
Oracle® Communications Launch
Cloud Service
Integration Guide

Release 25A
G12920-01
January 2025

Oracle Communications Launch Cloud Service Integration Guide, Release 25A

G12920-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Launch Cloud Service Siebel CRM Integration

Related Guides 1-1

Supported Versions 1-1

Supported Integration and Mapping 1-1

Setting Up Launch Siebel CRM Integration 1-3

Setup Task List 1-3

Setup Task Details 1-4

One-Time Migration and Publishing Process 1-8

Enrichment After Publishing 1-8

Migration Job Parameters 1-9

Migration APIs 1-9

Migration Process 1-12

2 Launch Cloud Service PDC (BRM) Integration

Related Guides 2-1

Supported Versions 2-1

Supported Integration and Mapping 2-1

Setting up Launch PDC/BRM Integration 2-2

Setup Task List 2-2

Setup Task Details 2-3

Sample Mapping 2-5

Supported Scenarios 2-6

3 Launch Cloud Service Third Party Content Management System
Integration

Introduction 3-1

iii

Purpose 3-1

Scope 3-1

Prerequisites 3-1

Related Guides 3-2

Supported Versions 3-2

System Architecture Overview 3-2

4 Launch Cloud Service External Mapping Services Integration

Overview 4-1

Purpose 4-1

Scope 4-2

Prerequisites 4-2

Related Guides 4-2

System Architecture Overview 4-2

Detailed Implementation Steps 4-3

Configuring Fabric 4-3

Create a New Connection Descriptor (TIC) 4-3

Creating GKR (Gate Keeping Rule) 4-5

Validating the Connection and Testing the API 4-6

Changes in Mapper File 4-8

Mapping File Changes for Transform and PreTransform 4-8

Testing Launch 4-9

5 Detailed Implementation Steps

Configuring Fabric 5-1

Create a New Connection Descriptor (TIC) 5-1

Update Gatekeeping Rules 5-7

Validating the Connection 5-8

Configuring Launch 5-8

Enable Third Party CMS in Visual Builder Studio 5-8

Configure Additional Parameters (Optional) 5-10

6 Testing the Integration

7 Troubleshooting

8 Source/Target Mapping

API Mapping 8-1

iv

Data Mapping 8-1

Supported Functions 8-1

Supported Application Constants 8-5

Supported Templates 8-7

Templates used by Siebel CRM 8-7

Managing Mapping File Versions 8-8

Handling Extensions 8-9

Supported UCM Calls 8-13

Create Mapping OAS File 8-13

Update Mapping OAS File 8-13

Create Template File 8-13

Update Template File 8-13

Troubleshooting Integration Errors 8-14

A Appendix

Setting Default Entities A-1

Downloading Third Party CMS Swagger A-9

Downloading Third Party Function Service Swagger A-9

v

Preface

The Oracle Communications Launch Cloud Service Integration Guide describes the prebuilt
integration between Launch and Siebel CRM.

Audience
This document is intended for administrators who are familiar with Oracle Communications
Launch Cloud Service and Siebel CRM applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Launch Cloud Service Siebel CRM Integration

The prebuilt integration between Launch and Siebel CRM allows you to centrally manage
product and services portfolio across your ecosystem. Launch serves as the primary source for
catalog definitions, with Siebel CRM consuming these definitions. By using the prebuilt
integration between the two applications, you can perform a one-time migration of catalog
definitions from Siebel to establish them as the authoritative source in Launch.

Siebel customers can innovate faster by centrally managing their product portfolio for their
entire eco-system, including Siebel CRM.

Once Launch is baselined with the catalog definitions, any new products or changes to existing
ones are handled in Launch with automated distribution to Siebel CRM.

Related Guides
Table 1-1 contains information about other useful sources of information for the integration
process.

Table 1-1 Related Guides

Reference Description

Launch Cloud Service User's Guide Describes how you can create, publish, and
manage product offers.

REST API Reference for Launch Cloud Service Provides the REST API reference document for
Launch Cloud Service.

Implement CX Industries Framework Describes the setup and implementation of the CX
Industries Framework required to deploy Launch
Cloud Service.

Siebel Update 21.12: Siebel CRM 2021 TOI:
Product Administration APIs for Siebel Customer
Order Management Functional Overview

Siebel Update 22.5: Siebel CRM 2022 TOI: Pricing
Administration Rest APIs for Siebel Customer
Order Management Functional Overview

Siebel CRM 24.11 Update Guide & Known Issues

Describes the changes in the Siebel REST APIs
supporting the integration.

Supported Versions
• Launch version 25.01 or later

• Siebel CRM version 24.11 or later

Supported Integration and Mapping
Table 1-2 lists the entities you can do a one-time migration to and publish. The table also lists
the predefined mappings available to you in the JSON mapping file.

1-1

Table 1-2 Supported Integration and Mapping

Siebel Entity Launch Entity What can you sync?

Catalog Catalog Definition

Category Association

Category Category Definition

Sub-categories

Product Association

Product Class Product Specification Definition

Parent-Child Relationships

Attributes Attributes Attributes

Smart Part Number (user
defined)

Products (Simple and
Customizable products)

Simple Offer, Bundle Offer Definitions

Category/Class/Product Line
association (Catalog needs to be
migrated before migrating
Product)

Prices and Adjustments – simple
and Customizable products

Volume Discounts for Simple
products

Compatibility and Eligibility Rules
and Recommendation

Discount Products (products with
negative price)

Customizable Product level price
and Constraint Rules (six
templates supported)

Product Line Product Line Definition

Product association

Compatibility Rules

Price list Price list Definition and its price list items

Attribute Adjustments

Aggregate discounts

Volume discounts

Promotion Package Definitions

Category/Class/Product Line
association (Catalog needs to be
migrated before migrating
Promotion)

Components along with
Aggregates and Option Class
overrides

Eligibility, Compatibility and
Upgrade/downgrade Rules

Commitment Terms

Chapter 1
Supported Integration and Mapping

1-2

Setting Up Launch Siebel CRM Integration
The following table lists the setup tasks you need to perform in Launch, Industry Framework,
and Siebel for one-time migration from Siebel to Launch and subsequent publishing from
Launch to Siebel.

Setup Task List
Table 1-3 lists the setup tasks you need to perform in Launch, Industry Framework, and Siebel
for one-time migration from Siebel to Launch and subsequent publishing from Launch to
Siebel.

Table 1-3 Setup Task List

No. Application Task Mandatory? Description

1. Industry
Framework

Create Integration
User

Yes This is required to
facilitate the
integration
between the two
applications.

2. Launch Register
destinations

Yes This is required to
configure the right
spoke instance to
receive the
publishing events.

3. Launch Configure Entity
Profile

Yes This is required to
ensure that Launch
can model catalog
definitions based
on Siebel.

4. Launch Setup Default
entities

Yes This is required to
meet the Launch
requirement of
Products and
Services to have
specifications.

5. Industry
Framework

Configure the
spoke systems

Yes This is required to
ensure to configure
the spoke system
instance for
receiving
publishing events.

6. Siebel Create client
credentials and
security
requirements

Yes N/A

7. Siebel Migrate Literature
to Oracle Content
Management

No This is required
only if images of
devices, sales
collaterals are
associated to
product definitions
in Siebel.

Chapter 1
Setting Up Launch Siebel CRM Integration

1-3

Table 1-3 (Cont.) Setup Task List

No. Application Task Mandatory? Description

8. Siebel Identify the
integrations to
Product definitions
that is required for
integration

Yes This is required to
baseline Launch
with the product
definitions that are
required for the
one-time migration.

9. Siebel Add the value
Discount in Type
dropdown loads
under
Administration -
Product > Products
tab

Yes This is required to
publish the
Discount type offer
correctly to Siebel.

10. Siebel Validate Product
definitions data

Yes This is required to
ensure the working
of one-time
migration and
publishing.

Setup Task Details
1. Create a new user on the security console with the user name FABRIC_SYSTEM_USER

and the role Communications Catalog Administrator. If you have already created this as
part of the Launch setup, no additional setup is required.

2. Register Destination in Launch for publishing to the Siebel instance. There are multiple
Siebel instances such as Development, SIT, UAT, and Production, but you need to set up
each instance individually for Launch in order to publish to the correct Siebel instance.

Configure destinations in Launch to appropriate life cycle status for which you would like to
publish to external application. For example, you can configure a destination for test
instance to the Ready to Publish life cycle status and configure one for production
instance to the Active status.

While adding destinations, use

a. Name - The target pre-selection key from the Connection Descriptor in the Industry
Framework.

b. Type - The target name used in the Catalog Sync configuration.

c. Internal - Set this to ON.

To create a Siebel destination:

a. Navigate to Launch user interface > Administration > Lifecycle Status.

b. Select the new lifecycle configuration version in the PENDING state.

c. Choose the Edit option for the In-design state and click Add Destination.

d. Provide the Name, Type, and Publish Sequence. Click Add.

Chapter 1
Setting Up Launch Siebel CRM Integration

1-4

Note:

Destination Name and Type should match the spoke system configuration in
the CX Industries Framework.

e. Select the Siebel destination name in the Destinations field and save it.

f. Choose the Activate option for the PENDING life cycle configuration version.

g. Verify that the new lifecycle configuration version changed to the ACTIVE state.

For more information on how to configure the Destination in Launch, see REST API
Reference for Launch Cloud Service and "Publish Catalog Entities" in Launch Cloud
Service Implementation Guide.

Note:

The destination Name setup in Launch should be an exact match to the system
descriptor creation using config.ms in CXIF. This helps in identifying the correct
Siebel instance for one-time migration (“Source” field in migration job) and in the
mapping for Publishing to the appropriate Siebel instance. Ensure that you use
the same name for system parameter name in system Descriptors while applying
the configuration in step 5 below.

3. Set default entities for the Siebel entities in Launch for meeting the minimum requirement
of integration. As part of the migration process, the following mandatory resources are
created as default specification by default in Launch in case of migrated entities do not
contain the same as part of the association.

a. Every Siebel simple product definition in Launch requires a product specification
association in Launch regardless of whether it is of Device, Accessory, or Service type.
In addition, every simple product of type requires a Service Specification association.
Since Siebel allows you to create simple products without a class association and
there is no notion of a Service Specification (CFS Spec), while doing the one-time
migration, default entities are appended to the simple product in Launch.

For sample payloads, see "Appendix".

b. For migrating and publishing Siebel Aggregate discounts, you need to seed Launch
with a custom profile specification having a criteria parameter – product offers and
quantity.

For sample payloads, see "Appendix".

c. For migrating and publishing Siebel Eligibility rule, you need to add the following
parameters using Common Business Configuration.

i. Country

ii. State

iii. City

iv. Post Code From

v. Post Code To

For more information on adding lookup values using the extensibility framework, see
Launch Cloud Service Implementation Guide.

Chapter 1
Setting Up Launch Siebel CRM Integration

1-5

d. Siebel CRM Attribute Adjustments are made available in Launch as Attribute based
adjustments (ABP). Launch supports attributes from Product Specifications, Service
Specifications and Customer Profile Specification characteristics to support Attribute
based adjustments. Such definitions are published to Siebel CRM as Discount matrix
with Class and Customer attributes. Since Siebel CRM does not support Service
Specification based ABP, use product specifications and customer profile
specifications to migrate the Discount matrix from Siebel CRM and subsequent
publishing to Siebel CRM.

Note:

Ensure that the customer profile in Siebel CRM is synced to Customer Profile
Spec before the initial migration. Refer to the "Appendix" for a sample
payload.

4. Configure the Entity Profile to ensure that Siebel CRM supported product modeling is
followed by Launch using the Entity Profile tile in Administration space.

No two applications are the same when it comes to modeling capabilities and so is the
case between Siebel CRM and Launch. Though the result might be the same, the
constructs might be different between the applications, and while integrating the
applications, you need to factor in any restrictions of the target(spoke) application to
ensure an error-free publishing of catalog definitions. Some of the common patterns
between Siebel CRM and Launch can be classified as:

a. Both the applications having the same construct of capabilities and restrictions for an
entity at par - for example, Catalog, Category, Product line entities, and so on.

b. Both the applications having minimal common capabilities and/or additional
capabilities or restrictions in one and not in the other - for example, Siebel CRM and
Launch can have commitment terms but Launch has the provision to configure multiple
commitment terms to an offer, while only one commitment term is supported in Siebel
CRM promotions.

Let's say we migrate the catalog definitions from Siebel CRM to establish them as the
primary source in Launch.

Now, every simple product definition of Siebel CRM will have only one price type
associated with it - one-time or recurring. Launch supports multiple price types to be
associated to a single simple offer including support for usage type price and alterations,
price based on relative effectiveness, and so on.

Should the migrated offer be enriched or revised to include any of the non-Siebel CRM
supported constructs, the publish to Siebel CRM will fail.

So, when we migrate catalog definitions from Siebel CRM to establish them as the
authoritative source in Launch and make changes to those entities, we need to ensure that
publishing to Siebel CRM (being the order capture application) does not fail. This also
applies to catalog definitions that are created in Launch. Hence, the need to have certain
restrictions to be applied in Launch in line with Siebel CRM capabilities to have a
successful publishing.

5. Configure your external application in the Industry Framework for each instance. For more
information, refer to the topic Integrate External Applications to add a Spoke End Point in
the article Implement CX Industries Framework, on My Oracle Support, Doc ID 2720527.1.

6. Create client credentials and security requirements for Siebel CRM. See Overview of
Using Siebel REST API and Using REST API For Siebel Telco in the Siebel REST API
Guide.

Chapter 1
Setting Up Launch Siebel CRM Integration

1-6

7. Migrate Literature to your content management system. This is an optional task and you
require it if you want to migrate and publish content between Launch and Siebel CRM.

To view the literature and images in Launch after the migration, associate the Siebel CRM
products using URL-based Literature records into content store. For Siebel CRM products
that are associated with File-based Literature, move them to content store and create the
URL-based Literature records. For more information on creating URL based Literature in
Siebel CRM, see the chapter Literature in the Applications Administration Guide. You can
find the required version of Siebel CRM documentation from the Oracle Siebel CRM
Documentation page.

8. Identify extensions on product definitions that need to be part of the integration. This is
necessary to plan for extensions to be made in Launch before you proceed with the
migration. For more information on how to extend Launch application, see "Configure and
Extend Launch" in Launch Cloud Service Implementation Guide.

9. Launch simple offer with DISCOUNT product type gets published to Siebel with Type as
Discount. Siebel OOB doesn’t provide Discount value in Type drop-down. So, make sure to
add Discount value in Administration - Product > Products tab > Type drop-down before
initiating publish of Discount offer to Siebel CRM.

10. Validate data for the migration of product definitions:

a. Ensure that the simple product have the right type to map it to the Product Offering
types in Launch (Device, Accessory or Service). See the topic, Product Type and
Service Type in this article.

The migration process uses the rules defined in the grammar file to decide the Launch
product types. With OOB rules, simple products having one time price will be migrated
as device and those with recurring price will be migrated as service. However, the
integration process allows you to change the OOB rules by using extensions.

You need to pass a header X-User-Product-Type with value true, then classification of
simple product types would be based on ‘Type’ drop-down field loads under Siebel UI
Administration - Product > Products tab.

For example, to use Product Type or Service type as the fields to identify a Product as
a device or service,

• Ensure that all the simple products that you want to migrate have the Product Type
or Service type set correctly.

• Update the default mapping rule to decide the Launch product type based on the
values set in the Product Type or Service Type or both. For more details on how to
handle extensions, see Handling Siebel CRM extensions.

b. Discount offers in Siebel are with negative amount that is mapped to Launch
ProductOffering of type “DISCOUNT”. During migration, such discount offer pricing is
set to 0 and a fixed discount with amount value provided in Siebel is created in
Launch. Though the display shows negative amount in the Launch UI, while creating
such Discount Type offers and publishing to Siebel they are converted to negative
amount in Siebel.

c. Ensure that the product definitions have an effective start date. This is required in
Launch as it drives the validity of associations to other entities.

d. All the versioned definitions of Siebel, that get published from Launch will set the
released flag to true.

e. Any attribute with its domain type defined as “Enumerated” should have at least one
value.

Chapter 1
Setting Up Launch Siebel CRM Integration

1-7

f. Customizable Products must have at least one component to migrate to Launch,
otherwise the migration job will fail while creating bundle offers without components in
Launch.

g. Ensure to turn on the Orderable flag while creating a product in Launch. This is
required to make the product available in drop-down lists and dialog boxes in Siebel
post publish.

h. Constraint Rules with below templates only are supported in Launch and hence
migration job ignores any rules using unsupported templates.

• Require

• Require (mutual)

• Exclude

• Constrain attribute conditions

• Constrain attribute value

• Constrain relationship quantity

One-Time Migration and Publishing Process
You migrate entities from Siebel to Launch using a migration job in Launch in the same way as
any import or export job. For more information, see Launch Cloud Service Implementation
Guide.

Migration of Siebel entities is one-time to be used for onboarding a Siebel customer process
with Launch being baselined with the Siebel Catalog definitions. Any further changes to the
migrated catalog definitions in Launch and/or any new Catalog definitions are originated in
Launch and distributed to Siebel using the Publish process.

When you publish an initiative, all the entities in the initiative are pushed to Siebel CRM. For
more information on how you can publish your catalog entities to the spoke systems, see
Launch Cloud Service Implementation Guide.

Publish will release all the Siebel versioned objects during the publish process for the below
versioned objects:

• Product Class

• Attributes

• Product Definitions

• Promotions

Enrichment After Publishing
To enrich objects in Siebel CRM after they have been published in Launch, you need to lock
the versions, enrich them, and then release them as a new version. You should do this only for
entities that are not supported by the Launch-to-Siebel CRM publishing framework.

A few of these are:

• Product Class

– User Interface

– Linked Items

– Resources

Chapter 1
One-Time Migration and Publishing Process

1-8

– Scripts

– Display Name

– Properties

– Constraints

• Product

– User Interface

– Linked Items

– Resources

– Scripts

– Display Name

– Properties

– Constraint Rules (See "Setup Task Details".)

• Promotion

– Merge

– Split

– User Interface

Migration Job Parameters
You initiate a migration job in Launch using the Job Management tile’s External Jobs in
Administration space.

To create an external job for migration, you need to provide the following information:

• Name: A name for the migration job.

• Source: The name of the source configured in Catalog Sync UI. The migration job
identifies the rules for migration based on this. The out-of-the-box configuration uses the
name ‘siebel’.

• API: The migration API to be run. See "Migration API" for more information about the
available API calls.

• Query Parameters: The migration API uses query parameter values to fetch the entities
from Siebel.

• Header Parameters: Optional header parameters. For more information, see "Migration
API".

Migration APIs
All API calls support migration of the Siebel CRM catalog entities using three options:

• Name match

• ID match

• Wild card search using Name

Table 1-4 contains a list of migration API calls with sample query parameters and their values.

Chapter 1
One-Time Migration and Publishing Process

1-9

Table 1-4 Migration APIs

Scenario Siebel API Query Parameter
(Example)

Query Value

To migrate a particular
Catalog entity

/migration/catalog $.SiebelMessage['ListOf
Base Catalog Admin']
['Product
Catalog'].Name

Catalog Name

To migrate a set of
Product line entities

/migration/product Line $.SiebelMessage.
['ListOfSWI Admin
Product Line'].['Admin
Product
Line'].searchspec

[Name] LIKE
‘ProductLine Name1*
OR [Name] LIKE
‘Name2*'

To migrate a Product
Class using its ID

/migration/class $.SiebelMessage.ListOf
SWIAdminISSClassDefi
niti onIO.['SWI ISS Class
VOD BusComp'].['VOD
Id']

Product Class ID

Table 1-5 contains the complete list of supported migration paths.

Table 1-5 Supported Migration Paths

Siebel API What gets migrated

/migration/catalog Catalog and its associated categories

/migration/attribute Top-level attributes

/migration/class Product Class, its Attributes, Hierarchy, and Smart
Part Num

/migration/pricelists All Pricelists

/migration/productLine Product line

/migration/package Promotions will be migrated, but all components
and references must be migrated separately.

/migration/packageWithDependencies Promotions will be migrated with all of their
dependencies.

/migration/simpleOffering Products will be migrated as atomic product
offerings without their references. The standard
classification of simple product will be based on
price Type.

/migration/simpleOfferingWithDependencies Products will be migrated as atomic product
offerings along with their references. The standard
classification of simple product will be based on
price Type.

/migration/bundle Products will be migrated as bundle products
without their references. Products will be migrated
as Commercial Bundles by default.

/migration/bundleWithDependencies Products will be migrated as bundle products with
their references. Products will be migrated as
Commercial Bundles by default.

/migration/compatibilityAndMigrationRules Compatibility and migration rules associated with
the Promotion and its components.

Chapter 1
One-Time Migration and Publishing Process

1-10

Table 1-5 (Cont.) Supported Migration Paths

Siebel API What gets migrated

/migration/productRecommendation Product Recommendation Rule associated with the
Product

/migration/ productCompatibilityRule Compatibility rules associated with the product

/migration/aggregateDiscounts Aggregate Discounts

/migration/entitlements Entitlement Templates

/migration/packageWithDependenciesBulk Siebel Promotions migration in bulk

Note:

You can change the Query parameters in the template file. For example, the
productPOSTTemplate.json in the simpleOfferingWithDependencies API uses the
searchspec to identify the product to be migrated. This can be changed to ID, Name,
or any other field as required. searchspec can be a wildcard search and supports
multiple fields.

For more information on query payload and search specification, see the Siebel REST API
guide. You can find the required version of Siebel REST API documentation on the Oracle
Siebel CRM Documentation page.

The templates can be updated using the Update Template File API. For more information, see
the topics Understand Entity Mapping and Rest APIs in this guide.

Table 1-6 contains the list of header parameters for the migration job:

Table 1-6 Header Parameters

Key Required? Description

X-Source-System yes Name of the source system; auto
populated based on Source
being selected

X-Destination-System yes Name of the Destination system;
auto populated to Launch

X-Source-PreSelection yes The target pre-selection key
configured in the Connection
Descriptor in Industry
Framework, pointing to the Siebel
instance from which Catalog
definitions needs to be migrated.

X-User-Project-Name no If not provided, the migration job
ID will be used for the Initiative
Name.

X-User-Project-Id no If not provided, the migration job
ID will be used for the Initiative
ID.

Chapter 1
One-Time Migration and Publishing Process

1-11

Migration Process
The Launch-to-Siebel CRM integration supports two patterns of running the one-time migration
job:

1. Top-down migration: You can migrate a single promotion or a set of promotions and all
their references to the leaf level products, all product classes, and rules at the same time.

2. Bottom-up migration: You can migrate entity by entity, starting with the product class and
its attributes and smart part number, followed by product definitions (even simple products
first followed by customizable products), and promotions.

Chapter 1
One-Time Migration and Publishing Process

1-12

2
Launch Cloud Service PDC (BRM) Integration

This chapter outlines the configuration steps required to integrate Launch with Pricing Design
Center (PDC) or Billing Revenue Management (BRM). The integration helps customers who
want to take advantage of the latest capabilities of the Oracle Launch Cloud Service while
leveraging their existing investment in BRM.

Related Guides
Table 2-1 contains information about other useful sources of information for the integration
process.

Table 2-1 Related Guides

Reference Description

Launch Cloud Service User's Guide Describes how you can create, publish, and manage product
offers.

REST API Reference for Launch Cloud Service Provides the REST API reference document for Launch
Cloud Service.

Oracle PDC-BRM Documentation PDC/BRM documentation to create client credentials and
security requirements for PDC/RSM deployment

Supported Versions
The minimum required application for this feature is:

• Launch release version 25.01 or later and

• Oracle PDC/BRM 12 PS8 plus Patch 35361657

Supported Integration and Mapping
Launch-PDC Integration uses the mapping service which enables you to create a proxy API
that can push the data into PDC/BRM. The mapping service currently works for the following
entities in Launch. All other entities are ignored. Table 2-2 lists the entities that can currently be
mapped.

Table 2-2 Supported Integration and Mapping

Launch Entity PDC Entity What can you synchronize?

Simple product offering Charge offer of Subscription type Definition

Pricing

Charging terms

Simple product offering with fees and
alterations

Charge offer of Subscription type /
Item / Account type (based on Launch
definition).

Definition

Pricing and Adjustments

2-1

Table 2-2 (Cont.) Supported Integration and Mapping

Launch Entity PDC Entity What can you synchronize?

N/A Discount offer of Subscription type. The
name of the discount offer will be post
fixed with _DISCOUNT.

For DBE customers, the _DISCOUNT
post fix won't be there. Discount offers
will be post fixed with _DISCOUNT only
for NON-DBE customers.

Charging terms

Simple offering of device/accessory
type

Charge offering of Account type Definition

Pricing

Attribute based pricing Charge Selector Definition

Pricing

Package Package Definition

Components

Commitment terms

Service Bundle Bundle Definition

Components

Commitment terms

Attribute based pricing Charge Selector Definition

Pricing

Attribute based adjustment Discount Selector Definition

Pricing

Setting up Launch PDC/BRM Integration
There are a few setups required to be done in Launch, Industry Framework and BRM for
Publish from Launch-to-PDC.

Setup Task List

Table 2-3 Setup Task List

No. Application Task Mandatory? Description

1. Industry
Framework

Create Integration
User

Yes This is required to
facilitate the
integration
between the two
applications.

2. Launch Register
destinations

Yes This is required to
configure the right
spoke instance to
receive the
publishing events.

Chapter 2
Setting up Launch PDC/BRM Integration

2-2

Table 2-3 (Cont.) Setup Task List

No. Application Task Mandatory? Description

3. Launch Configure Entity
Profile

Yes This is required to
ensure that Launch
can model catalog
definitions based
on PDC/BRM.

4. Industry
Framework

Configure the
spoke systems

Yes This is required to
ensure to configure
the spoke system
instance for
receiving
publishing events.

5. PDC REST
Services Manager

Create client
credentials and
security
requirements

Yes N/A

6. Launch and
PDC/BRM

Set up
Configuration
entities

Yes This is required to
meet the Launch
and PDC
configuration
setup.

Setup Task Details
1. Create a new user with the user name FABRIC_SYSTEM_USER and the role

Communications Catalog Administrator using the Security Console. If you have already
created this as a part of the Launch setup, no additional setup is required.

2. Register Destination in Launch for publishing to PDC/BRM instance. Usually, you would
have many PDC/BRM instances such as (Development, SIT, UAT and Production). Each
instance of BRM instance is a destination that needs to be setup for Launch to publish to
the correct PDC instance.

Configure destinations in Launch to appropriate life cycle status for which you would like to
publish to external application. For example, you can configure a destination for test
instance to the Ready to Publish life cycle status and configure one for production instance
to the Active status.

While adding destinations, use:

a. Name – The target pre-selection key from the Connection Descriptor in the Industry
Framework.

b. Type - The target name used in Catalog Sync configuration.

c. Internal – Set this to ON.

Here’s the list of steps to create a Siebel destination:

a. Navigate to the Launch user interface > Administration > Lifecycle Status.

b. Select the new lifecycle configuration version in the PENDING state.

c. Choose the Edit option for the In design state and click Add Destination.

d. Provide the Name, Type, and Publish Sequence. Click Add.

Chapter 2
Setting up Launch PDC/BRM Integration

2-3

Note:

Destination Name and Type should match the spoke system configuration in
the CX Industries Framework.

e. Select the PDC destination name in the Destinations field and save it.

f. Choose the Activate option for the PENDING lifecycle configuration version.

g. Verify that the new lifecycle configuration version changed to the ACTIVE state.

For more information on how to configure the Destination in Launch, see REST API
Reference for Launch Cloud Service and "Publish Catalog Entities" in Launch Cloud
Service Implementation Guide.

Note:

The destination Name setup in Launch should be an exact match to the system
descriptor creation using config.ms in CXIF. This helps in identifying the correct
Siebel instance for one-time migration (“Source” field in migration job) and in the
mapping for Publishing to the appropriate Siebel instance. Ensure that you use
the same name for system parameter name in system Descriptors while applying
the configuration in step 5.

3. Configure the Entity Profile to ensure that PDC/BRM supported product modeling is
followed by Launch using the Entity Profile tile in Administration space.

No two applications are the same when it comes to modeling capabilities and so is the
case between PDC/BRM and Launch. Though the result might be the same, the constructs
might be different between the applications, and while integrating the applications, you
need to factor in any restrictions of the target(spoke) application to ensure an error-free
publishing of catalog definitions. Some of the common patterns between PDC and Launch
can be classified as:

• Both the applications have the same construct capabilities and restrictions for an entity
at par - for example, Balance Element, Product Offering, Service Specification entities,
and so on.

• Both the applications have minimal common capabilities and/or additional capabilities
or restrictions in one and not in the other - for example, PDC/BRM and Launch can
have commitment terms, but Launch has the provision to configure multiple
commitment terms to an offer, while only one commitment term is supported in
PDC/BRM package.

4. Configure your external application in the Industry Framework for each instance. For more
information, refer to the topic Integrate External Applications to add a Spoke End Point in
the article Implement CX Industries Framework, on My Oracle Support, Doc ID 2720527.1.

5. Create client credentials and security requirements for PDC/BRM. See PDC/BRM
documentation for information about creating client credentials and security requirements
for PDC/RSM deployment.

6. Ensure that the services, events and service-event maps, general ledger IDs (GLID), tax
codes, and balance elements required for charge or discount offers are set appropriately.

Before setting up integration, complete the following conditional tasks in PDC/BRM and
Launch.

a. GLID name on Launch and BRM system should be same.

Chapter 2
Setting up Launch PDC/BRM Integration

2-4

i. In Launch → Setup and Maintenance, go to standard lookup ORA_ATC_GLID and
set the GLID. Example: Create 101 GLID in launch.

ii. In PDC, use pin_glid application to create the general ledger ID. Create 101 GLID
in PDC.

b. Tax code name on Launch and BRM system should be same.

i. a. In Launch, use the REST API operation to create https:///<HOST>/crmRestApi/
atcProductCatalog/11.13.18.05/productCatalogReferenceManagement/v1/
taxServiceProvider. Example: Tax001 should be setup as taxCode in taxSupplier
in Launch.

ii. In PDC, set up the same set of tax codes as configured in Launch.

c. Balance element name, code, numeric code on Launch needs to be same as PDC.

i. In Launch, use the REST API to create the Balance element https:///<HOST>/
crmRestApi/atcProductCatalog/11.13.18.05/
productCatalogReferenceManagement/v1/balanceElement.Example: Name: US
Dollar, code - USD, numeric code – 840 and so on.

ii. In PDC, configure the Balance Element (Name, Code, Numeric code), along with
other attributes that should match with attributes in Launch.

d. Usage specification name and metering rule name in Launch needs to be same as the
configured Usage event and RUM name on PDC side.

i. In Launch, use the REST API to create the usage specification https://<HOST>/
crmRestApu/atcProductCatalog/11.13.18.05/tmf-api/usageManagement/v2/
usageSpecification. The fields name, meteringRule.name should match with PDC.
Example: EventDelayedTelcoGSMTelephony, meteringRule.name – Duration

ii. In PDC, configure the serviceEventMap with the same event name and RUM.

e. The Service specification code in service specification in Launch and Service Event
Map Name on BRM side should be same.

i. Launch Service Specification service code needs to be configured. Example: The
service code /service/telco/gsm/telephony needs to be same on both systems.

ii. In PDC, configure the ServiceEventMap.

Sample Mapping
Table 2-4 shows a sample mapping between Launch and PDC entities.

Table 2-4 Sample Mapping

Entity Launch PDC

Usage Specification EventDelayedTelcoGSMTelephon
y

Metering Rule: Duration

EventDelayedTelcoGSMTelephon
y (Event)

RUM: Duration

UOM (Unit of Measure) ORA_ATC_UOM UOM

Tax Code TAX001 TAX001

Chapter 2
Setting up Launch PDC/BRM Integration

2-5

Table 2-4 (Cont.) Sample Mapping

Entity Launch PDC

Product Offering Billing Service
Type

Populate the Service code - /
service/telco/gsm/telephony in
ORA_ATC_BILLING_SERVICE_
TYPE and then use it on product
offering billing service type

Service - /service/telco/gsm/
telephony (BRM)

serviceTelcoGSMTelephony(PDC
)

Configure the service-event
maps.

Product Specification Wireless PS
• Populate the Usage

Specification -
EventDelayedTelcoGSMTele
phony

Populate the Service
Specification - Wireless CFS

N/A

GLID 101 101

Balance Element Name: US Dollars

Code: USD

Numeric code: 840

Name: US Dollars

Code: USD

Numeric code: 840

Price Tag CT01 CT01

Impact Category Common business configuration
impact category
IC_INTERNATIONAL

IC_INTERNATIONAL

Supported Scenarios
Table 2-5 lists the supported integration scenarios.

Table 2-5 Supported Scenarios

S.No. What you can
publish?

Launch Entity PDC Entity

1. Simple Offer with one
time price

Simple product offering
of service type

Supported fee types are
Purchase and Cancel

Charge offering of
service type

(EventBillingProductFee
Purchase
EventBillingProductFee
Cancel)

Chapter 2
Supported Scenarios

2-6

Table 2-5 (Cont.) Supported Scenarios

S.No. What you can
publish?

Launch Entity PDC Entity

2. Simple Offer with
recurring price

Simple product offering
of service type

Supported recurring
frequency - Monthly, Bi-
Monthly, Semi Annual,
Annual, Quarterly,
Arrear and Forward
Arrear

Charge offering of
service type with the
event of the below
recurring frequency with
the scaled fee.

(

EventBillingProductFee
CycleCycle_forward_an
nual - Occurrence

EventBillingProductFee
CycleCycle_forward_se
miannual - Occurrence

EventBillingProductFee
CycleCycle_forward_qu
arterly - Occurrence

EventBillingProductFee
CycleCycle_forward_bim
onthly - Occurrence

EventBillingProductFee
CycleCycle_forward_mo
nthly - Occurrence)

EventBillingProductFee
CycleCycle_arrear -
Occurrence

EventBillingProductFee
CycleCycle_forward_arr
ear - Occurrence

)

3. Simple Offer with one
time, recurring and
usage fee (any metering
rule)

Simple product offering
of service type

Charge offering of
service type with the
one time, recurring, and
usage fee

4. Simple Offer with a one-
time, recurring price
along with one time,
recurring fixed/%
discount

Simple offering with fees
and adjustments of type
fixed discount or
percentage discount

Charge offering of
service type with the
one time, recurring, and
usage fee. Discount
offering with a fixed or
percentage discount for
the one-time fee

5. Simple Offer with a
usage fee and usage
discount

Simple offering with
usage fees, metering
rule, UOM with usage
percentage or fixed
discount

Charge offering of
service type with the
usage fee. Discount
offering with a fixed or
percentage discount for
the usage fee

6. Simple Offer - Tiered
pricing

Simple offer with one
time/recurring tiered
pricing

Charge offer of service
type with one time/
recurring tiered pricing

7. Simple offer - Usage
tiered pricing

Simple offer with usage
tiered pricing

Charge offer with usage
tiered pricing

Chapter 2
Supported Scenarios

2-7

Table 2-5 (Cont.) Supported Scenarios

S.No. What you can
publish?

Launch Entity PDC Entity

8. Re-use of price plans in
Simple offer

Simple offer with reused
price plans

Charge offer with reused
rate plans

9. Simple offer with Time
Limited Discounts sync
from Launch to BRM
(Only absolute validity)

Simple offer with one
time/recurring/usage
limited time discount

Charge offer/Discount
offer with rate plan
validity

10. Factor the following
integration scenarios
cloning, revisions

Clone

Simple offer revision

Simple offer Retire

Simple offer Obsolete

Charge offer revise

Charge offer obsolete

Charge offer obsolete

11. Launch - BRM - Simple
offering with allowances

Simple offering with
single allowance

Charge offering of
service type with the
non- currency resource
granted part of one time,
recurring, and usage fee
for consumption.
Discount offering for
non-currency resource
consumption

12. Launch - BRM - Simple
offering with Allowance
and Overage

Simple offering with
single allowance and
overage

Charge offering of
service type with the
non- currency resource
granted part of one time,
recurring, and usage fee
for consumption.
Discount offering for
non-currency resource
consumption

13. Launch - BRM - Simple
offering with Attribute
based pricing (one time,
recurring and usage)

Simple offer with
attribute-based pricing
for usage with service
specification and usage
specification
characteristics.

Simple offer with
attribute-based pricing
for one time and
recurring with service
specification and
customer specification
characteristics.

Charge offer with charge
selector

14. Launch BRM - Simple
offering with one-time,
recurring fees and
discounts along with
Charging terms

Simple offer with
charging terms

Charge offer/Discount
offer with rate plan
configuration or charging
details like proration and
increments

15. Launch - BRM - Simple
offering with one-time,
recurring fees and
usage fees (reuse of
price plan alteration)

Simple offer with reused
discount price plan

Discount offer with
reused discount rate
plan

Chapter 2
Supported Scenarios

2-8

Table 2-5 (Cont.) Supported Scenarios

S.No. What you can
publish?

Launch Entity PDC Entity

16. Simple Offer with a one
time, recurring, usage
volume discount (tiered,
volume)

Simple offer with one
time/recurring/usage
tiered and volume
discount

Charge offer and
Discount offer with one
time/recurring/usage
tiered and volume
discount

17. Service Bundle (No
nesting of bundles)

Service bundle Bundle

18. Package with
commitment terms (no
nested bundles or
commercial bundles,
aggregate groups)

Package Package with
commitment terms

19. Service Bundle with
commitment terms (No
nesting of bundles)

Service bundle Bundle with commitment
terms

20. Package (no nested
bundles or commercial
bundles, aggregate
groups)

Package Package

21. Simple Offer with
attribute-based
adjustments for usage

Simple offer with
attribute-based
adjustment for usage
(customer specification,
service specification,
usage specification)

Charge offer and
Discount offer with
Discount Selector

22. Publish other type of
product offering (like
discounts)

Simple offering with
other type of product
offering + discount

Discount offers

23. Simple Offer with
multiple allowances and
consumption model

Simple offer With
multiple allowances and
consumption model

Charge offer and
Discount offer
(consumption model)

24. Simple Offer with usage
prices based on zoning

Simple offer with Value
Map zoning

Charge offer using
charge selector with
value map zoning

25. Simple Offers with
adjustments based on
triggers

Simple offer, triggers on
adjustments (Total
Charge, Total Quantity,
Price Tag, Expression as
trigger conditions)

Discount offer with
discount trigger (price
tag in Launch maps to
impact category in
discount filter)

26. Simple offers with
multiple price lists

Simple offers with
multiple price lists. (Fees
are created with different
price lists within the
same simple offers.)

Charge offers with
Charge selectors. The
charge selectors are
used to configure charge
rate plans based on
price lists.

27. Simple offers with
adjustments and user/
share balance

Simple offers with
adjustments and user/
sharer balance

Discount offers with
different types of
discounts which applies
to user/sharer balance.

Chapter 2
Supported Scenarios

2-9

Table 2-5 (Cont.) Supported Scenarios

S.No. What you can
publish?

Launch Entity PDC Entity

28. Simple offers with
Balance Consumption
Model

Simple offers with
Balance Consumption
Model without Allowance
configured in usage fee
(Consumption Discount
Model).

Discount offers with
Balance Consumption
Model

29. Simple offers with
standard zone

Simple offer with
attribute based pricing
for usage based on
standard zone

Charge offer using
charge rate plan with
standard zone

30. Simple offers with price
tags for run time price
overrides

Simple offer with price
tags on product offering
prices

Charge and discount
offers with rates having
price tags

31. Simple offers with
multiple usage prices

Simple offers with
multiple usage prices.
Attach appropriate
usage specification for
each usage fee

Charge and discount
offers with multiple
usage events

Chapter 2
Supported Scenarios

2-10

3
Launch Cloud Service Third Party Content
Management System Integration

The Integration between Launch and a Headless third party Content Management System
(CMS) is required to manage content across your ecosystem.

Introduction
This comprehensive guide provides step-by-step instructions for implementing a third-party
Headless Content Management System (CMS) integration with Launch. The integration allows
for efficient content management and retrieval, enhancing the overall functionality of the
Launch platform. The document is compiled with the assumption that there is a concrete
implementation of the third party CMS Swagger provided by Launch.

Purpose
The purpose of this integration is to enable Launch to interact with external CMS systems,
providing flexibility in content management and allowing for seamless content retrieval and
display within Launch.

Scope
This chapter covers the entire process from initial configuration in Fabric to final testing in
Launch, including API setup, authentication configuration, and Launch-specific settings.

Prerequisites
Before beginning the implementation, ensure you have the following:

• Access to the CXIFHost environment (e.g., https://your-cxif-host-example.com)

• Access to the FAHost environment (e.g., https://fa-host-example.com)

• Tenant Admin privileges for running /admin APIs

• Visual Builder Studio access with appropriate permissions

• Authentication credentials for the third-party CMS (OAuth2, Basic Auth, or
OCIHttpSignature)

• Familiarity with RESTful APIs and JSON

• Access to curl or Postman for API testing

• Understanding of CORS (Cross-Origin Resource Sharing) concepts

• Knowledge of the specific third-party CMS being integrated

3-1

https://your-cxif-host-example.com
https://fa-host-example.com

Related Guides
Table 3-1 contains information about other useful sources of information for the integration
process.

Table 3-1 Related Guides for Third Party Content Management System Integration

Reference Description

Implement CX Industries Framework Describes the setup and implementation of the CX
Industries Framework required to deploy Launch
Cloud Service.

Supported Versions
• Launch version 24.10 or later

System Architecture Overview
The integration involves three main components:

1. Fabric: Acts as the API management and routing layer.

2. Launch: The application platform that will consume CMS content.

3. Third-party CMS Client: The external content management system.

The flow of data is as follows:

Launch > Fabric > Third party CMS

Figure 3-1 System Architecture Overview

Chapter 3
Related Guides

3-2

The diagram illustrates the architecture for integrating and the flow of third-party Content
Management System (CMS) functionality.

1. Assuming the CMS Client is ready, the process begins with creating a TIC or Connection
Descriptor and updating the Gatekeeping Rules using the Admin API. This TIC specifies
authentication method, credentials, and host information of the CMS client.

2. Launch must be configured to recognize the third-party CMS, this configuration is done via
Visual Builder Studio.

3. If the CMS client needs additional parameters with each request, these are set up as a
JSON configuration in Launch UCM at this path: attachment/thirdPartyCMSParamters/
AdditionalParams.json.

4. Once configured, users can interact with the system. When editing a resource like Product
Offering, clicking Add Images or Add Documents triggers a network call to the third-party
CMS client using Fabric.

Finally, Launch renders the content in a drawer, allowing users to select and attach items to
their resource. This setup enables seamless integration of external CMS capabilities within the
existing system architecture.

Chapter 3
System Architecture Overview

3-3

4
Launch Cloud Service External Mapping
Services Integration

Launch has productized publishing capabilities with Siebel, BRM - wherein we follow a low-
code approach to publish into runtime applications. This has been made possible using the
OAS mapper capability (using JSON path function to query for an element within JSON data).
This allows you to map entities between source (Launch) and target (runtime systems) using
the provided set of java classes (standard functions) for transformation such as valueMap,
defaultValue, splitString, conditionalValueMap, and so on. However, there might arise a need to
add your own mapping functions to support any custom transformation logic that might be
required which is not available in the product. This improves the business agility to distribute
catalog definitions by adding your business specific mapping functions.

Integration of Launch, Siebel, and BRM requires creation and upload of mapper file that will
point to your custom mapping. A default mapper file is provided by Launch. You can update the
same file with invocation calls to the custom mapping function. For more detail, see Integrate
Launch with Siebel CRM and Pricing Design Center (BRM). This integration of external
mapping function supported in the mapping file involves a series of steps. These include
declaring the function signature within the mapping file, setting up the wiring, and developing
the third-party function service, among other components.

Overview
This chapter outlines the Integration of Third-Party Mapping Function service to support
extension of current productized mapping capabilities supported by mapper file. This chapter
also provides detailed step-by-step instructions for integrating a third-party mapping function
service.

Assumptions: The external function service developed by Customers, ensures high availability
and low latency. The function service implementation should expose APIs as described in this
document.

Note:

Raise a Service Request with Oracle Support before you start adding external
mapping services for Integration to Siebel CRM and BRM.

Purpose
The purpose of this integration is to enable Launch to interact with customer developed
mapping service having preTransform and transform API based on swagger definition. This
integration provides enhanced functionality by allowing the Launch Integration microservices to
extend the mapping capabilities currently offered by mapper file.

4-1

Scope
This chapter covers the entire process from initial configuration in Fabric to final testing in
Launch, including API setup, authentication configuration, and Launch-specific settings.

Prerequisites
Before beginning the implementation, ensure you have the following:

• Access to the CXIF Host environment (e.g., https://your-cxif-host-example.com).

• Customers Admin privileges for running/admin APIs.

• Authentication credentials for the third-party Function Service (OAuth2, Basic Auth, or
OCIHttpSignature).

• Familiarity with RESTful APIs and JSON.

• Downloading Third Party Function Service Swagger. See Appendix for more details.

• Access to curl or Postman for API testing.

• Knowledge of the specific service being integrated.

• Knowledge of mapper file, its constructs, and its usages.

Related Guides
Table 4-1 contains information about other useful sources of information for the integration
process.

Table 4-1 Related Guides for External Mapping Services Integration

Reference Description

Integrate Launch with Siebel CRM and Pricing
Design Center (BRM)

Describes the setup and implementation of the edit
and upload mapper file.

Implement CX Industries Framework Describes the setup and implementation of the CX
Industries Framework required for Launch
integrations.

System Architecture Overview
The integration involves three main components:

1. Fabric: Acts as the API management and routing layer. Fabric also have Integration
microservices for uploading Mapper file and perform publish/migration.

2. Client’s Third-party Function service: The third-party mapping function service provided
and hosted by client.

3. Launch: The UI for publish and Migration.

The flow of data is as follows:

Launch > Third-party Mapping Function Service

Chapter 4
Scope

4-2

https://your-cxif-host-example.com

Figure 4-1 Integrating Launch, Fabric, and the third party function service

• Step 1: The diagram illustrates the architecture for integrating Launch, Fabric, and the third
party function service. Assuming the Third party Function Service is ready, the process
begins with creating a TIC or Connection Descriptor in the Config microservice. This TIC
specifies authentication method, credentials, and host information of the Third Party
Function Service.

• Step 2: The mapper file with the necessary mapping extension changes is uploaded. The
file is stored in UCM.

• Step 3: The user publishes or migrates the project.

• Step 4: The Customer Function Service is called and returns the appropriate response.

Detailed Implementation Steps

Configuring Fabric
For Launch to talk to RMS, and the outbound call from RMS to “Third Party Function Service”
to happen, there needs to be some configurations done in the CXIF fabric cluster to mediate
the flow. This configuration is to be done using the CXIF Admin API’s. More details on the
individual service can be found in the Related Guides section.

Create a New Connection Descriptor (TIC)
Connection Descriptor or TIC is where one would mention the host of the third-party function
service deployed. Also, the authentication mode and the authentication secrets are to be
passed in the request while creating TIC.

Supported authentication modes and sample requests for the same are provided below for
reference.

Chapter 4
Detailed Implementation Steps

4-3

Note:

Do not modify the fields endpoint-name, type, and system-descriptor. You can
modify other fields as per your implementation

Sample Request:

POST https://{CXIFHost}/admin/connectionDescriptors
{
 "endpoint-name": "ThirdPartyMappingFunction",
 "endpoint-url": "https://your-host-example.com/",
 "fabric-facing-auth": {
 "oidc-client-credentials": {
 "client-id": "your-client-id",
 "client-secret": "your-client-secret",
 "identity-uri": "https://your-identity-provider.com/oauth2/v1/token",
 "scope": "your-scope"
 }
 },
 "type": "external",
 "system-descriptor": "thirdpartymappingfunction-ttd"
}

endpoint-url field should be the host of the service which interacts with the underlying third
party function service.

fabric-facing-auth field should be where we decide the mode of authentication and the
credentials for authenticating.

Replace placeholders with your actual third party mapping function service endpoint and
OAuth2 credentials. Currently fabric supports two types of authentications. BasicAuth and
OAuth2 (only client credentials is supported).

The sample payload for each type is as mentioned below.

Table 4-2 Sample Payload

Authentication Type Sample Payload

Basic Auth {
 "system-descriptor":
"thirdpartymappingfunction-ttd ",
 "endpoint-name": "ThirdPartyMappingFunction",
 "endpoint-url": "https://
thirdpartyfunctionservice.dev.com/",
 "fabric-facing-auth":{
 "basic":{
 "username": "admin",
 "password": "password"
 }
 },
 "type": "external"
}

Chapter 4
Detailed Implementation Steps

4-4

Table 4-2 (Cont.) Sample Payload

Authentication Type Sample Payload

OAuth2 {
 "endpoint-name": "ThirdPartyMappingFunction",
 "endpoint-url": "https://
thirdpartyfunctionservice.dev.com/",
 "fabric-facing-auth": {
 "oidc-client-credentials": {
 "client-
id":"48eb39a9a7cb4bc0b7761ebb8d3ada97",
 "client-secret":"adt2cdde-6c94-4be2-
b525-fff575a9c3fc",
 "identity-uri": "https://
idcs-322c58839e042ad2.identity.oraclecloud.com/
oauth2/v1/token",
 "scope": "https://
n6jfpge6uqfrum.apigateway.us-ashburn-1.oci.customer-
oci.comurn:opc:resource:consumer::"
 }
 },
 "type": "external",
 "system-descriptor": "thirdpartymappingfunction-
ttd "
}]

Creating GKR (Gate Keeping Rule)
Once TIC is created, a default GKR will get created with endpoint-name
ThirdPartyMappingFunction after 10 seconds.

Use the below get call to get the id of created GKR.

GET {{Fabric_APIGW}}/admin/gatekeepingRules

Response of this get call will be the list of GKR.

Sample Response

[
 {
 "endpoint-name": "ThirdPartyMappingFunction",
 "rule-name": "Generated gatekeeping rule for endpoint tmf632",
 "destination-selection": [
 {
 "api-id": "orclfunc-100",
 "api-version": "v1",
 "criteria": [
 {
 "rank": 1,
 "resource-ids": [
 "transform",
 "preTransform"
]
 }
]
 }
],

Chapter 4
Detailed Implementation Steps

4-5

 "id": "gkr-internal-rest-1234 "
 },
 {
 "endpoint-name": "pdc-test2",
 "rule-name": "Generated gatekeeping rule for endpoint pdc-test2",
 "id": "gkr-pdc-test2zgj5k"
 }
]

From the list of responses, the default GateKeepingRule for ThirdPartyMappingFunction can
be considered. Use the id from the default GateKeepingRule of ThirdPartyMappingFunction
to make the PUT call as shown below:

{{Fabric_APIGW}}/admin/gatekeepingRules/gkr-func7n7fw

Sample Payload

{
 "endpoint-name": "ThirdPartyMappingFunction",
 "rule-name": "Generated gatekeeping rule for endpoint func",
 "destination-selection": [
 {
 "api-id": "orclfunc-100",
 "api-version": "v1",
 "criteria": [
 {
 "rank": 1,
 "resource-ids": [
 "transform",
 "preTransform"
]
 }
]
 }
],
 "id": "gkr-func7n7fw"
}

The POST call above will create the GKR.

Note:

Only the id field of the above payload needs to be changed and copied from GET call
output. Other fields will remain unchanged.

Validating the Connection and Testing the API
After configuring Fabric, it's crucial to test the connection before proceeding to Launch
configuration.

PreTranform API Test - Refer Appendix : Downloading swagger file.

Prepare a POST request:

https://<fabricHost>/api/01/apiIntegration/v1/preTransform with payload.

Sample Payload:

Chapter 4
Detailed Implementation Steps

4-6

{
 "functionName": "customExternalMappingFunction", // This function should be
implemented by third party mapping function service.
 "inputJson": "{ “name” : “IPhone”, “id” : “2222”}” // This input is received from
making source API calls and will be input for customExternalMappingFunction.
 "paramList": [red],
 "contextParameters": [
 {
 "Name": "JobId",
 "Value": "1234"
 }
]
}

Send the request and analyze the response. You should receive result in the format:

{
"result": {
"valueType": "object",
"value": "{}”
}
}

For Pretransform, valueType can be either an object or an array, and value should be of same
data type as mentioned in valueType.

Transform API Test - Refer Appendix : Downloading swagger file

Prepare a POST request:

https://<fabricHost>/api/01/apiIntegration/v1/transform with payload

Sample Payload:

{
 "functionName": " customExternalMappingFunction ", // This function should be
implemented by third party mapping function service.
 "inputJson": "{ “name” : “IPhone”, “id” : “2222”}” // The input is received from
making source API calls and will be input for customExternalMappingFunction.
 "paramList": [],
 "contextParameters": [
 {
 "Name": "JobId",
 "Value": "1234"
 }
]
}

Send the request and analyze the response. You should receive result in the format:

{
"result": {
"valueType": "object",
"value": "{}”
}
}

For transform, valueType can be either an object, an array, integer, string, or number and value
should be of same data type as mentioned in valueType.

Chapter 4
Detailed Implementation Steps

4-7

Changes in Mapper File
Maintaining versions and uploading Mapping File procedure can be referred from Integrate
Launch with Siebel CRM and Pricing Design Center (BRM) guide. This section only describes
the changes to be done in Mapping File.

Mapping File Changes for Transform and PreTransform

Figure 4-2 System Integration Flow

In mapper file, source_request_spec defines the procedure of retrieving source data. After the
retrieval of source data, pre transformation happens (Figure 4-2 step 1). There is a field in
target_request_spec called select_json_path, whose value defines the pre transformation
logic. The value of select_json_path can be jaywayjson path or function or internal function.

For example, if “select_json_path “: “$”, this means that the entire payload beginning from root,
will be selected transformations.

To further enhance the capability of select_json_path, a user can use his own defined functions
(third-party functions) as a value of select_json_path (Figure 4-2 step 1.1), the below signature
can be used. Once this signature is processed in runtime, the preTranform API is invoked with
appropriate parameters. Refer PreTransform Test Sample Payload.

" select_json_path ": "@invokeExtFunction(customExternalMappingFunction,
PRETRANSFORM, arg1, arg2…)"

The signature is explained below:

@invokeExtFunction is the signature to be used for calling third-party function service REST
API.

customExternalMappingFunction is the function name that needs to be invoked by third
party function service.

Chapter 4
Detailed Implementation Steps

4-8

PRETRANSFORM is a keyword that indicates that function is called on the context of "pre-
transformation" and respective API will get called.

arg1 and arg2 are optional parameters. There can be infinite optional parameters.

Once pre transformation is completed, transformation begins (Figure 4-2 step 2). Component
schema is the structure of payload that should be sent to target as payload to respective
exposed API. Component schema contains different fields. Mostly fields are evaluated using
jayway json path, but function and oracle internal functions are also supported. The third-party
function service can be used with component fields as well (Figure 4-2 step 2.1 and step 2.2).

The following sample demonstrates how to specify function signature to invoke third party
function service for transformation. Once this signature is processed in runtime, the transform
API is invoked with appropriate parameters. Refer Transform Test Sample Payload.

"productName": {
 "type": "string",
 "description": "Description of this Employee",
 "x-oracle-map-data": {
 "json_path": "@invokeExtFunction(customExternalMappingFunction, TRANSFORM,
params...)"
 }
}

@invokeExtFunction is the signature to be used for calling third party function service REST
API.

customExternalMappingFunction is the function name that needs to be invoked by third
party function service.

TRANSFORM is a keyword that indicates that function is called on the context of
transformation and respective API will get called.

params is an optional parameter. There can be infinite optional parameters.

Testing Launch
Once the file is uploaded and all configurations are complete, along with the third party function
service up and running, you can proceed with the publish and migration processes. The
expected payload can then be verified accordingly.

Troubleshoot Integration Errors

Some of the integration errors and the troubleshooting tips are mentioned below.

Table 4-3 Integration Errors

Error Type Error Details Troubleshooting Tips

API configuration "No corresponding routing
solution found for:
apiIntegration/v1/preTransform or
Transform"

Check TIC configurations are
correctly set.

Authentication 401 Unauthorized Verify credentials and token
expiration for External Function
Service access.

Function not returning proper
result

The supplied
@invokeExtFunction response
JSON is not of valid syntax.

Validate the return values using
API definition mentioned in
Appendix.

Chapter 4
Detailed Implementation Steps

4-9

Table 4-3 (Cont.) Integration Errors

Error Type Error Details Troubleshooting Tips

Network A connection reset error Check for any network
restrictions or proxy settings that
might interfere. If the service
implemented is deployed on a
cloud platform or on premise,
make sure it is accessible over
the web and cater to the proxy
configurations.

Exception in logs The transformation function
@invokeExtFunction must
contain at least one argument
which specifies the API Path to
be invoked as part of the REST
URL.

Correct signature of
invokeExtFunction as per
documentation.

Chapter 4
Detailed Implementation Steps

4-10

5
Detailed Implementation Steps

Configuring Fabric
For Launch to talk to RMS and the outbound call from RMS to Third Party CMS client to
happen there needs to be some configurations done of the CXIF fabric cluster to mediate the
flow.

This configuration is to be done using the CXIF Admin API’s and more details on the individual
service can be found in the Related Guides Section.

Create a New Connection Descriptor (TIC)
Connection Descriptor or TIC is where one would mention the host of the third-party CMS
client deployed. Also, the authentication mode and the authentication secrets are to be passed
in the request while creating TIC.

Supported authentication modes and sample requests for the same are provided below for
reference.

Note:

Do not modify the fields endpoint-name, type, and system-descriptor. You can
modify other fields as per your implementation.

Sample Request:

POST https://{CXIFHost}/admin/connectionDescriptors
{
 "endpoint-name": "thirdpartycms",
 "endpoint-url": "https://your-host-example.com/",
 "fabric-facing-auth": {
 "oidc-client-credentials": {
 "client-id": "your-client-id",
 "client-secret": "your-client-secret",
 "identity-uri": "https://your-identity-provider.com/oauth2/v1/token",
 "scope": "your-scope"
 }
 },
 "type": "external",
 "system-descriptor": "thirdpartycms-ttd"
}

endpoint-url field should be the host of the service which interacts with the underlying CMS.

fabric-facing-auth field should be where we decide the mode of authentication and the
credentials for authenticating.

5-1

Replace placeholders with your actual CMS endpoint and OAuth2 credentials. Currently fabric
supports three types of authentications. BasicAuth, OAuth2 (only client credentials is
supported) and OCIHttpSignature.

The sample payload for each type is as mentioned below.

Table 5-1 Sample Payload

Authentication Type Sample Payload

Basic Auth {
 "system-descriptor": "thirdpartycms-ttd",
 "endpoint-name": "thirdpartycms",
 "endpoint-url": "https://
thirdpartycms.dev.com/",
 "fabric-facing-auth":{
 "basic":{
 "username": "admin",
 "password": "password"
 }
 },
 "type": "external"
}

OAuth2 {
 "endpoint-name": "thirdpartycms",
 "endpoint-url": "https://
thirdpartycms.dev.com/",
 "fabric-facing-auth": {
 "oidc-client-credentials": {
 "client-
id":"48eb39a9a7cb4bc0b7761ebb8d3ada97",
 "client-secret":"adt2cdde-6c94-4be2-
b525-fff575a9c3fc",
 "identity-uri": "https://
idcs-322c58839e042ad2.identity.oraclecloud.com/
oauth2/v1/token",
 "scope": "https://
n6jfpge6uqfrum.apigateway.us-ashburn-1.oci.customer-
oci.comurn:opc:resource:consumer::"
 }
 },
 "type": "external",
 "system-descriptor": "thirdpartycms-ttd"
}

Chapter 5
Configuring Fabric

5-2

Table 5-1 (Cont.) Sample Payload

Authentication Type Sample Payload

OCIHttpSignature {
 "system-descriptor": "thirdpartycms-ttd",
 "endpoint-name": "thirdpartycms",
 "endpoint-url": "https://thirdpartycms.dev.com/",
 "fabric-facing-auth": {
 "oci-http-signature": {
 "user-ocid":
"ocid1.user.oc1..aaaaaaaaz7kcljhgkjgkhlpqljdqxwlobuv
mi64vxr7bkjjnmzysya",
 "tenancy-ocid":
"ocid1.tenancy.oc1..aaaaaaaad7ioxocqnkeqydccehtrswmb
sievlnhie2rrqguu5ruxq",
 "fingerprint":
"67:39:76:36:2f:de:1e:65:6e:3e:ce:03:75:7d:c1:3e",
 "private-key": "-----BEGIN PRIVATE
KEY-----\\n+pIkanDm==\\n-----END PRIVATE KEY-----",
 "algorithm": "SHA256withRSA"
 }
 },
 "type": "external"
}

Note:

In the case of OCIHttpSignature, the postman or other similar tools may not accept
the value of “private-key” with multiline (will error out like below image).

Figure 5-1 Error for OCIHttpSignature

Chapter 5
Configuring Fabric

5-3

To get around this we need to format the private key as mentioned below.

• Open the text editor and paste the private key.

Figure 5-2 Step for Formatting Private Key

• All the line ends would have an additional line break empty character (see below image).

Chapter 5
Configuring Fabric

5-4

Figure 5-3 Private Key with additional line break empty character

• Append “\n” to the end of each line (see below image).

Chapter 5
Configuring Fabric

5-5

Figure 5-4 Private Key with Appended with \n

• Now make the entire string single line.

Figure 5-5 String in Single Line

• Now use the same value in request.

Chapter 5
Configuring Fabric

5-6

Figure 5-6 Same Value in Request

Update Gatekeeping Rules
After configuring TIC or connection descriptor, you need to update the gatekeeping rule which
will be auto generated after TIC is generated successfully.

Prepare a GET to

https://{CXIFHost}/admin/gatekeepingRules

In the response, search for “thirdpartycms” and get the corresponding ID.

Prepare a GET to

https://{CXIFHost}/admin/gatekeepingRules/{id}

Along with the response of the above GET response, append the below JSON attribute
highlighted in red to create full payload and call PUT endpoint.

Prepare PUT to

https://{CXIFHost}/admin/gatekeepingRules/{id}

{
 "endpoint-name": "thirdpartycms",
 "rule-name": "Generated gatekeeping rule for endpoint thirdpartycms",
 "id": "gkr-thirdpartycmslfgstr",
 "destination-selection": [
 {
 "api-id": "extcms-100",
 "api-version": "v1",
 "criteria": [
 {
 "rank": 10,
 "resource-ids": [
 "thirdpartycms"
]
 }
]
 }
] }

Chapter 5
Configuring Fabric

5-7

Validating the Connection
After configuring Fabric, it's crucial to test the connection before proceeding to Launch
configuration.

Prepare a POST request to

https://<fabricHost>/api/api/cms/v1/data?limit=3&offset=0

with payload.

Sample Payload

{
 "filters": [
 {
 "filterName": "attachmentType",
 "filterValue": "images"
 }
],
 "additionalParams": [
 {
 "paramName": "environment",
 "paramValue": "prod"
 },
 {
 "paramName": "workspace",
 "paramValue": "telco"
 }
],
 "sort": "field_name",
 "order": "asc"
}

Send the request and analyze the response. You should receive a JSON object containing
CMS data and pagination information.

Configuring Launch

Enable Third Party CMS in Visual Builder Studio
• Login to LaunchX UI as a user with admin role.

• Click the profile icon and then open VB studio by clicking Edit Page in Visual Builder
Studio.

Chapter 5
Validating the Connection

5-8

Figure 5-7 Profile Menu in LaunchX UI

• In the Visual Builder Studio, ensure that you are on the App UIs section by clicking the
monitor icon as shown in Figure 5-8.

Figure 5-8 Visual Builder Studio

• Click the second atcproductcatalog.

• Find the file containing the enableThirdPartyCmsIntegration variable (usually a
configuration or constants file).

• Change the value of enableThirdPartyCmsIntegration to true.

• Click Publish to save and apply the changes.

Chapter 5
Configuring Launch

5-9

Figure 5-9 Publishing Page in Visual Builder Studio

Configure Additional Parameters (Optional)
Additional parameters are static part of the request that is always in the payload. If the
concrete implementation requires some details always as part of the request, those can be
configured here.

If your CMS implementation requires additional parameters, use the attachment endpoint in
Launch to upload the additional parameters as a valid JSON array.

Sample Request in CURL format

curl --location --request PUT 'https://{AppsHost}/crmRestApi/atcProductCatalog/
11.13.18.05/v1/attachment/' \
--header 'Authorization: Basic <your-base64-encoded-credentials>' \
--form 'primaryFile=@"/path/to/your/parameters.json"' \
--form 'path="thirdPartyCMSParamters"'

Sample Payload

[
 {
 "paramName": "environment",
 "paramValue": "staging"
 },
 {
 "paramName": "cmsSystem",
 "paramValue": "Contentful"
 }
]

In the sample, you can see two parameters: staging and cmsSystem.

If the swagger client implementation has code abstractions or branching flows to connect to
different systems or environments of the underlying CMS or any other scenarios where some
values need to be part of the request, then it can be configured like mentioned in steps. The
values of both paramName and paramValue can be free text. It depends on the CMS client
implementation.

More examples of requests and responses can be found in swagger.

Chapter 5
Configuring Launch

5-10

6
Testing the Integration

1. Log in to LaunchX.

2. Navigate to any offer or content page that should display CMS content.

3. Click Attach Image button or equivalent.

4. In the opened drawer, verify that:

• You can see filter options specific to your CMS.

• You can search and browse content from the CMS.

• You can select and attach content successfully.

5. After attaching content, verify that it displays correctly on the page.

6-1

7
Troubleshooting

If you encounter issues:

1. API Configuration: Double-check all API endpoints and IDs in Fabric configuration.

2. Authentication: Verify credentials and token expiration for CMS access.

3. Launch Configuration: Confirm enableThirdPartyCmsIntegration is set to true. See
"Enable Third Party CMS in Visual Builder Studio".

4. Network: Check for any network restrictions or proxy settings that might interfere. If the
service implemented is deployed on a cloud platform or on premise, make sure it is
accessible over the web and cater to the proxy configurations.

5. Logging: Enable debug logging in Fabric and Launch for debugging. You can raise an SRE
Ops ticket to change the log level and get the logs.

Launch logs would only be needed rarely as you can get sufficient details about the
request from network tab itself.

If everything from Launch side looks good, then the next logical step is to get the logs of
RMS aka Routing MS. By default, the log level will be error. If the error or issue is not clear,
get the log levels raised to DEBUG and then collect the logs. All this log collection and log
level changing can be done via raising a ticket to the SRE Ops.

7-1

8
Source/Target Mapping

Launch Integration uses a mapping service which enables you to create proxy API that can pull
data into Launch and push data into external applications. The mapping service also allows
customers to modify the seeded mapping rules using extensions. For more information, see
"Handling Extensions".

API Mapping
The API mapping enables you to create a proxy API that can map APIs between the source
and target systems.

The section in the API mapping are:

• Source API Mapping

• Target API Mapping

Source mapping allows you to orchestrate calling APIs on a source system and then map them
to a set of target APIs. In case of publishing, the source is Launch and target is the external
application and is vice versa in the case of migration.

Refer to respective OAS to understand more on the APIs.

Data Mapping
Data mapping enables you to create mappings between the target API schema and the logical
source schema created using the source API Mapping. The mapping is done using JSON path
expressions. The framework provides additional functions to simplify complex mapping that
can't be supported using the JSON path.

You can use these built-in functions to map third-party catalog consuming apps using the
supported functions and application constants.

Supported Functions
Table 8-1 lists the functions available for use in the data transformation, refer to the description
column to understand the use of a function.

Table 8-1 Supported Functions

Function Name Signature Description

@toUpper @toUpper(json path) Converts data to upper case.

@toDataType @toDataType(value json path,
data type json path, boolean true
value, boolean false value)

Converts data to data type if the
source data doesn't conform to
the given data type or uses
custom data type

@toFlatten @toFlatten(source json path,
relative depth json path)

Flattens an object or array to the
given depth.

8-1

Table 8-1 (Cont.) Supported Functions

Function Name Signature Description

@indexOf @indexOf(array json path) Returns index of an array
element.

@replaceValue @replaceValue(jsonPath/
function/default constants,
header key)

Uses header value passed in the
request.

The name of the parameters
should be in this form - User-
Project-Name.

The first letter and the
subsequent letters after
hyphen(-) must be capitalized.

Examples:
@replaceValue($,User- Project-
Id) # correct
@replaceValue($,User-Project-
Name) # correct
@replaceValue($,user-project-
name)

Incorrect

@invokeRest @invokeRest(function name,
argument list...)

Tenant implements end point and
configures it in the Industry
Framework.

@valueMap @valueMap(condition json path/
function, default, json path/
function, source, target)

Maps the value found at the third
argument using a variable
number of source/target values.

Keep in mind that when the
target field uses an Open API
type of "oneOf": [...], this function
will not be able to cast mapped
values to types unless the target
type is declared with an explicit
Open API "type" instead of
"oneOf".

@conditionValueMap @conditionValueMap (json path/
function, default, trueValue,
falseValue)

Returns trueVal if the first
argument resolves to anything
non- null that is not an empty list.

Returns falseValue if the first
argument resolves to an empty
list.

Returns the default value if the
first argument resolves to null.

@defaultValue @defaultValue (json path/
function, default value)

Returns the value found after
evaluating the first argument.

Returns the default value if the
first argument is null.

@distinctValues @distinctValues(json path array,
arg1, arg2, ...)

Returns the distinct values based
on the parameter passed. The
first argument should return an
array. The other arguments
contain fields that are used to
find distinct elements.

Chapter 8
Data Mapping

8-2

Table 8-1 (Cont.) Supported Functions

Function Name Signature Description

@alterValue @alterValue(condition json path,
json path or value, mathematical
operator, json path or value,
precision(optional), rounding
mode(optional))

It performs a mathematical
operation on its operands and
produces a number according to
the specified precision and
rounding mode.

@toArrayLength @toArrayLength(condition json
path, json path or function)

It calculates the length of an
array and produces a number
according to that.

@concatValues @concatValues(condition, arg1,
arg2, ...)

Returns the concatenated string
based on the parameters passed.

The 1st argument (function or
JSON path) is a condition. If the
first argument evaluates to not
null, then the function will return
the concatenated value else it will
return null.

@compareValue @compareValue(condition json
path, json path or value or
header param or query param,
relational operator, json path or
value, dataType optional)

It compares the left and right
operands using the relational
operators like (<,>,<=,>=,==,!=),
based upon the dataType
mentioned and returns a Boolean
value as result.

@conditionalConvertValue @conditionalConvertValue(condit
ionJson Path, jsonPath, regex,
index, case identifier)

This function is used to split and
convert the case of an input text
passed in its 2nd arg to the user
requested case passed in 3rd
arg, 4th arg, and 5th arg.

@convertCase @convertCase(condition json
path/function, json path/function/
constants, case identifier)

This function is used to split and
convert the case of an input text
passed in its2nd arg to the user
requested case passed in 3rd
arg.

@dateConverter @dateConverter(condition 'json
path',date 'json path', default
date(optional), source date
format(optional), target date
format(optional))

Based on the condition, it
converts date from source format
to target format if provided or
uses default date format. If the
date resolves to null and then
returns default date converted in
target format, if default date is
also null then returns null.

@evaluateDataType @evaluateDataType(jsonPath,
dataType, format Optional)

It checks if the value of that
jsonPath returns the specified
data type or not. In case of date
format has to be passed.

@filterArray @filterArray(conditionalJsonPath,
filteredArrayJsonPath,
minLengthForComparing,
operator, additionalCondition)

Filter the array based on the
condition provided.

Chapter 8
Data Mapping

8-3

Table 8-1 (Cont.) Supported Functions

Function Name Signature Description

@getArrayElementByIndex @getArrayElementByIndex(condi
tion json path or function, json
path or function, integer constant
or json path or function returning
integer index)

It returns an array element
present at specified index passed
in 3rd argument.

@getFilteredArrayElement @getFilteredArrayElement(condit
ion,jsonpath, filterCriteria, index,
fieldsJsonpath)

Based on the condition, it
substitutes the search string with
replace string in the data and
returns the transformed data.

@infixToPrefix @infixToPrefix($, $.
['stringExpression'],
operator_map('REQU
IRES','req','NOT','!'),
type_map('REQUIRE
S','binary','!','unary'),
operand_map(),
exp_json_path($.id, productId),
apply_Siebel_Format (true))

This function is used to convert
infix expression to its prefix form.

@objectToStringExp @objectToStringExp (jsonPath,
keyValueSep, fieldSep, mode,
[replaceString], [enclosedBy])

Function to convert a json object
to a string, with the ability to
ignore empty fields and separate
fields, values, and field-value
pairs, as well as wrap each field
value pair with a string.

@prefixToInfix @prefixToInfix(condition json
path, json path,
source_system_siebel (true/
false), operator_map('source-
system- operator','eqv- target-
system- operator', ….….),type
_map('source- system-
operator','operator- type',
…....),operand _map('custom-
source-system- operand','regex-
exp-to-be-used or way to resolve
custom operand in target
system',
…....),exp_json_path(entity(entit
y _Type_Identifier_In_
Target_System, JsonPath to
identify ID in stitched
payload), ...))

This function is used to convert
prefix expression to infix
expression.

@splitString @splitString(conditionJsonPath,
jsonPath, regex, defaultValue,
index)

It splits any string based on a
regex and returns list of values if
no index given in the argument
else returns that specific value
based on the index mentioned in
the argument.

Chapter 8
Data Mapping

8-4

Table 8-1 (Cont.) Supported Functions

Function Name Signature Description

@substituteValues @substituteValues(condition
'json path or function', data 'json
path or value or function' , search
string 'json path or value or
function' , replace string 'json
path or value or function', ….
…....)

Based on the condition, it
substitutes the search string with
replace string in the data and
returns the transformed data.

Supported Application Constants
Table 8-2 lists the application constants available for use in data transformation, refer to the
description column to understand the use of respective application constants.

Table 8-2 Supported Application Constants

Name Sample Payload Description

@jobId
"name": { "type":
"string",
"x-oracle-map-data": {
"json_path":
"@concatValues($,-
,SM,@jobId)",
"mapType":
"TO_FIELD"
 }
}

The current job ID.

@applicationName
"source":{
"type": "string",
"x-oracle-map-data": {
"default":
"@applicationName"
 }
},

Returns the name of the source
system.

@epochTime
"startDate":{
"type":"string",
"format":"date-time",
"x-oracle-map-data":{
"default":
"@epochTime"
 }
}

Returns the epoch time based on
system time.

Chapter 8
Data Mapping

8-5

Table 8-2 (Cont.) Supported Application Constants

Name Sample Payload Description

@recordNum
"id":{
"type":"string",
"x-oracle-map-data":{
"mapType":
"TO_FIELD","concat":
 {
 "separator":"-",
 "fields":[
 "@const(Conditon)",
 "@recordNum"
]
 }
 }
}

Returns the number of records
when the JSON path returns
multiple objects in API map.

@replace(key)
"source_request_spec": {
"source_api_path": "/
siebel/v1.0/data/Price
List/Price List",
"source_request_type":
"GET",

"distinct_key_json_path"
: "$.Id",
 "select_json_path":
"$.items",
"query_param": [
 {
 "key": "PageSize",
 "value":
"@replace(batchSize)"
 }
]
}

Replaces a value from given
header key.

Chapter 8
Data Mapping

8-6

Table 8-2 (Cont.) Supported Application Constants

Name Sample Payload Description

@pathParam(key)
{
"source_api_path": "/
siebel/v1.0/data/Volume
Discount/Volume
Discount/{id}/Volume
Discount Item",
"source_request_type":
"GET",
"query_parameter":
"@pathParam(id)",
"query_value_json_path":
 "$.Id",
...
}

Used in query map to pass value
for a path parameter key.

Supported Templates
The API configuration allows you to define template files for the source API calls. They are
configured as part of the mapping file definition.

Templates used by Siebel CRM
Table 8-3 lists template files that are referenced by the source API configuration during the
migration event.

Table 8-3 Templates used by Siebel CRM

Template Description

catalogPOSTTemplate.json Used to retrieve catalog from Siebel.

attributePOSTTemplate.json Used to retrieve attributes from Siebel.

classPOSTTemplate.json Used to retrieve product class from Siebel.

plPOSTTemplate.json Used to retrieve product lines from Siebel.

productPOSTTemplate.json Used to retrieve product from Siebel.

promotionPOSTTemplate.json Used to retrieve promotion from Siebel.

skuPOSTTemplate.json Used to retrieve Smart Part Number from Siebel.

adjustmentGroupPOSTTemplate.json Used to get Product-Based Adjustment for
discount matrices from Siebel.

bulkPromotionPostTemplate.json Used to get bulk of promotions from Siebel.

productComponentsPOSTTemplate.json Used to get the CP full structure from Siebel.

recommendationRulePOSTTemplate.json Used to get recommendation rules from Siebel.

promotionPostIdsTemplate.json Used during nested job processing for Siebel
promotion.

Chapter 8
Data Mapping

8-7

Table 8-3 (Cont.) Templates used by Siebel CRM

Template Description

ProductPostIdsTemplate.json Used during nested job processing for Siebel
products.

Table 8-4 Templates used by Siebel CRM

Template Description

catalogIDTTemplate.json Used to retrieve Catalog ID from Siebel.

productClassIDTemplate.json Used to retrieve Product Class ID from Siebel.

productLineIDTemplate.json Used to retrieve Product Line ID from Siebel.

productIDTemplate.json Used to retrieve Product ID and Promotion ID from
Siebel.

Managing Mapping File Versions
Oracle ships the two seeded grammar files:

• One-time migration: the siebel_launch.json file that contains the mapping with source as
Siebel and target as Launch.

• Publish to Siebel: the launch_siebel.json file that contains the mapping with source as
Launch and target as Siebel.

You can retrieve the mapping file using the following command:

GET - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 Headers to be passed:
 Source System <<SourceName>>
 X-Destination-System <<DestinationName>>

Any additional extensions that you need to bring into the mapping is done using the versioning
of the mapping file using the seeded grammar file as the starting point.

Note:

The seeded files should never be modified as all release updates make it into these
files.

To use versioning of the grammar files you can pass a unique version as part of Mapping APIs
using the X-Version header. But it’s optional. If the header is not passed, the default version of
the mapping is used.

After creating the grammar files using different versions, you can pass the desired version in
the header X-Version to run the migration job. The migration and publish job will identify the
grammar file by the version and will use it to run the job. For more information on how to
extend using the seeded grammar files, refer to the "Handling Extensions" section below.

Chapter 8
Data Mapping

8-8

Handling Extensions
It is quite common for Siebel customers to have extensions to Product definitions to meet their
business needs.

Mapping definitions are preconfigured for both publish and migration with the required template
files for the standard Siebel fields. The seeded mapping can be updated, or new mapping
configurations can be created using the REST APIs. This can also be done using the Catalog
Sync UI.

The steps to add extension in grammar files:

1. All extensions to Launch for the identified Siebel extensions to product definitions to be done
using Launch Extensibility. See Launch Cloud Service Implementation Guide for more details.
For example, the extensions are made to productOfferingOracle.yml file to create
productOfferingCustomer.yml file.

2. The seeded grammar file can be retrieved by using get Grammar call as below.

a. For migration related changes the X-Source-System should be “siebel” and X-Destination-
System should be “launch”.

b. For publishing related changes the X-Source-System should be “launch” and X-Destination-
System should be “siebel”.

GET - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 • Headers to be passed:
 o X-source systems <<SourceName>>
 o X-Destination-System <<DestinationName>>

3. Once the grammar files are retrieved, the next step is to make the mapping edits:

For example, a new @type is defined as productOfferingCustomer, the changes in
target_spec_request will be addition of new target_spec_request

Search for componentName of “SiebelProduct” and copy the entire Json Object as it is into the
new file and change the following two fields :

"eligibility_check_json_path": "$..projectItems[?(@.isBundle == 'false' && @.
['@referredType'] == ‘productOfferingCustomer’)]",
"source_data_path": "$..projectItems[?(@.isBundle == 'false' && @.
['@referredType'] == ‘productOfferingCustomer’)]",

Also change the component name and give a new Name:

"componentName": " productOfferingCustomer ",
"name": “productOfferingCustomer"

Define this newly created target_request_spec just below siebelProduct for convenience.

Define the component created above in component section:

Chapter 8
Handling Extensions

8-9

Use all_of of openAPI to refer Siebel product in new component as below:

" productOfferingCustomer ": {
 "title": "SiebelProductContainer",
"type": "object",
"allOf": [
{
"$ref": "#/components/schemas/SiebelProduct"
},
{
"properties": {

Maintain the tree hierarachy of parent (siebelProduct in the properties, not necessarily all the
properties in the tree) and add only the additional extended field.

" productOfferingCustomer ": {
"title": "SiebelProductContainer",
"type": "object",
"allOf": [
 {
 "$ref": "#/components/schemas/SiebelProduct"
 },
 {
 "properties": {
 "SyncChild": {
 "type": "string",
 "x-oracle-map-data": {
 "json_path": "$.dummyField",
 "mapType": "TO_FIELD",
 "default": "Y"
 }
 },
 "SiebelMessage": {
 "type": "object",
 "title": "SiebelMessage",
 "x-oracle-map-data": {
 "json_path": "$",
 "mapType": "TO_OBJECT"
 },
 "properties": {
 "ListOfSWIProductIntegrationIO": {
 "type": "object",
 "title": "ListOfSWIProductIntegrationIO",
 "x-oracle-map-data": {
 "json_path": "$",
 "mapType": "TO_OBJECT"
 },
 "properties": {
 "SWI Product Integration VBC": {
 "type": "array",
 "x-oracle-map-data": {
 "json_path": "$",
 "mapType": "TO_ARRAY"
 },
 "items": {

Chapter 8
Handling Extensions

8-10

 "type": "object",
 "properties": {
 "ListOfSWI Product Definition VBC": {
 "type": "object",
 "title": "ListOfSWI Product Definition VBC",
 "x-oracle-map-data": {
 "json_path": "$",
 "mapType": "TO_OBJECT"
 },
 "properties": {
 "SWI Product Definition VBC": {
 "type": "array",
 "x-oracle-map-data": {
 "json_path": "$",
 "mapType": "TO_ARRAY"
 },
 "items": {
 "type": "object",
 "properties": {
 "ExtendedField": {
 "type": "string",
 "x-oracle-map-data": {
 "mapType": "TO_FIELD",
 "json_path": "$.sourceResponse.productOfferingTMF.id"
 }
 },

In the above example, a new field named ExtendedField is added inside SWI Product
Definition VBC.

Existing fields will be inherited from SiebelProduct , only the tree hierarchy needs to be
maintained.

The created grammar file with changes needs to be uploaded to UCM. It is advisable to upload
the created grammar file starting with V1 version and then incrementing the version for every
subsequent changes , this can be done as below:

PUT - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 • Headers to be passed:
 o X-Source-System <<sourceName>>
 o X-Target-System <<targetName>>
 o X-Version V1
 • Body to be passed
 o File. <<file to be uploaded>>

Once the grammar file is uploaded to V1 version , destination needs to updated as below:

PATCH –{{launch_URL}}/crmRestApi/resources/11.13.18.05/
atcPublishWorkspaceDestinations
 • Body to be passed
 {
 "DestVersion": "V1"
 }

Chapter 8
Handling Extensions

8-11

All the template file mentioned in section Templates used by Siebel CRM also needs to be
uploaded with X-Version as V1.

POST – {{FA_APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/template
 • Headers to be passed
 o X-Source-System- <<SourceName>>
 o X-Target-System- <<targetName>>
 o X-Version–V1
 • Body to be passed
 o File- <<file to be uploaded>>

After updating template file, publish can be performed.

Versioning:

The versions of grammar file can be maintained by passing X-Version as mentioned in
previous section.

To create a new version of grammar file, first call get grammar

GET - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 • Headers to be passed
 o X-Source-System- <<SourceName>>
 o X-Destination-System- <<DestinationName>>

After getting the grammar file, add the changes using all_of openAPI as explained in previous
section, after changes are done upload the grammar at specified version. Name the file as
<<source>>_<<destination>>.json

PUT - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 • Headers to be passed:
 o X-Source-System <<sourceName>>
 o X-Target-System <<targetName>>
 o X-Version V1
 • Body to be passed
 o File. <<file to be uploaded>>

The destination needs to be updated.

PATCH – {{launch_URL}}:443/crmRestApi/resources/11.13.18.05/
atcPublishWorkspaceDestinations
 • Body to be passed
 {
 "DestVersion": "V1"
 }

Once grammar is uploaded, you can start publishing.

Chapter 8
Handling Extensions

8-12

Supported UCM Calls
UCM is the content store where the grammar files are stored in folders with versioning of the
changes. You can create a new mapping file, retrieve the latest to make updates and upload
the changes made..

Create Mapping OAS File

POST - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
 • Headers to be passed:
 o X-Source-System <<sourceName>>
 o X-Target-System <<targetName>>
 • Body to be passed
 o File. <<file to be uploaded>>

For more details on header key usage, see Supported Header Keys in this guide.

Update Mapping OAS File

PUT - {{APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/mappingSchema
• Headers to be passed:
 o X-Source-System <<sourceName>>
 o X-Target-System <<targetName>>
• Body to be passed
 o File. <<file to be uploaded>>

Create Template File

POST – {{FA_APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/template
• Headers to be passed
 o X-Source-System- <<SourceName>>
 o X-Target-System- <<targetName>>
 o X-Version- V1
• Body to be passed
 o File- <<file to be uploaded>>

Update Template File

PUT – {{FA_APIGW}}/mappingSchema/cx/industry/apiIntegration/v1/template
• Headers to be passed
 o X- Source-System - <<SourceName>>
 o X-Target-System - <<targetName>>
 o X-Version - V1
• Body to be passed
 o File - <<file to be uploaded>>

Chapter 8
Handling Extensions

8-13

Troubleshooting Integration Errors
This section describes the common issues that could occur either during catalog sync or during
publish or migration.

Table 8-5 Troubleshoot Integration Errors

Error Scenario Error Description Troubleshooting Tips

Publish is successful, however Product
is not created in Siebel CRM.

No error in the UI will be shown. Offers with at least one offer only will be
published to Siebel CRM. Ensure that
the offer has pricing defined.

Publish does not get initiated HTTP 404 error in browser console Ensure that Destination is configured
correctly.

Publish fails with error Processing Failure Use REST APIs in test mode to analyze
further.

Publish status of the initiative does not
change even after running for a long
time.

No visible error reported. PATCH the publish job as FAILED using
REST API and then republish the
initiative.

Gateway timeout in test mode. Launch REST APIs returns error when
run in test mode.

Publish - filter the results by adding the
header Component-Name

Migration – Run the migration job in
Async- Mode.

Migration fails with error "A bundle
product offer must be provided when
the isBundle is true"

Not Applicable Siebel CRM supports Customizable
Product without having any component
products. But Launch does not allow to
create a Bundle Offer without adding
any component products to it.

Migration fails with error “The
subresource characteristic entity with
the (xyz) value combination already
exists. Enter unique values.”

This issue comes up when an attribute
is used more than once in the product
class. Here xyz in error msg is the
attribute name being used more than
once in a class.

In Siebel, attribute is a top-level entity
and a class can have same attribute
definition more than once with different
name. But Launch does not allow to use
same attribute definition more than
once. Hence migration fails.

For additional information on errors on Publish to Siebel CRM, see the Siebel CRM REST API
Guide https://www.oracle.com/documentation/siebel-crm-libraries.html.

Chapter 8
Troubleshooting Integration Errors

8-14

A
Appendix

Setting Default Entities
Table A-1 Setting Default Entities

Entity Sample Payload Description

Service Specification Siebel-Default-SS

{
"id": "Siebel-Default-SS", "name": "Siebel Default
SS",
"description": "Default Service Spec for Sibel
Product Spec", "version": "1.0", "lifecycleStatus":
"Active", "isBundle":
false,
"@type": "ServiceSpecificationOracle", "validFor":
{ "startDateTime": "2010-06-19T16:42:23.000Z"
}
}

It is mandatory to have
a Service
Specifocation in
Launch to create
Service offers.

A-1

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

Product Specification Siebel-Default-PS

{
"id": "Siebel-Default-PS", "name": "Siebel Default
PS",
"description": "Default Product Spec for Sibel
Migration", "version": "1.0", "lifecycleStatus":
"Active", "isBundle":
false,
"@type": "ProductSpecificationOracle", "validFor":
{ "startDateTime": "2010-06-19T16:42:23.000Z"
},
"serviceSpecification": [
{
"id": "Siebel-Default-SS", "name": "Siebel Default
SS", "href": "https://
{FusionAppsHost}/crmRestApi/atcProductCatalog/
11.13.18.05/tmf- api/serviceCatalogManagement/v3/
serviceSpecification/Siebel- ServiceSpec",
"version": "1.0",
"@referredType": "ServiceSpecificationOracle",
"role": "PRIMARY"
}
]
}

Siebel CRM allows to
create simple products
without association
with classes. However,
it is mandatory to
specify a product
specification in Launch
for device and service
offers.

Appendix A
Setting Default Entities

A-2

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

Custom Profile
Specification

Siebel Default Aggregate Discount CPS

{
"id": "Siebel-Default-AggDisc-CPS",
"name": "Siebel Default Aggregate Discount CPS",
"description": "Default Custom Profile Spec",
"version": "1.0", "lifecycleStatus": "Active",
"profileType":
"DEVICE_SPEC",
"@type": "CustomProfileSpecificationOracle",
"validFor": { "startDateTime":
"2022-02-19T16:42:23.000Z"
},
"customProfileSpecChar": [
{
"name": "Product Offering", "valueType":
"PRODUCT_OFFER", "@type":
"ProductOfferingOracle", "configurable": true,
"minCardinality": 0,
"maxCardinality": 1, "validFor": { "startDateTime":
"2022-02-22T00:00:00.000Z"
}
},
{
"name": "Quantity", "valueType": "NUMBER",
"configurable": true, "minCardinality": 0,
"maxCardinality": 1, "validFor": {
"startDateTime": "2022-02-22T00:00:00.000Z"
 }
 }
]
 }

The migration process
is expected to have a
custom profile
specification with
quantity and product
offer to be available for
a successful formation
of aggregate discounts.

Appendix A
Setting Default Entities

A-3

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

Custom Profile
Specification

Siebel Discount Matrix CPS

Siebel Discount Matrix CPS

{
"id": "Siebel-Default-DiscMat-CPS",
"name": "Siebel Default Discount Matrice CPS",
"description": "Default Custom Profile Spec", "href":
"https://fa-wrpt-pintlabfadev.fa.ocs.oc-
test.com/crmRestApi/atcProductCatalog/11.13.18.05/
productCatalogReferenc eManagement/v1/
customProfileSpecification/Siebel-Default-DiscMat-
CPS",
"version": "1.0", "lifecycleStatus": "Active",
"created": "2022-07-05T11:07:36.000Z",
"createdBy": "booth",
"lastUpdate": "2022-07-19T09:33:13.499Z",
"lastUpdatedBy": "booth",
"@type": "CustomProfileSpecificationOracle",
"validFor": {
"startDateTime": "2022-02-19T16:42:23.000Z"
},
"profileType": "DEVICE_SPEC",
"customProfileSpecChar": [
{
"name": "Account Type", "valueType": "STRING",
"configurable": true, "minCardinality": 0,
"maxCardinality": 1, "validFor": {
"startDateTime": "2022-02-22T00:00:00.000Z"
},
"customProfileSpecCharValue": [
{
"value": "Clinic", "valueType": "STRING",
"isDefault": false
},
{
"value": "Commercial", "valueType": "STRING",
"isDefault": false
},
{
"value": "Company", "valueType": "STRING",
"isDefault": false
},
{

"value": "Competing Dealer", "valueType": "STRING",
"isDefault": false
},
{
"value": "Competing OEM", "valueType": "STRING",

The migration process
is expected to have a
custom profile
specification with
values present in
Siebel.

Appendix A
Setting Default Entities

A-4

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

"isDefault": false
},
{
"value": "Competitor", "valueType": "STRING",
"isDefault": false
},
{
"value": "Consultant", "valueType": "STRING",
"isDefault": false
},
{
"value": "Contact Us", "valueType": "STRING",
"isDefault": false
},
{
"value": "Contact Manufacturer", "valueType":
"STRING", "isDefault": false
},
{
"value": "Convention Center", "valueType": "STRING",
"isDefault": false
},
{
"value": "Corporate Training Center", "valueType":
"STRING", "isDefault": false
},
{
"value": "Corporate/Transient", "valueType":
"STRING", "isDefault": false
},
{
"value": "Corporation", "valueType": "STRING",
"isDefault": false
},
{
"value": "Dealer", "valueType": "STRING",
"isDefault": false
},
{
"value": "Department", "valueType": "STRING",
"isDefault": false
},
{
"value": "Department Group", "valueType": "STRING",
"isDefault": false
},
{
"value": "Military", "valueType": "STRING",
"isDefault": false

Appendix A
Setting Default Entities

A-5

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

},
{
"value": "QSR", "valueType": "STRING", "isDefault":
false
},
{
"value": "Ship To", "valueType": "STRING",
"isDefault": false
},
{
"value": "Convenience Store", "valueType": "STRING",
"isDefault": false
},
{
"value": "Manufacturer Rep", "valueType": "STRING",
"isDefault": false
},
{
"value": "ODM", "valueType": "STRING", "isDefault":
false
},
{
"value": "Design House","valueType": "STRING",
"isDefault": false
},
{
"value": "3rd Part Training Center", "valueType":
"STRING", "isDefault": false
},
{
"value": "All Suite", "valueType": "STRING",
"isDefault": false
},
{
"value": "Auto/Home Supply Store", "valueType":
"STRING", "isDefault": false
},
{
"value": "Banking", "valueType": "STRING",
"isDefault": false
},
{
"value": "Body Shop", "valueType": "STRING",
"isDefault": false
},
{
"value": "Branch", "valueType": "STRING",
"isDefault": false
},

Appendix A
Setting Default Entities

A-6

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

{
"value": "Broker", "valueType": "STRING",
"isDefault": false
},
{
"value": "Business", "valueType": "STRING",
"isDefault": false
},
{
"value": "Business Customer", "valueType": "STRING",
"isDefault": false
},
{
"value": "Advertiser", "valueType": "STRING",
"isDefault": false
},
{
"value": "Central Bank", "valueType": "STRING",
"isDefault": false
},
{
"value": "Chain Drug", "valueType": "STRING",
"isDefault": false
},
{
"value": "Chain Food", "valueType": "STRING",
"isDefault": false
},
{
"value": "Department Store", "valueType": "STRING",
"isDefault": false
},
{
"value": "Residential", "valueType": "STRING",
"isDefault": false
},
{
"value": "Customer", "valueType": "STRING",
"isDefault": false
},
{
"value": "Agency", "valueType": "STRING",
"isDefault": false
},
{
"value": "Vendor", "valueType": "STRING",
"isDefault": false
},
{

Appendix A
Setting Default Entities

A-7

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

"value": "Committee", "valueType": "STRING",
"isDefault": false
},
{
"value": "Contract Research
Organization","valueType": "STRING", "isDefault":
false
},
{
"value": "Surgery", "valueType": "STRING",
"isDefault": false
},
{
"value": "Chemist", "valueType": "STRING",
"isDefault": false
},
{
"value": "Clinical Directorate", "valueType":
"STRING", "isDefault": false
},
{
"value": "District Health Authority", "valueType":
"STRING", "isDefault": false
},
{
"value": "Drug Committee", "valueType": "STRING",
"isDefault": false
},
{
"value": "Hospital Unit", "valueType": "STRING",
"isDefault": false
},
{
"value": "Practice", "valueType": "STRING",
"isDefault": false
},
{
"value": "PBM", "valueType": "STRING", "isDefault":
false
},
{
"value": "Pharmaceutical Company", "valueType":
"STRING", "isDefault": false
}
]
 },
 {
 "name": "Product Offering", "valueType":
"PRODUCT_OFFER", "@type": "ProductOfferingOracle",

Appendix A
Setting Default Entities

A-8

Table A-1 (Cont.) Setting Default Entities

Entity Sample Payload Description

"configurable": true, "minCardinality": 0,
 "maxCardinality": 1, "validFor": {
 "startDateTime": "2022-02-22T00:00:00.000Z"
 }
 }
]
 }

Note:

The lifecycle Status for these default objects must be set to Active. To do this, run
PATCH method call on the respective rest APIs.

Downloading Third Party CMS Swagger
Use this GET request to download the Third Party CMS Swagger.

GET - https://{FAHOST}/crmRestApi/atcProductCatalog/11.13.18.05/
productCatalogManagement/v1/swagger/ThirdPartyCMSSwagger

This comprehensive API reference will provide in-depth information on all available operations
and data structures and different sample requests and responses for the CMS integration.

Downloading Third Party Function Service Swagger
Use this GET request to download the Third-Party Function Service Swagger:

GET - https://{FAHOST}/crmRestApi/atcProductCatalog/11.13.18.05/
productCatalogManagement/v1/swagger/PreTransformExternalFunction

This comprehensive API reference will provide in-depth information on all available operations
and data structures and different sample requests and responses for the Third-Party Function
service integration for both Transform and PreTransform API’s.

Appendix A
Downloading Third Party CMS Swagger

A-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Launch Cloud Service Siebel CRM Integration
	Related Guides
	Supported Versions
	Supported Integration and Mapping
	Setting Up Launch Siebel CRM Integration
	Setup Task List
	Setup Task Details

	One-Time Migration and Publishing Process
	Enrichment After Publishing
	Migration Job Parameters
	Migration APIs

	Migration Process

	2 Launch Cloud Service PDC (BRM) Integration
	Related Guides
	Supported Versions
	Supported Integration and Mapping
	Setting up Launch PDC/BRM Integration
	Setup Task List
	Setup Task Details
	Sample Mapping

	Supported Scenarios

	3 Launch Cloud Service Third Party Content Management System Integration
	Introduction
	Purpose
	Scope
	Prerequisites
	Related Guides
	Supported Versions
	System Architecture Overview

	4 Launch Cloud Service External Mapping Services Integration
	Overview
	Purpose
	Scope
	Prerequisites
	Related Guides
	System Architecture Overview
	Detailed Implementation Steps
	Configuring Fabric
	Create a New Connection Descriptor (TIC)
	Creating GKR (Gate Keeping Rule)
	Validating the Connection and Testing the API

	Changes in Mapper File
	Mapping File Changes for Transform and PreTransform

	Testing Launch

	5 Detailed Implementation Steps
	Configuring Fabric
	Create a New Connection Descriptor (TIC)
	Update Gatekeeping Rules

	Validating the Connection
	Configuring Launch
	Enable Third Party CMS in Visual Builder Studio
	Configure Additional Parameters (Optional)

	6 Testing the Integration
	7 Troubleshooting
	8 Source/Target Mapping
	API Mapping
	Data Mapping
	Supported Functions
	Supported Application Constants
	Supported Templates
	Templates used by Siebel CRM

	Managing Mapping File Versions

	Handling Extensions
	Supported UCM Calls
	Create Mapping OAS File
	Update Mapping OAS File
	Create Template File
	Update Template File

	Troubleshooting Integration Errors

	A Appendix
	Setting Default Entities
	Downloading Third Party CMS Swagger
	Downloading Third Party Function Service Swagger

