change that requires restart of a service, and you
want to minimize service disruption, then use stop-msgservice followed by start-msgservice.
For example, when changing an MTA option that requires a restart of the dispatcher but does
not require a restart of the job_controller, it is better to run stop-msg dispatcher; start-msg
dispatcher to avoid unnecessarily flushing the job_controller's cache. See Messaging Server
Reference Guide for more information on the start-msg and stop-msg commands.

The services must be enabled to stop or start them. See "To Specify What Services Can Be
Started" for more information.

To Specify What Services Can Be Started
By default the following services are started with start-msg:

start-msg
Connecting to watcher ...
Launching watcher ... 9347
Starting store server 9356
Checking store server status ready
Starting purge server 9413
Starting imap server 9420
Starting pop server 9425
Starting http server 9437
Starting sched server ... 9451
Starting dispatcher server 9461
Starting job_controller server 9466

The complete list of scopes with an "enable" option is as follows. Some of these, such as
notifytarget, service, and task are named scopes. See the discussion in Messaging Server
Reference Guide on scope syntax in msconfig command for more information.

autorestart
notifytarget
ens
folderquota
imap
indexer
messagetype
msghash

Chapter 3
Starting and Stopping Services

3-2

dbreplicate
mta
metermaid
mmp
pab
pop
purge
relinker
schedule
service
smime
sms_gateway
snmp
store
task
typequota
watcher
http

Set both imap.enable and imap.enablesslport to 0 to disable IMAP. The same goes for POP
and HTTP. See Messaging Server Reference for details.

Starting and Stopping a Messaging Server Running in MTA-only Mode
To start an MTA-only system, you should also start imsched. Before you do this, remove any
scheduled jobs that are not appropriate to your installations.

imsched is an individual component of Messaging Server that must be started separately if
you are not starting all of Messaging Server. If you start your MTA-only system by using start-
msg imta or start-msg mta, then you do not run the imsched process.

To run messaging server in MTA mode only (no store, imap, or pop processes), you can either
select the MTA to be only installed and configured during the Messaging Server configuration
after initial install (MessagingServer_home/bin/configure), or manually disable the message
store and mshttp process by using the following commands:

msconfig set store.enable 0
msconfig set http.enable 0

Once you have disabled HTTP and other store processes, you can then start Messaging
Server by running the following command:

start-msg
Connecting to watcher ...
Launching watcher ... 4034
Starting ens server ... 4035
Starting sched server ... 4036
Starting dispatcher server 4038
Starting job_controller server 4042

All the appropriate processes are started, including imsched and imta. This way you do not
have to remember to start the sched process.

Stopping and Starting Messaging Services in an HA Environment
While Messaging Server is running under HA control, you cannot use the normal Messaging
Server start, restart, and stop commands to control individual Messaging Server services. For
example, if you attempt a stop-msg in an HA deployment, the system warns that it has
detected an HA setup and informs you how to properly stop the system.

Chapter 3
Stopping and Starting Messaging Services in an HA Environment

3-3

The appropriate HA start, stop, and restart commands are shown in Table 3-1, Table 3-2,
Table 3-3, and Table 3-4. There are no specific HA commands to individually start, restart, or
stop other Messaging Server services (for example, SMTP). However, you can run a stop-
msgservice command to stop/restart individual servers such as imap, pop or sched.

The finest granularity in Oracle Solaris Cluster (formerly known as Sun Cluster) is that of an
individual resource. Because Messaging Server is known to Oracle Solaris Cluster as a
resource, the Oracle Solaris Cluster scswitch commands affect all Messaging Server services
as a whole.

Table 3-1 Start, Stop, Restart in an Oracle Solaris Cluster 3.0/3.1 Environment

Action Individual Resource Entire Resource Group

Start scswitch -e -jresource scswitch -Z -gresource_group

Restart scswitch -n -jresourcescswitch -e -
jresource

scswitch -R -gresource_group

Stop scswitch -n -jresource scswitch -F -gresource_group

Table 3-2 Start, Stop, Restart in an Oracle Solaris Cluster 3.2 Environment

Action Individual Resource Entire Resource Group

Start clrs onlineresource clrg onlineresource_group

Restart clrs disableresourceclrs enableresource clrg restartresource_group

Stop clrs offlineresource clrg disableresource_group

Table 3-3 Start, Stop, Restart in Veritas 3.5, 4.0, 4.1 and 5.0 Environments

Action Individual Resource Entire Resource Group

Start hares -onlineresource_name -sys
system_name

hagrp -onlinegroup_name -sys
system_name

Restart hares -offline resource_name -sys
system_name

hares -online resource_name -sys
system_name

hagrp -offline service_group -sys
system_name

hagrp -online service_group -sys
system_name

Stop hares -offline resource_name -sys
system_name

hagrp -offline service_group -sys
system_name

Table 3-4 Start, Stop, Restart in an Oracle Clusterware 12.1 Environment

Action Individual Resource

Start crsctl start resource MS resource -n system

Restart crsctl stop resource MS resource -n system

crsctl start resource MS resource -n system

Stop crsctl stop resource MS resource -n system

Chapter 3
Stopping and Starting Messaging Services in an HA Environment

3-4

Automatic Restart of Failed or Unresponsive Services
This section describes how Messaging Server monitors and automatically restarts
unresponsive services.

Overview of Messaging Server Monitoring Processes
Messaging Server provides two processes called watcher and msprobe that transparently
monitor services and automatically restart them if they crash or become unresponsive (the
services hangs). watcher monitors server crashes. msprobe monitors non-responsive server
processes by checking their response times. When a server fails or stops responding to
requests, it is automatically restarted. Table 3-5 shows the services monitored by each utility.

Table 3-5 Services Monitored by watcher and msprobe

watcher (crash) msprobe (unresponsive hang)

IMAP, POP, HTTP, job controller, dispatcher,
message store (stored), imsched, MMP.
(LMTP/SMTP servers are monitored by the
dispatcher and LMTP/SMTP clients are
monitored by the job_controller.) The watcher
also monitors all processes that access the
message store in such a way that they could
hold outstanding message store locks when
they crash. This includes ims_master,
lmtp_server, and store utilities.

IMAP, POP, HTTP, cert, job controller, message store
(stored), imsched, ENS, LMTP, SMTP

Enabling the watcher (watcher.enable 1, default) monitors process failures and unresponsive
services and logs error messages to the default log file indicating specific failures. To enable
automatic server restart, use msconfig to set base.autorestart.enable 1. By default, this
option is set to no (0).

If any of the message store services fail or freeze, all message store services that were
enabled at start-up are restarted. For example, if imapd fails, at the least, stored and imapd
are restarted. If other message store services were running, such as the POP or HTTP
servers, then those are restarted as well, whether or not they failed.

Automatic restart also works if a message store utility fails or freezes. For example, if mboxutil
fails or freezes, the system automatically restarts all the message store servers. However, it
does not restart the utility. msprobe runs every 10 minutes. Service and process restarts are
performed once within a 10-minute period (and are configurable by using base.autorestart). If
a server fails more than once during this designated period of time, then the system stops
trying to restart this server. If this happens in an HA system, Messaging Server is shut down
and a failover to the other system occurs.

Whether or not base.autorestart.enable is enabled, the system still monitors the services and
sends failure or non-response error messages to the console and DataRoot/log/watcher
listens to port 49994 by default, but this is configurable with the watcher.port option.

A watcher log file is generated in DataRoot/log/watcher. This log file is not managed by the
logging system (no rollover or purging) and records all server starts and stops. The following is
an example log:

watcher process 13425 started at Mon June 4 11:23:54 2012

Watched 'imapd' process 13428 exited abnormally

Chapter 3
Automatic Restart of Failed or Unresponsive Services

3-5

Received request to restart: store imap pop http
Connecting to watcher ...
Stopping http server 13440 done
Stopping pop server 13431 ... done
Stopping pop server 13434 ... done
Stopping pop server 13435 ... done
Stopping pop server 13433 ... done
imap server is not running
Stopping store server 13426 done
Starting store server 13457
checking store server status ready
Starting imap server 13459
Starting pop server 13462
Starting http server 13471

See "Monitoring Using msprobe and watcher Functions" for more details on how to configure
this feature.

msprobe is controlled by imsched. If imsched crashes, this event is detected by watcher and
triggers a restart (if autorestart is enabled). However, in the rare occurrence of imsched
hanging, you must kill imsched with a killimsched_pid command, which causes the watcher to
restart it.

Automatic Restart in High Availability Deployments
Table 3-6 shows the configuration options to be set for automatic restart in high availability
deployments:

Table 3-6 HA Automatic Restart Options

Option Description/ HA Value

watcher.enable Enable watcher on start-msg startup. Default is enabled (1).

base.autorestart.enable Enable automatic restart of failed or frozen (unresponsive) servers
including IMAP, POP, HTTP, job controller, dispatcher, and MMP servers.
Default is enabled).

base.autorestart.timeout Failure retry time-out. If a server fails more than once during this
designated period of time, then the system stops trying to restart this
server. If this happens in an HA system, Messaging Server is shutdown
and a failover to the other system occurs. The value (set in seconds)
should be set to a period value longer than the msprobe interval. (See
schedule.task: in the following section). Default is 600.

schedule.task:msprobe.cro
ntab

msprobe runs schedule. A crontab style schedule string. Default is
5,15,25,35,45,55 * * * * lib/msprobe. To disable, run the following
command:msconfig set schedule.task:msprobe.enable 0

Chapter 3
Automatic Restart of Failed or Unresponsive Services

3-6

4
Configuring General Messaging Capabilities

This chapter describes the general Oracle Communications Messaging Server tasks, such as
configuring directory access by using command-line utilities. Tasks specific to administering
individual Messaging Server services, such as POP, IMAP, HTTP, and SMTP, are described
later in this guide.

Modifying Your Passwords
If you set up multiple administrators with the same password during the initial Messaging
Server configuration, you might want to change the passwords of those administrators.

Table 4-1 shows the password options that are set up during initial runtime configuration. Use
the msconfig command to make changes to the Messaging Server configuration, or
ldapmodify to update information stored in Directory Server.

Table 4-1 Passwords Set in Messaging Server Initial Runtime Configuration

Option Description

base.ugldapbindcred Password for the Messaging Server LDAP user/group access account
(base.ugldapbinddn). Use msconfig to change.

base.proxyadminpass Password for the Proxy Administrator account (base.proxyadmin),
which is used to provide proxy authentication access to end-user
mailboxes. Use msconfig to change.

http.smtpauthpassword Password used when mshttpd submits mail to the MTA. Set by initial
configuration to the same password as base.proxyadminpass. Use
msconfig to change.

SSL passwords for key files Passwords that are stored in the xpass.xml file. Use the msconfig set -
prompt "sectoken:Internal (Software) Token" command to change.
This command causes msconfig to prompt for the password without an
echo.

Admin Account credentials The "admin" account is both in the service administrator group by default
and is a store admin by default. You are prompted for this password
during initial configuration. By default, the "admin" account is used for
proxy and SMTP authentication, so this password needs to match the
settings for base.proxyadminpass and http.smtpauthpassword.

Messaging End User
Administrator

This is the LDAP user for this specific host. The base.ugldapbindcred
entry and the "Messaging End User Administrator" actually refer to the
same password, which is set both in the option and in the
userPassword attribute for that user in the LDAP directory. The
password is generated randomly by initial configuration and is only used
by one single Messaging Server host to bind to the LDAP directory
server to perform searches.

The following example uses the proxyadminpass option to change the password of the Proxy
Administrator account. You should not set passwords from the command line, so this example
shows using msconfig in interactive mode.

4-1

msconfig
msconfig> set -prompt proxyadminpass
Password:
Verify:
msconfig# write
msconfig> exit

Managing Mail Users, Mailing Lists and Domains
User, mailing list, and domain information is stored as entries in an LDAP directory. An LDAP
directory can contain a wide range of information about an organization's employees,
members, clients, or other types of individuals that in one way or another "belong" to the
organization. These individuals constitute the users of the organization.

Overview of Messaging Server and LDAP
In the LDAP directory, the information about users is structured for efficient searching, with
each user entry identified by a set of attributes. Directory attributes associated with a user can
include the user's name and other identification, division membership, job classification,
physical location, name of manager, names of direct reports, access permission to various
parts of the organization, and preferences of various kinds.

In an organization with electronic messaging services, many if not all users hold mail accounts.
Messaging Server stores copies of some account information (uid and quota in particular) on
local servers. In general, the LDAP directory is considered authoritative for account information
by Messaging Server. Once account information for a mail user is present in the LDAP
directory, then the mail server named in the mailHost attribute automatically creates that user
without any additional mail server specific configuration.

Creating and managing mail users and mailing lists consists of creating and modifying user
and mailing list entries in the LDAP directory. This is done by using the Delegated
Administrator GUI or command-line utilities, or by directly modifying the LDAP directory
information.

Note:

In general, the Messaging Server documentation does not describe how to directly
modify the LDAP directory. Consult the Directory Server documentation for more
information.

To Remove a User from Messaging Server by Using Delegated
Administrator

1. Mark the user as deleted by running the commadmin user delete command. (For more
information, see the discussion about removing users, groups, and services from a domain
in Delegated Administrator System Administrator's Guide.)

2. Remove services from the user. A service can be a mailbox or a calendar. For the current
version of Messaging Server, the program is called "msuserpurge".

3. Permanently remove the user, by invoking the commadmin domain purge command.

Chapter 4
Managing Mail Users, Mailing Lists and Domains

4-2

To Remove a Domain from Messaging Server using Delegated
Administrator

1. Mark the domain as deleted by running the commadmin domain delete command. (See
the discussion on removing users, groups, and services from a domain in Delegated
Administrator System Administrator's Guide for more information.)

2. Remove services from the users of that domain. A service can be a mailbox or a calendar.
For Messaging Server, the program is called "msuserpurge".

3. Permanently remove the domain, by invoking the commadmin domain purge command.

Scheduling Automatic Tasks
Messaging Server enables you to schedule automatic tasks, such as running the imexpire
command at predetermined times.

Overview of Scheduling Automatic Tasks
Messaging Server provides a general task scheduling mechanism by using a process called
imsched. It is intended for scheduling Messaging Server processes. It is enabled by setting
the schedule.task option. If you modify the schedule, either restart the scheduler with the
command stop-msg sched and start-msg sched, or refresh the scheduler process (refresh
sched).

This option requires a command and a schedule on which to execute the command. The
format is as follows:

schedule.task:taskname.crontab = schedule

where:

• taskname is the name of the command to run, for example, expire, msprobe, and so on.

• schedule is a non-empty string with the following format:

minute hour day-of-month month-of-year day-of-week command args
• command args can be any Messaging Server command and its arguments. Paths can be

relative to MessagingServer_home or absolute paths. See "Pre-defined Automatic Tasks"
for relative path examples.

minute hour day-of-month month-of-year day-of-week is the schedule for running the
command. It follows the UNIX crontab time format.

The values are separated by a space or tab and can be 0-59, 0-23, 1-31, 1-12 or 0-6 (with
0=Sunday) respectively. Each time field can be either an asterisk (meaning all legal values), a
list of comma-separated values, or a range of two values separated by a hyphen. Days can be
specified by both day of the month and day of the week and both are required if specified. For
example, setting the 17th day of the month and Tuesday only runs the command on the 17th
day of a month when it is Tuesday.

If you modify scheduler, either restart the scheduler with the command stop-msg sched and
start-msg sched, or refresh the scheduler by running refresh sched.

• To disable a scheduled task:

msconfig set schedule.task:taskname.enable = 0refresh sched

Chapter 4
Scheduling Automatic Tasks

4-3

Scheduler Examples
Run imexpire at 12:30am, 8:30am, and 4:30pm:

msconfig set schedule.task:expire.crontab "30 0,8,16 * * * bin/imexpire"

Run imsbackup Monday through Friday at midnight (12AM):

msconfig set schedule.task:msbackup.crontab "0 0 * * 1-5 bin/imsbackup -f backupfile /
primary"

Pre-defined Automatic Tasks
At installation, Messaging Server creates, schedules and enables the following set of pre-
defined automatic tasks:

The following automatic tasks are set and enabled for the message store:

schedule.task:expire.crontab = 0 23 * * * bin/imexpire
schedule.task:snapshot.crontab = 0 2 * * * bin/imdbverify -s -m
schedule.task:snapshotverify.crontab = 5,15,25,35,45,55 * * * * bin/imdbverify

The following automatic tasks are set and enabled for the MTA:

schedule.task:purge.crontab = 0 0,4,8,12,16,20 * * * bin/imsimta purge
schedule.task:return_job.crontab = 30 0 * * * lib/return_job

The following automatic task is set and enabled for the message store:

schedule.task:msprobe.crontab = 5,15,25,35,45,55 * * * * lib/msprobe

Configuring a Greeting Message
Messaging Server enables you to create an email greeting message to be sent to each new
user.

To Create a New User Greeting
To create a new-user greeting:

msconfig set base.welcomemsg Message

Where Message must contain a header (with at least a subject line), followed by $$, then the
message body. The $ represents a new line.

For example, to enable this option, you can set the following configuration variables:

msconfig set base.welcomemsg 'Subject: Welcome!! $$ example.com welcomes you to the
premier Internet experience in Dafandzadgad!'

Depending on the shell that you are using, it might be necessary to append a special character
before $ to escape the special meaning of $. ($ is often the escape character for the shell.)
Alternatively, you can do this within the msconfig prompt so that you do not need to the $.
Simply run msconfig, then issue the setoptionvalue command.

Chapter 4
Configuring a Greeting Message

4-4

To Set a Per-Domain Greeting Message
Whenever you create a new hosted domain, create per-domain greeting messages for your
supported languages. If this is not done, the generic greeting message set by
base.welcomemsg is sent.

You can set a greeting message for new users in each domain. The message can vary
depending on the user's, the domain's, or the site's preferred language. This is done by setting
the mailDomainWelcomeMessage attribute in the desired LDAP domain entry. The attribute
syntax is as follows:

mailDomainWelcomeMessage;lang-userprefLang

mailDomainWelcomeMessage;lang-domain_prefLang

mailDomainWelcomeMessage;lang-gen.sitelanguage

The following example sets the domain welcome message for English:

mailDomainWelcomeMessage;lang-en: Subject: Welcome!! $$Welcome to the mail
system.

The following example sets the domain welcome message for French:

mailDomainWelcomeMessage;lang-fr: Subject: Bienvenue!! $$Bienvenue a example.org!

Using these examples, assume the following:

• The domain is example.org.

• A new user belongs to this domain.

• The user's preferred language is French as specified by the LDAP attribute
preferredlanguage.

• The example.org domain has the above English and French welcome messages
available.

• The site language is en as specified by gen.sitelanguage.

For a list of supported locales and their language value tag, see Directory Server Reference.

When users log in for the first time, they receive the French greeting. If the French welcome
message isn't available, they get the English greeting.

Greeting Message Theory of Operations

Greeting messages can be set by both the LDAP attribute mailDomainWelcomeMessage, the
base.welcomemsg option, and the message_language:langcode.welcomemsg option.The
base.welcomemsg option is the default, the message_language:langcode.welcomemsg
option is language-code specific. The order in which a message is chosen, with the top one
having the highest preference, is shown below:

mailDomainWelcomeMessage;lang-user_prefLang

mailDomainWelcomeMessage;lang-domain_prefLang

mailDomainWelcomeMessage;lang-gen.sitelanguage

mailDomainWelcomeMessage

base.welcomemsg;lang-"$user-prefLang"

Chapter 4
Configuring a Greeting Message

4-5

base.welcomemsg;lang-"$domain-prefLang"

base.welcomemsg;lang-"$gen.sitelanguage"

base.welcomemsg

The algorithm works as follows: if there are no domains (or there are, but there is no per
domain welcome message provisioned for them), a welcome message is configured with the
base.welcomemsg option, if specified. If a user has a preferred language (set with the
preferredlanguage LDAP attribute) and base.welcomemsg;lang-user_prefLang is set, the
user will receive that welcome message at the time of their first log in to the server. If
base.welcomemsg;lang-gen.sitelanguage is set, and preferredlanguage is not set, but the
site language is set (using base.sitelanguage option), user will receive that message. If no
language tag option is set and a untagged base.welcomemsg is set, then that message will
be sent to the user. If none of the values are set, user will not receive any welcome message.

If the user is in a domain, then similar to the discussion above, the user might receive one of
mailDomainWelcomeMessage;lang-xx, depending on which one is available in the list and in
the order given.

Example: Domain is example.org. The domain preferred language is German (de). But the
new user in this domain has preferred language of Turkish (tr). Site language is English. The
following values are available (mailDomainWelcomeMessage are attributes of the domain
example.org):

mailDomainWelcomeMessage;lang-fr
mailDomainWelcomeMessage;lang-ja
base.welcomemsg;lang-de
base.welcomemsg;lang-en
base.welcomemsg

According to the algorithm, the message sent to the user is base.welcomemsg;lang-de.

Setting a User-Preferred Language
Messaging Server enables you to set a user preferred language.

Overview of Setting a User-Preferred Language
You can set a preferred language for the GUI and server-generated messages by setting the
attribute preferredLanguage in the user's LDAP entry.

When the server sends messages to users outside of the server's administrative domain it
does not know what their preferred language is unless it is responding to an incoming
message with a preferred language specified in the incoming message's header. The header
fields (Accept-Language, Preferred-Language or X-Accept-Language) are set according to
attributes specified in the user's mail client.

If there are multiple settings for the preferred language, the server chooses the preferred
language. For example, if a user has a preferred language attribute stored in the Directory
Server and also has a preferred language specified in their mail client, the server chooses the
preferred language in the following order:

1. The Accept-Language header field of the original message.

2. The Preferred-Language header field of the original message.

3. The X-Accept-Language header field of the original message.

4. The preferred language attribute of the sender (if found in the LDAP directory).

Chapter 4
Setting a User-Preferred Language

4-6

To Set a Domain Preferred Language
A domain preferred language is a default language specified for a particular domain. For
example, you can specify Spanish for a domain called mexico.example.org. Administrators
can set a domain preferred language by setting the attribute preferredLanguage in the
domain's LDAP entry.

To Specify a Site Language
You can specify a default site language for your server as follows. The site language is used to
send language-specific versions of messages if no user preferred language is set.

Specify a site language as follows:

msconfig set base.sitelanguage value

where value is one of the local supported languages. See the Directory Server documentation
for a list of supported locales and the language value tag.

Encryption Settings
This is described in enabling SSL and selecting ciphers in Messaging Server Security Guide,
which also contains background information on all security and access-control topics for
Messaging Server.

Setting a Failover LDAP Server
It is possible to specify more than one LDAP server for the user/group directory so that if one
fails another takes over.

To set a failover LDAP server:

1. Set base.ugldaphost to the multiple replicated LDAP servers. For example:

msconfig set base.ugldaphost "ldap1.example.com ldap2.example.com:389"
2. If you are using a compiled MTA configuration then recompile the MTA configuration file.

imsimta cnbuild
3. Restart Messaging Server.

stop-msg
start-msg

Chapter 4
Encryption Settings

4-7

5
Configuring and Administering Multiplexor
Services

This chapter describes the Messaging Multiplexor (MMP) for standard mail protocols (POP,
IMAP, and SMTP).

Multiplexor Services in Unified Configuration Overview
The MMP configuration is stored in the Unified Configuration. Table 5-1 lists the MMP
configuration files that are no longer used in Unified Configuration:

Table 5-1 Legacy MMP Configuration Files

File Type Legacy File Names

POP SSL MMP Encryption
File

PopProxyAService.cfg

POP Services Configuration
Template

PopProxyAService-def.cfg

IMAP SSL MMP Encryption
File

ImapProxyAService.cfg

IMAP Services Configuration
Template

ImapProxyAService-def.cfg

Service Starting
Configuration File

AService.cfg

Service Starting
Configuration Template

AService-def.cfg

SMTP SSL MMP Encryption
File

SmtpProxyAService.cfg

SMTP Services MMP
Configuration Template

SmtpProxyAService-def.cfg

In Unified Configuration, you enable and modify the MMP configuration by running the
msconfig command to set the appropriate MMP options. The ServiceList and SSLports
options are gone in Unified Configuration. You now use the imapproxy, popproxy, and
smtpproxy configuration groups, and the tcp_listen option. Use the following commands to
view the initial MMP configuration settings.

msconfig
msconfig> show mmp*
role.mmp.enable = 0
msconfig> show imapproxy*
role.imapproxy.connlimits = :20
role.imapproxy.tcp_listen:imapproxy1.tcp_ports = 143
msconfig> show popproxy*
role.popproxy.connlimits = :20
role.popproxy.tcp_listen:popproxy1.tcp_ports = 110

5-1

msconfig> show submitproxy*
role.submitproxy.connlimits = :20

In addition, the ssl_ports option works the like tcp_ports option but enables SSL services
(thus fixing the problem in legacy configuration, where an SSL proxy service had to be listed in
both ServiceList and SSLPorts options).

The following examples commands show how to update the MMP configuration:

• To enable MMP: msconfig set mmp.enable 1

• To change an IMAP proxy option: msconfig set imapproxy.optionvalue

• To change a POP proxy option: msconfig set popproxy.optionvalue

• To change an SMTP proxy option: msconfig set smtpproxy.optionvalue

• To set a certmap default option: msconfig set base.certmap:default.optionvalue

See Messaging Server Reference, or option descriptions in the msconfig online help, for more
information.

Multiplexor Services
A multiplexor is necessary to achieve horizontal scalability (the ability to support more users by
adding more machines), because it provides a single domain name that can be used to
connect indirectly to multiple mail stores. A multiplexor can also provide security benefits.

In Unified Configuration, MMP is no longer managed separately from Oracle Communications
Messaging Server.

Multiplexor Benefits
Message stores on heavily used messaging servers can grow quite large. Spreading user
mailboxes and user connections across multiple servers can therefore improve capacity and
performance. In addition, it can be more cost-effective to use several small server machines
than one large, high-capacity, multiprocessor machine.

If the size of your mail-server installation requires the use of multiple message stores, your
organization can benefit in several ways from using the multiplexor. The indirect connection
between users and their message stores, coupled with the ease of reconfiguration of user
accounts among messaging servers allows for the following benefits:

• Simplified User Management Because all users connect to one server (or more, if you
have separate multiplexor machines for POP, IMAP, SMTP, or web access), you can
preconfigure email clients and distribute uniform login information to all users. This
simplifies your administrative tasks and reduces the possibility of distributing erroneous
login information.

For especially high-load situations, you can run multiple multiplexor servers with identical
configurations and manage connections to them by DNS round robin or by using a load-
balancing system. Because the multiplexors use information stored in the LDAP directory
to locate each user's Messaging Server, moving a user to a new server is simple for the
system administrator and transparent to the user. The administrator can move a user's
mailbox from one Messaging Server host to another, and then update the user's entry in
the LDAP directory. The user's mail address, mailbox access, and other client preferences
need not change.

• Improved Performance If a message store grows prohibitively large for a single machine,
you can balance the load by moving some of the message store to another machine.

Chapter 5
Multiplexor Services

5-2

You can assign different classes of users to different machines. For example, you can
choose to locate premium users on a larger and more powerful machine.

The multiplexors perform some buffering so that slow client connections (through a
modem, for example) do not slow down the Messaging Server.

• Decreased Cost Because you can efficiently manage multiple Messaging Server hosts
with a multiplexor, you might be able to decrease overall costs by purchasing several small
server machines that together cost less than one very large machine.

• Better Scalability With the multiplexors, your configuration can expand easily. You can
incrementally add machines as your performance or storage-capacity needs grow, without
replacing your existing investment.

• Minimum User Downtime. Using the multiplexors to spread a large user base over many
small store machines isolates user downtime. When an individual server fails, only its
users are affected.

• Increased Security You can use the server machine on which the multiplexor is installed
as a firewall machine. By routing all client connections through this machine, you can
restrict access to the internal message store machines by outside computers. The
multiplexors support both unencrypted and encrypted communications with clients.

About Messaging Multiplexor
The Messaging Multiplexor (MMP) is a specialized messaging server that acts as a single point
of connection to multiple back-end messaging servers. With Messaging Multiplexor, large-scale
messaging service providers can distribute POP and IMAP user mailboxes across many
machines to increase message store capacity. All users connect to the single multiplexor
server, which redirects each connection to the appropriate messaging server.

If you provide electronic mail service to many users, you can install and configure the
Messaging Multiplexor so that an entire array of Messaging Server hosts appear to your mail
users to be a single host.

The Messaging Multiplexor is provided as part of Messaging Server. You can install the MMP
at the same time you install Messaging Server or other Communications Suite servers, or you
can install the MMP separately at a later time. The MMP supports the following items:

• Both unencrypted and encrypted (SSL) communications with mail clients.

• Client certificate-based authentication, described in "Certificate-Based Client
Authentication".

• User pre-authentication, described in "User Pre-Authentication".

• Virtual domains that listen on different IP addresses and automatically append domain
names to user IDs, described in "MMP Virtual Domains".

• Multiple installations of the MMP on different servers.

• Enhanced LDAP searching.

• POP before SMTP service for legacy POP clients.

How the Messaging Multiplexor Works
The MMP is a multithreaded server that facilitates distributing mail users across multiple server
machines. The MMP handles incoming client connections destined for other server machines
(the machines on which user mailboxes reside). Clients connect to the MMP itself, which
determines the correct server for the users, connects to that server, and then passes data

Chapter 5
About Messaging Multiplexor

5-3

between the client and server. This capability allows Internet service providers and other large
installations to spread message stores across multiple machines (to increase capacity) while
providing the appearance of a single mail host for users (to increase efficiency) and for external
clients (to increase security). Figure 5-1 shows clients and servers in an MMP installation.

Figure 5-1 Clients and Servers in an MMP Installation

All POP, IMAP, and SMTP clients work with the Messaging Multiplexor. The MMP accepts
connections, performs LDAP directory lookups, and routes the connections appropriately. As is
typical with other mail server installations, each user is assigned a specific address and
mailbox on a specific Messaging Server. However, all connections are routed through the
MMP.

In more detail, these are the steps involved in establishing a user connection:

1. A user's client connects to the MMP, which accepts preliminary authentication information
(user name).

2. The MMP queries the Directory Server to determine which Messaging Server contains that
user's mailbox.

3. The MMP connects to the proper Messaging Server, replays authentication, then acts as a
pass-through pipe for the duration of the connection.

Encryption (SSL) Option
Messaging Multiplexor supports both unencrypted and encrypted (SSL) communications
between the Messaging Server(s) and their mail clients. The current version of Messaging
Server supports the new certificate database format (cert9.db).

When SSL is enabled, the MMP IMAP supports both STARTTLS on the standard IMAP port
and IMAP+SSL on port 993. The MMP can also be configured to listen on port 995 for
POP+SSL.

In legacy configuration, to enable SSL encryption for your IMAP, POP, and SMTP services, you
would uncomment the appropriate SSL settings from the .cfg files. In Unified Configuration,
you use the msconfig command to set the appropriate options. You must also set the list of all
IMAP, POP, and SMTP server ports regardless of whether or not they are secure. See
"Configuring MMP with SSL or Client Certificate-Based Login" for details.

By default, SSL is not enabled. To enable SSL, you must install an SSL server certificate.
Then, you should use the msconfig command to set the SSL options. For a list of the SSL
options, see the ssl* options in the msconfig online help.

Chapter 5
About Messaging Multiplexor

5-4

Certificate-Based Client Authentication
In Unified Configuration, the certificate mapping file (certmap.conf), which matches a client's
certificate to the correct user in the Users/Groups Directory Server, is no longer used. Instead,
you use the following msconfig command to set the appropriate options:

msconfig set base.certmap:default.option value

The default can be replaced with the certificate issuerDN to have configuration specific to that
certificate. That replaces the other groups in the certmap.conf file.

To use certificate-based client authentication, you must also enable SSL encryption. See
"Encryption (SSL) Option" for more information.

You also have to configure a store administrator. You can use the mail administrator, but it is
recommended that you create a unique user ID, such as mmpstore for this purpose so that
you can set permissions as needed.

In Unified Configuration, the MMP supports the dncomps and filtercomps options. The
values of these two options has the form fromattr=toattr. A fromattr value in a certificate's
subjectDN can be used to form an LDAP query with the toattr=value element. For example, a
certificate with a subjectDN of "cn=Pilar Lorca, ou=pilar, o=example.com" could be mapped
to an LDAP query of "(uid=pilar)" with the line:

msconfig> set base.certmap:default.filtercomps ou=uid

To Enable Certificate-based Authentication for Your IMAP or POP Service
1. Decide on the user ID you intend to use as store administrator. While you can use the mail

administrator for this purpose, it is recommended that you create a unique user ID for store
administrator (for example, mmpstore).

2. Make sure that SSL encryption is (or will be) enabled. See "Encryption (SSL) Option" for
more information.

3. Configure the MMP to use certificate-based client authentication by specifying default
certmap option in your configuration. For example:

msconfig set base.certmap:default.dncomps ""
4. Install at least one trusted CA certificate, as described in the discussion on installing

certificates of trusted CAs in Messaging Server Security Guide.

User Pre-Authentication
The MMP provides you with the option of pre-authenticating users by binding to the directory
as the incoming user and logging the result.

Note:

Enabling user pre-authentication reduces server performance.

The log entries are in the format:datetime(sid 0xhex) user namepre-authenticated -
clientIPaddress, server IPaddress

Chapter 5
About Messaging Multiplexor

5-5

Where date is in the format yyyymmdd, time is in the time configured on the server in the
format hhmmss, hex is the session identifier (sid) represented as a hexidecimal number, the
username includes the virtual domain (if any), and the IP address is in dot-quad format.

MMP Virtual Domains
An MMP virtual domain is a set of configuration settings associated with one or more server IP
addresses. The primary use of this feature is to provide different default domains for each
server IP address. The hosteddomains option defaults to 1 (enabled).

A user can authenticate to the MMP with either a short-form userID or a fully qualified userID in
the form user@domain. When a short-form userID is supplied, the MMP will append the
defaultdomain setting, if specified. Consequently, a site which supports multiple hosted
domains can permit the use of short-form user IDs simply by associating a server IP address
and MMP virtual domain with each hosted domain.

To configure a virtual domain option, use the following command:

msconfig set vdomain:IP_address.option value

For example, to set the default domain, use the following command:

msconfig set vdomain:192.0.2.0.defaultdomain example.com

When set, virtual domain configuration option values override global configuration option
values.

You can specify the following configuration options for a virtual domain:

authcachettl
authenticationldapattributes
authservice
authservicettl
binddn
bindpass
clientlookup
crams
debugkeys
defaultdomain
domainsearchformat
ehlokeywords
failovertimeout
hosteddomains
ldapcachesize
ldapcachettl
mailhostattrs
popbeforesmtpkludgechannel
preauth
replayformat
restrictplainpasswords
searchformat
smtpproxypassword
smtprelays
ssladjustciphersuites
sslnicknames
storeadmin
storeadminpass
tcpaccess
tcpaccessattr
virtualdomaindelim

Chapter 5
About Messaging Multiplexor

5-6

For more information on these configuration options, see the msconfig online help or
Messaging Server Reference.

Tip:

View the reference information for these configuration options at:

http://msg.wikidoc.info/index.php/MMP_Reference#optionname

For example, to view the description for the tcpaccess option, use the following URL:

http://msg.wikidoc.info/index.php/MMP_Reference#tcpaccess

About SMTP Proxy
The MMP includes an SMTP submission proxy, which is disabled by default. Most sites do not
need the SMTP proxy because Internet Mail standards already provide an adequate
mechanism for horizontal scalability of SMTP (DNS MX records).

The SMTP proxy is useful for the security features it provides. First, the SMTP proxy is
integrated with the POP proxy to implement the POP before SMTP authorization facility
required by some legacy POP clients. For more information, see the discussion on using the
MMP SMTP proxy in Messaging Server Installation and Configuration Guide. In addition, an
investment in SSL acceleration hardware can be maximized by using the SMTP proxy.

Setting Up the Messaging Multiplexor
During the initial runtime configuration of Messaging Server, you determined if you wanted to
configure the MMP on a machine. You could either set it up on the same machine as your
Messaging Server or set it up on a separate machine.

Note:

MMP does not cache DNS results. A high quality caching DNS server on the local
network is a requirement for a production deployment of Messaging Server.

Before You Configure MMP
Before configuring the MMP:

1. Choose the machine on which you will configure the MMP. It is best to use a dedicated
machine for the MMP.

Chapter 5
Setting Up the Messaging Multiplexor

5-7

Note:

It is recommended that the MMP not be enabled on a machine that is also
running either the POP or IMAP servers. If you install MMP on the same machine
as Messaging Server, you must make sure that the POP and IMAP servers are
set to nonstandard ports. That way, the MMP and Messaging Server ports do not
conflict with one another.

2. On the machine where the MMP is to be configured, create a UNIX system user to be used
by the MMP. This new user must belong to a UNIX system group. See the discussion on
creating UNIX system users and groups in Messaging Server Installation and
Configuration Guide.

3. Set up the Directory Server and its host machine for use with Messaging Server, if they are
not already set up. See the discussion on preparing directory server for Messaging Server
configuration in Messaging Server Installation and Configuration Guide.

4. When upgrading an MMP or back-end IMAP server, the MMP's capability option should
be set to only include capabilities present on all back-end IMAP servers. See the
discussion on the capability option in Messaging Server Reference for more information.

Multiplexor Configuration
To configure the MMP, you must use the Messaging Server init-config program, which gives
you the option of enabling the Messaging Multiplexor. For detailed information about the init-
config program, see Messaging Server Reference Guide.

To Configure the MMP
1. Install Messaging Server software on the machine where you are installing and configuring

the MMP.

2. Configure the MMP by creating the Messaging Server Initial Runtime Configuration. See
the discussion about creating the initial Messaging Server runtime configuration in
Messaging Server Installation and Configuration Guide.

Multiplexor Configuration Options
You control how the MMP operates by specifying various configuration options in the Unified
Configuration. See Messaging Server Reference for more information.

Starting the Multiplexor
To start, stop, or refresh an instance of the Messaging Multiplexor, use one of the commands in
Table 5-2. These commands are located in the MessagingServer_home/bin directory.

Table 5-2 MMP Commands

Option Description

start-msg mmp Starts the MMP (only if the MMP is enabled and one is not already
running).

stop-msg mmp Stops the most recently started MMP.

Chapter 5
Setting Up the Messaging Multiplexor

5-8

Table 5-2 (Cont.) MMP Commands

Option Description

refresh mmp Causes an MMP that is already running to refresh its configuration
without disrupting any active connections.

Modifying an Existing MMP
1. To modify an existing instance of the MMP, use the msconfig command to edit the

configuration as necessary.

2. The run either refresh mmp or stop-msg mmp; start-msg mmp.

Use the former only if you changed "refreshable" options and the latter if you changed any
"non-refreshable" options.

Configuring MMP with SSL or Client Certificate-Based Login
This section describes how to configure MMP with SSL or client certificate-based login.

Note:

It is assumed that the MMP is installed on a machine that does not have a Message
Store or MTA.

To Configure MMP with SSL
1. Generate and install the certificate by using the certutil command. See the discussion on

certificate based authentication for Messaging Server in Messaging Server Security Guide
for details.

2. Set the password used for the certificate file. For example:

msconfig
msconfig> set "sectoken:Internal (Software) Token.tokenpass" newpassword
msconfig> write

The default setting for this password was provided during initial configuration, but it might
be different. It must match the password that was used when the certificate db was created
by running the certutil -N command.

3. Set either sslenable on the relevant proxy (for STARTTLS) and/or set the ssl_ports on a
tcp_listen for the appropriate proxy. In general, the default settings cover the remainder of
the configuration and you do not need to be changed.

4. Start the MMP:

MessagingServer_home/bin/start-msg
5. If you do not want to use SSL between the MMP and the back-end server, then set the

sslbacksideport option to 0 for imapproxy and popproxy as appropriate.

Chapter 5
Configuring MMP with SSL or Client Certificate-Based Login

5-9

To Configure MMP with Client Certificate-based Login
To configure client certificate based login:

1. Get a copy of a client certificate and the CA certificate which signed it.

2. Import the CA certificate as a Trusted Certificate Authority (see the discussion on obtaining
and managing certificates in Messaging Server Security Guide).

3. Use the Store Administrator you created during your Messaging Server installation. See
"Specifying Administrator Access to the Message Store" for more information.

4. Create a certmap.conf file for the MMP. For example:

msconfig> set base.certmap:default.dncomps ""
msconfig# set base.certmap:default.filtercomps "e=mail"

This means to search for a match with the e field in the certificate DN by looking at the mail
attribute in the LDAP server.

5. Use the msconfig command to update the configuration with the following options:

a. Set storeadmin and storeadminpass to values from Step 3.

b. Set usergroupdn to the root of your Users and Groups tree.

6. If you want client certificates with POP3, repeat Step 5 for the popproxy group.

7. If the MMP is not already running, start it with the following command in the
MessagingServer_home/bin directory:

start-msg mmp

8. Import the client certificate into your client. In Netscape Communicator, click the padlock
(Security) icon, then select Yours under Certificates, then select Import a Certificate and
follow the instructions.

Note:

All your users have to perform this step if you want to use client certificates
everywhere.

A Sample Topology
The fictional Example Corporation has two Messaging Multiplexors on separate machines,
each supporting several Messaging Servers. POP and IMAP user mailboxes are split across
the Messaging Server machines, with each server dedicated exclusively to POP or exclusively
to IMAP. (You can restrict client access to POP services alone by removing the imapproxy
entry from the MMP configuration. Likewise, you can restrict client access to IMAP services
alone by removing the popproxy entry from the MMP configuration). Each Messaging
Multiplexor also supports only POP or only IMAP. The LDAP directory service is on a separate,
dedicated machine.

Figure 5-2 illustrates this topology.

Chapter 5
Configuring MMP with SSL or Client Certificate-Based Login

5-10

Figure 5-2 Multiple MMPs Supporting Multiple Messaging Servers

MMP Tasks
MMP configuration tasks include:

• To Configure Mail Access with MMP

• To Set a Failover MMP LDAP Server

To Configure Mail Access with MMP
The MMP does not use the PORT_ACCESS mapping table. If you want to reject SMTP
connections from certain IP addresses and you are using the MMP, you must use the
tcpaccessattr option.

To Set a Failover MMP LDAP Server
It is possible to specify more than one LDAP server for the MMP so that if one fails another
takes over. Modify the ugldaphost option. For example:

msconfig set ugldaphost "ldap1.example.com ldap2.example.com"

Note:

Make sure there is a space between the host names in the preceding configuration,
and because of that space, to enclose the hosts in quotation marks.

Chapter 5
MMP Tasks

5-11

6
MTA Concepts

This chapter provides a conceptual description of the Oracle Communications Messaging
Server MTA.

The MTA Functionality
The Message Transfer Agent (MTA) is a component of the Messaging Server. At its most basic
level, the MTA is a message router. It accepts messages from other servers, reads the
address, and routes it to the next server on way to its final destination, typically a user's
mailbox.

Over the years, a lot of functionality has been added to the MTA, and with it, size, power, and
complexity. These MTA functions overlap, but, in general, can be classified as follows:

• Routing. Accepts a message, expands or transforms it if necessary (for example if it is an
alias), and routes it to the next server, channel, program, file, or whatever. The routing
function has been expanded to allow administrator specification of the internal and external
mechanics of how messages are routed. For example, it is possible to specify things such
as SMTP authentication, use of various SMTP commands and protocol, TCP/IP or DNS
lookup support, job submission, process control and message queueing and so on.

• Address Rewriting. Envelope addresses are often rewritten as part of the routing
process, but envelope or header addresses can also be rewritten to a more desired or
appropriate form.

• Filtering. The MTA can filter messages based on address, domain, possible virus or spam
content, size, IP address, header content, and so on. Filtered messages can be discarded,
rejected, modified, sent to a file, sent to a program, or be sent to the next server on its way
to a user mailbox.

• Content Modification. Message headers or content can be modified. Example: making a
message readable to a specific client or in a specific character set or checking for spam or
viruses.

• Auditing. Tracking who submitted what, where and when.

Figure 6-1 shows the high-level message store and MTA architecture.

6-1

Figure 6-1 High Level Message Store and MTA Architecture

Several subcomponents and processes support these functions and are shown in Figure 6-2.

Figure 6-2 MTA Architecture

The information in this chapter describes these subcomponents and processes. In addition, a
number of tools enable you to manage and configure these functions. These include Unified

Chapter 6
The MTA Functionality

6-2

Configuration options, mapping tables, channel options, channels, and rewrite rules. These
tools are described in the following MTA topics:

• Channel Configuration in Messaging Server Reference

• Integrating Spam and Virus Filtering Programs in Messaging Server Reference

• LMTP Delivery

• Managing Logging

• Monitoring Messaging Server

• Security and Access Control in Messaging Server Security Guide

• Troubleshooting the MTA

• Vacation Automatic Message Reply

MTA Architecture and Message Flow Overview
This section provides a short overview of MTA architecture and message flow (see Figure 6-2).
The MTA is a highly complex component and this figure is a simplified depiction of messages
flowing through the system. In fact, this picture is not a perfectly accurate depiction of all
messages flowing through the system. For purposes of conceptual discussion, however, it
must suffice.

Dispatcher and SMTP Server (Slave Program)
Messages enter the MTA from the Internet or intranet via SMTP sessions. When the MTA
receives a request for an SMTP connection, the MTA dispatcher (a multithreaded connection
dispatching agent), executes a slave program (tcp_smtp_server) to handle the SMTP
session. The dispatcher maintains pools of multithreaded processes for each service. As
additional sessions are requested, the dispatcher activates an SMTP server program to handle
each session. A process in the Dispatcher's process pool may concurrently handle many
connections. Together the dispatcher and slave program perform a number of different
functions on each incoming message. Three primary functions are:

• Message blocking. Messages from specified IP addresses, mail addresses, ports,
channels, header strings and so on, may be blocked.

• Address changing. Incoming From: or To: addresses may be rewritten to a different
form.

• Channel enqueueing. Addresses are run through the rewrite rules to determine which
channel the message should be sent.

See "The Dispatcher" for more information.

Routing and Address Rewriting

SMTP servers enqueue messages, but so can a number of other channels including, the
conversion channel and reprocess channel. Many tasks are achieved during this phase of
delivery, but the primary tasks are:

• Alias expansion.

• Running the addresses through the rewrite rules which do two things:

– Rewrite the domain part of addresses into a desired format.

– Direct messages to the appropriate channel queue.

Channel

Chapter 6
MTA Architecture and Message Flow Overview

6-3

The channel is the fundamental MTA component used for message processing. A channel
represents a message connection with another system (for example, another MTA, another
channel, or the local message store). As mail comes in, different messages require different
routing and processing depending on the message's source and destination. For example, mail
to be delivered to a local message store is processed differently from mail to be delivered to
the Internet, which is processed differently from mail to be sent to another MTA within the mail
system. Channels provide the mechanism for customizing the processing and routing required
for each connection. In a default installation, the majority of messages go to a channels
handling Internet, intranet, and local messages.

Specialized channels for specific situations can also be created. For example, suppose that a
certain Internet domain processes mail very slowly causing mail addressed to this domain to
clog up the MTA. A special channel could be created to provide special handling for messages
addressed to the slow domain, thus relieving the system of this domain bottleneck.

The domain part of the address determines to what channel the message is enqueued. The
mechanism for reading the domain and determining the appropriate channel is called the
rewrite rules (see "Rewrite Rules").

Channels typically consist of a channel queue and a channel processing program called a
master program. After the slave program delivers the message to the appropriate channel
queue, the master program performs the desired processing and routing. Here is an example
of a channel entry:

tcp_intranet smtp mx single_sys subdirs 20 noreverse maxjobs 7 SMTP_POOL
maytlsserver allowswitchchannel saslswitchchannel tcp_auth
tcp_intranet-daemon

The first word, in this case tcp_intranet is the channel name. The last word is called the
channel tag. The words in between are called channel options (formerly called channel
keywords) and specify how messages are to be processed. Hundreds of different options
enable messages to be processed in many ways. See the discussion about channel options in
Messaging Server Reference for a complete description of channel options.

Message Delivery

After the message is processed, the master program sends the message to the next stop
along the message's delivery path. This may be the intended recipient's mailbox, another MTA,
or even a different channel. Forwarding to another channel is not shown in the picture, but is a
common occurrence.

The Dispatcher
The Dispatcher is a multithreaded dispatching agent that permits multiple multithreaded server
processes to share responsibility for SMTP connection services. When using the Dispatcher, it
is possible to have several multithreaded SMTP server processes running concurrently, all
handling connections to the same port. In addition, each server may have one or more active
connections.

The Dispatcher acts as a central receiver for the TCP ports listed in its configuration. For each
defined service, the Dispatcher may create one or more SMTP server processes to handle the
connections after they are established.

In general, when the Dispatcher receives a connection for a defined TCP port, it checks its
pool of available worker processes for the service on that port and chooses the best candidate
for the new connection. If no suitable candidate is available and the configuration permits it, the
Dispatcher may create a new worker process to handle this and subsequent connections. The
Dispatcher may also create a new worker process in expectation of future incoming

Chapter 6
The Dispatcher

6-4

connections. There are several configuration options which may be used to tune the
Dispatcher's control of its various services, and in particular, to control the number of worker
processes and the number of connections each worker process handles.

For more information, see the discussion about the dispatcher configuration file in Messaging
Server Reference.

Creation and Expiration of Server Processes
Automatic housekeeping facilities within the Dispatcher control the creation of new and
expiration of old or idle server processes. The basic options that control the Dispatcher's
behavior are service:name.min_procs and service:name.max_procs. The
service:name.min_procs option provides a guaranteed level of service by having a number of
server processes ready and waiting for incoming connections. The service:name.max_procs
option, on the other hand, sets an upper limit on how many server processes may be
concurrently active for the given service.

It is possible that a currently running server process might not be able to accept any
connections because it is already handling the maximum number of connections of which it is
capable, or because the process has been scheduled for termination. The Dispatcher may
create additional processes to assist with future connections.

The min_conns and max_conns options provide a mechanism to help you distribute the
connections among your server processes. The min_conns option specifies the number of
connections that flags a server process as "busy enough," while the max_conns option
specifies the "busiest" that a server process can be.

In general, the Dispatcher creates a new server process when the current number of server
processes is less than the value of the service:name.min_procs option or when all existing
server processes are "busy enough" (the number of currently active connections each has is at
least min_conns).

If a server process is killed unexpectedly, for example, by the UNIX system kill command, the
Dispatcher still creates new server processes as new connections come in.

For information about configuring the Dispatcher, see the discussion about the dispatcher
configuration file in Messaging Server Reference.

To Start and Stop the Dispatcher
To start the Dispatcher, run the following command:

start-msg dispatcher

This command subsumes and makes obsolete any other start-msg command that was used
previously to start up a component of the MTA that the Dispatcher has been configured to
manage. Specifically, you should no longer use imsimta start smtp. An attempt to execute
any of the obsoleted commands causes the MTA to issue a warning.

To shut down the Dispatcher, run the following command:

stop-msg dispatcher

What happens with the server processes when the Dispatcher is shut down depends upon the
underlying TCP/IP package. If you modify your MTA configuration or options that apply to the
Dispatcher, you must restart the Dispatcher so that the new configuration or options take effect.

To restart the Dispatcher, run the following command:

Chapter 6
The Dispatcher

6-5

imsimta restart dispatcher

Restarting the Dispatcher has the effect of shutting down the currently running Dispatcher, then
immediately starting a new one.

MTA Configuration Overview
In a legacy configuration, you manage the MTA configuration by editing various text files. In
Unified Configuration, you manage the MTA configuration by using the msconfig command.
The Unified Configuration stores the MTA configuration in a single file, config.xml (for the
most part). The msconfig command performs syntax validation on option names and values
as well as the Unified Configuration structure to a limited degree. See Messaging Server
Reference Guide for more information about the msconfig command syntax and options.

Caution:

Only edit your Unified Configuration by running the msconfig command. This saves
old configurations and allows for rollback. Do not hand-edit any of the Unified
Configuration files. Oracle Support may occasionally edit these files to work around
any issues pertaining to msconfig.

Table 6-1 provides a comparison of how the MTA configuration is managed in legacy and
Unified Configuration.

Table 6-1 MTA Configuration: Legacy Versus Unified Configuration

Legacy Configuration Files Unified Configuration Method

mappings file Running msconfig edit mappings loads mappings in legacy format in
the administrator's chosen editor.

imta.cnf file Running msconfig edit channels loads channel blocks in legacy format
in the administrator's chosen editor. Running msconfig edit rewrite
loads rewrite rules in legacy format in the administrator's chosen editor.

option.dat file Get or set options directly by running msconfig.

job_controller.cnf file Get or set options directly by running msconfig; most options require
job_controller prefix.

dispatcher.cnf file Get or set dispatcher options; most require a dispatcher. prefix, service-
specific settings are in a service:name group, such as
service:SMTP.tcp_ports.

conversions file Run msconfig edit conversions.

aliases file Run msconfig edit aliases.

For more information on MTA services see Messaging Server Reference Guide.

Rewrite Rules
Rewrite rules determine the following:

• How to rewrite the domain part of an address into its proper or desired format.

• To which channel the message should be enqueued after the address is rewritten.

Chapter 6
MTA Configuration Overview

6-6

Each rewrite rule consists of a pattern and a template. The pattern is a string to match against
the domain part of an address. The template specifies the actions to take if the domain part
matches the pattern. It consists of two things:

1. A set of instructions (that is, a string of control characters) specifying how the address
should be rewritten.

2. The name of the channel to which the message shall be sent. After the address is
rewritten, the message is enqueued to the destination channel for delivery to the intended
recipient.

Here is an example of a rewrite rule:

example.org $U%$D@tcp_example-daemon

example.org is the domain pattern. Any message with the address containing example.org
will be rewritten as per the template instructions ($U%$D). $U specifies that the rewritten
address use the same user name. % specifies that the rewritten address use the same domain
separator. $D specifies that the rewritten address use the same domain name that was
matched in the pattern. @tcp_example-daemon specifies that the message with its rewritten
address be sent to the channel called tcp_example-daemon.

For more information about configuring rewrite rules, see the discussion about the MTA
configuration file in Messaging Server Reference.

Channels
The channel is the fundamental MTA component that processes a message. A channel
represents a connection with another computer system or group of systems. The actual
hardware connection or software transport or both may vary widely from one channel to the
next.

Channels perform a variety of functions, including:

• Transmitting messages to remote systems, deleting them from their queue after they are
sent

• Accepting messages from remote systems, placing them in the appropriate channel
queues

• Delivering messages to the local message store

• Delivering messages to programs for special processing

Messages are enqueued by channels on the way into the MTA and dequeued on the way out.
Typically, a message enters by one channel and leaves by another. A channel might dequeue
a message, process the message, or enqueue the message to another MTA channel.

Master and Slave Programs
Generally (but not always), a channel is associated with two programs: master and slave. The
slave program accepts messages from another system and adds them to a channel's message
queue. The master program transfers messages from the channel to another system.

For example, an SMTP channel has a master program that transmits messages and a slave
program that receives messages. These are, respectively, the SMTP client and server.

The master channel program is typically responsible for outgoing connections where the MTA
has initiated the operation. The master channel program:

• Runs in response to a local request for processing.

Chapter 6
Channels

6-7

• Dequeues the message from the channel message queue.

• If the destination format is not the same format as the queued message, performs
conversion of addresses, headers, and content, as necessary.

• Initiates network transport of the message.

The slave channel program typically accepts incoming connections where the MTA is
responding to an external request. The slave channel program:

• Runs in response to an external event or upon local demand.

• Enqueues a message to a channel. The target channel is determined by passing envelope
addresses through a rewrite rule.

For example, Figure 6-3 shows two channel programs, Channel 1 and Channel 2. The slave
program in Channel 1 receives a message from a remote system. It looks at the address,
applies rewrite rules as necessary, then based on the rewritten address enqueues the
message to the appropriate channel message queue.

The master program dequeues the message from the queue and initiates network transport of
the message. Note that the master program can only dequeue messages from its own channel
queue.

Figure 6-3 Master and Slave Program Interaction

Although a typical channel has both a master and a slave program, it is possible for a channel
to contain only a slave program or a master program. For example, the ims-ms channel
supplied with Messaging Server contains only a master program because this channel is
responsible only for dequeuing messages to the local message store, as shown in Figure 6-4.

Figure 6-4 ims-ms Channel

Channel Message Queues
All channels have an associated message queue. When a message enters the messaging
system, a slave program determines to which message queue the message is enqueued. The

Chapter 6
Channels

6-8

enqueued messages are stored in message files in the channel queue directories. By default,
these directories are stored at the following location: DataRoot/queue/channel/*. For more
information, see the discussion about message queue sizing in Messaging Server Installation
and Configuration Guide.

Caution:

Do not add any files or directories in the MTA queue directory. When using a
separate file system for the MTA queue directories, create a subdirectory under that
mount point and specify that subdirectory in the SERVERROOT environment
variable. Sites may change it by using either a symbolic link or using it as a file
system mount point. The default value is: IMTA_ROOT:data/queue/.

Channel Definitions
In Unified Configuration, use the msconfig edit channels and msconfig edit rewrites
commands to view and edit the channel block. (See Messaging Server Reference for
information about setting up channels.)

A channel definition contains the name of the channel followed by an optional list of keywords
that define the configuration of the channel, and a unique channel tag, which is used in rewrite
rules to route messages to the channel. Channel definitions are separated by single blank
lines. Comments, but no blank lines, may appear inside a channel definition. The following
represents the channel format.

[blank line]
! sample channel definition
<Channel_Name> <keyword1> <keyword2>
<Channel_Tag>
[blank line]

Collectively, the channel definitions are referred to as the channel host table. An individual
channel definition is called a channel block. In the following example, the channel host table
contains three channel definitions or blocks.

! test.cnf - An example configuration file.
!
! Rewrite Rules
.
.
.

! BEGIN CHANNEL DEFINITIONS
! FIRST CHANNEL BLOCK
l
local-host

! SECOND CHANNEL BLOCK
a_channel defragment charset7 usascii
a-daemon

! THIRD CHANNEL BLOCK
b_channel noreverse notices 1 2 3
b-daemon

A typical channel entry looks something like the following, shown in legacy format as would
display using the msconfig edit channels command:

Chapter 6
Channels

6-9

tcp_intranet smtp mx single_sys subdirs 20 noreverse maxjobs 7 SMTP_POOL \
maytlsserver allowswitchchannel saslswitchchannel tcp_auth
tcp_intranet-daemon

The first word, in this case tcp_intranet, is the channel name. The last word, in this case
tcp_intranet-daemon, is called the channel tag. The channel tag is the name used by rewrite
rules to direct messages. The words in between the channel name and channel tag are called
channel options (formerly channel keywords) and specify how the message is to be processed.
Hundreds of different keywords allow messages to processed in many ways. A complete listing
of channel keywords is provided in Messaging Server Reference.

The channel host table defines the channels Messaging Server can use and the names of the
systems associated with each channel.

On UNIX systems, the first channel block in the file always describes the local channel, l. (An
exception is a defaults channel, which can appear before the local channel.) The local channel
is used to make routing decisions and for sending mail sent by UNIX mail tools.

You can also set global options for channels or set options for a specific channel. For more
information on the option files, the TCP/IP (SMTP) channel option files, and configuring
channels, see Messaging Server Reference.

The MTA Directory Information
For each message that it processes, the MTA needs to access directory information about the
users, groups, and domains that it supports. This information is stored in an LDAP directory
service. The MTA directly accesses the LDAP directory.

The Job Controller
Each time a message is enqueued to a channel, the Job Controller ensures that there is a job
running to deliver the message. This might involve starting a new job process, adding a thread,
or simply noting that a job is already running. If a job cannot be started because the job limit for
the channel or pool has been reached, the Job Controller waits until another job has exited.
When the job limit is no longer exceeded, the Job Controller starts another job.

Channel jobs run inside processing pools within the Job Controller. A pool can be thought of a
"place" where the channel jobs are run. The pool provides a computing area where a set of
jobs can operate without vying for resources with jobs outside of the pool. For more information
on pools, see the discussion about processing pools for channel execution jobs in Messaging
Server Reference.

Job limits for the channel are determined by the channel:name.maxjobs option. Job limits for
the pool are determined by the job_controller.job_pool:name.job_limit option for the pool.

Messaging Server normally attempts to deliver all messages immediately. If a message cannot
be delivered on the first attempt, however, the message is delayed for a period of time
determined by the appropriate backoff option. As soon as the time specified in the backoff
option has elapsed, the delayed message is available for delivery, and if necessary, a channel
job is started to process the message.

The Job Controller's in-memory data structure of messages currently being processed and
awaiting processing typically reflects the full set of message files stored on disk in the MTA
queue area. However, if a backlog of message files on disk builds up enough to exceed the
Job Controller's in-memory data structure size limit, then the Job Controller tracks in memory
only a subset of the total number of messages files on disk. The Job Controller processes only
those messages it is tracking in memory. After a sufficient number of messages have been

Chapter 6
The MTA Directory Information

6-10

delivered to free enough in-memory storage, the Job Controller automatically refreshes its in-
memory store by scanning the MTA queue area to update its list of messages. The Job
Controller then begins processing the additional message files it just retrieved from disk. The
Job Controller performs these scans of the MTA queue area automatically.

In previous versions of Messaging Server, the Job Controller read all the files in the queue
directory in the order in which they are found. It now reads several channel queue directories
at once. This makes for much more reasonable behavior on startup, restart, and after
max_cache_messages has been exceeded. The number of directories to be read at once is
controlled by the Job Controller option rebuild_parallel_channels. This can take any value
between 1 and 100. The default is 12.

If your site routinely experiences heavy message backlogs, you might want to tune the Job
Controller by using the max_cache_messages option. By increasing the
max_cache_messages option value to allow Job Controller to use more memory, you can
reduce the number of occasions when message backlogs overflow the Job Controller's in-
memory cache. This reduces the overhead involved when the Job Controller must scan the
MTA queue directory. Keep in mind, however, that when the Job Controller does need to
rebuild the in-memory cache, the process will take longer because the cache is larger. Note
also that because the Job Controller must scan the MTA queue directory every time it is started
or restarted, large message backlogs mean that starts or restarts of the Job Controller will
incur more overhead than starts or restarts when no such backlog exists.

You do not want to overwhelm the job controller by keeping information about huge numbers of
messages in memory. For this reason, there has to be a and upper and lower limit. The
number specified by max_cache_messages is the number of messages that the job controller
will hold in memory. It will get this high if there are new messages delivered, for instance ones
received by tcp_smtp_server. Beyond this number, messages are queued (put on disk), but
not put into the job controller memory structure. The job controller notices this condition and
when the number of messages in memory drops below half this maximum, it starts scanning
the disk queues for more messages. It always looks for untried messages "ZZ..." files first, then
previously tried messages.

In addition, the job controller limits the number of messages reclaimed from disk. It only reads
from disk up to three-quarters of the max_cache_messages to allow for headroom for new
messages (if messages are being reclaimed from disk, they have been delayed, which is an
undesirable state).

Furthermore, you want to avoid cluttering up the memory structure with delayed messages
(those that cannot be processed yet). When a message is delayed because it cannot be
delivered immediately (a delivery attempt has failed if the number of messages the job
controller knows about is greater than 5/8 of max_cache_messages and the number of
delayed messages is greater than 3/8 of max_cache_messages) the message is forgotten
until the next sweep of the on disk structures, which will be when the number of messages
drops below 1/2 max_cache_messages.

The only obvious problems with having max_cache_messages too small is that the
scheduling of jobs will become suboptimal. The scanning of the disk queues is also a bit
simplistic. If you have huge numbers of messages backlogged in both the tcp_local and
ims_ms queues, then the rebuild thread finds all the messages for one channel first, then the
ones for the next channel. This can result in alarmed administrators reporting that they've fixed
one issue, but are only seeing only one specific channel dequeuing.

This is not a problem. There is a memory cost of approximately 140 bytes for each message.
Having a message limit of 100000, you are limiting the job controller data structures to about
20 Megabytes (there are other data structures representing jobs, channels, destination hosts
and so on). This is insignificant on a big server.

Chapter 6
The Job Controller

6-11

All the named objects in the job controller are tracked in a hash table. This is sized at the next
power of 2 bigger than max_cache_messages, and is never re-sized. Each entry in this hash
table is a pointer, so we are looking at a memory usage of four times max_cache_messages
rounded up to a power of two. Being a hash table, this tends all to be in memory as the hash
function is supposed to be random. This is another 0.5 Megabytes in the default case.

For information about pools and configuring the Job Controller, see the discussion about
configuring message processing and delivery in Messaging Server Reference.

To Start and Stop the Job Controller
To start the Job Controller, run the following command:

start-msg job_controller

To shut down the Job Controller, run the following command:

stop-msg job_controller

To restart the Job Controller, run the following command:

imsimta restart job_controller

Restarting the Job Controller has the effect of shutting down the currently running Job
Controller, then immediately starting a new one.

On Demand Mail Relay
Support for On Demand Mail Relay as specified in RFC 2645 has been completed. This
support piggybacks off existing support for SMTP TURN and doesn't involve any new options.
Specifically, the turn_in channel option now enables both TURN and ATRN.

Note that the optional parameter to the ATRN command is only allowed if the ODMR channel
is marked single_sys or single. This is so messages sent to a particular email domain can be
reliably retrieved without getting messages sent to other domains.

It is strongly recommended that each administrative domain that requires ATRN service be
configured as a separate channel rather than relying on ATRN's domain selection capabilities.
Specifically, the recommended configuration process to provide relay on demand for a new
administrative domain foo is as follows:

1. Create a new channel for the domain foo:

tcp_foo mustsaslserver single_sys slave smtp turn_in
tcp_auth-daemon

Or in msconfig:

set channel:tcp_foo.official_host_name tcp_foo-daemon
set channel:tcp_foo.mustsaslserver
set channel:tcp_foo.single_sys
set channel:tcp_foo.slave
set channel:tcp_foo.smtp
set channel:tcp_foo.turn_in

Note the presence of the slave channel option. This prevents the channel from trying to
perform regular SMTP deliveries. This can be removed if such delivery attempts are
desired.

Chapter 6
On Demand Mail Relay

6-12

Also note the presence of single_sys. multiple can be used instead and will be more
efficient if multiple email domains are involved and the ATRN command is always used
without an argument.

2. Create rewrite rules for all email domains associated with the foo administrative domain,
for example:

foo.example.com $U%$D@tcp_foo-daemon
foo.example.org $U%$D@tcp_foo-daemon

Or in msconfig:

set rewrite.rule foo.example.com $U%$D@tcp_foo-daemon
set rewrite.rule foo.example.org $U%$D@tcp_foo-daemon

3. Create a regular email account for foo with whatever name and credentials are desired.
The account should include the LDAP attribute mailSubmitChannel with the value
tcp_foo.

4. (optional) Create a dispatcher configuration identical to the regular service on port 25
except that it listens on port 366, the On Demand Mail Relay port.

5. (optional) Add a rule to the FROM_ACCESS mapping to block all mail coming from the
ODMR port unconditionally.

6. (optional) Add a rule to the FROM_ACCESS mapping to block all mail from the tcp_foo
channel unconditionally. This will prevent the administrative account from being used to
send authenticated mail.

At this point ATRN should be usable by connecting, authenticating as the newly created user,
and issuing an ATRN.

Priority Message Handling
This chapter describes Messaging Server's support of the MT-PRIORITY SMTP extension
defined in RFC 6710. MT-PRIORITY values are always in the range -9 to 9. Priority 0 is the
default.

The support for this extension consists of the following parts:

• The mtprioritiesallowed and mtprioritiesrequired source channel options. Both accept
either one- or two-integer arguments. Two-integer arguments specify the range. You can
specify the arguments in any order. Table 6-2 shows the channel options and their
descriptions.

Table 6-2 MT-PRIORITY SMTP Extension Support

Channel Option Description

mtprioritiesallowed int1 [int1] Specifies the range of MT-PRIORITY values that will accepted. MT-PRIORITY values
outside this range will be adjusted up or down so they fall within the allowed range. If a
single argument is given it specifies the highest priority value that will be accepted.
The default if this option is not specified is for the MT-PRIORITY extension not to be
offered and for MT-PRIORITY options not to be accepted.

mtprioritiesrequired int1 [int2] Specifies the range of MT-PRIORITY that will be accepted for enqueue. If a single
argument is given it specifies the lowest priority value that will be accepted. The
message will be rejected if the specified MT-PRIORITY value or the default value of 0
falls outside the required range.

Chapter 6
Priority Message Handling

6-13

• An INCLUDE_MTPRIORITY MTA option. This is a bit-encoded option. The default value is
0. Table 6-3 shows the bits, corresponding values, and descriptions of the
INCLUDE_MTPRIORITY MTA option.

Table 6-3 INCLUDE_MTPRIORITY MTA Option

Bit Value Description

0 1 Appends the MT-PRIORITY and expected message size as separate fields to the
FROM_ACCESS mapping probe immediately after any INCLUDE_SPARES values.

1 2 Appends the MT-PRIORITY and expected message size as separate fields to the
FORWARD mapping probe immediately after the conversion tag field.

2 4 Appends the MT-PRIORITY and expected message size as separate fields to the
ORIG_SEND_ACCESS mapping probe immediately after any INCLUDE_SPARES
values.

3 8 Appends the MT-PRIORITY and expected message size as separate fields to the
SEND_ACCESS mapping probe immediately after any INCLUDE_SPARES values.

4 16 Appends the MT-PRIORITY and expected message size as separate fields to the
ORIG_MAIL_ACCESS mapping probe immediately after any INCLUDE_SPARES
values.

5 32 Appends the MT-PRIORITY and expected message size as separate fields to the
MAIL_ACCESS mapping probe immediately after any INCLUDE_SPARES values.

6 64 Appends the MT-PRIORITY and actual message size values in the form:

;MT-PRIORITY=<value>;BLOCKS=<value>
to the conversion mapping probe immediately after any tag= clause.

7 128 Append the MT-PRIORITY and expected message size as separate fields to any
domain catchall mapping probe immediately after the conversion tag.

The expected message size is the size of the queued message entry for internal channels.
It is the value given by the SMTP SIZE extension for incoming SMTP channels. The size is
given in MTA blocks.

• A LOG_MTPRIORITY MTA option. This is a bit-encoded option. The default is 0. Table 6-4
shows the bits, corresponding values, and descriptions of the LOG_MTPRIORITY MTA
option. An mp element is used in the new XML log format to log the priority information.
See "Managing Logging" for more information about the XML log format.

Table 6-4 LOG_MTPRIORITY MTA Option

Bit Value Description

0 1 Enables logging of the MT-PRIORITY associated with each transaction. The MT-PRIORITY appears
immediately after the message sensitivity and before the header-based priority in each log entry.

1 2 Message transfer priority appears in the LOG_ACTION mapping table probe, immediately after the
sensitivity field and before the header-based priority field.

• Rewrite rule metacharacters that test both the current MT-PRIORITY value and the
expected message size. For each metacharacter, n is a signed integer value. Note that the
sign is required even when n is positive. The expected message size is the size of the
queued message entry for internal channels. It is the value given by the SMTP SIZE
extension for incoming SMTP channels. The size is given in MTA blocks.

Table 6-5 shows the rewrite rule metacharacters and their descriptions.

Chapter 6
Priority Message Handling

6-14

Table 6-5 Rewrite Rule Metacharacters

Metachar
acter

Description

$n<P Rule succeeds only if n is less than the current MT-PRIORITY.

$n<=P Rule succeeds only if n is less than or equal to the current MT-PRIORITY.

$n>P Rule succeeds only if n is greater than the current MT-PRIORITY.

$n>=P Rule succeeds only if n is greater than or equal to the current MT-PRIORITY.

$n=P Rule succeeds only if n is equal to the current MT-PRIORITY.

$n<>P Rule succeeds only if n is not equal to the current MT-PRIORITY.

$n<B Rule succeeds only if n is less than the expected message size.

$n<=B Rule succeeds only if n is less than or equal to the expected message size.

$n>B Rule succeeds only if n is greater than the expected message size.

$n>=B Rule succeeds only if n is greater than or equal to the expected message size.

$n=B Rule succeeds only if n is equal to the expected message size.

$n<>B Rule succeeds only if n is not equal to the expected message size.

• A -mtpriority switch added to imsimta test -rewrite, imsimta calc, and imsimta test -
expression utilities. A single integer argument is required specifying the initial MT-
PRIORITY value.

• A Sieve environment item, vnd.oracle.mt-priority. This item returns the current MT-
PRIORITY value as a string.

• A nonstandard Sieve action, setmtpriority. This action accepts a single integer or string
argument and sets the current MT-PRIORITY to the argument value. This action is only
allowed in system-level Sieves and the argument must be in the -9 to 9 range of valid MT-
PRIORITY values.

• A bit defined in the MESSAGE_SAVE_COPY_FLAGS MTA option. Bit 3 (value 8), if set,
causes the MT-PRIORITY value for the current message to be included, delimited by
vertical bars, immediately after the conversion tag.

• An MTPRIORITY_POLICY MTA option. This option is used to specify the priority handling
policy the MTA has been configured to support. This name is announced in the SMTP
EHLO response on any channel where the MT-PRIORITY extension is enabled. The
default is the empty string, meaning that no policy is announced.

MTA Command-line Utilities
Oracle Communications Messaging Server Message Transfer Agent (MTA) command-line
utilities are used to perform various MTA maintenance, testing, and management tasks.

The MTA commands are also referred to as the imsimta commands. The imsimta script is
located in the MessagingServer_home/bin directory.

For more information on MTA commands, see Messaging Server Reference.

Chapter 6
MTA Command-line Utilities

6-15

7
LMTP Delivery

This chapter provides an overview of the Local Mail Transfer Protocol (LMTP), and describes
how to configure both the LMTP client and server.

Overview of LMTP
The Oracle Communications Messaging Server MTA can use Local Mail Transfer Protocol
(LMTP), as defined in RFC 2033, to deliver messages to the message store in a multi-tiered
Messaging Server deployment. In this scenario, the front-end relays become responsible for
address expansion and delivery methods such as autoreply and forwarding, and also for
mailing list expansion. Delivery to the back-end stores historically has been over SMTP, which
requires the back-end system to look up the recipient addresses in the LDAP directory again,
thereby engaging the full machinery of the MTA. For speed and efficiency, the MTA can use
LMTP rather than SMTP to deliver messages to the back-end store. The Messaging Server's
LMTP server is not intended as a general purpose LMTP server, but rather as a private
protocol between the relays and the back-end message stores. For simplicity of discussion,
examples involving two-tiered deployments are used.

Note:

LMTP is recommended for use in multi-tiered deployments. Also, the Messaging
Server's LMTP service as implemented is not designed to work with third-party LMTP
servers or third-party LMTP clients.

LMTP Delivery Features
The MTA's LMTP server is more efficient for delivering to the back-end message store because
it:

• Reduces the load on the back-end stores. Because relays are horizontally scalable and
back-end stores are not, it is good practice to push as much processing to the relays as
possible.

• Reduces the load on the LDAP servers. The LDAP infrastructure is often a limiting factor in
large messaging deployments.

• Reduces the number of message queues. Having queues on both the relay and the back-
end store makes finding a lost message that much harder for administering a messaging
deployment.

LMTP Client and Server to Detect and Respond to Certain Conditions
The LMTP client and server can detect and respond to the condition where a given host's
LMTP server is responding but isn't associated with the master store replica. When this
happens the LMTP server produces a banner or MAIL FROM response of the form:

423 4.3.2 Host not master for store; correct master host is HOSTNAME

7-1

or, if the correct master host is not known:

421 4.3.2 Host not master for store; cannot determine correct master host

When the LMTP client sees the 423 banner it will immediately disconnect and reconnect to the
correct host. The affinity subsystem is also informed of the new master host.

The 421 banner is treated like any other 4YZ banner response; the client disconnects and tries
the next host in the affinity group.

A 423 MAIL FROM response engages the LMTP client's fast retry logic; the client will abort the
delivery attempt and disconnect but schedule the message for fast retry.

The handling of a 421 MAIL FROM response is unchanged.

The following LMTP channel-specific parameters support this capability:

• WRONG_MASTER_FAST_RETRY - Controls the actual value used to override the normal
backoff value. The default is 1, meaning to ask the Job Controller for a fairly quick retry.
Setting the option to 0 disables backoff override in this case. Positive values greater than 1
result in a retry, but not quite as quick of one. The formula used is n + rand() % (15 * n)
seconds, where n is the WRONG_MASTER_FAST_RETRY value.

• WRONG_MASTER_FALLBACK_ATTEMPTS - Controls the number of times the LMTP
client will honor a 423 banner redirect. The default is 1, meaning a single redirect will be
honored for a given message.

Support for LMTP Client and Server to Use UID Extension
This extension, if present, provides a single UID parameter on the MAIL FROM command that
accepts the values "NO" or "RET". If the latter is specified, the final LMTP responses to DATA/
BDAT include the UID, UIDVALIDITY, digest value (if available), and optionally the folder if
different from INBOX, separated by colons and enclosed in angle brackets. For example:

S: 220 multke.mrochek.com -- Server LMTP (Oracle Communications Messaging Server
8.0.2.0.0 64bit (built Sep 15 2017))
 C: LHLO multke.mrochek.com
 S: 250-multke.mrochek.com
 S: 250-8BITMIME
 S: 250-UID
 S: 250-PIPELINING
 S: 250-CHUNKING
 S: 250-XDFLG
 S: 250-XQUOTA
 S: 250-XAFLG
 S: 250-XSPARE
 S: 250-ENHANCEDSTATUSCODES
 S: 250-HELP
 S: 250 SIZE 0
 C: MAIL FROM:<> UID=RET
 S: 250 2.5.0 Address Ok.
 C: RCPT TO:<test1+folder@ims-ms-daemon> XDFLGS=5
 S: 250 2.1.5 test1@ims-ms-daemon OK.
 C: RCPT TO:<test2@ims-ms-daemon>
 S: 250 2.1.5 test2@ims-ms-daemon OK.
 C: DATA
 S: 354 Enter mail, end with a single ".".
 C: Subject: Test message
 C:
 C: This is a test.
 C: .

Chapter 7
LMTP Delivery Features

7-2

 S: 250 2.5.0 <1445028362:2::folder> Delivery to user OK
 S: 250 2.5.0 <1440097745:2:> Delivery to user OK

This extension is enabled by default and cannot be disabled. The LMTP client uses it if it is
present to obtain UID information to use in conjunction with the LOG_MAILBOX_UID MTA
option as well as the recall facility.

Additionally, the LOG_MAILBOX_UID MTA option now enables logging of UID information in
the S records logged by the LMTP server. Note that this logging does not depend on use of the
LMTP extension.

Messaging Processing in a Two-Tiered Deployment Without
LMTP

Figure 7-1 shows message processing in a two-tiered deployment without LMTP.

Figure 7-1 Two-Tiered Deployment Without LMTP

Without LMTP, in a two-tiered deployment with relays "in front" of the store systems, inbound
message processing begins with a connection on the SMTP port picked up by the dispatcher
on the relay machine and handed off to a tcp_smtp_server process. This process does
several things with the inbound message including:

• Looking up the user in the directory

• Determining if the user is within a domain hosted by this email deployment

• Determining if the user is a valid user in the domain

• Rewriting the envelope address as @mailhost:user@domain

• Enqueuing the message for delivery to the mailhost

The smtp_client process then picks up the mail message from the queue and sends it to the
mailhost. On the mailhost, some very similar processing takes place. A connection on the
SMTP port is picked up by the dispatcher and handed off to a tcp_smtp_server process. This
process does several things to the message, including:

• Looking up the user in the directory

• Determining if the user is within a domain hosted by this email deployment

Chapter 7
Messaging Processing in a Two-Tiered Deployment Without LMTP

7-3

• Determining if the user is a valid user in the domain

• Rewriting the envelope address to direct the message to the ims_ms channel

• Enqueuing the message for delivery to the store

Then the ims_ms process picks up the mail message and attempts to deliver it to the store. In
this scenario, the enqueuing processing is performed twice, and the MTAs each perform an
LDAP lookup.

Messaging Processing in a Two-Tiered Deployment With LMTP
Figure 7-2 shows message processing in a two-tiered deployment scenario with LMTP.

Figure 7-2 Two-Tiered Deployment With LMTP

With LMTP in place, a connection on the SMTP port of the relay machine is picked up by the
dispatcher and handed off to a tcp_smtp_server process. This process does several things
with the inbound message including:

• Looking up the user in the directory

• Determining if the user is within a domain hosted by this email deployment

• Determining if the user is a valid user in the domain

• Determining which back end message store machine hosts the mailbox for the user

• Enqueuing the message for delivery to the mailhost

On the store machine, a connection to the LMTP port is received by the dispatcher and handed
off to the lmtp_server process. The LMTP server then inserts the message into the user's
mailbox or into the UNIX native mailbox. If message delivery is successful, the message is
dequeued on the relay machine. If unsuccessful, the message remains on the relay machine.
Note that the LMTP process on the message store does not engage any MTA machinery for
processing addresses or messages.

LMTP Architecture
An LMTP configuration consists of setting up LMTP channels, one for the LMTP client and one
for the LMTP server. LMTP channels are special cases of TCP/IP channels. The general
SMTP-over-TCP/IP channel is often configured for bidirectional use. An LMTP channel, on the
other hand, is configured to be dedicated for either client or server use. You configure the

Chapter 7
Messaging Processing in a Two-Tiered Deployment With LMTP

7-4

LMTP client channel on the MTA front-end relay host and the LMTP server channel on the
back-end message store. Running commpkg install on both the front-end relay and back-end
store system will configure LMTP properly.

For the most part, the MTA itself can be basically absent from the back-end server. The
following items are the only necessary MTA components on the back end:

• The dispatcher

• The LMTP server

• A simple MTA configuration including mappings

The dispatcher must run on the back-end server so that it can start the LMTP servers that run
under it. Because the dispatcher and the LMTP server use various functions of libimta, this
needs to be present on the back-end server as well.

The LMTP server does not perform any of the usual MTA enqueuing or dequeuing functions,
header processing, or address translations. The front-end relay system performs all the
manipulation of the content of the messages and addresses, which then presents to the LMTP
server the message in exactly the form to be delivered to the message store and with the
delivery address already in the form required by the store. Additional recipient information that
is usually available as a message that is delivered to the store, such as the user's quota, is
presented along with the recipient address as LMTP options. Should a delivery attempt fail, the
message is left enqueued in the LMTP queue on the relay system.

Configuring LMTP
Setting up LMTP requires that you configure both the front-end relay hosts and back-end
message store hosts. On the relays, you must change the mta.delivery_options option so
that messages being delivered to the stores are passed to the LMTP channel. The back-end
store must be configured with the dispatcher, but does not need the job controller. On the
LMTP client, you must configure the job controller to run the LMTP client.

This section describes how to configure the LMTP front ends and back ends by using Unified
Configuration recipes. You could also perform the same configuration manually by using the
msconfig command, however, using recipes is faster and makes the task repeatable. You run
one recipe on the LMTP front ends and one on the LMTP back ends. Messaging Server ships
with the following two LMTP recipes:

• LMTPSingleSystem.rcp: Use this recipe primarily for evaluation and testing purposes.

• LMTPBackendFailover.rcp: Use this recipe for both LMTP and failover without download.
This recipe is easily modified (lines removed) for just LMTP support.

See "Using Recipes" and the discussion on recipe language in Messaging Server Reference
for more information on Unified Configuration recipes.

Before You Begin
To see if any LMTP options are already enabled on your Messaging Server hosts, run the
following command:

msconfig show mta.delivery_options -default

To Configure the Front-end MTA Relay with LMTP
Use the following "Example Recipe to Configure LMTP Front-end Relay with LMTP" to
configure the inbound MTA relay for LMTP.

Chapter 7
Configuring LMTP

7-5

1. Make a copy of the example recipe file and save it as recipe.rcp in the config/recipes
directory.

2. In this example, replace the following items with your site-specific values:

• myIP

• myNetmaskbits

3. To run the recipe, type the following command:

cd MessagingServer_home/bin
msconfig run MessagingServer_home/config/recipes/recipe_name

4. Recompile if running a compiled configuration

imsimta cnbuild
5. Restart Messaging Server.

cd MessagingServer_home/bin
stop-msg
start-msg

Example Recipe to Configure LMTP Front-end Relay with LMTP

-*- mode: sieve; -*-
description("frontendMTA to backend LMTP store");
keywords(["frontend","MTA", "LMTP"]);
#
Sample recipe for a frontend MMP/MTA to a backend LMTP store
the corresponding recipe for the backend store/LMTP is backendLMTP.rcp
#
###
!!!!!!!!!!!!!!!!!!!!!
CHANGE THESE
!!!!!!!!!!!!!!!!!!!!!
#
constants - supplied input
#
my IP address
myIP = "10.133.158.10";
network portion of IP address in number of bits
myNetmaskbits = "8";

###
#
configure LMTP frontend
#

#
disable store
#
set_option("store.enable", "0");
set_option("imap.enable", "0");
set_option("pop.enable", "0");

#
add to rewrite rules
.lmtp EF$U%$H.lmtp@lmtpcs-daemon
.lmtp BF$U%$H@$H@lmtpcs-daemon
#
should really check to see if the rewrite rule exists instead
of unilaterally appending it
#

Chapter 7
Configuring LMTP

7-6

append_rewrites([".lmtp", "EF$U%$H.lmtp@lmtpcs-daemon"]);
append_rewrites([".lmtp", "BF$U%$H@$H@lmtpcs-daemon"]);

#
add channel tcp_lmtpcs
,----
| tcp_lmtpcs defragment lmtp multigate connectcanonical fileinto @$4O:$U+$S@$D f\
| lagtransfer multigate connectcanonical port 225 nomx sin\
| gle_sys pool SMTP_POOL dequeue_removeroute
| lmtpcs-daemon
`----
#
set_option("channel:tcp_lmtpcs.connectcanonical");
set_option("channel:tcp_lmtpcs.defragment");
set_option("channel:tcp_lmtpcs.fileinto", "@$4O:$U+$S@$D");
set_option("channel:tcp_lmtpcs.flagtransfer");
set_option("channel:tcp_lmtpcs.lmtp");
set_option("channel:tcp_lmtpcs.multigate");
set_option("channel:tcp_lmtpcs.nomx");
set_option("channel:tcp_lmtpcs.pool", "SMTP_POOL");
set_option("channel:tcp_lmtpcs.port", "225");
set_option("channel:tcp_lmtpcs.single_sys");
set_option("channel:tcp_lmtpcs.dequeueremoveroute");
set_option("channel:tcp_lmtpcs.official_host_name", "lmtpcs-daemon");

#
! The modified DELIVERY_OPTIONS which activate LMTP
! delivery from a frontend relay to the backend
#
DELIVERY_OPTIONS=\
#*mailbox=@$X.LMTP:$M%$\$2I$_+$2S@lmtpcs-daemon,\
#&members=*,\
#*native=@$X.LMTPN:$M+$2S@native-daemon,\
#*unix=@$X.LMTPN:$M,\
#*file=@$X.LMTPN:+$F,\
#&@members_offline=*,\
#/hold=@hold-daemon:$A,\
#program=$M%$P@pipe-daemon,\
#forward=**,\
#*^!autoreply=$M+$D@bitbucket
#
NOTE NOTE NOTE - have to escape the backslash in the "mailbox=..."
set_option("mta.delivery_options", "#*mailbox=@$X.LMTP:$M%$\\$2I$_+$2S@lmtpcs-
daemon,#&members=*,#*native=@$X.LMTPN:$M+$2S@native-
daemon,#*unix=@$X.LMTPN:$M,#*file=@$X.LMTPN:+$F,#&@members_offline=*,#/hold=@hold-
daemon:$A,#program=$M%$P@pipe-daemon,#forward=**,#*^!autoreply=$M+$D@bitbucket");

###
write("use \"write -remark frontendLMTP.rcp\" to write out the changes\n");

This recipe performs the following configuration on the LMTP front end:

1. Disables the message store, as it is not needed.

2. Enables the necessary rewrite rules. The recipe language append_rewrites function adds
entries to existing rewrite rules, or, if none exists, adds them as new rules.

3. Adds the tcp_lmtpcs channel with the appropriate options:

• connectcanonical: Tells the MTA to compare the recipient envelope address domain
with the channel host proper names, and if the domain name matches one of the

Chapter 7
Configuring LMTP

7-7

channel's host proper names, then connect to the host name corresponding to that
host proper name.

• defragment: Any message/partial messages queued to the channel are placed in the
defragmentation channel queue instead. Once all the parts have arrived, the
message is rebuilt and sent on its way.

• fileinto, value of @$4O:$U+$S@$D: Specifies how to alter an address when a Sieve
filter "fileinto" action is applied. In $4O, the O is the capital or majuscule letter "o", not
the numeral zero 0. The effect is that the explicit source route to the mailhost should
be preserved if present, and the foldername should be inserted as a subaddress into
the original address, replacing any originally present subaddress.

• flagtransfer: Enables SMTP client support of the XDFLG private SMTP extension
command.

• lmtp: Specifies that channel supports LMTP protocol.

• multigate: Instructs the MTA to route the message to the daemon mailbox specified by
the daemon channel option on the system specified in the message's To: address.

• nomx: Disables MX lookups.

• pool, value of SMTP_POOL: Specifies the SMTP_POOL pool where the jobs are
created for this channel.

• port, value of 225: Specifies dispatcher port number.

• single_sys: Creates a single copy of the message for each destination system (more
precisely, each destination domain name) associated with a recipient address.

• dequeueremoveroute: Causes source routes to be stripped from envelope recipient
addresses when the channel dequeues messages (but after the channel has
determined how to route the message).

• official_host_name, value of lmtpcs-daemon: Specifies the "name" of the system
with which this channel communicates. (In legacy configuration, the official host name
is specified as the first name on the second line of a channel definition.)

4. Finally, the delivery options are set, which activates LMTP delivery from the front-end relay
to the back-end message store. In the *mailbox=@$X.LMTP:$M%$\$2I$_+$2S@lmtpcs-
daemon, portion of the delivery options, the script "escapes" the forward slash, so that the
actual entry in the recipe is as follows:

..."#*mailbox=@$X.LMTP:$M%$\\$2I$_+$2S@lmtpcs-daemon,#&members=*,...

Note:

You must add the full delivery_options as shown in the example. You cannot
override just the default for one option. If you specify delivery_options at all, you
must define them all.

To Configure Back-End Stores with LMTP and a Minimal MTA
Use the "Example Recipe to Configure LMTP Back-end Store with LMTP" to configure the
back-end store for LMTP. This recipe:

• Prompts for myIP and feIPs, if you do not specify them in the recipe (but does not validate
the IP addresses)

• Checks if the tcp_lmtpss channel exists before creating it

Chapter 7
Configuring LMTP

7-8

• Checks if the dispatcher group exists before creating it

• Checks if PORT_ACCESS entries exist before creating them

• Treats feIPs as a list to allow multiple front ends

• Can be run multiple times correctly

To create and run the recipe, follow these steps:

1. Make a copy of the example recipe file and save it as recipe.rcp in the config/recipes
directory.

2. In this example, replace the following items with your site-specific values:

• myIP

• feIPs

3. To run the recipe, type the following command:

cd MessagingServer_home/bin
msconfig run MessagingServer_home/config/recipes/recipe_name

4. Recompile if running a compiled configuration.

imsimta cnbuild
5. Restart Messaging Server.

cd MessagingServer_home/bin
stop-msg
start-msg

Example Recipe to Configure LMTP Back-end Store with LMTP

-*- mode: sieve; -*-
description("backend store via LMTP");
keywords(["backend", "store", "LMTP"]);
#
Sample recipe for a backend store via LMTP
the corresponding recipe for the frontend MMP/MTA is frontendLMTP.rcp
###
!!!!!!!!!!!!!!!!!!!!!
CHANGE THESE
!!!!!!!!!!!!!!!!!!!!!
#
constants - supplied input
if you leave it blank, the script will prompt for it
sample entry
#myIP = "10.133.152.193";
myIP = "";

#
list of frontend machines that access this store via LMTP
if you leave it blank, the script will prompt for it
sample entry:
#feIPs = ["10.133.152.192", "10.133.152.193"];
feIPs = [];

###
prompt for myIP and feIP if needed

if (length(myIP) <= 0) {
 myIP = read("Enter the IP address of this host: ");

Chapter 7
Configuring LMTP

7-9

}

if (length(feIPs) <= 0) {
 loop {
 ip = read("Enter the IP address of a frontend machine (<RET> if no more): ");
 exitif (ip == "");
 push(feIPs, ip);
 }
}

###
#
configure LMTP backend

#
create tcp_lmtpss channel. In legacy config, this would show up as:
tcp_lmtpss lmtp flagtransfer identnonenumeric
tcp_lmtpss-daemon
if exists_channel("tcp_lmtpss") {
 warn("-- WARNING: tcp_lmtpss channel already exists.");
} else {
 # This creates the channel by using individual options
 #set_option("channel:tcp_lmtpss.flagtransfer");
 #set_option("channel:tcp_lmtpss.identnonenumeric");
 #set_option("channel:tcp_lmtpss.lmtp");
 #set_option("channel:tcp_lmtpss.official_host_name", "tcp_lmtpss-daemon");
 # an alternative way of doing it as a one-liner
 print("-- INFO: Adding tcp_lmtpss channel\n");
 add_channel("tcp_lmtpss",
 ["flagtransfer", "",
 "identnonenumeric", "",
 "lmtp", "",
 "official_host_name", "tcp_lmtpss-daemon"]);
}

#
dispatcher.cnf
uncomment [SERVICE=LMTPSS] block
#
if exists_group("dispatcher.service:LMTPSS") {
 warn("-- WARNING: dispatcher.service:LMTPSS group already exists");
} else {
 print("-- INFO: Creating dispatcher.service:LMTPSS group\n");
 # This creates the group by using individual options
 #set_option("dispatcher.service:LMTPSS.image", "IMTA_BIN:tcp_lmtp_server");
 #set_option("dispatcher.service:LMTPSS.logfilename", "IMTA_LOG:tcp_lmtpss_server.log");
 #set_option("dispatcher.service:LMTPSS.parameter", "CHANNEL=tcp_lmtpss");
 #set_option("dispatcher.service:LMTPSS.tcp_ports", "225");
 #set_option("dispatcher.service:LMTPSS.stacksize", "2048000");
 #set_option("dispatcher.service:LMTPSS.enable", "1");

 # alternate way of doing this in one line
 add_group("dispatcher.service:LMTPSS",
 ["image", "IMTA_BIN:tcp_lmtp_server",
 "logfilename", "IMTA_LOG:tcp_lmtpss_server.log",
 "parameter", "CHANNEL=tcp_lmtpss",
 "tcp_ports", "225",
 "stacksize", "2048000",
 "enable", "1"]);
}

#

Chapter 7
Configuring LMTP

7-10

add PORT_ACCESS mapping entries
#
allow frontends (feIPs) to access LMTP port
TCP|*|225|10.133.152.192|* $Y
TCP|*|226|10.133.152.192|* $Y
#
! Allow 'msprobe' on this host (myIP) to connnect to the LMTP ports
!
TCP|*|225|10.133.152.193|* $Y
TCP|*|226|10.133.152.193|* $Y

portAccess_optlist = get_mapping("PORT_ACCESS");
#print ("\n -- DEBUG optlist for PORT_ACCESS" . portAccess_optlist . "\n");

list of IP addresses
ipaddrs = [feIPs];
push(ipaddrs, myIP);
numips = length(ipaddrs);
ports = ["225", "226"];
numports = length(ports);

i = 1;
loop { #loop over all ipaddrs
 p = numports;
 loop {
 tmp = "TCP|*|" + ports[p] + "|" + ipaddrs[i] + "|*";
 if exists_optlist(get_mapping("PORT_ACCESS"), tmp) {
 warn ("-- WARNING: optlist for " . tmp . " exists in PORT_ACCESS");
 } else {
 print("-- INFO: Adding IP " + ipaddrs[i] + " port " + ports[p] + " to PORT_ACCESS
mapping\n");
 prepend_mapping("PORT_ACCESS", [tmp, "$Y"]);
 }
 exitif(p==1);
 p--;
 }
 exitif(i==numips);
 i++;
}

###
write("use \"write -remark backendLMTP.rcp\" to write out the changes\n");

LMTP Protocol as Implemented
This section provides a sample LMTP dialogue with an explanation of what is seen in that
dialogue. The LMTP client on the relay uses standard LMTP protocol to talk to the LMTP
server on the back end store. However the protocol is used in specific ways. For example:

---> LHLO
<--- 250 OK

No action is taken on the LHLO message. The reply is always 250 OK.

---> MAIL FROM: address size=messageSizeInBytes
<--- 250 OK

No checks or conversions are made on the originator address. The size= option gives a size in
bytes for the message that is to be delivered. This is the size of the message exactly as it
appears in the protocol. It is not necessarily the exact size of the message, but the actual

Chapter 7
LMTP Protocol as Implemented

7-11

message size will not exceed this size. The LMTP server allocates a memory buffer of this size
to receive the message.

---> RCPT TO: uid+folder@domain xquota=size,number xdflg=xxx
<--- 250 OK

No checks are made on the recipient addresses at the time they are received, but a list of
recipients is built for later use. Note that the @domain part of the address is omitted for uids in
the primary domain, and that the +folder part is optional. This is the same address format used
by the message store channel in the MTA.

The xquota= option gives the user's message quotas which consist of the maximum total size
and the maximum number of messages. The MTA provides this information which it retrieves
while performing an LDAP lookup on the user to do the address translation. This information is
used to keep the quota information in the message store synchronized with the directory.
Getting the quota information does not result in an additional performance hit.

The xdflg= option specifies a number which is interpreted as a bit field. These bits control how
the message is delivered. For example, the bit whose value is 2, if set, guarantees delivery of
the message even if the user is over quota. (Note that xdflg is an internal option and the bits in
it are subject to change or addition without notice. Oracle does not support other clients using
this extension with Messaging Server, nor does Oracle support using the Messaging Server
LMTP client with some other server and this option.)

This interaction may be repeated many times, once for each recipient.

--->DATA
---> <the message text>
--->.

The LMTP client then sends the entire message, dot-stuffed, just as SMTP does. The message
finishes with a dot (.) alone on a line. If the message size is exceeded the LMTP server sends:

<--- 500 message too big

and ends the connection.

Assuming that the message is received correctly, the LMTP server then sends back to the
LMTP client the status for each recipient given in the RCPT TO: lines. For instance, if the
message is delivered successfully, the response is:

<--- 250 2.5.0 address OK

where address is exactly as it appeared on the RCPT TO: line.

The conversation can either repeat with another MAIL FROM: line or end with the following
interaction:

---> quit
<--- 221 OK

Table 7-1 shows the possible status codes for each recipient. This three-column table shows
the short code in the first column, its long-code equivalent in the second column and the status
text in the third column. 2.x.x status codes are success codes, 4.x.x codes are retryable errors,
and 5.x.x codes are non-retryable errors.

Table 7-1 LMTP Status Codes for Recipients

Short Code Long Code Status Text

250 2.5.0 OK

Chapter 7
LMTP Protocol as Implemented

7-12

Table 7-1 (Cont.) LMTP Status Codes for Recipients

Short Code Long Code Status Text

420 4.2.0 Mailbox Locked

422 4.2.2 Quota Exceeded

420 4.2.0 Mailbox Bad Formats

420 4.2.0 Mailbox not supported

430 4.3.0 IMAP IOERROR

522 5.2.2 Persistent Quota Exceeded

523 5.2.3 Message too large

511 5.1.1 mailbox nonexistent

560 5.6.0 message contains null

560 5.6.0 message contains nl

560 5.6.0 message has bad header

560 5.6.0 message has no blank line

Otherwise, there are changes to the delivery options for mailbox, native (and, therefore, UNIX),
and file. The object of these rules is to generate addresses that will cause the messages to be
sent through the appropriate LMTP channel to the back end servers. The addresses generated
are source routed addresses of the form:

@sourceroute:_localpart_@_domain_

Chapter 7
LMTP Protocol as Implemented

7-13

8
Vacation Automatic Message Reply

For automatically generated responses to email (autoreply), specifically vacation messages,
the MTA uses Message Disposition Notifications (MDNs) and the Sieve scripting language.
MDNs are email messages sent by the MTA to a sender and/or postmaster reporting on a
message's delivery disposition. MDNs are also known as read receipts, acknowledgments,
receipt notifications, or delivery receipts. The Sieve is a simple scripting language used to
create mail filters.

This chapter describes the vacation autoreply mechanism. In most cases, you do not need to
modify the default configuration. However, you might want to configure your system such that
an MTA relay performs vacation processing rather than the back-end message stores.

Vacation Autoreply Overview
Vacation Sieve scripts are generated automatically from the various LDAP vacation attributes
(see "Vacation Autoreply Attributes"). They can also be specified explicitly for additional
flexibility. The underlying mechanism for tracking vacations is a set of files, one per intended
recipient, that keep track of when replies were sent to the various senders.

By default, the MTA evaluates vacation on the back-end store systems. However, because
MTA relays do not do as much work as back-end stores, for performance reasons, you can
have the MTA evaluate vacation on the mail relay machines instead of on the back-end store.
Use of this feature, however, can result in vacation responses being sent out more often than
intended because different relays handle different messages. If you do not want vacation
messages to be sent out more often than you intend, you may share the tracking of files
between the relays. If this is also unacceptable to you, you can always have vacation
evaluated on the back-end store systems.

Configuring Autoreply
Delivery addresses are generated through a set of patterns. The patterns used depend upon
the values defined for the mailDeliveryOption attribute. One delivery address is generated for
each valid mailDeliveryOption that is set in the recipient's LDAP entry. The patterns are
defined by the setting of the delivery_options MTA option, which consists of a comma-
separated list of option=pattern pairs. The default autoreply option=pattern pair is:

^*!autoreply=$M+$D@bitbucket

Table 8-1 shows the prefix characters used for the autoreply rule in the first column and their
definitions in the second column.

Table 8-1 Prefix Characters

Prefix Character Definition

! Enables the generation of the autoreply Sieve script.

Allows the processing to take place on relays.

8-1

Table 8-1 (Cont.) Prefix Characters

Prefix Character Definition

^ Option is only evaluated if the vacation dates indicate that it should be
evaluated.

* Option is only evaluated for users, not groups.

@ Extracts preferred language information from various message header
fields as well as from LDAP entries associated with envelope From:
addresses. For this information to be available at the correct time, the
message must pass through the reprocess channel when autoreply is
engaged. This is done by adding the @ flag to the autoreply delivery
option. The addition of a channel hop increases message processing
overhead.

The autoreply rule itself specifies an address destined for the bitbucket channel. The mail is
considered delivered by this method once the autoreply is generated, but the MTA machinery
requires a delivery address. Anything delivered to the bitbucket channel is discarded.

To Configure Autoreply on the Back-end Store System
The default autoreply rule in delivery_options causes the autoreply to take place on the mail
server that serves the user. If you want vacation messages to be evaluated on the back-end
store system, you do not have to configure anything. This is the default behavior.

To Configure Autoreply on a Relay
If you want to evaluate vacation on the relay rather than on the back-end store system to
enhance performance, add the # prefix to the autoreply pattern. This can be done by
performing the following steps:

1. Use the msconfig command to determine the current setting of delivery_options:

msconfig
msconfig> show delivery_options

2. If the delivery_options MTA option is not set, determine the current default by using the
show -default command and then cutting and pasting to set the option to that default:

msconfig> show -default delivery_options
delivery_options: *mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,&members=*,*native=$M@native-
daemon,/hold=@hold-daemon:$A,*unix=$M@native-daemon,&file=+$F@native-
daemon,@members_offline=*,program=$M%$P@pipedaemon,#forward=**,^*!
autoreply=$M+$D@bitbucket,#*&nomail=$M+$D@bitbucket
msconfig> set delivery_options "*mailbox=$M%$\$2I$_+$2S@ims-ms-
daemon,&members=*,*native=$M@native-daemon,/hold=@hold-daemon:$A,*unix=$M@native-
daemon,&file=+$F@native-daemon,&@members_offline=*,program=$M%$P@pipe-
daemon,#forward=**,^*!autoreply=$M+$D@bitbucket,#*&nomail=$M+$D@bitbucket"

3. Once the option is set, you can use the edit option command to edit the option value and
add the # if it is missing:

msconfig# edit option delivery_options
mailbox=$M%$$2I$_+$2S@ims-ms-daemon,&members=,*native=$M@native-daemon,/hold=@
hold-daemon:$A,*unix=$M@native-daemon,&file=+$F@native-daemon,&@members_offline=
*,program=$M%$P@pipe-daemon,#forward=**,^*!autoreply=$M+$D@bitbucket,#*&nomail=$
M+$D@bitbucket
~

Chapter 8
Configuring Autoreply

8-2

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"/var/tmp/manage.jgaiy2" [Incomplete last line] 1 line, 254 characters

4. After changing the delivery_options option, use the msconfig diff command to verify that
you have made the correct change. Then write the change out after you have made sure
that it is correct:

msconfig# diff
< role.mta.delivery_options = *mailbox=$M%$$2I$_+$2S@ims-ms-
daemon,&members=*,*native=$M@native-daemon,/hold=@hold-daemon:$A,*unix=$M@native-
daemon,&file=+$F@native-daemon,&@members_offline=*,program=$M%$P@pipe-
daemon,#forward=**,^#*!autoreply=$M+$D@bitbucket,#*&nomail=$M+$D@bitbucket
msconfig# write -remark="Enable autoreply processing on relays"

Autoreply processing now takes place on the relays.

To Share Autoreply Information Between Relays
For information about sharing autoreply information between relays, see the discussion about
the vacation_template autoresponse periodicity MTA option in Messaging Server Reference.

Vacation Autoreply Theory of Operation
The vacation action, when invoked, works as follows:

1. Oracle Communications Messaging Server checks to make sure that the vacation action
was performed by a user-level rather than a system-level Sieve script. An error results if
vacation is used in a system-level script.

2. The "no vacation notice" internal MTA flag is checked. If it is set, processing terminates
and no vacation notice is sent.

3. The return address for the message is checked next. If it is blank, processing terminates
and no vacation notice is sent.

4. The MTA checks to see if the user's address or any of the additional addresses specified in
the :addresses tagged argument appear in a To:, Cc:, Resent-to:, or Resent-cc: header
field for the current message. Processing terminates and no vacation notice is sent if none
of the addresses is found in any of the header fields.

5. Messaging Server constructs a hash of the :subject argument and the reason string. This
string, along with the return address of the current message, is checked against a per-user
record of previous vacation responses. Processing terminates and no response is sent if a
response has already been sent within the time allowed by the :days argument.

Chapter 8
Vacation Autoreply Theory of Operation

8-3

6. Messaging Server constructs a vacation notice from the :subject argument, reason string,
and :mime argument. Two basic forms for this response message are possible:

• A message disposition notification of the form specified in RFC 2298, with the first part
containing the reason text.

• A single part text reply. (This form is only used to support the "reply" autoreply mode
attribute setting.)

The mailautoreplymode is automatically set to reply when vacation messages are configured
through mshttpd.

The "no vacation notice" MTA flag is clear by default. It can be set by a system-level Sieve
script through the use of the nonstandard novacation action. The novacation Sieve action is
only allowed in a system-level Sieve script. It generates an error if it is used in a user-level
script. You can use this action to implement site-wide restrictions on vacation replies such as
blocking replies to addresses containing the substring "MAILER-DAEMON."

Per-user per-response information is stored in a set of flat text files, one per local user. The
location and naming scheme for these files is specified by the setting of the
mta.vacation_template option. This option should be set to a file: URL.

Maintenance of these files is automatic and controlled by the mta.vacation_cleanup integer
MTA option setting. Each time one of these files is opened, the value of the current time in
seconds modulo this value is computed. If the result is zero the file is scanned and all expired
entries are removed. The default value for the option is 200, which means that there is 1-in-200
chance that a cleanup pass is performed.

The machinery used to read and write these flat text files is designed in such a way that it
should be able to operate correctly over NFS. This enables multiple MTAs to share a single set
of files on a common file system.

Vacation Autoreply Attributes
The set of user LDAP directory attributes that the vacation action uses are:

• Attribute defined by the MTA option mta.ldap_autoreply_addressess This attribute
provides the ability to generate :addresses arguments to sieve vacation. This option has
no value by default. The attribute can be multivalued, with each value specifying a
separate address to pass to the :addresses vacation option.

• Attribute defined by mta.ldap_personal_name Alias processing keeps track of personal
name information specified in this attribute and uses this information to construct From:
fields for any MDNs or vacation replies that are generated. Use with caution to avoid
exposing personal information.

• vacationStartDate Vacation start date and time. The value is in the format
YYYYMMDDHHMMSSZ. This value is normalized to GMT. An autoreply should only be
generated if the current time is after the time specified by this attribute. No start date is
enforced if this attribute is missing. The MTA can be instructed to look at a different
attribute for this information by setting the mta.lda_start_date MTA option to a different
attribute name. This attribute is read and checked by the code that generated the Sieve
script. Vacation processing is aborted if the current date is before the vacation start date.
This attribute cannot be handled by the script itself because at present Sieve lacks date/
time testing and comparison facilities.

• vacationEndDate Vacation end date and time. The value is in the format
YYYYMMDDHHMMSSZ. This value is normalized to GMT. An autoreply should only be
generated if the current time is before the time specified by this attribute. No end date is
enforced if this attribute is missing. The MTA can be instructed to look at a different

Chapter 8
Vacation Autoreply Attributes

8-4

attribute for this information by setting the mta.ldap_end_date MTA option to a different
attribute name. This attribute is and checked by the code that generated the Sieve script.
Vacation processing is aborted if the current date is after the vacation end date. This
attribute cannot be handled in the script itself because at present Sieve lacks date/time
testing and comparison facilities.

• mailAutoReplyMode Specifies autoreply mode for the user mail account. Valid values of
this attribute are:

– echo - Create a multipart that echoes the original message text in addition to the
added mailAutoReplyText or mailAutoReplyTextInternal text.

– reply - Send a single part reply as specified by either mailAutoReplyText or
mailAutoReplyTextInternal to the original sender. These modes appear in the Sieve
script as nonstandard :echo and :reply arguments to the vacation action. echo
produces a "processed" message disposition notification (MDN) that contains the
original message as returned content. reply produces a pure reply containing only the
reply text. An illegal value does not manifest as any argument to the vacation action
and this produces an MDN containing only the headers of the original message.
Selecting an autoreply mode of echo causes an automatic reply to be sent to every
message regardless of how recently a previous reply was sent. The MTA can be
instructed to use a different attribute for this information by setting the
mta.ldap_autoreply_mode MTA option to a different attribute name.

• mailAutoReplySubject Specifies the contents of the subject field to use in the autoreply
response. This must be a UTF-8 string. This value gets passed as the :subject argument
to the vacation action. The MTA can be instructed to use a different attribute for this
information by setting the mta.ldap_autoreply_subject MTA option to a different attribute
name.

• mailAutoReplyText Autoreply text sent to all senders except users in the recipient's
domain. If not specified, external users receive no vacation message. The MTA can be
instructed to use a different attribute for this information by setting the
mta.ldap_autoreply_text MTA option to a different attribute name.

• mailAutoReplyTextInternal Auto-reply text sent to senders from the recipients domain. If
not specified, then internal users get the mail autoreply text message. The MTA can be
instructed to use a different attribute for this information by setting the
mta.ldap_autoreply_text_int MTA option to a different attribute name. The MTA passes
either the mailAutoReplyText or mailAutoReplyTextInternal attribute value as the
reason string to the vacation action.

• mailAutoReplyTimeOut Duration, in hours, for successive autoreply responses to any
given mail sender. Used only when mailAutoReplyMode=reply. If value is 0 then a
response is sent back every time a message is received. This value is converted to the
nonstandard :hours argument to the vacation action. (Normally the Sieve vacation action
only supports the :days argument for this purpose and does not allow a value of 0.) If this
attribute does not appear on a user entry, a default time-out is obtained from the
mta.autoreply_timeout_default MTA option. The MTA can be instructed to use a different
attribute for this information by setting the mta.ldap_autoreply_timeout MTA option.

The MTA can choose between multiple LDAP attributes and attribute values with different
language tags and determine the correct value to use. The language tags in effect are
compared against the preferred language information associated with the envelope from
address. Currently the only attributes receiving this treatment are
mta.ldap_autoreply_subject (normally mailAutoReplySubject), mta.ldap_autoreply_text
(normally mailAutoReplyText), mta.ldap_autoreply_text_int (normally
mailAutoReplyTextInternal), mta.ldap_spare_4, mta.ldap_spare_5, mta.ldap_prefix_text
and mta.ldap_suffix_text.

Chapter 8
Vacation Autoreply Attributes

8-5

It is expected that each attribute value has a different language tag value. If different values
have the same tag value the choice between them is essentially random.

Other Auto Reply Tasks and Issues
This section describes auto reply tasks and issues not described in the configuration section.

To Send Autoreply Messages for Email That Have Been Automatically
Forwarded from Another Mail Server

An autoreply problem can occur when the MTA receives a message that has been
automatically forwarded from another system in some other administrative domain. For
example, if a customer has a home account with example.com and the customer sets that
account to automatically forward messages to their work account at example.org and if
example.org uses Messaging Server and that user has set his account to autoreply a vacation
message, then Messaging Server has a problem sending out a vacation message.

The problem occurs because the example.com mail server changes the envelope To: address
from user@example.com to user@example, but it does not change the To: header, which
remains user@example.com. When the MTA receives the message, it looks at the header
address only. It attempts to match this address with an address in the LDAP user directory. If it
finds a match with someone who has set autoreply, then a vacation message is sent. Because
there is no LDAP address match to user@example.com, no vacation message is sent. The
problem is that the actual address is in the envelope and not in the header.

Because the recipient's address known to the remote system doing automatic forwarding is not
known to correspond to the user by the local system, there needs to be a way for the recipient
to make such addresses known to the local system so vacation replies are sent when
necessary.

The :addresses argument to the Sieve vacation action provides this capability. It accepts a list
of addresses that correspond to the recipient for purposes of making this check. The attribute
defined by the MTA option ldap_autoreply_addresses allows specification of such addresses
in the user's LDAP entry.

To provide autoreply capability for messages that have been automatically forwarded from mail
servers in some other administrative domain, the user or administrator would set the email
addresses from where those messages may be forwarded to the attribute defined by
mta.ldap_autoreply_addresses.

Chapter 8
Other Auto Reply Tasks and Issues

8-6

9
Using and Configuring MeterMaid for Access
Control

This chapter describes the MeterMaid server, which can provide centralized metering and
management of connections and transactions through monitoring IP addresses and SMTP
envelope addresses. Functionally, MeterMaid can be used to limit how often a particular IP
address can connect to the MTA. Limiting connections by particular IP addresses is useful for
preventing excessive connections used in denial-of-service attacks. MeterMaid supplants
conn_throttle.so by providing similar functionality, but extending it across the Oracle
Communications Messaging Server installation. No new enhancements are planned for
conn_throttle.so and MeterMaid is its more effective replacement.

Overview of MeterMaid
conn_throttle.so is a shared library used as a callout from the MTA's mapping table that uses
an in-memory table of incoming connections to determine when a particular IP address has
recently connected too often and should be turned away for awhile. While having an in-
memory table is good for performance, its largest cost is that each individual process on each
server maintains its own table.

In most cases, the conn_throttle.so callout is done in the PORT_ACCESS mapping that is
accessed by the Dispatcher, a single process on each system. The only cost is that there is a
separate table per server.

The primary improvement by MeterMaid is that it maintains a single repository of the throttling
information that can be accessed by all systems and processes within the Messaging Server
environment. It continues to maintain an in-memory database to store this data to maximize
performance. Restarting MeterMaid will lose all information previously stored, but since the
data is typically very short lived, the cost of such a restart (done infrequently) is very low.

How MeterMaid Works
MeterMaid's configuration is maintained by the msconfig command in Unified Configuration or
the configutil command in legacy configuration.

MeterMaid is accessed from the MTA through a mapping table callout using
check_metermaid.so. It can be called from any of the *_ACCESS tables. When called from
the PORT_ACCESS table, it can be used to check limits based on the IP address of the
connection which will be the most common way to implement MeterMaid as a replacement for
the older conn_throttle.so. If called from other *_ACCESS tables, MeterMaid can also be
used to establish limits on other data such as the envelope from or envelope to addresses as
well as IP addresses.

This chapter only describes the throttle entry point in check_metermaid.so. See "MeterMaid
Reference" for a complete list of check_metermaid.so entry points. The throttle routine
contacts MeterMaid providing two subsequent arguments separated by commas. The first is
the name of the table against which the data will be checked, and the second is the data to be
checked.

9-1

If the result from the probe is that the particular data being checked has exceeded its quota in
that table, check_metermaid.so returns success so that the mapping engine will continue
processing this entry. The remainder of the entry would then be used to handle this connection
that has exceeded its quota.

PORT_ACCESS

 ||*|*|* C|INTERNAL_IP;$3|$Y$E
 ||*|*|* C:A$[/opt/sun/comms/messaging64/lib/
check_metermaid.so,throttle,tablename,$3]\
 $N421$ Connection$ declined$ at$ this$ time$E
 * $YEXTERNAL

Note the $:A flag test in the mapping table entry before the call to check_metermaid.so. This is
to ensure that we only do the MeterMaid probe when PORT_ACCESS is being checked by the
dispatcher as it will set the A flag for its probe.

Options for MeterMaid
MeterMaid's configuration is maintained by setting options using the msconfig command in
Unified Configuration or using the configutil command in legacy configuration. Table 9-1
describes some of the settings currently supported by MeterMaid.

Table 9-1 Options for MeterMaid

Unified Configuration
Option

Legacy Configuration Option Description

metermaid.enable local.metermaid.enable This setting must be set to 1 on the system that will run
the MeterMaid daemon so that the Watcher will start
and control MeterMaid.

metermaid.logfile.* logfile.metermaid.* These settings are the same as those used by imap,
pop, and other services. By default MeterMaid writes
its log file into DataRoot/log/metermaid.

metermaid.listenaddr metermaid.config.listenaddr The address to which MeterMaid should bind. On most
systems, the default would not need to be changed, but
for multi-homed or HA systems, specifying the
appropriate address here is recommended.Default:
(INADDR_ANY)

metermaid.maxthreads metermaid.config.maxthreads The MeterMaid server is multithreaded and maintains
a pool of threads onto which its tasks are scheduled.
This value sets the maximum number of threads that
will be used by MeterMaid. On systems with more than
4 CPUs, increasing this value may increase overall
throughput.Default: 20

metermaid.port metermaid.config.port This is the port to which MeterMaid listens for
connections and to which MeterMaid clients will
connect.

Default: 63837

metermaid.secret metermaid.config.secret In order to authenticate incoming connections,
MeterMaid uses a shared secret that the clients send
once they connect to MeterMaid.No default. Value
must be supplied.

metermaid.sslusessl service.metermaid.sslusessl Requires the use of SSL for all incoming connections
to the MeterMaid server.Default: 0

Chapter 9
Options for MeterMaid

9-2

Table 9-2 describes the options used by the check_metermaid client:

Table 9-2 check_metermaid Options

Unified Configuration Option Legacy Configuration Option Description

metermaid_client.connectfrequency metermaid.mtaclient.connectfrequency Attempt a connection every
connectfrequency seconds.
When the client needs to
connect to MeterMaid, it uses
this as an internal throttle to
prevent constant connection
attempts when MeterMaid
isn't available. During the
time that the client is unable
to communicate with
MeterMaid, it will return a
"fail" status to the MTA
mapping engine indicating
that MeterMaid has not
blocked this connection.

For example, if
check_metermaid.so
attempts to connect to
MeterMaid, but it fails for
some reason, during the next
N seconds as specified by
metermaid_client.connectfr
equency (or
metermaid.mtaclient.conne
ctfrequency in legacy
configuration), no additional
attempts will be attempted. It
prevents
check_metermaid.so from
trying to connect to
MeterMaid too frequently if it
is not working.

Default: 15

metermaid_client.connecttimeout metermaid.mtaclient.connectwait When the client is waiting for
a connection to MeterMaid
(either an initial connection or
to reuse another already
established connection), it
will wait for connecttimeout
seconds before returning a
fail status and allowing this
connection to
continue.Default: 5

metermaid_client.debug metermaid.mtaclient.debug If this option is enabled,
debugging information from
the client will be printed into
either the server or thread-
specific log file for the SMTP
server.

Default: no

Chapter 9
Options for MeterMaid

9-3

Table 9-2 (Cont.) check_metermaid Options

Unified Configuration Option Legacy Configuration Option Description

metermaid_client.max_conns metermaid.mtaclient.maxconns In order to support
multithreaded servers, the
client can maintain a pool of
connections to MeterMaid.
By doing this, there can be
increased concurrency
during communications.
However, due to internal
locking done by MeterMaid,
access to a particular table is
limited to one request at a
time, so multiple connections
from a single process may
provide limited
benefit.Default: 5

metermaid_client.timeout metermaid.mtaclient.readwait When communicating with
MeterMaid, the client will wait
timeout seconds before
returning a fail status and
allowing this connection to
continue.Default: 10

metermaid_client.server_host metermaid.config.serverhost This is the host name or IP
address to which the clients
will connect. It may be the
same as
metermaid.listenaddr but
will most likely have a
particular value to direct
clients to one system in
particular in the Messaging
Server environment.

No default. Value must be
supplied.

metermaid_client.sslusessl metermaid.mtaclient.sslusessl Enables SSL communication
with an SSL-enabled
MeterMaid server.Default: 0

Lastly, the throttling tables are also defined in Unified and legacy configurations. Table 9-3
describes the options defining the throttling tables. The * in each configuration option is the
name of the particular table being defined. For example, for a table called internal, the first
option would be called metermaid.local_table:internal.data_type in Unified Configuration or
metermaid.table.internal.data_type in legacy configuration.

Chapter 9
Options for MeterMaid

9-4

Table 9-3 Options Defining Throttling Tables

Unified
Configuration
Option

Legacy
Configuration
Option

Valid for
Table Types

Description

metermaid.local_tab
le:*.data_type

metermaid.table.*.d
ata_type

throttle

simple

greylisting

MeterMaid can support two kinds of data in its tables, string
and ipv4. String data is limited to 255 bytes per entry and
can be compared using case-sensitive or case-insensitive
functions (see metermaid.local_table:*.options
below).Default: string

metermaid.local_tab
le:*.max_entries

metermaid.table.*.
max_entries

throttle

simple

greylisting

When MeterMaid initializes each table, it pre-allocates this
many entries. MeterMaid automatically recycles old entries,
even if they haven't yet expired. When a new connection is
received, MeterMaid will reuse the least recently accessed
entry. A site should specify a value high enough to cache the
connections received during quota_time.Default: 1000

metermaid.local_tab
le:*.options

metermaid.table.*.o
ptions

throttle This option is a comma-separated list of keywords that
defines behavior or characteristics for the table. Valid
keywords are:

• nocase - When working with the data, all comparisons
are done using a case-insensitive comparison function.
(This option is valid only for string data).

• penalize - After quota_time seconds, throttle will
normally reset the connection count to 0, but if the
penalize option is enabled, throttle will decrement the
connection count by quota (but not less than 0) so that
additional connection attempts will penalize future
quota_time periods. For example, if quota were 5 with a
quota_time of 60, and the system received 12
connection attempts during the first minute, the first 5
connections would be accepted and the remaining 7
would be declined. After 60 seconds has passed, the
number of connections counted against the particular
address would be reduced to 7, still keeping it above
quota and declining connection attempts. Assuming no
additional connection attempts were made, after
another 60 second period, the number of connections
would be further reduced down to 2, and MeterMaid
would permit connection attempts again.

metermaid.local_tab
le:*.quota

metermaid.table.*.q
uota

throttle When a connection is received, it is counted against quota. If
the number of connections received in quota_time seconds
exceeds this value, MeterMaid will decline the connection.
(The actual effect on the incoming connection is controlled
by the mapping table and could result in additional scrutiny,
a delay, or denying the connection.)

Default: 100

metermaid.local_tab
le:*.quota_time

metermaid.table.*.q
uota_time

throttle This specifies the number of seconds during which
connections will be counted against quota. After this many
seconds, the number of connections counted against the
incoming address will be reduced depending on the type of
this table.

Default: 60

metermaid.local_tab
le:*.storage

metermaid.table.*.s
torage

throttle

simple

greylisting

MeterMaid can use two different storage methods, hash and
splay. The default hash table method is recommended, but
under some circumstances a splay tree may provide faster
lookups.Default: hash

Chapter 9
Options for MeterMaid

9-5

Table 9-3 (Cont.) Options Defining Throttling Tables

Unified
Configuration
Option

Legacy
Configuration
Option

Valid for
Table Types

Description

metermaid.local_tab
le:*.table_type

metermaid.table.*.t
ype

NA MeterMaid supports three table types:

• throttle (default) - This type of table keeps track of the
data, typically IP addresses, and will throttle the
incoming connections to quota connections during a
period of quota_time seconds.

• simple - This type of table may be used to store
arbitrary data referenced by a key.

• greylisting - This type of table may be used to provide
an anti-spam/anti-virus technique. More information
about setting up this type of table can be found in the
"Implementing Greylisting by Using MeterMaid" chapter.

metermaid.local_tab
le:*.block_time

metermaid.table.*.b
lock_time

greylisting Specifies the ISO 8601 duration for how long we temporarily
reject each delivery attempt based on sender and recipient
information.

Default: pt5m (5 minutes)

metermaid.local_tab
le:*.resubmit_time

metermaid.table.*.r
esubmit_time

greylisting Specifies the ISO 8601 duration during which, but after
block_time, we must receive a subsequent delivery attempt
based on the same sender and recipient information
previously blocked. This sender and recipient combination is
now flagged as permitted.

Default: pt4h (4 hours)

metermaid.local_tab
le:*.inactivity_time

metermaid.table.*.i
nactivity_time

greylisting Specifies the ISO 8601 duration for how long we will
continue to accept messages based on the sender and
recipient information previously permitted. This permission
expires after inactivity_time from the last allowed delivery.

Default: p7d (7 days)

Table 9-4 describes the options used to enable access to multiple MeterMaid Servers from
check_metermaid.so.

Table 9-4 Options Used to Enable Access to Multiple MeterMaid Servers from check_metermaid.so

Unified
Configuration

Legacy
Configuration

Description

metermaid_client.re
mote_table:table.ser
ver_nickname

metermaid.mtaclien
t.remote_table.tabl
e.server_nickname

Specifies the nickname for a particular MeterMaid server that is responsible
for the referenced table. The nickname is a short keyword, consisting only of
letters, numbers, and underscores, that will be used in the remote_server
option names.

No default. Value must be supplied.

metermaid_client.re
mote_server:nickna
me.max_conns

metermaid.mtaclien
t.remote_server.nic
kname.max_conns

Specifies the maximum number of concurrent connections to the MeterMaid
server referenced by nickname.

Default: 3

metermaid_client.re
mote_server:nickna
me.server_host

metermaid.mtaclien
t.remote_server.nic
kname.server_host

Specifies the host name of the MeterMaid server referenced by nickname.

Defaults to the value of metermaid_client.server_host.

metermaid_client.re
mote_server:nickna
me.server_port

metermaid.mtaclien
t.remote_server.nic
kname.server_port

Specifies the port number of the MeterMaid server referenced by
nickname.Default: 63837

Chapter 9
Options for MeterMaid

9-6

Table 9-4 (Cont.) Options Used to Enable Access to Multiple MeterMaid Servers from
check_metermaid.so

Unified
Configuration

Legacy
Configuration

Description

metermaid_client.re
mote_server:nickna
me.sslusessl

metermaid.mtaclien
t.remote_server.nic
kname.sslusessl

Specifies whether or not to use SSL for the connection to the MeterMaid
server referenced by nickname.

Defaults to the value of metermaid_client.sslusessl.

Limit Excessive IP Address Connections Using Metermaid –
Example

This example uses MeterMaid to throttle IP addresses at 10 connections per minute. For
reference, the equivalent conn_throttle.so setup in the mappings table would be as follows:

PORT_ACCESS

 ||*|*|* C|INTERNAL_IP;$3|$Y$E
 ||*|*|* C[/opt/sun/comms/messaging/lib/conn_throttle.so,throttle,$3,10]\ $N421$
Connection$ declined$ at$ this$ time$E
 * $YEXTERNAL

This PORT_ACCESS mapping table implements conn_throttle.so to restrict connections to a
rate of no more than 10 connections per minute for non-INTERNAL connections.

One fundamental difference between the two technologies is that instead of configuring details
such as the rate-limit for throttling directly into the mapping table, MeterMaid uses msconfig
for these settings, as the following example shows.

On systems running the MeterMaid server:

1. Enable MeterMaid by running the following command:

msconfig set metermaid.enable 1

or in legacy configuration:

configutil -o local.metermaid.enable -v TRUE
2. Set an authentication password used to verify communications between the client and

MeterMaid server:

msconfig set metermaid.secret password

or in legacy configuration:

configutil -o metermaid.config.secret -v password
3. Define a throttling table

MeterMaid's throttling behavior is determined by the use of named throttling tables that
define operating characteristics. To define a table that throttles at a rate of 10 connections
per minute, set the following options in msconfig:

set metermaid.local_table:ext_throttle.data_type ipv4set
metermaid.local_table:ext_throttle.quota 10

or the following for legacy configuration using configutil:

Chapter 9
Limit Excessive IP Address Connections Using Metermaid – Example

9-7

configutil -o metermaid.table.ext_throttle.data_type -v ipv4configutil -o
metermaid.table.ext_throttle.quota -v 10

ext_throttle is the name of the throttling table. ipv4 is the data type Internet Protocol
version 4 address representation. 10 is the quota (connection limit).

4. On the MeterMaid system, start MeterMaid.

start-msg metermaid
5. On systems where the MTA will use MeterMaid to do throttling, specify the MeterMaid host

and password.

These are required:

msconfig set metermaid.secret MeterMaid_Password
msconfig set metermaid_client.server_host name_or_ipaddress_of_MetermaidHost

or the following for legacy configuration:

configutil -o metermaid.config.secret -v MeterMaid_Password
configutil -o metermaid.config.serverhost -v name_or_ipaddress_of_MetermaidHost

6. Set up the MeterMaid PORT_ACCESS table.

This table is similar to the equivalent conn_throttle.so setup:

PORT_ACCESS

||*|*|* C|INTERNAL_IP;$3|$Y$E
||*|*|* C:A$[/opt/sun/comms/messaging/lib/check_metermaid.so,throttle,\
ext_throttle,$3]$N421$ Connection$ declined$ at$ this$ time$E
* $YEXTERNAL

The first line checks to see if the IP address attempting a connection is internal. If it is, it
allows the connection. The second line runs the IP address through MeterMaid and if it has
connected too frequently, it declines the connection. The third line allows any other
connections through, but flagged as EXTERNAL.

This call to check_metermaid.so is very similar to the callout to conn_throttle.so. The
function in check_metermaid.so is the same. throttle and its arguments are simply the
table name as configured using metermaid.local_table:tablename and the IP address to
check ($3). Like conn_throttle.so, this function returns success when the limit (as
specified in metermaid.local_table:ext_throttle.quota) has been reached. This allows
the remainder of the mapping entry line is processed, which sends a message (421 SMTP
code, transient negative completion, Connection not accepted at this time) to the remote
SMTP client, and tells the Dispatcher to close the connection.

$:A ensures that this line will only be processed when being called from the Dispatcher.
Without this, the call to check_metermaid.so would also happen in the context of the
tcp_smtp_server processes which also probes the PORT_ACCESS mapping table. This
would cause MeterMaid to count each incoming connection twice.

This is the basic configuration to set up MeterMaid as a conn_throttle.so replacement. Fore
more information, see the discussion on mapping operations in Messaging Server Reference
for information on these topics.

Configuring check_metermaid.so Clients to Access Multiple
MeterMaid Servers

The topics in this section include:

Chapter 9
Configuring check_metermaid.so Clients to Access Multiple MeterMaid Servers

9-8

• Considerations for Distributing Load Across Multiple MeterMaid Servers

• Configuring check_metermaid.so to Access Multiple MeterMaid Servers

Considerations for Distributing Load Across Multiple MeterMaid Servers
If you have multiple MeterMaid tables in your deployment, you may be able to improve overall
performance by distributing them across multiple MeterMaid servers. The
check_metermaid.so client supports associations between MeterMaid tables and the servers
that are responsible for their respective tables. The client also supports per server options for
concurrency and use of SSL.

Configuring check_metermaid.so to Access Multiple MeterMaid Servers
To configure check_metermaid.so to access multiple MeterMaid Servers:

1. Define the list of all tables and associate them with nicknames for each server using
msconfig (Unified Configuration):

set metermaid_client.remote_table:table1.server_nickname "alpha"
set metermaid_client.remote_table:table2.server_nickname "alpha"
set metermaid_client.remote_table:table3.server_nickname "beta"

or using configutil (legacy configuration):

configutil -o metermaid.mtaclient.remote_table.table1.server_nickname -v "alpha"
configutil -o metermaid.mtaclient.remote_table.table2.server_nickname -v "alpha"
configutil -o metermaid.mtaclient.remote_table.table3.server_nickname -v "beta"

where table1, table2, and table3 are tables defined in your deployment's MeterMaid
configuration. The servers' nicknames allow the check_metermaid.so client to look for
remote servers associated with those nicknames. Since nicknames become part of the
configuration option names for the remote server definitions, they must include only letters,
numbers, and underscores.

2. Create configuration entries for each server nickname for the host name and port for the
server, the maximum number of connections, and whether it uses SSL. Run the following
commands if you are using msconfig (Unified Configuration):

set metermaid_client.remote_server:alpha.max_conns 3
set metermaid_client.remote_server:alpha.server_host "alpha.example.com"
set metermaid_client.remote_server:alpha.server_port 63837
set metermaid_client.remote_server:alpha.sslusessl 0
set metermaid_client.remote_server:beta.max_conns 3
set metermaid_client.remote_server:beta.server_host "beta.example.com"
set metermaid_client.remote_server:beta.server_port 63837
set metermaid_client.remote_server:beta.sslusessl 0

Or run the following commands if you are using configutil (legacy configuration):

configutil -o metermaid.mtaclient.remote_server.alpha.max_conns -v 3
configutil -o metermaid.mtaclient.remote_server.alpha.server_host -v
"alpha.example.com"
configutil -o metermaid.mtaclient.remote_server.alpha.server_port -v 63837
configutil -o metermaid.mtaclient.remote_server.alpha.sslusessl -v 0
configutil -o metermaid.mtaclient.remote_server.beta.max_conns -v 3
configutil -o metermaid.mtaclient.remote_server.beta.server_host -v
"beta.example.com"
configutil -o metermaid.mtaclient.remote_server.beta.server_port -v 63837
configutil -o metermaid.mtaclient.remote_server.beta.sslusessl -v 0

Chapter 9
Configuring check_metermaid.so Clients to Access Multiple MeterMaid Servers

9-9

See "MeterMaid Reference" for descriptions of these options.

3. If you are using Unified Configuration and your configuration is compiled, recompile your
configuration. This step is not necessary if you are using legacy configuration:

imsimta cnbuild
4. Restart components that are using check_metermaid.so. You would typically do this by

restarting the dispatcher:

stop-msg dispatcherstart-msg dispatcher

Chapter 9
Configuring check_metermaid.so Clients to Access Multiple MeterMaid Servers

9-10

10
Implementing Greylisting by Using MeterMaid

This chapter describes how to implement greylisting in Oracle Communications Messaging
Server by using MeterMaid.

About Greylisting
Greylisting is a technique used by some MTAs as a way to reduce the number of undesirable
spam messages they receive. Simply put, greylisting initially gives a temporary rejection to all
incoming mail the first time it sees it, but then permits it upon subsequent attempts. It works by
making the assumption that most spam is sent by spambots, PCs that have been
compromised by a virus or trojan software, that act as mass-mailing clients. In order to send
out as much spam as possible, these systems will connect to a mail server and attempt to
deliver the spam to the recipient. If it should encounter a failure, it is extremely unlikely to retry
delivery. Proper MTA clients will reschedule and reattempt delivery upon receiving a temporary
failure, thus allowing the greylisting mail server a second chance to permit the message to be
received.

Greylisting matches messages by using a combination of the source IP address, the envelope
FROM: address, and the envelope TO: address. By using this triplet, greylisting works before
the message body is sent during the SMTP transaction, making the temporary rejections
happen in response to the RCPT TO: command. When the same triplet is presented to the
mail server during a subsequent delivery attempt, the RCPT TO: command returns a
successful response and the mail server will then accept the message for delivery.

In some setups, greylisting has been seen to reduce the number of spam messages received
by 80-90%.

The downside to greylisting, however, is that it introduces an artificial delay to incoming mail
from previously unknown triplets. The length of this delay varies depending on the originating
MTA, but could range from thirty minutes to several hours. It is now expected by many that e-
mail is nearly instantaneous, and greylisting can have a negative impact on customer's
expectations. Table 10-1 provides an example of greylisting in action.

Table 10-1 Greylisting at a Glance: Example

Time Action SMTP Result Explanation

9:45 Incoming SMTP transaction from
john@example.com to
susan@example.com (local user)

451 4.5.1
Temporary failure -
retry later

This is the first time that Messaging Server has
seen mail from john@example.com going to
susan@example.com so Messaging Server
responds with a temporary rejection.

9:47 Another transaction from
john@example.com to
susan@example.com

451 4.5.1
Temporary failure -
retry later

Because this attempt happened within a short
window after the first attempt, it is also temporarily
rejected.

10:15 A bit later, the same transaction is
retried

250 OK Now that a subsequent attempt was made within
the resubmit window, Messaging Server consider
this combination of sender and recipient permitted.

10-1

Table 10-1 (Cont.) Greylisting at a Glance: Example

Time Action SMTP Result Explanation

10:20 Mail from stephen@example.com
to susan@example.com

451 4.5.1
Temporary failure -
retry later

This is a different sender, so it is handled
independently from the previously permitted
combination. This combination would be permitted
after the block period has passed.

The next
day

A new message from
john@example.com to
susan@example.com

250 OK Since this combination is permitted, it remains valid
for an extended period.

MeterMaid supports a greylisting table with additional related tuning options.

Table 10-2 describes the different implementations of greylisting.

Table 10-2 Greylisting Features

Feature Implementation

Rejects previously unseen triplet Yes

Continues rejecting for an initial blocking period (to block
spambots that automatically retry within a very short period)

Yes

Once accepted, continues to accept messages from that
triplet

Yes

Requires subsequent attempt within a specified period of
time to register the triplet as permitted

Yes

Allows pre-registration of triplets based on outgoing mail,
permitting wildcard source IP address

Yes

Expiration of existing triplets can be extended by recent use Yes

Greylisting has more functionality than using a throttle table.

Basic Greylisting Implementation
Setting up greylisting with Messaging Server is easy due to MeterMaid's built-in support for
greylisting tables. Instead of calling the throttle routine in check_metermaid.so, you can use
the greylisting routine which handles the appropriate return values for allowing Messaging
Server to block transactions when the routine returns success.

First, the MeterMaid table definition:

metermaid.table.greylist.type = greylisting
metermaid.table.greylist.data_type = string
metermaid.table.greylist.max_entries = 50000
metermaid.table.greylist.options = nocase
metermaid.table.greylist.block_time = pt5m
metermaid.table.greylist.resubmit_time = pt4h
metermaid.table.greylist.inactivity_time = p7d

Note that the time formats can now be in ISO 8601 duration format.

This table defines a greylisting table with the following characteristics:

• All triplets are rejected during the first 5 minutes, even if multiple attempts occur.

Chapter 10
Basic Greylisting Implementation

10-2

• In order for a triplet to be recognized and permitted, a subsequent attempt must be made
after that 5 minute window, but within 4 hours of the initial attempt.

• Once a triplet is permitted, it will remain as permitted in the table for 7 days after its last
use.

The corresponding access control mapping table is simpler when using a greylisting table as
no special handling by the mapping table is required:

ORIG_MAIL_ACCESS

! Check the source IP address, sender, and recipient in MeterMaid's greylist table.
! If the call to greylisting() returns success, then Messaging Server should return
! a temporary rejection. If the call fails, then the greylisting check has passed
! and other access control checks can continue.

 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|*|l|* \
C[IMTA_LIB:check_metermaid.so,greylisting,greylist,$0|$1|$2]\
NX4.5.1|Temporary$ failure$ -$ retry$ later$E

(Note that the suggested form of the string being used in a greylisting table is source-ip|env-
sender|env-recipient.)

After the MTA has received the MAIL FROM: and RCPT TO: SMTP commands, it will use the
envelope addresses as well as the source IP address in a greylisting call to MeterMaid. Using
the table configuration above, MeterMaid will determine whether or not this particular
transaction should be permitted. If the MTA should send a temporary rejection at this point, the
call to check_metermaid.so will succeed, and the $N part of this entry will be returned
indicating a rejection. The $X4.5.1 flags this rejection as a temporary condition so that a 4xx
SMTP response will be given.

Enhancing Greylisting Functionality
However greylisting is configured, there are additional steps one can take to make further
improvements to its functionality. Several possibilities are listed here. They can be used
individually or combined together to make more powerful setups.

Preloading the Greylisting Table with Outbound Transactions
Since it is often the case that one can expect to receive mail from addresses to which the local
users are already sending, it may be useful to preload such address combinations into the
greylist table. Since the future source IP address is not known, MeterMaid supports a special
address of * that will match any other supplied address.

To preload the address combinations, one needs to add an entry to the access control
mapping table:

X-IS_INTERNAL_CHANNEL

 tcp_intranet $Y
 tcp_submit $Y
 tcp_auth $Y
 * $N

ORIG_MAIL_ACCESS

! For mail that is coming from a local user and going to an external recipient, we
! can save that user/recipient combination and store it into the greylist table for
! future permission.

Chapter 10
Enhancing Greylisting Functionality

10-3

 TCP|$@*|$@*|$@*|$@*|SMTP$@*|MAIL|*|*|tcp_local|* C|X-IS_INTERNAL_CHANNEL;$0|\
$[IMTA_LIB:check_metermaid.so,store,greylist,*|$2|$1,1]

(Note that the store routine requires a value although it is not used by a greylisting table. Any
value may be specified here and is ignored by MeterMaid.)

This mapping table entry first checks to see whether the source channel is considered a
channel used by our local users. If the channel is in the list provided by the X-
IS_INTERNAL_CHANNEL mapping table, then processing continues with the call to the store
routine of check_metermaid.so to store this new combination into the greylist table. The
combination is stored so that it will match incoming messages from the current recipient going
to the current sender, and these messages may come from any source IP address and be
permitted.

Matching a Range of IP Addresses
A complication that can occur with greylisting is dealing with remote MTAs that use several
different hosts to process deliveries. This can mean that one attempt may occur from
192.168.12.1, but a subsequent attempt may come from a different host like 192.168.12.5.
Additional delays may be introduced until an attempt is repeated from a host that had tried it
previously.

One way to help address this is to limit IP address matching to the first three octets, allowing
more hosts to be considered to be the same source. This would match addresses coming from
the same A.B.C.D/24 (class C) subnet. The mapping table setup would be very similar to the
examples above, but with a change to the IP address wildcard matching.

ORIG_MAIL_ACCESS

! When checking the source IP address, only use the first three octets in the string
! passed to MeterMaid.

 TCP|$@*|$@*|$D*.$D*.$D*.$@*|$@*|SMTP$@*|MAIL|tcp_local|*|l|* \
C[IMTA_LIB:check_metermaid.so,greylisting,greylist,$0.$1.$2|$3|$4]\
NX4.5.1|Temporary$ failure$ -$ retry$ later$E

Simplifying the Sender Address
Some sender addresses will be more complex than a simple user@example.com including
such features as subaddresses or VERP (variable envelope return path) notation. For more
information see https://en.wikipedia.org/wiki/Variable_envelope_return_path. It may
be useful to help greylisting recognize the base form of the address using some basic
canonicalization in order to keep track of the basic, simplified address form. This simplification
can be done by using a nested mapping table call out to perform the canonicalization.

X-CORRESPONDENT

! Subsidiary mapping for removing any subaddress or VERP style material from
! the local-part of an address.

 $_*$[+=\-]%*@* $0@$3$Y
 * 0Y

ORIG_MAIL_ACCESS

 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|*|l|* \
C[IMTA_LIB:check_metermaid.so,greylisting,greylist,$0|$|X-CORRESPONDENT;$1||$2]\
NX4.5.1|Temporary$ failure$ -$ retry$ later$E

Chapter 10
Enhancing Greylisting Functionality

10-4

https://en.wikipedia.org/wiki/Variable_envelope_return_path

Here, the X-CORRESPONDENT table is used to reconstruct the sender address into the
simpler user@example.com form. The result from this is then used in the call to the
greylisting function.

Providing an Opt-In Mechanism

Note:

This section requires Messaging Server 7 Update 2 or later for the necessary
INCLUDE_SPARES option.

It may be desirable to allow users to choose whether to have MeterMaid perform greylisting on
their incoming mail. This could be especially useful when considering some local mail
recipients who may not want to be subject to delays in receiving incoming mail from unknown
senders, such as recipients like sales or customer_service. For these local users, one can
set up additional LDAP attributes to be used in conjunction with the existing
ORIG_MAIL_ACCESS mapping table processing.

For this example, let us assume that one creates a new LDAP attribute
mailUserGreyListOptIn that will be set to true or false. Those users who have this attribute
set to true will have their incoming mail checked with greylisting, while those who have it set
for false will skip this check and receive their mail immediately.

In order to have the MTA look at this extra attribute, it must be configured into the option.dat
configuration file.

LDAP_SPARE_5=mailUserGreyListOptIn
! Include LDAP_SPARE_5 in ORIG_MAIL_ACCESS probes by setting bit 22 (counting from 0)
! of INCLUDE_SPARES. Bit 22 has the value 4194304.
INCLUDE_SPARES=4194304

This will add the value of the user's mailUserGreyListOptIn attribute to the probe string used
in the ORIG_MAIL_ACCESS mapping table.

ORIG_MAIL_ACCESS

! This example assumes INCLUDE_SPARES=4194304 is set, so that probes corresponding
! to submissions from remote (tcp_local) senders to local recipients have the form:
!
! TCP|host-ip|host-port|source-ip|source-port|SMTP-app-info|MAIL|tcp_local|
! remote-sender-address|l|local-recipient-address|recipient-mailUserGreyListOptIn
!
 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|$_*|l|$_*|true \
C[IMTA_LIB:check_metermaid.so,greylisting,greylist,$0|$1|$2]\
NX4.5.1|Temporary$ failure$ -$ retry$ later$E

The key difference in this mapping table entry is the addition of |true to the matching string.
Since the INCLUDE_SPARES option will append the content of the mailUserGreyListOptIn
attribute to the probe string, this mapping entry can match against only those where the
recipient's mailUserGreyListOptIn attribute has been set to true, thus skipping others who
may be opting out of greylisting.

Chapter 10
Enhancing Greylisting Functionality

10-5

Whitelisting Based on User's Addressbook
The goal of greylisting is to allow mail from remote senders to local recipients once they are
known. In most cases, this happens when a transaction presents this combination on a
subsequent delivery attempt. It is also possible to use the recipient's LDAP-based address
book to check for the sender's address to determine whether to bypass greylisting for an
already recognized address. In order to do this, another LDAP attribute must be added to the
ORIG_MAIL_ACCESS probe string by including these values into the option.dat file:

LDAP_SPARE_6=psroot
! Include LDAP_SPARE_6 in ORIG_MAIL_ACCESS probes by setting bit 23 (counting from 0)
! of INCLUDE_SPARES. Bit 23 has the value 8388608.
INCLUDE_SPARES=8388608

Furthermore, if appropriate, the MTA's LDAP_PAB_xyz options should be set to the proper
values for accessing the PAB LDAP server. (However, the usual pab.* (Unified Configuration)
or local.service.pab.* (legacy configuration) settings are usually adequate, and usually do not
need to be overridden for MTA purposes via the MTA-specific LDAP_PAB_xyz options.)

ORIG_MAIL_ACCESS

!
This example assumes INCLUDE_SPARES=4194304 is set, so that probes corresponding
! to submissions from remote (tcp_local) senders to local recipients have the form:
!
! TCP|host-ip|host-port|source-ip|source-port|SMTP-app-info|MAIL|tcp_local|
! remote-sender-address|l|local-recipient-address|recipient-psroot

!
! Matches on this line mean that the sender was found in the recipient's address book.
! "Whitelist" those addresses, bypassing the greylisting check.
!
 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|$_*|l|$_*|* \
C]pabldap:///$3?piEmail1?sub?(|(piEmail1=$1)(piEmail2=$1)(piEmail3=$1))[$E$Y
!
! Now, for all other senders, do the normal greylisting check.
!
 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|$_*|l|$_*|* \
C[IMTA_LIB:check_metermaid.so,greylisting,greylist,$0|$1|$2]\
NX4.5.1|Temporary$ failure$ -$ retry$ later$E

This mapping table example shows an LDAP callout being done to check to see whether the
sender is already known to the local recipient. This allows users to add their correspondents to
their address book as a way to whitelist those entries, allowing those senders to bypass the
greylisting when sending mail to these local recipients.

Combining Functionality: A Complex Example
It is possible to combine many of these elements together into a much more comprehensive
setup. This example makes use of the preloading, opt-in, and address book whitelisting
features together.

First, the two LDAP attributes must be available to the mapping table probe. They can be
added with these options in option.dat:

LDAP_SPARE_5=mailUserGreyListOptIn
LDAP_SPARE_6=psroot
! Include LDAP_SPARE_5 and LDAP_SPARE_6 in ORIG_MAIL_ACCESS probes by
! setting bits 22 and 23 (counting from 0) of INCLUDE_SPARES; that is,

Chapter 10
Enhancing Greylisting Functionality

10-6

! INCLUDE_SPARES=12582912=4194304+8388608=(1<<22)+(1<<23)
INCLUDE_SPARES=12582912

Then, the mappings file excerpt below shows how the above elements may be combined.

! Subsidiary mapping for checking incoming port and channel against a
! list of "internal submission" channels.
!
! Probe format is
! port.channel
!
X-INTERNAL-CHANNELS

 587.tcp_submit $Y
 25.tcp_auth $Y
 25.tcp_intranet $Y

! Subsidiary mapping for removing any subaddress or VERP style
! material from the local-part of an address.
! This mapping also performs LDAP URL style quoting of the retained
! portion of the address.
!
X-CORRESPONDENT

 $_*$[+=\-]%*@* $=$0@3_$Y
 * $=$0$_$Y

ORIG_MAIL_ACCESS

! This example assumes INCLUDE_SPARES=12582912 (or some superset of bits) is
! set, so that probes corresponding to submissions from local senders to
! remote recipients have a form of:
!
! TCP|host-ip|host-port|source-ip|source-port|SMTP-app-info|MAIL|source-channel|
! local-sender-address|tcp_local|remote-recipient-address|
! sender-mailUserGreyListOptIn|sender-psroot
!
! while probes corresponding to SMTP MAIL submissions from remote
! (tcp_local) senders to local recipients have the form:
!
! TCP|host-ip|host-port|source-ip|source-port|SMTP-app-info|MAIL|tcp_local|
! remote-sender-address|l|local-recipient-address|
! recipient-mailUserGreyListOptIn|recipient-psroot
!
! The overall logic includes pre-population of the "greylist" table at (1)
! with *|remote-correspondent|local-user on outgoing messages from local users
! who have opted-in to greylisting (have mailUserGreyListOptIn: true) (0),
! and then checks of incoming messages to local users who want greylisting (2)
! against:
! (i) the local-user's PAB (3)
! (ii) the pre-populated entries in the "greylist" table (4) or (5)
! (iii) the "greylist" table tracking "recent" submission attempts from
! not-otherwise-known (not pre-populated due to local-user sending
! to them, nor recognized in local-user's PAB) remote senders (4) or (5)
! Note that (ii) and (iii) are done by one probe to the greylist table, as
! MeterMaid first performs the (ii) check automatically due to the format of
! probe. This probe the greylist table is either done at (4) (for IPv4
! source IPs) or at (5) (for IPv6 source IPs).
!
! For outgoing messages, from local users to remote correspondents,
! pre-populate the "greylist" table using the "store" entry point with
! *|simplified-quoted-remote-correspondent|local-user

Chapter 10
Enhancing Greylisting Functionality

10-7

! This is so that replies from that remote-correspondent (from whatever
! source-IP) to that local-user will be accepted.
! The subsidiary mapping table X-INTERNAL-CHANNELS is used to check
! (based on the host-port and source-channel) whether the message is
! one from a local user to a remote correspondent. The subsidiary
! mapping table X-CORRESPONDENT is used to canonicalize the
! recipient-address.
! (0)
!
 TCP|$@*|*|$@*|$@*|SMTP$@*|MAIL|*|*|tcp_local|*|true|* \
 C|X-INTERNAL-CHANNELS;$0.$1|PREPOPULATE|$|X-CORRESPONDENT;$3||$2
!
! If the message was indeed from a local user who wants grey-listing,
! then the above entry matched and reset the probe to now be:
! PREPOPULATE|quoted-simplified-remote-correspondent|local-user
! Then the entry below pre-populates the greylist table with an
! entry for
! *|quoted-simplified-remote-correspondent|local-user
! (1)
!
 PREPOPULATE|*|* \
 C[IMTA_LIB:check_metermaid.so,store,greylist,*|$0|$1,1]$E
!
! For incoming submission attempts from remote correspondents (tcp_local
! submission attempts):
! (2) Entry matches remote senders to recipients that
! want grey-listing (mailUserGreyListOptIn: true). Entry constructs
! a new GREYLIST... probe retaining relevant fields, namely:
! GREYLIST|source-ip|quoted-simplified-sender|recipient|psroot
! where the quoted-simplified-sender field is processed (simplified
! and LDAP quoted) using the subsidiary X-CORRESPONDENT mapping table
! (3) For the recipients who want grey-listing, the probe is now
! GREYLIST|source-ip|quoted-simplified-sender|recipient|psroot
! Look up the (simplified) sender address in the
! recipients PAB. Accept submission if found, fall through otherwise.
! (4) If the sender address wasn't found at (3), fall-through and now
! attempt a MeterMaid "greylist" table lookup. The probe to this
! "greylist" table will have the form:
! source-IP-subnet|quoted-simplified-sender|recipient
! This entry matches on IPv4 incoming source IPs, and ignores the last
! eight bits to give an IPv4 subnet.
! Because the probe has the form A|B|C, and it is a probe to a
! greylisting entrypoint, MeterMaid will automatically initially attempt
! a *|B|C probe, only bothering with the A|B|C probe if its initial,
! automatic probe fails. Thus any pre-populated, generic source IP
! entry will match first, prior to MeterMaid attempting a lookup of
! the specific source IP subnet. If the specific triad is
! found in the "greylist" table as being due to be greylisted (rejected
! temporarily), then the probe "succeeds" -- set a new probe string
! FIRSTATTEMPT and continue so that (6) will match and the greylist
! response will be issued.
! Otherwise, the MeterMaid probe "fails" -- as for the cases
! where the probe matches a "good" (pre-populated, or resubmitted
! after block_time) entry.
! (5) The same as (4), but matching on IPv6 incoming source IPs, ignoring
! the last 64 bits to give an IPv6 subnet.
! (6) Issue the temporary rejection when the greylist probe of (4) or (5)
! "succeeded".
!
! For remote senders (source channel tcp_local) to local recipients with the
! LDAP_SPARE_5 attribute "true", reset the probe to the GREYLIST|...form
! (2)

Chapter 10
Enhancing Greylisting Functionality

10-8

!
 TCP|$@*|$@*|*|$@*|SMTP$@*|MAIL|tcp_local|$_*|l|$_*|true|* \
$CGREYLIST|$0|$|X-CORRESPONDENT;$1||$2|$=3_
!
! If a recipient wants grey-listing, the probe has been rebuilt to be:
! GREYLIST|ip-source|simplified-sender-address|recipient-address|psroot
! where simplified-sender-address omits any subaddress/VERP-y sorts of fluff
! and has had any LDAP URL required quoting applied, and where psroot has also
! had any LDAP URL required quoting applied.
! So next check whether the simplified-sender-address can be found in
! the recipient-address user's PAB (found under psroot); if the sender is
! found, then accept this message -- this sender is "known".
! (3)
!
 GREYLIST|*|*|*|* \
C]pabldap:///$3?piEmail1?sub?(|(piEmail1=$1)(piEmail2=$1)(piEmail3=$1))[$E$Y
!
! Otherwise, if the sender was not known to this recipient, then fall down
! to the subsequent entry which performs the MeterMaid grey-list check.
!
! Match on IPv4 addresses and probe the greylist table.
! If this sender matches an entry in the greylist table, whether
! pre-populated or due to a recent sending attempt, then let their message in.
! If the greylist table probe says the sender needs greylisting,
! (that is, never seen before, or seen before but only within block_time),
! then continue with the probe changed to "FIRSTATTEMPT" so that it'll fall
! through and match the temporary rejection entry below at (6).
! Otherwise, if the sender was in the greylist table but after block_time,
! then MeterMaid "fails" this probe, so the check ends; the table processing
! "falls-through" and, if no other entry matches, the submission is
! permitted.
! (4)
!
 GREYLIST|$D*.$D*.$D*.$D*|*|*|* \
$[IMTA_LIB:check_metermaid.so,\
greylisting,greylist,$0.$1.$2|$4|$5]$CFIRSTATTEMPT
!
! (5)
!
 GREYLIST|$H*:$H*:$H*:$H*:$@H*:$@H*:$@H*:$@H*|*|*|* \
$[IMTA_LIB:check_metermaid.so,\
greylisting,greylist,$0:$1:$2:$3|$4|$5]$CFIRSTATTEMPT
!
! Must be a "new" sending attempt -- give it a temporary rejection
! (6)
!
 FIRSTATTEMPT NX4.5.1|Temporary$ failure$ -$ retry$ later

Mapping Table Notes
Table 10-3 describes some mapping table features that might be unfamiliar to casual users of
the MTA's mapping table.

Table 10-3 UPDATE TABLE

Strings Explanation

$@ Disables saving the following wildcard match that will not be needed for right-hand side
substitutions. This permits sufficient saved wildcards (of which there can be at most ten)
to be available for matching fields of more interest.

Chapter 10
Mapping Table Notes

10-9

Table 10-3 (Cont.) UPDATE TABLE

Strings Explanation

$_ Specifies "non-greedy" (minimal) matching of the portion of the string; used for the local-
part of the sender address prior to the first occurrence of a special character possibly
indicating a subaddress or VERP address variation.

$[+=\-]% Matches an occurrence of any one of the specified characters. Note that the hyphen
character must be quoted with a backslash character to be interpreted as a literal
hyphen character rather than indicating a character range.

$D* Matches only decimal digits; used for parsing IP addresses.

$H* Matches only hexadecimal digits; used for parsing IPv6 addresses.

Chapter 10
Mapping Table Notes

10-10

11
MeterMaid Reference

This chapter contains MeterMaid reference information.

configutil Options
For MeterMaid-specific configutil options, search for options containing the string "metermaid"
in Messaging Server Reference.

Table Types
The possible table types allowed by the metermaid.table.*.type options are:

• greylisting Tables

• simple Tables

• throttle Tables

greylisting Tables
Greylisting tables may be used to provide an anti-spam/anti-virus technique. For more
information about setting up these tables, see "Implementing Greylisting by Using MeterMaid".

simple Tables
A simple table may be used to store arbitrary data referenced by a key. The key data type is
defined by metermaid.table.tablename.data_type, and the value data type is defined by
metermaid.table.tablename.value_type. Some operations are only available to those simple
tables where the value data type is integer.

throttle Tables
Throttle tables are used to specify a particular "hit count" quota over quota_time seconds to
limit connections, transactions, or certain other components of incoming connections.
MeterMaid automatically maintains the count over time, decrementing it back down after
quota_time has passed.

check_metermaid.so Reference
The check_metermaid.so shared library is traditionally used to throttle incoming connections
in a mapping table such as PORT_ACCESS or MAIL_ACCESS. We now use a set of new
routines to use data stored in simple tables (please refer to the msconfig
metermaid.table:*_type option, or the configutil metermaid.table.*_type option). These
routines now permit one to store, retrieve, and test arbitrary data stored in MeterMaid's
ephemeral data store. Oracle Communications Messaging Server also uses the greylisting
routine that works with greylisting tables.

11-1

Table 11-1 shows the routines available in check_metermaid.so, which of the two table types,
simple and/or throttle, are supported for those routines, and a brief description of each one.
Below that, detailed information about each routine is provided.

Note:

If any error should occur during processing such as a failure to communicate with
MeterMaid, or if invalid options are provided to these routines, the routines will simply
return FALSE and the shared library callout will fail.

Table 11-1 check_metermaid.so Available Routines

Routine Description

adjust Adds to or subtracts from an integer value in a table

adjust_and_test Performs an adjust and then returns the result of a test operation

fetch Returns a value from the table

greylisting Returns TRUE if we are temporarily rejecting this transaction

remove Removes an entry from a table

store Stores a value into the table

test Tests an integer value with a simple comparison, returning TRUE or
FALSE

throttle Increments a "hit count" and returns TRUE if quota_count is exceeded

The following sections provide a description of each routine, a table showing the options used
by the routine, the value returned, if any, to the calling environment, and sample usage.

adjust Routine
This section describes the adjust routine.

Description

The adjust routine allows you to make a numeric adjustment to an integer value in a simple
table.

Table 11-2 describes the adjust routine options.

Table 11-2 adjust Routine Options

Option Description

table Table in which key is found.

key Key corresponding to the value being adjusted.

adjustment Positive or negative value to be added to the value.

adjust Routine Return Value

Returns TRUE with the new value for key after the adjustment has been made as the resultant
string.

Chapter 11
check_metermaid.so Reference

11-2

adjust works by taking the current integer value for key in the table called table and adding
adjustment to it, then storing the resulting value back. adjustment can be negative, thus
reducing the value which can be negative.

If key doesn't exist in table, it will be presumed to have an initial value of 0 and key will be
stored into table with a new value of adjustment.

Table 11-3 describes the adjust routine supported table and value types.

Table 11-3 adjust Routine Supported Table and Value Types

Table Value Supported?

greylisting - -

simple integer X

simple string -

throttle - -

Example

The following example shows that the current value for fred@example.org will be increased
by 35 after the adjust is completed. If fred@example.org did not exist in the scores table, it
would be stored with a value of 35.

$[/opt/sun/comms/messaging/lib/check_metermaid.so,adjust,scores,fred@example.org,+35]

adjust_and_test Routine
This section describes the adjust_and_test routine.

Description

The adjust_and_test routine allows you to make a numeric adjustment to an integer value in
a simple table, and then test that value against a provided comparator.

Table 11-4 descries the adjust_and_test routine options.

Table 11-4 adjust_and_test Routine Options

Option Description

table Table in which key is found

key Key corresponding to the value being adjusted

adjustment Positive or negative value to be added to the value

comparator Comparison symbol(s) '<', '>', and/or '=', followed by a numeric value

adjust_and_test Routine Return Value

Returns TRUE if the comparison is true, and FALSE otherwise; no resultant string is returned.

adjust_and_test first takes the current integer value for key in the table called table and
adding adjustment to it, storing the resulting value back. The routine then compares the
resulting value against the comparator, returning the result.

If key doesn't exist in table, it will be presumed to have an initial value of 0 and key will be
stored into table with a new value of adjustment, and the comparison will be made against
adjustment.

Chapter 11
check_metermaid.so Reference

11-3

Table 11-5 describes the adjust_and_test routine supported table and value types.

Table 11-5 adjust_and_test Routine Supported Table and Value Types

Table Value Supported?

greylisting - -

simple integer X

simple string -

throttle - -

Example

The following example shows that the current value for fred@example.org will be decreased
by 2 after the adjust is completed. If fred@example.org did not exist in the scores table, it
would be stored with a value of -2. Then this new value is checked to see if it is greater than or
equal to 20, returning TRUE if it is.

$[/opt/sun/comms/messaging/lib/
check_metermaid.so,adjust_and_test,scores,fred@example.org,-2,>=20]

fetch Routine
This section describes the fetch routine.

Description

The fetch routine retrieves a value from a simple table.

Table 11-6 describes the fetch routine options.

Table 11-6 fetch Routine Options

Option Description

table Table in which key is found

key Key corresponding to the value being returned

fetch Routine Return Value

Returns TRUE if key exists and returns its value as the resultant string, otherwise returns
FALSE.

fetch retrieves the value associated with key in table and returns it as the resultant string. If
key does not exist in table, then FALSE is returned and no resultant string is available.

Table 11-7 describes the fetch routine supported table and value types.

Table 11-7 fetch Routine Supported Table and Value Types

Table Value Supported?

greylisting - X

simple integer X

simple string X

throttle - -

Chapter 11
check_metermaid.so Reference

11-4

Example

The following example retrieves the current score for fred@example.org which can then use
that information for subsequent processing, such as in a mapping table.

$[/opt/sun/comms/messaging/lib/check_metermaid.so,fetch,scores,fred@example.org]

greylisting Routine
The greylisting routine is used to validate entries in the table based on time and resubmission
attempts. This is used as part of a Greylisting setup (see "Implementing Greylisting by Using
MeterMaid" for details).

Table 11-8 describes the greylisting routine options.

Table 11-8 greylisting Routine Options

Option Description

table Table in which key is checked/stored

key Key corresponding to the value being tested for greylisting.

greylisting Routine Return Value

Returns TRUE if this probe should cause a temporary rejection for the submission attempt,
otherwise returns FALSE to permit the attempt.

greylisting first probes table for key to see whether this entry has been previously permitted. If
it is found to be allowed, FALSE is returned to permit the submission. Then it checks to see
whether key exists and is in its resubmission period (specified by the resubmit_time table
option). If so, key is marked as valid and is permitted (returning FALSE). If key exists, but is in
the block_time period, the submission is refused as validation occurs after block_time has
passed, and greylisting returns TRUE to return a temporary rejection for the attempt. Lastly, if
key does not exist, it is stored into table and greylisting returns TRUE to return a temporary
rejection for this new attempt.

Example

This example shows a greylisting probe for mail from barney@example.com going to local
user fred@example.org. If this returns TRUE, then the mapping code should return a
temporary rejection so that the message submission should be reattempted later.

$[IMTA_LIB:check_metermaid.so,greylisting,greylist_table,192.168.10.34|
barney@example.com|fred@example.org]

remove Routine
This section describes the remove routine.

Description

The remove routine removes an entry from table.

Table 11-9 describes the remove routine options.

Chapter 11
check_metermaid.so Reference

11-5

Table 11-9 remove Routine Options

Option Description

table Table in which key is found.

key Key corresponding to the value being removed.

remove Routine Return Value

Returns TRUE if key was removed from table, otherwise returns FALSE.

When an entry in a table is no longer needed, it may be removed using remove. Subsequent
attempts to access key will result in its value not being found.

Table 11-10 describes the remove routine supported table and value types.

Table 11-10 remove Routine Supported Table and Value Types

Table Value Supported?

greylisting - X

simple integer X

simple string X

throttle - X

Example

The following example can be used when the record for fred@example.org is no longer
needed.

$[/opt/sun/comms/messaging/lib/check_metermaid.so,remove,scores,fred@example.org]

store Routine
This section describes the store routine.

Description

The store routine is used to store a new value into the table.

Table 11-11 describes the store routine options.

Table 11-11 store Routine Options

Option Description

table Table into which the new value is to be stored.

key Key corresponding to the value.

value New value.

store Routine Return Value

Returns TRUE if the new value was stored, FALSE otherwise. Returns no resultant string.

store is similar to adjust in that it can be used to put data into a table. Unlike adjust, however,
any previous value that may exist is overwritten by store. Also, in addition to integer data,

Chapter 11
check_metermaid.so Reference

11-6

strings may also stored into those tables that permit it. For a greylisting table, value is ignored
and instead the new key is stored into table as a valid entry for subsequent queries.

Table 11-12 describes the store routine supported table and value types.

Table 11-12 store Routine Supported Table and Value Types

Table Value Supported?

greylisting - X

simple integer X

simple string X

throttle - -

Example

The following example sets an initial value into a table that can be used by subsequent fetch
operations.

$[/opt/sun/comms/messaging/lib/
check_metermaid.so,store,loginhosts,barney@example.org,quarry.example.org]

test Routine
This section describes the test routine.

Description

The test routine allows you to compare an integer value in a simple table against a supplied
comparator.

Table 11-13 describes the test routine options.

Table 11-13 test routine Options

Option Description

table Table in which key is found

key Key corresponding to the value being adjusted

comparator Comparison symbol(s) '<', '>', and/or '=', followed by a numeric value

test Routine Return Value

Returns TRUE if the comparison is true, and FALSE otherwise; no resultant string is returned.

test takes the current integer value for key in the table called table and compares the resulting
value against the comparator, returning the result. If key does not exist in table, then 0 is used
as the value to be compared.

Table 11-14 describes the test routine supported table and value types.

Table 11-14 test Routine Supported Table and Value Types

Table Value Supported?

greylisting - X

Chapter 11
check_metermaid.so Reference

11-7

Table 11-14 (Cont.) test Routine Supported Table and Value Types

Table Value Supported?

simple integer X

simple string -

throttle - X

Example

The following example tests the number of login attempts made to see whether it exceeds a
defined threshold.

$[/opt/sun/comms/messaging/lib/check_metermaid.so,test,logins,wilma@example.org,>5]

throttle Routine
This section describes the throttle routine.

Description

The throttle routine is used to count incoming connections or transactions over a period of
time enforcing a quota limit.

Table 11-15 describes the throttle routine options.

Table 11-15 throttle Routine Options

Option Description

table Table in which is holding the items being counted

key Key corresponding to the particular "hit count" to be incremented

throttle Routine Return Value

Returns TRUE if quota has been exceeded during the past quota_time seconds, otherwise
returns FALSE.

For more detailed information on setting up throttle tables with configuration examples, refer
to Messaging Server Security Guide.

Table 11-16 describes the throttle routine supported table and value types.

Table 11-16 throttle Routine Supported Table and Value Types

Table Value Supported?

greylisting - -

simple integer -

simple string -

throttle - X

Chapter 11
check_metermaid.so Reference

11-8

12
Administering Event Notification Service

This chapter describes how to enable the Event Notification Service Publisher (ENS Publisher)
and how to administer the Event Notification Service (ENS) in Unified Configuration.

See "Messaging Server Specific Event Notification Service Information" and " Event
Notification Service API Reference" for more information on ENS and ENS APIs.

ENS Publisher in Messaging Server
The Event Notification Service (ENS) is the underlying publish-and-subscribe service. ENS
acts as a dispatcher used by Communications Suite applications as a central point of collection
for certain types of events that are of interest to them. Events are changes to the value of one
or more properties of a resource. Any application that wants to know when these types of
events occur registers with ENS, which identifies events in order and matches notifications with
subscriptions. ENS and the ENS publisher are bundled with Oracle Communications
Messaging Server.

Configuring the ENS Publisher in Unified Configuration
ENS has the following default behavior:

• ENS is enabled by default. The initial configuration sets the ens.enable option to 1.

• No configuration is required to load the ENS publisher because the ms-internal instance is
automatically loaded and configured. Therefore, you do not need to create a separate ms-
internal instance.

• If you want to configure options for the pre-loaded ms-internal default instance, set them
with the ms-internal instance name. For example, notifytarget:ms-internal.settings.

• IMAP IDLE now only works using ENS, because the ability to use IMAP IDLE with JMQ
has been removed.

• The notifytarget:ms-internal.enshost defaults to base.listenaddr if it is not set.

Administering Event Notification Service
Administering ENS consists of starting and stopping the service, and changing the options to
control the behavior of the ENS publisher.

Starting and Stopping ENS
If desired, you can use the start-msg ens and stop-msg ens commands to start and stop the
ENS server.

Event Notification Service Configuration Options
The notifytarget:target.* options control the behavior of the publisher. Use the msconfig set
command to set these options. For a list of options, see Messaging Server Reference.

12-1

To enable ENS, make sure that the ens.enable option is set to 1, for example:

/opt/sun/comms/messaging64/bin/msconfig set ens.enable 1
/opt/sun/comms/messaging64/bin/msconfig show ens.enable
role.ens.enable = 1

ENS SSL Support
ENS supports SSL in a separate default port 8997. Use the following configuration options to
manage ENS SSL support.

To enable or disable SSL support for ENS:

• ens.enablesslport (Unified Configuration)

• local.ens.enablesslport (legacy configuration)

To change the ENS sslport:

• ens.sslport (Unified Configuration)

• local.ens.sslport (legacy configuration)

To add sslnicknames:

• ens.sslnicknames(Unified Configuartion)

• local.ens.sslnicknames (legacy configuration)

To make a notification target to use TLS/SSL:

• notifytarget:target-name.ensusessl (Unified Configuration)

• local.store.notifyplugin.target-name.ensusessl (legacy configuration)

Both SSL and non-SSL ports can be enabled for ENS at the same time. The ENS notification
targets can use TLS/SSL for it's communication with the ENS broker.

The notification targets of type, ENS, can use TLS/SSL to communicate with the ENS broker
specified.

The default value of the option notifytarget:target-name.ensusessl will be 1, if
ens.enablesslport is 1 and one of the following conditions is satisfied:

• The notifytarget is the ms-internal plugin

• The value of the notifytarget:target-name.enshostis not set

• The value of notifytarget:target-name.enshostis equal to the value of service.listenaddr

• The value of notifytarget:target-name.enshost is the loopback address, "127.0.0.1" or
"::1"

If the ensusessl option of the notifytarget is set, then the TLS/SSL will be used to
communicate with the host defined by the options ensHost and ensPort, in the notifytarget
plugin.

The default value of the option:

• notifytarget:target-name.ensport (Unified Configuration)

• local.store.notifyplugin.target-name.ensport (legacy configuration)

will be equal to the value of ens.sslport if the value of notifytarget:target-name.ensusessl is
1. Otherwise, it will be equal to the value of ens.port.

Chapter 12
Administering Event Notification Service

12-2

ENS Support for Password Based Authentication
Use the following configuration options to support password-based authentication to the ENS
server.

1. Option to Enable/Disable authentication (ens.mustauthenticate).

2. Option to change the secret for authentication (ens.secret).

3. Option to specify username for the ENS notifyplugin (notifytarget:target-name.ensuser)

4. Option to specify password for the ENS notifyplugin (notifytarget:target-name.enspwd)

Password based authentication of the ENS clients to the broker is enabled, by setting the
option, mustauthenticate.

The option:

local.ens.mustauthenticate (legacy configuration)

or

ens.mustauthenticate (Unified Configuration)

enables or disables whether authentication is required by the ENS broker. The default value of
the ens.mustauthenticate option is 0.

If mustauthenticate option is set, authentication is required by the ENS broker in both SSL
and non-SSL ports.

The ENS broker accepts any user name but the password for authentication is set by the
option:

local.ens.secret (legacy configuration)

or

ens.secret (Unified Configuration)

There is no default value for ens.secret. If mustauthenticate is set, authentication is required
by the ENS Broker on both SSL and non-SSL ports. The password for authentication can be
set with the ens.secretoption. All connections to the ENS Broker will fail unless the ens.secret
is set with a password.

The notification targets of type ENS can be made to use password based authentication.

The userid for authentication is set using the option:

local.store.notifyplugin.target-name.ensuser (legacy configuration)

or

notifytarget:target-name.ensuser (Unified Configuration)

The default value of the option, ensuser is "guest."

The password for authentication to ENS broker in a notification target is set using the option:

local.store.notifyplugin.target-name.enspwd (legacy configuration)

or

notifytarget:target-name.enspwd (Unified Configuration)

Chapter 12
Administering Event Notification Service

12-3

There is no default value for enspwd. The value of the option enspwd will be equal to the
value of option ens.secret, if one of the following conditions satisfies:

1. The notification is the ms-internal plugin.

2. The value of notifytarget:target-name.enshost is NULL.

3. The value of notifytarget:target-name.enshost is equal to the value of service.listenaddr

4. The value of notifytarget:target-name.enshost is the loopback address, "127.0.0.1" or
"::1".

If the ensuser and enspwd are provided, then the notifytarget figures out whether the ENS
broker that it connects to require password based authentication or not. If the ENS broker that
the notify target connects requires a password, then the password provided will be used or
else it won't be used.

With the newer version of the ENS broker that uses authentication with ens.mustauthenticate
set to 1, you must set a password using the ens.secret option. Otherwise all connections to
the ENS broker will fail. If authentication is disabled with ens.mustauthenticate set to 0, the
older version of the ENS broker which does not have authentication will be used. By default,
authentication is disabled.

Note:

If you use the older ENS Client APIs with the newer ENS broker (i.e. authentication
enabled), it will not work. When authentication is enabled, using ENS will require
setting of the option, local.ens.secret and use of newer API, ens_sopen.

Chapter 12
Administering Event Notification Service

12-4

13
Messaging Server Specific Event Notification
Service Information

This chapter describes the Oracle Communications Messaging Server specific items that are
necessary to use the Event Notification Service (ENS) APIs.

Event Notification Types and Options
For Messaging Server, there is only one event reference, which can be composed of several
options. There are various types of event notifications. Table 13-1 lists the event types
supported by Messaging Server and gives a description of each. Event notifications are also
generated when a user creates, deletes, or renames a folder.

Event Types

Table 13-1 Event Types

Event Types Description

AnnotateMsg Shows when annotations or notes are added to a message or deleted
from a message.

ChangeFlag Shows change status as "1" add, "2" remove, or "3" replace.

Copy Copies one or more messages from one mailbox to another mailbox. If
the CopyMsg event is not set, UpdateMsgs event is triggered when
messages are copied.

DeleteMsg When a message is deleted by a user, IMAP client of the user flags this
message with \Deleted. It means, IMAP has moved the message to the
trash folder.

ExpungeMsg Messages are deleted permanently from the mailbox which were flagged
with \Deleted by using DeleteMsg event.

Login User logged in from IMAP, HTTP, or POP.

Logout User logged out from IMAP, HTTP, or POP.

MsgFlags Shows when flags on a message are changed. For example, when a
read message is flagged as unread.

NewMsg New message was received by the system into the user's mailbox. Can
have a payload of message headers and body.

OverQuota Operation failed because the user's mailbox exceeded one of the quotas
(diskquota, msgquota). The MTA channel holds the message until the
quota changes or the user's mail box count goes below the quota. If the
message expires while it is being held by the MTA, it will be expunged.

PurgeMsg Message expunged (as a result of an expired date) from the mailbox by
the server process imexpire. This is a server side expunge, whereas
DeleteMsg is a client side expunge. This is not a purge in the true sense
of the word.

13-1

Table 13-1 (Cont.) Event Types

Event Types Description

ReadMsg Message in the mailbox was read (in the IMAP protocol, the message
was marked Seen).

TrashMsg Message was marked for deletion by IMAP or HTTP. The user may still
see the message in the folder, depending on the mail client's
configuration. The messages are to be removed from the folder when an
expunge is performed.

UnderQuota Quota went back to normal from OverQuota state.

UpdateMsg Message was appended to the mailbox (other than by NewMsg). for
example, the user copied an email message to the mailbox. Can have a
payload of message headers and body.

The following applies to the above supported event types:

• For NewMsg and UpdateMsg, message pay load is turned off by default to prevent
overloading ENS. See "Payload" for information on how to enable the payload. No other
event types support a payload.

• Event notifications can be generated for changes to the INBOX alone, or to the INBOX and
all other folders. The following configuration variable allows for INBOX only (value = 0), or
for both the INBOX and all other folders (value = 1):

local.store.notifyplugin.noneInbox.enable

The default setting is for INBOX only (value = 0).

Note:

There is no mechanism to select folders; all folders are included when the
variable is enabled (value = 1).

• The NewMsg notification is issued only after the message is deposited in the user mailbox
(as opposed to "after it was accepted by the server and queued in the message queue").

• Every notification carries several pieces of information (called options) depending on the
event type, for example, NewMsg indicates the IMAP uid of the new message. See
"Available Options for Each Event Type" for details on the options each event type takes

• Events are not generated for POP3 client access.

• All event types can be suppressed by issuing XNOTNOTIFY. For example, an IMAP script
used for housekeeping only (the users are not meant to be notified) might issue it to
suppress all events.

Options
iBiff uses the following format for the ENS event reference:

enp://127.0.0.1/store_?param_=_value&param1_=_value1&param2_=_value2_

The event key enp://127.0.0.1/store has no significance other than its uniqueness as a string.
For example, the hostname portion of the event key has no significance as a hostname. It is
simply a string that is part of the URI. However, the event key is user configurable. The list of

Chapter 13
Event Notification Types and Options

13-2

iBiff event reference options is listed in tables "Mandatory Event Reference Options" and
"Optional Event Reference Options" that follow.

The second part of the event reference consists of option-value pairs. This part of the event
reference is separated from the event key by a question mark (?). The option and value are
separated by an equals sign (=). The option-value pairs are separated by an ampersand (&).
Note that there can be empty values, for which the value simply does not exist.

Mandatory Event Reference Options
Table 13-2 describes the mandatory event reference options that must be included in every
notification.

Table 13-2 Mandatory Event Reference Options

Option Data Type Description

evtType string Specifies the event type.

hostname string The hostname of the machine that generated the event.

mailboxName string Specifies the mailbox name in the message store. The mailboxName has the format
uid@domain, where uid is the user's unique identifier, and domain is the domain the
user belongs to. The @domain portion is added only when the user does not belong to
the default domain (i.e. the user is in a hosted domain).

pid integer ID of the process that generated the event.

process string Specifies the name of the process that generated the event.

timestamp 64-bit integer Specifies the number of milliseconds since the epoch (midnight GMT, January 1, 1970).

Optional Event Reference Options
Table 13-3 describes optional event reference options, which might be seen in the event
depending on the event type (see "Available Options for Each Event Type" for more
information.)

Table 13-3 Optional Event Reference Options

Option Data Type Description

attrn string Specifies an attribute of the nth annotation. This attribute can be either
value.shared or value.priv.

authid string Specifies the original user name passed by a client.

ctx integer Specifies the context within a process which generates an event.

client IP address The IP address of the client logging in or out.

diskquota signed 32-bit integer Specifies the disk space quota in kilobytes. The value is set to -1 to
indicate no quotas.

diskquotaused signed 64-bit integer Specifies the volume of disk space in kilobytes that is being used by a
user associated with the event.

entryn string Specifies the entry of the nth annotation. For example, /comment.

frommailboxName string Specifies the name of the mailbox from which messages were copied.

fromUidList string Specifies the list of UIDs as a comma separated list. This list shows
messages that were copied from the original mailbox.

fromuidValidity unsigned 32-bit integer Specifies uidValidty from the original mailbox.

Chapter 13
Event Notification Types and Options

13-3

Table 13-3 (Cont.) Optional Event Reference Options

Option Data Type Description

hdrLen unsigned 32-bit integer Specifies the size of the message header. Note that this might not be
the size of the header in the payload, because it might have been
truncated.

imapUid unsigned 32-bit integer Specifies the IMAP uid option.

identifier string Specifies the identifier in the Set ACL command for setting rights to
access mailboxes.

internaldate 64-bit integer Specifies the date when a message arrives at the store.

Note: The time is in milliseconds since the epoch. For example,
midnight GMT, January 1, 1970.

mechanism string Specifies the authorization type or action performed depending on the
event occurred that is Login or Logout.

modseq_sec long integer Specifies internal variables associated with the event.

modseq_usec long unsigned integer

msgflags string Specifies changed flags on messages.

msgquota unsigned 32-bit integer Specifies the message quota of a user.

newflags string Sets a new flag after the following operations:

• A: answered flag
• F: flagged flag
• D: deleted flag
• S: seen flag
• R: draft flag

NewName string Specifies the name of a mailbox after the rename event.

numDeleted signed 32-bit integer Specifies the number of messages in a mailbox with the /deleted flag
set.

numDeletedn signed 32-bit integer Specifies the number of messages that are belonged to type n in a
mailbox with the /deleted flag set.

numMsgs unsigned 32-bit integer Specifies the number of total messages in a mailbox.

numMsgsn signed 32-bit integer Specifies the number of messages that are belonged to type n in a
mailbox presently.

numSeen unsigned 32-bit integer Specifies the number of messages in a mailbox which are marked as
seen or read.

numSeenn signed 32-bit integer Specifies the total number of messages in a mailbox which are marked
as seen or read for each message type.

numSeenDeleted signed 32-bit integer Specifies the number of message in a mailbox which are marked as
seen or read and deleted.

numSeenDeletedn signed 32-bit integer Specifies the total number of message in a mailbox which are marked
as seen (read) and deleted for each message type.

oldflags string Specifies flags are set for messages before an operation.

operation integer Specifies the following flag operations:

• add flags
• remove flags
• replace flags

owner string Sets the value to True if the userid associated with the flag change
event is the owner of the mailbox.

Chapter 13
Event Notification Types and Options

13-4

Table 13-3 (Cont.) Optional Event Reference Options

Option Data Type Description

peruser_flags signed 32-bit integer Specifies an internal representation of the peruser_flags attribute.

quotaRoot string Specifies a user name, folder name, or a type.

rights string Sets ACL rights to access mailboxes.

system_flags signed 32-bit integer Specifies internal representation of system flags.

toUidList string Specifies the list of UIDs as a comma separated list. The list displays
UID messages which are provided in the destination mailbox.

uidList string Specifies the UID sequence in the IMAP format. It lists messages of
interest.

unchangedsince 64-bit integer Specifies internal variables associated with an event.

userid string Specifies the Userid associated with an event.

lastUid unsigned 32-bit integer Specifies the last IMAP uid value that was used.

size unsigned 32-bit integer Specifies the size of the message. Note that this may not be the size of
payload, since the payload is typically a truncated version of the
message.

uidValidity unsigned 32-bit integer Specifies the IMAP uid validity option.

Note:

Subscribers should allow for undocumented options when parsing the event
reference. This allows for future compatibility when new options are added.

Available Options for Each Event Type
Table 13-4 shows the options that are available for each event type. For example, to see which
options apply to a TrashMsg event, look in the column header for ReadMsg, TrashMsg and
then note that these events can use numDel, numMsgs, numSeen, and userValidity.

Note:

Oracle reserves the right to change no to yes at any time needed.

Table 13-4 Available Options for Each Event Type

Option New
Msg,
Upda
teMs
g

Read
Msg,
Tras
hMsg

Delet
eMsg
,Purg
eMsg

MsgF
lags

Chan
geFla
g

Logi
n,
Log
out

Ove
rQu
ota,
Und
erQ
uota

Exp
unge
Msg

SetA
cl

Crea
te

Delet
e

Rena
me

Anno
tateM
sg

Copy

attrn No No No No No No No No No No No No Yes No

authid No No No No No Yes No No No No No No No No

Chapter 13
Event Notification Types and Options

13-5

Table 13-4 (Cont.) Available Options for Each Event Type

Option New
Msg,
Upda
teMs
g

Read
Msg,
Tras
hMsg

Delet
eMsg
,Purg
eMsg

MsgF
lags

Chan
geFla
g

Logi
n,
Log
out

Ove
rQu
ota,
Und
erQ
uota

Exp
unge
Msg

SetA
cl

Crea
te

Delet
e

Rena
me

Anno
tateM
sg

Copy

ctx Yes Yes Yes No Yes Yes No Yes No Yes Yes Yes Yes Yes

diskquota Yes No Yes No No No Yes No No No Yes No No No

diskquotaused Yes No Yes No No No Yes No No No Yes No No No

entryn No No No No No No No No No No No No Yes No

frommailboxNa
me

No No No No No No No No No No No No No Yes

fromUidList No No No No No No No No No No No No No Yes

fromuidValidity No No No No No No No No No No No No No Yes

fromuidValidity
64

No No No No No No No No No No No Yes No No

identifier No No No No No No No No Yes No No No No No

internaldate Yes No No No No No No No No No No No No Yes

mechanism No No No No No Yes No No No No No No No No

modseq_sec Yes No No No No No No Yes No No No No Yes Yes

modseq_usec Yes No No No No No No Yes No No No No Yes Yes

msgflags Yes No No No Yes No No No No No No No No No

msgquota No No No No No No Yes No No No Yes No No No

newflags No No No Yes No No No No No No No No No No

NewName No No No No No No No No No No No Yes No No

numDeleted Yes Yes Yes No No No No No No No No No No Yes

numDeletedn Yes Yes Yes No No No No No No No No No No Yes

numMsgs Yes Yes Yes No No No Yes Yes No No No No No Yes

numMsgsn Yes Yes Yes No No No No No No No No No No Yes

numSeen Yes Yes Yes No No No No No No No No No No Yes

numSeenn Yes Yes Yes No No No No No No No No No No Yes

numSeenDelet
ed

Yes Yes Yes No No No No No No No No No No Yes

numSeenDelet
edn

Yes Yes Yes No No No No No No No No No No Yes

oldflags No No No Yes No No No No No No No No No No

operation No No No No Yes No No No No No No No No No

owner No Yes No No No No No No No No No No No No

peruser_flags No No No No Yes No No No No No No No No No

quotaRoot No No No No No No Yes No No No No No No No

rights No No No No No No No No Yes No No No No No

system_flags No No No No Yes No No No No No No No No No

Chapter 13
Event Notification Types and Options

13-6

Table 13-4 (Cont.) Available Options for Each Event Type

Option New
Msg,
Upda
teMs
g

Read
Msg,
Tras
hMsg

Delet
eMsg
,Purg
eMsg

MsgF
lags

Chan
geFla
g

Logi
n,
Log
out

Ove
rQu
ota,
Und
erQ
uota

Exp
unge
Msg

SetA
cl

Crea
te

Delet
e

Rena
me

Anno
tateM
sg

Copy

toUidList No No No No No No No No No No No No No Yes

uidList No No No No Yes No No Yes No No No No No No

unchangedsinc
e

No No No No Yes No No No No No No No No No

userid No Yes No Yes Yes Yes No No No No No No Yes No

client No No No No No Yes No No No No No No No No

diskQuota Yes No Yes No No No Yes No No No Yes No No No

hdrLen Yes No Yes Yes No No No No No No No No No No

imapUid Yes No Yes Yes No No No No No No No No Yes No

lastUid No No Yes No No No No Yes No No No No No No

size Yes No No No No No No No No No No No No No

uidValidity Yes Yes Yes Yes Yes No No Yes No Yes Yes Yes No Yes

userid No Yes No Yes Yes Yes No No No No No No Yes No

Payload
ENS allows a payload for two event types: NewMsg, and UpdateMsg; the other event types
do not carry a payload. The payload portion of these two notifications can contain any of the
following data:

• No header or body data (default setting)

• Message header data only

• Message body data only

• Both message header and body data

The amount and type of data sent as the payload of the ENS event is determined by the
configuration options found in "Payload Configuration Options".

Payload Configuration Options
Table 13-5 describes the payload configuration options.

Table 13-5 Payload Configuration Options

Configuration Options Description

local.store.notifyplugin.*.
maxbodysize

Specifies the maximum size (in bytes) of the body that will be transmitted
with the notification.

Syntax: uint32

Default: 0

Chapter 13
Event Notification Types and Options

13-7

Table 13-5 (Cont.) Payload Configuration Options

Configuration Options Description

local.store.notifyplugin.*.
maxheadersize

Specifies the maximum size (in bytes) of the header that will be
transmitted with the notification.

Syntax: uint32

Default: 0

Note that both options are set to zero as the default so that no header or body data is sent with
ENS notifications.

Examples
The following example shows a NewMsg event reference (it is actually a single line that is
broken up to several lines for readability):

enp://127.0.0.1/store?evtType=NewMsg×tamp=1047488403000&
hostname=eman&process=imta&pid=476&mailboxName=testuser&numMsgs=16
&uidValidity=1046993605&imapUid=62&size=877&hdrLen=814

In this example, for the DeleteMsg event. Messages marked as deleted by IMAP or HTTP
were expunged. The user would not see the message in the folder any more.

enp://127.0.0.1/store?evtType=DeleteMsg×tamp=1047488588000&
hostname=eman&process=imapd&pid=419&mailboxName=testuser&
numMsgs=6&uidValidity=1046993605&imapUid=61&lastUid=62

And a third example shows a ReadMsg event. Message was marked as Seen by IMAP or
HTTP.

enp://127.0.0.1/store?evtType=ReadMsg×tamp=1047488477000&
hostname=eman&process=imapd&pid=419&mailboxName=testuser&
uidValidity=1046993605&numSeen=11&numDel=9&numMsgs=16

Implementation Notes
The current implementation does not provide security on events that can be subscribed to.
Thus, a user could register for all events, and portions of all other users' mail. Because of this it
is strongly recommended that the ENS subscriber be on the "safe" side of the firewall at the
very least.

The ENS server supports two options to control TCP access to the ENS server
(service.ens.domainallowed and service.ens.domainnotallowed). These options work the
same way as the equivalent options for POP, IMAP, and HTTP. See the discussion on
configuring client access to POP, IMAP, and HTTP services in Messaging Server Security
Guide. These options replace the functionality of the ENS_ACCESS environment variable that
was included in the legacy ENS server.

Chapter 13
Implementation Notes

13-8

14
Event Notification Service API Reference

This chapter details the ENS API reference.

ENS C API Overview
The ENS C API, ens.h, is located in the MessagingServer_home/examples/enssdk/ directory.
The ens_pub.c sample publisher and ens_sub.c sample subscriber demonstrate use of the
ENS C API.

Here is the API header (ens.h):

====
// ens.h -- ENS C client API
//
// Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.

ifndef ENS_HEADER_INCLUDED
define ENS_HEADER_INCLUDED 1

ifdef __cplusplus
extern "C" {
endif

//
// Connecting
//

// an ENS client
struct ensclient_t;
typedef struct ensclient_t ensclient_t;

// callback invoked if the ENS connection dies
// subscriptions are no longer valid but must not be unsubscribed
typedef void (*lost_cnx_cb_t)(void*);

ensclient_t* ens_open(const char* host, int port, lost_cnx_cb_t
lost_cnx_cb, void* lost_cnx_arg);

// automatically cleans up all existing subscription handles
void ens_close(ensclient_t*);

//
// Publishing events
//

typedef void (*destructor_t)(void*); // cleanup function

void ens_publish(ensclient_t*, const char* evt, char* body, size_t
bodysz, destructor_t body_delete);

//
// Receiving events

14-1

//

// a subscription handle
struct sub_t;
typedef struct sub_t subscription_t;

// handler called when a subscribed event is received
typedef void (*notify_cb_t)(void *rock, char *event, char *body, size_t
body_len);

subscription_t* ens_subscribe(ensclient_t*, const char* evt, notify_cb_t
cb, void* rock);
void ens_unsubscribe(ensclient_t*, subscription_t*);

ifdef __cplusplus
}
endif

endif // ENS_HEADER_INCLUDED
====

API Basic Usage
The client calls ens_open() to start a connection. If reliability across ENS connection outages
is important, the client should provide a lost connection handler callback. The lost connection
handler normally marks any client-specific subscription information as invalid, calls ens_close,
and triggers a task to attempt a reconnect by using ens_open (possibly after a delay).

The client calls ens_close() on shut down.

The client calls ens_subscribe() to subscribe to events and gets a callback when a matching
event is received. The client calls ens_unsubscribe() to unsubscribe from an event (usually
not necessary as a client can just call ens_close).

To publish an event, use ens_publish. (In general, you do not need to do so and the sample
code should be sufficient.)

To build the sample programs, link against the libens library, which is normally installed
in /opt/sun/comms/messaging64/lib/libens.so.

The ens_sub.c sample program is helpful to see what events are generated and how the
event strings and message payloads are formatted.

Both Oracle Communications Messaging Server publishers (that is, imapd) and the ENS
server (enpd) are designed to drop events if an overload situation occurs.

Client API ens_sopen
The client API, ens_sopen, can connect to the ENS broker with authentication.

Customers who want to connect to the ENS broker use the API ens_open declared in ens.h to
create a new client connection to the ENS broker. The API, ens_open, does not support
authentication and TLS/SSL.

So we added a new API, ens_sopen, to create a secure connection to the ENS broker that
supports authentication and TLS/SSL. The arguments to the API, ens_sopen, include all the
arguments to the API, ens_open, and also includes arguments to accept an username and a
password for authentication. It also includes an argument to specify whether to use TLS/SSL
while making an connection to the ENS Broker specified.

Chapter 14
API Basic Usage

14-2

The new API declared in lib/ens/ens.h is:

ensclient_t* ens_sopen (const char* host, int port, int use_ssl, const char* auth_user,
const char* auth_secret, lost_cnx_cb_t lost_cnx_cb, void* lost_cnx_arg);

In order to connect to the ENS brokers that support TLS/SSL and authentication, you must use
the new API, ens_sopen. The API accepts the arguments auth_user and auth_secret, but it
may or may not use them depending on whether or not the ENS broker it is connecting to
requires authentication.

If the connection is made to the SSL port, then the value for the argument, use_ssl, must be 1.
If the connection is made to the non-SSL port, then the value for the argument, use_ssl, must
be 0.

API Usage Notes
The ENS C API is presently the recommended API for C-based software that needs to
subscribe to Messaging Server events. Use of the Glassfish Message Queue, OpenMQ, or
Java Enterprise System Message Queue C API is not recommended.

Event Notification Service Java (JMS) API
The ENS Java API is included with Messaging Server. The Java API conforms to the Java
Message Service specification (JMS).

ENS acts as a provider to Java Message Service. Thus, it provides a Java API to ENS. The
software consists of the base library plus a demo program.

The ENS-JMS API provides a way for Java programs to consume the messages generated by
the Messaging Server. An application using JMS can either use the point-to-point approach
(queues) or Publish/Subscribe (topic) approach.

The messaging server generates events and publish them to the ENS broker called "enpd".
The ENS broker support the topic approach only and not the queue approach. It supports non-
durable subcriptions only. With topics, multiple subscribers can subscribe to a single topic.

Note:

The bundled ens-jms.jar and jms.jar should be on classpath.

Sample ENS-JMS Consumer Program
To use Sample ENS-JMS consumer program, the messaging server should be configured for
ENS. See "Administering Event Notification Service" and "Messaging Server Specific Event
Notification Service Information" for more information on ENS.

Below is the sample JMS consumer of ENS messages which consumes the messages from
the default topic and prints the messages.

/**
* A consumer that can connect to a ENS Server and printMessages as JMS messages.
*/
public class JMSConsumer {

String hostname = "localhost";

Chapter 14
API Usage Notes

14-3

int port = 7997;
boolean printMessages = true;
private String topicName = "store";

/**
* Constructor for creating a JMS consumer.
*/
JMSConsumer() {
}

/**
* start - starts the JMS consumer which waits to receive a event from the
* messaging server. This waits for the event and prints the message got.
*
* @throws JMSException
*/
public void start() throws JMSException {
/**
* Create a EnsTopicConnFactory which creates a connection to the ENS
* Broker. If you want to use the Same code for a different JMS
* provider, all you have to do is to change the ConnectionFactory to
* that of the corresponding broker.
* eg. TopicConnectionFactory connFactory = new newcom.sun.messaging.ConnectionFactory();
* can be replaced by
* TopicConnectionFactory connFactory = new EnsTopicConnectionFactory("ens-conn-factory",
hostname, port);
* to use the OpenMQ as a broker to receive JMS Messages.
*/
TopicConnectionFactory connFactory = new EnsTopicConnectionFactory("ens-conn-factory",
hostname, port);
TopicConnection topicConn = connFactory.createTopicConnection();
TopicSession topicSession = topicConn.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
Topic topic = topicSession.createTopic(topicName);
TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
topicConn.start();
TextMessage message = (TextMessage) topicSubscriber.receive();
if (printMessages) {
printMessage(message);
}
topicSession.close();
topicConn.close();
}

public static void main(String[] args) throws JMSException {
JMSConsumer cons = new JMSConsumer();
cons.start();
}

/**
* printMessage - prints the Contents of the JMS messages received.
*
* @param message
* @throws JMSException
*/
private void printMessage(TextMessage message) throws JMSException {
system.out.println("----Start of Message------ \n");
System.out.println("JMSCorrelationID:+" + message.getJMSCorrelationID() + "\n");
System.out.println("JMSMessageID:+" + message.getJMSMessageID() + "\n");
System.out.println("JMSType:+" + message.getJMSType() + "\n");
System.out.println("JMSDeliveryMode:+" + message.getJMSDeliveryMode() + "\n");
System.out.println("JMSDestination:+" + message.getJMSDestination() + "\n");

Chapter 14
Event Notification Service Java (JMS) API

14-4

System.out.println("JMSExpiration:+" + message.getJMSExpiration() + "\n");
System.out.println("JMSPriority:+" + message.getJMSPriority() + "\n");
System.out.println("JMSRedelivered:+" + message.getJMSRedelivered() + "\n");
System.out.println("JMSReplyTo:+" + message.getJMSReplyTo() + "\n");
System.out.println("JMSTimestamp:+" + message.getJMSTimestamp() + "\n");
System.out.println("Properties:\n");
// Print the Properties
Enumeration keys = message.getPropertyNames();
while (keys.hasMoreElements()) {
String key = (String) keys.nextElement();
System.out.println(key + " -> " + message.getStringProperty(key) + "\n");
}
System.out.println("----End of Properties----\n");
System.out.println("Body:+" + message.getBody(String.class) + "\n");
System.out.println("----End of Message------ \n");
System.out.println("received: " + message.getText());
}

Sample ENS-JMS Consumer Using Automatic Failover and Properties File
Below is the file that has the mapping from the logical hostname to a list of physical
hostnames:

bash-3.2$ cat /local/harokias/hostmap.properties

The mapping from logical mailhost name to a list of physical hostnames
mailhost1 mapping
mailhost1.hostlist = host1 host2 host3

mailhost2 mapping
mailhost2.hostlist = host4 host5 host6

If automatic failover and properties file are to be used then you should made following change
in the sample ENS-JMS consumer program:

TopicConnectionFactory connFactory = new EnsTopicConnectionFactory("ens-conn-factory",
<"mailhost1">,<"local/harokias/hostmap.properties">, port);

Chapter 14
Event Notification Service Java (JMS) API

14-5

15
Configuring IMAP IDLE

This chapter describes how to configure IMAP IDLE for Oracle Communications Messaging
Server.

Benefits of Using IMAP IDLE
The IMAP IDLE extension to the IMAP specification, defined in RFC 2177, allows an IMAP
server to notify the mail client when new messages arrive and other updates take place in a
user's mailbox. The IMAP IDLE feature has the following benefits:

• Mail clients do not have to poll the IMAP server for incoming messages. Eliminating client
polling reduces the workload on the IMAP server and enhances the server's performance.
Client polling is most wasteful when a user receives few or no messages; the client
continues to poll at the configured interval, typically every 5 or 10 minutes.

• A mail client displays a new message to the user much closer to the actual time it arrives in
the user's mailbox. A change in message status is also displayed in near-realtime. The
IMAP server does not have to wait for the next IMAP polling message before it can notify
the client of a new or updated mail message. Instead, the IMAP server receives a
notification as soon as a new message arrives or a message changes status. The server
then notifies the client through the IMAP protocol.

Configuring IMAP IDLE with ENS in Unified Configuration
IMAP IDLE with ENS has the following default behavior:

• ENS is enabled by default. The initial configuration sets the ens.enable option to 1.

• Every message store has its own enpd server.

• The imapd process, store delivery channels, and store utilities report changes to the enpd
server on the local store.

• Some additional configuration is helpful for improved security, HA, and flag updates, as
explained in "To Configure IMAP IDLE with ENS".

• IMAP IDLE does not require that events be aggregated to a single enpd server and the
IDLE event distribution is more efficient if each store uses its own enpd server.

Prerequisites for Configuring IMAP IDLE with ENS
Make sure ENS is enabled by setting the ens.enable option to 1:

msconfig set ens.enable 1

To Configure IMAP IDLE with ENS
1. Configure the enpd server to allow (or restrict) connections only from the hosts running the

message stores by configuring the ens.domainallowed and ens.domainnotallowed
options as necessary. For example, the following command allows access to the local host
only:

15-1

msconfig set ens.domainallowed enpd:127.0.0.1

The following command allows access to the local host and all IP addresses 192.168.0.*
except 192.168.0.17:

msconfig set ens.domainallowed '"enpd:192.168.0.0/255.255.255.0,127.0.0.1 EXCEPT
192.168.0.17"'

These options work the same way as the equivalent options for POP, IMAP, and HTTP.
These options replace the functionality of the ENS_ACCESS environment variable that
was included in the legacy ENS server.

2. Stop, then restart Messaging Server.

cd /opt/sun/comms/messaging/bin
stop-msg
start-msg

3. Verify that the IMAP services now include the IDLE feature. Use telnet to connect to the
IMAP host and port.

telnet IMAP_hostname port

Example:

telnet myhost imap
trying 192.18.01.44 ...
connected to myhost.example.com
* OK [CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS
CHILDREN BINARY UNSELECT SORT LANGUAGE STARTTLS IDLE XSENDER X-NETSCAPE
XSERVERINFO X-SUN-SORT X-SUN-IMAP X-ANNOTATEMORE AUTH=PLAIN]
myhost.example.com IMAP4 service (Oracle Communications Messaging Server 7u5-4.07
64bit (built Mar 21 2012)

To Disable IMAP IDLE
• To disable IMAP IDLE, set the ens.enable option to 0 (default is 1). For example:

msconfig set ens.enable 0

Chapter 15
Configuring IMAP IDLE with ENS in Unified Configuration

15-2

16
Lemonade Profile 1 Support

This chapter describes Oracle Communications Message Server's support for Lemonade
Profile 1.

Absent from Messaging Server's support for Lemonade Profile 1 is SMTP BINARYMIME. In
addition, Messaging Server's CONDSTORE and ANNOTATE implementations might cause
performance issues, so use caution when working with these features. See the appropriate
sections in this chapter for details.

Introduction to Lemonade
Lemonade refers to an IETF working group formed to address the requirements of supporting
standards-based email in a mobile or other resource-constrained environment. A "resource-
constrained" environment is one where any or all of the following might be encountered:

• Low bandwidth, high latency networks

• Intermittent network connectivity

• Scarce power and compute cycles

• Minimizing data usage is a goal

The Lemonade Profile (RFC 4550, http://tools.ietf.org/html/rfc4550) defines a set of
IMAP and SMTP extensions that address these constraints. Messaging Server implements
most of the extensions defined in RFC 4550 (Lemonade Profile 1) and some of the extensions
defined in RFC 5550 (Lemonade Profile 2). This information describes the configurable
extensions.

Note:

The Lemonade standard is mostly intended for mobile clients. Its goal is to reduce
network traffic (both in volume and number of interactions) and to move the CPU load
from the client to the server. Clients must have support for Lemonade built into them.

Lemonade Features
Some of the more interesting features of Lemonade include the following:

• Forward a message without download (enabled by CATENATE, URLAUTH, and BURL)

• Quick resync (enabled by CONDSTORE and QRESYNC)

• Persistent sort and search (enabled by CONTEXT)

• Conversion

The following sections describe these features in more detail.

16-1

http://tools.ietf.org/html/rfc4550

Support for BURL

Note:

Refer to the discussion on BURL support for SMTP SUBMIT in Messaging Server
Reference for details on configuring and using BURL.

Messaging Server supports the BURL command, which extends the SMTP submission profile
by adding a new command to fetch submission data from an IMAP server. This permits a mail
client to inject content from an IMAP server into the SMTP infrastructure without downloading it
to the client and uploading it back to the server. Thus, you could forward an email message
without first downloading it to the client.

For more information, see http://www.ietf.org/rfc/rfc4468.txt.

Support is enabled in Messaging Server by the BURL_ACCESS mapping. The mapping
receives two different probe strings:

port_access-probe-info|channel|uid|
port_access-probe-info|channel|uid|url

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe. It will be blank if BURL is being used in a
"disconnected" context such as batch SMTP. The channel is the current source channel and
uid is the user's authenticatd UID. The uid will be blank if no authentication has been
performed. The $:S input flags will be set if SASL authentication has been performed and $:T
will be set if TLS is in use.

The first probe is done when responding to EHLO. In order to offer BURL support the mapping
must set $Y and optionally provide a space-separated list of supported URL types. The
mapping assumes imap if no string is returned.

The second probe is performed when a BURL command is actually sent by the submit client. It
includes the URL specified in the BURL command. Additionally, $:| will be set if the URL
contains any vertical bars (which if present could possibly confuse some sorts of access
checks). The mapping must set $Y for the URL to be accepted for processing. If $D is also set
the string result of the mapping replaces the originally specified URL.

At an absolute minimum the mapping must verify that a proper type of URL has been specified.
Typically only imap: URLs should be allowed. Additionally, in the case of "submit" IMAP URLs,
a check needs to be made to insure that the URL belongs to the user, that is, the access user
in the URL matches the authenticated UID for the submit session. Additionally, it is almost
always essential to restrict access to an appropriate set of IMAP servers.

The default BURL settings for Unified Configuration are the following:

BURL_ACCESS

 |tcp_|%*| imap$Y
 |@*|imap://*;URLAUTH=submit+$1*:* $:A$M$Y

The SMTP server has to have the ability to log in to the IMAP server as the submit user. The
imap_username and imap_password MTA options are used to accomplish this.
imap_username specifies the submit user and defaults to the setting of the imap.submituser
option if not specified. The imap_password option specifies the password which of course

Chapter 16
Support for BURL

16-2

http://www.ietf.org/rfc/rfc4468.txt

much match the value set for the submit user account. The imap_password option has no
default value.

IMAP URLAUTH Support
Messaging Server supports the URLAUTH extension to IMAP and the IMAP URL Scheme
(IMAPURL). This extension provides a means by which an IMAP client can use URLs carrying
authorization to access limited message data on the IMAP server. An IMAP server that
supports this extension indicates this with a capability name of "URLAUTH."

For more information, see http://www.ietf.org/rfc/rfc4467.txt.

IMAP CATENATE Support
Messaging Server supports the CATENATE extension to IMAP, which extends the APPEND
command to allow clients to create messages on the IMAP server that may contain a
combination of new data along with parts of (or entire) messages already on the server. Using
this extension, the client can catenate parts of an already existing message onto a new
message without having to first download the data and then upload it back to the server.

For more information, see http://www.ietf.org/rfc/rfc4469.txt.

IMAP Conditional Store Operation Support
Messaging Server supports IMAP Conditional Store Operations (CONDSTORE). IMAP
CONDSTORE enables clients to coordinate changes to a common IMAP mailbox, for example,
when multiple users are accessing shared mailboxes. The Conditional Store facility provides a
protected update mechanism for message state information that can detect and resolve
conflicts between multiple writing mail clients. The Conditional Store facility also allows a client
to quickly resynchronize mailbox flag changes.

Note:

Use caution when enabling CONDSTORE with Convergence, as there might be
degradation of IMAP performance. Our hope is to fix this problem in a future release.
When this happens, we will remove this caution.

For more information, see http://www.ietf.org/rfc/rfc4551.txt.

IMAP ANNOTATE Support
Messaging Server supports the ANNOTATE extension to IMAP, which permits clients and
servers to maintain "meta data" for messages, or individual message parts, stored in a mailbox
on the server. For example, you could use IMAP ANNOTATE to attach comments and other
useful information to a message, or to attach annotations to specific parts of a message,
marking them as seen or important, or a comment added.

Chapter 16
IMAP URLAUTH Support

16-3

http://www.ietf.org/rfc/rfc4467.txt
http://www.ietf.org/rfc/rfc4469.txt
http://www.ietf.org/rfc/rfc4551.txt

Note:

Use caution when enabling ANNOTATE, as there might be degradation of IMAP
performance. Our hope is to fix this problem in a future release. When this happens,
we will remove this caution.

For more information, see http://www.ietf.org/rfc/rfc5257.txt. Of note in this document
is Section 3.4, "Access Control," which summarizes access control restrictions, including the
new ACL "n" right.

Controlling IMAP CAPABILITIES Vector
When migrating a multi-system deployment from Messaging Server 6.3 to 7, it is important that
the systems advertise consistent IMAP extension sets, especially with respect to
CONDSTORE. During migration you can configure Messaging Server 7 to display the same
capability set as the older Messaging Server version. You can also turn on the new features on
all back systems simultaneously. This feature is only of real significance with CONDSTORE
and if you have lemonade-aware clients.

You can also filter the initial capability vector advertised in the IMAP banner in the MMP.

Set the IMAP capability options to 1 to control the CAPABILITIES vector. To see a list of these
options, run the following command:

msconfig
msconfig> help option capability_*

You can also refer to Messaging Server Reference to see the IMAP capability options.

The default values for most of these options is 1. The exceptions are IMAP4 and
CONDSTORE. The default for IMAP4 is 0 unless obsoleteimap is set, in which case it is 1.
These options only affect whether a particular feature is advertised, except for
imap.capability_condstore which also enables the feature.

Turning on (or not turning off) a capability does not necessarily mean that the feature will be
advertised. IDLE, STARTTLS, and XREFRESH are only advertised if enabled by these options
and other condition exist that make it appropriate for them to be advertised.

Support for SMTP Submission Service Extension for Future
Message Release

Messaging Server supports Lemonade Profile 1, which is an extension to the SMTP
submission protocol for a client to indicate a future time for the message to be released for
delivery. This extension permits a client to use server-based storage for a message that should
be held in queue until an appointed time in the future. This is useful for clients that do not have
local storage or are otherwise unable to release a message for delivery at an appointed time.
This functionality is useful for sending announcements to be read at the beginning of a work
day, to send birthday greetings a day or so ahead, or to use as a lightweight facility to build a
personal reminder service.

For more information, see http://tools.ietf.org/rfc/rfc4865.txt.

Chapter 16
Controlling IMAP CAPABILITIES Vector

16-4

http://www.ietf.org/rfc/rfc5257.txt
http://tools.ietf.org/rfc/rfc4865.txt

Support is enabled in Messaging Server by placing the futurerelease channel option on the
source channel used for initial message submission. The option takes a single integer
argument: the maximum number of seconds a message can be held.

Chapter 16
Support for SMTP Submission Service Extension for Future Message Release

16-5

17
Managing Logging

This chapter provides overview information on the logging facilities for the Oracle
Communications Messaging Server MTA, the Message Store, and services. It also provides
procedures for how to manage these logging facilities.

Overview of Logging
This section contains the following subsections:

• What Is Logging and How Do You Use it?

• Types of Logging Data

• Types of Messaging Server Log Files

• Tools for Managing Logging

• Tracking a Message Across the Various Log Files

What Is Logging and How Do You Use it?
Logging is the means by which a system provides you with time-stamped and labeled
information about the system's services. Logging provides both a current snapshot of the
system as well as a historical view.

By understanding and using Messaging Server log files, you can:

• Gather message statistics, such as message size, rate of message delivery, and how
many messages are passing through the MTA

• Perform trend determination

• Correlate capacity planning

• Troubleshoot problems

For example, if your site needs to add more disk storage due to an increase in the number of
users, you can use the Messaging Server log files to see what percentage your system
demand has increased by and plan for the amount of new disk storage you need.

You can also use Messaging Server logs to understand what your messaging pattern looks like
across one day. Understanding when your daily peak loads occur helps you conduct capacity
planning.

Logging is also helpful for troubleshooting user problems. For example, if a user isn't receiving
expected mail messages, you can use the Messaging Server logging facilities to trace the
user's mail messages. In so doing, you might find out that the messages didn't arrive because
they were automatically filtered and sent to a SPAM folder.

Types of Logging Data
In general, logging provides you with two types of information:

• Operational data

17-1

• Error conditions, also known as event logging

For the most part, Messaging Server logging provides operational data. This operational data
contains information such as: the date and time a message entered the system; the sender
and recipient of the message; when the message was written to disk; and at a later point in
time, when the message was removed from disk and inserted into user's mailbox.

However, Messaging Server logging does also provide some event logging data. To obtain
event logging data, you must pull together multiple items from different log files. You could then
use a unique constant, such as message ID, to search and correlate the life cycle of a
message as it passed from point to point through the system.

Types of Messaging Server Log Files
Messaging Server logging consists of three types of log files:

1. MTA logs. These logs provide operational data previously described for the Message
Transfer Agent.

2. Error logs. These are the MTA debug logs, and the MTA subcomponent logs (that is, job
controller, dispatcher and so on).

3. Message Store and Service logs. These logs provide messages from the http server,
mshttpd, imap, and pop services, as well as the Admin service. The format of these logs
differs from that of the first two types of logs.

Table 17-1 lists the different types of log files. By default, log files are located in the
DataRoot/log directory. You can customize and view each type of log file individually.

Table 17-1 Messaging Server Log Files

Type of Log File Log File Description Default Name

Message Transfer
Agent

Show information about message traffic
through the MTA including date and time
information, enqueue and dequeue
information, and so on.

mail.log_current, mail.log_yesterday, mail.log

Connections Contains remote machines (MTAs) that
connect to this system to send email.

connection.log

Counters Contains message trends in terms of
messages sent and received on a per
channel basis.

counters

Job Controller Contains data on the master, job
controller, sender, and dequeue channel
programs.

job_controller.log

Dispatcher Contains errors pertaining to the
dispatcher. Turning on dispatcher
debugging will increase the information.

dispatcher.log

Channel Records errors pertaining to the
channel. Channel options
master_debug and slave_debug turn
on channel debugging, which increases
the verbosity of the channel log files.
Level and type of information is
controlled with the various *_DEBUG
MTA options.

channel-name_master.log* (example:
tcp_local_master.log*)channel-name_slave.log*
(example: tcp_local_slave.log*)

IMAP Contains logged events related to
IMAP4 activity of this server

imap, imap.sequenceNum.timeStamp

Chapter 17
Overview of Logging

17-2

Table 17-1 (Cont.) Messaging Server Log Files

Type of Log File Log File Description Default Name

POP Contains logged events related to POP3
activity of this server

pop, pop.sequenceNum.timeStamp

HTTP Contains logged events related to HTTP
activity of this server

http, http.sequenceNum.timeStamp

Default Contains logged events related to other
activity of this server, such as
command-line utilities and other
processes

default, default.sequenceNum.timeStamp

transactlog Contains machine readable (XML
format) information about actions
performed by the message store. For
more details on the Store Transaction
Log Format, see Reference Guide.

transactlog

watcher Monitors process failures and
unresponsive services (see Table 3-5)
and will log error messages indicating
specific failures.

watcher

where:

sequenceNum - Specifies an integer that specifies the order of creation of this log file
compared to others in the log-file directory. Log files with higher sequence numbers are more
recent than those with lower numbers. Sequence numbers do not roll over. They increase
monotonically for the life of the server (beginning at server installation).

timeStamp - Specifies a large integer that specifies the date and time of file creation. (Its value
is expressed in standard UNIX time: the number of seconds since midnight January 1, 1970.)

For example, a log file named imap.63.915107696 would be the 63rd log file created in the
directory of IMAP log files, created at 12:34:56 PM on December 31, 1998.

The combination of open-ended sequence numbering with a timestamp gives you more
flexibility in rotating, expiring, and selecting files for analyzing. See "Defining and Setting
Service Logging Options" for more specific suggestions.

Tools for Managing Logging
You can customize the policies for creating and managing Messaging Server log files by using
the msconfig command.

For Message Store, the settings you specify affect which and how many events are logged.
You can use those settings and other characteristics to refine searches for logged events when
you are analyzing log files.

The MTA uses a separate logging facility you configure MTA logging by specifying information
in configuration files.

For log analysis and report generation beyond the capabilities of Messaging Server, you must
use other tools. You can manipulate log files on your own with text editors or standard system
tools.

Chapter 17
Overview of Logging

17-3

With a scriptable text editor supporting regular-expression parsing, you can potentially search
for and extract log entries based on any of the criteria discussed in this information, and
possibly sort the results or even generate sums or other statistics.

In UNIX environments you might also be able to modify and use existing report-generation
tools that were developed to manipulate UNIX syslog files. If you want to use a public-domain
syslog manipulation tool, remember that you might need to modify it to account for the
different date/time format and for the two extra components (facility and logLevel) that appear
in Messaging Server log entries but not in syslog entries.

Tracking a Message Across the Various Log Files
The following describes how a message flows through the system, and at what point
information gets written to the various log files. This description is meant to aid you in your
understanding of how to use Message Server's log files to troubleshoot and resolve problems.
See Figure 6-2 to follow along.

1. A remote host makes a connection to the TCP socket on your messaging host, requesting
SMTP service.

2. The MTA dispatcher responds to the request, and hands off the connection to your
messaging host's SMTP service. As the MTA is modular in design, it consists of a set of
processes, including the job controller and the SMTP service dispatcher. The dispatcher
takes the incoming TCP connection and sends it to the SMTP service. The SMTP service
writes the message to disk to a channel area. The SMTP service understands the
message's envelope options, such as sender and recipient. Configuration entries in the
system tell what destination channel it belongs to.

3. The dispatcher writes to the dispatcher.log file that it forked a thread and made the thread
available to incoming connection from a certain IP address.

4. The SMTP server writes to its tcp_smtp_server.log file, recording the dialog of what
happens when the remote host connected to it and sent a message. This log file gets
created when dispatcher hands off to SMTP server on the host's IP.

5. The SMTP server writes the message to a queue area on disk for a channel program such
as tcp_intranet, and informs the job controller.

6. The job controller contacts the channel program.

7. The channel program delivers the message. Each channel has its own log file. However,
these logs usually show the starting and stopping of the channel. To get more information,
you must enable debug level for the channel. However, as this can slow down your system
and actually make problems more obscure if left on, you should only enable debug level
when an actual problem is occurring.

Note:

For efficiency, if a channel is already running for an existing process, and a new
message comes in, the system does not spawn a new channel process. The
currently running process picks up the new message.

8. The message is delivered to its next hop, which could be another host, another TCP
connection, and so forth. This information is written to the connection.log file when
SEPARATE_CONNECTION_LOG is enabled. At the same time that the SMTP server
writes the message to a queue area on disk, the channel responsible for the message
writes a record in the mail.log_current file. The record shows such information as the date

Chapter 17
Overview of Logging

17-4

and time the message was enqueued, the sender, the recipient, so forth. See "MTA
Message Logging Examples" for more information. The most useful file for tracing the
message is the mail.log_current file.

Managing MTA Message and Connection Logs
The MTA provides facilities for logging each message as it is enqueued and dequeued. It also
provides dispatcher error and debugging output.

You can control logging on a per-channel basis or you can specify that message activity on all
channels be logged. In the initial configuration, logging is disabled on all channels.

See "Enabling MTA Logging" for more information.

Enabling logging causes the MTA to write an entry to the DataRoot/log/mail.log_current file
each time a message passes through an MTA channel. Such log entries can be useful for
gathering statistics on how many messages are passing through the MTA (or through particular
channels). You can also use these log entries to investigate other issues, such as whether and
when a message was sent or delivered.

The message return job, which runs every night around midnight, appends any existing
mail.log_yesterday to the cumulative log file, mail.log, renames the current mail.log_current
file to mail.log_yesterday, and then begins a new mail.log_current file. The message return
job also performs the analogous operations for any connection.log* files.

While the MTA performs automatic rollovers to maintain the current file, you must manage the
cumulative mail.log file by determining policies for tasks such as backing up the file, truncating
the file, deleting the file, and so on.

When considering how to manage the log files, note that the MTA periodic return job will
execute a site-supplied DataRoot/site-programs/bin/daily_cleanup script, if one exists. Thus
some sites might choose to supply their own cleanup procedure that, for instance, renames the
old mail.log file once a week (or once a month), and so on.

Note:

With logging is enabled, the mail.log file steadily grows and, if left unchecked,
consumes all available disk space. Monitor the size of this file and periodically delete
unnecessary contents. You can also delete the entire file as another version will be
created as needed.

Understanding the MTA Log Entry Format
The MTA log file is written as ASCII text. By default, each log file entry contains eight or nine
fields as shown in the example below.

16-Feb-2007 14:54:13.72 tcp_local ims-ms EE 1 adam@example.com
rfc822;marlowe@example.org marlowe@ims-ms-daemon

The log entry shows:

1. The date and time the entry was made (in the example, 16-Feb-2007 14:54:13.72).

2. The channel name for the source channel (in the example, tcp_local).

Chapter 17
Managing MTA Message and Connection Logs

17-5

3. The channel name for the destination channel (in the example, ims-ms). For SMTP
channels, when LOG_CONNECTION is enabled, a plus (+) indicates inbound to the SMTP
server; a minus (-) indicates outbound via the SMTP client.

4. The type of entry (in the example, EE). Entries can consist of a single action code (see
Table 17-2) or an action code and one or more modifier codes (see Table 17-3). The format
for entries is as follows

:<action_code><zero or more optional modifiers>

For example a logging entry code of EEC means that the email was Enqueued (action-
code E) using ESMTP (modifier E) and SMTP Chunking (modifier C). Please refer to the
tables below for details on the currently used action and modifier codes.

5. The size of the message (in the example, 1). This is expressed in kilobytes by default,
although this default can be changed by using the BLOCK_SIZE MTA option. The SMS
channel can be configured to log a page count rather than file size in this field. See
Table 21-5 for information on LOG_PAGE_COUNT.

6. The envelope From: address (in the example, adam@example.com). Note that for
messages with an empty envelope From: address, such as notification messages, this
field is blank.

7. The original form of the envelope To: address (in the example, marlowe@example.org).

8. The active (current) form of the envelope To: address (in the example, marlowe@ims-ms-
daemon).

9. The delivery status (SMTP channels only).

Table 17-2 describes the logging entry action codes.

Table 17-2 Logging Entry Action Codes

Entry Description

B Bad command sent to the SMTP server. The recipient address field will contain the
command that was rejected while the diagnostic field will contain the response the SMTP
server gave. MTA channel option, MAX_B_ENTRIES, controls how many bad commands will
be logged in a given session. Default is 10.

D Successful dequeue

E Successful enqueue

J Rejection of attempted enqueue (rejection by slave channel program)

K Recipient message rejected. If the sender requests NOTIFY=NEVER DSN flag set or if the
message times out or if the message is manually returned (for example: imsimta qm
"delete" command always generates a "K" record for each recipient, while a qm "return"
command will generate a "K" record rather than an "R" record). This indicates that there was
no notification sent to the sender per the sender's own request.This can be compared with
"R" records, which are the same sort of rejection/time-out, but where a new notification
message (back to the original sender) is also generated regarding this failed message.

P Request to generate a Delivery Status Notification. "P" records are only generated in cases
where the error causing the DSN isn't recorded in any other log entry. The various cases
where this happens are further detailed by the presence of a modifier character on the
action. Currently the defined modifiers are:

• F - address errors detected during alias or mailing list expansion operations
• X - capture operations
• J - journal operations
• Y - Sieve syntax or evaluation errors
• D - success delivery receipts

Chapter 17
Managing MTA Message and Connection Logs

17-6

Table 17-2 (Cont.) Logging Entry Action Codes

Entry Description

Q Temporary failure to dequeue

R Recipient address rejected on attempted dequeue (rejection by master channel program), or
generation of a failure/bounce message

S LMTP deposit into the message store. This action code is used on the LMTP server side.

V Warning message that will appear whenever a transaction is abnormally aborted. There will
be one "V" record per enqueued recipient address.

W Warning message sent to notify original sender that the message has not been delivered yet,
but it is still in the queue being retried.

Z Some successful recipients, but this recipient was temporarily unsuccessful; the original
message file of all recipients was dequeued, and in its place a new message file for this and
other unsuccessful recipients will be immediately enqueued

Table 17-3 describes the logging entry modifier codes.

Table 17-3 Logging Entry Modifier Codes

Entry Description

A SASL authentication used.

B SMTP BINARYMIME extension used (RFC 3030).

C Chunking was used. Note that ESMTP has to be used for chunking to work, so you'll typically
see field values like EEC or DEC.

E An EHLO command was issued/accepted and therefore ESMTP was used.

L LMTP was used.

Q SMTP PIPELINING extension used (RFC 2920).

S TLS/SSL used. S transaction log entries now increment the various submitted message
counters associated with the channel.

U BURL used (RFC 4468).

If LOG_CONNECTION is enabled, then an additional set of action codes is used. See the
discussion on LOG_CONNECTION in Messaging Server Reference. Table 17-4 describes the
LOG_CONNECTION action codes.

Table 17-4 SMTP LOG_CONNECTION Action Codes + or - Entries

Entry Description

C Connection closed. A diagnostic field will follow. Written to connection.log_current (or
{{mail.log_current if a single log file is being used). Used to record the reason why the
connection was closed. In particular, if the connection was closed due to some session
disconnect limit being reached, that fact will show up in the diagnostics field.

O Connection opened.

T PORT_ACCESS log entry.

Chapter 17
Managing MTA Message and Connection Logs

17-7

Table 17-4 (Cont.) SMTP LOG_CONNECTION Action Codes + or - Entries

Entry Description

U Logs SMTP authentication successes and failures. Format is the same as other O and C
entries. In particular, the same application and transport information fields appear in same
order. The username will be logged in the username field if it is known. Bit 7 (value 128) of
the LOG_CONNECTION MTA option controls this.

X Connection rejected.

Y Connection attempt failed before being established.

I ETRN command received.

With LOG_CONNECTION, LOG_FILENAME, LOG_MESSAGE_ID, LOG_NOTARY,
LOG_PROCESS, and LOG_USERNAME MTA options all enabled, the format becomes as
shown in the example below. (The sample log entry line has been wrapped for typographic
reasons; the actual log entry would appear on one physical line.)

16-Feb-2007 15:04:01.14 2bbe.5.3 tcp_local ims-ms
EE 1 service@example.org rfc822;adam@example.com
adam@ims-ms-daemon 20 /opt/sun/comms/messaging64/data/queue/ims-ms/000/ZZf0r2i0HIaY1.01
<0JDJ00803FAON200@mailstore.example.org> mailsrv
example.org (example.org [192.160.253.66])

Where the additional fields, beyond those already discussed above, are:

1. The process ID (expressed in hexadecimal), followed by a period (dot) character and a
count. If this had been a multithreaded channel entry (that is, a tcp_* channel entry), there
would also be a thread ID present between the process ID and the count. In the example,
the process ID is 2bbe.5.3.

2. The NOTARY (delivery receipt request) flags for the message, expressed as an integer (in
the example, 20).

3. The file name in the MTA queue area (in the example, /opt/sun/comms/messaging64/
data/queue/ims-ms/000/ZZf0r2i0HIaY1.01).

4. The message ID (in the example, 0JDJ00803FAON200@mailstore.example.org).

5. The name of the executing process (in the example, mailsrv). On UNIX, for dispatcher
processes such as the SMTP server, this will usually be mailsrv (unless SASL was used,
in which case it will be the authenticated user name, for example,
*service@example.org).

6. The connection information (in the example, example.org (example.org
[192.160.253.66]). The connection information consists of the sending system or channel
name, such as the name presented by the sending system on the HELO/EHLO line (for
incoming SMTP messages), or the enqueuing channel's official host name (for other sorts
of channels). In the case of TCP/IP channels, the sending system's real name, that is, the
symbolic name as reported by a DNS reverse lookup and/or the IP address, can also be
reported within parentheses as controlled by the ident* channel options. See the
discussion on the IDENT Lookups in the Messaging Server Reference for an instance of
the default identnone option, that selects display of both the name found from the DNS
and IP address.

Chapter 17
Managing MTA Message and Connection Logs

17-8

Enabling MTA Logging
To gather statistics for just a few particular MTA channels, enable the logging channel option
on just those MTA channels of interest. Many sites prefer to enable logging on all MTA
channels. In particular, if you are trying to track down problems, the first step in diagnosing
some problems is to notice that messages are not going to the channel you expected or
intended, and having logging enabled for all channels can help you investigate such problems.

To Enable MTA Logging on a Specific Channel

1. Run the msconfig edit channels command.

2. To enable logging for a particular channel, add the logging option to the channel definition.
For example:

channel-name option1 option2 logging

In addition, you can also set several configuration options such as directory path for log
files, log levels, and so on. See "Managing Message Store, Admin, and Default Service
Logs" for more information.

Note:

The message return job, which runs every night around midnight, appends any
existing mail.log_yesterday to the cumulative log file, mail.log, renames the
current mail.log_current file to mail.log_yesterday, and then begins a new
mail.log_currentfile. It also performs the analogous operations for any
connection.log* files. It is possible that mail.log_yesterday contains time
stamps which have already passed over rotation time.

To Enable MTA Logging on All Channels

1. Run the msconfig edit channels command.

2. Add the logging option to your defaults channel configuration file. For example:

defaults notices 1 2 4 7 copywarnpost copysendpost postheadonly noswitchchannel \
immnonurgent maxjobs 7 defaulthost example.org example.org logging

!
! delivery channel to local /var/mail store
l subdirs 20 viaaliasrequired maxjobs 7
mailhost.example.org

Specifying Additional MTA Logging Options
In addition to the basic information always provided when logging is enabled, you can specify
that additional, optional information fields be included by setting various LOG_* MTA options.

To Send MTA Logs to syslog

1. Enter the following command to set log_messages_syslog to 1:

msconfig set log_messages_syslog 1
To write MTA message log file entries to syslog, you must set the log_messages_syslog
option to a non-zero value. The absolute value of the non-zero value sets the syslog priority
and facility mask. Negative values disable the generation of the regular mail.log* entries.

Chapter 17
Managing MTA Message and Connection Logs

17-9

Positive values mean that the syslog entries are generated in addition to the regular mail.log*
entries. 0 is the default and means no syslog or event logging is performed.

Facility and priority numbers are located in the /usr/include/sys/syslog.h file.

To Control Formatting of Log Entries

1. Set the LOG_FORMAT option by running msconfig set log_format n where n
corresponds to one of the settings below

• 1 (default) the standard format.

• 2 requests non-null formatting: empty address fields are converted to the string "<>"

• 3 requests counted formatting: all variable length fields are preceded by N, where N is
a count of the number of characters in the field.

• 4 causes log entries to be written in an XML-compatible format. Entry log entry
appears as a single XML element containing multiple attributes and no sub-elements.
Three elements are currently defined, en for enqueue/dequeue entries, co for
connection entries, and he for header entries.

Enqueue/dequeue (en) elements can have the following attributes:

ts - time stamp (always present)
no - node name (present if LOG_NODE=1)
pi - process id (present if LOG_PROCESS=1)
sc - source channel (always present)
dc - destination channel (always present)
ac - action (always present)
sz - size (always present)
so - source address (always present)
od - original destination address (always present)
de - destination address (always present)
rf - recipient flags (present if LOG_NOTARY=1)
fi - filename (present if LOG_FILENAME=1)
ei - envelope id (present if LOG_ENVELOPE_ID=1)
mi - message id (present if LOG_MESSAGE_ID=1)
us - username (present if LOG_USERNAME=1)
ss - source system (present if bit 0 of LOG_CONNECTION
is set and source system information is available)
se - sensitivity (present if LOG_SENSITIVITY=1)
pr - priority (present if LOG_PRIORITY=1)
in - intermediate address (present if LOG_INTERMEDIATE=1)
ia - initial address (present if bit 0 of LOG_INTERMEDIATE
is set and intermediate address information is available)
fl - filter (present if LOG_FILTER=1 and filter information
is available)
re - reason (present if LOG_REASON=1 and reason string is set)
di - diagnostic (present if diagnostic info available)
tr - transport information (present if bit 5 of LOG_CONNECTION
is set and transport information is available)
ap - application information (present if bit 6 of LOG_CONNECTION
is set and application information is available)
qt - the number of seconds the message has spent in the queue (LOG_QUEUE_TIME=1)

Here is a sample en entry:

<en ts="2004-12-08T00:40:26.70" pi="0d3730.10.43" sc="tcp_local"
dc="l" ac="E" sz="12" so="info-E8944AE8D033CB92C2241E@whittlesong.com"
od="rfc822;ned+2Bcharsets@mauve.sun.com"
de="ned+charsets@mauve.sun.com" rf="22"
fi="/path/ZZ01LI4XPX0DTM00IKA8.00" ei="01LI4XPQR2EU00IKA8@mauve.sun.com"
mi="<11a3b401c4dd01$7c1c1ee0$1906fad0@elara>" us=""

Chapter 17
Managing MTA Message and Connection Logs

17-10

ss="elara.whittlesong.com ([208.250.6.25])"
in="ned+charsets@mauve.sun.com" ia="ietf-charsets@innosoft.com"
fl="spamfilter1:rvLiXh158xWdQKa9iJ0d7Q==, addheader, keep"/>

Note that this entry has been wrapped for clarity; actual log file entries always appear
on a single line. Connection (co) entries can have the following attributes:

ts - time stamp (always present, also used in en entries)
no - node name (present if LOG_NODE=1, also used in en entries)
pi - process id (present if LOG_PROCESS=1, also used in en entries)
sc - source channel (always present, also used in en entries)
dr - direction (always present)
ac - action (always present, also used in en entries)
tr - transport information (always present, also used in en entries)
ap - application information (always present, also used in en entries)
mi - message id (present only if message id info available,
also used in en entries)
us - username (present only if username information available, also
used in en entries)
di - diagnostic (present only if diagnostic information available,
also used in en entries)
ct - the length of the connection, in seconds. (LOG_QUEUE_TIME=1,
also used in en entries)

Here is a sample co entry:

<co ts="2004-12-08T00:38:28.41" pi="1074b3.61.281" sc="tcp_local" dr="+"
ac="O" tr="TCP|209.55.107.55|25|209.55.107.104|33469" ap="SMTP"/>

Header (he) entries have the following attributes:

ts - time stamp (always present, also used in en entries)
no - node name (present if LOG_NODE=1, also used in en entries)
pi - process id (present if LOG_PROCESS=1, also used in en entries)
va - header line value (always present)

Here is a sample he entry:

<he ts="2004-12-08T00:38:31.41" pi="1074b3.61.281" va="Subject: foo"/>
To Correlate Log Message Entries

• Set the LOG_MESSAGE_ID option to 1 by running msconfig set log_message_id 1.

A value of 0 is the default and indicates that message IDs are not saved in the mail.log*
files.

To Log Amount of Time Messages Have Spent in the Queue

• Set the LOG_QUEUE_TIME option to 1 by running msconfig set log_queue_time 1. This
option logs the amount of time messages spent in the queue. The queue time is logged as
an integer value in seconds. It appears immediately after the application information string
in non-XML format logs. The attribute name in XML formatted logs for this value is qt.

To Identify Message Delivery Retries

• Set the LOG_FILENAME option to 1 by running msconfig set log_filename 1 This option
makes it easier to immediately spot how many times the delivery of a particular message
file has been retried. This option can also be useful in understanding when the MTA does
or does not split a message to multiple recipients into separate message file copies on
disk.

To Log TCP/IP Connections

Chapter 17
Managing MTA Message and Connection Logs

17-11

• Set the LOG_CONNECTION option by running msconfig set log_connection 1 This
option causes the MTA to log TCP/IP connections, as well as message traffic. The
connection log entries are written to the mail.log* files by default. Optionally, the
connection log entries can be written to connection.log* files. See the
SEPARATE_CONNECTION_LOG option for more information.

To Write Entries to the connection.log File

• Set the SEPARATE_CONNECTION_LOG option to 1 by running msconfig set
separate_connection_log 1. Use this option to specify that connection log entries instead
be written to connection.log files. The default value of 0 causes the connection logging to
be stored in the MTA log files.

To Correlate Log Messages by Process ID

• Set the LOG_PROCESS option by running msconfig set log_process 1. When used in
conjunction with LOG_CONNECTION, this option enables correlation by process ID of
which connection entries correspond to which message entries.

To Save User Names Associated with a Process That Enqueues Mail to the mail.log File

• Set the LOG_USERNAME option by running msconfig set log_username 1. This option
controls whether or not the user name associated with a process that enqueues mail is
saved in the mail.log file. For SMTP submissions where SASL (SMTP AUTH) is used, the
user name field will be the authenticated user name (prefixed with an asterisk character).

MTA Message Logging Examples
The exact field format and list of fields logged in the MTA message files vary according to the
logging options set. This section shows a few examples of interpreting typical sorts of log
entries.

See "Specifying Additional MTA Logging Options" for a description of additional, optional fields.

Note:

For typographic reasons, log file entries will be shown folded onto multiple lines.
Actual log file entries are one line per entry.

When reviewing a log file, keep in mind that on a typical system many messages are being
handled at once. Typically, the entries relating to a particular message will be interspersed
among entries relating to other messages being processed during that same time. The basic
logging information is suitable for gathering a sense of the overall numbers of messages
moving through the MTA.

If you want to correlate particular entries relating to the same message to the same
recipient(s), enable LOG_MESSAGE_ID. To correlate particular messages with particular files
in the MTA queue area, or to see from the entries how many times a particular not-yet-
successfully-dequeued message has had delivery attempted, enable LOG_FILENAME. For
SMTP messages (handled via a TCP/IP channel), if you want to correlate TCP connections to
and from remote systems with the messages sent, enable LOG_PROCESS and some level of
LOG_CONNECTION.

MTA Logging Example: User Sends an Outgoing Message

The following example shows a basic example of the sort of log entries one might see if a local
user sends a message out an outgoing TCP/IP channel, for example, to the Internet. In this

Chapter 17
Managing MTA Message and Connection Logs

17-12

example, LOG_CONNECTION is enabled. The lines marked with (1) and (2) are one entry---
they would appear on one physical line in an actual log file. Similarly, the lines marked with (3)
- (7) are one entry and would appear on one physical line.

Example MTA Logging: A Local User Sends An Outgoing Message

16-Feb-2007 15:41:32.36 tcp_intranet tcp_local EE 1 (1)
adam@example.com rfc822;marlowe@example.org marlowe@example.org (2)
example.org (example.org [192.160.253.66])

16-Feb-2007 15:41:34.73 tcp_local DE 1 (3)
adam@example.com rfc822;marlowe@example.org marlowe@example.org (4)
thor.example.org dns;thor.example.org

(TCP|206.184.139.12|2788|192.160.253.66|25) (5)

(thor.example.org ESMTP Sendmail ready Thu 15 Feb 2007 21:37:29 -0700 [MST]) (6)

smtp;250 2.1.5 <marlowe@example.org>... Receipt ok (7)

1. This line shows the date and time of an enqueue with ESMTP (EE) from the tcp_intranet
channel to the tcp_local channel of a one (1) block message.

2. This is part of the same physical line of the log file as (1), presented here as a separate
line for typographical convenience. It shows the envelope From: address, in this case
adam@example.com, and the original version and current version of the envelope To:
address, in this case marlowe@example.org.

3. This shows the date and time of a dequeue with ESMTP (DE) from the tcp_local channel
of a one (1) block message that is, a successful send by the tcp_local channel to some
remote SMTP server.

4. This shows the envelope From: address, the original envelope To: address, and the
current form of the envelope To: address.

5. This shows that the actual system to which the connection was made is named
thor.example.org in the DNS, that the local sending system has IP address
206.184.139.12 and is sending from port 2788, that the remote destination system has IP
address 192.160.253.66 and the connection port on the remote destination system is port
25.

6. This shows the SMTP banner line of the remote SMTP server.

7. This shows the SMTP status code returned for this address; 250 is the basic SMTP
success code and in addition, this remote SMTP server responds with extended SMTP
status codes and some additional text.

MTA Logging Example: Including Optional Logging Fields

This example shows a logging entry similar to that shown in "Example MTA Logging: Sending
to a List" with LOG_FILENAME=1 and LOG_MESSAGE_ID=1 showing the file name (1 and 3
below) and message ID (2 and 4 below). The message ID in particular can be used to correlate
which entries relate to which message.

Example MTA Logging: Including Optional Logging Fields

16-Feb-2007 15:41:32.36 tcp_intranet tcp_local EE 1
adam@example.com rfc822;marlowe@example.org marlowe@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/002/ZZf0r4i0Wdy51.01 (1)
<0JDJ00D02IBWDX00@example.com> (2)
example.org (example.org [192.160.253.66])

16-Feb-2007 15:41:34.73 tcp_local DE 1

Chapter 17
Managing MTA Message and Connection Logs

17-13

adam@example.com rfc822;marlowe@example.org marlowe@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/002/ZZf0r4i0Wdy51.01 (3)
<0JDJ00D02IBWDX00@example.com> (4)
thor.example.org dns;thor.example.org
(TCP|206.184.139.12|2788|192.160.253.66|25)
(thor.example.org ESMTP Sendmail ready at Thu, 15 Feb 2007 21:37:29 -0700 [MST])
smtp;250 2.1.5 <marlowe@sexample.org>... Recipient ok

MTA Logging Example: Sending to a List

This example illustrates sending to multiple recipients with LOG_FILENAME=1,
LOG_MESSAGE_ID=1, and LOG_CONNECTION=1 enabled. Here user adam@example.com
has sent to the MTA mailing list test-list@example.com, which expanded to
bob@example.com, carol@example.org, and david@example.org. Note that the original
envelope To: address is test-list@example.com for each recipient, though the current
envelope To: address is each respective address. Note how the message ID is the same
throughout, though two separate files (one for the l channel and one going out the tcp_local
channel) are involved.

Example MTA Logging: Sending to a List

20-Feb-2007 14:00:16.46 tcp_local tcp_local EE 1
adam@example.com rfc822;test-list@example.com carol@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0r2D0yuej4.01
<0JDQ00706R0FX100@example.com>
example.org (example.org [192.160.253.66])

20-Feb-2007 14:00:16.47 tcp_local tcp_local EE 1
adam@example.com rfc822;test-list@example.com david@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0r2D0yuej4.01
<0JDQ00706R0FX100@example.com>
example.org (example.org [192.160.253.66])

20-Feb-2007 14:00:16.48 tcp_local ims-ms EE 1
adam@example.com rfc822;test-list@example.com bob@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/008/ZZf0r2D0yuej6.01
<0JDQ00706R0FX100@example.com>
example.org (example.org [192.160.253.66])

20-Feb-2007 14:00:16.68 ims-ms D 1
adam@example.com rfc822;test-list@example.com bob@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/008/ZZf0r2D0yuej6.01
<0JDQ00706R0FX100@example.com>

20-Feb-2007 14:00:17.73 tcp_local DE 1
adam@example.com rfc822;test-list@example.com carol@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0r2D0yuej4.01
<0JDQ00706R0FX100@example.com>
gw.example.org dns;gw.example.org (TCP|206.184.139.12|2788|192.160.253.66|25)
(gw.example.org -- SMTP Sendmail)
smtp;250 2.1.5 <carol@example.org >... Recipient ok

20-Feb-2007 14:00:17.75 tcp_local DE 1
adam@example.com rfc822;test-list@example.com david@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0r2D0yuej4.01
<0JDQ00706R0FX100@example.com>
gw.example.org dns;gw.example.org (TCP|206.184.139.12|2788|192.160.253.66|25)
(gw.example.org -- SMTP Sendmail)
smtp;250 2.1.5 <david@example.org>... Recipient ok

MTA Logging Example: Sending to a Nonexistent Domain

Chapter 17
Managing MTA Message and Connection Logs

17-14

This example illustrates an attempt to send to a nonexistent domain (here very.bogus.com);
that is, sending to a domain name that is not noticed as nonexistent by the MTA's rewrite rules
and that the MTA matches to an outgoing TCP/IP channel. This example assumes the MTA
option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1.

When the TCP/IP channel runs and checks for the domain name in the DNS, the DNS returns
an error that no such name exists. Note the "rejection" entry (R), as seen in (5), with the DNS
returning an error that this is not a legal domain name, as seen in (6).

Because the address is rejected after the message has been submitted, the MTA generates a
bounce message to the original sender. The MTA enqueues the new rejection message to the
original sender (1), and sends a copy to the postmaster (4) before deleting the original
outbound message (the R entry shown in (5)).

Notification messages, such as bounce messages, have an empty envelope From: address--
as seen, for instance, in (2) and (8)--in which the envelope From: field is shown as an empty
space. The initial enqueue of a bounce message generated by the MTA shows the message ID
for the new notification message followed by the message ID for the original message (3).
(Such information is not always available to the MTA, but when it is available to be logged, it
allows correlation of the log entries corresponding to the outbound failed message with the log
entries corresponding to the resulting notification message.) Such notification messages are
enqueued to the process channel, which in turn enqueues them to an appropriate destination
channel (7).

Example MTA Logging: Sending to a Nonexistent Domain

20-Feb-2007 14:17:07.77 tcp_intranet tcp_local E 1
adam@example.com rfc822;user@very.bogus.com user@very.bogus.com
/opt/sun/comms/messaging64/data/queue/tcp_local/008/ZZf0r2D0CVaL0.00
<0JDQ00903RS89T00@example.com>
example.org (example.org [192.160.253.66])

20-Feb-2007 14:17:08.24 tcp_local process E 1 (1)
rfc822;adam@example.com adam@example.com (2)
/opt/sun/comms/messaging64/data/queue/process/ZZf0r2D0CVbR0.00
<0JDQ00904RSK9Z00@example.com>,<0JDQ00903RS89T00@example.com> (3)
tcp-daemon.mailhost.example.com

20-Feb-2007 14:17:08.46 tcp_local process E 1 (4)
rfc822;postmaster@example.com postmaster@example.com
/opt/sun/comms/messaging64/data/queue/process/ZZf0r2D0CVbR1.00
<0JDQ00906RSK9Z00@example.com>,<0JDQ00903RS89T00@example.com>
tcp-daemon.mailhost.example.com

20-Feb-2007 14:17:08.46 tcp_local R 1 (5)
adam@example.com rfc822;user@very.bogus.com user@very.bogus.com
/opt/sun/comms/messaging64/data/queue/tcp_local/008/ZZf0r2D0CVaL0.00
<0JDQ00903RS89T00@example.com>
Illegal host/domain name found (6)
(TCP active open: Failed gethostbyname() on very.bogus.com, resolver errno = 1)

20-Feb-2007 14:17:09.21 process ims-ms E 3 (7)
rfc822;adam@example.com adam@ims-ms-daemon (8)
/opt/sun/comms/messaging64/data/queue/ims-ms/018/ZZf0r2D0CVbS1.00
<0JDQ00904RSK9Z00@example.com>
process-daemon.mailhost.example.com

20-Feb-2007 14:17:09.72 process ims-ms E 3
rfc822;postmaster@example.com postmaster@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/014/ZZf0r2D0CVbS2.00
<0JDQ00906RSK9Z00@example.com>

Chapter 17
Managing MTA Message and Connection Logs

17-15

process-daemon.mailhost.example.com

20-Feb-2007 14:17:09.73 ims-ms D 3
rfc822;adam@example.com adam@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/018/ZZf0r2D0CVbS1.00
<0JDQ00904RSK9Z00@example.com>

20-Feb-2007 14:17:09.84 ims-ms D 3
rfc822;postmaster@example.com postmaster@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/014/ZZf0r2D0CVbS2.00
<0JDQ00906RSK9Z00@example.com>

MTA Logging Example: Sending to a Nonexistent Remote User

This example illustrates an attempt to send to a bad address on a remote system. This
example assumes MTA option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1,
and channel option settings of LOG_BANNER=1 and LOG_TRANSPORTINFO=1. Note the
rejection entry (R), seen in (1). But in contrast to the rejection entry in "Example MTA Logging:
Sending to a Nonexistent Domain", note that the rejection entry here shows that a connection
to a remote system was made, and shows the SMTP error code issued by the remote SMTP
server, (2) and (3). The inclusion of the information shown in (2) is due to setting the channel
options LOG_BANNER=1 and LOG_TRANSPORTINFO=1.

Example MTA Logging: Sending to a Nonexistent Remote User

26-Feb-2007 13:56:35.16 tcp_intranet tcp_local EE 1
adam@example.com rfc822;nonesuch@example.org nonesuch@example.org
/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s690a3mf2.01
<0JE100J08UU24H00@example.com>
example.org (example.org [192.160.253.66])

26-Feb-2007 13:56:35.19 tcp_local process E 1
rfc822;adam@example.com adam@example.com
/opt/sun/comms/messaging64/data/queue/process/ZZf0s690a3ml2.00
<0JE100J09UUB4N00@example.com>,<0JE100J08UU24H00@example.com>
tcp-daemon.mailhost.example.com

26-Feb-2007 13:56:35.20 tcp_local process E 1
rfc822;postmaster@example.com postmaster@example.com
/opt/sun/comms/messaging64/data/queue/process/ZZf0s690a3ml3.00
<0JE100J0BUUB4N00@example.com>,<0JE100J08UU24H00@example.com>
tcp-daemon.mailhost.example.com

26-Feb-2007 13:56:35.20 tcp_local RE 1 (1)
adam@example.com rfc822;nonesuch@example.org nonesuch@example.org

/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s690a3mf2.01
<0JE100J08UU24H00@example.com>
thor.example.org dns;thor.example.org
(TCP|206.184.139.12|2788|192.160.253.66|25) (2)
(thor.example.org -- Server ESMTP [Sun Java System Messaging
Server 6.2-8.01 [built Feb 16 2007]])
smtp;550 5.1.1 unknown or illegal alias: nonesuch@example.org (3)

26-Feb-2007 13:56:35.62 process ims-ms E 4
rfc822;adam@example.com adam@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/003/ZZf0s690a3mm5.00
<0JE100J09UUB4N00@example.com>
process-daemon.mailhost.example.com

26-Feb-2007 13:56:36.07 process ims-ms E 4
rfc822;postmaster@example.com postmaster@ims-ms-daemon

Chapter 17
Managing MTA Message and Connection Logs

17-16

/opt/sun/comms/messaging64/data/queue/ims-ms/016/ZZf0s690a3nm7.01
<0JE100J0BUUB4N00@example.com>
process-daemon.mailhost.example.com

26-Feb-2007 13:56:35.83 ims-ms D 4
rfc822;adam@example.com adam@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/003/ZZf0s690a3mm5.00
<0JE100J09UUB4N00@example.com>

26-Feb-2007 13:56:36.08 ims-ms D 4
rfc822;postmaster@example.com postmaster@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/016/ZZf0s690a3nm7.01
<0JE100J0BUUB4N00@example.com>

MTA Logging Example: Rejecting a Remote Side's Attempt to Submit a Message

This example illustrates the sort of log file entry resulting when the MTA rejects a remote side's
attempt to submit a message. (This example assumes that no optional LOG_* options are
enabled, so only the basic fields are logged in the entry. Note that enabling the
LOG_CONNECTION option, in particular, would result in additional informative fields in such J
entries.) In this case, the example is for an MTA that has set up SMTP relay blocking with an
ORIG_SEND_ACCESS mapping, including:

ORIG_SEND_ACCESS

! ...numerous entries omitted...
!
tcp_local|*|tcp_local|* $NRelaying$ not$ permitted

and where alan@very.bogus.com is not an internal address. Hence the attempt of the remote
user harold@example.org to relay through the MTA system to the remote user
alan@very.bogus.com is rejected.

Example MTA Logging: Rejecting a Remote Side's Attempt to Submit a Message

26-Feb-2007 14:10:06.89 tcp_local JE 0 (1)
harold@example.org rfc822; alan@very.bogus.com (2)
530 5.7.1 Relaying not allowed: alan@very.bogus.com (3)

1. This log shows the date and time the MTA rejects a remote side's attempt to submit a
message. The rejection is indicated by a J record. (Cases where an MTA channel is
attempting to send a message which is rejected is indicated by R records, as shown in
"Example MTA Logging: Sending to a Nonexistent Domain" and "MTA Logging Example:
Sending to a Nonexistent Remote User").

Note:

The last J record written to the log will have an indication stating that it is the last
for a given session. Also, the current version of Messaging Server does not place
a limit on the number of J records.

2. The attempted envelope From: and To: addresses are shown. In this case, no original
envelope To: information was available so that field is empty.

3. The entry includes the SMTP error message the MTA issued to the remote (attempted
sender) side.

MTA Logging Example: Multiple Delivery Attempts

Chapter 17
Managing MTA Message and Connection Logs

17-17

This example illustrates the sort of log file entries resulting when a message cannot be
delivered upon the first attempt, so the MTA attempts to send the message several times. This
example assumes option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1.

Example MTA Logging: Multiple Delivery Attempts

26-Feb-2007 14:38:16.27 tcp_intranet tcp_local EE 1 (1)
adam@example.com rfc822;user@some.org user@some.org
/opt/sun/comms/messaging64/data/queue/tcp_local/001/ZZf0s690kN_y0.00
<0JE100L05WRJIC00@example.com>

26-Feb-2007 14:38:16.70 tcp_local Q 1 (2)
adam@example.com rfc822;user@some.org user@some.org
/opt/sun/comms/messaging64/data/queue/tcp_local/001/ZZf0s690kN_y0.00 (3)
<0JE100L05WRJIC00@example.com>
TCP active open: Failed connect() 192.1.1.1:25 Error: no route to host (4)

...several hours worth of entries...

26-Feb-2007 16:58:11.20 tcp_local Q 1 (5)
adam@example.com rfc822;user@some.org user@some.org
/opt/sun/comms/messaging64/data/queue/tcp_local/001/ZYf0s690kN_y0.01 (6)
<0JE100L05WRJIC00@example.com>
TCP active open: Failed connect() 192.1.1.1:25 Error: no route to host

...several hours worth of entries...

26-Feb-2007 19:15:12.11 tcp_local Q 1
adam@example.com rfc822;user@some.org user@some.org
/opt/sun/comms/messaging64/data/queue/tcp_local/001/ZXf0s690kN_y0.00 (7)
<0JE100L05WRJIC00@example.com>
TCP active open: Failed connect() 192.1.1.1:25 Error: Connection refused (8)

...several hours worth of entries...

26-Feb-2007 22:41:12.63 tcp_local DE 1 (9)
adam@example.com rfc822;user@some.org user@some.org
/opt/sun/comms/messaging64/data/queue/tcp_local/001/ZXf0s690kN_y0.00
<0JE100L05WRJIC00@example.com>
host.some.org dns;host.some.org (TCP|206.184.139.12|2788|192.1.1.1|25)
(All set, fire away)
smtp;250 2.1.5 <user@some.org >... Recipient ok

1. The message comes in the tcp_internal channel---perhaps from a POP or IMAP client, or
perhaps from another host within the organization using the MTA as an SMTP relay; the
MTA enqueues it to the outgoing tcp_local channel.

2. The first delivery attempt fails, as indicated by the Q entry.

3. That this is a first delivery attempt can be seen from the ZZ* filename.

4. This delivery attempt failed when the TCP/IP package could not find a route to the remote
side. As opposed to "MTA Logging Example: Sending to a Nonexistent Domain", the DNS
did not object to the destination domain name, some.org; rather, the "no route to host"
error indicates that there is some network problem between the sending and receiving
side.

5. The next time the MTA periodic job runs it reattempts delivery, again unsuccessfully.

6. The file name is now ZY*, indicating that this is a second attempt.

7. The file name is ZX* for this third unsuccessful attempt.

Chapter 17
Managing MTA Message and Connection Logs

17-18

8. The next time the periodic job reattempts delivery the delivery fails, though this time the
TCP/IP package is not complaining that it cannot get through to the remote SMTP server,
but rather the remote SMTP server is not accepting connections. (Perhaps the remote side
fixed their network problem, but has not yet brought their SMTP server back up---or their
SMTP server is swamped handling other messages and hence was not accepting
connections at the moment the MTA tried to connect.)

9. Finally the message is dequeued.

MTA Logging Example: Incoming SMTP Message Routed Through the Conversion
Channel

This example illustrates the case of a message routed through the conversion channel. The
site is assumed to have a CONVERSIONS mapping table such as:

CONVERSIONS

IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT Yes

This example assumes option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1.

Example MTA Logging: Incoming SMTP Message Routed Through the Conversion
Channel

26-Feb-2007 15:31:04.17 tcp_local conversion EE 1 (1)
amy@example.edu rfc822;bert@example.com bert@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/conversion/ZZf0s090wFwx2.01
<0JE100206Z7J5F00@example.edu>

26-Feb-2007 15:31:04.73 conversion ims-ms E 1 (2)
amy@example.edu rfc822;bert@example.com bert@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/007/ZZf0s090wMwq1.00
<0JE100206Z7J5F00@example.edu>

26-Feb-2007 15:31:04.73 conversion D 1 (3)
amy@example.edu rfc822;bert@example.com bert@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/conversion/ZZf0s090wFwx2.01
<0JE100206Z7J5F00@example.edu>

26-Feb-2007 15:31:04.73 ims-ms D 1 (4)
amy@example.edu rfc822;bert@example.com bert@ims-ms-daemon
/opt/sun/comms/messaging64/data/queue/ims-ms/007/ZZf0s090wMwq1.00
<0JE100206Z7J5F00@example.edu>

1. The message from external user amy@example.edu comes in addressed to the ims-ms
channel recipient bert@example.com. The CONVERSIONS mapping entry, however,
causes the message to be initially enqueued to the conversion channel (rather than directly
to the ims-ms channel).

2. The conversion channel runs and enqueues the message to the ims-ms channel.

3. Then the conversion channel can dequeue the message (delete the old message file).

4. And finally the ims-ms channel dequeues (delivers) the message.

MTA Logging Example: Outbound Connection Logging

This example illustrates log output for an outgoing message when connection logging is
enabled, via LOG_CONNECTION=3. LOG_PROCESS=1, LOG_MESSAGE_ID=1 and
LOG_FILENAME=1 are also assumed in this example. The example shows the case of user
adam@example.com sending the same message (note that the message ID is the same for
each message copy) to three recipients, bobby@hosta.example.com,
carl@hosta.example.com, and dave@hostb.example.com. This example assumes that the

Chapter 17
Managing MTA Message and Connection Logs

17-19

message is going out a tcp_local channel marked (as such channels usually are) with the
single_sys channel option. Therefore, a separate message file on disk will be created for each
set of recipients to a separate host name, as seen in (1), (2), and (3), where the
bobby@hosta.example.com and carl@hosta.example.com recipients are stored in the
same message file, but the dave@hostb.example.com recipient is stored in a different
message file.

Example MTA Logging: Outbound Connection Logging

28-Feb-2007 09:13:19.18 409f.3.1 tcp_intranet tcp_local EE 1
adam@example.com rfc822;bobby@hosta.example.com bobby@hosta.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s4g0G2Zt0.00 (1)
<0JE500C0371HRJ00@example.com>
example.org (example.org [192.160.253.66])

28-Feb-2007 09:13:19.18 409f.3.1 tcp_intranet tcp_local EE 1
adam@example.com rfc822;carl@hosta.example.com carl@hosta.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s4g0G2Zt0.00 (2)
<0JE500C0371HRJ00@example.com>
example.org (example.org [192.160.253.66])

28-Feb-2007 09:13:19.19 409f.3.2 tcp_intranet tcp_local EE 1
adam@example.com rfc822;dave@hostb.example.com dave@hostb.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0s4g0G2Zt1.00 (3)
<0JE500C0371HRJ00@example.com>
example.org (example.org [192.160.253.66])

28-Feb-2007 09:13:19.87 40a5.2.0 tcp_local - O (4)
TCP|206.184.139.12|5900|206.184.139.66|25
SMTP/hostb.example.com/mailhub.example.com (5)

28-Feb-2007 09:13:20.23 40a5.3.4 tcp_local - O (6)
TCP|206.184.139.12|5901|206.184.139.70|25
SMTP/hosta.example.com/hosta.example.com (7)

28-Feb-2007 09:13:20.50 40a5.2.5 tcp_local DE 1
adam@example.com rfc822;bobby@hosta.example.com bobby@hosta.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s4g0G2Zt0.00
<0JE500C0371HRJ00@example.com>
hosta.example.com dns;hosta.example.com (8)
(TCP|206.184.139.12|5901|206.184.139.70|25)
(hosta.example.com -- Server ESMTP [Sun Java System Messaging Server
6.2-8.01 [built Feb 16 2007]])
smtp;250 2.1.5 bobby@hosta.example.com and options OK.

28-Feb-2007 09:13:20.50 40a5.2.5 tcp_local DE 1
adam@example.com rfc822;carl@hosta.example.com carl@hosta.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/000/ZZf0s4g0G2Zt0.00
<0JE500C0371HRJ00@example.com>
hosta.example.com dns;hosta.example.com
(TCP|206.184.139.12|5901|206.184.139.70|25)
(hosta.example.com -- Server ESMTP [Sun Java System Messaging Server
6.2-8.01 [built Feb 16 2007]])
smtp;250 2.1.5 carl@hosta.example.com and options OK.

28-Feb-2007 09:13:20.50 40a5.2.6 tcp_local - C (9)
TCP|206.184.139.12|5901|206.184.139.70|25
SMTP/hosta.example.com/hosta.example.com

28-Feb-2007 09:13:21.13 40a5.3.7 tcp_local DE 1
adam@example.com rfc822;dave@hostb.example.com dave@hostb.example.com
/opt/sun/comms/messaging64/data/queue/tcp_local/004/ZZf0s4g0G2Zt1.00

Chapter 17
Managing MTA Message and Connection Logs

17-20

<0JE500C0371HRJ00@example.com>
mailhub.example.com dns;mailhub.example.com
(TCP|206.184.139.12|5900|206.184.139.66|25)
(mailhub.example.com ESMTP Sendmail ready at Tue, 27 Feb 2007 22:19:40 GMT)
smtp;250 2.1.5 <dave@hostb.example.com>... Recipient ok

28-Feb-2007 09:13:21.33 40a5.3.8 tcp_local - C (10)
TCP|206.184.139.12|5900|206.184.139.66|25
SMTP/hostb.example.com/mailhub.example.com

1. The message is enqueued to the first recipient...

2.and to the second recipient...

3.and to the third recipient.

4. Having LOG_CONNECTION=3 set causes the MTA to write this entry. The minus, -,
indicates that this entry refers to an outgoing connection. The O means that this entry
corresponds to the opening of the connection. Also note that the process ID here is the
same, 40a5, since the same process is used for the multithreaded TCP/IP channel for
these separate connection opens, though this open is being performed by thread 2 vs.
thread 3.

5. As there are two separate remote systems to which to connect, the multithreaded SMTP
client in separate threads opens up a connection to each---the first in this entry, and the
second shown in 7. This part of the entry shows the sending and destination IP numbers
and port numbers, and shows both the initial host name, and the host name found by doing
a DNS lookup. In the SMTP/initial-host/dns-host clauses, note the display of both the initial
host name, and that used after performing a DNS MX record lookup on the initial host
name: mailhub.example.com is apparently an MX server for hostb.example.com.

6. The multithreaded SMTP client opens up a connection to the second system in a separate
thread (though the same process).

7. As there are two separate remote systems to which to connect, the multithreaded SMTP
client in separate threads opens up a connection to each---the second in this entry, and the
first shown above in 5. This part of the entry shows the sending and destination IP
numbers and port numbers, and shows both the initial host name, and the host name
found by doing a DNS lookup. In this example, the system hosta.example.com apparently
receives mail directly itself.

8. Besides resulting in specific connection entries, LOG_CONNECTION=3 also causes
inclusion of connection related information in the regular message entries, as seen here for
instance.

9. Having LOG_CONNECTION=3 causes the MTA to write this entry. After any messages
are dequeued, (the bobby and carl messages in this example), the connection is closed, as
indicated by the C in this entry.

10. The connection mailhub.example.com is closed now that the delivery of the message
(dave in this example) is complete.

MTA Logging Example: Inbound Connection Logging

This example illustrates log output for an incoming SMTP message when connection logging is
enabled, via LOG_CONNECTION=3.

Example MTA Logging: Inbound Connection Logging

28-Feb-2007 11:50:59.10 tcp_local + O (1)
TCP|206.184.139.12|25|192.160.253.66|1244 SMTP (2)

28-Feb-2007 11:51:15.12 tcp_local ims-ms EE 1
service@example.org rfc822;adam@example.com adam@ims-ms-daemon

Chapter 17
Managing MTA Message and Connection Logs

17-21

THOR.EXAMPLE.ORG (THOR.EXAMPLE.ORG [192.160.253.66]) (3)

28-Feb-2007 11:51:15.32 ims-ms D 1
service@example.org rfc822;adam@example.com adam@ims-ms-daemon

28-Feb-2007 11:51:15.66 tcp_local + C (4)
TCP|206.184.139.12|25|192.160.253.66|1244 SMTP

1. The remote system opens a connection. The O character indicates that this entry regards
the opening of a connection; the + character indicates that this entry regards an incoming
connection.

2. The IP numbers and ports for the connection are shown. In this entry, the receiving system
(the system making the log file entry) has IP address 206.184.139.12 and the connection is
being made to port 25; the sending system has IP address 192.160.253.66 and is sending
from port 1244.

3. In the entry for the enqueue of the message from the incoming TCP/IP channel (tcp_local)
to the ims-ms channel recipient, note that information beyond the default is included since
LOG_CONNECTION=3 is enabled. Specifically, the name that the sending system claimed
on its HELO or EHLO line, the sending system's name as found by a DNS reverse lookup
on the connection IP number, and the sending system's IP address are all logged.

4. The inbound connection is closed. The C character indicates that this entry regards the
closing of a connection; the + character indicates that this entry regards an incoming
connection.

Enabling Dispatcher Debugging
Dispatcher error and debugging output (if enabled) are written to the file dispatcher.log in the
MTA log directory. A default dispatcher configuration is created at installation time and can be
used without any changes made. However, if you want to modify the default configuration for
security or performance reasons, you can do so by running the msconfig command.

Table 17-5 describes the dispatcher debugging bits.

Table 17-5 Dispatcher Debugging Bits

Bit Hexadecimal value Decimal value Usage

0 x 00001 1 Startup, initialization, shutdown message

1 x 00002 2 Thread increment/decrement messages

2 x 00004 4 Configuration loading messages

3 x 00008 8 Process creation messages

4 x 00010 16 Process activity messages

5 x 00020 32 PORT_ACCESS mapping, connection messages

6 x 00040 64 Process calculation messages

7 x 00080 128 Process shutdown messages

8 x 00100 256 Socket listen, cookie messages

9 x 00200 512 Dispatcher internal I/O messages

10 x 00400 1024 Dispatcher internal read messages

11 x 00800 2048 Not used

12 x 01000 4096 Process management messages

Chapter 17
Managing MTA Message and Connection Logs

17-22

Table 17-5 (Cont.) Dispatcher Debugging Bits

Bit Hexadecimal value Decimal value Usage

13 x 02000 8192 Process handoff messages

14 x 04000 16384 Dispatcher message processing messages

15 x 08000 32768 Not used.

16 x 10000 65536 Successful connection message

17 x 20000 131072 Connection accept, TLS messages

18 x40000 262144 Not used

19 x80000 524288 Not used

20 x 100000 1048576 Statistics messages

21 x 200000 2097152 Extra statistics debugging.

22 x400000 4194304 Not used

23 x800000 8388608 Not used

24 x 1000000 16777216 Connection rejection message (subset of bits 4 and 5)

To Enable Dispatcher Error Debugging Output

1. Run the msconfig set dispatcher.debug -1 (see "Restricted Options"). You can also set
the logical or environmental variable IMTA_DISPATCHER_DEBUG (UNIX), which defines
a 32-bit debug mask in hexadecimal, to the value FFFFFFFF. The preceding table
describes the meaning of each bit.

To Set Dispatcher options (Oracle Solaris)

The dispatcher services offered in the dispatcher configuration affect requirements for various
system options. The system's heap size (datasize) must be enough to accommodate the
dispatcher's thread stack usage.

1. To display the heap size (that is, default datasize), use one of the following: The csh
command:

limit

The ksh command:

ulimit -a

The Solaris utility:

sysdef
2. For each dispatcher service compute STACKSIZE*MAX_CONNS, and then add up the

values computed for each service. The system's heap size needs to be at least twice this
number.

Note:

Refer to the Monitoring the MTA chapter in the Messaging Server Reference for
updated options and log format information.

Chapter 17
Managing MTA Message and Connection Logs

17-23

Managing Message Store, Admin, and Default Service Logs
This section describes logging for the Message Store (POP, IMAP, and HTTP), Admin, and
Default services. (See Table 17-1 for more information.)

For these services, you specify log settings and to view logs. The settings you specify affect
which and how many events are logged. You can use those settings and other characteristics
to refine searches for logged events when you are analyzing log files.

msconfig Logging Options
To control the location of log files, use the options described in Table 17-6 for specifying
directory paths.

Note:

The location of MTA log files, which are in the DataRoot/log directory, cannot be
modified, but you can change the log subdirectory to symbolically link to another
location. To separate the MTA logs from the rest of the log files, use msconfig
options to specify non-default locations for non-MTA log files.

Table 17-6 msconfig Directory Paths for Log Files

Option Description

*.logfile.logdir
base.logfile.logdir
dispatcher.logfile.logdir
ens.logfile.logdir
http.logfile.logdir
imap.logfile.logdir
imapproxy.logfile.logdir
mta.logfile.logdir
job_controller.logfile.logdir
metermaid.logfile.logdir
mmp.logfile.logdir
msadmin.logfile.logdir
messagetrace.logfile.logdir
pop.logfile.logdir
popproxy.logfile.logdir
snmp.logfile.logdir
submitproxy.logfile.logdir
tcp_lmtp_server.logfile.logdir

Directory path for log files. If this is not specified, log files will
be placed in the DataRoot/log directory. For the MTA, this
option is only used by Message Store insertion tasks
Directory path to the imta log file used for Message Store
insertion (ims_master, LMTP). It is not used by other parts of
the MTA which always log to the default location. The default
location is DataRoot/log. Changing that path to a soft-link is
supported. (Restart of all services required).

Syntax: dirpath

Understanding Service Log Characteristics
This section describes the following log characteristics for the message store and
administration services: logging levels, categories of logged events, filename conventions for
logs, and log-file directories.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-24

Logging Levels

The level, or priority, of logging defines how detailed, or verbose, the logging activity is to be. A
higher priority level means less detail; it means that only events of high priority (high severity)
are logged. A lower level means greater detail; it means that more events are recorded in the
log file.

You can set the logging level separately for each service---POP, IMAP, HTTP, Admin, and
Default by setting the service.logfile.loglevel configuration option (see "Defining and Setting
Service Logging Options"). You can also use logging levels to filter searches for log events.
Table 17-7 describes the available levels. These logging levels are a subset of those defined
by the UNIX syslog facility.

Table 17-7 Logging Levels for Store and Administration Services

Level Description

Critical The minimum logging detail. An event is written to the log whenever a severe
problem or critical condition occurs---such as when the server cannot access a
mailbox or a library needed for it to run.

Error An event is written to the log whenever an error condition occurs---such as when a
connection attempt to a client or another server fails.

Warning An event is written to the log whenever a warning condition occurs---such as when
the server cannot understand a communication sent to it by a client.

Notice An event is written to the log whenever a notice (a normal but significant condition)
occurs---such as when a user login fails or when a session closes. This is the
default log level.

Information An event is written to the log with every significant action that takes place---such as
when a user successfully logs on or off or creates or renames a mailbox.

Debug The most verbose logging. Useful only for debugging purposes. Events are written
to the log at individual steps within each process or task, to pinpoint problems.

When you select a particular logging level, events corresponding to that level and to all higher
(less verbose) levels are logged. The default level of logging is Notice.

Note:

The more verbose the logging you specify, the more disk space your log files will
occupy; See "Defining and Setting Service Logging Options" for guidelines.

Categories of Logged Events

Within each supported service or protocol, Messaging Server further categorizes logged
events by the facility, or functional area, in which they occur. Every logged event contains the
name of the facility that generated it. These categories aid in filtering events during searches.
Table 17-8 lists the categories that Messaging Server recognizes for logging purposes.

Table 17-8 Categories in Which Log Events Occur

Facility Description

General Undifferentiated actions related to this protocol or service

LDAP Actions related to Messaging Server accessing the LDAP directory database

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-25

Table 17-8 (Cont.) Categories in Which Log Events Occur

Facility Description

Network Actions related to network connections (socket errors fall into this category)

Account Actions related to user accounts (user logins fall into this category)

Protocol Protocol-level actions related to protocol-specific commands (errors returned by POP,
IMAP, or HTTP functions fall into this category)

Stats Actions related to the gathering of server statistics

Store Low-level actions related to accessing the message store (read/write errors fall into this
category)

See "Searching and Viewing Service Logs" for examples of using categories as filters in log
searches.

Service Log File Directories

Every logged service is assigned a single directory, in which its log files are stored. All IMAP
log files are stored together, as are all POP log files, and log files of any other service. You
define the location of each directory, and you also define how many log files of what maximum
size are permitted to exist in the directory.

Make sure that your storage capacity is sufficient for all your log files. Log data can be
voluminous, especially at lower (more verbose) logging levels.

It is important also to define your logging level, log rotation, log expiration, and server-backup
policies appropriately so that all of your log-file directories are backed up and none of them
become overloaded; otherwise, you may lose information. See "Defining and Setting Service
Logging Options" for more information.

Understanding Service Log File Format
All message store and administration service log files created by Messaging Server have
identical content formats. Log files are multiline text files, in which each line describes one
logged event. All event descriptions, for each of the supported services, have the general
format:

dateTime hostName processName[pid]: category logLevel: eventMessage

Store and Administration Log File Components

Table 17-9 lists the log file components for POP and IMAP. Note that this format of event
descriptions is identical to that defined by the UNIX syslog facility, except that the date/time
format is different and the format includes two additional components (category and logLevel).

Table 17-9 POP and IMAP Log File Formats

Component Definition

dateTime The date and time at which the event was logged, expressed in dd/mm/yyyy hh:mm:ss
format, with a time-zone field expressed as +/-hhmm from GMT. For example:02/Jan/
1999:13:08:21 -0700

hostName The name of the host machine on which the server is running: for example, showshoe.
Note: If there is more than one instance of Messaging Server on the host, you can use
the process ID (pid) to separate logged events of one instance from another.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-26

Table 17-9 (Cont.) POP and IMAP Log File Formats

Component Definition

processName The name of the process that generated the event: for example, cgi_store.

pid The process ID of the process that generated the event: for example, 18753.

category The category that the event belongs to: for example, General (see "Example MTA
Logging: Sending to a Nonexistent Remote User").

logLevel The level of logging that the event represents: for example, Notice (see "Example MTA
Logging: Sending to a Nonexistent Domain").

eventMessage An event-specific explanatory message that may be of any length: for example, Log
created (894305624).

Here are three examples of logged events:

02/May/1998:17:37:32 -0700 showshoe cgi_store[18753]: General Notice:
Log created (894155852)

04/May/1998:11:07:44 -0400 xyzmail cgi_service[343]: General Error:
function=getserverhello|port=2500|error=failed to connect

03/Dec/1998:06:54:32 +0200 ExamplePost imapd[232]: Account Notice: close [127.0.0.1]
[unauthenticated] 1998/12/3 6:54:32 0:00:00 0 115 0

IMAP and POP event entries may end with three numbers. The example above has 0 115 0.
The first number is bytes sent by client, the second number is the bytes sent by the server, and
third number is mailboxes selected (always 1 for POP).

When viewing a log file in the Log Viewer window, you can limit the events displayed by
searching for any specific component in an event, such as a specific logging level or category,
or a specific process ID. See "Searching and Viewing Service Logs" for more information.

The event message of each log entry is in a format specific to the type of event being logged,
that is, each service defines what content appears in any of its event messages. Many event
messages are simple and self-evident; others are more complex.

Defining and Setting Service Logging Options
You can define the message store and administration service logging configurations that best
serve your administration needs. This section discusses issues that may help you decide on
the best configurations and policies, and it explains how to implement them.

Flexible Logging Architecture

The naming scheme for log files (service.sequenceNum.timeStamp) helps you to design a
flexible log-rotation and backup policy. The fact that events for different services are written to
different files makes it easier for you to isolate problems quickly. Also, because the sequence
number in a filename is ever-increasing and the timestamp is always unique, later log files do
not simply overwrite earlier ones after a limited set of sequence numbers is exhausted.
Instead, older log files are overwritten or deleted only when the more flexible limits of age,
number of files, or total storage are reached.

Messaging Server supports automatic rotation of log files, which simplifies administration and
facilitates backups. You are not required to manually retire the current log file and create a new
one to hold subsequent logged events. You can back up all but the current log file in a directory
at any time, without stopping the server or manually notifying the server to start a new log file.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-27

In setting up your logging policies, you can set options (for each service) that control limits on
total log storage, maximum number of log files, individual file size, maximum file age, and rate
of log-file rotation.

Planning the Options You Want

Keep in mind that you must set several limits, more than one of which might cause the rotation
or deletion of a log file. Whichever limit is reached first is the controlling one. For example, if
your maximum log-file size is 3.5 MB, and you specify that a new log be created every day, you
may actually get log files created faster than one per day if log data builds up faster than 3.5
MB every 24 hours. Then, if your maximum number of log files is 10 and your maximum age is
8 days, you may never reach the age limit on log files because the faster log rotation may
mean that 10 files will have been created in less than 8 days.

The following default values, provided for Messaging Server administration logs, may be a
reasonable starting point for planning:

Maximum number of log files in a directory: 10

Maximum log-file size: 2 MB

Total maximum size permitted for all log files: 20 MB

Minimum free disk space permitted: 5 MB

Log rollover time: 1 day

Maximum age before expiration: 7 days

Level of logging: Notice

You can see that this configuration assumes that server-administration log data is predicted to
accumulate at about 2 MB per day, backups are weekly, and the total space allotted for storage
of admin logs is at least 25 MB. (These settings may be insufficient if the logging level is more
verbose.)

For POP, IMAP or HTTP logs, the same values might be a reasonable start. If all services have
approximately the same log-storage requirements as the defaults shown here, you might
expect to initially plan for about 150 MB of total log-storage capacity. (Note that this is meant
only as a general indication of storage requirements; your actual requirements may be
significantly different.)

Understanding Logging Options

You can set options that control the message store logging configuration by the command line.

The optimal settings for these options depend on the rate at which log data accumulates. It
may take between 4,000 and 10,000 log entries to occupy 1 MB of storage. At the more
verbose levels of logging (such as Notice), a moderately busy server may generate hundreds
of megabytes of log data per week. Here is one approach you can follow:

• Set a level of logging that is consistent with your storage limits---that is, a level that you
estimate will cause log-data accumulation at approximately the rate you used to estimate
the storage limit.

• Define the log file size so that searching performance is not impacted. Also, coordinate it
with your rotation schedule and your total storage limit. Given the rate at which log entries
accumulate, you might set a maximum that is slightly larger than what you expect to
accumulate by the time a rotation automatically occurs. And your maximum file size times
your maximum number of files might be roughly equivalent to your total storage limit. For
example, if your IMAP log rotation is daily, your expected accumulation of IMAP log data is
3 MB per day, and your total storage limit for IMAP logs is 25 MB, you might set a

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-28

maximum IMAP log-file size of 3.5 MB. (In this example, you could still lose some log data
if it accumulated so rapidly that all log files hit maximum size and the maximum number of
log files were reached.)

• If server backups are weekly and you rotate IMAP log files daily, you might specify a
maximum number of IMAP log files of about 10 (to account for faster rotation if the
individual log-size limit is exceeded), and a maximum age of 7 or 8 days.

• Pick a total storage limit that is within your hardware capacity and that coordinates with the
backup schedule you have planned for the server. Estimate the rate at which you
anticipate that log data will accumulate, add a factor of safety, and define your total storage
limit so that it is not exceeded over the period between server backups. For example, if you
expect to accumulate an average of 3 MB of IMAP log-file data per day, and server
backups are weekly, you might specify on the order of 25 - 30 MB as the storage limit for
IMAP logs (assuming that your disk storage capacity is sufficient).

• For safety, pick a minimum amount of free disk space that you will permit on the volume
that holds the log files. That way, if factors other than log-file size cause the volume to fill
up, old log files will be deleted before a failure occurs from attempting to write log data to a
full disk.

Searching and Viewing Service Logs
The log files provide the basic interface for viewing message store and administration log data.
For a given service, log files are listed in chronological order. Once you have chosen a log file
to search, you can narrow the search for individual events by specifying search options.

Search Options

These are useful search options you can specify for viewing log data:

• A time period. You can specify the beginning and end of a specific time period to retrieve
events from, or you can specify a number of days (before the present) to search. You
might typically specify a range to look at logged events leading up to a server crash or
other occurrence whose time you know of. Alternatively, you might specify a day range to
look at only today's events in the current log file.

• A level of logging. You can specify the logging level (see "Logging Levels" example, Critical
to see why the server went down, or Error to locate failed protocol calls.

• A facility. You can specify the facility (see "Categories of Logged Events" that contains the
problem; for example, Store if you believe a server crash involved a disk error, or Protocol
if the problem lies in an IMAP protocol command error.

• A text search pattern. You can provide a text search pattern to further narrow the search.
You can include any component of the event (see "Understanding Service Log File Format"
search, such as event time, process name, process ID, and any part of the event message
(such as remote host name, function name, error number, and so on) that you know
defines the event or events you want to retrieve. Your search pattern can include the
following special and wildcard characters:

* Any set of characters (example: *.com)

? Any single character (example: 199?)

[nnn] Any character in the set nnn (example: [aeiou])

[] Any character not in the set nnn (example: [Managing Logging^aeiou])

[] Any character in the range n-m (example: [A-Z])

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-29

[Managing Logging^n-m] Any character not in the range n-m (example: [Managing
Logging^0-9])

\ Escape character: place before *, ?, [, or] to use them as literals

Note:

Searches are case-sensitive.

Examples of combining logging level and facility in viewing logs might include the following:

• Specifying Account facility (and Notice level) to display failed logins, which may be useful
when investigating potential security breaches

• Specifying Network facility (and all logging levels) to investigate connection problems

• Specifying all facilities (and Critical logging level) to look for basic problems in the
functioning of the server

Working With Service Logs
This section describes how to work with service logs by using the msconfig command for
searching and viewing logs.

To Send Service Logs to syslog

1. Run the msconfig command with the syslogfacility option:

msconfig logfile.service.syslogfacilityvalue

where service is admin, pop, imap, mta, base or http and value is user, mail, daemon,
local0 to local7, or none.

Once the value is set, messages are logged to the syslog facility corresponding to the set
value and all the other log file service options are ignored. When the option is not set or the
value is none, logging uses the Messaging Server log files.

To Disable HTTP Logging

If your system does not support HTTP message access, that is, Webmail, you can disable
HTTP logging by setting the following variables. Do not set these variables if your system
requires Webmail support (for example, mshttpd).

1. Run the following msconfig commands:

msconfig
msconfig> set http.enable 0
msconfig set http.enablesslport 0
msconfig write

To Set the Server Log Level

1. Run the following msconfig command:

msconfig set service.logfile.loglevel loglevel

where service is admin, pop, imap, mta, base or http and loglevel is Nolog, Critical,
Error, Warning, Notice, Information, or Debug.

To Specify a Directory Path for Server Log Files

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-30

1. Run the following msconfig command:

msconfig service.logfile.logdir dirpath
To Specify a Maximum File Size for Each Service Log

1. Run the following msconfig command:

msconfig set service.logfile.maxlogfilesize size

where size specifies a number of bytes.

To Specify a Service Log Rotation Schedule

1. Run the following msconfig command:

msconfig set service.logfile.rollovertime number

where number specifies a number of seconds.

To Specify a Maximum Number of Service Log Files Per Directory

1. Run the following msconfig command:

msconfig service.logfile.maxlogsize number

where number specifies the maximum number of log files.

To Specify a Storage Limit

1. Run the following msconfig command:

msconfig service.logfile.maxlogsize number

where number specifies a number in bytes.

To Specify the Minimum Amount of Free Disk Space to Reserve

1. Run the following msconfig command:

msconfig service.logfile.minfreediskspace number

where number specifies a number in bytes.

To Specify an Age for Logs at Which They Expire

msconfig service.logfile.expirytime number

where number specifies a number in seconds.

Implementing and Configuring Message Store Transaction Logging
This section describes how to configure message store transaction logging.

Overview of Message Store Transaction Logging
You can use Message Store transaction logging to record Messaging Server user actions and
events, tracing messages similar to the way the MTA traces messages. Tracing messages in
this fashion allows you to track critical events of a message's life cycle.

Message Store transaction logging uses the same XML format used in the MTA mail.log* and
connection.log* files. This XML format is the default. It provides the same transaction
information previously logged in the process log at the notice and information log levels as
well as information in transactlog logging. It also includes IMAP and POP context numbers in

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-31

all IMAP and POP log messages. You do not set log levels for Message Store transaction logs.
You instead configure settings to determine which events and attributes to log. Message Store
transaction logging uses a log roll over daemon which rolls over all logs previously written
using nslogger. Message Store transaction logging provides a backward-compatibility mode
that behaves the way the previous store logging worked, combining process and action logging
together.

Message Store Transaction Logging Log Entries
For a list of message store transaction logging user actions and attributes, see Messaging
Server Reference.

An action log entry is an XML element with the following characteristics:

• The element tag is the two character action label, which follows XML syntax to start and
end: <tag ... />

• The element has many attributes defined previously, and each action has own attributes.

• The attribute starts with a two character attribute label, and its value is quoted.

• The following attributes are required for each action entry: timestamp (ts), service name
(sn), and process id (pi).

A typical log entry resembles the following:

<co ts="2016-11-04T16:05:39.71" sn="imapd" pi="7149" ac="C" tr="TCP|192.0.2.0|25|
192.0.2.1|33469" us="admin" nt="2015/2/9 13:43:52 0:01:02 158 1032 1"/>

where:

• co indicates the action label, which is connection closed.

• Three mandatory attributes, ts (time stamp), sn (service name), and pi (process id) are
present.

• The action specific attributes are us (user name) and ac (action flags).

Configuring Message Store Transaction Logging
Transaction logging configuration is applied globally to IMAP, POP, and delivery Message Store
components.

Enabling Message Store Transaction Logging

To trace transactions in the Message Store transaction log, you configure message tracing in
addition to the logging configuration.

To enable Message Store transaction logging, run the following command:

msconfig set messagetrace.activate transactlog

To show the configuration, run the following command:

msconfig show messagetrace.activaterole.messagetrace.activate = transactlog

Enabling Message Store Transaction Log Actions and Attributes

The syntax to enable store actions and attributes is a matrix that you configure separately
using actions and action attributes.

Table 17-10 shows the actions and their descriptions.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-32

Table 17-10 Message Store Transaction Log Actions

Action Description

all All actions are enabled. This is the default.

+({li|lo|ma|...}) Only actions in the list are enabled. Actions are separated by a space.

-({li|lo|ma|...}) All actions are enabled except those in the list. Actions are separated
by a space.

To enable all Message Store actions except for login and logout actions, run the following
command.

msconfig set imap.actions '-(li lo)'

Running the msconfig show imap.actions command shows the imap.actions settings.

msconfig show imap.actionsrole.imap.actions = -(li lo)

Table 17-11 shows the attributes and their descriptions.

Table 17-11 Message Store Attributes

Attributes Description

all All attributes are enabled. This is the default.

+({us|mi|ii|...}) Only attributes in the list are enabled. Attributes are separated by a
space.

-({us|mi|ii|...}) All attributes are enabled except those in the list. Attributes are
separated by a space.

To enable only the canonical user name and session ID attributes, run the following command.

msconfig set imap.actionattributes '+(us si)'

Running the msconfig show imap.actionattributes shows the imap.actionattributes
settings.

msconfig show imap.actionattributesrole.imap.actionattributes = +(us si)

Message Store Transaction Log Examples
The examples in this section use the following Messaging Store transaction logging settings:

msconfig show messagetrace
role.messagetrace.activate = transactlog

msconfig show imap.actions
role.imap.actions = all

msconfig show imap.actionattributes
role.imap.actionattributes = all

Example Message Store Transction Logs for IMAP

Example 1: Log in as Joe.

<li ts="2016-11-04T16:05:39.71" sn="imapd" pi="26435" us="joe" tr="tr="TCP|192.0.2.0|25|
192.0.2.1|33469" at="plaintext" cs="noSSL" si="0"/>

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-33

Example 2: Create mailbox Folder1 and Folder2.

<mc ts="2016-11-04T16:05:39.71" sn="imapd" pi="26435" us="joe" ma="Folder1"/><mc
ts="22016-11-04T16:05:39.98 -0700" sn="imapd" pi="26435" us="joe" ma="Folder2"/>

Example 3: Delete mailbox Folder1.

<md ts="2016-11-04T16:05:39.71" sn="imapd" pi="26435" us="joe" ma="Folder1"/>

Example 4: Append message to Folder2.

<ma ts="2016-11-04T16:05:39.71" sn="imapd" pi="27080" us="" ma="user/joe/Folder2"
sz="163" ui="1" uv="1406234045" cx="0"/>

Example 5: Expunge 2 messages in the Inbox.

<ex ts="2016-11-04T16:05:39.71" sn="imapd" pi="30247" ma="user/joe"
mi="0N8S00A0B007SS00@host.example.com" no="[127.0.0.1:52383]"/><ex
ts="2016-11-04T16:05:55.70" sn="imapd" pi="30247" ma="user/joe"
mi="0N8R00A06ZLSSS00@host.example.com" no="[127.0.0.1:52383]"/>

Example 6: Log out.

<co ts="2016-11-04T16:05:39.71" sn="imapd" pi="7149" ac="C" tr="tr="TCP|192.0.2.0|25|
192.0.2.1|33469" us="admin" nt="2015/2/9 13:43:52 0:01:02 158 1032 1"/>

Example 7: Connect to an email account.

<co ts="2016-11-04T16:05:39.71" sn="imapd" pi="27433" tr="tr="TCP|192.0.2.0|25|192.0.2.1|
33469" at="ssl"/>

Example 8: Select a folder.

<sl ts="2016-11-04T16:05:39.71" sn="imapd" pi="27433" tr="TCP|192.0.2.0|25|192.0.2.1|
33469" ma="user/admin" us="admin"/>

Example 9: Rename a folder.

imap command: A01 RENAME Folder1 Folder2<mr ts="2016-11-04T16:05:39.71" sn="imapd"
pi="27433" us="admin" ma="Folder2" om="Folder1"/>

Example 10: Subscribe to a folder.

imap command: A01 SUBSCRIBE INBOX<ms ts="2016-11-04T16:05:39.71" sn="imapd" pi="27433"
us="admin" ma="inbox"/>

Example 11: Unsubscribe from a folder.

imap command: A01 UNSUBSCRIBE INBOX<mu ts="2016-11-04T16:05:39.71" sn="imapd" pi="3613"
us="admin" ma="inbox"/>

Example 12: Set acl to a mailbox.

imap command: A01 SETACL folder1 david lrstwiead<ac ts="2016-11-04T16:05:39.71"
sn="imapd" pi="27433" us="admin" ma="user/admin/folder1" nt="admin lrstwiepkxancd :admin
lrstwiepkxancd David lrstwiead "/>

Example 13: Fetch rfc822.text.

imap command: A01 FETCH 1 RFC822.TEXT<fe ts="2016-11-04T16:05:39.71" sn="imapd"
pi="3613" us="admin" ma="user/admin" sz="-1:0" mi="<54C145D2.7010202@shenmail.com>"/>

Example 14: Change quota.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-34

imap command: A01 SETQUOTA user/admin/Folder1 (STORAGE 512)<qc
ts="2016-11-04T16:05:39.71" sn="imapd" pi="3613" us="admin" ur="user/admin/Folder1"
dq="512"/>

Example 15: Quota exceeds limit.

imquotacheck command: ./imquotacheck -n -l -r rulefile<qe ts="2016-11-04T16:05:39.71"
sn="imquotacheck" pi="26490" us="admin" dq="2" du="43" mq="0" mc="0" qt="90" qr="rule3"/>

See "imquotacheck" for more information on syntax and options.

Example Message Store Transaction Logs for POP

Example 1: Log in as Joe.

<li ts="2016-11-04T16:05:39.71" sn="popd" pi="27522" us="joe" "tr="TCP|192.0.2.0|25|
192.0.2.1|33469" at="plaintext" cs="noSSL" si="21"/>

Example 2: Fetch message.

<fe ts="2016-11-04T16:05:39.71" sn="popd" pi="27522" us="joe" om="user/joe"
mi="<0N8S00A0E09CSS00@host.example.com>"/>

Example 3: Delete message.

<ex ts="2016-11-04T16:05:39.71" sn="popd" pi="27522" ma="user/joe"
mi="<0N8S00A0E09CSS00@host.example.com>" no="sc11136733"/>

Example 4: Connect to an email account.

<co ts="02016-11-04T16:05:39.71" sn="popd" pi="27443" tr="TCP|192.0.2.0|25|192.0.2.1|
33469" at=""/>

Example Message Store Transaction Logs for Message Delivery

Example 1: Send five messages to Joe.

<ma ts="2016-11-04T16:05:39.71" sn="ims_master" pi="9236" us="" ma="user/joe"
sz="404652" mi="<0N9800L0UQWP9600@host.example.com>" ui="5" uv="1392927327" cx="0"/><ma
ts="2016-11-04T16:05:39.75" sn="ims_master" pi="9236" us="" ma="user/joe" sz="404652"
mi="<0N9800L0WQWP9600@host.example.com>" ui="6" uv="1392927327" cx="0"/><ma
ts="2016-11-04T16:05:40.01" sn="ims_master" pi="9236" us="" ma="user/joe" sz="404652"
mi="<0N9800L0YQWP9600@host.example.com>" ui="7" uv="1392927327" cx="0"/><ma
ts="2016-11-04T16:05:40.34" sn="ims_master" pi="9240" us="" ma="user/joe" sz="404652"
mi="<0N9800L10QWP9600@host.example.com>" ui="8" uv="1392927327" cx="0"/><ma
ts="2016-11-04T16:05:40.77" sn="ims_master" pi="9240" us="" ma="user/joe" sz="404652"
mi="<0N9800L12QWQ9600@host.example.com>" ui="9" uv="1392927327" cx="0"/>

Other Message Store Logging Features
Messaging Server provides a feature called telemetry that can capture a user's entire IMAP or
POP session into a file. This feature is useful for debugging client problems. For example, if a
user complains that their message access client is not working as expected, this feature can
be used to trace the interaction between the access client and Messaging Server. See
"Checking User IMAP/POP/Webmail Session by Using Telemetry" for more information.

Message Store Logging Examples
The exact field format and list of fields logged in the Message Store log files vary according to
the logging options set. This section shows a few examples of interpreting typical sorts of log
entries.

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-35

Message Store Logging Example: Bad Password

When a user types an invalid password, "authentication" failure is logged, as opposed to a
"user not found" message. The message "user not found" is the text passed to the client for
security reasons, but the real reason (invalid password) is logged.

Example Message Store Logging: Invalid Password

[31/Aug/2004:16:33:14 \-0700|] vadar imapd[13027]: Account Notice: badlogin:
[192.18.126.64:40718] plaintext user1 authentication failure

Message Store Logging Example: Account Disabled

The following example shows why a user cannot log in due to a disabled account.
Furthermore, the disabled account is clarified as "(inactive)" or "(hold)."

Example Message Store Logging: Account Disabled

[31/Aug/2004:16:33:14 \-0700|] vadar imapd[13027]: Account Notice: badlogin:
[192.18.126.64:40720] plaintext user3 account disabled (hold)

Message Store Logging Example: Message Appended

The following example shows an append message, which occurs when whenever a message
is appended to a folder. The Message Store log records all messages entering the Message
Store through the ims_master and lmtp channels. Records the "append" of user ID, folder,
message size, and message ID.

Example Message Store Logging: Append

[31/Aug/2004:16:33:14 \-0700|] vadar ims_master[13822]: Store
Information:append:user1:user/
user1:659:<Roam.SIMC.2.0.6.1093995286.11265.user1@vadar.example.org>

Message Store Logging Example: Message Retrieved by a Client

The Message Store log writes a "fetch" message when a client retrieves a message. The
Message Store log records all client fetches of at least one body part. Records the "fetch" of
user ID, folder, and message-ID.

Example Message Store Logging: Message Retrieved by a Client

[31/Aug/2004:16:33:14 \-0700|] vadar imapd[13729]: Store Information:
fetch:user1:user/user1:<Roam.SIMC.2.0.6.1093051161.3655.user1@vad.example.org>

Message Store Logging Example: Message Removed from a Folder

The following example shows how to remove a message from a folder.

The Message Store writes an "expunge" message when an IMAP or POP message is removed
from a folder (but not removed from the system). It is logged whether it is expunged by the
user or a utility. Records the "expunge" of folder and message ID.

Example Message Store Logging Example: Message Removed from a Folder

[31/Aug/2004:16:33:14 \-0700|] vadar imexpire[13923]: Store Information:
expunge:user/user1:<Roam.SIMC.2.0.6.1090458838.2929.user1@vadar.example.org>

Example Message Store Logging: Login

[31/Aug/2004:16:33:14 \-0700|] vadar imapd[13027]: Account Information: login
[192.18.126.64:40718] user1 plaintext

Chapter 17
Managing Message Store, Admin, and Default Service Logs

17-36

Using Message Store Log Messages
For more information about message store log messages, refer to the following topics:

• Overview of Logging: Provides an introduction to Messaging Server logging concepts.

• Tools for Managing Logging: Lists available tools for managing logs.

• See the discussion on logging options in the Messaging Server Reference.

Search for logfile. The information lists the configuration options that you set for
Messaging Server by using the configutil command. You can view the documentation for
the Unified Configuration equivalent of a configutil option by clicking on the configutil
name link.

• Managing Message Store, Admin, and Default Service Logs: Describes logging for the
Message Store (POP, IMAP, and HTTP), Admin, and Default services.

MMP Logging
The logging format used by the MMP is unstable and subject to change at any time. It uses the
nslog model and syntax used by the store, with similar configuration settings. The most
interesting line in the MMP log is:

[04/Feb/2016:10:42:24 -0800] myhostname ImapProxyAService.cfg[17242]: General
Notice: (id 3) Proxy connect for client 10.0.0.5:55159 (cleartext) canonical
user 'admin@host.example.com' original user 'admin' auth 'PLAIN' via MMP
127.0.0.1:55162 to backend 127.0.0.1 (cleartext)

which can be used to correlate a connection from a client to a back end connection.

For debugging the MMP, the loglevel may be raised and the debugkeys option can be helpful.

For additional information, see the discussion on MMP in Messaging Server Reference.

Chapter 17
Using Message Store Log Messages

17-37

18
Monitoring Messaging Server

This chapter describes how to monitor Oracle Communications Messaging Server. In most
cases, a well-planned, well-configured server performs without extensive intervention from an
administrator. As an administrator, however, it is your job to monitor the server for signs of
problems.

In addition to this chapter, see the following chapters for more information about monitoring
Messaging Server:

• Monitoring User Access to the Message Store

• Monitoring System Performance

• Monitoring Disk Space

• Monitoring the MTA

• Monitoring LDAP Directory Server

• Monitoring the Message Store

• SNMP Support

Automatic Monitoring and Restart
Messaging Server provides a way to transparently monitor services and automatically restart
them if they crash or become unresponsive (the services hangs or freeze up). It can monitor all
message store, MTA, and MMP services including the IMAP, POP, HTTP, job controller,
dispatcher, and MMP servers. It does not monitor other services such as SMS or TCP/SNMP
servers. (TCP/SNMP is monitored by the job controller.) See "Automatic Restart of Failed or
Unresponsive Services" and "Monitoring Using msprobe and watcher Functions" for more
information.

Daily Monitoring Tasks
The most important tasks you should perform on a daily basis are checking postmaster mail,
monitoring the log files, and setting up the stored utility. These tasks are described below.

Checking Postmaster Mail
Messaging Server has a predefined administrative mailing list set up for postmaster email. Any
users who are part of this mailing list will automatically receive mail addressed to postmaster.

The rules for postmaster mail are defined in RFC822, which requires every email site to accept
mail addressed to a user or mailing list named postmaster and that mail sent to this address be
delivered to a real person. All messages sent to postmaster@host.domain are sent to a
postmaster account or mailing list.

Typically, the postmaster address is where users should send email about their mail service.
As postmaster, you might receive mail from local users about server response time, from other
server administrators who are encountering problems sending mail to your server, and so on.
You should check postmaster mail daily.

18-1

You can also configure the server to send certain error messages to the postmaster address.
For example, when the MTA cannot route or deliver a message, you can be notified via email
sent to the postmaster address. You can also send exception condition warnings (low disk
space, poor server response) to postmaster.

Monitoring and Maintaining the Log Files
Messaging Server creates a separate set of log files for each of the major protocols or services
it supports including SMTP, IMAP, POP, and HTTP. These are located in DataRoot/log. You
should monitor the log files on a routine basis--especially if you are having problems with the
server.

Be aware that logging can impact server performance. The more verbose the logging you
specify, the more disk space your log files will occupy for a given amount of time. You should
define effective but realistic log rotation, expiration, and backup policies for your server. See
"Managing Logging" for information about defining logging policies for your server.

Setting Up the msprobe Utility
The msprobe utility automatically performs monitoring and restart functions. See "Monitoring
Using msprobe and watcher Functions" for more information.

Utilities and Tools for Monitoring
The following tools are available for monitoring:

• immonitor-access

• imcheck

• Log Files

• imsimta counters

• imsimta qm counters

• MTA Monitoring Using SNMP

• Monitoring Using msprobe and watcher Functions

• Monitoring Using msstatbot Tool

immonitor-access

"immonitor-access" monitors the status of the following Messaging Server components/
processes: Mail Delivery (SMTP server), Message Access and Store (POP and IMAP servers),
Directory Service (LDAP server) and HTTP server. This utility measures the response times of
the various services and the total round trip time taken to send and retrieve a message. The
Directory Service is monitored by looking up a specified user in the directory and measuring
the response time. Mail Delivery is monitored by sending a message (SMTP) and the Message
Access and Store is monitored by retrieving it. Monitoring the HTTP server is limited to finding
out whether or not it is up and running.

See "immonitor-access" for complete instructions.

imcheck

Use "imcheck" to monitor database statistics including logs and transactions.

Chapter 18
Utilities and Tools for Monitoring

18-2

Note:

The imcheck -s command, which prints database statistics, is only valid for classic
message store.

counterutil

This utility provides statistics acquired from different system counters. See "Gathering
Message Store Counter Statistics by Using counterutil" for more information.

Log Files

Messaging server logs event records for SMTP, IMAP, POP, and HTTP. The policies for
creating and managing the Messaging Server log files are customizable.

Since logging can affect the server performance, logging should be considered very carefully
before the burden is put on the server. Refer to "Managing Logging" for more information.

imsimta counters

The MTA accumulates message traffic counters based upon the Mail Monitoring MIB, RFC
1566 for each of its active channels. The channel counters are intended to help indicate the
trend and health of your email system. Channel counters are not designed to provide an
accurate accounting of message traffic. See the discussion about MTA logging in "Managing
Logging" for precise accounting.

The MTA channel counters are implemented using the lightest weight mechanisms available so
that they cause as little impact as possible on actual operation. Channel counters do not try
harder: if an attempt to map the section fails, no information is recorded. If one of the locks in
the section cannot be obtained almost immediately, no information is recorded. When a system
is shut down, the information contained in the in-memory section is lost forever.

The imsimta counters -show command provides MTA channel message statistics (see
below). These counters need to be examined over time noting the minimum values seen. The
minimums may actually be negative for some channels. A negative value means that there
were messages queued for a channel at the time that its counters were zeroed (for example,
the cluster-wide database of counters created). When those messages were dequeued, the
associated counters for the channel were decremented and therefore leading to a negative
minimum. For such a counter, the correct "absolute" value is the current value less the
minimum value that counter has ever held since being initialized.

Channel Messages Recipients Blocks
------- -------- ---------- -------
tcp_local
Received 29379 79714 982252 (1)
Stored 61 113 -2004 (2)
Delivered 29369 79723 983903 (29369 first time) (3)
Submitted 13698 13699 18261 (4)
Attempted 0 0 0 (5)
Rejected 1 10 0 (6)
Failed 104 104 4681 (7)
Queue time/count 16425/29440 = 0.56 (8)
Queue first time/count 16425/29440 = 0.56 (9)
Total In Assocs 297637
Total Out Assocs 28306

Chapter 18
Utilities and Tools for Monitoring

18-3

1)Received is the number of messages enqueued to the channel named tcp_local. That is,
the messages enqueued (E records in the mail.log* file) to the tcp_local channel by any other
channel.

2)Stored is the number of messages stored in the channel queue to be delivered.

3)Delivered is the number of messages which have been processed (dequeued) by the
channel tcp_local. (That is, D records in the mail.log* file.) A dequeue operation may either
correspond to a successful delivery (that is, an enqueue to another channel), or to a dequeue
due to the message being returned to the sender. This will generally correspond to the number
Received minus the number Stored.

The MTA also keeps track of how many of the messages were dequeued upon first attempt;
this number is shown in parentheses.

4)Submitted is the number of messages enqueued (E records in the mail.log file) by the
channel tcp_local to any other channel.

5)Attempted is the number of messages which have experienced temporary problems in
dequeuing, that is, Q or Z records in the mail.log* file.

6)Rejected is the number of attempted enqueues which have been rejected, that is, J records
in the mail.log* file.

7)Failed is the number of attempted dequeues which have failed, that is, R records in the
mail.log* file.

8)Queue time/count is the average time-spent-in-queue for the delivered messages. This
includes both the messages delivered upon the first attempt, see (9), and the messages that
required additional delivery attempts (hence typically spent noticeable time waiting fallow in the
queue).

9)Queue first time/count is the average time-spent-in-queue for the messages delivered upon
the first attempt.

Note that the number of messages submitted can be greater than the number delivered. This is
often the case, since each message the channel dequeues (delivers) will result in at least one
new message enqueued (submitted) but possibly more than one. For example, if a message
has two recipients reached via different channels, then two enqueues will be required. Or if a
message bounces, a copy will go back to the sender and another copy may be sent to the
postmaster. Usually that will be two submissions (unless both are reached through the same
channel).

More generally, the connection between Submitted and Delivered varies according to type of
channel. For example, in the conversion channel, a message would be enqueued by some
other arbitrary channel, and then the conversion channel would process that message and
enqueue it to a third channel and mark the message as dequeued from its own queue. Each
individual message takes a path:

elsewhere -> conversion E record Received
conversion -> elsewhere E record Submitted
conversion D record Delivered

However, for a channel such as tcp_local which is not a "pass through," but rather has two
separate pieces (slave and master), there is no connection between Submitted and
Delivered. The Submitted counter has to do with the SMTP server portion of the tcp_local
channel, whereas the Delivered counter has to do with the SMTP client portion of the
tcp_local channel. Those are two completely separate programs, and the messages travelling
through them may be completely separate.

Messages submitted to the SMTP server:

Chapter 18
Utilities and Tools for Monitoring

18-4

tcp_local -> elsewhere E record Submitted

Messages sent out to other SMTP hosts via the SMTP client:

elsewhere -> tcp_local E record Received
tcp_local D record Delivered

Channel dequeues (delivers) will result in at least one new message enqueued (submitted) but
possibly more than one. For example, if a message has two recipients reached via different
channels, then two enqueues will be required. Or if a message bounces, a copy will go back to
the sender and another copy may be sent to the postmaster. Usually that will be reached
through the same channel.

imsimta counters Implementation

For performance reasons, a node running the MTA keeps a cache of channel counters in
memory using a shared memory section. As processes on the node enqueue and dequeue
messages, they update the counters in this in-memory cache. If the in-memory section does
not exist when a channel runs, the section will be created automatically. (The imta start
command also creates the in-memory section, if it does not exist.)

The command imta counters -clear or the imta qm command counters clear may be used to
reset the counters to zero.

imsimta qm counters

The imsimta qm counters utility displays MTA channel queue message counters. You must
be root or mailsrv to run this utility. The output fields are the same as those described in
insmita counters. See Messaging Server Reference for more information.

Example:

imsimta counters -create
imsimta qm counters show
Channel Messages Recipients Blocks
---------------------- ---------- ---------- ----------
tcp_intranet
Received 13077 13859 264616
Stored 92 91 -362
Delivered 12985 13768 264978
Submitted 2594 2594 3641
...

Every time you restart the MTA, you must run: imsimta counters -create

imsimta qm summarize

The imsimta qm summarize utility displays a summary of the number of messages and their
status in the MTA channel queues.

For more details of the various switches available, see the summarize sub-command in
imsimta qm and the imsimta qm help summarize command.

qm summarize modes

Like many of the qm sub-commands, summarize has two modes of operation: The -
directory_tree mode examines the message files in the MTA queue directories on disk. The -
database mode queries the job_controller process's in-memory database structures. The
directory mode creates a heavier load on the IO system and may not reflect what
job_controller is actually working on, but it can be useful to know if there is a difference

Chapter 18
Utilities and Tools for Monitoring

18-5

between the two. The job controller makes the decisions about which messages are tried next,
so the database mode will be more useful.

imsimta qm
qm.maint> sum -directory_tree
Channel Messages Size (Mb)
-------------------------------- -------- ---------
conversion 0 0.0
hold 0 0.0
ims-ms (stopped) 2 0.0
process 0 0.0
reprocess 0 0.0
tcp_intranet (stopped) 0 0.0
tcp_local (stopped) 2 0.0
-------------------------------- -------- ---------
Totals 4 0.0

Notice that the -database mode breaks down the number messages into three catagories.
Active messages are currently being tried by a worker process. Pending messages are ready
to be tried by a worker as soon as thread/slot is available. Delayed messages have been tried
before and are waiting for a specified time to be tried again as per the backoff option for that
channel.

qm.maint> sum -database
Total Total
Channel Messages = Active + Pending + Delayed Size (Mb)
-------------------------------- -------- -------- -------- -------- ---------
conversion 0 0 0 0 0.0
hold 0 0 0 0 0.0
ims-ms (stopped) 2 0 2 0 0.0
l 0 0 0 0 0.0
process 0 0 0 0 0.0
reprocess 0 0 0 0 0.0
tcp_intranet (stopped) 0 0 0 0 0.0
tcp_local (stopped) 2 0 2 0 0.0
-------------------------------- -------- -------- -------- -------- ---------
Totals 4 0 4 0 0.0

Note: In these examples, some channels had been stopped using the imsimta qm stop
channel command to provide some data to look at.

Held messages

A .HELD message file is a message which has encountered a loop or otherwise been sidelined
and requires administrative intervention for some reason. You can see such messages using
the -held switch. Note that job_controller will have no knowledge of held messages, therefore
the -database and -held switches are mutually exclusive. See "Diagnosing and Cleaning
up .HELD Messages" for more information about .HELD messages .

qm.maint> sum -held -database
%QM-E-CMDERR, Conflicting parameters and/or qualifiers: (DATABASE AND HELD)

qm.maint> sum -held
Held Held
Channel Messages Size (Mb) Oldest Queued Messages Size (Mb) Oldest Held
-------------------------------- -------- --------- ----------------- -------- ---------

conversion 0 0.0 0 0.0
hold 0 0.0 1 0.0 23 Apr, 21:35:16
ims-ms (stopped) 2 0.0 6 Apr, 13:24:00 0 0.0
process 0 0.0 0 0.0
reprocess 0 0.0 0 0.0

Chapter 18
Utilities and Tools for Monitoring

18-6

tcp_intranet (stopped) 0 0.0 0 0.0
tcp_local (stopped) 2 0.0 5 May, 10:16:08 0 0.0
-------------------------------- -------- --------- ----------------- -------- ---------

Totals 4 0.0 6 Apr, 13:24:00 1 0.0 23 Apr, 21:35:16

Displaying Summary by Destination Host

The -hosts switch displays a breakdown of the messages in the queue by destination host for
channels where that is meaningful. This information is stored in the job_controller process in-
memory queue cache database. Therefore -hosts implies -database.

qm.maint> sum -hosts
Total Total
Channel Host Messages = Active + Pending + Delayed Size (Mb)
-------------------------------- -------- -------- -------- -------- ---------
conversion 0 0 0 0 0.0
hold 0 0 0 0 0.0
ims-ms (stopped) 2 0 2 0 0.0
l 0 0 0 0 0.0
process 0 0 0 0 0.0
reprocess 0 0 0 0 0.0
tcp_intranet (stopped) 0 0 0 0 0.0
tcp_local (stopped) 2 0 2 0 0.0
aol.com 1 0 1 0 0.0
sun.com 1 0 1 0 0.0
-------------------------------- -------- -------- -------- -------- ---------
Totals 4 0 4 0 0.0

imsimta qm jobs

After starting the tcp_local channel:

tcp_local 1 1 0 0 0.0
aol.com 1 1 0 0 0.0

And to see what processes are working on what jobs:

qm.maint> jobs tcp_local
tcp_local channel:

Pending: 0 jobs
Active: 1 jobs, 1 messages (0.00 Mb), 1 recipients
Current jobs have delivered 1 messages, requeued 0 messages

Active jobs and messages:

22157: 1 messages (0.00 Mb), 1 recipients
1 messages processed and 0 requeued

Active hosts:

aol.com

Active messages:

ZZg0u410_P_~1.01 (1.0 Kb)

MTA Monitoring Using SNMP

Messaging Server supports system monitoring through the Simple Network Management
Protocol (SNMP). Using an SNMP client (sometimes called a network manager) such as Sun

Chapter 18
Utilities and Tools for Monitoring

18-7

Net Manager or HP OpenView (not provided with this product), you can monitor certain parts of
the Messaging Server. Refer to "SNMP Support" for details.

Monitoring Using msprobe and watcher Functions

Messaging Server provides two processes, watcher and msprobe to monitor various system
services. watcher watches for server crashes and restarts them as necessary. msprobe
monitors server hangs (unresponsiveness). Specifically msprobe monitors the following:

• Server Response Time. msprobe connects to the enabled servers using their protocol
commands and measures their response times. If the response time exceeds the alarm
warning threshold, an alarm message is sent (see "Alarm Messages") to a server, or the
server response time exceeds a specified timeout period, the server is restarted. Server
response times are recorded in a counter database and is logged to the default log file.
counterutil can be used to display the server response time statistics ("counterutil").

The following servers are monitored by msprobe: imap, pop, http, cert, job_controller,
smtp, lmtp, mmp and ens. When smtp or lmtp are not responding, the dispatcher is
restarted. ens cannot be automatically restarted.

• Disk usage. msprobe checks the disk availability and usage for every message store
partition. Specifically it checks the message store mboxlist database directory and the
MTA queue directory. If disk usage exceeds a configured threshold, an alarm message is
sent. The disk sizes and usages are recorded in a counter database and is logged to the
default log file. Administrators can use the counterutil utility (see "counterutil") to display
the disk usage statistics.

• Message Store mboxlist Database Log File Accumulation. Log file accumulation is an
indication of an mboxlist database error. msprobe counts the number of active log files
and if the number of active log files is larger than the threshold, msprobe logs a critical
error message to the default log file to inform the admin to restart the server. If the
autorestart is enabled (local.autorestart to yes), the store daemon is restarted.

watcher and msprobe are controlled by the msconfig options shown in Table 18-1. See
"Automatic Restart of Failed or Unresponsive Services" for more information.

Table 18-1 msprobe and watcher msconfig Options

Options Description

base.autorestart.enable Enable automatic server restart. Automatically restarts failed or hung
services. Default: 1

base.autorestart.timeout Failure retry time-out. If a server fails more than twice in this designated
amount of time, then the system stops trying to restart the server. The
value (set in seconds) should be set to a period value longer than the
msprobe interval (schedule.task:msprobe). Default: 600 seconds

msprobe.probe:service.timeout Timeout for a specific server before restart. service can be imap, pop,
http, cert, job_controller, smtp, lmtp, mmp or ens. Default: use
msprobe.timeout

msprobe.probe:service.warningthreshold Number of seconds of a specific server's non-response before a warning
message is logged to default log file. service can be imap, pop, http,
cert, job_controller, smtp, lmtp, mmp or ens. Default: Use
msprobe.warningthreshold

msprobe.warningthreshold Number of seconds of server non-response before a warning message is
logged to default log file. Default: 25 secs

msprobe.queuedir MTA queue directory to check if queue size exceeded threshold defined
by alarm.system:diskavail.thresholddirection. Default: none

Chapter 18
Utilities and Tools for Monitoring

18-8

Table 18-1 (Cont.) msprobe and watcher msconfig Options

Options Description

msprobe.timeout Period of server non-response before restarting that server. See "Expire
and Purge Log and Scheduling Options"
schedule.task:msprobe.crontab. Default: 30 seconds

schedule.task:msprobe.crontab msprobe run schedule. A crontab style schedule string (see
schedule.task:expire.enable in). Note that by default, this is
automatically set. See "Pre-defined Automatic Tasks". To disable: set
schedule.task:msprobe.enable to 0.

watcher.enable Enable watcher which monitors service failures. (IMAP, POP, HTTP, job
controller, dispatcher, message store (stored), imsched, and MMP.
(LMTP/SMTP servers are monitored by the dispatcher and LMTP/SMTP
clients are monitored by the job_controller.) Logs error messages to the
default log file for specific failures. Default: 1

Alarm Messages

msprobe can issue alarms in the form of email messages to the postmaster (see "To Monitor
imapd, popd and httpd") warning of a specified condition. A sample email alarm sent when a
certain threshold is exceeded is shown below:

Subject: ALARM: server response time in seconds of "ldap_example.com_389" is 10
Date: Tue, 17 Jul 2001 16:37:08 -0700 (PDT)
From: postmaster@example.com
To: postmaster@example.com
Server instance: /opt/sun/comms/messaging64
Alarmid: serverresponse
Instance: ldap_example_europa.com_389
Description: server response time in seconds
Current measured value (17/Jul/2001:16:37:08 -0700): 10
Lowest recorded value: 0
Highest recorded value: 10
Monitoring interval: 600 seconds
Alarm condition is when over threshold of 10
Number of times over threshold: 1

You can specify how often msprobe monitors disk and server performance, and under what
circumstances it sends alarms. This is done by using the msconfig command to set the alarm
options. Table 18-2 shows some useful alarm options along with their default setting. See
Messaging Server Reference for all options.

Table 18-2 Useful Alarm Message msconfig Options

Option Description (Default in Parenthesis)

alarm.noticehost (localhost) Machine to which you send warning messages.

alarm.noticeport (587) The SMTP port to which to connect when sending alarm
message.

alarm.noticercpt (Postmaster@localhost) Whom to send alarm notice.

alarm.noticesender (Postmaster@localhost) Address of sender the alarm.

alarm.system:diskavail.description (Percentage mail partition diskspace available.) Text for description
field for disk availability alarm.

Chapter 18
Utilities and Tools for Monitoring

18-9

Table 18-2 (Cont.) Useful Alarm Message msconfig Options

Option Description (Default in Parenthesis)

alarm.system:diskavail.statinterval (3600) Interval in seconds between disk availability checks. Set to
0 to disable checking of disk usage.

alarm.system:diskavail.threshold (10) Percentage of disk space availability below which an alarm is
sent.

alarm.system:diskavail.thresholddirection (-1) Specifies whether the alarm is issued when disk space
availability goes below threshold (-1) or above it (1).

alarm.system:diskavail.warninginterval (24). Interval in hours between subsequent repetition of disk
availability alarms.

alarm.system:serverresponse.description (Server response time in seconds.) Text for description field for
servers response alarm.

alarm.system:serverresponse.statinterval (600) Interval in seconds between server response checks. Set to
0 to disable checking of server response.

alarm.system:serverresponse.threshold (10) If server response time in seconds exceeds this value, alarm
issued.

alarm.system:serverresponse.thresholddirection (1) Specifies whether alarm is issued when server response time
is greater that (1) or less than (-1) the threshold.

alarm.system:serverresponse.warninginterval (24) Interval in hours between subsequent repetition of server
response alarm.

Monitoring Using msstatbot Tool
Message stores uses msstatbot tool to perform basic administrative tasks, and monitor cluster
health.

Beyond message stores, Elasticsearch engine and MTA also uses msstatbot monitoring tool
to visualize and track their running states and health.

For message store, the tool supports administrative and monitoring functions as follows:

• Administrative Functions: Administrative function includes backing up and restoring the
data. A backup is a snapshot of all on-disk data files (SSTable files) stored in the data
directory. You can set a retention policy that defines how to handle the snapshot files for
older backup data. The default policy is to retain On Server backup files for 30 days.

• Monitoring Functions: Monitoring functions includes monitoring clusters and diagnosing
problems in the cluster and nodes. Table 18-3 lists the nodetool commands to collect
statistics and status:

Table 18-3 nodetool Commands

Nodetool command Description

Status cluster information (state, load, IDs, ...)

tablestats statistics on tablesSupport json format (-F json, --format
json)

tpstats usage statistics of thread poolsSupport json format (-F
json, --format json)

gcstats JVM GC Statistics

Chapter 18
Utilities and Tools for Monitoring

18-10

Table 18-3 (Cont.) nodetool Commands

Nodetool command Description

netstats Network information on provided host (connecting node by
default)

MTA stats can also be collected using :mtastats.

For the nodetool commands details, see the Cassandra documentation at: http://
cassandra.apache.org/doc/latest/tools/nodetool.

Stats Available from the msstatbot Tool
Following is the stats available from the msstatbot tool:

• netstats - cassandra node

• tpstats - cassandra node

• tablestats -cassandra node

• gcstats - cassandra node

• status - cassandra node

• mtastats - mta node

Installing the msstatbot Tool
msstatbot tool is distributed as python 2.7 package for Messaging Server statistics monitoring
daemon (msstatd).You can install the msstatbot tool using the following rpm command:

rpm -i msstatbot-1.0-1.noarch.rpm

The msstatbot gets installed in the location /opt/sun/comms/messaging64/lib/python2.7/
site-packages/. This location is non- relocatable.

In Cassandra node, the msstatbot also gets installed in the location /opt/sun/comm/
messaging64/lib/python 2.7/site-packages/.

msstatd server provides APIs for the clients to configure, start, stop, and check running health
of Oracle messaging server services.

Configuration
The msstatbot tool supports three types of configuration:

• when it is installed on message server node, the configurations has to set. Example:

<serverroot>/bin/msconfig set role.msstatbot.port 8889

It loads Messaging Server's unified configuration.

Make sure that msconfig should have following parameters configured:

– elasticsearch.hostlist

– elasticsearch.port

* ./msconfig show elasticsearch

* role.elasticsearch.hostlist = <ip list>

Chapter 18
Utilities and Tools for Monitoring

18-11

* role.elasticsearch.port = <port #>

* role.store.searchengine elastic

– role.dispatcher.service:SMTP.tcp_ports: SMTP server tcp port

* ./msconfig show service:SMTP.tcp_ports

* role.dispatcher.service:SMTP.tcp_ports = 25

– msstatbot.port: default to 8889

– msstatbot.enabledstats: enabled stats to monitor, which should be set to mtastat on
MTA node

* ./msconfig show msstatbot

* role.msstatbot.port = 8190

* role.msstatbot.enabledstats = mtastats:20

Example:

role.store.dbtype = cassandra
role.store.searchengine = elastic
role.store.casconnectpoints = 10.196.12.157
role.store.casmetarf = 1
role.store.casmsgrf = 1
role.msstatbot.port = 8889
role.msstatbot.enabledstats = mtastats:20

• when it is installed on cassandra node, it loads json formatted configuration:

{
"es_hosts": "replace_with_elasticsearch_host_name",
 "es_port": "replace_with_elasticsearch_port",
"storetype": "cassandra",
"port": 8889,
"enablestats": "gcstats:15",
"nodetoolpath": "path/to/nodetool",
"pidfile": "cassbot",
"logfile": "path/to/logfile",
"loglevel": "INFO",
"maxbytes": 20971520,
"backupcount":10

• when it is installed on Cassandra node and Messaging Server, make sure that msconfig
should have following parameters configured:

– elasticsearch.hostlist:

– elasticsearch.port

* ./msconfig show elasticsearch

* role.elasticsearch.hostlist = <ip list>

* role.elasticsearch.port = <port #>

* role.store.searchengine elastic

– role.dispatcher.service:SMTP.tcp_ports: SMTP server tcp port

* ./msconfig show service:SMTP.tcp_ports

* role.dispatcher.service:SMTP.tcp_ports = 25

– msstatbot.port: default to 8889

Chapter 18
Utilities and Tools for Monitoring

18-12

– msstatbot.enabledstats: enabled stats to monitor, which should be stat to mtastats on
MTA node

* ./msconfig show msstatbot

* role.msstatbot.port = 8190

* role.msstatbot.enabledstats = mtastats:20

* role.msstatbot.nodetoolpath = <node tool path>

The signficance of ':<number>'with the stats, is the frequency (in secs) at which the stats are
collected from the cassandra/MTA.

Notes
• nodetool has to be in the path, or specified with nodetoolpath in the configuration

• replace the hosts and ports for Elasticsearch

• if pidfile is set, daemon will use it as pidfile, otherwise uses ./msstatpid. As for Messaging
Server config, it will to set to path/to/ms/data/proc/msstatpid

• logfile, loglevel, maxbytes and backupcount are for logging configuration.

– logfile: set the path to log file;

– loglevel: set the logging level of [CRITICAL, ERROR, WARNING, INFO, DEBUG],
otherwise default to INFO;

– maxbyptes: the max log file size, rotating the log file if exceeding the size;

– backupcount: total number log files kept in the log folder.

Assumptions
• nodetool path setting should meet one of following three conditions:

– nodetool should be on the path.

– when cassandra is installed, by default, it has nodetool path in that particular location.
nodetoolpath is given in the configuration.

– nodetool is installed under /var/opt/cassandra/dse-*/bin <default Cassandra
installation location.

• Elasticsearch dependency

– Elasticsearch is installed and accessible to all nodes running this program.

– Elasticsearch python client lib is installed with python version used to run the program.

– Elasticsearch hosts and ports should be configured.

Starting and Stopping Statistics Monitoring
You can start the msstatd server, run msstatd with start command, and configuration file as
follows:

python msstatd.py -c start -f msstatd.conf

You can stop the msstatd server, run msstatd with stop command, and configuration file as
follows:

python msstatd.py -c stop -f msstatd.conf

Chapter 18
Utilities and Tools for Monitoring

18-13

When msstatd tool is installed with messaging server, it will load the configuration from
msconfig xml. In this case, we assume that msstatd tool is installed under /opt/sun/comms/
messaging64/lib/python2.7/site-packages/src/, and it is run with root or mailsrv privilege.

python msstatd.py -c start
python msstatd.py -c stop

msstatd Syntax

msstatd.py [-h] [-c {start,stop}] [-p PORT] [-i IP] [-f CONFIG]

Table 18-4 describes the msstatd options.

Table 18-4 msstatd Options

Option Description

-h, --help Displays the help.

-c {start,stop}, --command
{start,stop}

start | stop the msstatd server.

-p PORT , --port PORT Listening port for msstatd server.

PORT: the port the daemon listens on, if missing, the default is 8889.

-i IP, --ip IP msstatd server IP.

IP: the node IP address, if missing, the default is hostname of the
node.

-f CONFIG, --config CONFIG msstatd server configuration file.

CONFIG: the json formatted configuration, if missing, the daemon will
check

If it is a messaging server node, it will load unified configuration;

If it is a cassandra node (nodetool is installed and in the path), it will
load default configuration.

To start/stop/restart stat collection after msstatd server starts:

curl -X POST <host>:<port>/stat/ -H "Content-Type: application/json" -d
'{"start":"netstats:30"}'
curl -X POST <host>:<port>/stat/ -H "Content-Type: application/json" -d
'{"stop":"gcstats"}'
curl -X POST <host>:<port>/stat/ -H "Content-Type: application/json" -d
'{"restart":"netstats:25"}'

Querying the Node Statistics
The query of statistics is with Elasticsearch. But, msstatd provides RESTful APIs to query data
too.

• With browser:

http://<msstatd host>:<msstatd port>/stat/netstats?count=1&node=<cassandra node>
• With CURL:

curl -X GET <host>:<port>/stat/<tpstats|tablestats>?node=?&ks=?&table=?&count=?

where,

node is Cassandra node, ks is keyspace, table is table name, and count is count of results
to return.

Chapter 18
Utilities and Tools for Monitoring

18-14

Following is the responses to query tablestat:

Tabletstats json format : {"hits": {"hits": [{"sort": [1551180643392], "_type":
"cassstats", "_source": {"bloom_filter_space_used_f": 0.0,
"number_of_partitions_estimate_f": 6,
"bloom_filter_off_heap_memory_used_f": 0.0, "space_used_live_f": 0,
"table_s": "ms_msg.message",
"compression_metadata_off_heap_memory_used_f": 0,
"average_live_cells_per_slice_last_five_minutes_f": 1.0,
"memtable_off_heap_memory_used_f": 0, "percent_repaired_f": 100.0,
"sstable_compression_ratio_f": -1.0, "local_write_latency_ms_f": 0.028,
"ts": 1551180643392, "maximum_tombstones_per_slice_last_five_minutes_f":
1.0, "proc": "cassandra", "memtable_switch_count_f": 0, "node":
"kkm00cxy", "local_read_count_f": 15, "pending_flushes_f": 0,
"local_write_count_f": 7, "off_heap_memory_used_total_f": 0,
"average_tombstones_per_slice_last_five_minutes_f": 1.0,
"space_used_total_f": 0.0, "memtable_data_size_f": 27096.0,
"compacted_partition_minimum_bytes_f": 0,
"compacted_partition_maximum_bytes_f": 0.0,
"maximum_live_cells_per_slice_last_five_minutes_f": 1.0,
"bloom_filter_false_ratio_f": 0.0, "compacted_partition_mean_bytes_f":
0, "dropped_mutations_f": 0.0, "index_summary_off_heap_memory_used_f":
0.0, "bloom_filter_false_positives_f": 0.0, "local_read_latency_ms_f":
0.18, "memtable_cell_count_f": 7, "space_used_by_snapshots_total_f": 0},
"_score": null, "_index": "ms_tablestats_2019_02_25", "_id":
"tablestats-16929923c40"}], "total": 21, "max_score": null}, "_shards":
{"successful": 5, "failed": 0, "skipped": 0, "total": 5}, "took": 5,
"timed_out": false}

Log Files
Two log files, system.log and msstatd.log, are generated in the location /python2.7/site-
packages/src/.

Uninstalling the msstatbot Tool
You can install the msstatbot tool using the following rpm command:

rpm -e msstatbot

This command uninstalls the packages from /python 2.7/site-packages/.

Chapter 18
Utilities and Tools for Monitoring

18-15

19
Monitoring the MTA

This chapter describes how to monitor the Oracle Communications Messaging Server
Message Transfer Agent (MTA).

Monitoring the Size of the Message Queues
Excessive message queue growth may indicate that messages are not being delivered, are
being delayed in their delivery, or are coming in faster than the system can deliver them.
Reasons for this situation include a denial of service attack caused by huge numbers of
messages flooding your system, or the Job Controller not running.

See "Channel Message Queues", "Messages Are Not Dequeued", and "MTA Messages Are
Not Delivered" for more information on message queues.

Symptoms of Message Queue Problems
• Disk space usage grows.

• User not receiving messages in a reasonable time.

• Message queue sizes are abnormally high.

To Monitor the Size of the Message Queues
Probably the best way to monitor the message queues is to use imsmita counters and imsimta
qm summarize.

You can also monitor the number of files in the queue directories (DataRoot/queue/). The
number of files will be site-specific, and you'll need to build a baseline history to find out what is
"too many." This can be done by recording the size of the queue files over a two week period to
get an approximate average.

Checking for Held messages
If the MTA detects a message is looping, it will be sidelined by renaming the queue message
file to .HELD. For more discussion of how messages can become .HELD and what to do about
them, refer to "Diagnosing and Cleaning up .HELD Messages". To see whether there are any
held messages, use the imsimta qm summarize -held command described in Messaging
Server Reference.

Monitoring Rate of Delivery Failure
A delivery failure is a failed attempt to deliver a message to an external site. A large increase in
rate of delivery failure can be a sign of a network problem such as a dead DNS server or a
remote server timing out on responding to connections.

19-1

Symptoms of Rate of Delivery
There are no outward symptoms. Lots of Q records will appear in to mail.log_current.

To Monitor the Rate of Delivery Failure
Delivery failures are recorded in the MTA logs with the logging entry code Q. Look at the record
in the file DataRoot/log/mail.log_current. Example:

mail.log:06-Oct-2003 00:24:03.66 501d.0b.9 ims-ms Q 5 durai.balusamy@Sun.COM
rfc822;durai.balusamy@Sun.COM durai@ims-ms-daemon
<00ce01c38bda$c7e2b240$6501a8c0@guindy>Mailbox is busy

Monitoring Inbound SMTP Connections
An unusual increase in the number of inbound SMTP connections from a given IP address
may indicate:

• An external user is trying to relay mail.

• An external user is trying to do a service denial attack.

Symptoms of Unauthorized SMTP Connections
• External user relaying mail : No outward symptoms.

• Service denial attack: External attempt to overload the SMTP servers with message
requests.

To Monitor Inbound SMTP Connections
• External user relaying mail: Look in DataRoot/log/mail.log_current for records with the

logging entry code J (rejected relays). To turn on logging of remote IP addresses run the
following command: msconfig set log_connection 1

Note that there is a slight performance trade-off when this feature is enabled.

• Service denial attack: To find out who and how many users are connecting to the SMTP
servers, you can run the command netstat and check for connections at the SMTP port
(default: 25). Example:

Local address Remote address State
192.18.79.44.25 192.18.78.44.56035 32768 0 32768 0 CLOSE_WAIT
192.18.79.44.25 192.18.136.54.57390 8760 0 24820 0 ESTABLISHED
192.18.79.44.25 192.18.26.165.48508 33580 0 24820 0 TIME_WAIT

Note that you will first need to determine the appropriate number of SMTP connections and
their states (ESTABLISHED, CLOSE_WAIT, etc.) for your system to determine if a particular
reading is out of the ordinary. If you find many connections staying in the SYN_RECEIVED
state this might be caused by a broken network or a denial of service attack. In addition, the
lifetime of an SMTP server process is limited. This is controlled by the MTA Dispatcher
configuration option MAX_LIFE_TIME. The default is 86,400 seconds (one day). Similarly,
MAX_LIFE_CONNS specifies the maximum number of connections a server process can
handle in its lifetime. If you find a particular SMTP server that has around for a long time you
may want to investigate.

Chapter 19
Monitoring Inbound SMTP Connections

19-2

Monitoring the Dispatcher and Job Controller Processes
The Dispatcher and Job Controller Processes must be operating for MTA to work. You should
have one process of each kind.

Symptoms of Dispatcher and Job Controller Processes Down
If the Dispatcher is down or does not have enough resources, SMTP connections are refused.
If the Job Controller is down, queue size will grow.

To Monitor Dispatcher and Job Controller Processes
Check to see that the processes called dispatcher and job_controller exist. See "Check that
the Job Controller and Dispatcher Are Running" for more information.

Chapter 19
Monitoring the Dispatcher and Job Controller Processes

19-3

20
SNMP Support

This chapter describes how to enable Simple Network Management Protocol (SNMP) support
for system monitoring of Oracle Communications Messaging Server. It also gives an overview
of the type of information provided by SNMP. Note that it does not describe how to view this
information from an SNMP client. Refer to your SNMP client documentation for details on how
to use it to view SNMP-based information.

Using an SNMP client (sometimes called a network manager) such as Sun Net Manager or HP
OpenView (not provided with the this product), you can monitor certain parts of Messaging
Server. See "Monitoring Messaging Server" for more information on monitoring the Messaging
Server.

This information also describes some of the data available from the Messaging Server SNMP
implementation, but complete MIB details are available from RFC 2788 (http://
www.faqs.org/rfcs/rfc2788.html) and RFC 2789 (http://www.faqs.org/rfcs/
rfc2788.html).

SNMP Implementation
Messaging Server implements two standardized MIBs, the Network Services Monitoring MIB
(RFC 2788) and the Mail Monitoring MIB (RFC 2789). The Network Services Monitoring MIB
provides for the monitoring of network services such as POP, IMAP, HTTP, and SMTP servers.
The Mail Monitoring MIB provides for the monitoring of MTAs. The Mail Monitoring MIB allows
for monitoring both the active and historical state of each MTA channel. The active information
focuses on currently queued messages and open network connections (for example, counts of
queued messages, source IP addresses of open network connections), while the historical
information provides cumulative totals (for example, total messages processed, total inbound
connections).

Note:

For a complete listing of Messaging Server SNMP monitoring information, refer to
RFC 2788 and RFC 2789.

SNMP is supported on platforms running Oracle Solaris and Linux. Messaging Server on the
Oracle Solaris 9 Operating System uses Solstice Enterprise Agents (SEA). Starting with the
Oracle Solaris 10 Operating System, Messaging Server supports the open source Net-SNMP
monitoring framework, relegating the Oracle Solaris 9 Solstice Enterprise Agents (SEA)
technology to legacy (end of support life) status. Additionally, Net-SNMP is widely used on
Linux platforms. Messaging Server uses its Net-SNMP-based SNMP subagent on Oracle
Solaris 10 and later as well as Linux platforms.

With the adoption of the Net-SNMP framework, Messaging Server's SNMP subagent provides
new functionality:

• Support for SNMP versions 2c and 3. This support is provided by the Net-SNMP
framework. The former SNMP technology, Solstice Enterprise Agents, only provided

20-1

http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2788.html

support for SNMP version 1. Enhanced security features and access controls are the
primary benefit of these two versions of SNMP.

• The subagent may be configured to run as a "standalone" SNMP agent. This provides
sites with additional means of isolating their various SNMP agents running on the same
system.

• Multiple "instances" of Messaging Server running on the same system may concurrently be
monitored. This support is provided through either the second item in this list, or through
the use of SNMP version 3 "context names". This allows for SNMP monitoring of
Messaging Server in failover clusters.

Limitations of the Messaging Server SNMP support are as follows:

• Only one instance of Messaging Server per host computer can be monitored via SNMP on
Oracle Solaris 9.

• The SNMP support is for monitoring only. No SNMP management is supported.

• No SNMP traps are implemented. (RFC 2788 provides similar functionality without using
traps.)

SNMP Operation in Messaging Server
The Messaging Server SNMP process is an SNMP subagent which, upon startup, registers
itself with the platform's native SNMP master agent. SNMP requests from clients go to the
master agent. The master agent then forwards any requests destined for the Messaging
Server to the Messaging Server subagent process. The Messaging Server subagent process
then processes the request and relays the response back to the client via the master agent.
Table 20-1 shows this process.

Figure 20-1 SNMP Information Flow

Chapter 20
SNMP Implementation

20-2

Configuring SNMP Support for Oracle Solaris 10

Note:

SNMP is not supported on Solaris 11. For a workaround, contact Oracle Support.

By default, SNMP monitoring is disabled within Messaging Server. This default is chosen in an
attempt to minimize the number of services presented by a default Messaging Server
configuration. Do not interpret this default as meaning that there is a performance penalty
incurred by using SNMP monitoring. Indeed, Messaging Server's SNMP support consumes
very little resources and is intended to have minimal impact upon Messaging Server. The
upshot of all of this is, of course, that one time configuration steps are required before using
Messaging Server's SNMP support. Additionally, the default configuration of the platform's Net-
SNMP master agent, snmpd, typically needs to be changed to run subagents such as
Messaging Server's. This change is the topic of the next section.

Net-SNMP Configuration
Messaging Server's Net-SNMP based SNMP subagent uses the AgentX protocol to
communicate with the platform's SNMP master agent (RFC 2741). The Net-SNMP master
agent, snmpd, must be configured to permit the use of the AgentX protocol. To do this, ensure
that the platform's snmpd.conf file contains the following line:

master agentx

If that line is not present, then add it and then restart the snmpd daemon. Sending a SIGHUP
signal to the daemon is not sufficient. Once the snmpd daemon has been restarted, look for
the UNIX domain socket which snmpd creates for AgentX communications. On Oracle Solaris
and Linux systems, this socket by default appears as the special file /var/agentx/master.
However, its location and name may be changed in the snmpd.con file.

The Oracle Solaris 10 snmpd configuration is as follows:

% cp /etc/sma/snmp/snmpd.conf /etc/sma/snmp/snmpd.conf.save
% cat >> /etc/sma/snmp/snmpd.conf
Messaging Server's subagent requires the AgentX protocol
master agentx
^D
% cat >> /etc/sma/snmp/snmpd.conf
% ls -al /var/agentx/
srwxrwxrwx 1 root root 0 Aug 9 13:58 /var/agentx/master

Additionally, on Red Hat Enterprise Linux AS 3 systems, the default snmpd.conf file restricts
the information which may be viewed by the "public" SNMP community. It is therefore
necessary to either remove that restriction or to extend it to include the MIBs served out by
Messaging Server's subagent. For initial testing, perform the later. This is accomplished by
including the OID subtrees mib-2.27 and mib-2.28 in a view named "systemview" as shown in
the following example. For actual deployment, each site must take their overall security policy
into consideration. Note that the information provided by the SNMP subagent is "read only".

% cp /etc/snmp/snmpd.conf /etc/snmp/snmpd.conf.save
% cat >>/etc/snmp/snmpd.conf
Messaging Server's subagent requires the AgentX protocol
master agentx

Chapter 20
Configuring SNMP Support for Oracle Solaris 10

20-3

Messaging Server's subagent exports mib-2.27 and .28
Add the mib-2.27 and .28 OID subtrees to the systemview
view systemview included .1.3.6.1.2.1.27
view systemview included .1.3.6.1.2.1.28
^D
% /bin/service snmpd restart
% ls -al /var/agentx/master
srwxr-xr-x 1 root root 0 Aug 8 21:20 /var/agentx/master

If you are using SNMP v3 context names to distinguish between the MIBs of different instances
of Messaging Server concurrently running on the same host computer, then you also need to
configure at least one SNMP v3 username and password for use with your SNMP v3 queries.

Messaging Server Subagent Configuration
For basic operation of Messaging Server's SNMP subagent, you need only enable it and issue
a one time manual start command. Henceforth, whenever Messaging Server is started or
stopped, the subagent will likewise be started or stopped. The necessary commands to effect
this configuration on both Oracle Solaris and Linux systems are as follows:

msconfig set snmp.enable 1
start-msg snmp

Once SNMP is running, you can test the subagent from the command line with the snmpwalk
command. See the screen shots below for an example appropriate to Oracle Solaris and Linux.
Note that the files rfc2248.txt and rfc2249.txt are copies of the Network Services and MTA
MIBs. On Oracle Solaris systems, these files may also be found in the /etc/sma/snmp/mibs/
directory under the names NETWORK-SERVICES-MIB.txt and MTA-MIB.txt. It is not
necessary provide these files to the snmpwalk tool. However, doing so permits snmpwalk to
print names for each of the MIB variables rather than their numeric object identifiers (OIDs).

Basic testing on Oracle Solaris:

% d=/opt/sun/comms/messaging64/examples/mibs /usr/sfw/bin/snmpwalk -v 1 -c public \
-m +$D/rfc2248.txt:$D/rfc2249.txt 127.0.0.1 mib-2.27

NETWORK-SERVICES-MIB::applName.1 = STRING: /opt/sun/comms/messaging64 MTA on
mail.example.com
...
% D=/opt/sun/comms/messaging64/examples/mibs /usr/sfw/bin/snmpwalk -v 1 -c public \
-m +$D/rfc2248.txt:$D/rfc2249.txt 127.0.0.1 mib-2.28

MTA-MIB::mtaReceivedMessages.1 = Counter32: 1452
MTA-MIB::mtaStoredMessages.1 = Gauge32: 21
...

Basic testing on Linux:

% export d=/opt/sun/messaging/examples/mibs
% /usr/bin/snmpwalk -v 1 -c public \
-m +$D/rfc2248.txt:$D/rfc2249.txt 127.0.0.1 mib-2.27
NETWORK-SERVICES-MIB::applName.1 = STRING: /opt/sun/messaging MTA on mail.example.com
...
% /usr/bin/snmpwalk -v 1 -c public \
-m +$D/rfc2248.txt:$D/rfc2249.txt 127.0.0.1 mib-2.28
MTA-MIB::mtaReceivedMessages.1 = Counter32: 21278
MTA-MIB::mtaStoredMessages.1 = Gauge32: 7
...

Chapter 20
Configuring SNMP Support for Oracle Solaris 10

20-4

Running as a Standalone SNMP Agent
Before configuring Messaging Server's SNMP subagent to run as a standalone SNMP agent,
you must first decide which Ethernet interface and UDP port to use to listen for SNMP
requests. By default, it listens on all available Ethernet interfaces by using UDP port 161. In
most cases, you should change the port number so as to not interfere with the platform's
SNMP master agent, snmpd. In some circumstances such as HA failover, you should change
the Ethernet interface from all available interfaces - INADDR_ANY - to a specific interface
identified by its IP address. These two concepts, Ethernet interface and UDP port, are
controlled by the snmp.listenaddr and snmp.port options.

Once you have made choices for the Ethernet interface and UPD port, set the value of the
snmp.standalone option to one and restart the subagent. Once restarted, it operates as an
SNMP agent independent of snmpd and any subagents.

For example, to run as a standalone agent listening on UDP port 9161 of the Ethernet interface
with IP address 10.53.1.37, issue the commands shown below.

Configuring to run as a standalone agent:

% ./msconfig set snmp.port 9161
% ./msconfig set snmp.listenaddr 10.53.1.37
% ./msconfig set snmp.standalone 1
% ./stop-msg snmp
% ./start-msg snmp
% ./snmpwalk -v 1 -c public 10.53.1.37:9161 .
SNMPv2-SMI::mib-2.27.1.1.2.1 = STRING: "/opt/sun/comms/messaging64 MTA on
mail.example.com"
...

Monitoring Multiple Instances of Messaging Server
Two techniques for monitoring multiple instances of Messaging Server running on the same
host computer are herein discussed. The first technique, running the subagent in standalone
mode, is well suited to high-availability failover (HA) configurations in which the individual
instances of Messaging Server may dynamically move between host computers. The second
technique, the use of SNMP v3 context names, has some limited benefit in situations where
multiple instances of Messaging Server are confined to a single system and it is desirable to
limit the number of IP addresses polled by SNMP monitoring software (for example, when
licensing of the monitoring software has a per IP address cost component). This latter
technique may also be used in HA failover settings but would require polling just as many IP
addresses as the standalone mode technique.

Using Standalone Agents for High-availability Failover
In a high-availability failover setting where SNMP monitoring of Messaging Server is desired, it
is recommended that you run Messaging Server's SNMP subagent as a standalone agent as
described in "Running as a Standalone SNMP Agent". When the subagents are run in
standalone mode, each HA instance of Messaging Server should have its snmp.listenaddr
option set to the value of that instance's failover IP address. To simplify management, each
instance should use the same UDP port, but that port should be distinct from those used by the
snmpd daemons running on each of the physical cluster hosts. Typically those daemons will
be using UDP port 161 so explicitly specify a different port number with the snmp.port option.

When Messaging Server's SNMP support is configured as recommended here, a monitoring
station can monitor each instance of Messaging Server through its failover IP address or

Chapter 20
Configuring SNMP Support for Oracle Solaris 10

20-5

hostname regardless of which physical cluster host the instance is running on. Moreover, you
are assured that Messaging Server's standalone SNMP agents do not conflict with one another
as each listens only on its own virtual Ethernet interface identified by that instance's unique
failover IP address. (These virtual Ethernet interfaces are automatically created by the HA
failover framework.) Owing to the careful selection of a UDP port, the agents do not conflict
with the snmpd daemons running on systems within the cluster.

Distinguishing Multiple Instances Through SNMP v3 Context Names
While there is no downside to using Messaging Server's SNMP support in standalone mode as
described in "Running as a Standalone SNMP Agent", it is recognized that some sites may
prefer to use a more traditional subagent mode while still maintaining the capability of
monitoring multiple instances of Messaging Server running concurrently on the same system.
For instance, an SNMP monitoring system whose licensing model limits the number of IP
addresses which may be polled. To achieve this goal, continue to run Messaging Server's
SNMP subagent with snmp.standalone set to zero. Additionally, configure each instance of
Messaging Server to use a distinct SNMP v3 context name by specifying a non-zero value for
the snmp.enablecontextname option. If a context name different than the value of
base.defaultdomain is desired, then set the desired name with the snmp.contextname
option. Once each instance of Messaging Server's SNMP subagent is restarted, they can then
be monitored with SNMP v3 queries that include the proper context names. The MIBs of two
instances of Messaging Server running on the same system are distinguished by the instance's
SNMP v3 context name and so no MIB object identifier (OID) conflicts will arise.

Messaging Server's Net-SNMP-based SNMP Subagent Options
Table 20-1 describes the options that apply only to Messaging Server's Net-SNMP based
SNMP subagent. That subagent is used on Oracle Solaris platforms running Oracle Solaris 10
and later as well as Linux platforms. The options described in this section do not apply to the
legacy SNMP subagent supplied for Oracle Solaris platforms running Oracle Solaris 9 and
earlier operating systems.

Table 20-1 SNMP Subagent Options

Option (Default) Description

snmp.enable (0) The Messaging Server SNMP subagent only runs when this option is given a value of 1, in
which case Messaging Server automatically stops and starts the subagent as part of its
normal startup and shutdown procedures. By default this option is set to zero, which disables
operation of the subagent. Before enabling the subagent, ensure that the platform's master
agent has been properly configured as described in "Running as a Standalone SNMP
Agent".

snmp.standalone (0) Messaging Server's SNMP support normally runs as a SNMP subagent, receiving SNMP
requests through the platform's SNMP master agent, snmpd. This operational mode is the
default and is selected by giving this option a value of 0. However, as described in "Running
as a Standalone SNMP Agent", the subagent may run in a "standalone" mode whereby it
operates as a SNMP agent independent of snmpd. When run in standalone mode, the
subagent, now an SNMP agent, listens directly for SNMP requests on the Ethernet interface
and UDP port specified by, respectively, the snmp.listenaddr and snmp.port options. To
run in this standalone mode, specify a value of 1 for this option. Running in standalone mode
does not interfere with other SNMP master or subagents running on the system.

Chapter 20
Configuring SNMP Support for Oracle Solaris 10

20-6

Table 20-1 (Cont.) SNMP Subagent Options

Option (Default) Description

snmp.listenaddr
(INADDR_ANY)

Hostname or IP address of the Ethernet interface to listen for SNMP requests on when
running in standalone mode. By default, all available interfaces are listened on. This
corresponds to specifying the value INADDR_ANY. A specific interface may be selected by
specifying either the IP address or hostname associated with that interface. The interface
may be either a physical interface or a virtual interface. This option is ignored when
snmp.standalone is set to 0.

snmp.cachettl (30) Time to live (TTL) in seconds for cached monitoring data. This option controls how long the
subagent will report the same monitoring data before refreshing that data with new
information obtained from Messaging Server. With the exception of message loop
information, data is cached for no longer than 30 seconds by default. Loop information, as
determined by scanning for .HELD files, is updated only once every 10 minutes. That
because of the resource cost of scanning all the on-disk message queues. Note that the
subagent does not continually update its monitoring data: it is only updated upon receipt of
an SNMP request and the cached data has expired (that is, outlived its TTL). If the TTL is set
to 30 seconds and SNMP requests are made only every five minutes, then each SNMP
request causes the subagent to obtain fresh data from Messaging Server. That is, data from
Messaging Server is obtained only once every five minutes. If, on the other hand, SNMP
requests are made every 10 seconds, then the subagent responds to some of those
requests with cached data as old as 29 seconds. Messaging Server is polled only once every
30 seconds.

snmp.servertimeout (5) The subagent determines the operational status of each monitored service by actually
opening TCP connections to each service and undergoing a protocol exchange. This timeout
value, measured in seconds, controls how long the subagent waits for a response to each
step in the protocol exchange. By default, a timeout value of five seconds is used.

snmp.directoryscan (1) Use this option to control whether or not the subagent performs scans of the on-disk
message queues for .HELD message files and the oldest message files. That information
corresponds to the mtaGroupLoopsDetected, mtaGroupOldestMessageStored, and
mtaGroupOldestMessageId MIB variables. When this option has the value 1, then a cache
of this information is maintained and updated as needed. Sites with thousands of queued
messages, that are not interested in these particular MIB variables should consider setting
this option's value to 0.

snmp.enablecontextname
(0)

The subagent has the ability to register its MIBs under an SNMP v3 context name. When this
is done, the MIBs may only be requested by a SNMP v3 client that specifies the context
name in its SNMP request. Use of context names allows multiple, independent subagents to
register Network Services and MTA MIBs under the same OID tree (that is, under the same
SNMP master agent). See "Monitoring Multiple Instances of Messaging Server" for further
information. To enable the use of SNMP v3 context names, specify a value of 1 for this
option. When that is done, the subagent defaults to using the value of the
base.defaultdomain option for its context name. To use a different value for the context
name, use the snmp.contextname option.

snmp.contextname
(base.defaultdomain)

When the use of SNMP v3 context names has been enabled with
snmp.enablecontextname, this option can be used to explicitly set the context name used
by the subagent for its MIBs. The values supplied for this option are string values and must
be appropriate for use as a SNMP v3 context name. This option is ignored when
snmp.enablecontextname has the value 0.

Monitoring from an SNMP Client
The base OIDs for RFC 2788 (http://www.faqs.org/rfcs/rfc2788.html) and RFC 2789
(http://www.faqs.org/rfcs/rfc2789.html) are:

• mib-2.27 = 1.3.6.1.2.1.27

Chapter 20
Monitoring from an SNMP Client

20-7

http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2789.html

• mib-2.28 = 1.3.6.1.2.1.28

Point your SNMP client at those two OIDs and access as the "public" SNMP community.

To load copies of the MIBs into your SNMP client, ASCII copies of the MIBs are located in the
MessagingServer_home/lib/config-templates directory under the file names rfc2788.mib and
rfc2789.mib. For directions on loading those MIBs into your SNMP client software, consult the
SNMP client software documentation. The SnmpAdminString data type used in those MIBs
may not be recognized by some older SNMP clients. In that case, use the equivalent files
rfc2248.mib and rfc2249.mib also found in the same directory.

SNMP Information from the Messaging Server
This section summarizes the Messaging Server information provided via SNMP.

For detailed information refer to the individual MIB tables in RFC 2788 (http://www.faqs.org/
rfcs/rfc2788.html) and RFC 2789 (http://www.faqs.org/rfcs/rfc2789.html). Note that
the RFC/MIB terminology refers to the messaging services (MTA, HTTP, and so on) as
applications (appl), Messaging Server network connections as associations (assoc), and MTA
channels as MTAgroups (mtaGroups).

On platforms where more than one instance of Messaging Server may be concurrently
monitored, there may then be multiple sets of MTAs and servers in the applTable, and multiple
MTAs in the other tables.

Note:

The cumulative values reported in the MIBs (for example, total messages delivered,
total IMAP connections, and so on) are reset to zero after a reboot.

Each site has different thresholds and significant monitoring values. A good SNMP client
allows you to do trend analysis and then send alerts when sudden deviations from historical
trends occur.

applTable
The applTable provides server information. It is a one-dimensional table with one row for the
MTA and an additional row for each of the following servers, if enabled: WebMail HTTP, IMAP,
POP, SMTP, and SMTP Submit. This table provides version information, uptime, current
operational status (up, down, congested), number of current connections, total accumulated
connections, and other related data.

Here is an example of data from applTable (mib-2.27.1.1).

applTable:

applName.1 = mailsrv-1 MTA on mailsrv-1.west.example.org (1)
applVersion.1 = 5.1
applUptime.1 = 7322 (2)
applOperStatus.1 = up (3)
applLastChange.1 = 7422 (2)
applInboundAssociations.1 = (5)
applOutboundAssociations.1 = (2)
applAccumulatedInboundAssociations.1 = 873
applAccumulatedOutboundAssociations.1 = 234

Chapter 20
SNMP Information from the Messaging Server

20-8

http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2788.html
http://www.faqs.org/rfcs/rfc2789.html

applLastInboundActivity.1 = 1054822 (2)
applLastOutboundActivity.1 = 1054222 (2)
applRejectedInboundAssociations.1 = 0 (4)
applFailedOutboundAssociations.1 = 17
applDescription.1 = Sun Java System Messaging Server 6.1
applName.2 1 = mailsrv-1 HTTP WebMail svr. mailsrv-1.example.org (1)
...
applName.3 = mailsrv-1 IMAP server on mailsrv-1.west.example.org
...
applName.4 = mailsrv-1 POP server on mailsrv-1.west.example.org
...
applName.5 = mailsrv-1 SMTP server on mailsrv-1.west.example.org
...
applName.6 = mailsrv-1 SMTP Submit server on mailsrv-1.west.example.org
...

Notes:

1. The application (.appl*) suffixes (.1, .2, and so on) are the row numbers, applIndex.
applIndex has the value 1 for the MTA, value 2 for the HTTP server, and so on. Thus, in
this example, the first row of the table provides data on the MTA, the second on the POP
server, and so on. The name after the equal sign is the name of the Messaging Server
instance being monitored. In this example, the instance name is mailsrv-1.

2. These are SNMP TimeStamp values and are the value of sysUpTime at the time of the
event. sysUpTime, in turn, is the count of hundredths of seconds since the SNMP master
agent was started.

3. The operational status of the HTTP, IMAP, POP, SMTP, and SMTP Submit servers is
determined by actually connecting to them by their configured TCP ports and performing a
simple operation using the appropriate protocol (for example, a HEAD request and
response for HTTP, a HELO command and response for SMTP, and so on). From this
connection attempt, the status-up (1), down (2), or congested (4)-of each server is
determined. Note that these probes appear as normal inbound connections to the servers
and contribute to the value of the applAccumulatedInboundAssociations MIB variable
for each server. For the MTA, the operational status is taken to be that of the Job
Controller. If the MTA is shown to be up, then the Job Controller is up. If the MTA is shown
to be down, then the Job Controller is down. This MTA operational status is independent of
the status of the MTA's Service Dispatcher. The operational status for the MTA only takes
on the value of up or down. Although the Job Controller does have a concept of
"congested," it is not indicated in the MTA status.

4. For the HTTP, IMAP, and POP servers the applRejectedInboundAssociations MIB
variable indicates the number of failed login attempts and not the number of rejected
inbound connection attempts.

applTable Usage

Monitoring server status (applOperStatus) for each of the listed applications is key to
monitoring each server.

If it has been a long time since the MTA last inbound activity as indicated by
applLastInboundActivity, then something may be broken preventing connections. If
applOperStatus=2 (down), then the monitored service is down. If applOperStatus=1 (up),
then the problem may be elsewhere.

Chapter 20
SNMP Information from the Messaging Server

20-9

assocTable
This table provides network connection information to the MTA. It is a two-dimensional table
providing information about each active network connection. Connection information is not
provided for other servers. Here is an example of data from applTable (mib-2.27.2.1).

assocTable:

assocRemoteApplication.1.1 = 129.146.198.167 (1)
assocApplicationProtocol.1.1 = applTCPProtoID.25 (2)
assocApplicationType.1.1 = peerinitiator(3) (3)
assocDuration.1.1 = 400 (4)
...

Notes: In the .x.y suffix (1.1), x is the application index, applIndex, and indicates which
application in the applTable is being reported on. In this case, the MTA. The y serves to
enumerate each of the connections for the application being reported on.

1. The source IP address of the remote SMTP client.

2. This is an OID indicating the protocol being used over the network connection.
aplTCPProtoID indicates the TCP protocol. The .n suffix indicates the TCP port in use
and .25 indicates SMTP which is the protocol spoken over TCP port 25.

3. It is not possible to know if the remote SMTP client is a user agent (UA) or another MTA.
As such, the subagent always reports peer-initiator; ua-initiator is never reported.

4. This is an SNMP TimeInterval and has units of hundredths of seconds. In this example,
the connection has been open for 4 seconds.

assocTable Usage

This table is used to diagnose active problems. For example, if you suddenly have 200,000
inbound connections, this table can let you know where they are coming from.

mtaTable
This is a one-dimensional table with one row for each MTA in the applTable. Each row gives
totals across all channels (referred to as groups) in that MTA for select variables from the
mtaGroupTable. Here is an example of data from applTable (mib-2.28.1.1).

mtaTable:

mtaReceivedMessages.1 = 172778
mtaStoredMessages.1 = 19
mtaTransmittedMessages.1 = 172815
mtaReceivedVolume.1 = 3817744
mtaStoredVolume.1 = 34
mtaTransmittedVolume.1 = 3791155
mtaReceivedRecipients.1 = 190055
mtaStoredRecipients.1 = 21
mtaTransmittedRecipients.1 = 3791134
mtaSuccessfulConvertedMessages.1 = 0 (1)
mtaFailedConvertedMessages.1 = 0
mtaLoopsDetected.1 = 0 (2)

Notes: The .x suffix (.1) provides the row number for this application in the applTable. In this
example, .1 indicates this data is for the first application in the applTable. Thus, this is data on
the MTA.

Chapter 20
SNMP Information from the Messaging Server

20-10

1. Only takes on non-zero values for the conversion channel.

2. Counts the number of .HELD message files currently stored in the MTA's message
queues.

mtaTable Usage

If mtaLoopsDetected is not zero, then there is a looping mail problem. Locate and diagnose
the .HELD files in the MTA queue to resolve the problem.

If the system does virus scanning with a conversion channel and rejects infected messages,
then mtaSuccessfulConvertedMessages gives a count of infected messages in addition to
other conversion failures.

mtaGroupTable
This two-dimensional table provides channel information for each MTA in the applTable. This
information includes such data as counts of stored (that is, queued) and delivered mail
messages. Monitoring the count of stored messages, mtaGroupStoredMessages, for each
channel is critical. When the value becomes abnormally large, mail is backing up in your
queues.

Here is an example of data from mtaGroupTable (mib-2.28.2.1).

mtaGroupTable:

mtaGroupName.1.1 = tcp_intranet 1
...
mtaGroupName.1.2 = ims-ms
...
mtaGroupName.1.3 = tcp_local
mtaGroupDescription.1.3 = mailsrv-1 MTA tcp_local channel
mtaGroupReceivedMessages.1.3 = 12154
mtaGroupRejectedMessages.1.3 = 0
mtaGroupStoredMessages.1.3 = 2
mtaGroupTransmittedMessages.1.3 = 12148
mtaGroupReceivedVolume.1.3 = 622135
mtaGroupStoredVolume.1.3 = 7
mtaGroupTransmittedVolume.1.3 = 619853
mtaGroupReceivedRecipients.1.3 = 33087
mtaGroupStoredRecipients.1.3 = 2
mtaGroupTransmittedRecipients.1.3 = 32817
mtaGroupOldestMessageStored.1.3 = 1103
mtaGroupInboundAssociations.1.3 = 5
mtaGroupOutboundAssociations.1.3 = 2
mtaGroupAccumulatedInboundAssociations.1.3 = 150262
mtaGroupAccumulatedOutboundAssociations.1.3 = 10970
mtaGroupLastInboundActivity.1.3 = 1054822
mtaGroupLastOutboundActivity.1.3 = 1054222
mtaGroupRejectedInboundAssociations.1.3 = 0
mtaGroupFailedOutboundAssociations.1.3 = 0
mtaGroupInboundRejectionReason.1.3 =
mtaGroupOutboundConnectFailureReason.1.3 =
mtaGroupScheduledRetry.1.3 = 0
mtaGroupMailProtocol.1.3 = applTCPProtoID.25
mtaGroupSuccessfulConvertedMessages.1.3 = 03 2
mtaGroupFailedConvertedMessages.1.3 = 0
mtaGroupCreationTime.1.3 = 0
mtaGroupHierarchy.1.3 = 0
mtaGroupOldestMessageId.1.3 = <01IFBV8AT8HYB4T6UA@red.iplanet.com>

Chapter 20
SNMP Information from the Messaging Server

20-11

mtaGroupLoopsDetected.1.3 = 0 3
mtaGroupLastOutboundAssociationAttempt.1.3 = 1054222

Notes: In the .x.y suffix (example: 1.1, 1.2. 1.3), x is the application index, applIndex, and
indicates which application in the applTable is being reported on. In this case, the MTA. The y
serves to enumerate each of the channels in the MTA. This enumeration index,
mtaGroupIndex, is also used in the mtaGroupAssociationTable and mtaGroupErrorTable
tables.

1. The name of the channel being reported on. In this case, the tcp_intranet channel.

2. Only takes on non-zero values for the conversion channel.

3. Counts the number of .HELD message files currently stored in this channel's message
queue.

mtaGroupTable Usage

Trend analysis on Rejected and Failed might be useful in determining potential channel
problems.

A sudden jump in the ratio of mtaGroupStoredVolume to mtaGroupStoredMessages could
mean that a large junk mail is bouncing around the queues.

A large jump in mtaGroupStoredMessages could indicate unsolicited bulk email is being sent
or that delivery is failing for some reason.

If the value of mtaGroupOldestMessageStored is greater than the value used for the
undeliverable message notification times (notices channel option) this may indicate a message
which cannot be processed even by bounce processing. Note that bounces are done nightly so
you want to use mtaGroupOldestMessageStored > (maximum age + 24 hours) as the test.

If mtaGroupLoopsDetected is greater than 0, a mail loop has been detected.

mtaGroupAssociationTable
This is a three-dimensional table whose entries are indices into the assocTable. For each MTA
in the applTable, there is a two-dimensional sub-table. This two-dimensional sub-table has a
row for each channel in the corresponding MTA. For each channel, there is an entry for each
active network connection which that channel has currently underway. The value of the entry is
the index into the assocTable (as indexed by the entry's value and the applIndex index of the
MTA being looked at). This indicated entry in the assocTable is a network connection held by
the channel.

In simple terms, the mtaGroupAssociationTable table correlates the network connections
shown in the assocTable with the responsible channels in the mtaGroupTable.

Here is an example of data from mtaGroupAssociationTable (mib-2.28.3.1).

mtaGroupAssociationTable:

mtaGroupAssociationIndex.1.3.1 = 1 1
mtaGroupAssociationIndex.1.3.2 = 2
mtaGroupAssociationIndex.1.3.3 = 3
mtaGroupAssociationIndex.1.3.4 = 4
mtaGroupAssociationIndex.1.3.5 = 5
mtaGroupAssociationIndex.1.3.6 = 6
mtaGroupAssociationIndex.1.3.7 = 7

Notes: In the .x.y.z suffix, x is the application index, applIndex, and indicates which
application in the applTable is being reported on. In this case, the MTA. The y indicates which

Chapter 20
SNMP Information from the Messaging Server

20-12

channel of the mtaGroupTable is being reported on. In this example, 3 indicates the tcp_local
channel. The z serves to enumerate the associations open to or from the channel.

• The value here is an index into the assocTable. Specifically, x and this value become,
respectively, the values of the applIndex and assocIndex indices into the assocTable. Or,
put differently, this is saying that (ignoring the applIndex) the first row of the assocTable
describes a network connection controlled by the tcp_local channel.

mtaGroupErrorTable
This is another three-dimensional table which gives the counts of temporary and permanent
errors encountered by each channel of each MTA while attempting delivery of messages.
Entries with index values of 4000000 are temporary errors while those with indices of 5000000
are permanent errors. Temporary errors result in the message being re-queued for later
delivery attempts. Permanent errors result in either the message being rejected or otherwise
returned as undeliverable.

Here is an example of data from mtaGroupErrorTable (mib-2.28.5.1).

mtaGroupErrorTable:

mtaGroupInboundErrorCount.1.1.4000000 1 = 0
mtaGroupInboundErrorCount.1.1.5000000 = 0
mtaGroupInternalErrorCount.1.1.4000000 = 0
mtaGroupInternalErrorCount.1.1.5000000 = 0
mtaGroupOutboundErrorCount.1.1.4000000 = 0
mtaGroupOutboundErrorCount.1.1.5000000 = 0
mtaGroupInboundErrorCount.1.2.4000000 1 = 0
...
mtaGroupInboundErrorCount.1.3.4000000 1 = 0
...

Notes:

• In the .x.y.z suffix, x is the application index, applIndex, and indicates which application in
the applTable is being reported on. In this case, the MTA. The y indicates which channel
of the mtaGroupTable is being reported on. In this example, 1 specifies the tcp_intranet
channel, 2 the ims-ms channel, and 3 the tcp_local channel. Finally, the z is either
4000000 or 5000000 and indicates, respectively, counts of temporary and permanent
errors encountered while attempting message deliveries for that channel.

mtaGroupErrorTable Usage

A large jump in error count may likely indicate an abnormal delivery problem. For instance, a
large jump for a tcp_ channel may indicate a DNS or network problem. A large jump for the
ims-ms channel may indicate a delivery problem to the message store (for example, a partition
is full, stored problem, and so on).

Chapter 20
SNMP Information from the Messaging Server

20-13

21
Short Message Service (SMS)

This chapter describes how to implement Short Message Service (SMS) in Unified
Configuration for Oracle Communications Messaging Server.

Introduction
Messaging Server implements email-to-mobile and mobile-to-email messaging using a Short
Message Service (SMS). SMS can be configured to be either one-way (email-to-mobile only)
or two-way (both email-to-mobile and mobile-to-email). To enable one-way service only, you
must add and configure the SMS channel. To enable two-way service, you must add and
configure the SMS channel, and in addition, configure the SMS Gateway Server.

For both one- and two-way SMS, the generated SMS messages are submitted to a Short
Message Service Center (SMSC) using the Short Message Peer to Peer (SMPP) protocol.
Specifically, the SMSC must provide a V3.4 or later SMPP server that supports TCP/IP.

Figure 21-1 illustrates the logical flow of messages for both one-way and two-way SMS.

Figure 21-1 Logical Flow For One-Way and Two-Way SMS

One-Way SMS
To enable one-way service, the Messaging Server implements an SMPP client (the MTA SMS
channel) that communicates with remote SMSCs. The SMS channel converts enqueued email
messages to SMS messages as described in "The Email to SMS Conversion Process" of
multipart MIME messages as well as character set translation issues.

Operating in this capacity, the SMS channel functions as an (SMPP) External Short Message
Entity (ESME).

21-1

Two-Way SMS
Two-Way SMS enables the mail server not only to send email to remote devices, but allows for
receiving replies from the remote devices and for remote device email origination.

Enabling two-way SMS service requires both the MTA SMS channel (SMPP client), as
explained in the previous topic, and the SMS Gateway Server. Messaging Server installs an
SMS Gateway Server as part of its general installation process, which you must then
configure. The SMS Gateway Server performs two functions:

• SMPP relay The SMS Gateway Server acts as a transparent SMPP client between the
MTA SMS channel and SMSCs. However, in addition, while acting as a relay, the SMS
Gateway Server generates unique SMS source addresses for relayed messages, and
saves the message IDs returned by the remote SMSCs for later correlation with SMS
notification messages.

• SMPP server The SMS Gateway Server acts as an SMPP server to receive mobile
originated SMS messages, replies to prior email messages, and SMS notifications. The
SMS Gateway Server extracts destination email addresses from the SMS messages using
profiles that define the conversion process. Profiles also describe how to handle
notification messages returned by remote SMSCs in response to previously sent email-to-
mobile messages.

Note:

Messaging Server does not support the two-way SMS on the Windows platform.

Requirements
This manual assumes that you have read Logica CMG's SMPP specification, and the SMPP
documentation for your SMSC.

In order to implement SMS, the SMSC must support SMPP V3.4, or later, over TCP/IP and
there must be TCP/IP connectivity between the host running Messaging Server and the SMSC.

See "SMS Gateway Server Storage Requirements" for storage planning information for the
SMS Gateway Server.

SMS Channel Theory of Operation
The SMS channel is a multi-threaded channel which converts queued email messages to SMS
messages and then submits them for delivery to an SMSC.

Directing Email to the Channel
When the SMS channel is configured as per "SMS Channel Configuration" purposes of
discussion, let us assume that the host name sms.example.org is a host name associated
with the channel. In that case, email is directed to the channel with an address of the form:

local-part@sms.example.org

in which local-part is either the SMS destination address (for example, a wireless phone
number, pager ID, etc.) or an attribute-value pair list in the format:

Chapter 21
SMS Channel Theory of Operation

21-2

/attribute1=value1/attribute2=value2/.../@sms.example.org

The recognized attribute names and their usages are given in Table 21-1. These attributes
allow for per-recipient control over some channel options.

Table 21-1 SMS Attributes

Attribute Attribute Value and Usage

ID SMS destination address (for example, wireless phone number, pager ID, etc.) to
direct the SMS message to. This attribute and associated value must be present.

FROM SMS source address. Ignored when option USE_HEADER_FROM=0.

FROM_NPI Use the specified NPI value. Ignored when option USE_HEADER_FROM=0.

FROM_TON Use the specified TON value. Ignored when option USE_HEADER_FROM=0.

MAXLEN The maximum, total bytes (that is, eight bit bytes) to place into the generated SMS
message or messages for this recipient. The lower value of either MAXLEN and the
value specified by the "MAX_MESSAGE_SIZE" channel option is used.

MAXPAGES The maximum number of SMS messages to split the email message into for this
recipient. The lower value of either MAXPAGES and the value specified by the
"MAX_PAGES_PER_MESSAGE" channel option is used.

NPI Specify a Numeric Plan Indicator (NPI) value for the destination SMS address
specified with the ID attribute. See the description of the
"DEFAULT_DESTINATION_NPI" channel option for information on the accepted
values for this attribute. When this attribute is used, its value overrides the value given
by the DEFAULT_DESTINATION_NPI channel option.

PAGELEN Maximum number of bytes to place into a single SMS message for this recipient. The
minimum of this value and that specified with the "MAX_PAGE_SIZE" channel option
is used.

TO Synonym for ID.

TO_NPI Synonym for NPI.

TO_TON Synonym for TON.

TON Specify a Type of Number (TON) value for the destination SMS address given with the
ID attribute. See the description of the "DEFAULT_DESTINATION_TON" channel
option for information on the accepted values for this attribute. When this attribute is
used, its value overrides the value given by the DEFAULT_DESTINATION_TON
channel option.

Some example addresses:

123456@sms.example.org
/id=123456/@sms.example.org
/id=123456/maxlen=100/@sms.example.org
/id=123456/maxpages=1/@sms.example.org

See "Site-defined Address Validity Checks and Translations" for information on performing
translations, validity checks, and other operations on the SMS destination address portion of
the email address.

The Email to SMS Conversion Process
In order for email to be sent to a remote site, email must be converted to SMS messages that
can be understood by the remote SMSCs. This section describes the process of converting an
email message queued to the SMS channel to one or more SMS messages. As described
below, options allow control over the maximum number of SMS messages generated, the

Chapter 21
SMS Channel Theory of Operation

21-3

maximum total length of those SMS messages, and the maximum size of any single SMS
message. Only text parts (that is, MIME text content types) from the email message are used
and the maximum number of parts converted may also be controlled.

Character sets used in the email message's header lines and text parts are all converted to
Unicode and then converted to an appropriate SMS character set.

When there is no SMS_TEXT mapping table (see "Site-defined Text Conversions") an email
message queued to the SMS channel receives the processing illustrated in Figure 21-2 and
Figure 21-3.

Figure 21-2 Channel Email Processing

Chapter 21
SMS Channel Theory of Operation

21-4

Figure 21-3 SMS Channel Email Processing (continued)

The following steps correspond to the numbered boxes in Figure 21-2:

1. An empty output buffer is started. The character set used for the buffer is Unicode.

2. The email message's originator address is taken from one of the following five sources,
shown in decreasing order of preference:

1. Resent-from:
2. From:
3. Resent-sender:
4. Sender:
5. Envelope From:

If the originator address is an empty string, then the value of the "FROM_NONE" channel
option is instead appended to the buffer. If, however, the originator address is a non-empty
string, then the result of processing the "FROM_FORMAT" channel option, and the value
of the LINE_STOP channel option are appended to the output buffer.

3. If a Subject: header line is not present or is empty, then the value of the
"SUBJECT_NONE" option is appended to the output buffer. Otherwise, the result of
processing the "SUBJECT_FORMAT" option, and the value of the "LINE_STOP" channel
option are appended to the output buffer.

4. If there are no text message parts, then the value of the "NO_MESSAGE" channel option
is appended to the output buffer. If there are text message parts, then the value of the
"CONTENT_PREFIX" channel option is appended to the output buffer. Non-text message
parts are discarded.

Chapter 21
SMS Channel Theory of Operation

21-5

5. For each text part, while the MAX_MESSAGE_PARTS limit has not been reached, the text
part is decoded to Unicode and appended to the buffer, along with the value of the
LINE_STOP channel option.

6. The resulting output buffer is then converted from Unicode to either the SMSC's default
character set or UCS2 (UTF-16). The SMSC's default character set is specified with the
"SMSC_DEFAULT_CHARSET" option.

7. After being converted, it is then truncated to not exceed "MAX_MESSAGE_SIZE" bytes.

8. The converted string from "The Email to SMS Conversion Process" is then broken into one
or more SMS messages, no single SMS message longer than MAX_PAGE_SIZE bytes. At
most, "MAX_PAGES_PER_MESSAGE" SMS messages will be generated.

Note:

As an email message may have multiple recipients, Step6 through Step 8 may
need to be done for each recipient address which makes use of the MAXLEN,
MAXPAGES, or PAGELEN attributes described in "Directing Email to the
Channel".

Sample Email Message Processing
For example, with the channel's default settings, the email message:

From: John Doe
To: 1234567@sms.example.org
Subject: Today's meeting
Date: Fri, 26 March 2001 08:17

The staff meeting is at 14:30 today in the big conference room.

Would be converted to the SMS message:

jdoe@example.org (Today's meeting) The staff meeting is at 14:30 today in the big
conference room.

A different set of option settings, that follows:

CONTENT_PREFIX=Msg:
FROM_FORMAT=From:${pa}
SUBJECT_FORMAT=Subj:$s

would instead produce:

From:John Doe Subj:Today's meeting Msg:The staff meeting is at 14:30 today in the big
conference room.

The SMS Message Submission Process
Once an email message has been converted to one or more SMS messages, with possibly
different sets for each recipient, the SMS messages are then submitted to the destination
SMSC. The submissions are effected using SMPP V3.4 over TCP/IP. The hostname
(SMPP_SERVER) of the SMPP server is taken to be the official host name associated with the
SMS channel; the TCP port (SMPP_PORT) to use is specified with the port channel option.

When there are messages to process, the channel is started. The channel binds to the SMPP
server as a transmitter, presenting the credentials specified with the ESME_ channel options

Chapter 21
SMS Channel Theory of Operation

21-6

described in "SMPP Options". Table 21-2 lists the fields set in a BIND_TRANSMITTER PDU
(Protocol Data Unit), and gives their values:

Table 21-2 Fields in Generated in a BIND_TRANSMITTER PDU

Field Channel Options Value

system_id ESME_SYSTEM_ID Default value is an empty string.

password ESME_PASSWORD Default value is an empty string.

system_type ESME_SYSTEM_TYPE Default value is an empty string.

interface_version n/a 0x34 indicating SMPP V3.4.

addr_ton ESME_ADDRESS_TON Default value is 0x00 indicating an unknown TON.

addr_npi ESME_ADDRESS_NPI Default value is 0x00 indicating an unknown NPI.

addr_range ESME_IP_ADDRESS Default value is an empty string.

Note that the channel is multithreaded. Depending on how much mail there is to send, the
channel may have multiple dequeue threads running. (There can even be multiple channel
processes running.) Each thread does a BIND_TRANSMITTER and then on that TCP/IP
connection, sends all of the SMS messages it has to send, and then sends an UNBIND, and
then closes the connection. No attempt is made to hold a connection open for a period of idle
time for potential reuse. If the remote SMPP server sends back a throttle error, then an
UNBIND is issued, the TCP/IP connection is closed, and a new connection and BIND
established. It behaves similarly if the remote SMPP server sends an UNBIND before it is
finished sending its SMS messages.

The SMS messages are then submitted using SMPP SUBMIT_SM PDUs. If a permanent error
is returned (for example, ESME_RINVDSTADR), then the email message is returned as
undeliverable. If a temporary error is returned, then the email message is re-enqueued for a
later delivery attempt. To clarify, a permanent error is one for which the condition is likely to
exist indefinitely and for which repeated delivery attempts will have no positive effect, such as
invalid SMS destination addresses. Whereas, a temporary error is one for which the condition
is likely to not exist in the near future, such as a server down or server congested condition.

If the USE_HEADER_FROM option has the value 1, then the source address for the submitted
SMS message is set. The value used is derived from the originating email message and is
chosen to be the most likely (email) address to which any replies should be directed.
Accordingly, the source address taken from one of the following seven sources, shown in
decreasing order of preference:

1. Resent-reply-to:
2. Resent-from:
3. Reply-to:
4. From:
5. Resent-sender:
6. Sender:
7. Envelope From:

Note that the Resent-reply-to: and Reply-to: header lines are only considered if the
"USE_HEADER_REPLY_TO" option has the value 1. The default value is the value 0. As such,
only items 4, 6, and 7 are considered by the default configuration. Finally, since the source
address in an SMS message is limited to 20 bytes, the source address chosen will be
truncated if it exceeds that limit.

Table 21-3 shows the mandatory fields set in a SUBMIT_SM PDU:

Chapter 21
SMS Channel Theory of Operation

21-7

Table 21-3 Mandatory Fields in Generated SUBMIT_SM PDUs

Field Value

service_type "DEFAULT_SERVICE_TYPE" channel option; default value is an empty
string.

source_addr_ton "DEFAULT_SOURCE_TON" channel option; if
USE_HEADER_FROM=1, then this field is usually forced to the value
0x05 indicating an alphanumeric TON; otherwise, the default value is
0x01 indicating an international TON.

source_addr_npi "DEFAULT_SOURCE_NPI" channel option; default value is 0x00.

source_addr "DEFAULT_SOURCE_ADDRESS" channel option if
USE_HEADER_FROM=0; otherwise, an alphanumeric string
representing the originator of the email message.

dest_addr_ton TON addressing attribute or "DEFAULT_DESTINATION_TON" channel
option; default value is 0x01 indicating an international TON.

dest_addr_npi NPI addressing attribute or "DEFAULT_SOURCE_NPI" channel option;
default value is 0x00 indicating an unknown NPI.

dest_addr Destination SMS address derived from the local part of the email
envelope To: address; see "Directing Email to the Channel".

esm_class For one-way SMS, set to 0x03, indicating store and forward mode,
default SMSC message type, and do not set reply path. For a two-way
MSM message, set to 0x83.

protocol_id 0x00; unused for CDMA and TDMA; for GSM, 0x00 indicates no
Internet, but SME-to-SME protocol.

priority_flag 0x00 for GSM & CDMA and 0x01 for TDMA, all indicating normal priority;
See the description of the "DEFAULT_PRIORITY" channel option.

schedule_delivery_time Empty string indicating immediate delivery.

validity_period "DEFAULT_VALIDITY_PERIOD" channel option; default value is an
empty string indicating that the SMSC's default should be used.

registered_delivery 0x00 indicating no registered delivery.

replace_if_present_flag 0x00 indicating that any previous SMS messages should not be
replaced.

data_coding 0x00 for the SMSC's default character set; 0x08 for the UCS2 character
set.

sm_default_msg_id 0x00 indicating not to use a pre-defined message.

sm_length Length and content of the SMS message; see "The Email to SMS
Conversion Process".

short_message Length and content of the SMS message; see "The Email to SMS
Conversion Process".

Table 21-4 shows the optional fields in a SUBMIT_SM PDU:

Table 21-4 Optional Fields in Generated SUBMIT_SM PDUs.

Field Value

privacy See the description of the "DEFAULT_PRIVACY" channel option;
default is to not provide this field unless the email message has a
Sensitivity: header line

Chapter 21
SMS Channel Theory of Operation

21-8

Table 21-4 (Cont.) Optional Fields in Generated SUBMIT_SM PDUs.

Field Value

sar_refnum See the description of the "USE_SAR" channel option; default is to not
provide these fields

sar_total See sar_refnum above.

sar_seqnum See sar_refnum above.

The channel remains bound to the SMPP server until either it has no more SMS messages to
submit (the message queue is empty), or "MAX_PAGES_PER_BIND" has been exceeded. In
the latter case, a new connection is made and bind operation performed if there remain further
SMS messages to send.

Note that the SMS channel is multithreaded. Each processing thread in the channel maintains
its own TCP connection with the SMPP server. For example, if there are three processing
threads each with SMS messages to submit, then the channel will have three open TCP
connections to the SMPP server. Each connection will bind to the SMPP server as a
transmitter. Moreover, any given processing thread will only have one outstanding SMS
submission at a time. That is, a given thread will submit an SMS message, then wait for the
submission response (that is, SUBMIT_SM_RESP PDU) before submitting another SMS
message.

Site-defined Address Validity Checks and Translations
Sites may want to apply validity checks or translations to SMS destination addresses encoded
in the recipient email addresses described in "Directing Email to the Channel".

• Strip non-numeric characters (for example, translating 800.555.1212 to 8005551212)

• Prepend a prefix (for example, translating 8005551212 to +18005551212)

• Validate for correctness (for example, 123 is too short)

The first two tasks can be done specifically with the "DESTINATION_ADDRESS_NUMERIC"
and "DESTINATION_ADDRESS_PREFIX" channel options. In general, all three of these tasks,
and others can be implemented using mapping tables: either mapping table callouts in the
rewrite rules or by means of a FORWARD mapping table. Using a mapping table callout in the
rewrite rules will afford the most flexibility, including the ability to reject the address with a site-
defined error response. The remainder of this section will focus on just such an approach -
using a mapping table callout from the rewrite rules.

Let us suppose that destination addresses need to be numeric only, be 10 or 11 digits long,
and be prefixed with the string "+1". This can be accomplished with the following rewrite rules:

sms.example.org ${X-REWRITE-SMS-ADDRESS,$U}@sms.example.org
sms.example.org $?Invalid SMS address

The first rewrite rule above calls out to the site-define mapping table named X-REWRITE-
SMS-ADDRESS. That mapping table is passed the local part of the email address for
inspection. If the mapping process decides that the local part is acceptable, then the address is
accepted and rewritten to the SMS channel. If the mapping process does not accept the local
part, then the next rewrite rule is applied. Since it is a $? rewrite rule, the address is rejected
with the error text "Invalid SMS address".

Chapter 21
SMS Channel Theory of Operation

21-9

The X-REWRITE-SMS-ADDRESS mapping table is shown below. It performs the necessary
validation steps for local parts in either attribute-value pair list format or just a raw SMS
destination address.

X-VALIDATE-SMS-ADDRESS

! Iteratively strip any non-numeric characters
$_*$[$ -/:-~]%* $0$2$R
! Accept the address if it is of the form 1nnnnnnnnnn or nnnnnnnnnn
! In accepting it, ensure that we output +1nnnnnnnnnn
1%%%%%%%%%% +1$0$1$2$3$4$5$6$7$8$9$Y
%%%%%%%%%% +1$0$1$2$3$4$5$6$7$8$9$Y
! We didn’t accept it and consequently it’s invalid
* $N

X-REWRITE-SMS-ADDRESS
/id=$_/* C0/id=$|X-VALIDATE-SMS-ADDRESS;$1|/2Y$E
/id=$_/* $N
* C|X-VALIDATE-SMS-ADDRESS;$0|$Y$E
* $N

With the above set up, be sure that "DESTINATION_ADDRESS_NUMERIC" option has the
value 0 (the default). Otherwise, the "+" will be stripped from the SMS destination address.

Site-defined Text Conversions
Sites may customize Steps 1 - 6 described in "The Email to SMS Conversion Process" using a
mapping table.

The name of the mapping table should be SMS_Channel_TEXT where SMS_Channel is the
name of the SMS channel; for example, SMS_TEXT if the channel is named sms or
SMS_MWAY_TEXT if the channel is named sms_mway.

Two types of entries may be made in this mapping table. However, before explaining the
format of those entries, let it be made clear that an understanding of how to use mappings is
essential in order to understand how to construct and use these entries. An example mapping
table is given after the description of these two types of entries.

Now, the two types of entries are:

• Message Header Entries

• Message Body Entries

Message Header Entries
These entries specify which message header lines should be included in an SMS message
and how they should be abbreviated or otherwise converted. Only if a header line is
successfully mapped to a string of non-zero length by one of these entries will it be included in
the SMS message being generated. Each entry has the format

H|patternreplacement-text

If a message header line matches the pattern then it will be replaced with the replacement text
replacement-text using the mapping's pattern matching and string substitution facilities. The
final result of mapping the header line will then be included in the SMS message provided that
the metacharacter $Y was specified in the replacement text. If a header line does not match
any pattern string, if it maps to a string of length zero, or if the $Y metacharacter is not
specified in the replacement text, then the header line will be omitted from the SMS message.
The two entries:

Chapter 21
SMS Channel Theory of Operation

21-10

H|From:* F:0Y
H|Subject:* S:0Y

cause the From: and Subject: header lines to be included in SMS messages with From: and
Subject: abbreviated as F: and S:. The entries:

H|Date:* H|D:0R$Y
H|D:*,*%19%%*:*:* H|D:0 $5:$6RY

cause the Date: header line to be accepted and mapped such that, for instance, the header
line

Date: Wed, 16 Dec 1992 16:13:27 -0700 (PDT)

will be converted to

D: Wed 16:13

Very complicated, iterative mappings may be built. Sites wanting to set up custom filters first
need to understand how mappings work. The H| in the right-hand-side of the entry may be
omitted, if desired. The H| is allowed in that side so as to cut down on the number of table
entries required by sets of iterative mappings.

Message Body Entries
Body mappings are not supported.

Example SMS Mapping Table
See "Example SMS_TEXT Mapping Table" for an example SMS_TEXT mapping table. The
numbers inside parentheses at the end of each line correspond to the item numbers in the
section titled "Explanatory Text" that follows this table.

Example SMS_TEXT Mapping Table

SMS_TEXT

H|From:* H|F:0R$Y (1)
H|Subject:* H|S:0R$Y (1)
H|F:*<*>* H|F:1R$Y ()
H|F:*(*)* H|F:$0$2RY (2)
H|F:*"*"* H|F:$0$2RY (3)
H|F:*@* H|F:0R$Y (4)
H|%:$ * H|$0:$1RY (5)
H|%:*$ H|$0:$1RY (5)
H|%:*$ $ * H|$0:$1$ 2R$Y (6)
B|*--* B|$0-$1$R (7)
B|*..* B|$0.$1$R (7)
B|*!!* B|$0!$1$R (7)
B|*??* B|$0?$1$R (7)
B|*$ $ * B|0 1R (6)
B|$ * B|0R (5)
B|*$ B|0R (5)

Explanatory Text

The entries in the example SMS_TEXT mapping table above are explained below:

In the example above, the metacharacter $R is used to implement and control iterative
application of the mappings. By iterating on these mappings, powerful filtering is achieved. For
instance, the simple mappings to remove a single leading or trailing space (6) or reduce two

Chapter 21
SMS Channel Theory of Operation

21-11

spaces to a single space (7) become, when taken as a whole, a filter which strips all leading
and trailing spaces and reduces all consecutive multiple spaces to a single space. Such
filtering helps reduce the size of each SMS message.

1. These two entries cause From: and Subject: header lines to be included in an SMS
message. From: and Subject: are abbreviated as, respectively, F: and S:. Some of the
other entries may have further effects on From: and Subject: header lines.

This entry will reduce a From: header line containing a <...> pattern to only the text within
the angle brackets. For example:

F: "John C. Doe" <jdoe@example.org> (Hello) will be replaced with:F:
jdoe@example.org

2. This entry will remove, inclusively, everything inside of a (...) pattern in a From: header
line. For example:

F: "John C. Doe" <jdoe@example.org> (Hello) will be replaced with:F: "John C. Doe"
<jdoe@example.org>

3. This entry will remove, inclusively, everything inside of a "..." pattern in a From: header
line. For example:

F: "John C. Doe" <jdoe@example.org> (Hello) will be replaced with:F:
<jdoe@example.org> (Hello)

4. This entry will remove, inclusively, everything to the right of an at-sign, @, in a From:
header line. For example:

F: "John C. Doe" <jdoe@example.org> (Hello) will be replaced with:F: "John C. Doe"
<jdoe@

5. These four entries remove leading and trailing spaces from lines in the message header
and body.

6. These two entries reduce two spaces to a single space in lines of the message header and
body.

7. These four entries reduce double dashes, periods, exclamation and question marks to
single occurrences of the matching character. Again, this helps save bytes in an SMS
message.

The order of the entries is very important. For instance, with the given ordering, the body of the
message From: header line:

From: "John C. Doe" (Hello)

will be reduced to:

jdoe

The steps taken to arrive at this are as follows:

1. We begin with the From: header line:

From: "John C. Doe" (Hello)

The pattern in the first mapping entry matches this and produces the result:

F: "John C. Doe" (Hello)

The $R metacharacter in the result string causes the result string to be remapped.

2. The mapping is applied to the result string of the last step. This produces:

F: jdoe@example.org

Chapter 21
SMS Channel Theory of Operation

21-12

The $R in the mapping causes the entire set of mappings to be re-applied to the result of
this step.

3. Next, the mapping is applied producing:

F: jdoe The $R in the mapping causes the entire set of mappings to be re-applied to the
result of this step.

4. Next, the mapping is applied producing:

F:jdoe The $R in the mapping causes the entire set of mappings to be re-applied to the
result of this step.

5. Since no other entries match, the final result string:

F:jdoe is incorporated into the SMS message.

Note:

The imsimta test -mapping utility may be used to test a mapping table. For
instance,

imsimta test -mapping -noimage_file -mapping_file=test.txt
Enter table name: SMS_TEXT
Input string: H|From: "John C. Doe" (Hello)
Output string: H|F:jdoe
Output flags: [0,1,2,89]
Input string: ^D

For further details, see the imsimta test utility. See Messaging Server Reference
for more information on utility.

SMS Channel Configuration
This section gives directions on how to set up the SMS channel for both one-way (email-to-
mobile) and two-way (email-to-mobile and mobile-to-email) functionality. The SMS channel is
set up the same for both one-way and two-way functionality, with the exceptions noted in
"Configuring the SMS Channel for Two-Way SMS" the section.

Adding an SMS Channel
Two steps are required to add an SMS channel to a Messaging Server configuration:

1. Adding the Channel Definition and Rewrite Rules.

2. Setting SMS Channel Options.

While there are no channel options which must be set in all situations, it is likely that one or
more of the following options may need to be set:

• ESME_PASSWORD

• ESME_SYSTEM_ID

• MAX_PAGE_SIZE

• DEFAULT_SOURCE_TON

• DEFAULT_DESTINATION_TON

Chapter 21
SMS Channel Configuration

21-13

As described, the SMPP server's hostname or IP address and TCP port must be set with
channel options.

You may configure more than one SMS channel, giving different characteristics to different
SMS channels. See "Adding Additional SMS Channels" for further information on the use of
multiple SMS channels.

Note for the instructions that follow: if you change channel definitions or rewrite rules, you must
recompile.

Note also that the time before a channel change takes effect can differ depending on what the
change is. Many channel option changes take effect in all channels started since the change
was made, which may seem almost instantaneous since the Job Controller is often starting
new channels. Some of the changes don't take effect until you recompile and restart the SMTP
server. These options are processed as a message is enqueued to the channel and not when
the channel itself runs.

Adding the Channel Definition and Rewrite Rules
To add the channel definition and rewrite rules, do the following:

To Add Channel Definition and Rewrite Rules
1. Before adding an SMS channel to the MTA's configuration, pick a name for the channel.

The name of the channel may be either sms or sms_x where x is any case-insensitive
string whose length is between one and thirty-six bytes. For example, sms_mway.

2. To add the channel definition, run msconfig edit channels. At the bottom of the channel
definitions, add a blank line followed by the two lines:

channel-name port _p_ threaddepth _t_ \ backoff "pt2m" "pt5m" "pt10m" "pt30m"
notices 1
smpp-host-name

where channel-name is the name you chose for the channel, p is the TCP port the SMPP
server listens on, t is the maximum simultaneous number of SMPP server connections per
delivery process, and smpp-host-name is the host name of the system running the SMPP
server. For example, you might specify a channel definition as follows:

sms_mway port 55555 threaddepth 20 \
backoff "pt2m" "pt5m" "pt10m" "pt30m" notices 1
smpp.example.org

See "Controlling the Number of Simultaneous Connections" for instructions on how to
calculate threaddepth.

See "Adjusting the Frequency of Delivery Retries" for a discussion of the backoff and
notices channel options.

If you want to specify an IP address rather than a host name, for smpp-host-name,
specify a domain literal. For example, if the IP address is 127.0.0.1, then specify
[127.0.0.1] for smpp-host-name. Alternatively, consider using the "SMPP_SERVER"
channel option.

Note:

The use of the master channel option is ignored if present.

Chapter 21
SMS Channel Configuration

21-14

3. Once the channel definition has been added, run msconfig edit rewrite and add a rewrite
rule in this format:

smpp-host-name$u@smpp-host-name

For example,smpp.example.org $u@smpp.example.org

4. Save the changes.

5. Recompile the configuration with the imsimta cnbuild command.

6. Restart the SMTP server with the imsimta restart dispatcher command.

7. With the above configuration, email messages are directed to the channel by addressing
them to id@smpp-host-name (for example, 123456@smpp.example.org).

See "The Email to SMS Conversion Process" for further information on addressing.

8. Optionally, if you want to hide the SMPP server's host name from users or associate other
host names with the same channel, then add additional rewrite rules. For instance, to
associate host-name-1 and host-name-2 with the channel, add the following to rewrite
rules:

host-name-1 $U%host-name-1@smpp-host-name
host-name-2 $U%host-name-2@smpp-host-name

For example, if the SMPP server's host name is smpp.example.org but you want users to
address email to id@sms.example.com, then add the rewrite
rule:sms.example.com $U%sms.example.com@smpp.example.org

Note that the "SMPP_SERVER" and "SMPP_PORT" channel options will override the
channel's official host name and port channel option settings. When the SMPP_PORT
option is used, it is not necessary to also use the port option. The advantage of using
these two options is that they can be put into effect and subsequently changed without
needing to recompile the configuration. An additional use of the SMPP_SERVER option is
described in the "Adding Additional SMS Channels" section.

Controlling the Number of Simultaneous Connections
The threaddepth channel option controls the number of messages to assign to each delivery
thread within a delivery process. To calculate the total number of concurrent connections
allowed, multiply the values of the two following options: SMPP_MAX_CONNECTIONS and
job_limit (SMPP_MAX_CONNECTIONS * job_limit). The "SMPP_MAX_CONNECTIONS"
option controls the maximum number of delivery threads in a delivery process. And, the
job_limit option, for the Job Controller processing pool in which the channel is run, controls
the maximum number of simultaneous delivery processes.

To limit the total number of concurrent connections, you must adjust appropriately either or
both of these options. For instance, if the remote SMPP server allows only a single connection,
then both SMPP_MAX_CONNECTIONS and job_limit must be set to 1. When adjusting the
values, it's preferable to allow job_limit to exceed 1.

Setting SMS Channel Options
In general, a channel options contain site-specific options required for the operation of the
channel. Channel options are not required for SMS. If you determine that some are necessary
for your installation, set them using msconfig. For example:

msconfig
msconfig> set channel:sms_mway.options.profile GSM
msconfig# set channel:sms_mway.options.smsc_default_charset iso-8859-1

Chapter 21
SMS Channel Configuration

21-15

msconfig# set channel:sms_mway.options.use_ucs2 1
msconfig# write

See "Available Options" for a list of available SMS channel options and a description of each.

Available Options
The SMS channel contains several options which divide into six broad categories:

• Email to SMS conversion: Options which control the email to SMS conversion process.

• SMS Gateway Server Option: Gateway profile option.

• SMS fields: Options which control SMS-specific fields in generated SMS messages.

• SMPP protocol: Options associated with the use of the SMPP protocol over TCP/IP.

• Localization: Options which allow for localization of text fields inserted into SMS messages.

• Miscellaneous: Debug and logging options.

These options are summarized in Table 21-5, and are described more fully in the sections that
follow.

Table 21-5 SMS Channel Options

Option Description Default

Email to SMS Conversion - -

GATEWAY_NOTIFICATIONS Specify whether or not to convert email notification messages
to SMS messages.

0

MAX_MESSAGE_PARTS Max. number of message parts to extract from an email
message.

2

MAX_MESSAGE_SIZE Maximum number of bytes to extract from an email message. 960

MAX_PAGE_SIZE Maximum number of bytes to put into a single SMS message. 160

MAX_PAGES_PER_MESSAGE Max. number of SMS messages to break an email message
into.

6

ROUTE_TO Route SMS messages to the specified IP host name. NA

SMSC_DEFAULT_CHARSET The default character set used by the SMSC. US-ASCII

USE_HEADER_FROM Set the SMS source address. 0

USE_HEADER_PRIORITY Control the use of priority information from the email
message's header.

1

USE_HEADER_REPLY_TO Control the use of Reply-to: header lines when generating
SMS source addresses.

0

USE_HEADER_SENSITIVITY Control the use of privacy information from the email
message's header.

1

USE_UCS2 Use the UCS2 character set in SMS messages when
applicable.

1

SMS Gateway Server Option - -

GATEWAY_PROFILE Match the gateway profile name configured in the SMS
Gateway Server's configuration file, sms_gateway.cnf.

NA

SMS Fields Options - -

DEFAULT_DESTINATION_NPI Default NPI for SMS destination addresses. 0x00

DEFAULT_DESTINATION_TON Default TON for SMS destination addresses. 0x01

Chapter 21
SMS Channel Configuration

21-16

Table 21-5 (Cont.) SMS Channel Options

Option Description Default

DEFAULT_PRIORITY Default priority setting for SMS messages. 0=GSM,
CDMA1=TDMA

DEFAULT_PRIVACY Default privacy value flag for SMS messages. -1

DEFAULT_SERVICE_TYPE SMS application service associated with submitted SMS
messages.

NA

DEFAULT_SOURCE_ADDRESS Default SMS source address. 0

DEFAULT_SOURCE_NPI Default NPI for SMS source addresses. 0x00

DEFAULT_SOURCE_TON Default TON for SMS source addresses. 0x01

DEFAULT_VALIDITY_PERIOD Default validity period for SMS messages. NA

DESTINATION_ADDRESS_NUMER
IC

Reduce the destination SMS address to only the characters 0
- 9.

0

DESTINATION_ADDRESS_PREFIX Text string to prefix destination SMS addresses with. N/A

PROFILE SMS profile to use. GSM

USE_SAR Sequence multiple SMS messages using the SMS sar_
fields.

0

SMPP Protocol Options - -

ESME_ADDRESS_NPI ESME NPI to specify when binding to the SMPP server. 0x00

ESME_ADDRESS_TON ESME TON to specify when binding to the SMPP server. 0x00

ESME_IP_ADDRESS IP address of the host running Messaging Server. NA

ESME_PASSWORD Password to present when binding to the SMPP server. NA

ESME_SYSTEM_ID System identification to present to the SMSC when binding. NA

ESME_SYSTEM_TYPE System type to present to the SMSC when binding. NA

MAX_PAGES_PER_BIND Maximum number of SMS messages to submit during a
single session with an SMPP server.

1024

REVERSE_ORDER Transmission sequence of multi-part SMS messages. 0

SMPP_MAX_CONNECTIONS Maximum number of simultaneous SMPP server
connections.

20

SMPP_PORT For one-way SMS, TCP port the SMPP server listens on. For
two-way SMS, same TCP port used for the LISTEN_PORT
for the SMPP relay.

NA

SMPP_SERVER For one-way SMS, host name of the SMPP server to connect
to.For two-way SMS, set to point to the host name or IP
address of the SMS Gateway server. If using the SMPP
relay's LISTEN_INTERFACE_ADDRESS option, then be
sure to use the host name or IP address associated with the
specified network interface address.

NA

TIMEOUT Timeout for completion of reads and writes with the SMPP
server.

30

Localization Options - -

CONTENT_PREFIX Text to introduce the content of the email message. Msg:

DSN_DELAYED_FORMAT Formatting string for delivery delay notifications. an empty string

DSN_FAILED_FORMAT Formatting string for delivery failure notifications. see description

Chapter 21
SMS Channel Configuration

21-17

Table 21-5 (Cont.) SMS Channel Options

Option Description Default

DSN_RELAYED_FORMAT Formatting string for relay notifications. see description

DSN_SUCCESS_FORMAT Formatting string to successful delivery notifications. see description

FROM_FORMAT Text to display indicating the originator of the email message. $a

FROM_NONE Text to display when there is no originator. NA

LANGUAGE (i-default) Language group to select text fields from. i-default

LINE_STOP Text to place at the end of each line extracted from the email
message.

space character

NO_MESSAGE Text to indicate that the message had no content.]no message]

SUBJECT_FORMAT Text to display indicating the subject of the email message. $s

SUBJECT_NONE Text to display when there is no subject for the email
message.

NA

Miscellaneous Options - -

DEBUG Enable verbose debug output. 6

LISTEN_CONNECTION_MAX Maximum number of concurrent, inbound TCP connections to
allow across all SMPP relay and server instantiations.

10,000

LOG_PAGE_COUNT Controls the value recorded in the mail.log file's message
size field to be page count instead of blocks.

0

Email to SMS Conversion Options
The following options control the conversion of email messages to SMS messages. The value
range for the options are in parenthesis. In general, a given email message may be converted
into one or more SMS messages. See "The Email to SMS Conversion Process" for more
information.

GATEWAY_NOTIFICATIONS

(0 or 1) Specifies whether or not to convert email notifications to SMS notifications. Email
notification messages must conform to RFCs 1892, 1893, 1894. The default value is 0.

When GATEWAY_NOTIFICATIONS=0, such notifications are discarded and are not converted
to SMS notifications.

To enable the notifications to be converted to SMS notifications, set
GATEWAY_NOTIFICATIONS=1. When the option set to 1, the localization options
(DSN_*_FORMAT) control which notification types (success, failure, delay, relayed) are
converted into SMS messages and sent through the gateway. (If the notification type has a
value of an empty string, then that type notification is not converted into SMS messages.)

MAX_MESSAGE_PARTS

(integer) When converting a multi-part email message to an SMS message, only the first
MAX_MESSAGE_PARTS number of text parts will be converted. The remaining parts are
discarded. By default, MAX_MESSAGE_PARTS is 2. To allow an unlimited number of
message parts, specify a value of -1. When a value of 0 is specified, then no message content
will be placed into the SMS message. This has the effect of using only header lines from the
email message (for example, Subject:) to generate the SMS message.

Chapter 21
SMS Channel Configuration

21-18

Note that an email message containing both text and an attachment will typically consist of two
parts. Note further that only plain text message parts are converted. All other MIME content
types are discarded.

MAX_MESSAGE_SIZE

(integer, >= 10) With this option, an upper limit may be placed on the total number of bytes
placed into the SMS messages generated from an email message. Specifically, a maximum of
MAX_MESSAGE_SIZE bytes will be used for the one or more generated SMS messages. Any
additional bytes are discarded.

By default, an upper limit of 960 bytes is imposed. This corresponds to
MAX_MESSAGE_SIZE=960. To allow any number of bytes, specify a value of zero.

The count of bytes used is made after converting the email message from Unicode to either
the SMSC's default character set or UCS2. This means, in the case of UCS2, that a
MAX_MESSAGE_SIZE of 960 bytes will yield, at most, 480 characters since each UCS2
character is at least two bytes long.

Note that the MAX_MESSAGE_SIZE and "MAX_PAGES_PER_MESSAGE" options both
serve the same purpose: to limit the overall size of the resulting SMS messages. Indeed,
"MAX_PAGE_SIZE"=960 and "MAX_PAGE_SIZE"=160 implies
MAX_PAGES_PER_MESSAGE=6. So why are there two different options? So as to allow
control of the overall size or number of pages without having to consider the maximal size of a
single SMS message, MAX_PAGE_SIZE. While this may not be important in the channel
options themselves, it is important when directing email to the channel described in "Directing
Email to the Channel" and addressing attributes described in Table 21-1.

Finally, note that the smaller of the two limits of MAX_MESSAGE_SIZE and
MAX_PAGE_SIZE * MAX_PAGES_PER_MESSAGE is used.

MAX_PAGE_SIZE

(integer, >= 10) The maximum number of bytes to allow in a single SMS message is controlled
with the MAX_PAGE_SIZE option. By default, a value of 160 bytes is used. This corresponds
to MAX_PAGE_SIZE=160.

MAX_PAGES_PER_MESSAGE

(integer, 1 - 255) The maximum number of SMS messages to generate for a given email
message is controlled with this option. In effect, this option truncates the email message, only
converting to SMS messages that part of the email message which fits into
MAX_PAGES_PER_MESSAGE SMS messages. See the description of the
"MAX_PAGE_SIZE" option for further discussion.

By default, MAX_PAGES_PER_MESSAGE is set to the larger of 1 or
"MAX_MESSAGE_SIZE" divided by "MAX_PAGE_SIZE".

ROUTE_TO

(string, IP host name, 1-64 bytes) All SMS messages targeted to the profile will be rerouted to
the specified IP host name using an email address of the form:

SMS-destination-address@route-to

where SMS-destination-address is the SMS message's destination address and the route-to
is the IP host name specified with this option. The entire content of the SMS message is sent
as the content of the resulting email message. The PARSE_RE_* options are ignored.

Chapter 21
SMS Channel Configuration

21-19

Note:

Use of PARSE_RE_* and ROUTE_TO options are mutually exclusive. Use of both in
the same gateway profile is a configuration error.

SMSC_DEFAULT_CHARSET

(string) With this option, the SMSC's default character set may be specified. Use the character
set names given in the file

installation-directory/lib/charsets.txt

When this option is not specified, then US-ASCII is assumed. Note that the mnemonic names
used in charsets.txt are defined in charnames.txt in the same directory.

When processing an email message, the header lines and text message parts are first
decoded and then converted to Unicode. Next, the data is then converted to either the SMSC's
default character set or UCS2, depending on the value of the "USE_UCS2" option and whether
or not the SMS message contains at least one glyph not found in the default SMSC character
set. Note that the UCS2 character set is a 16-bit encoding of Unicode and is often referred to
as UTF-16.

USE_HEADER_FROM

(integer, 0-2) Set this option to allow the From: address to be passed to the SMSC. The value
indicates where the From: address is taken from and what format it will have. Table 21-6
shows the allowable values and their meaning.

Table 21-6 USE_HEADER_FROM Values

Value Description

0 SMS source address never set from the From: address. Use attribute-
value pair found

1 SMS source address set to from-local@from-domain, where the From:
address is: @from-route:from-local@from-domain

2 SMS source address set to from-local, where the From: address is:
@from-route:from-local@from-domain

USE_HEADER_PRIORITY

(0 or 1) This option controls handling of RFC 822 Priority: header lines. By default, information
from the Priority: header line is used to set the resulting SMS message's priority flag,
overriding the default SMS priority specified with the "DEFAULT_PRIORITY" option. This case
corresponds to USE_HEADER_PRIORITY=1. To disable use of the RFC 822 Priority: header
line, specify USE_HEADER_PRIORITY=0.

See the description of the "DEFAULT_PRIORITY" option for further information on the handling
the SMS priority flag.

USE_HEADER_REPLY_TO

(0 or 1) When USE_HEADER_FROM =1, this option controls whether or not a Reply-to: or
Resent-reply-to: header line is considered for use as the SMS source address. By default,
Reply-to: and Resent-reply-to: header lines are ignored. This corresponds to an option value
of 0. To enable consideration of these header lines, use an option value of 1.

Chapter 21
SMS Channel Configuration

21-20

Note that RFC 2822 has deprecated the use of Reply-to: and Resent-reply-to: header lines.

USE_HEADER_SENSITIVITY

(0 or 1) The USE_HEADER_SENSITIVITY option controls handling of RFC 822 Sensitivity:
header lines. By default, information from the Sensitivity: header line is used to set the
resulting SMS message's privacy flag, overriding the default SMS privacy specified with the
"DEFAULT_PRIVACY" option. This case, which is the default, corresponds to
USE_HEADER_SENSITIVITY=1. To disable use of RFC 822 Sensitivity: header lines, specify
USE_HEADER_SENSITIVITY=0.

See the description of the "DEFAULT_PRIVACY" option for further information on the handling
the SMS privacy flag.

USE_UCS2

(0 or 1) When appropriate, the channel will use the UCS2 character set in the SMS messages
it generates. This is the default behavior and corresponds to USE_UCS2=1. To disable the use
of the UCS2 character set, specify USE_UCS2=0. See the description of the
"SMSC_DEFAULT_CHARSET" option for further information on character set issues.
Table 21-7 shows the allowable values and their meaning

Table 21-7 Valid Values for USE_UCS2

USE_UCS2 Result

1 (default) The SMSC default character set will be used whenever possible. When
the originating email message contains glyphs not in the SMSC default
character set, then the UCS2 character set will be used.

0 The SMSC default character set will always be used. Glyphs not
available in that character set will be represented by mnemonics (for
example, "AE" for AE-ligature).

SMS Gateway Server Option
The following option describes the SMS Gateway Server.

GATEWAY_PROFILE

The name of the gateway profile in the SMS Gateway Server configuration file,
sms_gateway.cnf.

SMS Options
The following options allow for specification of SMS fields in generated SMS messages.

DEFAULT_DESTINATION_NPI

(integer, 0 - 255) By default, destination addresses will be assigned an NPI (Numeric Plan
Indicator) value of zero. With this option, an alternate integer value in the range 0 to 255 may
be assigned. Typical NPI values include those found in Table 21-8 that follows:

Table 21-8 Numeric Plan Indicator Values

Value Description

0 Unknown

Chapter 21
SMS Channel Configuration

21-21

Table 21-8 (Cont.) Numeric Plan Indicator Values

Value Description

1 ISDN (E.163, E.164)

3 Data (X.121)

4 Telex (F.69)

6 Land Mobile (E.212)

8 National

9 Private

10 ERMES

14 IP address (Internet)

18 WAP client ID

>= 19 Undefined

Values for this option may be specified in one of three ways:

• A decimal value (for example, 10).

• A hexadecimal value prefixed by "0x" (for example, 0x0a).

• One of the following case-insensitive text strings (the associated decimal value is shown in
parentheses): data (3), default (0), e.163 (1), e.164 (1), e.212 (6), ermes (10), f.69 (4),
Internet (14), ip (14), isdn (1), land-mobile (6), national (8), private (9), telex (4), unknown
(0), wap (18), x.121 (3).

DEFAULT_DESTINATION_TON

(integer, 0 - 255) By default, destination addresses will be assigned a TON (Type of Number)
designator value of zero. With this option, an alternate integer value in the range 0 to 255 may
be assigned. Typical TON values include those found in Table 21-9 that follows:

Table 21-9 Typical TON Values

Value Description

0 Unknown

1 International

2 National

3 Network specific

4 Subscriber number

5 Alphanumeric

6 Abbreviated

>=7 Undefined

Values for this option may be specified in one of three ways:

• A decimal value (for example, 10)

• A hexadecimal value prefixed by "0x" (for example, 0x0a)

Chapter 21
SMS Channel Configuration

21-22

• One of the following case-insensitive text strings (the associated decimal value is shown in
parentheses): abbreviated (6), alphanumeric (5), default (0), international (1), national (2),
network-specific (3), subscriber (4), unknown (0).

DEFAULT_PRIORITY

(integer, 0 - 255) SMS messages have a mandatory priority field. The interpretation of SMS
priority values is shown in Table 21-10.

Table 21-10 SMS Priority Values Interpreted for Each SMS Profile Type

Valule GSM TDMA CDMA

0 Non-priority Bulk Normal

1 Priority Normal Interactive

2 Priority Urgent Urgent

3 Priority Very urgent Emergency

With this option, the default priority to assign to SMS messages may be specified. When not
specified, a default priority of 0 is used for PROFILE=GSM and CDMA, and a priority of 1 for
"PROFILE"=TDMA.

Note that if "USE_HEADER_PRIORITY"=1 and an email message has an RFC 822 Priority:
header line, then the priority specified in that header line will instead be used to set the priority
of the resulting SMS message. Specifically, if USE_HEADER_PRIORITY=0, then the SMS
priority flag is always set in accord with the DEFAULT_PRIORITY option and the RFC 822
Priority: header line is always ignored. If USE_HEADER_PRIORITY=1, then the originating
email message's RFC 822 Priority: header line is used to set the SMS message's priority flag.
If that header line is not present, then the SMS priority flag is set using the
DEFAULT_PRIORITY option.

The mapping used to translate RFC 822 Priority: header line values to SMS priority flags is
shown in Table 21-11.

Table 21-11 Mapping for Translating Priority Header to SMS Priority Flags

RFC 822 SMS Priority Flag - -

Priority: value GSM TDMA CDMA

Third Non-priority (0) Bulk (0) Normal (0)

Second Non-priority (0) Bulk (0) Normal (0)

Non-urgent Non-priority (0) Bulk (0) Normal (0)

Normal Non-priority (0) Normal (1) Normal (0)

Urgent Priority (1) Urgent (2) Urgent (2)

DEFAULT_PRIVACY

(integer, -1, 0 - 255) Whether or not to set the privacy flag in an SMS message, and what value
to use is controlled with the DEFAULT_PRIVACY and "USE_HEADER_SENSITIVITY" options.
By default, a value of -1 is used for DEFAULT_PRIVACY. Table 21-12 shows the result of
setting the DEFAULT_PRIVACY and "USE_HEADER_SENSITIVITY" options to various
values.

Chapter 21
SMS Channel Configuration

21-23

Table 21-12 Result of Values for DEFAULT_PRIVACY and USE_HEADER_SENSITIVITY

DEFAULT_PRIVACY USE_HEADER_SENSITIVITY Result

-1 0 The SMS privacy flag is never set in SMS messages.

n >= 0 0 The SMS privacy flag is always set to the value n. RFC 822
Sensitivity: header lines are always ignored.

-1 (default) 1 (default) The SMS message's privacy flag is only set when the
originating email message has an RFC 822 Sensitivity:
header line. In that case, the SMS privacy flag is set to
correspond to the Sensitivity: header line's value. This is
the default.

n >= 0 1 The SMS message's privacy flag is set to correspond to the
originating email message's RFC 822 Sensitivity: header
line. If the email message does not have a Sensitivity:
header line, then the value of the SMS privacy flag is set to
n.

The SMS interpretation of privacy values is shown in Table 21-13.

Table 21-13 SMS Interpretation of Privacy Values

Value Description

0 Unrestricted

1 Restricted

2 Confidential

3 Secret

>= 4 Undefined

The mapping used to translate RFC 822 Sensitivity: header line values to SMS privacy values
is shown in Table 21-14.

Table 21-14 Mapping Translation of Sensitivity Headers to SMS Privacy Values

RFC 822 SMS Privacy Value

Personal 1 (Restricted)

Private 2 (Confidential)

Company confidential 3 (Secret)

DEFAULT_SERVICE_TYPE

(string, 0 - 5 bytes) Service type to associate with SMS messages generated by the channel.
By default, no service type is specified (that is, a zero length string). Some common service
types are: CMT (cellular messaging), CPT (cellular paging), VMN (voice mail notification), VMA
(voice mail alerting), WAP (wireless application protocol), and USSD (unstructured
supplementary data services).

DEFAULT_SOURCE_ADDRESS

(string, 0 - 20 bytes) Source address to use for SMS messages generated from email
messages. Note that the value specified with this option is overridden by the email message's

Chapter 21
SMS Channel Configuration

21-24

originator address when USE_HEADER_FROM=1. By default, the value is disabled, that is,
has a value of 0.

DEFAULT_SOURCE_NPI

(integer, 0 - 255) By default, source addresses will be assigned an NPI value of zero. With this
option, an alternate integer value in the range 0 to 255 may be assigned. See the description
of the "DEFAULT_SOURCE_NPI" option for a table of typical NPI values.

DEFAULT_SOURCE_TON

(integer, 0 - 255) By default, source addresses will be assigned a TON designator value of
zero. With this option, an alternate integer value in the range 0 to 255 may be assigned. See
the description of the "DEFAULT_DESTINATION_TON" option for a table of typical TON
values.

DEFAULT_VALIDITY_PERIOD

(string, 0 - 252 bytes) By default, SMS messages are not given a relative validity period;
instead, they use the SMSC's default value. Use this option to specify a different relative
validity period. Values may be specified in units of seconds, minutes, hours, or days.
Table 21-15 specifies the format and description of the various values for this option:

Table 21-15 DEFAULT_VALIDITY_PERIOD Format and Values

Format Description

nnn Implicit units of seconds; for example, 604800

nnns Units of seconds; for example, 604800s

nnnm Units of minutes; for example, 10080m

nnnh Units of hours; for example, 168h

nnnd Units of days; for example, 7d

A specification of 0, 0s, 0m, 0h, or 0d may be used to select the SMSC's default validity period.
That is, when a specification of 0, 0s, 0m, 0h, or 0d is used, an empty string is specified for the
validity period in generated SMS messages.

Note that this option does not accept values in UTC format.

DESTINATION_ADDRESS_NUMERIC

(0 or 1) Use this option to strip all non-numeric characters from the SMS destination address
extracted from the email envelope To: address. For instance, if the envelope To: address is:

"(800) 555-1212"@sms.example.org

then it will be reduced to:

8005551212@sms.example.org

To enable this stripping, specify a value of 1 for this option. By default, this stripping is disabled
which corresponds to an option value of 0. Note that when enabled, the stripping is done
before any destination address prefix is added via the "DESTINATION_ADDRESS_PREFIX"
option.

Chapter 21
SMS Channel Configuration

21-25

DESTINATION_ADDRESS_PREFIX

(string) In some instances, it may be necessary to ensure that all SMS destination addresses
are prefixed with a fixed text string; for example, "+". This option may be used to specify just
such a prefix. The prefix will then be added to any SMS destination address which lacks the
specified prefix. To prevent being stripped by the "DESTINATION_ADDRESS_NUMERIC"
option, this option is applied after the DESTINATION_ADDRESS_NUMERIC option.

PROFILE

(string) Specify the SMS profiling to be used with the SMSC. Possible values are GSM, TDMA,
and CDMA. When not specified, GSM is assumed. This option is only used to select defaults
for other channel options such as "DEFAULT_PRIORITY" and "DEFAULT_PRIVACY".

USE_SAR

(0 or 1) Sufficiently large email messages may need to be broken into multiple SMS messages.
When this occurs, the individual SMS messages can optionally have sequencing information
added using the SMS sar_ fields. This produces a "segmented" SMS message which can be
re-assembled into a single SMS message by the receiving terminal. Specify USE_SAR=1 to
indicate that this sequencing information is to be added when applicable. The default is to not
add sequencing information and corresponds to USE_SAR=0.

When USE_SAR=1 is specified, the "REVERSE_ORDER" option is ignored.

SMPP Options
The following options allow for specification of SMPP protocol options. The options with names
beginning with the string "ESME_" serve to identify the MTA when it acts as an External Short
Message Entity (ESME); that is, when the MTA binds to an SMPP server in order to submit
SMS messages to the server's associated SMSC.

ESME_ADDRESS_NPI

(integer, 0 - 255) By default, bind operations will specify an ESME NPI value of zero indicating
an unknown NPI. With this option, an alternate integer value in the range 0 to 255 may be
assigned. See the description of the "DEFAULT_DESTINATION_NPI" option for a table of
typical NPI values.

ESME_ADDRESS_TON

(integer, 0 - 255) By default, bind operations will specify an ESME TON value of 0. With this
option, an alternate integer value in the range 0 to 255 may be assigned. See the description
of the "DEFAULT_DESTINATION_TON" option for a table of typical TON values.

ESME_IP_ADDRESS

(string, 0 - 15 bytes) When binding to the SMPP server, the BIND PDU indicates that the
client's (that is, ESME's) address range is an IP address. This is done by specifying a TON of
0x00 and an NPI of 0x0d. The value of the address range field is then set to be the IP address
of the host running the SMS channel. Specify the IP address in dotted decimal format; for
example, 127.0.0.1.

ESME_PASSWORD

(string, 0 - 8 bytes) When binding to the SMPP server, a password may be required. If so, then
specify that password with this option. By default, a zero-length password string is presented.

Chapter 21
SMS Channel Configuration

21-26

ESME_SYSTEM_ID

(string, 0 - 15 bytes) When binding to the SMPP server, a system ID for the MTA may be
supplied. By default, no system ID is specified (that is, a zero-length string is used). To specify
a system ID, use this option.

ESME_SYSTEM_TYPE

(string, 0 - 12 bytes) When binding to the SMPP server, a system type for the MTA may be
supplied. By default, no system type is specified (that is, a zero-length string is used).

MAX_PAGES_PER_BIND

(integer, >= 0) Some SMPP servers may limit the maximum number of SMS messages
submitted during a single, bound session. In recognition of this, this option allows specification
of the maximum number of SMS messages to submit during a single session. Once that limit is
reached, the channel will unbind, close the TCP/IP connection, re-connect, and then rebind.

By default, a value of 1024 is used for MAX_PAGES_PER_BIND. Note that the channel will
also detect ESME_RTHROTTLED errors and adjust MAX_PAGES_PER_BIND during a single
run of the channel accordingly.

REVERSE_ORDER

(0 or 1) When an email message generates more than one SMS message, those SMS
messages can be submitted to the SMSC in sequential order (REVERSE_ORDER=0), or
reverse sequential order (REVERSE_ORDER=1). Reverse sequential order is useful for
situations where the receiving terminal displays the last received message first. In such a case,
the last received message will be the first part of the email message rather than the last. By
default, REVERSE_ORDER=1 is used.

Note that this option is ignored when "USE_SAR"=1 is specified.

SMPP_MAX_CONNECTIONS

(integer, 1 - 50) This option controls the maximum number of simultaneous SMPP connections
per process. As each connection has an associated thread, this option also places a limit on
the maximum number of "worker" threads per process. By default,
SMPP_MAX_CONNECTIONS=20.

SMPP_PORT

(integer, 1 - 65535) The TCP port which the SMPP server listens on may be specified with
either this option or the port channel option. This port number must be specified through either
of these two mechanisms. If it is specified with both mechanisms, then the setting made with
the SMPP_PORT option takes precedence. Note that there is no default value for this option.

For two-way SMS, make sure its the same port as the LISTEN_PORT for the SMPP relay.

SMPP_SERVER

(string, 1 - 252 bytes) For one-way SMS, by default, the IP host name of the SMPP server to
connect to is the official host name associated with the channel; that is, the host name shown
on the second line of the channel's definition in MTA's configuration. This option may be used
to specify a different host name or IP address which will override that specified in the channel
definition. When specifying an IP address, use dotted decimal notation; for example, 127.0.0.1.

Chapter 21
SMS Channel Configuration

21-27

For two-way SMS, set to point to the host name or IP address of the SMS Gateway Server. If
using the SMPP relay's LISTEN_INTERFACE_ADDRESS option, then be sure to use the host
name or IP address associated with the specified network interface address.

TIMEOUT

(integer, >= 2) By default, a timeout of 30 seconds is used when waiting for data writes to the
SMPP server to complete or for data to be received from the SMPP server. Use the TIMEOUT
option to specify, in units of seconds, a different timeout value. The specified value should be
at least 1second.

Localization Options
In constructing SMS messages, the SMS channel has several fixed text strings it puts into
those messages. These strings, for example, introduce the email's From: address and
Subject: header line. With the channel options described in this section, versions of these
strings may be specified for different languages and a default language for the channel then
specified. "Example Language Specification Options" shows the language part of the option
file:

Example Language Specification Options

msconfig
msconfig> set channel:mway_sms.options.language default-language
msconfig# set channel:mway_sms.options.from_prefix From:
msconfig# set channel:mway_sms.options.subject_prefix Subj:
msconfig# set channel:mway_sms.options.content_prefix Msg:
msconfig# set channel:mway_sms.options.line_stop
set channel:mway_sms.options.no_message [no message]
msconfig# set channel:mway_sms.options.reply_prefix re:
msconfig# write
msconfig> msconfig> set channel:mway_sms.options.language en
msconfig# set channel:mway_sms.options.from_prefix From:
msconfig# set channel:mway_sms.options.subject_prefix Subj:
msconfig# set channel:mway_sms.options.content_prefix Msg:
msconfig# set channel:mway_sms.options.line_stop
msconfig# set channel:mway_sms.options.no_message [no message]
msconfig# set channel:mway_sms.options.reply_prefix Re:
msconfig# write

LANGUAGE=_default-language_

[language=i-default]
FROM_PREFIX=From:
SUBJECT_PREFIX=Subj:
CONTENT_PREFIX=Msg:
LINE_STOP= NO_MESSAGE=[no message]
REPLY_PREFIX=Re:

[language=en]
FROM_PREFIX=From:
SUBJECT_PREFIX=Subj:
CONTENT_PREFIX=Msg:
LINE_STOP=
NO_MESSAGE=[no message]
REPLY_PREFIX=Re:
...

Within each [language=x] block, the localization options relevant to that language may be
specified. If a particular option is not specified within the block, then the global value for that

Chapter 21
SMS Channel Configuration

21-28

option is used. A localization option specified outside of a [language=x] block sets the global
value for that option.

For the options listed below, the string values must be specified using either the US-ASCII or
UTF-8 character sets. Note that the US-ASCII character set is a special case of the UTF-8
character set.

CONTENT_PREFIX

(string, 0 - 252 bytes) Text string to place in the SMS message before the content of the email
message itself. Default global value is the US-ASCII string "Msg:".

DSN_DELAYED_FORMAT

(string, 0-256 characters) Formatting string for delivery delay notifications. By default, an empty
string is used for this option, thereby inhibiting the conversion to SMS of delay notifications.
Note that "GATEWAY_NOTIFICATIONS" must be set to 1 for this option to be in effect. This
option is ignored when GATEWAY_NOTIFICATIONS=0.

DSN_FAILED_FORMAT

(string, 0-256 characters) Formatting string for permanent delivery failure notifications. The
default value of this option is the string:

Unable to deliver your message to $a; no further delivery attempts will be
made.

To inhibit conversion of failure notifications, specify an empty string for this option. Note that
"GATEWAY_NOTIFICATIONS" must be set to 1 for this option to be in effect. This option is
ignored when GATEWAY_NOTIFICATIONS=0.

DSN_RELAYED_FORMAT

(string, 0-256 characters) Formatting string for relay notifications. The default value is the
string:

Your message to $a has been relayed to a messaging system which may not
provide a final delivery confirmation

To inhibit conversion of relay notifications, specify an empty string for this option. Note that
"GATEWAY_NOTIFICATIONS" must be set to 1 for this option to be in effect. This option is
ignored when GATEWAY_NOTIFICATIONS=0.

DSN_SUCCESS_FORMAT

(string, 0-256 characters) Formatting string for successful delivery notifications. The default
value is the string:

Your message to $a has been delivered

To inhibit conversion of successful delivery notifications, specify an empty string for this option.
Note that "GATEWAY_NOTIFICATIONS" must be set to 1 for this option to be in effect. This
option is ignored when GATEWAY_NOTIFICATIONS=0.

FROM_FORMAT

(string, 0 - 252 bytes) Formatting template to format the originator information to insert into the
SMS message. The default global value is the US-ASCII string "$a" which substitutes in the
originator's email address. See "Formatting Templates" for more information.

Chapter 21
SMS Channel Configuration

21-29

FROM_NONE

(string, 0 - 252 bytes) Text string to place in the SMS message when there is no originator
address to display. The default global value is an empty string.

Note that normally, this option will never be used as sites will typically reject email messages
which lack any originator address.

LANGUAGE

(string, 0 - 40 bytes) The default language group to select text strings from. If not specified,
then the language will be derived from the host's default locale specification. If the host's locale
specification is not available or corresponds to "C", then i-default will be used. (i-default
corresponds to "English text intended for an international audience.")

LINE_STOP

(string, 0 - 252 bytes) Text string to place in the SMS message between lines extracted from
the email message. The default global value is the US-ASCII space character, " ".

NO_MESSAGE

(string, 0 - 252 bytes) Text string to place in the SMS message to indicate that the email
message had no content. The default global value is the US-ASCII string "[no message]".

SUBJECT_FORMAT

(string, 0 - 252 bytes) Formatting template to format the content of the Subject: header line for
display in the SMS message. The global default value for this option is the US-ASCII string
"($s)". See "Formatting Templates" for further details.

See the SUBJECT_NONE option for a description of the handling when there is no Subject:
header line or the content of that header line is an empty string.

SUBJECT_NONE

(string, 0 - 252 bytes) Text string to display when the originating email message either has no
Subject: header line, or the Subject: header line's value is an empty string. The default global
value for this option is the empty string.

DEBUG

(integer, bitmask) Enable debug output. The default value is 6 which selects warning and error
messages. Any non-zero value enables debug output for the channel itself, the same as
specifying master_debug on the channel definition.Table 21-16 defines the bit values of the
DEBUG bitmask.

Table 21-16 DEBUG Bitmask

Bit Value Description

0-31 -1 Extremely verbose output

0 1 Informational messages

1 2 Warning messages

3 4 Error messages

3 8 Subroutine call tracing

Chapter 21
SMS Channel Configuration

21-30

Table 21-16 (Cont.) DEBUG Bitmask

Bit Value Description

4 16 Hash table diagnostics

5 32 I/O diagnostics, receive

6 64 I/O diagnostics, transmit

7 128 SMS to email conversion diagnostics (mobile originate and SMS notification)

8 256 PDU diagnostics, header data

9 512 PDU diagnostics, body data

10 1024 PDU diagnostics, type-length-value data

11 2048 Option processing; sends all option settings to the log file.

Formatting Templates
The formatting templates specified with "FROM_FORMAT" and "SUBJECT_FORMAT" and all
the DSN_* channel options are UTF-8 strings which may contain a combination of literal text
and substitution sequences. Assuming the sample email address of

Jane Doe <user@example>

The recognized substitution sequences are shown in Table 21-17.

Table 21-17 Substitution Sequences

Sequence Description

$a Replace with the local and domain part of the originator's email address (for example,
"user@example")

$d Replace with the domain part of the originator's email address (for example, "domain")

$p Replace with the phrase part, if any, of the originator's email address (for example, "Jane
Doe")

$s Replace with the content of the Subject: header line

$u Replace with the local part of the originator's email address (for example, "user")

\x Replace with the literal character "x"

For example, the formatting template

From: $a

produces the text string

From: user@example

The construct,

${xy:alternate text}

may be used to substitute in the text associated with the sequence x. If that text is the empty
string, the text associated with the sequence y is instead used. And, if that text is the empty
string, to then substitute in the alternate text. For example, consider the formatting template

From: ${pa:unknown sender}

Chapter 21
SMS Channel Configuration

21-31

For the originator email address

John Doe <jdoe@example.org>

which has a phrase part, the template produces:

From: John Doe

However, for the address

jdoe@example.org

which lacks a phrase, it produces

From: jdoe@example.org

And for an empty originator address, it produces

From: unknown sender

Adding Additional SMS Channels
You may configure the MTA to have more than one SMS channel. There are two typical
reasons to do this:

1. To communicate with different SMPP servers. This is quite straightforward: just add an
additional SMS channel to the configuration, being sure to (a) give it a different channel
name, and (b) associate different host names with it. For example,

sms_mway port 55555 threaddepth 20
smpp.example.org

sms_ace port 777 threaddepth 20
sms.ace.net

Note that no new rewrite rule is needed. If there is no directly matching rewrite rule,
Messaging Sever looks for a channel with the associated host name. For example, if the
server is presented with user@host.domain, it would look for a channel of the name
"host.domain". If it finds such a channel, it routes the message there. Otherwise, it starts
looking for a rewrite rule for the ".domain" and if none is there, then for the dot (".") rule.

2. To communicate with the same SMPP server but using different channel options. To
communicate with the same SMPP server, using different channel options, specify the
same SMPP server in the "SMPP_SERVER" channel option for each channel definition.
Using this mechanism is necessary since two different channels cannot have the same
official host name (that is, the host name listed in the second line of the channel definition).
To allow them to communicate with the same SMPP server, define two separate channels,
with each specifying the same SMPP server in their "SMPP_SERVER" in their channel
options. For example, you could have the following channel definitions,

sms_mway_1 port 55555 threaddepth 20
SMS-DAEMON-1

sms_mway_2 port 55555 threaddepth 20
SMS-DAEMON-2

and rewrite rules,

sms-1.example.org $u%sms-1.example.org@SMS-DAEMON-1
sms-2.example.org $U%sms-2.example.org@SMS-DAEMON-2

Chapter 21
SMS Channel Configuration

21-32

Then, to have them both use the same SMPP server, each of these two channels would
specify "SMPP_SERVER"=smpp.example.org in their channel options.

Adjusting the Frequency of Delivery Retries
When an SMS message cannot be delivered owing to temporary errors (for example, the
SMPP server is not reachable), the email message is left in the delivery queue and retried
again later. Unless configured otherwise, the Job Controller will not re-attempt delivery for an
hour. For SMS messaging, that is likely too long to wait. As such, it is recommended that the
backoff channel option be used with the SMS channel to specify a more aggressive schedule
for delivery attempts. For example,

sms_mway port 55555 threaddepth 20 \
backoff "pt2m" "pt5m" "pt10m" "pt30m" notices 1
smpp.example.org

With the above settings, a redelivery attempt will be made at two minutes after the first attempt.
If that then fails, then five minutes after the second attempt. Then ten minutes later and finally
every thirty minutes. The notices 1 channel option causes the message to be returned as
undeliverable if it cannot be delivered after a day.

Sample One-Way Configuration (MobileWay)
The MTA SMS channel may be used with any SMPP V3.4 compatible SMPP server. For
purposes of illustrating an example configuration, this section explains how to configure the
SMS channel for use with a MobileWay SMPP server. MobileWay (http://www.mobilway.com)
is a leading provider of global data and SMS connectivity. By routing your SMS traffic through
MobileWay, you can reach SMS subscribers on most of the major SMS networks throughout
the world.

When requesting an SMPP account with MobileWay, you may be asked to answer the
following questions:

• IP address of your SMPP client: Supply the IP address of your Messaging Server system
as seen by other domains on the Internet.

• Default validity period: This is the SMS validity period which MobileWay will use should a
validity period not be specified in the SMS messages you submit. SMS messages which
cannot be delivered before this validity period expires will be discarded. Supply a
reasonable value (for example, 2 days, 7 days, etc.).

• Window size: This is the maximum number of SMS messages your SMPP client will submit
before it will stop and wait for responses from the SMPP server before submitting any
further SMS messages. You must supply a value of 1 message.

• Timezone: Specify the timezone in which your Messaging Server system operates. The
timezone should be specified as an offset from GMT.

• Timeout: Not relevant to one-way SMS messaging.

• IP address and TCP port for outbind requests: Not relevant for one-way SMS messaging.

After supplying MobileWay with the answers to the above questions, they will provide you with
an SMPP account and information necessary to communicate with their SMPP servers. This
information includes

Account Address: a.b.c.d:p
Account Login: system-id
Account Passwd: secret

Chapter 21
SMS Channel Configuration

21-33

http://www.mobilway.com

The Account Address field is the IP address, a.b.c.d, and TCP port number, P., of the
MobileWay SMPP server you will be connecting to. Use these values for the "SMPP_SERVER"
and "SMPP_PORT" channel options. The Account Login and Passwd are, respectively, the
values to use for the "ESME_SYSTEM_ID" and "ESME_PASSWORD" channel options. Using
this information, your channel's options should be set as follows:

msconfig
msconfig> set channel:mway_sms.options.smpp_server a.b.c.d
msconfig# set channel:mway_sms.options.smpp_port p
msconfig# set channel:mway_sms.options.esme_system_id system-id
msconfig# set channel:mway_sms.options.esme_password secret
msconfig# write

Now, to interoperate with MobileWay you must make two additional option settings:

msconfig
msconfig> set channel:mway_sms.options.esme_address_ton 0x01
msconfig# set channel:mway_sms.options.default_destination_ton 0x01
msconfig# write

The rewrite rule can appear as:

sms.your-domain $u@sms.your-domain

And, the channel definition can appear as:

sms_mobileway
sms.your-domain

Once the channel options, rewrite rules, and channel definitions are in place, a test message
may be sent. MobileWay requires International addressing of the form

+<country-code><subscriber-number>

For instance, to send a test message to the North American subscriber with the subscriber
number (800) 555-1212, you would address your email message to

+18005551212@sms.your-domain

Debugging
To debug the channel, specify the master_debug channel option in the channel's definition.
For example,

sms_mway port 55555 threaddepth 20 \
backoff "pt2m" "pt5m" "pt10m" "pt30m" notices 1 master_debug

With the master_debug channel option, basic diagnostic information about the channel's
operation will be output to the channel's log file. For verbose diagnostic information about the
SMPP transactions undertaken by the channel, also set the channel debug option to 1 by
running:

msconfig set channel:mway_sms.options.debug -1

Configuring the SMS Channel for Two-Way SMS
See "SMS Channel Configuration" for general directions on configuring the SMS channel.
Configure the SMS channel as though it will be talking directly to the remote SMSC, with the
exceptions listed in Table 21-18.

Chapter 21
SMS Channel Configuration

21-34

Table 21-18 Two-Way Configuration Exceptions

Exception Explanation

master channel option Remove the master channel option, if present.It is no longer needed for
SMS channel configuration.

SMPP_SERVER Set to point to the host name of IP address of the SMS Gateway Server.
If using the SMPP relay's LISTEN_INTERFACE_ADDRESS option (see
"Configuration Options"), then be sure to use the host name or IP
address associated with the specified network interface address.

SMPP_PORT Same TCP port as used for the LISTEN_PORT setting used to
instantiate the SMPP relay (see "An SMPP Relay").

DEFAULT_SOURCE_ADDR
ESS

Pick a value and then configure the remote SMSC to route this address
back to the Gateway SMPP server. In the SMS channel's options,
specify the chosen value with this option.

GATEWAY_PROFILE Set to match the gateway profile name. See "A Gateway Profile".

USE_HEADER_FROM Set to 0.

All other channel configurations should be done as described in the SMS Channel
documentation.

As mentioned in "Setting Up Bidirectional SMS Routing", the remote SMSC needs to be
configured to route the SMS address, defined in the DEFAULT_SOURCE_ADDRESS channel
option, to the Gateway's SMPP server using the TCP port number specified with the
LISTEN_PORT option. See "An SMPP Server" for how to specify the LISTEN_PORT.

Note that multiple SMS channels may use the same SMPP relay. Similarly, there need be only
one SMPP server or gateway profile to handle SMS replies and notifications for multiple SMS
channels. The ability to configure multiple relays, servers, and gateway profiles exists to effect
different usage characteristics through configuration options.

SMS Gateway Server Theory of Operation
The SMS Gateway Server facilitates two-way SMS through mechanisms that allow mobile
originated SMS messages to be matched to the correct email address.

Function of the SMS Gateway Server
The SMS Gateway Server simultaneously functions as both an SMPP relay and server. It may
be configured to have multiple "instantiations" of each function. For instance, it may be
configured to have three different SMPP relays, each listening on different TCP ports or
network interfaces and relaying to different remote SMPP servers. Similarly, it may be
configured to have four different SMPP servers, each listening on different combinations of
TCP ports and network interfaces.

The SMS Gateway Server may be configured with zero or more gateway profiles for sending
SMS messages to email. Each gateway profile describes which destination SMS addresses
match the profile, how to extract the destination email addresses from SMS messages, and
various characteristics of the SMS to email conversion process. Each SMS message
presented to the SMS Gateway Server through either its SMPP relay or server are compared
to each profile. If a match is found, then the message is routed to email.

Finally, the gateway profiles also describe how to handle notification messages returned by
remote SMSCs in response to previous email-to-mobile messages.

Chapter 21
SMS Gateway Server Theory of Operation

21-35

Behavior of the SMPP Relay and Server
When acting as an SMPP relay, the SMS Gateway Server attempts to be as transparent as
possible, relaying all requests from local SMPP clients on to a remote SMPP server and then
relaying back the remote server's responses. There are two exceptions:

• When a local SMPP client submits a message whose SMS destination address matches
one of the configured gateway profiles, the submitted SMS message is sent directly back
to email; the SMS message is not relayed to a remote SMPP server.

• When a local or remote SMPP client submits a message whose SMS destination address
matches a unique SMS source address previously generated by the SMPP relay, the SMS
message is a reply to a previously relayed message. This reply is directed back to the
originator of the original message.

Note that typically the SMS Gateway Server will be configured such that the unique SMS
source addresses which it generates match one of the gateway profiles.

Note:

The SMS Gateway Server's SMPP relay is only intended for use with qualified,
SMPP clients, that is, the Messaging Server's SMS channel. It is not intended for use
with arbitrary SMPP clients.

When acting as an SMPP server, the SMS Gateway Server directs SMS messages to email for
three circumstances:

• The SMS messages are mobile originated and match a gateway profile.

• The SMS messages are mobile originated and the SMS destination address matches a
previously generated unique SMS source address.

• The SMS messages are SMS notifications which correspond to email-to-mobile messages
previously relayed by the SMS Gateway Server's SMPP relay.

All other SMS messages are rejected by the SMPP server.

Remote SMPP to Gateway SMPP Communication
Remote SMPP clients communicate to the Gateway SMPP server with Protocol Data Units
(PDUs). Remote SMPP clients emit request PDUs to which the Gateway SMPP server
responds. The Gateway SMPP server operates synchronously. It completes the response to a
request PDU before it processes the next request PDU from the connected remote SMPP
client.

Table 21-19 lists the request PDUs the Gateway SMPP server handles, and specifies the
Gateway SMPP server's response.

Table 21-19 SMPP Server Protocol Data Units

Request SMPP Server Response

BIND_TRANSMITTERBIND_
TRANSCEIVERUNBIND

Responded to with the appropriate response PDU. Authentication
credentials are ignored.

Chapter 21
SMS Gateway Server Theory of Operation

21-36

Table 21-19 (Cont.) SMPP Server Protocol Data Units

Request SMPP Server Response

OUTBIND Gateway SMPP server sends back a BIND_RECEIVER PDU.
Authentication credentials presented are ignored.

SUBMIT_SMDATA_SM Attempts to match the destination SMS address with either a unique
SMS source address or the SELECT_RE setting of a Gateway profile. If
neither is matched, the PDU is rejected with an ESME_RINVDSTADR
error.

DELIVER_SM Attempts to find either the destination SMS address or the receipted
message ID in the historical record. If neither is matched, returns the
error ESME_RINVMSGID.

BIND_RECEIVER Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

SUBMIT_MULTI Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

REPLACE_SM Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

CANCEL_SM Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

QUERY_SM Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

QUERY_LAST_MSGS Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

QUERY_MSG_DETAILS Not supported. Returns a GENERIC_NAK PDU with an
ESME_RINVCMDID error.

ENQUIRE_LINK Returns ENQUIRE_LINK_RESP PDU.

ALERT_NOTIFICATION Accepted but ignored.

SMS Reply and Notification Handling
The SMS Gateway Server maintains a historical record of each SMS message relayed through
its SMPP relays. The need to use historical data arises from the fact that when submitting an
email message to SMS it is generally not possible to convert the email address of the
message's originator to an SMS source address. Since any SMS replies and notifications will
be directed to this SMS source address, a problem arises. This is resolved by using
automatically generated, unique SMS source addresses in relayed messages. The remote
SMSCs are then configured to route these SMS source addresses back to the Gateway SMPP
server.

The historical data is represented as an in-memory hash table of message IDs and generated,
unique SMS source addresses. This data along with the associated email origination data are
also stored on disk. The disk based storage is a series of files, each file representing
HASH_FILE_ROLLOVER_PERIOD seconds of transactions (the default is 30 minutes). Each
file is retained for RECORD_LIFETIME seconds (the default is 3 days).

Each record has three components:

• Email origination data (such as, envelope From: and To: addresses). This data is supplied
by the MTA SMS channel when it submits a message.

Chapter 21
SMS Gateway Server Theory of Operation

21-37

• The unique SMS source address generated by the SMPP relay and inserted into the
relayed SMS message.

• The resulting receipted message ID returned by the remote SMSC's SMPP server when it
accepts a submission.

Routing Process for SMS Replies
The Gateway SMPP relays and servers use historical records to handle SMS replies,
notifications and mobile originated messages. When an SMS message is presented to the
SMPP relay or server, the following routing process is followed:

1. The SMS destination address is compared against the historical record to see if there is a
matching, unique SMS source address that the SMPP relay previously generated. If a
match is found, see Step 6.

2. If there is no match, but the message is an SMS notification (SMPP DELIVER_SM PDU),
then the receipted message ID, if present, is compared against the historical record. If a
match is found, go to Step 8. The SMS Gateway Server actually allows these to be
presented to either the SMPP relay or SMPP server.

3. If there is no match, then the destination SMS address is compared against the
SELECT_RE option expressions for each configured gateway profile. If a match is found,
then go to Step 9.

4. If there is no match and the SMS message was presented to the Gateway SMPP relay,
then the message is relayed to the remote SMPP server.

5. If there is no match and the SMS message was presented to the Gateway SMPP server,
then the message is determined to be an invalid message and an error response is
returned in the SMPP response PDU. For email to SMS, a Non Delivery Notification (NDN)
is eventually generated.

6. If a matching unique SMS source address was found, then the SMS message is further
inspected to see if it is a reply or a notification message. To be a notification message it
must be a SUBMIT_SM PDU with a receipted message ID. Otherwise, it is considered to
be a reply.

7. If it is a reply then the SMS message is converted to an email message using the
origination email information from the historical record.

8. If it is a notification, then the SMS message is converted to an email Delivery Status
Notification (DSN) as per RFC 1892-1894. Note that the ESMTP NOTIFY flags (RFC
1891) of the original email message will be honored (For example, if the SMS message is
a "success" DSN but the original email message requested only "failure" notifications, then
the SMS notification will be discarded).

9. If the destination SMS address matches a SELECT_RE option in a configured gateway
profile, then the SMS message is treated as a mobile originated message and converted
back to email message as per the PARSE_RE_n rules for that gateway profile. If the
conversion fails, then the SMS message is invalid and an error response is returned.

SMS Gateway Server Configuration
This section gives directions on how to set up the SMS Gateway Server for both email-to-
mobile and mobile-to-email functionality.

Chapter 21
SMS Gateway Server Configuration

21-38

Setting Up Bidirectional SMS Routing
The recommended way to set up bidirectional email and SMS routing between the MTA and
SMSC is a three step process:

• Set the SMS Address Prefix-- Choose an SMS address prefix. Any prefix may be used, so
long as it is ten characters or less.

• Set the Gateway Profile-- Reserve the prefix for use with the SMS Gateway Server (by
setting the gateway profile).

• Configure the SMSC-- Configure the SMSC to route SMS destination addresses to the
SMS Gateway SMPP server that start with the prefix. Mobile originated email will have only
the prefix. Replies and notifications will have the prefix followed by exactly ten decimal
digits.

Set the SMS Address Prefix
The source SMS addresses generated by the MTA SMS channel should be set to match the
selected SMS address prefix. Do this by setting the following:

• MTA SMS channel options:

USE_HEADER_FROM=0

DEFAULT_SOURCE_ADDRESS=prefix

The first setting causes the channel to not attempt to set the SMS source address from
information contained in the email message. The second setting causes the SMS source
address to be set (to the selected prefix) when it is not set from any other source.

• Recognize the prefix as an SMS destination address to accept and route to email. Do this
by specifying the SELECT_RE gateway profile option as follows:

SELECT_RE=prefix

Set the Gateway Profile
The SMS Gateway Server's gateway profile should then be set to make all relayed SMS
source addresses unique. This is the default setting but may be explicitly set by specifying the
gateway profile option MAKE_SOURCE_ADDRESSES_UNIQUE=1. This will result in relayed
SMS source addresses of the form:

prefixnnnnnnnnnn

where nnnnnnnnnn will be a unique, ten digit decimal number.

Configure the SMSC
Finally, the SMSC should be configured to route all SMS destination addresses matching the
prefix (either just the prefix, or the prefix plus a ten digit number) to the SMS Gateway Server's
SMPP server. The regular expression for such a routing will be similar to:

prefix([0-9]{10,10}){0,1}

where prefix is the value of DEFAULT_SOURCE_ADDRESS, [0-9] specifies the allowed
values for the ten digit number, {10, 10} specifies that there will be a minimum of ten digits and
a maximum of ten digits, and {0, 1} specifies that there can be zero or one of the 10-digit
numbers.

Chapter 21
SMS Gateway Server Configuration

21-39

Enabling and Disabling the SMS Gateway Server
• To enable the SMS Gateway Server, the option sms_gateway.enable must be set to the

value 1. Use the following msconfig command to set it:

msconfig set sms_gateway.enable 1

• To disable the gateway server, set sms_gateway.enable to the value 0, using the
following command:

msconfig sms_gateway.enable 0

Starting and Stopping the SMS Gateway Server
After the SMS Gateway Server is enabled, it may be started and stopped with the following
commands:

start-msg sms

and

stop-msg sms

SMS Gateway Server Configuration File
In order to operate, the SMS Gateway Server requires a configuration file. The configuration
file is a Unicode text file encoded using UTF-8. The file can be an ASCII text file. The name of
the file must be:

installation-directory/config/sms_gateway.cnf

Each option setting in the file has the following format:

option-name=option-value

Options that are part of an option group appear in the following format:

[group-type=group-name]
option-name-1=option-value-1
option-name-2=option-value-2
...
option-name-n=option-value-n

Configuring Email-To-Mobile on the Gateway Server
To implement the email-to-mobile part of two-way SMS, you must configure the following:

• A Gateway Profile

• An SMPP Relay

• An SMPP Server

A Gateway Profile
To configure an email-to-mobile gateway profile, follow these steps:

Chapter 21
SMS Gateway Server Configuration

21-40

To Configure an Email-to-mobile Gateway Profile

1. Add a gateway profile to the SMS Gateway Server configuration file. To add an option
group, use the following format:

[GATEWAY_PROFILE=profile_name]
option-name-1=option-value-1
option-name-2=option-value-2a
...
option-name-n=option-value-n

The length of the gateway profile name, profile_name in the preceding format, must not
exceed 11 bytes. The name must be the same as the name for the GATEWAY_PROFILE
channel option in the SMS channel option file. The name is case insensitive. See
"Available Options" for a list of the valid channel options.

2. Set the gateway profile options (for example, SMSC_DEFAULT_CHARSET) to match
characteristics of the remote SMSC.

3. Set the other gateway profile options to match the SMS channel's email characteristics.

See "Gateway Profile Options" for a complete description of gateway profile options.

4. Set the CHANNEL option.

Set its value to the name of the MTA SMS channel. When a notification is sent to email
through the gateway, the resulting email message will be enqueued to the MTA using this
channel name.

An SMPP Relay
To configure an SMPP Relay, complete the following steps:

To Configure an SMPP Relay

1. Add an SMPP relay instantiation (option group) to the SMS Gateway Server's configuration
file. To add an option group, use the following format:

[SMPP_RELAY=relay_name]
option-name-1=option-value-1
option-name-2=option-value-2
...
option-name-n=option-value-n

Any name may be used for the relay's name. All that matters is that the name not be used
for any other SMPP relay instantiation within the same configuration file.

2. Set the LISTEN_PORT option.

The value used for the SMS channel's SMPP_PORT option must match that used for the
relay's LISTEN_PORT option. For the LISTEN_PORT, select a TCP port number which is
not used by any other SMPP relay or server instantiation nor by any other server running
on the same computer.

3. Set the SERVER_HOST option.

The relay's SERVER_HOST option should give the host name for the remote SMSC's
SMPP server. An IP address may be used in place of a host name.

4. Set the SERVER_PORT option.

Chapter 21
SMS Gateway Server Configuration

21-41

The relay's SERVER_PORT option should give the TCP port for the remote SMSC's
SMPP server. See "SMPP Relay Options" for a complete description of all SMPP relay
options.

An SMPP Server
To configure an SMPP server, complete the following steps:

To Configure an SMPP Server

1. Add an SMPP server instantiation (option group) to the SMS Gateway Server's
configuration file. To add an option group, use the following format:

[SMPP_SERVER=server_name]
option-name-1=option-value-1
option-name-2=option-value-2...
option-name-n=option-value-n

Any name may be used for the server's name. All that matters is that the name not be
used for any other SMPP server instantiation within the same configuration file.

2. Set LISTEN_PORT option. Select a TCP port number which is not being used by any other
server or relay instantiation. Additionally, the port number must not be being used by any
other server on the same computer. The remote SMSC needs to be configured to route
notifications via SMPP to the SMS Gateway Server system using this TCP port. See
"SMPP Server Options" for a complete description of all SMPP server options

Configuring Mobile-to-Email Operation
To configure mobile-to-email functionality, two configuration steps must be performed:

• Configure a Mobile-to-Email Gateway Profile

• Configure a Mobile-Email SMPP Server

Note that multiple gateway profiles may use the same SMPP server instantiation. Indeed, the
same SMPP server instantiation may be used for both email-to-mobile and mobile-to-email
applications.

Configure a Mobile-to-Email Gateway Profile
For mobile origination, a gateway profile provides two key pieces of information: how to identify
SMS messages intended for that profile and how to convert those messages to email
messages. Note that this profile can be the same one used for email-to-mobile with the
addition of the SELECT_RE option.

To configure the gateway profile, follow these steps:

To Configure the Gateway Proflie

1. Add a gateway profile (option group) to the SMS Gateway Server's configuration file.

To add an option group, use the following format:

[GATEWAY_PROFILE=profile_name]
option-name-1=option-value-1
option-name-2=option-value-2
...
option-name-n=option-value-n

Chapter 21
SMS Gateway Server Configuration

21-42

Any name of 11 characters or less may be used for the profile's name. All that matters is
that it is not already used for another gateway profile within the same configuration file.

2. Set the SELECT_RE option must be specified for each gateway profile.

The value of this option is an ASCII regular expression with which to compare SMS
destination addresses. If an SMS destination address matches the regular expression,
then the SMS message is sent through the gateway to email using the characteristics
described by the matching profile. It is important to note that it is possible to configure
multiple gateway profiles which have overlapping sets of SMS addresses (for example, a
profile which matches the address 000 and another which matches any other three-digit
address). However, so doing should be avoided as an SMS message will be passed off to
only one gateway profile: the first one which matches. And, moreover, the order in which
they are compared is undefined.

3. Set the CHANNEL option.

Its value should be the name of the MTA's SMS channel. See "Gateway Profile Options"
for a complete description of all mobile origination options.

Configure a Mobile-Email SMPP Server
Adding an SMPP server is the same as for the email-to-mobile SMPP server (see "An SMPP
Server").

The remote SMSC needs to be configured to route SMS traffic to the gateway SMPP server. To
do this, the SMS destination address used by the SMSC to route mobile-to-email traffic should
be the value set for the gateway profile option SELECT_RE.

For example, if the SMS address 000 is to be used for mobile-to-email traffic, then the SMSC
needs to be configured to route traffic for the SMS destination address 000 to the gateway
SMPP server. The gateway profile should use the option setting SELECT_RE=000.

Configuration Options
The SMS Gateway Server configuration file options are detailed in this section. The tables that
follow list all the available configuration options with a brief description of each. There is a table
each for global options, SMPP relay options, SMPP server options, and SMS Gateway Server
profile options.

In the subsections that follow, complete descriptions are given for all the available configuration
options. The subsections are:

• Global Options

Global options must be placed at the top of the configuration file, before any option groups.
The remaining options must appear within option groups.

• SMPP Relay Options

• SMPP Server Options

• Gateway Profile Options

Global Options
The SMS Gateway Server presently has three categories of global options:

• Thread Tuning Options

• Historical Data Tuning

Chapter 21
SMS Gateway Server Configuration

21-43

• Miscellaneous

All global options must be specified at the top of the configuration file, before any option groups
are specified. Table 21-20 lists all global configuration options.

Table 21-20 Global Options

Option Default Description

DEBUG 6 Selects the types of diagnostic output generated.

HISTORY_FILE_DIRECTORY no default value Absolute directory path for files of historical data.

HISTORY_FILE_MODE 0770 Permissions for files of historical data.

HISTORY_FILE_ROLLOVER_PER
IOD

30 mins Maximum length of time to write to the same file of historical
data.

LISTEN_CONNECTION_MAX 10,000 Maximum number of concurrent inbound connections across all
SMPP relay and server instantiations.

RECORD_LIFETIME 3 days Lifetime of a record in the historical data archive.

THREAD_COUNT_INITIAL 10 threads Initial number of worker threads.

THREAD_COUNT_MAXIMUM 50 threads Maximum number of worker threads.

THREAD_STACK_SIZE 64 Kb Stack size for each worker thread.

Thread Tuning Options
Each inbound TCP connection represents an SMPP session. The processing for a session is
handled by a worker thread from a pool of threads. When the session processing needs to wait
for completion of an I/O request, the worker thread parks the session and is given other work
to perform. When the I/O request completes, the session is resumed by an available worker
thread from the pool.

The following options allow for tuning of this pool of worker thread processes:

• THREAD_COUNT_INITIAL

• THREAD_COUNT_MAXIMUM

• THREAD_STACK_SIZE

THREAD_COUNT_INITIAL

(integer, > 0_)_ Number of threads to initially create for the pool of worker threads. This count
does not include the dedicated threads used to manage the in-memory historical data (2
threads) nor the dedicated threads used to listen for incoming TCP connections (one thread
per TCP port/interface address pair the SMS Gateway Server listens on). The default value is
for THREAD_COUNT_INITIAL is 10 threads.

THREAD_COUNT_MAXIMUM

(integer,>= THREAD_COUNT_INITIAL) Maximum number of threads to allow for the pool of
worker threads. The default value is 50 threads.

THREAD_STACK_SIZE

(integer, > 0_)_ Stack size in bytes for each worker thread in the pool of worker threads. The
default value is 65,536 bytes (64 Kb).

Chapter 21
SMS Gateway Server Configuration

21-44

Historical Data Tuning
When an SMS message is relayed, the message ID generated by the receiving, remote SMPP
server is saved in an in-memory hash table. Along with this message ID, information about the
original email message is also saved. Should that message ID subsequently be referenced by
an SMS notification, this information may be retrieved. The retrieved information can then be
used to send the SMS notification to the appropriate email recipient.

The in-memory hash table is backed to disk by a dedicated thread. The resulting disk files are
referred to as "history files". These history files serve two purposes: to save, in nonvolatile
form, the data necessary to restore the in-memory hash table after a restart of the SMS
Gateway Server, and to conserve virtual memory by storing potentially lengthy data on disk.
Each history file is only written to for HASH_FILE_ROLLOVER_PERIOD seconds after which
time it is closed and a new history file created. When a history file exceeds an age of
RECORD_LIFETIME seconds, it is deleted from disk.

The following options allow for tuning historical files:

• HISTORY_FILE_DIRECTORY

• HISTORY_FILE_MODE

• HISTORY_FILE_ROLLOVER_PERIOD

• RECORD_LIFETIME

HISTORY_FILE_DIRECTORY

(string, absolute directory path) Absolute path to the directory to which to write the history files.
The directory path will be created if it does not exist. The default value for this option is:

DataRoot/sms_gateway_cache/

The directory used should be on a reasonably fast disk system and have more than sufficient
free space for the anticipated storage; see "SMS Gateway Server Storage Requirements" to
change this option to a more appropriate value.

HISTORY_FILE_MODE

(integer, octal value) File permissions to associated with the history files. By default, a value of
0770 (octal) is used.

HISTORY_FILE_ROLLOVER_PERIOD

(integer, seconds) The current history file is closed and a new one created every
HASH_FILE_ROLLOVER_PERIOD seconds. By default, a value of 1800 seconds (30
minutes) is used.

RECORD_LIFETIME

(integer, seconds > 0_)_ Lifetime in seconds of a historical record. Records older than this
lifetime will be purged from memory; history files older than this lifetime will be deleted from
disk. By default, a value of 259,200 seconds (3 days) is used. Records stored in memory are
purged in sweeps by a thread dedicated to managing the in-memory data. These sweeps
occur every HASH_FILE_ROLLOVER_PERIOD seconds. Files on disk are purged when it
becomes necessary to open a new history file.

Chapter 21
SMS Gateway Server Configuration

21-45

Miscellaneous
This section describes the miscellaneous options.

DEBUG

(integer, bitmask) Enable debug output. The default value is 6 which selects warning and error
messages.

Table 21-21 defines the bit values of the DEBUG bitmask.

Table 21-21 DEBUG Bitmask

Bit Value Descriptions

0-31 -1 Extremely verbose output.

0 1 Informational messages.

1 2 Warning messages.

3 4 Error messages.

3 8 Subroutine call tracing.

4 16 Hash table diagnostics.

5 32 I/O diagnostics, receive.

6 64 I/O diagnostics, transmit.

7 128 SMS to email conversion diagnostics (mobile originate and
SMS notification).

8 256 PDU diagnostics, header data.

9 512 PDU diagnostics, body data.

10 1024 PDU diagnostics, type-length-value data.

11 2048 Option processing; sends all option settings to the log file.

LISTEN_CONNECTION_MAX

(integer, >= 0) The maximum number of concurrent, inbound TCP connections to allow across
all SMPP relay and server instantiations. A value of 0 (zero) indicates that there is no global
limit on the number of connections. There may, however, be per relay or server limits imposed
by a given relay or server instantiation. Default: 10,000

SMPP Relay Options
The SMS Gateway Server can have multiple instantiations of its SMPP relay, each with
different characteristics chief of which will be the TCP port and interface listened on. Put
differently, for each network interface and TCP port pair the SMPP relay listens on, distinct
characteristics may be ascribed. These characteristics are specified using the options
described in this section.

Each instantiation should be placed within an option group of the form:

[SMPP_RELAY=relay-name]
option-name-1=option-value-1
option-name-2=option-value-2
...
option-name-n=option-value-n

Chapter 21
SMS Gateway Server Configuration

21-46

The string relay-name merely serves to differentiate this instantiation from other instantiations.

Table 21-22 lists the SMPP relay configuration options.

Table 21-22 SMPP Relay Options

Options Default Description

LISTEN_BACKLOG 255 Connection backlog for inbound SMPP client connections.

LISTEN_CONNECTION_MAX no default value Maximum number of concurrent inbound connections.

LISTEN_INTERFACE_ADDRESS no default value Network interface for inbound SMPP client connections.

LISTEN_PORT no default value TCP port for inbound SMPP client connections.

LISTEN_RECEIVE_TIMEOUT 600 s Read timeout for inbound connections from SMPP clients.

LISTEN_TRANSMIT_TIMEOUT 120 s Write timeout for inbound connections from SMPP clients.

MAKE_SOURCE_ADDRESSES_UN
IQUE

1 Make relayed SMS source addresses unique and able to be
replied to.

SERVER_HOST no default value Host name or IP address of the SMPP server to relay to.

SERVER_PORT no default value TCP port of the SMPP server to relay to.

SERVER_RECEIVE_TIMEOUT 600 s Read timeout for outbound SMPP server connections.

SERVER_TRANSMIT_TIMEOUT 120 s Write timeout for outbound SMPP server connections.

LISTEN_BACKLOG

(integer, in [0,255]) Connection backlog allowed by the TCP stack for inbound SMPP client
connections. The default value is 255.

LISTEN_CONNECTION_MAX

(integer, >= 0) The maximum number of concurrent, inbound TCP connections to allow for this
SMPP relay instantiation. Note that this value will be ignored if it exceeds the global
LISTEN_CONNECTION_MAX setting.

LISTEN_INTERFACE_ADDRESS

(string,"INADDR_ANY"or dotted decimal IP address) The IP address of the network interface
to listen to for inbound SMPP client connections. May be either the string "INADDR_ANY" (all
available interfaces) or an IP address in dotted decimal form. (For example, 193.168.100.1)
The default value is "INADDR_ANY". Clustered HA configurations will need to set this value to
correspond to the HA logical IP address.

LISTEN_PORT

(integer, TCP port number) TCP port to bind to for accepting inbound SMPP client connections.
Specification of this option is mandatory; there is no default value for this option. Note also that
there is no Internet Assigned Numbers Authority (IANA) assignment for this service.

LISTEN_RECEIVE_TIMEOUT

(integer, seconds > 0) Timeout to allow when waiting to read data from an SMPP client. The
default value is 600 seconds (10 minutes).

LISTEN_TRANSMIT_TIMEOUT

(integer, seconds > 0) Timeout to allow when sending data to an SMPP client. The default
value is 120 seconds (2 minutes).

Chapter 21
SMS Gateway Server Configuration

21-47

MAKE_SOURCE_ADDRESSES_UNIQUE

(0 or 1) By default, the SMPP relay will append to each SMS source address a unique, ten digit
string. The resulting SMS source address is then saved along with the other historical data.
The result is a unique SMS address which may then be replied to by SMS users. The SMPP
server will detect this address when used as an SMS destination address and will then send
the SMS message to the correct email originator.

To disable this generating of unique SMS source addresses (for one-way SMS), specify a
value of 0 (zero) for this option.

SERVER_HOST

(string, TCP hostname or dotted decimal IP address) SMPP server to relay SMPP client traffic
to. Either a hostname or IP address may be specified. Specification of this option is mandatory;
there is no default value for this option.

SERVER_PORT

(integer, TCP port number) TCP port for the remote SMPP server to which to relay.
Specification of this option is mandatory; there is no default value for this option. There is no
IANA assignment for this service; do not confuse with the IANA assignment for SNPP.

SERVER_RECEIVE_TIMEOUT

(integer, seconds > 0) Timeout to allow when waiting to read data from the SMPP server. The
default value is 600 seconds (10 minutes).

SERVER_TRANSMIT_TIMEOUT

(integer, seconds > 0) Timeout to allow when sending data to the SMPP server. The default
value is 120 seconds (2 minutes).

SMPP Server Options
The SMS Gateway Server can have multiple instantiations of its SMPP server, each with
different characteristics chief of which will be the TCP port and interface listened on. Put
differently, for each network interface and TCP port pair the SMPP server listens on, distinct
characteristics may be ascribed. These characteristics are specified using the options
described in this section.

Each instantiation should be placed within an option group of the form:

[SMPP_SERVER=server-name]
option-value-1=option-value-1
option-value-2=option-value-2
...
option-name-n=option-value-n

The string server-name merely serves to differentiate the instantiation from other
instantiations.

Table 21-23 lists the SMPP server configuration options.

Chapter 21
SMS Gateway Server Configuration

21-48

Table 21-23 SMPP Server Options

Options Default Description

LISTEN_BACKLOG 255 Connection backlog for inbound SMPP server connections

LISTEN_CONNECTION_MAX no default value Maximum number of concurrent inbound connections.

LISTEN_INTERFACE_ADDRESS no default value Network interface for inbound SMPP server connections.

LISTEN_PORT no default value TCP port for inbound SMPP server connections.

LISTEN_RECEIVE_TIMEOUT 600 s Read timeout for inbound SMPP server connections.

LISTEN_TRANSMIT_TIMEOUT 120 s Write timeout for inbound SMPP server connections.

LISTEN_BACKLOG

(integer in[0,255]) Connection backlog allowed by the TCP stack for inbound SMPP client
connections. The default value is 255.

LISTEN_CONNECTION_MAX

(integer >= 0) The maximum number of concurrent, inbound TCP connections to allow for this
SMPP server instantiation. Note that this value will be ignored if it exceeds the global
LISTEN_CONNECTION_MAX setting.

LISTEN_INTERFACE_ADDRESS

(string,"INADDR_ANY"or dotted decimal IP address) The IP address of the network interface
to listen to for inbound SMPP client connections on. May be either the string "INADDR_ANY"
(all available interfaces) or an IP address in dotted decimal form. (For example,
193.168.100.1.) The default value is "INADDR_ANY".

LISTEN_PORT

(integer, TCP port number) TCP port to bind to for accepting inbound SMPP client connections.
Specification of this option is mandatory; there is no default value for this option. Note that
there is no IANA assignment for this service.

LISTEN_RECEIVE_TIMEOUT

(integer, seconds > 0) Timeout to allow when waiting to read data from an SMPP client. The
default value is 600 seconds (10 minutes).

LISTEN_TRANSMIT_TIMEOUT

(integer, seconds > 0) Timeout to allow when sending data to an SMPP client. The default
value is 120 seconds (2 minutes).

Gateway Profile Options
There may be zero or more gateway profiles. In the SMS Gateway Sever's configuration file,
each gateway profile is declared within an option group in the following format:

[GATEWAY_PROFILE=profile-name]
option-name-1=option-value-1
option-name-2=option-value-2
...
option-name-n=option-value-n

Chapter 21
SMS Gateway Server Configuration

21-49

The string profile-name merely serves to differentiate the profile from other origination profiles.

Table 21-24 lists the SMS Gateway Server profile options.

Table 21-24 SMS Gateway Server Profile Options

Options Default Description

CHANNEL sms Channel to enqueue message as.

EMAIL_BODY_CHARSET US-ASCII Character set for email message bodies.

EMAIL_HEADER_CHARSET US-ASCII Character set for email message headers.

FROM_DOMAIN no default value Domain name for routing email back to SMS.

PARSE_RE_0, PARSE_RE_1, ...,
PARSE_RE_9

no default value Regular expressions for parsing SMS message text.

PROFILE GSM SMS profile to operate under: GSM, TDMA, or CDMA.

SELECT_RE no default value Regular expression for selecting the plugin.

SMSC_DEFAULT_CHARSET US-ASCII SMSC's default character set.

USE_SMS_PRIORITY 0 Gateway SMS priority flags to email.

USE_SMS PRIVACY 0 Gateway SMS privacy indicators to email.

CHANNEL

(string, 1-40 characters) Name of the MTA channel used to enqueue email messages. If not
specified, then "sms" is assumed. The specified channel must be defined in the MTA's
configuration.

EMAIL_BODY_CHARSET

(string, character set name) The character set to translate SMS text to prior to insertion into an
email message's body. If necessary, the translated text will be MIME encoded. The default
value is US-ASCII. If the SMS message contains glyphs not available in the charset, they will
be converted to mnemonic characters, which may or may not be meaningful to the recipient.

A list of the character sets known to the MTA may be found in the following file:

installation-directory/lib/charsets.txt

EMAIL_HEADER_CHARSET

(string, character set name) The character set to translate SMS text to prior to insertion into an
RFC 822 Subject: header line. If necessary, the translated string will be MIME encoded. The
default value is US-ASCII. If the SMS message contains glyphs not available in the charset,
they will be converted to mnemonic characters, which may or may not be meaningful to the
recipient

FROM_DOMAIN

(string, IP host name, 1-64 characters) Domain name to append to SMS source addresses
when constructing envelope From: addresses for email messages. The name specified should
be the correct name for routing email back to SMS. (For example, the host name associated
with the MTA SMS channel.) If not specified, then the official host name of the channel
specified with the CHANNEL option will be used.

Chapter 21
SMS Gateway Server Configuration

21-50

PARSE_RE_0, PARSE_RE_1, ..., PARSE_RE_9

(string, UTF-8 regular expression) For mobile origination of email, the gateway profile needs to
extract a destination email address from the text of the SMS message. This is done by means
of one or more POSIX-compliant regular expressions (REs). The text of the SMS message will
be evaluated by each regular expression until either a match producing a destination email
address is found or the list of regular expressions exhausted.

Note:

Use of PARSE_RE_* and ROUTE_TO options are mutually exclusive. Use of both in
the same gateway profile is a configuration error.

Each regular expression must be POSIX compliant and encoded in the UTF-8 character set.
The regular expressions must output as string 0 the destination address. They may optionally
output text to use in a Subject: header line as string 1, and text to use in the message body as
string 2. Any text not "consumed" by the regular expression will also be used in the message
body, following any text output as string 2.

The regular expressions will be tried in the order PARSE_RE_0, PARSE_RE_1, ..., up to
PARSE_RE_9. If no regular expressions are specified, then the following default regular
expression is used:

[\t]*([^\(]*)[\t]*(?:\(([^\)]*)\))?[\t]*(.*)

This default regular expression breaks into the following components:

[\t]*

Ignore leading white space characters (SPACE and TAB).

([^\(]*)

Destination email address. This is the first reported string.

[\t]*

Ignore white space characters.

(?:\(([^\)]*)\))?

Optional subject text enclosed in parentheses. This is the second reported string. The
leading ?: causes the outer parentheses to not report a string. They are being used merely for
grouping their contents together into a single RE for the trailing ?. The trailing ? causes this RE
component to match only zero or one time and is equivalent to the expression:

{0,1}

[\t]*

Ignore white space characters.

(.*)

Remaining text to message body. This is the third reported string.

For example, with the above regular expression, the sample SMS message:

Chapter 21
SMS Gateway Server Configuration

21-51

dan@example.com(Testing)This is a test

yields the email message:

To: dan@example.com
Subject: Testing

This is a test

As a second example, the SMS message:

sue@example.com This is another test

would yield:

To: sue@example.com

This is another test

Note that the SMS message, prior to evaluation with these regular expressions, will be
translated to the UTF-16 encoding of Unicode. The translated text is then evaluated with the
regular expressions which were previously converted from UTF-8 to UTF-16. The results of the
evaluation are then translated to US-ASCII for the destination email address,
EMAIL_HEADER_CHARSET for the Subject: text, if any, and EMAIL_BODY_CHARSET for
the message body, if any.

PROFILE

(string, "GSM", "TDMA", or "CDMA") SMS profile to assume. Presently this information is only
used to map SMS priority flags to RFC 822 Priority: header lines. Consequently, this option has
no effect when USE_SMS_PRIORITY=0 which is the default setting for that option.

SELECT_RE

(string, US-ASCII regular expression) A US-ASCII POSIX-compliant regular expression to
compare against each SMS message's SMS destination address. If an SMS message's
destination address matches this RE, then the SMS message will be sent through the gateway
to email in accord with this gateway profile.

Note that since an SMS message's destination address is specified in the US-ASCII character
set, this regular expression must also be expressed in US-ASCII.

SMSC_DEFAULT_CHARSET

(string, character set name) The name of the default character set used by the remote SMSC.
The two common choices for this option are US-ASCII and UTF-16-BE (USC2). If not
specified, US-ASCII is assumed.

USE_SMS_PRIORITY

(integer, 0 or 1) By default (with USE_SMS_PRIORITY=0), priority flags in SMS messages are
ignored and not sent with the email messages. To have the priority flags passed with the email,
specify USE_SMS_PRIORITY=1. When passed with the email, the mapping from SMS to
email is as shown in Table 21-25:

Table 21-25 Priority Flag Mapping from SMS to Email

SMS Profile SMS Priority Flag Email Priority: Header Line

GSM 0 (Non-priority)1, 2, 3 (Priority) No header line (implies Normal)Urgent.

Chapter 21
SMS Gateway Server Configuration

21-52

Table 21-25 (Cont.) Priority Flag Mapping from SMS to Email

SMS Profile SMS Priority Flag Email Priority: Header Line

TDMA 0 (Bulk)1 (Normal)2 (Urgent)3 (Very Urgent) Nonurgent No header line (implies Normal)
UrgentUrgent.

CDMA 0 (Normal)1 (Interactive)2 (Urgent)3 (Emergency) No header line (implies
Normal)UrgentUrgentUrgent.

Note that the email Priority: header line values are Nonurgent, Normal, and Urgent.

USE_SMS PRIVACY

(integer, 0 or 1) By default (with USE_SMS_PRIVACY=0), SMS privacy indications are ignored
and not sent with the email messages. To have this information passed with the email, specify
USE_SMS_PRIVACY=1. When passed along with email, the mapping from SMS to email is
shown in Table 21-26:

Table 21-26 Privacy Flags Mapping from SMS to Email

SMS Privacy Flag Email Sensitivity: Header Line

0 (Not restricted) No header line.

1 (Restricted) Personal.

2 (Confidential) Private.

3 (Secret) Company-confidential.

Note that the values of the email Sensitivity: header line are Personal, Private, and Company-
confidential.

Configuration Example for Two-Way SMS
This section shows a configuration example for a two-way SMS. It provides assumptions on
behavior and further assumptions and assignments. The section also describes an SMS
channel configuration, SMS channel options, an SMS gateway server configuration, and
additional sms_option file settings.

Assumptions on Behavior

For the sake of this example, let us assume that the following behavior is desired:

• Email messages addressed to

sms-id@sms.domain.com

are to be sent to the SMS address

sms-id

and given a unique SMS source address in the range 000nnnnnnnnnn.

• Mobile SMS messages addressed to the SMS address 000 are to be sent through the
gateway to email with the email address extracted from the start of the SMS message text.

For example, if the SMS message text is:

jdoe@domain.com Interested in a movie?

Chapter 21
SMS Gateway Server Configuration

21-53

then the message "Interested in a movie?" is to be sent to jdoe@domain.com.

• SMS notifications sent to 000nnnnnnnnnn are to be sent through the gateway to email
and directed to the originator of the message being receipted.

In order to bring about this behavior, the following assumptions and assignments are made

Further Assumptions and Assignments

• The MTA's SMS channel uses the domain name sms.domain.com.

• The SMS Gateway Server runs on the host gateway.domain.com and uses:

– TCP port 503 for its SMPP relay

– TCP port 504 for its SMPP server

• The remote SMSC's SMPP server runs on the host smpp.domain.com and listens on
TCP port 377.

• The remote SMSC's default character set is UCS2 (aka, UTF-16).

SMS Channel Configuration

To effect the above behavior, the following SMS channel configuration may be used (add these
lines to the bottom of the channel blocks after running msconfig edit channels):

(blank line)
sms
sms.domain.com

SMS Channel Options

The channel's options would then be set as follows:

msconfig
msconfig> set channel:mway_sms.options.smpp_server gateway.domain.com
msconfig# set channel:mway_sms.options.smpp_port 503
msconfig# set channel:mway_sms.options.use_header_from 0
msconfig# set channel:mway_sms.options.default_source_address 000
msconfig# set channel:mway_sms.options.gateway_profile sms1
msconfig# set channel:mway_sms.options.smsc_default_charset UCS2

SMS Gateway Server Configuration

Finally, the Gateway Server configuration file, sms_gateway.cnf, should look like the following:

HISTORY_FILE_DIRECTORY=/sms_gateway_cache/
[SMPP_RELAY=relay1]
LISTEN_PORT=503SERVER_HOST=smpp.domain.com
SERVER_PORT=377

[SMPP_SERVER=server1]
LISTEN_PORT=504

[GATEWAY_PROFILE=sms1]
SELECT_RE=000([0-9]{10,10}){0,1}
SMSC_DEFAULT_CHARSET=UCS2

Testing this Configuration

If you do not have an SMSC to test on, you may want to perform some loopback tests. With
some additional sms channel option settings, some simple loop back tests may be performed
for the above configuration.

Chapter 21
SMS Gateway Server Configuration

21-54

Additional sms_option File Settings

The additional settings for the sms channel options are:

msconfig
msconfig> set channel:mway_sms.options.FROM_FORMAT
msconfig# set channel:mway_sms.options.SUBJECT_FORMAT
msconfig# set channel:mway_sms.options.CONTENT_PREFIX

Without these settings, an email containing:

user@domain.com (Sample subject) Sample text

would get converted into the SMS message:

From:user@domain.com Subject:Sample Subject Msg:Sample text

That, in turn, would not be in the format expected by the mobile-to-email code, which wants to
see:

user@domain.com (Sample subject) Sample text

Hence the need (for loopback testing) to specify empty strings for the FROM_FORMAT,
SUBJECT_FORMAT, and CONTENT_PREFIX options.

Performing the Loopback test

Send test email messages addressed to 000@sms.domain.com, such as:

user@domain.com (Test message) This is a test message which should loop back

The result is that this email message should be routed back to the email recipient
user@domain.com. Be sure to have added sms.domain.com to your DNS or host tables for the
test.

SMS Gateway Server Storage Requirements
To determine the amount of resources you will need for the SMS Gateway Server, use the
numbers you generate from the requirements in Table 21-27 along with your expected number
of relayed messages per second and the RECORD_LIFETIME setting.

Table 21-27 covers the requirements for the historical records, the SMPP relay, and SMPP
server.

Chapter 21
SMS Gateway Server Storage Requirements

21-55

Table 21-27 SMS Gateway Server Storage Requirements

Component Requirements

In-memory historical record Each relayed message requires 33+m+s bytes of virtual memory, where m is the length of
the message's SMS message ID (1 <= m <=64) and s is the length of the message's SMS
source address (1 <=s <= 20).

When MAKE_SOURCE_ADDRESS_UNIQUE=0, then only 16+m bytes are used. For 64-bit
operating systems, 49+m+s bytes of virtual memory are consumed per record [24+m when
MAKE_SOURCE_ADDRESS_UNIQUE=0].

Note also, that the heap allocator may actually allocate larger size pieces of virtual memory
for each record. The maximum number of records is 43 billion:

(2**32-1)

For fewer than 16.8 million records:

(2**24)

the hash table consumes approximately 16 Mb. For fewer than 67.1 million records:

(2**26)

the hash table consumes approximately 64 Mb; for more than 67.1 million records, the hash
table consumes approximately 256 Mb.

Double the memory consumptions for 64 bit operating systems.

These consumptions are in addition to the memory consumption required for each record
itself.

On-disk historical record Each relayed message requires on average the following number of bytes:

81+m+2s+3a+S+2i

where:

• m is the average length of SMS message IDs, and 1<=m<=64
• s is the average length of SMS source addresses, and 1 <= s <= 20
• a is the average length of email addresses, and 3 <= a <= 129
• S is the average length of Subject: header lines, and 0 <= S<= 80

78+m+3a+S+2i
SMPP relay Each relayed SMPP session consumes two TCP sockets: one with the local SMPP client

and another with the remote SMPP server. Approximately 1 Kb of virtual memory is
consumed per connection on 32 bit operating systems; 2 Kb on 64 bit operating systems.

SMPP server Each incoming connection consumes a TCP socket. Approximately 1 Kb of virtual memory is
consumed per connection on 32 bit operating systems; 2 Kb on 64 bit operating systems.

For instance, if on average 50 messages per second are expected to be relayed, SMS source
addresses are 13 bytes long, SMS message IDs have a typical length of 12 bytes, email
addresses 24 bytes, Subject: lines 40 bytes, email message and envelope IDs 40 bytes each,
and historical data is retained for 7 days, then:

• There will be 30.24 million historical records to store, each on average 58 bytes in memory
and 311 bytes long on disk;

• The in-memory consumption of the historical records will be about 1.70 Gb (1.63 Gb + 64
Mb); and

• The on-disk storage will be approximately 8.76 Gb.

Chapter 21
SMS Gateway Server Storage Requirements

21-56

While a sufficiency of disk may be supplied to handle any on disk requirements, the virtual
memory requirement on a 32-bit machine will be a hard limit of approximately 2 Gb. To reduce
the amount of virtual memory or disk storage required, use the RECORD_LIFETIME option to
reduce the length of time records are retained.

SMS Configuration Examples
The following examples outline a couple of ways to configure one-way and two-way SMS:

• Configuring Messaging Server for One-Way SMS

• Configuring Messaging Server for One-Way SMS

Chapter 21
SMS Configuration Examples

21-57

22
Configuring Messaging Server for One-Way
SMS

This example describes how to configure Oracle Communications Messaging Server for one-
way SMS by using Unified Configuration recipes. You could also perform the same
configuration manually by using the msconfig command, however, using recipes is faster and
makes the task repeatable. You run one recipe on the system where you are adding the SMS
channelsmpp. See "Using Recipes" and the discussion on recipe language in Messaging
Server Reference and for more information on Unified Configuration recipes.

Use the "Example Recipe to Configure One-Way SMS with Messaging Server" to configure
Messaging Server for one-way SMS.

1. Create the source filter file (process_sms.filter) with the Messaging Server unified
configuration.

a. To create a filter definition file for the source filter, enter a definition as in the following
example:

require ["body","imap4flags"];
if body :raw :contains "Action: failed"
{
addflag "sms";
addflag "smserror";
}

b. Save the filter definition file.

2. Make a copy of the example recipe file and save it as recipe.rcp.

3. To run the recipe, type the following command:

cd MessagingServer_home/bin
msconfig run recipe_name

4. If running a compiled configuration, recompile the MTA configuration to capture the
changes you have made:

cd MessagingServer_home/bin
imsimta cnbuild

5. Restart Messaging Server.

stop-msg
start-msg

Example Recipe to Configure One-Way SMS with Messaging Server

set_option("mta.enable_sieve_body", "1");

if exists_channel("sms") {
delete_channel("sms");
}
if exists_channel("process_sms") {
delete_channel("process_sms");
}

22-1

add_channel("sms", ["notificationchannel", "process_sms", "backoff", "PT10M PT20M
PT30M", "notices", "1", "official_host_name", "sms-handle", "options.smpp_server",
"127.0.0.1", "options.smpp_port", "8500", "options.default_source_address", "000",
"options.smsc_default_charset", "UTF-16-BE", "options.esme_password", "password",
"options.esme_system_id", "smppclient"]);

add_channel("process_sms", ["sourcefilter", "file:/opt/sun/comms/messaging64/config/
process_sms.filter", "official_host_name", "process_sms-daemon"]);

#Setting rewrite rules
append_rewrites(["sms","$U@sms-handle"]);

Chapter 22

22-2

23
Configuring Messaging Server for Two-Way
SMS

This example describes how to configure Oracle Communications Messaging Server for two-
way SMS by using Unified Configuration recipes. You could also perform the same
configuration manually by using the msconfig command, however, using recipes is faster and
makes the task repeatable. You run one recipe on the system where you are adding the SMS
channelsmpp. See "Using Recipes" and the discussion on recipe language in Messaging
Server Reference and for more information on Unified Configuration recipes.

Use the following "Example Recipe to Configure Two-Way SMS with Messaging Server" to
configure Messaging Server for two-way SMS.

1. Create the source filter file (process_sms.filter) with the Messaging Server Unified
Configuration.

a. To create a filter definition file for the source filter, enter a definition as in the following
example. This is the source filter for the process_sms channel:

require ["body","imap4flags"];
if body :raw :contains "Action: failed"
{
addflag "sms";
addflag "smserror";
}

b. Save the process definition file.

2. Make a copy of the example recipe file and save it as recipe.rcp.

3. To run the recipe, type the following command:

cd MessagingServer_home/bin
msconfig run recipe_name

4. If running a compiled configuration, recompile the Messaging Server configuration to
capture the changes you have made:

imsimta cnbuild
5. Restart Messaging Server.

cd MessagingServer_home/bin
stop-msg
start-msg

Example Recipe to Configure Two-Way SMS with Messaging Server

set_option("mta.enable_sieve_body", "1");
set_option("sms_gateway.enable", "1");

if exists_channel("sms") {
delete_channel("sms");
}
if exists_channel("process_sms") {
delete_channel("process_sms");
}

23-1

add_channel("sms", ["notificationchannel", "process_sms", "backoff", "PT10M PT20M
PT30M", "notices", "1", "sourcefilter", "file://opt/sun/comms/messaging64/config/
sms_channel.filter", "official_host_name", "sms-handle", "options.smpp_server",
"127.0.0.1", "options.smpp_port", "8500", "options.gateway_profile", "GATEWAY",
"options.default_source_address", "000", "options.smsc_default_charset", "UTF-16-
BE", "options.use_header_from", "0", "options.esme_password", "password",
"options.esme_system_id", "smppclient"]);

add_channel("process_sms", ["sourcefilter", "file://opt/sun/comms/messaging64/config/
process_sms.filter", "official_host_name", "process_sms-daemon"]);

Setting rewrite rules
append_rewrites(["sms","$U@sms-handle"]);

if exists_group("sms_gateway.smpp_server:SMPPSERVER") {
delete_group("sms_gateway.smpp_server:SMPPSERVER");
}

add_group("sms_gateway.smpp_server:SMPPSERVER", ["tcp_ports", "4080", "server_host",
"127.0.0.1", "server_port","950",
"ESME_PASSWORD","password","ESME_SYSTEM_ID","smppclient"]);

if exists_group("sms_gateway.smpp_relay:SMPPRELAY") {
delete_group("sms_gateway.smpp_relay:SMPPRELAY");
delete_group("sms_gateway.smpp_relay:SMPP_RELAY");
}

add_group("sms_gateway.smpp_relay:SMPPRELAY", ["server_port", "950", "tcp_ports",
"8500", "server_host", "127.0.0.1"]);

if exists_group("sms_gateway.gateway_profile:GATEWAY") {
delete_group("sms_gateway.gateway_profile:GATEWAY");
}

add_group("sms_gateway.gateway_profile:GATEWAY", ["select_re", "([0-9]*)",
"mta_channel", "sms", "smsc_default_charset", "UTF-16-BE", "email_body_charset",
"UTF-8", "email_header_charset", "UTF-8", "text_to_subject", "1"]);

6. Set the JMQ options to create non-delivery failure notifications of any SMS messages:

• NewMsg.enable -v 1

• jmqHost -v "127.0.0.1"

• jmqPort -v "7777"

• jmqUser -v "user

• jmqpwd -v "xxx"

• DestinationType -v "queue"

• jmqQueue -v "ucsms1"

• Priority -v 3

• ttl -v 1000

• Persistent -v 1

• maxheadersize -v 1024

• noneinbox.enable -v 1

• msgflags.enable -v 0

Chapter 23

23-2

• readmsg.enable -v 0

Chapter 23

23-3

24
Using the iSchedule Channel to Handle iMIP
Messages

This chapter describes how to configure Oracle Communications Messaging Server to use the
iSchedule protocol to post a calendar event received in an iMIP (iCalendar Message-Based
Interoperability Protocol) message to Oracle Communications Calendar Server. This capability
enables "internal" users to automatically process calendar invitations from "external" users. To
enable this interoperability between calendaring systems, you configure a Messaging Server
"iSchedule" channel to process the iMIP messages. For additional information, see the
discussion on enabling the iSchedule channel to handle iMIP messages in Calendar Server
System Administrators Guide.

Inviting Users on Internal and External Calendar Systems
Background

Calendar Server meetings often have multiple invitees. These invitees can be both internal
users, who reside on the same Calendar Server deployment, or external users, who reside
either on a different Calendar Server deployment administered by a separate group, or on an
outside calendaring system, such as Exchange, Google Calendar, and so on. For "internal"
invitees, Calendar Server automatically adds the meeting request to their calendars (referred
to as implicit scheduling) and also sends them email notification about the meeting request. All
"external" invitees are sent an iMIP (iCalendar Message-Based Interoperability Protocol) email
with the meeting request as an attachment. External invitees must manually process these
messages to add the invite to their calendars.

Manually Accepting External Invitations
Meeting invitations from external organizers are sent to the user's mailbox. Mail clients, such
as Outlook or Thunderbird, enable users to process these invitations and add the invitation to
their calendar. How the invitation is added to the user's calendar depends on the specific mail
client, but the invitation is not added until the user has manually read the email and accepted
the meeting request.

Automatically Accepting External Invitations
You can configure your Calendar Server deployment to automatically process invitations
coming from external calendar systems. To users, handling an external invite then appears just
like an internal invite.

This capability involves an intermediary in the form of Messaging Server. You configure the
Messaging Server MTA to process the calendar invite email (which is an iMIP message),
extract the pertinent calendar information, then use the iSchedule protocol to add the invite to
the attendee's calendar database. As a consequence, external event invitations automatically
appear in the user's calendar without the need for a manual intervention, even when using a
"non-calendar" aware client.

24-1

Once you have configured your deployment accordingly, users have a choice on how to
process invitations. Users can either accept the "external" meeting invite directly from their
calendar client (either desktop or mobile iOS CalDAV clients) or they can still accept it from
their email client. That is, CalDAV clients now receive iMIP messages in their scheduling-inbox,
and are able to process them just like regular CalDAV-based invitations and replies. Because
the invitation is already in the user's calendar, invitation replies and cancel are also merged
automatically. Thus, based upon the user accepting or rejecting the request, the calendar client
merely has to update the attendee status in the invitation. That status change also enables
Calendar Server to send a response to the organizer indicating the disposition of the meeting
request. As the response is sent directly by Calendar Server, it does not matter how the user
accepted the invitation (whether from a calendar client on a mobile device, desktop, or from an
email client). Finally, because of the addition of meta data to the email message, the
Convergence (web-based) client is able to display a scheduling-specific form to users that
enables them to accept, decline, or indicate a "maybe" to meeting invitations directly from their
email without having to switch to the calendar client.

Message Server iMIP Configuration Overview
A Messaging Server MTA channel (an "iSchedule" channel) handles automatic processing of
external calendar invites by:

1. Intercepting incoming emails containing an iMIP message An iMIP message has an
iCalendar attachment of type 'text/calendar' with a method=<action> option in the
'Content-Type:' header.

2. Injecting the corresponding iTIP message into the regular calendar server workflow

3. Adding meta-data (email X- headers) to the iMIP email before delivering it to its recipients

4. Posting the invitation request to a calendar iSchedule URL

The Calendar Server then consumes the invitation from the iSchedule URL just as it would
have done if an external calendar server had posted an invitation to one of its users. On the
Calendar Server side, an iSchedule database, which is a separate table from the Calendar
Server database, acts as the global inbox and outbox for external invites.

Administering the iMIP configuration involves:

• Enabling or disabling iMIP messaging processing

• Configuring the iSchedule service URL

• Configuring the criteria for messages to be selected for processing

You should configure the iSchedule channel on the message store systems if you are not using
LMTP. If you are using LMTP, configure the iSchedule on the MTAs.

For more information on the iCalendar Message-Based Interoperability Protocol, see RFC
6047 (http://www.faqs.org/rfcs/rfc6047.html). For more information on iCalendar
Transport-independent Interoperability Protocol (iTIP), see RFC 5546 (http://www.faqs.org/
rfcs/rfc5546.html).

Configuring the iSchedule Channel for iMIP Messages in Unified
Configuration

You can use a Messaging Server Unified Configuration recipe to automate the configuration
process or you can manually perform the necessary configuration. After completing the

Chapter 24
Message Server iMIP Configuration Overview

24-2

http://www.faqs.org/rfcs/rfc6047.html
http://www.faqs.org/rfcs/rfc5546.html
http://www.faqs.org/rfcs/rfc5546.html

configuration, you also need to verify the Calendar Server configuration. See "Verifying the
Calendar Server Configuration" for more information.

You do not need to perform any additional Convergence configuration for Convergence to
automatically process invitations coming from external calendar systems. If you have
configured Messaging Server and Calendar Server correctly, Convergence users see a UI form
that they use to reply to external invites.

Using the iSchedule Recipe to Automate Configuring the iSchedule Channel
in Unified Configuration

Unified Configuration provides a recipe language and some stock recipes to automate certain
configuration tasks (see "Using Recipes"). To set up the iSchedule channel, you can use a
recipe called iSchedule.rcp, which automatically sets up the channel definition, job controller
configuration, channel options, Sieve rule, and CONVERSION mapping.

To use the iSchedule.rcp recipe:

1. Run the msconfig command with the recipe name.

MessagingServer_home/bin/msconfig run iSchedule.rcp
2. Respond to the prompts, for example:

HTTP URL for iSchedule server: http://host1.example.com:8080/dav/ischedule/
Destination channel for messages to check (<RET> if no more): ims-ms

Use the iSchedule URL and destination channels based on your deployment.

Note:

Be sure to add the trailing forward slash (/) in the iSchedule URL, otherwise you
will receive the error message "HTTP Error 401 Unauthorized."

3. If you are using a compiled configuration, recompile the configuration.

MessagingServer_home/bin/imsimta cnbuild
4. Restart Messaging Server.

MessagingServer_home/bin/stop-msg
MessagingServer_home/bin/start-msg

5. Verify the Calendar Server configuration. See "Verifying the Calendar Server
Configuration" for more information.

Manually Configuring the iSchedule Channel in Unified Configuration
The high-level steps to manually configure the iSchedule channel by using the msconfig
command involve:

• Adding the channel

• Configuring the conversion mapping

• Specifying messages to be processed by iSchedule

To manually configure the iSchedule Channel, job controller master command,
include_conversiontag MTA option, and conversion mapping:

Chapter 24
Configuring the iSchedule Channel for iMIP Messages in Unified Configuration

24-3

1. Use the msconfig command in interactive mode to configure the iSchedule channel, the
job controller master command for the channel, the include_conversiontag MTA option if
you want to have a TAG= clause included in your conversion mapping probes, and the
conversion mapping.

MessagingServer_home/bin/msconfig
msconfig> set channel:ischedule.official_host_name ischedule-daemon
msconfig# set channel:ischedule.official_host_name.single
msconfig# set channel:ischedule.options.handle-imip 1
msconfig# set channel:ischedule.options.ischedule-url http://host:port/dav/
ischedule/
msconfig# set instance.job_controller.channel_class:ischedule.master_command
IMTA_BIN:ischedule
msconfig# set mapping:conversion.rule "IN-CHAN=ischedule;OUT-CHAN=*;TAG=*;CONVERT" NO
msconfig# set mapping:conversion.rule "IN-CHAN=*;OUT-CHAN=*;TAG=ISCHEDULE;CONVERT"
"YES,CHANNEL=ischedule"
msconfig# set include_conversiontag 2
msconfig# write

Use the host name and alternately the port for the Calendar Server configured for the
iSchedule database.

Note:

Be sure to add the trailing forward slash (/) in the ischedule-url, otherwise you
will receive the error message "HTTP Error 401 Unauthorized."

2. Edit the filters block to specify messages to be processed by iSchedule.

msconfig> edit filter

The filter block appears in the editor that is the default configured for your login.

3. Add the following lines to create a filter that selects all the messages that have "text/
calendar" MIME as an attachment:

require ["mime", "environment"];
if allof(environment :is "vnd.sun.destination-channel" ["ims-ms"],
header :mime :anychild :contenttype :is "content-type" "text/calendar",
NOT header :contains "X-Oracle-CS-iSchedule-Ignore" "Yes") {
addconversiontag "ISCHEDULE";
}

iMIP messages generated by Calendar Server contain a "X-Oracle-CS-iSchedule-Ignore:
Yes" header to indicate that the event was already added to the user's calendar. So, the
Sieve rule should ignore those iMIP messages by not tagging them with an ISCHEDULE
conversion tag. Failing to do so results in an iSchedule post of the event that is already
present in the user's calendar.

4. Write the configuration and exit the msconfig interactive mode.

msconfig# write
msconfig> exit
#

5. If you are using a compiled configuration, recompile the configuration.

MessagingServer_home/bin/imsimta cnbuild
6. Restart Messaging Server.

Chapter 24
Configuring the iSchedule Channel for iMIP Messages in Unified Configuration

24-4

MessagingServer_home/bin/stop-msg
MessagingServer_home/bin/start-msg

7. Verify the Calendar Server configuration. See "Verifying the Calendar Server
Configuration" for more information.

Verifying the Calendar Server Configuration
To ensure that your Calendar Server configuration is setup properly, use the following steps to
verify SMTP settings and iMIP email notifications. iMIP email notifications need to also be
configured for internal users, that is, users on the same Calendar Server host. If necessary,
restart the GlassFish Server container on which Calendar Server is deployed.

1. Check the SMTP configuration for the following settings.

cd CalendarServer_home/bin
davadmin config list|grep smtp
notification.dav.smtphost=host2.example.com
notification.dav.smtpuser=user
notification.dav.smtppassword=********
notification.dav.smtpport=25
notification.dav.smtpstarttls=true
notification.dav.smtpusessl=false
notification.dav.smtpdebug=false
notification.dav.smtpauth=false

2. Check the email notifications configuration.

davadmin config modify -o notification.dav.smtpstarttls -v false
Enter Admin password:
davadmin config list|grep imip
notification.dav.enableimipemailnotif=false
davadmin config modify -o notification.dav.enableimipemailnotif -v true
Enter Admin password:

3. Check the whitelist configuration for the iSchedule port. The
service.dav.ischedulewhitelist configuration option prevents denial of service attacks on
the iSchedule port. See the discussion on enabling the iSchedule channel to handle iMIP
messages in Calendar Server System Administrators Guide for more information.

4. If necessary, restart GlassFish Server. For example:

/opt/SUNWappserver/bin/asadmin stop-domain domain1
/opt/SUNWappserver/bin/asadmin start-domain domain1

Modifying iSchedule Channel Options
After you have configured the iSchedule channel, you might need to change iSchedule channel
options as described in this section.

To Enable or Disable iMIP Message Processing
Use the msconfig command to enable or disable iMIP message processing by setting the
handle-imip option to 1 or 0 respectively. For example, the following command disables iMIP
message process:

MessagingServer_home/bin/msconfig
msconfig> set instance.channel:ischedule.options.handle-imip 0
msconfig# write
msconfig> exit

Chapter 24
Configuring the iSchedule Channel for iMIP Messages in Unified Configuration

24-5

To Modify the iSchedule Service URL
Use the msconfig command to modify the iSchedule URL by editing the ischedule-url option.
For example:

MessagingServer_home/bin/msconfig
msconfig> set instance.channel:ischedule.options.ischedule-url http://host:port/dav/
ischedule/
msconfig# write
msconfig> exit

Configuring the iSchedule Channel in Legacy Configuration
This section describes how to configure the iSchedule channel for Messaging Server in legacy
configuration (that is, Messaging Server 7 Update 5 and greater but you either did not convert
an existing deployment to Unified Configuration, or choose to install a fresh deployment using
Unified Configuration.)

1. Create the iSchedule channel.

a. Add following lines to the MessagingServer_home/config/imta.cnf file:

ischedule single
ischedule-daemon

b. Add the following lines to the MessagingServer_home/config/job_controller.cnf file:

[CHANNEL=ischedule]
master_command=IMTA_BIN:ischedule

2. Configure CONVERSION mapping by adding the following lines to the
MessagingServer_home/config/mappings file:

CONVERSION

 IN-CHAN=ischedule;OUT-CHAN=*;TAG=*;CONVERT NO
 IN-CHAN=*;OUT-CHAN=*;TAG=ISCHEDULE;CONVERT YES,CHANNEL=ischedule

3. Enable or disable iMIP message processing. To enable or disable iMIP message
processing, create a channel options file, MessagingServer_home/config/
ischedule_option, and add the following line:

handle-imip=1 (to enable)
handle-imip=0 (to disable)

4. Configure the iSchedule service URL. In the channel options file, specify the iSchedule
Service URL as follows:

ischedule-url=http://host:port/dav/ischedule/
5. Configure the include_conversiontag MTA option if you want to have a {TAG=}} clause

included in your conversion mapping probes by adding the following line to the
MessagingServer_home/config/option.dat file:

INCLUDE_CONVERSIONTAG=2
6. Specify messages to be processed by iSchedule. Run the following Sieve script to select

all the messages that have text/calendar MIME as an attachment. This script should be
placed in the location of your system-wide scripts.

require ["mime", "environment"];
if allof(environment :is "vnd.sun.destination-channel" ["ims-ms"],
header :mime :anychild :contenttype :is "content-type" "text/calendar",

Chapter 24
Configuring the iSchedule Channel in Legacy Configuration

24-6

NOT header :contains "X-Oracle-CS-iSchedule-Ignore" "Yes") {
addconversiontag "ISCHEDULE";
}

7. If you are using a compiled configuration, recompile the configuration.

MessagingServer_home/imsimta cnbuild
8. Restart Messaging Server.

MessagingServer_home/bin/stop-msg
MessagingServer_home/bin/start-msg

9. Verify the Calendar Server configuration. See "Verifying the Calendar Server
Configuration" for more information.

Troubleshooting the iSchedule Configuration
Use the following information to troubleshoot your iSchedule configuration:

• All messages processed through the iSchedule channel have a "Received:" header
containing ischedule-daemon.host.domain. This is true whether handling iMIP is enabled
or not. If iMIP handing is enabled, the iMIP messages have an extra header, "X-Oracle-
CS-iSchedule-Status:," which contains the HTTP status code sent by the iSchedule
service in response to the posted iSchedule message.

• The iSchedule channel log files are located in DataRoot/log/ischedule_master.log.*

• Use the MessagingServer_home/bin/imsimta qm counters command to list the number
of messages processed by the iSchedule channel.

• One common misconfiguration is to specify a wrong destination channel in the Sieve rule.
If you do not see the "X-Oracle-CS-iSchedule-Status:" header in iMIP e-mails, or do not
see the iSchedule counters increase when you use the imsimta qm counters command,
check if the destination channel that you specified in the Sieve rule matches the
destination channel that you have configured for that user.

Chapter 24
Troubleshooting the iSchedule Configuration

24-7

25
Handling sendmail Clients

This chapter describes how to configure Oracle Communications Messaging Server to work
with sendmail clients. If users (or system utilities, for example, cron) send messages through
sendmail clients, you can configure Messaging Server to work with those clients over protocol.
Users can continue to use the UNIX sendmail client.

To create compatibility between sendmail clients and Messaging Server, you can create and
modify a sendmail configuration file.

Each time a new sendmail patch is applied to your system, you must modify the submit.cf
file. See "To Create the sendmail Configuration File on Oracle Solaris 9 Platforms" for more
information.

On Oracle Solaris 9 platforms, sendmail is no longer a setuid program. Instead, it is a setgid
program.

To Create the sendmail Configuration File on Oracle Solaris 8
Platforms

1. Find the file main-v7sun.mc file in directory /usr/lib/mail/cf and create a copy of this file.

In the example in this section, a copy called sunone-msg.mc is created.

2. In the sunone-msg.mc file, add the following lines before the MAILER macros:

FEATURE(`nullclient', `smtp:rhino.west.example.com')dnl
MASQUERADE_AS(`west.example.com')dnl
define(`confDOMAIN_NAME', `west.example.com')dnl

rhino.west.example.com is the localhost name and west.example.com is the default
email domain as described in creating the initial Messaging Server runtime configuration in
Messaging Server Installation and Configuration Guide. In an HA environment, use the
logical host name. See Messaging Server Installation and Configuration Guide for
information about logical hostnames for high availability.

3. Compile the sunone-msg.mc file:

/usr/ccs/bin/make sunone-msg.cf

The sunone-msg.mc will output sunone-msg.cf.

4. Make a backup copy of the existing sendmail.cf file located in the /etc/mail directory.

a. Copy and rename /usr/lib/mail/cf/sunone-msg.cf to sendmail.cf file.

b. Move the new sendmail.cf file to the /etc/mail directory.

To Create the sendmail Configuration File on Oracle Solaris 9
Platforms

1. Find the file submit.mc file in directory /usr/lib/mail/cf and create a copy of this file.

25-1

In the example in this section, a copy called sunone-submit.mc is created.

2. Change the following line in the file sunone-submit.mc:

FEATURE(`msp')dn

to

FEATURE(`msp', `rhino.west.example.com')dnl

rhino.west.example.com is the localhost name and west.example.com is the default
email domain as described in creating the initial Messaging Server runtime configuration in
Messaging Server Installation and Configuration Guide. In an HA environment, use the
logical host name. See Messaging Server Installation and Configuration Guide for
information about logical hostnames for high availability.

3. Compile the sunone-submit.mc file:

/usr/ccs/bin/make sunone-submit.cf

The sunone-submit.mc will output sunone-submit.cf.

4. Make a backup copy of the existing submit.cf file in the /etc/mail directory.

a. Copy and rename /usr/lib/mail/cf/sunone-submit.cf file to submit.cf file.

b. Move the new submit.cf file to the /etc/mail directory.

Chapter 25
To Create the sendmail Configuration File on Oracle Solaris 9 Platforms

25-2

26
Handling Forged Email by Using the Sender
Policy Framework

This chapter describes how to use Sender Policy Framework (SPF) with Oracle
Communications Messaging Server to reduce instances of forged email.

About Sender Policy Framework
Spam producers and email scammers often forge email by using false domain names and
email addresses, or by using legitimate domain names and email addresses to fool users into
thinking that a message is from someone or some company they know. For example, a
spammer could send email from an address such as president@whitehouse.gov and the
user could be fooled into thinking the mail was actually from this address. Forging email might
fool users into opening the unsolicited message, or worse, provide information to a false
authority. Also, spammers prefer to send their email from legitimate domains that are not on an
RBL list.

Sender Policy Framework (SPF) is a technology that can detect and reject forged email during
the SMTP dialogue. Specifically, SPF is a protocol that allows a domain to explicitly authorize
the hosts that may use its domain name. In addition, a receiving host may be configured to
check this authorization. SPF can thus significantly reduce the instances of forged email.

Note:

When using Unified Configuration, you use the msconfig command to configure
options instead of editing the legacy configuration files.

SPF Theory of Operations
When a message comes into Messaging Server, the MTA does an SPF query to determine if
the address actually came from the domain on the address. An SPF query consults the DNS
for TXT records belonging to the domain of the message (domain). Domain is either the
domain name specified as the argument for HELO or EHLO (if the spfhelo channel option is
used) or the domain name in the originator's address given in the MAIL FROM: command
(typically the part after the @ character). If no domain name is specified or available, the one
specified during HELO/EHLO is used as domain. Most ISPs distribute an authorized list of IP
addresses that match their domains. If the IP address does not match the domain name, then
the message is assumed to be forged.

Note:

Prior to querying the DNS, the software checks the SPF_LOCAL mapping table for a
match for domain. If a match is found there, it will be used first.

26-1

If a record found from the mapping table contains a redirect= domain clause, then the
redirection to domain will be done as a DNS query, skipping the recursive and redundant
mapping file check.

An example of a resulting TXT record is:

v=spf1 +mx a:colo.example.com/28 -all

The v=spf1 token is required for SPF records supported by this RFC.

+mx checks MX records for domain and confirms that the source IP address for this SMTP
connection matches one of the IP addresses given as a result of an MX query for domain. If
there is a match, the + means that the result of this is Pass.

a:colo.example.com/28 checks for A records for colo.example.com, then confirm that the
source IP address for this SMTP connection is in the same specified CIDR subnet as the A
records, comparing only 28 bits (masked against 255.255.255.240). No qualifier character was
specified, so it defaults to + meaning that a match results in a Pass.

Finally, -all matches everything else and results in Fail. For a complete description of SPF
records, refer to RFC 4408 at http://www.ietf.org/rfc/rfc4408.txt.

SPF processing can have one of several results. Table 26-1 shows the results and their
descriptions.

Table 26-1 SPF Processing Results

Result Description

Pass The lookup passed, meaning that an SPF record was found and the
record validated the originating system as being authorized to use
domain.

Fail The lookup found a matching SPF record, however, the record explicitly
denied authorization for the SMTP client to use domain during the SMTP
transaction. The default behavior of Messaging Server's SPF
implementation is to reject the SMTP command with a 5xx reply.

SoftFail The lookup found a matching SPF record, and the record also denies
authorization for the SMTP client to use domain. However, the denial is
less strict and the record does not direct an outright failure. The default
behavior of Messaging Server's implementation is to accept the
message, but note the SoftFail in the Received-SPF: header for
subsequent evaluation such as during Sieve processing.

Neutral The SPF record makes no claim to the SMTP client's authorization to
use domain. The message will be accepted. The specification requires
that Neutral be treated the same as None.

None No matching SPF record was found, therefore no SPF processing was
done.

PermError A permanent error was encountered during SPF processing, such as
syntax errors in the SPF record, DNS failures while processing nested
SPF records (due to include: mechanism or a redirect= modifier), or
exceeding configured limits for SPF processing while processing nested
SPF records. The default behavior is to reject the SMTP command with
a 5xx reply.

TempError A temporary error was encountered during SPF processing, most likely
due to DNS timeouts querying SPF records. The default behavior is to
reject the SMTP command with a 4xx reply.

Chapter 26
SPF Theory of Operations

26-2

http://www.ietf.org/rfc/rfc4408.txt

After SPF processing has completed, a Received-SPF: header is written to the message
documenting the result of the SPF processing. This header can then be queried during Sieve
processing for subsequent consideration. Extensive debugging is available if the MTA option
MM_DEBUG is enabled (>0). In Unified Configuration, run the msconfig command to set the
option. In legacy configuration, set the option in the option.dat file.

SPF Limitations
SPF is only one tool to use to fight spam, and it does not address all issues. A spammer can
easily create a domain and add an SPF TXT record that makes the domain seem legitimate.
On the other hand, SPF is very effective for detecting forged email from established ISPs,
although many TXT records allow the SPF to not fail.

SPF Pre-Deployment Considerations
It is important to have a very fast DNS server on your system because a DNS query for every
message is required.

Setting up the Technology
The two steps to set up SPF technology are:

• Place channel options on the incoming TCP channel (typically the tcp_local channel,
although there might be other channels if you allow channel switching from tcp_local to
another channel). See Table 26-2 for more information.

• Set up the options. In Unified Configuration, run the msconfig command. In legacy
configuration, edit the option.dat file. See Table 26-3 for more information.

Reference Information
This section provides reference information for the SPF channel options and the SPF MTA
options. SPF support is implemented through four channel options applied to the incoming
tcp_* channel (typically tcp_local). Table 26-2 shows the options and their descriptions. In
Unified Configuration, use the msconfig edit channels command to edit SPF channel options.
In legacy configuration, edit the imta.cnf file.

Table 26-2 SPF Options

Option Description

spfnone Disables SPF processing

spfhelo Enables SPF processing for the domain name specified as an argument
to HELO or EHLO.

spfmailfrom Enables SPF processing for the domain name provided for the originator
envelope address after receiving the MAIL FROM:.

spfrcptto Enables SPF process for the domain name provided for the originator
envelope address after receiving the RCPT TO:. Processing is the same
as spfmailfrom except that it is delayed in the SMTP transaction until
after the RCPT TO: command has been issued and the recipient has
otherwise been confirmed to be a valid recipient.

Chapter 26
SPF Limitations

26-3

Note:

spfmailfrom and spfrcptto are conflicting options and you should only specify one
of these two options on the channel. You can, however, use spfhelo in conjunction
with either spfmailfrom or spfrcptto to perform both kinds of SPF checks.

Additional support to establish limits on SPF processing and to control whether SMTP
commands will be accepted, failed with a 4xx response (temporary failure), or failed with a 5xx
response (permanent failure) for the various SPF results includes: Fail, SoftFail, PermError,
and TempError.

Table 26-3 shows the MTA options that place limits on SPF processing. In Unified
Configuration, set options with the msconfig command. In legacy configuration, edit the
option.dat file.

Table 26-3 SPF Limiting Options

Option Description

SPF_MAX_RECURSION Specifies the number of recursions that will be allowed into nested SPF
records due to include: or redirect=. Exceeding this limit will result in a
PermError. Default: 10 (mandated by the RFC)

SPF_MAX_DNS_QUERIES Specifies the number of mechanisms or modifiers that require DNS
lookups (including include:, a:, mx:, ptr:, exists:, redirect=, and exp=).
The limit is not counted as the number of actual DNS lookups, so one
mechanism could lead to several DNS queries. Exceeding this limit will
result in a PermError. Default: 10 (mandated by the RFC)

SPF_MAX_TIME Specifies the number of seconds that will be allowed for the SPF
processing to complete. Exceeding this value will result in a TempError.
The default value is more generous than the RFC suggests. Default: 45

Additionally, the following MTA options can be configured to control the behavior of the SMTP
server in response to SPF results of Fail, SoftFail, PermError, and TempError. In Unified
Configuration, run the msconfig command. In legacy configuration, edit the option.dat file.
For each of these results, the SMTP server can send back a 2xx (success) response, 4xx
(temporary failure), or 5xx (permanent failure). Also, for Fail and SoftFail, the MTA can
distinguish between an SPF result as the result of an "all" mechanism versus an otherwise
explicitly referenced match. You can then make a distinction between a particular result and
the SPF record's default result. The valid values for any of these options is 2, 4, or 5. The
values of 2, 4, or 5 correspond to 2xx, 4xx, or 5xx responses from the SMTP server as a result
of getting that particular SPF status. So, for example, if SPF_SMTP_STATUS_FAIL=2 and the
SPF record explicitly blocks us with a "-a:192.168.1.44" (our IP address), then instead of
responding with a 5xx response, we'll accept the address with a "250 OK" instead.

Table 26-4 shows MTAP options that control SPF failures and error options.

Table 26-4 SPF Failure and Error Options

Option Description

SPF_SMTP_STATUS_FAIL Used when the match of an SPF record is a "-" flagged mechanism other
than "-all."

Default: 5

Chapter 26
Reference Information

26-4

Table 26-4 (Cont.) SPF Failure and Error Options

Option Description

SPF_SMTP_STATUS_FAIL_
ALL

Used when the matching mechanism is "-all."

Default: 5

SPF_SMTP_STATUS_SOFT
FAIL

Used when the match of an SPF record is a "~" flagged mechanism
other than "~all."

Default: 2

SPF_SMTP_STATUS_SOFT
FAIL_ALL

Used when the matching mechanism is "~all."

Default: 2

SPF_SMTP_STATUS_TEMP
ERROR

Used when there is a temporary failure, usually related to DNS
processing problems.

Default: 4

SPF_SMTP_STATUS_PERM
ERROR

Used when there is a permanent failure, usually due to syntax or other
technical errors found during SPF processing. (This is due to a non-local
error.)

Default: 5

Testing SPF by Using spfquery
You can use the spfquery testing utility to test SPF processing.

Note:

spfquery does not test your SPF configuration. It tests what would be returned if you
were to enable SPF processing.

Requirements: Must be run as a user who has access to run the Messaging Server binaries
and access its libraries such as root or mailsrv, for example.

Location: MessagingServer_home/bin/

Syntax
spfquery [-i ip-address] [-s sender-email] [-h helo-domain] [-e none | neutral | pass |
fail | temperror | permerror] [-v] [-V] [?] domain

Table 26-5 shows the spfquery options and their descriptions.

Table 26-5 spfquery Options

Option Description

-i ip address Specifies the IP address to be used as the remote address for the SPF
query. Default is 127.0.0.1. This option can also be --ip-address.

-s domain The email address that will be used as if it were specified as MAIL
FROM:. Default: postmaster@domain. This option can also be --
sender.

Chapter 26
Testing SPF by Using spfquery

26-5

Table 26-5 (Cont.) spfquery Options

Option Description

-h helo-domain The domain name as if it were specified for the HELO domain. This
domain is not verified itself, but instead provided as supplemental
information for macro processing. Default value is the same as the value
you specified for domain. This option can also be --helo-domain.

-e result spfquery compares the result of the SPF processing with what is
expected and if the result is different, a message is printed and
spfquery exits with a non-zero return status. Result can be one of:
none, neutral, pass, fail, softfail, temperror, or permerror. This option
can also be --expect.

-v Enables verbose output during SPF processing. This option can also be
--verbose.

-V Prints the current version of the SPF library. This option can also be --
version.

-? Prints this usage information. This option can also be --help.

Example with Debugging Enabled
/opt/sun/comms/messaging64/bin/spfquery -v -i 192.168.1.3 11.spf1-test.example.com
 Running SPF query with:
 IP address: 192.168.1.3
 Domain: 11.spf1-test.example.com
 Sender: postmaster@11.spf1-test.example.com (local-part: postmaster)
 HELO Domain: 11.spf1-test.example.com

 15:30:04.33: --
 15:30:04.33: SPFcheck_host called:
 15:30:04.33: source ip = 192.168.1.3
 15:30:04.33: domain = 11.spf1-test.example.com
 15:30:04.33: sender = postmaster@11.spf1-test.example.com
 15:30:04.33: local_part = postmaster
 15:30:04.33: helo_domain = 11.spf1-test.example.com
 15:30:04.33:
 15:30:04.33: Looking up "v=spf1" records for 11.spf1-test.example.com
 15:30:04.35: DNS query status: Pass
 15:30:04.35: "v=spf1 mx:spf1-test.example.com -all"
 15:30:04.35:
 15:30:04.35: Parsing mechanism: " mx : spf1-test.example.com"
 15:30:04.35: Assuming a Pass prefix
 15:30:04.35: Processing macros in spf1-test.example.com
 15:30:04.35: Comparing against 192.168.1.3
 15:30:04.35: Looking for MX records for spf1-test.example.com
 15:30:04.41: mx02.spf1-test.example.com:
 15:30:04.41: 192.0.2.22 - No match
 15:30:04.41: 192.0.2.21 - No match
 15:30:04.41: 192.0.2.20 - No match
 15:30:04.41: 192.0.2.23 - No match
 15:30:04.41: mx01.spf1-test.example.com:
 15:30:04.42: 192.0.2.13 - No match
 15:30:04.42: 192.0.2.11 - No match
 15:30:04.42: 192.0.2.12 - No match
 15:30:04.42: 192.0.2.10 - No match
 15:30:04.42: mx03.spf1-test.example.com:
 15:30:04.42: 192.0.2.32 - No match

Chapter 26
Testing SPF by Using spfquery

26-6

 15:30:04.42: 192.0.2.30 - No match
 15:30:04.42: 192.0.2.31 - No match
 15:30:04.42: 192.168.1.3 - Matched
 15:30:04.42: Mechanism matched; returning Pass
 15:30:04.42:
 15:30:04.42: Parsing mechanism: "- all : " (not evaluated)
 15:30:04.42:
 15:30:04.42: SPFcheck_host is returning Pass
 15:30:04.42: --

Handling Forwarded Mail in SPF by Using the Sender Rewriting
Scheme (SRS)

As described above, SPF is a mechanism that attempts to prevent email forgery by looking up
special TXT records associated with the domain in the mail FROM: (envelope from) address.
This operation, which can actually involve several DNS lookups, eventually produces a list of
IP addresses that are authorized to send mail from the domain. The IP address of the SMTP
client is checked against this list and if it isn't found, the message can be considered to be
fraudulent.

SPF presents serious problems for sites that provide mail forwarding services such as
universities (for their alumni) or professional organizations (for their members). A forwarder
ends up sending out mail from essentially arbitrary senders, which can include senders who
have implemented SPF policies and which, of course, do not list the IP addresses of the
forwarding system or systems as being permitted to use addresses from their domain.

The Sender Rewriting Scheme, or SRS, provides a solution to this problem. SRS works by
encapsulating the original sender's address inside a new address using the forwarder's own
domain. Only the forwarder's own domain is exposed for purposes of SPF checks. When the
address is used it routes the mail (usually a notification) to the forwarder, which removes the
address encapsulation and sends the message on to the real destination.

Of course address encapsulation isn't exactly new. Source routes were defined in RFC 822
and provide exactly this sort of functionality, as does percent hack routing and bang paths.
However, these mechanisms are all problematic on today's Internet since allowing their use
effectively turns your system into an open relay.

SRS deals with this problem by adding a keyed hash and a timestamp to the encapsulation
format. The address is only valid for some period of time, after which it cannot be used. The
hash prevents modification of either the timestamp or the encapsulated address.

SRS also provides a mechanism for handling multi-hop forwarding without undue growth in
address length. For this to work certain aspects of SRS address formatting have to be done in
the same way across all systems implementing SRS.

The following MTA options have been added:

• SRS_DOMAIN. This must be set to the domain to use in SRS addresses. Email sent to
this domain must always be routed to a system capable of SRS operations for the domain.
SRS processing is handled as an overlay on top of normal address processing so nothing
prevents a site from using their primary domain as the SRS domain.

• SRS_SECRETS. This is a comma separated list of secret keys used to encode and
decode SRS addresses. The first key on the list is used unconditionally for encoding. For
decoding, each key is tried in order to generate a different hash value. The decoding
operation proceeds if any of the hashes match.

Chapter 26
Handling Forwarded Mail in SPF by Using the Sender Rewriting Scheme (SRS)

26-7

The ability to use multiple keys makes it possible to change secrets without service
disruption: Add a second key, wait for all previously issued addresses to time out, and then
remove the first key.

• SRS_MAXAGE. Optionally specifies the number of days before a message times out. The
default if the option isn't specified is 14 days.

Every system that handles email for the selected SRS domain must be configured for SRS
processing and must have all three SRS options set identically.

Setting these options is sufficient to enable SRS address decoding. Encoding is another matter
and should only be done to envelope From: addresses you know are associated with
forwarding activity. SRS encoding is controlled by six new channel options: addresssrs,
noaddresssrs, destinationsrs, nodestinationsrs, sourcesrs, and nosourcesrs.

Three conditions have to be met for SRS encoding to occur:

1. The current source channel has to be marked with sourcesrs. (nosourcesrs is the
default).

2. The current destination channel has to be marked with destinationsrs. (nodestinationsrs
is the default).

3. The current address, when rewritten, has to match a channel marked addresssrs.
(noaddress is the default).

Encoding only occurs when all of these conditions are true. The simplest setup consists of pure
forwarding where all messages enter and exit on the tcp_local channel and all non-local
addresses need SRS handling. In such a setup, tcp_local would be marked with the three
options sourcesrs, destinationsrs, and addresssrs.

Finally, imsimta test -rewrite has been enhanced to show SRS encoding and decoding results
for whatever address is input. For example, the address foo@example.com might produce
the output similar to:

SRS encoding = SRS0=dnG=IS=example.com=foo@example.org

If this encoded address is rewritten it produces the following output:

SRS decoding = foo@example.com

imsimta test -rewrite also shows any errors that occur during SRS decoding.

Chapter 26
Handling Forwarded Mail in SPF by Using the Sender Rewriting Scheme (SRS)

26-8

27
Classic Message Store Directory Layout

This chapter describes the directory layout of the Oracle Communications Message Server
classic message store.

Note:

For overview and architecture information about Cassandra message store, see
Messaging Server Installation and Configuration Guide for Cassandra Message
Store.

About the Classic Message Store Directory Layout
Table 27-1 shows and describes the classic message store directory layout.

Figure 27-1 Message Store Directory Layout

The message store consists of several mailbox databases and the user mailboxes. The
mailbox databases consists of information about users, mailboxes, partitions, quotas and other
message store related data. The user mailboxes contain the user's messages and folders.
Mailboxes are stored in a message store partition, an area on a disk partition specifically

27-1

devoted to storing the message store. See "Managing Message Store Partitions and Adding
Storage" for details. Message store partitions are not the same as disk partitions, though for
ease of maintenance, we recommend having one disk partition for each message store
partition.

Mailboxes such as INBOX are located in the store_root. For example, a sample directory path
might be:

store_root/partition/primary/=user/53/53/=mack1

Table 27-1 describes the message store directory.

Table 27-1 Message Store Directory Description

Location Content/ Description

MessagingServer_home Specifies installation location for the Messaging Server software. The
default is /opt/sun/comms/messaging64. This is the directory on the
Messaging Server machine that holds the server program, configuration,
maintenance, and information files.

store_root Specifies the top-level directory of the message store. The default is
DataRoot/store. Contains the mboxlist, user, and partition
subdirectories.

./store.expirerule Contains the automatic message removal rules (expire rules). This
optional file can be at different locations. See "Message Store Message
Expiration" for more information.

store_root/dbdata/
snapshots

Message store database backup snapshots that stored makes
periodically.

store_root/mboxlist/ Contains mailbox database, database (Berkeley DB) that stores
information about the mailboxes and quota information.

annotate.db supports the ANNOTATE extension to IMAP, which permits
clients and servers to maintain "meta data" for messages, or individual
message parts, stored in a mailbox on the server. For example, you
could use IMAP ANNOTATE to attach comments and other useful
information to a message, or to attach annotations to specific parts of a
message, marking them as seen or important, or a comment added.

folder.db contains information about mailboxes, including the name of
the partition where the mailbox is stored, the ACL, and a copy of some of
the information in store.idx. There is one entry in folder.db per mailbox.

quota.db contains information about quotas and quota usage. There is
one entry in quota.db per user.

lright.db is an index for the folders by acl lookup rights.

peruser.db contains information about per-user flags. The flags indicate
whether a particular user has seen or deleted a message.

subscr.db contains information about user subscriptions.

store_root/session/ Contains active message store process information.

store_root/user/ Not used.

store_root/partition/ Contains the message store partitions. A default primary partition is
created. Place any other partitions you define in this directory.

store_root/partition/primary/
=user/

Contains all the user mailboxes in the subdirectory of the partition. The
mailboxes are stored in a hash structure for fast searching. To find the
directory that contains a particular user's mailbox, use the hashdir utility.

Chapter 27
About the Classic Message Store Directory Layout

27-2

Table 27-1 (Cont.) Message Store Directory Description

Location Content/ Description

.../=user/hashdir/hashdir/
userid/

The top-level mail folder for the user whose ID is userid. This contains
the user's INBOX. For the default domain, userid is uid. For hosted
domains, userid is uid@domain. A user's incoming messages are
delivered to the INBOX here.

.../userid/folder A user-defined mailbox on the Messaging Server host.

.../userid/store.idx An index that provides the following information about mail stored in the /
userid/ directory: number of messages, disk quota used by this mailbox,
the time the mailbox was last appended, message flags, variable-length
information for each message including the headers and the MIME
structure, and the size of each message. The index also includes a
backup copy of mboxlist information for each user and a backup copy of
quota information for each user.

.../userid/store.usr Contains a list of users who have accessed the folder. For each user
listed, contains information about the last time the user accessed the
folder, the list of messages the user has seen, and the list of messages
the user has deleted.

.../userid/store.sub Contains information about user subscriptions.

.../userid/store.exp Contains a list of message files that have been expunged, but not
removed from disk. This file appears only if there are expunged
messages.

.../userid/ nn/ or .../
userid/folder/nn/

nn is a hash directory that contains messages in the format
message_id.msg; nn can be a number from 00 to 99. message_id is
also a number. Example: messages 1 through 99 are stored in the .../00
directory. The first message is 1.msg, the second is 2.msg, third 3.msg,
and so on. Messages 100 through 199 are stored in the 01 directory;
messages 9990 through 9999 are stored in the 99 directory; messages
10000 through 10099 are in the 00 directory, and so on.

Chapter 27
About the Classic Message Store Directory Layout

27-3

28
Monitoring LDAP Directory Server

This chapter describes how to monitor and troubleshoot the LDAP directory server (slapd),
which provides directory information for Oracle Communications Messaging Server. If slapd is
down, the system does not work properly. If slapd response time is too slow, login speed and
other transactions that require LDAP lookups are affected.

Symptoms of slapd Problems
• Client POP, IMAP, or Webmail Authentication fails or slower than expected.

• MTA not working properly

To Monitor slapd
• Check that ns-slapd process is running.

• Check slapd log files access and errors in slapd-instance/logs/.

• Check the ns-slapd response time while searching for a user.

• See also "immonitor-access".

28-1

29
Monitoring System Performance

This chapter focuses on Oracle Communications Messaging Server monitoring, however, you
also need to monitor the system on which the server resides. A well-configured server cannot
perform well on a poorly-tuned system, and symptoms of server failure may be an indication
that the hardware is not powerful enough to serve the email load. This chapter does not
provide all the details for monitoring system performance as many of these procedures are
platform specific and may require that you refer to the platform specific system documentation.

Monitoring End-to-end Message Delivery Times
Email needs to be delivered on time. This may be a service agreement requirement, but also it
is good policy to have mail delivered as quickly as possible. Slow end-to-end times could
indicate several things. It may be that the server is not working properly, or that certain times of
the day experience overwhelming message loads, or that the existing hardware resources are
being pushed beyond their capacity.

Symptoms of Poor End-to-end Message Delivery Times

Mail takes a longer period of time to be delivered than normal.

To Monitor End-to-end Message Delivery Times

• Use any facility that sends a message and receives it. Compare the headers times
between server hops, and times between point of origin and retrieval. See "immonitor-
access" for more information.

Monitoring CPU Usage
High CPU usage is either a sign that there is not enough CPU capacity for the level of usage or
some process is using up more CPU cycles than is appropriate.

Symptoms of CPU Usage Problems

Poor system response time. Slow logging in of users. Slow rate of delivery.

To Monitor CPU Usage

Monitoring CPU usage is a platform specific task. Refer to the relevant platform
documentation.

29-1

30
Monitoring the Message Store

This chapter describes message store monitoring tasks. See "Managing the Message Store
and Mailboxes" for conceptual information.

For more information about monitoring, see the following chapters:

• Monitoring Disk Space

• Monitoring User Access to the Message Store

• Using Message Store Log Messages

General Message Store Monitoring Procedures
This section outlines standard monitoring procedures for the message store. These procedures
are helpful for general message store checks, testing, and standard maintenance.

Checking Hardware Space
A message store should have enough additional disk space and hardware resources. When
the message store is near the maximum limit of disk space and hardware space, problems
might occur within the message store.

Inadequate disk space is one of the most common causes of the mail server problems and
failure. Without space to write to the message store, the mail server will fail. In addition, when
the available disk space goes below a certain threshold, there will be problems related to
message delivery, logging, and so forth. Disk space can be rapidly depleted when the clean up
function of the stored process fails and deleted messages are not expunged from the
message store.

See "Monitoring Disk Space" for information on monitoring disk space

Checking Log Files
Check the log files to make sure the message store processes are running as configured.
Oracle Communications Messaging Server creates a separate set of log files for each of the
major protocols, or services, it supports: SMTP, IMAP, POP, and HTTP. You can look at the log
files in the DataRoot/log/ directory. You should monitor the log files on a routine basis.

Be aware that logging can impact server performance. The more verbose the logging you
specify, the more disk space your log files will occupy for a given amount of time. You should
define effective but realistic log rotation, expiration, and backup policies for your server. See
"Using Message Store Log Messages" for information about defining logging policies for your
server.

Checking User IMAP/POP/Webmail Session by Using Telemetry
Messaging Server provides a feature called telemetry that can capture a user's entire IMAP,
POP or HTTP session into a file. This feature is useful for debugging client problems. For

30-1

example, if users complain that their message access client is not working as expected, this
feature can be used to trace the interaction between the access client and Messaging Server.

To capture a POP session, create the following directory:

DataRoot/telemetry/pop_or_imap_or_http/userid

To capture a POP session, create the following directory:

DataRoot/telemetry/pop/userid

To capture an IMAP session, create the following directory:

DataRoot/telemetry/imap/userid

To capture a Webmail session, create the following directory:

DataRoot/telemetry/http/userid

Note: userid is "uid" for default domain and "uid@domain" for hosted domains.

Note that the directory must be owned or writable by the messaging server userid.

Messaging Server will create one file per session in that directory. Example output is shown
below.

LOGIN redb 2003/11/26 13:03:21
>0.017>1 OK User logged in
<0.047<2 XSERVERINFO MANAGEACCOUNTURL MANAGELISTSURL MANAGEFILTERSURL
>0.003>* XSERVERINFO MANAGEACCOUNTURL {67}
http://redb@cuisine.blue.planet.com:800/bin/user/admin/bin/enduser
MANAGELISTSURL NIL MANAGEFILTERSURL NIL
2 OK Completed
<0.046<3 select "INBOX"
>0.236>* FLAGS (\Answered flagged draft deleted \Seen $MDNSent Junk)
* OK [PERMANENTFLAGS (\Answered flag draft deleted \Seen $MDNSent Junk *)]
* 1538 EXISTS
* 0 RECENT
* OK [UNSEEN 23]
* OK [UIDVALIDITY 1046219200]
* OK [UIDNEXT 1968]
3 OK [READ-WRITE] Completed
<0.045<4 UID fetch 1:* (FLAGS)
>0.117>* 1 FETCH (FLAGS (\Seen) UID 330)
* 2 FETCH (FLAGS (\Seen) UID 331)
* 3 FETCH (FLAGS (\Seen) UID 332)
* 4 FETCH (FLAGS (\Seen) UID 333)
* 5 FETCH (FLAGS (\Seen) UID 334)
<etc>

You can gather command telemetry that does not include end-user information by using the
imap.logcommands msconfig option (or in legacy configuration local.imap.logcommands).
See Messaging Server Reference for additional information.

To disable the telemetry logging, move or remove the directory that you created.

Checking stored Processes
The stored function performs a variety of important tasks such as deadlock and transaction
operations of the message database, enforcing aging policies, and expunging and erasing
messages stored on disk. If stored stops running, Messaging Server will eventually run into
problems. If stored does not start when start-msg is run, no other processes will start.

Chapter 30
General Message Store Monitoring Procedures

30-2

• Check that the stored process is running. See "imcheck" for more information.

• Check for the log file build up in store_root/mboxlist.

• Check for stored messages in the default log file DataRoot/log/default/default.

• Check that the time stamps of the following files (in directory MessagingServer_home/
config/) in Table 30-1 are updated whenever one of the following functions are attempted
by the stored process:

Table 30-1 stored Operations

stored Operation Function

stored.ckp Touched when a database checkpoint was initiated. Stamped
approximately every 1 minute.

stored.lcu Touched at every database log cleanup. Time stamped approximately
every 5 minutes.

stored.per Touched at every spawn of peruser db write out. Time stamped once an
hour.

See "stored" and "Monitoring the stored Process" for more information on the stored process.

Checking Database Log Files
Database log files refer to sleepycat transaction checkpointing log files (in directory store_root/
mboxlist). If log files accumulate, then database checkpointing is not occurring. In general,
there are two or three database log files during a single period of time. If there are more files, it
could be a sign of a problem.

Checking User Folders
If you want to check the user folders, you might run the command reconstruct -r -n (recursive
no fix) which will review any user folder and report errors. See "Repairing Mailboxes and the
Mailboxes Database (reconstruct Command)" for more information on the reconstruct
command.

Checking for Core Files
Core files only exist when processes have unexpectedly terminated. It is important to review
these files, particularly when you see a problem in the message store. On Oracle Solaris, use
coreadm to configure core file location.

Monitoring imapd, popd and httpd
These processes provide access to IMAP, POP and Webmail services. If any of these is not
running or not responding, the service will not function appropriately. If the service is running,
but is over loaded, monitoring will allow you to detect this and configure it more appropriately.

Symptoms of imapd, popd and httpd Problems
Connections are refused or system is too slow to connect. For example, if IMAP is not running
and you try to connect to IMAP directly you will see something like this:

Chapter 30
Monitoring imapd, popd and httpd

30-3

telnet 0 143 Trying 0.0.0.0... telnet: Unable to connect to remote host: Connection
refused

If you try to connect with a client, you will get a message such as:

"Client is unable to connect to the server at the location you have specified. The server may be
down or busy."

To Monitor imapd, popd and httpd
• Can be monitored with watcher and msprobe. See "Automatic Restart of Failed or

Unresponsive Services" and "Monitoring Using msprobe and watcher Functions" for more
information.

• Can be monitored with SNMP. If you have the SNMP set up, this is a very good way to
monitor these processes (see "SNMP Support"). The server information is in the Network
Services Monitoring MIB.

• Check log files. Look in the directory MessagingServer_home/log/service where service
can be HTTP, IMAP, or POP. One filename is the name of the service (imap, pop, http) and
the others are the name of the service plus a sequence number and a date concatenated
to the service name. For example:

imap imap.29.1010221593 imap.31.1010394412 imap.33.1010567224

The file with just the service name is the latest log. The other ones are ordered by the
sequence number (here 29, 31, 33) and the one with the highest sequence number is the next
newest one (see "Using Message Store Log Messages").

If a server was shut down you might see something like this:

imap.12.1065431243:[07/Oct/2003:01:15:43 -0700] gotmail-2 imapd[20525]: General
Warning: Sun Java System Messaging Server IMAP4 6.1 (built Sep 24 2003)
shutting down

• Can be checked with "counterutil".

See "Gathering Message Store Counter Statistics by Using counterutil".

• Run the platform-specific command to verify that the imapd, popd and httpd processes are
running. For example, in Oracle Solaris you can use the ps command and look for imapd,
popd and mshttpd.

• You can set alarms for specified server performance thresholds by setting the server
response configuration options described in "Alarm Messages".

• See "immonitor-access".

Monitoring the stored Process
"stored" performs a variety of important tasks such as deadlock and transaction operations of
the message database, enforcing aging policies, and expunging and erasing messages stored
on disk. If stored stops running, the messaging server will eventually run into problems. If
stored does not start when start-msg is run, no other processes will start. See "stored" for
more information.

Symptoms of stored Problems
There are no outward symptoms.

Chapter 30
Monitoring the stored Process

30-4

To Monitor stored
• Check that the stored process is running. stored creates and updates a pid file in

DataRoot/proc called store. The pid file shows an init state when recovering and a ready
state when ready. For example:

231: cat store
28250
ready

The number on the first line is the process ID of stored.

232: ps -eaf | grep stored
inetuser 28250 1 0 Jan 05 ? 8:44
/opt/sun/comms/messaging64/lib/stored -d

• Check for log file build up in MessagingServer_home/store/mboxlist. Note that not every
log file build up is caused by direct stored problems. Log files may also build up if imapd
dies or there is a database problem.

• Check the timestamp on the following files in MessagingServer_home/config:

stored.ckp - Touched when attempt at checkpointing is made. Should get time stamped
every 1 minute.

stored.lcu - Touched at every db log cleanup. Should get time stamped every 5 minutes.

stored.per - Touched at every spawn of peruser db writeout. Should get time stamped
every 60 minutes.

• Check for stored messages in the default log file DataRoot/log/default/default

• Can be monitored with watcher and msprobe. See "Automatic Restart of Failed or
Unresponsive Services" and "Monitoring Using msprobe and watcher Functions" for more
information.

Monitoring the State of Message Store Database Locks
The state of database-locks is held by different server processes. These database locks can
affect the performance of the message store. In case of deadlocks, messages will not be
getting inserted into the store at reasonable speeds and the ims-ms channel queue will grow
larger as a result. There are legitimate reasons for a queue to back up, so it is useful to have a
history of the queue length in order to diagnose problems.

Symptoms of Message Store Database Lock Problems
Number of transactions are accumulating and not resolving.

To Monitor Message Store Database Locks
Use the command "imcheck" -s (used to be counterutil -o db_lock).

To Monitor Mailbox Quotas and Usage
You can monitor mailbox quota usage and limits by using the "imquotacheck" utility. The
imquotacheck utility generates a report that lists defined quotas and limits, and provides
information on quota usage.

Chapter 30
Monitoring the State of Message Store Database Locks

30-5

For example, the following command lists all user quota information:

imquotacheck

Domain red.example.com (diskquota = not set msgquota = not set) quota usage

diskquota size(K) %use msgquota msgs %use user
of domains = 1
of users = 705
no quota 50418 no quota 4392 ajonk
no quota 5 no quota 2 andrt
no quota 355518 no quota 2500 ansri
 ...

The following example shows the quota usage for user sorook:

imquotacheck -u sorook

quota usage for user sorook

diskquota size(K) %use msgquota msgs %use user
no quota 1487 no quota 305 sorook

To list the usage of all users whose quota exceeds the least threshold in the rule file:

imquotacheck

To list quota information for a the domain example.com:

imquotacheck -d example.com

To send a notification to all users in accordance to the default rule file:

imquotacheck -n

To send a notification to all users in accordance to a specified rulefile, myrulefile, and to a
specified mail template file, mytemplate.file (for more information, refer to "imquotacheck"):

imquotacheck -n -r myrulefile -t mytemplate.file

To list per folder usages for one user user1 (will ignore the rule file):

imquotacheck -u user1 -e

To Monitor Message Store Database Statistics with imcheck
Use imcheck -s to monitor database statistics including logs and transactions. See "imcheck"
for more information.

Note:

The imcheck -s command is only valid for the classic message store.

Gathering Message Store Counter Statistics by Using counterutil
This section describes how to use the counterutil utility to gather message store statistics.

Chapter 30
To Monitor Message Store Database Statistics with imcheck

30-6

To Get a Current List of Available Counter Objects
This utility provides statistics acquired from different system counters (see "counterutil").

Here is how to get a current list of available counter objects:

counterutil -l
Listing registry (/opt/sun/comms/messaging64/data/counter/counter)
numobjects = 7
refcount = 20
created = 17/Mar/2015:14:10:03 +0000
modified = 24/Aug/2015:13:00:24 +0000
counterobjects:
 imapstat
 popstat
 alarm
 serverresponse
 diskusage
 httpstat
 mmpstat

Each entry represents a counter object and supplies a variety of useful counts for this object. In
this section we will only be discussing the alarm, diskusage, serverresponse, popstat,
imapstat, and httpstat counter objects. See "counterutil" for details on counterutil command
usage.

counterutil Output
"counterutil" has a variety of flags. A command format for this utility may be as follows:

counterutil -o CounterObject-i 5 -n 10

where,

-o CounterObject represents the counter object alarm, diskusage, serverresponse, popstat,
imapstat, and httpstat.

-i 5 specifies a 5 second interval.

-n 10 represents the number of iterations (default: infinity).

An example of counterutil usage is as follows:

counterutil -o imapstat -i 5 -n 10
Monitor counteroobject (imapstat)
registry /gotmail/iplanet/server5/msg-gotmail/counter/counter opened
counterobject imapstat opened
count = 1 at 972082466 rh = 0xc0990 oh = 0xc0968
global.currentStartTime [4 bytes]: 17/Oct/2000:12:44:23 -0700
global.lastConnectionTime [4 bytes]: 20/Oct/2000:15:53:37 -0700
global.maxConnections [4 bytes]: 69
global.numConnections [4 bytes]: 12480
global.numCurrentConnections [4 bytes]: 48
global.numFailedConnections [4 bytes]: 0
global.numFailedLogins [4 bytes]: 15
global.numGoodLogins [4 bytes]: 10446
...

Chapter 30
Gathering Message Store Counter Statistics by Using counterutil

30-7

Gathering Alarm Statistics by Using counterutil
These alarm statistics refer to the alarms sent by stored. Table 30-2 shows the statistics
provided by the alarm counter.

Table 30-2 counterutil alarm Statistics

Suffix Description

alarm.countoverthreshold Number of times crossing threshold.

alarm.countwarningsent Number of warnings sent.

alarm.current Current monitored valued.

alarm.high Highest ever recorded value.

alarm.low Lowest ever recorded value.

alarm.timelastset The last time current value was set.

alarm.timelastwarning The last time warning was sent.

alarm.timereset The last time reset was performed.

alarm.timestatechanged The last time alarm state changed.

alarm.warningstate Warning state (yes(1) or no(0)).

IMAP, POP, HTTP, and MMP Connection Statistics by Using counterutil
To get information on the number of current IMAP, POP, HTTP, and MMP connections, number
of failed logins, total connections from the start time, and so forth, you can use the command
counterutil -oCounterObject-i 5 -n 10. Where CounterObject represents the counter object
popstat, imapstat, httpstat, or mmpstat. For mmpstat, we have modified the counter names
to differentiate the services IMAP and POP since the MMP proxies both. The meaning of the
imapstat suffixes is shown in Table 30-3. The popstat and httpstat objects provide the same
information in the same format and structure.

Table 30-3 counterutil imapstat Statistics

Suffix Description

currentStartTime Start time of the current IMAP server process.

lastConnectionTime The last time a new client was accepted.

maxConnections Highest recorded number of concurrent TCP connections handled by
IMAP server since the last counter reset.

numConnections Total number of TCP connections successfully accepted by the current
IMAP server. numConnections can include failed connections, but not
always.

numCurrentConnections Current number of active TCP connections.

Chapter 30
Gathering Message Store Counter Statistics by Using counterutil

30-8

Table 30-3 (Cont.) counterutil imapstat Statistics

Suffix Description

numFailedConnections Total number of failed TCP connections by the current IMAP server. This
number accumulates until the server restart or reset by "counterutil".
numFailedConnections counts connections abnormally terminated,
including unsuccessful accepts and connections successfully accepted
but which had an error later. An error message is logged when a
connection failed with an expected error. You can check your IMAP log
files for error messages such as the following:

Unable to accept client connection: <error message>
Socket error : <error message>

numFailedLogins Number of failed system logins served by the current IMAP server.

numGoodLogins Number of successful system logins served by the current IMAP server.

Disk Usage Statistics by Using counterutil
Table 30-4 shows the information generated by the counterutil -o diskusage command.

Table 30-4 counterutil diskusage Statistics

Suffix Description

diskusage.availSpace Total space available in the disk partition. The values are scaled to fit
in the 4 byte counter. If you have a very large file system, the actual
number will be divided by 1024 until it is small enough to fit in the 32-
bit integer.

diskusage.lastStatTime The last time statistic was taken.

diskusage.mailPartitionPath Mail partition path.

diskusage.percentAvail Disk partition space available percentage.

diskusage.totalSpace Total space in the disk partition. The values are scaled to fit in the 4
byte counter. If you have a very large file system, the actual number
will be divided by 1024 until it is small enough to fit in the 32-bit
integer.

Server Response Statistics
Table 30-5 shows the information generated by the counterutil -o serverresponse command.
This information is useful for checking if the servers are running, and how quickly they're
responding.

Table 30-5 counterutil serverresponse Statistics

Suffix Description

http.laststattime Last time http server response was checked.

http.responsetime Response time for the http.

imap.laststattime Last time imap server response was checked.

imap.responsetime Response time for the imap.

Chapter 30
Gathering Message Store Counter Statistics by Using counterutil

30-9

Table 30-5 (Cont.) counterutil serverresponse Statistics

Suffix Description

pop.laststattime Last time pop server response was checked.

pop.responsetime Response time for the pop.

Chapter 30
Gathering Message Store Counter Statistics by Using counterutil

30-10

31
Monitoring User Access to the Message Store

This chapter describes the imsconnutil command, which enables you to monitor user's
message store access via IMAP, POP and HTTP. You can also determine the last login and
logout of users. This command works on a per message store basis and does not work across
message stores.

Note:

Use of this function or other Oracle Communications Messaging Server functions to
monitor, read or otherwise access user's email may constitute a potential source of
liability if used in violation of applicable laws or regulations or if used in violation of
the customer's own policies or agreements.

This command requires root access by the system user (default: mailsrv), and you must set
the configuration variables imap.enableuserlist and http.enableuserlist to 1.

To list users currently logged on via IMAP or any web mail client, use the following command:

imsconnutil -c

To list the last IMAP, POP, or HTTP access (log in and log out) of every user on the message
store use:

imsconnutil -a

The following command does two things: 1) it determines whether the specified user is
currently logged on via IMAP or HTTP or any client that connects via mshttp (note that this
does not work for POP because POP users generally do not stay connected), and 2) it lists the
last time the users have logged on and off:

imsconnutil -c -a -u user_ID

Note that a list of users can be input from a file, one user per line, using the following
command:

imsconnutil -c -a -f filename

You can also specify a particular service (imap or http) using the -s flag. For example, to list
whether a particular user ID is logged onto IMAP or not, use the following command:

imsconnutil -c -s imap -u user_ID

Note that the -k option uses ENS to send the disconnect message to the servers. See
"imsconnutil" for a complete description of the imsconnutil syntax. Here is some example
output:

imsconnutil -a -u soroork
UID IMAP last access HTTP last access POP last access
===
ed 08/Jul/2003:10:49:05 10/Jul/2003:14:55:52 ---NOT-RECORDED---
$ imsconnutil -c

31-1

IMAP
UID TIME AUTH TO FROM
===
ed 17/Jun/2003:11:24:03 plain 172.58.73.45:193 129.157.12.73:2631
bil 17/Jun/2003:04:28:43 plain 172.58.73.45:193 129.158.16.34:2340
mia 17/Jun/2003:09:36:54 plain 172.58.73.45:193 192.18.184.103:3744
jay 17/Jun/2003:05:38:46 plain 172.58.73.45:193 129.159.18.123:3687
pau 17/Jun/2003:12:23:28 plaintext 172.58.73.45:193 192.18.194.83:2943
ton 17/Jun/2003:05:38:46 plain 172.58.73.45:193 129.152.18.123:3688
ani 17/Jun/2003:12:26:40 plaintext 172.58.73.45:193 192.18.164.17:1767
ani 17/Jun/2003:12:25:17 plaintext 172.58.73.45:193 129.150.17.34:3117
jac 17/Jun/2003:12:26:32 plaintext 172.58.73.45:193 129.150.17.34:3119
ton 17/Jun/2003:12:25:32 plaintext 172.58.73.45:193 192.18.148.17:1764
===
10 users were logged in to imap.
Feature is not enabled for http.

Chapter 31

31-2

32
Message Archiving

This chapter describes archiving concepts for Oracle Communications Messaging Server. It
does not provide instructions on how to set up an archiving system.

Microsoft Exchange Envelope Journaling
Messaging Server is able capture sieve action to produce Microsoft Exchange's "envelope
journaling" format. This format consists of a multipart MIME message where the first part
contains envelope information is a semi-structured format and the second part is the actual
message. This new format by specifying a :journal option to capture:

capture :journal "trigger-address";

Exchange Journal Format Archiving for IMAP APPEND with LDAP Attributes

Support has been added to the archiving library to produce Microsoft Exchange Journal format
archive messages. Note that this support extends to store compliance archiving of IMAP
APPENDs as well as the archiving plugin.

In the case of the archiving plugin, the STYLE option accepts a value of 3, indicating that
Microsoft Exchange Journal format messages should be produced. Additionally, two option file
options have been added:

• SOURCE_CHANNEL (channel name; no default; required for Microsoft Exchange Journal
format only)

The SOURCE_CHANNEL option specifies the name of the channel used to submit
Microsoft Exchange Journal format messages. We recommend that you create a separate
channel for this purpose so that such submissions are clearly identifiable in the logs.

• DESTINATION (string; no default; Microsoft Exchange Journal format only).

If set, this option specifies the address where Exchange Journal format archive messages
are to be sent. If the option is not set archive messages are sent to the various capture
attributes associated with the message's authorized sender, envelope from, and envelope
recipient addresses.

In the case of store compliance archiving, there are three options:

• store.archive.style - Same semantics as the STYLE option file option.

• store.archive.source_channel - Same semantics as the SOURCE_CHANNEL option file
option.

• store.archive.destination - Same semantics as the DESTINATION option file option.

Archiving Overview
A message archiving system saves all or specified incoming and outgoing messages on a
system separate from Messaging Server. Sent, received, deleted, and moved messages can
all be saved and retrieve in an archive system. Archived messages cannot be modified or
removed by email users, so the integrity of incoming and outgoing messages is maintained.
Message archiving is useful for compliance record keeping, but it is also useful for message

32-1

store management. For example, some customers may use archiving to perform message
back-up or to move older messages from more expensive message store storage to less
expensive archive storage.

Archived messages can be accessed through a separate archiving software GUI client or
through Messaging Server. If the messages are deleted from Messaging Server, then the
archiving client can be used to search for and retrieve those deleted messages since archived
messages are never deleted. Note, however, that archived messages are not stored in mailbox
folders as they are in the Messaging Server.

The system can also be set up so that archived messages can be accessed from Messaging
Server. For example, you can set up a system to archive messages over 2 years old. Instead
of having message bodies reside in the message store, they would instead reside in the
archive system. From the users standpoint, the message appears no different from a regular
email message. The same header and subject information will appear (this is still stored in the
message store storage), but the message body is downloaded from the archive server by the
message store when needed. Thus, there may be a slight delay as messages are downloaded
from the archive server. In addition, archived messages cannot be searched from the email
client. Searching must be done from the archiving GUI.

Message Archiving Systems: Compliance and Operational
There are two types of archiving, compliance and operational. Compliance archiving is used
when you have a legal obligation to maintain strict retrievable email record keeping. Selected
email (selected by user(s), domain, channel, incoming, outgoing and so on) coming into the
MTA is copied to the archive system before being delivered to the message store or the
internet. Archiving can be set to occur either before or after spam and virus filtering.

Operational archiving is used for mail management purposes. For example:

• To reduce storage usage on the Messaging Server message store by moving less used
(older) messages to an archiving system which uses lower cost storage.

• As an alternative for data backup.

Note that compliance and operational archiving are not exclusive. That is, you can set up your
system so that it does both compliance and operational archiving.

Chapter 32
Archiving Overview

32-2

33
Unified Messaging

This chapter describes how to use Oracle Communications Messaging Server Unified
Messaging solution to receive, store, and manage all types of messages--voice, fax, email,
video--on one, off-the-shelf, cost-effective system.

Using Messaging Server to Manage Unified Messaging
This document describes Oracle's solution to receive, store, and manage all types of
messages--voice, fax, email, video--on one, off-the-shelf, cost-effective system. This paper is
intended for telephony engineers and decision-makers interested in using standard Internet
email software to manage voicemail, video, and fax communications.

See "Designing and Coding Your Unified Messaging Application" for implementation details.

What Is the Challenge?
As broadband service providers compete to integrate internet communications (email and
instant messaging) and voice communications (voice portal, voicemail, fax, and voice
conferencing), they must reduce the costs of creating and maintaining those integrated
services. To do this, telephone companies and their network equipment manufacturers (NEPs)
must adopt open standards and use cost-effective, off-the-shelf storage technologies.

The Oracle Solution
Oracle's leadership in this area allows it to provide, with its partners, a solution that supports
the convergence of these communication services, called unified messaging.

Unified messaging provides the following benefits:

• Multi-modal access: the ability to access different types of messaging services using
different types of technology. For example, using the phone to access email messages or
using the computer to access voices messages.

• A cost-effective, off-the-shelf technology for storing voice, email, video, and fax messages
on the same system.

• The ability to manage all types of messages using the same administrative procedures.
This includes expiring old messages, setting message space quotas, archiving, logging,
usage profiles, and so on.

• Access to technologies like text-to-speech (TTS) and automated speech recognition
(ASR).

Using open standards and best practices, Messaging Server offers a single back-end service
that receives, stores, manages, and expires messages, no matter what their type.

Open Standards and Regulatory Requirements
In response to the need for open standards, engineering leaders have created the Voice Profile
for Internet Mail (VPIM) specification, which defines the interfaces between voice front-ends
and IMAP-based message stores. These standards, integrated into and implemented by

33-1

Messaging Server, provide a substantial savings over traditional proprietary voice storage.
Furthermore, unified messaging applications can take advantage of the efficient mailbox
operations and system-performance knowledge provided by Messaging Server, leveraging the
expertise and technology that have deployed hundreds of millions of Messaging Server
mailboxes around the world.

Today's new legal and regulatory realities require an effective and unobtrusive mechanism for
legal mail interception (LMI). Messaging Server enables service-provider personnel to apply
the same LMI mechanisms already used on email to voice and fax interception and recovery.
These mechanisms both capture messages on the network and archive messages stored on
disk.

Architectural Overview of a Unified Messaging Application
The following sections define a high-level architecture for a unified messaging application
using Messaging Server for communications storage, management, and notifications.

This architectural view follows the lifecycle of the message types (voice, fax, email), divided
into the following stages:

1. An incoming message is deposited in the message store, and a message-waiting indicator
is turned on.

2. The end user retrieves the message via the Telephone User Interface (TUI). The message-
waiting indicator is turned off.

3. Alternatively, the end user retrieves the message via an IMAP messaging client (such as
Thunderbird) or Convergence.

4. The Messaging Server message store administrator uses the Messaging Server's Mailbox
Administration and Operations Management (MAOM) functions to administer and expire
the message.

The sections that follow take snapshots of the communications workflow at each one of these
stages.

Message Deposit
Figure 33-1 shows an overview of the message flow of a voice message or fax message in
Unified Messaging.

Figure 33-1 Message Deposit Function of Unified Messaging for Telecommunications

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-2

Figure 33-2 shows the message flow of a voice message or fax message when it first arrives
and is deposited in the message store.

Figure 33-2 Message Deposit Function--State Diagram

1. Receive the call.

The Public-Switched Telephone Network (PSTN) receives a phone call or FAX intended for
the end user and passes it on to the Media Application Server.

A Media Application Server is a third-party system that services voice and FAX callers. It is
similar to a home answering machine in that it picks up calls, plays a pre-recorded
message, handles touch-tone interactions, and retrieves and stores voice messages and
so on. In many cases, the Media Application Server sits on a voice trunk with many ports;
some servers support thousands of ports. A port is equivalent to one telephone line.

2. Profile the call with LDAP data.

Using the end user's phone number, the Media Application Server looks up the LDAP entry
for that number in Directory Server. Directory Server returns the LDAP profile to the Front-
end Server.

The types of profile information retrieved can include:

• Status of the mailbox: Available, Disabled, Vacation

• Allowed services

• Current greeting for the user.

3. Retrieve and play voicemail greeting.

The Media Application Server retrieves the greeting voice file from the message store and
plays it to the caller. For example: "Hello, you've reached..." It prompts the caller to leave a
message.

4. Record the message and release caller.

The Media Application Server records the caller's message in binary file format, usually
WAV format for voice and TIFF for FAX data. The caller hangs up.

5. Encode the voice/FAX message.

The Media Application Server creates a email message, attaches the caller's encoded
message file to it, and addresses it to the user's mailbox.

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-3

• It creates an RFC2822 email message.

• It attaches the voice message file as a binary attachment (base64). This format
conforms to the Voice Profile for Internet Mail (VPIM) standard.

• It addresses the message to the user's mailbox, using a standard email address--for
example, 555-555-5555@example.com.

The voice message is now an email message with a large attachment.

6. Send email to message store.

The Media Application Server sends the email message via SMTP to the Messaging
Server. The Messaging Server Message-Transfer Agent (MTA) accepts the email and
routes it to the user's mailbox in the message store.

The message store, a component of Messaging Server, stores and manages user
mailboxes.

7. Generate a new-message event notification.

This is to notify the system that a new message has arrived for this mailbox and is
available for retrieval. The notification, and the actions taken in response to the
notification--for example, turning on the message wait indicator--must be implemented by
the customer.

Message Queue provides the infrastructure for producing and distributing event
notifications.

Message Retrieval via Telephone User Interface
Figure 33-3 shows the message flow and data states of a voice or fax message as the end
user picks it up (listens to it or has the fax machine print it).

Figure 33-3 Message Retrieval via Telephone User Interface

Figure 33-4 shows the message flow of the message retrieval function of a voice or fax
message as the end user answers it.

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-4

Figure 33-4 Message Access and Retrieval via Telephone User Interface--State Diagram

These diagrams illustrate the following actions:

1. User dials in and system profiles user mailbox.

In this implementation of the Media Application Server, the end user dials into the voice
mail system. Using the end user's phone number, the Telephone/FAX Media Application
Server looks up the LDAP entry for that number in Directory Server. Directory Server with
Access Manager authenticates the user.

After the authentication, the Media Application Server then looks at the user's Message
Store server from the user's LDAP mailHost attribute. The system prompts the user for the
password.

2. User enters password.

3. System retrieves new mailbox summary.

The Media Application Server performs an IMAP connection to the mailbox owner's
Message Store. The IMAP connection may pass through a component called the
Messaging Multiplexor (MMP) which routes connection requests to the appropriate
message store. It then opens the user's folders to check for number of new messages (for
example, number of new voicemail, fax and email messages). The Media Application
Server then plays the number of new messages of each type to the user over the phone.

Note:

Steps 3 and 4 are separate procedures that are executed at the same time.

4. System retrieves and plays messages.

The mailbox caller selects either voicemail or fax mailbox. Using IMAP, the Media
Application Server retrieves the message from its message store The Media Application
Server then plays each Message header. For voicemail, it plays the message.

• To play the voice message, the Media Application Server retrieves the RFC822
message. It decodes the attachment and plays the audio file (typically .WAV or mp3)
over the phone line.

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-5

• To play fax messages, the Media Application Server sends information about the fax
(for example, date/time, caller number, number of pages, urgency, etc.). Typically,
mailbox owners will forward these fax messages to fax machines nearby to them.

• To play email messages, the Media Application Server sends info about the email (for
example sender, subject, time/date, urgency). If text-to-speech has been implemented,
the server will attempt to "read" the message to the caller. Some implementations
allow the caller to forward the fax and the attachments to a nearby fax machine. After
playing the message, the caller can delete, replay or forward the message.

The message itself remains in the user's mailbox in the message store, but the status of
the message flag is changed to "seen/read."

5. User replays, deletes, forwards or archives the message.

6. System generates a message-read or message-deleted event notification.

This is to notify the system that the message has been read or deleted. The notification,
and the actions taken in response to the notification--for example, turning off the message
wait indicator--must be implemented by the customer.

Message Queue provides the infrastructure for producing and distributing event
notifications.

Message Retrieval via PC
Messaging Server provides two ways to access messages through a PC: through an IMAP
client such as Thunderbird or Outlook (with Connector) and through the, a web-based
communication client, which uses an HTTP connection.

These will be described in separate sections.

Message Retrieval Through an IMAP Client
Figure 33-5 shows the message flow and data state of a voice or fax message as it is retrieved
through an IMAP client.

Figure 33-5 IMAP Client Message Retrieval--Component and State Diagram

This diagram illustrates the following actions:

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-6

1. User opens IMAP Client which connects to Messaging Server.

2. User enters the password and is authenticated by the MMP.

The MMP finds the appropriate message store and sets up a direct connection between
the store and the client.

3. Message store sends message header information to the IMAP client.

4. User clicks the message header to open.

Client issues an IMAP FETCH command and the message store returns the RFC822 email
message with the MIME attachment containing the voice/FAX data. The format of the data
could be in .WAV, MP3, TIFF or JPEG.

5. User clicks the attachment.

IMAP client launches the media player on the PC, then strips off the wrappers and
encoding in the attachment, and sends the resulting binary file to the media player.

6. User deletes, forwards, or archives the message.

IMAP client sends command to the message store to delete, forward or archive the
message.

7. Message store generates an event notification indicating the changed status
(deleted/forwarded/archived) of the message.

Message Retrieval Through Convergence
Figure 33-6 shows the message flow and data state of a voice or fax message as it is retrieved
through the Convergence client.

Figure 33-6 Convergence Message Retrieval--Component and State Diagram

This diagram illustrates the following actions:

Chapter 33
Using Messaging Server to Manage Unified Messaging

33-7

1. User logs in with password to the Convergence Server through a browser and
retrieves the message headers.

Convergence Server makes a HTTP request to the Webmail Server for the message
headers. The Webmail Server requests and retrieves the headers via IMAP and returns it
to Convergence in HTTP where the user can view it.

The Webmail Server translates HTTP commands to IMAP, and IMAP commands to HTTP.
Note that the message store stores data in 7-bit format, and that http transfers data in 8-bit
binary format.

2. User clicks the message header to open.

Again, Convergence Server makes a HTTP request to the Webmail Server for the
message. The Webmail Server requests and retrieves the message via IMAP and returns
it to Convergence in HTTP where the user can view it. The message does not contain the
MIME attachment, but contains a link to the attachment.

3. User clicks the attachment.

Again, an HTTP request is made to the Webmail Server, which translates the request to
IMAP and sends it to the message store.

4. Retrieve the MIME attachment.

The Webmail Server retrieves the MIME attachment, strips off the wrappers and encoding
in the attachment, and sends the resulting base64 binary file via Convergence to the
browser which launches media player.

5. The media player plays and displays the attachment.

6. User deletes, forwards, or archives the message.

Convergence sends command to the message store to delete, forward or archive the
message.

7. Message store generates an event notification indicating the changed status of the
message (deleted/forwarded/archived).

Designing and Coding Your Unified Messaging Application
This section describes how to design and configure Messaging Server to implement a unified
messaging application.

Planning the Message-Type Configuration
To administer messages of different types, all components of the UM system must use the
same message-type definitions and the same header fields to identify the messages.

Before you configure Messaging Server to support message types, you must

• Plan which message types you intend to use

• Decide on the definition for each message type

• Decide which header field to use

For example, if the application includes phone messages, you can define this message type as
"multipart/voice-message" and use the Content-Type header field to identify message types.

You would then configure the Media Application Server to add the following header information
to each phone message to be delivered to the message store:

Content-Type: multipart/voice-message

Chapter 33
Designing and Coding Your Unified Messaging Application

33-8

Next, you would configure the MTA and/or message store to recognize the multipart/voice-
message message type.

Coding and Configuring Your UM System
This section takes a closer look at the message life cycle described in earlier sections. Here
we focus on the stages in the life cycle where you must design, code, and configure
components of the UM system. We give you an idea of the Media Server coding and
Messaging Server configuration that you will perform to implement your UM system.

1. Unanswered call is routed to the Media Server.

Before the Media Server sends a message to Messaging Server, it must check the status
of the user's mailbox to ensure that the user's mailbox is not full or busy.

The Media Server must be coded to check the mailuserstatus attribute in the user's entry
in the directory server to see, for example, if the user's mailbox is full or not. You also must
configure quota enforcement on the Message Store to enable this feature.

See "Administering Quotas for Message Types" for an introduction to quota enforcement
by message type. See "Managing Message Store Quotas" for details about configuring
quotas for the message store.

2. The Media Server encodes the voicemail as a binary attachment to an email
message, which it sends to the MTA. The message is labeled by type.

(Of course, you must code the Media Server to perform the voicemail-to-email state
transformation.)

When a message comes into the MTA via the Media Server, the first thing that must be
done is to add a Content-type header to the message. The value of this header identifies
the message type.

In this way, the messages can be managed according to their type. For example, voicemail
types may have different quotas than text types.

You must define each message type with a unique identifier such as multipart/voice-
message.

Content-type headers can be inserted in the message by the Media Server or by the MTA.

Typing by Media Server. When the Media Server constructs the email message to send
to the MTA, it can be coded to add the Content-type header with the appropriate
message-type value. For example, a voicemail message could require that Content-type:
multipart/voice-message be added to the message.

Typing by MTA. The alternative is to set up your system so that the MTA adds the
Content-type header. This can be done by configuring separate, nonstandard ports for the
various message types.

Typically, email comes into the MTA via port 25. Thus, for example, you can configure text
email to go to the standard port 25, voicemail to port 225, FAX to port 325. You must
configure the Media Server to send the message to the appropriate port. Also, you must
configure the MTA to append the appropriate Content-type header to messages arriving
at each port.

3. The MTA deposits the message in the message store, and an IMAP flag identifying
the message type is appended to the message.

The message store reads the Content-type header to identify the message type.

You can configure the MTA or the message store to append a message-type flag to the
message. You must define unique values for each message-type flag.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-9

Messaging Server presents the message-type flag as a user flag to IMAP clients. (This flag
cannot be modified by end users.)

Mapping the message type to a user flag allows mail clients to use simple IMAP
commands to manipulate messages by message type.

4. Client retrieves mailbox status and displays the message together with its type.

From the user's perspective, the client email software may display an icon indicating the
type of each message (if the client supports this feature). For example, a phone icon
appears next to a voicemail message.

The IMAP SEARCH command, using the message-type flag as a keyword, retrieves a
count of each type of message. The IMAP FETCH command retrieves the message
headers with the message status and message-type flag name.

See "Sample IMAP Sessions Using Message-Type Flags" for examples.

5. User clicks on the voicemail attachment, and the voicemail is played by a media
player on the PC.

See "Message Retrieval Through Convergence" for more information.

6. Message store generates a notification indicating the changed status of the
message.

If the status of a messages changes, the message store can generate a notification that
can be retrieved by the email client or the Media Server. A notification can deliver a count
of the messages in a user's mailbox for each message type and for each change in
message status.

For example, a notification can deliver a count of all new (unread) voicemail messages and
all new text messages in a user's mailbox. When the user listens to a voicemail, another
notification can be generated indicating all voicemail messages that have been read and
all text messages that have been read. In this case, the number of new voicemail
messages is reduced by one.

You must configure Messaging Server to determine how and when to generate
notifications. Also, you must write Media Server code to retrieve the notification and take
appropriate action. For example, when a new message arrives in the store, you may want
to send an indicator to the customer's phone. See "Delivering Notifications for Message
Types" for details.

Mailbox Administration and Operations
The Messaging Server message store can be configured to identify and manage message
types.

The customer does not have to maintain different message types in individual mailbox folders.
The message store can identify a message type, no matter where the message is stored.
Thus, you can store heterogeneous message types in the same folder.

Figure 33-7 illustrates how an incoming message is identified by its type.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-10

Figure 33-7 Message Management by the Messaging Server Message Store

In this diagram, the message store identifies the message type of an incoming message by
reading the Content-type header. In addition, the message store appends an IMAP flag
identifying the message type (if the IMAP flag has not already been appended by the MTA).

Once message types have been configured, the message store lets you

• Set flags that allow IMAP commands to fetch and search for information about message
types

• Configure quota roots that apply to each message type

• Write expire rules to expire and purge messages according to message type

Sample IMAP Sessions Using Message-Type Flags
This section describes sample IMAP sessions using IMAP FETCH and IMAP SEARCH.

Example 1: IMAP FETCH Session

The following IMAP session fetches messages for the currently selected mailbox:

2 fetch 1:2 (flags rfc822)
* 1 FETCH (FLAGS (\Seen text) RFC822 {164}

Date: Wed, 8 July 2006 03:39:57 -0700 (PDT)
From: bob.smith@example.com
To: john.doe@example.com
Subject: Hello
Content-Type: TEXT/plain; charset=us-ascii

* 2 FETCH (FLAGS (\Seen voice_message) RFC822 {164}

Date: Wed, 8 July 2006 04:17:22 -0700 (PDT)
From: sally.lee@example.com
To: john.doe@example.com
Subject: Our Meeting
Content-Type: MULTIPART/voice-message; ver=2.0

2 OK COMPLETED

In the preceding example, two messages are fetched, one text message and one voice mail.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-11

The Content-type header fields identify the message types. The message-type names are
displayed as they were received in the incoming messages.

Example 2: IMAP SEARCH Session

The following IMAP session searches for voice messages for the currently selected mailbox:

3 search keyword voice_message
* SEARCH 2 4 6
3 OK COMPLETED

In the preceding example, messages 2, 4, and 6 are voice messages. The keyword used in the
search, voice_message, is the flag name defined for voice messages.

Administering Quotas for Message Types
When you set a quota for a message type, you include that value in a quota root. A quota root
specifies quotas for a user.

You can specify the following quotas for a user's mailbox tree:

• Quota values for specific folders in the user's mailbox

• Quota values for specific message types such as voice mail or text messages. A message
type quota applies to messages of that type in all folders in the user's mailbox.

• A default quota value that applies to all folders and message types in the user's mailbox
that are not explicitly assigned quotas.

Quotas can be configured for the number of messages allowed and for the maximum amount
of disk storage used.

Example of a Message-Type Quota Root

Suppose a customer wants to configure separate quotas for text messages and voice
messages in each user's mailbox. Yet another quota is to be set for the user's Archive folder.

Figure 33-8 illustrates this example.

Figure 33-8 Administering Quotas in the Message Store

Chapter 33
Designing and Coding Your Unified Messaging Application

33-12

This example sets the following quotas for a user:

• The storage quota for the Archive folder is 100M

• The storage quota for text message types is 10M

• The message quota for text message types is 2000

• The storage quota for voice message types is 10M

• The message quota for voice message types is 200

• The default mailbox storage quota is 40M

• The default mailbox message quota is 5000

This quota root permits greater storage in the Archive folder (100 M) than in all the other
folders and message types combined (60 M). Also, no message limit is set for the Archive
folder; in this example, only storage limits matter for archiving. The message types have both
storage and number-of-message quotas.

The message-type quotas apply to the sum of all messages of those types, whether they are
stored in the Archive folder or in any other folder.

The default mailbox quotas apply to all messages that are not text or voice message types and
are not stored in the Archive folder. That is, the message-type quotas and Archive quota are
not counted as part of the default mailbox quotas.

For example, the default mailbox quota would apply to a message that arrives in the user's
INBOX without a Content-Type header and message-type definition. When that message is
archived, the Archive folder storage quota would apply.

Guidelines for Specifying Multiple Quota Values

The following guidelines apply when you assign multiple quota values for a user:

• Quotas do not overlap. For example, when there is a quota for a particular message type
or folder, messages of that type or messages in that folder are not counted toward the
default quota. Each message counts toward one and only one quota.

• The total quota for the whole user mailbox equals the sum of the values of all the quotas
specified by default, type, and folder.

• Message-type quotas take precedence over folder quotas. For example, suppose one
quota is specified for a user's memos folder and another quota is specified for voice
messages. Now suppose the user stores eight voice messages in the memos folder. The
eight messages are counted toward the voice-mail quota and excluded from the memos
folder quota.

Sample IMAP Session Returning Quota Root Values

When you run the getquotaroot IMAP command, the resulting IMAP session displays all
quota roots for the user's mailbox, as shown here:

1 getquotaroot INBOX
* QUOTAROOT INBOXuser/joe user/joe/#text user/joe/#voice
* QUOTA user/joe (STORAGE 12340 20480 MESSAGE 148 5000)
* QUOTA user/joe/#text (STORAGE 1966 10240 MESSAGE 92 2000)
* QUOTA user/joe/#voice (STORAGE 7050 10240 MESSAGE 24 200)

2 getquotaroot Archive
* QUOTAROOT user/joe/Archive user/joe/#text user/joe/#voice
* QUOTA user/joe/Archive (STORAGE 35424 102400)

Chapter 33
Designing and Coding Your Unified Messaging Application

33-13

* QUOTA user/joe/#text (STORAGE 1966 10240 MESSAGE 92 2000)
* QUOTA user/joe/#voice (STORAGE 7050 10240 MESSAGE 24 200)

Expiring Messages by Message Type
The expire and purge feature allows the customer to move messages from one folder to
another, archive messages, and remove messages from the message store, according to
criteria the customer defines in expire rules. These tasks are performed with the imexpire
utility.

Because the imexpire utility is run by the administrator, it bypasses quota enforcement.

The customer can write expire rules so that messages of different types are expired according
to different criteria.

The expire feature is extremely flexible, offering many choices for setting expire criteria. This
section describes one example in which text and voice messages are expired according to
different criteria.

Figure 33-9 illustrates an example of expiring messages by type.

Figure 33-9 Expiring Messages by Message Type

In this example, text messages and voice mail are expired in different ways, and they follow
different schedules, as follows:

• Text messages are moved from a user's inbox to the user's Archive folder one year after
they arrive in the message store.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-14

• Voice mail is moved from the inbox to the OldMail folder after two weeks. If the user saves
a voice message, the saved date is reset, and the message is moved two weeks after the
new date.

• Voice mail is moved from the OldMail folder to the Trash folder after 30 days. The user also
can save a voice message in the OldMail folder, which postpones the removal of the
message for another 30 days after the new saved date.

• Messages of all types are discarded seven days after they are moved to the Trash folder.

The expire rules move voice mail to Trash automatically. Text messages are moved to Trash
when a user deletes them.

Sample Rules for Expiring Different Message Types

You can implement the example described in this section by writing the following expire rules:

TextInbox.folderpattern: user/%/INBOX
TextInbox.messageheader.Content-Type: text/plain
TextInbox.messagedays: 365
TextInbox.action: fileinto:Archive

VoiceInbox.folderpattern: user/%/INBOX
VoiceInbox.messageheader.Content-Type: multipart/voice-message
VoiceInbox.savedays: 14
VoiceInbox.action: fileinto:OldMail

VoiceOldMail.folderpattern: user/%/OldMail
VoiceOldMail.messageheader.Content-Type: multipart/voice-message
VoiceOldMail.savedays: 30
VoiceOldMail.action: fileinto:Trash

Trash.folderpattern: user/%/Trash
Trash.savedays: 7
Trash.action: discard

Delivering Notifications for Message Types
Messaging Server, together with Message Queue, can produce notifications that deliver status
information about messages of different types, such as voice mail, text messages, fax data,
and image data.

For example, suppose a new phone message arrives in a user's mailbox, as described in
"Message Deposit".

You can configure Messaging Server to generate a new-message notification for the Message
Queue service. You can also configure Messaging Server to identify particular message types,
including voice mail.

Now, when the voicemail is deposited in the user's mailbox, the message store triggers a
notification that says, essentially:

• "This user has a new message."

• "The new message is voicemail."

After Messaging Server delivers the new-message notification to the Message Queue service,
Message Queue sends it to a consumer (client interface), which filters and delivers the
message to its destination.

You can write your Message Queue client program to interpret notification messages by
message type and deliver status information about each type. In this example, the client

Chapter 33
Designing and Coding Your Unified Messaging Application

33-15

program, recognizing the new message is voice mail, could trigger the Message Wait Indicator
to turn on the "New Messages" light on the end-user's phone.

Now suppose new messages of different types--say, voice messages and email--arrive in the
user's mailbox.

Once you have configured message types, a new-message notification carries data that counts
the number of each type--in this case, the number of new voice messages and new email (text)
messages. Your Message Queue client program can deliver the count by message type to the
Media Application Server, which would notify the user that there are, for example, seven new
voice mail messages and four new text messages in the user's cell phone inbox.

Notifications for Particular Message States
Table 33-1 shows the notifications that can be generated when a message changes state. For
example, when a user reads a message or listens to voicemail, a ReadMsg notification can be
generated. These notifications can carry information that tracks particular message types.

Table 33-1 Notification Message Descriptions

Notification Message Description

NewMsg New message was received by the system into the user's mailbox. Can
contain message headers and body.

UpdateMsg Message was appended to the mailbox by an IMAP operation. For
example, the user copied an email message to the mailbox. Can contain
message headers and body.

ReadMsg Message in the mailbox was read. (In the IMAP protocol, the message
was marked Seen.)

TrashMsg Message was marked for deletion by IMAP or HTTP. The user may still
see the message in the folder, depending on the mail client's
configuration. The messages are to be removed from the folder when an
expunge is performed.

DeleteMsg Messages marked as Deleted are removed from the mailbox. This is the
equivalent to IMAP expunge

PurgeMsg Message expunged (as a result of an expired date) from the mailbox by
the server process imexpire. This is a server side expunge, whereas
{{DeleteMsg} is a client side expunge. This is not a purge in the true
sense of the word.

OverQuota Operation failed because the user's mailbox exceeded one of the quotas
(diskquota, msgquota). The MTA channel holds the message until the
quota changes or the user's mailbox count goes below the quota. If the
message expires while it is being held by the MTA, it will be expunged.

UnderQuota Quota went back to normal from OverQuota state.

How Do You Implement Notifications for Message Types?
To implement notifications that count by message type, you must do these things:

• Configure the message store to identify message types

• Configure a Messaging Server component, the JMQ notification plug-in, to produce
notifications that identify message types

• Write a Message Queue client that retrieves, filters, and delivers the notification

Chapter 33
Designing and Coding Your Unified Messaging Application

33-16

• Design/write your Unified Messaging system (for example, the Media Application Server)
to receive the notification and deliver it to the end user or other destination

Configuration Details

So far, you've seen the changes in message state that can trigger notifications. But how do the
notifications carry information about message types?

We need to explain a few configuration details to show how these components work together.
The following sections discuss the first two items listed above--the Messaging Server
components.

Configuring the Message Store to Recognize Message Types

You use the Messaging Server msconfig or configutil utility to configure two options that
enable the message store to identify message types:

• store.messagetype.enable (same for both Unified Configuration and legacy
configuration)

• store.messagetype.mtindex:x.contenttype (Unified Configuration)

or

store.messagetype.x (legacy configuration)

First, you set the store.messagetype.enable option to on (-v 1) to enable message types.

Next, you define one store.messagetype.mtindex:x.contenttype(Unified Configuration) or
store.messagetype.x (legacy configuration) option for each message type. For example, to
identify four message types, you define four iterations of this option with four different values.
You do these things:

• Set an integer value for variable x.

• Specify a text string that is the value of the message type used in your Unified Messaging
system with the Content-Type header.

For example, to define a text message, you can enter:

configutil -o store.messagetype.1 -v text/plain

To define a voicemail type, you can enter:

configutil -o store.messagetype.2 -v multipart/voice-message

Now the message store can identify any message type with a Content-Type header value of
text/plain or voice-message.

Also, the message store will identify messagetype.1 with text messages and messagetype.2
with voicemail. (You'll need to know this when you see how notification properties carry
information about message types.)

Note:

You can configure other configutil options to define IMAP flag names, quota root
names, and even an alternate message header name (other than Content-Type).

Chapter 33
Designing and Coding Your Unified Messaging Application

33-17

Configuring the JMQ Notification Plug-In to Generate Messages

You use the configutil utility to define options that configure the Messaging Server JMQ
notification plug-in. The plug-in can produces a notification whenever a message changes
state.

For each state change that should trigger a notification, you define a configutil option. For
example, to enable notifications for new messages, you enter:

configutil -o local.store.notifyplugin.jmqnotify.NewMsg.enable -v 1

where jmqnotify is the name of the plug-in and -v 1 enables notifications for this message.

To generate notifications for messages that the end user has read, you define this option:

local.store.notifyplugin.jmqnotify.ReadMsg.enable

and so on.

Note:

To fully configure a JMQ notification plug-in, you must define several other configutil
options.

How the Message Store and JMQ Notification Plug-in Work Together

Once you configure the message store's message-type feature and the JMQ notification plug-
in, both components recognize and carry information about message types.

We've already discussed how the message store can enforce quotas and expire messages by
message type.

Now, when a message changes state, the message store can generate a notification and the
JMQ notification plug-in can automatically recognize the message type as well as the changed
state.

Notification Properties for Message Types
Every notification carries additional information defined in properties. Different properties are
present for different messages. For example, a NewMsg notification indicates the IMAP uid of
the new message.

If message types are configured, the following properties are carried with notifications. These
properties deliver a count of the messages in a particular state for each message type you
have defined:

• numMsgsnn

• numSeennn

• numDeletednn

• numSeenDeletednn

Suppose a new-message (NewMsg) notification is generated.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-18

The Messaging Server JMQ notification function counts the number of new messages currently
in the mailbox, by message type. Instead of sending one count with the NewMsg notification,
an array specifying the count for each message type is sent.

The message-specific count is carried in the numMsgsnn property and delivered with the
notification.

The message-type number (nn) identifies a particular type. For example, you can configure
message type 2 (store.messagetype.2) to identify voice messages, message type 3
(store.messagetype.3) to identify text messages, and so on.

For ReadMsg and TrashMsg notifications, the number of messages seen (numSeennn and
the number marked as deleted (numDeletednn) are also counted by message type.

Table 33-2 describes these properties.

Table 33-2 Notification Properties for Message Types

Property Data Type Description

NumMsgsnn MQInt32 The total number of messages now in the mailbox, specified for each message
type. If message types are configured, a numMsgsnn property carries a count
for each message type nn.

The numMsgs property is always sent; it counts the total number of all
messages in the mailbox, including all types.

For example, if 20 messages are currently in the mailbox, 10 are of type 3, 7 are
of type 16, and the rest are not of any recognized type, the following properties
and counts are carried with the notification:

numMsgs=20

numMsgs3=10

numMsgs16=7

NumSeennn MQInt32 The total number of messages in the mailbox marked as seen (read), specified
for each message type. If message types are configured, a numSeennn property
carries a count for each message type nn.

The numSeen property is always sent; it counts the total number of all messages
marked as seen, including all types.

For example, if 20 messages are marked as seen, 10 are of type 3,7 are of type
16, and the rest are not of any recognized type, the following properties and
counts are carried with the notification:

numSeen=20

numSeen3=10

numSeen16=7

NumDeletednn MQInt32 The total number of messages in the mailbox marked as deleted, specified for
each message type. If message types are configured, a numDeletednn property
carries a count for each message type nn.

The numDeleted property is always sent; it counts the total number of all
messages marked as deleted, including all types.

For example, if 20 messages are marked as deleted, 10 are of type 3, 7 are of
type 16, and the rest are not of any recognized type, the following properties and
counts are carried with the notification:

numDeleted=20

numDeleted3=10

numDeleted16=7

Chapter 33
Designing and Coding Your Unified Messaging Application

33-19

Table 33-2 (Cont.) Notification Properties for Message Types

Property Data Type Description

NumSeen Deletednn MQInt32 The total number of messages in the mailbox marked as seen (read) and marked
as deleted, specified for each message type. If message types are configured, a
numSeenDeletednn property carries a count for each message type nn.

The numSeenDeleted property is always sent; it counts the total number of all
messages marked as seen and deleted, including all types.

For example, if 20 messages are marked as seen and deleted, 10 are of type 3, 7
are of type 16, and the rest are not of any recognized type, the following
properties and counts are carried with the notification:

numSeenDeleted=20

numSeenDeleted3=10

numSeenDeleted16=7

Additional Unified Messaging Support Features
The following features might provide additional support for implementing Unified Messaging
Solutions.

Set IMAP Flag Based on Header Value at Delivery
The IMAP flag setting is done through the imap4flags sieve extension. (Testing header values
is, of course, a basic sieve capability.) This feature is fully specified in RFC 5232. The goal is to
be able to represent compound message context states, such as URGENT. VOICEMAIL,
BROADCAST FAX and so on via numeric IMAP Flags.

To apply these actions to multiple users, you probably want to use system, source channel,
and destination channel, or perhaps domain sieve rather than user sieves.

Implementation Description: The LMTP and SMTP processes allow IMAP flags to be set
upon delivery based on header value. Upon insertion of a message into the message store, a
sieve rule in conformance with SIEVE-IMAPFLAGS- 05 will modify the IMAP flag to represent
the context of the message with an integer value from 1 to 32. The JMS will publish a
notification event consequent to this event to the message queue.

In deployment, a SIEVE rule will perform a logical AND operation resulting in an IMAP flag and
X-HEADER numeric value which would represent a context via a particular compound
operation (for example,17 to represent URGENT and EMAIL and so on). EDITHEADER-09 is
supported, which, with configuration changes, will allow this to be used during SMTP delivery
to allow devices without the capability to construct an RFC3458 header to construct one via an
ADDHEADER rule, which in turn will allow preprocessing of message type identification prior
to arrival in the final mailbox.

Modifications to IMAP Commands to Provide Message Counts
Messaging Server provides quick message counts and message states to clients for improving
response time.The IMAP STATUS and SEARCH commands have been modified to provide
return value data representing counts for [RFC3458] message types.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-20

IMAP Unauthenticate
The IMAP command UNAUTHENTICATE is supported. This will be advertised by the
UNAUTHENTICATE CAPABILITY and response. When invoked, the command will return the
connection to an unauthenticated state, where AUTHENTICATE can be invoked without
creating another connection to enable its reuse. This provides more effective use of IMAP
pooling techniques via reuse of Network Sockets. The requirements of the IMAP
AUTHENTICATE mechanism to create a new connection is bypassed and thereby enables
connection reuse.

Modify IMAP APPEND to bypass quotas
Administrative users with appropriate privileges shall be able to bypass quota enforcement
when they append messages to mailboxes with the IMAP APPEND command. The
configuration option is local.imap.adminbypassquota which, when enabled, will bypass
quota enforcement. Messages will be added to quota usage. Messages will not be rejected
when the mailbox has exceeded its quota. Over quota warnings will still be delivered.

SMTP Future Release
Mail clients can indicate a future time for a message to be released for delivery up to one
calendar year in advance of the current date. This support for RFC4865 has been added. The
maximum values specified in the RFC for the option HOLDFOR shall be supported
(+999999999 seconds). Equivalent HOLDUNTIL timestamp values shall be supported. This
support will be enabled by placing the futurerelease channel option on the source channel
used for initial message submission. The keyword shall take a single integer argument: the
maximum number of seconds a message can be held.

Care should be used when enabling future release since it allows messages to be in effect
stored in the MTA's queues. Future release should only be used for channels handling initial
message submission and authentication should be required.

Chapter 33
Designing and Coding Your Unified Messaging Application

33-21

34
Messaging Server Command-Line Reference

This chapter describes the Oracle Communications Messaging Server configtoxml command
that you use to manage a Unified Configuration. You must be logged in either as root or
mailsrv to run these commands. These commands are located by default in the
MessagingServer_home/bin directory.

See "Overview of Messaging Server Unified Configuration" for a description of Unified
Configuration.

configtoxml Command
The configtoxml command converts a legacy configuration to a Unified Configuration.

Syntax
configtoxml [options]

Options
Table 34-1 shows the options for the configtoxml command.

Table 34-1 Options for configtoxml Command

Option Description

-32,-64 Installation is 32-bit (-32) or 64-bit (-64) Messaging Server. Default is 64-
bit when the installation type cannot be inferred from the SERVERROOT
environment variable or from the location of this script.

-f |--force Ignores safety checks, enables running as non-root and permits
overwriting of any pre-existing Unified Configuration files.

Caution: Using this option may result in a non-functioning configuration.
The restricted.cnf file must always be owned by root.

-h |--help Shows this help.

-i INSTANCE Inserts instance name in the generated configuration files. The default is
ims.

-l DIR | --location DIR Reads the legacy configuration files from the specified directory. The
default to use is determined by the following:

1. The SERVERROOT/config/ path, if the SERVERROOT
environment variable is defined

2. The OS-specific default path

-n | --noactive Does not generate an active configuration and does not move the legacy
configuration files to the ConfigRoot/legacy-config directory. The
generated Unified Configuration files have the names config_.xml,
xpass_.xml, and restricted_.cnf, and are written to ConfigRoot. This
option cannot be used in conjunction with the --output or --undo
options.

34-1

Table 34-1 (Cont.) Options for configtoxml Command

Option Description

-o CONFIG-
FILEPASSWORD-
FILERESTRICTED-FILE |

--output CONFIG-
FILEPASSWORD-
FILERESTRICTED-FILE

Directs the Unified Configuration file output to the designated files. By
default, the files config.xml, xpass.xml, and resricted.cnf are written
to ConfigRoot or the SERVERROOT/config/ directory. This option
cannot be used in conjunction with the --noactive or --undo options.

-r ROLE | --role ROLE Inserts the role name in the generated configuration files. The default is
ims.

-y |--yes Pre-answer any confirmation questions with a "yes" response so that this
script can be run without user intervention.

-u |--undo Removes any active Unified Configuration files and restores any legacy
configuration files.

The key environment variable for this command is:

• SERVERROOT (The default is /opt/sun/comms/messaging64/.)

Example
The following example shows the configtoxml converting a legacy configuration to a Unified
Configuration.

bin/imsimta version
Oracle Communications Messaging Server 7u5-28.12 64bit (built Nov 5 2012)
libimta.so 7u5-28.12 64bit (built 15:58:11, May 23 2012)
Using /opt/sun/comms/messaging/config/imta.cnf (not compiled)
Linux host1.example.com 2.6.39-100.5.1.el5uek #1 SMP Tue Mar 6 20:25:25 EST 2012 x86_64
x86_64 x86_64 GNU/Linux

bin/configtoxml
WARNING: This procedure will produce an active Unified Configuration which
 will override any existing legacy configuration.

Continue anyway [no]? yes
Creating the directory /opt/sun/comms/messaging/config/legacy-config/
Moving the processed legacy configuration files to /opt/sun/comms/messaging/config/
legacy-config/

bin/imsimta version
Oracle Communications Messaging Server 7u5-28.12 64bit (built May Nov 5 2012)
libimta.so 7u5-28.12 64bit (built 15:58:11, Nov 5 2012)
Using /opt/sun/comms/messaging/config/config.xml (not compiled)
Linux host1.example.com 2.6.39-100.5.1.el5uek #1 SMP Tue Mar 6 20:25:25 EST 2012 x86_64
x86_64 x86_64 GNU/Linux

Notes on the configtoxml Command
• Stop Messaging Server before running the configtoxml command. Alternatively, use the --

noactive switch to prevent writing out an active configuration.

• When generating an active Unified Configuration, the configtoxml command moves all the
processed legacy configuration files to the $ConfigRoot/legacy-config directory. The --
undo option removes the Unified Configuration and restores the legacy configuration files.

Chapter 34
configtoxml Command

34-2

• The --undo option leaves the Unified Configuration restricted.cnf password file in place.

Chapter 34
configtoxml Command

34-3

Part II
Improving Performance

Part II of Messaging Server System Administrator's Guide describes how to improve Oracle
Communications Messaging Server performance.

Part II contains the following chapters:

• Messaging Server Tuning and Best Practices

• Tuning the mboxlist Database Cache in Unified Configuration

• Best Practices for Messaging Server and ZFS

35
Messaging Server Tuning and Best Practices

This chapter describes tuning and best practices for Oracle Communications Messaging
Server.

Log Files Tips
Use the following tips to configure and manage log files:

• Keep historical logging data.

• Configure Messaging Server log file rotation.

Messaging Server provides logging facilities for the Messaging Server MTA, the Message
Store, and services. The logging facilities provide you with time-stamped and labeled
information about your system's messaging services. Using log files, you can gather
message statistics, perform trend determination, troubleshoot problems, and so forth.

While the system performs automatic rollovers to maintain the current log file, you must
determine and manage log file rotation aspects such as how large a single log file may be,
how large cumulative log files may be, how many log files to retain, and so forth.

This section focuses on configuring log file rotation for the Messaging Server service logs,
such as the IMAP service.

For more information on managing Messaging Server log files, see the discussion on
managing logging in Messaging Server System Administrator's Guide.

Log File Options (Unified Configuration)

The following msconfig options pertain to log file rollover:

– service.logfile.maxlogfilesize

– .service.logfile.maxlogsize

– .service.logfile.rollovertime

– .service.logfile.maxlogfiles

where service is admin, pop, imap, imta, or http.

– maxlogfilesize sets the largest size for a given logfile. (The limit is 2 Gbytes, or
2147483648 bytes.)

– maxlogsize sets the maximum value for the sum of the log file sizes.

– maxlogfiles sets the number of svc.seqNum.timestamp files to keep.

– rollovertime sets the interval or age of a file before its get rotated.

You use the msconfig command to set these options. For example, the following
command sets the maximum size of an IMAP service log file to 1 Gbyte:

msconfig set imap.logfile.maxlogfilesize 1073741824
Log File Options (legacy configuration)

The following configutil options pertain to log file rollover:

– logfile.service.maxlogfilesize

35-1

– logfile.service.maxlogsize

– logfile.service.rollovertime

– logfile.service.maxlogfiles

where service is admin, pop, imap, imta, or http.

– maxlogfilesize sets the largest size for a given logfile. (The limit is 2 Gbytes, or
2147483648 bytes.)

– maxlogsize sets the maximum value for the sum of the log file sizes.

– maxlogfiles sets the number of svc.seqNum.timestamp files to keep.

– rollovertime sets the interval or age of a file before its get rotated.

You use the configutil command to set these options. For example, the following
command sets the maximum size of an IMAP service log file to 1 Gbyte:

configutil -o logfile.imap.maxlogfilesize -v 1073741824
Log File Examples

If the conditions at your site meet any one of the above controls, then the system rolls over
the log file. Therefore, based on your site's traffic usage, you can set three of these
msconfig options (or configutil options in legacy configuration) to be very large and
unreachable while you set the fourth parameter to a value that forces the log to rollover in
a manner that you want.

For example, most sites want to retain logs covering specific time periods or time spans,
say one week. In order to keep a week's worth of data, set the maxlogfiles option equal to
N times the frequency with which you are performing the log file rotations.

For instance, with the 1 Gbyte limit, you could rotate the files each hour (the rollover time is
in seconds, so this is 3600 seconds) and just keep 168 copies of those individual files.
Your option settings would then look like the following:

– maxlogfilesize=1073741824

– maxlogsize=VERY_BIG_NUMBER

– rollovertime=3600

– maxlogfiles=168

Such settings give you 168 hours (7 days) worth of service log files which are at most 1
Gbyte in size. For VERY_BIG_NUMBER, start with 180388626432 (168 x 1073741824).

Use your own custom settings if you prefer smaller log files, quicker log file rollover, and so
forth. For example, you will get 336 log files if you set the rollover time to 1800 seconds, or
each 30 minutes.

Note: Setting the following options to zero (0) (or less than zero) results in the default value
being used:

maxlogfiles (default is 10)

maxlogsize (default is 20971520)

LMTP Tips
Configure LMTP between front-end MTA and back-end store. For more information, see
"LMTP Delivery".

Chapter 35
LMTP Tips

35-2

Message Store Tips
On classic message store, move mboxlist to separate ZFS or UFS file system with own
LUN's. Instructions for Messaging Server on Oracle Solaris:

1. Stop Messaging Server and ensure stored process is stopped.

2. Rename mboxlist directory to mboxlist.backup.

cd MessagingServer_home/data/store/mv mboxlist mboxlist.backup
3. Copy mboxlist database to new_location.

cp -Rp mboxlist.backup/* new_location
4. Ensure the directory permissions for new location are set to the Messaging Server user.

chown mailsrv:mail new_location
5. Create symlink to new_location.

ln -s new_location mboxlist
6. Start Messaging Server.

MTA Tips
Use the following tips for the MTA:

• Put MTA out “front:"

For more information, see the discussion about Understanding the Two-tiered Messaging
Architecture in Messaging Server Installation and Configuration Guide.

• Separate ZFS file system for email:

https://blogs.oracle.com/factotum/entry/messaging_server_and_mailstore_best
• Use imslog.pl to review MTA traffic and tune accordingly.

– imslog.pl is available in the MessagingServer_home/examples/unsupported/
directory

• MTA RBL lookup tuning in the discussion about performance tuning real-time blackhole list
(RBL) lookups in Messaging Server Installation and Configuration Guide.

Performance Tuning Tips
Use the following performance tuning tips:

• Read the discussion about performance tuning considerations for a Messaging Server
architecture in Messaging Server Installation and Configuration Guide.

• Reduce spam load.

• Cache tuning:

– Do not set excessive store mboxlist cache size.

– The default 16 MB cache is sufficient for most medium sized environments.

– Larger environments should review the following documentation to determine the best
cache size:

Chapter 35
Message Store Tips

35-3

https://blogs.oracle.com/factotum/entry/messaging_server_and_mailstore_best

For more information, see the discussion on store.dbtmpdir, base.lockdir (Unified
Configuration) or local.lockdir (legacy configuration), and store.dbcachesize in the
section about performance tuning considerations for a Messaging Server architecture
in Messaging Server Installation and Configuration Guide.

• Number of Messaging Server processes:

– Set imap.numprocesses(Unified Configuration) or service.imap.numprocesses
(legacy configuration) to (the number of cores)

– Increase imap.maxsessions (Unified Configuration) or service.imap.maxsessions
(legacy configuration) as needed.

– Set http.numprocesses (Unified Configuration) or service.http.numprocesses
(legacy configuration) to 1. Increase http.numprocesses (Unified Configuration) or
service.http.numprocesses (legacy configuration) as needed.

– Monitor the number of threads (LWPs). If during peak load times the number of LWPs
in the mshttpd or imapd processes is constantly over 200, you might need to increase
numprocesses.

• In a Convergence deployment, the webmail/mshttpd process should run on the same
system as the Convergence instance:

– Reduces network delays

– Simplifies trouble-shooting

• Linux: Change the IMTA_TMP option in the MTA tailor file (imta_tailor) to use a tmpfs
such as /dev/shm. The default value is /tmp, which is a tmpfs on Solaris but on Linux is a
disk file system.

Chapter 35
Performance Tuning Tips

35-4

36
Tuning the mboxlist Database Cache in
Unified Configuration

This chapter describes how to tune the Oracle Communications Messaging Server mboxlist
database cache in Unified Configuration.

Setting the Mailbox Database Cache Size
Messaging Server makes frequent calls to the mailbox database. For this reason, it helps if this
data is returned as quickly as possible. A portion of the mailbox database is cached to improve
Message Store performance. Setting the optimal cache size can make a big difference in
overall Message Store performance. You set the size of the cache with the store.dbcachesize
option.

You should use the store.dbtmpdir option to redefine the location of the mailbox temporary
files to a tmpfs, that is, /tmp/msgDBtmpdir. On Linux, the tmpfs location is usually /dev/shm.
The default store.dbtmpdir value (/tmp/.xxx) is not appropriate, so you should change it
manually to use the tmpfs location. On reboot, the tmpfs will be cleared, therefore be sure
that permissions are stored so that the correct directory location can be recreated.

Note:

The defaults for the store.dbtmpdir option and the local.lockdir option are
now /tmp/encodedsubdirectory/store and /tmp/encodedsubdirectory/lockm
respectively. The encodedsubdirectory is .mailuserMSinstall-location, where mailuser
is the Message Server mailsrv user and MSinstall-location is the install location of
Messaging with slashes ("/") replaced by underscores ("_").

For example, if the mailsrv user is mailuser and Messaging Server is installed in
the /opt/sun/comms/messaging64 directory, then /tmp/encodedsubdirectory
is /tmp/.mailuser_opt_sun_comms_messaging64/.

Because of this, you do not need to set these options on a Solaris platform.

To define the location of the mailbox temporary files:

1. Create the directory, for example:

mkdir /tmp/msgDBtmpdir
2. Assign the appropriate ownership and permissions so that this directory is owned,

readable, and writable by the mailsrv user. For example, if the mailsrv user name is
mailuser and the group name is mail:

chown mailuser:mail /tmp/msgDBtmpdir
chmod 700 /tmp/msgDBtmpdir

3. Set the store.dbtmpdir option, for example:

36-1

msconfig
msconfig> set store.dbtmpdir /tmp/msgDBtmpdir
msconfig# write
msconfig> exit

Note:

Be sure to set the store.dbtmpdir option to a uniquely named subdirectory of a
tmpfs file system such as /tmp. In Oracle Solaris Cluster environments, or any
situation where it could be possible for multiple instances of Messaging Server to be
running on the same system, it is essential that you set this to a name that is unique
to that instance. Make sure that no two Messaging Server instances can ever try to
use the same tmpdir directory on the same system, for example, /tmp/msg-
instance-dbtmp rather than just /tmp/mboxlist.

The files stored in the store.dbtmpdir location are temporarily memory mapped files used by
all processes connecting to the database. Due to their usage pattern, the pages of these files
will most likely be in memory all the time. So setting this to be on a tmpfs will not really
increase memory usage. What it does is save I/O. When the Oracle Solaris virtual memory
system sees a memory mapped file on a tmpfs, it knows it does not really need to write the
modified pages back to the file. So there is only one copy in memory and it saves I/O.

The mailbox database is stored in data pages. When the various daemons make calls to the
database (stored, imapd, popd), the system checks to see if the desired page is stored in the
cache. If it is, the data is passed to the daemon. If not, the system reads the desired page and
writes it in the cache. If there is no clean page available, the system must write one page from
the cache back to disk.

Lowering the number of disk read/writes helps performance, so setting the cache to its optimal
size is important:

• If the cache is too small, the desired data will have to be retrieved from disk more
frequently than necessary.

• If the cache is too large, dynamic memory (RAM) is wasted, and it takes longer to
synchronize the disk to the cache.

Of these two situations, a cache that is too small will degrade performance more than a cache
that is too large.

Cache efficiency is measured by hit rate. Hit rate is the percentage of times that a database
call can be handled by cache. An optimally sized cache will have a 98 to 99 percent hit rate
(that is, 98 to 99 percent of the desired database pages will be returned to the daemon without
having to grab pages from the disk). The goal is to set the smallest cache so that it holds
several pages such that the cache will be able to return at least 98 to 99 percent of the
requested data. If the direct cache return is less than 98 percent, then you must increase the
cache size.

To Adjust the Mailbox Database Cache Size
Use the msconfig command to set the size of the cache with the store.dbcachesize option,
for example:

msconfig
msconfig> set store.dbcachesize 25165825

Chapter 36
To Adjust the Mailbox Database Cache Size

36-2

msconfig# write
msconfig> exit

It is important to tune the cache size to smallest size that will accomplish the desired hit rate.

The store.dbcachesize option controls the size of a shared memory segment used by all
processes connected to the database, including stored, imap, popd, imsbackup,
imsrestore, ims_master, tcp_lmtp_server, and so on. While the maximum value for
store.dbcachesize is 2 GB, setting it to the maximum wastes memory. Instead, start with the
default value of 64 MB and monitor the cache hit rate over a period of days. Increase the value
only if the hit rate is under 98%.

Also consider the transaction checkpoint function (performed by stored). Set the
store.checkpoint.debug option and refresh stored to see log messages to provide more
exact data about transaction checkpoint function time. For example:

msconfig
msconfig> set -restricted store.checkpoint.debug 1
msconfig# write
msconfig> exit
refresh store
Refreshing store server 7585 ... done

This process must examine all buffers in the cache and hold a region lock during the
checkpoint. Other threads needing the lock must wait.

To Monitor the Mailbox Database Cache Size
1. Use the imcheck command to measure the cache hit rate.

imcheck -s mpool > imcheck-s.out

Note:

The imcheck -s command is only valid for Berkeley Database message store.

2. Find the cache information section in the output file, for example:

2MB 513KB 604B Total cache size.
1 Number of caches.
1 Maximum number of caches
2MB 520KB Pool individual cache size.

Then there will be several blocks of output - a summary and one for each database file -
look for these lines in each block:

0 Requested pages mapped into the process' address space.
55339 Requested pages found in the cache (99%).

In this case, the hit rate is 99 percent. This could be optimal or, more likely, it could be that
the cache is too large. To test, lower the cache size until the hit rate moves to below 99
percent. When you hit 98 percent, you have optimized the DB cache size. Conversely, if
see a hit rate of less than 95 percent, then you should increase the cache size with the
store.dbcachesize option.

As your user base changes, the hit rate can also change. Periodically check and adjust this
option as necessary.

Chapter 36
To Monitor the Mailbox Database Cache Size

36-3

37
Best Practices for Messaging Server and ZFS

This chapter describes best practices for Oracle Communications Messaging Server and
Oracle ZFS. ZFS provides the following features that make it ideal for backing up the
Messaging Server message store:

• Snapshot backup

• Enables the use of less expensive SATA drives

• Built-in volume manager that enables you to grow file systems dynamically

Before You Begin
Read "Classic Messaging Server and Tiered Storage Overview" before using ZFS to back up
the Messaging Server message store, which describes message store operation, its
performance characteristics, and how to plan for and allocate store partitions.

Configuration Recommendations for ZFS and Messaging Server
The basic recommendations for configuring ZFS and Messaging Server are:

1. Separating the Messaging Server mboxlist database, message file, and index cache files
on different file systems

2. Configuring the index cache record file system to use the recordsize of 4 Kbytes

3. Disabling file access time record

4. Keeping ZFS pool space under 80 percent utilization to maintain pool performance

The following information provides more context on these recommendations.

mboxlist Database, Message File and Index Cache Files Overview
The mboxlist database is a sleepycat database that contains mailbox meta data. The index
cache records (store.idx and store.c*) contain meta information about mailboxes and
messages. Messaging Server accesses and modifies this meta information, although the
modifications tend to be more random and smaller.

The location of the index cache records is controlled by setting the
partition:partition_name.path option, where partition_name is the name of the partition.

Each message file (*.msg) represents a single email. Each message file is written to disk
once, never modified, read many times (for example, when a user accesses the email, when
the messages are backed up, and so on) and may be deleted. By default, these files are stored
with the index and cache files.

The location of message files is controlled by setting the
partition:partition_name.messagepath option, where partition_name is the name of the
partition.

37-1

Separating the message files from the index cache records to different partitions (and
underlying file systems) enables you to configure the file system with properties appropriate for
the access type.

Index Cache Record File System
The index recordsize is 128 bytes. Cache recordsize is usually less than 2 Kbytes. The
mboxlist database maximum page size is 8 Kbytes. The default ZFS recordsize is 128 Kbytes.
Reducing the recordsize to 4 Kbytes for these file systems can improve performance and
reduce incremental snapshot backup size.

Access Time Record
The message store does not utilize the file access time. By disabling file access time updates,
you reduce unnecessary overhead.

ZFS Pool Space Utilization
ZFS pool performance can degrade when a pool is very full. As the pool approaches 100
percent full, more time is needed to find free space and it is more likely that the free space is
available only in small chunks.

Configure the disk usage alarm threshold alarm.system:diskavail.threshold option to at least
20, to receive a warning before the disk becomes full. (The default value is 10). To enable
message throttling sooner, configure the store.diskusagethreshold to 90.

To Configure ZFS and Messaging Server
The following steps implement the previously discussed recommendations.

1. Separate the Messaging Server mboxlist database, message file, and index cache files
on different file systems. For example:

zfs create store/mboxlist
zfs set mountpoint=/var/opt/sun/comms/messaging/store/mboxlist store/mboxlist
zfs create store/primary-idx
msconfig set partition:primary.path /store/primary-idx
zfs create store/primary-msg
msconfig set partition:primary.messagepath /store/primary-msg

2. Configure the index cache record file system to use the recordsize of 4 Kbytes. For
example:

zfs set recordsize=8k store/primary-idx
zfs set recordsize=128k store/primary-msg
zfs set recordsize=8k store/mboxlist

Chapter 37
To Configure ZFS and Messaging Server

37-2

Note:

• This setting controls the recordsize of newly created files only.

• Do not set recordsize smaller than the system page size (8 Kbytes on
SPARC and 4 Kbytes on Intel).

• Set recordsize=128k on the -msg file system even though that is the default
so that it does not accidentally get overridden by a setting on a parent file
system at a later time.

The default recordsize of 128k is appropriate for the message store message file system.

3. Disable file access time record. For example:

zfs set atime=off store/mboxlist
zfs set atime=off store/primary-idx
zfs set atime=off store/primary-msg

4. Configure the disk usage alarm threshold alarm.system:diskavail.threshold option to at
least 20, to receive a warning before the disk becomes full. (The default value is 10). For
example:

msconfig set alarm.system:diskavail.threshold 20
5. To enable message throttling sooner, configure the store.diskusagethreshold option to

90. (The default is 99). For example:

msconfig set store.diskusagethreshold 90

ZFS Administration Recommendations
• Perform snapshot backup regularly. Back up the mboxlist database, index, and message

file systems atomically by using the zfs snapshot -r command. Then use the zfs send
and receive commands, or an enterprise-level backup solution to save the data. For
example:

zfs snapshot -r store@now
zfs send store/mboxlist@now | ssh host2 zfs recv store/mboxlist
zfs send store/primary-idx@now | ssh host2 zfs recv store/primary-idx
zfs send store/primary-msg@now | ssh host2 zfs recv store/primary-msg

• Perform incremental backups. You can use zfs send -i to perform incremental backups.
Destroy the snapshots when they are not needed. For example:

zfs destroy -r store@now

Note:

ZFS snapshots are for backing up and restoring the entire message store files
system. You cannot back up and restore individual mailboxes. However, you can use
imsbackup to back up the snapshot and imsrestore to restore the mailboxes.

Chapter 37
ZFS Administration Recommendations

37-3

Part III
Troubleshooting

Part III of Messaging Server System Administrator's Guide describes how to troubleshoot
Oracle Communications Messaging Server components.

Part III contains the following chapters:

• Troubleshooting the MTA

• Troubleshooting the Message Store

38
Troubleshooting the MTA

This chapter describes common tools, methods, and procedures for troubleshooting the
Message Transfer Agent (MTA) in Unified Configuration.

Also, see the discussion about monitoring procedures in "Monitoring Messaging Server".

Note:

This information assumes that you are familiar with the MTA, both from a conceptual
and administration perspective.

Troubleshooting Overview
One of the first steps in troubleshooting the MTA is to determine where to begin the diagnosis.
Depending on the problem, you might look for error messages in log files. In other situations,
you might check all the standard MTA processes, review the MTA configuration, or start and
stop individual channels. Whatever approach you use, consider the following questions when
troubleshooting the MTA:

• Did configuration or environmental problems prevent messages from being accepted (for
example, disk space or quota problems)?

• Were MTA services such as the Dispatcher and the Job Controller present at the time the
message entered the message queue?

• Did network connectivity or routing problems cause messages to be stuck or misrouted on
a remote system?

• Did the problem occur before or after a message entered into the message queue?

This information addresses these questions in the subsequent sections.

Standard MTA Troubleshooting Procedures
This section outlines standard troubleshooting procedures for the MTA. Follow these
procedures if a problem does not generate an error message, if an error message does not
provide enough diagnostic information, or if you want to perform general wellness checks,
testing, and standard maintenance of the MTA.

Check the MTA Configuration
Test your address configuration by using the imsimta test -rewrite utility. With this utility, you
can test the MTA's address rewriting and channel mapping without actually having to send a
message. Refer to Messaging Server Reference for more information.

The utility will normally show address rewriting that will be applied as well as the channel to
which messages will be queued. However, syntax errors in the MTA configuration will cause

38-1

the utility to issue an error message. If the output is not what you expect, you may need to
correct your configuration.

Check the Message Queue Directories
Check if messages are present in the MTA message queue directory, typically DataRoot/
queue/. Use command-line utilities like imsimta qm to check for the presence of expected
message files under the MTA message queue directory. See Messaging Server Reference for
more information.

If the imsimta test -rewrite output looks correct, check that messages are actually being
placed in the MTA message queue subdirectories. To do so, enable message logging and
check the log files in the directory DataRoot/log/. See "Managing MTA Message and
Connection Logs" for more information on MTA logging You can track a specific message by its
message ID to ensure that it is being placed in the MTA message queue subdirectories. If you
are unable to find the message, you may have a problem with file disk space or directory
permissions.

Check the Ownership of Critical Files
You should have selected a mail server user account (mailsrv by default) when you installed
Oracle Communications Messaging Server. The following directories, subdirectories, and files
should be owned by this account:

DataRoot/queue/
DataRoot/log
DataRoot/tmp

Commands, like the ones in the following UNIX system example, can be used to check the
protection and ownership of these directories:

ls -l -p -d /opt/sun/comms/messaging64/data/queue
drwx------ 2 mailsrv mail 512 Sep 18 21:17 /opt/sun/comms/messaging64/data/queue

ls -l -p -d /opt/sun/comms/messaging64/data/log
drwx------ 2 mailsrv mail 2560 Oct 15 05:25 /opt/sun/comms/messaging64/data/log

ls -l -p -d /opt/sun/comms/messaging64/data/tmp
drwx------ 2 mailsrv mail 512 Sep 18 21:17 /opt/sun/comms/messaging64/data/tmp

Check that the files in DataRoot/queue are owned by the MTA account by a using command
such as the following UNIX system example:

ls -l -p -R /opt/sun/comms/messaging64/data/queue

Check that the Job Controller and Dispatcher Are Running
The MTA Job Controller handles the execution of the MTA processing jobs, including most
outgoing (master) channel jobs.

Some MTA channels, such as the MTA's multi-threaded SMTP channels, include resident
server processes that process incoming messages. These servers handle the slave (incoming)
direction for the channel. The MTA Dispatcher handles the creation of such MTA servers.
Dispatcher configuration options control the availability of the servers, the number of created
servers, and how many connections each server can handle.

To check that the Job Controller and Dispatcher are present, and to see if there are MTA
servers and processing jobs running, use the command imsimta process. Under idle

Chapter 38
Standard MTA Troubleshooting Procedures

38-2

conditions the command should result in job_controller and dispatcher processes. For
example:

imsimta process
USER PID S VSZ RSS STIME TIME COMMAND
mailsrv2 308 S 50168 26896 23:05:00 00:01 /opt/sun/comms/messaging64/lib/tcp_smtp_server
mailsrv2 4187 S 46880 17704 Feb_17 01:51 /opt/sun/comms/messaging64/lib/dispatcher
mailsrv2 5887 S 50160 26976 23:25:00 00:00 /opt/sun/comms/messaging64/lib/tcp_smtp_server
mailsrv2 19018 S 47008 21640 Jun_20 01:21 /opt/sun/comms/messaging64/lib/job_controller

If the Job Controller is not present, the files in the DataRoot/queue directory get backed up
and messages are not delivered. If you do not have a Dispatcher, then you are unable to
receive any SMTP connections.

See Messaging Server Reference for more information.

You could also use the imsimta qm jobs command to list, channel by channel, all active and
pending delivery processing jobs currently being managed by the Job Controller. Additional
cumulative information is provided for each channel such as the number of message files
successfully delivered and those requeued for subsequent delivery attempts. The command
syntax is as follows:

jobs [-[no]hosts] [-[no]jobs] [-[no]messages] [channel-name]

If neither the Job Controller nor the Dispatcher is present, you should review the
dispatcher.log-* or job_controller.log-* file in the DataRoot/log directory.

If the log files do not exist or do not indicate an error, start the processes by using the start-
msg command.

Note:

You should not see multiple instances of the Dispatcher or Job Controller when you
run imsimta process, unless the system is in the process of forking (fork()) child
processes before it executes (exec()) the program that needs to run. However, the
time frame during such duplication is very small.

Check the Log Files
If MTA processing jobs run properly but messages stay in the message queue directory, you
can examine the log files to see what is happening. All MTA log files are created in the
DataRoot/log directory. Log file name formats for various MTA processing jobs are shown in
Table 38-1.

Table 38-1 MTA Log Files

File Name Log File Contents

channel_master.log-uniqueid Output of master program (usually client) for channel.

channel_slave.log-uniqueid Output of slave program (usually server) for channel.

dispatcher.log-uniqueid Dispatcher debugging. This log is created regardless if the Dispatcher
DEBUG option is set. However, to get detailed debugging information,
you should set the DEBUG option to a non-zero value.

imta ims-ms channel error messages when there is a problem in delivery.

Chapter 38
Standard MTA Troubleshooting Procedures

38-3

Table 38-1 (Cont.) MTA Log Files

File Name Log File Contents

job_controller.log-uniqueid Job controller logging. This log is created regardless if the Job Controller
DEBUG option is set. However, to get detailed debugging information,
you should set the DEBUG option to a non-zero value.

tcp_smtp_server.log-
uniqueid

Debugging for the tcp_smtp_server. The information in this log is
specific to the server, not to messages.

return.log-uniqueid Debug output for the periodic MTA message bouncer job; this log file is
created if the return_debug MTA option is set.

Note:

Each log file is created with a unique ID (uniqueid) to avoid overwriting an earlier log
created by the same channel. To find a specific log file, you can use the imsimta
view utility. You can also purge older log files by using the imsimta purge command.
However, by default this command is run on a regular basis (see "Pre-defined
Automatic Tasks"). See Messaging Server Reference for more information.

The channelmaster.log-uniqueid and channelslave.log-uniqueid log files are created in any of
the following situations:

• There are errors in your current configuration.

• The master_debug or slave_debug options are set on the channel.

• If mm_debug is set to a non-zero value (mm_debug > 0).

For more information on debugging channel master and slave programs, see Messaging
Server Reference.

Running a Channel Program Manually
When diagnosing an MTA delivery problem, it is helpful to manually run an MTA delivery job,
particularly after you enable debugging for one or more channels.

The command imsimta submit notifies the MTA Job Controller to run the channel. If
debugging is enabled for the channel in question, imsimta submit creates a log file in the
DataRoot/log directory as shown in Table 38-1.

The command imsimta run performs outbound delivery for the channel under the currently
active process, with output directed to your terminal. This might be more convenient than
submitting a job, particularly if you suspect problems with job submission itself.

Note:

To manually run channels, the Job Controller must be running.

See Messaging Server Reference for information on syntax, options, and examples of imsimta
submit and imsimta run commands.

Chapter 38
Standard MTA Troubleshooting Procedures

38-4

Starting and Stopping Individual Channels
In some cases, stopping and starting individual channels may make message queue problems
easier to diagnose and debug. Stopping a message queue allows you to examine queued
messages to determine the existence of loops or spam attacks.

To Stop Outbound Processing (dequeueing) for a Specific Channel
1. Use the imsimta qm stop command to stop a specific channel. Doing so prevents you

from having to stop the Job Controller and having to recompile the configuration. In the
following example, the conversion channel is stopped:

imsimta qm stop conversion
2. To resume processing, use the imsimta qm start command to restart the channel. In the

following example, the conversion channel is started:

imsimta qm start conversion

See Messaging Server Reference for more information on imsimta qm start and imsimta
qm stop commands.

Note:

The command imsimta qm start/stopchannel might fail if run simultaneously for
many channels at the same time. The tool might have trouble updating the
hold_list and could report: QM-E-NOTSTOPPED, unable to stop the channel;
cannot update the hold list. imsimta qm start/stopchannel should only be
used sequentially with a few seconds interval between each run.

If you only want the channel to run between certain hours, use the following
commands:

msconfig set job_controller.job_pool:DEFAULT.urgent_delivery 08:00-20:00
msconfig set job_controller.job_pool:DEFAULT.normal_delivery 08:00-20:00
msconfig set job_controller.job_pool:DEFAULT.nonurgent_delivery 08:00-20:00

To Stop Inbound Processing from a Specific Domain or IP Address (Enqueuing to a
Channel)

You can run one of the following processes if you want to stop inbound message processing
for a specific domain or IP address, while returning temporary SMTP errors to client hosts. By
doing so, messages are not held on your system.

• To stop inbound processing for a specific host or domain name, add the following access
rule to the ORIG_SEND_ACCESS mapping table by running the msconfig edit mapping
command:

ORIG_SEND_ACCESS

|@example.com|*|* $X4.2.1|$NHost$ temporarily$ blocked
By using this process, the sender's remote MTA holds messages on their systems, continuing
to resend them periodically until you restart inbound processing.

Chapter 38
Standard MTA Troubleshooting Procedures

38-5

• To stop inbound processing for a specific IP address, add the following access rule to the
PORT_ACCESS mapping table by running the msconfig edit mapping command:

PORT_ACCESS

TCP|*|25|_IP_address_to_block_|* $N400$ can't$ connect$ now
When you want to restart inbound processing from the domain or IP address, be sure to
remove these rules from the mapping tables and recompile your configuration. In addition, you
may want to create unique error messages for each mapping table. Doing so enables you to
determine which mapping table is being used.

An MTA Troubleshooting Example
This section explains how to troubleshoot a particular MTA problem step-by-step. In this
example, a mail recipient did not receive an attachment to an email message. Note: In keeping
with MIME protocol terminology, the "attachment" is referred to as a "message part" in this
section. The aforementioned troubleshooting techniques are used to identify where and why
the message part disappeared (See "Standard MTA Troubleshooting Procedures"). By using
the following steps, you can determine the path the message took through the MTA. In
addition, you can determine if the message part disappeared before or after the message
entered the message queue. To do so, you will need to manually stop and run channels,
capturing the relevant files.

Note:

The Job Controller must be running when you manually run messages through the
channels.

Identify the Channels in the Message Path
By identifying which channels are in the message path, you can apply the master_debug and
slave_debug options to the appropriate channels. These options generate debugging output
in the channels' master and slave log files. In turn, the master and slave debugging information
will assist in identifying the point where the message part disappeared.

1. Set the log_message_id MTA option to 1 by running the msconfig set log_message_id
1 command. With this option set, you will see message ID: header lines in the
mail.log_current file.

2. Run imsimta cnbuild to recompile the configuration.

3. Run imsimta restartdispatcher to restart the SMTP server.

4. Have the end user resend the message with the message part.

5. Determine the channels that the message passes through. While there are different
approaches to identifying the channels, the following approach is recommended:

a. On UNIX platforms, use the grep command to search for message ID: header lines in
the mail.log_current file in directory DataRoot/log.

b. Once you find the message ID: header lines, look for the E (enqueue) and D
(dequeue) records to determine the path of the message. Refer to "Understanding the
MTA Log Entry Format" for more information on logging entry codes. See the following
E and D records for this example:

Chapter 38
Standard MTA Troubleshooting Procedures

38-6

29-Aug-2001 10:39:46.44 tcp_local conversion E 2 ...
29-Aug-2001 10:39:46.44 conversion tcp_intranet E 2 ...
29-Aug-2001 10:39:46.44 tcp_intranet D 2 ...

The channel on the left is the source channel, and the channel on the right is the destination
channel. In this example, the E and D records indicate that the message's path went from the
tcp_local channel to the conversion channel and finally to the tcp_intranet channel.

Manually Start and Stop Channels to Gather Data
This section describes how to manually start and stop channels (see also "Starting and
Stopping Individual Channels"). By starting and stopping channels in the message's path, you
are able to save the message and log files at different stages in the MTA process. These files
are later used to "To Identify the Point of Message Breakdown".

To Manually Start and Stop Channels

1. Set the mm_debug MTA option to 5 by running the msconfig set mm_debug 5 command
to provide substantial debugging information.

2. Add the slave_debug and master_debug options to the appropriate channels by running
the msconfig edit channels command and modifying the appropriate channel definitions.

a. Use the slave_debug option on the inbound channel (or any channel where the
message is switched to during the initial dialog) from the remote system that is sending
the message with the message part. In this example, the slave_debug option is added
to the tcp_local channel.

b. Add the master_debug option to the other channels that the message passed through
and were identified in "Identify the Channels in the Message Path". In this example, it
would be added to the conversion and tcp_intranet channels.

c. Recompile the configuration by using imsimta cnbuild if running a compiled
configuration.

d. Run the command imsimta restart dispatcher to restart the SMTP server.

3. Use the imsimta qm stop and imsimta qm start commands to manually start and stop
specific channels. See "Starting and Stopping Individual Channels" for more on information
by using these channel options.

4. To start the process of capturing the message files, have the end user resend the message
with the message part.

5. When the message enters a channel, the message will stop in the channel if it has been
stopped with the imsimta qm stop command. For more information, see Step 3 in this
section.

a. Copy and rename the message file before you manually run the next channel in the
message's path. See the following UNIX platform example:

cp ZZ01K7LXW76T7O9TD0TB.00 ZZ01K7LXW76T7O9TD0TB.KEEP1

The message file typically resides in directory similar to DataRoot/queue/
destination_channel/001. The destination_channel is the next channel that the
message passes through (such as: tcp_intranet). If you want to create subdirectories
(like 001, 002, and so on) in the destination_channel directory, add the subdirs option
to the channels.

b. It is recommended that you number the extensions of the message each time you trap
and copy the message to identify the order in which the message is processed.

Chapter 38
Standard MTA Troubleshooting Procedures

38-7

6. Resume message processing in the channel and enqueue to the next destination channel
in the message's path. To do so, use the imsimta qm start command.

7. Copy and save the corresponding channel log file (for example: tcp_intranet_master.log-
*) located in the DataRoot/log directory. Choose the appropriate log file that has the data
for the message you are tracking. Make sure that the file you copy matches the timestamp
and the subject header for the message as it comes into the channel. In the example of the
tcp_intranet_master.log-*, you might save the file as tcp_intranet_master.keep so the
file is not deleted.

8. Repeat steps 5 - 7 until the message has reached its final destination.

The log files you copied in Step 7 should correlate to the message files that you copied in
Step 5. If, for example, you stopped all of the channels in the missing message part
scenario, you would save the conversion_master.log-* and the
tcp_intranet_master.log-* files. You would also save the source channel log file
tcp_local_slave.log-*.

In addition, you would save a copy of the corresponding message file from each
destination channel: ZZ01K7LXW76T7O9TD0TB.KEEP1 from the conversion channel
and ZZ01K7LXW76T7O9TD0TB.KEEP2 from the tcp_intranet channel.

9. Remove debugging options once the message and log files have been copied.

a. Remove the slave_debug and the master_debug options from the appropriate
channels by running the msconfig channels command.

b. Reset the mm_debug MTA option and remove the setting for the log_message_id
MTA option by running the msconfig set mm_debug 0 and msconfig set
log_message_id 0 commands or by running the msconfig unset mm_debug and
msconfig unset log_message_id commands.

c. Recompile the configuration by using imsimta cnbuild if running a compiled
configuration.

d. Run the command imsimta restart dispatcher to restart the SMTP server.

To Identify the Point of Message Breakdown

1. By the time you have finished starting and stopping the channel programs, you should
have the following files with which you can use to troubleshoot the problem:

a. All copies of the message file (for example: ZZ01K7LXW76T7O9TD0TB.KEEP1) from
each channel program

b. A tcp_local_slave.log-* file

c. A set of channel_master.log-* files for each destination channel

d. A set of mail.log_current records that show the path of the message All files should
have timestamps and message ID values that match the message ID: header lines in
the mail.log_current records.

Note that the exception is when messages are bounced back to the sender; these
bounced messages will have a different message ID value than the original message.

2. Examine the tcp_local_slave.log-* file to determine if the message had the message part
when it entered the message queue.

Look at the SMTP dialog and data to see what was sent from the client machine.

If the message part did not appear in the tcp_local_slave.log-* file, then the problem
occurred before the message entered the MTA. As a result, the message was enqueued
without the message part. If this the case, the problem could have occurred on the
sender's remote SMTP server or in the sender's client machine.

Chapter 38
Standard MTA Troubleshooting Procedures

38-8

3. Investigate the copies of the message files to see where the message part was altered or
missing.

If any message file showed that the message part was altered or missing, examine the
previous channel's log file. For example, you should look at the conversion_master.log-*
file if the message part in the message entering the tcp_intranet channel was altered or
missing.

4. Look at the final destination of the message.

If the message part looks unaltered in the tcp_local_slave.log, the message files (for
example: ZZ01K7LXW76T7O9TD0TB.KEEP1), and the channel_master.log-* files, then
the MTA did not alter the message and the message part is disappearing at the next step
in the path to its final destination. If the final destination is the ims-ms channel (the
Message Store), then you might download the message from the server to a client
machine to determine if the message part is being dropped during or after this transfer.

If the destination channel is a tcp_* channel, then you must go to the MTA in the
message's path. Assuming it is an Messaging Server MTA, you will need to repeat the
entire troubleshooting process (see "Identify the Channels in the Message Path" and
"Manually Start and Stop Channels to Gather Data" and this section). If the other MTA is
not under your administration, then the user who reported the problem should contact that
particular site.

Common MTA Problems and Solutions
This section lists common problems and solutions for MTA configuration and operation.

TLS Problems
If, during SMTP dialog, the STARTTLS command returns the following error:

454 4.7.1 TLS library initialization failure

and if you have certificates installed and working for POP and IMAP access, check the
following:

• Protections/ownerships of the certificates have to be set so mailsrv account can access
the files.

• The directory where the certificates are stored need to have protections/ownerships set
such that the mailsrv account can access the files within that directory.

After changing protections and installing certificates, you must run:

stop-msg dispatcher
start-msg dispatcher

Restarting should work, but it is better to shut it down completely, install the certificates, and
then start things back up.

Changes to Configuration Files or MTA Databases Do Not Take Effect
If changes to your configuration are not taking effect, check to see if you have performed the
following steps:

1. Recompile the configuration (by running imsimta cnbuild).

2. Restart the appropriate processes (like imsimta restart dispatcher).

Chapter 38
Common MTA Problems and Solutions

38-9

3. Re-establish any client connections.

The MTA Sends Outgoing Mail but Does Not Receive Incoming Mail
Most MTA channels depend upon a slave or channel program to receive incoming messages.
For some transport protocols that are supported by the MTA (like TCP/IP and UUCP), you
must make sure that the transport protocol activates the MTA slave program rather than its
standard server. Replacing the native sendmail SMTP server with the MTA SMTP server is
performed as a part of the Messaging Server installation.

For the multi-threaded SMTP server, the startup of the SMTP server is controlled by the
Dispatcher. If the Dispatcher is configured to use a MIN_PROCS value greater than or equal to
one for the SMTP service, then there should always be at least one SMTP server process
running (and potentially more, according to the MAX_PROCS value for the SMTP service).
The imsimta process command may be used to check for the presence of SMTP server
processes. See Messaging Server Reference for more information.

Dispatcher (SMTP Server) Won't Start Up
If the dispatcher won't start up, first check the dispatcher.log-* for relevant error messages. If
the log indicates problems creating or accessing the /tmp/.path.dispatcher.socket file, then
verify that the /tmp protections are set to 1777. This would show up in the permissions as
follows:

drwxrwxrwt 8 root sys 734 Sep 17 12:14 tmp/
.

Also do an ls -l of the path.version-specific-name.dispatcher.socket file and confirm the
proper ownership. For example, if this is created by root, then it is inaccessible by mailsrv.

Do not remove the .path.dispatcher.file and do not create it if it's missing. The dispatcher will
create the file. If protections are not set to 1777, the dispatcher will not start or restart because
it won't be able to create/access the socket file. In addition, there may be other problems
occurring not related to the Messaging Server.

Messaging Server: MessagingServer_home/
config/.var_opt_sun_comms_messaging64_config.dispatcher.socket

Timeouts on Incoming SMTP Connections
Timeouts on incoming SMTP connections are most often related to system resources and their
allocation. The following techniques can be used to identify the causes of timeouts on incoming
SMTP connections.

To Identify the Causes of Timeouts on Incoming SMTP Connections
1. Check how many simultaneous incoming SMTP connections you allow. This is controlled

by the MAX_PROCS and MAX_CONNS Dispatcher settings for the SMTP service. The
number of simultaneous connections allowed is MAX_PROCS*MAX_CONNS. If you can
afford the system resources, consider raising this number if it is too low for your usage.

2. Another technique you can use is to open a TELNET session. In the following example, the
user connects to 127.0.0.1 port 25. Once connected, 220 banner is returned. For example:

telnet 127.0.0.1 25
Trying 127.0.0.1...
Connected to 127.0.0.1.

Chapter 38
Common MTA Problems and Solutions

38-10

Escape character is '^]'.
220 budgie.example.com --Server ESMTP (Sun Java System Messaging Server 6.1
(built May 7 2001))

If you are connected and receive a 220 banner, but additional commands (like ehlo and
mail from) do not illicit a response, then you should run imsimta test -rewrite to ensure
that the configuration is correct.

3. If the response time of the 220 banner is slow, and if running the pstack command on the
SMTP server shows the following iii_res* functions (these functions indicate that a name
resolution lookup is being performed):

febe2c04 iii_res_send (fb7f4564, 28, fb7f4de0, 400, fb7f458c, fb7f4564) +
42c febdfdcc iii_res_query (0, fb7f4564, c, fb7f4de0, 400, 7f) + 254

then it is likely that the host has to do reverse name resolution lookups, even on a common
pair like localhost/127.0.0.1. To prevent such a performance slowdown, you should
reorder your host's lookups in the /etc/nsswitch.conf file. Also, it is recommended to
remove the nis keyword from the hosts line in the /etc/nsswitch.conf file. To do so,
change the following line in the /etc/nsswitch.conf file from:

hosts: dns nis [NOTFOUND=return] files

to:

hosts: files dns [NOTFOUND=return]

Making this change in the /etc/nsswitch.conf file can improve performance as fewer
SMTP servers have to handle messages instead of multiple SMTP servers having to
perform unnecessary lookups.

4. You can also put the slave_debug option on the channels handling incoming SMTP over
TCP/IP mail, usually tcp_local and tcp_intranet. After doing so, review the most recent
tcp_local_slave.log-uniqueid files to identify any particular characteristics of the messages
that time out. For example, if incoming messages with large numbers of recipients are
timing out, consider using the expandlimit option on the channel. Remember that if your
system is overloaded and overextended, timeouts will be difficult to avoid entirely.

Messages Are Not Dequeued
Errors encountered during TCP/IP delivery are often transient; the MTA will generally retain
messages when problems are encountered and retry them periodically. It is normal on large
networks to experience periodic outages on certain hosts while other host connections work
fine. To verify the problem, examine the log files for errors relating to delivery attempts. You
may see error messages such as, "Fatal error from smtp_open." Such errors are not
uncommon and are usually associated with a transient network problem. To debug TCP/IP
network problems, use utilities like PING, TRACEROUTE, and NSLOOKUP.

The following example shows the steps you might use to see why a message is sitting in the
queue awaiting delivery to xtel.co.uk. To determine why the message is not being dequeued,
you can recreate the steps the MTA uses to deliver SMTP mail on TCP/IP.

nslookup -query=mx example.com (Step 1)

Server: LOCALHOST
Address: 127.0.0.1

Non-authoritative answer:
example.com preference = 10, mail exchanger = mailhost.example.com (Step 2)

Chapter 38
Common MTA Problems and Solutions

38-11

telnet mailhost.example.com 25 (Step 3)
Trying... [10.1.1.1]
telnet: Unable to connect to remote host: Connection refused

1. Use the NSLOOKUP utility to see what MX records, if any, exist for this host. If no MX
records exist, then you should try connecting directly to the host. If MX records do exist,
then you must connect to the designated MX relays. The MTA honors MX information
preferentially, unless explicitly configured not to do so. For more information, see the
discussion on TCP/IP nameserver and MX record support in Messaging Server Reference.

2. In this example, the DNS (Domain Name Service) returned the name of the designated MX
relay for xtel.co.uk. This is the host to which the MTA will actually connect. If more than
one MX relay is listed, the MTA will try each MX record in succession, with the lowest
preference value tried first.

3. If you do have connectivity to the remote host, you should check if it is accepting inbound
SMTP connections by using TELNET to the SMTP server port 25.

Note:

If you use TELNET without specifying the port, you will discover that the remote
host accepts normal TELNET connections. This does not indicate that it accepts
SMTP connections; many systems accept regular TELNET connections but
refuse SMTP connections and vice versa. Consequently, you should always do
your testing against the SMTP port.

In the previous example, the remote host is refusing connections to the SMTP port. This is
why the MTA fails to deliver the message. The connection may be refused due to a
misconfiguration of the remote host or some sort of resource exhaustion on the remote
host. In this case, nothing can be done to locally to resolve the problem. Typically, you
should let the MTA continue to retry the message.

If you are running Messaging Server on a TCP/IP network that does not use DNS, you can
skip the first two steps. Instead, you can use TELNET to directly access the host in question.
Be careful to use the same host name that the MTA would use. Look at the relevant log file
from the MTA's last attempt to determine the host name. If you are using host files, you should
make sure that the host name information is correct. It is strongly recommended that you use
DNS instead of host names.

If you test connectivity to a TCP/IP host and encounter no problems using interactive tests, it is
quite likely that the problem has simply been resolved since the MTA last tried to deliver the
message. You can re-run the imsimta submit tcp_channel on the appropriate channel to see
if messages are being dequeued.

Creating a New Channel
In certain circumstances, a remote domain can break down and the volume of mail addressed
to this server can be so great that the outgoing channel queue fills up with messages that
cannot be delivered. The MTA tries to redeliver these messages periodically (the frequency
and number of the retries is configurable using the backoff channel option) and under normal
circumstances, no action is needed. However, if too many messages get stuck in the queue,
other messages may not get delivered in a timely manner because all the channel jobs are
working to process the backlog of messages that cannot be delivered.

In this situation, you can reroute these messages to a new channel running in its own job
controller pool. This will avoid contention for processing and allow the other channels to deliver

Chapter 38
Common MTA Problems and Solutions

38-12

their messages. This procedure is described in the following procedure. Assume a domain
called example.org.

To Create a New Channel

1. Create a new channel called tcp_example-daemon and add a new value for the pool
option.

Channels are created in by running the msconfig edit channels command. The channel
should have the same channel options on your regular outgoing tcp_* channel. Typically,
this is the tcp_local channel, which handles all outbound (internet) traffic. Since
example.org is out on the Internet, this is the channel to emulate. The new channel might
look something like this:

tcp_example smtp nomx single_sys remotehost inner allowswitchchannel \
dentnonenumeric subdirs 20 maxjobs 7 pool SMTP_example maytlsserver \
maysaslserver saslswitchchannel tcp_auth missingrecipientpolicy 0 \
tcp_example-daemon

Note the new option-value pair pool SMTP_example. This specifies that messages to this
channel will only use computer resources from the SMTP_example pool. There is a blank
line before and after the new channel.

2. Add two rewrite rules by running the msconfig edit rewrite to direct email destined for
example.org to the new channel.

The new rewrite rules look like this:

example.org $U%$D@tcp_example-daemon
.example.org $U%$H$D@tcp_example-daemon

These rewrite rules direct messages to example.org (including addresses like
host1.example.org or hostA.host1.example.org) to the new channel whose official host
name is tcp_example-daemon. The rewriting part of these rules, $U%$D and $U%$H$D,
retain the original addresses of the messages. $U copies the user name from original
address. % is the separator---the @ between the username and domain. $H copies the
unmatched portion of host/domain specification at the left of dot in pattern. $D copies the
portion of domain specification that matched.

3. Define a new job controller pool called SMTP_example.

Run the msconfig set job_controller.job_pool:SMTP_example.job_limit 10 command
to create a new pool called SMTP_example with a job_limit of 10. You can verify the
addition of the new pool by running the msconfig show job_controller.job_pool
command which will show output similar to the following:

msconfig show job_controller.job_pool
role.job_controller.job_pool:DEFAULT.job_limit = 10
role.job_controller.job_pool:DEFAULT.urgent_delivery = help
role.job_controller.job_pool:IMS_POOL.job_limit = 2
role.job_controller.job_pool:SMTP_POOL.job_limit = 10
role.job_controller.job_pool:SMTP_example.job_limit = 10

This creates a message resource pool called SMTP_example that allows up to 10 jobs to
be simultaneously run. See "The Job Controller" for details on jobs and pools.

4. Restart the MTA.

Issue the commands: imsimta cnbuild; imsimta restart

This recompiles the configuration and restarts the job controller and dispatcher.

In this example, a large quantity of email from your internal users is destined for a
particular remote site called example.org. For some reason, example.org, is temporarily

Chapter 38
Common MTA Problems and Solutions

38-13

unable to accept incoming SMTP connections and thus cannot deliver email. (This type of
situation is not a rare occurrence.)

As email destined for example.org comes in, the outgoing channel queue, typically
tcp_local, will fill up with messages that cannot be delivered. The MTA tries to redeliver
these messages periodically (the frequency and number of the retries is configurable using
the backoff options) and under normal circumstances, no action is needed.

However, if too many messages get stuck in the queue, other messages may not get
delivered in a timely manner because all the channel jobs are working to process the
backlog of example.org messages. In this situation, you may want reroute example.org
messages to a new channel running in its own job controller pool (see "The Job
Controller"). This will allow the other channels to deliver their messages without having to
contend for processing resources used by example.org messages. Creating a new
channel to address this situation is described in the following information.

MTA Messages Are Not Delivered
In addition to message transport problems, there are two common problems which can result
in unprocessed messages in the message queues:

1. The queue cache is not synchronized with the messages in the queue directories.
Message files in the MTA queue subdirectories that are awaiting delivery are entered into
an in-memory queue cache. When channel programs run, they consult this queue cache to
determine which messages to deliver in their queues. There are circumstances where
there are message files in the queue, but there is no corresponding queue cache entry.

a. To check if a particular file is in the queue cache, you can use the imsimta cache -
view utility. If the file is not in the queue cache, then the queue cache needs to be
synchronized.

The queue cache is normally synchronized every four hours. If required, you can
manually resynchronize the cache by using the command imsimta cache -sync.
Once synchronized, the channel programs will process the originally unprocessed
messages after new messages are processed. If you want to change the default (4
hours), you should modify the job_controller configuration by running the msconfig
set job_controller.synch_timetimeperiod command where timeperiod reflects how
often the queue cache is synchronized. The timeperiod must be greater than 30
minutes. In the following example, the queue cache synchronization is modified to 2
hours by running the following command:

msconfig set job_controller.synch_time 02:00

You can run imsimta submitchannel to clear out the backlog of messages after
running imsimta cache -sync. Clearing out the channel may take a long time if the
backlog of messages is large (greater than 1000).

For summarized queue cache information, run imsimta qm -maint dir -database -
total.

b. If after synchronizing the queue cache, messages are still not being delivered, you
should restart the Job Controller. To do so, use the imsimta restart job_controller
command.

Restarting the Job Controller causes the message data structure to be rebuilt from the
message queues on disk.

Chapter 38
Common MTA Problems and Solutions

38-14

Caution:

Restarting the Job Controller is a drastic step and should only be performed
after all other avenues have been thoroughly exhausted.

Refer to "The Job Controller" for more information on the Job Controller.

2. Channel processing programs fail to run because they cannot create their processing log
file. Check the access permissions, disk space and quotas.

Messages are Looping
If the MTA detects that a message is looping, that message will be sidelined as a HELD file.
See "Diagnosing and Cleaning up .HELD Messages" for more information. Certain cases can
lead to message loops which the MTA can not detect.

The first step is to determine why the messages are looping. You should look at a copy of the
problem message file while it is in the MTA queue area, MTA mail log entries (if you have the
logging channel option enabled in your MTA configuration for the channels in question)
relating to the problem message, and MTA channel debug log files for the channels in
question. Determining the From: and To: addresses for the problem message, seeing the
Received: header lines, and seeing the message structure (type of encapsulation of the
message contents), can all help pinpoint which sort of message loop case you are
encountering.

Some of the more common cases include:

1. A postmaster address is broken. The MTA requires that the postmaster address be a
functioning address that can receive email. If a message to the postmaster is looping,
check that your configuration has a proper postmaster address pointing to an account that
can receive messages.

2. Stripping of Received: header lines is preventing the MTA from detecting the message
loop. Normal detection of message loops is based on Received: header lines. If Received:
header lines are being stripped (either explicitly on the MTA system itself, or on another
system like a firewall), it can interfere with proper detection of message loops. In these
scenarios, check that no undesired stripping of Received: header lines is occurring. Also,
check for the underlying reason why the messages are looping. Possible reasons include:
a problem in the assignment of system names or a system not configured to recognize a
variant of its own name, a DNS problem, a lack of authoritative addressing information on
the system in question, or a user address forwarding error.

3. Incorrect handling of notification messages by other messaging systems are generating
reencapsulated messages in response to notification messages. Internet standards require
that notification messages (reports of messages being delivered, or messages bouncing)
have an empty envelope From: address to prevent message loops. However, some
messaging systems do not correctly handle such notification messages. When forwarding
or bouncing notification messages, these messaging systems may insert a new envelope
From: address. This can then lead to message loops. The solution is to fix the messaging
system that is incorrectly handling the notification messages.

Diagnosing and Cleaning up .HELD Messages
If the MTA detects a serious problem having to do with delivery of a message, the message is
stored in a file with the suffix .HELD in DataRoot/queue/channel. For example:

Chapter 38
Common MTA Problems and Solutions

38-15

ls
ZZ0HXZ00G0EBRBCP.HELD
ZZ0HY200C0O6LGHU.HELD
ZZ0HYA006LP66O3H.HELD
ZZ0HZ7003EOQSE37.HELD

.HELD files can occur due to three major reasons:

• Looping messages. The MTA detected that the messages were looping via build-up of one
or another sort of Received: header lines).

• User or domain status set to hold. These are messages that are, by intent of the MTA
administrator, intentionally being side-lined, typically while some maintenance procedure is
being performed, (for example, while moving user mailboxes).

• Suspicious messages. Messages that met some suspicious threshold and were held for
later manual inspection by the MTA administrator. Messages can be .HELD due to
exceeding a configured maximum number of envelope recipients (see the holdlimit
channel option in Messaging Server Reference), due to running the imsmita qclean or
clean or hold commands based on some suspicion of the message(s) in question, or due
to use of a hold action in a Sieve script.

Messages .HELD Due to Looping

Messages bouncing between servers or channels are said to be looping. Typically, a message
loop occurs because each server or channel thinks the other is responsible for delivery of the
message. Looping messages usually have a great many *Received: header lines. The
Received: header lines illustrate the exact path of the message loop. Look carefully at the host
names and any recipient address information (for example, for recipient clauses or ORCPT
recipient comments) appearing in such header lines. One cause of such message loops is
user error.

For example, an end users might set an option to forward messages on two separate mail
hosts to one another. On their example.com account, the users enable mail forwarding to their
example.edu account. And, forgetting that they have enabled this setting, they set mail
forwarding on their example.edu account to their example.com account.

A loop can also occur with a faulty MTA configuration. For example, MTA Host X thinks that
messages for mail.example.com go to Host Y. However, Host Y thinks that Host X should
handle messages for mail.example.com. As a result, Host Y returns the mail to Host X.

In these cases, the message is ignored by the MTA and no further delivery is attempted. When
such a problem occurs, look at the header lines in the message to determine which server or
channel is bouncing the message. Fix the entry as needed.

Another common cause of message loops is the MTA receiving a message that was addressed
to the MTA host using a network name that the MTA does not recognize (has not been
configured to recognize) as one of its own names. The solution is to add the additional name to
the list of names that your MTA recognizes as its own. The MTA's threshholds for determining
that a message is looping are configurable; see the MAX_*RECEIVED_LINES MTA options
(http://docs.oracle.com/cd/E19566-01/819-4429/index.html). Also note that the MTA may
optionally be configured. See the HELD_SNDOPR MTA option to generate a syslog notice
whenever a message is forced into .HELD state due to exceeding such a threshold. If syslog
messages of Received count exceeded; message held. are present, then you know that this
is occurring.

You can resend the .HELD message by using the imsimta qm release command or by
following these steps:

Chapter 38
Common MTA Problems and Solutions

38-16

http://docs.oracle.com/cd/E19566-01/819-4429/index.html

Note:

The imsimta qm release command is the preferred method.

1. Rename the .HELD extension to any 2 digit number other than 00. For example, .HELD
to .06.

Note:

Before renaming the .HELD file, be sure that the message is not likely to
continue looping.

2. Run imsimta cache -sync.

Running this command updates the cache.

3. Run imsimta submitchannel or imsimta runchannel.

You might need to perform these steps multiple times, since the message may again be
marked as .HELD, because the Received: header lines accumulate. If the problem still exists,
the *.HELD file is recreated under the same channel with as before. If the problem has been
addressed, the messages are dequeued and delivered.

See clean if you determine that the messages can simply be deleted with no attempt to deliver
them,

Messages .HELD Due to User or Domain hold Status

Messages that are .HELD due to a user or domain status of hold, and only messages .HELD
for such a reason, are normally stored in the hold channel's queue area. That is, .HELD
message files in the hold channel's queue area can be assumed to be .HELD due to user or
domain status.

Messages .HELD Due to a Suspicious Characteristic

Messages .HELD due to some suspicious characteristic exhibit that characteristic. The
characteristic could be anything that the site has chosen to characterize as suspicious. MTA
Administrators should stay aware of these configuration choices and actions. However, if you
are not the only or original administrator of this MTA, then check the MTA configuration for any
configured use of the holdlimit channel option (see the discussion on expansion of multiple
addresses in Messaging Server Reference), any use of the $H flag in address-based
*_ACCESS mapping tables, or any use of the hold action in any system Sieve file, or any
channel level Sieve filters configured and named by use of sourcefilter or destinationfilter
channel options. See the discussion on the filter file location in Messaging Server Reference.
Additionally, ask any fellow MTA administrators about any manual command-line message
holds (through, for instance, an imsimta qm clean command) they might have recently
performed. Application of a Sieve filter hold action, whether from a system Sieve filter or from
users' personal Sieve filters, may optionally be logged. See the discussion on the
LOG_FILTER global MTA option in Messaging Server Reference for more information.

Received Message is Encoded
Messages sent by the MTA are received in an encoded format. For example:

Chapter 38
Common MTA Problems and Solutions

38-17

Date: Wed, 04 Jul 2001 11:59:56 -0700 (PDT)
From: "Desdemona Vilalobos" <Desdemona@example.com>
To: santosh@example.edu
Subject: test message with 8bit data
MIME-Version: 1.0
Content-type: TEXT/PLAIN; CHARSET=ISO-8859-1
Content-transfer-encoding: QUOTED-PRINTABLE

2=00So are the Bo=F6tes Void and the Coal Sack the same?=

These messages appear unencoded when read with the MTA decoder command imsimta
decode. See Messaging Server Reference for more information.

The SMTP protocol only allows the transmission of ASCII characters (a seven-bit character
set) as set forth by RFC 821. In fact, the unnegotiated transmission of eight-bit characters is
illegal through SMTP, and it is known to cause a variety of problems with some SMTP servers.
For example, SMTP servers can go into compute bound loops. Messages are sent over and
over again. Eight-bit characters can crash SMTP servers. Finally, eight-bit character sets can
wreak havoc with browsers and mailboxes that cannot handle eight-bit data.

An SMTP client used to only have three options when handling a message containing eight-bit
data: return the message to the sender as undeliverable, encode the message, or send it in
direct violation of RFC 821. But with the advent of MIME and the SMTP extensions, standard
encodings exist that can encode eight-bit data by using the ASCII character set.

In the previous example, the recipient received an encoded message with a MIME content type
of TEXT/PLAIN. The remote SMTP server (to which the MTA SMTP client transferred the
message) did not support the transfer of eight-bit data. Because the original message
contained eight-bit characters, the MTA had to encode the message.

Server-Side Rules (SSR) Are Not Working
A filter consists of one or more conditional actions to apply to a mail message. Since the filters
are stored and evaluated on the server, they are often referred to as server-side rules (SSR).

Testing Your SSR Rules
• To check the MTA's user filters, run the following command:

imsimta test -rewrite -debug -filter user@domain

In the output, look for the following information:

mmc_open_url called to open ssrf: user@ims-ms
URL with quotes stripped: ssrd: user@ims-ms
Determined to be a SSRD URL.
Identifier: user@ims-ms-daemon
Filter successfully obtained.

• In addition, you can add the slave_debug option to the tcp_local channel to see how a
filter is applied. The results are displayed in the tcp_local_slave.log file. Be sure to set
mm_debug to 5 by running the msconfig set mm_debug 5 command to get sufficient
debugging information.

Common Syntax Problems
If there is a syntax problem with the filter, look for the following message in the
tcp_local_slave.log-* file:

Chapter 38
Common MTA Problems and Solutions

38-18

Error parsing filter expression:...

• If the filter is good, then filter information is at the end of the output.

• If the filter is bad, then the following error is at the end of the output:

Address list error - 4.7.1 Filter syntax error: desdaemona@example.com

Also, if the filter is bad, then the SMTP RCPT TO command returns a temporary error
response code:

RCPT TO: <user>@<domain>
452 4.7.1 Filter syntax error

Slow Response After Users Press Send Email Button
If users are experiencing delays when they send messages, undersized message queue disks
could be responsible for reduced disk input/output. When users press the SEND button on
their email client, the MTA will not fully accept receipt of the message until the message has
been committed to the message queue. See the discussion on disk sizing for MTA message
queues in Messaging Server Installation and Configuration Guide for more information.

Abnormal Job Controller Terminations Seen in job_controller Logs
The Job Controller is essentially an in-memory database. Unlike other parts of the MTA, it
doesn't have queues or transactions with which to contend. It listens for activity coming in on
various network connections and updates its database accordingly.

Consequently, if the Job Controller fails, it is most likely a resource allocation failure (resource
exhaustion). The only significant resource the Job Controller uses, especially when under
stress, is memory. Therefore, allocate the right amount of memory for the machine that
contains the Job Controller. See the discussion on planning a messaging server sizing strategy
in Messaging Server Installation and Configuration Guide for details on memory utilization.

General Error Messages
When the MTA fails to start, general error messages appear at the command line. In this
section, common general error messages will be described and diagnosed.

Note:

To diagnose your own MTA configuration, use the imsimta test -rewrite-debug utility
to examine your MTA's address rewriting and channel mapping process. This utility
enables you to check the configuration without actually sending a message. See
"Check the MTA Configuration" for more information.

MTA subcomponents might also issue other error messages that are described in the MTA
command-line utilities and configuration information. See "Configuring POP, IMAP, and HTTP
Services" and "MTA Configuration Overview" and Messaging Server Reference for more
information.

Chapter 38
General Error Messages

38-19

Errors in mm_init
An error in mm_init generally indicates an MTA configuration problem. If you run the imsimta
test -rewrite utility, these errors are displayed. Other utilities such as imsimta cnbuild, or a
channel, a server, or a browser might also return such an error.

Commonly encountered mm_init errors include:

• bad equivalence for alias...

• cannot open alias include file...

• duplicate aliases found...

• duplicate host in channel table...

• duplicate mapping name found...

• mapping name is too long...

• error initializing ch_facility compiled character set version mismatch

• error initializing ch_facility no room in...

• local host alias or proper name too long for system...

• no equivalence addresses for alias...

• no official host name for channel...

• official host name is too long

bad equivalence for alias...

The right-hand side of an alias file entry is improperly formatted.

cannot open alias include file...

A file included into the alias file cannot be opened.

duplicate aliases found...

Two alias file entries have the same left hand side. You must find and eliminate the duplication.
Look for an error message that says error line #XXX where XXX is a line number. You can fix
the duplicated alias on the line.

duplicate host in channel table...

This error message indicates that you have two channel definitions in the MTA configuration
that both have the same official host name.

Check your MTA configuration for any channel definitions with duplicate official host names.

duplicate mapping name found...

This message indicates that two mapping tables have the same name, and one of the
duplicate mapping tables needs to be removed.

Chapter 38
General Error Messages

38-20

Note:

A blank line should precede and follow any line with a mapping table name. However,
no blank lines should be interspersed among the entries of a mapping table.

mapping name is too long...

This error means that a mapping table name is too long and needs to be shortened.

error initializing ch_facility compiled character set version mismatch

If you see this message, you must recompile and reinstall your compiled character set tables
through the command imsimta chbuild. See Messaging Server Reference for more
information.

error initializing ch_facility no room in...

This error message generally means that you need to resize your MTA character set internal
tables and then rebuild the compiled character set tables with the following commands:

imsimta chbuild -noimage -maximum -option
imsimta chbuild

Verify that nothing else needs to be recompiled or restarted before making this change. See
Messaging Server Reference for more information.

local host alias or proper name too long for system...

This error indicates that a local host alias or proper name is too long (the optional right hand
side in the second or subsequent names in a channel block).

no equivalence addresses for alias...

An entry in the alias file is missing a right hand side (translation value).

no official host name for channel...

This error indicates that a channel definition block is missing the required second line (the
official host name line). See the MTA configuration and command-line utilities information in
Messaging Server Reference for more information on channel definition blocks. A blank line is
required before and after each channel definition block, but a blank line must not be present
between the channel name and official host name lines of the channel definition.

official host name is too long

The official host name for a channel (second line of the channel definition block) is limited to
128 octets in length. If you are trying to use a longer official host name on a channel, shorten it
to a place holder name, and then use a rewrite rule to match the longer name to the short
official host name. You might see this scenario if you work with the l (local) channel host name.
For example:

<Original l Channel:>
!delivery channel to local /var/mail store
l subdirs 20 viaaliasrequired maxjobs 7 pool LOCAL_POOL
walleroo.pocofronitas.thisnameismuchtoolongandreallymakesnosensebutitisan
example.monkey.gorilla.orangutan.antidiexampleblismentarianism.newt.salaman
der.lizard.gecko.komododragon.com

Chapter 38
General Error Messages

38-21

<Create Place Holder:>
!delivery channel to local /var/mail store
l subdirs 20 viaaliasrequired maxjobs 7 pool LOCAL_POOL
newt

<Create Rewrite Rule:>
newt.salamander.lizard.gecko.komododragon.com $U%$D@newt

When using the l (local) channel, you need to use a REVERSE mapping table. See the MTA
configuration information in Messaging Server Reference for information on usage and syntax.

Compiled Configuration Version Mismatch
One of the functions of the imsimta cnbuild utility is to compile MTA configuration information
into an image that can be quickly loaded. The compiled format is quite rigidly defined and often
changes substantially between different versions of the MTA. Minor changes might occur as
part of patch releases.

When such changes occur, an internal version field is also changed so that incompatible
formats can be detected. The MTA components halt with the "Compiled Configuration Version
Mismatch" error when an incompatible format is detected. The solution to this problem is to
generate a new, compiled configuration with the command imsimta cnbuild.

Also, use the imsimta restart command to restart any resident MTA server processes, so they
can obtain updated configuration information.

Swap Space Errors
To ensure proper operation, it is important to configure enough swap space on your messaging
system. The amount of required swap space will vary depending on your configuration. A
general tuning recommendation is that the amount of swap space should be at least three
times the amount of main memory.

An error message such as the following indicates a lack of swap space:

jbc_channels: chan_execute [1]: fork failed: Not enough space

You might see this error in the Job Controller log file. Other swap space errors will vary
depending on your configuration.

Use the following commands to determine how much swap space you have left and determine
how much you have used:

swap -s (at the time MTA processes are busy), ps -elf, or tail /var/adm/messages

File Open or Create Errors
To send a message, the MTA reads configuration files and creates message files in the MTA
message queue directories. Configuration files must be readable by the MTA or any program
written against the MTA's SDKs. During installation, proper permissions are assigned to these
files. The MTA utilities and procedures which create configuration files also assign permissions.
If the files are protected by the system manager, other privileged user, or through some site-
specific procedure, the MTA may not be able to read configuration information. This results in
"File open" errors or unpredictable behavior. The imsimta test -rewrite utility reports additional
information when it encounters problems reading configuration files. See Messaging Server
Reference for more information.

Chapter 38
General Error Messages

38-22

If the MTA appears to function from privileged accounts but not from unprivileged accounts,
then file permissions in the MTA table directory are likely the cause of the problem. Check the
permissions on configuration files and their directories. See "Check the Ownership of Critical
Files" for more information.

"File create" errors usually indicate a problem while creating a message file in an MTA
message queue directory. See "Check the Message Queue Directories" to diagnose file
creation problems.

Illegal Host/Domain Errors
You might see this error when an address is provided to the MTA through a browser. Or, the
error may be deferred and returned as part of an error return mail message. In both cases, this
error message indicates that the MTA is not able to deliver mail to the specified host. To
determine why the mail is not being sent to the specified host, follow these troubleshooting
procedures:

• Verify that the address in question is not misspelled, is not transcribed incorrectly, or does
not use the name of a host or domain that no longer exists.

• Run the address in question through the imsimta test -rewrite utility. If this utility also
returns an "illegal host/domain" error on the address, then the MTA has no rewrite rules or
other configurations to handle the address. Verify that you have configured MTA correctly,
that you answered all configuration questions appropriately, and that you have kept your
configuration information up to date.

• If imsimta test -rewrite does not encounter an error on the address, then MTA is able to
determine how to handle the address, but the network transport will not accept it. You can
examine the appropriate log files from the delivery attempt for additional details. Transient
network routing or name service errors should not result in returned error messages,
though it is possible for badly misconfigured domain name servers to cause these
problems.

• If you are on the Internet, check that you have properly configured your TCP/IP channel to
support MX record lookups. Many domain addresses are not directly accessible on the
Internet and require that your mail system correctly resolve MX entries. If you are on the
Internet and your TCP/IP is configured to support MX records, you should have configured
the MTA to enable MX support. See the discussion on TCP/IP connection and DNS lookup
support in Messaging Server Reference for more information. If your TCP/IP package is
not configured to support MX record lookups, then you will not be able to reach MX-only
domains.

Errors in SMTP channels, os_smtp_* errors
Errors such as the following are not necessarily MTA errors: os_smtp_* errors like
os_smtp_open, os_smtp_read, and os_smtp_write errors. These errors are generated when
the MTA reports a problem encountered at the network layer. For example, an os_smtp_open
error means that the network connection to the remote side could not be opened. The MTA
may be configured to connect to an invalid system because of addressing errors or channel
configuration errors. The os_smtp_* errors are commonly due to DNS or network connectivity
problems, particularly if this was a previously working channel or address. os_smtp_read or
os_smtp_write errors are usually an indication that the connection was aborted by the other
side or due to network problems.

Network and DNS problems are often transient in nature. The occasional os_smtp_* error is
usually nothing to be concerned about. However, if you are consistently seeing these errors, it
could be an indication of an underlying network problem.

Chapter 38
General Error Messages

38-23

To obtain more information about a particular os_smtp_* error, enable debugging on the
channel in question. Investigate the debug channel log file that will show details of the
attempted SMTP dialogue. In particular, look at the timing of when a network problem occurred
during the SMTP dialogue. The timing could suggest the type of network or remote side issue.
In some cases, you might also want to perform network level debugging (for example, TCP/IP
packet tracing) to determine what was sent or received.

Chapter 38
General Error Messages

38-24

39
Troubleshooting the Message Store

This chapter provides guidelines for troubleshooting the Oracle Communications Messaging
Server message store as well as recovery procedures for when the message store becomes
corrupted or unexpectedly shuts down.

See also:

• Using Message Store Log Messages

• Upgrading the Classic Message Store

Repairing Mailboxes and the Mailboxes Database (reconstruct
Command)

If one or more mailboxes become corrupt, use the "reconstruct" utility to rebuild the mailboxes
or the mailbox database. You can use this utility to recover from almost any form of data
corruption in the mail store. See "Error Messages Signifying reconstruct Is Needed" and
"reconstruct" for more details.

Reduced Message Store Performance
Message store problems can occur if the mboxlist database cache is too small. Specifically,
Message store performance can slow to unacceptable levels and can even dump core. Refer
to the discussion on performance tuning considerations in Messaging Server Installation and
Configuration Guide.

Red Hat Linux - Messaging Server Patch 120230-08 IMAP, POP and HTTP Servers Not
Starting Due to Over Sessions Per Process

After installing this patch, when you try to start Messaging Server, the IMAP, POP and HTTP
servers do not start and may send the following example error logs:

http server - log:
[29/May/2006:17:44:37 +051800] usg197 httpd[6751]: General Critical: Not enough file
descriptors to support 6000 sessions per process; Recommend ulimit -n 12851 or 87
sessions per process.
pop server - log:
[29/May/2006:17:44:37 +051800] usg197 popd[6749]: General Critical: Not enough file
descriptors to support 600 sessions per process; Recommend ulimit -n 2651 or 58
sessions per process.
imap server - log:
[29/May/2006:17:44:37 +051800] usg197 imapd[6747]: General Critical: Not enough
file descriptors to support 4000 sessions per process; Recommend ulimit -n 12851
or 58 sessions per process.

Set the appropriate number of file descriptors for all three server sessions. Additional file
descriptors are available by adding a line similar to the following to the /etc/sysctl.conf file and
using sysctl -p to reread that file:

fs.file-max = 65536

39-1

You must also add a line like the following to the /etc/security/limits.conf file:

* soft nofile 65536
* hard nofile 65536

Convergence Not Loading Mail Page
If users accessing their mail with web clients, like Convergence, cannot load pages, the
problem might be that the data is getting corrupted after compression. This can sometimes
happen if the system has deployed a outdated proxy server. To solve this problem, try setting
the msconfighttp.gzipstatic and http.gzipdynamic options to 0 to disable data compression.
If this solves the problem, you may want to update the proxy server.

Command Using Wildcard Pattern Does Not Work
Some UNIX shells may require quotes around wildcard options and some will not. For
example, the C shell tries to expand arguments containing wildcards (*, ?) as files and will fail
if no match is found. These pattern matching arguments may need to be enclosed in quotes to
be passed to commands like mboxutil.

For example:

mboxutil -l -p user/usr44*

works in the Bourne shell, but fails with tsch and the C shell. These shells would require the
following:

mboxutil -l -p "user/usr44*"

If a command using a wildcard pattern does not work, verify whether you need to use quotes
around wildcards for that shell.

Unknown/invalid Partition
A user can get the message "Unknown/invalid partition" in mshttpd if their mailbox was moved
to a new partition that was just created and Messaging Server was not refreshed or restarted.
This problem only occurs on new partitions. If you now add additional user mailboxes to this
new partition, you will not have to do a refresh/restart of Messaging Server.

User Mailbox Directory Problems
A user mailbox problem exists when the damage to the message store is limited to a small
number of users and there is no global damage to the system. The following guidelines
suggest a process for identifying, analyzing, and resolving a user mailbox directory problem:

1. Review the log files, the error messages, or any unusual behavior that the user observes.

2. To keep debugging information and history, copy the entire store_root/mboxlist/ user
directory to another location outside the message store.

3. To find the user folder that might be causing the problem, run the command reconstruct -r
-n. If you are unable to find the folder using reconstruct, the folder might not exist in the
folder.db.

If you are unable to find the folder using the reconstruct -r -n command, use the "hashdir"
command to determine the location.

Chapter 39
Convergence Not Loading Mail Page

39-2

4. Once you find the folder, examine the files, check permissions, and verify the proper file
sizes.

5. Use reconstruct -r (without the -n option) to rebuild the mailbox.

6. If reconstruct does not detect a problem that you observe, you can force the
reconstruction of your mail folders by using the reconstruct -r -f command.

7. If the folder does not exist in the mboxlist directory (store_root/mboxlist), but exists in the
partition directory store_root/partition), there might be a global inconsistency. In this
case, you should run the reconstruct -m command.

8. If the previous steps do not work, you can remove the store.idx file and run the
reconstruct command again.

Caution:

You should only remove the store.idx file if you are sure there is a problem in the
file that the reconstruct command is unable to find.

9. If the issue is limited to a problematic message, you should copy the message file to
another location outside of the message store and run the command reconstruct -r on the
mailbox/ directory.

10. If you determine the folder exists on the disk (store_root/partition/ directory), but is
apparently not in the database (store_root/mboxlist/ directory), run the command
reconstruct -m to ensure message store consistency.

See "Repairing Mailboxes and the Mailboxes Database (reconstruct Command)" for more
information on the reconstruct command.

Store Daemon Not Starting
If stored does not start and returns the following error message:

MessagingServer_home/bin/start-msg
MessagingServer_home: Starting STORE daemon ...Fatal error: Cannot find group in name
service

This indicates that the UNIX group configured in local.servergid cannot be found. Stored and
others need to set their gid to that group. Sometimes the group defined by local.servergid
gets inadvertently deleted. In this case, create the deleted group, add mailsrv to the group,
change ownership of the instance_root and its files to mailsrv and the group.

User Mail Not Delivered Due to Mailbox Overflow
The message store has a hard limit of two gigabytes for a store.idx file, which is equivalent to
about one million messages in a single mailbox (folder). If a mailbox grows to the point that the
store.idx file will attempt to exceed two gigabytes, the user will stop receiving any new email.
In addition, other processes that handle that mailbox, such as imapd, popd, mshttpd, could
also experience degraded performance.

If this problem arises, you will see errors in mail.log_current such as this:

05-Oct-2005 16:09:09.63 ims-ms Q 7 ... System I/O error. Administrator, check server log
for details. System I/O error.

Chapter 39
Store Daemon Not Starting

39-3

In addition, the MTA log file will have an errors such as the following:

[05/Oct/2005:16:09:09 +0900] jmail ims_master[20745]: Store Error: Unable to append
cache for user/admin: File too large

You can determine this problem conclusively by looking at the file in the user's message store
directory, or by looking in the imta log file to see a more detailed message.

The immediate action is to reduce the size of the file. Either delete some mail, or move some
of it to another mailbox. You could also use mboxutil -r to rename the folder out of the way, or
mboxutil -d to delete the folder (see "mboxutil").

Long-term, you will need to inform the user of mailbox size limitations, implement an aging
policy (see "Configuring Message Expiration (Tasks)"), a quota policy (see "Message Store
Quota Overview"), set a mailbox limit by setting store.maxmessages (see Messaging Server
Reference), set up an archiving system, or make an adjustment to keep the mailbox size under
control.

IMAP Events Become Slow
Symptom: After working fine for a short period of time, many IMAP events become
unreasonably slow, with some events taking over a second.

Diagnosis: You have the Event Notification Service (ENS) plugin, libibiff, configured, but ENS
is not running or not reachable. See "Administering Event Notification Service" for ENS details.

Solution: If you want ENS notifications, verify that the ENS is enabled and configured
correctly. If you do not want ENS notifications, make sure that libibiff is not being loaded.
Typical incorrect configuration:

notifytarget = /opt/sun/comms/messaging/lib/libibiff
ens.enable = 0

Instead, use one of the following configurations:

notifytarget =
ens.enable = 0

or

notifytarget = /opt/sun/comms/messaging/lib/libibiff
ens.enable = 1

Chapter 39
IMAP Events Become Slow

39-4

Part IV
Managing the Message Store and Mailboxes

The message store is the component of Oracle Communications Messaging Server that
contains the user mailboxes as well as the servers that provide IMAP, POP, and HTTP access
to the mailboxes.

Unless otherwise noted, the message store (specifically, the stored process) should be up and
running while performing management and maintenance tasks described in "Message Store
Command Reference".

The size of the message store increases as the number of users, mailboxes, and log files
increase. You can control the size of the message store by specifying limits on the size of
mailboxes, by specifying limits on the total number of messages allowed, and by setting aging
policies for messages in the store.

Depending on the number of users your server supports, the message store might require one
physical disk or multiple physical disks. There are two ways to integrate this additional disk
space into your system. The easiest way is to add additional message store partitions (see
"Managing Message Store Partitions and Adding Storage"). Likewise, if you are supporting
multiple hosted domains, you might want to dedicate a server instance to a single, large
domain. With this configuration, you can designate a store administrator for a particular
domain. You can also expand the message store by adding more partitions.

Part IV contains the following chapters:

• Managing Mailboxes

• Backing Up and Restoring the Message Store

• Administering Very Large Mailboxes

• Message Store Message Expiration

• Configuring Message Expiration (Tasks)

• Configuring POP, IMAP, and HTTP Services

• Handling Message Store Overload

• Managing Message Store Partitions and Adding Storage

• Managing Message Store Quotas

• Managing Message Types in the Message Store

• Managing Shared Folders

• Upgrading the Classic Message Store

• Message Store Automatic Recovery On Startup

• Message Store Maintenance Queue

• Message Store Message Type Overview

• Migrating Mailboxes to a New System

• Monitoring Disk Space

• Protecting Mailboxes from Deletion or Renaming

• Reducing Message Store Size Due to Duplicate Storage

• Specifying Administrator Access to the Message Store

• Constructing Valid Message Store UIDs and Folder Names

• Message Store Automatic Failover with Database Replication

• Administering Message Store Database Snapshots (Backups)

• Classic Messaging Server and Tiered Storage Overview

• Message Store Command Reference

Additional information about the Message Store can be found in the following chapters:

• Troubleshooting the Message Store

• Best Practices for Messaging Server and ZFS

40
Managing Mailboxes

This chapter describes how to list, create, remove, rename, move, and view information about
mailboxes. It also describes how to find the directory location for a particular mailbox, restore
expunged messages, and see how many users other than the mailbox owner have read
messages in a shared IMAP folder. Specifically it describes how to use the mboxutil, hashdir,
and readership utilities.

To Manage Mailboxes with mboxutil
Use the "mboxutil" command to perform typical maintenance tasks on mailboxes. mboxutil
tasks include the following:

• List mailboxes

• List and remove orphaned and inactive mailboxes

• Create mailboxes

• Rename mailboxes

• Move mailboxes from one partition to another

• Expunge mailboxes

• Restore expunged messages that have not been purged

• List personal mailbox subscriptions and unsubscribed mailboxes that no longer exist

• You can also use the "mboxutil" command to view information about quotas. See
"Managing Message Store Quotas" for more information.

When an end user deletes a mailbox, all messages are expunged and purged according to the
value of store.cleanupage. However, expunged messages can be restored by using the
mboxutil -R command, as long as you have enabled the store.mailboxpurgedelay option.
Expunged messages are moved to the new location when a mailbox is renamed.

Caution:

Do not kill the mboxutil process in the middle of execution. If it is killed with SIGKILL
(kill -9), it may potentially require that every server get restarted and a recovery be
done.

Examples
To list all mailboxes for all users:

mboxutil -l

To list all mailboxes and also include path and ACL information:

mboxutil -l -x

40-1

To create the default mailbox named INBOX for the user daphne:

mboxutil -c user/daphne/INBOX

To delete a mail folder named projx for the user delilah:

mboxutil -d user/delilah/projx

To delete the default mailbox named INBOX and all mail folders for the user druscilla:

mboxutil -d user/druscilla/INBOX

To rename the mail folder memos to memos-april for the user desdemona:

mboxutil -r user/desdemona/memos user/desdemona/memos-april

To move the mail account for the user dimitria to a new partition:

mboxutil -r user/dimitria/INBOX user/dimitria/INBOX partition

where partition specifies the name of the new partition.

To move the mail folder named personal for the user dimitria to a new partition:

mboxutil -r user/dimitria/personal user/dimitria/personal partition

To Move Mailboxes to a Different Disk Partition
By default, mailboxes are created in the primary partition. If the partition gets full, additional
messages cannot be stored. There are several ways to address the problem:

• Reduce the size of user mailboxes

• If you are using volume management software, add additional disks

• Create additional partitions ("To Add a Message Store Partition") and move mailboxes to
the new partitions

If possible, add additional disk space to a system using volume management software
because this procedure is the most transparent for the user. However, you might also move
mailboxes to a different partition.

To move mailboxes to a different partition using the mboxutil command:

1. Create an input file of the mailboxes to be moved.

The input file must consist of pairs of duplicate lines, because the other use of mboxutil -r
is to rename folders. Thus, the first line of each pair is the old folder name and the second
line is the new folder name. In the case of moving a user from one partition to another, the
folder names are the same. Here is an example input file, mvusers, for three users:

user/z4user21@east.example.com/inbox
user/z4user21@east.example.com/inbox
user/z4user22@east.example.com/inbox
user/z4user22@east.example.com/inbox
user/z4user23@east.example.com/inbox
user/z4user23@east.example.com/inbox

2. Move the users to a new partition called pool4:

mboxutil -r -f /tmp/mvtest pool4
rename user/z4user21@east.sun.com/inbox to user/z4user21@east.sun.com/inbox
rename user/z4user22@east.sun.com/inbox to user/z4user22@east.sun.com/inbox
rename user/z4user23@east.sun.com/inbox to user/z4user23@east.sun.com/inbox

Chapter 40
To Move Mailboxes to a Different Disk Partition

40-2

Note:

If an error occurs with any individual mailbox move, the mboxutil command
continues processing the rest of the input file. Thus, you must review the output
(and possibly the default log file) to determine if any mailbox moves failed. Be
sure to save that output.

To Remove Orphan Accounts
To search for orphaned accounts (orphaned accounts are mailboxes that do not have
corresponding entries in LDAP) use the following "mboxutil" commands:

mboxutil -o

Command output follows:

mboxutil: Start checking for orphaned mailboxes
user/annie/INBOX
user/oliver/INBOX
mboxutil: Found 2 orphaned mailbox(es)
mboxutil: Done checking for orphaned mailboxes

Use the following command to create a file listing orphaned mailboxes that can be turned into a
script file that deletes the orphaned mailboxes (example filename is orphans.cmd):

mboxutil -o -w orphans.cmd

The command output is as follows:

mboxutil: Start checking for orphaned mailboxes
mboxutil: Found 2 orphaned mailbox(es)
mboxutil: Done checking for orphaned mailboxes

Delete the orphan files with the following command:

mboxutil -d -f orphans.cmd

To Find a Mailbox's Directory Using hashdir
The mailboxes in the message store are stored in a hash structure for fast searching.
Consequently, to find the directory that contains a particular user's mailbox, use the "hashdir"
utility.

This utility identifies the directory that contains the message store for a particular account. This
utility reports the relative path to the message store, such as d1/a7/. The path is relative to the
directory level just before the one based on the user ID. The utility sends the path information
to the standard output.

For example, to find the relative path to the mailbox for user crowe:

hashdir crowe

Chapter 40
To Remove Orphan Accounts

40-3

To Find Out How Many Users Have Read Messages in a Shared
Folder

The "readership" utility reports on how many users other than the mailbox owner have read
messages in a shared IMAP folder (see "Shared Folders Overview").

An owner of a IMAP folder may grant permission for others to read mail in the folder. A folder
that others are allowed to access is called a shared folder. Administrators can use the
readership utility to see how many users other than the owner are accessing a shared folder.

This utility scans all mailboxes and produces one line of output per shared folder, reporting the
number of readers followed by a space and the name of the mailbox.

Each reader is a distinct authentication identity that has selected the shared folder within the
past specified number of days. Users are not counted as reading their own personal
mailboxes. Personal mailboxes are not reported unless there is at least one reader other than
the folder's owner.

For example, the following command counts as a reader any identity that has selected the
shared IMAP folder within the last 15 days:

readership -d 15

Chapter 40
To Find Out How Many Users Have Read Messages in a Shared Folder

40-4

41
Backing Up and Restoring the Message Store

This chapter describes how to back up and restore Oracle Communications Messaging Server
mailboxes. For conceptual information on the message store, see the following topics:

• Administering Message Store Database Snapshots (Backups)

• Message Store Disaster Backup and Recovery and Classic Message Store Directory
Layout

Mailbox Backup and Restore Overview
Mailbox backup and restore is one of the most common and important administrative tasks.
You must implement a backup and restore policy for your message store to ensure that data is
not lost if the following problems occur:

• System crashes

• Hardware failure

• Accidental deletion of messages or mailboxes

• Problems when reinstalling or upgrading a system

• Natural disasters (for example, earthquakes, fire, hurricanes)

• Migrating users

You can back up and restore mailboxes by using the "imsbackup" and "imsrestore" command-
line utilities or the integrated backup and restore solution that uses Oracle StorageTek
Enterprise Backup Software (EBS).

Messaging Server provides a single-copy backup procedure. Regardless of how many user
folders contain a particular message, during backup, the message file is backed up only once
using the first message file found. The second message copy is backed up as a link to the
name of the first message file, and so on. imsbackup maintains a hash table of all messages
using the device and inode of the message files as the index. This method does have
implications when restoring data, however. See "Considerations for Partial Restore" for more
information.

Note:

You can also back up and restore the message store by backing up all relevant
message files and directories. See "Message Store Disaster Backup and Recovery"
for more information.

Backing up mailboxes includes three steps:

1. To Create a Mailbox Backup Policy

2. To Create Backup Groups

3. To Run the imsbackup Utility

41-1

To Create a Mailbox Backup Policy
Your backup policy will depend on several factors, such as:

• Peak Business Loads

• Full and Incremental Backups

• Parallel or Serial Backups

Peak Business Loads
Take into account peak business loads when scheduling backups for your system as this can
reduce system load during peak hours. For example, backups are probably best scheduled for
early morning hours such as 2:00 AM.

Full and Incremental Backups
Incremental backups (see "Incremental Backup") scan the message store for changed data
and back up only what has changed. Full backups back up the entire message store.
Determine how often the system should perform full as opposed to incremental backups. For
example, you probably want to perform incremental backups as a daily maintenance procedure
and full backups once a week.

Parallel or Serial Backups
When user data is stored on multiple disks, you can back up user groups in parallel.
Depending on system resources, parallel backups can speed up the overall backup procedure.
However, you might want to use serial backups to reduce backup impact on the server's
performance. Whether to use parallel or serial backups can depend on many factors, including
system load, hardware configuration, how many tape drives are available, and so on.

To Create Backup Groups
A backup group is an arbitrary set of user mailboxes defined by regular expressions. By
organizing user mailboxes into backup groups, you can define more flexible backup
management.

For example, you could create three backup groups, the first containing user IDs starting with
the letters A through L, the second with users whose user IDs begin with M through Z, and the
third with users whose user IDs begin with a number. Administrators could use these backup
groups to back up mailboxes in parallel, or perhaps only certain groups on one day and other
groups on another.

Consider the following points about backup groups:

1. They are arbitrary virtual groups of mail users that do not precisely map to the "Classic
Message Store Directory Layout", although backup groups could resemble the message
store directory.

2. Administrators define backup groups by using UNIX regular expressions. The regular
expressions are defined in the MessagingServer_home/config/backup-groups.conf file.

3. When backup groups are referenced in imsbackup and imsrestore, they use the path
format: /partition_name/backup_group

Chapter 41
To Create a Mailbox Backup Policy

41-2

4. When you run the imsbackup command, it evaluates the entire backup-groups.conf, and
if it finds more than one group that matches a user, it uses the first match. For example,
the following backup-groups.conf contains these definitions:

groupA=a.*
...
groupN=.*n$

Because both groups match the user ID admin, the imsbackup command uses the first
match, which is groupA. Thus, groupA includes the admin mailbox. Furthermore, the groupN
backup does not include the admin mailbox.

The format of backup-groups.conf is as follows:

group_name=definition
group_name=definition
.
.
.

Using the example described in the previous paragraph, you would use the following
definitions to create the three backup groups:

groupA=[a-l].*
groupB=[m,-z].*
groupC=[0-9].*

Note:

In legacy configuration, you use the backup-groups.conf file to create backup
groups. In Unified Configuration, you use the msconfig command to create backup
groups.

In Unified Configuration, you can create the backup group using the msconfig command.

You can run the msconfig command in interactive mode as follows:

% msconfig
msconfig> set backup_group:groupA.re_pattern "[a-jA-J].*"
msconfig# show backup_group
role.backup_group:groupA.re_pattern = [a-jA-J].*

You can run the msconfig command in non-interactive mode as follows:

% msconfig set backup_group:groupA.re_pattern \"[a-jA-J].*\"
% msconfig show backup_group
role.backup_group:groupA.re_pattern = [a-jA-J].*

You can now scope imsbackup and imsrestore at several levels. You can backup the whole
message store by using the following backup commands:

imsbackup -f <device> /

To back up all mailboxes for all users in groupA use the following command:

imsbackup -f <device> /<partition>/groupA

The default partition is called primary.

Chapter 41
To Create Backup Groups

41-3

Pre-defined Backup Group
Oracle Communications Messaging Server includes one predefined backup group that is
available without creating the backup-groups configuration file. This group is called user and
includes all users. For example, the following command backs up all users on the primary
partition:

imsbackup -f backupfile /primary/user

To Run the imsbackup Utility
To back up and restore your mailboxes, Messaging Server provides the "imsbackup" and
"imsrestore" utilities. The imsbackup and imsrestore utilities do not have the advanced
features found in general purpose tools like EBS. For example, the utilities have only very
limited support for tape auto-changers, and they cannot write a single store to multiple
concurrent devices. Comprehensive backup is achieved by using plug-ins to generalized tools
like EBS. See "To Use StorageTek Enterprise Backup Software" for more information about
using EBS.

Running the imsbackup Utility
With imsbackup, you can write selected contents of the message store to any serial device,
including magnetic tape, a UNIX pipe, or a plain file. The backup or selected parts of the
backup can later be recovered by using the imsrestore utility. The output of imsbackup can
be piped to imsrestore.

The following example backs up the entire message store to /dev/rmt/0:

imsbackup -f /dev/rmt/0 /

This example backs up the mailboxes of user ID joe to /dev/rmt/0:

imsbackup -f /dev/rmt/0 /primary/user/joe

This example backs up all the mailboxes of all the users defined in the backup group groupA
to backupfile (see "To Create Backup Groups"):

imsbackup -f /primary/groupA > backupfile

Incremental Backup
The following example backs up messages stored from May 1, 2004 at 1:10 pm to the present.
The default is to back up all the messages regardless of their dates:

imsbackup -f /dev/rmt/0 -d 20040501:131000 /

This command uses the default blocking factor of 20. See "imsbackup" for a complete syntax
description.

Regarding date-time stamp:

20040501:131000
YYYYMMDD:HHMMSS

2004 05 01 : 13 10 00
YYYY MM DD : HH MM SS

Chapter 41
To Run the imsbackup Utility

41-4

Excluding Bulk Mail When You Perform Backups
When you perform a backup operation, you can specify mailboxes that will be excluded from
being backed up. By excluding bulk or trash mailboxes that can accrue large numbers of
unimportant messages, you can streamline the backup session, reduce the time to complete
the operation, and minimize the disk space required to store the backup data.

To exclude mailboxes, specify a value for the store.backupexclude option.

You can specify a single mailbox or a list of mailboxes separated by the "%' character. ("%' is
an illegal character in a mailbox name.) For example, you could specify the following values:

Trash

Trash%Bulk Mail%Third Class Mail

In the first example, the folder Trash is excluded. In the second example, the folders Trash,
Bulk Mail, and Third Class Mail are excluded.

Example commands:

cd /opt/sun/comms/messaging64/bin
msconfig set store.backupexclude "Trash%Bulk Mail%Third Class Mail"
msconfig show store.backupexclude
role.store.backupexclude = Trash%Bulk Mail%Third Class Mail

The backup utility backs up all folders in a user mailbox except those folders specified in the
store.backupexclude option.

This feature works with the Messaging Server backup utility, StorageTek Enterprise Backup
Software, and third-party backup software.

You can override the store.backupexclude setting and back up an excluded mailbox by
specifying its full logical name during the operation. For example, suppose the Trash folder has
been excluded. You can still back up Trash by specifying the following:

/primary/user/user1/trash

However, if you specify

/primary/user/user1

the Trash folder is excluded.

To Restore Mailboxes and Messages
To restore messages from the backup device, use the "imsrestore" command. For example,
the following command restores messages for user1 from the file backupfile.

imsrestore -f backupfile /primary/user1

Considerations for Partial Restore
A partial restore is when only a part of the message store is restored. A full restore is when the
entire message store is restored. The message store uses a single-copy message system.
That is, only a single copy of any message is saved in the store as a single file. Any other
instances of that message (for example, when a message is sent to multiple mailboxes) are

Chapter 41
To Restore Mailboxes and Messages

41-5

stored as links to that copy. Because of this, there are implications when restoring messages.
For example:

• Full Restore. During a full restore, linked messages still point to the same inode as the
message file to which they are linked.

• Partial Backup/Restore. During a partial backup and partial restore, however, the single-
copy characteristic of the message store might not be preserved.

The following examples demonstrate what happens to a message that is used by multiple
users when a partial restore is performed. Assume there are three messages, all the same,
belonging to three users A, B, and C, as follows:

A/INBOX/1
B/INBOX/1
C/INBOX/1

Example 1. In the first example, the system performs a partial backup and full restore
procedure as follows:

1. Back up mailboxes for users B and C.

2. Delete mailboxes of users B and C.

3. Restore the backup data from step 1.

In this example, B/INBOX/1 and C/INBOX/1 are assigned a new inode number and the
message data is written to a new place on the disk. Only one message is restored. The second
message is a hard link to the first message.

Example 2. In this example, the system performs a full backup and a partial restore as follows:

1. Perform full backup.

2. Delete mailboxes for user A.

3. Restore mailboxes for user A.

A/INBOX/1 is assigned a new inode number.

Example 3. In this example, partial restore might require more than one attempt:

1. Perform full backup.

B/INBOX/1 and C/INBOX/1 are backed up as links to A/INBOX/1.

2. Delete mailboxes for users A and B.

3. Restore mailboxes for user B.

The restore utilities ask the administrator to restore A/INBOX first.

4. Restore mailboxes for users A and B.

5. Delete mailboxes for user A (optional).

Chapter 41
To Restore Mailboxes and Messages

41-6

Note:

If you want to ensure that all messages are restored for a partial restore, you can run
the imsbackup command with the -i option. The -i option backs up every message
multiple times if necessary.

If the backup device is seekable (for example, a drive or tape), imsrestore seeks to
the position containing A/INBOX/1 and restores it as B/INBOX/1. If the backup
device is non-seekable (for example, a UNIX pipe), imsrestore logs the object ID
and the ID of the depending (linked) object to a file, and the administrator must
invoke imsrestore again with the -r option to restore the missing message
references.

To Restore Messages from a Mailbox that Has Been Incrementally Backed-
up

If you are restoring messages from a mailbox that has been incrementally backed-up, and if
that mailbox exists on the server on which you want to restore the messages, then restoring
the messages requires a straightforward imesrestore. However, if you want to restore
messages from a mailbox that has been incrementally backed-up, and if that mailbox no longer
exists, you must follow different restore procedures.

Use one of the following procedures to restore messages to a mailbox that does not exist on
the message store server:

• During the restore operation, disable delivery of messages to the user. Do this by setting
the LDAP attribute mailDeliveryOption to hold.

• Before you use imesrestore, create the mailbox with the mboxutil -c command.

The reason why these instructions must be followed for restoring an incremental backup is as
follows: When a mailbox has been deleted or is being migrated, the imsrestore utility
recreates the mailbox with the mailbox unique identification validity and message unique
identifications (UIDs) stored in the backup archive.

In the past, when imsrestore would recreate a deleted or migrated mailbox, it would assign a
new UID validity to the mailbox and new UIDs to the messages. In that situation, a client with
cached messages would have to resynchronize the mailbox UID validity and message UIDs.
The client would have to download the new data again, increasing the workload on the server.

With the new imsrestore behavior, the client cache remains synchronized, and the restore
process operates transparently with no negative impact on performance.

If a mailbox exists, imsrestore assigns new UIDs to the restored messages so that the new
UIDs remain consistent with the UIDs already assigned to existing messages. To ensure UID
consistency, imsrestore locks the mailbox during the restore operation. However, because
imsrestore now uses the mailbox UID validity and message UIDs from the backup archive
instead of assigning new UID values, UIDs could become inconsistent if you perform
incremental backups and restores.

If you perform incremental backups with the -d date option of the imsbackup utility, you might
have to invoke imsrestore multiple times to complete the restore operation. If incremental
backups were performed, you must restore the latest full backup and all subsequent
incremental backups.

Chapter 41
To Restore Mailboxes and Messages

41-7

New messages can be delivered to the mailbox between the restore operations, but in this
case, the message UIDs can become inconsistent. To prevent inconsistency in the UIDs, you
need to take one of the actions previously described on this page.

To Use StorageTek Enterprise Backup Software
Messaging Server includes a backup API that provides an interface with third-party backup
tools, such as EBS. The physical message store structure and data format are encapsulated
within the backup API. The backup API interacts directly with the message store. It presents a
logical view of the message store to the backup service. The backup service uses the
conceptual representation of the message store to store and retrieve the backup objects.

Messaging Server provides an Application Specific Module (ASM) that can be invoked by the
EBS's save and recover commands to back up and restore the message store data. The ASM
then invokes the Messaging Server imsbackup and imsrestore utilities.

Note:

This section provides information about how to use EBS with the Messaging Server
message store. To understand the EBS interface, see your StorageTek Enterprise
Backup Software documentation.

To Back Up Data By Using StorageTek Enterprise Backup Software
1. Create a symbolic link from /usr/lib/nsr/imsasm to MessagingServer_home/lib/msg/

imsasm.

2. From Oracle or EMC, obtain a copy of the nsrfile binary and copy it to the following
directory:/usr/bin/nsr

This is required only if you are using an older version of Networker (5.x). With Networker
6.0 and above, nsrfile is automatically installed under /usr/bin/nsr.

3. If you want to back up users by groups, perform the following steps:

a. Create a backup group file. See "To Create Backup Groups" for more information.

b. To verify your configuration, run mkbackupdir.sh. Look at the directory structure
created by mkbackupdir.sh. The structure should look similar to that shown in
"Classic Message Store Directory Layout". If you do not specify a backup-
groups.conf file, the backup process uses the default backup group ALL for all users.

4. In the directory /nsr/res/, create a res file for your save group to invoke the
mkbackupdir.sh script before the backup. See "Classic Message Store Directory Layout"
for an example.

Chapter 41
To Use StorageTek Enterprise Backup Software

41-8

Note:

Earlier versions of Networker have a limitation of 64 characters for the save set
name. If the name of this directory plus the logical name of the mailbox (for
example, /primary/groupA/fred) is greater than 64 characters, then you must
run mkbackupdir.sh -p. Therefore, you should use a short path name for the -p
option of mkbackupdir.sh. For example the following command will create the
backup image under the directory /backup:

mkbackupdir.sh -p /backup

Important: The backup directory must be writable by the message store owner
(example: mailsrv).

The following is a sample backup groups directory structure.

/backup/primary/groupA/amy
/bob
/carly
/groupB/mary
/nancy
/zelda
/groupC/123go
/1bill
/354hut

The following example shows a sample res file named IMS.res in the /nsr/res directory:

type: savepnpc;
precmd: "echo mkbackupdir started",
"/usr/example/server5/msg-example/bin/mkbackupdir.sh -p /backup";
pstcmd: "echo imsbackup Completed";
timeout: "12:00 pm";

You are now ready to run the EBS interface as follows:

5. Create the Messaging Server save group if necessary.

a. Run nwadmin.

b. Select Customize | Group | Create.

6. Create a backup client using savepnpc as the backup command:

a. Set the save set to the directory created by mkbackupdir. For a single session
backup, use /backup.

For parallel backups, use /backup/server/group. Be sure you have already created
group as defined in "To Create Backup Groups". You must also set the parallelism to
the number of backup sessions. See "To Back Up Data By Using StorageTek
Enterprise Backup Software" for more information.

7. Select Group Control | Start to test your backup configuration. Example. Creating A
Backup Client in EBS: To create a backup client in EBS. From nwadmin, select Client |
Client Setup | Create

Name: example
Group: IMS
Savesets:/backup/primary/groupA
/backup/secondary/groupB
/backup/tertiary/groupC

Chapter 41
To Use StorageTek Enterprise Backup Software

41-9

.

.
Backup Command:savepnpc
Parallelism: 4

Restoring Data Using StorageTek Enterprise Backup Software
To recover data, you can use the EBS nwrecover interface or the recover command-line
utility. The following example recovers user a1's INBOX:

recover -a -f -s example /backup/example/groupA/a1/INBOX

The next example recovers the entire message store:

recover -a -f -s example /backup/example

To Use a Third Party Backup Software (Besides StorageTek
Enterprise Backup Software)

Messaging Server provides two message store backup solutions, the command line
imsbackup and the StorageTek Enterprise Backup Software. A large message store running a
single imbackup to back up the entire message store can take a significant amount of time.
The EBS solution supports concurrent backup sessions on multiple backup devices.
Concurrent backup can shorten backup time dramatically (backups of 25GB of data per hour
have been achieved).

If you are using another third party concurrent backup software (for example, Netbackup), you
can use the following method to integrate your backup software with the Messaging Server.

1. Divide your users into groups (see "To Create Backup Groups") and create a backup-
groups.conf file under the directory MessagingServer_home/config/.

Note:

This backup solution requires additional disk space. To backup all the groups
concurrently, the disk space requirement is two times the message store size. If
you do not have that much disk space, divide your users into smaller groups, and
then backup a set of groups at a time. For example group1 - group5, group6 -
group10. Remove the group data files after backup.

2. Run imsbackup to back up each group into files under a staging area. The command is
imsbackup -f <device>/<instance>/<group> You can run multiple imsbackup processes
simultaneously. For example:

imsbackup -f- /primary/groupA > /bkdata/groupA &
imsbackup -f- /primary/groupB > /bkdata/groupB &
. . .

3. Use your third party backup software to back up the group data files in the staging area (in
our example that is /bkdata).

4. To restore a user, identify the group filename of the user, restore that file from tape, and
then use imsrestore to restore the user from the data file.

Chapter 41
To Use a Third Party Backup Software (Besides StorageTek Enterprise Backup Software)

41-10

Troubleshooting Backup and Restore Problems
This section describes common backup and restore problems and their solutions.

• Problem: msprobe restarts everything during a long imsrestore during message store
migration. This can also happen with imsbackup, imsimport, or any processing intensive
utility.

• Solution: When imsrestore or any processing intensive operation takes significantly more
system resources than normal, and continues doing so longer than the msprobe interval,
there might be a temporary backlog of DB transaction log files to be cleared. If there are
more files than specified in store.maxlog, then msprobe may erroneously restart all the
processes during a restore. To prevent this from happening, disable msprobe during the
imsrestore.

• Problem: When I do an restore of a folder or INBOX using imsrestore or imsasm, it
appends all the messages in that folder onto the current folder. This results in multiple
copies of the messages in that folder.

• Solution: Make sure the -i flag of imsrestore is not set in the imsasm script.

• Problem: I want to do an incremental backup of just new messages added in a mail folder,
but when I try, the entire folder gets backed up. How do I just back up the new messages?

• Solution: Set the -ddatetime flag on imsbackup. This will backup messages stored from
the specified date and time to the present. The default is to back up all messages
regardless of their dates.

Message Store Disaster Backup and Recovery
A disaster refers to a catastrophic failure of the entire message store as opposed to a mailbox
or set of mailboxes. That is, a situation where all data on the message store servers are lost. A
complete message store disaster restore will consist of restoring the following lost data:

• All message store data. These can be backed up using the procedures described above. If
file system backup method is used, be sure to back up the following data:

– All message store partitions

– The message store database files at DataRoot/store/mboxlist.

– The message store database snapshots at DataRoot/store/dbdata/snapshots (Note
that the location of message store database snapshot files can be configured with the
store.snapshotpath option.)

• Configuration data. Including the local configuration file at DataRoot/config. See also
"Classic Message Store Directory Layout".

If you want to back up your message store for disaster recovery, you can use file system
snapshot tools to take a snapshot of the file system. The snapshot must be a point-in-time file
system snapshot.

It is best to capture all the data (message store partitions, database files and so on) at the
same point-in-time, however, if this cannot be done, then you must backup the data in this
order:

1. Database snapshots

2. Database files

Chapter 41
Troubleshooting Backup and Restore Problems

41-11

3. Message Store indexes if separated from the messages using the partition:partition-
name.messagepath option (store.partition.*.messagepath in legacy configuration). For
additional information, see the discussion about the messagepath option in Messaging
Server Reference.

4. Messages

5. Configuration data

If database files and Message Store indexes are not backed up with the same point-in-time
snapshot (or database files, Message Store indexes, and Messages, if indexes are not
separate) then reconstruct -m is required after restore.

Chapter 41
Message Store Disaster Backup and Recovery

41-12

42
Administering Very Large Mailboxes

This chapter describes how Oracle Communications Messaging Server enables the use of
"very large" mailboxes.

Very Large Mailboxes Overview
To increase the mailbox size limit and improve expunge performance, the index records and
cache records have been split into separate files with support added for multiple cache files.
An index file contains a mailbox header and a 128-byte fixed-length record for every message
in the mailbox. The index record contains the location and size of the corresponding cache
record. The cache files contain frequently used data in variable length records. The cache file
size is configurable (store.maxcachefilesize). The default cache size is 500 Mbs, with a
maximum size 2 Gbs. New cache records are appended to the newest cache file. As a cache
file fills up, a new cache file is created, enabling a mailbox to continue to grow.

To optimize expunge performance, only the index file store.idx is purged when a mailbox is
expunged. Expunge removes the obsoleted index records from the index file. Cache record
and message file removal is deferred until the size of the expunged data exceeds a
configurable threshold (store.purge.count or store.purge.percentage for cache records;
store.cleanupsize for the number of messages). When the expunged size exceeds the
threshold, expunge enqueues a purge request to the "Message Store Maintenance Queue".
Then impurge dequeues the request, removes the unused message files and purge the cache
files when the expunged size exceeds the purge threshold.

The Structure of a Mailbox
The following figure is an example of a large mailbox:

Figure 42-1 Large Mailbox Example

42-1

Mailbox Size Limit
IMAP defines the UID as a 32-bit value. Therefore, the maximum number of messages in a
mailbox is limited to 4,294,967,295. For a 64 bit messaging server, the maximum number of
messages in a folder is 4,294,967,295. For a 32-bit messaging server, the maximum number of
messages in a folder is 16,777,215. The msconfig option store.maxmessages can be used
to limit the size of a folder. The default limit is 16,000,000.

Note, the 4 billion limit is a hard limit. Effective limit is much smaller (normally less than 1
million). Mailbox expunge has to rewrite the store.idx file. The larger the mailbox, the longer it
takes to expunge.

Mailbox Migration
Mailboxes are migrated to the new format automatically when they are opened. The operation
is transparent to the end users.

Pre-Deployment Preparations
The high-level steps for preparing to use very large mailboxes include:

1. Configuring the maximum cache file size

2. Configuring the mailbox expunge size

3. Configuring store.maxmessages, quotas or expire rules to prevent mailboxes from getting
too big

Table 42-1 describes the new msconfig options for managing large mailboxes.

Table 42-1 msconfig Options for Managing Large Mailboxes

msconfig Option Description

store.maxcachefilesize Sets the maximum cache file size in bytes, maximum of 2 Gbs.

store.cleanupsize Cleans the mailbox when the number of expunged messages exceeds
this value. Default is 100.

Checking Mailbox Data
The imcheck command line utility can be used to dump the data of mailboxes in readable
format. For example, imcheck -m mailbox dumps the content of a store.idx file:

imcheck -m user/dumbo/INBOX
--
Name: user/dumbo
Version: 103
Exists: 4
Flags: 0
Largest Msg: 1521 bytes
Last Append: 20080131104858
Last Repair: -
Last UID: 4
Oldest Msg: 20080131104843
Oldest Uid: 1

Chapter 42
Mailbox Size Limit

42-2

Quota Used: 2394
Bytes Expunged: 0
UID Validity: 1201805323
Last CacheId: 1
Start Offset: 256
Append CacheId: 1
ACL: dumbo lrswipcdan
Subscribed: 0
Partition: primary
Path: /var/opt/SUNWmsgsr/store/partition/primary/=user/94/60/=dumbo
Msg Path: /var/opt/SUNWmsgsr/store/partition/primary/=user/94/60/=dumbo

MsgNo Uid Internal-Date Sent-Date Size HSize Cache-Id C-Offset C-Len Last-Updated Save-
Date MT SFlags UFlags Original-Uid Message-id

--
1 1 20080131104843 20080131104843 257 244 1 16 864 20080131104843 20080131104843 2 R
0.0.0 1201805323-1 -
2 2 20080131104851 20020301191039 338 229 1 880 816 20080131104851 20080131104851 2 R
0.0.0 1201805323-2 <001@red.iplanet.com>
3 3 20080131104855 20020301191039 1521 241 1 1696 840 20080131104855 20080131104855 2 R
0.0.0 1201805323-3 <002@red.iplanet.com>
4 4 20080131104858 20050919110532 278 252 1 2536 860 20080131104858 20080131104858 1 R
0.0.0 1201805323-4 <003@red.iplanet.com>

imcheck -m mailbox -c msgno displays the cache records of a message:

imcheck -m user/dumbo/INBOX -c 1
Cache items of user/dumbo message number 1:

ENVELOPE {300}
("Thu, 31 Jan 2008 10:48:43 -0800" "welcome" (("Mail Administrator" NIL "Postmaster"
"puzzle.red.iplanet.com")) (("Mail Administrator" NIL "Postmaster"
"puzzle.red.iplanet.com")) (("Mail Administrator" NIL "Postmaster"
"puzzle.red.iplanet.com")) ((NIL NIL "dumbo" "red.iplanet.com")) NIL NIL NIL NIL)

BODYSTRUCTURE {75}
("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 13 1 NIL NIL NIL NIL)

BODY {59}
("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 13 1)

SECTION {48}
Header offset: 0 len: 244
Body offset: 244 len: 13
1 subparts
(1) offset: 244 len: 13 charset: 0 encoding: 0

CACHEHEADERS {244}
Subject: welcome
To: dumbo@red.iplanet.com
Date: Thu, 31 Jan 2008 10:48:43 -0800
From: Mail Administrator <Postmaster@puzzle.red.iplanet.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

FROM {53}
mailadministrator <postmaster@puzzle.red.iplanet.com>

Chapter 42
Checking Mailbox Data

42-3

TO {23}
<dumbo@red.iplanet.com>

CC {0}

BCC {0}

SUBJECT {9}
"welcome"

XSENDER {0}

Chapter 42
Checking Mailbox Data

42-4

43
Message Store Message Expiration

This chapter describes message expiration concepts. See "Configuring Message Expiration
(Tasks)" for information on message removal tasks.

Message expiration automatically removes messages from the message store based on
criteria that you set. For example, you can remove old messages, overly large messages, seen
or deleted messages, messages with specific Subject: lines, messages of a certain type, and
so on.

Note:

Oracle Communications Messaging Server removes messages without giving a
warning, so it is important to inform users about message expiration policies.
Unexpected message removal can be a source of consternation for users and
administrators.

imexpire Overview
Message expiration is performed by the imexpire utility, which performs a specific action to the
expired messages. (See "Deleting, Expunging, Purging, and Cleaning Up Messages" for
details on the message removal process.) You can launch the imexpire utility from the
command-line or schedule it to launch through the imsched daemon. You specify a set of
expiration rules in the store.expirerule file. You can have multiple rules files, each located the
directory that pertains to the scope of the rules. That is, rules that apply globally to the entire
message store are put in one directory, rules that apply to a partition in another, rules that
apply to users in yet another, and so on.

Note:

Although global expiration rules can be specified with store.expire.attribute
configutil options, use store.expirerule files to specify these rules. If too many rules
are created by using configutil, performance problems can result.

imexpire loads all of the expire rules at start up. By default, imexpire creates one thread per
partition. Each thread goes through the list of user folders under its assigned partition and
loads the local expire rule files as it goes. The expire function checks each folder against the
expire rules applicable to this folder and expunges messages as needed.

It is also possible to exclude specified users from the expire rules by adding their user ID, one
per line, in a file called expire_exclude_list in the MessagingServer_home/config/ directory.

43-1

To Deploy the Message Expiration Feature
Message expiration requires the following three steps:

1. Define message expiration policy: Which messages will be expired? What users, folders,
domains, and partitions will have messages expired? What size, message age, and
headers will define the removal criteria? Define the scope of messages to be removed.
See "To Define Message Expiration Policy" for more information.

2. Specify the imexpire rules to implement this policy. See "To Set Rules Implementing
Message Expiration Policy" for more information.

3. Specify the imexpire scheduling. See "To Schedule Message Expiration and Logging
Level" for more information.

To Define Message Expiration Policy
You can define message expiration based on criteria such as:

• Age of Message – Expire messages older than X days. Attribute: messagedays.

• Message Count – Expire messages in a folder exceeding X messages. Attribute:
messagecount.

• Age of Oversized Message – Expire messages that exceed X bytes after Y days grace
period. Attributes: messagesize and messagesizedays.

• Seen and Deleted Message Flag – Expire messages with the Seen or Deleted flag set.
These criteria can be set to "and" or "or." If set to or, the message's Seen/Delete flag will
cause expiration regardless of other criteria. If set to and, the message's Seen/Delete flag
must be set along with passing all other specified criteria. Attributes: seen and deleted.

• Header Field of Message – Allows you to specify a header and string as criteria for
expiring a message, for example, removing all messages with the header "Subject: Work
from Home." Note that this feature also allows you to use message type as a criteria too.
See "Expiring Messages by Message Type" for more information.

• Folder of Messages – Allows you to specify the folder on which to expire messages.
Attribute: folderpattern. Note that this attribute only uses the modified UTF-7 character
set.

Note:

imexpire does not allow you to delete or preserve messages based on how long it
has been since that message was read. For example, you cannot specify that
messages that have not been read for 200 days will be removed.

Examples of Message Expiration Policy
Example 1: Remove all messages 365 days old in a folder exceeding 1,000 messages.

Example 2: Remove messages in domain example.org that are older than 180 days.

Example 3: Remove all messages that have been marked as deleted.

Chapter 43
To Deploy the Message Expiration Feature

43-2

Example 4: Remove messages in example.com that have been marked as seen, are older
than 30 days, are larger than 100 kilobytes, from folders exceeding 1,000 messages, with the
header X-spam.

To Set Rules Implementing Message Expiration Policy
Rules are set by putting them into a store.expirerule file. An example of two global
store.expirerule rules is shown below:

Rule1.regexp: 1
Rule1.folderpattern: user/.*/trash
Rule1.messagedays: 2
Rule2.regexp: 1
Rule2.folderpattern: user/.*
Rule2.messagedays: 14

In this example, Rule 1 specifies that all messages in all users' trash folders are removed after
two days. Rule 2 specifies that all messages in any folder in the message store are removed
after 14 days.

Expiration Rules Guidelines
This section sets the guidelines for the store.expirerule file rules.

Note:

In earlier Messaging Server releases, expiration rules could be set with configutil
options store.expirerule.attribute (see Messaging Server Reference.) This is still
true, but expire rules using header constraints (example: expiring a message with a
specific subject line) are not supported. Also, regular expressions in the expire rules
created with configutil need to be POSIX compliant rules. If you want to use UNIX
compliant regular expressions you must use the store.expire file. In addition, using
both configutil options and the global store.expirerule configuration file is not
supported. If the configuration file is present, configutil options are not used. In any
case, it is best to use store.expirerule to specify all expiration rules.

• Rules are specified in a file called store.expirerule.

• Multiple expiration criteria can be specified with the same rule. (See preceding example.)

• Rules can apply to the entire message store (global rules), a partition, a user, or a folder.

– The global rules are stored in the MessagingServer_home/config/store.expirerule
file.

Note:

Each global rule will be checked against every mailbox, which can cause
some processing overhead depending on the number of global rules you
specify. For this reason, you should not specify partition, mailbox or user
rules in the global rules file. In general, you should try not to put any more
expiration rules than necessary in this file.

Chapter 43
To Deploy the Message Expiration Feature

43-3

– Partition rules are stored in store_root/partition/partition_name/store.expirerule
(more accurately, the location specified by the store.partition.*.path configutil
option).

– User rules are specified in store_root/partition/partition_name/userid/store.expirerule
or by specifying the folderpattern rule to be user/userid/.*.

– Folder rules are specified in store_root/partition/partition_name/userid/folder/
store.expirerule or by specifying the folderpattern rule to be user/userid/folder.

Multiple non-global rules (user, folder, partition) using rule_name was only
implemented starting in Messaging Server 6.2p4.

• Multiple expire rules can be applied to a mailbox at the same time. An expire policy for a
mailbox consists of global rules and local rules. Local rules apply to the mailbox under the
same directory and all of its sub-folders.

• imexpire unifies all of the expiration rules applying to a mailbox, unless there is an
exclusive rule specified for this mailbox (see Table 43-1). The resulting rule set represents
the most restrictive expiration policy based on all applicable rules. For example, if rule X
expires messages such that the maximum message life is 10 days, and rule Y specifies 5
days, the union will be 5 days.

Note:

When join: and attribute is specified in a rule, all expiration criteria specified in a rule
must be satisfied for the message to expire (see Table 43-1). This option is valid if the
rules are configured as exclusive rule. Example:

rule.regexp: 1
rule.folderpattern: user/*
rule.messagedays: 60
rule.messageheader.X-MESSAGE-TYPE: email
rule.exclusive: 1
rule.join: and

In this example, the rule specifies to remove the messages that are older than 30
days AND contains message header X-MESSAGE-TYPE: Email.

Table 43-1 imexpire Attributes

Attribute Description (Attribute Value)

action Specifies an action to perform on the messages caught by the expire rules.
The possible values are:

• discard – discards the message. This is the default.
• report – prints the mailbox name, uid-validity and uid to stdout.
• archive – archives the message with the Compliance and Content

Management System and then discards the message.
• fileinto: folder – files the message into the specified folder. The shared

folder prefix can be used to file messages to folders owned by another
user. If the specified folder does not exist, imexpire creates it.

Chapter 43
To Deploy the Message Expiration Feature

43-4

Table 43-1 (Cont.) imexpire Attributes

Attribute Description (Attribute Value)

exclusive Specifies whether or not this is an exclusive rule. If specified as exclusive,
only this rule applies to the specified mailbox(es) and all other rules are
ignored. If more than one exclusive rule exists, the last exclusive rule loaded
will be used. For example, if a global and a local exclusive rule are specified,
the local rule will be used. If there is more than one global exclusive rule, the
last global rule listed by configutil is used. (1/0)

expires imexpire will select the message if the date value specified with these header
fields is older than the expiration date based on the messagedays attribute. If
multiple expiration header fields are specified, the earliest expiration date will
be used. (string)

expiry-date imexpire will select the message if the date value specified with these header
fields is older than the expiration date based on the messagedays attribute. If
multiple expiration header fields are specified, the earliest expiration date will
be used. (string)

foldpattern Specifies the folders affected by this rule. The format must start with a user/,
which represents the directory store_root/partition/*/. See Table 43-2.
(POSIX regular expression)

messagecount Maximum number of messages in a folder. Oldest messages are expunged
as additional messages are delivered. (integer)

foldersize Maximum size of folder before the oldest messages are expunged when
additional messages are delivered. (integer in bytes)

messagedays Number of days in the message store before being expunged. (integer)

messagesize Maximum size of message in bytes before it is marked to be expunged.
(integer)

messagesizedays Grace period. Days an over-sized message should remain in a folder.
(integer)

messageheader.header Specifies a header field and string. Values are not case-sensitive and regular
expressions are not recognized. Example:

Rule1.messageheader.Subject: Get Rich Now!

Headers other than Subject: can be used.

regexp Enable UNIX regular expressions in rules creation. (1 or 0). If not specified,
IMAP expressions will be used.

savedays Number of days the messages are saved in a folder until they are expunged.

seen seen is a message status flag set by the system when the user opens a
message. If the attribute seen is set to and, then the message must be seen
and other criteria must be met before the rule is fulfilled. If the attribute seen
is set to or, then the message only needs to be seen or another criteria be
met before the rule is fulfilled. (and/or)

sieve A Sieve test specifying message selection criteria. Example:

Rule17.sieve: header :contains "Subject" "Vigara"

deleted deleted is a message status flag set by the system when the user deletes a
message. If the attribute deleted is set to and, then the message must be
deleted and another criteria must be met before the rule is fulfilled. If the
attribute deleted is set to or, then the message only needs to be deleted or
another criteria be met before the rule is fulfilled. (and/or)

Chapter 43
To Deploy the Message Expiration Feature

43-5

Table 43-1 (Cont.) imexpire Attributes

Attribute Description (Attribute Value)

join join may only be specified in an exclusive rule. The default value is or.
Specifying join: and means all criteria must be met before the rule is fulfilled.
(and /or)

userflag.flag-name Valid values are and/or. Specify user IMAP flags in expiration rules. The
following example shows a rule expires those messages with the junk flag
set, and which are older than 30 days:

messagedays:30
userflag.junk: and

channel Specify the name of an MTA channel as which to run for purposes of spam/
virus filtering. In order for a channel attribute value to take effect, the
expiresieve Message Store option must be enabled. (string)

rescanhours When using imexpire to perform post-delivery spam/virus filtering, the
rescanhours tells imexpire to rescan those message that have not been
scanned for the specified number of hours. In order for any rescanhours
attribute value to take effect, the expiresieve Message Store option must be
enabled. (integer)

Localized Mailbox Names in imexpire
The IMAP protocol specifies that mailbox names use modified UTF-7 encoding. Messaging
Server supports localized character sets on external interfaces so that mailbox names can be
localized. Internally, however, the system converts the localized name to MUTF-7. Thus, a
folder that has a localized mailbox name on a client will have a corresponding mailbox file
name in MUTF-7. (Note that IMAP error messages will output mailbox names in MUTF-7 and
not the localized character set.)

In general, most message store utilities that require mailbox names expect the names in the
localized character set, although they may have an option flag that allows a different character
set to be used. These utilities include reconstruct, mboxutil, imsbackup, imsrestore, and
hashdir. However, imexpire requires that the mailbox name, specified as the attribute
folderpattern, be in MUTF-7. Using a localized name will not work.

To obtain the appropriate folderpattern for imexpire it may be necessary to convert a
localized mailbox name to the modified UTF-7 equivalent. This can be done using the
mboxutil -E command as follows:

mboxutil -l -p user/han/*

 msgs Kbytes last msg partition quotaroot mailbox

 57 100 2010/04/29 11:18 primary 5242880 user/han/INBOX
 1 1 2010/04/30 12:56 primary - user/han/<multibyte_mailbox>

mboxutil -l -E MUTF-7 -p user/han/*

 57 100 2010/04/29 11:18 primary 5242880 user/han/INBOX
 1 1 2010/04/30 12:56 primary - user/han/&kAFP4W4IMH8wojCkMMYw4A-

The first mboxutil shows the localized mailbox name. The second mboxutil shows the
mailbox name in MUTF-7. The MUTF-7 mailbox name is identical to the IMAP list command:

Chapter 43
Localized Mailbox Names in imexpire

43-6

x list "" *
* LIST (\NoInferiors) "/" INBOX
* LIST (\HasNoChildren) "/" &kAFP4W4IMH8wojCkMMYw4A-

To convert the local charset to modified UTF-7 encoding, use the mboxutil command with the
-E option:

mboxutil -l -E MUTF-7 -P user/han/<multibyte_mailbox>

 msgs Kbytes last msg partition quotaroot mailbox

 1 1 2010/04/30 12:56 primary - user/han/&kAFP4W4IMH8wojCkMMYw4A-

Note that mboxutil -E can be used for any command that requires the use of a MUTF-7
mailbox name including imexpire.

Setting imexpire Rules Textually
Message expiration rules are set by specifying expire criteria in a store.expirerule file. The
store.expirerule file contains one expire criteria per line. An expire criteria of the global rule
configuration file (DataRoot/store/store.expirerule) has the following format:

rule_name.attribute: value

"Example imexpire Rules" shows a set of global expiration rules in MessagingServer_home/
config/store.expirerule.

Rule 1 sets the global expiration policy (that is, policy that applies to all messages), as follows:

• Enable UNIX regular expressions in rules creation.

• Removes messages larger than 100,000 bytes after 3 days.

• Removes messages deleted by the user.

• Removes any message with the strings "Viagra Now!" or "XXX Porn!" in the Subject:
header.

• Limits all folders to 1,000 messages, the system removes the oldest messages on a folder
to keep the total to 1.000.

• Removes all messages older than 365 days.

Rule 2 sets the message expiration policy for users at the hosted domain example.org. It
limits mailbox sizes to 1 megabyte, removes messages that have been deleted, and removes
messages older than 14 days.

Rule 3 sets the message expiration policy for messages in the inbox folder of user
f.dostoevski. It removes messages with a subject line having the expression "On-line Casino."

Example imexpire Rules
Rule1.regexp: 1
Rule1.folderpattern: user/.*
Rule1.messagesize: 100000
Rule1.messagesizedays: 3
Rule1.deleted: or
Rule1.Subject: Vigara Now!
Rule1.Subject: XXX Porn!
Rule1.messagecount: 1000
Rule1.messagedays: 365
Rule2.regexp: 1

Chapter 43
Localized Mailbox Names in imexpire

43-7

Rule2.folderpattern: user/.*@example.org/.*
Rule2.exclusive: 1
Rule2.deleted: or
Rule2.messagedays: 14
Rule2.messagecount: 1000
Rule3.folderpattern: user/f.dostoevski/inbox
Rule3.Subject: On-line Casino

Setting imexpire Folder Patterns
Folder patterns can be specified using POSIX regular expressions by setting the imexpire
attribute regex to 1. If not specified, IMAP expressions will be used. The format must start with
a user/ followed by a pattern. Table 43-2 shows the folder pattern for various folders.

Table 43-2 imexpire Folder Patterns Using Regular Expressions

Scope Folder Patterns
(regex=0)

Folder Pattern (regex=1)

Apply rule to all messages in all folders of
userid.

user/userid/* user/userid/.*

Apply rule to messages of userid in folder Sent:. user/userid/Sent user/userid/Sent

Apply rule to entire message store. user/* user/.*

Apply rule to any folder called Trash anywhere
in any user's hierarchy.

user/*/Trash user/.*/Trash

Apply rule to folders in hosted domain
example.org.

user/*@example.org/* user/.*@example.org/.*

Apply rule to folders in default domain. Not applicable user/[^@]*/.*

Chapter 43
Localized Mailbox Names in imexpire

43-8

44
Configuring Message Expiration (Tasks)

This chapter describes the tasks you use to expire messages. See "Message Store Message
Expiration" for overview and conceptual information.

To Set imexpire Rules Textually

Note:

In Unified Configuration, you can continue to configure messaging expiration as
explained in this information, or use the msconfig command to individually set the
appropriate configuration options. Modifying the store.expirerule file enables access
to more functionality than using the msconfig command.

You expire messages by specifying rules in a store.expirerule file. The store.expirerule file
contains one expire criteria per line. An expire criteria of the global rule configuration file
MessagingServer_home/config/store.expirerule has the following format:

rule_name.attribute: value

An expiration rule for a user or mailbox rule configuration file has the following format:

attribute: value

The following example shows a set of global expiration rules in the MessagingServer_home/
config/store.expirerule file.

Example imexpire Rules

Rule1.regexp: 1
Rule1.folderpattern: user/.*
Rule1.messagesize: 100000
Rule1.messagesizedays: 3
Rule1.deleted: or
Rule1.messageheader.Subject: Vigara Now!
Rule1.messageheader.Subject: XXX Porn!
Rule1.messagecount: 1000
Rule1.messagedays: 365
Rule2.regexp: 1
Rule2.folderpattern: user/.*@example.org/.*
Rule2.exclusive: 1
Rule2.deleted: or
Rule2.messagedays: 14
Rule2.messagecount: 1000
Rule3.folderpattern: user/f.dostoevski/inbox
Rule3.messageheader.subject: On-line Casino

Rule 1 sets the global expiration policy (that is, policy that applies to all messages) to:

• Enable UNIX regular expressions in rules creation.

44-1

• Remove messages larger than 100,000 bytes after 3 days.

• Remove messages deleted by the user.

• Remove any message with the strings "Vigara Now!" or "XXX Porn!" in the Subject:
header.

• Limit all folders to 1,000 messages. After 1,000 messages, the system removes the oldest
messages on a folder to keep the total to 1,000.

• Remove all messages older than 365 days.

Rule 2 sets the message expiration policy for users at the hosted domain example.org. It
limits mailbox sizes to 1 megabyte, removes messages that have been deleted, and removes
messages older than 14 days.

Rule 3 sets the message expiration policy for messages in the inbox folder of user
f.dostoevski. It removes messages with a subject line having the expression "On-line Casino."

Note that headers other than Subject: can be used.

To Set Expiration Rules by Using the msconfig Command
In Unified Configuration, you can set expiration rules by using the following msconfig
command:

msconfig set expirerule:name.option value

For example:

msconfig set expirerule:Rule1.folderpattern user/.*
msconfig set expirerule:Rule1.messagesize 100000
msconfig set expirerule:Rule1.messagesizedays 3

You can set the following options in this way:

• deleted

• exclusive

• folderpattern

• foldersizebytes

• messagecount

• messagedays

• messagesize

• messagesizedays

• seen

To Set imexpire Folder Patterns
Folder patterns can be specified by using POSIX regular expressions by setting the imexpire
attribute regex to 1. If not specified, IMAP expressions are used. The format must start with a
user/ followed by a pattern. Table 44-1 shows the folder pattern for various folders.

Chapter 44
To Set imexpire Folder Patterns

44-2

Table 44-1 imexpire Folder Patterns Using Regular Expressions

Scope Folder Pattern (regex=0) Folder Pattern (regex=1)

Apply rule to all messages in all folders of userid. user/userid/* user/userid/.*

Apply rule to messages of userid in folder Sent:. user/userid/Sent user/userid/Sent

Apply rule to entire message store. user/* user/.*

Apply rule to any folder called Trash anywhere in any
user's hierarchy.

user/*/Trash user/.*/Trash

Apply rule to folders in hosted domain example.org. user/*@example.org/* user/.*@example.org/.*

Apply rule to folders in default domain. Not applicable user/[Configuring Message
Expiration in Unified Configuration
(Tasks)^@]*/.*

To Schedule Message Expiration and Logging Level
You activate message expiration by using the imsched scheduling daemon. By default,
imsched invokes imexpire at 23:00 every day. Use the "impurge" command for the purge
function. The imexpire schedule can be customized by setting the
schedule.task:expire.crontab option. See "Expire and Purge Log and Scheduling Options"
for more information.

Expire and purge can take a long time to complete on a large message store. You should
experiment and decide how often to run these processes. For example, if an expire and purge
cycle takes 10 hours, you might not want the default schedule of running expire and purge
once a day. Schedule expire and purge by using the imexpire command and the automatic
task scheduling option (see "Scheduling Automatic Tasks"). For example:

msconfig
msconfig> set schedule.task:expire.crontab "0 1 * * 6 bin/imexpire -e"
msconfig# write
msconfig> exit

In this example, messages are expired at 1 AM Saturdays and purged every night at 11 PM. If
no purge schedule is set, imexpire performs purge after an expire.

Expire and Purge Log and Scheduling Options
See "Maintenance Queue Configuration Options" for information about the Purge options.
Clicking on the specific option will often provide both the legacy (configutil) parameter and the
Unified Configuration (msconfig) option.

Table 44-2 Expire and Purge Log and Scheduling Options

Option Description

schedule.task:expire.enable Whether the expire task should be scheduled. Default: 1

Chapter 44
To Schedule Message Expiration and Logging Level

44-3

Table 44-2 (Cont.) Expire and Purge Log and Scheduling Options

Option Description

schedule.task:expire.crontab Interval for running imexpire. Uses UNIX crontab format: minute
hour day-of-month month-of-year day-of-week

The values are separated by a space or tab and can be 0-59, 0-23,
1-31, 1-12 and 0-6 (with 0=Sunday) respectively. Each time field can
be either an asterisk (meaning all legal values), a list of comma-
separated values, or a range of two values separated by a hyphen.
Note that days can be specified by both day of the month and day of
the week, however, it is not typical to use them both since the number
of such occurrences are very small. If they are both specified, then
both will be required. For example, setting the 17th day of the month
and Tuesday will require both values to be true.

You can also use the -e and -c flags with imexpire to and expire only
or purge only respectively. See "imexpire".

Interval Examples:

1. Run imexpire at 12:30am, 8:30am, and 4:30pm:30 0,8,16 * * *
bin/imexpire

2. Run imexpire at weekday morning at 3:15 am:15 3 * * 1-5 bin/
imexpire

3. Run imexpire only on Mondays:0 0 * * 1 bin/imexpire Default: 0
23 * * * bin/imexpire
To disable: Run msconfig set schedule.task:expire.enable 0

store.expire.exploglevel Specify a log level:

0 = No log.

1 = Log summary for the entire expire session.

2 = Log one message per mailbox expired.

3 = Log one message per message expired.

Default: 0

To Set imexpire Logging Levels
imexpire logs a summary to the default log file upon completion. If expire is invoked from the
command line, the -v (verbose) and -d (debug) options can be used to instruct imexpire to log
detail status and debug messages to stderr. If imexpire is invoked by imsched, the
configuration option store.expire.exploglevel can be set to 0, 1, 2, or 3 for different levels of
logging. Loglevel 0 is the default, and no logging is performed. Loglevel 1 logs a summary for
the entire expire session. Loglevel 2 logs one message per mailbox expired. Loglevel 3 logs
one message per message expired.

The following example invokes expire from the command line to set verbose logging and
shows the resulting messages in the default log file, DataRoot/log/default.

cd /opt/sun/comms/messaging64/bin
imexpire -n -v 1
tail ../log/default
[25/Nov/2010:11:51:51 +1100] server imexpire[20730]: General Notice: imexpire started
[25/Nov/2010:11:51:51 +1100] server imexpire[20730]: General Notice: iBiff plugin
loaded: ms-internal
[25/Nov/2010:11:51:51 +1100] server imexpire[20730]: General Notice: primary partition:
expired 0 messages

Chapter 44
To Schedule Message Expiration and Logging Level

44-4

[25/Nov/2010:11:51:51 +1100] server imexpire[20730]: General Notice: Expired 0 messages
[25/Nov/2010:11:51:51 +1100] server imexpire[20730]: General Notice: Expire finished

To Exclude Specified Users from Message Expiration
Exclude specified users from the expire rules by adding their user ID, one per line, in a file
called expire_exclude_list in the MessagingServer_home/config directory. Or, configure a
"dummy" exclusive expire rule under the user's mailbox.

Chapter 44
To Exclude Specified Users from Message Expiration

44-5

45
Configuring POP, IMAP, and HTTP Services

This chapter describes how to configure your server to support one or more of the POP, IMAP,
or HTTP services by using command-line utilities.

Oracle Communications Messaging Server supports the Post Office Protocol 3 (POP3), the
Internet Mail Access Protocol 4 (IMAP4), and the HyperText Transfer Protocol (HTTP) for client
access to mailboxes. IMAP and POP are both Internet-standard mailbox protocols.
Convergence, a web-enabled electronic mail program, enables end users to access their
mailboxes by using a browser running on an Internet-connected computer system using HTTP.

General Configuration
Configuring the general features of the Messaging Server POP, IMAP, and HTTP services
includes enabling or disabling the services, assigning port numbers, and optionally modifying
service banners sent to connecting clients. This section provides background information about
configuring these services.

Enabling and Disabling Services
You can control whether any particular instance of Messaging Server makes its POP, IMAP, or
HTTP service available for use. This is not the same as starting and stopping services (see
"Stopping and Starting Messaging Server "). To function, POP, IMAP, or HTTP must be both
enabled and started.

Enabling a service is a more "global" process than starting or stopping a service. For example,
the Enable setting persists across system reboots, whereas you must restart a previously
"stopped" service after a reboot.

There is no need to enable services that you do not plan to use. For example, if a Messaging
Server instance is used only as a Mail Transfer Agent (MTA), you should disable POP, IMAP,
and HTTP services. If a Messaging Server instance is used only for POP services, you should
disable IMAP and HTTP. If a Messaging Server instance is used only for web-based email, you
should disable both POP and IMAP.

You can enable or disable services at the server level, described later in this information. "To
Specify What Services Can Be Started" also describes this process. In addition, you can
enable or disable services at the user level by setting the LDAP attribute
mailAllowedServiceAccess seen in Schema Reference.

Specifying Port Numbers
For each service, you can specify the port number that the server is to use for service
connections:

• If you enable the POP service, you can specify the port number that the server is to use for
POP connections. The default is 110.

• If you enable the IMAP service, you can specify the port number that the server is to use
for IMAP connections. The default is 143.

45-1

• If you enable the HTTP service, you can specify the port number that the server is to use
for HTTP connections. The default is 8990.

You might need to specify a port number other than the default if you have, for example, two or
more IMAP server instances on a single host machine, or if you are using the same host
machine as both an IMAP server and a Messaging Multiplexor server. See "Configuring and
Administering Multiplexor Services" for information about the Multiplexor.

Keep the following in mind when you specify a port:

• Port numbers can be any number from 1 to 65535.

• Make sure the port you choose isn't already in use or reserved for another service.

Ports for Encrypted Communications
Messaging Server supports encrypted communications with IMAP, POP, and HTTP clients by
using the Secure Sockets Layer (SSL) protocol. For general information on support for SSL in
Messaging Server, see the discussion on configuring encryption and certificate-based
authentication in Messaging Server Security Guide.

IMAP Over SSL
You can accept the default (recommended) IMAP over SSL port number (993) or you can
specify a different port for IMAP over SSL.

Messaging Server provides the option of using separate ports for IMAP and IMAP over SSL
because most current IMAP clients require separate ports for them. Same-port communication
with both IMAP and IMAP over SSL is an emerging standard. As long as your Messaging
Server has an installed SSL certificate (see the discussion on obtaining certificates in
Messaging Server Security Guide), it can support same-port IMAP over SSL.

POP Over SSL
The default separate SSL port for POP is 995. You can also initiate SSL over normal POP port
with the command "STLS" (see "To Configure POP Services").

HTTP Over SSL
You can accept the default HTTP over SSL port number (8991) or you can specify a different
port for HTTPS.

Service Banner
When a client first connects to the Messaging Server POP or IMAP port, the server sends an
identifying text string to the client. This service banner (not normally displayed to the client's
user) identifies the server as Messaging Server, and gives the server's version number. The
banner is most typically used for client debugging or problem-isolation purposes.

You can replace the default banner for the POP or IMAP service if you want a different
message sent to connecting clients.

Use the msconfig utility and the (pop.banner) option to set service banners.

Chapter 45
General Configuration

45-2

Login Requirements
You can control how users are permitted to log in to the POP, IMAP, or HTTP service to retrieve
mail. You can allow password-based login (for all services), and certificate-based login (for
IMAP or HTTP services). This section provides background information. See the following
sections for information about configuring these settings:

• To Configure POP Services

• To Configure IMAP Services

• To Configure the mshttpd Process for Use by Convergence

In addition, you can specify the valid login separator for POP logins.

To Set the Separator for POP Clients
Some older mail clients do no accept @ as the login separator (that is, the @ in an address like
uid@domain). If you are using one of these older mail clients, the workaround is as follows:

1. Make + a valid separator with the following command:

msconfig set base.loginseparator "@+"
2. Inform POP client users that they should log in with + as the login separator, not @.

To Allow Log In without Using the Domain Name
A typical login involves the user entering a user ID followed by a separator and the domain
name and then the password. Users in the default domain specified during installation,
however, can log in without entering a domain name or separator.

To allow users of other domains to log in with just the user ID (that is, without having to use the
domain name and separator) set the auth.searchfordomain option to 0. The user ID must be
unique to the entire directory tree. If it is not unique, logging in without the domain name will
not work.

You might want to modify the attribute that user must enter to log in. For example, to allow the
user to log in with a phone number (telephoneNumber) or employee number (employeeID),
change the LDAP search defined by the auth.searchfilter option. This option is a global
default setting for the inetDomainSearchFilter per-domain attribute and follows the same
syntax.

Refer to Messaging Server Reference for further information on these options.

Password-Based Login
In typical messaging installations, users access their mailboxes by entering a password into
their POP, IMAP, or HTTP mail client. The client sends the password to the server, which uses
it to authenticate the user. If the user is authenticated, the server decides, based on access-
control rules, whether or not to grant the user access to certain mailboxes stored on that
server.

If you allow password login, users can access POP, IMAP, or HTTP by entering a password.
(Password- or SSL-based login is the only authentication method for POP services.)
Passwords are stored in an LDAP directory. Directory policies determine what password
policies, such as minimum length, are in effect.

Chapter 45
Login Requirements

45-3

If you disallow password login for IMAP or HTTP services, password-based authentication is
not permitted. Users are then required to use certificate-based login, as described in the next
section.

To increase the security of password transmission for IMAP and HTTP services, you can
require that passwords be encrypted before they are sent to your server. You do this by
selecting a minimum cipher-length requirement for login.

• If you choose 0, you do not require encryption. Passwords are sent in the clear or they are
encrypted, depending on client policy.

• If you choose a nonzero value, the client must establish an SSL session with the server by
using a cipher whose key length is at least the value you specify, thus encrypting any IMAP
or HTTP user passwords the client sends.

If the client is configured to require encryption with key lengths greater than the maximum your
server supports, or if your server is configured to require encryption with key lengths greater
than what the client supports, password-based login cannot occur. For information on setting
up your server to support various ciphers and key lengths, see the discussion on enabling SSL
and selecting ciphers in Messaging Server Security Guide.

Certificate-Based Login
In addition to password-based authentication, Oracle servers support the authentication of
users through examination of their digital certificates. Instead of presenting a password, the
client presents the user's certificate when it establishes an SSL session with the server. If the
certificate is validated, the user is considered authenticated.

For instructions on setting up Messaging Server to accept certificate-based user login to the
IMAP or HTTP service, see the discussion on setting up certificate-based login in Messaging
Server Security Guide.

If you have performed the tasks required to set up certificate-based login, both password-
based and certificate-based login are supported. Then, if the client establishes an SSL session
and supplies a certificate, certificate-based login is used. If the client does not use SSL or does
not present a client certificate, it sends a password instead.

Performance Options
You can set some of the basic performance options for the POP, IMAP, and HTTP services of
Messaging Server. Based on your hardware capacity and your user base, you can adjust these
options for maximum efficiency of service. This section provides background information. See
the following sections for the steps you follow to make these settings:

• To Configure POP Services

• To Configure IMAP Services

• To Configure the mshttpd Process for Use by Convergence

Number of Processes
Messaging Server can divide its work among several executing processes, which in some
cases can increase efficiency. This capability is especially useful with multiprocessor server
machines, in which adjusting the number of server processes can allow more efficient
distribution of multiple tasks among the hardware processors.

Chapter 45
Performance Options

45-4

There is a performance overhead, however, in allocating tasks among multiple processes and
in switching from one process to another. The advantage of having multiple processes
diminishes with each new one added. A simple rule of thumb for most configurations is to have
one IMAPD and one POPD process per hardware processor on your server machine, up to a
maximum of perhaps four processes. Your optimum configuration might be different. This rule
of thumb is meant only as a starting point for your own analysis.

Note:

On some platforms you might also want to increase the number of processes to get
around certain per-process limits (such as the maximum number of file descriptors),
specific to that platform, that might affect performance. The default number of
processes is one each for the POP, IMAP, or HTTP service.

Number of Connections per Process
The more simultaneous client connections your POP, IMAP, or HTTP service can maintain, the
better it is for clients. If clients are denied service because no connections are available, they
must then wait until another client disconnects.

On the other hand, each open connection consumes memory resources and makes demands
on the I/O subsystem of your server machine, so there is a practical limit to the number of
simultaneous sessions you can expect the server to support. (You might be able to increase
that limit by increasing server memory or I/O capacity.)

IMAP, HTTP, and POP have different needs in this regard:

• IMAP connections are generally long-lived compared to POP and HTTP connections.
When a user connects to IMAP to download messages, the connection is usually
maintained until the user quits or the connection times out. In contrast, a POP or HTTP
connection is usually closed as soon as the POP or HTTP request has been serviced.

• IMAP and HTTP connections are generally very efficient compared to POP connections.
Each POP re-connection requires re-authentication of the user. In contrast, an IMAP
connection requires only a single authentication because the connection remains open for
the duration of the IMAP session (login to logout). An HTTP connection is short, but the
user need not re-authenticate for each connection because multiple connections are
allowed for each HTTP session (login to logout). POP connections, therefore, involve much
greater performance overhead than IMAP or HTTP connections. Messaging Server, in
particular, has been designed to require very low overhead by open but idle IMAP
connections and by multiple HTTP connections.

Note:

For more information about HTTP session security, see the discussion about HTTP
security in Messaging Server Security Guide.

Thus, at a given moment for a given user demand, Messaging Server may be able to support
many more open IMAP or HTTP connections than POP connections.

The default value for IMAP is 4000. The default value for HTTP is 6000 connections per
process. The default value for POP is 600. These values represent roughly equivalent

Chapter 45
Performance Options

45-5

demands that can be handled by a typically configured server machine. Your optimum
configuration might be different. These defaults are meant only as general guidelines.

Typically, active POP connections are much more demanding on server resources and
bandwidth than active IMAP connections since IMAP connections are idle most of the time
while POP connections are constantly downloading messages. Having a lower number of
sessions for POP is correct. Conversely, POP connections only last as long as it takes to
download email, so an active POP user is only connected a small percentage of the time, while
IMAP connections stay connected between successive mail checks.

Number of Threads per Process
Besides supporting multiple processes, Messaging Server further improves performance by
subdividing its work among multiple threads. The server's use of threads greatly increases
execution efficiency, because commands in progress are not holding up the execution of other
commands. Threads are created and destroyed, as needed during execution, up to the
maximum number you have set.

Having more simultaneously executing threads means that more client requests can be
handled without delay, so that a greater number of clients can be serviced quickly. However,
there is a performance overhead to dispatching among threads, so there is a practical limit to
the number of threads the server can use.

For POP, IMAP, and HTTP, the default maximum value is 250 threads per process. The
numbers are equal despite the fact that the default number of connections for IMAP and HTTP
is greater than for POP. It is assumed that the more numerous IMAP and HTTP connections
can be handled efficiently with the same maximum number of threads as the fewer, but busier,
POP connections. Your optimum configuration might be different, but these defaults are high
enough that it is unlikely you would ever need to increase them; the defaults should provide
reasonable performance for most installations.

Dropping Idle Connections
To reclaim system resources used by connections from unresponsive clients, the IMAP4,
POP3, and HTTP protocols permit the server to unilaterally drop connections that have been
idle for a certain amount of time.

The respective protocol specifications require the server to keep an idle connection open for a
minimum amount of time. The default times are 10 minutes for POP, 30 minutes for IMAP, 3
minutes for HTTP. You can increase the idle times beyond the default values, but you cannot
make them less.

If a POP or IMAP connection is dropped, the user must re-authenticate to establish a new
connection. In contrast, if an HTTP connection is dropped, the user need not re-authenticate
because the HTTP session remains open. For more information about HTTP session security,
see the discussion about HTTP security in Messaging Server Security Guide.

Idle POP connections are usually caused by some problem (such as a crash or hang) that
makes the client unresponsive. Idle IMAP connections, on the other hand, are a normal
occurrence. To keep IMAP users from being disconnected unilaterally, IMAP clients typically
send a command to the IMAP server at some regular interval that is less than 30 minutes.

Logging Out HTTP Clients
An HTTP session can persist across multiple connections. HTTP clients are not logged out
when a connection is dropped. However, if an HTTP session remains idle for a specified time
period, the server will automatically drop the HTTP session and the client is logged out (the

Chapter 45
Performance Options

45-6

default time period is 2 hours). When the session is dropped, the client's session ID becomes
invalid and the client must re-authenticate to establish another session. For more information
about HTTP security and session ID's, see the discussion about HTTP security in Messaging
Server Security Guide.

Client Access Controls
Messaging Server includes access-control features that enable you to determine which clients
can gain access to its POP, IMAP, or HTTP messaging services (and SMTP as well). You can
create flexible access filters that allow or deny access to clients based on a variety of criteria.

Client access control is an important security feature of Messaging Server. For information on
creating client access-control filters and examples of their use, see the discussion on
configuring client access to POP, IMAP, and HTTP services in Messaging Server Security
Guide.

To Configure POP Services
You configure the Messaging Server POP service by using the msconfig command. This
section lists the more common POP services options. The Messaging Server Reference
provides a complete listing of options.

Note:

For the POP service, password-based login is automatically enabled.

For more information, see also:

• Enabling and Disabling Services

• To Set the Separator for POP Clients

• Specifying Port Numbers

• Number of Connections per Process

• Dropping Idle Connections

• Number of Threads per Process

• Number of Processes

• To enable the POP service:

msconfig set pop.enable 1
• To disable the POP service:

msconfig set pop.enable 0
• To specify the port number:

msconfig set pop.port port_number
• To set the maximum number of network connections per process (see "Number of

Connections per Process" for details):

msconfig set pop.maxsessions number

Chapter 45
Client Access Controls

45-7

• To set the maximum idle time for connections (see "Dropping Idle Connections" for details):

msconfig set pop.idletimeout number
• To set the maximum number of threads per process (see "Number of Threads per

Process" for more information):

msconfig set pop.maxthreads number
• To set the maximum number of processes (see "Number of Processes" for additional

information):

msconfig set pop.numprocesses number
• To enable POP over SSL on port 995:

msconfig
msconfig> set pop.enablesslport 1
msconfig# set pop.sslusessl 1
msconfig# set pop.sslport 995
msconfig# write
msconfig> exit
stop-msg pop
start-msg pop

TLS is also supported if SSL is configured correctly.

• To specify a protocol welcome banner:

msconfig set pop.banner banner

To Configure IMAP Services
You configure the Messaging Server IMAP service by using the msconfig command. This
section lists the common IMAP services options. Messaging Server Reference provides a
complete listing of options. For more information, see also:

• Enabling and Disabling Services

• Specifying Port Numbers

• Password-Based Login

• Number of Connections per Process

• Dropping Idle Connections

• Number of Threads per Process

• Number of Processes

• Configuring IMAP IDLE

• To enable the IMAP service:

msconfig set imap.enable 1
• To disable the IMAP service:

msconfig set imap.enable 0
• To specify the port number:

msconfig set imap.port number
• To enable a separate port for IMAP over SSL:

Chapter 45
To Configure IMAP Services

45-8

msconfig set imap.enablesslport 1
• To specify a port number for IMAP over SSL:

msconfig set imap.sslport number
• To enable or disable password login to the IMAP service:

msconfig set imap.plaintextmincipher value

If value is greater than 0, disable use of plaintext passwords unless a security layer (SSL
or TLS) is activated. This forces users to enable SSL or TLS on their client to log in, which
prevents exposure of their passwords on the network. Default is 0.

• To set the maximum number of network connections per process (see "Number of
Connections per Process" for additional information):

msconfig set imap.maxsessions number
• To set the maximum idle time for connections (see "Dropping Idle Connections" for

additional information):

msconfig set imap.idletimeout number
• To set the maximum number of threads per process (see "Number of Threads per

Process"):

msconfig set imap.maxthreads number
• To set the maximum number of processes (see "Number of Processes"):

msconfig set imap.numprocesses number
• To specify a protocol welcome banner:

msconfig set imap.banner banner
• To enable IMAP over SSL on port 993:

msconfig
msconfig> set imap.enablesslport 1
msconfig# set imap.sslusessl 1
msconfig# set imap.sslport 993
msconfig# write
msconfig> exit
stop-msg imap
start-msg imap

Configuring IMAP IDLE
The IMAP IDLE extension to the IMAP specification, defined in RFC 2177, enables an IMAP
server to notify the mail client when new messages arrive and other updates take place in a
user's mailbox. See "Configuring IMAP IDLE " for conceptual and task information on enabling
IMAP IDLE in Messaging Server.

To Configure the mshttpd Process for Use by Convergence
Messaging Server supports the mail client Convergence.

While POP and IMAP clients send mail directly to a Messaging Server MTA for routing or
delivery, HTTP clients send mail to a specialized web server called the Webmail Server (also
called mshttpd or Messaging Server HTTP daemon). Depending on where the message is
addressed, the Webmail Server directs the mail to an outbound MTA for routing or to one of the

Chapter 45
To Configure the mshttpd Process for Use by Convergence

45-9

back-end message stores using IMAP. Convergence simply routes requests to and from the
Webmail Server.

The Webmail Server accesses the message store through the IMAP server. This provides
several advantages:

• Convergence clients are able to access shared folders that are located on different back-
end message stores.

• The Webmail Server does not need to be installed on each back-end server.

• The Webmail Server can serve as a front-end server performing multiplexing capabilities.

• Users can access shared folders that are not on their message store.

The Webmail Server operates as a front-end server receiving HTTP client email requests. It
translates these requests to SMTP or IMAP calls and forwards the calls to either the MTA or
the appropriate IMAP server on the back-end message store. If Messaging Server is used only
for web-based email, make sure that IMAP is enabled.

Configuring Your HTTP Service
Many of the HTTP configuration options are similar to the options available for the POP and
IMAP services, including options for connection settings and process settings. This section lists
common HTTP service options. Messaging Server Reference provides a complete listing of
options. For more information, see also:

• Enabling and Disabling Services

• Specifying Port Numbers

• Password-Based Login

• Number of Connections per Process

• Dropping Idle Connections

• Logging Out HTTP Clients

• Number of Threads per Process

• Number of Processes

For each IMAP server that users access, the Webmail Server needs to know the IMAP port,
whether to use SSL, and the administrative credentials for user log-in. The configuration
options to do this are as follows:

• base.proxyimapport: IMAP port on which to connect (default 143).

• base.proxyimapssl: Enable SSL (default no).

• base.proxyadmin: Specifies the store Admin ID.

• base.proxyadminpass: Specifies the store Admin password.

You can set these options globally in Unified Configuration to apply to every IMAP back-end
server by using base.proxyadmin. Alternatively, you can set these options for each individual
IMAP back-end server by using proxy:storeaffinitygroup.imapadmin.

To use IMAP over SSL, you must configure mshttpd as an SSL HTTP server, and the
mshttpd certificate database must trust the IMAP back end's CA. You must enable
http.sslusessl. If the back-end message store running IMAP is using a self-signed certificate
(for example, as created by generate-certDB), then this certificate needs to be added to the
front-end mshttpd daemon server.

Chapter 45
To Configure the mshttpd Process for Use by Convergence

45-10

If base.proxyadmin and base.proxyadminpass are not configured, logins are rejected. The
system provides the error message, "Mail server unavailable. Administrator, check server
log for details" and the HTTP log lists the missing configuration options.

Additional values for HTTP attributes can be set at the command line as follows:

• To enable the HTTP service:

msconfig set http.enable 1
• To disable the HTTP service:

msconfig set http.enable 0
By default, the HTTP service sends outgoing web mail to the local MTA for routing or delivery.
You might want to configure the HTTP service to send mail to a remote MTA, for example, if
your site is a hosting service and most recipients are not in the same domain as the local host
machine. To send web mail to a remote MTA, you need to specify the remote host name and
the SMTP port number for the remote host.

• To specify the port number:

msconfig set http.port number
• To enable a separate port for HTTP over SSL:

msconfig set http.enablesslport 1
• To specify a port number for HTTP over SSL:

msconfig set http.sslport number
• To enable or disable password login:

msconfig set http.plaintextmincipher value

If value is greater than 0, then disable use of plaintext passwords unless a security layer
(SSL or TLS) is activated. This forces users to enable SSL or TLS on their client to log in,
which prevents exposure of their passwords on the network. Default is 0.

• To set the maximum number of network connections per process (for more information,
see "Number of Connections per Process"):

msconfig set http.maxsessions number

See "Dropping Idle Connections" for more information.

• To set the maximum idle time for client sessions (for more information, see "Logging Out
HTTP Clients"):

msconfig set http.sessiontimeout number
• To set the maximum number of threads per process:

msconfig set http.maxthreads number
• To set the maximum number of processes:

msconfig set http.numprocesses number
When an HTTP client constructs a message with attachments, the attachments are uploaded
to the server and stored in a file. The HTTP service retrieves the attachments and constructs
the message before sending the message to an MTA for routing or delivery. You can accept the
default attachment spool directory or specify an alternate directory. You can also specify a
maximum size allowed for attachments. To specify the attachment spool directory for client
outgoing mail use the following command. This includes all the attachments encoded in
base64, and that base64 encoding requires an extra 33 percent more space. Thus, a 5 Mb

Chapter 45
To Configure the mshttpd Process for Use by Convergence

45-11

limit in the option results in the maximum size of one message and attachments being about
3.75 Mb.

• To set the spool directory:

msconfig set http.spooldir dirpath
• To specify the maximum message size:

msconfig set http.maxmessagesize size
where size is a number in bytes. This includes all the attachments encoded in base64, and that
base64 encoding requires an extra 33 percent more space. Thus, a 5 Mb limit in the option
results in the maximum size of one message and attachments being about 3.75 Mbs.

• To specify an alternate MTA host name:

msconfig set http.smtphost hostname
• To specify the port number for the alternate MTA host name:

msconfig set http.smtpport portnum
To enable HTTP access over SSL on port 8991:

msconfig
msconfig> set http.enablesslport -1
msconfig# set http.sslusessl 1
msconfig# set http.sslport 8991
msconfig# write
msconfig> exit
stop-msg http
start-msg http

Chapter 45
To Configure the mshttpd Process for Use by Convergence

45-12

46
Handling Message Store Overload

This chapter describes how to handle message store overload in Oracle Communications
Messaging Server.

Overview of Managing Message Store Load
An overloaded message store can suffer from degraded performance. The mboxlist database
is particularly sensitive to overload conditions. When the database detects deadlocks, all
database operations that cannot acquire the locks they need must abort the transactions and
retry, thereby decreasing the throughput. If this situation continues, the message store can
become very inefficient. In extreme cases, you need to restart the message store to recover.

Therefore, having the ability to control the message store load is crucial to prevent
performance degradation. The message store uses transaction checkpoint time as the stress
indicator. The stored daemon measures the transaction checkpoint duration (the time it takes
to sync the database pages from the memory pool to disks). When the transaction checkpoint
exceeds one minute, it raises an alarm.

Message Store Load Throttling
Message store throttling is used to regulate short spikes of activities. When the ims_master
program detects the stressed status from the message store, it informs the Job Controller. The
Job Controller responds by temporarily decreasing the number of ims_master processes for
the ims-ms channel. Similarly, when the LMTP server detects the stressed status, it tells the
LMTP client, which informs the Job Controller, to back off. By decreasing the number of
delivery threads, the Job Controller enables the message store to recover before performance
begins to degrade.

Job Controller Stress Handling
Channel programs can now tell the Job Controller if they are being overwhelmed. If this occurs,
then the job controller sees if it has happened recently. The job controller ignores stressed
channel messages that are received within job_controller.stressblackout seconds of a
previous stressed message for the same channel. If the message is processed, then the job
controller multiplies the effective threaddepth option for the channel by
job_controller.stressfactor, and subtracts job_controller.stressjob from the job limit for the
channel. threaddepth never goes over 134,217,727, and job limit never goes below 1. In
addition, then the Job Controller asks all current master programs for the channel to exit, and,
if the queue is not empty, starts an appropriate number of processes.

When job_controller.stresstime seconds has passed after the last stress change, the Job
Controller divides threaddepth by job_controller.unstressfactor (never allowing thread
depth to drop below the original configured threaddepth), and adds UnstressJob to the job
limit (never allowing the job limit to rise above the original configured limit. a "stress change" is
either an increase in stress or a decrease in stress.

46-1

The unstresscount job controller option adds an additional criteria for lowering the stress level
for a channel. The level is also lowered when unstresscount messages have been processed
by the channel and stresstime time has elapsed without any indication of stress.

Default Job Controller Configuration
These configuration options have the following default values:

job_controller.stressblackout=60

job_controller.stresstime=120

job_controller.stressfactor=5

job_controller.stressjobs=2

job_controller.unstressfactor=stressfactor

job_controller.unstressjobs=stressjobs

job_controller.unstresscount=10000

Chapter 46
Default Job Controller Configuration

46-2

47
Managing Message Store Partitions and
Adding Storage

This chapter describes Oracle Communications Messaging Server classic message store
partitions and adding storage.

For more information, see also:

• To Move Mailboxes to a Different Disk Partition

Note:

Cassandra message store does not use partitions. To add more space to the
message store, see Messaging Server Installation and Configuration Guide for
Cassandra Message Store.

Message Store Partition Overview
Mailboxes are stored in message store partitions, an area on a disk partition specifically
devoted to storing the message store. Message store partitions are not the same as disk
partitions, though for ease of maintenance, it is recommended that you have one disk partition
and one file system for each message store partition. Message store partitions are directories
specifically designated as a message store.

User mailboxes are stored by default in the store_root/partition/ directory (see "Classic
Message Store Directory Layout"). The partition directory is a logical directory that might
contain a single partition or multiple partitions. At start-up time, the partition directory contains
one subpartition called the primary partition.

You can add partitions to the partition directory as necessary. For example, you might want to
partition a single disk to organize your users as follows:

store_root/partition/mkting/
store_root/partition/eng/
store_root/partition/sales/

As disk storage requirements increase, you might want to map these partitions to different
physical disk drives.

You should limit the number of mailboxes on any one disk. Distributing mailboxes across disks
improves message delivery time (although it does not necessarily change the SMTP accept
rate). The number of mailboxes you allocate per disk depends on the disk capacity and the
amount of disk space allocated to each user. For example, you can allocate more mailboxes
per disk if you allocate less disk space per user.

If your message store requires multiple disks, you can use RAID (Redundant Array of
Inexpensive Disks) technology to ease management of multiple disks. With RAID technology,
you can spread data across a series of disks but the disks appear as one logical volume so

47-1

disk management is simplified. You might also want to use RAID technology for redundancy
purposes; that is, to duplicate the store for failure recovery purposes.

Note:

To improve disk access, the message store and the message queue should reside on
separate disks.

To Add a Message Store Partition
When adding a partition, you specify both an absolute physical path where the partition is
stored on disk, and a logical name (called the partition nickname).

The partition nickname enables you to map users to a logical partition name regardless of the
physical path. When setting up user accounts and specifying the message store for a user, you
can use the partition nickname. The name you enter must be an alphanumeric name and must
use lowercase letters.

To create and manage the partition, the user ID used to run the server must have permission to
write to the location specified in the physical path.

Note:

After adding a partition, you must stop then restart Messaging Server to refresh the
configuration information.

• Command Line, To add a partition to the store at the command line: The location of
message files is controlled by setting the partition:partition_name.messagepath option,
where partition_name is the logical name of the partition.

msconfig set partition:partition_name.messagepath path

path indicates the absolute path name where the partition is stored. To specify the path to
the primary partition:

msconfig set partition:primary.path path

To Change the Default Message Store Partition
The default partition is the partition used when a user is created and the mailMessageStore
LDAP attribute is not specified in the user entry. The mailMessageStore LDAP attribute, which
specifies a user's message store partition, should be specified in all user entries so that a
default partition is not necessary. In addition, the default partition should not be changed for
load balancing or any other reason. It is invalid and dangerous to change the default partition
while there are still users depending on the default partition definition.

If it is absolutely necessary to change the default partition, make sure that all users on the old
default partition (the one being left behind) have their mailMessageStore attribute set to their
current partition (which will no longer be the default), before changing the definition of default
with the store.defaultpartition option.

Chapter 47
To Add a Message Store Partition

47-2

Adding More Physical Disks to the Message Store
The Messaging Server message store contains the user mailboxes for a particular Messaging
Server instance. The size of the message store increases as the number of mailboxes, folders,
and log files increase.

As you add more users to your system, your disk storage requirements increase. Depending
on the number of users your server supports, the message store might require one physical
disk or multiple physical disks. Messaging Server enables you an add more stores as needed.

Chapter 47
Adding More Physical Disks to the Message Store

47-3

48
Managing Message Store Quotas

This chapter describes managing Oracle Communications Messaging Server message store
quotas and the quota tasks.

For more information, see also "Monitoring the Message Store".

Message Store Quota Overview
Message store quotas limit or reduce message store usage. They enable you to set quotas for
how much disk space or how many messages can be used by a user or domain. See
"Managing Message Store Quotas" for information on how to use quotas in your system.

Quota Overview
Quotas can be set, in terms of number of messages or number of bytes or both, for specific
users or domains. Quotas can also be set for specific folders and message types. For
example, you can set different quotas based on whether a message is a voice mail or an email.
Folder quotas set limits to the size of a user's folder in bytes or number of messages. For
example, a quota can be set on the Trash folder. Messaging Server enables you to set default
quotas for domains and users as well as customized quotas.

You can also configure how the system responds to users or domains that are either over
quota or approaching the quota. One response is to send users an over quota notification.
Another response is to halt delivery of messages into the message store when quota is
exceeded. This is called quota enforcement and usually occurs after a specified grace period.
A grace period is how long the mailbox can be over the quota before enforcement occurs. If
message delivery is halted due to over quota, incoming messages can either remain in the
MTA queue until one of the following occurs or be rejected by my the MTA immediately, if
local.store.overquotastatus is enabled:

• The size or number of the user's messages no longer exceeds the quota, at which time the
MTA delivers the messages.

• The undelivered message remains in the MTA queue longer than the specified grace
period, at which time messages are returned to sender. See "To Set a Grace Period" for
more information.

• The message has remained in the message queue longer than the maximum message
queue time. This is controlled by the notices MTA channel keyword (see the discussion on
setting notification message delivery intervals in Messaging Server Reference).

For example, if your grace period is set for two days, and you exceed quota for one day, new
messages continue to be received and held in the message queue, and delivery attempts
continue. After the second day, the messages bounce back to the sender.

Disk space becomes available when a user deletes and expunges messages or when the
server deletes messages according to expiration policies established. See "Message Store
Message Expiration" for more information.

48-1

Exceptions for Telephony Application Servers

To support unified messaging requirements, Messaging Server provides the ability to override
quota limitations imposed by the message store. This guarantees the delivery of messages
that have been accepted by certain agents, namely telephony application servers (TAS).
Messages accepted by a TAS can be routed through a special MTA channel that ensures the
message is delivered to the store regardless of quota limits. This is a fairly esoteric usage, but
can be useful to telephony applications. For more information about configuring a TAS
channel, contact your Oracle messaging representative.

Quota by message type is useful for telephony applications that use unified messaging. For
example, if a mix of messages, say text and voice mail, is stored in a user's mailbox, then the
administrator can set different quotas for different types of messages. One quota can be set for
email and another can be set for voice mail.

Quota Theory of Operations
Customized user and domain quotas are specified by adding quota attributes to LDAP user
and domain entries. Quota defaults, notification policy, enforcement, and grace period are
specified in msconfig options or by using the "imquotacheck" command.

To determine if a user is over quota, Messaging Server first determines if a quota has been set
for the individual user. If no quota has been set, Messaging Server looks at the default quota
set for all users. For a user, the quota is for all the cumulative bytes or messages in all of the
user's folders. For a domain, the quota is for all the cumulative bytes or messages of all the
users in a particular domain. For a message type, the quota is for all the cumulative bytes or
messages for that message type. For a folder, the quota is for all the cumulative bytes or
messages for user's folder.

You can specify the following quota values for a user's mailbox tree:

• Quota values for specific folders in the user's mailbox.

• Quota values for specific message types such as voice mail or text messages. (A message
type quota applies to messages of that type in all folders in the user's mailbox.)

• A default quota value that applies to all folders and message types in the user's mailbox
that are not explicitly assigned quotas.

The following guidelines apply when you assign multiple quota values for a user:

• Quotas do not overlap. For example, when there is a quota for a particular message type
or folder, messages of that type or messages in that folder are not counted toward the
default quota. Each message counts toward one and only one quota.

• The total quota for the whole user mailbox equals the sum of the values of all the quotas
specified by default, type, and folder.

• Message type quotas take precedence over folder quotas. For example, suppose one
quota is specified for a user's memos folder and another quota is specified for voice
messages. Now suppose the user stores eight voice messages in the memos folder. The
eight messages are counted toward the voice mail quota and excluded from the memos
folder quota.

Changes made to the quota attributes and msconfig options will take effect automatically, but
not immediately as information is stored in caches and it may take a little time before the
changes fully take effect. Messaging Server provides a command, "iminitquota" that updates
the changes immediately.

Chapter 48
Message Store Quota Overview

48-2

The "imquotacheck" utility enables you to check message store usage against assigned
quotas.

Methods of Notification

If store.quotanotification is enabled, when users approach or exceed their quota limit
(depending on store.quotawarn), the message defined by store.quotaexceededmsg notifies
them immediately. Otherwise, you must run imquotacheck -n to notify the users. Dynamic
user notification by enabling store.quotanotification and running imquotacheck -n are
mutually exclusive. If store.quotanotification is enabled, you should not use imquotacheck -
n. The preferred method is dynamic notification.

Domain level quota enforcement and reporting is done by running imquotacheck -f.

For more information on imquotacheck options, see Table 64-14.

Message Store Quota Attributes and Options
This section lists the major the message store quota attributes and msconfig options. The
intention is to provide you with an overview of the functionality interface. For detailed
information on these attributes and options, refer to the appropriate reference documentation.

Table 48-1 lists the quota attributes. Refer to Schema Reference for more information about
the following attributes.

Table 48-1 Message Store Quota Attributes

Attribute Description

mailQuota Bytes of disk space allowed for the user's mailbox.

mailMsgQuota Maximum number of messages permitted for a user. This is a cumulative
count for all folders in the store.

mailUserStatus Status of the mail user. Some of the possible values are active,
inactive, deleted, hold, and overquota.

mailDomainDiskQuota Bytes of disk space allowed for the cumulative count of all the mailboxes
in a domain.

mailDomainMsgQuota Maximum number of messages permitted for a domain, that is, the total
count for all mailboxes in the store.

mailDomainStatus Status of the mail domain. Values and default are the same as
mailUserStatus.

To have the preceding attributes take effect, run "iminitquota" to make quota and usage up-to-
date. The changes would take effect without running this, but not immediately, as information is
stored in caches and it takes a little time before the changes take effect.

Table 48-2 lists the quota options. Refer to "Overview of Messaging Server Unified
Configuration" for the latest and most detailed information.

Table 48-2 Message Store msconfig Options

Option Description

store.quotaenforcement Enable quota enforcement When off, the quota database is still
updated, but messages are always delivered. Default: 1 (bool).

store.quotanotification Enable quota notification. Default: 0 (bool).

Chapter 48
Message Store Quota Overview

48-3

Table 48-2 (Cont.) Message Store msconfig Options

Option Description

store.defaultmailboxquota Store default quota by number of bytes. Default: "-1" (string)
(unlimited).

store.defaultmessagequota Store default quota by number of messages. Numeric. Default: "-1"
(string) (unlimited).

store.quotaexceededmsg Message to be sent to user when quota exceeds store.quotawarn.
If none, notification is not sent. Default: No default (non-empty
string).

The message must contain a header (with at least a subject line),
followed by $$, then the message body. The $ represents a new line.
There is support for the following variables: [ID] - userid,
[DISKUSAGE] - disk usage, [NUMMSG] - number of messages,
[PERCENT] - store.quotawarn percentage, [QUOTA] - mailquota
attribute, [MSGQUOTA] - mailmsgquota attribute.

store.quotaexceededmsginterv
al

Interval, in days, for sending overquota notification. Default: 7 (int32).

store.quotagraceperiod Time, in hours, a mailbox has been overquota before messages to
the mailbox will bounce back to the sender. Number of hours.
Default: 120 (uint32).

store.quotawarn Quota warning threshold. Percentage of quota exceeded before
clients are sent an over quota warning. Default: 90 (int32).

store.quotaoverdraft Used to provide compatibility with systems that migrated from the
Netscape Messaging Server. When ON, allow delivery of one
message that puts disk usage over quota. After the user is over
quota, messages are deferred or bounced, the quota warning
message is sent, and the quota grace period timer starts. (The
default is that the quota warning messages are sent when the
message store reaches the threshold.) Default: 0 (bool), but is
treated as on if store.overquotastatus is set, otherwise the user
can never go over quota and the overquotastatus is never used.

store.overquotastatus Enable quota enforcement before messages are enqueued in the
MTA. This prevents the MTA queues from filling up. When set, and a
user is not yet over quota, but an incoming message pushes the
user over quota, then the message is delivered, but the
mailuserstatus LDAP attribute is set to overquota so no more
messages are accepted by the MTA. Default: 0 (bool).

To have the preceding msconfig options take effect, restart Messaging Server.

The "imquotacheck" utility enables you to check message store usage against assigned
quotas.

Also see "iminitquota" to update the information in the quota database if a user's quota-related
LDAP attributes (or the system defaults) have been changed recently and the changes have
not yet been propagated automatically to the quota database.

To Specify a Default User Quota
A default quota applies to users who do not have individual quotas set in their LDAP entries.
The process consists of the following steps:

1. Specifying a user default quota

Chapter 48
To Specify a Default User Quota

48-4

2. Specifying which users are bound to the default quota

The following examples show how to set default user quotas. Refer to Messaging Server
Reference for detailed option information.

• To specify a default user disk quota for message size in bytes:

msconfig set store.defaultmailboxquota [-1 | number]

where -1 indicates no quota (unlimited message usage) and number indicates a number
of bytes.

• To specify a default user quota for total number of messages:

msconfig set store.defaultmessagequota [-1 | number]

where -1 indicates no quota (unlimited messages) and number indicates the number of
messages.

• To specify the default quota for specific users: Set the mailQuota attribute to -2 in the user
entries that use the default message store quota. Note that if mailQuota is not specified,
the system default quota is used.

To Specify Individual User Quotas
Each user can have individualized quotas. To set user-specific quotas, set the mailQuota or
mailMsgQuota attributes in the user's LDAP entry. For more information on the previous
attributes, see Schema Reference.

In addition, configuration options of the form store.quota* can be used to implement more
finely grained quota policies. See Messaging Server Reference. The following examples show
how to set user quotas.

• To specify the system default quota, do not add mailQuota to the LDAP entry, or set it to
-2.

• To set the quota to 1,000 messages, set mailMsgQuota to 1000.

• To set the quota to two megabytes, set mailQuota to 2M.

• To set the quota to two gigabytes, set mailQuota to 2G or 2000M.

The following LDAP entry specifies a 2 Gigabyte quota; a 20 Megabyte voice mail quota; and a
100 Megabyte quota for the Archive folder:

mailQuota: 2G;#voice%20M;Archive%100M

The two gigabyte quota represents all folders in the user's mailbox that are not explicitly
assigned quotas. In this example, that excludes messages in the Archive folder, and
messages of type voice. The 100 megabyte quota includes messages in any folders within the
Archive folder.

Refer to the Schema Reference for more information about mailQuota values. Also see
"Managing Message Types in the Message Store".

To Specify Domain Quotas
You can set disk space or message quotas for domains. These quotas are for the cumulative
bytes or messages of all users in a particular domain. To specify domain quotas, set the
mailDomainDiskQuota or mailDomainMsgQuota attributes in the desired LDAP domain
entry. For more information about the previous attributes see Schema Reference.

Chapter 48
To Specify Individual User Quotas

48-5

• To set the quota to 1,000 messages, set mailDomainMsgQuota to 1000.

• To set the quota to two megabytes, set mailDomainDiskQuota to 2M or 2000000.

• To set the quota to two gigabytes, set mailDomainDiskQuota to 2G or 2000000000 or
2000M.

To Set Up Quota Notification
Quota notification is the process of sending users a warning message when they are getting
close to their quota.

1. To enable quota notification, run the following command:

msconfig set store.quotanotification 1

If the message is not set, no quota warning message is sent to the user.

2. To define a quota warning message, run the following command:

msconfig set store.quotaexceededmsg 'message'

For example:

msconfig set store.quotaexceededmsg 'Subject: WARNING: User quota exceeded$$User
quota threshold exceeded - reduce space used.'

The Warning Message is the message that is sent to users who are close to exceeding
their disk quota. The warning message must:

• Be in RFC 822 format

• Contain a header with at least a subject line, followed by $$, then the message body

• Use "$" to represent a new line Depending on the shell that you are using, it might be
necessary to append a \ before $ to escape the special meaning of $. ($ is often the
escape character for the shell.) You can also use the following variables in the
message:

• [ID] - userid

• [DISKUSAGE] - disk usage

• [NUMMSG] - number of messages

• [PERCENT] - store.quotawarn percentage

• [QUOTA] - mailquota attribute

• [MSGQUOTA] - mailmsgquota attribute The following example shows a warning
message that uses these variables:

msconfig set store.quotaexceededmsg 'Subject: Overquota Warning$$[ID],$$Your
mailbox size has exceeded [PERCENT] of its allotted quota.$Disk Usage:
[DISKUSAGE]$Number of Messages: [NUMMSG]$Mailquota: [QUOTA]$Message Quota:
[MSGQUOTA]$$-Postmaster'

3. To specify how often the warning message is sent, run the following command:

msconfig set store.quotaexceededmsginterval number

where number indicates a number of days. For example, 3 would mean the message is
sent every 3 days.

4. To specify a quota threshold, run the following command:

Chapter 48
To Set Up Quota Notification

48-6

msconfig set store.quotawarn number

where number indicates a percentage of the allowed quota. A quota threshold is a
percentage of a quota that is exceeded before clients are sent a warning. When a user's
disk usage exceeds the specified threshold, the server sends a warning message to the
user.

Note:

When the store.quotaoverdraft is enabled, email notifications are not triggered
until the user's disk usage exceeds 100 percent of the quota, regardless of the
threshold set with store.quotawarn.

For IMAP users whose clients support the IMAP ALERT mechanism, the message is
displayed on the user's screen each time the user selects a mailbox and a message is also
written to the IMAP log.

To Disable Quota Notification
• To disable quota notification, run the following command:

msconfig set store.quotanotification 0

To Enable or Disable Quota Enforcement
By default, users or domains can exceed their quotas with no effect except for receiving an
over quota notification (if set). Quota enforcement locks the mailboxes from receiving further
messages until the disk usage is reduced below the quota level.

To Enable Quota Enforcement at the User level
• To enable quota enforcement at the user level, run the following command:

msconfig set store.quotaenforcement 1

The MTA saves over-quota messages in its queues and notifies users that their messages
were not delivered but that a redelivery attempt is to be made later. Delivery retries
continue until either the grace period expires and all messages are sent back to the
senders, or the disk usage falls below the quota and messages can be dequeued from the
MTA and delivered to the message store. If you want to return messages that are over
quota before they get to the message queues, use the following command:

msconfig set store.overquotastatus 1

To Perform Quota Enforcement at the Domain Level
Unlike user-level quotas, domain-level quotas are not maintained dynamically.

• To enforce quotas for a particular domain, use the following command:

imquotacheck -f -d domain

To enforce quotas for all domains, exclude the -d option.

Chapter 48
To Enable or Disable Quota Enforcement

48-7

When imquotacheck -f finds a domain with maildomainstatus=active that has exceeded its
quota, the maildomainstatus attribute is set to overquota, which halts all delivery to this
domain. When imquotacheck -f is run again and the domain is back under quota, the value is
set to active.

Disabling Quota Enforcement
If it appears that user quotas are being enforced, even when you have disabled them, check
that the following options are disabled or not set:

• store.quotaenforcement

• store.overquotastatus

• store.quotaoverdraft

When store.overquotastatus is enabled (set to 1), it always treats store.quotaoverdraft as
enabled, otherwise users never go over quota to trigger the rejection. Also, when
store.quotaoverdraft is enabled, users are allowed one message that is smaller than the
quota only. That is, it never accepts a message that is greater than the user's quota.

After changing these options, restart Messaging Server.

These Message Store attributes should be active:

• maildomainstatus

• mailuserstatus

Messages bounce if they are larger than the mailbox quota, regardless of quota enforcement
configuration.

To Set a Grace Period
The grace period specifies how long the mailbox can be over the quota (disk space or number
of messages) before messages are bounced back to sender. The grace period is not how long
the message is held in the message queue, it's how long the mailbox is over quota before all
incoming messages, including those in the message queue, are bounced. (see "Message
Store Quota Overview" for more details.) The grace period starts when the user has reached
the quota threshold and been warned. See "To Set Up Quota Notification" for more information.

• To specify a quota grace period at the command line:

msconfig set store.quotagraceperiod number
where number indicates number of hours.

Netscape Messaging Server Quota Compatibility Mode
After disk usage exceeded the quota in the Netscape Messaging Server, the server deferred or
bounced message delivery, sent an over quota notification, and started the grace period.
Messaging Server provides an option, store.quotaoverdraft, which retains this behavior.

When store.quotaoverdraft is enabled (set to 1), messages are delivered until disk usage is
over quota. At that time, messages are deferred (messages stay in the MTA message queue
but are not delivered to the message store), an over quota warning message is sent to the
user, and a grace period starts. The grace period determines how long a mailbox is overquota
before the overquota messages bounce. (The default is that the quota warning messages are
sent when the message store reaches the threshold.) The default for this option is disabled
(set to 0).

Chapter 48
To Set a Grace Period

48-8

49
Managing Message Types in the Message
Store

This chapter describes how to work with Oracle Communications Messaging Server message
types. See "Message Store Message Type Overview" for conceptual information.

To Configure Message Types
To configure a message type, use the msconfig utility to set the store.messagetype option
values that define and identify the message type.

1. Enable message types by setting the store.messagetype.enable option to 1. This option
enables the message store to identify and manipulate message types. You must set this
option before you can configure an individual message type. For example, type the
following command:

msconfig set store.messagetype.enable 1
2. Define and identify the message type by setting store.messagetype.mtindexx options.

The variable x identifies this particular message type in the message store. The variable x
must be an integer greater than zero and less than 64. You can define up to 63 message
types by iteratively configuring this option with unique integers. You define the value of the
message type with a text string that describes the type.

• For example, to define a text message type, type the following command:

msconfig set store.messagetype.mtindex:1.contenttype text/plain
• To define a voice message type, type the following command:

msconfig set store.messagetype.mtindex:2.contenttype multipart/voice-message
3. Provide a flag name for the message type by setting the

store.messagetype.mtindex:x.flagname option. This option creates a unique flag that
identifies the message type. The flag is automatically set whenever a message of this type
first arrives in the message store and remains associated with the message until it is
purged. The flag name value is a text string that describes the message type. It does not
have to be the same as the value set with the store.messagetype.mtindex:x option. The
variable x is the integer ID of the message type defined with the
store.messagetype.mtindex:x option. For example, to define flag names for the message
types configured in the preceding step, type the following commands:

msconfig set store.messagetype.mtindex:1.flagname text
msconfig set store.messagetype.mtindex:2.flagname voice_message

4. Configure a quota root name for the message type by setting the
store.messagetype.mtindex:x.quotaroot option. This option enables the quota function
to identify and manage a quota root for this message type. The option value is a name-a
text string that describes the message type. It does not have to be the same as the value
set with the store.messagetype.x option. The variable x is the integer ID of the message
type defined with the store.messagetype.x option. When this option is configured, you
can set a quota that applies to the specified message type. See "Administering Quotas by
Message Type" for more information. For example, to enable the use of quota roots for the
message types configured in the preceding steps, type the following commands:

49-1

msconfig set store.messagetype.mtindex:1.quotaroot text
msconfig set store.messagetype.mtindex:2.quotaroot voice

5. To configure an alternate header field for identifying the message type, set the
store.messagetype.header option. By default, the message store reads the Content-Type
header field to determine the message type. Configure the store.messagetype.header
option only if you want to use a different header field for identifying the message type. The
value of this option is a text string. For example, to use a field called X-Message-Type,
enter the following command:

msconfig set store.messagetype.header X-Message-Type

Sending Notification Messages for Message Types
Notifications can deliver status information about messages of different types, such as text
messages, voice mail, and image data. Messaging Server uses Message Queue to send
notification information for message types.

To enable the JMQ notification plug-in to recognize a particular message type, you must
configure the store.messagetype options, including the
store.messagetype.mtindex:x.flagname option.

Once the message types have been configured, JMQ notification messages can identify the
particular message types. You can write a Message Queue client to interpret notification
messages by message type and deliver status information about each type to the mail client.

The JMQ notification function counts the number of messages currently in the mailbox, by
message type. Instead of sending one count, an array specifying the count for each message
type is sent with the notification message. For example, a NewMsg notification message can
carry data to users informing them that their inbox has new voice mail and text messages.

Administering Quotas by Message Type
When you set a quota for a message type, you include that value in a quota root. A quota root
specifies quotas for a user. It can specify different quotas for particular message types and
mailbox folders, and it can specify a default quota that applies to all remaining message types,
folders, and messages not defined by type.

See "Quota Theory of Operations" for complete information about setting and managing
quotas.

Before You Set Message-Type Quotas
Before you can set quotas for message types, you must configure the following options:

• Set the store.messagetype.mtindex:x.quotaroot option for each message type. See "To
Configure Message Types" for details.

• Set the store.typequota.enable option to 1. For example, type the following command:

msconfig set store.typequota.enable 1

Methods of Setting Message-Type Quotas
Use one of the following methods to set quotas for message types:

• Set message-type quotas for a user with the LDAP attributes mailQuota or
mailMsgQuota (or both).

Chapter 49
Sending Notification Messages for Message Types

49-2

For information about how to set quota roots with these attributes, see the mailQuota and
mailMsgQuota entries in Schema Reference.

• Set default message-type quotas that apply to all individual users when the mailQuota and
mailMsgQuota attributes are not set.

To set default quotas, use the store.defaultmessagequota or
store.defaultmailboxquota option (or both).

See "Managing Message Store Quotas" for information about how to set quota roots with
these options.

When you set a quota for the message type with a msconfig option or LDAP attribute, you
must use the quota root specified with the store.messagetype.mtindex:x.quotaroot option.

Example of a Message-Type Quota Root
The example described in this section sets the following quotas for the user joe:

• The default mailbox storage quota is 40 MBytes.

• The default mailbox message quota is 5000.

• The storage quota for the Archive folder is 100 MBytes.

• The storage quota for text message types is 10 MBytes.

• The message quota for text message types is 2000.

• The storage quota for voice message types is 10 MBytes.

• The message quota for voice message types is 200.

This quota root permits greater storage in the Archive folder (100 MBytes) than in all the other
folders and message types combined (60 MBytes). Also, no message limit is set for the
Archive folder. In this example, only storage limits matter for archiving.

The message types have both storage and number-of-message quotas. The message-type
quotas apply to the sum of all messages of those types, whether they are stored in the Archive
folder or in any other folder.

The default mailbox quotas apply to all messages that are not text or voice message types and
are not stored in the Archive folder. That is, the message-type quotas and Archive quota are
not counted as part of the default mailbox quotas.

To set the quota root in this example:

1. Configure the store.messagetype.mtindexx.quotaroot option as follows:

msconfig set store.messagetype.mtindex:1.quotaroot text
msconfig set store.messagetype.mtindex:2.quotaroot voice

2. Configure the mailQuota attribute for the user joe as follows:

mailQuota: 20M;#text%10M;#voice%10M;Archive%100M
3. Configure the mailMsgQuota attribute for the user joe as follows:

mailMsgQuota: 5000;#text%2000;#voice%200
When you run the getquotaroot IMAP command, the resulting IMAP session displays all
quota roots for the user joe's mailbox, as shown here:

1 getquotaroot INBOX
* QUOTAROOT INBOX user/joe user/joe/#text user/joe/#voice
* QUOTA user/joe (STORAGE 12340 20480 MESSAGE 148 5000)
* QUOTA user/joe/#text (STORAGE 1966 10240 MESSAGE 92 2000)

Chapter 49
Administering Quotas by Message Type

49-3

* QUOTA user/joe/#voice (STORAGE 7050 10240 MESSAGE 24 200)
2 getquotaroot Archive
* QUOTAROOT user/joe/Archive user/joe/#text user/joe/#voice
* QUOTA user/joe/Archive (STORAGE 35424 102400)
* QUOTA user/joe/#text (STORAGE 1966 10240 MESSAGE 92 2000)
* QUOTA user/joe/#voice (STORAGE 7050 10240 MESSAGE 24 200)

Expiring Messages by Message Type
The expire and purge feature enables you to move messages from one folder to another,
archive messages, and remove messages from the message store, according to criteria you
define in expire rules. You perform these tasks with the imexpire utility. Because the imexpire
utility is run by the administrator, it bypasses quota enforcement. See "Configuring Message
Expiration (Tasks)" for information about how to write expire rules and use the imexpire utility.

You can write expire rules so that messages of different types are expired according to different
criteria. The expire feature is extremely flexible, offering many choices for setting expire
criteria. This section describes one example in which text and voice messages are expired
according to different criteria.

The following example assumes you have configured text and voice message types as follows:

store.messagetype.mtindex:1 text/plain
store.messagetype.mtindex:2 multipart/voice-message

Assume also that the message store is configured to read the Content-Type header field to
determine the message type.

Example: Sample Rules for Expiring Different Message Types
TextInbox.folderpattern: user/%/INBOX
TextInbox.messageheader.Content-Type: text/plain
TextInbox.messagedays: 365
TextInbox.action: fileinto:Archive
VoiceInbox.folderpattern: user/%/INBOX
VoiceInbox.messageheader.Content-Type: multipart/voice-message
VoiceInbox.savedays: 14
VoiceInbox.action: fileinto:OldMail
VoiceOldMail.folderpattern: user/%/OldMail
VoiceOldMail.messageheader.Content-Type: multipart/voice-message
VoiceOldMail.savedays: 30
VoiceOldMail.action: fileinto:Trash
Trash.folderpattern: user/%/Trash
Trash.savedays: 7
Trash.action: discard

In this example, text messages and voice mail are expired in different ways, and they follow
different schedules, as follows:

• Text messages are moved from a user's inbox to the user's Archive folder one year after
they arrive in the message store.

• Voice mail is moved from the inbox to the OldMail folder after two weeks. If the user saves
a voice message, the saved date is reset, and the message is moved two weeks after the
new date.

• Voice mail is moved from the OldMail folder to the Trash folder after 30 days. The user also
can save a voice message in the OldMail folder, which postpones the removal of the
message for another 30 days after the new saved date.

Chapter 49
Expiring Messages by Message Type

49-4

• Messages of all types are discarded seven days after they are moved to the Trash folder.
The expire rules move voice mail to Trash automatically. Text messages are moved to
Trash when a user deletes them.

Note:

The savedays rule causes a message to be expired the specified number of days
after the message is saved. In a typical voice mail system, a user can save voice mail
on the voice mail menu. For text messages, a message is saved when it is moved to
a folder. The messagedays rule causes a message to be expired the specified
number of days after it first arrives in the message store, no matter which folder it is
stored in or how often it is moved.

Chapter 49
Expiring Messages by Message Type

49-5

50
Managing Shared Folders

This chapter describes the tasks that you use to administer Oracle Communications
Messaging Server shared folders.

Shared Folders Overview
A shared folder is like any other mail folder except that users other than its owner can read,
delete, or add messages to it, depending on the access rights they are granted. Messages can
be added to shared folders by normal drag and drop, by Sieve filters, or by sending messages
directly using the form: uid+folder@domain.

The following example shows the address for sending email to a private shared folder owned
by carol.fanning@example.com called crafts_club:

carol.fanning+crafts_club@example.com

This example shows the address for sending email to a public shared folder called tennis:

public+tennis@example.com

Shared folders are useful for starting, sharing, and archiving an ongoing email conversation on
a particular topic. For example, a group of software developers can create a shared folder for
discussing development of a particular project called mosaic_voices. When a message is
sent or dropped into the folder mosaic_voices, anyone who has permissions to access the
shared folder (permissions can granted to individuals or groups) can open this mailbox and
read the message.

Shared folders are displayed in user's mailbox tree under a folder called Shared Folders, as
shown in Figure 50-1.

50-1

Figure 50-1 Example of Shared Mail Folder List as Seen from a Mail Client

There are two kinds of shared folders:

• Private Shared Folder - A shared folder created and owned by a specific user with access
rights granted to other users or groups. The owner can grant access rights using
Convergence or other mail clients that support shared folder creation. The mail
administrator can also grant access rights using the readership command. Private shared
folders appear in the Shared Folders/User mail folder directory.

• Public Shared Folder - A shared folder created by the mail administrator and not owned
by a specific user. The mail administrator can grant access rights using the readership
command. Public shared folders appear in the Shared Folders/Public mail folder
directory.

For example, you might want a folder, such as public+software_dev@example.com for
posting information about a special interest group inside the company. Interested employees
would be granted access to this public folder.

Messaging Server allows folders to be shared among users of different backend message
stores. See "Setting Up Distributed Shared Folders" for details.

See "Managing Shared Folders" for examples of creating shared folders and granting access
rights.

Specifying Sharing Attributes for Private Shared Folders
A private shared folder is a normal folder, created by users in the same way that they create
other folders. A folder becomes "shared" when its owner grants access rights to other users or
groups. Methods to manage folder access include:

• Many IMAP clients

• Convergence web client

• Oracle Communications Messaging Server "readership" command, for mail administrators

Chapter 50
Specifying Sharing Attributes for Private Shared Folders

50-2

Table 50-1 explains the msconfig options that pertain to private shared folders.

Table 50-1 Disabling Quota Enforcement

msconfig Option Description Default

store.privatesharedfolders.restrictanyone If enabled (1), disallows regular users from setting the
permission on private shared folders to anyone.

0

store.privatesharedfolders.restrictdomain If enabled (1), disallows regular users sharing private folders
to users outside of their domain.

0

store.privatesharedfolders.shareflags If disabled (0), users of a shared folder have their own set of
flags (for example, seen, deleted, and so on) for messages
in that folder. If enabled (1), a single set of flags is shared
between all users of each shared folder.

0

To Create a Public Shared Folder
Public shared folders must be created by the mail administrator because they require access
to the LDAP database as well as the "readership" and "mboxutil" commands.

To create a publich shared folder:

1. Set the userid for Public shared folders. The store.publicsharedfolders.user option
specifies the userid to act as a container for all public shared folders (see "Shared Folders
Overview"). Typically, this is simply public. The default is NULL (unset).

msconfig set store.publicsharedfolders.user public
2. Create an LDAP entry for that user. The uid must match that specified by

store.publicsharedfolders.user, for example:

dn: cn=public,ou=people,o=example.com,o=ISP
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: inetUser
objectClass: ipUser
objectClass: inetMailUser
objectClass: inetLocalMailRecipient
objectClass: nsManagedPerson
objectClass: userPresenceProfile
cn: public
mail: public@example.com
mailDeliveryOption: mailbox
mailHost: manatee.example.org
uid: public
inetUserStatus: active
mailUserStatus: active
mailQuota: -1
mailMsgQuota: 100

3. Create folders within the public account by using the "mboxutil" command, for example:

mboxutil -c user/public/gardening
4. Use the "readership" command to grant rights to allow users to access the folder. For

example, the following command gives everyone in the example.com domain lookup,
read, and posting access to the public folder gardening:

readership -s user/public/gardening anyone@example.com lrp

Chapter 50
To Create a Public Shared Folder

50-3

The name anyone@domain is a special case to designate all users in the specified
domain. It does not correspond to any user or group definition in LDAP. The name anyone
without specifying a domain indicates anyone in any domain. The following command
grants the user whose uid is kelly the same access rights as the owner of the folder:

readership -s user/public/gardening kelly@example.com lrswipcdan

For individual users, you only need to supply a domain name with hosted domains. Do not
use a domain name if the user to whom access is being granted is in the default domain.

See the "readership" command for a list of the "Table 64-33" and their meanings.

To Grant Folder Access Rights Based on Group Membership
In the previous examples, "Table 64-33" have been granted to individual users or to the special
case names anyone or anyone@<domain>. You can also grant rights based on group
membership. Members of such a group are identified by having the aclGroupAddr attribute.
For more information on the aclGroupAddr, see Schema Reference.

For example, a group called tennis@example.com has 25 members and the members have
decided that they would like to create a shared folder to store all email going to this group
address and to allow members of the group to access that shared folder.

The mail administrator uses the "readership" command to grant group access rights. A group
name is distinguished from individual user names by the prefix "group=".

To grant folder access rights based on group membership:

1. Create the folder. In this example, the team decided to use a private shared folder. The
user gregk could have created the folder by using a mail client, or the mail administrator
could have created it by using the "mboxutil" command, for example:

mboxutil -c user/gregk/gardening

If the team were using a public shared folder, the mail administrator would have had to
create it:

mboxutil -c user/public/gardening
2. Use the "readership" command to grant lookup, read, and posting access privileges to

the group:

readership -s user/gregk/gardening group=tennis@example.com lrp
3. Assign group membership to the individual users. For the purpose of folder access control,

group membership is determined by the aclGroupAddr attribute on the LDAP entry of the
individual users. Add the attribute-value pair aclGroupAddr=<group-name> to the user
entry of every member of the group, for example:

aclGroupAddr: tennis@example.com
To create group objects in LDAP, you could use the aclGroupAddr attribute as the basis for a
dynamic group, for example:

memberURL: ldap:///o=example.com??sub?(&(aclGroupAddr=tennis@example.com)
(objectclass=inetmailuser))

However, note that the LDAP group object with mail address tennis@example.com is not
used for determining group membership for the purpose of shared folder access. What matters
is that the "xxx" value in group=xxx on the readership command matches the value of the
aclGroupAddr attribute on the user's LDAP object.

Chapter 50
To Grant Folder Access Rights Based on Group Membership

50-4

Also note that if you use the aclGroupAddr attribute as the criteria for a dynamic group, you
should check to make sure that attribute is indexed properly for such lookups.

To Set or Change a Shared Folder's Access Control Rights
Users can set or change the access control for a shared folder by using Convergence.
Administrators can set or change the access control for a shared folder using the "readership"
command line utility. The command has the following form:

readership -s foldername identifier rights_chars

where foldername is the name of the folder for which you are setting rights, identifier is the
person or group to whom you are assigning the rights, and rights_chars are the rights you are
assigning. For the meaning of each character, see Table 50-3 for more information.

Note:

anyone is a special identifier. The access rights for anyone apply to all users.
Similarly, the access rights for anyone@domain apply to all users in the same
domain. For the identifier, only supply a domain name with hosted domains. Do not
use a domain name if the folder is in the default domain.

Shared Folder Examples
• To assign everyone in the example domain to have lookup, read, and email marking (but

not posting) access to the public folder called golftournament, type the following
command:

readership -s user/public/golftournament anyone@example lwr
• To assign the same access to everyone on the message store type the following

command:

readership -s user/public/golftournament anyone lwr
• To assign lookup, read, email marking, and posting rights to a group, type the following

command:

readership -s user/public/golftournament group=golf@example.com lwrp
• If you want to assign administrator and posting rights for this folder to an individual, jdoe,

type the following command:

readership -s user/public/golftournament jdoe@example.com lwrpa
• To deny an individual or group access to a public folder, prefix the userid with a dash. For

example, to deny lookup, read, and write rights to jsmith, type the following command:

readership -s user/public/golftournament -jsmith@example.com lwr
• To deny an individual or group an access right, prefix the ACL rights character with a dash.

For example, to deny posting rights to jsmith, type the following command:

readership -s user/public/golftournament jsmith@example.com -p
• To remove an individual or group access right setting from a folder, set it to an empty set.

This is different from an ACL to deny access:

readership -s user/public/golftournament jsmith@example.com ""

Chapter 50
To Set or Change a Shared Folder's Access Control Rights

50-5

Note:

Posting messages to a shared folder by using the uid+folder@domain address
requires that the p (post) access right be used with the readership command.
See "To Set or Change a Shared Folder's Access Control Rights" for more
information.

Enabling or Disabling Listing of Shared Folders
Use the store.sharedfolders option to enable to disable listing of shared folders when
responding to an IMAP LIST command. Setting the option to 0 disables it. The setting is
enabled by default (set to 1). SELECT and LSUB commands are not affected by this option.
The LSUB command returns every subscribed folder, including shared folders. Users can
SELECT the shared folders they own or are subscribed to.

Setting Up Distributed Shared Folders
Normally, shared folders are only available to users on a particular message store. Messaging
Server, however, enables you to create distributed shared folders that can be accessed
across multiple message stores. That is, access rights to distributed shared folders can be
granted to any users within the group of message stores. However, web mail clients do not
support remote shared folders access. Users can list and subscribe to the folders, but they
cannot view or alter the contents.

Distributed shared folders require the following:

• Every message store userid must be unique across the group of message stores.

• The directory data across the deployment must be identical.

The remote message stores (that is the message stores that do not hold the shared folder)
must be configured as proxy servers by setting the configuration variables listed in Table 50-2.

Table 50-2 Variables for Configuring Distributed Shared Folders

Name Value Data Format

base.proxyserverlist Message store server list to list shared folders from space-separated strings

base.proxyadmin Default store admin login name string

base.proxyadminpass Default store admin password string

proxy:hostname.imapadmin Store admin login name for a specific host if different
from base.proxyadmin

string

proxy:hostname.imapadminpass Store admin password for a specific host if different from
base.proxyadminpass

string

Setting Up Distributed Shared Folders-Example
Figure 50-2 shows a distributed folder example of three message store servers called
StoreServer1, StoreServer2, and StoreServer3.

Chapter 50
Enabling or Disabling Listing of Shared Folders

50-6

Figure 50-2 Distributed Shared Folders-Example

These servers are connected to each other as peer proxy message stores by setting the
appropriate msconfig options. Each server has a private shared folder: golf (owned by Han),
tennis (owned by Kat), and hurling (owned by Luke). In addition, there are two public shared
folders called press_releases and Announcements. Users on any of the three servers can
access any of these three shared folders.

The following example shows the ACLs for each server in this configuration.

Note:

The imcheck -d command is only valid for classic message store.

$ StoreServer1 :> imcheck -d lright.db
Ed: user/Han/golf
Ian: user/Han/golf
anyone: user/public/press_releases

$ StoreServer2 :> imcheck -d lright.db
Jan: user/Kat/tennis
Ann: user/Kat/tennis
anyone: user/public+Announcements user/public+press_releases

$ StoreServer3 :> imcheck -d lright.db
Tuck: user/Ian/hurling
Ed: user/Ian/hurling
Jac: user/Ian/hurling
anyone: user/public/Announcements

Monitoring and Maintaining Shared Folder Data
The readership command-line utility enables you to monitor and maintain shared folder data
which is held in the folder.db, peruser.db, and lright.db files. folder.db has a record for each
folder that holds a copy of the ACLs. The peruser.db has an entry per user and mailbox that
lists the various flags settings and the last date the user accessed any folders. The lright.db
has a list of all the users and the shared folders for which they have lookup rights.

Table 50-3 shows the options for the readership command-line utility.

Chapter 50
Monitoring and Maintaining Shared Folder Data

50-7

Table 50-3 readership Options

Options Description

-d days Returns a report, per shared folder, of the number of users who have
selected the folder within the specified days.

-p months Removes data from the peruser.db for those users who have not
selected their shared folders within the specified months.

-l List the data in lright.db.

-sfolder_identifier_rights Sets access rights for the specified folder. This updates the lright.db as
well as the folder.db.

Using the various options, you can perform the following functions:

• To Monitor Shared Folder Usage

• To List Users and Their Shared Folders

• To Remove Inactive Users

• To Set Access Rights

To Monitor Shared Folder Usage
To find out how many users are actively accessing shared folders, use the following command:

readership -d days

where days is the number of days to check. Note that this option returns the number of active
users, not a list of the active users.

Example: To find out the number of users who have selected shared folders within the last 30
days:

readership -d 30

To List Users and Their Shared Folders
To list users and the shared folders to which they have access, use the following command.

Note:

The imcheck -d command is only valid for classic message store.

imcheck -d lright.db

Example output:

imcheck -d lright.db
group=lee-staff@example.org: user/user2/lee-staff
richb: user/golf user/user10/Drafts user/user2/lee-staff user/user10/Trash
han1: user/public+hurling@example.org user/golf
gregk: user/public+hurling@example.org user/heaving user/tennis

Chapter 50
Monitoring and Maintaining Shared Folder Data

50-8

To Remove Inactive Users
If you want to remove inactive users (those who have not accessed shared and other folders in
a specified time period), use the following commands:

1. This command writes the inactive mailboxes to a file:

mboxutil -o [-w file] [-t number_of_days]
2. This command removes the mailboxes in a given file:

mboxutil -d -f file
Example: Remove users who have not accessed folders for the past six months (180 days)
using a file named inactive_users:

mboxutil -o -w inactive_users -t 180
mboxutil -d -f inactive_users

To Set Access Rights
You can assign access rights to a new public folder, or change access rights on a current
public folder.

See "To Set or Change a Shared Folder's Access Control Rights" for an example of how to set
access rights with this command

Chapter 50
Monitoring and Maintaining Shared Folder Data

50-9

51
Upgrading the Classic Message Store

This chapter describes the data components and tools of the Oracle Communications
Messaging Server classic message store, and how they affect data upgrades. It provides the
technical background for upgrade planning. If you are using the upgrade procedure described
in Messaging Server Installation and Configuration Guide, you do not need to concern yourself
with this level of message store technical detail. However, if you need to customize your
message store upgrade process, use this information as a guideline.

See "Significant Changes in the Classic Message Store Between Versions" for specific
information about significant design changes in the message store between versions that can
impact disk I/O and performance.

Architecture and Components
Figure 51-1 shows the classic message store architecture and its components. See
"Figure 27-1" for a view of the message store file structure.

51-1

Figure 51-1 Classic Message Store and Components

The classic message store uses the Berkeley Database provided by Sleepycat Software and,
since 2006, Oracle Corporation. The message store database files are stored in a directory
called mboxlist (see "Classic Message Store Directory Layout" for more information) and so it
is often called the mboxlist database.

Chapter 51
Architecture and Components

51-2

The classic message store has used several versions of the Berkeley Database over the
course of its existence. Thus, when you upgrade your message store, the Berkeley Database
may also be upgraded. The database engine upgrade has complexities and implications for the
data upgrade. (These complexities and implications are handled in the Message Store upgrade
tools and instructions described in Messaging Server Installation and Configuration Guide, but
these details are described here for custom upgrade plans.)

The mboxlist database is stored in the BTREE database files. The BTREE database files
store information about the message store users and mailboxes (see "Classic Message Store
Directory Layout"). The number and types of files, as well as the structure of files themselves
have varied over the life of the Berkeley Database.

The Berkeley Database is transactional, so each transaction is logged in a database log file.
Database log files are used for recovery. All database changes are recorded in the database
log file. When the server is crashed and restarted, it uses the log file to bring the database
back to a consistent state. Before you do an upgrade, make sure you have a clean shutdown
and recovery by running stored -r.

Classic Message Store Component Version Compatibilities
Table 51-1 contains the version number of various database components in the classic
message store with respect to upgrade.

Table 51-1 Classic Message Store Database Components

Messaging Server Mailbox Berkeley Database Database BTREE Database Log Files

4.15 1_1 2.6 6 2

5.x 1_2 2.6 6 2

6.0 1_2 3.2.9 8 3

6.1 1_2 4.2 9 8

6.2 1_2 4.2 9 8

6.3 1_2 4.4 9 11

7.0 1_3 4.4 9 11

7 Update 1 1_3 4.7.25 9 14

7 Update 2 1_3 4.7.25 9 14

7 Update 3 1_3 4.7.25 9 14

7 Update 4 1_3 4.7.25 9 14

7 Update 5 1_4 5.3.21 9 19

8.0 1_5 6.1.19 10 22

8.0.1 1_5 6.1.26 10 22

8.0.2 1_5 6.2.32 10 23

8.1.0 1_5 6.2.32 10 23

In general, when you upgrade Messaging Server from one version to another, you also have to
upgrade the components that have a different version. Certain message components are not
compatible with other components. The following section describes the various compatibilities
and incompatibilities.

Chapter 51
Classic Message Store Component Version Compatibilities

51-3

Upgrading the Mailboxes
The classic message store upgrades mailboxes from version 1_1-1_2 and 1_2-1_4 to the
current version automatically. Usually, a mailbox is upgraded when the end users select their
mailboxes, or when messages are delivered to the mailboxes after the message store software
is upgraded. The message store checks the mailbox version in the mailbox header and
upgrades the mailbox if needed.

Mailbox upgrade increases the load on the server. Disable the non-essential tasks during the
transition period, such as:.

• Disable peruser.db archive:

msconfig -o store.seenckpinterval -v 0 (Unified Configuration)

or

configutil -o local.store.seenckpinterval -v 0 (legacy configuration)

• Disable last access time tracking:

msconfig -o base.enablelastaccess -v 0 (Unified Configuration)

or

configutil -o local.enablelastaccess -v no (legacy configuration)

• Decrease DB snapshot frequency

• Decrease log level

• Temporarily disable delivery

• Temporarily disable impurge

You can upgrade the mailboxes manually with imcheck -H during off-peak hours. The
imcheck command opens every mailbox, which triggers the upgrade. You can run this
command to make sure all the mailboxes are upgraded.

To upgrade from mail version 1_1 to 1_4, you have to use a migration tool such as imsbackup
and imsrestore.

Downgrading mailbox versions is not automatic. You have to use a migration tool such as
imsbackup and imsrestore to downgrade a mailbox.

Upgrading and Downgrading the Berkeley Database (BDB)
The classic message store uses the Berkeley Database to store various data. The email
messages themselves are not part of the data stored in the BDB. If the database is upgraded
to a version that is incompatible with the previous version, the database files will become
incompatible with older versions of the classic message store. Therefore, make a backup copy
of the database before the upgrade in case you want to back out of the upgrade.

The primary database which needs to be backed up is located by default in the mboxlist/
directory, and consists of .dbfiles, andlog. files. The __* files are temp files for the database
and do not need to be copied. A correct copy of the database ensures data is in a consistent
state. The message store and utilities must be shut down. Running stored -r will make sure
the cache files are synced to the database files. Both database and log files are required.

If you need to back out of a patch or update which upgrades the Berkeley Database to a
version that is incompatible with previous versions and you did not make a backup, you may
be able to rely on a previous database snapshot. Database snapshots are located by default in

Chapter 51
Classic Message Store Component Version Compatibilities

51-4

the dbdata/ directory. A valid database snapshot directory will have a .verified file.
The.verified file indicates that the snapshot has been recovered, verified, and is ready to be
used.

Normally when the store is brought up, the stored process replaces the mboxlist directory
with any snapshots needed. In the case where you have backed out of a database upgrade,
stored may not take into account that a downgrade has occurred. It may therefore be
necessary to replace the valid snapshot manually. To do this, move the current database files
in mboxlist/ out of the directory and move all the files from the chosen snapshot directory into
the mboxlist/ directory. Be sure to remove the __* tmp files as well. Note that if the store is
configured with store.dbtmpdir, the tmp files will be in a different location.

If you have no database backup and no valid snapshots, it may be necessary to move the
upgraded database out of the way, and rebuild it from scratch. Under normal circumstances,
the classic message store rebuilds the database while allowing users to access their mail.
Since doing this puts a heavier load on the system, you should create proper database
backups instead.

Normal reparation of the database should be done after putting an older version in place by
running the reconstruct -m and reconstruct -r commands.

Some of these manual requirements might be addressed in future releases.

Note that the Berkeley database consist of BTREE files, LOG files, and temporary files (tmp
file location is configurable with store.dbtmpdir). To upgrade the database, run "stored -r"
before replacing the new libraries and binaries. Note that "stored -r" runs automatically during
the proper upgrade process.

In the unlikely event that stored -r fails, check the store log files to determine the cause, run
stored alone to perform a database recovery, and run stored -r again. In normal
circumstances, this should not be a problem unless there is some underlying system problem
which you should resolve before upgrading.

Database BTREE File
BTREE version 8, 9, and 10 are compatible. Upgrade is not needed.

To upgrade the BTREE files from version 6 (BDB 2.6) to a higher version, copy the database
files from the old location (example: /usr/iplanet/server5/msg-store/store/mboxlist for 5.2) to
the new mboxlist location (example: /var/opt/sun/comms/messaging64/store/mboxlist),
then run ims_db_upgrade.

Database Log Files
Database log files cannot be upgraded. When the log version changes, run the legacy version
of "stored -r" to process the log files (recover the database) before upgrading. Do not remove
the old log files.

The following message is logged when the server restarts.

'Skipping log file...historic log version'

The store daemon creates a new log file with the new version.

IMAPD, MSHTTPD and Convergence
The webmail server (mshttpd) uses imapd to access the message store. imapd and mshttpd
in 6.3 and 7.x are fully compatible, so simultaneous upgrade is not required. To prevent

Chapter 51
IMAPD, MSHTTPD and Convergence

51-5

memory problems due to redundant IMAP sessions from mshttpd, you should run with only
one mshttpd process. If you serve a lot of concurrent webmail users, this might require an
upgrade to 64-bit so that you have enough virtual address space for the process.

Convergence requires webmail server. To use Convergence, you must upgrade mshttpd to
the current version.

Upgrading from Messaging Server 32-bit to 64-bit
Run the legacy version of "stored -r" before upgrading the Messaging Server software from 32-
bit to 64-bit.

If you run the 64-bit version, then it is more efficient to run with only one mshttpd process.

You might also want to reduce the number of imapd process.

Migrating from x86 to SPARC
The classic message store data formats are architecture dependent. You cannot transfer any
data components in the matrix from one architecture to another directly. To migrate the
message store from an x86 machine to a SPARC machine (or from SPARC to x86), use
imsbackup and imsrestore or rehostuser.

stored -r
For cluster upgrade, the administrator need to run stored -r on the node running old software
before upgrading the node with new software. To run stored -r, use the following procedure:

stop-msg store
stored -r
stop-msg

stored -r performs a final recovery and cleanly removes the database temp files to prepare the
database for an upgrade.

For example:

/opt/sun/comms/messaging64/lib/stored -r
removing mboxlist environment ... done
removing lock environment ... done
removing session db ... done

Make sure stored -r completes successfully.

The stored -r command requires the watcher process. Make sure that the watcher is running
before you perform stored -r.

ims_db_upgrade
ims_db_upgrade copies the database files to a backup directory, upgrades the database files
to the current version and validates the new database. If upgrade is not successful, the backup
files are restored. If the database is validated, the backup files are removed.

Chapter 51
Upgrading from Messaging Server 32-bit to 64-bit

51-6

Downgrading
Mailbox and BDB downgrade are not supported. To downgrade a classic message store to an
older version with incompatible mailboxes or databases, you must restore the mailboxes and
mboxlist database from backup.

Significant Changes in the Classic Message Store Between
Versions

This section describes the significant design changes in the classic message store that can
impact disk I/O and performance. Administrators and deployment designers may need to be
aware of these changes for deployments where mboxlist, index, and message data are on
different file systems or pools.

Changes from Messaging Server 6.3 to Messaging Server 7.0
The following changes were made between Messaging Server 6.3 and Messaging Server 7.0:

• Changes to store.idx

• Classic Message Store Maintenance Queue and impurge

• Mailbox Self-Healing (Auto-Repair)

Changes to store.idx
The store.idx file is separated into two or more files. The store.idx file contains the mailbox's
meta data and a 128 bytes fixed length record for every message in the folder. The store.cN
files contain the variable length cache records. The average cache record size is
approximately 2 kilobytes.

Benefits

• Mailbox expunge is much faster

• Supports very large mailboxes (up to 33554431 messages)

I/O Impact

• More files (inodes) on the index partitions

• More I/O for very small mailboxes

• Initial mailbox access triggers mailbox upgrade automatically

Classic Message Store Maintenance Queue and impurge
A BDB queue is added to the message store to manage maintenance tasks. Cache file purge
and message file cleanup tasks are queued and executed by impurge which runs
continuously.

Benefits

• Less I/O overall (especially write)

• Event driven message store maintenance

Chapter 51
Significant Changes in the Classic Message Store Between Versions

51-7

• Higher performance

• Eliminates sudden increase in load during nightly cleanup

I/O Impact

• Less write access

• Higher disk space usage (approximately 10%)

Mailbox Self-Healing (Auto-Repair)
Mailbox corruption is detected and scheduled for repair automatically by impurge.

Benefits

• Increases availability

• Reduces mailbox administration cost

I/O Impact

• Minor I/O increase due to error detection and repair.

Changes from Messaging Server 7 to Messaging Server 7 Update 1
The following change was made between Messaging Server 7 and Messaging Server 7
Update 1:

• Berkeley Database Upgrade

Berkeley Database Upgrade
The Berkeley Database was upgrade from version 4.4 to version 4.7.25.

Benefits

• Higher throughput

I/O Impact

• None

Changes from Messaging Server 7 Update 1 to Messaging Server 7 Update
5

The following changes were made between Messaging Server 7 Update 1 and Messaging
Server 7 Update 5:

• Changes to the Owner's Seen and Deleted Flags

• Immediate flag update and state sharing

• Change to the service.imap.capability.condstore option

• Changes to the Berkeley Database

• Changes to mboxlist and lockdir BDB environments

Chapter 51
Significant Changes in the Classic Message Store Between Versions

51-8

Changes to the Owner's Seen and Deleted Flags
The owner's seen and deleted flags have been moved from the Berkeley Database to the
store.idx file.

Benefits

• Higher throughput by reducing Berkeley Database lock contentions

• Performance bottlenecks can be fixed by adding more spindles

I/O Impact

• Less I/O on the mboxlist file system

• More I/O on the index file system

• Initial mailbox access triggers mailbox upgrade automatically

Immediate flag update and state sharing
Flags and ACL changes are flushed to the disk and shared immediately across IMAP sessions.
New message arrival are notified immediately.

Benefits

• IMAP sessions are more up-to-date

I/O Impact

• More I/O on the index file system

Change to the service.imap.capability.condstore option
The service.imap.capability.condstore option is enabled by default.

Benefits

• IMAP clients can utilize CONDSTORE

• Improve overall performance (when CONDSTORE is utilized)

I/O Impact

• Minimal (because flags and MODSEQ are updated together)

Changes to the Berkeley Database
The Berkeley Database was upgrade from version 4.7.25 to version 5.3.21. The default cache
size increased from 16 MB to 64 MB. Moved the maintenance queue to the mboxlist
environment.

Benefits

• Increase performance and scalability

• Simplify store maintenance tasks

Chapter 51
Significant Changes in the Classic Message Store Between Versions

51-9

I/O Impact

• A small increase in database environment (tmp file) size.

Changes to mboxlist and lockdir BDB environments
Mboxlist and lockdir DB environments (store.dbtmpdir and local.lockdir) default to tmpfs.

Benefits

• Better performance

I/O Impact

• Less I/O on the data root file system.

Chapter 51
Significant Changes in the Classic Message Store Between Versions

51-10

52
Message Store Automatic Recovery On
Startup

This chapter provides a conceptual overview of the Oracle Communications Messaging Server
startup and automatic recovery process of stored, and Message Store Database Snapshot.
See "Administering Message Store Database Snapshots (Backups)" for task information.

Overview of Automatic Recovery on Startup
Message store data consists of the messages, index data, and the message store database.
While this data is fairly robust, on rare occasions there may be message store data problems
in the system. These problems are indicated in the default log file, and almost always are fixed
transparently. In rare cases an error message in the log file may indicate that you need to run
the reconstruct utility. In addition, as a last resort, messages are protected by the backup and
restore processes. See "Backing Up and Restoring the Message Store" for more information.

The message store automates many recovery operations which were previously the
responsibility of the administrator. These operations are performed by message store daemon
stored during startup and include database snapshots and automatic fast recovery as
necessary. stored thoroughly checks the message store's database and automatically initiates
repairs if it detects a problem.

stored also provides a comprehensive analysis of the state of the database by writing status
messages to the default log, reporting on repairs done to the message store and automatic
attempts to bring it into operation.

Automatic Startup and Recovery Theory of Operations
The stored daemon starts before the other message store processes. It initializes and, if
necessary, recovers the message store database. The message store database keeps folder,
quota, subscription, and message flag information. The database is logging and transactional,
so recovery is already built in. In addition, some database information is copied redundantly in
the message index area for each folder.

Although the database is fairly robust, on the rare occasions that it breaks, in most cases
stored recovers and repairs it transparently. However, whenever stored is restarted, you
should check the default log files to make sure that additional administrative intervention is not
required. Status messages in the log file indicate that reconstruct should be run if the
database requires further rebuilding.

Before opening the message store database, stored analyzes its integrity and sends status
messages to the default log under the category of warning. Some messages are useful to
administrators and some messages consist of coded data to be used for internal analysis. If
stored detects any problems, it attempts to fix the database and try starting it again.

When the database is opened, stored signals that the rest of the services may start. If the
automatic fixes failed, messages in the default log specify what actions to take. See "Error
Messages Signifying reconstruct Is Needed" for more information.

52-1

After most recoveries, the database is usually be up-to-date and no further action is required.
However, some recoveries require a reconstruct -m to synchronize redundant data in the
message store. Again, this is stated in the default log, so it is important to monitor the default
log after a startup. Even though the message store seems to be up and running normally, it is
important to run any requested operations such as reconstruct.

Another reason for reading the log file is to determine what caused damage to the database in
the first place. Although stored is designed to bring up the message store regardless of any
problem on the system, you should ascertain cause of the database damage as this may be a
sign of a larger hidden problem.

Error Messages Signifying reconstruct Is Needed
This section describes the type of error messages that require reconstruct to be run.

When the error message indicates mailbox error, run reconstruct <mailbox>. Example:

Invalid cache data for msg 102 in mailbox user/joe/INBOX. Needs reconstruct

Mailbox corrupted, missing fixed headers: user/joe/INBOX

Mailbox corrupted, start_offset beyond EOF: user/joe/INBOX

When the error message indicates a database error, run reconstruct -m. Example:

Removing extra database logs. Run reconstruct -m soon after startup to resync redundant
data

Recovering database from snapshot. Run reconstruct -m soon after startup to resync
redundant data

Message Store Database Snapshot Theory of Operations
This section describes concepts about the message store database snapshot. See
"Administering Message Store Database Snapshots (Backups)" for a description of related
tasks.

A snapshot is a hot backup of the database and is used by stored to restore a broken
database transparently. This is much quicker than using reconstruct to rebuild the entire
database from scratch with the information stored in the message and index partitions.

Snapshots of the database are taken automatically by the scheduler. The default snapshot
schedule consists of a full snapshot every day and incremental snapshots every 10 minutes.
(Note that older versions of Messaging Server have a more frequent default incremental
snapshot schedule).

If the recovery process decides to remove the current database because it is determined to be
bad, stored will move it into the removed directory if it can. This allows the database to be
analyzed if desired.

Message Store Database Snapshot Interval and Location
There should be five times as much space for the database and snapshots combined. It is
highly recommended that the administrator reconfigure snapshots to run on a separate disk,
and that it is tuned to the system's needs.

If stored detects a problem with the mboxlist database at startup, the most recent verified
snapshot is automatically restored. Two snapshot options can be configured: the location of the

Chapter 52
Automatic Startup and Recovery Theory of Operations

52-2

snapshot file and number of snapshots saved. See "Message Store Database Snapshot
Options" for more information about these options.

Having a snapshot interval which is too small results in a frequent burden to the system and a
greater chance that a problem in the database is copied as a snapshot. Having a snapshot
interval too large can create a situation where the database holds the state it had back when
the snapshot was taken.

A snapshot updates all the snapshots with the current data in the mboxlist database.

The ultimate role the snapshot plays is to get the system as close to up-to-date and ease the
burden of the rest of the system trying to rebuild the data on the fly.

Message Store Database Snapshot Options
Table 52-1 shows the snapshot options that you set with the msconfig command.

Table 52-1 Message Store Database Snapshot Options

Option Description

store.snapshotpath Location of message store database snapshot files. Either existing
absolute path or path relative to the store directory.

Default: dbdata/snapshots

store.snapshotdirs Number of snapshots to maintain. Do not set this to more than 3.

Default: 3

Chapter 52
Automatic Startup and Recovery Theory of Operations

52-3

53
Message Store Maintenance Queue

This chapter describes the Oracle Communications Messaging Server message store
maintenance queue.

Message Store Maintenance Queue Overview
The message store maintenance queue purges mailboxes of unused cache records and
message files. Only the index file is purged when a mailbox is expunged. The purging of cache
records is deferred until the amount of expunged data has exceeded a configurable limit. In
addition, the maintenance queue is used to schedule mailbox purge and repair tasks. Mailbox
corruptions detected by the message store are also queued for repair automatically.

Figure 53-1 summarizes the major components and their interactions with the queue.

Note:

Classic message store uses three maintenance queues, whereas Cassandra
message store uses only a single maintenance queue.

Figure 53-1 Message Store Maintenance Queue

When a mailbox is expunged, the message store processes update the number of expunged
messages and enqueue the mailbox name for purging when the number of expunged
messages has exceeded the configured limit (set by the store.cleanupsize option). Similarly,
when store corruptions are detected by the store processes, they enqueue the mailbox name
for repair. A maintenance queue entry contains a mailbox name, a task ID, and a timestamp.
The impurge process dequeues the entries, checks the timestamp and mailbox size or last
repair time and performs the maintenance task if required. The mailbox size and last repair
time are stored in the mboxlist database. Mailboxes that have already been repaired after the
enqueue time are ignored. Obsoleted cache and message files are enqueued for removal after
the cleanup age has expired.

53-1

You can set the impurge process to execute as a daemon or through the scheduler. When you
use the scheduler, you can configure impurge to exit when the queue is empty or when the
end time expires. In this way, you can configure impurge to run during off peak hours.

impurge executes as a daemon by default.

Displaying the Maintenance Queue
Use the imcheck -q command to display the contents of the maintenance queue, for example:

imcheck -q
RecNo Mailbox Timestamp Action
---------- ----------------------------------- -------------- ------
2 user/username 20080225095558 Clean

The maintenance queue database is stored under the DataRootstore/mboxlist directory and
persists across Messaging Server restarts.

Deleting, Expunging, Purging, and Cleaning Up Messages
Message removal is a four steps process:

1. Delete

• A user deletes a message. This results in the per-user \Deleted flag being set on the
message. If there is a second client, the deleted flag may not be recognized
immediately by that second client. You can set the imap.immediateflagupdate option
to enable immediate flag update.

2. Expunge and Expire

• When the mailbox is expunged, messages with the \Deleted flag are removed from the
store.idx file. The message itself is still on disk, but once messages are expunged,
clients can no longer restore them. The number of the expunged messages is also
recorded in the "Expunged" mailbox meta-data field. This field can be reviewed using
the ./imcheck -mmailbox command.

• When a message matches an expiration rule during an imexpire run, the imexpire
command removes the message from the store.idx file and increments the
"Expunged" mailbox meta-data field.

3. Cleanup

Note:

The cleanup step only occurs for classic message store. For Cassandra
message store, once the value for the store.cleanupsize option is reached, the
store is immediately in the purge state.

• Cleanup of a folder is scheduled when the number of expunged in the folder messages
exceeds store.cleanupsize, default is 100. The store.exp file is renamed to
store.exp.timestamp.

• Obsolete message files and cache files are removed from the store partitions when the
store.cleanupage period has elapsed. store.cleanupage controls the cleanup grace
period.

Chapter 53
Displaying the Maintenance Queue

53-2

4. Purge

• impurge purges the cache files when the number of expunged cache records exceeds
store.purge.count (default is 500) and the percentage of expunged cache records
exceeds store.purge.percentage (default is 5%). This is different from the imsimta
purge command, which purges older MTA log files.

Mailbox Self Healing (Auto Repair)
The message store performs sanity checks when a mailbox is opened and when index and
cache data are accessed. When the message store encounters a mailbox format error, and
error is returned to the client and the mailbox is enqueued for repair. impurge dequeues the
mailbox and repairs the mailbox automatically. The mailbox size and last repair time are stored
in the mboxlist database. Mailboxes that have already been repaired after the enqueue time
are ignored.

The following is an example of the auto repair process. In this example, the store.idx file for a
user's INBOX has been removed. When the user accessed their INBOX the following error was
reported in the imap log file:

[25/Feb/2012:09:55:57 +1100] hostname imapd[7264]: Store Critical: Unable to open
mailbox user/username: Mailbox does not exist
[25/Feb/2012:09:55:57 +1100] hostname imapd[7264]: Store Error: user/username: Mailbox
has an invalid format; repair requested

In the default log file an impurge record indicates that the requested mailbox repair as been
processed and the store.idx restored:

[25/Feb/2012:09:55:58 +1100] hostname impurge[7263]: General Notice: repairing user/
username

Maintenance Queue Configuration Options
The store.purge.enable option enables the purge server daemon process on start-msg
startup. Various other store.* options control the maintenance queue. For more information on
these options, see Messaging Server Reference.

The impurge Command
You can use the impurge command to manually purge unused cache records and message
files in mailboxes when the purge server daemon process is not running, that is, when the
store.purge.enable option is disabled.

Attempting to run the impurge command while the purge server daemon process is running
results in the following error message in the Messaging Server default log:

[24/Feb/2012:14:47:15 +1100] hostname impurge[17986]: General Error: Could not get purge
session lock.
Possibly another impurge is running

See "impurge" for details.

Chapter 53
Mailbox Self Healing (Auto Repair)

53-3

54
Message Store Message Type Overview

This chapter provides the conceptual background for using Oracle Communications Messaging
Server message types in the message store. See "Managing Message Types in the Message
Store" for task information.

About Message Type
A unified messaging application can receive, send, store, and administer messages of many
types, including text messages, voice mail, fax mail, image data, and other data formats. The
message store allows you to define up to 63 different message types.

One method of managing messages by type is to organize the messages by their types into
individual folders.

With the introduction of the message type feature, you do not have to maintain different
message types in individual mailbox folders. Once you configure a message type, the
message store can identify it, no matter where it is stored. Thus, you can store heterogeneous
message types in the same folder. You also can perform the following tasks:

• Track the usage of message types

• Send notifications grouped by message type

• Set and administer different quotas for different message types, whether they are stored in
the same folder or different folders

• Move messages from one folder to another, according to criteria configured uniquely for
each message type

• Expire messages according to criteria configured for each message type

Planning the Message-Type Configuration
In a unified messaging application, data of heterogeneous formats are given standard internet
message headers so that Messaging Server can store and manage the data. For example,
when voice mail is sent to an end-user's phone, a telephone front-end system adds a message
header to the incoming voice mail and delivers it to the message store.

To recognize and administer messages of different types, all components of the unified
messaging system must use the same message-type definitions and the same header fields to
identify the messages.

Before you configure the message store to support message types, you must:

• Plan which message types you intend to use

• Decide on the definition for each message type

• Decide which header field to use

For example, if your application includes phone messages, you can define this message type
as "multipart/voice-message" and use the Content-Type header field to identify message types.

54-1

You would then configure the telephone front-end system to add the following header
information to each phone message to be delivered to the message store:

Content-Type: multipart/voice-message

Next, you would configure the message store to recognize the multipart/voice-message
message type, as described in the sections that follow.

Defining and Using Message Types
You define a message type by giving it a unique definition such as multipart/voice-message.
By default, the message store reads the Content-Type header field to determine the message-
type. If you prefer, you can configure a different header field to identify the message types.

The message store reads the Content-Type (or other specified) header field, ignoring case.
That is, the message store accepts the header field as valid even if the header's combination
of uppercase and lowercase letters differs from the expected combination.

The message store reads only the message-type name in the header field. It ignores additional
arguments or options.

To define a message type, use the msconfig command to set values for the
store.messagetype option. See "To Configure Message Types" for instructions,

Configuring a message type allows the message store to identify and manipulate messages of
the specified type. It is the first, essential step in administering message types in a unified
messaging application.

To take full advantage of the message-type features provided by the message store, you also
should perform some or all of the following tasks:

• Configure a JMQ notification plug-in and write Message Queue clients for retrieving
notifications that track the status of the message types

• Configure quota roots that apply to each message type

• Write expire rules and set LDAP attribute values to expire and purge messages according
to message type

Message Types in IMAP Commands
When you configure the store.messagetype.mtindex:n.flagname option for a message type,
you create a unique flag that identifies the message type. This flag cannot be modified by end
users.

Messaging Server presents the message-type flag as a user flag to IMAP clients. Mapping the
message type to a user flag allows mail clients to use simple IMAP commands to manipulate
messages by message type.

For example, you can perform the following operations:

• Use the IMAP FETCH FLAGS command to display a message-type flag name as a user-
defined flag to the client. See "Example 1: IMAP FETCH Session Based on the Message-
Type msconfig Configurations" for a sample use of the IMAP FETCH FLAGS command.

• Use a message-type flag as a keyword in an IMAP SEARCH command. See "Example 2:
IMAP SEARCH Session Based on the Message-Type msconfig Configurations" for a
sample use of the IMAP SEARCH command.

The message-type user flag is read only. It cannot be modified by IMAP commands.

Chapter 54
Defining and Using Message Types

54-2

The following examples assume that you configure the message-type msconfig options with
the values shown here:

store.messagetype.enable 1
store.messagetype.mtindex:1.contenttype text/plain
store.messagetype.mtindex:1.flagname text
store.messagetype.mtindex:1.quotaroot text
store.messagetype.mtindex:2.contenttype multipart/voice-message
store.messagetype.mtindex:2.flagname voice_message
store.messagetype.mtindex:2.quotaroot voice

Example 1: IMAP FETCH Session Based on the Message-Type msconfig Configurations

The following IMAP session fetches messages for the currently selected mailbox:

2 fetch 1:2 (flags rfc822)
* 1 FETCH (FLAGS (\Seen text) RFC822 {164}
Date: Wed, 8 July 2006 03:39:57 -0700 (PDT)
From: bob.smith@example.com
To: john.doe@example.com
Subject: Hello
Content-Type: TEXT/plain; charset=us-ascii
* 2 FETCH (FLAGS (\Seen voice_message) RFC822 {164}
Date: Wed, 8 July 2006 04:17:22 -0700 (PDT)
From: sally.lee@example.com
To: john.doe@example.com
Subject: Our Meeting
Content-Type: MULTIPART/voice-message; ver=2.0
2 OK COMPLETED

In the preceding example, two messages are fetched, one text message and one voice mail.

The message-type flags are displayed in the format configured with the
store.messagetype.mtindex:n.flagname option.

The Content-Type header fields identify the message types. The message-type names are
displayed as they were received in the incoming messages. They use mixed uppercase and
lowercase letters and include the message-type arguments such as charset=us-ascii.

Example 2: IMAP SEARCH Session Based on the Message-Type msconfig
Configurations

The following IMAP session searches for voice messages for the currently selected mailbox:

3 search keyword voice_message
* SEARCH 2 4 6
3 OK COMPLETED

In the preceding example, messages 2, 4, and 6 are voice messages. The keyword used in the
search is voice_message, the value of the store.messagetype.mtindex:2.flagname option.

Chapter 54
Defining and Using Message Types

54-3

55
Migrating Mailboxes to a New System

This chapter describes several ways to move or relocate mailboxes from one Oracle
Communications Messaging Server host (mailhost) to another.

Tools Summary for Relocating Messaging Server Users to a New
Mailhost

The following tools are available for relocating users from one mailhost to another:

• rehostuser, Enables you to move a Messaging Server user's mail store from one mailhost
to another. The rehostuser utility also disconnects any active session, locks the store to
ensure atomicity of the move from the user's perspective (no loss of data, flag change, and
so on), changes the user's LDAP entry, flushes LDAP caches as necessary, and causes
any queued mail to be rerouted to the new store. See "rehostuser" for more information.

• imsbackup | imsrestore: Manually backs up the account from one host and restores on
another. Can be combined with ssh and "piped" across the network. You can also back up
to a file and then access that file from the other host through NFS, or move the file in
between.

• imsimport: Imports messages from a UNIX /var/mail format file into the Messaging
Server message store.

Notes:

• If both the source and destination mailhosts are installed with at least Messaging Server 7,
use the "rehostuser" utility. The rehostuser utility solves issues present in the other
solutions, such as preventing users from accessing mail while it is being moved, making
sure mail is held in the MTA during the move and redirected to the new message store,
and so on.

• You can manually run "imsbackup" on one host and "imsrestore" on the other host. You
can combine multiple users in one step. You can combine "imsbackup" with ssh or NFS, or
you could use gzip and transfer the backup file from one host to the other by using ftp.
This method is actually used within the rehostuser utility. However, rehostuser shields
you from having to set the users' status, disconnect them, and so on. If you use
imsbackup and imsrestore manually, you also need to deal with those details manually.
But if you have a large amount of data to move and can afford for the MTA and IMAP user
access to be down while it is being moved, this method might be more efficient.

• Similar to imsrestore and imsbackup, you can use "imsimport" to import UNIX /var/mail
format files into the message store. If you are moving from a non-Oracle server and it does
not have IMAP access capability, perhaps you can get it to export the folders in UNIX /var/
mail format and then import them this way.

Migrating Mailboxes from an x86 Host to a SPARC Host
The message store data formats are architecture dependent. You cannot transfer any data
components in "Classic Message Store Component Version Compatibilities" from one

55-1

architecture to another directly. To migrate the message store from an x86 host to a SPARC
host (or from a SPARC host to an x86 host), use imsbackup and imsrestore, or rehostuser.

Moving Mailboxes to Another Messaging Server While Online
You can migrate the message store from an older version of Messaging Server to a newer
version, or move mailboxes from one Messaging Server message store to another, while
remaining online. This procedure works for iPlanet Messaging Server 5.0 and later. You cannot
move messages from prior versions of Messaging Server or a non-Oracle Communications
Suite message store. Moving mailboxes while online have the following advantages and
disadvantages.

Advantages
• You can move the mailboxes from the old source system to the new destination system

without user involvement.

• This process is faster than any of the other processes.

• Re-linking is not required if you are moving an entire partition.

• Both Messaging Server systems remain active and online.

• You can migrate all the mailboxes on a messages store or a subset of those messages.
This procedure allows for incremental migrations.

Disadvantages
• This method does not work with non-Oracle Communications Suite messaging servers.

• The users being migrated do not have access to their mailboxes until the migration of their
own mailbox is complete.

• This method can be complex and time consuming.

Incremental Mailbox Migration While Online
Incremental migration provides numerous advantages for safely and effectively moving your
message store to a different system or upgrading to a new system, incremental migration
allows you to build a new back-end message store system alongside the old back-end
message store. You can then test the new system, migrate a few friendly users, then test the
new system again. Once you are comfortable with the new system and configuration, and you
are comfortable with the migration procedure, you can start migrating real commercial users.
These users can be split into discrete backup groups so that during migration, only members of
this group are offline, and only for a short time.

Another advantage of on-line incremental migration is that you do not have to plan for a
system-wide back out in case your upgrade fails. A back out is a procedure for reverting
changes you have made to a system to return the system to the original working state. When
doing a migration, you have to plan for failure, which means that for every step in the migration
requires a plan to return your system back to its previous operational state.

The problem with offline migrations is that you can't be sure your migration is successful until
you've completed all the migration steps and switched the service back on. If the system
doesn't work and cannot be quickly fixed, you'll need a back out procedure for all the steps
performed. This can be stressful and take some time, during which your users will remain
offline.

Chapter 55
Moving Mailboxes to Another Messaging Server While Online

55-2

With an online incremental migration you perform the following basic steps:

1. Build the new system alongside the old one so that both can operate independently.

2. Configure the old system for coexistence with the new.

3. Migrate a group of "friendly" users and test the new system and its coexistence with the old
system.

4. Divide the users on the old system into groups and migrate group by group to the new one
as desired.

5. Disassemble the old system.

Because both systems will coexist, you have time to test and get comfortable with the new
system before migrating to it. If you do have to perform a back-out procedure, which should be
very unlikely, you only have to plan for steps 2 and 4. Step 2 is easy to revert because you do
not ever touch user's data. In step 4, the backout is to revert the user's state to active and their
mailhost attribute back to the old host. No system-wide back out is required.

Online Migration Overview
Migrating mailboxes while remaining online is a straightforward process. One solution is to hold
messages sent during the migration process in a held state and wait for the messages in the
various channel queues to be delivered. However, messages can get stuck in queues because
of system problems or because a particular user is over quota. In this case, you must address
this situation before migrating the mailboxes.

You can take various measures to reduce the likelihood of lost messages and to verify that
messages are not stuck in a channel queue, but at a cost of increased complexity of the
procedure.

The order and necessity of steps in the procedure vary depending upon your deployment and
whether every message addressed to every mailbox must not be lost. This section describes
the theory and concepts behind the steps. It is incumbent on you to understand each step and
decide which to take and in which order, given your specific deployment. Following is an
overview of the process of moving mailboxes. This process might vary depending upon your
deployment.

1. Block user access to the mailboxes being moved.

2. Temporarily hold messages addressed to the mailbox being moved.

3. Verify that messages are not stuck in the channel queues.

4. Change the user's mailhost attribute to the new mailbox location.

5. Move the mailboxes to the new location.

6. Release held mail to be delivered to the new mailbox and enable incoming messages to be
delivered to the migrated mailboxes.

7. Examine the old message store to see if any messages were delivered after the migration.

8. Unblock user access to mailbox.

To Migrate User Mailboxes from One Messaging Server to Another While Online
The requirements for this type of migration are as follows:

• stored should be running on both the source (old) and destination (new) messaging
servers.

Chapter 55
Moving Mailboxes to Another Messaging Server While Online

55-3

• The source system and destination system must be able to route messages to each other
if both systems will operate in co-existence. This is needed, for instance, so that delivery
status notification messages can be generated on the destination system and get delivered
to the source system.

Note:

Some steps apply only if you are upgrading the messaging server from an earlier
version to a later version. These steps might not apply if you are only migrating
mailboxes from one message store to another. The steps that apply to migrating
entire systems are noted.

1. On the source system, split your user entries to be moved into equal backup groups by
using the backup-groups.conf file. This step is in preparation for the mailbox migration,
Step 8, that occurs later in this procedure. See "To Create Backup Groups" for detailed
instructions. You can also place the user names into files and use the -u option in the
imsbackup command.

2. Notify users to be moved that they will not have access to their mailboxes until the move is
completed. Ensure that users to be moved are logged out of their mail systems before the
data move occurs. See "Monitoring User Access to the Message Store" for more
information.

3. Set the authentication cache timeout to 0 on the back-end message store and MMP
systems, and alias_entry_cache_timeout option to 0 on the MTAs.

msconfig set mta.alias_entry_cache_timeout 0

a. On the back-end message stores containing the mailboxes to be moved, set the
authentication cache timeout to 0.

msconfig set base.authcachettl -0

This step and Step 7 (changing mailUserStatus to hold) immediately prevents users
from accessing their mailboxes during migration.

b. On all MMPs, set the LDAP and authentication cache timeout to 0. For the IMAP proxy
and POP proxy, set both ldapcachettl and authcachettl to 0. For example:

msconfig
msconfig> set imapproxy.authcachettl 0
msconfig# set imapproxy.ldapcachettl 0
msconfig# set popproxy.authcachettl 0
msconfig# set popproxy.ldapcachettl 0
msconfig# write

c. On any Messaging Server host that contains an MTA that inserts messages into
mailboxes that are to be migrated, set the alias_entry_cache_timeout option to 0.
Messaging Server hosts that run an MTA that inserts messages into the migrating
mailboxes are typically the back-end message store. However, if the system is using
LMTP, then that system is the inbound MTA. Check your configuration to make sure.
Resetting the alias_entry_cache_timeout option forces the MTA to bypass the cache
and look directly at the LDAP entry so that intermediate channel queues (for example,
the conversion or reprocess channels) see the new mailUserStatus (hold) of the
users being moved rather then the out-of-date cached information.

d. Restart the systems on which the caches were reset. You must restart the system for
these changes to take place. See "Stopping and Starting Messaging Server " for
instructions.

Chapter 55
Moving Mailboxes to Another Messaging Server While Online

55-4

4. Ensure that both your source Messaging Server and destination Messaging Server are up
and running. The source Messaging Server must be able to route incoming messages to
the new destination server.

5. Change the LDAP attribute mailUserStatus on all user entries whose mailboxes will be
moved from active to hold. Changing the attribute holds incoming messages in the hold
queue and prevents access to the mailboxes over IMAP, POP, and HTTP. Typically, users
are moved in groups of users. If you are moving all the mailboxes of a single domain, you
can use the mailDomainStatus attribute. For more information on mailUserStatus, see
the mailUserStatus attribute in Schema Reference.

6. Make sure that messages addressed to mailboxes being migrated are not stuck in the ims-
ms or tcp_lmtp* channel queues (if LMTP has been deployed). Use the following
commands to see if messages exist in the channel queue directory tree and in the held
state (to see .HELD files) addressed to a user to be migrated:

imsimta qm directory -to=<user_address_to_be_migrated> -directory_tree
imsimta qm directory -to=<user_address_to_be_migrated> -held -directory_tree

If there are messages in the queue, run these same commands later to see if the MTA has
dequeued them. If there are messages that are not being dequeued, then you must
address this problem before migrating. This should be a rare occurrence, but possible
causes are recipient mailboxes being over quota, mailboxes being locked perhaps
because users are logged in and moving messages, the LMTP backend server is not
responding, network or name server problems, and so on).

7. Change the LDAP attribute mailHost in the user entries to be moved as well as in any mail
group entries. Use the ldapmodify command to change the entries to the new mail server.
Use the ldapmodify that comes with Messaging or Directory Server. Do no use the Oracle
Solaris ldapmodify command.

• You only need to change the mailHost attribute in the mail group entry if the old mail
host is being shut down. You can either change this attribute to the new mail host
name or just eliminate the attribute altogether. It is optional for mail groups to have a
mailHost. Having a mailHost means that only that host can do the group expansion.
Omitting a mailHost (which is the more common case) means all MTAs can do the
group expansion. Mail group entries do not have mailboxes to be migrated and
typically do not even have the mailhost attribute. For more information on mailhost,
see the mailHost attribute in Schema Reference.

8. Move the mailbox data from the source Messaging Server message store to the
destination Messaging Server message store and record the time when started. Back up
the mailboxes with the imsbackup utility and restore them to the new Messaging Server
with the imsrestore utility. For example, to migrate mailboxes from a Messaging Server
system called oldmail.example.com to newmail.example.com, run the following
command on oldmail.example.com:

<server-root>/bin/msg/store/bin/imsbackup -f- instance/group | rsh
newmail.example.com /opt/sun/comms/messaging64/lib/msg/imsrestore.sh -f- -c y -v 1

You can run multiple concurrent "imsbackup" and "imsrestore" sessions (one per group) to
maximize the transfer rate into the new message store. See also "Backing Up and
Restoring the Message Store" for more information.

Chapter 55
Moving Mailboxes to Another Messaging Server While Online

55-5

Note:

When imsrestore or any processing intensive operation takes significantly more
system resources than normal, and continues doing so longer than the msprobe
interval, there may be a temporary backlog of DB transaction log files to be
cleared. If there are more files than specified in store.maxlog, then msprobe
may erroneously restart all the processes during a restore. To prevent this from
happening, disable msprobe during the imsrestore.

Note:

Record the timestamp of when imsbackup is run for later delivery validation.

9. (Conditional Step for System Upgrades) If your mailbox migration is part of the process of
upgrading from an earlier version of Messaging Server to the current version, set this
current version of Messaging Server to be the new default Messaging Server for the
system. Change the DNS A record of oldmail.example.com to point to
newmail.example.com (the server responsible for domain(s) previously hosted on
oldmail.example.com).

10. Enable user access to the new message store. Set the LDAP attribute mailUserStatus or
mailDomainStatus, if applicable, to whatever value it had been before it was changed to
hold (for example,active).

11. Release the messages in the held state on all source Messaging Servers. Any system that
may be holding incoming messages needs to run the following command to release all the
user messages:

imsimta qm release -channel=hold -scope

where scope can be all, which releases all messages; user, which is the user ID; or
domain which is the domain where the user resides.

12. Reset the authentication cache timeout and the alias_entry_cache_timeout option to the
default or desired values and restart the system. At this point, you've migrated all the user
mailboxes that need to be migrated. Before proceeding, make sure that no new entries in
LDAP have been created with the old system as the mailhost, and if some have, migrate
them. Also, make sure that no such entries can be created by modifying the provisioning
systems. You also want to change the preferredmailhost attribute to the name of the new
mail host. For back-end messages stores, set authentication cache timeout to 900 as
follows:

msconfig set base.authcachettl 900

For the IMAP proxy and POP proxy, use the msconfig command set both ldapcachettl
and authcachettl to 900. For example:

msconfig
msconfig> set imapproxy.authcachettl 900
msconfig# set imapproxy.ldapcachettl 900
msconfig# set popproxy.authcachettl 900
msconfig# set popproxy.ldapcachettl 900
msconfig# write

For MTAs, set the alias_entry_cache_timeout option to 600.

Chapter 55
Moving Mailboxes to Another Messaging Server While Online

55-6

msconfig set mta.alias_entry_cache_timeout 600

You must restart the system for these changes to take place. See "Stopping and Starting
Messaging Server " for instructions.

13. Ensure that the user clients are pointing to the new mail server. After the upgrade finishes,
have the users point to the new server through their mail client program (in this example,
users would point to newmail.example.com from oldmail.example.com). An alternative
is to use a Messaging Multiplexor (MMP), which obviates the need to have users point
their clients directly to the new mail server. The MMP gets that information from the
mailHost attribute that is stored in the LDAP user entries and automatically redirects the
client to the new server.

14. After everything works, verify that no messages were delivered to the old message store
after the migration. Go to the old message store and run mboxutil -l to list the mailboxes.
Check the last message delivery timestamp. If a message was delivered after the
migration timestamp (the date stamp when you ran the imsbackup command), then
migrate those messages with a backup and restore command. Because of the preparatory
steps provided, it would be exceedingly rare to see a message delivered after migration.
Theoretically, a message could be stuck in a queue for the number of days or hours
specified by the notices channel options. See the discussion on setting notification
message delivery intervals in Messaging Server Reference.

15. Remove duplicate messages on the new message store, run the relinker command. This
command might free disk space on the new message store.

16. Remove the old messages from the store you migrated from and delete users from the
database on the old store. Run the mboxutil -d command. See "mboxutil" for more
information.

To Move Mailboxes Using an IMAP Client
This procedure can be used anytime messages need to be migrated from one messaging
server to a different messaging server. Consider the advantages and disadvantages before
moving mailboxes using this method.

Advantages

• This method can be used to migrate from a non-Oracle Communications host to the
Messaging Server host. It can also be used to move mailboxes from one physical server to
a different physical server.

• After you set up the new mail server or message store, responsibility for moving mailboxes
to the new system is left to users.

• The process for moving mailboxes is relatively simple.

• User access to mailboxes does not have to be disabled.

Disadvantages

• Requires that both the old and new systems be simultaneously running and accessible to
users.

• Cumulatively, this method takes longer to move mailboxes than other methods.

• Responsibility for moving mailboxes to the new system is left to users.

• The size of the new message store will be significantly larger than the old message store
until the re-linking operation is performed.

1. Install and configure the new Messaging Server.

Chapter 55
To Move Mailboxes Using an IMAP Client

55-7

2. Set store.relinker.enable to 1. This reduces the message store size on the new system
caused by duplicate storage of identical messages.

3. Provision users on the new Messaging Server. You can use Delegated Administrator to do
this. As soon as users are provisioned on the new system, newly arriving mail is delivered
to the new INBOX.

4. Have users configure their mail client to view both new and old Messaging Server
mailboxes. This may involve setting up a new email account on the client. See mail client
documentation for details.

5. Instruct users to drag folders from their old Messaging Server to their new Messaging
Server.

6. Verify with users that all mailboxes are migrated to the new system, then shut down the
user account on the old system.

To Move Mailboxes by Using the imsimport Command
This procedure is specifically used to move mailboxes from UNIX /var/mail format folders into
a Messaging Server message store. However, if the Messaging Server host from which you
are migrating can convert the IMAP message stores to UNIX /var/mail format, then you can
use the imsimport command to migrate messages to Messaging Server. Consider the
advantages and disadvantages before moving mailboxes using this method.

Advantages

• You have complete responsibility for moving mailboxes from the old system to the new
system. Users do not have to do anything.

Disadvantages

• This method takes longer to move mailboxes than the other non-IMAP methods.

• Users access to mailboxes must be disabled while mailboxes are being moved.

• The size of the new message store will be significantly larger than the old message store
until the re-linking operation is performed.

1. Install and configure the new Messaging Server.

2. Set store.relinker.enabled to 1. This reduces the message store size on the new system
caused by duplicate storage of identical messages.

3. Provision users on the new Messaging Server if needed. You can use Delegated
Administrator to do this. Do not switch over to the new system yet.

4. Disable user access to both the new and old messaging store. Set the mailUserStatus
LDAP attribute to hold. User's mail is sent to the hold queue and access to the mailbox
over IMAP, POP, and HTTP is disallowed. MTA and Message Access Servers on the store
server must comply with this requirement. This setting overrides any other
mailDeliveryOption settings.

5. If the mail store from the existing mail server is not already in the /var/mail format, convert
the mail store to /var/mail files. Refer to the third-party mail server documentation.

6. Run the imsimport command. For example:

imsimport -s /var/mail/joe -d INBOX -u joe

See the "imsimport" for details.

7. Enable user access to the message store. Set the mailUserStatus LDAP attribute to
active.

Chapter 55
To Move Mailboxes by Using the imsimport Command

55-8

8. Enable user access to the new messaging store.

9. Shut down the old system.

Migrating Mailboxes from Microsoft Exchange Server to Oracle
Communications Messaging Server

See the discussion about migrating mailboxes from Microsoft Exchange Server to Oracle
Communications Messaging Server (Doc ID 2632831.1) on the My Oracle Support Web site:

https://support.oracle.com/portal/

Chapter 55
Migrating Mailboxes from Microsoft Exchange Server to Oracle Communications Messaging Server

55-9

https://support.oracle.com/portal/

56
Monitoring Disk Space

This chapter describes Oracle Communications Messaging Server configuration options for
monitoring disk and partition usage and for generating warnings about disk space availability.

Disk Space Overview
Inadequate disk space or inadequate space within a disk partition are among the most
common causes of mail server problems and failure. Typical causes of inadequate space are:

• Message store quotas are not enforced and the message store outgrows the disk space
available for a partition.

• Over-long MTA message queues.

• Log files that are not adequately monitored and kept within defined limits. (Note that there
are several log files such as LDAP, MTA, and Message Access, and that each of these log
files can be stored on different disks.)

Symptoms of Insufficient Disk Space
Symptoms of insufficient disk-space are:

• MTA queues overflow and reject SMTP connections.

• Messages remain in the ims-master queue and are not delivered to the message store.

• Log files overflow.

If a message store partition fills up, message access daemons can fail and message store data
can be corrupted. Message store maintenance utilities such as imexpire and reconstruct can
repair the damage and reduce disk usage. However, these utilities require additional disk
space, and repairing a partition that has filled an entire disk can cause down time.

Monitoring Disk Space
Depending upon the system configuration you may need to monitor various disks and
partitions. For example, MTA queues may reside on one disk/partition, message stores may
reside on another, and log files may reside on yet another. Each of these spaces will require
monitoring and the methods to monitor these spaces may differ.

Messaging Server provides specific methods for monitoring message store disk usage and
preventing partitions from filling up all available disk space.

You can take the following steps to monitor the message store's use of disk space:

• Set options to monitor message store disk usage

• Lock message store partitions when a disk-usage threshold is reached

56-1

Monitoring the Message Store
You can monitor message store disk usage by configuring the following attributes with the
msconfig utility:

• alarm.system:alarmtype.statinterval specifies the length of time, in seconds, between
disk availability checks. For example, to set the system to monitor disk space every 600
seconds, enter the following command:

msconfig set alarm.system:diskavail.statinterval 600
• alarm.system:alarmtype.threshold specifies a percentage of disk space that must be

available or a warning is generated. For example, it is recommended that disk-space
usage should not exceed 75%; correspondingly, the following command generates a
warning whenever the amount of disk space available falls below 25%:

msconfig set alarm.system:diskavail.threshold 25
• alarm.system:alarmtype.warninginterval specifies an interval, in hours, between the

repetition of disk availability alarms. For example, the following command sets an interval
of one hour between one disk availability warning and another.

msconfig set alarm.system:diskavail.warninginterval 1
• alarm.system:alarmtype.description specifies a description of the disk availability alarm.

For example, the following sets the description of an availability alarm for a message-
queue alarm:

msconfig set alarm.system:diskavail.description "Percentage message-queue partition
diskspace available"

Monitoring Message Store Partitions
By default, partition monitoring is in effect so that when a message-store partition uses more
than a specified percentage of available disk space, the partition is locked and any incoming
messages are held in the MTA message queue. Two msconfig options control partition
monitoring:

• checkdiskusage

checkdiskusage enables partition monitoring. It takes a boolean value; the default is 1
(monitoring is enabled).

• diskusagethreshold

diskusagethreshold specifies a disk-usage threshold beyond which the partition is
locked. It takes an integer value from 1 to 99; the default value is 99.

As a partition approaches the threshold specified in diskusagethreshold, the message-store
daemon checks the partition with increasing frequency, ranging from once every 100 minutes
to once every minute. If disk usage goes higher than the threshold specified in
diskusagethreshold, the message-store daemon:

• Locks the partition; incoming messages are held in the MTA message queue and are not
delivered to mailboxes in the message store partition until it is unlocked.

• Logs a message to the default log file.

• Sends an email notification to the postmaster. (You can change the recipient of the
notification by setting the msconfigalarm.noticercpt option.)

Chapter 56
Monitoring the Message Store

56-2

In setting the diskusagethreshold option, specify a usage percentage that is low enough to
allow time for repartitioning or assigning more disk space to the local message store. For
example, if a partition fills up disk space at a rate of 2 percent per hour and it takes an hour to
allocate additional disk space, set the disk-usage threshold to a value lower than 98 percent.

Chapter 56
Monitoring the Message Store

56-3

57
Protecting Mailboxes from Deletion or
Renaming

You might want to protect some mailboxes from deletion or modification except by the
administrator. The following procedure describes how to do this.

If someone other than an administrator attempts to delete, modify, or rename a protected
mailbox, the error message "mailbox is pinned" is displayed.

• Set the store.pin configuration option by using the following format:

msconfig set store.pin mailbox1%mailbox2%mailbox3

where mailbox1, mailbox2, and mailbox3 are the mailboxes to be protected (you can use
spaces in mailbox names), and @ is the separator between each mailbox.

In this example, the mailboxes specified in mailbox1@mailbox2@mailbox3 are not per user
mailboxes, as in user/user1/Drafts. Instead, the mailboxes specified are for all users using a
certain directory, such as Drafts. An administrator can therefore prevent users from renaming
or deleting the Drafts or Backup folder for all users by running:

msconfig set store.pin Drafts%Backup

57-1

58
Reducing Message Store Size Due to
Duplicate Storage

This chapter describes how Oracle Communications Messaging Server uses the relinker
feature to reduce message store size due to duplicate storage.

When a message is sent to multiple recipients, that message is placed in each recipient's
mailbox. Some messaging systems store separate copies of the same message in each
recipient's mailbox. By contrast, Messaging Server strives to retain a single copy of a message
regardless of the number of mailboxes in which that message resides. It does this by creating
hard links to that message in the mailboxes containing that message.

When other messaging systems are migrated to the Messaging Server, these multiple
message copies may be copied over with the migration process. With a large message store,
this means that a lot of messages are duplicated unnecessarily. In addition, multiple copies of
the same message can be accumulated in normal server operation, for example, from IMAP
append operations or other sources.

Messaging Server provides a command called relinker that removes the excess message
copies and replaces them with hard links to a single copy.

Note:

The relinker feature is intended to repair the situation where the normal single-copy
nature of the message store has become broken for some reason. You should only
need to use the relinker if you have done something which could have caused
duplicate messages to become individual copies instead of the normal single-copy.
This feature is not the normal way the store normally accomplishes its single-copy
feature. You should not need to keep the real-time relinker feature enabled for long
periods of time. You should not need to use the relinker command on an ongoing
basis. You should only need this feature if you have done (or will soon be doing)
something which would break the single-copy feature of the store. See "How the
Message Store Works" for more information about single-copy.

Relinker Overview
The relinking function can be run in the command or realtime mode. When the relinker
command is run, it scans through the message store partitions, creates or updates the MD5
message digest repository (as hard links), deletes excess message files, and creates the
necessary hard links.

The digest repository consists of hard links to the messages in the message store. It is stored
in the directory hierarchy partition_path/=md5. This directory is parallel to the user mailbox
hierarchy _ partition_path_/=user (see "Classic Message Store Directory Layout"). Messages
in the digest repository are uniquely identified by their MD5 digest. For example, if the digest
for fredb/00/1.msg is 4F92E5673E091B43415FFFA05D2E47EA, then partition/=user/hashdir/
hashdir/=fredb/00/1.msg is linked to partition/=md5/_ hashdir_/hashdir/

58-1

4F92E5673E091B43415FFFA05D2E47EA.msg. If another mailbox has this same message,
for example, partition_path/=user/hashdir/hashdir/gregk/00/17.msg, that message will also be
hard linked to partition_path/=md5/4F/92/4F92E5673E091B43415FFFA05D2E47EA.msg. This
is shown in Figure 58-1.

Figure 58-1 Message Store Digest Repository

For this message, the link count will be three. If both messages are deleted from the mailboxes
of fredb and gregk, then the link count will be one and the message can be purged.

The relinker process can also be run in the realtime mode for similar functionality. See "Using
Relinker in the Realtime Mode" for details.

Using relinker in the Command Line Mode
The relinker scans through a message store partition, creates or updates the MD5 message
repository (as hard links) and deletes excess message files. After relinker scans a store
partition, it outputs statistics on the number of unique messages and size of the partition before
and after relinking. To run more quickly on an already hashed store, relinker only computes
the digest of the messages not yet present in =md5. It also has an option to erase the entire
digest repository (which doesn't affect the user mailboxes).

The syntax for the command is as follows:

relinker [-ppartitionname] [-d]

where partitionname specifies the partition to be processed (default: all partitions) and -d
specifies that the digest repository be deleted. Sample output is shown below:

relinker
Processing partition: primary
Scanning digest repository...
Processing user directories..............................

Partition statistics Before After

Total messages 4531898 4531898
Unique messages 4327531 3847029
Message digests in repository 0 3847029
Space used 99210Mb 90481Mb

Chapter 58
Relinker Overview

58-2

Space savings from single-copy 3911Mb 12640Mb

relinker -d
Processing partition: primary
Purging digest repository...

Partition statistics Before After

Message digests in repository 3847029 0

relinker can take a long time to run, especially for the first time if there are no messages are in
the repository. This is because it has to calculate the digest for every message (if the relinker
criteria is configured to include all messages-see "Configuring Relinker" for information on
configuring relinker criteria.) For example, it could take six hours to process a 100 Gigabyte
message store. However, see "Using Relinker in the Realtime Mode" if run-time relinking is
enabled

If the relinker command line mode is used exclusively, and not the run-time option, it is
necessary to purge the digest repository (=md5), otherwise messages purged in the store
(=user) will not become available disk space since they still have a link in the digest repository
(they become orphaned). If you are just performing a one-time optimization of the store-for
example after a migration-you can run relinker once, then delete the entire repository with
relinker -d. For repeated purging during migration, it is sufficient to just run the relinker
command repeatedly, since each time it runs it also purges the expired or orphaned messages
from the repository.

It is safe to run multiple instances of relinker in parallel with each processing a different
partition (using the -p option). Messages are only relinked inside the same partition.

Using Relinker in the Realtime Mode
The relinker function can be enabled in the realtime mode by setting the msconfig option
store.relinker.enable to 1. Using relinker in the realtime mode will compute the digest of
every message delivered (or restored, IMAP appended, and so forth) which matches the
configured relinker criteria ("Configuring Relinker"), then look in the repository to see if that
digest is already present. If the digest is present, it creates a link to it in the destination mailbox
instead of creating a new copy of the message. If there is no digest, it creates the message
and adds a link to it in the repository afterwards.

stored scans the digest repositories of each partition and purges the messages having a link
count of 1, or which don't match the relinker criteria. The scan is done one directory at a time
over a configurable time period. This is so that the I/O load is evenly distributed and does not
noticeably impact other server operations. By default the purge cycle is 24 hours, which means
messages can still be present on the disk for up to 24 hours after they have been deleted from
the store or have exceeded the configured maximum age. This task is enabled when the
relinker realtime mode is enabled.

Configuring Relinker
Table 58-1 shows the options used to set relinker criteria.

Chapter 58
Using Relinker in the Realtime Mode

58-3

Table 58-1 relinker msconfig options

Option Description

store.relinker.enable Enables real-time relinking of messages in the append code and stored
purge. The relinker command-line tool may be run even if this option is
off. However since stored will not purge the repository, relinker -d must
be used for this task. Turning this option on affects message delivery
performance in exchange for the disk space savings.

Default: 0

store.relinker.maxage Maximum age in hours for messages to be kept in the repository, or
considered by the relinker command-line. -1 means no age limit, that is,
only purge orphaned messages from the repository. For relinker it
means process existing messages regardless of age. Shorter values
keep the repository smaller thus allow relinker or stored purge to run
faster and reclaim disk space faster, while longer values allow duplicate
message relinking over a longer period of time, for example, when users
copy the same message to the store several days apart, or when
running a migration over several days or weeks.

Default: 24

store.relinker.minsize Minimum size in kilobytes for messages to be considered by run-time or
command-line relinker. Setting a non-zero value gives up the relinker
benefits for smaller messages in exchange for a smaller repository.

Default: 0

store.relinker.purgecycle Approximate duration in hours of an entire stored purge cycle. The
actual duration depends on the time it takes to scan each directory in the
repository. Smaller values will use more I/O and larger values will not
reclaim disk space as fast. 0 means run purge continuously without any
pause between directories. -1 means don't run purge in stored (then
purge must be performed using the relinker -d command).

Default: 24

Chapter 58
Configuring Relinker

58-4

59
Specifying Administrator Access to the
Message Store

This chapter describes how to grant store privileges to the message store for your Oracle
Communications Messaging Server installation. See "Managing Message Store Partitions and
Adding Storage" for conceptual information.

Overview of Message Store Administrators
Message store administrators can view and monitor user mailboxes and specify access control
for the message store. Store administrators have proxy authentication privileges to any service
(POP, IMAP, HTTP, or SMTP), which means they can authenticate to any service using the
privileges of any user. These privileges allow store administrators to run certain utilities for
managing the store.

Note:

Other users might also have administrator privileges to the store. For example, some
administrators may have these privileges.

Also, see "Protecting Mailboxes from Deletion or Renaming" for more information.

Adding an Administrator Entry
To add an administrator entry at the command line, enter:

msconfig set store.admins adminlist

where adminlist is a space-separated list of administrator IDs. If you specify more than one
administrator, you must enclose the list in quotes. In addition, the administrator must be a
member of the Service Administrator Group, in the LDAP user entry: memberOf: cn=Service
Administrators,ou=Groups,o=usergroup. You must restart imapd for the system to
recognize the change in store.admins.

Modifying or Deleting an Administrator Entry
To modify or delete an existing entry in the message store Administrator UID list at the
command line, use the same command:

msconfig set store.admins adminlist

where adminlist is a space-separated list of administrator IDs who should be included in the
modified list. If you specify more than one administrator, you must enclose the list in quotes. In
addition, the administrator must be a member of the Service Administrator Group, in the LDAP
user entry: memberOf: cn=Service Administrators,ou=Groups,o=usergroup. You can
delete members from the list, but the modified list must contain at least one administrator ID.

59-1

You must restart imapd for the system to recognize the change in store.admins.

Chapter 59
Modifying or Deleting an Administrator Entry

59-2

60
Constructing Valid Message Store UIDs and
Folder Names

This chapter describes valid constructions for Oracle Communications Messaging Server
message store UIDs and folder names. Note that folder and mailbox are used synonymously.

Message Store User ID
The message store user ID is a mail user's unique identifier in the message store. In the
default domain, this is the same as the user's LDAP uid attribute. In hosted domains, this is
uid@domain where uid is the uid LDAP attribute and domain is the canonical domain name.

Message Store Mailbox Name for Commands
Some message store commands require that you specify a mailbox name. The required form
of the name is user/userid/mailbox where userid is the message store user ID (see "Message
Store User ID") and mailbox is a user's mailbox. Specifying INBOX sometimes implies all the
user's mailboxes in the message store. For example, the following command removes the
INBOX and all the folders of user joe.

mboxutil -d user/joe/INBOX

Note that in the context of message stores, folders and mailboxes are synonymous.

Valid UIDs
Valid and invalid UID characters are controlled separately by the MTA and message store
mechanisms. That means UID character limitations are specified by the union of MTA and
message store limitations. The following characters and strings are invalid as UIDs in the
message store:

• % ? * & / : \

• ASCII values less than 20 or greater than 7E hexidecimal (see man ascii)

• A leading '-' is prohibited because it is reserved for negative rights

• A leading 'group=' is prohibited because it is reserved for group IDs

• The following UIDs are reserved: 'anonymous' 'anybody' 'anyone' and 'anyone@domain'

• The maximum supported length for a UID is 127 bytes

The following characters are invalid in UIDs in the MTA:

<space> $ ~ = # * + % ! @ , { } () / \ < > ; : " ` [] & ?

The list of characters forbidden by the MTA can be modified by setting the
ldap_uid_invalid_chars option with a string of the forbidden characters using decimal ASCII
values, however, you are strongly advised not to change the default constraint. The default
setting is as follows and reflect the characters listed above:

60-1

ldap_uid_invalid_chars=32,33,34,35,36,37,38,40,41,42,43,44,47,58,59,60,61,62,63,64,91,92,
93,96,123,125,126

Valid mail folder names. The following characters are invalid as folder names:

% * ? and ASCII values less than 20 or greater than 7E hexidecimal (see man ascii).

In addition, folder names must be valid MUTF-7 sequences. (Note that MUTF-7 names should
use Unicode Normalization Form C to comply with RFC 5198.)

Chapter 60
Valid UIDs

60-2

61
Message Store Automatic Failover with
Database Replication

This chapter describes Oracle Communications Messaging Server database replication and
classic message store failover.

Overview of Message Store Database Replication
Berkeley Database provides support for building high availability (HA) applications based on
replication. Message store database replication uses Berkeley Database HA facilities and low
cost NFS storage devices to build an HA message store.

The mboxlist database is a transactional database. Database changes are written to the
transaction logs. You can replicate the database by transporting the transaction log records
from one site to another. Berkeley Database HA architecture supports single writer (master)
and multiple reader replication. You must perform all database updates on the master. Replicas
are available for read only activity. When the master fails, an election takes place, and one of
the replicas will take over as master.

Either all replicas are on SPARC CPUs or all replicas are on x86 CPUs. Replication between
these two types of CPUs is not supported by Messaging Server.

The database replication and message store failover feature requires that replicas be on the
same platform. Either all replicas are SPARC or all replicas are x86_64. It is also best practice
for all replicas to be homogeneous (same hardware/CPU/OS), unless you are in the middle of
a rolling hardware upgrade.

A message store replication group consists of one or more message store nodes. The
message store nodes typically run on different physical hosts. The mboxlist database is
replicated on every node. You can store the database locally. You store the mailbox partitions
on remote storage devices running NFS servers. The NFS file systems are always mounted on
all of the nodes in a replication group. You can configure the message store nodes with one or
more remote hosts. If remote hosts are configured, the message store contacts a remote host
to retrieve the replication group data on start up. If a master has not been established in a
group, an election is called. A priority value is assigned to a node. When an election is held,
the node with the most up-to-date log record and the highest priority becomes the new master.
A node with priority 0 cannot be elected.

When the master fails, the replicas will automatically hold an election to select a new master.
You are responsible for monitoring the master. The automatic failover facility will redirect
incoming connections to a new master. The message store replicas run in read only mode. Any
attempt to modify a mailbox on a replica returns an error. You can perform read only operations
such as mboxutil -l and imsbackup on the replicas. You can install Multiple message store
nodes on the same host in different zones. Each message store node must have a unique
base.listenaddr.

Berkeley Database maintains an internal database to keep track of the replication group data.
Starting the first node in a replication group for the first time initializes the database. To start up
the first node the first time, run start-msg -m. Database transaction commits blocks until it
either receives enough acknowledgments, or the acknowledgment timeout expires. You can
configure the acknowledgment policy and timeout.

61-1

A two-site replication group is particularly vulnerable to duplicate masters when there is a
disruption to communications between the sites. Two-site replication is disabled by default. You
can enable it with the store.dbreplicate.twosites option. When this option is disabled, the
message store cannot take over as master if the original master fails in a replication group with
only two sites. In the event this happens, the message store cluster will be unavailable for write
access.

When a replication-aware client, such as the MMP (POP or IMAP), LMTP client or ENS
subscriber connects to a replication group, it has to be aware of the hosts in the replication
group so if one is down it can attempt to connect to the next one. This is presently
accomplished by setting the proxy:repgroup.storehostlist option to the same value on all
replication-aware clients and back-ends. These clients also remember the last host to which
they connected in the replication group so it's not necessary to failover on every connection. In
addition, replication-aware clients that perform write operations need to connect to the
replication group master. This is accomplished by having the back-end servers refer the client
to the replication group master. Details about how each replication-aware client works are as
follows:

• IMAP server

Advertises OK login referrals (RFC 2221) that point to the master. Third-party use of such
referrals is supported. Note that login referrals are also provided when a user logs in into
an IMAP server that does not contain their INBOX (as may be necessary to access shared
folders). Login referrals of the latter form will point to a host that is not in the storehostlist
for the replication group.

• POP server

Advertises referrals with a SYS/REFER/hostname extended error on login. This is an
Oracle extension to the protocol based on RFC 3206. Third-party use of such referrals is
supported.

• LMTP server

The referral is indicated via a private protocol extension in the LMTP greeting. Oracle does
not support third-party use of our LMTP server.

• ENS server

No changes have been made.

• Message Store ENS publisher

Publishes to all available hosts in the replication group for the current store by default. The
recommended deployment for ENS with store failover is to have enpd running on every
message store master and replica.

• ENS and JMQ publishers for Message Store

The hostname attribute will use the replication group name instead of the local host name.

• ENS C Client API

If storehostlist is configured, it will perform failover and cache the last successful host in
the host list.

• MMP IMAP client

Performs failover, caches the last successful master, and follows referrals.

• MMP POP client

Performs failover, caches the last successful master, and follows referrals.

• MTA LMTP client

Chapter 61
Overview of Message Store Database Replication

61-2

When the affinitylist channel option is set, this performs failover, caches the last
successful master, and follows referrals.

• MTA BURL IMAP client

Performs failover and caches the last successful host. As this is read-only, it does not
follow referrals.

• Shared folder IMAP client in imapd

Performs failover, caches the last successful master, and follows referrals.

• mshttpd IMAP client

Performs failover, caches the last successful master, and follows referrals.

• Glassfish MQ (aka JMQ)

No changes other than the hostname attribute mentioned above. Support for Glassfish
MQ is deprecated.

Configuration Options
Topics in this section include:

• Configuration Options

• Command-line Utilities

Configuration Options
Table 61-1 shows the configuration options (only supported in Unified Configuration), their
descriptions, data types, and defaults.

Table 61-1 Configuration Options

Option Description Data Type Default

store.dbreplicate.enable Enable database
replication

boolean 0

store.dbreplicate.port Replication port number integer 55000

Note that storehostlist
does not support non-
default port numbers.

store.dbreplicate.dbremotehost Remote host name list; this
option is deprecated in
8.0.1.

host[:port] [host[:port]]... In 8.0.1 and later this
defaults the value of the
proxy:repgroup.storehostl
ist with the current host
omitted from the list.

store.dbreplicate.dbpriority Host priority integer 100

store.dbreplicate.ackpolicy Replication
acknowledgment policy

0=none, 1=one, 2=one
peer, 3=quorum, 4=all
peer, 5=all available, 6=all
clients

3

store.dbreplicate.acktimeout Replication
acknowledgment timeout

number of seconds 1 second

store.dbreplicate.twosites Enable two sites replication
group

boolean 0

Chapter 61
Configuration Options

61-3

Table 61-1 (Cont.) Configuration Options

Option Description Data Type Default

proxy:repgroup.storehostlist Sets list of hosts in each
store replication group for
all relevant servers in the
deployment. The preferred
master should be listed
first.

host [host] Value of LDAP mailHost
attribute for a user.

proxy:repgroup.imapport The port used to connect
to IMAP for this replication
group.

unsigned 16-bit integer Value of
base.proxyimapport
option.

proxy:repgroup.imapadmin The administrative user
name used when
connecting to this
replication group.

non-empty-string Value of base.proxyadmin
option.

proxy:repgroup.imapadminpass The administrative
password used to connect
to this replication group.

password Value of
base.proxyadminpass
option.

Command-line Utilities
• The imcheck subsystem option prints the database replication statistics. See "imcheck" for

additional information.

To print the database replication statistics, run the following command:

imcheck -s rep

Note:

The imcheck -s command is only valid for classic message store.

• The start-msg -m option starts the message store as a replication master. See Messaging
Server Refernce Guide for additional information on the start-msg command.

To start the message store as a replication master, run the following command:

start-msg -m
• The stored -d site option removes a replication site from the replication database. See

"stored" for additional information.

To delete an mboxlist replication site called grumpy from the cluster, run the following
command:

stored -d grumpy

Configuring Message Store Database Replication
The following configuration examples show you how to configure message store database
replication.

Chapter 61
Configuring Message Store Database Replication

61-4

To Configure a Three Node Cluster for HA
The following example sets up a cluster with three electable nodes (huey, dewey, and louie at
example.com). This example assumes LMTP has been configured on these back-ends. The
message store partition is on a shared storage mounted at /zfssa/primary.

On huey.example.com:

msconfig set store.dbreplicate.enable 1
msconfig set proxy:cluster1.storehostlist "huey.example.com dewey.example.com
louie.example.com"
msconfig set partition:primary.path /zfssa/primary
msconfig set task:snapshot.enable 0
msconfig set task:snapshotverify.enable 0
start-msg -m

On dewey.example.com:

msconfig set store.dbreplicate.enable 1
msconfig set proxy:cluster1.storehostlist "huey.example.com dewey.example.com
louie.example.com"
msconfig set partition:primary.path /zfssa/primary
msconfig set task:snapshot.enable 0
msconfig set task:snapshotverify.enable 0
start-msg

On louie.example.com:

msconfig set store.dbreplicate.enable 1
msconfig set proxy:cluster1.storehostlist "huey.example.com dewey.example.com
louie.example.com"
msconfig set partition:primary.path /zfssa/primary
msconfig set task:snapshot.enable 0
msconfig set task:snapshotverify.enable 0
start-msg

In addition, the storehostlist has to be set on all front-end servers as well, and the LMTP
client has to be configured on the front-ends with the affinitylist channel option. Due to the
complexity of setting up LMTP, it is recommended to copy the example recipe file
LMTPBackendFailover.rcp and modify it with appropriate settings for the back-end stores.

To Change the DB Replication Local Instance Port
The replication group info is maintained by BDB. store.dbreplicate.port is for the local site
only.

To change the port number on one node with the cluster running:

1. Stop the message store.

stop-msg store
2. Remove the local site from the group.

stored -d
3. Change the port number on the local site in Unified Configuration.

msconfig set store.dbreplicate.port <newport>

Or in legacy configuration.

Chapter 61
Configuring Message Store Database Replication

61-5

configutil -o store.dbreplicate.port -v <newport>
4. Restart the message store

start-msg
5. Run imcheck -s rep on the other sites. You should see the new port for this site.

imcheck -s rep

Note:

The imcheck -s command is only valid for classic message store.

Message Store Automatic Failover
This section describes Messaging Server's message store automatic failover feature and its
configuration. It contains the following sections:

• Basic Requirements

• Overview of Message Store Automatic Failover

• Configuring Message Store Automatic Failover

Basic Requirements
In order to use message store automatic failover, the following is necessary.

• Messaging Server must be running in Unified Configuration mode.

• Messaging Server must be deployed using LMTP.

Overview of Message Store Automatic Failover
The message store automatic failover feature is useful for customers who already have 24/7
operators in their machine room.

The basic model is that all Messaging Server hosts in the deployment need to be manually
configured with an ordered list of hostnames for each mailStore. Each hostname corresponds
to a separate product installation, but in a given mailStore list all the hosts must use a shared
disk (for example, NFS, filer) for the product data, but have a configuration that is largely
identical except for the "base.hostname" setting. The first host in the list is the primary host for
that mailStore. The primary host is running and the secondary hosts are not running (on
standby).

The MMP, LMTP client, and imapd shared folder support will now automatically use the
secondary host for requests related to the primary mailHost; there is no need to refresh or
restart these services for this to happen.

Note that a standby hostname does not mean it is necessary to have unused hardware. If
multiple IP addresses are used on the same server, then it can support multiple installations.
However, if the primary host is dedicated and the secondary host is shared for a mailStore,
then the service response time will be reduced when automatic failover happens. Sites need to
consider how much spare capacity is needed to service users when there is a hardware
outage.

Chapter 61
Message Store Automatic Failover

61-6

To enable safety during rolling version upgrades where a node is deliberately shutdown during
upgrade, we recommend having at least 3 hostnames associated with each mailHost.

Configuring Message Store Automatic Failover
For this example, assume the following hosts are in a deployment:

LDAP mailStore "store1.example.com"

store1a.example.com primary

store1b.example.com

store1c.example.com

LDAP mailStore "store2.example.com"

store2a.example.com primary

store2b.example.com

store2c.example.com

mta.example.com - an MTA configured to use LMTP

mmp.example.com - an MMP

We recommend that customers use Unified Configuration recipes to set up automatic failover
to avoid typographical errors when configuring multiple machines by running a recipe similar to
the following on all machines in the deployment.

set_option("proxy:store1\\.example\\.com.storehostlist",
"store1a.example.com store1b.example.com store1c.example.com");
set_option("proxy:store2\\.example\\.com.storehostlist",
"store2a.example.com store2b.example.com store2c.example.com");

Save the recipe above to a plain text file, for example, automatic-failover.rcp

Some extra configuration need be added to LMTP server and all the clients communicating to
LMTP server.

To Configure the LMTP Server
1. Add the automatic-failover.rcp file configuration to the existing LMTP server

configuration. Or, if you prefer, there is also a sample recipe LMTPBackendFailover.rcp
that configures a backend LMTP server for use with failover. If you want to use this, you
must copy the recipe script and manually add in to your LMTP client IP addresses and
mailstore proxy information. This is available in the Messaging Server installed location
MessagingServer_home/lib/recipes/LMTPBackendFailover.rcp.

2. Run the recipe script on all back-end machines in the deployment by executing the
following the command.

msconfig run manual-failover.rcp OR LMTPBackendFailover.rcp
3. If you are running a compiled a configuration, recompile by running:

imsimta cnbuild
4. Start the Messaging Server by running:

start-msg

Chapter 61
Message Store Automatic Failover

61-7

To Configure the Client
1. Add the automatic-failover.rcp file configuration to all clients' configurations. For the

LMTP client, you must add some extra configuration.

2. Run the recipe script on all client machines (MMP, LMTP client, and do on) in the
deployment by executing the following command:

msconfig run automatic-failover.rcp
3. For the LMTP client only, you must set the affinity list channel option on the LMTP client

channel:

msconfig set channel:tcp_lmtpcs.affinitylist
imsimta cnbuild
stop-msg
start-msg

4. Stop the Messaging Server Client by running:

stop-msg mmp or mta
5. Start the Messaging Server Client by running:

start-msg mmp or mta

Chapter 61
Message Store Automatic Failover

61-8

62
Administering Message Store Database
Snapshots (Backups)

This chapter describes the tasks for administering Oracle Communications Messaging Server
database snapshots. See "Message Store Automatic Recovery On Startup" for conceptual
information on database snapshots.

The primary message store database is critical to smooth operation of the message store. You
must always ensure that a snapshot (or backup) of the database is available. If the active
database becomes damaged, restarting services allows the message store stored process to
swap in the best snapshot and enable services to come back on demand.

To Specify Message Store Database Snapshot Interval and
Location

Before doing these tasks, see "Message Store Database Snapshot Interval and Location".
Also, descriptions of the configutil options described in this page are in Messaging Server
Reference.

A database snapshot is a hot backup (dynamic backup) of the message store database. The
system makes this copy without any locking, and requires that both the database files and
transaction logs so the snapshot can be "recovered" into a valid copy of the database.

By default, snapshots are scheduled with the imdbverify -s command to run at specific times.

local.schedule.snapshot.enable = "1"local.schedule.snapshot = "0 2 * * * bin/imdbverify -
s -m"

By default, the imdbverify -s command takes a database snapshot at 2 a.m. (This command
uses UNIX crontab format: minute hour day-of-month month-of-year day-of-week command
arguments.) The -m option is used to verify the snapshot. The -m option is not required. See
"Message Store Database Snapshot Recovery and Verification" for more information.

Database snapshots are located in the following base directory:

local.store.snapshotpath = "dbdata/snapshots"

Change this directory to a different disk than the disk used by the primary database, for both
performance and recovery reasons.

You configure the number of snapshots retained over time with the following option:

local.store.snapshotdirs = "3"

Each snapshot requires as much disk space as the entire database and transaction logs at any
given time.

Take enough snapshots such that you both have a recent copy, and copies that go back a day
or two, to be sure you can find a database not affected by any odd system problems that are
not immediately discovered.

62-1

Message Store Database Snapshot Recovery and Verification
The message store has been enhanced to continuously recover archived log files into an up-
to-date backup copy of the message store database. If the actual database becomes
unusable, then the message store automatically uses this backup database. Having an up-to-
date database backup provides the next level of recovery and stability for the message store.

The system automatically runs imdbverify -m as specified for rolling backups, and imdbverify
-s -m as specified under snapshots.

If the verification process detects any errors, the errors are written to the default log. Errors in
the default log mean not only that the snapshot failed, but they could also be pointing to a
problem with the active database. (However, at this time, not all verification errors indicate a
live database problem.)

Message Store Database Snapshot Rolling Backup
The message store rolling backup operates as a specially designated snapshot, where each
transaction log is added to the snapshot and recovered every few minutes to provide a more
up-to-date backup. For this reason, always enable snapshots, and rolling backup will be
enabled by default.

Rolling backup requires the following three configuration settings, which are enabled by
default:

local.store.rollingdbbackup = "yes"

local.schedule.snapshotverify.enable = 1

local.schedule.snapshotverify = "1,3,5,7,9,11,13,15,17,19,
 21,23,25,27,29,31,33,35,37,
 39,41,43,45,47,49,51,53,55,
 57,59 * * * * bin/imdbverify -m"

In this configuration:

• local.store.rollingdbbackup enables rolling backup. This means the log archive function
running under the stored daemon copies the database transaction logs to the rolling
snapshot instead of removing them every minute.

• local.schedule.snapshotverify verifies addition, which is required to continually roll the
log files into the snapshot.

Note:

Should a rolling backup fail any of its verifies, each side of the process declares the
rolling backup invalid and cleans up the logs. Rolling backup then restarts after the
next snapshot is put in place. Rolling backup relies on an initial snapshot taken by the
normal snapshot process.

Chapter 62
Message Store Database Snapshot Recovery and Verification

62-2

Message Store Database Recovery
When the message store services are started, the message store process stored decides if
the current database is damaged, and if so, replaces it with the best snapshot. The best
snapshot is printed in the logs and any recovery actions are also printed in the default log.

Chapter 62
Message Store Database Recovery

62-3

63
Classic Messaging Server and Tiered Storage
Overview

This chapter describes the operation of the Oracle Communications Messaging Server classic
message store, its performance characteristics, and how to plan for and allocate store
partitions. Additionally, this document describes next generation best practices to meet the
storage needs of both ISPs and enterprises.

Overview of Messaging Server Storage
For traditional ISPs that provide web-based email services, the rules of engagement have
changed. Thanks to companies such as Google, which can now offer consumers multiple
gigabytes of email storage space with unlimited retention, the threat is clear: ISPs, with their
much smaller storage allotments (50-100 Mbytes) and automatic purging of messages older
than 90 days, need to stay competitive by providing storage and retention capabilities similar to
Google, or lose out.

The rules have also changed for enterprises and the corporate messaging market, which are
being forced to comply with new regulations requiring email retention for ever longer periods of
time. In fact, some companies are faced with the requirement of saving every incoming and
outgoing email message forever. The storage requirements for such scenarios can be
staggering, to say the least.

As if there weren't enough problems already for ISPs and enterprises, email by its nature is a
very I/O intensive application where transaction speed is critical to customer satisfaction. In
increasing storage capacity, businesses must ensure that email services maintain acceptable
performance levels and do so in a cost-effective manner. To stay competitive, businesses
understand that they must purchase large numbers of disk drives to satisfy this new appetite
for storage space. Purchasing fiber channel drives is typically cost prohibitive, so ISPs and
enterprises will be looking to less expensive alternatives, such as Serial Advanced Technology
Attachment (SATA) drives. The challenge with SATA is that in order to reduce cost and provide
higher capacity, performance is sacrificed. And there's the dilemma: both ISPs and enterprises
need to dramatically increase their email storage capacity while at the same time maintaining
acceptable performance levels without "breaking the bank." Customers are under immense
legal and financial pressure to find a solution to this problem. The good news is that Oracle can
deliver an excellent storage solution for Messaging Server deployments in the form of the Sun
StorageTek 6540 Array.

The Messaging Server message store is one of the highest IOPs applications that exists. In the
past, customers have kept all portions of the message store on their highest performing, most
expensive disks. Fortunately, you can distributed the message store components onto different
performing disks to create a cost-effective but high performing application.

Care must be taken to keep the highest IOP portion of the message store (the database and its
store partition indexes) on high performance disks. The message store can generate up to 15+
IOPS per message delivered, typically many small, random writes, and is extremely sensitive
to response times. If response time diminishes, it can have a cascading effect through the
application. Because of the high IOP needs, the message store is ideal for Oracle's StorageTek
6540 controller.

63-1

Message Store and ZFS
Oracle's Communications Suite Deployment Engineering group has performed extensive
testing with ZFS and measured its impact on the message store. The Messaging Group
believes that in the future most Messaging Server customers will be using the ZFS file system.
ZFS changes the workload characteristics on the file system, so that there are fewer I/Os, but
the I/Os are bigger. ZFS enables read rates to diminish somewhat, whereas it enables write
rates to diminish much more. In addition, ZFS can perform snapshotting and compression,
which enhances the ability to back up the application. ZFS is also now supported by Oracle
Solaris Cluster software.

How the Message Store Works
The message store is a dedicated data store for the delivery, retrieval, and manipulation of
Internet mail messages. The message store works with the IMAP4 and POP3 client access
servers to provide flexible and easy access to messaging. The message store also works
through the HTTP server (mshttpd) to provide messaging capabilities to Convergence clients in
a web browser. The message store is organized as a set of folders or user mailboxes. The
folder or mailbox is a container for messages. Each user has an INBOX where new mail
arrives.

Each IMAP or Webmail user can also have one or more folders where mail can be stored.
Folders can contain other folders arranged in a hierarchical tree. Mailboxes owned by an
individual user are private folders. Private folders can be shared at the owner's discretion with
other users on the same message store. Messaging Server supports sharing folders across
multiple stores by using the IMAP protocol. There are two general areas in the message store,
one for user files and another for system files. In the user area, the location of each user's
INBOX is determined by using a two-level hashing algorithm. Each user mailbox or folder is
represented by another directory in its parent folder. Each message is stored as a file. When
there are many messages in a folder, the system creates hash directories for that folder. Using
hash directories eases the burden on the underlying file system when there are many
messages in a folder. In addition to the messages themselves, the message store maintains an
index and cache of message header information and other frequently used data to enable
clients to rapidly retrieve mailbox information and do common searches without the need to
access the individual message files.

A message store can contain many message store partitions for user files. A message store
partition is contained by a file system volume. As the file system becomes full, you can create
additional file system volumes and message store partitions on those file system volumes to
store new users.

Note:

If a message store partition fills up, users on the partition are not able to store
additional messages. Address this problem by using one or more of the following
approaches:

• Reducing the size of user mailboxes

• If you are using volume management software, adding additional disks

• Creating additional partitions and moving mailboxes to the new partitions

Chapter 63
Message Store and ZFS

63-2

The message store maintains only one copy of each message per partition. This is sometimes
referred to as a single-copy message store. When the message store receives a message
addressed to multiple users or a group or distribution list, it adds a reference to the message in
each user's INBOX. Rather than saving a copy of the message in each user's INBOX, the
message store avoids the storage of duplicate data. The individual message status flag (seen,
read, answered, deleted, and so on) is maintained per folder for each user.

The system area contains information on the entire message store in a database format for
faster access and no loss of service. The information in the system area can be reconstructed
from the user area. Messaging Server contains a database snapshot function. When needed,
you can quickly recover the database to a known state.

Messaging Server also has fast recovery, so that in case of database corruption, you can shut
down the message store and bring it back immediately without having to wait for a lengthy
database reconstruction.

Messaging Server Disk Throughput
Disk throughput is the amount of data that your system can transfer from memory to disk and
from disk to memory. The rate at which this data can be transferred is critical to the
performance of Messaging Server. To create efficiencies in your system's disk throughput:

• Consider your maintenance operations, and ensure you have enough bandwidth for
backup. Backup can also affect network bandwidth particularly with remote backups.
Private backup networks might be a more efficient alternative.

• Carefully partition the store and separate store data items (such as tmp and db) to improve
throughput efficiency.

• Ensure the user base is distributed across RAID (Redundant Array of Independent Disks)
environments in large deployments

• Stripe data across multiple disk spindles in order to speed up operations that retrieve data
from disk.

• Allocate enough CPU resources for RAID support, if RAID does not exist on your
hardware.

Note:

Measure disk I/O in terms of IOPS (total I/O operations per second) not
bandwidth. You need to measure the number of unique disk transactions the
system can handle with a very low response time (less than 10 milliseconds).

Typically, most customers deploy their entire message store on the highest performing disk as
shown in Figure 63-1.

Chapter 63
How the Message Store Works

63-3

Figure 63-1 Typical Disk Storage with Message Store

Messaging Server Disk Capacity
When planning server system disk space, be sure to include space for operating environment
software, Messaging Server software, and message content and tracking. Be sure to use an
external disk array if availability is a requirement. For most systems, external disks are
required for performance because the internal system disks supply no more than four spindles.
For the message store partitions, the storage requirement is the total size of all messages plus
30 percent overhead. In addition, user disk space needs to be allocated. Typically, this space is
determined by your site's policy.

Disk Sizing for MTA Message Queues
The purpose of the Messaging Server MTA Queue is to provide a transient store for messages
waiting to be delivered. Messages are written to disk in a persistent manner to maintain
guaranteed service delivery. If the MTA is unable to deliver the message, it retries delivery. At
some point, if delivery is still unsuccessful, the MTA no longer tries to send the message and
returns it to the sender.

MTA Message Queue Performance
Sizing the MTA Message Queue disks is an important step for improving MTA performance.
The MTA's performance is directly tied to disk I/O above any other system resource. This
means that you should plan on a disk volume that consists of multiple disk spindles which are
concatenated and striped by using a disk RAID system. End users are quickly affected by the
MTA performance. As users press the SEND button on their email client, the MTA does not
fully accept receipt of the message until the message has been committed to the MTA
Message Queue. Therefore, improved performance on the MTA Message Queue results in
better response times for the end-user experience.

MTA Message Queue Availability
SMTP services are considered a guaranteed message delivery service. This is an assurance
to end users that the messaging server will not lose messages that the service is attempting to
deliver. When you architect the design of the MTA Message Queue system, all effort should be

Chapter 63
How the Message Store Works

63-4

made to ensure that messages will not be lost. This guarantee is usually made by
implementing redundant disk systems through various RAID technologies.

MTA Message Queue Available Disk Sizing
The MTA Message Queue grows excessively if one of the following conditions occurs:

• The site has excessive network connectivity issues

• The MTA configuration is holding on to messages too long

• Valid problems are occurring with those messages (not covered in this document)

• Message stores are operationally down, for example, for maintenance

• Remote target sites are unavailable or overwhelmed

Performance Considerations for a Message Store Architecture
Message store performance is affected by a variety of factors, including:

• Disk I/O

• Inbound message rate (also known as message insertion rate)

• Message sizes

• Login rate (POP/IMAP/HTTP)

• Transaction rate for IMAP and HTTP

• Concurrent number of connections for the various protocols

• Network I/O

• Use of SSL

The preceding factors list the approximate order of impact to the message store. Most
performance issues with the Message Storage arise from insufficient disk I/O capacity.
Additionally, the way in which you lay out the store on the physical disks can also have a
performance impact. For smaller standalone systems, it is possible to use a simple stripe of
disks to provide sufficient I/O. For most larger systems, segregate the file system and provide
I/O to the various parts of store.

Note:

In a deployment using LMTP, the MTA queue is almost always unused.

Messaging Server Directories (General Recommendations for Storage)
Messaging Server uses six directories that receive a significant amount of input and output
activity. Because these directories are accessed very frequently, you can increase performance
by providing each of those directories with its own disk, or even better, providing each directory
with a Redundant Array of Independent Disks (RAID).

The six directories are:

• MTA Queue Directory

• Messaging Server Log Directory

Chapter 63
How the Message Store Works

63-5

• Mailbox Database Files

• Message Store Index Files

• Message Files

• Mailbox List Database Temporary Directory

MTA Queue Directory
Recommendation: Can be located on slower disks or on shared NAS

In this directory, many files are created, one for each message that passes through the MTA
channels. After the file is sent to the next destination, the file is then deleted. The directory
location can be changed by making the queue directory a symlink.

Default location of the MTA Queue directory: /var/opt/sun/comms/messaging/queue

Messaging Server Log Directory
Recommendation: Can be located on slower disks

This directory contains log files which are constantly being appended with new logging
information. The number of changes depend on the logging level set. The directory location is
controlled by the msconfig option *.logfile.logdir (Unified configuration) or the configutil
option logfile.*.logdir (legacy configuration), where * can be a log-generating component such
as admin, default, http, imap, or pop. The MTA log files can be changed by making that
directory a symlink.

Default location of the Messaging Server log directory: DataRoot/log

Mailbox Database Files
Recommendation: Keep on a fast disk

These files require constant updates as well as cache synchronization. Put this directory on
your fastest disk volume. These files are always located in the /var/opt/sun/comms/
messaging/store/mboxlist directory.

Message Store Index Files
Recommendation: Keep on fast disk

These files contain meta information about mailboxes, messages, and users. By default, these
files are stored with the message files. The msconfig option partition:*.path (Unified
configuration) or the configutil option store.partition.*.path (legacy configuration), where * is
the name of the partition, controls the directory location. If you have the resources, put these
files on your second fastest disk volume.

Default location of the message store index file: /var/opt/sun/comms/messaging/store/
partition/primary

Message Files
Recommendation: Can be located on slower disks

These files contain the messages, one file per message. Files are frequently created, never
modified, and eventually deleted. By default, they are stored in the same directory as the
message store index files. The location can be controlled with the msconfig option

Chapter 63
How the Message Store Works

63-6

partition:partition_name.messagepath (Unified configuration) or the configutil option
store.partition.partition_name.messagepath (legacy configuration), where partition_name is
the name of the partition. Some deployments might use a single message store partition called
primary specified by the store.partition.primary.path. Large sites might have additional
partitions that can be specified with store.partition.partition_name.messagepath, where
partition_name is the name of the partition.

Default location of the message files: /var/opt/sun/comms/messaging/store/partition/
primary

Note:

To separate the message files from the index files (enabling tiered storage), the
store.partition.* and .messagepath options are key. These options must be
correctly configured to put the message files on a SATA file system when you create
the partition.

Mailbox List Database Temporary Directory
Recommendation: Can be located on fast disk

This is the directory used by the message store for all temporary files. To maximize
performance, this directory should be located on the fastest file system. For Solaris OS, use
the msconfig or the configutil options to configure the store.dbtmpdir (same in both Unified
configuration and legacy configuration) variable to a directory under tmpfs, for example, /tmp/
mboxlist.

Default location of the mailbox list database: /var/opt/sun/comms/messaging/store/mboxlist

The following sections provide more detail on Messaging Server high-access directories.

Additional Information: MTA Queue Directories

In non-LMTP environments, the MTA queue directories in the message store system are also
heavily used. LMTP works such that inbound messages are not put in MTA queues but directly
inserted into the store. This message insertion lessens the overall I/O requirements of the
message store machines and greatly reduces use of the MTA queue directory on message
store machines. If the system is standalone or uses the local MTA for Webmail sends,
significant I/O can still result on this directory for outbound mail traffic. In a two-tiered
environment using LMTP, this directory is lightly used, if at all. In prior releases of Messaging
Server, on large systems this directory set needs to be on its own stripe or volume.

MTA queue directories should usually be on their own file systems, separate from the message
files in the message store. The message store has a mechanism to stop delivery and
appending of messages if the disk space drops below a defined threshold. However, if both the
log and queue directories are on the same file system and keep growing, you will run out of
disk space and the message store will stop working.

Additional Information: Log Files Directory

The log files directory requires varying amounts of I/O depending on the level of logging that is
enabled. The I/O on the logging directory, unlike all of the other high I/O requirements of the
message store, is asynchronous. For typical deployment scenarios, do not dedicate an entire
LUN for logging. For very large store deployments, or environments where significant logging
is required, a dedicated LUN is in order.

Chapter 63
How the Message Store Works

63-7

Note:

In almost all environments, you need to protect the message store from loss of data.
The level of loss and continuous availability that is necessary varies from simple disk
protection such as RAID5, to mirroring, to routine backup, to real time replication of
data, to a remote data center. Data protection also varies from the need for Automatic
System Recovery (ASR) capable machines, to local HA capabilities, to automated
remote site failover. These decisions impact the amount of hardware and support
staff required to provide service.

Additional Information: mboxlist Directory

The mboxlist directory is highly I/O intensive but not very large. The mboxlist directory
contains the databases that are used by the stores and their transaction logs. Because of its
high I/O activity, and due to the fact that the multiple files that constitute the database cannot
be split between different file systems, you should place the mboxlist directory on its own
stripe or volume in large deployments. This is also the most likely cause of a loss of vertical
scalability, as many procedures of the message store access the databases. For highly active
systems, this can be a bottleneck. Bottlenecks in the I/O performance of the mboxlist directory
decrease not only the raw performance and response time of the store but also impact the
vertical scalability.

For systems with a requirement for fast recovery from backup, place this directory on Solid
State Disks (SSD) or a high performance caching array to accept the high write rate that an
ongoing restore with a live service will place on the file system. Figure 63-2 depicts this
configuration.

Figure 63-2 Next Generation Storage with Message Store

Multiple Store Partitions
The message store supports multiple store partitions. Place each partition on its own stripe or
volume. The number of partitions that should be put on a store is determined by several
factors. The obvious factor is the I/O requirements of the peak load on the server. By adding
additional file systems as additional store partitions, you increase the available IOPS (total IOs
per second) to the server for mail delivery and retrieval. In most environments, you get more

Chapter 63
How the Message Store Works

63-8

IOPS out of a larger number of smaller stripes or LUNs than a small number of larger stripes or
LUNs. With some disk arrays, it is possible to configure a set of arrays in two different ways.
You can configure each array as a LUN and mount it as a file system. Or, you can configure
each array as a LUN and stripe them on the server. Both are valid configurations.

However, multiple store partitions (one per small array or several partitions on a large array
striping sets of LUNs into server volumes) are easier to optimize and administer. Raw
performance, however, is usually not the overriding factor in deciding how many store
partitions you want or need. In corporate environments, it is likely that you need more space
than IOPS. Again, it is possible to software stripe across LUNs and provide a single large store
partition. However, multiple smaller partitions are generally easier to manage. The overriding
factor of determining the appropriate number of store partitions is usually recovery time.

Recovery times for store partitions fall into several categories:

• First, the fsck command can operate on multiple file systems in parallel on a crash
recovery caused by power, hardware, or operating system failure. If you are using a
journaling file system (highly recommended and required for any HA platform), this factor is
small.

• Secondly, backup and recovery procedures can be run in parallel across multiple store
partitions. This parallelization is limited by the vertical scalability of the mboxlist directory
as the message store uses a single set of databases for all of the store partitions. Store
cleanup procedures (expire and purge) run in parallel with one thread of execution per
store partition.

• Lastly, mirror or RAID re-sync procedures are faster with smaller LUNs. There are no hard
and fast rules here, but the general recommendation in most cases is that a store partition
should not encompass more than 10 spindles. The size of drive to use in a storage array is
a question of the IOPS requirements versus the space requirements. For most residential
ISP POP environments, use "smaller drives." Corporate deployments with large quotas
should use "larger" drives. Again, every deployment is different and needs to examine its
own set of requirements.

Setting Disk Stripe Width
When setting disk striping, the stripe width should be about the same size as the average
message passing through your system. A stripe width of 128 blocks is usually too large and
has a negative performance impact. Instead, use values of 8, 16, or 32 blocks (4, 8, or 16
kilobyte message respectively).

MTA Performance Considerations
MTA performance is affected by many factors including, but not limited to:

• Disk performance

• Use of SSL

• The number of messages/connections inbound and outbound

• The size of messages

• The number of target destinations/messages

• The speed and latency of connections to and from the MTA

• The need to do spam or virus filtering

• The use of Sieve rules and the need to do other message parsing (like use of the
conversion channel)

Chapter 63
How the Message Store Works

63-9

The MTA is both CPU and I/O intensive. The MTA reads from and writes to two different
directories: the queue directory and the logging directory. For a small host (four processors or
fewer) functioning as an MTA, you do not need to separate these directories on different file
systems. The queue directory is written to synchronously with fairly large writes. The logging
directory is a series of smaller asynchronous and sequential writes. On systems that
experience high traffic, consider separating these two directories onto two different file
systems. In most cases, you will want to plan for redundancy in the MTA in the disk subsystem
to avoid permanent loss of mail in the event of a spindle failure. (A spindle failure is by far the
single most likely hardware failure.) This implies that either an external disk array or a system
with many internal spindles is optimal.

MTA and RAID Trade-offs
There are trade-offs between using external hardware RAID controller devices and using
JBOD arrays with software mirroring. The JBOD approach is sometimes less expensive in
terms of hardware purchase but always requires more rack space and power. The JBOD
approach also marginally decreases server performance, because of the cost of doing the
mirroring in software, and usually implies a higher maintenance cost. Software RAID5 has
such an impact on performance that it is not a viable alternative. For these reasons, use RAID5
caching controller arrays if RAID5 is preferred.

Background: Communication Services Logical Architectures
Overview

You can deploy Communications Services in either a single-tiered or two-tiered logical
architecture. Deciding on your logical architecture is crucial, as it determines which machine
types you will need, as well as how many. In general, enterprise corporate deployments use a
single-tiered architecture while internet service providers (ISPs) and telecommunications
deployments use a two-tiered architecture. However, as with all generalities, the exceptions
prove the rule. Small ISPs might just as well deploy on a single machine, and larger,
centralized enterprises might deploy in a two-tiered architecture for many of the same reasons
that ISPs do. As more and more corporations look to offer ease of access to employees
working remotely, their deployments will begin to look more and more like an ISP.

Two-tiered Logical Architecture
In a two-tiered logical architecture, the data stores communicate through front-end processes.
In the case of Messaging Server, this means MMPs and MTAs are residing on separate
machines from the data store processes. A two-tiered architecture enables the mail store to
offload important and common tasks and focus on receiving and delivering mail.

There might be some level of cohabitation with other services. For example, you could have
the Calendar store and the message store on the same machine. Similarly, you could have the
calendar front end on the MMP machine. In a two-tiered logical architecture, Directory Server
is usually a complex deployment in its own right, with multi-master and replication to a set of
load-balanced consumer directories.

Benefits of a Two-tiered Architecture
All services within the Communications Services offering rely on network capabilities. A two-
tiered architecture provides for a network design with two separate networks: the public (user-
facing) network, and the private (data center) network. Separating your network into two tiers
provides the following benefits:

Chapter 63
Background: Communication Services Logical Architectures Overview

63-10

• Hides Internal Networks. By separating the public (user-facing) network and the private
(data center) network, you provide security by hiding the data center information. This
information includes network information, such as IP addresses and host names, as well
as user data, such as mailboxes and calendar information.

• Provides Redundancy of Network Services. By provisioning service access across
multiple front-end machines, you create redundancy for the system. By adding redundant
messaging front-end servers, you improve service uptime by balancing SMTP requests to
the available messaging front-end hosts.

• Limits Available Data on Access Layer Hosts. Should the access layer hosts be
compromised, the attackers cannot get to critical data from the access hosts.

• Offloads Tasks to the Access Layer. By enabling the access layer to take complete
ownership of several tasks, the number of user mailboxes on a message store increases.
This is useful because the costs of both purchase and maintenance are much higher for
store servers than for access layer machines (the second tier). Access layer machines are
usually smaller, do not require large amounts of disk (see "MTA Performance
Considerations") and are rarely backed up. A partial list of features that are offloaded by
the second tier includes:

– Denial of service protection

– SSL

– Reverse DNS

– UBE (spam) and virus scanning

– Initial authentication - Authentications to the message store should always succeed
and the directory servers are more likely to have cached the entry recently.

– LMTP - With support for LMTP between the MTA relays and the message stores,
SMTP processing is offloaded and the need to do an additional write of the message
into the MTA queues on the message stores is eliminated.

• Simplifies End-user Settings in Client Applications. By using a two-tiered architecture,
end users do not have to remember the physical name of hosts that their messaging and
calendar applications connect to. The Access-Layer Application hosts provide proxies to
connect end users to their assigned messaging or calendar data center host. Services
such as IMAP are connected to the back-end service using LDAP information to identify
the name of the user's mailbox host. For calendar services, the calendar front-end hosts
provide a calendar lookup using the directory server to create a back-end connection to the
user's assigned calendar store host.

This capability enables all end users to share the same host names for their client settings.
For example, instead of remembering that their message store is host-a, the user simply
uses the setting of mail. The MMP provides the proxy service to the user's assigned
message store. You need to provide the DNS and load balancing settings to point all
incoming connections for mail to one (or more) MMPs.

By placing Messaging Server into two tiers, more than one Messaging Server back-end
server can be used.

An additional benefit of this proxy capability provides geographically dispersed users to
leverage the same client application settings regardless of their physical location. Should a
user from Europe visit California, the user will be able to connect to the immediate access
server in California. The user's LDAP information will tell the access server to create a
separate connection on the user's behalf to the user's message store located in Europe.
Lastly, this enables you to run a large environment without having to configure user
browsers differently, simplifying user support. You can move a user's mailbox from one
mail store to another without contacting the user or changing the desktop.

Chapter 63
Background: Communication Services Logical Architectures Overview

63-11

• Reduces Network HTTP Traffic on the Data Center. The Messaging Server front-end
greatly reduce HTTP traffic to the data center network. HTTP provides a connectionless
service. For each HTML element, a separate HTTP request must be sent to the mail or
calendar service. These requests can be for static data, such as an image, style sheets,
JavaScript files, or HTML files. By placing these elements closer to the end user, you
reduce network traffic on the back-end data center.

Horizontal Scalability Strategy
Scalability is critical to organizations needing to make the most cost-effective use of their
computing resources, handle peak workloads, and grow their infrastructure as rapidly as their
business grows. Keep these points in mind:

• How the system responds to increasing workloads: what performance it provides, and as
the workload increases, whether it crashes or enables performance to gracefully degrade.

• How easy it is to add processors, CPUs, storage, and I/O resources to a system or
network to serve increasing demands from users.

• Whether the same environment can support applications as they grow from Low-end
systems to mid-range servers and mainframe-class systems.

When deployed in a two-tiered architecture, Messaging Server is meant to scale very
effectively in a horizontal manner. Each functional element can support increased load by
adding additional machines to a given tier.

Scaling Front-end and Back-end Services
In practice, the method for scaling the front-end and back-end services differs slightly. For Tier
1 elements, you start the scaling process when traffic to the front end grows beyond current
capacity. You add relatively low cost machines to the tier and load balance across these
machines. Thus, load balancers can precede each of the Tier 1 service functions as overall
system load, service distribution, and scalability requirements dictate.

For Tier 2 elements, you start the scaling process when the back-end services have exceeded
user or data capacity. As a general rule, design the Tier 2 services to accommodate just under
double the load capacity of the Tier 1 services. For example, for an architecture designed for
5,000 users, the Tier 1 front-end services are designed to support 5,000 users. The back-end
services are then doubled, and designed to accommodate 10,000 users. If the system capacity
exceeds 5,000 users, the front-end services can be horizontally scaled. If the overall capacity
reaches 5,000 users, then the back-end services can be scaled to accommodate. Such design
enables flexibility for growth, whether the growth is in terms of users or throughput.

Implementing Local Message Transfer Protocol (LMTP) for Messaging Server
Best practices say you should implement LMTP to replace SMTP for message insertion. An
LMTP architecture is more efficient for delivering to the back-end message store because:

• Reduces the load on the stores. Relays are horizontally scalable while stores are not, thus
it is a good practice to make the relays perform as much of the processing as possible.

• It reduces IOPS by as much as 30 percent by removing the MTA queues from the stores.

• It reduces the load on LDAP servers.

• The LDAP infrastructure is often the limiting factor in large messaging deployments.

• It reduces the number of message queues.

• It requires a small amount of shared/NFS storage across all inbound MTAs.

Chapter 63
Background: Communication Services Logical Architectures Overview

63-12

You need a two-tiered architecture to implement LMTP.

Background: "How Email Works" Introduction to Messaging
Server

This write up is a basic introduction. It does avoid most of the more complicated configurations
and mechanisms which are part of the Messaging Server. The key objective is to understand
"how email works" from a basic "black box" model. As this section progresses, you will start
getting the more complicated information on the internals of the Messaging Server.

What Does Messaging Server Enable Users to Do?
The Messaging Server enables users to interact with their email message data in three
different manners:

1. Users can write an email, and then send it to someone(s).

2. Users can receive emails from others.

3. Users can access their mailbox.

Figure 63-3 How Messaging Server Allows Users to Interact with Message Data

The key components of Messaging Server are:

• Message Transport Agent (MTA)

• Message Store Database

• Message Access Services

• IMAP/POP3

• Webmail Access for Convergence (separate product)

Figure 63-3 simplifies the Messaging Server into the following three components:

• Messages are delivered into the Messaging Server via the MTA. The MTA is the SMTP
Server which accepts the email message and then route the message to it's destination.

Chapter 63
Background: "How Email Works" Introduction to Messaging Server

63-13

The destination for the email could be either the message store or to another server
somewhere out over the network.

• The message store is an Oracle private database, which stores user's mailboxes and
message data.

• Users access their mailboxes via either IMAP, POP3 or through Webmail.

A User Decides to Send an Email
Users write their emails using any of the popular email clients out on the market. These email
clients could include Mozilla/Thunderbird, Apple Mail, Outlook, or any other IMAP-based email
application. Once the email is ready, the user would click the "SEND" button.

The "SEND" button allows the email application to connect with the MTA. The client connects
to the MTA using the SMTP protocol. Figure 63-4 shows the connection of the user to the
Messaging Server MTA.

Figure 63-4 Client Connects to the Messaging Server MTA

On the connection to the MTA, the client will send the message over the network to the MTA.
The MTA would then store the message in the Message Queue Disk and release the client
connection. The message stored on the queue will then be read and the address of the
message will be evaluated by using information stored in the Directory Server using LDAP.
Figure 63-5 shows the MTA storing the message in the message queue, which is then
evaluated by LDAP.

Figure 63-5 MTA Stores Message to Message Queue and Message Evaluated Through
LDAP

At this point, the MTA will attempt to deliver the message to one of three places:

1. Into a User's Mailbox

Chapter 63
Background: "How Email Works" Introduction to Messaging Server

63-14

2. Into another Messaging Server

3. Into another site on the Internet (note for security: it is recommend that the MTA forward
the message to a "smarthost" MTA to handle the message delivery over the Internet)

It is important to note that once the message is on the Message Disk Queue, and the MTA has
responsibility of the message. We guarantee this responsibility by committing the message to
disk. It is this commitment which provides the first clue into a our first performance limitation.
We write all MTA data to a disk queue, and we therefore are bounded by the disk i/o
performance of that disk system. We also need to ensure that the disk system is highly
available through RAID. (Typically RAID 0+1 or RAID 5.)

Postal Service Example: An example of this would be a letter that you drop into a postal
mailbox. If you drop a letter of at the Post Office, you are assuming that the Postal Service will
mail the message to the destination. You will not expect the message to get lost.

The MTA will not remove the message from the Message Disk Queue until a successful
delivery. If a delivery attempt fails, it will keep trying. If it fails a final time, the message will be
HELD on the disk queue and a notification sent back to the sender. The MTA logs will record
the whole history. Figure 63-6 shows how the MTA delivers a message.

Figure 63-6 How the MTA Delivers a Message

The MTA will attempt to deliver the message in one of three possible ways:

1. Message is Deposited into the User's Mailbox on the message store.

2. Message is Sent to another MTA Server on the Same Local Network.

3. Message is sent to the Internet by first sending to the Smarthost.

The Smarthost MTA sits between the Messaging Server inside the protected network and the
Internet. Typically this would be in an area outside the internal network. The Smarthost would
evaluate the message address by domain name. Using DNS, the MTA would attempt to
identify the DNS MX Record and A Record for the destination of the email. It would then
attempt to deliver the message to the host of that IP Address using SMTP.

User Receives an Email
Figure 63-7 shows how a receives email from the MTA.

Chapter 63
Background: "How Email Works" Introduction to Messaging Server

63-15

Figure 63-7 How a User Receives Email from the MTA

An email sent to a user on the message store. In the case of the message arriving from the
Internet, the email sender would address the email to "jon@example.com". The email sender's
MTA would look up "example.com" in DNS and find either an MX record or an A record for this
site. Figure 63-8 shows the delivery process of an inbound message through the MTA.

Figure 63-8 Inbound MTA

The Inbound MTA for the site may be configured to detect SPAM or Viruses. In this case, the
message will be sent to a anti-spam/anti-virus verdict engine (such as Cloudmark or Symantec
Brightmail). If the email passes, it is evaluated for message routing. The email address is
evaluated in the Directory Server. If the email address is valid, it is then sent to the user's
mailbox host (mailboxb).

User Access Mailbox
Figure 63-9 shows the process of users accessing their mailboxes.

Chapter 63
Background: "How Email Works" Introduction to Messaging Server

63-16

Figure 63-9 User Access to Mailbox

If users want to access their email, they use their email client. These clients, such as Mozilla
Thunderbird or Apple Mail, connect to the mailbox using the IMAP protocol. In some cases,
ISPs limit access to POP3 protocol.

The email client would connect to Messaging Server's Mail Multiplexor Proxy (MMP). The MMP
would accept the user's email credentials (their username and password) and validate their
login using the Directory Server. Should the authentication be successful, the MMP would then
identify the user's backend message store server. The MMP would then connect to this
backend message store on the user's behalf. The user can then access their mailbox data.

The value of the MMP is that it provides 1) Security and 2) Scalability. Security is improved by
the use of the MMP by isolating the message store from the end-users. This helps to prevent
unauthorized access (hacking) into the message store server data. Scalability (as seen in the
figure below) is improved through Horizontal Scalability. This means that the architecture can
grow by adding additional MMPs and backend message store servers. Figure 63-10 shows the
capacity growth of the access layer through horizontal scalability.

Figure 63-10 Growing Access Layer Capacity

Chapter 63
Background: "How Email Works" Introduction to Messaging Server

63-17

64
Message Store Command Reference

This chapter describes the Oracle Communications Messaging Server message store
commands.

configutil
The configutil utility enables you to list and change Messaging Server configuration options.

For a list of all configuration options, see Messaging Server Reference.

All Messaging Server configuration options and values are stored locally in the msg.conf and
msg.conf.defaults files. The msg.conf.defaults file must never be edited and contains
defaults constructed during initial configuration. The msg.conf file contains settings that have
been explicitly overridden from their default value using configutil. Use the -H option to
configutil to view a setting's default value.Use configutil to edit configutil settings; do not
edit these files directly.

Note:

If the administrator has defined any language-specific options (such as messages),
you must use the language option at the end of the command in order to list or
change them. Commands entered without a language option are only applied to
attributes that do not have a specified language option.

Requirements: Must be run locally on the Messaging Server. You may run configutil as root
or mailsrv. If you make changes to the servers, you must restart or refresh the servers,
depending on the variable, for the changes to take effect.

Location: MessagingServer_home/bin/configutil

You can use configutil to perform four tasks:

• Display particular configuration options using -o option.

Add ;lang-xx after the option to list options with a specified language option. For
example, ;lang-jp to list options specified for the Japanese language.

• List configuration option values using the -p pattern option. (Can be used with the -m
option.)

Use -p pattern to just list those configuration options whose names contain the pattern
specified in pattern. * is the wildcard character and is assumed to follow pattern if there is
no wildcard already in pattern.

Use -m to show whether or not the listed options are refreshable.

• Set configuration options using the -o option and -v value options.

Add ;lang-xx after the option to set options for a specified language option. For
example, ;lang-jp to set options specified for the Japanese language.

64-1

• Import configuration option values from stdin using the -i option.

Include the -H option to show settings with help.

Examples:

configutil -H

Configuration option: alarm.diskavail.msgalarmdescription
 Description: Description for the diskavail alarm.
 Syntax: string
 Default: percentage mail partition diskspace available
alarm.diskavail.msgalarmdescription is currently set to: percentage mail
partition diskspace available

Configuration option: alarm.diskavail.msgalarmstatinterval
 Description: Interval in seconds between disk availability
checks. Set to 0 to disable checks of disk usage.
 Syntax: int
 Default: 3600
alarm.diskavail.msgalarmstatinterval is currently set to: 3600
[.....]

Show help on all configuration parameters ending in ".port"

configutil -p *.port -H
Configuration option: local.deploymap.port
 Description: The port Deployment Map option, deploymap.port, specifies
the TCP port on which the Deployment Map service listens for incoming TCP
connections. The default is 4570. Introduced in 8.0.
 Unified Config Name: deploymap.port
 Flags: NULL (unset)
 Syntax: uint16
 Default: 4570

Configuration option: local.ens.port
 Description: Port (and optionally, a specific IP address) ENS
server will listen on, in the format of [address:]port, for example,
7997 or 192.168.1.1:7997.
 Syntax: string
 Default: 7997
local.ens.port is currently set to: 7997

Configuration option: local.service.http.proxy.port
 Description: Configures the port number of the back-end
Messenger Express (HTTP) server with the Messaging Multiplexor.
 Syntax: uint
 Default: 80
local.service.http.proxy.port is currently set to: 80

Configuration option: local.snmp.port
 Description: SNMP subagent port number.
 Syntax: uint
 Default: 0
local.snmp.port is currently set to: 0

Configuration option: local.watcher.port
 Description: watcher listen port.
 Syntax: uint
 Default: 49994
local.watcher.port is currently set to: 49994

Configuration option: local.webmail.cert.port

Chapter 64
configutil

64-2

 Description: Specifies a port number on the machine where the
Messaging Server runs to use for CRL communication. This port is used
locally for that machine only. The value must be greater than 1024.
 Syntax: int
 Default: 55443
local.webmail.cert.port is currently set to: 55443

Configuration option: local.webmail.da.port
 Description: Delegated Administrator port.
 Syntax: int
 Default: 8080
local.webmail.da.port is currently set to: 8080

Configuration option: local.webmail.sieve.port
 Description: The port of the web container where the Mail Filter
has been deployed.
 Syntax: string
 Default: NULL (unset)
local.webmail.sieve.port is currently unset

Configuration option: metermaid.config.port
 Description: Port number on which MeterMaid listens for
connections.
 Syntax: tcpport
 Default: 63837
metermaid.config.port is currently set to: 63837

Configuration option: pmxbl.port
 Description: RESTRICTED: The port pmxbl option specifies the TCP port
number on which the PureMessage IP Blocker service is running.
 Unified Config Name: pmxbl.port
 Flags: USAGE RESTRICTED
 Syntax: uint16
 Default: 4466

Configuration option: service.imap.indexer.port
 Description: The port Indexer option specifies the TCP port on which ISS
listens for incoming TCP connections, i.e., the TCP port to which Messaging Server
should connect to communicate with ISS. The default is 8070. If the
indexer.sslusessl option (service.imap.indexer.sslusessl option in legacy
configuration) is set, the IMAP server uses SSL to authenticate to ISS on this port.
 Unified Config Name: imap.indexer.port
 Flags: NULL (unset)
 Syntax: uint16
 Default: 8070

Configuration option: service.imap.port
 Description: IMAP server port number.
 Flags: MSG_RESTART_IMAP
 Syntax: uint
 Default: 143
service.imap.port is currently set to: 143

Configuration option: service.pop.port
 Description: POP server port number.
 Flags: MSG_RESTART_POP
 Syntax: uint
 Default: 110
service.pop.port is currently set to: 110

Configuration option: store.dbreplicate.port
 Description: The port Message Store dbreplicate option specifies the

Chapter 64
configutil

64-3

mailbox list database replication TCP port number. The default is 55000. This will
be used to listen for incoming connections. Introduced in 7.0.5.
 Unified Config Name: store.dbreplicate.port
 Flags: NULL (unset)
 Syntax: uint16
 Default: 55000

Show help on store.partition.*.path

configutil -p store.partition.*.path -H
Configuration option: store.partition.*.path
 Description: Controls the store index file directory path.
 Flags: MSG_RESTART_ALL
 Syntax: filepath
 Default: NULL (unset)
store.partition.primary.path is currently set
to: /opt/sun/comms/messaging64/data/store/partition/primary
store.partition.three.path is currently set
to: /opt/sun/comms/messaging64/data/store/partition/three
store.partition.two.path is currently set
to: /opt/sun/comms/messaging64/data/store/partition/two

Configuration option: store.partition.primary.path
 Description: Full path name of the primary partition.
 Flags: MSG_RESTART_ALL
 Syntax: filepath
 Default: <msg.RootPath>/data/store/partition/primary
store.partition.primary.path is currently set
to: /opt/sun/comms/messaging64/data/store/partition/primary

Syntax

configutil [-h] [-f configfile] [-o option [-v value]
configutil [-f configfile] [-p pattern] [-H] [-m] [-V]
configutil -i inputfile

Options

Table 64-1 describes the options for the configutil command.

Table 64-1 configutil Options

Option Description

-d Delete an option. Used with the -o option.

-f configfile Specify local configuration file to use.

-h Show usage statement.

-H Get help on options. Used with the -o option.

-i inputfile Import options from an import file.

-m List meta data.

-o option Get an option. May be used with the -H, -v, -d options.

-p pattern List only options with the given pattern (* is wildcard). Example:
configutil - p *enable -H.

-v value Specifies a value for a configuration option. Used with -o option.

-V Validate configuration against meta data.

If you specify no command-line options, all configuration options are listed.

Chapter 64
configutil

64-4

Examples

To list all configuration options and their values in both the Directory Server LDAP database
and local server configuration file:

configutil

To import configurations from an input file named config.cfg:

configutil -i config.cfg

To list all configuration options with the prefix service.imap:

configutil -p service.imap

To display the value of the service.smtp.port configuration option:

configutil -o service.smtp.port

To set the value of the service.smtp.port configuration option to 25:

configutil -o service.smtp.port -v 25

To clear the value for the service.imap.banner configuration option:

configutil -o service.imap.banner -v ""

To display the refreshable status of the service.pop configuration options:

configutil -m -p service.pop

This example of the -m option could produce the following sample output:

service.pop.allowanonymouslogin = no [REFRESHABLE]
service.pop.banner = "%h %p service (%P %V)" [REFRESHABLE]
service.pop.createtimestamp = 20030315011827Z [REFRESHABLE]
service.pop.creatorsname = "cn=directory manager" [REFRESHABLE]
service.pop.enable = yes [NOT REFRESHABLE]
service.pop.enablesslport = no [NOT REFRESHABLE]
service.pop.idletimeout = 10 [REFRESHABLE]
service.pop.maxsessions = 600 [NOT REFRESHABLE]
service.pop.maxthreads = 250 [NOT REFRESHABLE]

Language Specific Options

To list or set options for a specific language, append ;lang-xx immediately after the option with
no spaces, where xx is the two-letter language identifier. For example, to view the text of the
Japanese version of the store.quotaexceededmsg message:

configutil -o "store.quotaexceededmsg;lang-jp"

The semicolon is a special character for most UNIX shells and requires special quoting as
shown in the example.

Notes on the configutil Utility
• The configutil utility only applies to the subset of product options, specifically "configutil"

options.

• The msg.conf and msg.conf.defaults files are only present in legacy configuration mode.

Chapter 64
configutil

64-5

• The msconfig command should be used instead of configutil when using Messaging
Server's Unified Configuration.

counterutil
The counterutil utility displays and changes counters in a counter object. It can also be used
to monitor a counter object at fixed intervals. See "Gathering Message Store Counter Statistics
by Using counterutil" for more information and examples.

Requirements: Must be run locally on the Messaging Server.

Location: MessagingServer_home/bin/

Syntax

List content of counter registry:

counterutil -l

Monitor a counter object:

counterutil -o counterobject [-i interval] [-n iterations]

Reset a counter:

counterutil -s -o counterobject -c counter

Options

Table 64-2 describes the options for the counterutil command.

Table 64-2 counterutil Options

Option Description

-c counter Specify a counter (for example global.maxconnections).

-i interval Monitoring interval. Default is 5 seconds.

-l List the content of the counter registry.

-n iterations Specify number of iterations..

-o counterobject Specify a counterobject, (for example imapstat).

-s Reset counter to 0.

Examples

To list all counter objects in a given server's counter registry:

counterutil -l

To monitor the content of a counter object imapstat every 5 seconds:

counterutil -o imapstat

To reset the counter global.maxconnections, associated with the counter object imapstat, to
zero:

counterutil -s -o imapstat -c global.maxconnections

Chapter 64
counterutil

64-6

See "Gathering Message Store Counter Statistics by Using counterutil" for usage information
on counterutil.

deliver
The deliver utility delivers mail directly to the message store.

If you are administering an integrated messaging environment, you can use this utility to
deliver mail from another MTA, a sendmail MTA for example, to the Messaging Server
message store.

Note:

The deliver utility is only for use with files which are already completely and properly
formed email messages (RFC 822).

Requirements: Must be run locally on the Messaging Server; the stored utility must also be
running.

Location on UNIX: MessagingServer_home/bin/

Syntax

deliver [-h] [-r address] [-m folder] [-E encoding] [-g flag]
[-qcpx] userid... | pattern

You can specify multiple userids. If you specify no options, mail is delivered to the inbox of the
user specified in userid.

Options

Table 64-3 describes the options for the deliver command.

Table 64-3 deliver Options

Option Description

-c Creates the folder if it doesn't exist (INBOX is created automatically).

-E encoding Folder name encoding; for example IMAP-mailbox-name.

-g flag Sets the flag on the message delivered. This option can be specified multiple times.

-h Displays usage.

-m folder Delivers mail to the specified folder instead of INBOX if folder exists or -c is specified.

-p Expands wildcard (*) in pattern.

-q Disables quota check.

-r address Inserts a Return-Path: address header.

-x Enables Indexed Search Converter (ISC) callout in delivery. This option is only valid for
Cassandra message store, when ISC is installed.

Chapter 64
deliver

64-7

Tip:

The mboxutil -lxp user/userid/mailbox command can be used to check the access
controls on mailbox for userid.

Debugging and Troubleshooting Options

Table 64-4 describes the troubleshooting options for the deliver command.

Table 64-4 deliver Debugging and Troubleshooting Options

Option Description

-t seconds Deliver as many copies of the message as possible to the userid in seconds time.
This option is primarily meant for load-testing a mailbox.

Examples

To deliver the contents of a file named message to Fred's tasks mailbox:

deliver -m tasks fred < message

In the above example, if the tasks mailbox does not grant "p" rights to the value of the authid
passed in with the -a option or the tasks mailbox does not exist, the contents of message is
delivered to the inbox of the user fred.

To deliver the contents of a file named message to the inbox of all existing users on the store

deliver -p '*' < message

To deliver the contents of a file named message to the inbox of all existing users in the
example.com hosted domain.

deliver -p '*@example.com' < message

Tip:

Use the mboxutil command to determine which users will receive a copy of the
message based on a given user pattern, for example mboxutil -lp "user/pattern/
INBOX"

To deliver the contents of a file named message to Fred's Important mailbox, and set the
'\Flagged' IMAP flag on that new message.

deliver -m Important -g '\Flagged' fred < message

hashdir
The hashdir command calculates the hash where the specified user ID would be found in a
store partition. If the user is not in the default domain, you should append @<domain> to the
user ID.

Chapter 64
hashdir

64-8

Syntax

hashdir [-a] [-i] <userid>[@<domain>]

Options

Table 64-5 describes the options for the hashdir command.

Table 64-5 hashdir Options

Option Description

-a Appends the specified user ID to the output.

-i Allows you to use the command in interactive mode.

Examples

hashdir user1
64/b1/
hashdir user1@domain.com
11/05/

Note:

The hashdir command does not validate the input to determine whether it is a valid
userid or whether the mailbox exists in the store. Also, the user ID is case sensitive,
specifying the wrong case will generate a different hash. To see where the folder
exists in the store, the "mboxutil" command may be more useful.

imcheck
The imcheck utility prints mailbox data and metadata. In addition, imcheck prints mboxlist
database data for specified database files and prints database statistics.

Syntax

Print mailbox data:

imcheck [-m mailbox [-c|-b msgno] | -x dir [-c|-b msgno] | -p partition | -f file] [-e
| -H] [-D [-S sep]]

Print mboxlist database data:

imcheck -d db_name [-S sep]

Print database statistics:

imcheck -s [-n] [subsystem...]

Print maintenance queue:

imcheck -q

Chapter 64
imcheck

64-9

Options

Table 64-6 describes the options for the imcheck command.

Table 64-6 imcheck Options

Option Description

-b msgno Print message content of the specified message number.

-c msgno Print cache data of the specified message number.

-d db_name Dump the content of the specified database. Print the statistics of the specified
database when used with the -s option. This option is only valid for Berkeley Database
message store.

-D Dump meta data for imsbackup verification.

-e Print uids of the expunged messages.

-f file Print meta data for the mailboxes listed in the specified file.

-F Return only the values which do not require traversal of the database.

-H Print mailbox header only.

-m mailbox Print meta data for the specified mailbox. See "imcheck -m Metadata Output" for
information about the output produced by this option. For Cassandra message store,
imcheck -m mailbox does not list a partition or path, as Cassandra message store
does not use the concept of a partition.

-n No locking, for debugging db hang problems only.

-p partition Print meta data for every mailbox in the specified partition.

-q Print maintenance queue. See "Displaying the Maintenance Queue" for more
information.

-s Prints database statistics. This option is only valid for Berkeley Database message
store.

-S sep Use sep as the separator for -D output or a '|' as default. Also used with -d option to
separate the columns in output with user provided input or a single space as default

-x dir Print meta data for the mailbox under the specified directory.

subsystem mpool, lock, log, txn or rep. (If subsystem is not specified, all available information is
printed.)

Note:

When using the separator, check output consistency by trying the separator string as
a single or double quoted string with escape sequences if required.

imcheck -m Metadata Output

The imcheck -m mailbox command displays metadata that describes the entire mailbox and
metadata that describes each message.

The message-specific data is displayed in a table. Most of the fields in the table are self-
explanatory. However, the following fields need further explanation:

HSize - Header size

Chapter 64
imcheck

64-10

MT - Message type ID, defined by configutil options such as store.messagetype.* and
store.messagetype.enable. For a list of these options, see Messaging Server Reference.

SFlags - System flags. The system flags are as follows:

R : Recent
S : Seen
D : Deleted
A : Answered
F : Flagged
T : Draft
B : Stubbed
C : Archived
E : Encrypted
N : NoLeadingDots

In the imcheck -m mailbox output, the system-flag metadata is displayed as a character. For
example: S

indicates that the Seen flag has been set.

UFlags - Flags defined by the user. User-flags are displayed as a hex number. The binary form
of the hex number represents the user-flag switches. For example, if the user has defined six
flags, the value

3f0000

indicates that all six flags are set.

Examples

To dump metadata to verify the imsbackup operation performed on the user jdoe's INBOX,
separating the output with a colon (":"):

imcheck -m user/jdoe/INBOX -D -S ":"

To dump the contents of the folder.db database:

imcheck -d folder.db

To print metadata for the inbox of the user jdoe:

imcheck -m user/jdoe/INBOX
--
Name: user/jdoe
Version: 102
Exists: 10
Flags: 0
Largest Msg: 1094 bytes
Last Append: 20080801062616
Last UID: 1008276527
Oldest Msg: 20000621093214
Oldest Uid: 2
Quota Used: 10061
UID Validity: 1008099930
Cache Offset: 7856
Start Offset: 256
ACL: jdoe lrswipcda
Userflags:
 f1
 f2
 f3
 f4

Chapter 64
imcheck

64-11

 f5
 f6
Subscribed: 0
Partition: primary
Path: /var/opt/sun/comms/messaging64/store/partition/primary/=user/64/b1/=jdoe
Msg Path: /var/opt/sun/comms/messaging64/store/partition/primary/=user/64/b1/=jdoe

MsgNo Uid Internal-Date Sent-Date Size HSize Cache-Id C-Offset C-Len Last-Updated Save-
Date MT SFlags UFlags Original-Uid Message-id

--
1 1 20080801061303 20080801061259 752 744 1 16 1324 20080801061303 20080801061303 0 S
0.0.0 1217596383-1 <200808011312.m71DCxJp017783@dumbo.example.com>
2 2 20080801062616 20080801062615 781 772 1 1340 1440 20080801062616 20080801062616 0 S
0.0.0 1217596383-2 <200808011326.m71DQFYb018990@dumbo.example.com>

To print metadata for the Sent folder of a Japanese User jauser:

bash-3.00# ./mboxutil -E "M-UTF-7" -lp user/jauser/*
 msgs Kbytes last msg partition quotaroot mailbox

 0 0 - - primary 5120 user/jauser/INBOX
 0 0 - - primary - user/jauser/&MFQwf3ux-
 0 0 - - primary - user/jauser/&Tgtm+DBN-
 1 0 2009/03/23 11:59 primary - user/jauser/&kAFP4W4IMH8-
bash-3.00# ./imcheck -m "user/jauser/&kAFP4W4IMH8-"
--
Name: user/jauser/&kAFP4W4IMH8-
Version: 102
Exists: 1
Flags: 0
Largest Msg: 898 bytes
Last Append: 20090323115905
Last UID: 1
Oldest Msg: 20090323115905
Oldest Uid: 1
Quota Used: 898
UID Validity: 1237768457
Cache Offset: 7856
Start Offset: 256
ACL: jauser lrswipcda
Subscribed: 1
Partition: primary
Path: /opt/sun/comms/messaging64/data/store/partition/primary/=user/20/b0/=jauser/
=&k+A+F+P4+W4+I+M+H8-
Msg Path: /opt/sun/comms/messaging64/data/store/partition/primary/=user/20/b0/=jauser/
=&k+A+F+P4+W4+I+M+H8-

 MsgNo Uid Internal Date Sent Date Size HSize CacheOff Last Updated
Save Date MT SFlags UFlags Original-Uid Message-id

 1 1 20090323115905 20090323115905 898 549 7856 20090323115905
20090323115905 0 S 0.0.0 1237768457-1
<cd8b67384048.49c77989@dumbo.example.com>

imdbverify
The imdbverify utility takes and verifies message store database snapshots. See
"Administering Message Store Database Snapshots (Backups)" for more information on
running imdbverify.

Chapter 64
imdbverify

64-12

Syntax

imdbverify [-s] [-m]

Options

Table 64-7 describes the options for the imdbverify command.

Table 64-7 imdbverify Options

Option Description

-s Take a full snapshot of the message store database and save it in the configured
destination. Incremental snapshot is performed when this option is not specified.

-m Verify all database files.

imexpire
imexpire automatically expires messages in the message store based on administrator-
specified criteria. The "impurge" command purges the messages.

Topics:

• Expire Actions

• Expire Criteria

• Requirements

• Location

• Syntax

• Options

• Examples

• Additional Functionality

Expire Actions

The expire phase can perform one of these actions:

• Discard - removes messages from the mailbox immediately.

• Archive - archives messages by using the AxsOne archive store.

• Fileinto - moves messages to a specified mailbox folder. If the specified folder does not
exist, imexpire creates it.

• Report - prints the specified mailbox name, uid, and uid validity to stdout.

By default, imexpire discards messages.

Note:

Starting with Messaging Server 8.0.2, the action to archive messages by using the
AxsOne archive store has been deprecated.

Chapter 64
imexpire

64-13

See the following sections for more information about how the imexpire actions can be
performed:

• Message Store Maintenance Queue

• Configuring Message Expiration (Tasks)

• Message Store Message Expiration

Expire Criteria

The expire criteria can be set with configutil options or in a file called store.expirerule. Here
are some of the criteria that can be specified:

• Folder pattern

• Number of messages in the mailbox

• Total size of the mailbox

• Age, in days, that messages have been in the mailbox. This criterion dates the age of a
message from the time it first arrives in the message store (is first received by the user).

• Age, in days, that messages have been saved in a particular mailbox folder. This criterion
dates the age of a message from the time it is moved to a particular folder or re-saved in a
folder.

• Size of message and grace period (days that a message exceeding the size limit will
remain in the message store before removal)

• Whether a message has been flagged as seen or deleted

• By message header field such as subject or message ID

• According to a sieve script, as defined in RFC 3028

You can use imexpire to install a local expire rule file (store.expirerule) without conflicting
with existing expire rules. If an expire rule file configured for the same partition or mailbox is
executing while you try to install a new expire rule file, a warning message appears and the
new expire rule file is not installed. Use the imexpire -i option to install a local expire rule file.

You can exclude a particular user or mailbox folder from all expire criteria by setting the
exclusive expire rule for that user or mailbox without specifying any other rules in the expire
rule file.

Note:

The functionality of imexpire has been expanded and the interface has changed
since earlier versions of Messaging Server. However, this version continues to
support older imexpire configurations.

Requirements

imexpire must run locally on the Messaging Server; the stored utility must also be running.

Location

The location of imexpire is MessagingServer_home/bin.

Chapter 64
imexpire

64-14

Syntax

Expire messages from the Message Store:

imexpire [-n] [-d] [-v num] [-p partition | -u user] [-t num][-r num] [-m num] [-f
config_file]

Install expire rule file:

imexpire -i {-p partition | -x mailbox | -u user} -f config_file

Options

Table 64-8 describes the options for the imexpire command.

Table 64-8 imexpire Command Options

Option Description

-d Display diagnostics to stdout/stderr.

-f config_file Use expire rules in the specified config_file (all other expire rules are ignored). When
used with the -i option, -f config_file refers to the full path name of the expire rule file.

-i Install a local expire rule file.

-I Include trailing spaces on messageheader.*.

-m num Maximum number of rules in a policy. Default is 128.

-n Trial run only: do not perform expire.

-p partition Expire the specified partition. When used with -i, it refers to the partition name.

-r num Maximum number of threads per partition. Default is 1.

-t num Maximum number of threads per process. Default is 50.

-u user Expire the specified user.

-v num Log expire statistics. When -d is specified, messages are displayed to stdout.
Otherwise, messages are logged to the default log file. Num is one of the following:

0: store level statistic (default)

1: user level statistic

2: mailbox level statistic

3: message level statistic

-x mailbox Destination mailbox name, for example: user/joe/INBOX.

Examples

Install a local expire rule configuration file for the user jdoe. These expire rules will apply to
jdoe's memos folder.

imexpire -i -x user/jdoe/memos -f /home/jdoe/store.expirerule

Additional Functionality

Messaging Server provides the following additional functionality to imexpire:

• Attributes for Spam and Virus Scanning Through an MTA Channel

• Sieve Body-Test Functionality

Attributes for Spam and Virus Scanning Through an MTA Channel

Chapter 64
imexpire

64-15

Table 64-9 describes the attributes for the imexpire command that facilitate spam and virus
scanning through an MTA channel.

Table 64-9 imexpire Attributes

Attribute Description

channel An MTA channel.

rescanhours Rescan messages that have not been scanned for a specified number of hours.

Sieve Body-Test Functionality

Sieve body-test functionality has been added to the imexpire utility. The test can find and
perform actions on existing email messages in the message store on keywords in the body
part.

To enable a Sieve body-test, set ENABLE_SIEVE_BODY=1 in option.dat.

Example usage in store.expirerule:

folderpattern: *

sieve: require "body"; body :contains "bug";

action: discard

iminitquota
The iminitquota utility reinitializes the quota limit from the LDAP directory and recalculates the
total amount of disk space that is being used by the users. It updates the message store
quota.db database under the mboxlist directory in the message store. The iminitquota utility
should be run after the reconstruct -q utility is run.

Location: MessagingServer_home/bin/

Syntax

iminitquota [-s | -q] -a | -u user

Options

Table 64-10 describes the options for the iminitquota command.

Table 64-10 iminitquota Options

Option Description

-a Initialize quota for all users in the message store.

-q Initialize quota only.

-s Initialize quota, usage, and overquota status.

-u user Initialize quota for user.

You must specify either the -a or -u option with the iminitquota command.

Chapter 64
iminitquota

64-16

immonitor-access
Monitors the status of Messaging Server components-Mail Delivery (SMTP server), Message
Access and Store (POP and IMAP servers), Directory Service (LDAP server) and HTTP server.
This utility measures the response times of the various services and the total round trip time
taken to send and retrieve a message. The Directory Service is monitored by looking up a
specified user in the directory and measuring the response time. Mail Delivery is monitored by
sending a message (SMTP) and the Message Access and Store is monitored by retrieving it.
Monitoring the HTTP server is limited to finding out weather or not it is up and running.

The internal operation of immonitor-access is as follows: first it does an ldapsearch of a test
user created by the administrator. This checks the Directory Server. It can then connect to the
SMTP port and send a message to the mail address to check the dispatcher. Then, it checks
Message Access by using the IMAP and POP server to see if the message made it to the
Message Store. The command logs a message in the default log file if any of the thresholds
are exceeded.

The command creates a report that contains the following information:

• The state of the components

• The response time

• The round-trip time for that service

immonitor-access is typically run by cron at scheduled intervals to provide a snapshot of the
status of the Message Access and Store components. immonitor-access can also connect to
the IMAP/POP service and delete messages with the subject specified by -k. If -k is not
specified, all messages containing the subject header, immonitor, are deleted.

The administrator must create a test user for use by this command before it can be executed.

Syntax

immonitor-access [-u user_name] [-w passwd | -j pwdfile] [service...]
[-D threshold] [-k mail_subject] [-m mailfile] [-r alert_recipients]
[-A alternate_mail_server] [-f from_user@domain] [-X] [-T] [-hdnvz]

where service is one or more of:

 Where service is one or more of
 -L LDAP_host[:port]=[threshold][,STLS|PORT] [-b searchbase -B bindDN]
 -S SMTP_host[:port]=[threshold][,STLS]
 -P POP_host[:port]=[threshold][,STLS|PORT]
 -I IMAP_host[:port]=[threshold][,STLS|PORT]
 -H HTTP_host[:port]=[threshold][,STLS|PORT] [-c cookiename]
 -C LMTP_host[:port]=[threshold][,STLS]
 -X (Enable SASL)
 -T (Enable SSL)

Options

Table 64-11 describes the task options for immonitor-access command.

Chapter 64
immonitor-access

64-17

Table 64-11 immonitor-access Command Options

Option Description

-A alternate_mail_server The SMTP server to send e-mail alerts to. This option helps in sending
alert messages even when the primary mail server is down or heavily
loaded. If -A is not specified, the SMTP server on the localhost is used.

-b searchbase Use search base as the starting point for the searching in the Directory
Server. It is the same as -b of ldap-search(1). If -b is not specified, the
utility uses the value of dcRoot of the configuration option
local.ugldapbasedn.

-B bindDN LDAP DN to bind as when performing an LDAP search via -L. If not
specified, then the value of configuration option local.ugldapbinddn is
used. This option as well as -j or -w is mandatory when the -n option is
used.

-C LMTP_host: [port] =
[threshold][,STLS]

Use the LMTP server and the port specified to check if Messaging
Server is able to deliver the message to the store. The threshold is
specified in seconds. Use STLS for STARTTLS.

-d The debug mode: display the execution steps.

-D threshold The delivery (also called round-trip time) threshold. The time taken to
send the mail and the mail being visible to POP/IMAP. This option can be
used only when -I/-P and -S/-C are used.

-f alert_from When immonitor-access sends out an e-mail, it usually is sent as
root@domainname. Specify this option to send out an e-mail as different
user: -f user@red.iplanet.com

-h Prints command usage syntax.

-H HTTP_host: [port] =
[threshold][,STLS|PORT] [-c
cookiename]

Use the HTTP server and the port specified to check if the HTTP server
is able to accept requests on the specified port. When -I -H or -P is used,
it is necessary to provide the test user password with -w. When -S/-C, -
I/-P are specified together, the command does the following:

+ sends mail and retrieves with IMAP and POP

+ reports the per protocol response time

+ reports round-trip time o reports delivery time (the time taken to send
the mail and be visible to IMAP/POP)

Multiple -I, -P, and -S options can be specified, which helps in monitoring
Messaging Server on various systems.

Use STLS for STARTTLS. Use PORT to specify to use SSL port.

-I IMAP_host: [port] =
[threshold][,STLS|PORT]

Use the IMAP server and the port specified to check the IMAP
component of the Message Access. The threshold is specified in
seconds. The threshold involves the time to login, retrieve, and delete
the message. Use STLS for STARTTLS. Use PORT to specify to use
SSL port.

-j pwdfile A readable file containing the password corresponding to the user
specified with -u. This option, or -w, is mandatory when the -H, -I, or -P
options are used, or when -n is used in conjunction with -L. This might
be available in a future release.

-k subject Header subject of the messages to be sent/deleted. The utility, by
default, uses the string "immonitor:<date>" as the subject in the header
sent out with the -S option. If -k is specified, the string
"immonitor:subject" is used in the subject header. This option can be
used with -z to delete messages, if -k is not specified, all messages with
the Subject header containing "immonitor" are deleted.

Chapter 64
immonitor-access

64-18

Table 64-11 (Cont.) immonitor-access Command Options

Option Description

-L LDAP_host: [port] =
[threshold][,STLS|PORT]

Use the LDAP server and the port specified to check the Directory
Server. The threshold is specified in seconds. Use STLS for STARTTLS.
Use PORT to specify to use SSL port.

-m test_file The file that is mailed to the test user. You can get response and round-
trip times for various mail sizes with this option. Specify only text files as
non-text files result in unexpected behavior. If -m is not specified, the
mailfile.txt file in MessagingServer_home/lib/locale/C/mailfile.txt is
used as the mail file.

-n Operate without a Messaging Server configuration. Useful when running
the utility on a remote system. This might be available in a future
release.

-P POP_host: [port] =
[threshold][,STLS|PORT]

Use the POP server and the port specified to check the POP component
of the Message Access. The threshold is specified in seconds. The
threshold involves the time to login, retrieve, and delete the message.
Use STLS for STARTTLS. Use PORT to specify to use SSL port.

-r alert_recipients A comma-separated list of mail recipients who will be notified. If this
option is not specified, the command reports the alert messages on the
standard output.

-S SMTP_host: [port] =
[threshold][,STLS|PORT]

Use the SMTP server and the port specified to check if Messaging
Server is able to accept mail for delivery. The threshold is specified in
seconds. Use STLS for STARTTLS. Use PORT to specify to use SSL
port.

-T Enable SSL.

-u user_name The valid test user account to use. This test mail user has to be created
by the administrator. If the test mail user is in a hosted domain,
user@domain should be specified.

-v Run in verbose mode, with diagnostics written to standard output.

-w passwd The password corresponding to the user specified with u. To read the
input from standard input, "-" can specified with -w. ANY PASSWORD
SPECIFIED ON THE COMMAND LINE WITH -w WILL BE VISIBLE TO
OTHER USERS OF THE SYSTEM. Use of the -j option is strongly
encouraged. This option, or -j, is mandatory when the -H, -I, or -P
options are used, or when -n is used in conjunction with -L.

-X Enable SASL.

-z Delete messages containing the string specified by -k in the subject
header. If -k is not specified, all messages with the subject header
containing "immonitor" are deleted. Use -z only with -I or -P. Do note use
-z with -S or -C as this can cause unexpected results.

The default ports are:

SMTP = 25

IMAP = 143

POP = 110

LDAP = 389

LMTP = 225

Chapter 64
immonitor-access

64-19

HTTP = 80

If either the port or threshold is not specified, default ports with the default threshold of 60
seconds is assumed. The threshold specified can be a decimal number.

Output

The command generates a report containing the various protocol execution times. For
example:

Smtp Statistics for: thestork:25
Connect Time: 2.122 ms
Greeting Time: 5.729 ms
Helo Time: 2.420 ms
Mail From: Time: 2.779 ms
Rcpt To: Time: 4.128 ms
Data Time: 1.268 ms
Sending File Time: 94.156 ms
Quit Time: 0.886 ms
Total SMTP Time: 113.488 Milliseconds

If the alert recipients are specified and any of the threshold values are exceeded, the
command mails the report containing the service name and the response time:

ALERT: <service> exceeds threshold Response time=secs/Threshold=secs

Note that in case of times reported for IMAP, the individual times might not add up to the exact
value shown by the "Total IMAP time". This occurs because the message does not get to the
store immediately. The utility loops until the message is found. Typically, the search time
indicates only the successful search time. However, the total time includes each of the
individual sleep and search times.

With POP, the utility needs to login and logout multiple times before the message is actually
found in the store. Thus, the total time here is the accumulated time for all the logins and log
outs.

Example 1: To monitor the SMTP, IMAP, and POP with the threshold 250 milliseconds more
than the default value (60 seconds) on localhost use:

immonitor-access -S localhost:=60.25 -I localhost:=60.25 -P localhost:=60.25 -u
test_user -w passwd

This example assumes that test_user exists with password "passwd."

Example 2: To monitor LDAP on localhost with no Messaging Server configuration use:

immonitor-access -n -L 127.0.0.1:389 -b o=usergroup -u test_user -B "cn=directory
manager" -w passwd

The above example assumes that the Directory Manager password is passwd and that there
is a user named test_user.

Example 3: To check remote connectivity and latency issues on remotehost use:

immonitor-access -S remotehost:=10 -I remotehost:=10 -P remotehost:=10 -u tester -w
passwd

Example 4: To run immonitor-access on a normal port use:

immonitor-access -u admin -w password -P host:110

Example 5: To run immonitor-access using STARTTLS:

Chapter 64
immonitor-access

64-20

immonitor-access -u admin -w password -P host:110=STLS -X

Example 6: To run immonitor-access using SSL via STARTTLS:

immonitor-access -u admin -w password -P host:110=STLS -T -X

Example 7: To run immonitor-access on the SSL port:

immonitor-access -u admin -w password -P host:995=PORT -T

Example 8: To run immonitor-access using SASL on SSL:

immonitor-access -u admin -w password -P host:995=PORT -T -X

Exit Status

The exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic
message being written to standard error. A different exit status is returned when various
thresholds are exceeded. Table 64-12 describes the exit statuses.

Table 64-12 Exit Status Description

Status Description

0 Successful execution with no errors or thresholds exceeded

1 Exceeded threshold of a service

2 Errors

64 Usage errors

75 Insufficient virtual memory

An alert message is written to the console when the response time of any server exceeds the
threshold.

An error message is written to the console when any of the servers cannot be reached.

Warnings

The password passed with -w can be visible to a user using the ps(1) command. It is strongly
advised that you create a test user to be specifically used by the monitoring utilities.

It is recommended that you use -w and enter the password through standard input. However, if
the utility is executed through cron, the password can be stored in a file. This file can be
redirected as the standard input for the utility.

cat passwd_file | immonitor-access -w -
immonitor-access -w - ... < passwd_file

Do not use the echo command such as:

echo password | immonitor-access .. -w - ..

because the ps might show the echo's arguments.

To delete the test mail sent by the -S option, invoke the immonitor-access command with the
-z option separately. Do not use the two together.

Chapter 64
immonitor-access

64-21

impurge
The impurge command can be used to manually purge unused cache records and message
files in mailboxes when the purge server daemon process is not running (local.purge.enable
is disabled). For more information see Messaging Server Reference. The impurge command
has the following options:

Requirements: Must be run locally on the Messaging Server.

Location: MessagingServer_home/lib/

Syntax

impurge [-d] [-r hours] [-e]

Options

Table 64-13 describes the options for the impurge command.

Table 64-13 impurge Options

Option Description

-d Debug mode

-e Exit when the work queue is empty

-r hoursed Exit after the specified number of hours (hours must be larger than 0)

If both -r and -e are specified, impurge exits when the queue is empty or time has expired.

Only one impurge process can be executed at a time. Attempting to run the impurge
command whilst the purge server daemon is running will result in the following error message
in the Messaging Server debug logs:

[24/Feb/2009:14:43:59 +1100] hostname impurge[17471]: General Error: Could not get purge
session lock.
Possibly another impurge is running

imquotacheck
The imquotacheck utility administers user quotas and domain quotas in the message store.
This utility can also compare mailbox size with a user's assigned quota. As an option, you can
email a notification to users who have exceeded a set percentage of their assigned quota.

The imquotacheck utility lists users in the local mboxlist database. To list users in the LDAP
directory, use the imquotacheck -a option.

Requirements: Must be run locally on the Messaging Server.

Location:MessagingServer_home/bin/

Syntax

Report quota and usage:

imquotacheck [-u user | -d domain [-p partition] | -p partition] [-a]

Enforce domain quota:

Chapter 64
impurge

64-22

imquotacheck -f [-d domain]

Deliver over quota notification messages:

imquotacheck -n [-e] [-d domain] [-r rulefile] [-t msgfile] [-l]

Options

Table 64-14 describes the options for the imquotacheck command.

Table 64-14 imquotacheck Options

Option Description

-a List users in LDAP instead of message store.

-d domain Report quota for the specified domain. When used with the -f option, enforce quota for the specified
domain. When used with the -n option, deliver notification for the specified domain.

-f Enforce domain quota by setting mailDomainStatus to overquota.

-h Displays help for this command.

-n Notify users who are above quota.

-p partition Report quota for the specified partition.

-r rulefile Use rulefile instead of default. To set up a default rulefile, copy the "Sample Rulefile" to
MessagingServer_home/config/imq.rulefile. See "Rulefile Format" for more information.

-t msgfile Use msgfile as a template instead of default. To setup a default message file, copy the "Notification File"
to MessagingServer_home/config.

-u user Report quota for the specified user.

-e Report disk usage of the individual folders in notification messages.

-l Log users to action log who are above quota.

Examples

To send a notification to all users in accordance to the default rulefile:

imquotacheck -n

To send a notification to all users in accordance to a specified rulefile, myrulefile, and to a
specified mail template file, mytemplate.file:

imquotacheck -n -r myrulefile -t mytemplate.file

To enforce the domain quota for the example.com domain:

imquotacheck -f -d example.com

To list the usage of all users whose quota exceeds the least threshold in the rulefile:

imquotacheck

To list per folder usages for user user1:

imquotacheck -u user1

To only list the users in domain example.com:

imquotacheck -d example.com

Chapter 64
imquotacheck

64-23

The imquotacheck command has stable output formats that we support and allow customers
to parse.

Sample imquotacheck output:

Name Quota(K) Usage(K) % Quota# Usage# % OverDate WarnDate
-------------------- -------- -------- --- ------- ------- --- -------- --------
joe - 6 - - 1 - - -
mary 100 110 110 - 49 - 10/14/15 10/14/15
big 52428800 420 0 - 1673 - - -
small - 1014B - - 3 - - -
--

Rulefile Format

The rulefile format is organized into two sections: a general section and a rule name section.
The general section contains attributes that are common across all rules. Attributes that are
typically specified in the general section are the mailQuotaAttribute and the reportMethod. In
the rule name section, you can write specific quota rules for notification intervals, trigger
percentages, and so on. Attributes that are typically specified in the rule name section are
notificationTriggerPercentage, enabled, notificationInterval, and messageFile. Note that
the attributes and corresponding values are not case-sensitive. The following rulefile format is
used:

[General]
mailQuotaAttribute = [value]
reportMethod = [value]

[rulename1]
attrname=[value]
attrname=[value]

[rulename2]
attrname=[value]
attrname=[value]

[rulename3]
attrname=[value]
attrname=[value]

Table 64-15 describes the rulefile attributes.

Table 64-15 rulefile Attributes

Attribute Required
Attribute?

Default Value Description

mailQuotaAttribute No Value in quotadb Specifies the name of the custom mailquota attribute.
If not specified, the value in quotadb is used.

reportMethod No Not Applicable You can provide your own code to customize the
output of the quota report. The value of this attribute
is specified as <library-path:function>, where <library-
path> is the path of the shared library and <function>
is the name of the report function. See
"reportMethod Signature" for more information about
what options your function must accept and return.

notificationTriggerPe
rcentage

Yes Not Applicable Specifies the consumed quota percentage that will
trigger notification. Value should be unique and an
integer.

Chapter 64
imquotacheck

64-24

Table 64-15 (Cont.) rulefile Attributes

Attribute Required
Attribute?

Default Value Description

messageFile No <MessagingServer_home>/
config/imq.msgfile

Specifies the absolute path to the message file.

notificationInterval Yes Not Applicable Indicates the number of hours before a new
notification is generated.

enabled No 0 (FALSE) Indicates if the particular rule is active. Applicable
values are 0 for FALSE and 1 for TRUE.

notificationMethod No Not Applicable You can provide your own code to perform the
overquota notification. The value of this attribute is
specified as <library-path:function>, where <library-
path> is the path of the shared library and <function>
is the name of the report function. See
"notificationMethod Signature" for more information
about what options your function must accept and
return.

reportMethod Signature

If you override the imquotacheck reportMethod() with your own function, it must be defined
as:

int symbol(QuotaInfo* info, char** message, int* freeflag)

typedef struct QuotaInfo {
 const char* username; /* user name (uid or uid@domain) */
 long quotakb; /* quota in kbytes */
 long quotamsg; /* quota in number of messages */
 ulong usagekb; /* total usage in kbytes */
 ulong usagemsg; /* total usage in number of messages */
 FolderUsage* folderlist; /* folder list (for -e) */
 long num_folder; /* number of folders in the folderlist */
 long trigger; /* not used */
 const char* rule; /* not used */
}

typedef struct FolderUsage {
 const char*foldername;
 ulong usagekb; /* folder usage in kbytes */
}

The address, message, points to the output message. The report function is expected to fill
the value of *message and allocate memory for message when necessary. The freeflag
variable indicates if the caller is responsible for freeing allocated memory for *message.

The return values are 0 for success and 1 for failure.

The imquotacheck function will invoke the reportMethod to generate the report output. If the
reportMethod returns 0 and *message is pointing to a valid memory address, message will
be printed.

If the *freeflag is set to 1, the caller will free the memory address pointed to by message. If
the -e option is specified, the quota usage for every folder will be stored in the folderlist, an
array in FolderUsage; the num_folder variable is set to the number of folders in the
folderlist.

Chapter 64
imquotacheck

64-25

notificationMethod Signature

If you override the imquotacheck notificationMethod() with your own function, it must be
defined as:

int symbol(QuotaInfo* info, char** message, int* freeflag)

typedef struct QuotaInfo {
 const char* username; /* user name (uid or uid@domain) */
 long quotakb; /* quota in kbytes */
 long quotamsg; /* quota in number of messages */
 ulong usagekb; /* total usage in kbytes */
 ulong usagemsg; /* total usage in number of messages */
 FolderUsage* folderlist; /* folder list (for -e) */
 long num_folder; /* number of folders in the folderlist */
 long trigger; /* the exceeded notificationTriggerPercentage */
 const char* rule; /* rulename that triggered notification */
}

typedef struct FolderUsage {
 const char *foldername;
 ulong usagekb; /* folder usage in kbytes */
}

The address, message, points to the notification message. The notification function is
expected to fill in the value of this variable and allocate the memory for the message when
necessary. The freeflag variable indicates if the caller is responsible for freeing the memory
allocated for message.

The return values are 0 for success and 1 for failure.

If the notification function returns a 0, and *message is pointing to a valid address, the
imquotacheck utility will deliver the message to the user. If the *freeflag is set to 1, the caller
will free the memory address pointed to by message after the message is sent.

If the -e option is specified, the quota usage for every folder will be stored in the folderlist
variable, an array of FolderUsage structure; the num_folder variable is set to the number of
folders in the folderlist.

Note:

If the messageFile attribute is also specified, the attributed messageFile will be
ignored.

Sample Rulefile

In the sample rulefile, the following files libzz.so, libzz.sl, and libzz.dll are library files.
The /xx/yy are directory paths that should be replaced by the relative paths to where these
library files are located on the server.

#
Sample rulefile
#
[General]
mailQuotaAttribute=mailquota
reportMethod=/xx/yy/libzz.so:myReportMethod [for Solaris only]

Chapter 64
imquotacheck

64-26

[rule1]
notificationTriggerPercentage=60
enabled=1
notificationInterval=3
notificationMethod=/xx/yy/libzz.so:myNotifyMethod_60

[rule2]
notificationTriggerPercentage=80
enabled=1
notificationInterval=2
messageFile=/xx/yy/message.txt

[rule3]
notificationTriggerPercentage=90
enabled=1
notificationInterval=1
notificationMethod=/xx/yy/libzz.so:myNotifyMethod_90
#
End
#

Threshold Notification Algorithm

1. Rule precedence is determined by increasing trigger percentages.

2. The highest applicable threshold is used to generate a notification. The time and the rule's
threshold are recorded.

3. If users move into a higher threshold since their last quota notification, a new notification
will be delivered based on the current set of applicable rules. This notice can be
immediately delivered to any user whose space usage is steadily increasing.

4. If usage drops, the notification interval of the current rule (lower threshold) will be used to
check the time elapsed since the last notice.

5. The stored time and threshold for the user will be reset to zero if the user's mailbox size
falls below all of the defined thresholds.

Notification File

The utility depends on the message file to have at minimum a Subject Header. There should
be at least one blank line separating the Subject from the body. The other required headers are
generated by the utility. The notification file format is the following:

Subject: [Warning] quota reached for %U%

Hello %U%,
Your quota: %C%
Your current mailbox usage: %M%
Your mailbox is now %Q% full. The folders consuming the most space are:
%R%.

Please clean up unwanted diskspace.

Thanks,
-Administrator

where:

%U% - Species the user ID.

%Q% - Specifies the percentage of the mailbox quota used.

Chapter 64
imquotacheck

64-27

%R% - Specifies quota usage details, including assigned quota, total mailbox size, and
percentage used. When -e is specified on the command line, the report shows the mailbox
usage of the individual folders.

%M% - Specifies the current mailbox size.

%C% - Specifies quota attribute value.

Note:

If an account has less then 1KB of quota usage, imquotacheck prints out the usage
in bytes (B) rather than kilobytes (KB) shown in the heading.

imquotacheck -u testquota
Name Quota(K) Usage(K) % Quota# Usage# % OverDate WarnDate
-------------------- -------- -------- --- ------- ------- --- ----
testquota 256000 654B 0 100000 1 0 - -

Note:

Localized versions of imquotacheck notification incorrectly convert the % and the $
signs. To correct the encoding, replace every $ with \24 and replace every % with \25
in the message file.

imsasm
The imsasm utility is an external ASM (Application Specific Module) that handles the saving
and recovering of user mailboxes. imsasm invokes the imsbackup and imsrestore utilities to
create and interpret a data stream.

During a save operation imsasm creates a save record for each mailbox or folder in its
argument list. The data associated with each file or directory is generated by running the
imsbackup or imsrestore command on the user's mailbox.

Location: MessagingServer_home/lib/msg

Syntax

imsasm -s [-benov] [-ix] [-t time] [-f proto] [-p ppath] file...
imsasm -r [-dnv] [-i {nNyYrR}] [-m src=dst] -z suffix [-p path] file...
imsasm -c [-nv] [-p path] file...

Options

The options used in the imsasm utility are also known as standard-asm-arguments, which are
Legato NetWorker backup standards.

Either -s (saving), -r (recovering), or -c (comparing) must be specified and must precede any
other options. When saving, at least one path argument must be specified. path may be either
a directory or filename.

Table 64-16 describes the imsam options that are valid for all modes.

Chapter 64
imsasm

64-28

Table 64-16 imsasm Options

Option Description

-n Performs a dry run. When saving, walk the file system but don't attempt to open files and
produce the save stream. When recovering or comparing, consume the input save stream
and do basic sanity checks, but do not actually create any directories or files when
recovering or do the work of comparing the actual file data.

-v Turns on verbose mode. The current ASM, its arguments, and the file it is processing are
displayed. When a filtering ASM operating in filtering mode (that is, processing another
ASM's save stream) modifies the stream, its name, arguments, and the current file are
displayed within square brackets.

Table 64-17 describes the options you can use when saving (-s).

Table 64-17 imsasm Saving Options

Option Description

-b Produces a byte count. This option is like the -n option, but byte count mode will estimate
the amount of data that would be produced instead of actually reading file data so it is faster
but less accurate than the -n option. Byte count mode produces three numbers: the number
of records, i.e., files and directories; the number of bytes of header information; and the
approximate number of bytes of file data. Byte count mode does not produce a save stream
so its output cannot be used as input to another asm in recover mode.

-o Produces an "old style" save stream that can be handled by older NetWorker servers.

-e Do not generate the final "end of save stream" Boolean. This flag should only be used when
an ASM invokes an external ASM and as an optimization chooses not to consume the
generated save stream itself.

-i Ignores all save directives from .nsr directive files found in the directory tree.

-f proto Specifies the location of a .nsr directive file to interpret before processing any files. Within
the directive file specified by proto, path directives must resolve to files within the directory
tree being processed, otherwise their subsequent directives will be ignored.

-p ppath Prepends this string to each file's name as it is output. This argument is used internally
when one ASM executes another external ASM. ppath must be a properly formatted path
which is either the current working directory or a trailing component of the current working
directory.

-t date The date after which files must have been modified before they will be saved.

-x Crosses file system boundaries. Normally, file system boundaries are not crossed during
walking.

Table 64-18 describes the options you can use when recovering (-r).

Chapter 64
imsasm

64-29

Table 64-18 imsasm Recovering Options

Option Description

-i response Specifies the initial default overwrite response. Only one letter may be used. When the
name of the file being recovered conflicts with an existing file, the user is prompted for
overwrite permission. The default response, selected by pressing Return, is displayed
within square brackets. Unless otherwise specified with the -i option, n is the initial
default overwrite response. Each time a response other than the default is selected, the
new response becomes the default. When either N, R, or Y is specified, no prompting is
done (except when auto-renaming files that already end with the rename suffix) and
each subsequent conflict is resolved as if the corresponding lowercase letter had been
selected. The valid overwrite responses and their meanings are:

• n-Do not recover the current file.
• N-Do not recover any files with conflicting names.
• y-Overwrite the existing file with the recovered file.
• Y-Overwrite files with conflicting names.
• r-Rename the conflicting file. A dot "." and a suffix are appended to the recovered

file's name. If a conflict still exists, the user will be prompted again.
• R-Automatically renames conflicting files by appending a dot "." and a suffix. If a

conflicting file name already ends in a .suffix, the user will be prompted to avoid
potential auto rename looping conditions.

-m src=dst Maps the file names that will be created. Any files that start exactly with src will be
mapped to have the path of dst replacing the leading src component of the path name.
This option is useful if you want to perform relocation of the recovered files that were
saved using absolute path names into an alternate directory.

-z suffix Specifies the suffix to append when renaming conflicting files. The default suffix is R.

path Restricts the files being recovered. Only files with prefixes matching path will be
recovered. This checking is performed before any potential name mapping is done with
the -m option. When path is not specified, no checking is performed.

Examples

To use imsasm to save the mailbox INBOX for user joe, the system administrator creates a
directory file backup_root/backup/DEFAULT/joe/.nsr with the following contents:

imsasm: INBOX

This causes the mailbox to be saved using imsasm. Executing the mkbackupdir utility will
automatically create the .nsr file. See "mkbackupdir" for more information.

imsbackup
The imsbackup utility is used to write selected contents of the message store to any serial
device, including magnetic tape, a UNIX pipe, or a plain file. The backup or selected parts of
the backup may later be recovered via the imsrestore utility. The imsbackup utility provides a
basic backup facility similar to the UNIX tar command.

When imsbackup, imsrestore, imsimport or any processing intensive operation takes
significantly more system resources than normal, and continues doing so longer than the
msprobe interval, there may be a temporary backlog of DB transaction log files to be cleared.
If there are more files than specified in local.store.maxlog, then msprobe may erroneously
restart all the processes during a restore. To prevent this from happening, disable msprobe
during the imsbackup, imsrestore, and imsimport.

Location: MessagingServer_home/bin

Chapter 64
imsbackup

64-30

For more information about imsbackup and backing up the message store, see "Backing Up
and Restoring the Message Store".

Syntax

imsbackup -f file [-b blockfactor] [-d date] [-m link_count]
[-e encoding] [-u file] [-n path] [-ivlgrpx] name...

Options

Table 64-19 describes the options for the imsbackup command.

Table 64-19 imsbackup Options

Option Description

-b num Use num as the block factor.

-d date Backup data newer than date, in the form YYYYMMDD[:HHMMSS].

-e encoding Mailbox name encoding (for example, IMAP-MODIFIED-UTF-7).

-f file Output file.

-g Debug mode.

-i Ignore links (for partial restore).

-l Autoload.

-m link_count Minimum link count for hashing.

-n path Networker backup path.

-p Print progress

-r Read only mode (do not upgrade or repair mailbox automatically).

-u file use object names in file.

-v Verbose.

-x Back up expunged messages.

name Object names (can be a logical path, internal name or userid). If -n is specified,
name is either a userid or mailbox name.

Examples

The following example backs up the entire message store to /dev/rmt/0:

imsbackup -f /dev/rmt/0 /

The following backs up the mailboxes of user ID joe to /dev/rmt/0:

imsbackup -f /dev/rmt/0 /primary/user/joe

The following example backs up all the mailboxes of all the users defined in the backup group
groupA to backupfile:

imsbackup -f- /primary/groupA > backupfile

imsconnutil
Monitors user access of the message store. imsconnutil can provide the following information:

• Users currently logged in on IMAP or any HTTP webmail client.

Chapter 64
imsconnutil

64-31

• The last access time (log in or log out) for a specified user.

• For IMAP: lists the authentication method, the IP address from which the users are logged
in, the IP address to which users are connected, and the port on which they are logged to
and from.

This command requires root access by the system user, and you must set the configuration
variables imap.enableuserlist and http.enableuserlist to 1.

See "Monitoring User Access to the Message Store" for more information and examples.

Location: MessagingServer_home/bin

Syntax

imsconnutil -c | -a | -k [-s service] [-u uid] [-f filename]

Options

Table 64-20 describes the options for the imsconnutil command.

Table 64-20 imsconnutil Options

Option Description

-c|-a|-k At least one of -c or -a, or -k must be used.

-a Gives information on the last access time of a service.

-c Gives information on users connected to the service.

-f filename Narrows the information to users specified in file. The format is one user per line in this
file.

-k Disconnect users (use with -u or -f).

-s service Narrows the service to either IMAP or HTTP (use with -c).

-u uid Narrows the information to one user uid.

Examples

• List every user ID currently logged into IMAP and HTTP.

imsconnutil -c

• List last IMAP, POP, or HTTP access (log in or log out) of every user ID.

imsconnutil -a

• List access history (last log off or log on) of all user IDs. Lists current user IDs logged into
IMAP and HTTP.

imsconnutil -a -c

• List IMAP users currently logged on the message store.

imsconnutil -c -s imap

• Reveal whether user ID George is logged onto IMAP or not.

imsconnutil -c -s imap -u George

• Reveal whether user ID George is currently logged onto IMAP or HTTP, and lists the last
time George was logged o or off.

imsconnutil -c -a -u George

Chapter 64
imsconnutil

64-32

• Disconnect the user ID George.

imsconnutil -k -u George

Notes

The "rehostuser" utility makes use of the imsconnutil command.

imscripter
The imscripter utility connects to an IMAP server and executes a command or a sequence of
commands.

May be run remotely.

Location: MessagingServer_home/bin/

Syntax

Print help:

imscripter [-h]

Go interactive:

imscripter [options]

Execute command from cmdfile:

imscripter [options] -f cmdfile

Execute the given command with the given argument(s):

imscripter [options] -c command [cmddata1 ...]

Execute the given command for each argument line in the datafile:

imscripter [options] -c command -f datafile

Options

Table 64-21 describes the options for the imscripter command.

Table 64-21 imscripter Command Options

Option Description

-c command Executes command - see discussion of commands below.

-f cmdfile The cmdfile may contain one or more commands, or a list of mailboxes on which
commands are to be executed. See discussion of commands below.

-h Displays help for this command.

-p port Connect to the given port. The default is 143.

-s server Connect to the given server. The default is localhost..

-u userid Connects as userid (prompt if not specified).

Chapter 64
imscripter

64-33

Table 64-21 (Cont.) imscripter Command Options

Option Description

-v verbosity Verbosity string can contain the following characters:

E: Show error

I: Show informational messages

P: Show prompt

C: Echo input command

c: Echo protocol command

B: BAD or NO untagged response

O: Other untagged response

b: BAD or NO completion result

o: OK completion result

A: All of the above

Default is EPBboO(EBb if -f specified)

-x passwd Uses this passwd (prompt if not specified).

Recognized Commands

The imscripter command supports the following commands:

create mailbox
delete mailbox
rename oldmailbox newmailbox [partition]
getacl mailbox
setacl mailbox userid rights
deleteacl mailbox userid

If one or more of the above variables are included, the option executes the given command
with that input. For example, create lincoln creates a mailbox for the user lincoln.

If the -f file option is used, the option executes the command on each variable listed in the file.
For example:

cat folders-to-create
xyz
abc
def
imscripter -u <userid> -x <password> -c create -f folders-to-create
#

Raw IMAP Commands

In addition to the commands which imscripter interprets (above), it will pass thru any raw IMAP
command prefixed with an exclamation mark ("!"). For example:

imscripter -u <userid> -x <password> -c \!list "" *
 1) <= OK [CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN
BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE AUTH=PLAIN] s4u-280rd-zone1-bur02.east.sun.com IMAP4 service
(Oracle Communications Messaging Exchange Server 7u4-20.01 64bit (built Nov 21 2010))
 1) <= OK User logged in
 2) <= CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN BINARY
UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT

Chapter 64
imscripter

64-34

THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE
 2) <= OK Completed
 2) <= LIST (\NoInferiors) "/" INBOX
 2) <= LIST (\HasNoChildren) "/" Drafts
 2) <= LIST (\HasNoChildren) "/" Sent
 2) <= LIST (\HasNoChildren) "/" Trash
 2) <= LIST (\HasNoChildren) "/" abc
 2) <= LIST (\HasNoChildren) "/" def
 2) <= LIST (\HasNoChildren) "/" test2
 2) <= LIST (\HasNoChildren) "/" xyz
 2) <= OK Completed
 3) <= BYE LOGOUT received
 3) <= OK Completed
#

Interactive Mode

If you issue the imscripter command without the -f and/or -c switches, it will go into interactive
mode. If you did not specify -u, it will prompt for userid. If you did not specify -x, it will prompt
for password. You can then type imscripter commands or raw IMAP commands prefixed by "!"
and see the response. See discussion of commands above.

For example:

imscripter
s4u-280rd-zone1-bur02 userid: <userid>
s4u-280rd-zone1-bur02 password for <userid>:
 1) <= OK [CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN
BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE AUTH=PLAIN] s4u-280rd-zone1-bur02.east.sun.com IMAP4 service
(Oracle Communications Messaging Exchange Server 7u4-20.01 64bit (built Nov 21 2010))
 1) <= OK User logged in
 2) <= CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN BINARY
UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE
 2) <= OK Completed
imscripter> !select inbox
 3) <= FLAGS (\Answered \Flagged \Draft \Deleted \Seen $Forwarded)
 3) <= OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen $Forwarded *)]
 3) <= EXISTS
 3) <= RECENT
 3) <= OK [UNSEEN 14]
 3) <= OK [UIDVALIDITY 1266949413]
 3) <= OK [UIDNEXT 354]
 3) <= OK [READ-WRITE] Completed
imscripter> quit
 5) <= BYE LOGOUT received
 5) <= OK Completed
#

Individual Command Mode

As with interactive mode (above), -s and -p default to localhost and port 143 and imscripter will
prompt for -u and -x if not specified.

Chapter 64
imscripter

64-35

With -c, you can execute an individual imscripter command and optionally have it operate on
several folders. See the example of creating several folders in the discussion of commands
above.

Script Mode

As with interactive mode (above), -s and -p default to localhost and port 143 and imscripter will
prompt for -u and -x if not specified.

With -f, you can put imscripter and raw IMAP commands in a file and have imscripter execute
that script. For example:

cat script
create nmo
create blah
!list "" *
imscripter -u <userid> -x <password> -f script
#

Notice the above displayed no output. It executed the command but did not display the output.
Use the -v switch it specify which output you want to see. For example:

imscripter -u <userid> -x <password> -f script -v A
Processing: script, verbosity: A, server: (<ask user>:143)
connecting to s4u-280rd-zone1-bur02:143...
addcallback CAPABILITY, NO, OK BAD
 1) => LOGIN <userid> * *notice imscripter hid the password*
 1) <= OK [CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN
BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE AUTH=PLAIN] s4u-280rd-zone1-bur02.east.sun.com IMAP4 service
(Oracle Communications Messaging Exchange Server 7u4-20.01 64bit (built Nov 21 2010))
 1) <= OK User logged in
 2) => CAPABILITY
 2) <= CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN BINARY
UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES XSENDER X-
NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE X-SUN-IMAP X-
ANNOTATEMORE XUM1 ID IDLE
 2) <= OK Completed
 3) Cmd: create nmo
 3) => CREATE nmo
 3) <= NO Mailbox already exists *this command failed because it succeeded the
first time*
 4) Cmd: create blah
 4) => CREATE blah
 4) <= NO Mailbox already exists *ditto*
 5) Cmd: !list "" *
 5) => list "" *
 5) <= LIST (\NoInferiors) "/" INBOX
 5) <= LIST (\HasNoChildren) "/" Drafts
 5) <= LIST (\HasNoChildren) "/" Sent
 5) <= LIST (\HasNoChildren) "/" Trash
 5) <= LIST (\HasNoChildren) "/" abc
 5) <= LIST (\HasNoChildren) "/" blah
 5) <= LIST (\HasNoChildren) "/" def
 5) <= LIST (\HasNoChildren) "/" nmo
 5) <= LIST (\HasNoChildren) "/" test2
 5) <= LIST (\HasNoChildren) "/" xyz
 5) <= OK Completed
 7) => LOGOUT

Chapter 64
imscripter

64-36

 7) <= BYE LOGOUT received
 7) <= OK Completed
#

imsexport
The imsexport utility exports Messaging Server folders into UNIX /var/mail format folders.

The imsexport utility extracts the messages in a message store folder or mailbox and writes
the messages to a UNIX file under the directory specified by the administrator. The file name is
the same name as the IMAP folder name. For message store folders that contain both
messages and sub-folders, imsexport creates a directory with the folder name. For classic
message store, it also creates a file with the folder name plus a .msg extension. The
folder.msg file contains the messages in the folder. The folder directory contains the sub-
folders.

Table 64-22 shows the UW-IMAP MBOX header fields utilized by the imsexport utility.

Table 64-22 UW-IMAP MBOX Header Fields

Header Syntax Description

X-IMAPbase UIDVALIDITY LASTUID KEYWORD... Specifies IMAP uidvalidity, last uid, and
a list of used keywords.

X-UID uid Specifies IMAP uid.

X-KEYWORDS user flags Specifies a list of space-separated user
flags.

STATUS [R][O] Specifies status as R:Read (\Seen),
O:not recent (\Recent)

X-STATUS [A][F][T][D] Specifies A:\Answered F:\Flagged
T:\Draft D:\Deleted flags.

Location: MessagingServer_home/bin

Syntax

imsexport [-g] [-v 0|1|2] [-f format] [-s mailbox] [-e encoding] -u user -d dir

Options

Table 64-23 describes the options for the imsexport command.

Table 64-23 imsexport Options

Option Description

-d dir Destination directory (UNIX path name).

-e encoding Mailbox name encoding (for example, IMAP-mailbox-name).

-f format Export format, where format is BSD, SYSV or RN. Default is Solaris.

-g Debug mode.

-s folder Source folder name.

-u user User name.

-v mode Verbose mode, 0-2. Default is 2.

Chapter 64
imsexport

64-37

Example

In the following example, imsexport extracts all email for user smith1. smith1 is a valid user
account in the message store. User smith1 has three folders on the store: INBOX (the normal
default user folder), private, and private/mom. The destination directory will be /tmp/
joes_mail.

imsexport -u smith1 -d /tmp/joes_mail/

imsexport then transfers each message store folder into a /var/mail conforming file. Thus you
will get the following files:

• /tmp/joes_mail/INBOX

• /tmp/joes_mail/private

• /tmp/joes_mail/private.msg

• /tmp/joes_mail/private/mom

imsimport
The imsimport utility migrates UNIX /var/mail format folders into a Messaging Server
message store.

The imsimport utility extracts the messages stored in /var/mail mailboxes and appends them
to the corresponding users' mailbox in the Messaging Server message store. Files in the
directory that are not in the standard UNIX mailbox format are skipped. If the corresponding
users do not exist in the message store, imsimport creates them. When the user quota is
exceeded, imsimport bypasses the message store quota enforcement, so the user does not
receive an "over quota" message. The imsimport utility preserves the UIDVALIDTY, LASTUID,
and UID in the /var/mail folder if it is possible.

The imsimport utility can be run while Messaging Server is running. If mail delivery is enabled
for the mailbox you are importing, old mail can get mixed with new mail, so you might want to
hold the delivery of this user during the migration. Mailbox access should not be a problem.

When imsbackup, imsrestore, imsimport or any processing intensive operation takes
significantly more system resources than normal, and continues doing so longer than the
msprobe interval, there may be a temporary backlog of DB transaction log files to be cleared.
If there are more files than specified in local.store.maxlog, then msprobe may erroneously
restart all the processes during a restore. To prevent this from happening, disable msprobe
during the imsbackup, imsrestore, and imsimport.

Note:

imsimport does not use the IMAP server. However, the stored utility must be
running to maintain message store integrity. The LDAP server should be running if
imsimport is expected to create new users.

Table 64-24 shows the UW-IMAP MBOX header fields utilized by the imsimport utility.

Chapter 64
imsimport

64-38

Table 64-24 UW-IMAP MBOX Header Fields

Header Syntax Description

X-IMAPbase UIDVALIDITY LASTUID KEYWORD... Specifies IMAP uidvalidity, last uid, and
a list of keywords.

X-UID uid Specifies IMAP uid.

X-KEYWORDS keyword... Specifies a list of space-separated
keywords.

STATUS [R][O] Specifies status as R:\Seen, O:non-
\Recent

X-STATUS [A][F][T][D] Specifies A:\Answered F:\Flagged
T:\Draft D:\Deleted flags.

Content-Length length Specifies length of the message body in
bytes.

Location: MessagingServer_home/bin/

Syntax

imsimport [-g] [-v 0|1|2] [-c y|n] [-d mailbox] [-n] [-e encoding] [-i]
[-b] -u user -s file

Options

Table 64-25 describes the options for the imsimport command.

Table 64-25 imsimport Command Options

Option Description

-b Subscribe new destination mailbox.

-c y|n Answer yes/no to the question “Do you want to continue?"

-d mailbox Destination folder name.

-e encoding Mailbox name encoding (for example, IMAP-mailbox-name).

-g Debug mode.

-i Ignore content-length.

-n If mailbox exists, create a new mailbox with a date extension (without this option,
restore will append messages to the existing mailbox).

-s file /var/mail source file name (path name).

-u user User name.

-v mode Verbose mode, 0-2. Default is 2.

-N Generate event notifications.

Examples

imsimport migrates the specified /var/mail/folder for the specified user to the Messaging
Server message store. If the destination folder is not specified, imsimport calls the destination
folder by the same name as the source folder. In the following example, the command migrates
the default /var/mailINBOX for the user smith, to the INBOX.

imsimport -u smith -s /var/mail/smith -d INBOX

Chapter 64
imsimport

64-39

Similarly, if you are trying to move a folder called test from /home/smith/folders/ to the
Messaging Server message store, use the following command:

imsimport -u smith -s /home/smith/folders/test -d test

If a destination folder called test already exists in the Messaging Server message store,
imsimport appends the messages to the existing folder in the mailbox.

imsrestore
The imsrestore utility restores messages from the backup device into the message store. See
"Backing Up and Restoring the Message Store" for more information.

When imsbackup, imsrestore, imsimport or any processing intensive operation takes
significantly more system resources than normal, and continues doing so longer than the
msprobe interval, there may be a temporary backlog of DB transaction log files to be cleared.
If there are more files than specified in local.store.maxlog, then msprobe may erroneously
restart all the processes during a restore. To prevent this from happening, disable msprobe
during the imsbackup, imsrestore, and imsimport.

Location: MessagingServer_home/bin

Syntax

imsrestore -f device [-b blockfactor] [-e encoding] [-v mode] [-c y|n]
[-m mapfile] [-thngspxDS] [-i|-E] [-u file] [-r file] [-d path]
[-P partition] [name...]

Options

Table 64-26 describes the options for the imsrestore command.

Table 64-26 imsrestore Options

Option Description

-b num Use num as the block factor.

-c y | n Answer yes/no to the question "Do you want to continue?"

-d path Restore all mailboxes under path (for multiple incremental restores to new folders).

-D Dump messages in imcheck -D format.

-e encoding Mailbox name encoding (for example, IMAP-mailbox-name).

-E Update and expunge existing messages.

-f device Input device. Use - for stdin.

-h Dump the header.

-g Debug mode.

-i Ignore existing messages (do not check for existing messages before restore).

-m file User name mapping file (for rename users).

-n If mailbox exists, create a new mailbox with a date extension (without this option, restore
will append messages to the existing mailbox).

-p Restore mailboxes to original partition (classic store only).

-P partition Restore all mailboxes to this partition (classic store only).

-r file Reference file name (will restore all links in file).

Chapter 64
imsrestore

64-40

Table 64-26 (Cont.) imsrestore Options

Option Description

-s No seek.

-S Dump records separator. Default is |.

-t Print table of contents (will not restore anything).

-u file Object name file.

-v mode Verbose mode, 0-5. Default is 2.

-x Restore stub.

name Object names. Can be a logical path, internal name, or user ID. See "imsbackup" for
description.

Examples

The following example restores the messages from the file backupfile:

imsrestore -f backupfile

The following example restores the messages for joe from the file backupfile:

imsrestore -f backupfile /primary/user/joe

The following example lists the content of the file backupfile:

imsrestore -f backupfile -t

The following example renames users in the file mapfile:

imsrestore -m mapfile -f backupfile

where the mapfile format is oldname=newname:

userA=user1
userB=user2
userC=user3

mboxutil
The mboxutil command lists, creates, deletes, renames, or moves mailboxes (folders). You
can use the mboxutil command to report quota information, restore expunged messages, and
list mailbox subscriptions.

Note:

Do not "kill" the mboxutil process (SIGKILL (kill -9) command) in the middle of
execution. Otherwise, you will need to restart the Messaging Server process.

You can use POSIX regular expressions in the mboxutil command.

Requirements: Must be run locally on the Messaging Server. The stored utility must also be
running.

Chapter 64
mboxutil

64-41

Location: MessagingServer_home/bin

Mailbox Naming Conventions

You must specify mailbox names in the following format:

user/userid/mailbox

where userid is the user that owns the mailbox and mailbox is the name of the mailbox.

For hosted domains, userid is uid@domain.

For example, the following command creates the mailbox named INBOX for the user whose
user ID is crowe. INBOX is the default mailbox for mail delivered to the user crowe.

mboxutil -c user/crowe/INBOX

Important: The name INBOX is reserved for each user's default mailbox. INBOX is the only
folder name that is case-insensitive. All other folder names are case-sensitive.

Syntax

List mailboxes:

mboxutil -l [-B bound] [-E encoding] [-p pattern | -P regular expression] [-x | -s] [-D]
[-z]

Create mailboxes:

mboxutil -c [-E encoding] {mailbox_name | -f file}

Delete mailboxes:

mboxutil -d [-E encoding] {-p pattern | -P regexp | -f file | mailbox}

Rename mailboxes:

mboxutil -r [-E encoding] {old_name new_name | -f file} [partition]

Expunge mailboxes:

mboxutil -e [-E encoding] [-p IMAP-mailbox-name pattern | -P regular expression]

Schedule cleanup:

mboxutil -C [-g num] [-E encoding] [-p IMAP-mailbox-name pattern | -P regular expression]

List orphan/inactive mailboxes:

mboxutil -o [-w file] [-t number of days]

Restore expunged messages that have not been purged:

mboxutil -R [-E encoding][-m dest_mailbox_name][-U uid_sequence] mailbox_name

List personal mailbox subscriptions:

mboxutil -S [-n [-f file] | -u -f file]

Options

Table 64-27 describes the options for the mboxutil command.

Chapter 64
mboxutil

64-42

Table 64-27 mboxutil Command Options

Option Description

-B bound Used with -l option to bound each column in output with user
provided input or a single space as the default.

-c mailbox Create mailboxes.

-C Schedule cleanup.

-d mailbox Delete mailboxes.

-D List deleted mailboxes.

-e Expunge mailboxes.

-E encoding Mailbox name encoding (UTF-16 and UTF-32 are not currently
supported. UTF-8 is a recommended substitute).

-f file Create, delete, or rename mailboxes with names specified in file.

When used with the -S option, input/output file.

You can also use the -f file option with the partition option to move
users to a new partition (on the same store host). For more
information, see "To Move Mailboxes to a Different Disk Partition".

Note: When using the -f file option, the file must consist of pairs of
duplicate lines, because the other use of the mboxutil -r command is
to rename folders. Thus, the first line of each pair is the old folder
name and the second line is the new folder name. In the case of
moving a user from one partition to another, the folder names are the
same.

-g num Minimum cleanup size, num must be > 0. Default is
store.cleanupsize).

-l List mailboxes.

-m dest_mailbox_name Destination mailbox name.

Duplicate restore is allowed on the Classic message store when the
destination mailbox is different from the source mailbox.

-n List personal non-existing mailbox subscriptions.

-o List orphan/inactive mailboxes.

-p pattern When used with the -l option, list mailboxes that match the specified
IMAP-mailbox-name pattern.

When used with the -doption, delete mailboxes that match the
specified IMAP-mailbox-name pattern.

When used with the -e option, expunge mailboxes that match the
specified IMAP-mailbox-name pattern.

When used with the -C option, check mailboxes that match the
specified IMAP-mailbox-name pattern

-P regexp List, delete, expunge, or check mailboxes that match the specified
regular expression.

Note: You must not use -E with -P because the regular expressions
used with mboxutil -P are limited to the locale charset and are not
impacted by the -E charset.

-r oldname newname [partition] Move mailboxes to the specified partition.

-R mailbox Restore expunged messages that have not been purged

-s Print mailbox name only.

-S Lists personal mailbox subscriptions.

Chapter 64
mboxutil

64-43

Table 64-27 (Cont.) mboxutil Command Options

Option Description

-t days Include mailboxes that have not been accessed for the specified
number of days (require last access update).

-u Unsubscribe personal non-existing mailbox subscriptions.

-U uid_sequence IMAP UID sequence set.

-w file Save output to file.

-x Print path and acl in addition to the other data.

-X hours Exclude mailboxes last appended to within the specified number of
hours. Default is 24.

-z Print mailbox count in addition to the other data.

Note:

When using the separator, check output consistency by trying the separator string as
a single or double quoted string with escape sequences if required.

Examples

To list all mailboxes for all users:

mboxutil -l

To list all mailboxes and also include path and ACL information:

mboxutil -l -x

To list all mailboxes displaying only the mailbox names:

mboxutil -l -s

To create the default mailbox named INBOX for the user daphne:

mboxutil -c user/daphne/INBOX

To delete a mail folder named projx for the user delilah:

mboxutil -d user/delilah/projx

To delete the default mailbox named INBOX and all mail folders for the user druscilla:

mboxutil -d user/druscilla/INBOX

To rename Desdemona's mail folder from memos to memos-april:

mboxutil -r user/desdemona/memos user/desdemona/memos-april

To schedule a cleanup of Dorothea's mailbox if there are at least 50 expunged messages:

mboxutil -C -g 50 -p user/dorothea/*

To restore UID 1 to 3 from joe's INBOX to his Trash folder:

Chapter 64
mboxutil

64-44

mboxutil -R -m user/joe/Trash -U 1:3 user/joe/INBOX

To move the mail account for the user dimitria to a new partition:

mboxutil -r user/dimitria/INBOX user/dimitria/INBOX partition

where partition specifies the name of the new partition.

To move the mail folder named personal for the user dimitria to a new partition:

mboxutil -r user/dimitria/personal user/dimitria/personal partition

To list orphaned mailboxes and mailboxes that have not been accessed in 60 days:

mboxutil -o -w orphanfile -t 60

The preceding example writes the list of orphaned and inactive mailboxes to a file named
orphanfile.

To delete orphaned and inactive mailboxes:

mboxutil -d -f orphanfile

where orphanfile is a file that has stored a list of orphaned and inactive mailboxes identified
with the -o option.

To list personal, non-existing mailbox subscriptions for user mailboxes listed in a file named
orphanfile:

mboxutil -S -n -f orphanfile

To unsubscribe the non-existing mailbox subscription list generated by the previous example:

mboxutil -S -u -f orphanfile

The mboxutil command has stable output formats that we support and allow customers to
parse. mboxutil -l -p user/%/INBOX -s lists all accounts (INBOXES) in the store. mboxutil -o
-w -t lists inactive accounts. The formats are the same: one line per mailbox name. To
generate an active list, remove the inactive mailboxes from the all mailbox list. Sample
mboxutil output:

user/joe/INBOX
user/mary/INBOX

Mechanism to Schedule Cleanup Immediately

Normally, cleanup is scheduled automatically when mailboxes are expunged. This command
can be used to schedule cleanup manually when:

• The storage is very full.

• store.cleanupsize is reduced.

For example, the following command schedules cleanup of mailboxes with at least 50
expunged messages. Messages are removed when store.cleanupage has expired.

mboxutil -C -g 50

mkbackupdir
The mkbackupdir utility creates and synchronizes the backup directory with the information in
the message store. It is used in conjunction with Solstice Backup (Legato Networker). The

Chapter 64
mkbackupdir

64-45

backup directory is an image of the message store. It does not contain the actual data.
mkbackupdir scans the message store's user directory, compares it with the backup directory,
and updates the backup directory with the new user names and mailbox names under the
message store's user directory.

The backup directory is created to contain the information necessary for Networker to backup
the message store at different levels (server, group, user, and mailbox). Figure 64-1 displays
the structure.

Figure 64-1 Backup Directory Hierarchy

Location: MessagingServer_home/bin

Table 64-28 describes the variables in the backup directory contents.

Table 64-28 mkbackupdir Variables

Variable Description

BACKUP_ROOT Message store administrator root directory.

partition Store partition.

group System administrator-defined directories containing user directories. Breaking
your message store into groups of user directories allows you to do concurrent
backups of groups of user mailboxes.To create groups automatically, specify your
groups in the MessagingServer_home/config/backup-groups.conf file. The
format for specifying groups is:groupname= patterngroupname is the name of the
directory under which the user and mailbox directories will be stored, and pattern
is a folder name with IMAP wildcard characters specifying user directory names
that will go under the groupname directory.

user Name of the message store user.

folder Name of the user mailbox.

mailbox Name of the user mailbox.

The mkbackupdir utility creates:

• A default group directory (ALL) or the group directories defined in the backup-
groups.conf configuration file. The following is a sample backup-groups.conf file:

groupA=a* (regexp)
groupB=b*
groupC=c*
.

Chapter 64
mkbackupdir

64-46

.

.
• A user directory under the backup directory for each new user in the message store.

• A 0 length mailbox file for each mailbox.

• A .nsr file for each subdirectory that contains user mailboxes.

The .nsr file is the NSR configuration file that informs the Networker to invoke imsasm.
imsasm then creates and interprets the data stream.

Each user mailbox contains files of zero length. This includes the INBOX, which is located
under the user directory.

Note:

Make sure the backup directory is writable by the message store owner (mailsrv).

Syntax

mkbackupdir [-i|-f|-u] [-vg] [-a asm] [-e encoding] [-p path] [-t max_thread]

Options

Table 64-29 describes the options for the mkbackupdir command.

Table 64-29 mkbackupdir Options

Option Description

-a asm Creates .nsr files using the specified asm name. This can be used for when you have
multiple instances of Messaging Server as in symmetric HA environments.

-e encoding Specify an encoding option.

-f Backs up the folders only. By default, all mailboxes are backed up.

-g Executes the command in debug mode.

-i Backs up the inbox only. By default, all mailboxes are backed up.

-p path Specifies the directory for the backup image. This is a required option when
local.store.backupdir is not configured.The max_thread option must be set between
1 and 256. Note: The Networker has a limitation of 64 characters for saveset name. If
your default backup directory pathname is too long, you should use this option to
specify another pathname.

-t max_thread Specifies the number of threads that can be used to create the backup directory. The
default is one thread for each partition, which is usually adequate. If you have many
partitions, and you do not want mkbackupdir to consume all your resources, you can
lower this number.

-u User level backup. Instead of backing up each folder as a file, create a backup file per
user.

-v Executes the command in verbose mode.

Examples

To create the mybackupdir directory, enter the following:

mkbackupdir -p /mybackupdir

Chapter 64
mkbackupdir

64-47

msprobe
msprobe is a daemon that probes servers to see if they respond to service requests. When
msprobe detects a possible problem, it can, depending upon other configuration, potentially let
the Watcher know (at which point the Watcher can attempt to restart a troubled component)
and/or generate an alarm message; see the Watcher options and Alarm options, respectively
in Messaging Server Reference.

For additional information on msprobe, see Messaging Server Reference.

Location: MessagingServer_home/lib

Syntax

msprobe [-d] [-n] [-r] [server]

Options

Table 64-30 describes the options for the msprobe command.

Table 64-30 msprobe Command Options

Option Description

-d Debug mode.

-n Disable auto-restart.

-r Report server, port, response_time, status, message to stdout.

Status is: OK, SLOW, or BAD.

Response time is in millisecond.

server The accepted values for server are:

imap
pop
http
ens
cert
job_controller
smtp
lmtp
submit
metermaid
deploymap

If server is not specified, all enabled servers are probed.

Example

$ msprobe -r
imap,143,0,OK,"No error"
pop,110,-1,BAD,"Connection refused"
ens,7997,0,OK,"No error"
http,8990,0,OK,"No error"
job_controller,27442,0,OK,"No error"
smtp,25,35,SLOW,"No error"
submit,587,1,OK,"No error"

Chapter 64
msprobe

64-48

$ msprobe -r imap
imap,143,0,OK,"No error"

msuserpurge
When user and domain mailboxes are marked for deletion, the msuserpurge command
purges those user and domain mailboxes from the message store. Specifically, this command
scans the following domain and user status attributes in LDAP for a value of deleted:
inetDomainStatus, mailDomainStatus, inetUserStatus, mailUserStatus. This command
can be run at the command line, or can be scheduled for execution with the configutil option
local.sched.userpurge.

Requirements: If run manually, it must be manually run locally on the messaging server.

Location: MessagingServer_home/lib

Syntax

msuserpurge [-v|-r] [-d domain] [-g days]

Options

Table 64-31 describes the options for the msuserpurge command.

Table 64-31 msuserpurge Options

Option Description

-v Verbose (list deleted users).

-r Report (list all users, do not purge).

-g days Specify a grace period.

-d domain Specify a domain.

Examples

msuserpurge -d example.com -g 0

readership
The owner of an IMAP folder can grant permission for other users to access the folder. A folder
that other users are allowed to access is called a shared folder. See "Managing Shared
Folders" for more information. Users can modify the access rights on folders if their mail
provides an interface to the SETACL IMAP commands. Administrators can use the readership
utility to set or remove access rights on the folder, and to see how many users other than the
owner are accessing a shared folder.

To list the rights on all shared folders, the mail administrator can use the imcheck -d lright.db
command. To list rights on individual folders, use the mboxutil -lxp folder command.

Requirements: Must be run locally on the Messaging Server. The stored process must also
be running.

Location: MessagingServer_home/bin/

Syntax

Count the number of users who have accessed their shared folders:

Chapter 64
msuserpurge

64-49

readership [-d days |-p months]

Set an acl for a mailbox:

readership [-e encoding] -s { -m pattern | mailbox } identifier acl

Options

Table 64-32 describes the options for the readership command.

Table 64-32 readership Command Options

Option Description

-d days Display the number of users who have accessed the shared folders
within the specified days .

-e encoding Mailbox name encoding.

-m pattern MUTF-7 IMAP pattern.

-p months Remove the seen flags from the users who have not accessed the
shared folders within the specified months before counting.

-s folderidentifieracl_right Sets ACL rights character for folder, where folder is the name of the
folder for which you are setting rights, identifier is the person or group to
whom you are assigning the rights, and acl_rights are the rights you are
assigning. See Table 64-33. To remove a rights setting, specify a null set
of rights.

-s -m
folder_patternidentifieracl_rig
ht

Sets ACL rights as -s but on all folders matching the specified pattern.

Table 64-33 describes the ACL rights characters.

Table 64-33 ACL Rights Characters

Character Description

l lookup - User can see and subscribe to the shared folder. (IMAP commands allowed:
LIST and LSUB)

r read - Users can read the shared folder. (IMAP commands allowed: SELECT, CHECK,
FETCH, PARTIAL , SEARCH, COPY from the folder)

s seen - Directs the system to keep seen information across sessions. (Set IMAP
STORESEEN flag)

w write - Users can mark as read, and delete messages. (Set IMAP STORE flags, other
than SEEN and DELETED)

i insert - Users can copy and move email from one folder to another. (IMAP commands
allowed: APPEND, COPY into folder)

p post - Users can send mail to the shared folder email address. (No IMAP command
needed)

k create - Users can create new sub-folders. (IMAP command allowed: CREATE)

x delete - Users can delete entries from the shared folder. (IMAP commands allowed:
EXPUNGE, set STOREDELETED flag)

a administer - Users have administrative privileges. (IMAP command allowed: SETACL)

t delete - For messages, sets or clears \DELETED flag via STORE, or sets \DELETED flag
during APPEND/COPY.

Chapter 64
readership

64-50

Table 64-33 (Cont.) ACL Rights Characters

Character Description

e expunge - Performs EXPUNGE and expunge as a part of CLOSE.

n access - Retrieves annotation information about the folder (see RFC 5257 at http://
tools.ietf.org/html/rfc5257#section-4.10).

Example

readership -s user/joe/golf mary lpr
readership -s -m user//joe/* mary lpr

reconstruct
The reconstruct utility rebuilds one or more mailboxes, or the master mailbox file (the
mailboxes database), and repairs any inconsistencies. Use this utility to recover from almost
any form of data corruption in the message store.

In a Cassandra message store, the mailboxes are stored in a Cassandra database. The only
reconstruct command that works on Cassandra message store is:

reconstruct [-r] [-f | -n | -x] [-E encoding] [mailbox...]

On a Berkeley Database message store, a mailbox consists of files under the user partition
directory. The mailboxes database is the mboxlist database.

Requirements: Must be run locally on the Messaging Server host; the stored utility must also
be running.

Location: MessagingServer_home/bin

Syntax

Repair/validate mailboxes:

reconstruct [-r] [-f | -n | -x] [-E encoding] [-p partition | mailbox...]

Repair mboxlist database (Berkeley Database only):

reconstruct -m [-p partition [-u user]]

Repair quotas (Berkeley Database only):

reconstruct -q [-p partition]

Repair subscriptions (Berkeley Database only):

reconstruct -s

Repair ACLs db (lright.db) (Berkeley Database only):

reconstruct -l

Repair annotation db (Berkeley Database only):

reconstruct -A [-u userid]

Compact a database (Berkeley Database only):

Chapter 64
reconstruct

64-51

http://tools.ietf.org/html/rfc5257#section-4.10
http://tools.ietf.org/html/rfc5257#section-4.10

reconstruct -c [-f] db_file_name

Comprehensively repair all aspects of a mailbox (Berkeley Database only):

reconstruct -a [-t nthreads] [mailbox...]

Options

Table 64-34 describes the options for the reconstruct command.

Table 64-34 reconstruct Options

Option Description

-a mailbox... Comprehensively repair all aspects of a mailbox. If -f or -n is not specified,
reconstruct -a will only rebuild folder index files if folder fails simple tests (for
performance since parsing all messages is time consuming).

-A [-u userid] Repair annotation database.

-c Compact a database.

-E encoding Mailbox name encoding.

-f Force repair. When used with the -a option, force the rebuild of folder index files
(parse all messages).

-l Repair ACLs db (lright.db).

-m Repair mboxlist database.

mailbox Check the specified mailbox.

-n Report only, no repair. When used with the -a option, report basic errors found but try
not to rebuild most folder files if possible (This may be used to catch errors before
repair so they may be studied.)

-p partition Check or repair the specified partition.

-q Repair quotas.

-r [mailbox] Recursively process sub-folders (default if mailbox is not specified). When used with
the -a option, if no mailbox is specified, -r is implied for the entire store.

-s Repair subscriptions.

-t nthreads Number of threads per process. Default is one per partition. Max is 64 single threaded
if specific mailbox is specified.

-u user Repair the specified user.

-x Recover partially delivered message.

The mailbox argument indicates the mailbox to be repaired. You can specify one or more
mailboxes. Mailboxes are specified with names in the format user/userid/sub-mailbox, where
userid is the user that owns the mailbox. For example, the inbox of the user dulcinea is
entered as: user/dulcinea/INBOX.

Examples

The following command performs a reconstruct on a specific mailbox:

reconstruct user/dulcinea/INBOX

The following checks the specified mailbox, without performing a reconstruct:

reconstruct -n user/dulcinea/INBOX

The following command checks all mailboxes in the message store:

Chapter 64
reconstruct

64-52

reconstruct -n -r

To Rebuild Mailboxes

To rebuild mailboxes, use the -r option. You should use this option when:

• Accessing a mailbox returns one of the following errors: "System I/O error" or "Mailbox has
an invalid format".

• Accessing a mailbox causes the server to crash.

• Files have been added to or removed from the spool directory.

reconstruct -r first runs a consistency check. It reports any inconsistencies and rebuilds only if
it detects any problems. Consequently, performance of the reconstruct utility is improved with
this release. You can use reconstruct as described in the following examples: To rebuild the
spool area for the mailboxes belonging to the user daphne, use the following command:

reconstruct -r user/daphne

To rebuild the spool area for all mailboxes listed in the mailbox database:

reconstruct -r

You must use this option with caution, however, because rebuilding the spool area for all
mailboxes listed in the mailbox database can take a very long time for large message stores.
(See the discussion about reconstruct Performance below.) A better method for failure
recovery might be to use multiple disks for the store. If one disk goes down, the entire store
does not. If a disk becomes corrupt, you need only rebuild a portion of the store by using the -p
option as follows:

reconstruct -r -p subpartition

To rebuild mailboxes listed in the command-line argument only if they are in the primary
partition:

reconstruct -p primary mbox1 mbox2 mbox3

If you do need to rebuild all mailboxes in the primary partition:

reconstruct -r -p primary

If you want to force reconstruct to rebuild a folder without performing a consistency check, use
the -f option. For example, the following command forces a reconstruct of the user folder
daphne:

reconstruct -f -r user/daphne

To check all mailboxes without fixing them, use the -n option as follows:

reconstruct -r -n

reconstruct -r -f focuses on fixing the folder index files. It assumes the folder record is good,
and the peruser record is good. There are other commands to address these other data areas,
such as reconstruct -m.

reconstruct -a attempts to address these all at once.

So if you think you need to repair an index file, but you're not sure if it is in the folder.db, you
should not need to worry about running a reconstruct -m first, and whether the index
corruption will be handled correctly there, or if both these will result in something that will
conflict with the peruser entry later.

Chapter 64
reconstruct

64-53

If you know your problem is with the index file, and there are no other complications, then you
can go ahead and use reconstruct -r -f to save time.

Checking and Repairing Mailboxes

To perform a high-level consistency check and repair of the mailboxes database:

reconstruct -m

To perform a consistency check and repair of the primary partition:

reconstruct -p primary -m

Note:

Running reconstruct with the -P and -m flags together will not fix lright.db. This is
because fixing the lright.db requires scanning the ACLs for every user in the
message store. Performing this for every partition is not very efficient. To fix the
lright.db run reconstruct -l

To perform a consistency check and repair of an individual user's mailbox named john:

reconstruct -p primary -u john -m

You should use the -m option when:

• One or more directories were removed from the store spool area, so the mailbox database
entries also need to be removed.

• One or more directories were restored to the store spool area, so the mailbox database
entries also need to be added.

• The stored -d option is unable to make the database consistent. If the stored -d option is
unable to make the database consistent, you should perform the following steps in the
order indicated:

– Shut down all servers.

– Remove all files in store_root/mboxlist.

– Restart the server processes.

– Run reconstruct -m to build a new mailboxes database from the contents of the spool
area.

reconstruct Performance

The time it takes reconstruct to perform an operation depends on the following factors:

• The kind of operation being performed and the options chosen

• Disk performance

• The number of folders when running reconstruct -m

• The number of messages when running reconstruct -r

• The overall size of the message store

• What other processes the system is running and how busy the system is

Chapter 64
reconstruct

64-54

• Whether or not there is ongoing POP, IMAP, HTTP, or SMTP activity. Note that
reconstruct is designed to run with the store services up. It is not necessary to keep the
store offline to run reconstruct.

The reconstruct -r option performs an initial consistency check; this check improves
reconstruct performance depending on how many folders must be rebuilt. The following
performance was found with a system with approximately 2400 users, a message store of
85GB, and concurrent POP, IMAP, or SMTP activity on the server:

• reconstruct -m took about 1 hour

• reconstruct -r -f took about 18 hours

Note:

A reconstruct operation may take significantly less time if the server is not
performing ongoing POP, IMAP, HTTP, or SMTP activity.

rehostuser
The rehostuser utility enables you to move a Messaging Server user's mail store from one
mailhost to another. It also disconnects any active session, locks the store to ensure atomicity
of the move from the user's perspective (no loss of data, flag change, and so on), changes the
user's LDAP entry, flushes LDAP caches as necessary, and causes any queued mail to be
rerouted to the new store.

Requirements: The following setup and configuration is required before you can use
rehostuser:

1. Ensure that both the source and destination mailhosts are running Messaging Server 8.0.1
or later.

2. For Cassandra message store, you must use Local Mail Transfer Protocol (LMTP) to
deliver messages into the Cassandra message store. If you are not currently using LMTP,
you must configure it before you can use rehostuser to move the user's mail store from a
classic message store to Cassandra message store.

3. Ensure that both the source and destination mailhosts have IMAP IDLE configured. See
"Configuring IMAP IDLE " for more information.

4. Configure ssh on the source and destination mail hosts to allow the mail server user to
perform a remote login. Even if you start rehostuser as root, it still needs to run and
execute ssh as the mail server user.

5. Make sure that ugldapbinddn has read and write access to the mailHost,
mailUserStatus, and mailMessageStore attributes. New installations of Messaging
Server should have this access made as part of the installation or upgrade process. The
rehostuser utility checks for these permissions at startup and exits with an error if the
permissions are insufficient.

6. The source mailhost must be capable of sending mail to the destination mailhost. In
particular, the tcp_intranet channel on the source mailhost must be open for relaying, the
mail must be routable to the new mailhost (directly or following mx records), and the
destination mailhost must accept mail coming from the source mailhost.

7. rehostuser needs to consider LDAP replication delay. If either the source or destination
Messaging Server system (or both) are configured to use an LDAP replica server instead

Chapter 64
rehostuser

64-55

of a master, there may be problems where attribute changes do not show up on the replica
as quickly as required. This issue can be addressed as follows:

a. If a Messaging Server points to a single Directory Server, configure the Directory
Server in multi-master replication (MMR) mode so that it writes updates to its local
database and replicates the change. (Note that MMR is the recommended way to
setup Directory Server as opposed to the old slave/master model where slaves refer
writes to the master, then have to wait for replication to get the updated data).

b. If Directory Server failover capability is needed, use Directory Server proxy and enable
one of the client affinity modes that guarantees that any single client will always see
the updated data it just wrote.

c. OpendDS 2.0, (possibly released 03/2009), may offer an assured replication feature
where once a write is committed, it is guaranteed that the whole farm of replicated

Syntax

rehostuser -u userid -d mailhost [-p partition] [-c imsconnutil]
[-b imsbackup] [-s ssh] [-r imsrestore] [-e] [-x] [-n]
[-o iss_src -t iss_dest -y ssh_user [-z src_path] [-w dest_path]]

Options

Table 64-35 describes the options for the rehostuser command.

Table 64-35 rehostuser Options

Option Description Default

-b imsbackup path. MessagingServer_home/bin.

-c imsconnutil path. MessagingServer_home/bin.

-d Destination mailhost. NA

-e Extended availability of user's mailbox during move. NA

-n Do not remove source mailbox. NA

-o Move ISS index from the specified source host. NA

-p Destination partition. NA

-r imsrestore path on remote host. MessagingServer_home/bin

-s ssh path.

Do not substitute rsh for ssh. The rsh command cannot
return imsrestore exit status.

/usr/bin/ssh

-t Move ISS index to the specified destination host. NA

-u User to move. NA

-w ISS destination installation path. Source install path

-x Move expunged message files. NA

-y ISS ssh/scp user name. NA

-z ISS source install path. IndexingServer_home

rehostuser Example

This example shows how to move user2 to mail server bigdipper where the Messaging
Server software is installed in the /opt/sun/comms/messaging directory and the mail server
user is mailuser.

Chapter 64
rehostuser

64-56

rehostuser -u user2 -d bigdipper.example.com -r /opt/sun/comms/messaging/bin/imsrestore -
s "/usr/bin/ssh -x -l mailuser"

disconnecting user2
--
Tape Version : 2
Backup Date : 2008/01/08 17:45:16
Message Store : host1.example.com
Block factor : 20
--
/second/user/user2/INBOX restoring...
/second/user/user2/INBOX/1 restoring...
/second/user/user2/INBOX/2 restoring...
/second/user/user2/INBOX/3 restoring...
/second/user/user2/folder20 restoring...
/second/user/user2/folder22 restoring...
/second/user/user2/folder33 restoring...
/second/user/user2/folder38 restoring...
/second/user/user2/folder49 restoring...
Mailbox user2 copied successfully.
Updated LDAP entry for uid=user2, ou=People, o=example.com, o=usergroup
Source mailbox deleted successfully.

relinker

Note:

The relinker feature is intended to repair the situation where the normal single-copy
nature of the message store has become broken for some reason. You should only
need to use the relinker if you have done something which could have caused
duplicate messages to become individual copies instead of the normal single-copy.
This feature is not the normal way the store normally accomplishes its single-copy
feature. You should not need to keep the real-time relinker feature enabled for long
periods of time. You should not need to use the relinker command on an ongoing
basis. You should only need this feature if you have done (or will soon be doing)
something which would break the single-copy feature of the store. See "How the
Message Store Works" for more information about single-copy.

relinker finds and relinks duplicate messages. Refer to "Reducing Message Store Size Due to
Duplicate Storage" for more information.

Requirements: You may run relinker as root or mailsrv.

Location: MessagingServer_home/bin

Syntax

relinker [-p partitionname] [-d]

Options

Table 64-36 describes the options for the relinker command.

Chapter 64
relinker

64-57

Table 64-36 relinker Options

Option Description

-d Delete digest repository.

-p partitionname Process only this partition.

Examples

To relink a message store:

relinker

Processing partition: primary
Scanning digest repository...
Processing user directories...

Partition statistics Before After

Total messages 73 73
Unique messages 41 40
Message digests in repository 1 1
Space used 55Kb 51Kb
Space savings from single-copy 40Kb 43Kb

Note: run-time relinker (local.store.relinker.enabled) is not
enabled, so the repository will not be automatically purged.
When you're done with relinker, remember to purge the
repository by running "relinker -d"

After the "Scanning digest repository..." text shown above, relinker displays another '.' for
every 100,000 messages message digests it finds in the repository and another '.' for every
100,000 messages as it is scanning messages. This indicates the progress of the relinker
command.

To delete the digest repository:

relinker -d

Processing partition: primary
Purging digest repository...

Partition statistics Before After

Message digests in repository 1 0

Note that command-line relinker is also controlled by the store.relinker.maxage (Unified
Configuration) or local.store.relinker.maxage (legacy configuration) option, which defaults to
24 (hours). To have command-line relinker consider all messages in the store, rather than just
those delivered in the past day:

For Unified Configuration, run:

msconfig set store.relinker.maxage -v 24
msconfig set store.relinker.maxage -1

For legacy configuration, run:

Chapter 64
relinker

64-58

configutil -o local.store.relinker.maxage 24
configutil -o local.store.relinker.maxage -v -1
OK SET
relinker

Processing partition: primary
Scanning digest repository...
Processing user directories...

Partition statistics Before After

Total messages 75 75
Unique messages 40 22
Message digests in repository 1 22
Space used 51Kb 29Kb
Space savings from single-copy 50Kb 73Kb

Note: run-time relinker (local.store.relinker.enabled) is not
enabled, so the repository will not be automatically purged.
When you're done with relinker, remember to purge the
repository by running "relinker -d"
msconfig set store.relinker.maxage 24 (Unified Configuration)
configutil -o local.store.relinker.maxage -v 24 (legacy configuration)
OK SET
#

stored
The stored utility starts a daemon that performs the following functions:

• Performs checkpoint database transactions.

• Deadlock detection and rollback of deadlocked database transactions.

• Cleanup of temporary files and lock files on startup.

• Creates a database snapshot archive.

• Database recovery as necessary (see "Message Store Automatic Recovery On Startup"
for more information.)

If any server daemon crashes, you must stop all daemons and restart all daemons including
stored.

Requirements: Must be run locally on the Messaging Server.

Location: MessagingServer_home/lib/

Syntax

To run stored as a daemon process:

stored -r | -R | -t [-v] | [-m] -d [site] | [-m]

Options

Table 64-37 describes the options for the stored command.

Chapter 64
stored

64-59

Table 64-37 stored Options

Option Description

-r Remove db environment.

-R Remove db tmp files.

-t Test stored readiness.

-v Display diagnostics to stdout/stderr.

-m Berkeley Database replication master.

-d site Delete a mboxlist replication site. Site format is host[:port]. Default site is local site.

Chapter 64
stored

64-60

Part V
Managing the Cassandra Message Store

Part V describes the Cassandra message store and Solr indexing and search engine, and
contains the following chapters:

• Overview of Cassandra Message Store

• About Elasticsearch

65
Overview of Cassandra Message Store

This chapter provides an overview of the Oracle Communications Messaging Server
Cassandra message store.

About the Cassandra Message Store
Apache Cassandra message store is a free and open-source NoSQL database designed for
large amounts of data.

In Messaging Server, the Cassandra message store consists of keyspaces. A keyspace, in a
NoSQL data store, is a namespace that defines data replication on nodes. (It resembles the
schema concept in Relational database management systems.) The Messaging Server
Cassandra message store consists of the following keyspaces:

1. msg: Contains the email message "blobs." It can be very large.

2. mbox: Contains user and mailbox metadata. It is relatively small and has a lot of
mutations.

3. cache: Contains cache tables for converted message blobs.

Differences in Cassandra Message Store and Classic Message
Store

The Cassandra message store differs from the classic message store in the following ways:

• The Cassandra message store uses a single maintenance queue. Classic message store
uses three maintenance queues.

• The imcheck -d and imcheck -s commands are supported only by classic message store.

• Other imcheck command differences with classic message store:

– imcheck -m output: The Cassandra message store does not have start offset, cache
ID and cache offset.

– imcheck -q: The RecNo is not unique in Cassandra message store.

• When you rename a mailbox on Cassandra, the subscription list is updated automatically.
IMAP has SUBSCRIBE and UNSUBSCRIBE commands, which are typically used for
shared folders. There is no requirement in the IMAP specification for the subscription to
recognize the new name when a shared folder is renamed. Classic message store
subscriptions do not follow renames, whereas Cassandra message store does.

• Cassandra message store folder purge is always deferred. This is optional in classic
message store. Also, Cassandra message store mailbox purge and cleanup tasks are
combined into one task.

• Cassandra message store does not advertise the IMAP ACL extension (RFC 4314).
Although the ACL commands are implemented, the semantics of ACLs with respect to
shared folders are not fully implemented. As a result, it is inappropriate to advertise the
IMAP ACL extension in this version of Cassandra message store.

65-1

• Cassandra message store does not support the IMAP ANNOTATE capability. (The
ANNOTATE extension to IMAP permits clients and servers to maintain "meta data" for
messages, or individual message parts, stored in a mailbox on the server.)

• In Cassandra message store, delete user does not remove access rights from the ACL of
the other user's folder. When a user is deleted and recreated, shared folders are still
accessible.

• User ID (puid) and folder ID (fid) are permanently unique in Cassandra message store.

• Cassandra message store does not use a message store partition. Thus, you no longer
are able to perform maintenance tasks such as expire, backup, and reconstruct by store
partition.

• The imexpire command cannot install expire rules by partition.

• Cassandra message store supports only mailbox reconstruct.

• Cassandra message store only supports Unified Configuration.

• IMAP subscribe: Cassandra message store does not permit users to subscribe to non-
existing folders.

• Specific differences that apply to Messaging Server 8.0.x:

– The reconstruct -x command has been obsoleted (it is now always enabled).

– imcheck -e output: The File type column has been removed.

– imcheck -q output: RecNo has a queue prefix.

• Classic message store allows use of invalid identifiers in IMAP ACLs; they are simply
ignored when evaluating the ACL. Cassandra message store does not allow use of invalid
identifiers in an ACL; an attempt to use an invalid identifier will result in no change to the
ACL.

• Cassandra message store supports both an external identifier and a persistent identifier for
each user. Changing the persistent identifier of an existing user is not recommended. The
external identifier for a user can be changed freely and is used for ACLs and shared
folders instead of the persistent identifier. See the topic on User Identifiers in Messaging
Server Reference, as well as the ldap_permid and ldap_extid options for more
information.

• A SETACL command for cross-domains is not allowed. Thus, for a Cassandra message
store, the value for the store.privatesharedfolders.restrictdomain configuration option is
always 1 (to disallow regular users from sharing private folders to users in another
domain.) In addition, neither the default domain nor the canonical domain name can ever
be changed.

Scaling Your Cassandra Message Store Deployment Horizontally
You can scale your Cassandra message store deployment horizontally by adding more nodes
to an existing deployment. For adding a node, datacenter, or cluster, see the Cassandra
documentation.

Adding an Access-Tier Node (IMAP/LMTP Server/enpd)
To add a message access tier (IMAP/LMTP-server/enpd) node to a store affinity group:

1. Configure and start the new server.

2. Test the new server.

Chapter 65
Scaling Your Cassandra Message Store Deployment Horizontally

65-2

You should be able to access IMAP accounts through the new server, although LMTP,
IMAP IDLE, and notifications for IMAP APPEND operations are not yet live.

3. Update the recipe that you used to set up store affinity groups to add this server to the
store affinity group in question.

4. Run the store affinity group recipe on all message access tier hosts in the deployment and
use the refresh command to activate the change in the deployment.

Note:

For Early Access, this is technically only necessary on the store affinity group in
question. However, when shared folder support is added, that will no longer be
true.

5. At this point, IMAP IDLE should work on the new host but it is not yet servicing customer
requests.

6. Run the recipe on all front-end tier hosts in the deployment and use refresh for MMP/
mshttpd, and imsimta reload to update the store affinity group configuration.

Creating a new store affinity group is a similar procedure but you must have at least two hosts
in the new group.

Managing Your Cassandra Message Store Availability
To remove a node, datacenter, or cluster, see the Cassandra documentation.

Removing an Access-Tier Node (IMAP/LMTP Server/enpd)
To remove a message access tier (IMAP/LMTP-server/enpd) node from a store affinity group:

• Update the store affinity group recipe to remove the node.

Remember, keep at least two nodes in an affinity group for robustness.

• Run the recipe on the front-end tier, and use the refresh or imsimta command to update
information.

• Run the recipe on the message access tier and refresh (run on host being removed last).

• Wait for active IMAP/LMTP connections to finish or forcefully disconnect users with the
imsconnutil command or by stopping the server.

Chapter 65
Managing Your Cassandra Message Store Availability

65-3

66
About Elasticsearch

This chapter provides an overview of the Elasticsearch indexing and search service integrated
with the Oracle Communications Messaging Server different message stores.

Elasticsearch Indexing and Search
The Classic message store and Cassandra message store supports Elasticsearch indexing
and search engine. Elasticsearch is a distributed search engine from the Apache Lucene
project. It provides full text search services with built-in high availability, replication, horizontal
scaling, and automatic load balancing.

For Elasticsearch, a message store deployment includes an Elasticsearch cluster. Multiple
Classic message stores can share the same Elasticsearch cluster. Typically, all message store
servers in a deployment share the same Elasticsearch clusters.

The classic message store does not enable index and search services by default. When
Elasticsearch is enabled, the message store sends the message content to Elasticsearch for
indexing when messages are appended to the mailboxes; the IMAP server sends search
queries to Elasticsearch to perform textual searches. The message store uses Indexed Search
Converter (ISC) to convert binary message content to text before indexing. Therefore, ISC
must be configured on the message store server when Elasticsearch is enabled.

In classic store, ISC uses the file system to cache the text content. In Cassandra store, ISC
uses Cassandra to store the cache content.

Note:

ISC requires read access to the message store in order to convert the content of a
message. When used with classic store, ISC can be co-located with other message
store processes or can run on a separate server with shared filesystem access to
message store data.

Enabling Elasticsearch
To enable Elasticsearch on the message store, set the following options:

store.searchengine = elastic
elasticsearch.hostlist = a space separated list of elasticsearch hosts
elasticsearch.numshards = number of shards in elasticsearch cluster
elasticsearch.numreplicas = number of replicas in elasticsearch cluster
elasticsearch.storesource = false, if the storage space is limited

where,

searchengine specifies the message store search engine type.when the searchengine is set
to elastic, Elasticsearch options control IMAP search operations.

66-1

hostlist specifies a space separated list of Elasticsearch hosts. Host format is host[:port]. If
port is not specified, the port number is determined based on the setting of the port
Elasticsearch option.

numshards specifies the number of shards in the Elasticsearch cluster. The numshards is
used by store to create the message store index in Elasticsearch. The number of shards
cannot be changed after the index is created. (Default : 5)

numreplicas specifies the number of replicas in the Elasticsearch cluster. The numreplicas is
used by stored to create the Elasticsearch message store index. The message store does not
update the number of replicas after the index is created. The number can be updated in
Elasticsearch manually. (Default : 1)

The _source field in Elasticsearch contains the document body that was passed at index time.
If storesource is enabled, the message store will create the Elasticsearch store/message
index mapping with the _source field enabled; IMAP copy will use the _source field from
Elasticsearch to index the message on the destination folder. The _source field data
consumes a lot of disk space. You might want to disable the _source field if storage space is
limited. Disabling the _source field will disable the ability to reindex, upgrade or repair index
from Elasticsearch. (Default : false)

For a list of Elasticsearch options, see Messaging Server Reference.

Differences Between Elasticsearch and Brute-Force IMAP
Searching

This section describes the differences in IMAP searches between Elasticsearch and Brute-
force.

Wildcard Search
Wildcard searching refers to using a single character, such as an asterisk (*), to represent
several characters or an empty string in an email search. Wildcard searching differentiates
between the following types:

• Prefix wildcard search: The wildcard is used at the end of the string, for example: appl*

• Suffix wildcard search: The wildcard is used at the beginning of the string, for example:
*pple

• Substring search: The wildcard is used at the beginning and end of the string: *ppl*

When a search is issued in brute-force, it linearly searches through email content to match the
exact sequence of characters provided in the search command. This implicitly includes prefix
and suffix search.

For example, consider an email body that contains the following text:

Hello World! This is a test.

All the following searches in brute-force return this email:

search body world
search body wor
search body llo
search body "lo Wor"
search body !

Chapter 66
Differences Between Elasticsearch and Brute-Force IMAP Searching

66-2

In Elasticsearch, the default search does not include prefix, suffix, and substring search. You
must set the following configuration options to be able to conduct prefix and suffix search in
Elasticsearch:

• To enable prefix search:

msconfig set imap.indexer.prefix_search "subject body from to cc text bcc"
• To enable suffix search:

msconfig set imap.indexer.suffix_search "subject body from to cc text bcc"
• To enable substring search:

msconfig set imap.indexer.substring_search "subject body from to cc text bcc"
However, in Elasticsearch, wildcarding is allowed only for single-word search terms.
Elasticsearch does not support wildcarding within phrases. Thus, even with wildcarding
enabled, the following search using the previous example does not return the email in
Elasticsearch.

search body "lo Wor"

Also, the following search returns all email message in that folder because special characters
like punctuation marks are discarded by both indexing and search:

search body !

The following searches in Elasticsearch do return the example email when prefix and suffix
searches are enabled:

search body world
search body wor
search body llo

Special Characters and Searching
The Elasticsearch standard tokenizer splits text fields into tokens, treating whitespace and
special characters (like punctuation) as delimiters. Delimiter characters are discarded, with the
following exceptions:

• Periods (dots) that are not followed by whitespace are kept as part of the token, including
Internet domain names.

• The "@" character is among the set of token-splitting punctuation, so email addresses are
not preserved as single tokens.

This means that if an email field contains words with special characters, such as "@,"
Elasticsearch splits that word around the special character and indexes it as two words.

For email address wildcard search, Elasticsearch treats the email address as two words in
sequence (user name and domain name). The term in the search should not mix user name
and domain together when wildcarding is enabled. That is, searching on user1@example.com
is not a valid search in Elasticsearch.

The following example wildcard email address searches are all valid in Elasticsearch:

• Prefix search: FROM user7642@example.com:

SEARCH FROM user
SEARCH FROM u
SEARCH FROM exampl
SEARCH FROM example.c

Chapter 66
Differences Between Elasticsearch and Brute-Force IMAP Searching

66-3

• Suffix search: TO test1.central.example.com:

SEARCH TO st1
SEARCH TO st1@central.example.com
SEARCH TO mple.com
SEARCH TO le.com
SEARCH TO om

• Substring search: CC: user7170@us.example.com:

SEARCH CC ser71
SEARCH CC exampl
SEARCH CC s.exampl
SEARCH CC s.example.co

The following example wildcard email address searches are invalid in Elasticsearch:

• FROM jean-marie@oracle.com:

SEARCH FROM ean-ma
SEARCH FROM marie@or

Words Not Indexed by Elasticsearch
The following words are filtered out from emails by the Elasticsearch English stopwords filter.
These words are not indexed by Elasticsearch, and so are not searchable.

"a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in",

"into", "is", "it", "no", "not", "of", "on", "or", "such", "that", "the",

"their", "then", "there", "these", "they", "this", "to", "was", "will",

"with"

Chapter 66
Differences Between Elasticsearch and Brute-Force IMAP Searching

66-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Monitoring and Managing Messaging Server
	1 Messaging Server System Administration Overview
	About Messaging Server
	About Messaging Server Configuration
	Overview of Messaging Server Administration Tasks
	About Messaging Server Administration Tools
	Directory Placeholders Used in This Guide

	2 Overview of Messaging Server Unified Configuration
	What Is Messaging Server Unified Configuration?
	Unified Configuration Files
	Enabling Unified Configuration in Messaging Server
	To Determine if Unified Configuration Is Deployed

	Understanding Unified Configuration Limitations
	Using the Repository of Previous Configurations
	To List Configurations
	To Compare Configurations

	Using Legacy Configuration Tools with Unified Configuration
	Separating Roles and Instances
	More About Unified Configuration Options
	Options That Have Passwords
	Restricted Options
	Obsolete Options
	Option Relationships
	Unified Configuration Option Names

	Example of Legacy Configuration and Unified Configuration
	Using Recipes
	To Run a Recipe

	Helpful Commands
	To Show Settings
	To Get Help

	3 Stopping and Starting Messaging Server
	Starting and Stopping Services
	To Start and Stop Messaging Server Services
	To Start Up, Shut Down, or View the Status of Messaging Services
	To Specify What Services Can Be Started

	Starting and Stopping a Messaging Server Running in MTA-only Mode

	Stopping and Starting Messaging Services in an HA Environment
	Automatic Restart of Failed or Unresponsive Services
	Overview of Messaging Server Monitoring Processes
	Automatic Restart in High Availability Deployments

	4 Configuring General Messaging Capabilities
	Modifying Your Passwords
	Managing Mail Users, Mailing Lists and Domains
	Overview of Messaging Server and LDAP
	To Remove a User from Messaging Server by Using Delegated Administrator
	To Remove a Domain from Messaging Server using Delegated Administrator

	Scheduling Automatic Tasks
	Overview of Scheduling Automatic Tasks
	Scheduler Examples
	Pre-defined Automatic Tasks

	Configuring a Greeting Message
	To Create a New User Greeting
	To Set a Per-Domain Greeting Message

	Setting a User-Preferred Language
	Overview of Setting a User-Preferred Language
	To Set a Domain Preferred Language
	To Specify a Site Language

	Encryption Settings
	Setting a Failover LDAP Server

	5 Configuring and Administering Multiplexor Services
	Multiplexor Services in Unified Configuration Overview
	Multiplexor Services
	Multiplexor Benefits

	About Messaging Multiplexor
	How the Messaging Multiplexor Works
	Encryption (SSL) Option
	Certificate-Based Client Authentication
	To Enable Certificate-based Authentication for Your IMAP or POP Service
	User Pre-Authentication
	MMP Virtual Domains
	About SMTP Proxy

	Setting Up the Messaging Multiplexor
	Before You Configure MMP
	Multiplexor Configuration
	To Configure the MMP
	Multiplexor Configuration Options
	Starting the Multiplexor
	Modifying an Existing MMP

	Configuring MMP with SSL or Client Certificate-Based Login
	To Configure MMP with SSL
	To Configure MMP with Client Certificate-based Login
	A Sample Topology

	MMP Tasks
	To Configure Mail Access with MMP
	To Set a Failover MMP LDAP Server

	6 MTA Concepts
	The MTA Functionality
	MTA Architecture and Message Flow Overview
	Dispatcher and SMTP Server (Slave Program)

	The Dispatcher
	Creation and Expiration of Server Processes
	To Start and Stop the Dispatcher

	MTA Configuration Overview
	Rewrite Rules
	Channels
	Master and Slave Programs
	Channel Message Queues
	Channel Definitions

	The MTA Directory Information
	The Job Controller
	To Start and Stop the Job Controller

	On Demand Mail Relay
	Priority Message Handling
	MTA Command-line Utilities

	7 LMTP Delivery
	Overview of LMTP
	LMTP Delivery Features
	LMTP Client and Server to Detect and Respond to Certain Conditions
	Support for LMTP Client and Server to Use UID Extension

	Messaging Processing in a Two-Tiered Deployment Without LMTP
	Messaging Processing in a Two-Tiered Deployment With LMTP
	LMTP Architecture
	Configuring LMTP
	Before You Begin
	To Configure the Front-end MTA Relay with LMTP
	To Configure Back-End Stores with LMTP and a Minimal MTA

	LMTP Protocol as Implemented

	8 Vacation Automatic Message Reply
	Vacation Autoreply Overview
	Configuring Autoreply
	To Configure Autoreply on the Back-end Store System
	To Configure Autoreply on a Relay
	To Share Autoreply Information Between Relays

	Vacation Autoreply Theory of Operation
	Vacation Autoreply Attributes
	Other Auto Reply Tasks and Issues
	To Send Autoreply Messages for Email That Have Been Automatically Forwarded from Another Mail Server

	9 Using and Configuring MeterMaid for Access Control
	Overview of MeterMaid
	How MeterMaid Works
	Options for MeterMaid
	Limit Excessive IP Address Connections Using Metermaid – Example
	Configuring check_metermaid.so Clients to Access Multiple MeterMaid Servers
	Considerations for Distributing Load Across Multiple MeterMaid Servers
	Configuring check_metermaid.so to Access Multiple MeterMaid Servers

	10 Implementing Greylisting by Using MeterMaid
	About Greylisting
	Basic Greylisting Implementation
	Enhancing Greylisting Functionality
	Preloading the Greylisting Table with Outbound Transactions
	Matching a Range of IP Addresses
	Simplifying the Sender Address
	Providing an Opt-In Mechanism
	Whitelisting Based on User's Addressbook
	Combining Functionality: A Complex Example

	Mapping Table Notes

	11 MeterMaid Reference
	configutil Options
	Table Types
	greylisting Tables
	simple Tables
	throttle Tables

	check_metermaid.so Reference
	adjust Routine
	adjust_and_test Routine
	fetch Routine
	greylisting Routine
	remove Routine
	store Routine
	test Routine
	throttle Routine

	12 Administering Event Notification Service
	ENS Publisher in Messaging Server
	Configuring the ENS Publisher in Unified Configuration
	Administering Event Notification Service
	Starting and Stopping ENS
	Event Notification Service Configuration Options
	ENS SSL Support
	ENS Support for Password Based Authentication

	13 Messaging Server Specific Event Notification Service Information
	Event Notification Types and Options
	Event Types
	Options
	Mandatory Event Reference Options
	Optional Event Reference Options
	Available Options for Each Event Type
	Payload
	Payload Configuration Options
	Examples

	Implementation Notes

	14 Event Notification Service API Reference
	ENS C API Overview
	API Basic Usage
	Client API ens_sopen

	API Usage Notes
	Event Notification Service Java (JMS) API
	Sample ENS-JMS Consumer Program
	Sample ENS-JMS Consumer Using Automatic Failover and Properties File

	15 Configuring IMAP IDLE
	Benefits of Using IMAP IDLE
	Configuring IMAP IDLE with ENS in Unified Configuration
	Prerequisites for Configuring IMAP IDLE with ENS
	To Configure IMAP IDLE with ENS
	To Disable IMAP IDLE

	16 Lemonade Profile 1 Support
	Introduction to Lemonade
	Lemonade Features
	Support for BURL
	IMAP URLAUTH Support
	IMAP CATENATE Support
	IMAP Conditional Store Operation Support
	IMAP ANNOTATE Support
	Controlling IMAP CAPABILITIES Vector
	Support for SMTP Submission Service Extension for Future Message Release

	17 Managing Logging
	Overview of Logging
	What Is Logging and How Do You Use it?
	Types of Logging Data
	Types of Messaging Server Log Files
	Tools for Managing Logging
	Tracking a Message Across the Various Log Files

	Managing MTA Message and Connection Logs
	Understanding the MTA Log Entry Format
	Enabling MTA Logging
	Specifying Additional MTA Logging Options
	MTA Message Logging Examples
	Enabling Dispatcher Debugging

	Managing Message Store, Admin, and Default Service Logs
	msconfig Logging Options
	Understanding Service Log Characteristics
	Understanding Service Log File Format
	Defining and Setting Service Logging Options
	Searching and Viewing Service Logs
	Working With Service Logs
	Implementing and Configuring Message Store Transaction Logging
	Overview of Message Store Transaction Logging
	Message Store Transaction Logging Log Entries
	Configuring Message Store Transaction Logging
	Message Store Transaction Log Examples

	Other Message Store Logging Features
	Message Store Logging Examples

	Using Message Store Log Messages
	MMP Logging

	18 Monitoring Messaging Server
	Automatic Monitoring and Restart
	Daily Monitoring Tasks
	Checking Postmaster Mail
	Monitoring and Maintaining the Log Files
	Setting Up the msprobe Utility

	Utilities and Tools for Monitoring
	Monitoring Using msstatbot Tool
	Stats Available from the msstatbot Tool
	Installing the msstatbot Tool
	Configuration
	Notes
	Assumptions
	Starting and Stopping Statistics Monitoring
	Querying the Node Statistics
	Log Files
	Uninstalling the msstatbot Tool

	19 Monitoring the MTA
	Monitoring the Size of the Message Queues
	Symptoms of Message Queue Problems
	To Monitor the Size of the Message Queues

	Checking for Held messages
	Monitoring Rate of Delivery Failure
	Symptoms of Rate of Delivery
	To Monitor the Rate of Delivery Failure

	Monitoring Inbound SMTP Connections
	Symptoms of Unauthorized SMTP Connections
	To Monitor Inbound SMTP Connections

	Monitoring the Dispatcher and Job Controller Processes
	Symptoms of Dispatcher and Job Controller Processes Down
	To Monitor Dispatcher and Job Controller Processes

	20 SNMP Support
	SNMP Implementation
	SNMP Operation in Messaging Server

	Configuring SNMP Support for Oracle Solaris 10
	Net-SNMP Configuration
	Messaging Server Subagent Configuration
	Running as a Standalone SNMP Agent
	Monitoring Multiple Instances of Messaging Server
	Using Standalone Agents for High-availability Failover
	Distinguishing Multiple Instances Through SNMP v3 Context Names
	Messaging Server's Net-SNMP-based SNMP Subagent Options

	Monitoring from an SNMP Client
	SNMP Information from the Messaging Server
	applTable
	assocTable
	mtaTable
	mtaGroupTable
	mtaGroupAssociationTable
	mtaGroupErrorTable

	21 Short Message Service (SMS)
	Introduction
	One-Way SMS
	Two-Way SMS

	Requirements

	SMS Channel Theory of Operation
	Directing Email to the Channel
	The Email to SMS Conversion Process
	Sample Email Message Processing

	The SMS Message Submission Process
	Site-defined Address Validity Checks and Translations
	Site-defined Text Conversions
	Message Header Entries
	Message Body Entries
	Example SMS Mapping Table

	SMS Channel Configuration
	Adding an SMS Channel
	Adding the Channel Definition and Rewrite Rules
	To Add Channel Definition and Rewrite Rules
	Controlling the Number of Simultaneous Connections

	Setting SMS Channel Options
	Available Options
	Email to SMS Conversion Options
	SMS Gateway Server Option
	SMS Options
	SMPP Options
	Localization Options
	Formatting Templates

	Adding Additional SMS Channels
	Adjusting the Frequency of Delivery Retries
	Sample One-Way Configuration (MobileWay)
	Debugging

	Configuring the SMS Channel for Two-Way SMS

	SMS Gateway Server Theory of Operation
	Function of the SMS Gateway Server
	Behavior of the SMPP Relay and Server
	Remote SMPP to Gateway SMPP Communication
	SMS Reply and Notification Handling
	Routing Process for SMS Replies

	SMS Gateway Server Configuration
	Setting Up Bidirectional SMS Routing
	Set the SMS Address Prefix
	Set the Gateway Profile
	Configure the SMSC

	Enabling and Disabling the SMS Gateway Server
	Starting and Stopping the SMS Gateway Server
	SMS Gateway Server Configuration File
	Configuring Email-To-Mobile on the Gateway Server
	A Gateway Profile
	An SMPP Relay
	An SMPP Server

	Configuring Mobile-to-Email Operation
	Configure a Mobile-to-Email Gateway Profile
	Configure a Mobile-Email SMPP Server

	Configuration Options
	Global Options
	Thread Tuning Options
	Historical Data Tuning
	Miscellaneous

	SMPP Relay Options
	SMPP Server Options
	Gateway Profile Options
	Configuration Example for Two-Way SMS

	SMS Gateway Server Storage Requirements
	SMS Configuration Examples

	22 Configuring Messaging Server for One-Way SMS
	23 Configuring Messaging Server for Two-Way SMS
	24 Using the iSchedule Channel to Handle iMIP Messages
	Inviting Users on Internal and External Calendar Systems Background
	Manually Accepting External Invitations
	Automatically Accepting External Invitations

	Message Server iMIP Configuration Overview
	Configuring the iSchedule Channel for iMIP Messages in Unified Configuration
	Using the iSchedule Recipe to Automate Configuring the iSchedule Channel in Unified Configuration
	Manually Configuring the iSchedule Channel in Unified Configuration
	Verifying the Calendar Server Configuration
	Modifying iSchedule Channel Options
	To Enable or Disable iMIP Message Processing
	To Modify the iSchedule Service URL

	Configuring the iSchedule Channel in Legacy Configuration
	Troubleshooting the iSchedule Configuration

	25 Handling sendmail Clients
	To Create the sendmail Configuration File on Oracle Solaris 8 Platforms
	To Create the sendmail Configuration File on Oracle Solaris 9 Platforms

	26 Handling Forged Email by Using the Sender Policy Framework
	About Sender Policy Framework
	SPF Theory of Operations
	SPF Limitations
	SPF Pre-Deployment Considerations
	Setting up the Technology
	Reference Information
	Testing SPF by Using spfquery
	Syntax
	Example with Debugging Enabled

	Handling Forwarded Mail in SPF by Using the Sender Rewriting Scheme (SRS)

	27 Classic Message Store Directory Layout
	About the Classic Message Store Directory Layout

	28 Monitoring LDAP Directory Server
	Symptoms of slapd Problems
	To Monitor slapd

	29 Monitoring System Performance
	Monitoring End-to-end Message Delivery Times
	Monitoring CPU Usage

	30 Monitoring the Message Store
	General Message Store Monitoring Procedures
	Checking Hardware Space
	Checking Log Files
	Checking User IMAP/POP/Webmail Session by Using Telemetry
	Checking stored Processes
	Checking Database Log Files
	Checking User Folders
	Checking for Core Files

	Monitoring imapd, popd and httpd
	Symptoms of imapd, popd and httpd Problems
	To Monitor imapd, popd and httpd

	Monitoring the stored Process
	Symptoms of stored Problems
	To Monitor stored

	Monitoring the State of Message Store Database Locks
	Symptoms of Message Store Database Lock Problems
	To Monitor Message Store Database Locks

	To Monitor Mailbox Quotas and Usage
	To Monitor Message Store Database Statistics with imcheck
	Gathering Message Store Counter Statistics by Using counterutil
	To Get a Current List of Available Counter Objects
	counterutil Output
	Gathering Alarm Statistics by Using counterutil
	IMAP, POP, HTTP, and MMP Connection Statistics by Using counterutil
	Disk Usage Statistics by Using counterutil
	Server Response Statistics

	31 Monitoring User Access to the Message Store
	32 Message Archiving
	Microsoft Exchange Envelope Journaling
	Archiving Overview
	Message Archiving Systems: Compliance and Operational

	33 Unified Messaging
	Using Messaging Server to Manage Unified Messaging
	What Is the Challenge?
	The Oracle Solution
	Open Standards and Regulatory Requirements

	Architectural Overview of a Unified Messaging Application
	Message Deposit
	Message Retrieval via Telephone User Interface
	Message Retrieval via PC
	Message Retrieval Through an IMAP Client
	Message Retrieval Through Convergence

	Designing and Coding Your Unified Messaging Application
	Planning the Message-Type Configuration
	Coding and Configuring Your UM System
	Mailbox Administration and Operations
	Sample IMAP Sessions Using Message-Type Flags
	Administering Quotas for Message Types
	Expiring Messages by Message Type

	Delivering Notifications for Message Types
	Notifications for Particular Message States
	How Do You Implement Notifications for Message Types?
	Notification Properties for Message Types

	Additional Unified Messaging Support Features
	Set IMAP Flag Based on Header Value at Delivery
	Modifications to IMAP Commands to Provide Message Counts
	IMAP Unauthenticate
	Modify IMAP APPEND to bypass quotas
	SMTP Future Release

	34 Messaging Server Command-Line Reference
	configtoxml Command
	Syntax
	Options
	Example
	Notes on the configtoxml Command

	Part II Improving Performance
	35 Messaging Server Tuning and Best Practices
	Log Files Tips
	LMTP Tips
	Message Store Tips
	MTA Tips
	Performance Tuning Tips

	36 Tuning the mboxlist Database Cache in Unified Configuration
	Setting the Mailbox Database Cache Size
	To Adjust the Mailbox Database Cache Size
	To Monitor the Mailbox Database Cache Size

	37 Best Practices for Messaging Server and ZFS
	Before You Begin
	Configuration Recommendations for ZFS and Messaging Server
	mboxlist Database, Message File and Index Cache Files Overview
	Index Cache Record File System
	Access Time Record
	ZFS Pool Space Utilization

	To Configure ZFS and Messaging Server
	ZFS Administration Recommendations

	Part III Troubleshooting
	38 Troubleshooting the MTA
	Troubleshooting Overview
	Standard MTA Troubleshooting Procedures
	Check the MTA Configuration
	Check the Message Queue Directories
	Check the Ownership of Critical Files
	Check that the Job Controller and Dispatcher Are Running
	Check the Log Files
	Running a Channel Program Manually
	Starting and Stopping Individual Channels
	To Stop Outbound Processing (dequeueing) for a Specific Channel
	To Stop Inbound Processing from a Specific Domain or IP Address (Enqueuing to a Channel)

	An MTA Troubleshooting Example
	Identify the Channels in the Message Path
	Manually Start and Stop Channels to Gather Data

	Common MTA Problems and Solutions
	TLS Problems
	Changes to Configuration Files or MTA Databases Do Not Take Effect
	The MTA Sends Outgoing Mail but Does Not Receive Incoming Mail
	Dispatcher (SMTP Server) Won't Start Up
	Timeouts on Incoming SMTP Connections
	To Identify the Causes of Timeouts on Incoming SMTP Connections

	Messages Are Not Dequeued
	Creating a New Channel

	MTA Messages Are Not Delivered
	Messages are Looping
	Diagnosing and Cleaning up .HELD Messages

	Received Message is Encoded
	Server-Side Rules (SSR) Are Not Working
	Testing Your SSR Rules
	Common Syntax Problems

	Slow Response After Users Press Send Email Button
	Abnormal Job Controller Terminations Seen in job_controller Logs

	General Error Messages
	Errors in mm_init
	Compiled Configuration Version Mismatch
	Swap Space Errors
	File Open or Create Errors
	Illegal Host/Domain Errors
	Errors in SMTP channels, os_smtp_* errors

	39 Troubleshooting the Message Store
	Repairing Mailboxes and the Mailboxes Database (reconstruct Command)
	Reduced Message Store Performance
	Convergence Not Loading Mail Page
	Command Using Wildcard Pattern Does Not Work
	Unknown/invalid Partition
	User Mailbox Directory Problems
	Store Daemon Not Starting
	User Mail Not Delivered Due to Mailbox Overflow
	IMAP Events Become Slow

	Part IV Managing the Message Store and Mailboxes
	40 Managing Mailboxes
	To Manage Mailboxes with mboxutil
	Examples

	To Move Mailboxes to a Different Disk Partition
	To Remove Orphan Accounts
	To Find a Mailbox's Directory Using hashdir
	To Find Out How Many Users Have Read Messages in a Shared Folder

	41 Backing Up and Restoring the Message Store
	Mailbox Backup and Restore Overview
	To Create a Mailbox Backup Policy
	Peak Business Loads
	Full and Incremental Backups
	Parallel or Serial Backups

	To Create Backup Groups
	Pre-defined Backup Group

	To Run the imsbackup Utility
	Running the imsbackup Utility
	Incremental Backup
	Excluding Bulk Mail When You Perform Backups

	To Restore Mailboxes and Messages
	Considerations for Partial Restore
	To Restore Messages from a Mailbox that Has Been Incrementally Backed-up

	To Use StorageTek Enterprise Backup Software
	To Back Up Data By Using StorageTek Enterprise Backup Software
	Restoring Data Using StorageTek Enterprise Backup Software

	To Use a Third Party Backup Software (Besides StorageTek Enterprise Backup Software)
	Troubleshooting Backup and Restore Problems
	Message Store Disaster Backup and Recovery

	42 Administering Very Large Mailboxes
	Very Large Mailboxes Overview
	The Structure of a Mailbox
	Mailbox Size Limit
	Mailbox Migration
	Pre-Deployment Preparations
	Checking Mailbox Data

	43 Message Store Message Expiration
	imexpire Overview
	To Deploy the Message Expiration Feature
	To Define Message Expiration Policy
	Examples of Message Expiration Policy
	To Set Rules Implementing Message Expiration Policy
	Expiration Rules Guidelines

	Localized Mailbox Names in imexpire
	Setting imexpire Rules Textually
	Example imexpire Rules

	Setting imexpire Folder Patterns

	44 Configuring Message Expiration (Tasks)
	To Set imexpire Rules Textually
	To Set Expiration Rules by Using the msconfig Command

	To Set imexpire Folder Patterns
	To Schedule Message Expiration and Logging Level
	Expire and Purge Log and Scheduling Options
	To Set imexpire Logging Levels

	To Exclude Specified Users from Message Expiration

	45 Configuring POP, IMAP, and HTTP Services
	General Configuration
	Enabling and Disabling Services
	Specifying Port Numbers
	Ports for Encrypted Communications
	IMAP Over SSL
	POP Over SSL
	HTTP Over SSL

	Service Banner

	Login Requirements
	To Set the Separator for POP Clients
	To Allow Log In without Using the Domain Name
	Password-Based Login
	Certificate-Based Login

	Performance Options
	Number of Processes
	Number of Connections per Process
	Number of Threads per Process
	Dropping Idle Connections
	Logging Out HTTP Clients

	Client Access Controls
	To Configure POP Services
	To Configure IMAP Services
	Configuring IMAP IDLE

	To Configure the mshttpd Process for Use by Convergence
	Configuring Your HTTP Service

	46 Handling Message Store Overload
	Overview of Managing Message Store Load
	Message Store Load Throttling
	Job Controller Stress Handling
	Default Job Controller Configuration

	47 Managing Message Store Partitions and Adding Storage
	Message Store Partition Overview
	To Add a Message Store Partition
	To Change the Default Message Store Partition
	Adding More Physical Disks to the Message Store

	48 Managing Message Store Quotas
	Message Store Quota Overview
	Quota Overview
	Quota Theory of Operations
	Message Store Quota Attributes and Options

	To Specify a Default User Quota
	To Specify Individual User Quotas
	To Specify Domain Quotas
	To Set Up Quota Notification
	To Disable Quota Notification

	To Enable or Disable Quota Enforcement
	To Enable Quota Enforcement at the User level
	To Perform Quota Enforcement at the Domain Level
	Disabling Quota Enforcement

	To Set a Grace Period
	Netscape Messaging Server Quota Compatibility Mode

	49 Managing Message Types in the Message Store
	To Configure Message Types
	Sending Notification Messages for Message Types
	Administering Quotas by Message Type
	Before You Set Message-Type Quotas
	Methods of Setting Message-Type Quotas
	Example of a Message-Type Quota Root

	Expiring Messages by Message Type
	Example: Sample Rules for Expiring Different Message Types

	50 Managing Shared Folders
	Shared Folders Overview
	Specifying Sharing Attributes for Private Shared Folders
	To Create a Public Shared Folder
	To Grant Folder Access Rights Based on Group Membership
	To Set or Change a Shared Folder's Access Control Rights
	Shared Folder Examples

	Enabling or Disabling Listing of Shared Folders
	Setting Up Distributed Shared Folders
	Setting Up Distributed Shared Folders-Example

	Monitoring and Maintaining Shared Folder Data
	To Monitor Shared Folder Usage
	To List Users and Their Shared Folders
	To Remove Inactive Users
	To Set Access Rights

	51 Upgrading the Classic Message Store
	Architecture and Components
	Classic Message Store Component Version Compatibilities
	Upgrading the Mailboxes
	Upgrading and Downgrading the Berkeley Database (BDB)
	Database BTREE File
	Database Log Files

	IMAPD, MSHTTPD and Convergence
	Upgrading from Messaging Server 32-bit to 64-bit
	Migrating from x86 to SPARC
	stored -r
	ims_db_upgrade
	Downgrading

	Significant Changes in the Classic Message Store Between Versions
	Changes from Messaging Server 6.3 to Messaging Server 7.0
	Changes to store.idx
	Classic Message Store Maintenance Queue and impurge
	Mailbox Self-Healing (Auto-Repair)

	Changes from Messaging Server 7 to Messaging Server 7 Update 1
	Berkeley Database Upgrade

	Changes from Messaging Server 7 Update 1 to Messaging Server 7 Update 5
	Changes to the Owner's Seen and Deleted Flags
	Immediate flag update and state sharing
	Change to the service.imap.capability.condstore option
	Changes to the Berkeley Database
	Changes to mboxlist and lockdir BDB environments

	52 Message Store Automatic Recovery On Startup
	Overview of Automatic Recovery on Startup
	Automatic Startup and Recovery Theory of Operations
	Error Messages Signifying reconstruct Is Needed
	Message Store Database Snapshot Theory of Operations
	Message Store Database Snapshot Interval and Location
	Message Store Database Snapshot Options

	53 Message Store Maintenance Queue
	Message Store Maintenance Queue Overview
	Displaying the Maintenance Queue
	Deleting, Expunging, Purging, and Cleaning Up Messages
	Mailbox Self Healing (Auto Repair)
	Maintenance Queue Configuration Options
	The impurge Command

	54 Message Store Message Type Overview
	About Message Type
	Planning the Message-Type Configuration
	Defining and Using Message Types
	Message Types in IMAP Commands

	55 Migrating Mailboxes to a New System
	Tools Summary for Relocating Messaging Server Users to a New Mailhost
	Migrating Mailboxes from an x86 Host to a SPARC Host
	Moving Mailboxes to Another Messaging Server While Online
	Advantages
	Disadvantages
	Incremental Mailbox Migration While Online
	Online Migration Overview
	To Migrate User Mailboxes from One Messaging Server to Another While Online

	To Move Mailboxes Using an IMAP Client
	To Move Mailboxes by Using the imsimport Command
	Migrating Mailboxes from Microsoft Exchange Server to Oracle Communications Messaging Server

	56 Monitoring Disk Space
	Disk Space Overview
	Symptoms of Insufficient Disk Space
	Monitoring Disk Space
	Monitoring the Message Store
	Monitoring Message Store Partitions

	57 Protecting Mailboxes from Deletion or Renaming
	58 Reducing Message Store Size Due to Duplicate Storage
	Relinker Overview
	Using relinker in the Command Line Mode

	Using Relinker in the Realtime Mode
	Configuring Relinker

	59 Specifying Administrator Access to the Message Store
	Overview of Message Store Administrators
	Adding an Administrator Entry
	Modifying or Deleting an Administrator Entry

	60 Constructing Valid Message Store UIDs and Folder Names
	Message Store User ID
	Message Store Mailbox Name for Commands
	Valid UIDs

	61 Message Store Automatic Failover with Database Replication
	Overview of Message Store Database Replication
	Configuration Options
	Configuration Options
	Command-line Utilities

	Configuring Message Store Database Replication
	To Configure a Three Node Cluster for HA
	To Change the DB Replication Local Instance Port

	Message Store Automatic Failover
	Basic Requirements
	Overview of Message Store Automatic Failover
	Configuring Message Store Automatic Failover
	To Configure the LMTP Server
	To Configure the Client

	62 Administering Message Store Database Snapshots (Backups)
	To Specify Message Store Database Snapshot Interval and Location
	Message Store Database Snapshot Recovery and Verification
	Message Store Database Snapshot Rolling Backup
	Message Store Database Recovery

	63 Classic Messaging Server and Tiered Storage Overview
	Overview of Messaging Server Storage
	Message Store and ZFS
	How the Message Store Works
	Messaging Server Disk Throughput
	Messaging Server Disk Capacity
	Disk Sizing for MTA Message Queues
	MTA Message Queue Performance
	MTA Message Queue Availability
	MTA Message Queue Available Disk Sizing

	Performance Considerations for a Message Store Architecture
	Messaging Server Directories (General Recommendations for Storage)
	MTA Queue Directory
	Messaging Server Log Directory
	Mailbox Database Files
	Message Store Index Files
	Message Files
	Mailbox List Database Temporary Directory

	Multiple Store Partitions
	Setting Disk Stripe Width
	MTA Performance Considerations
	MTA and RAID Trade-offs

	Background: Communication Services Logical Architectures Overview
	Two-tiered Logical Architecture
	Benefits of a Two-tiered Architecture
	Horizontal Scalability Strategy
	Scaling Front-end and Back-end Services
	Implementing Local Message Transfer Protocol (LMTP) for Messaging Server

	Background: "How Email Works" Introduction to Messaging Server
	What Does Messaging Server Enable Users to Do?
	A User Decides to Send an Email
	User Receives an Email
	User Access Mailbox

	64 Message Store Command Reference
	configutil
	Notes on the configutil Utility

	counterutil
	deliver
	hashdir
	imcheck
	imdbverify
	imexpire
	iminitquota
	immonitor-access
	impurge
	imquotacheck
	imsasm
	imsbackup
	imsconnutil
	imscripter
	imsexport
	imsimport
	imsrestore
	mboxutil
	mkbackupdir
	msprobe
	msuserpurge
	readership
	reconstruct
	rehostuser
	relinker
	stored

	Part V Managing the Cassandra Message Store
	65 Overview of Cassandra Message Store
	About the Cassandra Message Store
	Differences in Cassandra Message Store and Classic Message Store
	Scaling Your Cassandra Message Store Deployment Horizontally
	Adding an Access-Tier Node (IMAP/LMTP Server/enpd)

	Managing Your Cassandra Message Store Availability
	Removing an Access-Tier Node (IMAP/LMTP Server/enpd)

	66 About Elasticsearch
	Elasticsearch Indexing and Search
	Enabling Elasticsearch
	Differences Between Elasticsearch and Brute-Force IMAP Searching
	Wildcard Search
	Special Characters and Searching
	Words Not Indexed by Elasticsearch

