
Oracle® Communications IP Service
Activator
SDK Service Cartridge Developer Guide

Release 7.5
F59549-01
September 2022

Oracle Communications IP Service Activator SDK Service Cartridge Developer Guide, Release 7.5

F59549-01

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Overview

Developing Service Cartridges with the SDK 1-1

Core Cartridges 1-1

Vendor Cartridges 1-1

2 Building Service Cartridges

Building a Service Cartridge 2-1

About Java-Based Service Cartridges 2-2

Creating a Service Cartridge Source Directory and Skeleton Properties File 2-2

Defining the Service and Customizing the Properties File 2-2

Generating the Cartridge Source Files 2-3

Customizing the Cartridge Source Files 2-3

Compiling and Packaging the Cartridge 2-3

Performing Unit Tests 2-3

Performing End-to-End Tests 2-3

About the Provided Sample Service Cartridge 2-3

Purpose of the Provided Service Cartridge Samples 2-3

Components of the XQuery-Based Sample Service Cartridge 2-4

Sample XQuery-Based Service Cartridges 2-4

Sample ciscoBanner Service Cartridge 2-4

Sample ciscoMartini Service Cartridge 2-6

Sample ciscoStaticRoute Service Cartridge 2-6

Sample Java-Based Service Cartridges 2-7

Sample ciscoBannerJava Service Cartridge 2-7

Creating a Service Cartridge Source Directory and Skeleton Properties File 2-7

Defining the Service and Customizing the Skeleton Properties File 2-8

iii

Generating the Cartridge Source Files 2-9

Generating the Sample ciscoBanner Service Cartridge Source Files 2-9

Result of the Generation Process 2-10

Generating Your Own Service Cartridge Source Files 2-10

Result of the Generation Process 2-11

Troubleshooting the Service Cartridge Generation 2-11

Access to jar Files 2-11

Using an Alternate Directory Structure 2-11

Service Cartridge Generator Message Logging 2-12

Customizing the Service Cartridge Source Files 2-12

Device Model Schema Definitions 2-12

Service Model to Device Model Transform 2-12

Device Model Validation 2-12

Annotated DM to CLI Transform 2-13

Message Pattern Definitions 2-13

Customizing the Service Cartridge Registry 2-13

Completing the Sample Service Cartridge Source Files 2-14

Using Options in the CiscoStaticRoute Sample 2-15

Compiling the Service Cartridge 2-17

Compiling the CiscoBanner Sample Source Files 2-17

Compiling Your Custom Service Cartridge Source Files 2-17

Troubleshooting Service Cartridge Compilation 2-18

Manifest File 2-18

Implementing pre- and post-checks 2-18

Testing in a Standalone Environment 2-18

Performing Unit Tests 2-18

Deploying Service Cartridges 2-18

Verification of Deployment 2-19

Deploying the Sample Service Cartridge 2-19

Audit Trail Logging 2-20

Device Model Upgrades 2-20

Audit 2-20

Uninstalling Service Cartridges 2-20

Removing a Generated Service Cartridge from the SDK 2-21

Uninstalling the SDK 2-21

A Service Cartridge Generation Properties

iv

B Generated Skeleton Service Cartridge Source Files

About the Generated Skeleton Service Cartridge Source Files B-1

v

Preface

This guide explains how to use the Oracle Communications IP Service Activator
Software Development Kit (SDK) to create service cartridges.

Audience
This guide is intended for system developers using the SDK toolset to develop service
cartridges.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter provides a brief overview of the concepts involved in creating service cartridges
with the Oracle Communications IP Service Activator Software Development Kit (SDK).

Developing Service Cartridges with the SDK
A base cartridge provides a framework to allow the Network Processor to perform basic
communication functions with a device. These functions include logging in and out of the
device, sending commands or configlets, performing audits, and interpreting responses from
the device as successes, warnings, or failures. Refer to IP Service Activator SDK Base
Cartridge Developer Guide for details.

Base cartridges do not contain implementations of services. Additional services targeting
specific vendor device types are added through integrated service cartridges.

Configuration policies are implemented in conjunction with supporting service cartridges. For
additional information on creating configuration policies, refer to IP Service Activator SDK
Configuration Policy Extension Developer Guide.

Core Cartridges
IP Service Activator legacy cartridges, known as core cartridges, included the functions
provided by both a base and service cartridges all in the same package.

The base cartridge with separate related service cartridges is the preferred method of
supporting new services to maximize scalability and flexibility.

Vendor Cartridges
A base or core cartridge can be combined with a number of service cartridges to create a
vendor cartridge, which contains the functionality to connect to a specific device type, and
apply the services provided by the service cartridges.

1-1

2
Building Service Cartridges

This chapter discusses service cartridge concepts and explains how to use the Oracle
Communications IP Service Activator Software Development Kit (SDK) to create service
cartridges, and integrate them with configuration policies.

References are made to sample service cartridge components packaged with the SDK.

Refer to the "Service Cartridge Generation Properties" for details on all properties in the
properties file.

Table 2-1 lists the directory placeholders used in this guide.

Table 2-1 Directory Placeholders

Placeholder Description

SDK_home The directory in which the SDK is installed.

Service_Activator_home The directory to which IP Service Activator is deployed. Typically
C:Program Files\Oracle Communications\IP Service Activator

This guide assumes:

• That the required versions of additional third party tools to support the SDK are installed
correctly.

• That you have set up the required environment variables to support the SDK functions.

For details on installing the SDK and the third party tool versions, refer to IP Service Activator
SDK Installation and Setup Guide.

Building a Service Cartridge
This section lists the steps required to build an XQuery-based service cartridge and a Java-
based service cartridge. A brief introduction to these steps follows. After that, each step is
covered in detail.

The steps to build an XQuery-based service cartridge are:

• Creating a Service Cartridge Source Directory and Skeleton Properties File

• Defining the Service and Customizing the Skeleton Properties File

• Generating the Cartridge Source Files

• Customizing the Service Cartridge Source Files

• Compiling the Service Cartridge

• Performing Unit Tests

• Performing End-to-End Tests

The steps to build a Java-based service cartridge are:

2-1

• Copying one of the sets of sample source files to support your new development

• Customizing the Service Cartridge Source Files

• Compiling the Service Cartridge

• Performing Unit Tests

• Performing End-to-End Tests

Note:

Service cartridges which use java-based transforms do not make use of the
skeleton.properties file, or the source code generation capabilities of the
SDK. Instead, sample source code is provided for you to base your project
on.

About Java-Based Service Cartridges
There are some special considerations to consider when creating service cartridges
which use Java-based transforms as opposed to XQuery-based transforms. They do
not make use of the skeleton.properties file, or the source code generation
capabilities of the SDK. Instead, sample source code is provided for you to base your
project on.

The parts of the procedures in this chapter dealing with XQuery, the
skeleton.properties file, and generating and customizing XQuery cartridge source
files in particular, do not directly apply to Java-based service cartridge development.

Creating a Service Cartridge Source Directory and Skeleton Properties
File

To begin creating an XQuery-based service cartridge, you will need to establish a
directory structure for the source files, and create the skeleton properties file that will
be used to generate the starting source files.

Defining the Service and Customizing the Properties File
This step involves determining the specific details of the service to be created and
specifying the information needed to apply the desired configuration to the device.

You will need to select at least one modeled service or configuration policy to be
implemented by the service cartridge. As a starting point, you can specify one
modeled service or one configuration policy as a subscription in the cartridge skeleton
properties file. This file is then used by the SDK service cartridge generator tool to
generate a set of source files as a starting point for your service cartridge. The
generated source files can be customized to add any additional subscriptions if the
service cartridge will implement more than one modeled service and/or more than one
configuration policy.

Each cartridge you create with the SDK will have a skeleton properties file. In this file,
you will customize the property values that control the generation of the cartridge

Chapter 2
Building a Service Cartridge

2-2

source files. For complete details on all properties, refer to "Service Cartridge Generation
Properties".

Generating the Cartridge Source Files
This step uses the SDK tools to read the skeleton properties file and create the skeleton
cartridge source files.

Customizing the Cartridge Source Files
This step is where the majority of your development work takes place for XQuery-based
service cartridges. Some of the key cartridge components you need to create are:

• Device Model (DM) schema definition

• Service Model (SM) to DM transform

• Annotated DM to CLI transform

• Message (success/warning/error) pattern definitions

There are many other source file components you may need to create or modify including
files that support audit services, options, capabilities, and pre- and post-checks. These are
described later in this chapter.

Compiling and Packaging the Cartridge
Use the included script to compile and package the cartridge.

Performing Unit Tests
Unit tests are provided as part of the generated source files.

Performing End-to-End Tests
Deploy the cartridge into a test IP Service Activator environment as an extension to a base or
core cartridge to perform end-to-end testing.

About the Provided Sample Service Cartridge
The SDK includes XQuery-based sample service cartridges and Java-based sample service
cartridges. This section describes the purpose and components of the sample service
cartridges, and gives details about each sample cartridge.

Purpose of the Provided Service Cartridge Samples
You can use the samples in a variety of ways:

• You can inspect generated source files to see how a simple, working, service cartridge is
constructed.

• You can complete, compile and package the pre-generated, customized sample source
files into a working service cartridge and deploy it in a test system as an extension to the
cisco base cartridge sample.

Chapter 2
About the Provided Sample Service Cartridge

2-3

• You can take a copy of a provided skeleton properties file, relocate and rename it,
and use it as the starting point to generate your own skeleton cartridge source
files.

Components of the XQuery-Based Sample Service Cartridge
Included with each Cisco XQuery-based sample service cartridge are:

• A skeleton.properties file: used to generate the source files for its sample service
cartridge. See "Generating the Cartridge Source Files".

• Pre-generated, customized sample service cartridge source files: used to
demonstrate the edits required to the generated source files to produce a working
service cartridge.

For example, the source files provided with the ciscoBanner sample include:

• ...\audit\auditTemplate.xml

• ...\messages\successMessages.xml, errorMessages.xml,
warningMessags.xml

• ...\schema\devicemodel.xsd

• ...\test\TransformUnitTests.java

• ...\transforms\sm2dm.xq, annotated-dm2cli.xq, dm-validation.xq

• ...\xquerylib\ dm2cli-banner.xq, dm2cli-cisco.xq, dm-version.xq, sm2dm-
banner.xq

Note:

The other XQuery-based service cartridge sample files are organized in a
similar fashion.

Sample XQuery-Based Service Cartridges
The XQuery-based sample service cartridges are:

• ciscoBanner

• ciscoMartini

• ciscoStaticRoute

Sample ciscoBanner Service Cartridge
The ciscoBanner sample cartridge illustrates the following concepts:

• Filling out the skeleton properties for a service cartridge

• Subscribing to configuration policies

• Managing basic capabilities for configuration policies

• Architecting the device model schema

• Creating the cartridge Extension registry

Chapter 2
About the Provided Sample Service Cartridge

2-4

• Transformations (SM2DM and annotatedDM-CLI) that appropriately pass on the various
IDs

• Device Model instance validation

• Providing data so the Network Processor can recognize and correctly act on router
responses

• Providing command information to correctly enable NP audits for these services

• Use of XQuery modules to improve compartmentalization, maintainability and readability
of XQuery code

Note:

These details apply in a similar fashion to the other XQuery-based samples
(ciscoMartini and ciscoStaticRoute).

The ciscoBanner sample service cartridge implements the service modelled by the
bannerSample sample configuration policy. The ciscoBanner sample contains a schema for a
consolidated banner configuration policy that allows you to configure a sequence of one or
more of five possible banner commands. It is assumed that only one occurrence of each
banner type can exist on a device.

For details on the bannerSample configuration policy and its parameters and options, refer to
IP Service Activator SDK Configuration Policy Extension Developer Guide.

Completing the Sample

To complete the sample:

1. Do one of the following:

• Copy the provided files over their generated counterparts

or

• Edit the generated files.

You will need to create the source files for the corresponding configuration policies which
implement the sample cisco services. See IP Service Activator SDK Configuration Policy
Extension Developer Guide for details.

Sample Properties File

The sample skeleton properties file that is used to create the source files for the ciscoBanner
sample service cartridge is called:

SDK_home\samples\serviceCartridge\ciscoBanner\skeleton.properties

This properties file is pre-populated with the information needed to construct the source files
for the ciscoBanner sample service cartridge.

Some of the generated source files will need to either be edited or overwritten with the
provided source files.

As you read through the service cartridge creation steps, instructions are given on how to use
the ciscoBanner sample to test some of the SDK tools and commands.

Chapter 2
About the Provided Sample Service Cartridge

2-5

Refer to Service Cartridge Generation Properties for details on all the properties
implemented in the sample properties files which create the source files for the
samples.

Sample ciscoMartini Service Cartridge
The ciscoMartini sample service cartridge implements a Martini layer two VPN service.

This service cartridge is written using XQuery-based transforms and illustrates how to
implement a modeled IP Service Activator service using a service cartridge.

The provided set of pre-generated source files in the sample are based on the output
of the supplied skeleton.properties file, but are pre-configured with some of the specific
service configuration knowledge required for the service.

Key concepts illustrated by the sample ciscoMartini service cartridge are:

• Filling out the skeleton.properties for a modeled service cartridge

• Subscribing to a modeled service

• Managing capabilities for a modeled service

• Transformations (SM2DM and annotatedDM-CLI) that appropriately pass on
various IDs

Note:

This service cartridge does not implement a full-functional, or completed
Martini service. It is intended only to demonstrate some of the concepts
required when implementing such a service in a service cartridge.

Sample ciscoStaticRoute Service Cartridge
The ciscoStaticRoute implements the service modelled by the sample static route
configuration policy. It allows you to configure one or more static routes.

The ciscoStaticRoute sample cartridge illustrates the same concepts listed in "Sample
ciscoBanner Service Cartridge" plus the following concepts:

• Specification of options schema

• Use of options to influence transformations

• Use of type-1 pre-check (to ensure a new static route service does not have a pre-
existing conflicting static route on the router)

• Use of type-2A pre-check (to ensure the next-hop address in the static route is
reachable from the device - traps case when the network of next-hop is not
reachable)

• Use of type-2B pre-check (to ensure the next-hop address in the static route is
reachable from the device - traps case when subnet is not reachable)

• Use of post-check (to ensure that a provisioned static route has correctly updated
the routing table)

Chapter 2
About the Provided Sample Service Cartridge

2-6

For details on the ciscoStaticRoute configuration policy and its parameters and options, refer
to IP Service Activator SDK Configuration Policy Extension Developer Guide.

Sample Java-Based Service Cartridges
The Java-based service cartridge sample is:

• ciscoBannerJava

Sample ciscoBannerJava Service Cartridge
The ciscoBannerJava sample service cartridge re-implements the bannerSample
configuration policy for Cisco IOS and is similar to the ciscoBanner sample, except that it
uses Java for model transformations instead of XQuery.

The provided sample is pre-compiled. Service cartridges with Java-based transforms do not
make use of the generated XQuery source files, so no customization step for these files is
needed.

The ciscoBannerJava sample implements the service modelled by the bannerSample
configuration policy. The ciscoBannerJava sample contains a schema for a consolidated
banner configuration policy that allows you to configure a sequence of one or more of five
possible banner commands. It is assumed that only one occurrence of each banner type can
exist on a device.

Key concepts illustrated by the ciscoBannerJava sample service cartridge are:

• File and directory structure for Java-based cartridges (since skeleton generation cannot
be used)

• Ant build scripting

• Synonyms

• Extension registry

• Registry customization in the field

• Use of options in Java transforms

• Java-based SM-DM and annotatedDM-CLI transforms

• Device Model upgrade transformation

• Unit test harnesses for Java cartridges

• Java-based Device Model instance validation

For details on the bannerSample configuration policy and its parameters and options, refer to
IP Service Activator SDK Configuration Policy Extension Developer Guide.

Creating a Service Cartridge Source Directory and Skeleton
Properties File

To create your own XQuery-based service cartridge, you will need to establish a directory
structure for the source files, and create a skeleton properties file to generate the starting
source files. (For Java-based service cartridges, use one of the provides samples as a
starting point and add your own Java code from there. None of the steps around creating and
customizing XQuery files are required.)

Chapter 2
Creating a Service Cartridge Source Directory and Skeleton Properties File

2-7

Note:

When deciding upon a directory structure for a new base cartridge or service
cartridge care must be taken to choose a unique base directory name. If the
path of a file in the new cartridge is the same as the path of a file in a
deployed cartridge, undesirable behavior could occur.

The simplest method is to copy one of the sample skeleton.properties files and then
edit it for your own use.

To copy and edit the sample skeleton.properties files:

1. Create a meaningful name for your new service cartridge. This name will be
referred to as this_service_name.

2. Create a new directory for your cartridge source files:

SDK_home\serviceCartridges\this_service_name

3. Copy a skeleton.properties file from one of the sample service cartridges into the
new directory:

copy
<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.properties
<SDKHome>\serviceCartridges\this_service_name

4. Edit your skeleton.properties file to change the sample cartridge name to
target_service_name in the following entries:

service cartridge name
 sdk_global_cartridgeName=this_service_name
. . .
packaging structure

sdk_global_package=com.metasolv.serviceactivator.cartridges.this_service_name

Defining the Service and Customizing the Skeleton
Properties File

This step involves determining the specific details of the service to be created and
specifying the information needed to apply the desired configuration to the device.

The service may require application across multiple operating systems or device
types. In this case, you will need to create multiple service cartridges.

This can affect the definition of the service and/or require separate services to be
defined to achieve the desired end goal.

If your service requires an HTML-based GUI input form, you will also need to create a
corresponding configuration policy. A single configuration policy to implement a
generic type of service may be subscribed to by multiple service cartridges, each
implementing the service on a specific vendor's device.

You must edit the properties file to match the requirements of your service cartridge.
Assuming you have used one of the supplied sample skeleton.properties files as a
starting point, you will have to edit or remove properties that are not applicable to your

Chapter 2
Defining the Service and Customizing the Skeleton Properties File

2-8

service cartridge, and otherwise supply appropriate values for properties for your particular
needs. Refer to Service Cartridge Generation Properties for details on the properties in the
skeleton properties file.

Generating the Cartridge Source Files
The SDK provides a tool for generating the service cartridge source files from the skeleton
properties file. Once the source files are generated, you will need to edit them to complete
your service cartridge.

Note:

Ensure that you save copies of any cartridge source files you alter prior to re-
generating from the skeleton.properties file to ensure that you do not lose
customization work. Alternatively, modify the skeleton.properties file so that a new
target directory name is used. In either case, you will need to manually merge any
alterations you made in the previous iteration if you want those changes to persist.

Generating the Sample ciscoBanner Service Cartridge Source Files
The file SDK_home\samples\serviceCartridge\ciscoBanner\skeleton.properties is fully
populated and can be used to construct the skeleton source files for the sample ciscoBanner
service cartridge. You can use these files for reference, or as a starting point for your own
service cartridge. The generated source files do not contain all the necessary modifications to
complete the service. See the provided sample source files for the changes needed.

For the ciscoMartini service cartridge, you also have to modify the Extension.xml to point to
the default_caps.xml file instead of the empty_caps.xml file.

To generate the ciscoBanner sample service cartridge source files using the data from the
skeleton properties file:

1. Set the cartridge version string variable. For example, if the cartridge version is 1.0, on a
Windows host, type the command:

set VERSION_STRING=1.0
2. In the SDK directory, do one of the following:

• Run the included batch file to run the cartridge generator script:

gensc samples\serviceCartridge\ciscoBanner\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -
DpropFile=SDK_home\samples\serviceCartridge\ciscoBanner\skeleton.properties

Chapter 2
Generating the Cartridge Source Files

2-9

Note:

To use the batch file, you must first add SDK_home\bin to your PATH
variable where SDK_home is the SDK directory.

Result of the Generation Process
The directory structure you created previously (see "Creating a Service Cartridge
Source Directory and Skeleton Properties File") has been extended by using the
sdk_global_cartridgeName value from the skeleton properties file. The cartridge
source files generated under
SDK_home\serviceCartridges\sdk_global_cartridgeName\ include:

• build.xml: ant build file to build the service cartridge

• src\synonyms.xml: used by the audit process

• src\...\audit\auditTemplate.xml: stub file for audit commands

• src\...\capabilities\empty_caps.xml: stub file for capabilities information

• src\...\messages\: contains .xml files with success, error and warning message
patterns

• src\...\options\options.xsd: stub .xsd file for cartridge options

• src\...\schema\devicemodel.xsd: contains the stub service cartridge device
model schema

• src\...\test\: resources for testing the service cartridge

• src\...\transforms\: transforms including pre- and post-check, SM to DM,
annotated DM to CLI, and DM validation

• src\...\xquerylib\: additional XQueries for DM to CLI, migration, validation, and
version checking

• src\...\cisco\Extension.xml: identifies the service cartridge instance

• src\...\cisco\Customization.xml: can be used to override Extension.xml

The skeleton source file generation process also creates a log file is within the logs
directory at SDK_home\logs\generator.log.

To continue working with the sample ciscoBanner service cartridge, go to "Completing
the Sample Service Cartridge Source Files".

Generating Your Own Service Cartridge Source Files
When you create your own service cartridge, the cartridge name and the root folder for
the generated source are based on the sdk_global_cartridgeName property value in
the service cartridge skeleton properties file. It is incorporated into the cartridge source
files in place of sdk_global_cartridgeName as shown below.

To generate your own sample service cartridge source files using the your customized
skeleton properties file:

1. Set the cartridge version string variable. For example, if the cartridge version is
1.0, on a Windows host, type the command:

Chapter 2
Generating the Cartridge Source Files

2-10

set VERSION_STRING=1.0
2. In the SDK directory, do one of the following:

• Run the included batch file to run the cartridge generator script:

gensc \serviceCartridge\sdk_global_cartridgeName\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -
DpropFile=SDK_home\serviceCartridge\sdk_global_cartridgeName\skeleton.propertie
s

Note:

To use the batch file, you must first add SDK_home\bin to your PATH variable
where SDK_home is the SDK directory.

Result of the Generation Process
This extends the SDK directory structure in a similar manner to what was described in
"Generating the Sample ciscoBanner Service Cartridge Source Files".

Note:

It is possible to use a different name for the skeleton properties file. If you choose to
do this, supply the new name instead of skeleton.properties in the ant commands.

Troubleshooting the Service Cartridge Generation
This section discusses where to find information to help you resolve service cartridge
generation issues.

Access to jar Files
The service cartridge needs to have access to the XMLbeans jar files. It must get these from
the ipsaSDK/3rdparty/lib as shown in the setting of cartridge.build.path in ipsaSDK/build/
cartridge_build_imports.xml. The use of this is shown in the ciscoBannerJava sample
service cartridge's build.xml file.

In addition, if the service cartridge implements an SDK generated configuration policy, then
the service cartridge will need access to the configuration policy's jar file as well. As an
example, see how the build.xml file for ciscoBannerJava references the bannerSample
configuration policy jar.

Using an Alternate Directory Structure
If you are not using the standard directory structure to layout all the configuration policies,
base cartridges and service cartridges being developed using the SDK, then you must modify

Chapter 2
Generating the Cartridge Source Files

2-11

the Java sample build.xml file to ensure that all instances of sdkDir are replaced with
valid paths to the respective files. The preferred way to do this is to set sdkDir to the
top level directory for all the SDK-based artifacts.

Service Cartridge Generator Message Logging
The logging level of the cartridge generator can be controlled by editing the settings in
the SDK_home\config\logging.properties file.

The default is to log debug level messages. Output is sent to both stdout and a logging
file: SDK_home\logs\generator.log.

For details on troubleshooting property file attributes, see IP Service Activator SDK
Base Cartridge Developer Guide.

Customizing the Service Cartridge Source Files
When creating your service cartridges, you will need to make appropriate edits to the
skeleton source files to support the particular functionality you want to implement for
your service.

The key cartridge source components you need to create and/or modify include:

• Device Model (DM) schema definition

• Service Model (SM) to Device Model transform

• Device Model validation

• Annotated Device Model to CLI transform

• Message (success/warning/error) pattern definitions

Device Model Schema Definitions
The service cartridge device model (deviceModel.xsd) extends the Network
Processor's device model (DM) schema. It adds validation rules so that the new
service(s) which the cartridge enables can be fully described between it and the
Network Processor's Device Model.

Service Model to Device Model Transform
This XQuery or java source transform transforms the device-independent service
model to a device-specific device model.

It is essential that the service model Definition IDs, which identify policy definitions,
and Association IDs, which identify the links between defined policies and their target
objects and their representative concretes in IP Service Activator, flow through from
the service model to the device model.

Device Model Validation
If the cartridge entry <dmValidation> contains a dmValidation entry, the Network
Processor will invoke this function to validate the transformed device model. This
would capture logical faults as opposed to syntax faults that would be caught by the
device model validation using deviceMode.xsd.

Chapter 2
Customizing the Service Cartridge Source Files

2-12

Annotated DM to CLI Transform
The Network Processor compares the target device model with the last device model that
was persisted to the database after the last successful push to the device. The Network
Processor annotates the target device model. For each policy object, the annotation includes
the smId, a dmId that is generated by the Network Processor and a changeType which
indicates whether configuration is being added, deleted or modified on the device.

The data from the annotated device model is transformed into a CLI document which
contains the required device specific commands.

Message Pattern Definitions
Success, warning and error message pattern files can be defined for service cartridges in the
same way as for base cartridges. For example, device responses for commands sent by a
service cartridge are analyzed and patterns are created in the message pattern files for that
service cartridge. The difference is that for a base cartridge, the messages files are
referenced from the Registry.xml file, and for a service cartridge, the messages files are
reference from the Extension.xml file. For an overview of the concepts behind message
files, see IP Service Activator SDK Developer Overview Guide.

For complete details on defining message patterns, see IP Service Activator SDK Base
Cartridge Developer Guide.

Customizing the Service Cartridge Registry
The service cartridge registry identifies the service model definitions to which the service
cartridge subscribes and defines the transforms, audits, capabilities, options and messages
of the service cartridge.

When the service cartridge is deployed, the service cartridge jar file will be deployed into the
serviceCartridges sub-directory, the parent of which is the directory in which a base or core
cartridge is already installed. Aspects of the service cartridge registry can be overridden after
deployment by using a customization registry file.

The layout of the service cartridge registry file, Extension.xml, is defined by the schema
cartridge.xsd. The service cartridge registry file is the first service cartridge file read by the
Network Processor. It defines all of the important entry points into the service cartridge.

When you create a service cartridge, you must customize Extension.xml appropriately for
your implementation.

The parameters specified in the service cartridge registry include:

• Name: the name of the service cartridge. This must be unique across all service
cartridges.

• SmToDm: the service model to device model transform file

• DmValidation: the device model validation file

• DmToCli: the device model to CLI transform file

• DmMigration: the device model migration file. This is used to perform device model
migration.

• Success: the success message patterns file. These patterns are used to identify success
messages sent by a device.

Chapter 2
Customizing the Service Cartridge Source Files

2-13

• Warning: the warning message patterns file. These patterns are used to identify
warning messages sent by a device.

• Error: the error message patterns file. These patterns are used to identify error
messages sent by a device.

• AuditTemplateFile: the audit template file. It is used by the audit process for
devices provisioned using a CLI.

• AuditQueryFile: the audit query file. This file is used by the audit process for
devices provisioned using an XML interface. Different audit template files can be
specified for different device types and OS versions.

• OptionsEntry: the options file. This file specifies the options file that will be passed
to both the SM2DM and DM2CLI XQuery transforms. Different option files can be
specified for different device types and OS versions.

• CapsEntry: the capability file. This file specifies the capabilities that are supported
by the service cartridge. Different capability files can be specified for different
device types and OS versions. Capabilities for different service cartridges are
ORed together by the network processor during a policy server caps fetch.

• Subscriptions: specify the parts of the service model that the service cartridge is
interested in.

For details on registry operations, refer to IP Service Activator SDK Developer
Overview Guide.

For information on customizing the base cartridge registry, see IP Service Activator
SDK Base Cartridge Developer Guide.

Completing the Sample Service Cartridge Source Files
To complete the sample service cartridge source files:

1. Do one of the following:

• Copy the files provided in
SDK_home\samples\serviceCartridge\CiscoBanner\ over their counterparts
in the generated source directory
(SDK_home\serviceCartridge\ciscoBanner\)

or

• Edit the generated sample source files to complete their content development.

The provided files demonstrate the modifications required to complete their
content development to produce a working sample service cartridge.

You can examine the contents of the sample files and by highlighting in some
manner (change bars, etc.), you can observe what was added, or modified to
complete the sample.

The files to be copied or edited are:

• SDK_home\samples\serviceCartridge\ciscoBanner\src\...\audit\auditTemplate
.xml

• SDK_home\samples\serviceCartridge\ciscoBanner\src\...\messages*

• SDK_home\samples\serviceCartridge\ciscoBanner\src\...\schema\devicemod
el.xsd

• SDK_home\samples\serviceCartridge\ciscoBanner\src\...\transforms*

Chapter 2
Customizing the Service Cartridge Source Files

2-14

Using Options in the CiscoStaticRoute Sample
Given a cartridge which supports a particular service on Cisco devices, here is an example of
how to add an option to support a variation in a configuration command for certain device
type(s) and OS version(s).

Options.xsd File

In this case, the example adds an option for the ciscostaticRoute sample service cartridge
supplied with the SDK to add the parameter permanent to the static route command for
certain devices which require this.

To define support for a new boolean option type called
cartridge.ciscoStaticRoute.permanentOption:

1. Edit the options schema file options.xsd based on the generated sample cartridge
source file.

2. Add the following statement:

. . .
<xs:element name="cartridge.ciscoStaticRoute.permanentOption"
type="opt:BooleanValue" minOccurs="0" default="false"/>
. . .

The default value for this new option is false.

Options.xml File

To specify which options apply for the device types and device OS variants that this cartridge
supports:

1. Create the options.xml file.

2. Create an entry using the data type cartridge.ciscoStaticRoute.permanentOption,
which was defined in the options.xsd file.

The content for the options.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<base:options
xsi:type="CartridgeOptions"
xmlns="http://www.metasolv.com/serviceactivator/cisco/staticroute/options"
xmlns:base="http://www.metasolv.com/serviceactivator/options"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- options for ciscoStaticRoute service cartridge -->
 <cartridge.ciscoStaticRoute.permanentOption>true
</cartridge.ciscoStaticRoute.permanentOption>
<!-- additional options could go here -->
</base:options>

Xquerylib\dm2cli-staticroute.xq File

To implement the newly-defined option:

1. Edit the annotated DM to CLI transform as follows:

 import module namespace options = "options-common-functions" at "resource://
metasolvcom/metasolv/serviceactivator/networkprocessor/xquerylib/options-
common.xq";
. . .

Chapter 2
Customizing the Service Cartridge Source Files

2-15

 if
(options:getBooleanOption("cartridge.ciscoStaticRoute.permanentOption",false(
)) = true()) then
 " permanent"
 else ())
. . .

The first statement imports a standard library file of common XQuery functions
(options-common.xq) to provide the ability to recognize and process ‘if' clauses.

The if statement triggers the option evaluation and action.

When the annotated DM to CLI transform is run, an XQuery command to read the
boolean option cartridge.ciscoStaticRoute.permanentOption from the loaded
Extension.xml file is run.

A check is made to see if there is an options file specified that matches the device type
and OS variant for the target device the static route is being configured on.

In this case, there is an entry in the Extension.xml file to match devices of type
‘Cisco.*' and OS ‘*.'. The file options.xml is specified for devices matching these
characteristics. Because of the wild cards, the target device for the static route
matches.

Next, the specified options file (options.xml) is searched for an entry matching the
passed option (cartridge.ciscoStaticRoute.permanentOption). The entry exists, and
the value associated with it is true.

This true value is returned back up to the if statement in the transform XQuery which
initiated the option lookup:

 if
(options:getBooleanOption("cartridge.ciscoStaticRoute.permanentOption",false())
= true()) then
 " permanent"

and the string “ permanent" is added to the output CLI. The static route command for
this target device, which is handled by this cartridge, will have permanent appended
to it.

Extension.xml File

To specify that the cartridge uses options and to give the name of the options file:

1. Edit the Extension.xml file for the cartridge.

2. Supply regular expressions to specify the device types and OS versions that this
options file applies to. In this case, it applies to all Cisco device types, and all OS
versions.

For example:

<options>
 <optionsEntry>
 <optionsFile>com/metasolv/serviceactivator/cartridges/ciscostaticroute/options/
options.xml</optionsFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </optionsEntry>
</options>

Chapter 2
Customizing the Service Cartridge Source Files

2-16

Compiling the Service Cartridge
Service cartridge source files are compiled using ant. The compilation process creates the
required XML beans for the cartridge and packages them into a .zip file.

Note:

An existing CLASSPATH environment variable may interfere with the CLASSPATH
required by the SDK. It is therefore recommended that the CLASSPATH
environment variable be unset in the session where the SDK is being used. For
example:

set CLASSPATH=

Compiling the CiscoBanner Sample Source Files
To compile the ciscoBanner sample service cartridge source files:

1. Set the cartridge version string variable. For example, if the service cartridge version is
1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Enter the following command:

ant package -fSDK_Home\serviceCartridges\ciscoBanner\build.xml

Compiling Your Custom Service Cartridge Source Files
To compile your custom service cartridge source files, once you are done editing them:

1. Set the cartridge version string variable. For example, if the service cartridge version is
1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Enter the following command:

ant package -fSDK_Home\serviceCartridges\sdk_global_cartridgeName\build.xml
This results in the following additions to the service cartridge directory structure:

SDK_home\serviceCartridges\sdk_global_cartridgeName\
build.xml
AuditTrailsReports
beansrc
classes
lib
 sdk_global_cartridgeName.jar
 sdk_global_cartridgeNametests.jar
package
 sdk_global_cartridgeName-serviceCartridge-${env.VERSION_STRING}.zip
 sdk_global_cartridgeName-serviceCartridge-${env.VERSION_STRING}.manifest

Chapter 2
Compiling the Service Cartridge

2-17

Troubleshooting Service Cartridge Compilation
Compilation problems will be caused by schema or XQuery errors. To debug these
problems, load the schema into an XML schema aware editor. This will make it much
easier to find and correct problems in the schema.

Manifest File
When a service cartridge is built, a manifest file is created listing all of the files that are
packaged into the service cartridge zip file. Installation of the service cartridge places
the manifest in the uninstall directory of the IP Service Activator installation.

Implementing pre- and post-checks
Pre- and post-checks provide the ability verify information on a device when the
annotated DM to CLI transform executes, before the general configuration is sent. This
allows you to confirm that pre-requisites to the configuration are met.

After configuration is sent, you have the opportunity to have a post-check invoked to
verify some aspect of the commands that were sent to the device.

For further information on pre- and post-checks, see IP Service Activator SDK
Developer Overview Guide.

Testing in a Standalone Environment
Test scripts are created as part of the cartridge skeleton generation process. (See
"Generating the Cartridge Source Files").

Performing Unit Tests
The unit test is generated with the skeleton service cartridge source files.

To run unit tests:

1. After you have compiled the service cartridge, enter the following command:

ant unittests -
f=SDK_home\serviceCartridges\sdk_global_cartridgeName\build.xml

This runs tests which are intended to prove that the main transform stages of the
cartridge (i.e. service model to device model and annotated device model to CLI) will
generate the output documents correctly.

Deploying Service Cartridges
Service cartridges are deployed as extensions to either base or core cartridges.

Core and base cartridges are deployed as jar files, along with their
MIPSA_registry.xml / Registry.xml files, to the following subdirectory:

Service_Activator_home\lib\java-lib\cartridges\vendor

Service cartridges are placed below this:

Chapter 2
Testing in a Standalone Environment

2-18

Service_Activator_home\lib\java-lib\cartridges\vendor\ServiceCartridges

The following file instructs the Network Processor to either add a specific service cartridge or
not:

Service_Activator_home\Config\networkProcessor\com\metasolv\serviceactivator\netwo
rkprocessor\ServiceCartridges.properties

If the file does not exist, or if the service cartridge entry is not present in the file, the service
cartridge will be added by default.

The Extension.xml file of each service cartridge must be placed at the root level in the
service cartridge .jar file.

When an ant build is successfully completed from the service cartridge skeleton directory a
service cartridge .zip file is produced in the skeleton package directory. The service cartridge
can then be installed into IP Service Activator by unzipping it to the Service_Activator_home
directory. Upon restart of the Network Processor, the service cartridge is loaded. A notification
appears in the IP Service Activator client fault pane to confirm that the service cartridge has
been loaded.

To deploy the service cartridge in an IP Service Activator environment:

1. Unzip the cartridge file sdk_global_cartridgeName-serviceCartridge-$
{env.VERSION_STRING}.zip to the runtime environment of the Network Processor
(NetworkProcessor_home).

2. Restart the Network Processor to load sdk_global_cartridgeName.jar

To observe cartridge loading operation, see the following files:

• Service_Activator_home\logs\networkProcessor.log

• Service_Activator_home\AuditTrails\npsdk_global_cartridgeName.log

Verification of Deployment
Once the Network Processor has started, it will raise information faults in the system
indicating each cartridge registered. The new service cartridge should be indicated. If this
does not happen, check the Network Processor log; it will contain the details on why the
cartridge was not loaded. If the log does not indicate the problem, check that the cartridge
was deployed to the correct location.

Deploying the Sample Service Cartridge
Once you have compiled the ciscoBanner sample service cartridge, it can be deployed along
with the sample configuration policy bannerSample. (See IP Service Activator SDK
Configuration Policy Extension Developer Guide for details on creating the bannerSample
sample configuration policy.)

To deploy the sample service cartridge with the sample configuration policy:

1. Deploy the service cartridge as described in "Deploying Service Cartridges".

2. Create and deploy the bannerSample configuration policy following the procedure in IP
Service Activator SDK Configuration Policy Extension Developer Guide.

Chapter 2
Deploying Service Cartridges

2-19

Audit Trail Logging
Audit trail logging records the commands sent to devices by the base cartridge, and
any service cartridges that extend the services of the base cartridge.

Each Network Processor maintains one current networkprocessor.log file and one
current audit trail log file per base or core cartridge. Audit trail logging for a service
cartridge is written to the audit trail log file for the base or core cartridge that the
service cartridge extends. The network processor logging facilities are based on the
log4j utility.

For more information on network processor logging, see IP Service Activator System
Administrator's Guide.

For details on setting audit trail logging properties, see IP Service Activator SDK Base
Cartridge Developer Guide.

Device Model Upgrades
Once a cartridge is constructed and deployed, it will carry with it a device model
version identifier, such as 1.0. If a subsequent release of the cartridge is constructed
which involves a non-trivial device model change, then the device model version would
be incremented to, for example, 2.0, to distinguish it from the predecessor cartridge.

For further details on device model upgrades, see IP Service Activator SDK Base
Cartridge Developer Guide.

Audit
Audit functionality is controlled by an audit template and an audit query file. The
names of these files are specified in the Extension.xml file.

The audit template file is used by the audit process for devices provisioned using a
command line interface (CLI).

The audit query file is used by the audit process for devices provisioned using an XML
interface. Different audit template and audit query files can be specified for different
device types and OS versions.

For complete details on audit, see IP Service Activator SDK Developer Overview
Guide.

Uninstalling Service Cartridges
Service cartridges are uninstalled using the uninstallCartridge.sh script, which
resides in the bin directory of the IP Service Activator installation. This script takes the
name of the manifest file, which contains a list of all installed service cartridge files, as
a parameter., and uses its contents to uninstall the service cartridge. (See "Manifest
File".)

You can include the base directory or the IP Service Activator installation as a
parameter to the script. If you do not, the script queries the ORCHcore package to
locate the base directory of the IP Service Activator installation.

Chapter 2
Audit Trail Logging

2-20

The uninstallCartridge.sh script sorts the manifest file in reverse order, then deletes files,
and then directories. Only empty directories are removed; this ensures that the script will not
remove directories used by other cartridges.

You can use a relative path to specify the manifest file, but it must be relative to the current
directory (where you are running the uninstall script from). You can also use an absolute path.
To verify that the manifest file is in the directory, use the command "ls<manifest>" using the
same value that is provided to the script.

To uninstall a service cartridge:

1. Enter the following command:

uninstallCartridge <manifest_file> [<ServiceActivatorHome>] [-k | -v]

Use the -k option to leave empty directories. The -v (verbose) option produces extra
output from the script.

2. After the service cartridge is uninstalled, restart the Network Processor.

Note:

Uninstalling a cartridge or configuration policy developed using the SDK does not
remove the Network Processor's device model entries that reference this cartridge
or configuration policy. This information is maintained because it is unknown
whether you are uninstalling the cartridge or configuration policy to remove it or to
upgrade it.

Removing a Generated Service Cartridge from the SDK
To remove a generated service cartridge from the SDK installation:

1. Delete all contents under and including
SDK_home\serviceCartridges\sdk_global_cartridgeName

Uninstalling the SDK
To uninstall the SDK:

1. Delete all contents under SDK_home.

Chapter 2
Uninstalling Service Cartridges

2-21

A
Service Cartridge Generation Properties

This appendix provides details on the parameters you can configure in the
skeleton.properties file used to generate service cartridge source files.

This file contains a number of properties that customize the generated service cartridge
source.

Property names are of the form sdk_context_type and are composed of three parts:

• sdk: indicates an SDK variable

• context: describes of the context in which the variable applies

• type: indicates how the variable is being used, and may imply a restriction on the possible
values:

– If supported appears in the type, a boolean value should be entered.

– If pattern appears in the type, a regular expression (regex) pattern should be
entered.

– If prompt appears in the type, a device response should be entered in the form of a
regex pattern.

– If cmd appears in the type, a device specific command should be entered.

Boolean variables are validated to ensure that the values conform to boolean values (true or
false).

Regex patterns are validated to ensure that they can be compiled.

Note:

For certain regular expressions in the skeleton.properties file, it maybe necessary
to use an escape character to precede certain special characters in order for them
to be translated to the generated source code correctly. This is dependent on
whether you are using XQuery or Java based transforms.

Table A-1 shows the Audit properties.

Table A-1 Audit Properties

Property Description Example

sdk_audit_supported Command sent to the device to determine if device is
supported.

This property is optional.

true

Table A-2 shows the naming and packaging properties.

A-1

Table A-2 Naming and Packaging Properties

Property Description Example

sdk_global_cartridgeName This is the cartridge name. This variable is used
throughout the cartridge code in generating file
names and source code variable names.

This property is mandatory.

ciscoBanner

sdk_global_baseCartridgeName The base or core cartridge that this service
cartridge extends to provide support for a specific
service for a specific vendor.

This property is mandatory.

cisco

sdk_global_cartridgeVersion This is the cartridge version that is being developed.
It is used at run time to verify that a device model is
still valid in the event of an upgrade of the cartridge.

This property is optional.

1.0

sdk_global_package This is the cartridge path in dotted notation used for
packaging. Its value is translated to a directory
structure for source code path generation. The
value is used in build scripts, java source code and
support files.

The generated files are placed under
SDK_home\serviceCartridges\sdk_global_cartridg
eName\src\sdk_global_package

This property is mandatory.

com.metasolv.servic
eactivator.ciscoBan
ner would become
com\metasolv\servic
eactivator\ciscoBan
ner

Table A-3 shows the device type identification properties used in the JUnit test
environment.

Table A-3 Device Type Identification Properties

Property Description Example

sdk_global_deviceName Specify the device name that the base cartridge, that
this service cartridge extends, was constructed for.
This is used in the sample service model used by the
junit tests for this service cartridge.

This property is mandatory.

Cisco

sdk_global_deviceDescription Device description. This is used in the sample
service model used by the junit tests for this service
cartridge.

This property is optional.

Cisco Internetwork
Operating System
Software IOS (tm)
RSP Software (RSP-
PV-M), Version
12.2(8)T, RELEASE
SOFTWARE (fc2) TAC

sdk_global_deviceModel Device model. This is used in the sample service
model used by the junit tests for this service
cartridge.

This property is optional.

2611

sdk_global_deviceVersion Device version. This is used in the sample service
model by the junit tests for this service cartridge.

This property is optional.

12.2(11)T8

Appendix A

A-2

Table A-4 shows the Device Model schema properties.

Table A-4 Device Model Schema Properties

Property Description Example

sdk_deviceModel_namespace Target namespace of the device model schema for
this service cartridge.

This property is mandatory.

--

sdk_deviceModel_namespaceAbbr Abbreviation of the target namespace of the device
model schema for this service cartridge. This is
used as a namespace prefix.

This property is mandatory.

dmbanner

sdk_deviceModel_prefix A complex type with the name
sdk_deviceModel_prefixDevice which extends
BaseDevice will be generated in the deviceModel
schema for this service cartridge

This property is mandatory.

CiscoBanner
becomes
CiscoBannerDevice

Table A-5 shows the subscription properties. Subscription properties manage subscription to
a configuration policy or modeled service definition.

Although a service cartridge can subscribe to more than one modeled service definition type
and/or more than one configuration policy, the skeleton generator allows you to specify only
one subscription. More subscriptions can be added by editing the generated file
Extension.xml after the file generation step.

Note:

Only one of sdk_subscription_configPolicy_supported and
sdk_subscription_serviceDefinition_supported can be set to true.

Table A-5 Subscription Properties

Property Description Example

sdk_subscription_configPolicy_supported Boolean value to indicate whether or not this
service cartridge implements a configuration
policy. When set to true, the value of
sdk_subscription_configPolicyName identifies
the configuration policy.

This property is mandatory.

True

sdk_subscription_configPolicyName Configuration policy subscription.

Specify either a core configuration policy
content type, or, for configuration policies
created using the SDK, specify the
configuration policy name in the GUI when the
new configuration policy type is created. See
the online Help for more detailed information.

This property is optional.

bannerSample

Appendix A

A-3

Table A-5 (Cont.) Subscription Properties

Property Description Example

sdk_subscription_serviceDefinition_supported Boolean value to indicate whether or not this
service cartridge implements a modeled service
definition. When set to true, the value of
sdk_subscription_serviceDefinitionName
identifies the modeled service definition.

This property is mandatory.

false

sdk_subscription_serviceDefinitionName Modeled service definition subscription. Specify
a core definition type from:

• ParameterSetDefinitionType
• MqcDefinitionType
• AccessRuleDefinitionType
• GenericRuleDefinitionType
• ServiceRuleDefinitionType
• PolicingRuleDefinitionType
• PhbGroupType
• IBgpBaseDefinitionType
• IBgpNeighbourDefinitionType
• VrfTableDefinitionType
• MartiniDefinitionType
• CccDefinitionType
• L2InterfaceCreationDefinitionType
• TlsDefinitionType
• SAADefinitionType

ParameterSet
DefinitionTy
pe

Valid core configuration policy content types for the
sdk_subscription_configPolicyName property include the following:

• atmSubInterfaceData

• multicastInterface

• frSubInterfaceData

• multicastVrf

• multicastDevice

• plSerialInterfaceData

• plPosInterfaceData

• multicastBootstrapRouter

• dslInterfaceData

• multicastAutoRp

• loopbackInterfaceData

• vrfRoutePolicy

• ciscoUniversalInterface

• bgpRoutePolicy

• multilinkInterface

Appendix A

A-4

• userData

• pppMultilink

• userAuth

• virtualTemplateInterface

• dialerList

• dialerInterface

• ipsecmodule

• ipPools

• stm1Controller

• prefixListEntries

• t3Controller

• staticRoutes

• e1Controller

• banners

• e3Controller

• collectorParameters

• t1Controller

• staticNats

• stm1ChannelizedSerialInterface

• snmpCommunities

• t3ChannelizedSerialInterface

• snmpHosts

• e1ChannelizedSerialInterface

• saveConfig

• e3ChannelizedSerialInterface

• qosCosAttachment

• t1ChannelizedSerialInterface

• juniperQosCosAttachment

• basicRateInterfaceData

• ciscoQosPfcTxPortQueues

• sgbp

• vlanAccessPort

• schedule

• vlanTrunkPort

• atmPvcVcClass

• vlanDefinitions

• atmVcClass

Appendix A

A-5

• vlanInterface

• bgpCE

• portCharacteristics

• extendedAcl

• publicIPsec

• customerIPsec

• backUpInterfacePolicy

• vrfCustomNaming

• vrfExportRouteFilter

• rate-limit

• dlswDevice

• hsrp

• dlswEthernetInterface

• vlanSubInterfaceData

• dlswTokenRingInterface

• keyChains

Table A-6 shows the options schema properties.

Table A-6 Options Schema Properties

Property Description Example

sdk_options_namespace Target namespace of the options schema for this
service cartridge.

This propert is mandatory.

--

sdk_options_namespaceAbbr Abbreviation of the target namespace of the
options schema for this service cartridge. This is
used as a namespace prefix.

This property is mandatory.

cisopt

Appendix A

A-6

B
Generated Skeleton Service Cartridge Source
Files

This appendix describes generated service cartridge source files.

About the Generated Skeleton Service Cartridge Source Files
The file SDK_home\samples\serviceCartridge\ciscoBanner\skeleton.properties is fully
populated and can be used to construct the skeleton source files for the sample ciscoBanner
service cartridge. You can use these files for reference, or as a starting point for your own
service cartridge. The generated source files do not contain all the necessary modifications to
complete the service. See the provided sample source files for the changes needed.

To generate the ciscoBanner sample service cartridge source files using the data from the
skeleton properties file:

1. In the SDK_home directory, do one of the following:

• Run the cartridge generator script using the included batch file:

gensc samples\serviceCartridge\ciscoBanner\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -
DpropFile=SDK_home\samples\serviceCartridge\ciscoBanner\skeleton.properties

Note:

To use the batch file, you must first add SDK_home\bin to your PATH variable
where SDK_home is the SDK directory.

This results in the following directory structure, which is a skeleton ciscoBanner service
cartridge:

 SDK_home
 logs
 generator.log
 serviceCartridges
 <sdk_global_cartridgeName>
 build.xml
 src
 synonyms.xml
 <sdk_global_package>(com)
 <sdk_global_package>(.metasolv)
 <sdk_global_package>(..serviceactivator)
 <sdk_global_package>(...cartridges)
 <sdk_global_package>(....ciscobanner)

B-1

 audit
 auditTemplate.xml
 capabilities
 empty_caps.xml
 messages
 errorMessages.xml
 successMessages.xml
 warningMessages.xml
 options
 options.xsd
 schema
 devicemodel.xsd
 test
 models
 upgradeFrom
 sampleDeviceModel.xml
 sampleServiceModel.xml
 DmUpgradeTests.java
 TransformUnitTests.java
 transforms
 annotated-dm2cli.xq
 dm2cli-postcheck.xq
 dm2cli-precheck.xq
 dm-validation.xq
 sm2dm.xq
 xquerylib
 dm-migration.xq
 DmUpgrade.xq
 dm-validation.xq
 dm-version.xq
 Customization.xml
 Extension.xml

Table B-1 describes the functionality of the component files of the skeleton service
cartridge.

Table B-1 Generated Skeleton Service Cartridge Source Files Details

Component File Description

synonyms.xml This file can be used to specify audit synonyms for commands delivered by this
service cartridge. Audit synonyms can improve the success rate of a device audit, for
devices that display some commands differently than how Oracle Communications IP
Service Activator sent them.

auditTemplate.xml This file is an audit template. Audit templates define filter patterns to be applied to
commands to identify configuration of interest, to affect their inclusion in the audit
report, and to set attributes on the command results, which, when viewed using a
style sheet will affect how they are displayed to the IP Service Activator user.

Appendix B
About the Generated Skeleton Service Cartridge Source Files

B-2

Table B-1 (Cont.) Generated Skeleton Service Cartridge Source Files Details

Component File Description

Extension.xml This file is the service cartridge registry file. The service cartridge registry is defined
by the schema cartridge.xsd. The service cartridge registry file is the first service
cartridge file read by the Network Processor. It defines all of the important entry
points for the service cartridge.

The parameters controlled by the service cartridge registry are:

• name: defines the name of the service cartridge. This must be unique across all
service cartridges.

• smToDmQuery: defines the service model to device model transform XQuery
• dmValidation: defines the device model validation XQuery
• dmToCliQuery: defines the device model to CLI transform XQuery
• dmMigration: defines the device model migration XQuery. This is used for device

model migration.
• success: defines success messages sent by a device
• warning: defines warning messages sent by a device
• error: defines error messages sent by a device
• auditTemplateFile: used by the audit process for devices provisioned using a

CLI. Different audit template files can be specified for different device types and
OS versions.

• subscriptions: specifies the parts of the service model that the service cartridge
is interested in.

• auditQueryFile: used by the audit process for devices provisioned using an XML
interface. Different audit template files can be specified for different device types
and OS versions.

• optionsEntry: specifies the options file that is passed to both the SM2DM and
DM2CLI XQuery transforms. Different option files can be specified for different
device types and OS versions.

• capsEntry: specifies the capabilities that are supported by the service cartridge.
Different capability files can be specified for different device types and OS
versions.

Customization.xml This file is used to customize the registry file. When packaged in the zip file, it will be
named sdk_global_cartridgeName.xml.

empty_caps.xml This file is a sample capabilities file. Capabilities provide privileges to the device and
its subordinate interfaces to support various policies. The sample, being empty, will
provide no capabilities to the device and it subordinate interfaces. The user needs to
provide capability entries in order to provide privileges to the device during the IP
Service Activator device discovery process.

errorMessages.xml This file contains error patterns for commands generated by the service cartridge. If
the response from the device matches one of the known error patterns, then a fault
(Error) is raised against the device itself, all the concretes affected by that transaction
are rejected and the partially implemented configuration is rolled back.

warningMessages.xml This file contains warning patterns (blocking or non-blocking) for commands
generated by the service cartridge. If the response from the device matches a non-
blocking warning pattern, a fault (Warning) is raised. If the response from the device
matches a blocking warning pattern, a fault is raised, and all concretes affected by
that transaction are rejected and the partially implemented configuration is rolled
back.

successMessages.xml This file contains success patterns for commands generated by the service cartridge.
If the device response (to sending a command) matches a success pattern, or there
is no response at all (only a prompt), then the command is considered successful.

Appendix B
About the Generated Skeleton Service Cartridge Source Files

B-3

Table B-1 (Cont.) Generated Skeleton Service Cartridge Source Files Details

Component File Description

options.xml This file is an XML schema file containing the configuration options that are required
to define the cartridge jar file.

deviceModel.xsd This file is used to validate the device model created during the service model to
device model transformation. The base_devicemodel is owned by the network
processor framework. The deviceModel is owned by the cartridge and can be
extended as needed to support various polices and commands.

sampleDeviceModel.xml This file is a sample device model used by DMUpgradeTests.java.

sampleServiceModel.xml This file is a sample service model used for JUnit testing by
TransformUnitTesting.java.

TransformUnitTests.java • method testBasicServiceModelToDeviceModelTransform: tests the ability to
transform the sampleServiceModel to a proper deviceModel

• method testBasicDeviceModelToCommandDocumentAddTransform: tests
the ability to transform the deviceModel to a proper cliDocument which is adding
cmds to the device

• method testBasicDeviceModelToCommandDocumentDeleteTransform: tests
the ability to transform the deviceModel to a proper cliDocument which is deleting
cmds from the device

DMUpgradeTests.java This file is used for testing cartridge upgrade scenarios.

sm2dm.xq This file contains the XQuery source code that transforms a service model to a device
model.

annotated-dm2cli.xq This file contains the XQuery source code that transforms a device model to a CLI
document.

dm2cli-postcheck.xq This file contains the XQuery source code that performs the post-check functionality
which is used by the annotatedDM2Cli.xq.

dm2cli-precheck.xq This file contains the XQuery source code that performs pre-check functionality, which
is used by the annotatedDM2Cli.xq.

dm-validation.xq This file contains the XQuery source code providing the ability to raise fault to the
system console.

dm-migration.xq This file contains the XQuery source code used to support device model upgrades.

DmUpgrade.xq This file contains the XQuery source code used to support executing a DM upgrade if
cartridge DM has been enhanced.

dm-version.xq This file contains the XQuery source code used to identify which cartridge version is
in use.

dm-validation.xq This file contains the XQuery source code used for additional validation of the device
model.

Appendix B
About the Generated Skeleton Service Cartridge Source Files

B-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	Developing Service Cartridges with the SDK
	Core Cartridges
	Vendor Cartridges

	2 Building Service Cartridges
	Building a Service Cartridge
	About Java-Based Service Cartridges
	Creating a Service Cartridge Source Directory and Skeleton Properties File
	Defining the Service and Customizing the Properties File
	Generating the Cartridge Source Files
	Customizing the Cartridge Source Files
	Compiling and Packaging the Cartridge
	Performing Unit Tests
	Performing End-to-End Tests

	About the Provided Sample Service Cartridge
	Purpose of the Provided Service Cartridge Samples
	Components of the XQuery-Based Sample Service Cartridge
	Sample XQuery-Based Service Cartridges
	Sample ciscoBanner Service Cartridge
	Sample ciscoMartini Service Cartridge
	Sample ciscoStaticRoute Service Cartridge

	Sample Java-Based Service Cartridges
	Sample ciscoBannerJava Service Cartridge

	Creating a Service Cartridge Source Directory and Skeleton Properties File
	Defining the Service and Customizing the Skeleton Properties File
	Generating the Cartridge Source Files
	Generating the Sample ciscoBanner Service Cartridge Source Files
	Result of the Generation Process

	Generating Your Own Service Cartridge Source Files
	Result of the Generation Process

	Troubleshooting the Service Cartridge Generation
	Access to jar Files
	Using an Alternate Directory Structure
	Service Cartridge Generator Message Logging

	Customizing the Service Cartridge Source Files
	Device Model Schema Definitions
	Service Model to Device Model Transform
	Device Model Validation
	Annotated DM to CLI Transform
	Message Pattern Definitions
	Customizing the Service Cartridge Registry
	Completing the Sample Service Cartridge Source Files
	Using Options in the CiscoStaticRoute Sample

	Compiling the Service Cartridge
	Compiling the CiscoBanner Sample Source Files
	Compiling Your Custom Service Cartridge Source Files
	Troubleshooting Service Cartridge Compilation
	Manifest File
	Implementing pre- and post-checks

	Testing in a Standalone Environment
	Performing Unit Tests

	Deploying Service Cartridges
	Verification of Deployment
	Deploying the Sample Service Cartridge

	Audit Trail Logging
	Device Model Upgrades
	Audit
	Uninstalling Service Cartridges
	Removing a Generated Service Cartridge from the SDK
	Uninstalling the SDK

	A Service Cartridge Generation Properties
	B Generated Skeleton Service Cartridge Source Files
	About the Generated Skeleton Service Cartridge Source Files

