
Oracle® Communications Messaging
Server
Security Guide

8.1
F15149-03
January 2025

Oracle Communications Messaging Server Security Guide, 8.1

F15149-03

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Diversity and Inclusion x

1 Messaging Server Security Overview

Basic Security Considerations 1-1

Understanding the Messaging Server Environment 1-1

Overview of Messaging Server Security 1-2

Understanding Security Misconceptions 1-2

Other Security Resources 1-3

Recommended Deployment Topologies 1-3

Securing Your Firewall/DMZ Architecture 1-3

Using a Firewall to Allow Connections 1-4

Planning Secure High Availability and Load Balancing for Your Deployment 1-4

Operating System Security 1-4

Minimizing Operating System Security Risks 1-4

Firewall Port Configuration 1-5

Secure Communications 1-6

LDAP Security 1-6

2 Planning Messaging Server Security

Protecting Messaging Components in Your Deployment 2-1

Protecting MTAs 2-1

Integrating Third-Party Anti-spam and Anti-virus Software 2-2

Monitoring Your Security 2-2

Access Controls 2-2

Preventing Relaying From Outside Hosts 2-4

Conversion Channels and Third Party Filtering Tools 2-5

RBL Checking 2-6

Client Access Filters 2-6

Protecting the Message Store 2-7

iii

Protecting MMPs 2-7

Planning Messaging User Authentication 2-8

Plain Text and Encrypted Password Login 2-8

Authentication with Simple Authentication and Security Layer (SASL) 2-8

Enabling Authenticated SMTP 2-9

Certificate-based Authentication with Secure Sockets Layer (SSL) 2-10

Client-based Authentication with Secure Sockets Layer (SSL) 2-10

Third-Party Authentication Server Support 2-11

Messaging Mutiplexor (MMP) Support 2-11

IMAP/POP/SMTP Support 2-12

Sample Code 2-12

Planning Message Encryption Strategies 2-12

Encryption with SSL 2-13

SSL Ciphers 2-13

Signed and Encrypted S/MIME 2-14

Planning a Messaging Server Anti-spam and Anti-virus Strategy 2-14

Anti-spam and Anti-virus Tools Overview 2-14

Milter 2-15

Access Control 2-15

Mailbox Filtering 2-16

Address Verification 2-16

Real-time Blackhole List 2-16

Relay Blocking 2-16

Authentication Services 2-17

Sidelining Messages 2-17

Comprehensive Tracing 2-17

Conversion Channel 2-17

MeterMaid 2-18

memcached 2-18

Anti-spam and Anti-virus Considerations 2-18

Architecture Issues with Anti-spam and Anti-virus Deployments 2-18

Security Issues with Anti-spam and Anti-virus Deployments 2-19

Implementing an RBL 2-20

Developing an Anti-spam and Anti-virus Site Policy 2-20

3 Performing a Secure Messaging Server Installation

Installing Infrastructure Components Securely 3-1

Credentials Needed to Install Messaging Server Components 3-2

Post-Installation Configuration 3-2

iv

4 Implementing Messaging Server Security

Security Features 4-1

Messaging Server Security Strategy for your Deployment 4-1

Creating a Security Strategy 4-1

Identifying Password Policy Requirements 4-4

Verifying File Ownership for Configuration Files 4-4

Securely Monitoring and Auditing Your Messaging Server Deployment 4-5

Tracking Security Patches 4-5

Identifying Legal-intercept Requirements 4-5

Securing Your Archiving Needs 4-6

Disabling Users in Response to Abuse/Appeal Process 4-6

Utilizing a Disk Consumption Growth Plan 4-6

Preventing Unrelated Usage of Messaging Server Hosts and Virtual Machines 4-6

Determining Security Capabilities of Your Supported Mail Clients 4-6

MTA Security Guidelines 4-7

About Messaging Server Anti-spam and Anti-virus Solutions 4-7

Creating a Narrow Scope of MTA Relay Blocking in INTERNAL_IP Mapping Table 4-8

Using LMTP to Connect to Inbound MTAs and in Multi-tier Deployments 4-8

Greylisting 4-8

Forbidding Emailing Executable Code 4-8

Using and Configuring MeterMaid for Access Control 4-8

Using and Configuring memcache for Access Control 4-9

Setting MTA Recipient Limits 4-9

Using Sieve Securely 4-9

Using the MTA to Fix Messages from Bad Clients 4-9

Configuring Secure ETRN Command Support 4-9

Storing BadGuy Details in Memcached Server 4-10

Installing Memcached Server 4-10

Configuring Bad Guys for Memcached Server 4-10

Clearing Memcached Server Data 4-11

ENS Security Guidelines 4-11

Message Store Security Guidelines 4-12

Securing Your Backup System 4-12

Options for Securing Messaging Server 4-12

Being Aware of IMAP ACLs 4-13

Disabling IMAP Shared Folders if Not Needed 4-13

MMP Security Guidelines 4-13

User Authentication Guidelines 4-13

Acquiring SSL Server Certificates for the Server Domains 4-13

Requiring SMTP Authentication for Mail Submission 4-14

Message Encryption Guidelines 4-14

v

Determining SSL Cipher Suites 4-14

Using Solaris Crypto Framework in Place of NSS Default Software Token 4-14

Security Considerations for Developers 4-14

5 Using Role-Based Access Control

Overview of Role-Based Access Control 5-1

Theory of Operations 5-1

Setting Up and Using RBAC for Solaris 5-2

Setting Up and Using RBAC for Linux 5-3

Configuring Non-Root Users with Messaging Server 5-3

Messaging Server Privileges and Executable Files 5-4

Reference Information 5-5

6 Protecting Against Email Spammers

Overview of Email Spammers and Compromised User Accounts 6-1

Preventing Outbound Spam: Proactive Methods 6-1

Preventing Outbound Spam: Reactive Measures 6-2

Blocking Submissions of Local Senders Who Might Be Spammers 6-2

Rate Limiting All Outgoing Email 6-2

Rate Limiting Submission Based on the Authenticated Sender 6-2

Rate Limiting Only Outgoing Spam 6-2

Reject/Discard All Outbound Spam 6-4

Setting Up a No Phishing Zone 6-4

Recovering From Phishing Attacks That Have Compromised User Accounts 6-5

Greylisting Webmail 6-6

Installing and Configuring Greylisting for Webmail 6-6

Troubleshooting Your Greylisting Deployment 6-7

HTML Filtering in Convergence 6-8

Enabling HTML Filtering in Convergence 6-8

Enabling Messaging Server to Accept mshttpd Client Requests 6-8

Domain Keys Identified Mail (DKIM) 6-8

7 Security and Access Control in Messaging Server

About Server Security 7-1

About HTTP Security 7-2

Configuring Authentication Mechanisms in Messaging Server 7-2

Overview 7-2

To Configure Access to Plaintext Passwords 7-3

To Configure Directory Server to Store Cleartext Passwords 7-3

vi

To Configure Messaging Server for Cleartext Passwords 7-4

Transitioning Users 7-4

To Transition Users 7-4

Configuring Client Access to POP, IMAP, and HTTP Services 7-5

How Client Access Filters Work 7-5

Filter Syntax 7-6

Wildcard Names 7-7

Wildcard Patterns 7-8

Server-Host Specification 7-9

Filter Examples 7-9

Mostly Denying 7-9

Mostly Allowing 7-9

Denying Access to Spoofed Domains 7-10

Controlling Access to Virtual Domains 7-10

Controlling IMAP Access While Permitting Access to Webmail 7-10

To Create Access Filters for Services 7-10

To Create Filters by Using the Command Line 7-10

Configuring Encryption and Certificate-Based Authentication 7-11

Encryption and Certificate-Based Authentication Overview 7-11

Obtaining Certificates 7-12

To Manage Internal and External Modules 7-12

Creating a Password File 7-13

Obtaining and Managing Certificates 7-13

Implementing Secure Connections Using Two Different Certificate Authorities (CAs) 7-14

To Enable SSL and Selecting Ciphers 7-14

About Ciphers 7-14

Specify SSL Certificate 7-15

Configuring Individual Messaging Processes for SSL 7-16

To Configure MMP for SSL 7-16

To Configure IMAP for SSL 7-16

To Configure POP for SSL 7-16

To Configure HTTP for SSL 7-16

To Configure SMTP for SSL 7-17

To Verify the SSL Configuration 7-17

Configuring Indexed Search Converter for SSL 7-17

Configuring ISC for SSL Using a Self-Signed Certificate 7-17

Configuring ISC for SSL Using a CA-Signed Certificate 7-18

Setting Up Certificate-Based Login 7-19

To Set Up Certificate-Based Login 7-19

User/Group Directory Lookups Over SSL 7-20

vii

8 Certificate-Based Authentication for Messaging Server

Introduction: SSL/TLS, Client Certificates and CRLs 8-1

Authentication Technology Overview 8-1

SSL/TLS Overview 8-1

Certificate Authentication Overview 8-2

Certificate and Key Storage Overview 8-2

SSL/TLS/Certificate Standards Overview 8-2

SSL/TLS Tools Available in Messaging Server Installer 8-4

Utilities Used to Manage Certificates 8-4

Certificate and Key Storage 8-4

Modifying the Certificate Format 8-4

Checking the NSS version 8-5

SSL/TLS Configuration 8-5

SSL-Related Settings 8-5

Dispatcher SSL-Related Settings 8-7

Messaging Transfer Agent (MTA) SSL-Related Channel Options 8-7

SMTP Channel Options 8-7

MMP SSL-Related Settings 8-8

certmap.conf Settings 8-10

SSL/TLS Tasks 8-10

How to Create and Install a Self-signed CA Certificate and Key 8-10

How to Create and Install a CA-signed Server Certificate and Key 8-11

How to Create a CA-signed Client Certificate and Key 8-11

How to Test a CA-signed Client Certificate and Key 8-11

How to Create and Install a CRL for a Client Certificate 8-11

How to Test a CRL for a Client Certificate 8-11

How to Look Up Numeric SSL/TLS Error Codes 8-12

Sample Protocol Sessions with Client Certificate Authentication 8-12

IMAP (STARTTLS) default port 143 8-12

Submission (STARTTLS) Default port 587 8-13

POP (STLS) default port 110 8-15

IMAPS typical port 993 8-15

Submissions typical port 465 8-16

POPS typical port 995 8-17

SSL/TLS Best Practices 8-17

Client Certificate SSL/TLS Best Practices 8-18

Messaging Server and SSL/TLS: Known Limitations 8-18

Administrative Proxy with a Certificate 8-18

Proxy IMAP Authentication Limitations 8-18

Proxy MMP (IMAP/POP/SMTP-Submission) Authentication Limitations 8-18

Internal Protocols Lacking Support for SSL and/or Authentication 8-18

viii

Disabling Passwords-Over-SSL 8-19

Hosting Multiple Domains with SSL 8-19

CRL Updates and OCSP 8-19

Time Delay for Updates to CRLs or New Certificates 8-19

References 8-19

9 Configuring Messaging Server and Solaris Cryptographic Framework

About the Solaris Cryptographic Framework 9-1

Configuring Messaging Server for SSL 9-1

About the pk12util Command 9-1

Creating the Certificate Database and Add Certificate/Key Pairs 9-2

Obtaining a Certificate 9-2

Adding Certificates to the NSS Software Token 9-4

Listing the Default NSS Certificates 9-4

Configuring Individual Messaging Processes for SSL 9-4

Configuring MMP for SSL 9-4

Configuring IMAP for SSL 9-5

Configuring POP for SSL 9-5

Configuring HTTP for SSL 9-6

Configuring SMTP for SSL 9-6

Verifying the SSL Configuration 9-6

Configuring the Solaris Cryptographic Framework (SCF) 9-7

Setting Up the SCF Software Token Pin 9-7

Administering the Cryptographic Framework by Using cryptoadm 9-8

Configuring the SCF Provider 9-9

Adding the Solaris Cryptographic Framework as a Service Provider 9-10

Enabling the Slot Named Sun Metaslot 9-10

Exporting the Certificate/Key Pairs From the NSS Soft Token 9-11

Importing the Key/Certificate Pairs to the Sun Metaslot (SCF) 9-12

Verifying the Successful Importation of the Certificate/Key Pairs 9-12

Configuring Messaging Server to Use the External Token 9-13

Configuring Messaging Server Processes to Use the External Token 9-13

Starting and Debuging Messaging Server Services 9-14

ix

Preface

This guide provides guidelines and recommendations for setting up Oracle Communications
Messaging Server in a secure configuration.

Audience
This document is intended for system administrators or software technicians who work with
Messaging Server. This guide assumes you are familiar with the following topics:

• Messaging protocols, such as IMAP and SMTP

• Oracle Directory Server Enterprise Edition and LDAP

• System administration and networking

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Messaging Server Security Overview

This chapter provides an overview of Oracle Communications Messaging Server security.

Basic Security Considerations
The following principles are fundamental to using any application securely:

1. Keep software up to date. This includes the latest product release and any patches that
apply to it.

2. Limit privileges as much as possible. Users should only be given the necessary access
to perform their work. User privileges should be reviewed periodically to determine
relevance to current work requirements.

3. Monitor system activity. Establish who should access which system components, how
often they should be accessed, and who should monitor those components.

4. Install software securely. For example, use firewalls, secure protocols (such as SSL),
and secure passwords. See "Performing a Secure Messaging Server Installation" for more
information.

5. Learn about and use Messaging Server security features. See "Implementing
Messaging Server Security" for more information.

6. Use secure development practices. This applies to customers adding plug-ins or custom
code to a Messaging Server deployment. For example, take advantage of existing security
functionality instead of creating your own application security.

7. Keep up to date on security information. Oracle regularly issues security-related patch
updates and security alerts. You must install all security patches as soon as possible. See
Critical Patch Updates and Security Alerts on the Oracle website at:

https://www.oracle.com/security-alerts/

Understanding the Messaging Server Environment
To better understand your security needs, ask yourself the following questions:

1. Which resources am I protecting? In a Messaging Server production environment,
consider which of the following resources you want to protect and what level of security
you must provide:

• Messaging Server front-end servers

• Messaging Server back-end servers

• Dependent resources

2. From whom am I protecting the resources? In general, resources must be protected
from everyone on the Internet. But should the Messaging Server deployment be protected
from employees on the intranet in your enterprise? Should your employees have access to
all resources within the environment? Should the system administrators have access to all
resources? Should the system administrators be able to access all data? You might
consider giving access to highly confidential data or strategic resources to only a few well

1-1

https://www.oracle.com/security-alerts/

trusted system administrators. On the other hand, perhaps it would be best to allow no
system administrators access to the data or resources.

3. What will happen if the protections on strategic resources fail? In some cases, a fault
in your security scheme is easily detected and considered nothing more than an
inconvenience. In other cases, a fault might cause great damage to companies or
individual clients that use Messaging Server. Understanding the security ramifications of
each resource helps you protect it properly.

Overview of Messaging Server Security
You manage security for a Messaging Server deployment by taking a defense in depth
approach. By individually securing the network, hardware platform, operating system, and
applications themselves, you make each layer of the architecture secure. Security includes
hardening each layer by closing unnecessary network ports and access mechanisms. You also
minimize the number of installed software packages so that only those packages required by
the system are available. Finally, you secure and insulate the layers from unintended access
within the network.

You can implement a Messaging Server proxy server to augment data security. A proxy server
placed on the firewall with the Messaging Server behind it prevents attacks on the information
on the Messaging Server.

Note:

To ensure a completely secure environment, the deployment needs a time server to
synchronize the internal clocks of the hosts being secured.

For more information on Messaging Server security, see "Creating a Security Strategy".

Understanding Security Misconceptions
This section describes common misconceptions that are counterproductive to the security
needs of your deployment.

• Hiding Product Names and Versions. At best, hiding product names and versions
hinders casual attackers. At worst, it gives a false sense of security that might cause your
administrators to become less diligent about tracking real security problems. In fact,
removing product information and version numbers makes it more difficult for the vendor
support organization to validate software problems because of their software or of other
software. Hackers have little reason to be selective, particularly if there is a known
vulnerability in SMTP servers, where they may attempt to access any SMTP server.

• Hiding names of Internal Machines. Hiding internal IP addresses and machine names
will make it more difficult to:

– Trace abuse or spam

– Diagnose mail system configuration errors

– Diagnose DNS configuration errors

A determined attacker will have no problem discovering the machine names and IP
addresses of machines once they find a way to compromise a network.

• Turning off EHLO on the SMTP Server. Without EHLO you also lose:

Chapter 1
Overview of Messaging Server Security

1-2

– NOTARY

– TLS negotiation

– Preemptive controls on message sizes

With EHLO, the remote SMTP client determines if you have a limit and stops trying to send
a message that exceeds the limit as soon as it sees this response. But, if must use HELO
(because EHLO is turned off), the sending SMTP server sends the entire message data,
then finds out that the message has been rejected because the message size exceeds the
limits. Consequently, you are left with wasted processing cycles and disk space.

• Network Address Translation. If you use NAT to provide a type of firewall, you do not
have an end-to-end connection between your systems. Instead, you have a third node
which stands in the middle. This NAT system acts as a middleman, causing a potential
security hole.

Other Security Resources
For more information on designing a secure Messaging Server deployment, review the
Computer Emergency Response Team (CERT) Coordination Center website:

https://www.sei.cmu.edu/about/divisions/cert/index.cfm

Recommended Deployment Topologies
You can deploy Messaging Server on a single host or on multiple hosts, splitting up the
components into multiple front-end Messaging Server hosts and multiple back-end hosts.

The general architectural recommendation is to use the well-known and generally accepted
Internet-Firewall-DMZ-Firewall-Intranet architecture. For more information on addressing
network infrastructure concerns, see the discussion about determining your network
infrastructure in Messaging Server Installation and Configuration Guide.

The following guidelines provide specific recommendations for Messaging Server:

• Securing Your Firewall/DMZ Architecture

• Using a Firewall to Allow Connections

• Planning Secure High Availability and Load Balancing for Your Deployment

Securing Your Firewall/DMZ Architecture
Secure your Messaging Server infrastructure by determining your Firewall/DMZ architecture.
The following topics cover securing your Messaging Server infrastructure:

• The planning of your network infrastructure layout in Messaging Server Installation and
Configuration Guide.

• The benefits of separating your network into two tiers: the public (user-facing) network, and
the private (data center) network in Messaging Server System Administrator's Guide.

• The use of MTAs to protect your Messaging Server deployment and to control the flow of
message traffic to and from your site in Messaging Server Installation and Configuration
Guide.

• Network Security

Chapter 1
Recommended Deployment Topologies

1-3

https://www.sei.cmu.edu/about/divisions/cert/index.cfm

• The two-tiered messaging architecture design that distributes hardware and software
resources optimally for Messaging Server in Messaging Server Installation and
Configuration Guide.

Note:

Your firewall/DMZ architecture solution might depend on your anti-spam solution and
client capabilities. How you handle firewall and DMZ architecture depends on
requirements for a geographically dispersed deployment and whether your
deployment is targeted at individual end users or enterprises.

Using a Firewall to Allow Connections
Because the Webmail server (mshttpd) supports both unencrypted and encrypted (SSL)
communication with mail clients, you might use a firewall between your Messaging Store and
your mail clients for added security.

Some guidelines to consider:

• If using a firewall, only allow Convergence server to connect to mshttpd (8990, 8991).

• If using a firewall (preferably whitelist-based for Messaging Servers), verify internal service
protocols are blocked (watcher 49994, job_controller 27442, ENS 7997, third-party
authentication server, msadmind 7633, LMTP, Metermaid, and JMS).

Planning Secure High Availability and Load Balancing for Your Deployment
The following topics describe how to set up a secure high availability and load balancing
Messaging Server deployment:

• Designing for service availability in Messaging Server Installation and Configuration Guide.

• Configuring Messaging Server for high availability in Messaging Server Installation and
Configuration Guide.

• Availability planning for Cassandra message store in Messaging Server Installation and
Configuration Guide for Cassandra Message Store

Operating System Security
This section lists Messaging Server-specific OS security configurations. This section applies to
all supported OSs.

Minimizing Operating System Security Risks
In particular, pay attention to:

• OS hardening, turning off unused OS services (especially in Linux)

• OS minimization, using minimal OS packages

Chapter 1
Operating System Security

1-4

Firewall Port Configuration
Messaging Server communicates with various components on specific ports. Depending on
your deployment and use of a firewall, you might need to ensure that the firewalls are
configured to manage traffic for each component.

Table 1-1 shows the default port numbers for various components.

Table 1-1 Port Configuration

Component Default Port Number

SMTP 25

POP3 or MMP POP3 Proxy 110

IMAP4 or MMP IMAP Proxy 143

LMTP 225

LDAP 389

SMTP SUBMIT 587

Event Notification Service (ENS) 7997

MSHTTPD 8990

Job Controller 27442

Watcher 49994

SMTP/SUBMIT over SSL 465

Event Notification Service (ENS) over SSL 8997

LDAP over SSL 636

IMAP over SSL or MMP IMAP Proxy over SSL 993

POP3 over SSL or MMP POP Proxy over SSL 995

MSHTTPD over SSL 8991

managesieve 4190

MTQP 1038

You might need to specify a port number other than the default if you have, for example, two or
more IMAP server instances on a single host machine, or if you are using the same host
machine as both an IMAP server and a Messaging Multiplexor server. For more information
about the Multiplexor, see the discussion about the Messaging Multiplexor (MMP) for standard
mail protocols in Messaging Server System Administrator's Guide.

Keep the following in mind when you specify a port:

• Port numbers can be any number from 1 to 65535.

• Make sure the port you choose is not already in use or reserved for another service.

Close all unused ports, especially non-SSL ports. Opt for SSL-enabled ports, instead of non-
SSL ports, for all communications (for example: HTTPS, IIOPS, t3s).

For more information about securing your OS, see your OS documentation.

Chapter 1
Operating System Security

1-5

Secure Communications
Secure connections between applications connected over the Internet can be obtained by
using protocols such as Secure Sockets Layer (SSL) or Transport Layer Security (TLS). SSL is
often used to refer to either of these protocols or a combination of the two (SSL/TLS).
Messaging Server recommends the use of only TLS. However, throughout this guide, secure
communications may be referred to by the generic term SSL.

In a Messaging Server deployment, you can enable the use of TLS between most
components. See "Implementing Messaging Server Security" for more information.

LDAP Security
To enhance client security in communicating with Directory Server, use a strong password
policy for user authentication. For more information on securing Directory Server, see the
discussion about Directory Server security in Oracle Directory Server Enterprise Edition
Administration Guide.

Chapter 1
Secure Communications

1-6

2
Planning Messaging Server Security

This chapter describes how to plan for and protect the various components of your Oracle
Communications Messaging Server deployment.

Protecting Messaging Components in Your Deployment
This section describes how to secure components in your Messaging deployment.

Note:

With each component, you should use the chroot function to limit the number of
available commands on each machine. However, because Virtual Machines (VMs)
generally provide better security isolation, use VMs instead of chroot when possible.

Protecting MTAs
Secure MTAs to protect processing resources and server availability. When messages are
relayed from unauthorized users or large quantities of spam are delivered, response time is
reduced, disk space is used up, and processing resources (which are reserved for end users)
are consumed. Not only does spam waste server resources, it is also a nuisance for your end
users.

Note:

Not only must you protect your deployment from external unauthorized users, but you
might also have to protect your system from internal users as well.

Table 2-1 describes the most common threats to MTAs.

Table 2-1 Common MTA Security Threats

Threat Description

UBE (Unsolicited Bulk Email) or
spam

Refers to the practice of sending electronic junk mail to millions of users.

Unauthorized relaying Uses another company's SMTP server to relay your email. Spammers often use this
technique to cover their tracks. End-users might send complaints back to the sending
relay, not to the spammer.

Mail bombs Characterized by abusers who repeatedly send an identical message to a particular
address. The goal is to exceed mailbox quotas with the message.

Email spoofing Creates email that appears to have originated from one source when it was actually
sent from another source.

2-1

Table 2-1 (Cont.) Common MTA Security Threats

Threat Description

Denial of service attacks Prevents legitimate users of a service from using that service. For example, an
attacker attempts to flood a network, thereby preventing legitimate network traffic.

This section on MTA relays describes the following security options you can use in your
deployment:

• Integrating Third-Party Anti-spam and Anti-virus Software

• Monitoring Your Security

• Access Controls

• Preventing Relaying From Outside Hosts

• Conversion Channels and Third Party Filtering Tools

• RBL Checking

• Client Access Filters

Integrating Third-Party Anti-spam and Anti-virus Software
Any MTA on the Internet needs anti-spam and anti-virus (AVAS) software (for both outbound
and inbound traffic). The recommended mechanism to integrate AVAS software with the
Messaging Server MTA is by using the milter plug-in. See "Milter" for more information.

Monitoring Your Security
Monitoring your server is an important part of your security strategy. To identify attacks on your
system, you should monitor message queue size, CPU utilization, disk availability, and network
utilization. Unusual growth in the message queue size or reduced server response time may
identify some of these attacks on MTA relays. Also, investigate unusual system load patterns
and unusual connections. Review logs on a daily basis for any unusual activity.

Access Controls
You can use access controls to reject messages from (or to) certain users at a system level. In
addition, you can institute more complex restrictions of message traffic between certain users.
Also, you might allow users to set up filters on their own incoming messages (including
rejecting messages based on contents of the message headers).

If you want to control access with envelope-level controls, use mapping tables to filter mail. If
you want to control access with header-based controls, or if users want to implement their own
personalized controls, use the more general mailbox filters approach with server-side rules.

Mapping Table Overview

You can control access to your mail services by configuring certain mapping tables. Many
components of the MTA employ table lookup-oriented information. This type of table is used to
transform, that is, map, an input string into an output string. Mapping tables are usually
presented as two columns. The first (left-hand) column provides possible input strings against
which to match (pattern), and the second (right-hand) column gives the resulting output string
for which the input string is mapped (template).

Chapter 2
Protecting Messaging Components in Your Deployment

2-2

Table 2-2 describes these mapping tables, which enable you to control who can or cannot send
mail, receive mail, or both. See Messaging Server System Administrator's Guide for more
information.

Table 2-2 Access Control Mapping Tables

Mapping Table Description

SEND_ACCESS Used to block incoming connections based on envelope From: address, envelope
To: address, source and destination channels. The To: address is checked after
rewriting, alias expansion, and so on have been performed.

ORIG_SEND_ACCESS Used to block incoming connections based on envelope From: address, envelope
To: address, source and destination channels. The To: address is checked after
rewriting but before alias expansion.

MAIL_ACCESS Used to block incoming connections based on combined information found in
SEND_ACCESS and PORT_ACCESS tables: that is, the channel and address
information found in SEND_ACCESS combined with the IP address and port number
information found in PORT_ACCESS.

ORIG_MAIL_ACCESS Used to block incoming connections based on combined information found in
ORIG_SEND_ACCESS and PORT_ACCESS tables: that is, the channel and
address information found in ORIG_SEND_ACCESS combined with the IP address
and port number information found in PORT_ACCESS.

FROM_ACCESS Used to filter mail based on envelope From: addresses. Use this table if the To:
address is irrelevant.

PORT_ACCESS Used to block incoming connections based on IP number.

Figure 2-1 illustrates where mapping tables are activated in the mail acceptance process.

Figure 2-1 Mapping Tables and the Mail Acceptance Process

For all the network ports controlled by the MTA service dispatcher, a PORT_ACCESS rejection
response, if warranted, takes place at the initial connection from a remote host. A
FROM_ACCESS rejection occurs in response to the MAIL FROM: command, before the
sending side can send the recipient information or the message data. A SEND_ACCESS or
MAIL_ACCESS rejection occurs in response to a RCPT TO: command, before the sending

Chapter 2
Protecting Messaging Components in Your Deployment

2-3

side gets to send the message data. If an SMTP message is rejected, your Messaging Server
never accepts or sees the message data, thus minimizing the overhead of performing such
rejections. If multiple access control mapping tables exist, Messaging Server checks them all.

Note:

If the message is accepted, it can still be filtered by way of conversion channels and
user defined filters.

Configuring Anti-Relaying with Mapping Tables

You can also use access control mappings to prevent people from relaying SMTP mail through
your Messaging Server system. For example, someone might try to use your mail system to
relay junk mail to thousands of mailboxes on your system or on other systems.

By default, Messaging Server prevents all SMTP relaying activity, including relaying by local
POP and IMAP mail clients. If clients do not authenticate by using SMTP AUTH, as described
in Enabling Authenticated SMTP and attempt to submit messages to external addresses
through Messaging Server's SMTP server, their submission attempts are rejected. Thus, you
will likely want to modify your configuration so that it recognizes your own internal systems and
subnets from which relaying should always be accepted.

Preventing Relaying From Outside Hosts
By default, the MTA initial configuration prevents relaying from outside hosts. If you change
this, and later want to return to preventing hosts that reside outside your domain from relaying
to other hosts outside your domain, use the following procedure.

1. Split incoming mail into different channels. For example:

• IP addresses within your domain go to the tcp_intranet channel.

• Authenticated sessions go to the tcp_auth channel.

• All other mail is sent to the tcp_local channel.

2. Recognize and allow mail from your POP and IMAP clients by using an INTERNAL_IP
mapping table, as explained in the discussion about filtering mail based on its source or
header strings in Messaging Server System Administrator's Guide.

Using Mailbox Filters

A filter consists of one or more conditional actions to apply to a message. Messaging Server
filters are stored on the server and evaluated by the server. They are sometimes called server-
side rules (SSR).

You can create channel-level filters and MTA-wide filters to prevent the delivery of unwanted
mail. The server applies filters in the following priority. See Messaging Server System
Administrator's Guide for more information.

1. Per-user filters apply to messages destined for a particular user's mailbox. The filters
reject unwanted messages, redirect mail, filter messages into mailbox folders, and so on.
End users create these filters by using a client that supports the use of mail filters, such as
Convergence.

If a personal mailbox filter explicitly accepts or rejects a message, then filter processing for
that message finishes. A filter template generalizes a Sieve script by replacing hard-coded
elements of the Sieve script with prompts and input fields. A Java servlet is used to parse

Chapter 2
Protecting Messaging Components in Your Deployment

2-4

the Sieve templates and generate the user interface in the browser. When an end user
supplies values in the input fields, the servlet takes those values and saves them in a
Sieve script in the user's directory profile entry. The prompts and input fields are presented
to the end user through the client interface. If the recipient user had no mailbox filter, or if
the user's mailbox filter did not explicitly apply to the message in question, Messaging
Server next applies the channel-level filter.

2. Channel-level filters apply to each message enqueued to a channel. A typical use for this
type of filter is to block messages going through a specific channel. To create a channel-
level filter, you must write the filter using Sieve. For specific instructions on creating filters
with Sieve, see the discussion about filtering mail based on its source or header strings in
Messaging Server System Administrator's Guide. If the channel-level filter explicitly
accepts or rejects a message, then filter processing for that message finishes. Otherwise,
Messaging Server next applies the MTA-wide filter, if one exists.

3. MTA-wide filters apply to all messages enqueued to the MTA. You can configure anti-
spam software to return a spam score (typically in the header). The MTA-wide filter can
then determine the default score that results in rejection of a message or routing of a
message to a Spam folder. To create an MTA-wide filter, you must write the filter using
Sieve. For specific instructions on creating filters with Sieve, see the discussion about
filtering mail based on its source or header strings in Messaging Server System
Administrator's Guide. By default, each user has no mailbox filter. When a user accesses
the Convergence interface to create one or more filters, then their filters are stored in the
LDAP Directory.

Conversion Channels and Third Party Filtering Tools
The conversion channel performs body-part-by-body-part conversions on messages through
the MTA. This processing can be done by any site-supplied programs or command procedures.
The conversion channel can do such things as convert text or images from one format to
another, scan for viruses, translate languages, and so forth. Various message types of the MTA
traffic are selected for conversion, and specific processes and programs can be specified for
each type of message body part. If you are looking to use the conversion channel with a virus
scanning program, you can either disinfect, hold, or reject messages. A special conversion
channel configuration is consulted to choose an appropriate conversion for each body part. For
more information, see the discussion about using predefined channel definitions in the MTA in
Messaging Server System Administrator's Guide.

Note:

Using specialized processing like a conversion channel puts additional load on your
system. Be sure to account for it when you plan your sizing strategy.

With the conversion channel, you can use third-party anti-spam and anti-virus software
solutions. You can also use the MTA API to create a channel to invoke a remote scanning
engine. For more information on the MTA API, see Messaging Server MTA Developer's
Reference.

In general, it is best that these third-party solutions are shielded from external sites and are
only used on back-end or intermediate relays.

For more information, see the discussion about integrating and configuring spam and virus
filtering software in Messaging Server System Administrator's Guide.

Chapter 2
Protecting Messaging Components in Your Deployment

2-5

RBL Checking
The Mail Abuse Protection System's Real-time Blackhole List (MAPS RBL) is a list of hosts
and networks that are known to be friendly or neutral to abusers who use these hosts and
networks to either originate or relay spam, or to provide spam support services.

You can configure your MTAs to compare incoming connections against the MAPS RBL. You
can also use DNS-based databases used to determine incoming SMTP connections that might
send unsolicited bulk mail.

For more information, see the discussion about filtering mail based on its source or header
strings in Messaging Server System Administrator's Guide.

Client Access Filters
Messaging Server supports sophisticated access control on a service-by-service basis for
POP, IMAP, and HTTP. The Messaging Server access-control facility is a program that listens
at the same port as the TCP daemon it serves. The access-control facility uses access filters to
verify client identity and it gives the client access to the daemon if the client passes the filtering
process.

If you are managing messaging services for a large enterprise or for a service provider, these
capabilities can help you to exclude spammers and DNS spoofers from your system and
improve the general security of your network.

As part of its processing, the Messaging Server TCP client access-control system performs
(when necessary) the following analyses of the socket end-point addresses:

• Reverse DNS lookups of both end points (to perform name-based access control)

• Forward DNS lookups of both end points (to detect DNS spoofing)

The system compares this information against access-control statements called filters to
decide whether to grant or deny access. For each service, separate sets of Allow filters and
Deny filters control access. Allow filters explicitly grant access. Deny filters explicitly forbid
access.

When a client requests access to a service, the access-control system compares the client's
address or name information to each of that service's filters by using these criteria:

1. The search stops at the first match. Because Allow filters are processed before Deny
filters, Allow filters take precedence.

2. Access is granted if the client information matches an Allow filter for that service.

3. Access is denied if the client information matches a Deny filter for that service.

4. If no match with any Allow or Deny filter occurs, access is granted. The exception is the
case where there are Allow filters but no Deny filters, in which case lack of a match means
that access is denied.

The filter syntax described here is flexible enough that you should be able to implement many
different kinds of access-control policies in a simple and straightforward manner. You can use
both Allow filters and Deny filters in any combination, even though you can probably implement
most policies by using almost exclusively Allows or almost exclusively Denies.

Client access filters are particularly helpful if troublesome domains are a known quantity. While
UBE filters must store and process every spam message, client access filters free Messaging
Server from having to process any spammed messages. Because client access filters block
mail from entire domains, use this feature with caution.

Chapter 2
Protecting Messaging Components in Your Deployment

2-6

Note the following limitations to client access filters:

• An SMTP client is required to log in before relaying a message.

• Client access filters do not scale well for large deployments.

For more information on client access filters, see "Planning Messaging Server Security".

Protecting the Message Store
The most important data in a messaging server is the user's mail in the Message Store. The
mail messages are stored as individual files, which are not encrypted. Consequently, access to
the Message Store must be protected.

To secure the Message Store, restrict access to the machine where the store is installed. For
information on passwords, see "Planning Messaging User Authentication".

Not only should you create password authentication to the store machine, you might also use
tools like VPN access, ssh, or RBAC, which list valid users that are allowed to login to the
machine.

In addition, a two-tiered architecture is recommended over a one-tiered architecture. Because
the Message Store performs the most disk intensive work of any components in a messaging
system, do not have filtering, virus scanning, and other disk-intensive security processes on
the same machine. In a two-tiered architecture, you do not have to run UBE filters, anti-relay,
and client access filters on the same machine as the Message Store, which can add load to
your system. Instead, the MTAs handle that processing. In addition, user access to the store is
limited through an MMP in a two-tiered deployment, potentially adding an extra security layer
to the Message Store.

If you deploy a one-tiered architecture, be sure to account for the additional security
processing and load (like SSL and virus scanning) that you will need. For more information,
see the discussion about configuring Messaging Server to provide optimum performance,
scalability, and reliability in Messaging Server Installation and Configuration Guide.

For additional Message Store security processing, set disk quotas per user to limit disk usage.
Also, use administrator alarms if free space thresholds are fast approaching their limits. Like
the MTA, be sure to monitor the server state, disk space, and service response times. For
more information, see the discussion about managing the message store in Messaging Server
System Administrator's Guide.

Protecting MMPs
Because the MMP serves as a proxy for the Message Store, it needs to protect access to end
user data and guard against unauthorized access. User IDs and passwords provide basic
authentication capabilities. In addition, you can use client access filters to limit user login to
specific domains or IP address ranges.

Locate the MMP on a different machine (or under a different userID) in front of your POP or
IMAP services. You can have front-end machines with just MMP and MTAs, and then have a
physically secure network between those front-end machines, the mail stores, and the LDAP
servers.

Special security considerations must be given to Convergence access to the message store
when your users are logging in from the Internet. In general, you want to ensure that the stores
are separated from the outside world by a firewall. Like the MMP, the Webmail Server supports
both unencrypted and encrypted (SSL) communication with mail clients.

Regular monitoring of log files can protect against unauthorized access.

Chapter 2
Protecting Messaging Components in Your Deployment

2-7

Planning Messaging User Authentication
User authentication enables your users to log in through their mail clients to retrieve their mail
messages. Methods for user authentication include:

• Plain Text and Encrypted Password Login

• Authentication with Simple Authentication and Security Layer (SASL)

• Enabling Authenticated SMTP

• Certificate-based Authentication with Secure Sockets Layer (SSL)

• Client-based Authentication with Secure Sockets Layer (SSL)

Plain Text and Encrypted Password Login
User IDs and passwords are stored in your LDAP directory. Password security criteria, such as
minimum length, are determined by directory policy requirements. Password security criteria is
not part of Messaging Server administration. Refer to the latest Directory Server
documentation to understand directory server password policies:

https://docs.oracle.com/cd/E19656-01/index.html
An administrator can set a messaging configuration option to determine if plain passwords are
allowed or if SSL must be used when transmitting passwords to the server. For more
information, see the service.xxx.plaintextminciper (where xxx is HTTP, POP, or IMAP)
option in Messaging Server Reference. The RestrictPlainPasswords option provides the
equivalent function for the MMP.

Both plain text and encrypted password login can be used with POP and IMAP user access
protocols.

Authentication with Simple Authentication and Security Layer (SASL)
SASL (RFC 2222) provides additional authentication mechanisms for POP, IMAP, and SMTP
user access protocols. Table 2-3 describes the Messaging Server SASL support for the user
access protocols.

Table 2-3 SASL Authentication User Access Protocols Support Matrix

Protocol Plain Login CRAM-MD5 Certificate APOP

SMTP AUTH Yes Yes Deprecated Yes No

POP Yes No Deprecated Yes Deprecated

IMAP Yes No Deprecated Yes No

HTTP Yes No No Yes No

Chapter 2
Planning Messaging User Authentication

2-8

https://docs.oracle.com/cd/E19656-01/index.html

Note:

• When using CRAM-MD5, passwords must be stored in plain text format in the
LDAP directory server.

• To use APOP, CRAM-MD5, or DIGEST-MD5, passwords must be stored in plain
text format in the LDAP directory server.

If you use SASL, user name and passwords are not encrypted unless SSL is used for the
session. (For more information on SSL, see "Encryption with SSL".) The SASL mechanisms,
PLAIN and LOGIN, encode authentication information, but can be easily decoded if captured.
Despite this limitation, SASL is useful because it can be combined with SMTP AUTH
(described in "Enabling Authenticated SMTP") to allow only authenticated users to relay mail
through your system. For example, legitimate users can authenticate to the SMTP server, and
the SMTP server can then be configured to switch to a different channel. In this way, the
message from an authenticated session can come from a different TCP channel than a user
that did not authenticate. A message from a user in your internal network can also be switched
to differentiate it from a message coming from other sources just based on the IP address of
the incoming connection.

For more information on SASL, see "Security and Access Control in Messaging Server".

Enabling Authenticated SMTP
By default, the standard SMTP port (25) is for mail transfer only. Mail relay for submissions
from external networks is disabled and authentication is disabled. By default, the standard
SMTP submit port (587) is for mail submission and requires authenticated SMTP. As many mail
user agents still use port 25 for submission by default, it might be useful to enable SMTP
authentication on port 25 for those clients.

By default, users need not submit a password when they connect to the SMTP service of
Messaging Server to send a message. You can, however, enable password login to SMTP to
enable authenticated SMTP.

Authenticated SMTP (also referred to as SMTP AUTH) is an extension to the SMTP protocol.
Authenticated SMTP allows clients to authenticate to the server. The authentication
accompanies the message. The primary use of authenticated SMTP is to enable local users
who are not in their office to submit mail without creating an open relay that others could
abuse. The AUTH command is used by the client to authenticate to the server.

Authenticated SMTP provides security in sending messages with the SMTP protocol. To use
authenticated SMTP, you do not need to deploy a certificate-based infrastructure. (Certificate
authentication is described in "Certificate-based Authentication with Secure Sockets Layer
(SSL)".

With authenticated SMTP, the client can indicate an authentication mechanism to the server
and perform an authentication protocol exchange.

If you require SMTP AUTH for mail submission, turn on appropriate logging, so any mail abuse
can be traced.

For more information on authenticated SMTP, see the conceptual description of the Messaging
Server MTA in Messaging Server System Administrator's Guide.

Chapter 2
Planning Messaging User Authentication

2-9

Certificate-based Authentication with Secure Sockets Layer (SSL)
Messaging Server uses the SSL protocol for encrypted communications and for certificate-
based authentication of clients and servers. This section describes certificate-based SSL
authentication. For information on SSL Encryptions, see "Encryption with SSL".

SSL is based on the concepts of public-key cryptography. Although TLS (Transport Layer
Security) is functionally a superset of SSL, the names are used interchangeably.

At a high-level, a server which supports SSL needs to have a certificate, public key, private
key, and security databases. This helps assure message authentication, privacy, and integrity.

Table 2-4 describes the SSL authentication support with each client access protocol. This table
shows whether a secure session (STARTTLS) could be started up over an insecure channel
and whether a separate secure channel (SSL on Separate Port) is provided.

Table 2-4 SSL Authentication Support Matrix

Protocol STARTTLS SSL on Separate Port

SMTP (RFC 5321) Yes No

SMTP Submission (RFC 6409) Yes Yes

POP Yes Yes

IMAP Yes Yes

POP over MMP Yes Yes

IMAP over MMP Yes Yes

Webmail No Yes

The SMTP_SUBMIT, POP, and IMAP protocols provide a way for the client and server to start
communication without SSL, and then switch to it by using an equivalent STARTTLS
command. The SMTP_SUBMIT, POP, and IMAP servers can also be configured to use SSL on
an alternate port, for clients which do not implement STARTTLS.

In general, SSL requires server authentication (although SMTP relay is an exception to this
rule). To use SSL, you must obtain a server certificate for your Messaging Server. The
certificate identifies your server to clients and to other servers. Your server can also have any
number of certificates of trusted Certificate Authorities (CAs) that it uses for client
authentication.

Some protocols require use of the SASL EXTERNAL mechanism with the SSL client certificate
to move from un-authenticated to authenticated state.

For more information on SSL, see "Security and Access Control in Messaging Server".

Client-based Authentication with Secure Sockets Layer (SSL)
SSL can perform both client and server authentication. In general, client authentication with
SSL is only necessary in high-security sites. Client authentication is not necessarily automatic,
as the server needs to know how to convert the subject of the client certificate into a user
identity. To authenticate with SSL, the mail client establishes an SSL session with the server
and submits the user's certificate to the server. The server then evaluates if the submitted
certificate is genuine. If the certificate is validated, the user is considered authenticated.

Chapter 2
Planning Messaging User Authentication

2-10

Third-Party Authentication Server Support
This section contains the following topics:

• Messaging Mutiplexor (MMP) Support

• IMAP/POP/SMTP Support

• Sample Code

Messaging Server provides support for third-party authentication servers by supporting a
protocol designed to integrate third-party authentication services. This protocol is documented
in the file authserver.txt, which is installed as part of the Messaging Server in the examples/
tpauthsdk directory.

Support for third-party authentication servers addresses two primary problems:

• If your computing infrastructure does not store passwords in LDAP, Messaging Server can
be configured to query the authentication server you provide to verify passwords. This
circumvents the need to replicate passwords from the third-party authentication service to
the LDAP server used by Messaging Server for user information.

• If you want to use an authentication system that provides security or management
capabilities not possible with traditional password authentication (such as Kerberos),
Messaging Server can be configured to pass SASL mechanisms to the authentication
server you provide for processing. While Messaging Server does not directly support
Kerberos, it is now possible to write code that adds Kerberos capability to Messaging
Server.

The examples/tpauthsdk directory also contains sample code for a third-party authentication
server that can validate and modify authentication information provided by the Messaging
Server.

Messaging Mutiplexor (MMP) Support
To enable third-party authentication in the MMP, the PreAuth configuration option must be
enabled. For authentication methods other than PLAIN, you must specify the proxy
authentication credentials (StoreAdmin and StoreAdminPass) and add the following
configuration option to the MMP's ImapProxyAService.cfg and/or PopProxyAService.cfg
file:

default:AuthenticationServer :56

For plain text logins, the MMP will first perform a normal user lookup in LDAP. Once the user is
located, the MMP will connect to the host (localhost loopback) and port (56) specified in the
AuthenticationServer option to authenticate the user. The MMP will pass the LDAP attributes
inetUserStatus, mailUserStatus, uid and mailHost to the authentication server. You may
also configure the MMP to look up additional LDAP attributes and pass them to the
authentication server with the option:

default:AuthenticationLdapAttributes "attr1" "attr2" ...

The authentication server should be running on the same server as the MMP and on a
restricted port. The protocol used to communicate between the MMP and the third-party
authentication server is not presently secured.

The MMP advertises the additional SASL mechanisms provided by the authentication server
through the standard server protocols (for example, through the IMAP capabilities). The
authentication server can provide a SASL mechanism that the MMP implements natively. In
this case, the authentication server mechanism will take precedence. To see a transcript of the

Chapter 2
Planning Messaging User Authentication

2-11

communication between the MMP and authentication server process, add authserv to the
default:debugkeys configuration setting for the MMP and set default:LogLevel to Debug.
State transitions in the HULA authentication subsystem can also be logged through the hula
debug key.

For more information about configuring and administering multiplexor services, see Messaging
Server System Administrator's Guide.

IMAP/POP/SMTP Support
To enable third-party authentication with IMAP/POP/SMTP, use the msconfig options
auth.authenticationserver and auth.authenticationserver or the configutil options
sasl.default.authenticationserver and sasl.default.authenticationldapattributes. These
work as they do for the MMP except the authenticationattributes is a space-delimited list
(quotes are not used). The local.debugkeys option provides functionality equivalent to the
default:debugkeys option, but again as a space separated list.

To debug third-party authentication with store, set msconfig option base.debugkeys or
configutil option local.debugkeys to include authserv (or authserv hula) and set msconfig
option {imap/pop}.logfile.loglevel or configutil option logfile.loglevel to debug.

Sample Code
The third-party authentication sample code in the tpauth directory is largely suitable for a
production environment (it uses a thread-pool model to handle a high volume of connections).
However, the Messaging Server product team will not provide support for this sample code.
The sample code is designed for use on a system which provides the standard Posix Threads
API (for example, Oracle Solaris or Linux). The Makefile.sample is for use on Oracle Solaris.

Table 2-5 lists the contents of the tpauth directory.

Table 2-5 Contents of the tpauth Directory

File Contents

README.txt A link to this document.

authserver.txt Third-Party Authentication Protocol Specification.

Makefile.sample Use make -f Makefile.sample to build the sample code.

authserv.c The core thread-pool protocol server implementation.

authserv.h The API called by authserv.c to authenticate users.

sample.c A very simple sample third-party authentication module using plain-text
passwords. Third-parties may edit or replace this module to provide
authentication services.

sample2.c A simple CRAM-MD5 example demonstrating use of this interface for
non-plain-text mechanisms.

Planning Message Encryption Strategies
This section describes encryption and privacy solutions.

Chapter 2
Planning Message Encryption Strategies

2-12

Encryption with SSL
SSL functions as a protocol layer beneath the application layers of IMAP, HTTP, and SMTP. If
transmission of messages between a Messaging Server and its clients and between the
servers and other servers is encrypted, there is little chance for eavesdropping on the
communications. If connecting clients and servers are authenticated, there is little chance for
intruders to spoof them.

End-to-end encryption of message transmission requires the use of S/MIME. See the
discussion about the basic configuration procedure to set up S/MIME for Convergence in
Convergence System Administrator's Guide and the discussion about administering S/MIME in
Messaging Server System Administrator's Guide.

Note:

The extra performance overhead in setting up an SSL connection can put a burden
on the server. In designing your messaging installation and in analyzing performance,
you must balance security needs against server capacity.

The SSL connection process between client and server using HTTP/SSL (HTTPS) is as
follows:

1. The client initiates contact using HTTPS. The client specifies which secret-key algorithms it
can use.

2. The server sends its certificate for authentication and specifies which secret-key algorithm
should be used. It will specify the strongest algorithm which it has in common with the
client. If there is no match, the connection will be refused. If the server has been
configured to require client authentication, it will ask the client for its certificate at this point.

3. The client checks the validity of the server certificate to ensure that it has:

• Not expired

• A known signed Certification Authority

• A valid signature

• A host name on the certificate that matches the name of the server in the HTTPS
request

SSL Ciphers
SSL enables the server and client to negotiate cipher suites. The cipher suites determine the
cryptographic algorithms and key sizes used to secure the SSL connection. Over time, cipher
suites change. Older cipher suites can become insecure due to key size (for example, DES) or
due to discovery of security design errors in algorithms they use (for example, RC4 and MD5).
However, sometimes you must use insecure cipher suites for interoperability with old clients
that have not yet been updated.

In Messaging Server, cipher suites can be enabled or disabled by default, newer cipher suites
can be added, and insecure ones eventually removed from the product. Changes to cipher
suites can occur in any Messaging Server patch release. For more information about cipher
suites, see the discussion about the adjustciphersuites option in Messaging Server
Reference.

Chapter 2
Planning Message Encryption Strategies

2-13

In general, software should support at least two cryptographic algorithms for any given purpose
to provide a backup if a weakness in the preferred algorithm is discovered. However,
supporting more than two cryptographic algorithms is undesirable because it increases the
attack surface and reduces interoperability.

For more information about ciphers, see "Security and Access Control in Messaging Server".

Signed and Encrypted S/MIME
Secure/Multipurpose Internet Mail Extensions (S/MIME) provides a consistent way for email
users to send and receive secure MIME data, using digital signatures for authentication,
message integrity, and non-repudiation and encryption for privacy and data security. S/MIME
version 3.1 (RFC 3851) is supported.

Several email clients support the S/MIME specification, including Microsoft Outlook and Mozilla
mail.

You can deploy a secure mail solution by using Messaging Server and S/MIME. Convergence
users who are set up to use S/MIME can exchange signed or encrypted messages with other
users of Convergence, Microsoft Outlook, and Mozilla mail systems.

For more information on S/MIME and Convergence, see the discussion about configuring and
storing certificate information in Messaging Server and Directory Server and the discussion
about the basic configuration procedure to set up S/MIME for Convergence in Convergence
System Administrator's Guide. For other clients that support S/MIME, see that client's
documentation for information on S/MIME configuration.

Planning a Messaging Server Anti-spam and Anti-virus Strategy
Messaging Server provides many tools for dealing with unsolicited bulk email (UBE, or spam)
and viruses. This information describes the various tools and strategies available for your use.

Anti-spam and Anti-virus Tools Overview
As more computers are connected to the Internet, and the ease of doing business online
increases, the frequency of security incidents, including spam and viruses, continues to rise.
You should plan your Messaging Server deployment to deal with these problems.

Mail traffic passing into, through, and out of Messaging Server can be separated into distinct
channels according to various criteria. This criteria includes source and destination email
addresses, and source IP address or subnet. You can apply different processing
characteristics to these different mail flows, or channels. Consequently, you can use different
access controls, mail filters, processing priorities, and tools in different ways and combinations
on these channels. For example, you can process mail originating from within your domain
differently from mail originating from outside your deployment.

In addition to channel-based message flow classification, another useful classification is
mailing list traffic. Traffic for a given mailing list can come into Messaging Server through many
different channels and go back out through many different channels. When using mailing lists,
you can find it helpful to think in terms of the list itself and not in terms of channels. Messaging
Server recognizes this and enables many of the channel-specific spam fighting tools to also be
applied in a mailing-list specific fashion.

The following summarizes the anti-spam and anti-virus tools you can use with Messaging
Server:

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-14

• "Milter". Provides a plug-in interface for third-party software to validate, modify, or block
messages as they pass through the MTA.

• "Access Control". Rejects mail from known spam sources and enables control over who
can send or receive email within the organization.

• "Mailbox Filtering". Enables users to manage their own spam filters through a Web
interface, controlling the nature of mail delivered to their mailboxes.

• "Address Verification". Refuses mail with invalid originator addresses.

• "Real-time Blackhole List". Refuses mail from recognized spam sources as identified by
the Mail Abuse Protection System's Real-time Blackhole List (MAPS RBL), a responsibly
managed, dynamically updated list of known spam sources.

• "Relay Blocking". Prevents abusers from using a mail system as a relay to send their spam
to tens of thousands of recipients.

• "Authentication Services". Enables password authentication in an SMTP server with the
Simple Authentication and Security Layer (SASL) protocol.

• "Sidelining Messages". Silently sidelines or even deletes potential spam messages.

• "Comprehensive Tracing". Uses reliable mechanisms for identifying a message's source.

• "Conversion Channel". Integrates with third-party anti-virus or anti-spam products.

• "MeterMaid". Provides centralized metering and management of connections and
transactions.

• "memcached". Can provide the same functions as MeterMaid.

You can use these tools individually or together. No one tool by itself will block all spam.
However, taken together, these tools provide an effective means of combating unauthorized
use of your mail system. The following sections provide more details on these tools. For more
information, see Messaging Server System Administrator's Guide.

Milter
Milter refers to the Sendmail Content Management API and also to software written using this
API. Milter provides a plug-in interface for third-party software to validate, modify, or block
messages as they pass through the MTA. In sendmail, Milter consists of support code in
sendmail itself and a separate Milter library. Filter authors link their filters against this library to
produce a server. Sendmail is then configured to connect to these Milter servers. Messaging
Server provides a library that emulates the sendmail side of the Milter interface. Consequently,
Milters written for sendmail can also be used with Messaging Server. The Milter server can run
in a variety of configurations. It can run on a separate system of its own, on the same system
as Messaging Server, in a single system deployment, or in a two-tier deployment. Messaging
Server also supports connecting to multiple Milter servers.

See the topics on milter implementation and milter spamfilterN_config_file in Messaging
Server Reference.

Access Control
Messaging Server has a general purpose mechanism that you can use to reject mail in
accordance with a variety of criteria. This criteria includes the message source or destination
email addresses, and source IP address. For example, you can use this mechanism to refuse
mail from specific senders or entire domains (such as mail from spam@public.com). Should
you have large lists of screening information, you can extend your lists with a database that
stores the access criteria. While not UBE-related, this same access control mechanism is also
suitable for maintaining a database of internal users who are or are not allowed to send mail

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-15

out of certain channels. For example, you can restrict on a per-user basis who can or cannot
send or receive Internet mail.

See "Access Controls" for more information.

Mailbox Filtering
Messaging Server provides mail filters on a per-user, per-channel, and system-wide basis. Per-
user channels can be managed from any web browser in Convergence. Using these filters,
users can control what mail messages are delivered to their mailbox. For example, a user tired
of "make money fast" UBE can specify that any message with such a subject be rejected. Mail
filtering in Messaging Server is based on the Sieve filtering language (RFCs 3028 and 3685)
developed by the Internet Engineering Task Force (IETF).

See "Using Mailbox Filters" for more information.

You can also implement content-based filtering or virus scanning with third-party content
filtering software, such as Cloudmark.

See "Anti-spam and Anti-virus Considerations" for more information.

Address Verification
UBE messages often use invalid originator addresses. The Messaging Server SMTP server
can take advantage of this by reflecting messages with invalid originator addresses. If the
originator's address does not correspond to a valid host name, as determined by a query to the
DNS server, the message can be rejected. A potential performance penalty can be incurred
with such use of the DNS.

You enable address verification on a per-channel basis with the mailfromdnsverify channel
keyword described in Messaging Server System Administrator's Guide.

Real-time Blackhole List
The Mail Abuse Protection System's Real-time Blackhole List (MAPS RBL) is a dynamically
updated list of known UBE sources identified by source IP address. The Messaging Server
SMTP server supports use of the MAPS RBL and can reject mail coming from sources
identified by the MAPS RBL as originators of UBE. The MAPS RBL is a free service provided
through the Internet DNS.

For more information, see:

https://www.ers.trendmicro.com/
Use of the RBL by the Messaging Server SMTP server is enabled with the ENABLE_RBL
option of the MTA Dispatcher.

Relay Blocking
A comprehensive UBE strategy should include ways to prevent users from receiving UBE
access controls, mailbox filtering, address verification, and RBL, and preventing users from
unauthorized relay of mail from your system to other systems. This second method is called
relay blocking. In its simplest form, relay blocking is achieved by enabling local users and
systems to relay mail while rejecting relay attempts from non-local systems. Using IP
addresses as the differentiator easily and securely makes this differentiation between local
versus non-local. By default, Messaging Server enables relay blocking upon installation.

See "Configuring Anti-Relaying with Mapping Tables" for more information.

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-16

https://www.ers.trendmicro.com/

Authentication Services
The Messaging Server SMTP server implements the Simple Authentication and Security Layer
(SASL, RFC2222) protocol. SASL can be used with POP and IMAP clients to provide
password-based access to your SMTP server. A typical usage for SASL is to permit mail
relaying for external authenticated users. This solves the common problem posed by local
users who use ISPs from home or while traveling. Such users, when connecting to your mail
system, will have non-local IP addresses. Any relay blocking that takes into account only the
source IP address will not permit these users to relay mail. This difficulty is overcome with
SASL, which enables these users to authenticate themselves. Once authenticated, the users
are permitted to relay mail.

Sidelining Messages
The access control mechanisms discussed previously can also defer the processing of suspect
messages for later, manual inspection. Or, rather than sideline, the mechanisms can change
the destination address, thus routing the suspect mail to a specific mailbox or simply deleting it
silently. This tactic is useful when UBE is being received from a known, fixed origin and outright
rejection will only cause the abuser to change the point of origin. Similar features are available
for Messaging Server mailing lists. Great care should be exercised when silently deleting mail
to ensure that valid senders are not affected.

Comprehensive Tracing
Messaging Server's SMTP server discovers and records crucial origination information about
every incoming mail message, including, for example, source IP address and the
corresponding host name. All discovered information is recorded in the message's trace fields
(for example, the Received: header line), and in log files, if they are so configured. Availability
of such reliable information is crucial in determining the source of UBE, which often has forged
headers. Sites can use their own preferred reporting tools to access this information, which is
stored as plain text.

Conversion Channel
The conversion channel is a very general purpose interface where you can invoke a script or
another program to perform arbitrary body part processing of an email message. The
conversion program hands off each MIME body part (not the entire message) to the program or
script and can replace the body part with the output of the program or script. Conversion
channels can be used to convert one file format to another (for example, text to PostScript), to
convert one language to another or perform content filtering for company sensitive information.

Integration with Third-party Products

Content-filtering software from third-party suppliers can be hooked in to your deployment
through Messaging Server's conversion channel. Channel keywords are used to enable mail
filtering using anti-spam and anti-virus products, such as Cloudmark or Proofpoint. You can
configure the MTA to filter for all messages or only those going from or to certain channels, or
to set the granularity at a per-user level. A user can decide to use spam or virus filtering, or
both.

An extensive Sieve support enables great flexibility to set the disposition of the message
determined to be a virus or spam. You can take the default action of discarding the virus and
spam, or filing the spam into a special folder. But using Sieve, you can forward a copy of the
message to some special account, add a custom header, or use the spamtest Sieve extension
to take a different action based on a rating returned.

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-17

MeterMaid
MeterMaid is a server that can provide centralized metering and management of connections
and transactions. Functionally, MeterMaid can be used to limit how often a particular IP
address can connect to the MTA. Limiting connections by particular IP addresses is useful for
preventing excessive connections used in denial-of-service attacks.

memcached
memcached can provide the same functions as MeterMaid.

Anti-spam and Anti-virus Considerations
This section describes issues to keep in mind when planning your deployment to use anti-
spam or anti-virus technologies.

Architecture Issues with Anti-spam and Anti-virus Deployments
The Messaging Server MTA can reside on the same system as the mail filtering system, such
as Cloudmark, or you can use separate systems. One of the advantages of separating the
MTA from the mail filtering servers is that you can add more processing power for the filtering
simply by adding more hardware and cloning the servers. While the system is capable and not
overloaded, you can have the mail filtering server software collocated with the MTA.

In general, consider deploying a farm of servers that the MTAs utilize to filter mail. You can
configure MTAs to use a list of server names, which essentially the MTAs will load balance on.
(This load balancing functionality is usually provided by the filtering SDK.) The advantage of
having the server farm is that when you need more processing power, you can simply add
more servers.

Mail filtering products tend to be CPU-intensive. Creating an architecture that separates the
MTA and the mail filtering products onto their own machines provides for better overall
performance of the messaging deployment.

Note:

Because mail filtering servers tend to be CPU-intensive in nature, you could end up
with an architecture consisting of more mail filtering systems than the MTA hosts they
are filtering for.

In larger deployments, consider also creating inbound and outbound mail filtering pools of
servers that are associated with the respective inbound and outbound MTA pools. You can also
create a swing pool that can be utilized as either an inbound or outbound pool, in response to
need in either area.

As with the rest of the deployment, you must monitor the mail filtering tier. A threshold of 50
percent CPU utilization is a good rule of thumb to follow. Once this threshold has been met,
you must consider adding more capacity to the mail filtering tier.

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-18

Security Issues with Anti-spam and Anti-virus Deployments
When planning to deploy anti-spam or anti-virus technology, keep in mind that an incorrect
deployment can defeat your security measures. Figure 2-2 shows an incorrect deployment of
an anti-spam/anti-virus filter solution.

Figure 2-2 Incorrect Deployment of Anti-spam/virus Solution

Figure 2-3 shows a correct deployment of an anti-spam/virus filter solution.

Figure 2-3 Correct Deployment of Anti-spam/virus Solution

The MTA performs certain functions well, including:

• Rejecting messages as early as possible

• Per-user configuration and policy

• Email security and routing policy

• Mail queue management

The anti-spam/virus filter is good at determining if an email is spam or has a virus, but is
generally not nearly as good at doing the things expected of a good MTA. Thus, do not depend
on an anti-spam/virus filter to do those things. Your deployment is more correct when the anti-
spam/virus filter is well integrated with the MTA, which is the case with Messaging Server.
Messaging Server spam filter plug-in support provides all the potential reasons to reject a
message early and applies all reasons at the same time.

A robust MTA, such as Messaging Server's, contains security features (SSL/TLS, traffic
partitioning by IP address, early address rejection to reduce denial-of-service attacks,
connection throttling by IP address/domain, and so on), which are defeated when an anti-
spam/virus filter is deployed in front. Furthermore, anti-spam/virus filters that communicate by
using the SMTP protocol often do not follow the robustness requirements of SMTP and thus
lose email when they should not. A correct deployment should have the anti-spam/virus filter
working with a robust MTA.

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-19

Implementing an RBL
In general, implementing an RBL provides the most immediate benefit to reducing spam traffic.
A good RBL implemented by your MTAs immediately reduces spam by a minimum of 10
percent. In some cases, this number could approach 50 percent.

You can use your RBL and anti-spam/virus filters together. If the anti-spam/virus filter takes
care of 95 out of 100 emails for a certain IP address within some amount of time you should
add that IP address to your RBL. You can adjust the RBLs for the anti-spam/virus filter's false
positives when you do your analysis. That makes the RBL much more proactive in handling a
specific wave of spam.

Developing an Anti-spam and Anti-virus Site Policy
When developing a policy for preventing spam and relaying, strike a balance between
providing safety from spam and providing a site where emails are delivered in a timely fashion.
The best policy is therefore to initially provide a core set of measures that do not take up too
much processing time but trap the majority of spam. You can then define this core set of
measures after stress testing the final architecture. Start with the initial measures below. Once
you have deployed your system, monitor trapped and non-trapped spam to fine tune the
system and replace or add new functions if required.

Use the following set of measures as a starting point for your site's anti-spam and anti-virus
policy:

• Anti-relay should be provided by the ORIG_SEND_ACCESS settings. This is structured to
enable only subscribers and partnership users access to deliver externally bound SMTP
mail.

• Use authentication services to validate roaming users. These users verify their identity
before being allowed to route externally bound SMTP mail.

• Implement subject line checking for common spam phrases using the system-wide mailbox
filters.

• Set a maximum number of recipients using the holdlimit keyword. This will have the effect
of sidelining potential spam traffic. The initial value could be set at 50 recipients and should
be monitored over a period to determine whether a higher or lower value is required.

• Set up dummy accounts that are then manually used by the postmasters to encourage
spam to these specific accounts to identify new spam sites.

• A message in which a virus has been detected should not be returned to the original
sender and should not be forwarded to the intended recipient. There is no value in this
because most viruses generate their own mail with forged sender addresses. It has
become very rare that such infected messages will have any useful content.

• Send infected messages to an engine that harvests and catalogues information about the
virus. You can then use such information to create threat reports for your system
administrators about new virus and worm outbreaks.

Chapter 2
Planning a Messaging Server Anti-spam and Anti-virus Strategy

2-20

3
Performing a Secure Messaging Server
Installation

This chapter presents planning information for your Oracle Communications Messaging Server
system and describes recommended installation guidelines that enhance security.

For more information about installing Messaging Server, see Messaging Server Installation and
Configuration Guide.

Installing Infrastructure Components Securely
The following infrastructure components should be installed and secured prior to Messaging
Server installation. You must understand how all components in the infrastructure
communicate so that you can apply appropriate security measures to every interconnect.

• Directory Server: Messaging Server connects to the Oracle Directory Server Enterprise
Edition, an LDAP-based directory server for user and group information and for
provisioning. See the discussion about enhanced security in Oracle Fusion Middleware
Evaluation Guide for Oracle Directory Server Enterprise Edition.

• Directory Server Setup Script: The comm_dssetup.pl script prepares the Directory
Server for Messaging Server installation.

• High Availability Planning: Plan your deployment to tolerate failure of any one
component. The approach to achieve high availability for store machines differs between
classic message store and Cassandra message store.

• DNS Server: You must ensure that Domain Name System (DNS) is running and
configured properly. For details, see Messaging Server Installation and Configuration
Guide.

• File System: See the discussion about recommended file systems for message stores in
Messaging Server Installation and Configuration Guide.

In addition to dependent products, it is equally important to secure the other components within
Unified Communications Suite for secure Messaging Server deployment.

Review the following guidelines for components that impact Messaging Server security:

• Convergence: See the discussion about the overview of Convergence security in
Convergence Security Guide for more information.

• Connector for Microsoft Outlook: See Connector for Microsoft Outlook Security Guide
for more information.

• Indexing and Search Service: See Indexing and Search Service Security Guide for more
information.

• Contacts Server: See Contacts Server Security Guide for more information.

• Delegated Administrator: See Delegated Administrator Security Guide for more
information.

3-1

Credentials Needed to Install Messaging Server Components
The installation prompts for the following authentication credentials:

• User Name and Group Name for Server Processes

• Directory Server manager (bind DN and password)

• Password for server administration

Post-Installation Configuration
By default, when you install and configure Messaging Server, SMTP relay blocking is enabled.
That is, Messaging Server rejects attempted message submissions to external addresses from
unauthenticated external sources (external systems are any other system than the host on
which the server itself resides). This default configuration is quite aggressive in blocking SMTP
relaying in that it considers all other systems to be external systems.

Other post-installation steps to configure Messaging Server for a secure installation include:

1. Installing Messaging Server provisioning tools

2. Enabling startup after a reboot

3. Enabling SSL

For instructions about the first two items, see the discussion about the Messaging Server initial
configuration in Messaging Server Installation and Configuration Guide. See "Security and
Access Control in Messaging Server" for information about enabling Messaging Server
components for SSL.

Note:

Once installation is complete, Oracle recommends encrypting and moving the initial
state files and configure.ldif file, if generated.

Chapter 3
Credentials Needed to Install Messaging Server Components

3-2

4
Implementing Messaging Server Security

This chapter explains the security features of Oracle Communications Messaging Server. It
also provides links to security topics that provide more in-depth information for configuring and
administering Messaging Server securely.

Security Features
Messaging Server supports security features that enable you to keep messages from being
intercepted, prevent intruders from impersonating your users or administrators, and permit only
specific people access to specific parts of your messaging system. The Messaging Server
security architecture is part of the security architecture of Oracle servers as a whole. It is built
on industry standards and public protocols for maximum interoperability and consistency. For a
general overview of Messaging Server security strategies, see "Planning Messaging Server
Security".

Messaging Server Security Strategy for your Deployment
Creating a security strategy is one of the most important steps in planning your deployment.
Your strategy should meet your organization's security needs and provide a secure messaging
environment without being overbearing to your users.

How you set up the following topics impacts your security strategy guidelines:

• Creating a Security Strategy

• Identifying Password Policy Requirements

• Verifying File Ownership for Configuration Files

• Securely Monitoring and Auditing Your Messaging Server Deployment

• Tracking Security Patches

• Identifying Legal-intercept Requirements

• Securing Your Archiving Needs

• Disabling Users in Response to Abuse/Appeal Process

• Utilizing a Disk Consumption Growth Plan

• Preventing Unrelated Usage of Messaging Server Hosts and Virtual Machines

• Determining Security Capabilities of Your Supported Mail Clients

Creating a Security Strategy
Your security strategy needs to be simple enough to administer. A complex security strategy
can lead to mistakes that prevent users from accessing their mail, or it can allow users and
unauthorized intruders to modify or retrieve information that you do not want them to access.

The five steps to developing a security strategy, as listed in RFC 2196, the Site Security
Handbook, include:

4-1

• Identifying what you are trying to protect. For example, your list might include hardware,
software, data, people, documentation, network infrastructure, or your organization's
reputation.

• Determining what you are trying to protect it from. For example: unauthorized users,
spammers, or denial of service attacks.

• Estimating how likely threats are to your system. If you are a large service provider, your
chances of security threats could be greater than a small organization. In addition, the
nature of your organization could provoke security threats.

• Implementing measures that will protect your assets in a cost-effective manner. For
example, the extra overhead in setting up an SSL connection can put a performance
burden on your Messaging deployment. In designing your security strategy, you must
balance security needs against server capacity.

• Continuously reviewing your strategy and making improvements each time a weakness is
found. Conduct regular audits to verify the efficiency of your overall security policy. You can
do this by examining log files and information recorded by the SNMP agents. For more
information on SNMP, see Messaging Server System Administrator's Guide.

Your security strategy should also plan for:

• Physical Security

• Server Security

• Operating System Security

• Network Security

• Messaging Security

• Application Security

Physical Security

Limit physical access to important parts of your infrastructure. For example, place physical
limits on routers, servers, wiring closets, server rooms, or data centers to prevent theft,
tampering, or other misuse. Network and server security become a moot point if any
unauthorized person can walk into your server room an unplug your routers.

Server Security

Limiting access to important operating system accounts and data is also part of any security
strategy. Protection is achieved through the authentication and access control mechanisms
available in the operating system.

In addition, you should install the most recent operating environment security patches and set
up procedures to update the patches once every few months and in response to security alerts
from the vendor.

Operating System Security

Reduce potential risk of security breaches in the operating environment by having an ongoing
plan to apply OS security updates promptly when they become available. Also, consider using
a file change control and audit tool, such as Tripwire for Servers, or Oracle Solaris Fingerprint
Database, to track changes in files and detect possible intrusion.

Network Security

The recommended deployment configuration, to support both horizontal scalability and service
security, is to place the access layer of the architecture behind a firewall. In a two-tiered

Chapter 4
Security Features

4-2

architecture, use two firewalls, creating a DMZ. This enables access to the information delivery
elements, the calendar and messaging front ends, while protecting the main service elements
on the internal network behind a second firewall. Such a configuration also enables the access
layer and data layer elements to be scaled independently, accommodating traffic and storage
elements.

Limiting access to your network is an important part of your security strategy. Normally, overall
access to networks is limited with firewalls. However, email must be made available outside
your site. SMTP is one such service that allows for this.

To secure your network, you should:

• Turn off all operating system-provided services that listen on ports that you do not use.

• Place your application servers behind a packet filter, which drops external packets with an
internal source IP address. A packet filter forbids all connections from the outside except
for those ports that you explicitly specify.

Messaging Security

Messaging Server offers the following sets of security features:

• Protecting Messaging Components in Your Deployment. With this set of options, you
can secure your MTA relays, message stores, Webmail clients, and multiplexing services.
In addition, you'll learn about third-party spam filter options.

• User Authentication. These options enable you to determine how your users will
authenticate to your mail servers, preventing unauthorized users from gaining access to
your system.

• Message Encryption. Using this set of options, you can perform user authentication and
protect the message itself by using authenticated SMTP and certificates for digital
signatures, encryption, and Secure Sockets Layer (SSL).

See "Planning Messaging Server Security" for more information.

Application Security

Messaging Server provides features that ensure the security and integrity of business
communications. Messaging Server offers extensive built-in security features, such as:

• Authentication

• Message and session encryption

• Virus and spam protection

• Archiving and auditing of communications

Implementing Secure Connections

Messaging Server supports the SSL/TLS security standards. SSL/TLS enables all
communication between clients and servers to take place inside an encrypted session.

A more commonly used mechanism for data security protects the data across the wire only
(that is, from client to server) by using SSL encryption on the connections used to transmit data
between various messaging agents. This solution is not as complete as public key encryption,
but is far easier to implement and is supported by many more products and service providers.

What problem does using SSL from client to server solve? An organization assumes that it
controls its own corporate network and that data transmitted on that network is safe from non-
employees. Mail sent to anyone from outside the corporate network using the corporation's
infrastructure transmits the data over an encrypted connection to the corporation's network.

Chapter 4
Security Features

4-3

Likewise, all mail picked up by a corporate user from outside the corporate network will be
transmitted over an encrypted connection. Thus, if the enterprise's assumption about the safety
of the internal network is true, and its employees use only sanctioned servers for transmission
between themselves and other employees, mail between employees is safe from external
attack.

What problem doesn't this solution solve? First of all, this approach does not protect the data
from unintended viewing by non-intended recipients of the data who have access to the
organization's internal network. Secondly, there is no protection offered for data being
transmitted between employees and their external partners, customers, or suppliers. The data
travels across the public Internet in a completely insecure fashion.

However, this problem can be remedied by configuring SSL encryption between MTA routers at
both the enterprise's and customer's network. This type of solution requires setup for each
private connection you want to use. In so doing, you add an important additional layer of
security with customer or partner data being sent or received through email. Using MTAs and
SSL, companies can save money by using the public Internet as the transport, but force the
MTAs to use SSL for their partners. This solution does not take into account other network
traffic to and from partners. Nevertheless, mail is usually a large proportion of the traffic, and
because companies can pay based on data transmitted, using the public Internet is usually
cheaper.

Identifying Password Policy Requirements
The user password login process is described in Messaging Server System Administrator's
Guide.

Review the following additional password policy recommendations:

1. Select a password policy system that meets your requirements and any additional
requirements you might add at a later time.

2. Require your users to create high quality passwords on your site identity system's
password change web page. Do not require your users to change passwords too
frequently as it cause users to write their passwords on paper.

3. Directory Server has password policy capabilities, but if you enable password expiration,
be sure the administrator and service accounts used by Messaging Server are exempt
from expiration.

4. Keep a strong administration password.

5. Maintain administrative access policies for Messaging Server hosts.

6. Create Delegated Administrator access policies for domains.

7. If needed by Oracle Support, plan how to gather configuration files, excluding passwords.
If you use Unified Configuration, this task is made much easier.

Verifying File Ownership for Configuration Files
Related topics include:

• The discussion about ownership of a mail server user account in Messaging Server
System Administrator's Guide.

• The discussion about identifying, analyzing, and resolving user mailbox directory problems
in Messaging Server System Administrator's Guide.

Chapter 4
Security Features

4-4

Securely Monitoring and Auditing Your Messaging Server Deployment
Monitoring your server is an important part of your security strategy. To identify attacks on your
system you should monitor message queue size, CPU utilization, disk availability, and network
utilization. Unusual growth in the message queue size or reduced server response time may
identify some of these attacks on MTA relays. Also, investigate unusual system load patterns
and unusual connections. Review logs on a daily basis for any unusual activity.

See the discussion about monitoring the Messaging Server for signs of problems in Messaging
Server System Administrator's Guide, which includes topics on:

• Automatic Monitoring and Restart

• Daily Monitoring Tasks

• Utilities and Tools for Monitoring

• Monitoring User Access to the Message Store

• Monitoring System Performance

• Monitoring Disk Space

• Monitoring the MTA

• Monitoring LDAP Directory Server

• Monitoring the Message Store

• SNMP Support

• How to Monitor MeterMaid

Additional guidelines for secure monitoring:

• Ensure you have the right monitoring and auditing tools for your specific deployment and
that you have contingency plans in place.

• Enable MTA logging.

Tracking Security Patches
Be sure to install the most recent operating environment security patches and set up
procedures to update the patches once every few months and in response to security alerts
from the vendor. Be sure to pay close attention to NSS patches.

Identifying Legal-intercept Requirements
The following topics provide an overview for message archiving for legal and compliance
purposes. For more information, see:

• The discussion about the legal obligation to maintain strict retrievable email records in
Messaging Server System Administrator's Guide.

• The discussion about the imarchive utility in Messaging Server System Administrator's
Guide.

• The discussion about archiving messages coming into and out of the Messaging Server
using the Compliance and Content Management Solution (for legacy systems only) in
Messaging Server System Administrator's Guide.

Determine which Messaging Server capture mechanism is best to meet those requirements in
your jurisdiction before responding to a compliance request.

Chapter 4
Security Features

4-5

Securing Your Archiving Needs
Once you have satisfied legal requirements, use your third-party archiving system in your
jurisdiction so that it can be configured to delete messages from the archive (or make them
unreadable by discarding encryption keys). Refer to "Identifying Legal-intercept Requirements"
for message archiving options.

Disabling Users in Response to Abuse/Appeal Process
The following topics describe enabling and disabling users, accounts, and services in response
to the abuse/appeal process. See:

• The discussion about mailAllowedServiceAccess in Schema Reference.

• The discussion about SEND_ACCESS and ORIG_SEND_ACCESS mappings in
Messaging Server Reference.

• The discussion about enabling and disabling services at different levels in Messaging
Server System Administrator's Guide.

Utilizing a Disk Consumption Growth Plan
Unusual disk consumption may identify some attacks on MTA relays.

For more information, see:

• The discussion about configuration options for monitoring disk and partition usage in
Messaging Server System Administrator's Guide.

• The discussion about Message Store partitions and adding storage in Messaging Server
System Administrator's Guide.

• The discussion about MTA performance tuning in Messaging Server Reference.

Preventing Unrelated Usage of Messaging Server Hosts and Virtual Machines
Oracle recommends that you do not use Messaging Server hosts or virtual machines for
unrelated tasks. Single purpose hosts and virtual machines are better for securing your
deployment. Be sure to turn off any unused Messaging Server services.

Determining Security Capabilities of Your Supported Mail Clients
For information on security and access control for mail clients and mail client infrastructure,
refer to "Security and Access Control in Messaging Server" where the following topics are
covered:

• Configuring Authentication Mechanisms in Messaging Server

• Configuring Client Access to POP, IMAP, and HTTP Services

• Configuring Encryption and Certificate-Based Authentication

• User/Group Directory Lookups Over SSL

Consider these questions when designing your Messaging Server security strategy:

• Do your mail clients support SMTP Authentication?

• Do your mail clients support standard SSL (STARTTLS on port 143 for IMAP, STLS on port
110 for POP, STARTTLS on port 587 for SMTP Submission)?

Chapter 4
Security Features

4-6

– If not, do they support separate port SSL? (IMAPS on port 993, POPS on port 995,
SSL SMTP Submission on standard port 465)?

• Do you have a plan in place to handle accidental/inappropriate blacklisting of your site by
reputation services?

MTA Security Guidelines
Following secure guidelines protect your MTAs from unauthorized users, large quantities of
spam, reduced response time, and used up disk space and resources. "Protecting MTAs"
outlines general guidelines to protect your MTAs. This section provides additional details in the
following topics:

• About Messaging Server Anti-spam and Anti-virus Solutions

• Creating a Narrow Scope of MTA Relay Blocking in INTERNAL_IP Mapping Table

• Using LMTP to Connect to Inbound MTAs and in Multi-tier Deployments

• Greylisting

• Forbidding Emailing Executable Code

• Using and Configuring MeterMaid for Access Control

• Using and Configuring memcache for Access Control

• Setting MTA Recipient Limits

• Using Sieve Securely

• Using the MTA to Fix Messages from Bad Clients

• Configuring Secure ETRN Command Support

About Messaging Server Anti-spam and Anti-virus Solutions
Refer to the following topics on anti-spam and anti-virus solutions:

• Planning a Messaging Server Anti-spam and Anti-virus Strategy

• Integrating spam and virus filtering programs in Messaging Server System Administrator's
Guide.

• Milter implementation and use in Messaging Server Reference.

• Using the Sender Policy Framework to detect and reject forged email in Messaging Server
System Administrator's Guide.

• Protecting Against Email Spammers

• Blocking emails based on DNS Realtime Blocklists (RBL) data in Messaging Server
System Administrator's Guide.

In addition, consider these guidelines:

• Make sure your domain's MX records point directly to Messaging Server's MTA and have
the Messaging Server call out to anti-spam/anti-virus systems preferably through the spam
plug-in or Milter mechanism.

• Filter both inbound and outbound mail.

• Consider restricting outbound port 25 to outbound MTAs only.

Chapter 4
Security Features

4-7

Creating a Narrow Scope of MTA Relay Blocking in INTERNAL_IP Mapping Table
To use the INTERNAL_IP mapping table for MTA Relay Blocking, refer to the following
discussions:

• On preventing unauthorized users from relaying SMTP mail through your system in
Messaging Server System Administrator's Guide.

• On mail filtering and access control in Messaging Server System Administrator's Guide
and the mailfromdnsverify channel option in Messaging Server Reference.

• On using access control mappings to prevent users from relaying SMTP mail through your
system in Messaging Server System Administrator's Guide.

When you run the initial Messaging Server configuration with the configure command, SMTP
relay-blocking is enabled by default. Later, if you add channels, you might need to adjust your
configuration to ensure that blocks apply to the new channels as appropriate.

Using LMTP to Connect to Inbound MTAs and in Multi-tier Deployments
Using LMTP between the relays and the back end Message Stores simplifies the deployment,
which means there are fewer points of attack. For more information, see:

• The discussion about configuring the LMTP delivery mechanism in Messaging Server
System Administrator's Guide.

• The discussion about channel configuration in Messaging Server Reference.

• The discussion about implementing Local Message Transfer Protocol (LMTP) for
Messaging Server in Messaging Server System Administration Guide.

Greylisting
See Protecting Against Email Spammers

Forbidding Emailing Executable Code
See the discussion of the predefined conversion channel in Messaging Server System
Administrator's Guide.

Using and Configuring MeterMaid for Access Control
MeterMaid is a server that can provide centralized metering and management of connections
and transactions through monitoring IP addresses and SMTP envelope addresses.
Functionally, MeterMaid can be used to limit how often a particular IP address can connect to
the MTA. Limiting connections by particular IP addresses is useful for preventing excessive
connections used in denial-of-service attacks. MeterMaid supplants conn_throttle.so by
providing similar functionality, but extending it across the Messaging Server installation. No
new enhancements are planned for conn_throttle.so and MeterMaid is its more effective
replacement.

For more information, see:

• The discussion about using MeterMaid to limit how often a particular IP address can
connect to the MTA in Messaging Server System Administrator's Guide.

• The MeterMaid Reference in Messaging Server System Administrator's Guide.

Chapter 4
Security Features

4-8

Using and Configuring memcache for Access Control
memcache is a server that can provide functionality that is similar to MeterMaid. It allows you
to access and manipulate data using the memcache protocol. For more information, see the
discussions about memcache in Messaging Server Reference.

Setting MTA Recipient Limits
For more information, see the discussion about channel configuration in Messaging Server
Reference.

Using Sieve Securely
Review your MAX_* options settings relevant to Sieve filter limits, especially MAX_NOTIFYS.

Note:

Notify, Forward, and Redirect can potentially increase the load of generating new
messages. You must consider if abusers could exploit such features by generating
message loops or exponential growth of messages.

For Sieve external lists, enable setup carefully only allowing specific criteria. Some Sieve filter
user education/Sieve filter creation interface guidelines to consider:

• Discourage users from attempting to personally block spam by using Sieve.

• Check that the interface generates efficient Sieves (for example: lists, wildcard matches,
and so on)

Review:

• The discussion about the extensions that Messaging Server supports in Messaging Server
System Administrator's Guide.

Using the MTA to Fix Messages from Bad Clients
If users use email clients that are especially vulnerable to buffer overruns, malicious
embedding in malformed header lines, and so on, consider configuring the MTA with maximal
MTA MIME processing and fixing up messages passing through the MTA with the inner MTA
channel option.

Configuring Secure ETRN Command Support
Consider explicitly configuring the ETRN commands that the MTA honors. See the
ETRN_ACCESS mapping table, the *etrn channel options, and the
ALLOW_ETRNS_PER_SESSION TCP/IP channel option.

For more information, see:

• The discussion about the ETRN_ACCESS mapping table in Messaging Server Reference.

• The discussion about channel configuration in Messaging Server Reference.

Chapter 4
Security Features

4-9

Storing BadGuy Details in Memcached Server
When an authentication fails from a particular client IP address on messaging multiplexer
(MMP), the IP address details are stored as a BadGuy. Subsequent authentication attempts
from the same IP address are considered as bad guys and delayed for authentication.

Memcached server is a distributed memory caching system. It stores BadGuy information
after calculating the badness of an IP address on every authentication failure. If an
authentication failure is followed by a successful authentication, the successful IP address is
removed from the BadGuy list.

Note:

By default, the in-process memory system stores BadGuy information.

This section provides additional details in the following topics:

• Installing Memcached Server

• Configuring Bad Guys for Memcached Server

• Clearing Memcached Server Data

Installing Memcached Server
You must install and configure memcached server and MMP to store BadGuy details.

Multiple MMP processes can connect to the same memcached server and share the BadGuy
information. Therefore, a BadGuy information of an IP address synchronizes with all MMPs
and the same BadGuy information is accessible across all MMPs.

To install and configure memcached server, see:

https://www.tecmint.com/install-memcached-on-centos-7/.

See the discussion on configuring MMP in Messaging Server Security Guide.

Configuring Bad Guys for Memcached Server
Before configuring bad guys for memcached server:

• Ensure that memcached server is installed and running in a host machine. The host
machine can be a local machine or a separate server where MMP is running.

Note:

In a host machine, the default port is set to 11211. However, you can set up a
different port.

To configure bad guys with memcached server:

1. Go to the MessagingServer_home/bin directory.

2. Set mmp.memcached_enable value to 1.

Chapter 4
Security Features

4-10

https://www.tecmint.com/install-memcached-on-centos-7/

Note:

By default, the mmp.memcached_enable parameter is set to 0, in-process
memory.

Table 4-1 lists the configuration parameters for setting the memcached port and memcached
hostname.

Table 4-1 Memcached port and hostname configuration parameters

Configuration Parameter Description

mmp. memcached_port set
port

In Messaging Server, memcached_port is configured to the listening
port of the memcached server.

mmp.memcached_host set
hostname

memcached_host is the hostname of the server where memcached
server is running. If the hostname is not specified, the local hostname
of an MMP is considered during the initial configuration of the MMP.

For more information, see the discussion about MMP badguy throttling and MMP connection
limits in Messaging Server Reference.

Clearing Memcached Server Data
Memcached server stores BadGuy information from all MMPs. Therefore, when you refresh
or restart MMP servers, the memcached server information is not removed. If you want to
remove memcached server details, use one of the following commands:

• flush_all

• restart memcached

For more information on clearing memcached server data, see memcached documentation.

ENS Security Guidelines
This section describes securing ENS Server (7997) with firewall and/or TCP Access Control
Filters.

Note:

You can turn on ENS SSL and password based authentication. For additional
information, see the discussion about ENS SSL and ENS password based
authentication in Messaging Server System Administrator's Guide.

For more information about deploying the Event Notification Service (ENS) with Messaging
Server, see Messaging Server System Administrator's Guide.

Chapter 4
Security Features

4-11

Note:

The current implementation of ENS does not provide security on events that can be
subscribed to. Thus, a user could register for all events, and portions of all other
users' mail. Because of this it is strongly recommended that the ENS subscriber be
on the safe side of the firewall at the very least.

A firewall system generally controls what TCP/IP communications are allowed between internal
networks and the external world. Firewalls prevent packets considered to be unsafe from
passing through.

Message Store Security Guidelines
The most important data in the Messaging Server is the data in the Message Store. Physical
access and root access to the Message Store must be protected. "Protecting Messaging
Components in Your Deployment" outlines general guidelines to protect your Message Store.
In addition, you should review the discussion about managing the message store in Messaging
Server System Administrator's Guide. This section provides additional details in the following
topics:

• Securing Your Backup System

• Options for Securing Messaging Server

• Being Aware of IMAP ACLs

• Disabling IMAP Shared Folders if Not Needed

Securing Your Backup System
The process for backing up and restoring the Messaging Server is described in Messaging
Server System Administrator's Guide.

Some security guidelines to consider for Message Store backup:

• Be sure that such a system does not leave unneeded data.

• Backup systems that encrypt data improve your security if you manage the encryption keys
properly.

Options for Securing Messaging Server
The http.feedback.notspam (Unified Configuration) or service.feedback.notspam (legacy
configuration), http.feedback.spam (Unified Configuration) or service.feedback.spam
(legacy configuration), and http.ipsecurity (Unified Configuration) or service.http.ipsecurity
(legacy configuration) options are used to secure Messaging Server. See:

• http.feedback.notspam (Unified Configuration) or service.feedback.notspam (legacy
configuration) and http.feedback.spam (Unified Configuration) or
service.feedback.spam (legacy configuration) in Convergence System Administrator's
Guide.

• http.ipsecurity (Unified Configuration) or service.http.ipsecurity (legacy configuration) in
"Recovering From Phishing Attacks That Have Compromised User Accounts".

Chapter 4
Security Features

4-12

Being Aware of IMAP ACLs
See the following discussions:

• Granting permission for other users to access folders in Messaging Server System
Administrator's Guide

• Describing the tasks that you use to administer shared folders in Messaging Server
System Administrator's Guide

Disabling IMAP Shared Folders if Not Needed
Disable shared folders if not in use. See the discussion about disabling shared folders in
Messaging Server System Administrator's Guide.

MMP Security Guidelines
The MMP serves as a proxy for the Message Store, therefore, it needs to protect access to
end user data and guard against unauthorized access. "Protecting MMPs" outlines general
guidelines.

You can use the server machine on which the multiplexor is installed as a firewall machine. By
routing all client connections through this machine, you can restrict access to the internal
Message Store machines by outside computers. The multiplexors support both unencrypted
and encrypted communications with clients.

For more information, see the discussion about MMP badguy throttling and MMP connection
limits in Messaging Server Reference.

User Authentication Guidelines
User authentication allows end users to securely log in through their mail clients to retrieve
their mail messages. "Planning Messaging User Authentication" outlines general guidelines.
This section adds the following topics:

• Acquiring SSL Server Certificates for the Server Domains

• Requiring SMTP Authentication for Mail Submission

Acquiring SSL Server Certificates for the Server Domains
Refer to "Certificate-Based Authentication for Messaging Server" for more information.

Note the following recommendations:

• Acquire SSL server certificates for server domains to which your users will connect from a
third-party CA. If you also want to secure inter-deployment connections, recommended for
a geographically distributed deployment and to meet legal requirements in some
jurisdictions, get certificates for your Directory Servers and back-end IMAP/POP storage
servers.

• Purchasing Certificate Authority (CA) service or software for your enterprise may be cost
effective if you have many hosts in your deployment. Be sure to use at least 2048-bit RSA
with SHA 256 signatures per current guidelines unless your jurisdiction does not permit
that or some of your mail clients do not support that.

Chapter 4
Security Features

4-13

• The certutil provided with Solaris and Messaging Server Installer can be used with the -g
2048 and -Z SHA256 switches. Once enabled, you can configure SSL.

Some guidelines for SSL include:

• Having a plan for SSL certificate or CA expiration.

• Turning on SSL where required (external services, possible internal services)

• Requiring SSL where possible (RestrictPlainPasswords, plaintextmincipher)

Requiring SMTP Authentication for Mail Submission
SMTP Authentication, or SMTP Auth (RFC 2554) is the preferred method of SMTP submission
server security. SMTP Auth allows only authenticated users to send mail through the MTA. For
more information, see:

• The discussion about channel configuration in Messaging Server Reference.

• The discussion about SMTP authentication and SASL in Messaging Server Reference.

• The discussion about requiring password submission to login to Messaging Server in
Messaging Server System Administrator's Guide.

• The discussion about the authrewrite channel option in Messaging Server Reference.

Message Encryption Guidelines
"Planning Message Encryption Strategies" covers S/MIME and Encryption with SSL for
encryption and privacy solutions. Review the following guidelines and recommendations:

• Determining SSL Cipher Suites

• Using Solaris Crypto Framework in Place of NSS Default Software Token

Determining SSL Cipher Suites
See "Configuring Encryption and Certificate-Based Authentication".

Using Solaris Crypto Framework in Place of NSS Default Software Token
To use the cryptographic support in modern SPARC CPUs, you can configure NSS to use the
Solaris Crypto Framework. See the discussion about SPARC systems and cryptographic
framework in Managing Encryption and Certificates in Oracle Solaris 11.2.

Security Considerations for Developers
For secure programming best practices, refer to Messaging Server MTA Developer's
Reference.

Chapter 4
Security Considerations for Developers

4-14

5
Using Role-Based Access Control

This chapter describes how to use role-based access control (RBAC) and the required setup
for Oracle Solaris and Linux OS where privileges are available.

Overview of Role-Based Access Control
Role-based access control (RBAC), a feature in Oracle Solaris and Linux, permit non-
privileged users to have access to certain privileged functionality, under certain specified
circumstances. At a minimum, in Solaris, you can grant the equivalent of setuid root to a
particular program, but only when run by a certain user. RBAC enables you to fine-tune access
to privileges so that they are available in a restricted environment and only when needed.

In addition, Oracle Solaris includes privileges that give finer-grained access so that a process
that requires elevated access can be granted just the minimum access necessary to satisfy its
needs without having to use the traditional UID 0 full-access. For example, a program that
needs to bind to a privileged port (typically one with a port number that is less than 1024, such
as port 25 for SMTP) would have needed root access just for that one activity. With privileges,
the program can use the net_privaddr privilege for Solaris and cap_net_bind_service
capability for Linux to grant the access needed to bind to the port without having full root
access. By compartmentalizing privileged functions, security is greatly enhanced.

You can use RBAC for both methods, and each improves Oracle Communications Messaging
Server security.

Theory of Operations
Role-based access control is managed through several files that are located in the /etc
and /etc/security directories. You first create a profile that defines the new access that can be
granted to the Messaging Server user account. Then you list all the special access that is
granted to that profile. Finally, the Messaging Server user account is given access to the new
profile.

The special access permitted by the profile is managed through intermediate commands that
run the programs with the defined access. The pfexec(1) command is generally responsible
for running a program that can then be given elevated access. pfexec is used by the
Messaging Server start-msg, stop-msg, and imsimta (through the imtacli program)
commands, and the job_controller, to take advantage of role-based access controls.

For more information about role-based access controls, see rbac(5).

5-1

Setting Up and Using RBAC for Solaris

Caution:

Implementing role-based access controls involves modifying system files that provide
security definitions for the operating system and incorrect modifications may result in
potential problems.

The following steps make direct modifications to files in the /etc/security directly,
which can also be made by using the Oracle Solaris Management Console
(smc(1m)).

Assumptions in the Examples: The following example commands assume that the
Messaging Server is installed in the /opt/sun/comms/messaging64 directory and that the
Messaging Server processes are using mailsrv as the Unix user.

1. Copy MessagingServer_home/examples/rbac/MessagingServer.html to the /usr/lib/
help/profiles/locale/C directory. This file is referenced by the Messaging Server profile
definition. For example:

cp /opt/sun/comms/messaging64/examples/rbac/MessagingServer.html /usr/lib/help/
profiles/locale/C

2. Append the contents of MessagingServer_home/examples/rbac/prof_attr.example
to /etc/security/prof_attr. This is the Messaging Server profile definition.

cat /opt/sun/comms/messaging64/examples/rbac/prof_attr.example >> /etc/security/
prof_attr

3. Edit MessagingServer_home/examples/rbac/exec_attr.example to replace msg.RootPath
with the actual path for your Messaging Server installation. For this example, instances of
msg.RootPath are replaced with /opt/sun/comms/messaging64.

4. Append the contents of the edited MessagingServer_home/examples/rbac/
exec_attr.example to /etc/security/exec_attr. This defines the special permissions
granted to the Messaging Server profile.

cat /opt/sun/comms/messaging64/examples/rbac/exec_attr.example >> /etc/security/
exec_attr

5. Modify the user account used by the Messaging Server to have access to this new profile.

usermod -P 'Oracle Communications Messaging Server' mailsrv
6. Modify the dispatcher process privilege, so that the dispatcher is able to successfully start.

Edit the /etc/security/exec_attr file and add proc_taskid, for example:

Oracle Communications Messaging Server:solaris:cmd:::/opt/sun/comms/messaging64/lib/
dispatcher:privs=net_privaddr,proc_taskid

7. Set the rbac option to 1 to fully enable RBAC usage. For example:

msconfig set rbac 1
msconfig show rbac
role.base.rbac = 1

Once the RBAC has been set up, the Messaging Server user has sufficient access so as not to
require being run as root, to use the following commands:

Chapter 5
Setting Up and Using RBAC for Solaris

5-2

• start-msg

• stop-msg

• imsimta restart | shutdown | startup | stop

Setting Up and Using RBAC for Linux
Messaging Server uses privileged ports. Therefore, the processes that non-root users start
cannot bind with these ports. To allow a non-root user to perform operations on Messaging
Server, you must set the cap_net_bind_service capability to the effective and permitted set
for executable files. Then executable files acquire the capability and provide permissions to
bind to the privileged ports. These elevated privileges allow non-root users to perform
operations on Messaging Server.

The following example shows setting up cap_net_bind_service with effective and permitted
set to the imapd executable file:

/usr/sbin/setcap cap_net_bind_service+ep MessagingServer_home/lib/imapd

For more information on permitted and effective set, see:

https://man7.org/linux/man-pages/man7/capabilities.7.html
See "Messaging Server Privileges and Executable Files" for information on executable files
and privileges.

Non-root users can perform the following Messaging Server operations by obtaining
appropriate capabilities on Linux OS:

• Start Messaging Server

• Stop Messaging Server

• Set various msconfig options

• Execute imsimta commands

After elevating the privileges of executable files, the dynamic linker/loader or ld.so does not
link with libraries in an untrusted path which is the location where a non-root user has set up
Messaging Server. If a non-root user wants to run such executable files, the non-root user
should add the Messaging Server library path to ld.so trusted path.

Configuring Non-Root Users with Messaging Server
You must elevate port-specific privileges to executable files to configure non-root users to start
Messaging Server services.

Prerequisites

Table 5-1 lists the OS and platform compatibility requirements to configure non-root users with
Messaging Server on Linux OS.

Table 5-1 Operating system and platform compatibility

Operating System Supported versions Minimal Kernel version

Oracle Linux 6 8.0.2.4 2.2

Oracle Linux 7 8.0.2.4 and 8.1.0.1 2.2

Chapter 5
Setting Up and Using RBAC for Linux

5-3

https://man7.org/linux/man-pages/man7/capabilities.7.html

To configure non-root users with Messaging Server:

1. Log in as root.

2. Install Messaging Server where a non-root user is the owner.

3. Configure Messaging Server with user name of the non-root user who wants to set up
RBAC configuration.

4. Set the rbac option to 1 to enable RBAC usage. For example:

./msconfig set rbac 1
5. Set the file capabilities as a root user. For more information on file capabilities, see:

https://man7.org/linux/man-pages/man7/capabilities.7.html.

6. In the /etc/ld.so.conf.d/ location, create the ucsmsld.conf file.

7. Add the MessegingServer_home/lib path as a root user in the ucsmsld.conf file.

Note:

By default, the lib location of Messaging Server is /opt/sun/comms/
messaging64/lib.

8. Run ldconfig to add the Messaging Server library path to dynamic linker trusted path.

9. Log in as a non-root user and execute the following command to start all the processes
that are assigned to the non-root user:

MessegingServer_home/bin/start-msg

Messaging Server Privileges and Executable Files
Messaging Server executable files installed under non-root users directory must possess Linux
capabilities to start the processes.

Table 5-2 lists the Messaging Server executable files for which the privileges have to be raised
by setting Linux capabilities.

Table 5-2 Executable Files and privileges

Executable File Privilege

AService cap_net_bind_service

dispatcher cap_net_bind_service

imapd cap_net_bind_service

popd cap_net_bind_service

Note:

If you use the pipe channel, the pipe_master executable requires the following
capabilities to get the privilege: cap_dac_override, cap_fowner, and cap_setuid.

Chapter 5
Setting Up and Using RBAC for Linux

5-4

https://man7.org/linux/man-pages/man7/capabilities.7.html

Reference Information
For more information about role-based access controls, see the following sources:

• Oracle Solaris 10 documentation: System Administration Guide: Security Services (Roles,
Rights Profiles, and Privileges)

• man pages: smc(1M), usermod(1M), prof_attr(4), exec_attr(4), privileges(5), rbac(5)

Chapter 5
Reference Information

5-5

6
Protecting Against Email Spammers

This chapter describes how to protect Oracle Communications Messaging Server against
spam, viruses, and other attacks.

Overview of Email Spammers and Compromised User Accounts
Spammers are now using sophisticated phishing attacks to target individual organizations and
collect valid login details from ill-informed and overly-trusting account owners. Phishers then
use these compromised account details to send spam emails by authenticating to the
Messaging Server MTA and Webmail processes, thus bypassing this security restriction.

As the spam emails are delivered to external recipients, Realtime Blacklists (RBLs) are listing
these sending organizations. This in turn is causing legitimate non-spam emails to be rejected
by organizations that use these same RBLs.

This document provides best-practice information on how to protect your organization against
phishers and compromised user accounts. It provides proactive and reactive methods to
reduce the impact of compromised accounts.

Preventing Outbound Spam: Proactive Methods
Reduce the chances that a targeted phishing attack succeeds by implementing preventative
measures such as:

• Educating your account holders. This is the best method to proactively avoid problems. For
example, send regular reminders that your organization will never ask for account details
by using email, and that users must immediately report such emails. Set up an appropriate
role account for this task.

• Implementing anti-spam and anti-virus applications that check for phishing style email. For
more information, see the discussion about integrating spam and virus filtering programs in
Messaging Server System Administrator's Guide.

• Blocking known phishing addresses or common role accounts from sending emails from
outside the organization, for example: helpdesk@domain.com, security@domain.com, and
so on. For more information, see:

https://code.google.com/archive/p/anti-phishing-email-reply/
• Using good password policies. Stop easy-to-guess passwords (this includes administration

accounts and role accounts, that is, uid=admin, calmaster, and so on) to protect against
dictionary attacks. Use password expiry to force users to change passwords on a regular
basis.

• Using authenticated emails with different From: addresses (especially if not for the
organization) increase the chances that your email accounts are used for sending out
spam, or indeed used for additional phishing attacks against other organizations.

6-1

https://code.google.com/archive/p/anti-phishing-email-reply/

Preventing Outbound Spam: Reactive Measures
Despite the best preventative measures, spammers can still acquire valid account details. By
putting in place mechanisms to limit the number of email messages that users can send, you
reduce the impact of compromised accounts. You should use these limiting techniques on both
outgoing and incoming email.

Blocking Submissions of Local Senders Who Might Be Spammers
When a compromised user account is used to send emails to a large number of external email
addresses, it is highly probable that some of these email addresses will be invalid or trigger
spam filtering mechanisms at the recipient server end and be rejected. With the LOG_ACTION
mapping table and MeterMaid, it is possible to restrict email upload based on these rejections.
For further details, see the discussion about blocking potential spammers in Messaging Server
System Administrator's Guide.

Rate Limiting All Outgoing Email
Rate limit outgoing email as shown in this example. Use different levels of restrictions
depending on the trust of the IP address of the client sending the email. For example:

• Most emails for internal auth-send

• Less emails for internal non-auth-send

• Less emails again for external-auth-send

• Less emails again for mshttpd source (Webmail emails) because for practical reasons, a
human cannot send lots of emails through Webmail in a short period of time

Rate Limiting Submission Based on the Authenticated Sender
Rate limiting submission based on the authenticated sender using memcache can be
configured with a single msconfig command:

msconfig> set mapping:FROM_ACCESS.rule "TCP|*|SMTP*|MAIL|tcp_*|*|*"
"C;R$[IMTA_LIB:check_memcache.so,throttle,0,memcache.example.com:22122,
sendlim -$4,10,300]$X4.2.3|$NRate$ too$ high$E"

This example will limit users to 10 messages every 5 minutes (300 seconds).

In this example "memcache.example.com:22122" would be replaced by the address and port
of the actual memcached server in the deployment.

MeterMaid can also be configured to limit the number of messages an authenticated user can
send in a number of minutes regardless of source (SMTP, Webmail).

Rate Limiting Only Outgoing Spam
Implement scanners/spam filtering on outgoing email. One idea is to use a spam filter to flag
messages as spammy. It will also call a Sieve action that calls a mapping rule, which calls
MeterMaid to monitor the count of these emails (on env-from address). If the number of emails
exceeds some threshold then perform an action on the email such as: hold, capture a copy,
discard, bounce, and so forth.

An example:

Chapter 6
Preventing Outbound Spam: Reactive Measures

6-2

Configure your anti-spam scanner to add an X-header to all outbound messages that indicates
whether the message is spam.

X-Spam-Score-Internal: ****

Add the following to a channel that processes your outbound mail. This will cause a sieve filter
to be executed for all messages dequeued from that channel. You can also use a
destinationfilter, depending on your environment.

sourcefilter file:IMTA_TABLE:authspam.filter

Create a sieve filter called authspam.filter in your config directory. It checks to see if the
message is rated as spam (from the X-header) and it extracts the env-from and env-to from the
message. It makes a call to a mappings table with the env-from and the env-to as arguments.
It then rejects the message back to the env-from if it gets a positive response from the
mappings. The next step after identifying a compromised account is to prevent further misuse
of the account by spammers and address any negative consequences such as being listed on
blacklist. The following techniques will provide a starting point:

require ["variables","reject","envelope"];

only limit messages rated as spam
if header :contains "X-Spam-Score-Internal" "****" {

 pull out the envelope from address
 if envelope :all :matches "from" "*" {
 set "FROM_ADDR" "${1}";

 pull out the envelope to address
 if envelope :all :matches "to" "*" {
 set "TO_ADDR" "${1}";

 perform FILTER_limitauthspam mapping callout
 if limitauthspam "${FROM_ADDR}|${TO_ADDR}" {
 set "RESULT" "${0}";

 reject the message
 reject "Your account has been sending a lot of messages that appear to
be spam. ";
 }
 }
 }
}

Put this in the mappings. The sieve script makes a call to this mapping to query MeterMaid.
The mapping includes exemptions if the env-to matches recipients that you want to be able to
receive spam messages from your users.

FILTER_limitauthspam

 |is-spam@ NE
 |not-spam@ NE
 |abuse@ NE
 |postmaster@ NE
 | $[IMTA_LIB:check_metermaid.so,throttle,limitauthspam,$0]$0$Y

Set these options to enable the MeterMaid database. This will cause MeterMaid to allow 50
outbound spam messages per hour for each env-from address. Table 6-1 shows the
MeterMaid database options in both Unified Configuration and legacy configuration, and the
value of each option.

Chapter 6
Preventing Outbound Spam: Reactive Measures

6-3

Table 6-1 MeterMaid Database Options

Unified Configuration Option Legacy Configuration Option Value

metermaid.local_table:limitauthspam.data_type metermaid.table.limitauthspam.data_type string

metermaid.local_table:limitauthspam.quota metermaid.table.limitauthspam.quota 50

metermaid.local_table:limitauthspam.quota_time metermaid.table.limitauthspam.quota_time 3600

metermaid.local_table:limitauthspam.table_options metermaid.table.limitauthspam.options nocase

metermaid.local_table:limitauthspam.max_entries metermaid.table.limitauthspam.max_entries 1000

Note:

This will not work if the messages are not rated as spam. 419 scams are notorious
for slipping through spam filters.

It is possible for the spammer to forge their env-from address. If this occurs, the sieve must be
updated to accommodate. Or, do not allow outgoing email with a different From: address.

Reject/Discard All Outbound Spam
If your tolerance for outbound spam is high, and you do not care about the occasional
message being blocked by your spam filter, rejecting or discarding all outbound spam message
back to the sender is an effective way to deal with the event of a compromised account.

You may want to disable IP reputation checks in your spam scanner for when it processes
your outbound mail since many consumer IPs will be on blacklists.

If you are rejecting the messages back to the sender, be careful that you are only rejecting mail
to authenticated senders. If you want to prevent outbound mail that you are forwarding, then
you should not reject the mail since it will backscatter out to the internet and get your servers
blacklisted. Consider discarding or quarantining this mail instead.

Setting Up a No Phishing Zone
Experienced Messaging Server administrators know that dealing with spam is a high-priority
job requiring constant attention as spammers evolve and refine their methods of attacks.
Recently, many administrators have noted the rise of phishing attacks, especially against (but
not exclusively) Webmail clients.

Long time Messaging Server administrators have been exchanging ideas and collaborating on
all aspects of Messaging Server, including anti-spam/anti-virus techniques, by using the Info-
iMS@sonnection.nl forum. In brief, this alias is the independent discussion forum for those
interested in Messaging Server and all its permutations. If you are a Messaging Server
administrator and haven't yet subscribed to this alias, we highly recommend that you do so.

An email thread from July 2008 highlighted the phishing problem, especially in the EDU space.
Many ideas were suggested on how to combat this particular spam issue.

The following is a summary of anti-spam techniques to consider:

Chapter 6
Setting Up a No Phishing Zone

6-4

• Examine the sent folder to get the source IP of the submission, then null route the IP
address on the Webmail front ends.

• Configure MeterMaid. MeterMaid limits the number of messages a user can send in a
number of minutes regardless of source (SMTP, Webmail).

• Use the imsconnutil -k -u uid command to disconnect the offending user account.

• Block the offending IP address at your firewall.

• Set the inetuserstatus attribute for the offending user to inactive, change the user's
password, then clear the queue(s). This technique is in response to an attack, rather than
preventing or detecting the attack.

• Enable the Directory Server audit log. Monitor for changes to directory entries, such as
signature files and reply-to addresses, by using a script and crontab to classify likely
compromised accounts.

• For more information about how to deploy the Messaging Server MTA and anti-spam/anti-
virus scanning systems, see the discussion about Spam and virus filtering in Messaging
Server Reference.

• Call out to MeterMaid from the FROM_ACCESS mapping table, passing the user
authentication as data rather than (or perhaps in addition to) calling out to MeterMaid from
the PORT_ACCESS mapping table, passing the source IP as data. This technique limits
how many messages some (authenticated) user can submit.

• Use Postfix/Policyd. Then change the default smtphost of Webmail to use it.

• Use this list of these password phishing reply addresses: http://code.google.com/p/
anti-phishing-email-reply/

• Implement scanning systems on both incoming and outgoing email.

• Use the https://talosintelligence.com/ database.

• You can use LOG_ACTION to block submissions of local senders who might be sending
spam.

Recovering From Phishing Attacks That Have Compromised
User Accounts

The next step after identifying a compromised account is to prevent further misuse of the
account by spammers and address any negative consequences such as being listed on a real-
time blacklist. The following techniques will provide a starting point:

• Prevent further logins of the comprised user account:

– Mark account as inactive (mailUserStatus: inactive).

– Change the password of the account.

– Advise the local IT support helpdesk that access to the account has been blocked so
that should the owner contact the IT help desk they can work with the customer to use
improved password policies, and so on, in the future.

• Kill any existing logins by using the imsconnutil -k -u uid command.

• Block the IP address used to send the email at your network firewall.

• Kill any existing Webmail sessions to prevent re-use.

– Increase logging to Information. This is required to capture the session ID information:

Chapter 6
Recovering From Phishing Attacks That Have Compromised User Accounts

6-5

http://code.google.com/p/anti-phishing-email-reply/
http://code.google.com/p/anti-phishing-email-reply/
https://talosintelligence.com/

Unified Configuration: msconfig set http.logfile.loglevel Information

Legacy Configuration: configutil -o logfile.http.loglevel -v Information

– Disable HTTP IP security. With IP security enabled, only the IP address that initially
logged into the Webmail process will be able to logout.

Unified Configuration: msconfig set http.ipsecurity 0

Legacy Configuration: configutil -o service.http.ipsecurity -v no

– Restart mshttpd processes.

stop-msg http;start-msg http
– If you find an account is compromised, locate the login string with the SID (session ID),

for example:

[05/May/2009:12:23:21 +1000] server httpd[7257]: Account Information: login
[129.158.87.204:51539] user001
plaintext sid=YvgZdFHgwx0

– Change/reset the password for the compromised account.

– Use wget to log out of the session:

wget -o /dev/null "https://server_name/cmd.msc?sid=session ID&cmd=logout"
for example:
wget -o /dev/null "https://server1.example.com/cmd.msc?
sid=YvgZdFHgwx0&cmd=logout"

• Find and remove any existing spam email sent through the compromised account in the
tcp_local MTA queue.

• Find out if you have been blacklisted: Spamcop, Realtime Blackhole List Lookup.

– To be able to remove yourself from a blacklist depends on the list. For example, see:
https://www.spamhaus.org and https://ers.trendmicro.com/.

• Vary the IP address of your outgoing SMTP client for the tcp_local channel.

– Bind outgoing email to an IP address by using the interfaceaddress SMTP channel
option.

– If an IP address gets blacklisted, shift to another IP address (be careful if you are using
SPF).

• Enable Directory Server audit log: monitor for changes, such as signature files and reply-
to address, by using a script and crontab to classify likely compromised accounts; remove
modifications.

Greylisting Webmail
The following proof-of-concept instructions describe how to enable greylisting of emails that
are sent through the Convergence Webmail process. Use the third-party gross daemon and
plug-in to provide greylisting functionality:

https://code.google.com/archive/p/gross
One advantage of the gross daemon is that you can configure greylisting only if the sender's IP
address is also on a blacklist.

Installing and Configuring Greylisting for Webmail
1. Download, compile, configure, and start the gross daemon. See:

Chapter 6
Greylisting Webmail

6-6

https://www.spamhaus.org
https://ers.trendmicro.com/
https://code.google.com/archive/p/gross

http://code.google.com/archive/p/gross/
2. Copy the grosscheck.so library file, compiled as part of the compilations of the gross

daemon, to the MTA server's MessagingServer_home/lib directory.

3. Compile and install the c-ares library on the MTA server.

Note:

If the platform that is running the gross daemon is different from the MTA server
platform, recompile the gross daemon to get a compatible grosscheck.so library.

4. Configure the MTA by creating a new file in the MessagingServer_home/config directory
called greylist.sieve containing the following code:

require ["ereject","variables"];
Need to extract IP address from Received Header
Require UWC6.3p4 and above to add the Forward-For: header
if (header :matches "Received" "*(Forwarded-For: *)*") {
 set "IP_ADDR" "${2}";

 Need to extract header from address
 if (header :matches "From" "*<*>*") {
 set "FROM_ADDR" "${2}";

 Perform FILTER_GREYLIST mapping callout
 set "RESULT" greylist("${IP_ADDR}|${FROM_ADDR}|uwc");

 Block if greylist check returns a value -- indicating that they are a 'bad'
sender
 if (not string :is "${RESULT}" "")
 { *NOTE* erejec is used instead of erejec(t) to workaround bug
#6704720
 erejec "Delivery failed. Please wait 10 seconds and try sending again...";
 }
 }
}

5. Add the following to the MessagingServer_home/config/mappings file:

FILTER_GREYLIST

 ! use gross to check all triplets (client_ip,sender,recipient)
 ||*
C[IMTA_LIB:grosscheck.so,grosscheck,129.158.87.192,,5525,$0,$1,$2,]$Y$E
 * $Y

6. Add the following to the source channel in the MessagingServer_home/config/imta.cnf file
that accepts email from the mshttpd process, that is, tcp_intranet, tcp_uwc:

sourcefilter file:IMTA_TABLE:greylist.sieve
7. Recompile and restart the MTA. imsimta cnbuild; imsimta restart

Troubleshooting Your Greylisting Deployment
1. Configure the gross.conf file to use a blacklist that returns a result for all IP addresses, for

example:

dnsbl = relays.ordb.org

Chapter 6
Greylisting Webmail

6-7

http://code.google.com/archive/p/gross/

2. Run the grossd process in the foreground, for example: gross -d

3. Attempt to send a test email. You should see a message similar to the following in the
gross output:

Fri Jul 18 16:34:53 2008 #9: a=greylist d=2 w=1 c=129.158.87.66 s=uwc
r=user@example.com m=relays.ordb.org+1

Webmail users should receive an error message in their email client such as:

SMTP Error 5.7.1 Delivery Failed. Please wait 10 seconds and try sending again

If users receive such an error, instruct them to Click OK, wait 10 seconds, then click the
Send button again. The following message should then appear in the gross output:

Fri Jul 18 16:42:48 2008 #a: a=match d=0 w=0 c=129.158.87.66 s=uwc r=user@example.com

The email should also be accepted.

HTML Filtering in Convergence
When an mshttpd client requests HTML processing, that request is rejected by default. Thus,
when deploying Convergence 3.0.1.1.0 and greater, you must configure Convergence to filter
embedded HTML content from email messages, because such content could contain malicious
code. When HTML filtering is enabled, Convergence searches incoming messages and
removes specified elements, attributes, and protocols, and then permits the email to be
accessed by the user. After you have configured Convergence to filter HTML, you configure
Messaging Server to accept mshttpd client requests.

By default, in Convergence HTML filtering is disabled.

Configuring HTML filtering consists of the following tasks:

• Enabling HTML Filtering in Convergence

• Enabling Messaging Server to Accept mshttpd Client Requests

Enabling HTML Filtering in Convergence
To enable HTML filtering in Convergence, see the discussion about HTML filtering in
Convergence System Administrator’s Guide.

Enabling Messaging Server to Accept mshttpd Client Requests
You enable Messaging Server to accept mshttpd client requests by setting the
http.convergencefilterenabled option to 1.

In addition, once processing is enabled, mshttpd generates a log warning when a request is
made to process an unknown type (that mshttpd does not know how to process).

Domain Keys Identified Mail (DKIM)
DKIM is a cryptographic signature-based method to authenticate email senders. With DKIM,
email senders generate public and private key pairs. The public key is published to DNS
records, and the matching private keys are stored in a sender's outbound email servers.

See the discussion about DKIM (Doc ID 2681977.1) on the My Oracle Support Web site:
https://support.oracle.com/portal/.

Chapter 6
HTML Filtering in Convergence

6-8

https://support.oracle.com/portal/

7
Security and Access Control in Messaging
Server

Oracle Communications Messaging Server supports security features that enable you to keep
messages from being intercepted, prevent intruders from impersonating your users or
administrators, and permit only specific users access to specific parts of your messaging
system.

The Messaging Server security architecture is part of the security architecture of Oracle
servers as a whole. It is built on industry standards and public protocols for maximum
interoperability and consistency.

About Server Security
Server security encompasses a broad set of topics. In most enterprises, ensuring that only
authorized people have access to the servers, that passwords or identities are not
compromised, that people do not misrepresent themselves as others when communicating,
and that communications can be held confidential when necessary are all important
requirements for a messaging system.

Perhaps because the security of server communication can be compromised in many ways,
there are many approaches to enhancing it. This information focuses on setting up encryption,
authentication, and access control. It discusses the following security-related Messaging
Server topics:

• User ID and password login: Requiring users to enter their user IDs and passwords to
log in to IMAP, POP, HTTP, or SMTP, and the use of SMTP password login to transmit
sender authentication to message recipients.

• Encryption and authentication: Using the TLS and SSL protocols to encrypt
communication and authenticate clients.

• Administrator access control: Using the access-control facilities to delegate access to a
Messaging Server and some of its individual tasks.

• TCP client access control: Using filtering techniques to control which clients can connect
to your server's POP, IMAP, HTTP, and authenticated SMTP services.

Not all security and access issues related to Messaging Server are treated in this chapter.
Security topics that are discussed elsewhere include the following:

• Physical security: Without provisions for keeping server machines physically secure,
software security can be meaningless.

• Message-store access: You can define a set of message-store administrators for the
Messaging Server. These administrators can view and monitor mailboxes and can control
access to them. For details, see the discussion about message store management in
Messaging Server System Administrator's Guide.

• End-user account configuration: End-user account information can be primarily
maintained by using the Delegated Administrator product.

• Filtering unsolicited bulk email (UBE): See the discussion about mail filtering and
access control in Messaging Server System Administrator's Guide.

7-1

• Secure Multipurpose Internet Mail Extensions (S/MIME) is described in the discussion
about administering SMIME in Convergence in Convergence System Administrator's
Guide.

About HTTP Security
Messaging Server includes an http-based service that provides a custom protocol called
WMAP. This service is only used by the Convergence web client, runs on ports 8990/8991 and
should be disabled if Convergence is not used. For more information about http access to
email and security thereof, see the documentation for Convergence.

Configuring Authentication Mechanisms in Messaging Server
An authentication mechanism is a particular method for a client to prove its identity to a server.
Messaging Server supports authentication methods defined by the Simple Authentication and
Security Layer (SASL) protocol and it supports certificate-based authentication. The SASL
mechanisms are described in this information. For more information about certificate-based
authentication, see "Configuring Encryption and Certificate-Based Authentication".

Overview
Messaging Server supports the following SASL authentication methods for password-based
authentication.

• PLAIN. This mechanism passes the user's plaintext password over the network, where it is
susceptible to eavesdropping. Secure Sockets Layer (SSL) can be used to alleviate the
eavesdropping problem. For more information, see "Configuring Encryption and
Certificate-Based Authentication".

• APOP. A challenge/response authentication mechanism that can be used only with the
POP3 protocol. Defined in RFC 1939. Should be used only by sites that have legacy usage
of this mechanism.

• CRAM-MD5. A challenge/response authentication mechanism similar to APOP, but
suitable for use with other protocols as well. Defined in RFC 2195. Should be used only by
sites that have legacy usage of this mechanism.

• LOGIN. This is equivalent to PLAIN and exists only for compatibility with pre-standard
implementations of SMTP authentication. This mechanism is only enabled for use by
SMTP.

With a challenge/response authentication mechanism, the server sends a challenge string to
the client. The client responds with a hash of that challenge and the user's password. If the
client's response matches the server's own hash, the user is authenticated.

Note:

The POP, IMAP, and SMTP services support all SASL mechanisms. The HTTP
service supports only the plaintext password mechanism.

Table 7-1 shows some SASL and SASL-related configuration options. For the complete listing
of options, see Messaging Server Reference.

Chapter 7
Configuring Authentication Mechanisms in Messaging Server

7-2

Table 7-1 Some SASL and SASL-related Options

Option Description

auth.has_plain_passwords Boolean to indicate that directory stores plaintext passwords which
enables APOP and CRAM-MD5. Default: 0 (False)

auth.auto_transition Boolean. When set and a user provides a plain text password, the
password storage format is transitioned to the default password storage
method for the directory server. This can be used to migrate from
plaintext passwords to APOP and CRAM-MD5. Default: 0 (False)

imap.allowanonymouslogin This enables the SASL ANONYMOUS mechanism for use by IMAP.
Default: 0 (False)

imap|pop|smtp|
http.plaintextmincipher

If this is greater than 0, then disable use of plaintext passwords unless
a security layer (SSL or TLS) is activated. This forces users to enable
SSL or TLS on their client to log in, which prevents exposure of their
passwords on the network. The MMP has an equivalent option
restrictplainpasswords. Default: 0

auth.searchfilter This is the default search filter used to look up users when one is not
specified in the inetDomainSearchFilter for the domain. The syntax is
the same as inetDomainSearchFilter. (See Schema Reference).
Default: (&(uid=%U)(objectclass=inetmailuser))

To Configure Access to Plaintext Passwords
To work, the CRAM-MD5 or APOP authentication methods require access to the users'
plaintext passwords. You must perform the following steps:

1. Configure Directory Server to store passwords in cleartext.

2. Configure Messaging Server so that it knows Directory Server is using cleartext
passwords.

To Configure Directory Server to Store Cleartext Passwords
To enable the CRAM-MD5 or APOP mechanisms, you must configure the Directory Server to
store passwords in cleartext. If you are using a Directory Server prior to version 6, the following
instructions apply. (For version 6 or later, refer to the latest Directory Server documentation.)

1. In the Directory Server Console, open the Directory Server you want to configure.

2. Click the Configuration tab.

3. Open Data in the left pane.

4. Click Passwords in the right pane.

5. From the Password encryption drop-down list, choose cleartext.

Note:

This change only impacts users created in the future. You must transition or reset
existing users' passwords after this change.

Chapter 7
Configuring Authentication Mechanisms in Messaging Server

7-3

To Configure Messaging Server for Cleartext Passwords
You can configure Messaging Server so that it knows the Directory Server is able to retrieve
cleartext passwords. This makes it safe for Messaging Server to advertise APOP and CRAM-
MD5:

1. Enable the auth.has_plain_passwords option.

msconfig set auth.has_plain_passwords 1
2. To disable these challenge/response SASL mechanisms, disable the

auth.has_plain_passwords option (set the value to 0).

Note:

Existing users cannot use APOP and CRAM-MD5 until their password is reset or
migrated (see "Transitioning Users").

Transitioning Users
You can specify information about transitioning users. An example would be if a user password
changes or if a client attempts to authenticate with a mechanism for which they do not have a
proper entry.

• Set the auth.auto_transition option.

msconfig set auth.auto_transition value

For the value, you can specify one of the following:

– 0 - Do not transition passwords. This is the default.

– 1 - Do transition passwords.

To successfully transition users, you must set up ACIs in the Directory Server that enable
Messaging Server write access to the user password attribute. To do this, perform the steps in
the following task.

To Transition Users
If you are using a Directory Server prior to version 6, the following instructions apply. (For
version 6 or later, refer to the latest Directory Server documentation.)

1. In Console, open the Directory Server you want to configure.

2. Click the Directory tab.

3. Select the base suffix for the user/group tree.

4. From the Object menu, select Access Permissions.

5. Select the ACI for Messaging Server End User Administrator Write Access Rights.

6. Click ACI Attributes.

7. Add the userpassword attribute to the list of existing attributes.

8. Click OK.

Chapter 7
Configuring Authentication Mechanisms in Messaging Server

7-4

Configuring Client Access to POP, IMAP, and HTTP Services
Messaging Server provides two ways to control client access, one for non-dispatcher services
and one for dispatcher services. This information describes the TCP client access control
mechanism used by non-dispatcher services, like the IMAP and POP servers. The proxy
servers, MMP and mshttpd, also use this mechanism (by using options such as
popproxy.domainallowed, imapproxy.domainallowed, and so on). The internal ENS server
uses the mechanism as well, but does not perform authentication and thus does not use LDAP
attributes. See the discussion of how to filter mail based on its source or header strings in
Messaging Server System Administrator's Guide.

Note:

The MMP behaves differently with respect to access control than the other services.
For example, the MMP IMAP service controls both IMAP and IMAP+SSL services
(that is, controls both ports 143 and 993). The other Messaging Server services treat
IMAP and IMAP+SSL as separate services, that is, IMAP+SSL on port 993 has its
own access control that is separate from IMAP on port 143.

If you are managing messaging services for a large enterprise or an Internet service provider,
be sure to also implement protection from spammers and DNS spoofers to improve the general
security of your network. See "Protecting Against Email Spammers" for more information.

If controlling access by IP address is not an important issue for your enterprise, you do not
have to create any filters. If minimal access control is all you need, see "Mostly Allowing" for
instructions.

How Client Access Filters Work
The Messaging Server access-control facility for TCP clients is an implementation of the TCP
wrapper concept. A TCP wrapper is a program that listens at the same port as the TCP
daemon it serves. It uses access filters to verify client identity, and it gives the client access to
the daemon if the client passes the filtering process. The design of the Messaging Server TCP
wrapper is based on the Unix Tcpd access-control facility (created by Wietse Venema).

As part of its processing, the Messaging Server TCP client access-control system performs
(when necessary) the following analyses of the socket end-point addresses:

• Reverse DNS lookups of both end points (to perform name-based access control)

• Forward DNS lookups of both end points (to detect DNS spoofing)

The system compares this information against access-control statements called filters to
decide whether to grant or deny access. For each service, separate sets of Allow filters and
Deny filters control access. Allow filters explicitly grant access. Deny filters explicitly forbid
access.

When a client requests access to a service, the access-control system compares the client's
address or name information to each of that service's filters, in order, by using these criteria:

• The search stops at the first match. Because Allow filters are processed before Deny
filters, Allow filters take precedence.

• Access is granted if the client information matches an Allow filter for that service.

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-5

• Access is denied if the client information matches a Deny filter for that service.

• If no match with any Allow or Deny filter occurs, access is granted, except in the case
where there are Allow filters but no Deny filters, in which case lack of a match means that
access is denied.

The filter syntax described here is flexible enough that you should be able to implement many
different kinds of access-control policies in a simple and straightforward manner. You can use
both Allow filters and Deny filters in any combination, even though you can probably implement
most policies by using almost exclusively Allows or almost exclusively Denies.

The following sections describe filter syntax in detail and give usage examples. "To Create
Access Filters for Services" gives the procedure for creating access filters.

Filter Syntax
Filter statements contain both service information and client information. The service
information can include the name of the service, names of hosts, and addresses of hosts. The
client information can include host names and host addresses. Both the server and client
information can include wildcard names or patterns.

The very simplest form of a filter is:

service:hostSpec

where service is the name of the service (such as SMTP, POP, IMAP, or HTTP) and hostSpec
is the host name, IPv4 address, or wildcard name or pattern that represents the client
requesting access. When a filter is processed, if the client seeking access matches client,
access is either allowed or denied (depending on which type of filter this is) to the service
specified by service. Here are some examples:

imap: roberts.newyork.example.com
pop: ALL
http: ALL

If these are Allow filters, the first one grants the host roberts.newyork.example.com access
to the IMAP service, and the second and third grant all clients access to the POP and HTTP
services, respectively. If they are Deny filters, they deny those clients access to those services.
For descriptions of wildcard names such as ALL, see "Wildcard Names".

Either the server or the client information in a filter can be somewhat more complex than this,
in which case the filter has the more general form of:

serviceSpec:clientSpec

Where serviceSpec can be either service or service@hostSpec, and clientSpec can be either
hostSpec or user@hostSpec. Where user is the user name (or a wildcard name) associated
with the client host seeking access. Here are two examples:

pop@mailServer1.example.com: ALL
imap: srashad@xyz.europe.example.com

If these are Deny filters, the first filter denies all clients access to the SMTP service on the host
mailServer1.example.com. The second filter denies the user srashad at the host
xyz.europe.example.com access to the IMAP service.

Finally, at its most general, a filter has the form:

serviceList:clientList

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-6

where serviceList consists of one or more serviceSpec entries, and clientList consists of one or
more clientSpec entries. Individual entries within serviceList and clientList are separated by
blanks and/or commas.

In this case, when a filter is processed, if the client seeking access matches any of the
clientSpec entries in clientList, then access is either allowed or denied (depending on which
type of filter this is) to all the services specified in serviceList. Here is an example:

pop, imap, http: .europe.example.com .newyork.example.com

If this is an Allow filter, it grants access to POP, IMAP, and HTTP services to all clients in either
of the domains europe.example.com and newyork.example.com. For information on using a
leading dot or other pattern to specify domains or subnet, see "Wildcard Patterns".

You can also use the following syntax:

"+" or "-" serviceList:*$next_rule

+ (allow filter) means the daemon list services are being granted to the client list.

- (deny filter) means the services are being denied to the client list.

* (wildcard filter) allow all clients to use these services.

$ separates rules.

The following example enables multiple services on all clients.

+imap,pop,http:*

The following example shows multiple rules, but each rule is simplified to have only one
service name and uses wildcards for the client list. (This is the most commonly used method of
specifying access control in LDIF files.)

+imap:ALL$+pop:ALL$+http:ALL

An example of how to disallow all services for a user is:

-imap:*$-pop:*$-http:*

Wildcard Names
Table 7-2 shows the wildcard names that represent service names, host names or addresses,
or user names:

Table 7-2 Wildcard Names for Service Filters

Wildcard Name Explanation

ALL, * The universal wildcard. Matches all names.

LOCAL Matches any local host (one whose name does not contain a dot
character). However, if your installation uses only canonical names,
even local host names will contain dots and thus will not match this
wildcard.

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-7

Table 7-2 (Cont.) Wildcard Names for Service Filters

Wildcard Name Explanation

UNKNOWN Matches any host whose name or address is unknown. Use this
wildcard name carefully. Host names may be unavailable due to
temporary DNS server problems - in which case all filters that use
UNKNOWN will match all client hosts. A network address is unavailable
when the software cannot identify the type of network it is
communicating with - in which case all filters that use UNKNOWN will
match all client hosts on that network.

KNOWN Matches any host whose name and address are known. Use this
wildcard name carefully: Host names may be unavailable due to
temporary DNS server problems - in which case all filters that use
KNOWN will fail for all client hosts. A network address is unavailable
when the software cannot identify the type of network it is
communicating with - in which case all filters that use KNOWN will fail
for all client hosts on that network.

DNSSPOOFER Matches any host whose DNS name does not match its own IP
address.

Wildcard Patterns
You can use the following patterns in service or client addresses:

• A string that begins with a dot character (.). A host name is matched if the last components
of its name match the specified pattern. For example, the wildcard pattern .example.com
matches all hosts in the domain example.com.

• A string of the form n.n.n.n/m.m.m.m. This wildcard pattern is interpreted as a net/mask
pair. A host address is matched if net is equal to the bitwise AND of the address and mask.
For example, the pattern 123.45.67.0/255.255.255.128 matches every address in the
range 123.45.67.0 through 123.45.67.127.

• A string of the form n.n.n.n/p. This wildcard pattern is interpreted as a CIDR where p is the
routing prefix. The corresponding subnet mask, mask, is p one bits followed by 32-p zero
bits for a total of 32 bits. A host address is matched if the bitwise AND of n.n.n.n and mask
is equal to the bitwise AND of the address and mask. For example, the pattern
123.45.67.0/25 matches every address in the range 123.45.67.0 through 123.45.67.127.

EXCEPT Operator

The access-control system supports a single operator. You can use the EXCEPT operator to
create exceptions to matching names or patterns when you have multiple entries in either
serviceList or clientList. For example, the expression:

list1EXCEPTlist2

means that anything that matches list1 is matched, unless it also matches list2.

Here is an example:

ALL: ALL EXCEPT isserver.example.com

If this were a Deny filter, it would deny access to all services to all clients except those on the
host machine isserver.example.com.

EXCEPT clauses can be nested. The expression:

list1 EXCEPT list2 EXCEPT list3

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-8

is evaluated as if it were:

list1 EXCEPT (list2 EXCEPT list3)

Server-Host Specification
You can further identify the specific service being requested in a filter by including server host
name or address information in the serviceSpec entry. In that case the entry has the form
service@hostSpec.

You might want to use this feature when your Messaging Server host machine is set up for
multiple Internet addresses with different Internet host names. If you are a service provider, you
can use this facility to host multiple domains, with different access-control rules, on a single
server instance.

Filter Examples
The examples in this section show a variety of approaches to controlling access. In studying
the examples, keep in mind that Allow filters are processed before Deny filters, the search
terminates when a match is found, and access is granted when no match is found at all.

The examples listed here use host and domain names rather than IP addresses. Remember
that you can include address and netmask information in filters, which can improve reliability in
the case of name-service failure.

Mostly Denying
In this case, access is denied by default. Only explicitly authorized hosts are permitted access.

The default policy (no access) is implemented with a single, trivial deny file:

ALL: ALL

This filter denies all service to all clients that have not been explicitly granted access by an
Allow filter. The Allow filters, then, might be something like these:

ALL: LOCAL @netgroup1
ALL: .example.com EXCEPT externalserver.example.com

The first rule permits access from all hosts in the local domain (that is, all hosts with no dot in
their host name) and from members of the group netgroup1. The second rule uses a leading-
dot wildcard pattern to permit access from all hosts in the example.com domain, with the
exception of the host externalserver.example.com.

Mostly Allowing
In this case, access is granted by default. Only explicitly specified hosts are denied access.

The default policy (access granted) makes Allow filters unnecessary. The unwanted clients are
listed explicitly in Deny filters such as these:

ALL: externalserver.example1.com, .example.asia.com
ALL EXCEPT pop: contractor.example1.com, .example.com

The first filter denies all services to a particular host and to a specific domain. The second filter
permits nothing but POP access from a particular host and from a specific domain.

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-9

Denying Access to Spoofed Domains
You can use the DNSSPOOFER wildcard name in a filter to detect host-name spoofing. When
you specify DNSSPOOFER, the access-control system performs forward or reverse DNS
lookups to verify that the client's presented host name matches its actual IP address. Here is
an example for a Deny filter:

ALL: DNSSPOOFER

This filter denies all services to all remote hosts whose IP addresses do not match their DNS
host names.

Controlling Access to Virtual Domains
If your messaging installation uses virtual domains, in which a single server instance is
associated with multiple IP addresses and domain names, you can control access to each
virtual domain through a combination of Allow and Deny filters. For example, you can use
Allow filters like:

ALL@msgServer.example1.com: @.example1.com
ALL@msgServer.example2.com: @.example2.com
...

coupled with a Deny filter like:

ALL: ALL

Each Allow filter permits only hosts within domainN to connect to the service whose IP address
corresponds to msgServer.exampleN.com. All other connections are denied.

Controlling IMAP Access While Permitting Access to Webmail
If you want to allow users to access Webmail, but not access IMAP, create a filter like this:

+imap:access_server_host,access_server_host

This permits IMAP only from the access server hosts. You can set the filter at the IMAP server
level by using imap.domainallowed, or at the domain/user level with LDAP attributes.

To Create Access Filters for Services
You can create Allow and Deny filters for the IMAP, POP, or HTTP services. You can also
create them for SMTP services, but they have little value because they only apply to
authenticated SMTP sessions. See the discussion of how to filter mail based on its source or
header strings in Messaging Server System Administrator's Guide.

To Create Filters by Using the Command Line
You can also specify access and deny filters at the command line as follows:

• To create or edit access filters for services:

msconfig set service.domainallowed filter

where service is POP, IMAP, or HTTP and filter follows the syntax rules described in "Filter
Syntax".

Chapter 7
Configuring Client Access to POP, IMAP, and HTTP Services

7-10

• To create or edit deny filters for services:

msconfig set service.domainnotallowed filter

where service is POP, IMAP, or HTTP and filter follows the syntax rules described in "Filter
Syntax". For a variety of examples, see "Filter Examples".

• Restart the relevant services when you make changes to their access filters.

Configuring Encryption and Certificate-Based Authentication
This information describes encryption and certificate-based authentication for Messaging
Server in a Unified Configuration.

Encryption and Certificate-Based Authentication Overview
Messaging Server uses the Transport Layer Security (TLS) protocol, otherwise known as the
Secure Sockets Layer (SSL) protocol, for encrypted communications and for certificate-based
authentication of clients and servers. Messaging Server supports SSL versions 3.0 and 3.1.
TLS is fully compatible with SSL and includes all necessary SSL functionality.

If transmission of messages between a Messaging Server and its clients and between the
server and other servers is encrypted, there is a reduced chance for eavesdropping on the
communications. If connecting clients are authenticated, there is also a reduced chance for
intruders to impersonate (spoof) them.

SSL functions as a protocol layer beneath the application layers of IMAP4, HTTP, POP3, and
SMTP. If SSL is needed with SMTP, it is normally handled on the standard SMTP relay port
(25) or the standard SMTP submission port (587) with the STARTTLS command. Alternatively,
SMTP submission with SSL can be handled by the port that is often used for SSL submission
(465).

HTTP and HTTP/SSL require different ports. IMAP and IMAP/SSL, and POP and POP/SSL
can use the same port or different ports. SSL acts at a specific stage of message
communication for both outgoing and incoming messages.

Figure 7-1 shows the route of an encrypted outgoing message with Messaging Server.

Figure 7-1 Outgoing Encrypted Communications with Messaging Server

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-11

Note:

To enable encryption for outgoing SMTP connections, you must modify the channel
definition to include the tls channel keywords, such as maytls, musttls, and so on.

Figure 7-2 shows the route of an encrypted incoming message with Messaging Server.

Figure 7-2 Incoming Encrypted Communications with Messaging Server

SSL provides hop-to-hop encryption, but the message is not encrypted on each intermediate
server.

There is a small performance cost to consider in setting up an SSL connection when planning
server capacity. To help reduce this cost, cryptographic accelerators can be used.

Obtaining Certificates
Whether you use SSL for encryption or for authentication, you must obtain a server certificate
for your Messaging Server. The certificate identifies your server to clients and to other servers.
For more information on certutil, see: https://www.mozilla.org/projects/
security/pki/nss/tools/certutil.html.

This section consists of the following subsections:

• To Manage Internal and External Modules

• Creating a Password File

• Obtaining and Managing Certificates

To Manage Internal and External Modules
A server certificate establishes the ownership and validity of a key pair, the numbers used to
encrypt and decrypt data. Your server's certificate and key pair represent your server's identity.
They are stored in a certificate database that can be either internal to the server or on an
external, removable hardware card (smartcard).

Oracle servers access a key and certificate database using a module conforming to the Public-
Key Cryptography System (PKCS) #11 API. The PKCS #11 module for a given hardware
device is usually obtained from its supplier and must be installed into the Messaging Server
before the Messaging Server can use that device. The pre-installed Internal PKCS # 11

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-12

https://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
https://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Module supports a single internal software token that uses the certificate database that is
internal to the server.

Setting up the server for a certificate involves creating a database for the certificate and its
keys and installing a PKCS #11 module. If you do not use an external hardware token, you
create an internal database on your server, and you use the internal, default module that is part
of Messaging Server. If you do use an external token, you connect a hardware smartcard
reader and install its PKCS #11 module.

You can manage PKCS #11 modules, whether internal or external, through modutil:

1. Connect a hardware card reader to the Messaging Server host machine and install drivers.

2. To install the PKCS #11 module for the installed driver, use the modutil command found in
MessagingServer_home /lib.

Note:

The main use for the modutil command is to switch from NSS security to Solaris
Cryptographic Framework PKCS #11 provider.

Creating a Password File
You can create a password file for the certificate or certificate database, to avoid having to type
it multiple times (it is needed by at least three server processes), and to facilitate unattended
server restarts.

Passwords themselves are generated when their certificate database is created, for example,
when using the certutil command.

In Unified Configuration, SSL passwords for key files are stored in the xpass.xml file. Use the
msconfig set -prompt "sectoken:Internal (Software) Token.tokenpass" command to
change. This command causes the msconfig command to prompt for the password without an
echo.

Caution:

Because the administrator is not prompted for the module password at server startup,
it is especially important that you ensure proper administrator access control to the
server and proper physical security of the server host machine and its backups.

Obtaining and Managing Certificates
Whether you use SSL for encryption or for authentication, you must obtain a server certificate
for your Messaging Server. The certificate identifies your server to clients and to other servers.
Use the certutil command to manage certificates and key databases. Use certutil with
appropriate options (-d followed by a directory location with a sql: prefix and -Z SHA256 -g
2048), or other third-party certificate generation tools, to create certificates and certificate
requests with up-to-date security strength.

To run SSL on Messaging Server, you must either use a self-signed certificate or a Public Key
Infrastructure (PKI) solution which involves an external Certificate Authority (CA). For a PKI
solution, you need a CA-signed server certificate that contains both a public and a private key.

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-13

This certificate is specific to one Messaging Server. You also need a trusted CA certificate,
which contains a public key. The trusted CA certificate ensures that all server certificates from
your CA are trusted. This certificate is sometimes also called a CA root key or root certificate.
For instructions on how to create and install a self-signed CA certificate and key, see "SSL/TLS
Tasks".

Implementing Secure Connections Using Two Different Certificate Authorities (CAs)
You can implement SSL connections between server and clients, for example, from Messaging
Server, and to other servers in your deployment as well (Web Server, Calendar Server,
Directory Server). If desired, you can use two different Certificate Authorities (CAs), one for the
server and one for the client.

In such a scenario, you can use one CA to issue server certificates, and another CA to issue
client certificates. If you want the client to accept the server's certificate as genuine, you must
load the CA certificate for the server into the client's certificate database. If you want the server
to accept the client as genuine, you must load the CA certificate for the client into the server's
certificate database.

To Enable SSL and Selecting Ciphers
SSL certificates can be installed and configured by using the certutil utility and by running the
appropriate msconfig commands to enable SSL for the required services.

About Ciphers
A cipher is the algorithm used to encrypt and decrypt data in the encryption process. SSL
cipher suites control the level of protection required between SSL client and server. Different
cipher suites have different properties and use different cryptographic algorithms. At any time a
specific cryptographic algorithm might be weakened or compromised by new research in
cryptography. The ability to change the default cipher suites allows the software to adapt as
security technology changes. As CPUs get faster, the key size necessary to provide several
years of comfortable protection increases, even if the algorithm is considered state-of-the-art.

The default set of SSL cipher suites used may change over time as more secure ones are
introduced and weaker ones are deprecated. It is expected most deployments will be happy
with the default set of cipher suites and it is generally not a good idea to adjust the available
cipher suites without reason.

However, here are some scenarios where it may be helpful to adjust the cipher suites:

1. A site with specific security policies may want to provide a fixed list of cipher suites to use
that is set by site policy rather than simply using state-of-the-art suites provided by the
NSS library. Such a site would typically configure this setting to '-ALL,...' where '...'
contains the cipher suite names.

2. A site which is experimenting with higher performance or more secure cipher suites that
require installation of special server certificate types, for example, the elliptic curve cipher
suites. Such a site would enable these additional suites once installation was complete
using a setting such as '+TLS_ECDH_RSA_WITH_AES_128_CBC_SHA' to enable an
ECDH_RSA cipher suite from RFC 4492.

3. If a site is forced to continue supporting a particularly old client that only supports weak
cipher suites, they can be explicitly enabled (for example 'WEAK+DES' enables the single-
DES cipher suites.

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-14

4. In the event the cryptographic research community discovers a vulnerability in one or more
of the ciphers enabled by default, this provides a mechanism to immediately disable those
ciphers.

SSL Ciphers for Messaging Server

See the ssladjustciphersuites option in Messaging Server Reference for a list of available
cipher suites.

This list excludes the SSL2 cipher suites as Messaging Server has not supported SSL2 since
the Messaging Server 6.0 release. While the standard names for cipher suites (as published in
TLS RFCs) are preferred, there is limited support for legacy names used in previous releases
and for some OpenSSL names.

The following configuration options can be used to turn on all cipher suites excluding the weak
ones:

• For all services: base.ssladjustciphersuites "all"

• For individual services: service.ssladjustciphersuites "all" where service is imapproxy,
popproxy, or MMP

However, be advised to instead only turn on the specific cipher suite needed for
interoperability. The 56-bit ciphers are not as weak as the 40-bit ciphers so if it's possible to
only enable those, the following cipher suite works:
+TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA.

Adjusting the SSL Ciphers for Messaging Server

In Unified Configuration, the .cfg files are no longer used, and the configuration is stored in the
Unified Configuration itself. In Unified Configuration, you enable and modify the configuration
by running the msconfig command to set the appropriate options in the imapproxy,
popproxy, and smtpproxy configuration groups. For example, in Unified Configuration, the
following command sets the SSL Cipher suite for the IMAP proxy:

msconfig set imapproxy.ssladjustciphersuites cipher suite

Specify SSL Certificate
• To specify the SSL certificate to be presented by Messaging Server, run the following

command:

msconfig set base.sslnicknames certname

For example:

msconfig set base.sslnicknames "Server-Cert"
There is also a per-service configuration setting for the SSL server certificate nickname. The
settings are as follows:

mta.sslnicknames for the SMTP and Submit servers, imap.sslnicknames for the IMAP
server, pop.sslnicknames for the POP server, and http.sslnicknames for Webmail server.

The *.sslnicknames options have the same meaning as (and override) the base.sslnicknames
option. Specifically, this is a comma-separated list of NSS certificate nicknames. Although
more than one nickname is permitted in the list, each nickname must refer to a different type of
certificate (for example, an RSA certificate and a DSS certificate) so the setting will almost
always be only one nickname. A nickname can be unqualified in which case the NSS software
token or default token will be searched, or it can have the form security-module:nickname in

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-15

which case the specified security module will be searched for that nickname. This is needed for
certificates stored in hardware tokens or places other than the default NSS database.

This does not permit the use of more than one NSS software token in the product. In particular,
there is only one cert8.db and key3.db for IMAP, POP, SMTP, and HTTP. NSS does not permit
that.

Note:

To enable SSL encryption for outgoing messages, you must modify the channel
definition to include the tls channel options, such as maytls, musttls, and so on.

Configuring Individual Messaging Processes for SSL
This section describes the procedures you use to configure the various Messaging Server
processes for SSL.

To Configure MMP for SSL
• Use the msconfig command to set the following configuration options to enable SSL:

msconfig set mmp.enable 1
msconfig set imapproxy.tcp_listen:imapproxy1.ssl_ports 993
msconfig set popproxy.tcp_listen:popproxy1.ssl_ports 995

To Configure IMAP for SSL
• Use the msconfig command to set the following configuration options to enable SSL:

msconfig imap.enablesslport 1
msconfig imap.enable 1
msconfig imap.sslport 993
msconfig imap.sslusessl 1

To Configure POP for SSL
• Use the msconfig command to set the following configuration options to enable SSL:

msconfig pop.enablesslport 1
msconfig pop.enable 1
msconfig pop.sslport 995
msconfig pop.sslusessl 1

To Configure HTTP for SSL
• Use the msconfig command to set the following configuration options to enable SSL:

msconfig http.enablesslport 1
msconfig http.enable 1
msconfig http.sslport 443
msconfig http.sslusessl 1

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-16

To Configure SMTP for SSL
1. To enable SSL encryption for outgoing messages, modify the channel definitions to include

the TLS channel options such as maytls, musttls, and so on.

2. (Optional) Use the msconfig command to support SMTP submission with SSL on port 465
instead of the default port 587, which is enabled when a server certificate is installed and
often used for SMTP submission with STARTTLS:

msconfig set dispatcher.service:SMTP_SUBMIT.ssl_ports 465

To Verify the SSL Configuration
1. Use the netstat command to verify that the service is running.

netstat -an | grep service.sslport

where:service is a keyword MMP, IMAP, POP, HTTP, or SMTP. For example:

msconfig show imap.sslport
993
netstat -an | grep 993
 *.993 *.* 0 0 49152 0 LISTEN

2. Check for errors in the Messaging Server log files. Log files are located in the
MessagingServer_home/log directory. For example, check the IMAP log for SSL
initialization errors (ASockSSL_Init errors).

Configuring Indexed Search Converter for SSL
You can configure the Indexed Search Convertor (ISC) component of Cassandra message
store to use SSL. To enable SSL, you set the appropriate Messaging Server configuration
options and add a certificate into the Java keystore. You can use either a self-signed or CA-
signed certificate. In addition, you must use the certutil command to import the same self-
signed certificate into the Messaging Server NSS certificate database as a trusted authority for
LMTP to connect to ISC over SSL. If you use a self-signed certificate, you must export and
copy it into the Field Input Transformer (FIT) node's config directory.

Note:

Unlike other Messaging Server components, the ISC and FIT components support
Java keystore instead of the NSS certificate database. Thus, you must use the
keytool command to manage certificates for the ISC and FIT.

Configuring ISC for SSL Using a Self-Signed Certificate
To configure the ISC for SSL using a self-signed certificate:

1. On ISC nodes, enable SSL by setting the following configuration options:

msconfig
msconfig> set isc.sslusessl 1
msconfig# set base.ssljkspath path_to_Java_keystore
msconfig# set base.ssljkspassword
Password: Java_keystore_password

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-17

Verify:
msconfig# write
msconfig> exit

2. On FIT nodes, enable SSL by setting the fit.sslusessl configuration option:

cd /opt/sun/comms/cas/bin
config-fit --sslusessl 1

3. On message access layer nodes (in general, the same node as ISC node), enable SSL for
LMTP by setting the following configuration options:

msconfig
msconfig> set isc_client.sslusessl 1
msconfig# set isc_client.ischosts list_of_ISC_hosts
msconfig# set isc_client.server_port 8070
msconfig# write
msconfig> exit

The host names must match the common name (cn) in the ISC node's certificate.

4. On an ISC node, generate a self-signed certificate:

keytool -genkey -keyalg RSA -alias selfsigned -keystore
/tmp/keystore.jks -storepass Java_keystore_password -validity 360 -keysize 2048

5. On the ISC node, export the certificate for use in the FIT.

keytool -exportcert -keystore /opt/sun/comms/messaging64/config/keystore.jks -alias
selfsigned -rfc -file isc.crt

6. Copy the resultant isc.crt certificate file to all FIT nodes in the fit_install_path/config
directory. (The default is /usr/share/dse/fit).

7. On message access layer nodes, import the certificate into the Message Server certificate
database (cert9.db).

certutil -A -d sql:/opt/sun/comms/messaging64/config -n iscSelfCert -i
/opt/sun/comms/messaging64/config/isc.crt -t P

8. Restart the ISC:

stop-msg isc
start-msg isc

9. Reload the FIT by using the Solr administration console.

Configuring ISC for SSL Using a CA-Signed Certificate
To configure the ISC for SSL using a CA-signed certificate:

1. On ISC nodes, enable SSL by setting the following configuration options:

msconfig
msconfig> set isc.sslusessl 1
msconfig# set base.ssljkspath path_to_Java_keystore
msconfig# set base.ssljkspassword
Password: Java_keystore_password
Verify:
msconfig# write
msconfig> exit

2. On FIT nodes, enable SSL by setting the fit.sslusessl configuration option:

cd /opt/sun/comms/cas/bin
config-fit --sslusessl 1

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-18

3. On message access layer nodes (in general, the same node as ISC node), enable SSL for
LMTP by setting the following configuration options:

msconfig
msconfig> set isc_client.sslusessl 1
msconfig# set isc_client.ischosts list_of_ISC_hosts
msconfig# set isc_client.server_port 8070
msconfig# write
msconfig> exit

The host names must match the common name (cn) in the ISC node's certificate.

4. On an ISC node, generate and import a CA-signed certificate.

a. Generate a keypair:

keytool -genkeypair -keysize 2048 -alias isc -keyalg RSA -dname
"CN=Hostname,O=Org,L=Location,ST=State,C=CountryCode" -keystore
keystore.jks -storepass Java_keystore_password -validity 360

b. Generate a certificate request:

keytool -certreq -alias isc -keystore keystore.jks -storepass
Java_keystore_password -file isc.csr

c. Get the CA-signed certificate by using certificate the request file, isc.csr.

d. Import the CA certificate (cacert.crt) and CA-signed certificate (isc.crt) into the
keystore:

keytool -importcert -trustcacerts -alias CA -file cacert.crt -keystore
keystore.jks -storepass Java_keystore_password
keytool -importcert -alias isc -file isc.crt -keystore keystore.jks
-storepass Java_keystore_password

5. On message access layer nodes, import the certificate into the Message Server certificate
database (cert9.db).

certutil -A -d sql:/opt/sun/comms/messaging64/config -n CA -i cacert.crt -t P
6. Restart the ISC:

stop-msg isc
start-msg isc

7. Reload the FIT by using the Solr administration console.

Setting Up Certificate-Based Login
In addition to password-based authentication, Oracle servers support authentication of users
through examination of their digital certificates. In certificate-based authentication, the client
establishes an SSL session with the server and submits the user's certificate to the server. The
server then evaluates whether the submitted certificate is genuine. If the certificate is validated,
the user is considered authenticated.

To Set Up Certificate-Based Login
1. Obtain a server certificate for your server. (For details, see "Obtaining Certificates".)

2. Install the certificates of any trusted certificate authorities (CAs) that will issue certificates
to the users that your server will authenticate. As long as there is at least one trusted CA in
the server's database, the server requests a client certificate from each connecting client.

3. Turn on SSL. (For details, see "To Enable SSL and Selecting Ciphers".)

Chapter 7
Configuring Encryption and Certificate-Based Authentication

7-19

4. Set up a certificate mapping for your server. For example, to make the default certificate
map match by the email address in the certificate subject, make the following configuration
changes at the msconfig prompt:

msconfig> set base.certmap:default.dncomps ""
msconfig# set base.certmap:default.filtercomps "e=mail"
msconfig# write

For more information about certificate mapping and the dncomp and filtercomps options,
see the discussion about certificate-based client authentication in Messaging Server
System Administrator's Guide.

Once you have taken these steps, when a client establishes an SSL session so that the user
can log in to IMAP or HTTP, the Messaging Server requests the user's certificate from the
client. If the certificate submitted by the client has been issued by a CA that the server has
established as trusted, and if the certificate identity matches an entry in the user directory, the
user is authenticated and access is granted (depending on access-control rules governing that
user). There is no need to disallow password-based login to enable certificate-based login.

If password-based login is allowed (which is the default state), and if you have performed the
tasks described in this section, both password-based and certificate-based login are
supported. In that case, if the client establishes an SSL session and supplies a certificate,
certificate-based login is used. If the client does not use SSL or does not supply a certificate,
the server requests a password.

User/Group Directory Lookups Over SSL
It is possible to do user/group directory lookups over SSL for MTA, MMP, and IMAP/POP/HTTP
services. The prerequisite is that Messaging Server must be configured in SSL mode.

Set the base.ugldapusessl option to 1. For example:

msconfig set base.ugldapusessl 1

Set the base.ugldapport to option 636 to enable this feature. For example:

msconfig set base.ugldapport 636

You can also use LDAP + STARTTLS by setting base.ldaprequiretls to 1. For example:

msconfig set base.ldaprequiretls 1

Note:

Failure to configure Messaging Server correctly for secure LDAP communication can
cause Messaging Server commands and utilities, such as imsimta test -rewrite, to
fail.

Chapter 7
User/Group Directory Lookups Over SSL

7-20

8
Certificate-Based Authentication for
Messaging Server

This chapter describes the installation, configuration, and standards for certificate-based
authentication for Oracle Communications Messaging Server using SSL/TLS.

Introduction: SSL/TLS, Client Certificates and CRLs
The following discusses issues related to configuring Messaging Server to use client
certificates with Certificate Revocation Lists (CRLs) and SSL/TLS.

Authentication Technology Overview
Messaging Server supports three types of end-user authentication:

1. Passwords in the clear

2. Passwords over SSL/TLS

3. Client certificates over SSL/TLS

Option 1 is for very low security sites, option 2 is current best practice, and option 3 is usually
for very high security sites. Some parts of Messaging Server have additional options. CRAM-
MD5/APOP passwords are slightly better on the wire, but worse on the back-end than those in
the clear. Therefore, CRAM-MD5/APOP passwords are not recommended. HTTP-only
WebSSO systems most commonly use passwords over SSL/TLS.

By default, only passwords in the clear are enabled for Messaging Server. When SSL/TLS is
configured, both passwords in the clear and passwords over SSL/TLS are enabled.

SSL/TLS Overview
Transport Layer Security (TLS) is the Internet proposed standard most widely used to secure
application protocols such as POP, IMAP, SMTP, and HTTP. TLS is a newer and more secure
version of the Secure Sockets Layer (SSL) protocol designed by Netscape. SSLv2 is an
insecure legacy version of SSL which is unsupported. From the release 8.1, SSLv3 is also no
longer supported.

SSL provides session encryption, server certificate authentication and optional client certificate
authentication. The actual security algorithms used by SSL/TLS are controlled by a negotiated
cipher suite and by the authentication certificates.

STARTTLS is the command used in an application protocol (for example, POP, IMAP, SMTP,
SMTP Submission, LDAP) to start SSL/TLS. SSL/TLS is started on the application's standard
port rather than a special port reserved for SSL/TLS usage only. Clients discover the
availability of SSL/TLS by default and cache this information. Thus, clients are secure-by-
default without requiring explicit configuration.

8-1

Note:

A new security compliance rule requires TLS 1.0 and TLS 1.1 to be disabled by
default. This means TLS 1.2 or 1.3 must be used when connecting to Messaging
Server security in the default configuration. The tlsminversion option can be set to
TLS1.0 or TLS 1.1 to restore the previous default behavior.

Certificate Authentication Overview
Certificate Authentication involves several components:

• Public key (information shared with other parties)

• Associated private key (secret information)

• Certificate authority (an authority that asserts someone in possession of a particular private
key has a certain identity)

• Certificate (a public key with one or more identities signed by itself and/or a certificate
authority)

A Trust Anchor is the certificate for a well known certificate authority (CA) that is distributed
with the software. Messaging Server does not enable any trust anchors by default. For
authentication, the public key and its associated public key algorithm (typically RSA) are used
to verify that the other party knows the associated private key.

A certificate's primary identity is called the certificate subject and is represented in
attribute=value,attribute=value format. Typical certificates use a convention to encode a
domain name or email address in the certificate subject. A certificate can also have a
subjectAltName with an explicit DNS name or email syntax.

A certificate revocation list (CRL) is a list of certificates which are no longer valid signed by
the relevant CA.

Certificate and Key Storage Overview
Certificates and keys must be stored somewhere. By default, Messaging Server stores
certificates in a file in the product's configuration directory called cert8.db or cert9.db. Keys
are stored in an encrypted file in the configuration directory, called either key3.db or key4.db.
The encryption password to the key file is stored in sslpassword.conf so the server can
reboot without administrative intervention. In general, the certutil tool manages certificates and
the pk12util tool manages keys and certificate/key pairs.

SSL/TLS/Certificate Standards Overview
The following standards (or a subset thereof) are implemented in Messaging Server:

• TLS 1.0 (RFC 2246) defines the underlying transport layer security protocol independent of
how it integrates with various applications. The most recent version of TLS is 1.3 (RFC
8446).

• TLS Renegotiation Indication Extension (RFC 5746) fixes a security bug present in all
versions of SSL and TLS prior to TLS 1.3.

• SASL EXTERNAL (RFC 2222 section 7.4) is a protocol authentication mechanism typically
used by POP, IMAP, and SMTP clients to explicitly tell a server to use external
authentication, such as client certificates. As our servers support administrative proxy

Chapter 8
Introduction: SSL/TLS, Client Certificates and CRLs

8-2

authentication (where an administrator's credentials are used to impersonate a regular
user), this mechanism is required for that feature to work correctly with client certificate
authentication. EXTERNAL occurs automatically when the following conditions are met:

– A CA certificate is installed and is marked as trusted to validate peer certificates in the
certificate DB.

– certmap.conf is configured.

– The client offers a valid certificate during a successful SSL negotiation.

– The server can locate the user account associated with the certificate based on the
certmap.conf. If verifycert is on the certificate, it has to match the one in the user's
LDAP directory entry.

• IMAP STARTTLS (RFC 3501 sections 6.2.1 & 11.1) is the standard for use of TLS with
IMAP; and it requires use of SASL EXTERNAL.

Note:

IMAPS on port 993 is not a standard and no rules exist for its use with client
certificates beyond what can be inferred from RFC 3501.

• POP STARTTLS (RFC 2595 sections 2 & 4) is the standard for use of TLS with POP; and
it requires use of SASL EXTERNAL.

Note:

POPS on port 995 is not a standard and no rules exist for its use with client
certificates beyond what can be inferred from RFC 2595 and RFC 1939 (section
4 is particularly relevant and states that a POP session starts in
AUTHORIZATION state and remains there until a mechanism such as SASL
EXTERNAL is used to transition to TRANSACTION state).

• SMTP STARTTLS (RFC 3207) is the standard for use of TLS with SMTP (RFC 2821) and
SMTP Submission (RFC 4409). It does not describe how client certificates are used for
submission authentication; so we follow the model of the POP/IMAP standards that are
explicit. Use of SSL on port 465 for SMTP submission is a standard protocol with no
documented interoperability rules; we follow the same rules that we do on the standard
submission port with STARTTLS when this is configured.

• HTTPS (RFC 2818) is a de-facto standard for use of SSL/TLS on the HTTPS port (443).
The mshttpd daemon that runs on port 8991 by default when SSL is enabled implements
SSL/TLS, but with the safer wild-carding rules present in this de-facto standard.

• PKCS#12 is an industry standard binary format used to store a certificate and a private
key, optionally encrypted by a password. It typically has a .p12 or .pk12 file extension
when stored in a file.

• PEM is an ASCII encoding used to store certificates and/or keys and/or CRLs and/or
PKCS#12. It typically has a .pem file extension.

• PKCS#11 is an industry standard that defines how a security library talks to software or
hardware that can implement certificate and key storage, and encryption algorithms. The
modutil tool controls use of alternate PKCS#11 modules with Messaging Server. There is
a Solaris-specific PKCS#11 module present in Solaris 10 with support for cryptographic

Chapter 8
Introduction: SSL/TLS, Client Certificates and CRLs

8-3

hardware acceleration present in newer Sparc chips that can be used instead of the default
PKCS#11 software module.

• PKIX (RFC 3280) is a standard for verifying certificates and using CRLs. Messaging
Server supports a commonly used subset of PKIX.

• Online Certificate Status Protocol (OCSP, RFC 2560) is a protocol to check the status of a
client certificate with a remote server, removing the need to fetch and copy CRLs.
Messaging Server does not support this protocol.

SSL/TLS Tools Available in Messaging Server Installer
This section outlines the available SSL/TLS tools in Messaging Server Installer.

Utilities Used to Manage Certificates
The following utilities are located in the Messaging Server lib directory.

• The certutil tool is used to manage certificates. When creating a certificate or certificate
request, include -d followed by a database directory with a sql: prefix, and -Z SHA256 -g
2048 to enable modern security.

• The pk12util tool is used to manage keys or certificate and key pairs. To import or export
PKCS#12 files, and PEM-encoded PKCS#12, use the -a option.

• The modutil tool is used to manage PKCS#11 modules.

• The crlutil tool is used to manage CRLs.

• The msgcert tool is no longer available because it used an inadequate key size and
deprecated signature algorithm. Use the certutil tool with the previously mentioned options
instead.

• The configure tool used to configure the Messaging Server has a -ssl option that allows
configuration against an LDAPS(LDAP over SSL on port 636) server. However, use of this
tool requires the administrator to create the Messaging Server's configuration directory
manually, in advance, and to use certutil to import the LDAP server's certificate and mark
it as a trusted peer.

Certificate and Key Storage
The command msconfig set base.ssldblegacy (Unified Configuration) or configutil -o
local.ssldblegacy -v 0 (legacy configuration) enables support for a newer format (cert9.db,
key4.db, pkcs11.txt), which allows concurrent modification of the locally-stored certificates,
keys, CRLs, and PKCS#11 modules without requiring that the server be shut down.

Modifying the Certificate Format
The aforementioned tools use the newer format by default.

If a site is using a legacy certificate format, the following commands upgrade to the new
format. (Substitute appropriate path for your site to the configuration):

1. cd /opt/sun/comms/messaging64/config

2. Create file containing just the password for the key database with no extra newline. Call
this pwfile.

3. certutil --merge -d -Z SHA256 -g 2048 -f pwfile --source-dir . -@ pwfile

Chapter 8
SSL/TLS Tools Available in Messaging Server Installer

8-4

4. Create a directory for the old format databases: mkdir old_certdb

5. mv cert8.db key3.db secmod.db old_certdb

6. Recompile the MTA configuration if you are running a compiled configuration and restart
the Messaging Server.

imsimta cnbuild
stop-msg
start-msg

Note:

Executing the latter two commands prevents the certutil and pk12util utilities from
using the old databases, if you happen to forget to set the environment variable.
Remove the old format databases once a successful migration is verified.

Checking the NSS version
The new certificate and key storage format was introduced in NSS version 3.12. To check the
version of NSS, run the imsimta version command.

SSL/TLS Configuration
This section summarizes the configuration options related to the use of SSL/TLS with
Messaging Server.

SSL-Related Settings
Table 8-1 provides a summary of the available SSL-related settings, which do not apply to the
MMP unless explicitly mentioned.

Table 8-1 SSL-Related Settings

Unified Configuration Legacy Configuration Description

base.sslnicknames encryption.rsa.nssslpersonalityssl Sets the certificate nickname of the server
certificate used by the Messaging Server by
default.

base.defaultdomain service.defaultdomain Default domain for authentication if one not
explicitly specified; including AUTH
EXTERNAL.

http.sslnicknames
imap.sslnicknames
Not applicable

mta.sslnicknames

local.http.sslnicknames
local.imap.sslnicknames
local.smtp.sslnicknames
local.imta.sslnicknames

Specify a certificate nickname of a server
certificate that will be used by a particular
Messaging Server service.

base.ugldapusessl local.ugldapusessl If set, use LDAPS (LDAP-over-SSL default
port 636) when contacting an LDAP server.

base.proxyimapssl local.service.proxy.imapssl If set, use IMAPS (IMAP-over-SSL default
port 993) when proxying to another IMAP
back-end for shared folders. Defaults to 1 if
IMAP port is 993.

Chapter 8
SSL/TLS Configuration

8-5

Table 8-1 (Cont.) SSL-Related Settings

Unified Configuration Legacy Configuration Description

http.sslusessl
imap.sslusessl
pop.sslusessl

service.http.sslusessl
service.imap.sslusessl
service.pop.sslusessl

Enable use of SSL/STARTTLS for these
services.

http.sslport
imap.sslport
pop.sslport

service.http.sslport
service.imap.sslport
service.pop.sslport

Specify a non-default SSL port.

http.enablesslport
imap.enablesslport
pop.enablesslport

service.http.enablesslport
service.imap.enablesslport
service.pop.enablesslport

Enable use of SSL on a separate port for this
service.

isc.sslusessl
fit.sslusessl
isc_client.sslusessl

Not applicable Enable use of SSL/STARTTLS for these
services.

http.plaintextmincipher
imap.plaintextmincipher
pop.plaintextmincipher
mta.plaintextmincipher

service.http.plaintextmincipher
service.imap.plaintextmincipher
service.pop.plaintextmincipher
service.imta.plaintextmincipher

If set to 1, these utilities require use of SSL or
STARTTLS prior to use of a plaintext
password. In previous versions of SMTP, this
behavior had to be simulated with multiple
channels, and the use of tlsswitchchannel
and saslswitchchannel. The use of
tlsswitchchannel is no longer necessary.

http.sslcachesize
imap.sslcachesize
pop.sslcachesize
Not applicable

service.http.sslcachesize
service.imap.sslcachesize
service.pop.sslcachesize
service.imta.sslcachesize

Specifies the number of SSL sessions to
cache (a cached session reconnects clients
faster).

base.ldaptrace local.ldaptrace Enables additional LDAP diagnostics.

base.ssladjustciphersuites local.ssladjustciphersuites Determines which SSL cipher suites are
enabled for use.

base.sslcompress local.sslcompress Enables SSL/TLS compression (per RFC
3749). Default = 1 and is used by MMP.

base.ssldbpath local.ssldbpath Determines where SSL certificate and key
databases are stored (defaults to
configuration directory). Using another
directory is discouraged.

base.ssldblegacy local.ssldblegacy When set to 0, enables use of the new
certificate and key database format. Used by
MMP.

base.ssldbprefix local.ssldbprefix A prefix used in the certificate and key
database file names. Changing this is
discouraged.

base.ssljkspath Not applicable Specifies the path of the keystore file.

base.ssljkspassword Not applicable Specifies the password for the keystore file.

base.sslpkix local.sslpkix Setting this makes your system unsupported.
It enables untested experimental code with
unknown scalability, timeout, and failure
handling characteristics to perform full RFC
3280 PKIX validation of certificates. Used by
MMP.

Chapter 8
SSL/TLS Configuration

8-6

Table 8-1 (Cont.) SSL-Related Settings

Unified Configuration Legacy Configuration Description

base.sslrequiresafenegotiate local.sslrequiresafenegotiate Requires use of the SSL/TLS renegotiate
extension (per RFC 5746). Default = 0 and is
used by MMP.

Dispatcher SSL-Related Settings
When a dispatcher service configuration block includes TLS_PORT, the server will negotiate
SSL/TLS immediately before starting the specified application. This is typically used to enable
the standard submissions port 465 in the SERVICE=SMTP_SUBMIT section and that is
presently a commented-out option in the default configuration (older versions used to
incorrectly include that as an option in the SERVICE=SMTP section although it is rarely used
for SMTP relay).

Messaging Transfer Agent (MTA) SSL-Related Channel Options
Table 8-2 shows SSL-related channel options.

Table 8-2 SSL-Related Channel Options

Option Description

maytlsserver Allow use of TLS connecting to the server for that channel

musttlsserver Require use of TLS connecting to the server for that channel

tlsswitchchannel Change channels if TLS is successfully negotiated

maytlsclient Use TLS if available for outbound mail sent through that channel

musttlsclient Require TLS for outbound mail sent through that channel

maysaslserver Allow use of SMTP AUTH (including AUTH EXTERNAL)

mustsaslserver Require use of SMTP AUTH (including AUTH EXTERNAL)

saslswitchchannel Change channels if SASL authentication is successful

SMTP Channel Options
Table 8-3 shows the SMTP channel options.

Table 8-3 SMTP Channel Options

SMTP Channel Option Description

IGNORE_BAD_CERT The maytls channel keywords and SMTPS ignore errors with bad
client and server certificates. Use the musttls channel keywords to
control whether the SMTP client or STARTTLS command processor on
the server will ignore bad certificates as follows:

• Set bit 0 (value 1) to ignore bad client certificates.
• Set bit 1 (value 2) to ignore bad server certificates.
• Default setting is 3 (ignore bad certificates in SMTP).

Chapter 8
SSL/TLS Configuration

8-7

Table 8-3 (Cont.) SMTP Channel Options

SMTP Channel Option Description

SSL_CLIENT Set this option to 1 to negotiate SSL/TLS on outbound client
connections from this channel.

EXTERNAL_IDENTITY Use to enable support for SASL AUTH EXTERNAL for outbound client
connections. The value may be the empty string which is the identity
the remote server implicitly associates with this client. When an SMTP
Server's TLS implementation asks the Messaging Server SMTP client
for a client certificate, the SMTP TLS client only supports providing the
default server certificate for that Messaging Server installation.

AUTH_USERNAME For outbound client SMTP connections, use this username with SASL
PLAIN authentication.

AUTH_PASSWORD For outbound client SMTP connections, use this password with SASL
PLAIN authentication.

PORT_ACCESS SSL-Related
Fields

The right hand side of PORT_ACCESS supports some additional fields
on a successful match:

{$Yruleset|realm|tls-cert-nickname

Additional fields between realm and tls-cert-nickname are enabled by
LOG_CONNECTION bit 4 and $D)

While ruleset is not currently used, the other two fields are typically
used to change SSL/TLS and authentication behavior based on the
server IP address to which the client is connected. The realm is the
default domain appended to an unqualified authentication ID, and the
tls-cert-nickname is the nickname of an alternate TLS server certificate
to use.

BURL_ACCESS Mapping
Table SSL-Related Input
Flags

• $:A Test if SASL authentication complete
• $:T Test if TLS is in use

MMP SSL-Related Settings
Table 8-4 shows MMP options that appear in PopProxyAService.cfg,
ImapProxyAService.cfg, and/or SmtpProxyAService.cfg. All of these configuration files that
specify SSLEnable must have the same settings. If different settings are used in different files,
the MMP SSL subsystem will initialize with the settings from only one of the files. Use of non-
default values is discouraged.

Table 8-4 MMP SSL-Related Settings

MMP SSL-Related Option Description

SSLCacheDir The directory to search for certificate & key databases.

SSLCertPrefix Filename prefix used when locating the cert8.db or cert9.db.

SSLKeyPasswordFile Filename to use instead of sslpassword.conf for SSL key passwords.

SSLKeyPrefix Filename prefix used when locating the key3.db or key4.db.

SSLSecmodFile Specifies alternate file name/path for secmod.db.

Table 8-5 shows the MMP options that can be included in PopProxyAService.cfg,
ImapProxyAService.cfg and SmtpProxyAService.cfg. The options can also be included in
vdmap.cfg and may have different settings for each service or virtual domain.

Chapter 8
SSL/TLS Configuration

8-8

Table 8-5 Optional MMP SSL-Related Options

Optional MMP SSL-Related
Options

Description

DebugKeys A list of keywords used to enable additional diagnostics. The TLS
keyword enables some additional TLS debugging features.

DefaultDomain Default domain for authentication identities without an explicit domain,
including AUTH EXTERNAL.

RestrictPlainPasswords Requires the use of SSL/TLS prior to allowing plaintext password
authentication.

SSLAdjustCipherSuites Determines the availability of the SSL/TLS cipher suites.

SSLCertNicknames Assigns certificate nickname(s) to use for server.

StoreAdmin Determines which user identity to use when proxying to back-end
server. Required to support client certificates with MMP.

StoreAdminPass Assigns password for user identity to use when proxying to back-end
server. Required to support client certificates with MMP.

Table 8-6 shows the MMP SSL-related options that may have different settings for each
service.

Table 8-6 MMP SSL-Related Options that May Have Different Settings for Each Service

MMP SSL-Related Option
with Different Settings Per
Service

Description

CertMapFile Names the certificate mapping file.

LdapUrl Uses LDAPS: instead of LDAP: with SSL when talking to LDAP.

SSLBacksidePort Use this port when communicating to the back-end over SSL only if the
connection to the MMP is also over SSL.

SSLEnable Enables STARTTLS and SSL for this service.

SSLPorts Assigns one or more ports to negotiate SSL immediately. The assigned
ports must also be listed in the appropriate ServiceList element in
AService.cfg.

UserGroupDN All user entries appear below this LDAP DN (Distinguished Name) in
the LDAP DIT (Directory Information Tree). This is used both by the
client certificate authentication mapping subsystem (regardless of
schema level) and by schema 2.

Table 8-7 shows the MMP option that is only available in vdmap.cfg.

Table 8-7 MMP SSL-Related Option Only Available in vdmap.cfg

MMP SSL-Related Option
Only Available in vdmap.cfg

Description

CertMap Specifies which certmap.conf settings are used by default for this
virtual domain.

Chapter 8
SSL/TLS Configuration

8-9

certmap.conf Settings
For client certificate authentication to work, a client certificate must be translated to a
Messaging Server user with an entry in LDAP. The certmap.conf configuration file is required
to perform this function. The default installation creates a certmap.conf.sample file in the
configuration directory which can be copied to certmap.conf. certmap.conf has named
sections - a default section is mandatory - so different rules can be applied to different client
certificate issuer DNs. Table 8-8 shows the available options.

Table 8-8 certmap.conf Options

certmap.conf Option Description

DNComps commented out - take the user's DN from the certificate as is

empty - search the entire LDAP tree (DN == suffix)

attr names - a comma separated list of attributes to form DN

FilterComps commented out - set the filter to objectclass=

empty - set the filter to objectclass=

attr names - a comma separated list of attributes to form the filter

verifycert The user's LDAP entry must have a userCertificate;binary field that
matches the certificate used by the client.

CmapLdapAttr If not empty, search the entire tree for an entry with the CmapLdapAttr
attribute that matches the client certificate subject.

SSL/TLS Tasks
This section includes procedures to create, install, and test the different types of certificates
and keys used by SSL/TLS.

How to Create and Install a Self-signed CA Certificate and Key
Using the following procedure, you can create a self-signed CA certificate used to sign client
and server certificates. (In a production environment you would generate a certificate request (-
R) and have that signed by a CA certificate.)

cd /opt/sun/comms/messaging64/config
certutil -d -g 2048 -Z SHA256 -N

This prompts for a password. Save that password to a file called pwfile with no trailing
newline. Also save the password to a file called sslpassword.conf which should contain the
single line:

Internal (Software) Token:password

Where the password selected is after the ':'. You may include a newline in this file.

Ensure that the certificate, key, and pkcs11.txt files are owned by the Messaging Server
(typically this is the mailsvr user).

Then create a self-signed certificate by performing the following command:

certutil -S -d -g 2048 -Z SHA256 -n CA-Cert -s "cn=CA Cert for Messaging" -x -t CT -f
pwfile

Chapter 8
SSL/TLS Tasks

8-10

How to Create and Install a CA-signed Server Certificate and Key
To create and install a CA-signed server certificate and key, perform the following:

certutil -S -d -g 2048 -Z SHA256 -n Server-Cert -s "cn=mail.example.com" -c CA-Cert -f
pwfile -t P

How to Create a CA-signed Client Certificate and Key
To create a CA-signed client certificate and key, perform the following:

certutil -S -d -g 2048 -Z SHA256 -m 1 -n client-cert -s "e=user@example.com" -c CA-Cert -
f pwfile -t u

How to Test a CA-signed Client Certificate and Key
To test a CA-signed client certificate and key, perform the following:

msconfig set imap.sslusessl 1 (Unified Configuration) or configutil - o
service.imap.sslusessl -v 1 (legacy configuration).

start-msg
/opt/sun/comms/messaging64/lib/sslconnect -r -c client-cert mail.example.com 143

Next, type the following command: A AUTHENTICATE EXTERNAL =

and the following appears:

A OK User logged in

How to Create and Install a CRL for a Client Certificate
To create and install a CRL for a client certificate, perform the following:

crlutil -d -G -n CA-Cert << EOF
update=20100510200000Z
addcert 1 20100510200000Z
EOF

The 1 in the addcert is the serial number of the client certificate, which was specified by the -m
option used when creating the client certificate.

How to Test a CRL for a Client Certificate
To test a CRL for a client certificate, perform the following:

/opt/sun/comms/messaging64/lib/sslconnect -r -c client-cert mail.example.com 143

Next, type the following command: A AUTHENTICATE EXTERNAL =

and the following appears:

A NO Mechanism not Available

The following message should appear in the IMAP log:

Chapter 8
SSL/TLS Tasks

8-11

[10/May/2010:20:29:20 -0700] nifty-silver imapd[12720]: General Notice: Bad
certificate from [127.0.0.1:64215]: errno -8180 (Peer's Certificate has been
revoked.)

How to Look Up Numeric SSL/TLS Error Codes
To look up numeric error codes related to SSL/TLS, see:

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/SSL_functions/
sslerr.html
String error text and numeric error codes are outputted to debug log files. Often, this site
contains additional information that is not in the string error text that we output.

Sample Protocol Sessions with Client Certificate Authentication
This section inauthentication uses standard protocol.cludes example protocol transcripts where
client certificate

IMAP (STARTTLS) default port 143
The following is how standard IMAP client certificate authentication executes:

S: * OK CommSuite7:CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS
CHILDREN BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT
THREAD=ORDEREDSUBJECT THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN
SASL-IR SEARCHRES XSENDER X-NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1
X-UNAUTHENTICATE X-SUN-IMAP X-ANNOTATEMORE XUM1 ID STARTTLS IDLE XREFRESH
AUTH=PLAIN nifty-silver.west.example.com IMAP4 service (Oracle Communications
Messaging Server 7u5-0.01 32bit (built Apr 8 2010))

C: a STARTTLS

S: a OK Completed

...TLS-negotiation-with-client-cert...

C: b CAPABILITY

S: * CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE UIDPLUS CHILDREN
BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT THREAD=ORDEREDSUBJECT
THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN SASL-IR SEARCHRES
XSENDER X-NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1 X-UNAUTHENTICATE
X-SUN-IMAP X-ANNOTATEMORE XUM1 ID IDLE XREFRESH AUTH=EXTERNAL AUTH=PLAIN

S: b OK Completed

C: c AUTHENTICATE EXTERNAL =

S: c OK User logged in

For a standard IMAP client certificate authentication to execute successfully, the following
requirements must be met:

1. There has to be a valid server certificate installed.

2. The client has to connect to the fully-qualified domain name of the server using the fully-
qualified hostname present in the server certificate.

3. There has to be a CA certificate trusted to sign client certificates installed.

Chapter 8
Sample Protocol Sessions with Client Certificate Authentication

8-12

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/SSL_functions/sslerr.html
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/SSL_functions/sslerr.html

4. service.imap.sslusessl must be enabled.

5. There must be a valid certmap.conf with correct permissions.

6. The client must supply a valid client certificate during the SSL exchange, and the certmap
code must map the certificate to a valid mail user.

AUTH=EXTERNAL appears in the capability list when the above conditions are met.

This can also be used for administrative proxy authentication. If the client certificate is a store
administrator who wants to authenticate as user cnewman, the command would be:

C: c AUTHENTICATE EXTERNAL Y25ld21hbg==

S: c OK User logged in

====

An attempt to proxy authenticate inappropriately:

====

c AUTHENTICATE EXTERNAL YWRtaW4=

c NO Not authorized to login as specified user

Submission (STARTTLS) Default port 587
S: 220 nifty-silver.west.example.com - Server ESMTP (Oracle Communications Messaging
Server 7u5-0.01 32bit (built Apr 20 2010))

C: EHLO nifty-silver.west.example.com

S: 250-nifty-silver.west.example.com

S: 250-8BITMIME

S: 250-PIPELINING

S: 250-CHUNKING

S: 250-DSN

S: 250-ENHANCEDSTATUSCODES

S: 250-EXPN

S: 250-HELP

S: 250-XADR

S: 250-XSTA

S: 250-XCIR

S: 250-XGEN

S: 250-XLOOP 8DA8D338B89F8CEC5FED34564D95F616

S: 250-STARTTLS

S: 250-AUTH PLAIN LOGIN

Chapter 8
Sample Protocol Sessions with Client Certificate Authentication

8-13

S: 250-AUTH=LOGIN PLAIN

S: 250-NO-SOLICITING

S: 250 SIZE 0

C: STARTTLS

S: 220 2.5.0 Go ahead with TLS negotiation.

...TLS-negotiation-with-client-cert...

C: EHLO nifty-silver.west.example.com

S: 250-nifty-silver.west.example.com

S: 250-8BITMIME

S: 250-PIPELINING

S: 250-CHUNKING

S: 250-DSN

S: 250-ENHANCEDSTATUSCODES

S: 250-EXPN

S: 250-HELP

S: 250-XADR

S: 250-XSTA

S: 250-XCIR

S: 250-XGEN

S: 250-XLOOP 8DA8D338B89F8CEC5FED34564D95F616

S: 250-AUTH EXTERNAL PLAIN LOGIN

S: 250-AUTH=LOGIN PLAIN

S: 250-NO-SOLICITING

S: 250 SIZE 0

C: AUTH EXTERNAL =

S: 235 2.7.0 EXTERNAL authentication successful.

For the authentication to execute successfully the following requirements must be met:

1. There must be a valid server certificate installed.

2. The client must connect to the fully-qualified domain name of the server using the fully-
qualified hostname present in the server certificate.

3. There must be a CA certificate trusted to sign client certs installed.

Chapter 8
Sample Protocol Sessions with Client Certificate Authentication

8-14

4. The relevant channel must include the maytlsserver/musttlsserver channel option. For
submission on port 587 with a factory configuration, the relevant channel is tcp_submit
and has these settings by default.

5. The relevant channel must include the maysaslserver/mustsaslserver channel option.

6. The relevant channel typically includes saslswitchchannel tcp_auth.

7. There must be a valid certmap.conf file with correct permissions.

8. The client must supply a valid client certificate during the SSL exchange, and the certmap
code has to successfully map that to a valid mail user.

The standards are not clear whether the AUTH EXTERNAL is required or not. Currently,
administrative proxy authentication is allowed through standard protocol.

POP (STLS) default port 110
S: +OK nifty-silver.west.example.com POP3 service (Oracle Communications Messaging
Server 7u5-0.01 32bit (built Apr 8 2010))

C: STLS

S: +OK

C: CAPA

S: +OK list follows

S: TOP

S: PIPELINING

S: UIDL

S: RESP-CODES

S: AUTH-RESP-CODE

S: SASL EXTERNAL PLAIN

S: USER

S: IMPLEMENTATION POPD-7.5p0.01 Apr 28 2010

S: .

C: AUTH EXTERNAL =

S: +OK Maildrop ready

The standard POP (STLS) executes in the same way as the standard IMAP (STARTTLS) with
the same requirements.

IMAPS typical port 993
...TLS-negotiation-with-client-cert...

S: * PREAUTH CommSuite7:CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ NAMESPACE
UIDPLUS CHILDREN BINARY UNSELECT SORT CATENATE URLAUTH LANGUAGE ESEARCH ESORT
THREAD=ORDEREDSUBJECT THREAD=REFERENCES ENABLE CONTEXT=SEARCH CONTEXT=SORT WITHIN
SASL-IR SEARCHRES XSENDER X-NETSCAPE XSERVERINFO X-SUN-SORT ANNOTATE-EXPERIMENT-1

Chapter 8
Sample Protocol Sessions with Client Certificate Authentication

8-15

X-UNAUTHENTICATE X-SUN-IMAP X-ANNOTATEMORE XUM1 ID IDLE XREFRESH
nifty-silver.west.example.com IMAP4 service (Oracle Communications Messaging Server
7u5-0.01 32bit (built Apr 8 2010))

====

The * PREAUTH means the client certificate supplied during SSL negotiation was valid, was
successfully certmapped to a specific user, and the specific user has been logged in already.
If the server sends * OK then this has failed and the client must proceed with standard
password authentication.

Submissions typical port 465
...TLS-negotiation-with-client-cert...

S: 220 nifty-silver.west.example.com - Server ESMTP (Oracle Communications Messaging
Server 7u5-0.01 32bit (built Apr 20 2010))

C: EHLO nifty-silver.west.example.com

S: 250-nifty-silver.west.example.com

S: 250-8BITMIME

S: 250-PIPELINING

S: 250-CHUNKING

S: 250-DSN

S: 250-ENHANCEDSTATUSCODES

S: 250-EXPN

S: 250-HELP

S: 250-XADR

S: 250-XSTA

S: 250-XCIR

S: 250-XGEN

S: 250-XLOOP 28B98A3E76A6F4C19EDF069FBDC26E97

S: 250-AUTH EXTERNAL PLAIN LOGIN

S: 250-AUTH=LOGIN PLAIN

S: 250-NO-SOLICITING

S: 250 SIZE 0

C: AUTH EXTERNAL =

S: 235 2.7.0 EXTERNAL authentication successful.

As with standard submissions STARTTLS: clients do not know if the server accepted the client
certificate unless the EXTERNAL mechanism is available. Some third-party clients fail to look
for and use the EXTERNAL mechanism.

Chapter 8
Sample Protocol Sessions with Client Certificate Authentication

8-16

POPS typical port 995
...TLS-negotiation-with-client-cert...

S: +OK nifty-silver.west.example.com POP3 service (Oracle Communications Messaging
Server 7u5-0.01 32bit (built Apr 8 2010))

C: CAPA

S: +OK list follows

S: TOP

S: PIPELINING

S: UIDL

S: RESP-CODES

S: AUTH-RESP-CODE

S: SASL EXTERNAL PLAIN

S: USER

S: IMPLEMENTATION POPD-7.5p0.01 Apr 28 2010

S: .

C: AUTH EXTERNAL =

S: +OK Maildrop ready

This execution differs from standard IMAPS because POP3 cannot determine if client
certificate authentication succeeded. (There is nothing equivalent to IMAP's * PREAUTH
greeting.) The Messaging Server implementation uses the only standard protocol mechanism
(AUTH EXTERNAL), in compliance with RFC 1939 section 4 (RFC 1939 section 4 declares a
POP3 session starts in AUTHORIZATION state). Some third-party clients fail to use the
EXTERNAL mechanism and assume the client certificate worked if the connection remains
open.

SSL/TLS Best Practices
The following are best practices when using SSL/TLS with Messaging Server:

• Monitor Oracle Critical Patch Updates and update Messaging Server promptly if it appears.

• Use a 2048-bit RSA certificate with a SHA256 signature.

• Enable use of SSL between end-user clients and the server whenever possible.

• Enable use of SSL between any geographically-disparate back-end servers. For example,
if you have an off-site failover LDAP master configured, enable SSL when talking to LDAP.

• Set RestrictPlainPassword and plaintextmincipher whenever possible for your
deployed clients. If you can identify just the clients lacking this support, put them on a
separate MMP virtual domain.

• Enable the separate SSL-only ports (993, 995, 465) which can be used in addition to
SSL/TLS on any of the regular ports (143,110, 587). With the RestrictPlainPassword and

Chapter 8
SSL/TLS Best Practices

8-17

plaintextmincipher options, there is no significant security difference between the regular
and SSL-only ports.

• If possible, disable weaker cipher suites with ssladjustciphersuites (particularly the RC4
cipher suites).

Client Certificate SSL/TLS Best Practices
Follow these client certificate SSL/TLS best practices:

• Set IGNORE_BAD_CERT to 0, at least for submission service.

• If using CRLs, use the new format certificate database.

• If using CRLs, make sure the CRLs stored in the certificate database are updated
periodically, perhaps through cron or similar mechanism.

Messaging Server and SSL/TLS: Known Limitations
The following is not an exhaustive list of product limitations. There are additional limitations in
ancillary utilities outside the core product feature set.

Administrative Proxy with a Certificate
Except for the IMAPS service, all of the Messaging Server servers (IMAP, POP3, SMTP
Submission) support administrative proxy using a client certificate. If the administrator provides
a certificate that maps to a known store administrator identity using certmap, that administrator
can authenticate as another user through the AUTH EXTERNAL mechanism. However, the
feature is not presently available on the MMP.

Proxy IMAP Authentication Limitations
When Messaging Server's mshttpd or IMAPD daemons contact an IMAP back-end server,
they only support administrative proxy using plain text passwords, which are optional over the
SSL port. Support for administrative proxy through a client certificate is not currently supported.
STARTTLS is not currently supported either.

The MTA IMAP URL resolver used by the MTA's BURL feature does not support SSL.

Proxy MMP (IMAP/POP/SMTP-Submission) Authentication Limitations
The MMP's server components support client certificate authentication but do not support
administrative proxy authentication using a mechanism other than plaintext passwords. The
MMP's client components only support password replay or administrative proxy through
plaintext passwords (optionally over SSL if the client also used SSL). They do not support
client certificate authentication to the back-end and also do not support STARTTLS.

Internal Protocols Lacking Support for SSL and/or Authentication
The LMTP server only supports authentication using the PORT_ACCESS mapping to filter
based on IP address. Basic SSL/TLS (without client certificates) should work using standard
MTA channel keywords.

Chapter 8
Messaging Server and SSL/TLS: Known Limitations

8-18

Disabling Passwords-Over-SSL
You cannot disable passwords-over SSL.

Hosting Multiple Domains with SSL
The MMP's IMAP, POP, and Submission proxies can be used to host multiple SSL domains
with different certificates as long as each domain has a separate IP address and the
appropriate vdmap.cfg settings. The MTA's PORT_ACCESS mapping supports standard
submissions with STARTTLS, although standard submissions through the MTA does not have
this feature. The back-end IMAP and POP servers do not have this support.

CRL Updates and OCSP
The default certificate validation algorithm checks a client certificate against CRLs stored in the
local NSS certificate database. There is no automated procedure to update those CRLs and
fetch CRLs. OCSP is not supported.

To use up-to-date CRLs for SSL, you must use a new certificate format (cert9.db, key4.db,
pkcs11.txt) or a third-party PKCS#11 module that supports concurrent read/write access, as
well write your own cron or equivalent script to fetch and update this information.

Time Delay for Updates to CRLs or New Certificates
When a CRL is updated in the new certificate format (cert9.db, key4.db, pkcs11.txt), it can
take up to 10 minutes for running processes to notice the database has changed and update
their internal cache of certificates and CRLs. If a CRL change must take effect immediately, the
relevant servers must be restarted.

References
Technical Documentation for New Database Format in NSS:

https://wiki.mozilla.org/NSS_Shared_DB
NSS Shared DB Howto (Primarily for Firefox/Thunderbird):

https://wiki.mozilla.org/NSS_Shared_DB_Howto
Documentation for certutil:

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/
NSS_Tools_certutil
Documentation for crlutil:

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/
NSS_Tools_crlutil
Error Codes Returned by Mozilla APIs:

https://developer.mozilla.org/en-US/docs/Mozilla/Errors

Chapter 8
References

8-19

https://wiki.mozilla.org/NSS_Shared_DB
https://wiki.mozilla.org/NSS_Shared_DB_Howto
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_certutil
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_certutil
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_crlutil
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_crlutil
https://developer.mozilla.org/en-US/docs/Mozilla/Errors

9
Configuring Messaging Server and Solaris
Cryptographic Framework

This chapter describes how to configure Sun Java System Messaging Server 6.3 for SSL and
the Solaris Cryptographic Framework (SCF). This is a three-step process where you configure
Messaging Server for SSL (optional), configure the Solaris Cryptographic Framework, then
configure Messaging Server to use SCF.

About the Solaris Cryptographic Framework
The Solaris Cryptographic Framework (SCF) provides a common store of algorithms and
PKCS#11 libraries to handle cryptographic requirements. The PKCS#11 libraries are
implemented according to the cryptography standard created by RSA Security Inc., PKCS#11
Cryptographic Token Interface (Cryptoki). See Chapter 8, Introduction to the Solaris
Cryptographic Framework, in Oracle Solaris Security for Developers Guide for more
information. The Solaris Cryptographic Framework is available in the Solaris 10 Operating
System and Solaris Express releases.A PKCS#11 module (also called a cryptographic module
or a cryptographic service provider) manages cryptographic services such as encryption and
decryption through the PKCS#11 interface. PKCS#11 modules can be thought of as drivers for
cryptographic devices that can be implemented in either software or hardware. A PKCS#11
module always has one or more slots, which can be implemented as physical hardware slots in
some form of physical reader (for example, for smart cards) or as conceptual software slots.
Each slot for a PKCS#11 module can in turn contain a token, which is the hardware or software
device that actually provides cryptographic services and optionally stores certificates and keys.
A hardware token is a PKCS#11 token implemented in physical devices, such as hardware
accelerators and smart cards. A software token is a PKCS#11 token implemented entirely in
software.Messaging Server is configured to use the NSS built-in soft token for its cryptographic
needs. Any PKCS#11 module that supports PKCS#11 can be used with NSS libraries, so the
Solaris Cryptographic Framework can be used as the cryptographic service provider for
Messaging Server.

Configuring Messaging Server for SSL
This section describes the procedures you use to create the secmod, key3, and cert8
databases, obtain a certificate, and install the certificate for the NSS built-in soft token.
Completing such procedures enables SSL on your Messaging Server deployment.

If you already have a Messaging Server deployment configured for SSL, skip this section and
proceed to "Configuring Individual Messaging Processes for SSL".

About the pk12util Command
The pk12util command is the primary mechanism for managing certificates. It allows you to
generate a certificate request, add a certificate to the certificate database, list certificates in the
certificate database, and so on. The pk12util command, like all Messaging Server commands,
runs as mailsrv. Thus, even if you execute pk12util as root, it executes as the Messaging
Server user. The pk12util utility is located in the MessagingServer_home/bin directory, where

9-1

MessagingServer_home is the location of the Messaging Server installation, by
default /opt/sun/comms/messaging64.

For detailed information about the pk12util command, type:

MessagingServer_home/bin/pk12util --help

Creating the Certificate Database and Add Certificate/Key Pairs
The following procedure generates secmod, key3, and cert8 databases, and also creates the
sslpassword.conf file. By default, certificates are generated in the MessagingServer_home/
config directory.You can also specify the location and prefix of the certificate databases by
using the following local.ssldbprefix configuration parameter.The Messaging Server user (for
example, mailsrv) should be able to read and write to local.ssldbpath.

To create the certificate database and add certificate/key pairs:

1. Change directories to the Messaging Server bin directory.

cd MessagingServer_home/bin
2. Run the following command:

pk12util generate-certDB

This utility prompts you for a password to protect the keys and certificates in the certificate
database.

3. Choose the Certificate Database password. (The password is not echoed on the screen.)

4. Confirm the Certificate Database password. (The password is not echoed on the screen.)

5. Confirm that the required databases and the sslpassword.conf file were created.

ls -lrt ../config/*.db ../config/sslpassword.conf
-rw------- 1 mailsrv mail 32768 Nov 16 04:40 ../config/secmod.db
-rw------- 1 mailsrv mail 65536 Nov 16 04:40 ../config/cert8.db
-rw------- 1 mailsrv mail 32768 Nov 16 04:40 ../config/key3.db
-rw-r----- 1 mailsrv mail 36 Nov 16 04:40 ../config/sslpassword.conf
cat ../config/sslpassword.conf
Internal (Software) Token:12345678

Obtaining a Certificate
By default, the pk12util command creates a self-signed-certificate with the nickname Server-
Cert. You can either remove this or use the self-signed-certificate.

The following example shows how to remove this default self-signed-certificate:

pk12util remove-cert -W MessagingServer_home/config/sslpassword Server-Cert

1. Request a CA-signed server certificate.

To the pk12util request-cert command, specify the cert request to be in ASCII format (the
default is binary). The resulting certificate request is a PKCS#10 certificate request in
Privacy Enhanced Mail (PEM) format. PEM is format specified by RFCs 1421 through
1424 (RFC 1421) and used to represent a base64-encoded certificate request in US-ASCII
characters.

For example:

echo "12345678" > MessagingServer_home/config/sslpassword

Chapter 9
Configuring Messaging Server for SSL

9-2

Note:

This is the same password you used to generate the certificate database.

pk12util request-cert -W MessagingServer_home/config/sslpassword
--name "foobar.siroe.com" --org "Development" --org-unit "Comms" --city
Santaclara --state California --country us -F ascii -o /tmp/MyCertRequest

The content of the Certificate Signing Request (CSR) looks similar to this:

cat /tmp/MyCertRequest
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBvzCCASgCAQAwfzELMAkGA1UEBhMCdXMxEzARBgNVBAgTCkNhbGlmb3JuaWEx
EzARBgNVBAcTClNhbnRhY2xhcmExDjAMBgNVBAsTBWNvbW1zMRQwEgYDVQQKEwtE
ZXZlbG9wbWVudDEgMB4GA1UEAxMXYmlvdGl0ZS5yZWQuaXBsYW5ldC5jb20wgZ8w
DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALFCDfmu1uYFy3DtHAo/kJUFqXF6utq2
ga+Tow2PNEyuX+70SqyZ0vFwiL8di9b1mLMHLp3WBDPmXjVfNkANHk6Q38RlfyzT
7iYpvhi6+4OVthzC65FaqwnEEiodZ7z7yx8vRhj4lVxeoNJpJexGr1MHuYr8tobe
ljgEmrLP17aNAgMBAAGgADANBgkqhkiG9w0BAQQFAAOBgQANzqjEwcnnmdXjo/KH
buolHi1hNEYoDsXWIlTi78xkH+7gtfCPkymFzTy5mS58PzAqyWm81MZKXj39C+Eq
DOCJmZYRt3lG6wo0M8nMoQLHsVSHfGZxOyppupzYsmVfszhczr0EEHJP66itDPW2
/jHGRbhXfeJNhKsisscd/YYkEQ==

2. Transmit the CSR to your Certificate Authority, according to its procedures.

The process for obtaining your Certificate Authority certificate differs depending on the
certificate authority you use. Some commercial CAs provide a web site that enables you to
automatically download the certificate. Other CAs email the certificate to you upon request.
After you have sent your request, you must wait for the CA to respond with your certificate.

3. Save the certificate you receive back from the Certificate Authority.

You should back up your certificates in a safe location. If you ever lose the certificates, you
can reinstall them by using your backup file. You can save the certificates as text files. The
PKCS#11 certificate in PEM format looks similar to the following:

-----BEGIN CERTIFICATE-----
MIIDmTCCAwKgAwIBAgIBZjANBgkqhkiG9w0BAQQFADCBhjELMAkGA1UEBhMCVVMx
EzARBgNVBAgTCkNhbGlmb3JuaWExDzANBgNVBAoTBlNTRS1TVzEPMA0GA1UECxMG
UG9ydGFsMRgwFgYDVQQDEw9WZWVyYSBOYXRhcmFqYW4xJjAkBgkqhkiG9w0BCQEW
F3ZlZXJhLm5hdGFyYWphbkBzdW4uY29tMB4XDTA2MTExNjA3MDIyN1oXDTA3MTEx
NjA3MDIyN1owfzELMAkGA1UEBhMCdXMxEzARBgNVBAgTCkNhbGlmb3JuaWExEzAR
BgNVBAcTClNhbnRhY2xhcmExFDASBgNVBAoTC0RldmVsb3BtZW50MQ4wDAYDVQQL
EwVjb21tczEgMB4GA1UEAxMXYmlvdGl0ZS5yZWQuaXBsYW5ldC5jb20wgZ8wDQYJ
KoZIhvcNAQEBBQADgY0AMIGJAoGBALFCDfmu1uYFy3DtHAo/kJUFqXF6utq2ga+T
ow2PNEyuX+70SqyZ0vFwiL8di9b1mLMHLp3WBDPmXjVfNkANHk6Q38RlfyzT7iYp
vhi6+4OVthzC65FaqwnEEiodZ7z7yx8vRhj4lVxeoNJpJexGr1MHuYr8tobeljgE
mrLP17aNAgMBAAGjggEbMIIBFzAJBgNVHRMEAjAAMDUGCWCGSAGG+EIBDQQoFiZT
dW5PTkUtUFRTIFBvcnRhbDogT3BlblNTTCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQU
wkhhgKwbt1P8SXrRHpesVuhel0gwgbMGA1UdIwSBqzCBqIAUIALOde3lgiZiUwXo
PTiN/YaJKoihgYykgYkwgYYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9y
bmlhMQ8wDQYDVQQKEwZTU0UtU1cxDzANBgNVBAsTBlBvcnRhbDEYMBYGA1UEAxMP
VmVlcmEgTmF0YXJhamFuMSYwJAYJKoZIhvcNAQkBFhd2ZWVyYS5uYXRhcmFqYW5A
c3VuLmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQAdsOxEygD/Rbj4NWHhTrAZcn2B
mWv40MFS1oAgJSMc5BPTBGHcSnnLEh0ZApFLfWknVro4ubW3mb5ByaHoR3sOsxAO
4705avDUgX2g+4V80ef2CVOo5AoZRNMgVMt4Ju3D1PDZsDWQstbfV3PTeMyAzy/7
NZh1+adCuh8J+Rhl4Q==
-----END CERTIFICATE-----

4. Follow the same steps described previously to obtain additional certificates.

Chapter 9
Configuring Messaging Server for SSL

9-3

Adding Certificates to the NSS Software Token
To add certificates to the NSS software token:

1. Save the signed certificate into a temporary location, for example:

/tmp/caissuedFirstCert

For this example, a second signed certificate was also obtained using the previous
procedure and saved as the following:

/tmp/caissuedSecondCert
2. Install the CA-signed server certificates.

pk12util add-cert -W MessagingServer_home/config/sslpassword Server-Cert /tmp/
caissuedFirstCert
pk12util add-cert -W MessagingServer_home/config/sslpassword SolCrypto-
Framework /tmp/caissuedSecondCert

3. Repeat Steps 1 and 2 for other certificates you have obtained.

4. Verify that the certificates have been successfully installed.

pk12util list-certs -W MessagingServer_home/config/sslpassword
...
2 certificates found

Listing the Default NSS Certificates
For newer certificate formats (cert9.db and pkcs11.txt), to list the default NSS certificates, you
need to first add the libnssckbi.so default certificate library to the configuration.

To list the default built-in certificates:

1. Change directories to the Messaging Server's configuration directory.

cd /opt/sun/comms/messaging64/config

2. Run the following command to add the libnssckbi.so default certificate library to the
configuration directory:

modutil -dbdir sql:. -add "NSS certificates" -libfile /opt/sun/comms/messaging64/lib/
libnssckbi.so

3. Run the following command to list the default NSS certificates:

certutil -L -d sql:. -h "NSS certificates"

Configuring Individual Messaging Processes for SSL
This section describes the procedures you use to configure the various Messaging Server
processes for SSL.

Configuring MMP for SSL
To configure the MMP for SSL:

Chapter 9
Configuring Individual Messaging Processes for SSL

9-4

1. Set the SSL certificate nickname.

Edit the ImapProxyAService.cfg and PopProxyAService.cfg files as follows, modifying
the line default:SSLCertNickNames to "Server-Cert".

cd MessagingServer_home/data/config
ImapProxyAService.cfg: default:SSLCertNicknames "Server-Cert"
PopProxyAService.cfg: default:SSLCertNicknames "Server-Cert"

2. To enable SSL and IMAP, edit the ImapProxyAService.cfg file and uncomment the
relevant SSL settings.

A sample ImapProxyAService.cfg file resembles the following:

SSL configuration
#
Enable SSL from client to MMP with this:
default:SSLEnable yes
default:SSLPorts 993
default:SSLCertNicknames Server-Cert
Password File for SSL server keys:
default:SSLKeyPasswdFile Messaging_Server_Root/config/sslpassword.conf
Where SSL session cache, secmod, cert, and key files are located:
default:SSLCacheDir Messaging_Server_Root/config
Customizable SSL security module database file name:
default:SSLSecmodFile secmod.db
Customizable SSL cert7.db and key3.db file prefixes:
default:SSLCertPrefix ""
default:SSLKeyPrefix ""
Use SSL on this port when talking to the back-end server (0 = do not use SSL)
default:SSLBacksidePort 993
default:ServiceList /opt/sun/comms/messaging64/lib/ImapProxyAService@1143|1993
/opt/sun/comms/messaging64/lib/PopProxyAService@1110|1995

3. To enable SSL and POP, edit the PopProxyAService.cfg file and uncomment the relevant
SSL settings.

4. Edit the AService.cfg file. For SSL and POP, add |1995 after the 1110 in the ServiceList
setting. For SSL and IMAP, add |1993 after 1143.

The AService.cfg file should resemble the following:

default:ServiceList /opt/sun/comms/messaging64/lib/ImapProxyAService@1143|1993
/opt/sun/comms/messaging64/lib/PopProxyAService@1110|1995

Configuring IMAP for SSL
To configure IMAP for SSL:

1. Use the configutil command to set the following configuration parameters to enable SSL:

configutil -o service.imap.enablesslport -v yes
configutil -o service.imap.enable -v 1
configutil -o service.imap.sslport -v 993
configutil -o service.imap.sslusessl -v yes

2. Use the configutil command to set the SSL certificate nickname:

configutil -o encryption.rsa.nssslpersonalityssl -v "Server-Cert"

Configuring POP for SSL
To configure POP for SSL:

Chapter 9
Configuring Individual Messaging Processes for SSL

9-5

1. Use the configutil command to set the following configuration parameters to enable SSL:

configutil -o service.pop.enable -v 1
configutil -o service.pop.enablesslport -v yes
configutil -o service.pop.sslport -v 995
configutil -o service.pop.sslusessl -v yes

2. Use the configutil command to set the SSL certificate nickname:

configutil -o encryption.rsa.nssslpersonalityssl -v "Server-Cert"

Configuring HTTP for SSL
To configure HTTP for SSL:

1. Use the configutil command to set the following configuration parameters to enable SSL:

configutil -o service.http.enable -v 1
configutil -o service.http.enablesslport -v yes
configutil -o service.http.sslport -v 443
configutil -o service.http.sslusessl -v yes

2. Use the configutil command to set the SSL certificate nickname:

configutil -o encryption.rsa.nssslpersonalityssl -v "Server-Cert"

Configuring SMTP for SSL
To configure SMTP for SSL:

1. Use the configutil command to set the SSL certificate nickname:

configutil -o encryption.rsa.nssslpersonalityssl -v "Server-Cert"
2. To enable SSL encryption for outgoing messages, modify the channel definitions to include

the TLS channel options such as maytls, musttls, and so on.

3. Uncomment the TLS_PORT entry (in the dispatcher.cnf file located in the
MessagingServer_home/config directory) if you want to support SSL on an alternate port.

port 465TLS_PORT=465

Note:

You can also use a per-service configuration setting for the SSL certificate
nicknames. The configuration parameters, which have the same meaning (that is, the
nickname) and override the encryption.rsa.sslpersonalityssl setting, are:

• local.imta.sslnicknames (for the SMTP and Submit Servers)

• local.imap.sslnicknames (for the IMAP Server)

• local.pop.sslnicknames (for the POP Server)

• local.http.sslnicknames (for the HTTP Server)

Verifying the SSL Configuration
To verify the SSL configuration:

1. Use the netstat command to verify that the service is running.

Chapter 9
Configuring Individual Messaging Processes for SSL

9-6

netstat -an | grep service.service.sslport

where service is a keyword mmp, imap, pop, http, or smtp.

2. Check for errors in the Messaging Server log files.

Log files are located in the MessagingServer_home/log directories. For example, check
the imap log to ensure that there are no SSL initialization errors (ASockSSL_Init errors).

Configuring the Solaris Cryptographic Framework (SCF)
Because the Solaris Cryptographic Framework software token contains private information,
you use the pktool(1) command to set a password on the token. This command initializes the
user's default keystore by logging in to the system as the application owner (the Messaging
Server user).

Setting Up the SCF Software Token Pin
Running the pktool setpin command initializes the soft token data store in the $HOME/.sunw/
pkcs11_softtoken/ directory. These files are created to be accessible only to the owner, to
protect their contents. This also means that you must perform the initialization as the same
user that is used to run Messaging Server (that is, mailsrv), so this user has access to the
right data store.

To set up the SCF software token pin:

1. Become the mailsrv user.

su mailsrv
2. Run the id command.

id
uid=207023(mailsrv) gid=6(mail)

3. Run the pktool command.

pktool setpin
4. Create the new passphrase. (The passphrase is not echoed on the screen.)

You use this passphrase to import the certificate/key pair into the SCF token.

5. Reenter the passphrase. (The passphrase is not echoed on the screen.)

You are notified that the passphrase is changed.

6. Change to the /export/mailsrv directory.

cd /export/mailsrv
7. Check permissions.

ls -alrR
..:
total 6
drwx------ 3 mailsrv mail 512 Nov 16 17:21 .sunw
drwxr-xr-x 4 root sys 512 Oct 31 12:31 ..
drwxrwxrwx 3 root root 512 Nov 16 17:21 .

../.sunw:
total 6
drwx------ 4 mailsrv mail 512 Nov 16 17:21 pkcs11_softtoken
drwxrwxrwx 3 root root 512 Nov 16 17:21 ..

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-7

drwx------ 3 mailsrv mail 512 Nov 16 17:21 .

../.sunw/pkcs11_softtoken:
total 10
drwx------ 2 mailsrv mail 512 Nov 16 17:21 public
drwx------ 2 mailsrv mail 512 Nov 16 17:21 private
-rw------- 1 mailsrv mail 103 Nov 16 17:21 objstore_info
drwx------ 3 mailsrv mail 512 Nov 16 17:21 ..
drwx------ 4 mailsrv mail 512 Nov 16 17:21 .

../.sunw/pkcs11_softtoken/public:
total 4
drwx------ 4 mailsrv mail 512 Nov 16 17:21 ..
drwx------ 2 mailsrv mail 512 Nov 16 17:21 .

../.sunw/pkcs11_softtoken/private:
total 4
drwx------ 4 mailsrv mail 512 Nov 16 17:21 ..
drwx------ 2 mailsrv mail 512 Nov 16 17:21 .

Administering the Cryptographic Framework by Using cryptoadm
The cryptoadm utility displays cryptographic provider information for a system, configures the
mechanisms for each provider, and installs or uninstalls a cryptographic provider. The Solaris
Cryptographic Framework supports three types of providers: a user-level provider (a PKCS#11
shared library), a kernel provider (a loadable kernel software module), and a kernel hardware
provider (a cryptographic hardware device). The cryptoadm utility provides subcommands to
enable and disable the metaslot's features, list metaslot's configuration, and also configure the
metaslot's mechanisms policy.

To administer the Cryptographic Framework:

1. You can list all the service providers and their cryptographic mechanisms in the Solaris
Cryptographic Framework by running the cryptoadm list -m command. Verify that ncp
and pkcs11_softtoken.so are available as cryptographic providers. Because NCP is a
kernel provider, pkcs11_kernel.so should appear before pkcs11_softtoken.so in the
output.

Following is a partial output of this command.

cryptoadm list -m
User-level providers:
=====================
Provider: /usr/lib/security/$ISA/pkcs11_kernel.so
Mechanisms:
CKM_DSA
CKM_RSA_X_509
CKM_RSA_PKCS

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so
Mechanisms:
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES_ECB
CKM_DES_KEY_GEN
[.... so on ...]
CKM_DSA
CKM_DSA_SHA1
CKM_DSA_KEY_PAIR_GEN
[.... so on ...]
CKM_TLS_MASTER_KEY_DERIVE_DH

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-8

CKM_SSL3_KEY_AND_MAC_DERIVE
CKM_TLS_KEY_AND_MAC_DERIVE
CKM_TLS_PRF

Kernel software providers:
==========================
des: CKM_DES_ECB,CKM_DES_CBC,CKM_DES3_ECB,CKM_DES3_CBC
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR
[.... so on ...]
sha1: CKM_SHA_1,CKM_SHA_1_HMAC,CKM_SHA_1_HMAC_GENERAL
md5: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL
rsa:CKM_RSA_PKCS,CKM_RSA_X_509,CKM_MD5_RSA_PKCS,CKM_SHA1_RSA_PKCS,CKM_SHA256_RSA_PKCS
,
CKM_SHA384_RSA_PKCS,CKM_SHA512_RSA_PKCS
swrand: No mechanisms presented.

Kernel hardware providers:
==========================
ncp/0: CKM_DSA,CKM_RSA_X_509,CKM_RSA_PKCS

2. Disable the use of the following user-level mechanisms, forcing them to be performed by
the NCP.

cryptoadm disable provider=/usr/lib/security/'$ISA'/pkcs11_softtoken.so \
mechanism=CKM_SSL3_PRE_MASTER_KEY_GEN,\
CKM_SSL3_MASTER_KEY_DERIVE,CKM_SSL3_KEY_AND_MAC_DERIVE,CKM_SSL3_MASTER_KEY_DERIVE_DH,
\
CKM_SSL3_MD5_MAC,CKM_SSL3_SHA1_MAC

3. Verify that the user-level mechanisms are disabled.

cryptoadm list -p provider=/usr/lib/security/'$ISA'/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,
except
CKM_SSL3_SHA1_MAC,CKM_SSL3_MD5_MAC,CKM_SSL3_MASTER_KEY_DERIVE_DH,CKM_SSL3_KEY_AND_MAC
_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE,CKM_SSL3_PRE_MASTER_KEY_GEN. random is enabled.

Configuring the SCF Provider
NSS uses secmod.db to keep track of the PKCS#11 modules available. You can use the
security Module Database Tool modutil, a CLI that comes with NSS to manage PKCS#11
module information within secmod.db files. The Security Module Database Tool enables you
to add and delete PKCS#11 modules, change passwords, set defaults, list module contents,
and enable or disable slots. The modutil CLI is bundled with the Messaging Server software
and is located in the MessagingServer_home/bin directory. This example assumes that you
are running modutil from the MessagingServer_Home/lib directory and cert8.db, secmod.db,
and key3.db are located under the config directory, that is MessagingServer_home/config.

1. List all the available PKCS#11 modules.

Using modutil, you can list all the available PKCS#11 modules. By default, NSS has an
internal PKCS#11 module.

modutil -dbdir ../config -nocertdb -list
Using database directory ../config...
Listing of PKCS #11 Modules

 1. NSS Internal PKCS #11 Module
 slots: 2 slots attached
 status: loaded

 slot: NSS Internal Cryptographic Services

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-9

 token: NSS Generic Crypto Services

 slot: NSS User Private Key and Certificate Services
 token: NSS Certificate DB

2. List the contents of the default NSS soft token.

The file sslpassword contains the password to the Certificate Database.

pk12util list-certs -W MessagingServer_home/config/sslpassword
Alias Valid from Expires on Self-signed?Issued by Issued to
Server-Cert 2006/11/15 23:02 2007/11/15 23:02 n
CN=CA,OU=test,O=authority,ST=California,C=US
CN=foobar.siroe.com,OU=comms,O=Dev,L=Santaclara,ST=California,C=us
SolCrypto-Framework 2006/11/16 00:14 2007/11/16 00:14 n
CN=CA,OU=test,O=authority,ST=California,C=US
CN=SCF,OU=comms,O=Dev,L=Santaclara,ST=California,C=us
2 certificates found

Adding the Solaris Cryptographic Framework as a Service Provider
Messaging Server is configured to use the NSS built-in soft token for its cryptographic needs,
which employs PKCS#11 to access cryptography. You can modify the Messaging Server
configuration to use the User-Level Cryptographic Framework of the Solaris Cryptographic
Framework, out of the box, by linking to the /usr/lib/libpkcs11.so library to get direct access to
the PKCS#11 functionality. That is, you register the Solaris Cryptographic Framework as a
PKCS#11 module.

To administer the Cryptographic Framework as a service provider:

1. Register the /usr/lib/libpkcs11.so PKCS#11 library with the Messaging Server software
and enable the slot named Sun Metaslot.

modutil -dbdir ../config/ -nocertdb -add "Solaris Crypto Framework" -libfile
/usr/lib/libpkcs11.so -mechanisms RSA
WARNING: Performing this operation while the browser is running could cause
corruption
of your security databases. If the browser is currently running,
you should exit browser before continuing this operation. Type 'q <enter>' to abort,
or <enter> to continue:

Using database directory ../config...

Module "Solaris crypto Framework" added to database.

2. Continue with "Enabling the Slot Named Sun Metaslot".

Enabling the Slot Named Sun Metaslot
To enable the slot named Sun Metaslot:

1. Run the following modutil command.

modutil -dbdir ../config/ -nocertdb -disable "Solaris Crypto Framework"

WARNING: Performing this operation while the browser is running
could cause corruption of your security databases.
If the browser is currently running,
you should exit browser before continuing this operation.
Type 'q <enter>' to abort, or <enter> to continue:
Using database directory ../config...

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-10

Slot "Sun Metaslot" disabled.
Slot "ncp/0 Crypto Accel Asym 1.0" disabled.

2. Run the following modutil command.

modutil -dbdir ../config/ -nocertdb -enable "Solaris Crypto Framework" -slot "Sun
Metaslot"
WARNING: Performing this operation while the browser is running
could cause corruption of your security databases.
If the browser is currently running,
you should exit browser before continuing this operation.
Type 'q <enter>' to abort, or <enter> to continue:

Using database directory ../config...
Slot "Sun Metaslot" enabled.

3. Run the following modutil command to verify that the Solaris Crypto Framework is
successfully added.

modutil -dbdir ../config/ -nocertdb -list
Using database directory ../config...

Listing of PKCS #11 Modules

 1. NSS Internal PKCS #11 Module

 slots: 2 slots attached
 status: loaded

 slot: NSS Internal Cryptographic Services
 token: NSS Generic Crypto Services

 slot: NSS User Private Key and Certificate Services
 token: NSS Certificate DB

 2. Solaris crypto Framework

 library name: /usr/lib/libpkcs11.so

 slots: 2 slots attached
 status: loaded

 slot: Sun Metaslot
 token: Sun Metaslot

 slot: ncp/0 Crypto Accel Asym 1.0
 token: ncp/0 Crypto Accel Asym 1.0

Exporting the Certificate/Key Pairs From the NSS Soft Token
This task describes how to export the certificate/key pairs from the NSS soft token (as
PKCS#12 formatted files) to be imported in to the SCF software token. The following shows
how to export two certificates found in the internal token.

To export the certificate/key pairs from the NSS soft token:

1. Choose the PKCS#12 file password and copy it to a file called /tmp/pkcs12password.

echo "pkcspassword" > /tmp/pkcs12password
2. Run the following commands to export the two certificates found in the Internal Token in to

PKCS#12 formatted files.

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-11

pk12util export-cert -W MessagingServer_home/config/sslpassword -o /tmp/Server-
Certpk12 -O /tmp/pkcs12password Server-Cert

file /tmp/Server-Certpk12

/tmp/Server-Certpk12: data
3. Continue with "Importing the Key/Certificate Pairs to the Sun Metaslot (SCF)".

Importing the Key/Certificate Pairs to the Sun Metaslot (SCF)
To import the key/certificate pairs to the SCF:

1. Run the following pk12util command.

$ pk12util -i /tmp/Server-Certpk12 -d ../config/ -h "Sun Metaslot"
Enter Password or Pin for "Sun Metaslot":
{ This is the same password you entered, when running pktool setpin)
Enter password for PKCS12 file:
{PKCSpassword : password used to export certificates from the Internal Software
Token }
pk12util: PKCS12 IMPORT SUCCESSFUL

2. Run the following pk12util command.

$ pk12util -i /tmp/SCFpk12 -d ../config/ -h "Sun Metaslot"
Enter Password or Pin for "Sun Metaslot":
{ This is the same password you entered, when running pktool setpin)
Enter password for PKCS12 file:
{PKCSpassword : password used to export certificates from the Internal Software
Token }
pk12util: PKCS12 IMPORT SUCCESSFUL

3. Continue with "Verifying the Successful Importation of the Certificate/Key Pairs".

Verifying the Successful Importation of the Certificate/Key Pairs
Use this task to verify that the certificate/key pairs were successfully imported to the token. You
must be logged in as mailsrv (that is, the Messaging Server user).

To verify that the certificate/key pairs were successfully imported:

1. Run the following certutil command.

$ certutil -L -d ../config/ -h "Sun Metaslot"
Enter Password or Pin for "Sun Metaslot":
(This is the same password you entered, when running pktool setpin.)
Sun Metaslot:Server-Cert u,u,u
Sun Metaslot:SolCrypto-Framework u,u,u

2. Run the following certutil command.

$ certutil -K -d ../config/ -h "Sun Metaslot"
Enter Password or Pin for "Sun Metaslot":
(This is the same password you entered, when running pktool setpin.)
<0> Server-Cert
<1> SolCrypto-Framework

3. Proceed to the next section to configure Messaging Server.

Chapter 9
Configuring the Solaris Cryptographic Framework (SCF)

9-12

Configuring Messaging Server to Use the External Token
This section describes the procedures you use to configure the various Messaging Server
processes to use the external token.

Configuring Messaging Server Processes to Use the External Token
To configure Messaging Server processes to use the external token:

1. Configure MMP by editing the ImapProxyAService.cfg and PopProxyAService.cfg files
as follows.

cd MessagingServer_home/data/config
ImapProxyAService.cfg: default:SSLCertNicknames "Sun Metaslot:Server-Cert"
PopProxyAService.cfg: default:SSLCertNicknames "Sun Metaslot:Server-Cert"

2. Configure the IMAP server by setting the following configuration parameters to use the
external token.

configutil -o encryption.rsa.nssslpersonalityssl -v "Sun Metaslot:Server-Cert"

OR

configutil -o local.imap.sslnicknames -v "Sun Metaslot:Server-Cert"
3. Configure the POP server by setting the following configuration parameters to use the

external token.

configutil -o encryption.rsa.nssslpersonalityssl -v "Sun Metaslot:Server-Cert"

OR

configutil -o local.pop.sslnicknames -v "Sun Metaslot:Server-Cert"
4. Configure the HTTP server by setting the following configuration parameters to use the

external token.

configutil -o encryption.rsa.nssslpersonalityssl -v "Sun Metaslot:Server-Cert"

OR

configutil -o local.http.sslnicknames -v "Sun Metaslot:Server-Cert"
5. Configure the SMTP server by setting the following configuration parameters to use the

external token.

Use the configutil command to set the SSL certificate nickname:

configutil -o encryption.rsa.nssslpersonalityssl -v "Sun Metaslot:Server-Cert"

OR

configutil -o local.imta.sslnicknames -v "Sun Metaslot:Server-Cert"

Chapter 9
Configuring Messaging Server to Use the External Token

9-13

Note:

As shown previously, you can also use a per-service configuration setting for the
SSL certificate nicknames. The configuration parameters, which have the same
meaning (that is, the nickname) and override the
encryption.rsa.sslpersonalityssl setting, are:

• local.imta.sslnicknames (for the SMTP and Submit Servers)

• local.imap.sslnicknames (for the IMAP Server)

• local.pop.sslnicknames (for the POP Server)

• local.http.sslnicknames (for the HTTP Server)

6. Save the "Sun Metaslot" password in to the sslpassword.conf file.

The "Sun Metaslot" is protected by a password. The server prompts for a password every
time it starts up. Instead of entering the password every time, Messaging Server reads the
password from the sslpassword.conf file located in the MessagingServer_home/config
directory. Edit this file as follows.

cat MessagingServer_home/data/config/sslpassword.conf
Sun Metaslot:secret("secret" : This is the same password you entered, when running
pktool setpin)

Starting and Debuging Messaging Server Services
This task explains how to restart the Messaging Server services, check for errors, and verify
the operational SCF environment.

To start and debug Messaging Server services:

1. Restart the Messaging Server services.

MessagingServer_home/bin/start-msg
Connecting to watcher ...
Launching watcher ... 27351
Starting ens server ... 27352
Starting store server 27353
Checking store server status ready
Starting imap server 27354
Starting pop server 27355
Starting http server 27356
Starting sched server ... 27357
Starting dispatcher server 27359
Starting job_controller server 27365

2. Ensure that there are no SSL_init errors in the log files, and no ASockSSL_init errors in
any of the tcp_smpt, default, imap, pop, and http log files.

You see something like the following when there is a problem.

http:[31/Nov/2006:11:36:21 -0800]
biotite httpd[27356]: General Error: SSLinitialization error:
ASockSSL_Init: couldn't open slot Metaslot (-8127)
imap:[31/Nov/2006:11:36:20 -0800]
biotite imapd[27354]: General Error: SSLinitialization error:
ASockSSL_Init: couldn't open slot Metaslot (-8127)
pop:[31/Nov/2006:11:36:21 -0800]
biotite popd[27355]: General Error:SSL initialization error:
ASockSSL_Init: couldn't open slot Metaslot (-8127)

Chapter 9
Configuring Messaging Server to Use the External Token

9-14

tcp_smtp_server.log-0J8000L01MGM3Z00:[31/Nov/2006:11:36:22 -0800]
biotite [27363]: General Error:SSL initialization error:
ASockSSL_Init: couldn't open slot Metaslot (-8127)
tcp_smtp_server.log-0J8000L03MGM3Z00:[31/Nov/2006:11:36:22 -0800]
biotite [27364]: General Error:SSL initialization error:
ASockSSL_Init: couldn't open slot Metaslot (-8127)

3. Verify that the SSL ports are listening.

netstat -an | grep 995
 *.995 *.* 0 0 49152 0 LISTEN
netstat -an | grep 443
*.443 *.* 0 0 49152 0 LISTEN
netstat -an | grep 465
*.465 *.* 0 0 49152 0 LISTEN

4. Once the application is operational on the Solaris Cryptographic Framework, use the kstat
command to display the number of RSA public key decryptions performed using NCP
since the last system boot.

The number of RSA public key decryptions are shown as the rsapublic value in the kstat
output. An incremental and a positive increase in the value of rsapublic shows that NCP is
operational.

kstat -n ncp0 | grep rsa
rsprivate Xrsapublic X

In this output:

• rsaprivate -- Total number of jobs submitted to the device for RSA private key
operations.

• rsapublic -- Total number of jobs submitted to the device for RSA public key
operations.

By using a browser to connect to the HTTP SSL port and log in, you see how the count
increases. For example:

<Log in to https://host1.red.example.com>
kstat -n ncp0 | grep rsa
rsaprivate 35 rsapublic 146
kstat -n ncp0 | grep rsa
rsaprivate 38 rsapublic 149

Chapter 9
Configuring Messaging Server to Use the External Token

9-15

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Messaging Server Security Overview
	Basic Security Considerations
	Understanding the Messaging Server Environment
	Overview of Messaging Server Security
	Understanding Security Misconceptions
	Other Security Resources

	Recommended Deployment Topologies
	Securing Your Firewall/DMZ Architecture
	Using a Firewall to Allow Connections
	Planning Secure High Availability and Load Balancing for Your Deployment

	Operating System Security
	Minimizing Operating System Security Risks
	Firewall Port Configuration

	Secure Communications
	LDAP Security

	2 Planning Messaging Server Security
	Protecting Messaging Components in Your Deployment
	Protecting MTAs
	Integrating Third-Party Anti-spam and Anti-virus Software
	Monitoring Your Security
	Access Controls
	Preventing Relaying From Outside Hosts
	Conversion Channels and Third Party Filtering Tools
	RBL Checking
	Client Access Filters

	Protecting the Message Store
	Protecting MMPs

	Planning Messaging User Authentication
	Plain Text and Encrypted Password Login
	Authentication with Simple Authentication and Security Layer (SASL)
	Enabling Authenticated SMTP
	Certificate-based Authentication with Secure Sockets Layer (SSL)
	Client-based Authentication with Secure Sockets Layer (SSL)
	Third-Party Authentication Server Support
	Messaging Mutiplexor (MMP) Support
	IMAP/POP/SMTP Support
	Sample Code

	Planning Message Encryption Strategies
	Encryption with SSL
	SSL Ciphers

	Signed and Encrypted S/MIME

	Planning a Messaging Server Anti-spam and Anti-virus Strategy
	Anti-spam and Anti-virus Tools Overview
	Milter
	Access Control
	Mailbox Filtering
	Address Verification
	Real-time Blackhole List
	Relay Blocking
	Authentication Services
	Sidelining Messages
	Comprehensive Tracing
	Conversion Channel
	MeterMaid
	memcached

	Anti-spam and Anti-virus Considerations
	Architecture Issues with Anti-spam and Anti-virus Deployments
	Security Issues with Anti-spam and Anti-virus Deployments
	Implementing an RBL

	Developing an Anti-spam and Anti-virus Site Policy

	3 Performing a Secure Messaging Server Installation
	Installing Infrastructure Components Securely
	Credentials Needed to Install Messaging Server Components
	Post-Installation Configuration

	4 Implementing Messaging Server Security
	Security Features
	Messaging Server Security Strategy for your Deployment
	Creating a Security Strategy
	Identifying Password Policy Requirements
	Verifying File Ownership for Configuration Files
	Securely Monitoring and Auditing Your Messaging Server Deployment
	Tracking Security Patches
	Identifying Legal-intercept Requirements
	Securing Your Archiving Needs
	Disabling Users in Response to Abuse/Appeal Process
	Utilizing a Disk Consumption Growth Plan
	Preventing Unrelated Usage of Messaging Server Hosts and Virtual Machines
	Determining Security Capabilities of Your Supported Mail Clients

	MTA Security Guidelines
	About Messaging Server Anti-spam and Anti-virus Solutions
	Creating a Narrow Scope of MTA Relay Blocking in INTERNAL_IP Mapping Table
	Using LMTP to Connect to Inbound MTAs and in Multi-tier Deployments
	Greylisting
	Forbidding Emailing Executable Code
	Using and Configuring MeterMaid for Access Control
	Using and Configuring memcache for Access Control
	Setting MTA Recipient Limits
	Using Sieve Securely
	Using the MTA to Fix Messages from Bad Clients
	Configuring Secure ETRN Command Support

	Storing BadGuy Details in Memcached Server
	Installing Memcached Server
	Configuring Bad Guys for Memcached Server
	Clearing Memcached Server Data

	ENS Security Guidelines
	Message Store Security Guidelines
	Securing Your Backup System
	Options for Securing Messaging Server
	Being Aware of IMAP ACLs
	Disabling IMAP Shared Folders if Not Needed

	MMP Security Guidelines
	User Authentication Guidelines
	Acquiring SSL Server Certificates for the Server Domains
	Requiring SMTP Authentication for Mail Submission

	Message Encryption Guidelines
	Determining SSL Cipher Suites
	Using Solaris Crypto Framework in Place of NSS Default Software Token

	Security Considerations for Developers

	5 Using Role-Based Access Control
	Overview of Role-Based Access Control
	Theory of Operations
	Setting Up and Using RBAC for Solaris
	Setting Up and Using RBAC for Linux
	Configuring Non-Root Users with Messaging Server
	Messaging Server Privileges and Executable Files

	Reference Information

	6 Protecting Against Email Spammers
	Overview of Email Spammers and Compromised User Accounts
	Preventing Outbound Spam: Proactive Methods
	Preventing Outbound Spam: Reactive Measures
	Blocking Submissions of Local Senders Who Might Be Spammers
	Rate Limiting All Outgoing Email
	Rate Limiting Submission Based on the Authenticated Sender
	Rate Limiting Only Outgoing Spam
	Reject/Discard All Outbound Spam

	Setting Up a No Phishing Zone
	Recovering From Phishing Attacks That Have Compromised User Accounts
	Greylisting Webmail
	Installing and Configuring Greylisting for Webmail
	Troubleshooting Your Greylisting Deployment

	HTML Filtering in Convergence
	Enabling HTML Filtering in Convergence
	Enabling Messaging Server to Accept mshttpd Client Requests

	Domain Keys Identified Mail (DKIM)

	7 Security and Access Control in Messaging Server
	About Server Security
	About HTTP Security

	Configuring Authentication Mechanisms in Messaging Server
	Overview
	To Configure Access to Plaintext Passwords
	To Configure Directory Server to Store Cleartext Passwords
	To Configure Messaging Server for Cleartext Passwords

	Transitioning Users
	To Transition Users

	Configuring Client Access to POP, IMAP, and HTTP Services
	How Client Access Filters Work
	Filter Syntax
	Wildcard Names
	Wildcard Patterns
	Server-Host Specification

	Filter Examples
	Mostly Denying
	Mostly Allowing
	Denying Access to Spoofed Domains
	Controlling Access to Virtual Domains
	Controlling IMAP Access While Permitting Access to Webmail

	To Create Access Filters for Services
	To Create Filters by Using the Command Line

	Configuring Encryption and Certificate-Based Authentication
	Encryption and Certificate-Based Authentication Overview
	Obtaining Certificates
	To Manage Internal and External Modules
	Creating a Password File
	Obtaining and Managing Certificates
	Implementing Secure Connections Using Two Different Certificate Authorities (CAs)

	To Enable SSL and Selecting Ciphers
	About Ciphers
	Specify SSL Certificate

	Configuring Individual Messaging Processes for SSL
	To Configure MMP for SSL
	To Configure IMAP for SSL
	To Configure POP for SSL
	To Configure HTTP for SSL
	To Configure SMTP for SSL
	To Verify the SSL Configuration

	Configuring Indexed Search Converter for SSL
	Configuring ISC for SSL Using a Self-Signed Certificate
	Configuring ISC for SSL Using a CA-Signed Certificate

	Setting Up Certificate-Based Login
	To Set Up Certificate-Based Login

	User/Group Directory Lookups Over SSL

	8 Certificate-Based Authentication for Messaging Server
	Introduction: SSL/TLS, Client Certificates and CRLs
	Authentication Technology Overview
	SSL/TLS Overview
	Certificate Authentication Overview
	Certificate and Key Storage Overview
	SSL/TLS/Certificate Standards Overview

	SSL/TLS Tools Available in Messaging Server Installer
	Utilities Used to Manage Certificates

	Certificate and Key Storage
	Modifying the Certificate Format
	Checking the NSS version

	SSL/TLS Configuration
	SSL-Related Settings
	Dispatcher SSL-Related Settings
	Messaging Transfer Agent (MTA) SSL-Related Channel Options
	SMTP Channel Options
	MMP SSL-Related Settings
	certmap.conf Settings

	SSL/TLS Tasks
	How to Create and Install a Self-signed CA Certificate and Key
	How to Create and Install a CA-signed Server Certificate and Key
	How to Create a CA-signed Client Certificate and Key
	How to Test a CA-signed Client Certificate and Key
	How to Create and Install a CRL for a Client Certificate
	How to Test a CRL for a Client Certificate
	How to Look Up Numeric SSL/TLS Error Codes

	Sample Protocol Sessions with Client Certificate Authentication
	IMAP (STARTTLS) default port 143
	Submission (STARTTLS) Default port 587
	POP (STLS) default port 110
	IMAPS typical port 993
	Submissions typical port 465
	POPS typical port 995

	SSL/TLS Best Practices
	Client Certificate SSL/TLS Best Practices

	Messaging Server and SSL/TLS: Known Limitations
	Administrative Proxy with a Certificate
	Proxy IMAP Authentication Limitations
	Proxy MMP (IMAP/POP/SMTP-Submission) Authentication Limitations
	Internal Protocols Lacking Support for SSL and/or Authentication
	Disabling Passwords-Over-SSL
	Hosting Multiple Domains with SSL
	CRL Updates and OCSP
	Time Delay for Updates to CRLs or New Certificates

	References

	9 Configuring Messaging Server and Solaris Cryptographic Framework
	About the Solaris Cryptographic Framework
	Configuring Messaging Server for SSL
	About the pk12util Command
	Creating the Certificate Database and Add Certificate/Key Pairs
	Obtaining a Certificate
	Adding Certificates to the NSS Software Token
	Listing the Default NSS Certificates

	Configuring Individual Messaging Processes for SSL
	Configuring MMP for SSL
	Configuring IMAP for SSL
	Configuring POP for SSL
	Configuring HTTP for SSL
	Configuring SMTP for SSL
	Verifying the SSL Configuration

	Configuring the Solaris Cryptographic Framework (SCF)
	Setting Up the SCF Software Token Pin
	Administering the Cryptographic Framework by Using cryptoadm
	Configuring the SCF Provider
	Adding the Solaris Cryptographic Framework as a Service Provider
	Enabling the Slot Named Sun Metaslot
	Exporting the Certificate/Key Pairs From the NSS Soft Token
	Importing the Key/Certificate Pairs to the Sun Metaslot (SCF)
	Verifying the Successful Importation of the Certificate/Key Pairs

	Configuring Messaging Server to Use the External Token
	Configuring Messaging Server Processes to Use the External Token
	Starting and Debuging Messaging Server Services

