
Oracle® Communications IP Service
Activator
SDK Developer Overview Guide

Release 7.5
F59548-01
September 2022

Oracle Communications IP Service Activator SDK Developer Overview Guide, Release 7.5

F59548-01

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 Overview of the Software Development Kit

About the SDK 1-1

What You Can Produce Using the SDK 1-1

Additional SDK Terms 1-1

SDK Structured Development Process 1-2

SDK Samples 1-2

Cartridges in Use 1-2

Next Steps in Learning About the SDK 1-3

SDK Developer Guides 1-3

Other Documentation Sources 1-4

2 Overview of the Network Processor

Introduction 2-1

Network Processor Concepts 2-1

Network Processor and Cartridge Components 2-2

Process 2-3

Registering Cartridges with the Network Processor 2-4

Data Flow from a Configuration Policy through the Network Processor and Cartridge 2-4

Service Model 2-4

Sample Service Model 2-5

Definitions and Associations 2-11

Sample Service Model Associations 2-11

Device Model 2-13

Sample Device Model 2-13

Device Model and the Service Model to Device Model Transform 2-14

Sample Relating the Service Model to the Device Model 2-15

iii

netFlow 2-15

staticRoute 2-15

Device Model Validation 2-16

Sample Annotated Device Model 2-16

Sample Relating the Device Model to the Annotated Device Model 2-17

Sample CLI Commands and the Device Model to CLI Transform 2-18

Sample CLI Document 2-18

CLI Elements 2-22

Sample Relating the Annotated Device Model to the CLI Document 2-22

CLI Merging 2-22

Merge Section Descriptions 2-22

Sample Relating the CLI Document to Configuration Commands 2-23

Command Executor 2-23

Network Processor End to End Flow-Through Illustration 2-24

Device Model Extension 2-24

Changeables and Identifiables 2-24

3 Cartridge Overview

Introduction to Cartridges 3-1

Base Cartridges 3-2

Service Cartridges 3-2

Configuration Policies 3-2

Cartridge Registration 3-2

Base Cartridge Registry.xml 3-3

Service Cartridge Extension.xml 3-5

About Subscriptions 3-6

Definition Type 3-6

Configuration Policy Identification 3-7

Configuration Policy ConfigPolicyRegistry.xml 3-7

4 Cartridge Operations

Audits 4-1

Audit Template 4-1

Audit Template Command Attributes 4-6

Audit Synonyms 4-10

Options 4-10

Capabilities 4-11

Message Definition 4-14

Overriding Message Definitions 4-15

iv

Pre- and Post-Checks 4-16

Types of Pre- and Post-Checks 4-16

Type I Checks 4-16

Type II Checks 4-16

Cartridge Version 4-17

Device Model Upgrades 4-17

Network Processor NpUpgrade 4-18

Configuration Version 4-18

Configuration Management Support 4-18

For More Information on Cartridge Operations 4-18

5 Testing, Monitoring, and Error Handling

Test Environments 5-1

Unit Test 5-1

DM Validation 5-1

Logging 5-1

Audit Trail Logging 5-1

Handling Faults and Errors 5-2

Rollback 5-2

Device Model IDs 5-2

Rollback Failures 5-2

Quarantine 5-3

6 Best Practices

Choosing Whether to Extend a Cartridge or to Plan a New Cartridge 6-1

Choosing the Cartridge Implementation 6-1

Developer Knowledge 6-1

Transformation Complexity 6-1

Model Size 6-2

Time to Complete 6-2

XQuery Advantages and Disadvantages 6-2

Java Advantages and Disadvantages 6-2

XQuery Transform Best Practices 6-3

XQuery Performance Optimization 6-3

XQuery Searches 6-3

Best Practices for Coding XQuery 6-4

Syntax For Entering Control Characters in XQuery 6-4

Java Transform Best Practices 6-4

Java Searches 6-5

v

Service Model to Device Model Java Transform 6-5

Annotated Device Model to CLI Document Java Transform 6-6

Best Practices for Extending the Device Model 6-6

vi

Preface

This guide gives an overview of the tools provided by the Oracle Communications IP Service
Activator Software Development Kit (SDK), and the underlying SDK, Network Processor,
cartridge, and configuration policy concepts.

Audience
This guide is intended for system developers using the SDK toolset to develop service
cartridges, base cartridges, and configuration policies.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the Software Development Kit

This chapter provides an overview of the Oracle Communications IP Service Activator
Software Development Kit (SDK) and an introduction to its tools and techniques.

About the SDK
The SDK is a toolset for creating cartridges and configuration policies to be used by the
Network Processor within a IP Service Activator installation to provide a flexible and scalable
device driver solution.

The structured development process inherent to the SDK combined with its robust suite of
tools will enable you to achieve accurate and consistent results.

What You Can Produce Using the SDK
The SDK is used to create base cartridges, service cartridges, and configuration policies for
deployment into an IP Service Activator installation.

• Base cartridges: provide basic communications between IP Service Activator's Network
Processor and its devices. A base cartridge provides the platform upon which to build
service cartridges for a family of devices.

• Service cartridges: administer specific services on a specific family of devices, the basic
functionality of which is provided by a base or core cartridge. A service cartridge must be
deployed as an extension to a base cartridge or a core cartridge in an IP Service
Activator Network Processor installation.

• Configuration policies: provide a GUI form and schema to collect data for services from
IP Service Activator client users. In an IP Service Activator installation, configuration
policies are implemented through service cartridges.

• Configuration Management support: using the SDK, you can create and configure
cartridges that support the use of services from the Configuration Management product.
For details on the Configuration Management product, refer to Configuration
Management Planning Guide.

Additional SDK Terms
Core cartridges are existing IP Service Activator cartridges integrated within IP Service
Activator. A core cartridge combines the basic communication functionality of a base
cartridge with service administration all within one package.

Vendor cartridge is a conceptual term. A vendor cartridge consists of the union of a base or
core cartridge with a number of service cartridges. Thus, a vendor cartridge has the
functionality to connect to a specific device type, and administer the services handled by its
service cartridges.

1-1

SDK Structured Development Process
The basic process for developing cartridges and configuration policies with the SDK is
as follows:

1. Create and edit a properties file.

2. Generate the cartridge source files using the provided generator tool. This
generator tool is an Ant script that uses the properties in the properties file to
configure a set of skeleton source files for the cartridge. This script and others are
run using a command line interface.

3. Edit the generated source files to add the specific functionality for your cartridge.
This is where most of your developments efforts will be spent.

4. Compile and package the cartridge using the provided Ant script.

5. Perform standalone testing using the provided scripts.

6. Deploy the cartridge into a test IP Service Activator installation and perform end-
to-end testing.

Specific details to perform these steps are described in the SDK developer guides.

SDK Samples
With the SDK, you receive a number of simple, working samples. The samples are
valuable to serve as examples to learn from, and to use as starting points to develop
your own cartridges and configuration policies.

SDK samples include:

• Base cartridge:

– cisco: simple working base cartridge for Cisco IOS devices

• Service cartridges:

– ciscoBanner: implements a banner on Cisco IOS devices using XQuery
transforms

– ciscoBannerJava: implements a banner on Cisco IOS devices using Java
transforms

– ciscoStaticRoute: implements a static route on Cisco IOS devices

– ciscoMartini: implements a Martini Layer 2 VPN site on Cisco IOS devices

• Configuration policies:

– bannerSample: implements a banner on Cisco IOS devices

– staticrouteSample: implements a static route on Cisco IOS devices

Creating, deploying and testing the samples are described in the SDK developer
guides.

Cartridges in Use
Figure 1-1 shows cartridges and configuration policies developed using the SDK
deployed in an IP Service Activator installation. The policy server (at the top center of
the diagram) is the central component of IP Service Activator. It manages the flow of

Chapter 1
What You Can Produce Using the SDK

1-2

data to and from its database (top left), provides GUIs for users to monitor and administer the
network (top right) and through its Network Processors (lower center), it performs device
discovery, runs audits, and sends configuration to devices.

As you can see, configuration policies (which provide a GUI form and schema to GUI users to
collect and validate XML data for services) are implemented through service cartridges. A
service cartridge is deployed as an extension to a base or core cartridge.

Figure 1-1 SDK Cartridges Deployed in an IP Service Activator Installation

Next Steps in Learning About the SDK
Continue reading this guide. It gives an effective description of the Network Processor,
cartridges, and cartridge operation support components.

SDK Developer Guides
The developer guides in the IP Service Activator SDK documentation suite provide detailed
technical explanations of how to create and configure cartridges and configuration policies.
Procedures to build, package and test them are also included. Each developer guide contains
detailed reference material explaining parameters, options, and the function of the various
source files. Reading the following guides is recommended:

• IP Service Activator SDK Base Cartridge Developer Guide: learn how to create base
cartridges with the SDK.

• IP Service Activator SDK Service Cartridge Developer Guide: many of the concepts
learned in creating base cartridges are applicable to creating service cartridges. It is
recommended you read IP Service Activator Base Cartridge Developer Guide first.

• IP Service Activator SDK Configuration Policy Extension Developer Guide: continues to
build your knowledge about the SDK by detailing how to create configuration policies,
which work in conjunction with service cartridges.

Chapter 1
What You Can Produce Using the SDK

1-3

• IP Service Activator SDK Configuration Management Developer Guide: learn how
to use cartridges to administer Configuration Management module services.

Other Documentation Sources
For a more technical understanding of the Network Processor, and how to configure it,
refer to the discussion of Network Processor administration and maintenance in IP
Service Activator System Administrator's Guide.

Chapter 1
What You Can Produce Using the SDK

1-4

2
Overview of the Network Processor

This chapter provides an overview of the Oracle Communications IP Service Activator
Network Processor, and follows a detailed configuration scenario from start to finish using
sample service and device models, command-line interface (CLI) document, and final
configuration commands.

In order to understand how to use the SDK to support new devices and services in IP Service
Activator, you will need an understanding of the Network Processor framework which
provides the link between the cartridges and configuration policies, IP Service Activator, and
the devices themselves.

Detailed information on configuring and administering the operation of the Network Processor
is given in IP Service Activator System Administrator's Guide. Additional information on
related topics can be found in the IP Service Activator product documentation or online help.

Introduction
The Network Processor manages communication to and from devices through cartridges.
Within the context of IP Service Activator, it performs the conversion of user changes to the
configuration of IP Service Activator objects into a set of CLI commands for delivery to
devices.

The Network Processor/cartridge architecture is extensible and scalable. Support for new
services and devices can be added by creating and deploying new cartridges and cartridge
components.

Within the context of Configuration Management, the Network Processor manages the flow of
information from a configuration policy (or configlet) to a device, again by performing the
conversion of configuration commands into a set of CLI commands for delivery to the device.

Network Processor Concepts
As mentioned above, the Network Processor converts IP Service Activator user changes into
CLI commands that can be pushed to the devices. This task is accomplished in a series of
steps that make use of key internal structures. These structures include:

• Service model: an XML document containing a representation of a device's topology
and its service objects and their relationships. Even though there is one Service Model
for each device in an IP Service Activator installation which is managed by a Network
Processor, the representation of the service objects is device agnostic. The service
model is device independent in the sense that the XML schema allows for the description
of services in a device-agnostic manner.

• Device model: device-specific cartridge XML document derived from the service model.
It contains a set of data elements that defines the complete device state. It extends the
Network Processor's device model by adding validation rules so that the new service(s)
which the cartridge enables can be fully described.

• Annotated device model: an XML document that contains the device model, with
annotations to indicate the changes in device configuration between the device's state at

2-1

the last successful configuration push (as persisted in the database), and its
expected state (target) after the current configuration is pushed.

Note:

At the time the Network Processor merges the base command document
with the service cartridge command documents, the assocIdArray of each
command and each nested command in the following sections of the
resulting document will be populated with all non-zero assocIds (collected
from all the documents to be merged): initialization, preconfig, postconfig,
and finalize.

The task of converting user changes to the IP Service Activator object model into CLI
commands uses key resources in the Network Processor framework and in the
cartridge. These include:

• Service model to device model transform: this Java or XQuery transform takes
a device-independent XML based service model and from it creates a device-
specific XML based device model.

• Annotated device model to CLI transform: this Java or XQuery transform takes
a device-specific XML based annotated device model and converts it to a CLI
document.

• DM validation: this script is optional. If present in the cartridge, it is used by the
Network Processor to validate the data in the generated device model.

Network Processor and Cartridge Components
Figure 2-1 shows an overview of the Network Processor tasks.

Chapter 2
Network Processor and Cartridge Components

2-2

Figure 2-1 Network Processor Task Overview

Process
When a user makes changes to logical policies:

1. The policy server forwards these changes to the Network Processor that manages the
affected device(s).

2. The Network Processor creates a target service model for each affected device.

3. The Network Processor determines which vendor cartridge to use for each affected
device. It applies the service model to device model transform using the vendor cartridge
to create a device model for each affected device.

4. The Network Processor compares the newly created target device model to the device
model that was persisted to its database after the last successful push to that device. An

Chapter 2
Network Processor and Cartridge Components

2-3

annotated device model contains annotations that indicate whether configuration is
being added, deleted, or modified.

5. The Network Processor runs the annotated device model to CLI transform in the
cartridge to create a CLI document. This CLI document contains data elements
that represent the commands needed to change the device configuration from its
present state to the desired state. That is, the document reflects the delta between
the current and desired state.

6. The Network Processor executes the CLI document and sends the commands to
the device via telnet or SSH.

7. Device responses are interpreted, and feedback is provided on the success or
failure of changing the configuration to the desired state.

Once the commands have been successfully sent to the device, the service model and
device model are persisted to the database so they can be referred to as the last
service and device model in the next transaction committed on the device.

In a scenario in which multiple independent logical policy changes are made affecting
the same device, it is possible for some to succeed and others to fail. In such a
scenario, the persisted service model and device model will represent the successfully
applied configuration changes.

Registering Cartridges with the Network Processor
When a cartridge is installed into a IP Service Activator system, the Network
Processor creates a mapping from the information in the XML registry file supplied
with the cartridge. When a service is applied to a device, the Network Processor can
then determine which cartridge contains the necessary additional components which
configure that service. Cartridge registration will be described in detail later on.

Data Flow from a Configuration Policy through the Network
Processor and Cartridge

As shown in Figure 1-1, a configuration policy includes two key components:

• HTML GUI screen: this is an HTML document defining a data input form for the
configuration policy

• Schema: this schema defines the data for the particular service that the
configuration policy is used to create

When a configuration policy is applied to a device, the IP Service Activator user enters
appropriate data for the service into the GUI through the HTML GUI form.

This data is stored in an XML file and is validated by the configuration policy's schema.
A valid XML data file is then passed to the policy server which determines which
Network Processor manages the targeted device.

The XML data is then managed by the Network Processor in the same manner as
described above.

Service Model
This section discusses the details of a service model.

Chapter 2
Data Flow from a Configuration Policy through the Network Processor and Cartridge

2-4

When the Network Processor receives a transaction commit for a device from the IP Service
Activator policy server, it constructs a service model. A service model is a normalized
representation of the device topology and the logical policies that are applied to it. The
service model document contains two major sections: topology information, and definitions of
logical policies that are applied to the device.

The sample service model has bold sections. These sections contain the data for the sample
configuration that is being pushed. Other bold sections help visually define the structure of
the document and emphasize certain data.

Sample Service Model
<ser:device xmlns:ser="http://www.metasolv.com/serviceactivator/servicemodel"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ser:component_id>7020</ser:component_id>
 <ser:component_name>rotgsr-1.kanata.ca.oracle.com</ser:component_name>
 <ser:driver_type>cisco</ser:driver_type>
 <ser:ip_address>178013278</ser:ip_address>
 <ser:authentication_information>

 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.AUTHENTICATION.SNMP_READ_COMMUNITY</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">U2w6VwySz9Q=</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.CISCO.AUTHENTICATION.TACACS</ser:name>
 <ser:value xsi:type="xs:boolean" xmlns:xs="http://www.w3.org/2001/
XMLSchema">true</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.CISCO.AUTHENTICATION.TACACS.USER_NAME</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.CISCO.AUTHENTICATION.TACACS.USER_RESPONSES</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.CISCO.AUTHENTICATION.ALL.ENABLE_PASSWORD</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </ser:item>
 </
 <ser:configuration_information>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.SNMP.RETRIES</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/XMLSchema">2</
ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.SNMP.TIMEOUT</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/XMLSchema">3</
ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.BGPLOCALAS</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/XMLSchema">1</
ser:value>
 </ser:item>
 <ser:item>

Chapter 2
Service Model

2-5

 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.MANUAL_CONFIG_MODE</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">0</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.MAX_TRANSACTION_SIZE</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">-1</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.PATTERN_TRANSACTION_SIZE</
ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">^no\s(?!alias)</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.DEVICE_TYPE</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">Cisco 12008</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.DEVICE_DESCRIPTION</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">Cisco Internetwork Operating System Software
IOS (tm) GS Software (GSR-P-M), Version 12.0(32)S5, RELEASE SOFTWARE (fc2)
Tech</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.COMMAND_DELIVERY_MODE</
ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">1</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>ORCHESTREAM.GENERIC.CONFIGURATION.DEVICE_STATE</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">5</ser:value>
 </ser:item>
 </ser:configuration_information>
 <ser:interface>
 <ser:component_id>7252</ser:component_id>
 <ser:component_name/>
 <ser:interface_definition>
 <ser:discriminator
xsi:type="ser:DeviceDriver.InterfaceQuery.InterfaceType">Type_INTERFACE</
ser:discriminator>
 <ser:interfaceParameters>
 <ser:interfaceID>7252</ser:interfaceID>
 <ser:if_direction>Dir_OUT</ser:if_direction>
 <ser:if_bandwidth>44210</ser:if_bandwidth>
 <ser:ip_address>0</ser:ip_address>
 <ser:snmp_if_index>3626</ser:snmp_if_index>
 <ser:name>Serial3/0</ser:name>
 <ser:internal_name/>
 <ser:valid_fields>6</ser:valid_fields>
 <ser:snmp_if_type>22</ser:snmp_if_type>
 <ser:if_level>0</ser:if_level>
 <ser:parent_component_id>0</ser:parent_component_id>
 <ser:parent_name/>
 <ser:owned>false</ser:owned>
 </ser:interfaceParameters>

Chapter 2
Service Model

2-6

 </ser:interface_definition>
 <ser:interface>
 <ser:component_id>7252</ser:component_id>
 <ser:component_name/>
 <ser:interface_definition>
 <ser:discriminator
xsi:type="ser:DeviceDriver.InterfaceQuery.InterfaceType">Type_INTERFACE</
ser:discriminator>
 <ser:interfaceParameters>
 <ser:interfaceID>7252</ser:interfaceID>
 <ser:if_direction>Dir_OUT</ser:if_direction>
 <ser:if_bandwidth>44210</ser:if_bandwidth>
 <ser:ip_address>0</ser:ip_address>
 <ser:snmp_if_index>3626</ser:snmp_if_index>
 <ser:name>Serial3/0</ser:name>
 <ser:internal_name/>
 <ser:valid_fields>6</ser:valid_fields>
 <ser:snmp_if_type>22</ser:snmp_if_type>
 <ser:if_level>0</ser:if_level>
 <ser:parent_component_id>0</ser:parent_component_id>
 <ser:parent_name/>
 <ser:owned>false</ser:owned>
 </ser:interfaceParameters>
 </ser:interface_definition>
 <ser:associations>
 <ser:item xsi:type="ser:NetworkProcessor.Association">
 <ser:id>
 <ser:id>1578</ser:id>
 <ser:ver>0</ser:ver>
 </ser:id>
 <ser:assoc_id>7432</ser:assoc_id>
 <ser:outbound>true</ser:outbound>
 </ser:item>
 <ser:item xsi:type="ser:NetworkProcessor.Association">
 <ser:id>
 <ser:id>7460</ser:id>
 <ser:ver>0</ser:ver>
 </ser:id>
 <ser:assoc_id>7462</ser:assoc_id>
 <ser:outbound>true</ser:outbound>
 </ser:item>
 </ser:associations>
 </ser:interface>
<ser:associations>
 <ser:item>
 <ser:id>
 <ser:id>7020</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:assoc_id>0</ser:assoc_id>
 </ser:item>
 <ser:item>
 <ser:id>
 <ser:id>1082</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:assoc_id>0</ser:assoc_id>
 </ser:item>
 </ser:associations>
<ser:definitions>
 <ser:item>

Chapter 2
Service Model

2-7

 <ser:id>
 <ser:id>7020</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>OCH_DeviceParameters</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">ParameterSetDefinitionType</
ser:discriminator>
 <ser:parameter_set>
 <ser:item>
 <ser:name>OCH_AuthSnmpReadComm</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">U2w6VwySz9Q=</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_AuthTacacsEnabled</ser:name>
 <ser:value xsi:type="xs:boolean" xmlns:xs="http://www.w3.org/2001/
XMLSchema">true</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_AuthTacacsUsername</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema"/>
 </ser:item>
 <ser:item>
 <ser:name>OCH_AuthTacacsResponses</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema"/>
 </ser:item>
 <ser:item>
 <ser:name>OCH_AuthEnablePw</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema"/>
 </ser:item>
 <ser:item>
 <ser:name>OCH_BgpLocalAs</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">1</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_ManualConfigMode</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">0</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_MaxTransactionSize</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">-1</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_PatternTransactionSize</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">^no\s(?!alias)</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_CommandDeliveryMode</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">1</ser:value>
 </ser:item>
 <ser:item>

Chapter 2
Service Model

2-8

 <ser:name>OCH_DeviceState</ser:name>
 <ser:value xsi:type="xs:long" xmlns:xs="http://www.w3.org/2001/
XMLSchema">5</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_NetflowSourceInterface</ser:name>
 <ser:value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
XMLSchema">loopback0</ser:value>
 </ser:item>
 <ser:item>
 <ser:name>OCH_SAARtrResponder</ser:name>
 <ser:value xsi:type="xs:boolean" xmlns:xs="http://www.w3.org/2001/
XMLSchema">false</ser:value>
 </ser:item>
 </ser:parameter_set>
 </ser:value>
 <ser:options/>
 </ser:item>
 <ser:item>
 <ser:id>
 <ser:id>1578</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>netflowCollector</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">GenericRuleDefinitionType</
ser:discriminator>
 <ser:generic_rule_def>
 <ser:contentType>collectorParameters</ser:contentType>
 <ser:contentValue>
 <collectorParameters xmlns="http://www.metasolv.com/serviceactivator/
collectorParameters">
 <type>Cisco Netflow FlowCollector</type>
 <externalSystem>
 <primaryIP>
 <ipAddress>3.3.3.3</ipAddress>
 <port>32</port>
 </primaryIP>
 </externalSystem>
 </collectorParameters>
 </ser:contentValue>
 <ser:rule_directives/>
 <ser:order>4026531840</ser:order>
 </ser:generic_rule_def>
 </ser:value>
 <ser:options/>
 </ser:item>

 <ser:item>
 <ser:id>
 <ser:id>1082</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>myDomain</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">IBgpBaseDefinitionType</ser:discriminator>
 <ser:ibgp_base_definition>
 <ser:configure>false</ser:configure>
 <ser:internal_asn>1</ser:internal_asn>

Chapter 2
Service Model

2-9

 <ser:max_paths>1</ser:max_paths>
 <ser:update_source>0</ser:update_source>
 <ser:std_communities>true</ser:std_communities>
 <ser:md5_authentication/>
 </ser:ibgp_base_definition>
 </ser:value>
 <ser:options/>
 </ser:item>
 <ser:item>
 <ser:id>
 <ser:id>7460</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>static route</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">GenericRuleDefinitionType</
ser:discriminator>
 <ser:generic_rule_def>
 <ser:contentType>staticRoutes</ser:contentType>
 <ser:contentValue>
 <staticRoutes xmlns="http://www.metasolv.com/serviceactivator/
staticroute">
 <staticRoute>
 <ip>20.20.20.20</ip>
 <mask>32</mask>
 <next_hop_ip>21.21.21.21</next_hop_ip>
 <distance_metric>3</distance_metric>
 </staticRoute>
 </staticRoutes>
 </ser:contentValue>
 <ser:rule_directives/>
 <ser:order>805306368</ser:order>
 </ser:generic_rule_def>
 </ser:value>
 <ser:options/>
 </ser:item>
 </ser:definitions>
</ser:device>

Key sections in the sample service model are:

• component_id: unique ID of the device

• component_name: name of device

• driver_type: family of devices that this device belongs to.

Note:

In order for the Network Processor to determine which cartridge instance
to invoke to process the service model, it compares the driver type
against the registry of cartridges, searching for a cartridge instance that
administers this driver type. When found it will invoke the entries
indicated by the cartridge instance.

• ip_address: IP address of the device

• authentication_information: information about login credentials of the device

Chapter 2
Service Model

2-10

• configuration_information: information on network processor behavior to implement for
this device

• device topology: this is the target of a definition

– device (implied): physical hardware representation of the device

– device associations: links to the logical policies that are applied to this device. The
link is made using the logical policy's definition ID.

• interface topology: physical hardware or software representation of an interface

– interface associations: links to logical policies that are applied to this interface. The
link is made using the logical policy's definition ID.

• definitions: listing of logical policies that are applied to the device and/or interfaces

– id: value which uniquely identifies the logical policy in the service model.

– name: name of logical policy

– value: details of the logical policy

Definitions and Associations
As mentioned above, the service model contains topology information and definitions of
logical policies that are applied to the device. It also contains information which describes the
relationships between the logical policies and the objects to which they apply.

A definition, in the context of a service model, defines a logical policy.

A definition ID is a value which uniquely identifies a particular logical policy in the service
model.

An association in the service model links a logical policy definition with an object (e.g. device
or interface).

An association ID is a value which uniquely identifies the association. The association ID is
also used in the Network Processor to link the object with the concrete representing the
logical policy in the IP Service Activator core.

Note:

Both the service model to device model and annotated device model to CLI
transforms must correctly carry association IDs from the source to the target
models. If this is not done correctly, quarantine, failure notifications, and faults will
not operate correctly. These will be described in more detail later in this document.

Sample Service Model Associations
This section illustrates how logical policies are associated with objects in the service model
using associations.

The following service model snippet from the service model example contains the definition of
a logical policy called netflowCollector.

 <ser:item>
 <ser:id>

Chapter 2
Service Model

2-11

 <ser:id>1578</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>netflowCollector</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">GenericRuleDefinitionType</
ser:discriminator>
 <ser:generic_rule_def>
 <ser:contentType>collectorParameters</ser:contentType>
 <ser:contentValue>
 <collectorParameters xmlns="http://www.metasolv.com/serviceactivator/
collectorParameters">
 <type>Cisco Netflow FlowCollector</type>
 <externalSystem>
 <primaryIP>
 <ipAddress>3.3.3.3</ipAddress>
 <port>32</port>
 </primaryIP>
 </externalSystem>
 </collectorParameters>
 </ser:contentValue>
 <ser:rule_directives/>
 <ser:order>4026531840</ser:order>
 </ser:generic_rule_def>
 </ser:value>
 <ser:options/>
 </ser:item>

Note that the id section of this logical policy contains the definition ID of 1578. As
well, the name is specified just below as netflowCollector.

This snippet from the same service model shows a static route logical policy definition.

 <ser:item>
 <ser:id>
 <ser:id>7460</ser:id>
 <ser:ver>1</ser:ver>
 </ser:id>
 <ser:name>static route</ser:name>
 <ser:value>
 <ser:discriminator
xsi:type="ser:DefinitionSite.DefinitionType">GenericRuleDefinitionType</
ser:discriminator>
 <ser:generic_rule_def>
 <ser:contentType>staticRoutes</ser:contentType>
 <ser:contentValue>
 <staticRoutes xmlns="http://www.metasolv.com/serviceactivator/
staticroute">
 <staticRoute>
 <ip>20.20.20.20</ip>
 <mask>32</mask>
 <next_hop_ip>21.21.21.21</next_hop_ip>
 <distance_metric>3</distance_metric>
 </staticRoute>
 </staticRoutes>
 </ser:contentValue>
 <ser:rule_directives/>
 <ser:order>805306368</ser:order>
 </ser:generic_rule_def>
 </ser:value>

Chapter 2
Service Model

2-12

 <ser:options/>
 </ser:item>

Note that the id section of this logical policy contains the definition ID of 7460. As well, the
name is specified just below as static route.

The snippet of the example service model below contains the associations of these logical
policies with an interface.

 <ser:interface>
. . .
 <ser:associations>
 <ser:item xsi:type="ser:NetworkProcessor.Association">
 <ser:id>
 <ser:id>1578</ser:id>
 <ser:ver>0</ser:ver>
 </ser:id>
 <ser:assoc_id>7432</ser:assoc_id>
 <ser:outbound>true</ser:outbound>
 </ser:item>
 <ser:item xsi:type="ser:NetworkProcessor.Association">
 <ser:id>
 <ser:id>7460</ser:id>
 <ser:ver>0</ser:ver>
 </ser:id>
 <ser:assoc_id>7462</ser:assoc_id>
 <ser:outbound>true</ser:outbound>
 </ser:item>
 </ser:associations>
 </ser:interface>

For this interface, two associations are present. The first association has the association ID
of 7432. This association has the definition id value of 1578. This means that the logical
policy with the definition ID of 1578 is applied to this interface. Looking at the definition
snippet above, we can confirm that 1578 identifies the netflow collector policy.

Similarly, the second association has the association ID of 7462. This association has the
definition id value of 7460. This means that the logical policy with the definition ID of 7460
is applied to this interface. Again, looking at the second definition snippet above, we can
confirm that 7460 identifies the static route policy.

Device Model
This section discusses the makeup of a device model.

A device model is a device-specific XML document derived from the service model. It
contains a set of data elements that defines the complete device state.

A device model is an extension of the base device model provided by the Network Processor.
This extension to the base device model schema is contained in the cartridge and is typically
called deviceModel.xsd. A device model instance is validated using the deviceModel.xsd
and base_devicemodel.xsd at run time.

The sample device model has highlighted sections similar to the sample service model.

Sample Device Model
<lib:device xsi:type="dm:CiscoDevice" xmlns:lib="http://www.metasolv.com/
serviceactivator/devicemodel" xmlns:dm="http://www.metasolv.com/serviceactivator/

Chapter 2
Device Model

2-13

cisco" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <lib:appInfo>
 <lib:version>2.3.0</lib:version>
 </lib:appInfo>
 <lib:componentId>7020</lib:componentId>
 <lib:componentName>rotgsr-1.kanata.ca.oracle.com</lib:componentName>
 <lib:driverType>cisco</lib:driverType>
 <lib:configurationInfo>
 <lib:deviceType>Cisco 12008</lib:deviceType>
 <lib:deviceDescription>Cisco Internetwork Operating System Software
IOS (tm) GS Software (GSR-P-M), Version 12.0(32)S5, RELEASE SOFTWARE (fc2)
Tech</lib:deviceDescription>
 <lib:cartridgeObjid>49</lib:cartridgeObjid>
 </lib:configurationInfo>
 <lib:ipAddress>10.156.68.94</lib:ipAddress>
 <lib:generationId>5</lib:generationId>
 <lib:configlets/>
 <lib:interfaces>
 <lib:interface xsi:type="dm:CiscoInterface">
 <lib:id>7252</lib:id>
 <lib:name>Serial3/0</lib:name>
 <dm:bandwidth>44210</dm:bandwidth>
 </lib:interface>
 </lib:interfaces>
 <lib:configVersion>
 <lib:assoc_id>0</lib:assoc_id>
 <lib:timestamp>2007-11-07T15:15:23.177Z</lib:timestamp>
 </lib:configVersion>
 <lib:schedules/>
 <dm:prefixLists/>
 <dm:staticRoutes>
 <dm:staticRoute smId="7460">
 <lib:assoc_id>7462</lib:assoc_id>
 <dm:networkAddress>20.20.20.20</dm:networkAddress>
 <dm:networkMask>32</dm:networkMask>
 <dm:nextHopIp>21.21.21.21</dm:nextHopIp>
 <dm:distanceMetric>3</dm:distanceMetric>
 </dm:staticRoute>
 </dm:staticRoutes>
 <dm:rtrs/>
<dm:netFlow>
 <dm:export-destinations>
 <dm:export-destination smId="1578">
 <lib:assoc_id>7432</lib:assoc_id>
 <dm:ipAddress>3.3.3.3</dm:ipAddress>
 <dm:port>32</dm:port>
 </dm:export-destination>
 </dm:export-destinations>
 </dm:netFlow>
 <dm:fwModuleGroups/> <dm:aceModuleGroups/>
</lib:device>

Device Model and the Service Model to Device Model Transform
The first transform step is for the service model to be transformed to the device model.
To do this, the Network Processor invokes the <smToDm> entry that is pointed to in
the cartridge instance.

Chapter 2
Device Model

2-14

Using the cartridge-supplied transform, the network processor transforms the service model
to a device, which is a device/vendor-specific model derived from the service model.

The sm2Dm is an Java or XQuery file that navigates the service model and reorganizes the
information into the device model document. In addition to the basic conversion to device
model, additional processing such as logic to invoke options, may be included at the
developers discretion. If the transform is a java transform, then use <smToDm
transformType="java"> as the entry.

Sample Relating the Service Model to the Device Model
This section shows how key portions of the service model in "Sample Service Model" are
transformed to the device model in "Sample Device Model". Logical policies and the objects
they are applied to are shown as discrete configuration sections.

netFlow
In this example, you can see the netflow element that combines the netflow logical policy with
the configuration details. For the sample services (netflow and static route) although the
service is applied conceptually at the interface level, the configuration command is given at
the device level.

The example contains references to the unique service model association id (7432) and the
logical policy definition smId (1578) which together generated the following configuration. It
also contains relevant configuration data for IP address and port from the logical policy.

 <dm:netFlow>
 <dm:export-destinations>
 <dm:export-destination smId="1578">
 <lib:assoc_id>7432</lib:assoc_id>
 <dm:ipAddress>3.3.3.3</dm:ipAddress>
 <dm:port>32</dm:port>
 </dm:export-destination>
 </dm:export-destinations>
 </dm:netFlow>

staticRoute
In this example, you can see the static route element that combines the static route logical
policy with the details for the particular interface to which it applies. It contains references to
the unique service model association id (7462) and the logical policy definition smId (7460)
which together generated the following configuration. It also contains relevant configuration
data for network address, network mask, nextHopIp, and distanceMetric from the logical
policy.

 <dm:staticRoutes>
 <dm:staticRoute smId="7460">
 <lib:assoc_id>7462</lib:assoc_id>
 <dm:networkAddress>20.20.20.20</dm:networkAddress>
 <dm:networkMask>32</dm:networkMask>
 <dm:nextHopIp>21.21.21.21</dm:nextHopIp>
 <dm:distanceMetric>3</dm:distanceMetric>
 </dm:staticRoute>
 </dm:staticRoutes>

Chapter 2
Device Model

2-15

Device Model Validation
If the cartridge registry entry <dmValidation> contains a dmValidation entry, the
Network Processor will invoke this function to validate the transformed device model.
This would capture logical faults as opposed to syntax faults which would be caught by
the device model validation using deviceModel.xsd. If the transform is a java
transform, then use <dmValidation transformType="java"> as the entry.

Sample Annotated Device Model
The Network Processor compares the target device model against the last pushed
device model that was persisted after the last successful push to the device.

The target device model is compared or annotated against the last pushed device
model yielding the annotated device model, which annotates the changes needed to
the device's configuration to end up with the configuration desired.

Below is a sample of the annotated device model:

<lib:device xsi:type="dm:CiscoDevice" xmlns:lib="http://www.metasolv.com/
serviceactivator/devicemodel" xmlns:dm="http://www.metasolv.com/serviceactivator/
cisco" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <lib:appInfo>
 <lib:version>2.3.0</lib:version>
 </lib:appInfo>
 <lib:componentId>7020</lib:componentId>
 <lib:componentName>rotgsr-1.kanata.ca.oracle.com</lib:componentName>
 <lib:driverType>cisco</lib:driverType>
 <lib:configurationInfo>
 <lib:deviceType>Cisco 12008</lib:deviceType>
 <lib:deviceDescription>Cisco Internetwork Operating System Software
IOS (tm) GS Software (GSR-P-M), Version 12.0(32)S5, RELEASE SOFTWARE (fc2)
Tech</lib:deviceDescription>
 <lib:cartridgeObjid>49</lib:cartridgeObjid>
 </lib:configurationInfo>
 <lib:ipAddress>10.156.68.94</lib:ipAddress>
 <lib:generationId>5</lib:generationId>
 <lib:authenticationTacacs>
 <lib:userName/>
 <lib:password/>
 <lib:enablePassword/>
 </lib:authenticationTacacs>
 <lib:configlets/>
 <lib:interfaces>
 <lib:interface xsi:type="dm:CiscoInterface">
 <lib:id>7252</lib:id>
 <lib:name>Serial3/0</lib:name>
 <dm:bandwidth>44210</dm:bandwidth>
 </lib:interface>
 </lib:interfaces>
 <lib:configVersion dmId="1" changeType="ADD">
 <lib:assoc_id>7432</lib:assoc_id>
 <lib:assoc_id>7462</lib:assoc_id>
 <lib:timestamp>2007-11-07T15:15:23.177Z</lib:timestamp>
 </lib:configVersion>
 <lib:schedules/>
 <dm:prefixLists/>
<dm:staticRoutes>

Chapter 2
Device Model

2-16

 <dm:staticRoute smId="7460" dmId="2" changeType="ADD">
 <lib:assoc_id>7462</lib:assoc_id>
 <dm:networkAddress>20.20.20.20</dm:networkAddress>
 <dm:networkMask>32</dm:networkMask>
 <dm:nextHopIp>21.21.21.21</dm:nextHopIp>
 <dm:distanceMetric>3</dm:distanceMetric>
 </dm:staticRoute>
 </dm:staticRoutes>
 <dm:rtrs/>
<dm:netFlow>
 <dm:export-destinations>
 <dm:export-destination smId="1578" dmId="3" changeType="ADD">
 <lib:assoc_id>7432</lib:assoc_id>
 <dm:ipAddress>3.3.3.3</dm:ipAddress>
 <dm:port>32</dm:port>
 </dm:export-destination>
 </dm:export-destinations>
 </dm:netFlow>
 <dm:fwModuleGroups/>
 <dm:aceModuleGroups/>
</lib:device>

Sample Relating the Device Model to the Annotated Device Model
The Network Processor, after comparing the target device model with the last pushed device
model, has annotated the device model with these attributes:

• smId - definition ID from the service model

• dmId - device model ID which is created for each command entry to be applied. This ID is
generated by the Network Processor by invoking the annotation.

• changeType - attribute indicating the change type: adding, deleting or modifying
configuration

The configuration data on the interfaces have been carried forward from previous examples;
IP address and port from the netFlow configuration, and networkAddress, networkMask,
nextHopIp and distanceMetric from the static route configuration.

<dm:netFlow>
 <dm:export-destinations>
 <dm:export-destination smId="1578" dmId="3" changeType="ADD">
 <lib:assoc_id>7432</lib:assoc_id>
 <dm:ipAddress>3.3.3.3</dm:ipAddress>
 <dm:port>32</dm:port>
 </dm:export-destination>
 </dm:export-destinations>
 </dm:netFlow>
. . .
<dm:staticRoutes>
 <dm:staticRoute smId="7460" dmId="2" changeType="ADD">
 <lib:assoc_id>7462</lib:assoc_id>
 <dm:networkAddress>20.20.20.20</dm:networkAddress>
 <dm:networkMask>32</dm:networkMask>
 <dm:nextHopIp>21.21.21.21</dm:nextHopIp>
 <dm:distanceMetric>3</dm:distanceMetric>
 </dm:staticRoute>
 </dm:staticRoutes>

Chapter 2
Device Model

2-17

Note:

The service model showed that the logical policies were applied to specific
interfaces. When you read the device model it may appear that information is
missing. Static routes and netflow configuration happen to be configured on
the target device type as device level commands, rather than being
configured against interfaces. Therefore the static route and netflow
information don't show as child elements to interfaces in the device model.

The application of these logical policies on interfaces at the GUI is simply a
human viewable artifact that been translated to a device level artifact.

Sample CLI Commands and the Device Model to CLI Transform
The next step is for the annotated device model to be transformed to the CLI
commands. To do this, the Network Processor invokes the <dmToCli> entry that is
pointed to in the cartridge instance. If the transform is a java transform, then use
<dmToCli transformType="java"> as the entry.

Using the cartridge-supplied transform, the Network Processor transforms the
annotated device model to a CLI document, which is a list of native configuration
commands to be sent to the device.

The annotated dm2Cli is an Java or XQuery file that navigates the annotated device
model and reorganizes the information into the CLI document. In addition to the basic
conversion to CLI, additional processing such as logic to invoke options, may be
included at the developers discretion.

Sample CLI Document
<cmd:commandSession xmlns:cmd="http://www.metasolv.com/serviceactivator/
climodel">
 <cmd:configuration>
 <cmd:ipAddress>10.156.68.94</cmd:ipAddress>
 <cmd:prompt>
 <cmd:matchPattern>([^>#\n]*)[>#]</cmd:matchPattern>
 <cmd:prependPattern>\n</cmd:prependPattern>
 <cmd:appendPattern>(([>#])|(\(.*\)#))</cmd:appendPattern>
 <cmd:errorPattern>.*Username:</cmd:errorPattern>
 <cmd:hostPattern>[\w\.\-]+</cmd:hostPattern>
 </cmd:prompt>
 <cmd:errorPatterns>
 <!--Cisco and frameworkTest-cu1 Error Messages-->
 <cmd:errorPattern>
 <cmd:pattern>(?s).*Invalid input.*</cmd:pattern>
 <cmd:message>Invalid input</cmd:message>
 </cmd:errorPattern>
 </cmd:errorPatterns>
 <cmd:warningPatterns>
 <!--in theory, we could ignore this and continue. The problem is, we get
the same message when removing the policing rule. This means a user could see
the warning, correct the problem, and then see the warning pop back-->
 <cmd:warningPattern blocking="true">
 <cmd:pattern>(?s).*Illegal .* burst size.*Increasing .* burst size.*</
cmd:pattern>

Chapter 2
Device Model

2-18

 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*WARNING: \"ip multicast-routing\" is not configured.*</
cmd:pattern>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*WARNING: CGMP requires PIM enabled on interface</
cmd:pattern>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*WARNING: RGMP requires PIM enabled on interface</
cmd:pattern>
 </cmd:warningPattern>
 <!--This message indicates "copy running-config startup-config" has failed. This
will produce a warning instead of failing and rolling back commands.-->
 <cmd:warningPattern>
 <cmd:pattern>(?s).*startup-config file open failed.*</cmd:pattern>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <!--cisco: message after Policy Map configured with bandwidth greater than
available"-->
 <cmd:pattern>(?s).*bandwidth is less than requested.*</cmd:pattern>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <!--cisco: message after configuring two instances of the export destination
commands with the same IP address a warning is received (NetFlow)"-->
 <cmd:pattern>(?s).*Second destination address is the same as previous
address.*</cmd:pattern>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*Warning: portfast should only be enabled on ports connected
to a single.*</cmd:pattern>
 <cmd:message>portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when
portfast is enabled, can cause temporary bridging loops.</cmd:message>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*Command rejected: .* is a routed port.*</cmd:pattern>
 <cmd:message>Command rejected: port is a routed port.</cmd:message>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*(w|W)arning: trust value is ignored in 'mls qos queueing-
only' mode.*</cmd:pattern>
 <cmd:message>Trust value is ignored in 'mls qos queueing-only' mode.</
cmd:message>
 </cmd:warningPattern>
 <cmd:warningPattern>
 <cmd:pattern>(?s).*Receive Threshold enabled.*</cmd:pattern>
 <cmd:message>Receive Threshold enabled.</cmd:message>
 </cmd:warningPattern>
 </cmd:warningPatterns>
 <cmd:successPatterns>
 <!--CISCO MESSAGES-->
 <cmd:successPattern>
 <!---reference a policy map that is already applied to this interface-->
 <cmd:pattern>(?s).*QoS policy .+ is already applied.(\\n.*|$)</cmd:pattern>
 </cmd:successPattern>
 <cmd:successPattern>
 <!---cisco : message after "conf t"-->
 <cmd:pattern>(?s).*Enter configuration commands, one per line\..*</cmd:pattern>
 </cmd:successPattern>

Chapter 2
Device Model

2-19

 <cmd:successPattern>
 <!---cisco : message after "no interface"-->
 <cmd:pattern>(?s).*Not all config may be removed.*</cmd:pattern>
 </cmd:successPattern>
 <cmd:successPattern>
 <!---cisco : message after "no ip vrf "-->
 <cmd:pattern>(?s).*IP addresses from all interfaces in VRF .* have been
removed.*</cmd:pattern>
 </cmd:successPattern>
 </cmd:successPatterns>
 </cmd:configuration>
 <cmd:authentication>
 <cmd:prompt>.*Username:</cmd:prompt>
 <cmd:response/>
 </cmd:authentication>
 <cmd:authentication>
 <cmd:prompt>.*Password:</cmd:prompt>
 <cmd:response/>
 <cmd:errorPrompt>.*Username:</cmd:errorPrompt>
 </cmd:authentication>
 <cmd:initialization>
 <cmd:command alwaysRetry="true">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>terminal length 0</cmd:commandString>
 </cmd:command>
 </cmd:initialization>
 <cmd:precheck/>
 <cmd:preconfig>
 <cmd:command alwaysRetry="true">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:retry>
 <cmd:retryNumber>2</cmd:retryNumber>
 <cmd:waitTime>20</cmd:waitTime>
 </cmd:retry>
 <cmd:commandString>conf t</cmd:commandString>
 </cmd:command>
 </cmd:preconfig>
<cmd:command dmId="3">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:commandString>ip flow-export destination 3.3.3.3 32</cmd:commandString>
 </cmd:command>
 <cmd:command dmId="2">
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>ip route 20.20.20.20 32 21.21.21.21 3</cmd:commandString>
 </cmd:command>
 <cmd:postconfig>
 <cmd:command dmId="1" configVersion="true">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>alias exec IpsaConfigVersion 2007-11-07T15:15:23.177Z</
cmd:commandString>
 </cmd:command>
 <cmd:command alwaysRetry="true">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>end</cmd:commandString>
 </cmd:command>
 </cmd:postconfig>
 <cmd:postcheck/>

Chapter 2
Device Model

2-20

 <cmd:finalize>
 <cmd:command>
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>copy running-config startup-config</cmd:commandString>
 <cmd:conditionalPrompt>.*Destination filename.*</cmd:conditionalPrompt>
 <cmd:conditionalCommand>
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>startup-config</cmd:commandString>
 <cmd:conditionalPrompt>.*Overwrite the previous NVRAM configuration?.*</
cmd:conditionalPrompt>
 <cmd:conditionalCommand>
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>y</cmd:commandString>
 </cmd:conditionalCommand>
 <cmd:timeoutSeconds>600</cmd:timeoutSeconds>
 </cmd:conditionalCommand>
 <cmd:timeoutSeconds>600</cmd:timeoutSeconds>
 </cmd:command>
 <cmd:command>
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>logout</cmd:commandString>
 <cmd:conditionalPrompt>.*</cmd:conditionalPrompt>
 </cmd:command>
 </cmd:finalize>
</cmd:commandSession>

Key sections in the CLI document are:

• Configuration: information on network processor behavior to implement for this device

– ipAddress: IP address of the device

– prompt: the device prompt

– errorPatterns: device response error pattern

– warningPatterns: device response warning pattern

– successPatterns: device response success pattern

• Authentication: information about login credentials of the device

• Initialization: commands that may need to be applied to the device as an extended part of
the login/setup phase.

• Precheck: commands for checking and validating existing configuration on the device.

• Preconfig: commands needed before the configuration can take place.

• Command: this section contains the actual configuration commands for the changing
services

• Postconfig: commands that must be issued once configuration is completed.

• Finalize: commands to be issued once all other configuration and checks are complete.

Chapter 2
Device Model

2-21

CLI Elements
Several new elements have been added to the CLI document to allow cartridges to
handle some of the variations in communications with devices. Some of the new items
added allow you to:

• Specify a terminal type (VT100 is used by default)

• Specify a line terminator (\n is used by default)

• Flush buffers

Sample Relating the Annotated Device Model to the CLI Document
In the sample, we can see that the configuration parameters have reached the CLI
stage.

The snippet below contains the dmIDs assigned by the Network Processor, and the
final configuration commands based on the original logical policies and interfaces they
were applied to.

<cmd:command dmId="3">
 <cmd:assoc_id>7432</cmd:assoc_id>
 <cmd:commandString>ip flow-export destination 3.3.3.3 32</cmd:commandString>
 </cmd:command>
 <cmd:command dmId="2">
 <cmd:assoc_id>7462</cmd:assoc_id>
 <cmd:commandString>ip route 20.20.20.20 32 21.21.21.21 3</cmd:commandString>
 </cmd:command>

CLI Merging
The CLI models generated by the core/base and service cartridges will all be merged
before commands are sent to the device. The CLI models can be broken up into
separate sections, each of which is merged together. This provides a means of
ordering the commands between the various cartridges.

Merge Section Descriptions
The following lists the merge sections available and what type of commands are
expected to be in each:

• Initialization: commands that may need to be applied to the device as an extended
part of the login/setup phase. This phase does not perform any configuration
related activities.

• Pre-check: commands for checking and validating existing configuration on the
device. This should not perform any configuration.

• Preconfig: commands needed before the configuration can take place. This is
usually commands needed to put the device into a special mode for accepting new
configuration.

• DeleteConfig: This section is for deleting configuration from the device. This
configuration cannot include configuration that removes interfaces.

• CreateInterface: special section for creating interfaces.

Chapter 2
Device Model

2-22

• Command: special section used by the core cartridges for applying configuration. Should
not be used by SDK developers.

• DeleteInterface: section for deleting interfaces. The configuration on these interfaces
must be separately removed in the “deleteConfig" section.

• CreateConfig: section for creating or overwriting configuration. This section cannot create
interfaces.

• Postconfig: commands that must be issued once configuration is completed. Normally,
this is commands to get out of the configuration mode.

• Postcheck: commands for validating the configuration applied to the device.

• Finalize: commands to be issued once all other configuration and checks are complete.
This usually includes commands for saving the configuration on the device.

Sample Relating the CLI Document to Configuration Commands
Continuing the example to the configuration stage, the Network Processor command
executor (see "Command Executor") would send the following commands to provision the
sample netflow collector and static route:

ip flow-export destination 3.3.3.3 32
ip route 20.20.20.20 32 21.21.21.21 3

The auditTrails would show the following:

2007-11-07 10:15:23|10.156.68.94|#Start Configuration
2007-11-07 10:15:23|10.156.68.94|file-interface|#Applying Configuration
2007-11-07 10:15:23|10.156.68.94|file-interface|terminal length 0
2007-11-07 10:15:23|10.156.68.94|file-interface|conf t
2007-11-07 10:15:23|10.156.68.94|file-interface|ip flow-export destination 3.3.3.3 32
2007-11-07 10:15:23|10.156.68.94|file-interface|ip route 20.20.20.20 32 21.21.21.21 3
2007-11-07 10:15:23|10.156.68.94|file-interface|alias exec IpsaConfigVersion
2007-11-07T15:15:23.177Z
2007-11-07 10:15:23|10.156.68.94|file-interface|end
2007-11-07 10:15:23|10.156.68.94|file-interface|copy running-config startup-config
2007-11-07 10:15:23|10.156.68.94|file-interface|logout
2007-11-07 10:15:23|10.156.68.94|#End Configuration

If the configuration is successful, a message is sent back to the policy server indicating that
associations 7432 and 7462 have been successfully installed. The service model and the
device model are then persisted to the database.

Command Executor
Once the CLI document is constructed the Network Processor command executor is invoked
to read the CLI and execute the command elements. Its functionality includes managing
logging in to a device, command delivery, recognizing success or failure of commands and
other housekeeping related to command delivery.

The default command executor provides standard telnet or ssh access to a device and
delivers commandString (which is a child element of command) content to the device. For
example:

<cmd:commandString>conf t</cmd:commandString>

Chapter 2
Device Model

2-23

Network Processor End to End Flow-Through Illustration
Figure 2-2 illustrates the completed data flow-through described in the preceding
pages in this document.

Figure 2-2 Network Processor End to End Flow-Through

Device Model Extension
The Network Processor comes with a base_devicemodel.xsd which defines the base
device model. Consider this to be a common set of device model information for all
device models.

Cartridges generally extend this base_deviceModel.xsd to include details of new
services that are to be administered.

Changeables and Identifiables
When writing commands to a device, there are three possible user actions:

• Add: adding a command to the device

• Delete: deleting a command from the device

• Modify: modifying an existing command on the device by overwriting it.

In order for a cartridge to support these actions, metadata (changeType) is added to
the device model to indicate what action is taking place, which occurs in the annotate
device model stage. The target device model shows what the intended device model

Chapter 2
Device Model

2-24

looks like. The annotated device model shows what is being added/deleted/modified in
comparison to the previously pushed device model.

To identify if a command or a command field is addable, deleteable, and or modifiable, in
extending the device model, you need to specify what aspects of the device extension are
changeable.

Change Types

ChangeTypes are attributes inserted into the device model during the annotation process.
They specify which configuration is to be added or deleted.

The cartridge implementation then uses these attributes to decide how to send the
configuration to the device.

Generally speaking, when you write your device model, you will be adding content that
models the configuration (commands) that you are administering. As part of that model, if the
commands are add-able and delete-able you need to mark those commands as “changeable"
This is done by extending “lib:Changeable" found in the base_devicemodel.xsd. This allows
the Network Processor to annotate the device model with changeType attributes for the
purpose of identifying what action is taking place.

Example

n the device model fragment seen below, if the target device model has redistributeStatic and
the last device model does not, then redistributeStatic would be annotated as add.

If the target device model does not have redistributeStatic and the last device model does,
then redistributeStatic would be annotated with delete.

If the target device model has redistributeStatic and the last device model has
redistributeStatic and its value has changed, then redistributeStatic would be annotated with
delete and add. The cartridge, in this case, would be expected to send both a delete
command followed by an add command to the device to realize the target configuration.

If the target device model has redistributeStatic and the last device model has
redistributeStatic and its value has not changed, then redistributeStatic would not be
annotated with attribute changeType.

As example, all the elements in the complex type EigrpVrfAddressFamily are changeable.

<xs:complexType name="EigrpVrfAddressFamily">
 <xs:complexContent>
 <xs:extension base="lib:Changeable">
 <xs:sequence>
 <xs:element name="vrfRef" type="xs:string"/>
 <xs:element name="vrfRdRef" type="dm:VpnTag"/>
 <xs:element name="redistributeStatic" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeConnected" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeBgp" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeRip" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="networkStatements" type="dm:NetworkStatements"
minOccurs="0"/>
 <xs:element name="autoSummary" type="dm:ChangeableBoolean" minOccurs="0"/>
 <xs:element name="autonomousSystem" type="xs:unsignedInt"/>
 <xs:element name="maximumPaths" type="dm:ChangeableInteger" minOccurs="0"/>

Chapter 2
Device Model

2-25

 <xs:element name="logNeighbourChanges" type="dm:ChangeableBoolean"
minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

When the Network Processor executes the annotation, it will mark each of the above
elements with add or delete or nothing based on the action taking place.

Changeable and Identifiable

If a command can be added, deleted and/or modified then you need to further model
that command as changeable and identifiable.

Identifiable is terminology that conveys what aspect of the command is modifiable.
This is done by extending lib:Container found in base_devicemodel.xsd.

Example

A complex type EigrpVrfAddressFamily extends lib:Changeable, so all these elements
can be annotated as added/deleted.

<xs:complexType name="EigrpVrfAddressFamily">
 <xs:complexContent>
 <xs:extension base="lib:Changeable">
 <xs:sequence>
 <xs:element name="vrfRef" type="xs:string"/>
 <xs:element name="vrfRdRef" type="dm:VpnTag"/>
 <xs:element name="redistributeStatic" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeConnected" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeBgp" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="redistributeRip" type="dm:RedistributeProtocol"
minOccurs="0"/>
 <xs:element name="networkStatements" type="dm:NetworkStatements"
minOccurs="0"/>
 <xs:element name="autoSummary" type="dm:ChangeableBoolean"
minOccurs="0"/>
 <xs:element name="autonomousSystem" type="xs:unsignedInt"/>
 <xs:element name="maximumPaths" type="dm:ChangeableInteger"
minOccurs="0"/>
 <xs:element name="logNeighbourChanges" type="dm:ChangeableBoolean"
minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

EigrpVrfAddressFamily is used in Eigrp which extends lib:Container. This indicates that
these three elements can be added, deleted, and modified.

<xs:complexType name="Eigrp">
 <xs:complexContent>
 <xs:extension base="lib:Container">
 <xs:sequence>
 <xs:element name="asn" type="xs:int"/>
 <xs:element name="logNeighbourChanges" type="dm:ChangeableBoolean"
minOccurs="0"/>

Chapter 2
Device Model

2-26

 <xs:element name="eigrpVrfAddressFamily" type="dm:EigrpVrfAddressFamily"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Eigrp is used in eigrp where a key is defined.

<xs:element name="eigrp" type="dm:Eigrp" minOccurs="0">
 <xs:key name="eigrpVrfAddressFamilyKey">
 <xs:selector xpath="dm:eigrpVrfAddressFamily"/>
 <xs:field xpath="dm:vrfRef"/>
 <xs:field xpath="dm:vrfRdRef"/>
 <xs:field xpath="dm:autonomousSystem"/>
 </xs:key>
</xs:element>

Reading backwards, there is an element eigrp, which defines a key composed of three
entities called vrfRef, vrfRdRef and autonomousSystem.

If the target and previously pushed device model have the same values for the three
elements defined as keys and a change of any type was detected on the other children
elements, then eigrp would be annotated with modify. The cartridge implementation would
then send the appropriate eigrp command taking into account that this is a modify action.

If the target and previously pushed device model have different values for any of the three
elements defined as keys and a change of any type was detected on the other child
elements, then eigrp would be annotated with delete and add. The cartridge implementation
would then send the appropriate eigrp command taking into account that a delete command
must be sent followed by an add command.

Chapter 2
Device Model

2-27

3
Cartridge Overview

This chapter outlines the makeup of Oracle Communications IP Service Activator cartridges,
introduces base and service cartridges as well as configuration policies, and provides an
overview of cartridge registration.

Introduction to Cartridges
A cartridge is a vendor-specific implementation of a set of services for a given family of
device types running the same operating system. A cartridge is a set of files (shipped as
a .jar file) used by the IP Service Activator Network Processor to implement these services.

Cartridges provide the required components for configuration to flow from the service model
to the device for a particular service. The transforms required for the Network Processor to
take the configuration from service model to device model, and annotated device model to
CLI are included in the cartridge.

Cartridge components include:

• Device Model schema definition

• Service Model to Device Model transform

• Device Model validation

• Annotated Device Model to CLI transform

• Message (success/warning/error) pattern definitions

• Options definitions

• Audit command definitions

• Capabilities definitions

• Logging configuration

• Re-usable (shared library) definitions

• Java beans

• Uninstall information

Cartridges are built from a collection of source files generated by the SDK, which you then
customize to implement the desired services.

Cartridge source files include:

• .xsd schema definition files

• .xml instance data files

• .xq (xQuery transformations) or .java (Java transformations)

There are two main types of cartridge: base and service cartridges.

3-1

Base Cartridges
Base cartridges provide a framework for allowing the Network Processor to perform
basic communication functions with a device. These functions include logging in and
out of the device, sending commands or configlets, performing audits, and interpreting
responses from the device as successes, warnings, or failures.

Base cartridges do not contain implementations of services. Additional services
targeting specific vendor device types are added through integrated service cartridges.

Refer to IP Service Activator SDK Base Cartridge Developer Guide for details about
creating base cartridges.

Service Cartridges
A service cartridge provides the implementation of a logical service, such as a static
route policy, for a specific vendor. The service cartridge also provides the ability to
send commands related to its logical service. The service cartridge is also responsible
for providing the necessary information to audit and interpret success, warning, or
failure responses for commands it sends.

You can use the SDK to create service cartridges. Service cartridges are not
independently deployable — they must be deployed as extensions to either a base or
a core cartridge.

Refer to IP Service Activator SDK Service Cartridge Developer Guide for details about
creating service cartridges.

Configuration Policies
A configuration policy provides a GUI form and a schema to collect data for a service.
Configuration policies require service cartridges to implement the service on specific
devices.

Refer to IP Service Activator SDK Configuration Policy Extension Developer Guide for
details about creating configuration policies.

Cartridge Registration
Cartridges are identified to the IP Service Activator Network Processor through registry
files.

When the Network Processor starts up, it loads all the cartridge registries and
internally creates a map of which cartridges administer which devices. Therefore,
when a device is edited in the IP Service Activator client, the correct cartridge to
administer that change can be called.

The driver type, device type and operating system version attributes in the registry
entry allow the Network Processor to map particular devices to a cartridge. When a
service, which a cartridge supports, is applied to a device, the Network Processor
determines the correct cartridge to use to configure the service based on this
registration.

Chapter 3
Base Cartridges

3-2

The cartridge operation support files are identified to the Network Processor as entries in the
registry files. These files are discussed in Cartridge Overview .

The registry files that identify cartridges to the Network Processor include:

• MIPSA_registry.xml: core cartridge registry file

• Registry.xml: base cartridge registry file

• Extension.xml: service cartridge registry file

• Customization.xml: registry file used to override certain entries in the Registry.xml or
Extension.xml files. These are typically placed in
Service_Activator_home\Config\networkProcessor\Custom\Registries.

• ConfigPolicyRegistry.xml: registry information for the configuration policy used to
integrate it with a service cartridge.

Note:

The Network Processor will detect and process any files ending in .xml from
this directory.

Base Cartridge Registry.xml
The Registry.xml file identifies a base cartridge instance to the Network Processor and
further indicates when the resources provided by that cartridge (i.e. transforms, validation
script) are to be invoked.

A sample Registry.xml follows:

<?xml version="1.0" encoding="UTF-8"?>
<registry
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.metasolv.com/service activator/networkprocessor/cartridgeregistry/"
 xmlns:cs="http://www.metasolv.com/service activator/networkprocessor/
cartridgesubscription/">

 <cartridge>
 <name>cisco</name>
 <driverType>cisco</driverType>
 <transforms>
 <smToDm>com/metasolv/service activator/cartridges/cisco/transforms/sm2dm.xq</
smToDm>
 <dmValidation>com/metasolv/service activator/cartridges/cisco/transforms/
dmValidation.xq</dmValidation>
 <dmToCli>com/metasolv/service activator/cartridges/cisco/transforms/
annotatedDm2Cli.xq</dmToCli>
 </transforms>
 <audit>
 <auditTemplate>
 <auditTemplateEntry>
 <auditTemplateFile>com/metasolv/service activator/cartridges/cisco/audit/
auditTemplate.xml</auditTemplateFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>

Chapter 3
Base Cartridge Registry.xml

3-3

 </auditTemplateEntry>
 </auditTemplate>
 </audit>
 <messages>
 <success>com/metasolv/service activator/cartridges/cisco/messages/
successMessages.xml</success>
 <warning>com/metasolv/service
activator/cartridges/cisco/messages/warningMessages.xml</warning>
 <error>com/metasolv/service activator/cartridges/cisco/messages/
errorMessages.xml</error>
 </messages>
 <capabilities>
 <capabilitiesEntry>
 <capsFile>com/metasolv/service activator/cartridges/cisco/capabilities/
empty_caps.xml</capsFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </capabilitiesEntry>
 </capabilities>
 <options/>
 <commandExecutor>com.metasolv.service
activator.networkprocessor.DefaultCommandExecutor</commandExecutor>
 </cartridge>
</registry>

The relevant sections are:

• Name: uniquely identifies a base cartridge instance

• DriverType: identifies to which family of devices this cartridge instance is
applicable. The driverType value must be unique in an IP Service Activator
Network Processor installation. For example, if a base cartridge is deployed to a
Network Processor installation with an existing IP Service Activator core cartridge
deployed, the driverType values must be different. The same is true if an additional
base cartridge is deployed. The following driverType values are already assigned
to existing core cartridges: Cisco, Huawei, Juniper, and CatOS. When base
cartridge source files are generated, <sdk_global_deviceName> is assigned a
lowercase version of <driverType> from the Registry.xml file. See the IP Service
Activator online Help for further information.

• Transforms: identifies the location of transform and validation files

• Audit: identifies the location of the audit files. Indicates when an audit file is
applicable using the appliesTo element, which specifies deviceType and osVersion
characteristics.

• Messages: identifies locations of the success, warning and error message pattern
files

• Capabilities: identifies the location of the capabilities file and indicates when this
file is applicable, using the appliesTo element

• Options: identifies the location of the options file and indicates when this file is
applicable, using the appliesTo element

• CommandExecutor: identifies the package location of the command executor

The above registry would apply to any device with the driver type cisco. The audit
template specified will apply to any device types that begin with Cisco and any OS
version because of the wildcard entry ‘.*'.

Chapter 3
Base Cartridge Registry.xml

3-4

Service Cartridge Extension.xml
The Extension.xml file identifies a service cartridge instance to the Network Processor and
indicates when the resources provided by that cartridge (i.e. transforms, validation scripts)
are to be invoked.

A sample Extension.xml follows:

<?xml version="1.0" encoding="UTF-8"?>
<registry
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.metasolv.com/service activator/networkprocessor/
cartridgeregistry/"
 xmlns:cs="http://www.metasolv.com/service activator/networkprocessor/
cartridgesubscription/">
 <extension>
 <name>ciscoBanner</name>
 <subscriptions>
 <cs:configPolicyContentTypeList>
 <cs:configPolicyContentType>banners</cs:configPolicyContentType>
 </cs:configPolicyContentTypeList>
 </subscriptions>
 <transforms>
 <smToDm>com/metasolv/service activator/cartridges/ciscobanner/transforms/
sm2dm.xq</smToDm>
 <dmValidation>com/metasolv/service activator/cartridges/ciscobanner/
transforms/dm-validation.xq</dmValidation>
 <dmToCli>com/metasolv/service activator/cartridges/ciscobanner/transforms/
annotated-dm2cli.xq</dmToCli>
 <dmMigration>com/metasolv/service activator/cartridges/ciscobanner/
xquerylib/dm-migration.xq</dmMigration>
 </transforms>
 <audit>
 <auditTemplate>
 <auditTemplateEntry>
 <auditTemplateFile>com/metasolv/service activator/cartridges/ciscobanner/
audit/auditTemplate.xml</auditTemplateFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </auditTemplateEntry>
 </auditTemplate>
 </audit>
 <messages>
 <success>com/metasolv/service activator/cartridges/ciscobanner/messages/
successMessages.xml</success>
 <warning>com/metasolv/service activator/cartridges/ciscobanner/messages/
warningMessages.xml</warning>
 <error>com/metasolv/service activator/cartridges/ciscobanner/messages/
errorMessages.xml</error>
 </messages>
 </extension>
</registry>

The relevant sections are:

• Name: uniquely identifies a service cartridge instance

Chapter 3
Service Cartridge Extension.xml

3-5

• Subscriptions: identifies a list of policy types that this cartridge will administer. In
this case, this service cartridge provides an implementation of the banners
configuration policy for cisco devices.

• Transforms: identifies the location of transform and validation files

• Audit: identifies the location of the audit files. Indicates when an audit file is
applicable using the appliesTo element, which specifies deviceType and osVersion
characteristics.

• Messages: identifies locations of the success, warning and error message pattern
files

• Capabilities: identifies the location of the capabilities file and indicates when this
file is applicable, using the appliesTo element

• Options: identifies the location of the options file and indicates when this file is
applicable, using the appliesTo element

• VrfReductionStrategy: identifies location of a specific strategy file

A service cartridge extends a base cartridge by its placement in a child directory of the
base cartridge called ServiceCartridges. The service cartridge does not contain an
explicit reference indicating which base cartridge it extends.

The audit template specified in the example will apply to any device types that begin
with 'Cisco' and any OS version because of the wildcard entry ‘.*'.

About Subscriptions
Subscriptions, which are elements in service cartridges' Extension.xml file, indicate
the functionality provided by the service cartridge. This lets you subdivide the service
administration functionality into many smaller service cartridges.

For example, a service cartridge instance could subscribe to netflowCollector policies.
It would therefore be responsible for administering that policy. Another service
cartridge instance could subscribe to staticRoute and would be responsible for
administering that policy.

Alternatively, a service cartridge instance could subscribe to both netflowCollector and
staticRoute policies. It would be responsible for administering both these policies.

When the Network Processor encounters a policy in the service model which has no
service cartridge subscription, it falls back to the base cartridge to locate support for
the policy.

Definition Type
Use definition type subscriptions to subscribe to IP Service Activator services
implemented in the product core object model. The following is an example from an
Extension.xml file:

<subscriptions>
 <cs:definitionTypeList>
 <cs:definitionType>PolicingRuleDefinitionType</cs:definitionType>
 </cs:definitionTypeList>
</subscriptions>

Chapter 3
Service Cartridge Extension.xml

3-6

Configuration Policy Identification
Configuration policies are identified to the Network Processor through the service cartridges
which implement their services. (Configuration policies require service cartridges to
administer their services on specific devices.)

As mentioned above, the Extension.xml file contains a subscription section which is used to
identify which policies the service cartridge supports.

In this example, the bannerSample configuration policy is specified as being supported by the
service cartridge.

. . .
 <subscriptions>
 <cs:configPolicyContentTypeList>
 <cs:configPolicyContentType>bannerSample</cs:configPolicyContentType>
 </cs:configPolicyContentTypeList>
 </subscriptions>
. . .

Configuration Policy ConfigPolicyRegistry.xml
The ConfigPolicyRegistry.xml file identifies a configuration policy instance to the Network
Processor.

A sample ConfigPolicyRegistry.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<config_policy_registration
 xmlns="http://www.metasolv.com/serviceactivator/configurationpolicy">
 <name>bannersSample</name>
 <version>1.0</version>
</config_policy_registration>

The relevant sections are:

• Name: unique name to identify the policy

• Version: version number of this policy to distinguish this policy for upgrade purposes

The configuration policy is the GUI that the user would see. The administration of that GUI is
handled within the service cartridge. So a given ConfigPolicyRegistration is only functional if
there is a service cartridge that administers that config policy.

Chapter 3
Configuration Policy ConfigPolicyRegistry.xml

3-7

4
Cartridge Operations

This chapter describes how cartridge resources are used to support cartridge operations.

Cartridge operations supported by XML configuration files include:

• Audits: comparison of Oracle Communications IP Service Activator's internal
representation of what is configured on a device, and the actual device configuration. An
audit template file is used to configure the audit and its report. Audit synonyms are used
to identify commands that are logically equivalent.

• Options: allows for variation in command syntax by certain device type and OS
combinations within device families.

• Capabilities: indicates what supported capabilities should be reported back to the IP
Service Activator policy server when a device supported by a cartridge is discovered.

• Message Definition: patterns defining responses from the device

• Pre- and Post-Checks: provide the ability verify information on a device when the
annotated DM to CLI transform executes, before the general configuration is sent.

• Cartridge Version: The cartridge version is used as the version of the device model that
the cartridge generates. If you make significant modifications which include device model
schema changes to a cartridge that is already deployed, you will need to upgrade the
device model.

In addition, the SDK supports the configuration of cartridges to enable the use of services
from the Configuration Management product.

Audits
Audits identify discrepancies between IP Service Activator's representation of a device's
configuration and the actual configuration currently on the device. For an in depth analysis of
the configuration running on a device, an IP Service Activator user can perform a device audit
or a per-service audit. You define auditTemplates and audit synonyms that tailor the audit
report output.

Audit Template
Audit templates define filter patterns to be applied to commands to identify configuration of
interest, and to affect their inclusion in the audit report, and to set attributes on the command
results, which, when viewed using a stylesheet will affect how they are displayed to the IP
Service Activator user.

Commands to show configuration, and commands to logout, and all commands that can be
applied to the device by the cartridge should be listed. All commands that can be applied to
the device by a service cartridge should be listed.

4-1

Note:

For a service cartridge, do not include commands to show configuration and
commands to logout; such commands should be listed in the audit template
file for the base cartridge that this service cartridge extends.

Audit templates for base cartridges have two command sets:

• First command set: the device commands to list a device's entire configuration

• Second command set: a complete set of the commands that the cartridge is
capable of sending to the device

Audit templates for service cartridges have only the second command set.

For a service cartridge, the first command set is not needed; the first command set
from the base cartridge's audit template file describes the commands that the Network
Processor must issue to the device to retrieve the device's entire configuration for the
base cartridge, and all of the service cartridges that extend the services of the base
cartridge.

A sample auditTemplate.xml file follows:

<commandSession xsi:schemaLocation="http://www.metasolv.com/serviceactivator/
climodel file:../../../../networkprocessor/climodel/cliModel.xsd" xmlns="http://
www.metasolv.com/serviceactivator/climodel" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <command>
 <!--commands to show configuration-->
 <commandId>show-commands</commandId>
 <commandString/>
 <command>
 <commandId>show-commands.terminal_length_0</commandId>
 <commandString>terminal length 0</commandString>
 </command>
 <command kind="show">
 <commandId>show-commands.show_running-config</commandId>
 <commandString>show running-config</commandString>
 <conditionalPrompt>.*(?m)^end$.*</conditionalPrompt>
 </command>
 <command>
 <commandId>show-commands.logout</commandId>
 <commandString>logout</commandString>
 <conditionalPrompt>.*</conditionalPrompt>
 </command>
 </command>
 <command>
 <!--context specific filter patterns to identify configuration of interest-->
 <commandId>cisco</commandId>
 <commandString/>
 <command kind="ALWAYSIGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^Building configuration.*</commandString>
 </command>
 <command kind="ALWAYSIGNORE">
 <commandId>^ignore^</commandId>
 <commandString>Current configuration.*</commandString>
 </command>

Chapter 4
Audits

4-2

 <command kind="ALWAYSIGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^exit$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^terminal length 0$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^show .*</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^conf t$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^end$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^copy</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^logout$</commandString>
 </command>
 <command>
 <commandId>cisco.vlan</commandId>
 <commandString>^vlan \d+$</commandString>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^$</commandString>
 </command>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^default interface .*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface</commandId>
 <commandString>^interface</commandString>
 <command>
 <commandId>cisco.interface.description</commandId>
 <commandString>^description .*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.mtu</commandId>
 <commandString>^mtu \d+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.ip_address</commandId>
 <commandString>^(no\s)?ip address</commandString>
 </command>
 <command>
 <commandId>cisco.interface.shutdown</commandId>
 <commandString>^shutdown$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>

Chapter 4
Audits

4-3

 <commandString>^no shutdown$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^no logging event bundle-status$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^no logging event trunk-status$</commandString>
 </command>
 <command kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^no logging event link-status$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.logging_event_bundle-status</commandId>
 <commandString>^logging event bundle-status$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.logging_event_trunk-status</commandId>
 <commandString>^logging event trunk-status$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.logging_event_link-status</commandId>
 <commandString>^logging event link-status$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.mls_qos_trust</commandId>
 <commandString>^mls qos trust \w*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport</commandId>
 <commandString>^switchport$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_trunk_encapsulation</commandId>
 <commandString>^switchport trunk encapsulation \w+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_trunk_allowed_vlan</commandId>
 <commandString>^switchport trunk allowed vlan</commandString>
 </command>
 <coommand kind="IGNORE">
 <commandId>^ignore^</commandId>
 <commandString>^switchport access vlan 1$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_access_vlan</commandId>
 <commandString>^switchport access vlan \d+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_mode</commandId>
 <commandString>^switchport mode \w+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_port-security</commandId>
 <commandString>^switchport port-security$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_port-security_maximum</commandId>
 <commandString>^switchport port-security maximum \d+$</commandString>

Chapter 4
Audits

4-4

 </command>
 <command>
 <commandId>cisco.interface.switchport_port-security_violation</commandId>
 <commandString>^switchport port-security violation \w+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_port-security_mac-address_sticky</
commandId>
 <commandString>^switchport port-security mac-address sticky$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.switchport_nonegotiate</commandId>
 <commandString>^switchport nonegotiate.*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.spanning-tree_portfast</commandId>
 <commandString>^spanning-tree portfast.*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.spanning-tree_bpduguard</commandId>
 <commandString>^spanning-tree bpduguard.*$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.duplex</commandId>
 <commandString>^duplex \w+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.speed</commandId>
 <commandString>^speed \w+$</commandString>
 </command>
 <command>
 <commandId>cisco.interface.media-type</commandId>
 <commandString>^media-type \S+$</commandString>
 </command>
 </command>
 <!--Alias command for configuration version -->
 <command configVersion="true" reportManualConfig="true">
 <commandId>cisco.alias_IpsaConfigVersion</commandId>
 <commandString>^alias exec IpsaConfigVersion \S+</commandString>
 </command>
 </command>
</commandSession>

In the above auditTemplate.xml sample, the section under the comment <!--commands to
show configuration--> contains the commands to retrieve the device's current
configuration.

The section under the comment <!--context specific filter patterns to identify
configuration of interest--> identifies all the commands the cartridge is capable of
sending to the device.

When you populate the auditTemplate.xml file as part of the cartridge development process,
you must specify every command you intend to support, otherwise the audit function will not
work correctly.

When an audit is requested for the device, the Network Processor sends the first command
set to the device to retrieve its configuration, which is filtered against the commands in the
second command set. Commands that match those configured by the cartridge (i.e. listed in
the second command set) are converted into a CLI document.

Chapter 4
Audits

4-5

The Network Processor then invokes the annotated device model to CLI transform
from the cartridge on the last pushed (i.e. persisted) device model (which matches IP
Service Activator's internal representation of what is configured on the device).

A comparison is made between the two CLI documents. This comparison can highlight
discrepancies including:

• Commands sent to the device that are now missing

• Commands added to the device that are not in the Network Processor device
model (i.e. manually configured outside of IP Service Activator)

• Commands that are in the wrong order on the device. (In some cases command
ordering affects how the device works.)

Audit Template Command Attributes
Audit template attributes are used to accommodate variations in device responses and
to customize the audit report. You can apply these attributes to each individual
command element to tell the audit to treat this command in a particular manner.

For example, when you read device configuration, the device could:

• display a command in lower case where IP Service Activator provisioned the
device in upper case

• display commands indented incorrectly (resulting in wrong context interpretation)

Attributes can be used to ensure the expected command format is displayed in the
audit report.

You can use attributes to indicate that specific commands need to follow one another
in a particular order.

The command attributes are:

• kind=string

• configVersion=boolean

• ordered=string

• autoIndentUtil=string

• ignoreCase=string

• reportManualConfig=boolean

• brokenIndentRulesOffset=integer

kind=string

The kind attribute affects how the command is used to match commands on the
device. Table 4-1 lists the possible string values.

Table 4-1 Value Strings for Kind Attribute

Value Effect

ALWAYSIGNORE Excludes the command from the audit report when found in any
context.

Chapter 4
Audits

4-6

Table 4-1 (Cont.) Value Strings for Kind Attribute

Value Effect

IGNORE Excludes the command from the audit report when found in this
context.

IGNORE_CASE Performs a case insensitive comparison with the command on
the device.

IGNORE_CHARS Performs a comparison with commands on the device, ignoring
characters that follow the attribute (e.g. <command
kind="IGNORE_CHARS -">).

A dash (-) appears in the device configuration, however, you
want the audit to ignore it.

CHECK_DEFAULT Performs a comparison with commands on the device marking
missing commands as “potentially" missing. This is used for
special handling in cases where devices don't display default
values in a command string.

PARTIAL Performs a comparison with commands on the device taking the
command element name (as depicted in the audit template) as
part of the full command. This allows the audit to determine
equality between IP Service Activator provisioned commands
and those seen on the device using a partial comparison only.

Table 4-2 shows how the audit template command kind attribute affects the inclusion of the
command, and its kind attribute value in the resulting audit report.

Table 4-2 Effect of Kind Attribute on Audit Report

Cmd in IP
Service
Activator

Cmd on
Device

Command in
Audit Template

Kind in Resulting
Audit Report for
showAll=false (IPSA)

Kind in Resulting Audit
Report for showAll=true
(CM)

1. C1 C1 Present NORMAL --

2. C1 C1 Present +
kind=CHECK_D
EFAULT

NORMAL --

3. C1 C1 Present +
kind=IGNORE

exclude UNMANAGED

4. C1 C1 Not Present exclude NORMAL

5. C1 C1' Present | Present
+ kind=PARTIAL

CHANGED CHANGED

(Missing: Conflickt)

6. C1 C1' Present +
kind=PARTIAL_D
ISPLAY_ALL

MISSING CHANGED

(Missing: Conflict)

7. C1 C1' Present +
kind="CHECK_D
EFAULT"

CHANGED CHANGED

(Potential: Conflict)

8. C1 C1' Present +
kind="IGNORE"

exclude UNMANAGED

9. C1 C1' Not Present exclude CHANGED

(Missing: Conflict)

Chapter 4
Audits

4-7

Table 4-2 (Cont.) Effect of Kind Attribute on Audit Report

Cmd in IP
Service
Activator

Cmd on
Device

Command in
Audit Template

Kind in Resulting
Audit Report for
showAll=false (IPSA)

Kind in Resulting Audit
Report for showAll=true
(CM)

10. C1 missing Present MISSING --

11. C1 missing Present +
kind="CHECK_D
EFAULT"

POTENTIAL --

12. C1 missing Present +
kind="IGNORE"

exclude exclude

13. C1 missing Not Present exclude MISSING

14. -- C1 Present CONFLICT --

15. -- C1 Present +
kind="CHECK_D
EFAULT"

POTENTIAL --

16. -- C1 Present +
kind="IGNORE"

exclude UNMANAGED

17. -- C1 Not Present exclude UNMANAGED

Note:

In Table 4-2:

• C1' means the command is the same, but some of its arguments are
different.

• CHANGED is a JuniperXML only tag; for others, this will show up as a
MISSING:CONFLICT pair

configVersion=boolean

Set configVersion to true on the command that sets the IP Service Activator
configuration version. The IP Service Activator configuration version is a timestamp of
when the configuration was last modified by IP Service Activator.

ordered=string

The ordered attribute lets you control whether or not the sequencing of commands is
relevant when determining whether or not discrepancies exist between the device and
the IP Service Activator device model. Define a string value, and set the ordered
attribute value to the same string value for all commands at the same nesting level for
which the sequencing is relevant. The correct sequence of the commands will be the
order they appear in the audit template.

For example, to specify that if commands "cmd B", and "cmd D" both appear under
command "cmd X", then "cmd D" must appear after "cmd B", set ordered="OrderBD"
for both "cmd B", and "cmd D".

In this case, no discrepancies will be found since B, and D appear in the correct
sequence relative to each other:

Chapter 4
Audits

4-8

cmd X
 cmd A
 cmd B
 cmd C
 cmd D
 cmd E

In this case, discrepancies will be found since B, and D do not appear in the correct
sequence relative to each other:

cmd X
 cmd D
 cmd A
 cmd B
 cmd C
 cmd E

autoIndentUntil=string

The autoIntendUntil attribute tells the audit that every command under the current command
is a child command until string is detected, then context of the current command will be
exited. This attribute is used to deal with bad indenting problems.

For example, to tell the audit that commands B and C are children of command A, despite
bad indenting:

autoIndentUntil="cmd D"
cmd A
cmd B
cmd C
cmd D

ignoreCase=string

Performs a case insensitive comparison with the command on the device.

reportManualConfig=boolean

The reportManualConfig attribute lets you explicitly control whether a command can be
reported as a manual configuration. By default, global commands are not reported as manual
configurations, but nested commands are.

brokenIndentRulesOffset=integer

The brokenIndentRulesOffset attribute tells the audit that this command has a bad indent and
that it should be corrected to an absolute value. This attribute is used to deal with bad
indenting problems and comes into play with when CLIParser will prematurely break out of
context.

For example, use brokenIndentRulesOffset="2" for command D in the following list:

cmd A
 cmd B
 cmd C
 cmd D
 cmd E

In the above example, command D is suppose to be a child of command A but its relative
position shows it is out of context for command A. The brokenIndentRulesOffset attribute will
come into play when audit interrogates command D and is about break out of command A

Chapter 4
Audits

4-9

context. The absolute position of command D will be reset to ensure that it is seen as
a child of command A or peer to commands C and E.

Audit Synonyms
Some device IOS combinations display commands differently from the manner in
which the commands were activated on the device. This can cause an audit to fail
even though the commands reported are actually logically equivalent to those that
were configured.

The cartridge architecture allows you to specify synonyms for commands on the target
device. Synonyms use regular expressions to match and replace commands, so it can
be determined if two commands are equivalent.

You can specify system synonyms on a per-cartridge basis. The discussion of audit
synonyms in IP Service Activator System Administrator's Guide describes how audit
synonyms work, and describes how an administrator can specify custom synonyms to
create new synonyms or redefine system synonyms after IP Service Activator is
deployed.

You can specify system synonyms in the synonyms.xml file included in the cartridge.
The samples and descriptions of elements in a synonyms file, as described in IP
Service Activator System Administrator's Guide, can be used as reference material for
an administrator editing the content of a custom synonyms file or a cartridge developer
editing the content of a system synonyms file.

Synonyms can be specified for both the expected command and for the configured
command.

Note:

A given command can only have one synonym made up of one or more
match and replace criteria. For example, A can be equivalent to A' but not A"
simultaneously for equivalence testing within the scope of a single
auditTemplate.

For further details on audit synonyms, refer to IP Service Activator System
Administrator's Guide.

Options
There can be variations in the command syntax for certain commands within device
families based on the specific device type and OS variant. Options allow you to specify
the correct commands to handle these variants, without having to create a separate
service cartridge.

Options allow you to set information in the device model which will render the correct
syntax version for a given command.

To do this, you define and document configuration options for a cartridge, and
implement the variations in the service model to device model transform, and the
annotated device model to CLI transform, based on option values.

Chapter 4
Options

4-10

Option values for specific device type and IOS combinations are specified in option
configuration files, which are registered by cartridge units in the appropriate registry entry file.
The option configuration files, and the registry entries that reference them, may be
customized by the system administrator once the cartridge is deployed.

For complete details on creating options for a cartridge, refer to IP Service Activator SDK
Base Cartridge Developer Guide.

Capabilities
In IP Service Activator, when a device is discovered, the policy server fetches the device's
capabilities from the Network Processor, so it can model the device appropriately for the user.
The Network Processor returns capabilities based on the base and service cartridges that
manage that device.

It is the capabilities files that specify the ability of the device and cartridge to support different
types of policies at the device, interface and sub-interface level.

Capabilities for different service cartridges are ORed together to provide a single view of the
overall device capabilities to the policy server. A fault is generated if different service
cartridges specify conflicting capabilities.

It is very important when you are creating cartridges for use with IP Service Activator that the
capabilities files be appropriately configured to report the capabilities you are providing policy
and service support for.

A sample capabilities file follows:

<caps:capabilities
 xmlns:caps="http://www.metasolv.com/serviceactivator/capabilities"
 xmlns="http://www.metasolv.com/serviceactivator/capabilities"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.metasolv.com/serviceactivator/capabilities">
 <caps:device>
 </caps:device>
 <caps:interface>
 <caps:ifType>32</caps:ifType>
 <caps:inbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:ip_unnumbered_support>0</caps:ip_unnumbered_support>
 </caps:inbound>
 <caps:outbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>

Chapter 4
Capabilities

4-11

 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:vce_support>
 <caps:supports_virtual_ce>1</caps:supports_virtual_ce>
 <caps:supports_RIP_virtual_ce>1</caps:supports_RIP_virtual_ce>
 <caps:supports_static_virtual_ce>1</caps:supports_static_virtual_ce>
 <caps:supports_OSPF_virtual_ce>0</caps:supports_OSPF_virtual_ce>
 <caps:supports_eBGP_virtual_ce>1</caps:supports_eBGP_virtual_ce>
 <caps:supports_EIGRP_virtual_ce>1</
caps:supports_EIGRP_virtual_ce>
 </caps:vce_support>
 <caps:ip_unnumbered_support>0</caps:ip_unnumbered_support>
 </caps:outbound>
 <caps:subInterface>
 <caps:inbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:inbound>
 <caps:outbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:vce_support>
 <caps:supports_virtual_ce>1</caps:supports_virtual_ce>
 <caps:supports_RIP_virtual_ce>1</caps:supports_RIP_virtual_ce>
 <caps:supports_static_virtual_ce>1</caps:supports_static_virtual_ce>
 <caps:supports_OSPF_virtual_ce>0</caps:supports_OSPF_virtual_ce>
 <caps:supports_eBGP_virtual_ce>1</caps:supports_eBGP_virtual_ce>
 <caps:supports_EIGRP_virtual_ce>1</
caps:supports_EIGRP_virtual_ce>
 </caps:vce_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:outbound>
 </caps:subInterface>
 </caps:interface>
 <caps:interface>
 <caps:ifType>23</caps:ifType>

Chapter 4
Capabilities

4-12

 <caps:inbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:inbound>
 <caps:outbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:vce_support>
 <caps:supports_virtual_ce>1</caps:supports_virtual_ce>
 <caps:supports_RIP_virtual_ce>1</caps:supports_RIP_virtual_ce>
 <caps:supports_static_virtual_ce>1</caps:supports_static_virtual_ce>
 <caps:supports_OSPF_virtual_ce>0</caps:supports_OSPF_virtual_ce>
 <caps:supports_eBGP_virtual_ce>1</caps:supports_eBGP_virtual_ce>
 <caps:supports_EIGRP_virtual_ce>1</
caps:supports_EIGRP_virtual_ce>
 </caps:vce_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:outbound>
 </caps:interface>
 <caps:interface>
 <caps:ifType>22</caps:ifType>
 <caps:inbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>
 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:inbound>
 <caps:outbound>
 <caps:access_rule_support>
 <caps:access_rules_supported>255</caps:access_rules_supported>
 <caps:classification_supported>

Chapter 4
Capabilities

4-13

 <caps:supported>SRC_IP</caps:supported>
 <caps:supported>DST_IP</caps:supported>
 <caps:supported>SRC_PORT</caps:supported>
 <caps:supported>DST_PORT</caps:supported>
 <caps:supported>IP_PROTO</caps:supported>
 <caps:supported>TCP_HEADER_OPTIONS</caps:supported>
 <caps:supported>TCP_ESTABLISHED</caps:supported>
 </caps:classification_supported>
 </caps:access_rule_support>
 <caps:vce_support>
 <caps:supports_virtual_ce>1</caps:supports_virtual_ce>
 <caps:supports_RIP_virtual_ce>1</caps:supports_RIP_virtual_ce>
 <caps:supports_static_virtual_ce>1</caps:supports_static_virtual_ce>
 <caps:supports_OSPF_virtual_ce>0</caps:supports_OSPF_virtual_ce>
 <caps:supports_eBGP_virtual_ce>1</caps:supports_eBGP_virtual_ce>
 <caps:supports_EIGRP_virtual_ce>1</
caps:supports_EIGRP_virtual_ce>
 </caps:vce_support>
 <caps:ip_unnumbered_support>1</caps:ip_unnumbered_support>
 </caps:outbound>
 </caps:interface>
</caps:capabilities>

The relevant sections are:

• Device: specifies device capabilities

• Interface

– ifType: specifies interface capabilities for the interface type instance

By default, capabilities are set to false (i.e. 0) meaning the capability is not supported.
Specifying true (i.e. 1) indicates that the service is supported. In some cases, support
is specified using strings which indicate which aspect of a capability is supported. For
example, the number of access rules supported on an interface of type 32:

 <caps:access_rules_supported>255</caps:access_rules_supported>

In the sample above, there are no device-level capabilities. If a device for which this
capabilities file applies was discovered, and had an interface of type 32, then that
interface would have support for the capabilities marked true (1).

Message Definition
Success, warning and error message pattern files can be defined for service cartridges
in the same way as for base cartridges. For example, device responses for commands
sent by a service cartridge are analyzed and patterns are created in the message
pattern files for that service cartridge. The difference is that for a base cartridge, the
messages files are referenced from the Registry.xml file, and for a service cartridge,
the messages files are referenced from the Extension.xml file.

The Network Processor compares device responses against sets of patterns stored in
XML files to monitor its interactions with the device. By finding matches with stored
messages patterns, the Network Processor can determine the results of commands
sent to the device.

The Network Processor changes existing configuration on the device only if the device
response matches a success pattern, a non-blocking warning pattern, or if there is no
response at all (i.e. only the command prompt is returned).

Chapter 4
Message Definition

4-14

As the Network Processor generates the needed commands, connects to the device, and
starts changing the device configuration, the responses from the device are analyzed after
each command. The following categories of responses are defined:

• Success: if the device response matches a success pattern or there is no response at all
(i.e. only a prompt is returned) then the command is considered to be successful.

• Warning (blocking and non-blocking): if the response from the device matches a non-
blocking warning pattern, a fault (i.e. Warning) is raised. If the response from the device
matches a blocking warning pattern, a fault is raised, and all concretes affected by that
transaction are rejected and the partially implemented configuration is rolled back.

• Error: if the response from the device matches one of the known error patterns, then a
fault (i.e. Error) is raised against the device itself, all the concretes affected by that
transaction are rejected and the partially implemented configuration is rolled back.

In addition, if the response from the device does not match any success, warning, or error
pattern, then the response is considered to be an unknown error. A fault (i.e. Error) is raised
against the device, all the concretes affected by that transaction are rejected, and the partially
implemented configuration is rolled back. The fault message includes the rejected command
and the actual message returned by the device. Note that successive white space and new
line characters are removed from the device response. The configuration conflict is recorded
in the audit log file, and the device state is marked Intervention Required for decision/action
by the system administrator.

Overriding Message Definitions
Once the cartridge is deployed, the list of success patterns can be overridden by the system
administrator. For this purpose, the cartridge .zip file includes a copy of the
successMessages.xml file in the vendor specific sampleRegistry directory. For example, for
a Cisco cartridge, the path would be
Service_Activator_home\Config\networkProcessor\ciscoSampleRegistry\messages\succ
essMessages.xml.

To override the success patterns, a system administrator can edit a copy of the
successMessage.xml file and copy it to the same relative location referenced by the
appropriate registry entry. If no successMessages.xml file is specified in the registry file
entry, the global SuccessMessages.xml file will be used.

Note:

The global SuccessMessages.xml file is deprecated.

For example, to override the Cisco successMessages.xml file once the cartridge has been
deployed:

1. Copy the successMessages.xml file found in the install directory at

Service_Activator_home\Config\networkProcessor\ciscoSampleRegistry\messages\
successMessages.xml

to

Service_Activator_home\Config\networkProcessor\com\metasolv\serviceactivator\ca
rtridges\cisco\successMessages.xml

Chapter 4
Message Definition

4-15

2. Add, modify, or delete success patterns as necessary.

3. Ensure that the location specified in the appropriate registry file reflects the actual
location of the file relative to the install directory at
Service_Activator_home\Config\networkProcessor

For example:

<successMessages>com\metasolv\serviceactivator\cartridges\cisco\messages\succ
essMessages.xml</successMessages>

The same process can be applied for warning and error message files.

For details on message files as part of a base cartridge, refer to IP Service Activator
SDK Base Cartridge Developer Guide.

Pre- and Post-Checks
Pre- and post-checks provide the ability verify information on a device when the
annotated DM to CLI transform executes, before the general configuration is sent. This
allows you to confirm that prerequisites to the configuration are met. For example,
some configuration may rely on certain other values being configured on the device.
Alternatively, some configuration may conflict with certain values that may be
configured on the device.

After configuration is sent, you have the opportunity to have a post-check invoked to
verify some aspect of the commands that were sent to the device.

Types of Pre- and Post-Checks
There are two basic types of checks: Type I and Type II.

For Type I checks, the framework handles the pass/fail decision, based on regular
expression pattern matching of the result against the message files.

With Type II checks, the result of sending the check commands are passed back, and
then programmatically inspected using a customized XQuery. Appropriate action is
taken based on that result.

Type I Checks
In a Type I check, the check mechanism sends commands to the device, and then
parses the results against the cartridges message files. If a match occurs, an
appropriate action is taken to continue or abort the remaining configuration.

Type I check is imbedded in the CLI document executed by the Network Processor to
send the CLI to the device.

Type II Checks
A Type II check is executed before the CLI document is executed by the Network
Processor. The check mechanism sends commands to the device, and returns the
result. This result is programmatically inspected based on your customized XQuery to
determine whether to continue or abort the remaining configuration.

There are two types of Type II checks:

Chapter 4
Pre- and Post-Checks

4-16

• Type IIa checks: uses a success/error pattern. The pattern match determines how the
pass/fail condition is met.

• Type IIb checks: the command instance has no success/error pattern. The results are
inspected using your customized XQuery to determine what action to take.

Cartridge Version
The cartridge version is used as the version of the device model that the cartridge generates.
It is set in the cartridge skeleton properties file (sdk_global_cartridgeVersion) and the value
of it is put into the dm-version.xq file when it is generated. Any device model that is
generated by the cartridge is given this version number.

A sample fragment from dm-version.xq follows: ""

declare variable $dmver:version := "2.0";

The version format can be a, a.b, a.b.c (major, major.minor, major.minor.sub-minor), where a,
b, c must all be numeric.

As a cartridge developer, you want to increment the cartridge version whenever a significant
change to the device model has occurred which requires a non-trivial upgrade to an existing
DM.

Device Model Upgrades
If you make modifications which include device model schema changes to a cartridge that is
already deployed, you must be aware of the effect of these changes on your IP Service
Activator installation, in particular, persistent data.

As the cartridge developer, you are responsible for analyzing whether or not a device model
upgrade is required, and if so:

• Updating the cartridge version

• Updating and unit testing the upgrade source code related to the modified device model

Once the cartridge is deployed, non-trivial changes to devicemodel.xsd will require a device
model upgrade and may or may not require a custom transform for the upgrade.

Examples of non-trivial device model changes are:

• Introduction of mandatory attributes

• Removal of attributes

• Substantial modification of an existing attribute

• Re-ordering of attributes

An example of a trivial device model change is:

• Introduction of optional attributes

The device model transform is required if the change made to the schema impacts the use of
the last device model during the service model to device model transform. By default, the last
device model is not used in the generated cartridge source files. It would only be used by
custom XQuery code. If it is not used, then the upgrade will regenerate the new version of the
last device model without the need for a custom upgrade transform.

Chapter 4
Cartridge Version

4-17

Should you make a non-trivial change to a device model, then you must write a
transform that allows the Network Processor upgrade tool (NpUpgrade) to upgrade the
existing device model.

Network Processor NpUpgrade
The NpUpgrade does a partial upgrade of all device models, including those for the
service cartridges. It looks for the xquerylib\DmUpgrade.xq in the same classpath as
sm2dm.xq, and if this file exists, it uses the XQuery to perform the upgrade. The
upgraded device model is used as the last device model in the upgrade process.

• An editable DmUpgrade.xq is added to the xquerylib directory for each base and
service cartridge upon source file generation.

• For each cartridge, an
SDK_home\...\test\models\upgradeFrom\sampleDeviceModel.xml file is
provided for testing purposes.

• A test file, SDK_home\...\test\DmUpgradeTests.java, is provided to transform the
sample device model by running the DmUpgrade.xq xquery.

Configuration Version
The IpsaConfigVersion is removed from a device when the last concrete is removed
from the device in IP Service Activator. Typically, this coincides with the removal of the
last IP Service Activator configured command from the device.

An exception to this occurs when a configuration policy, which does not generate
commands, is the last configuration to be removed from the device in IP Service
Activator. For example, schedule is an example of a configuration policy that does not
generate commands. If IP Service Activator is running with Configuration
Management, and you have installed a schedule on a device, along with other
concretes which do generate commands, the device will maintain an
IpsaConfigVersion, until all configuration is removed including the schedule.

Configuration Management Support
The SDK supports the configuration of cartridges to enable the use of services from
the Configuration Management product.

The following services provided by Configuration Management can be supported in the
Network Processor:

• Audit: supported through base and service cartridges

• Configuration activation: supported from configuration policies through service
cartridges in conjunction with a base cartridge.

• Restore: can be implemented in base cartridges

For More Information on Cartridge Operations
For extensive information on the following points, see IP Service Activator System
Administrator's Guide:

• Audit types and reports

Chapter 4
Configuration Management Support

4-18

• The syntax of audit template file entries

• Running a device audit

• Contents of synonyms files

• Tools to help create synonyms

For information on configuring cartridges to support the use of services from the
Configuration Management product, see IP Service Activator SDK Configuration
Management Developer Guide.

Chapter 4
For More Information on Cartridge Operations

4-19

5
Testing, Monitoring, and Error Handling

This chapter explains how to perform unit and end-to-end tests, logging, and error handling.

Test Environments
Basic tests of cartridges and configuration policies created with the SDK can be performed
without an Oracle Communications IP Service Activator or Oracle Communications
Configuration Management system.

To perform end-to-end tests of installed cartridges and configuration policies that you have
developed, it is recommended that you have a IP Service Activator installation dedicated to
the purpose. This system should have access to some actual devices.

Testing on a live IP Service Activator installation is not recommended.

Unit Test
A unit test script is automatically created when you compile a cartridge. The purpose of the
unit test is to verify that the main transform stages of the cartridge (service model to device
model and annotated device model to CLI) generate the output documents correctly.

DM Validation
DM validation is used to validate the device model generated by the cartridge. It is called
after the cartridge has generated the device model from the service model. The validation is
more specific to the vendor and service.

Logging
Each Network Processor maintains one current log file and one current audit trail log file. The
Network Processor logging facilities are based on the log4j utility.

For more information on network processor logging, please refer to the discussion of Network
Processor administration and maintenance in IP Service Activator System Administrator's
Guide.

Audit Trail Logging
Audit trail logging records the commands sent to devices by the base cartridge, and any
service cartridges that extend the services of the base cartridge.

The audit trail log files for the Network Processor are located in the directory:
Service_Activator_home\AuditTrails.

Audit trail logging properties are set up on a per-cartridge basis and include:

• The name of the audit logging file

5-1

• Audit trail logging level

• File rollover strategy

Handling Faults and Errors
The Network Processor has a number of strategies for handling faults and errors when
communication with the target device.

Rollback
Any time an error is encountered while sending commands to a device, a rollback will
be initiated. The rollback's purpose is to restore the device to the same state it was in
before configuration changes were applied. This ensures the device is returned to a
known state.

The rollback works by reversing the last and target device models before annotating.
This will cause configuration that was created to instead be marked as deleted.
Likewise, anything removed would instead be added. Also any modifications would be
modified back to their original state.

Once this reverse annotation is completed, the DM to CLI is rerun. This result is a
complete list of commands to undo the changes.

Device Model IDs
The remaining component to the rollback involves the device model IDs. DM IDs are
used to correlate commands back to their corresponding device model elements. They
must be implemented correctly for rollbacks to function properly. Incorrectly
implemented DM IDs will not be detected or noticed during the successful running of
the system. They will only cause problems after specific failures sending commands to
a device.

DM IDs are used to track changes applied to the device, and provide a means for
knowing which changes have been successfully applied before the error was
encountered. These IDs remain the same for the reverse annotation, and are used to
filter out configuration that was not applied. This is done as part of the annotations.
Any configuration that did not get applied to the device will not be marked as changed.

Every device model element extending the base type of Changeable will be marked
with a different DM ID by the framework before the DM to CLI transform. Every
element marked as changed (changetype="ADD", “DELETE" or “MODIFY") will need
to have its DM ID in a command to be sent to the device. The framework can then
determine which configuration elements have been successfully applied to the device
while sending commands. This is needed when a failure occurs, as the framework will
redo the annotations but will exclude any configuration that was not successfully
applied.

Rollback Failures
If any failure occurs during the rollback, the system is forced to put the device in the
intervention required state. This is an indication that the system could not put the
device into a known state and a user must investigate.

Chapter 5
Handling Faults and Errors

5-2

For more information on how to deal with a failed rollback, refer to the discussion of
recovering from rollback failure in IP Service Activator System Administrator's Guide.

Quarantine
The rollback mechanism will remove all configuration changes if any failure is encountered
while sending the commands to the device. There could be many different changes in a given
transaction, not all of which could fail. Quarantine provides a means of separating the failed
configuration so other changes can be applied to the device.

If any failure occurs where the association IDs are known (e.g. sending commands, DM
validation XQuery faults), the system will quarantine that configuration after the rollback has
been completed. This is done by restoring the failed parts of the service model to the last
service model. Once this has been completed, the transforms are run again with the new
service model. This effectively reverts the failed configuration and then retries any other
configuration changes that could have occurred.

Chapter 5
Handling Faults and Errors

5-3

6
Best Practices

This chapter offers some best practices to help you create high quality cartridges.

Choosing Whether to Extend a Cartridge or to Plan a New
Cartridge

If you are considering adding support for a new service type using the SDK, you can either
add that to one of your pre-existing service cartridges, or you can choose to create a new
service cartridge.

In general, the guidelines are as follows:

• Services that have inter-dependencies (other than interface/sub-interface creation) must
have their implementations co-exist in the same cartridge.

• Service types that will have many instances on a device (for instance, VPLS service
compared to SNMP setup service) must exist in their own cartridge.

• Go with the minimal set of cartridges to implement the desired set of services within the
above constraints (inter-dependencies, model size, choice of Java vs. XQuery). This is
because there is overhead when you add each service cartridge. The actual overhead
will depend on the set of cartridges and the set of services on a given device.

Choosing the Cartridge Implementation
You can choose to create either Java or XQuery-based cartridges. This section provides
some information to help you choose.

Developer Knowledge
Java knowledge (and experience with additional libraries such as XMLBeans, SAX, DOM) is
more commonly available than XQuery knowledge.

Transformation Complexity
XQuery is very good at mining data from the source document and putting it into the
destination document. However, it does not excel at complex flow logic, modularization, or
computation. If you require any of these, you have two options:

• Write your basic flow in XQuery, as well as any simple transforms, and write the more
complex parts in Java. Call the Java methods from XQuery.

or

• Write everything in Java.

6-1

Model Size
The size of the Service Model and Device Model depend on a number of factors:

• The number of instances of services of this kind that will go on one device.

• The size of an individual instance (for example, some PHB instances can get very
large).

• The number of commands generated for an instance.

Typically, the larger the model, the more Java has to figure in the transformation, either
through an XQuery framework seeded with Java callouts, or by using only Java.

Time to Complete
With knowledgeable developers, XQuery typically delivers working cartridges earlier
than Java. Prototyping is typically easier with XQuery.

XQuery Advantages and Disadvantages
The advantages of using XQuery are:

• Faster development cycles (at least, initially)

• Very rich language for the functionality it covers

• Easily field modifiable

The disadvantages to using XQuery are:

• Very primitive modularization concepts (and object orientation concepts)

• No schema awareness, limited type checking

• Control flow structures are difficult to use, especially beyond simple flow control

• Runtime exceptions come from Saxon and are difficult to debug

• Additional IDE for full developer convenience required (e.g. oXygen, XMLspy)

• Very easy to write sub-optimal code and XPath expressions (both in terms of
memory use and execution time)

• Code flow must mimic the sequence and structure of the output XML document
which leads to convoluted (spaghetti) code without a lot of constant effort

Java Advantages and Disadvantages
The advantages of using Java are:

• Full fledged programming language

• Multiple ways to deal with XML data

• Easier to layout responsibilities for behavior and data abstraction

• Can be written much faster

• Standard Java development, debugging, and profiling tools are enough

Chapter 6
Choosing the Cartridge Implementation

6-2

• Allows developer to greatly optimize the generation of the Device Model from the Service
Model by viewing it as a set of modifications to be performed on (a copy of) the Last
Device Model, rather than as a complete re-generation of the new Device Model

XQuery Transform Best Practices
This section offers best practices to create high quality XQuery transforms for cartridges.

XQuery Performance Optimization
XQuery is not a procedural language, so care must be taken to not write code in a procedural
fashion. The XQuery engines implement performance optimizations that can often cause
side-effects when attempting to write procedural code with XQuery.

Consider the code below:

declare function myFunction($source as element()*) as xs:boolean
 {
 let $list := for $item in $source
 return
 $item/itemvalue
 return
 if (fn:count($list) > 0) then
 true()
 else
 false()
 ;

This code returns the correct Boolean value, but the inner loop may not execute on all
possible items in the source. Optimizations may cause the loop to terminate once the
following ‘if' expression is fully satisfied (i.e. there is something in the list).

This is just one example of how the optimizations take place. Many more can occur and most
are driven by determining dependencies and the engine only evaluating things that need to
be evaluated.

Another optimization example follows:

declare function myFunction2($source as element()*) as xs:boolean
 {
 let $list := myFunctionA ($source/element)
 let $list2 := myFunctionB ($source/element2)
 return
 $list

This can evaluate $list by calling the function myFunctionA, but the return value specifies
only $list and not $list2 so myFunctionB may never be called.

XQuery Searches
Care must be taken while creating XQuery searches. XQuery always checks for all possible
search combinations. In some cases, the application designer is aware that there is only a
single match for something for a search item, but XQuery does not provide an accurate
representation of it. Instead, it evaluates all the possible combinations. The easiest way to
reduce the performance cost of a search is to be careful about the scope of all searches.

Chapter 6
XQuery Transform Best Practices

6-3

For more efficient searches, avoid searching with “//" as this causes two problems:

• Performance impact

• Can unexpectedly return results at different levels in the document. It is always
better to be more explicit about scope.

Best Practices for Coding XQuery
The following points define the best practices while writing codes in XQuery:

• Care should be taken while writing loops, especially nested loops. Nested looping,
even when constrained with a ‘where' clause, can be very risky. The behavior is
very similar to general searching where all the possible combinations are
evaluated.

• It is advisable to break code into separate modules, and use smaller functions
wherever possible.

• Some functions are not always appropriate for implementing in XQuery. Very
complex methods are more appropriate to do in Java. For example, cases where
data can be held and stored in Maps instead of continually searching, are more
appropriately done in Java.

Syntax For Entering Control Characters in XQuery
You can enter any characters from the ASCII character set (0-255) in any text editor
using the following procedure:

1. On your keyboard, press the Num Lock key so that Num Lock is turned on

2. Press and hold the Alt key

3. Using the keypad on your keyboard, enter the decimal code of the character as a
3 digit number, padded on the left with zeros, if necessary (for example, 009 for
tab)

4. Release the Alt key

Alternatively, many text editors allow you to select control characters from a list for
insertion. For example, in TextPad, use the command View->Clip Library.

In addition to entering ASCII characters on Windows editors like Notepad and
Wordpad, there are ways to enter these characters in UNIX editors like vi and emacs.

For example:

• Ctrl + I = horizontal TAB (numerical decimal value = 9)

• Ctrl + J = Line Feed (10)

• Ctrl + M = carriage return (13)

Java Transform Best Practices
his section provides some best practices for creating quality Java transforms.

Chapter 6
Java Transform Best Practices

6-4

Java Searches
Similar to the best practices for XQuery, the same care should be taken when using XPath
statements to search for objects. This is most important when constructing the device model.
Since you are creating the device model using Java, unlike with XQuery, you have random
access to any part of the device model that you have already created. To improve search
performance, use XmlCursor or even better, XmlBookmarks as you are creating the device
model. The bookmarks allows you to quickly go back to a part of the device model you have
created without using XPath to search for it.

Service Model to Device Model Java Transform
When implementing an Sm2Dm transform in Java, you will need to create a class that
extends the ModelTransformer class. Then you will need to provide two methods. The first is
transform(), which the Network Processor will look for and call to perform the service model
to device model transform.

The second method you must supply is getAppInfo(). This method is used to get the version
of your device model. This value is used to determine if any upgrade procedures need to be
done to your device model between releases of your cartridge.

An example of a skeleton Sm2Dm class follows:

public class Sm2dm extends ModelTransformer {
 public XmlObject transform(
 XmlObject doc,
 Map params,
 Map uris) throws Exception {

 // get the last DM
 com.metasolv.serviceactivator.devicemodel.DeviceDocument lastDm;
 try {
 lastDm = (com.metasolv.serviceactivator.devicemodel.DeviceDocument)
((com.metasolv.serviceactivator.devicemodel.DeviceDocument)uris.get("last_dm")).copy();
 } catch (Exception e) {
 lastDm = null;
 }

 com.metasolv.serviceactivator.servicemodel.DeviceDocument sm;
 sm = (com.metasolv.serviceactivator.servicemodel.DeviceDocument)doc.copy();

 com.metasolv.serviceactivator.devicemodel.DeviceDocument targetDm;

 // Your transform here.

 return targetDm;
 }

 public XmlObject getAppInfo() {

 AppInfo appInfo = AppInfo.Factory.newInstance();
 appInfo.setVersion("1.0.0");
 return appInfo;
 }
}

Chapter 6
Java Transform Best Practices

6-5

Annotated Device Model to CLI Document Java Transform
When implementing a Dm2Cli transform in Java, you will need to create a class that
extends the ModelTransformer class. Then, you will need to provide a method called
transform() that the network processor will look for and call to perform the device mAn
example of a skeleton Dm2Cli class is shown below:

An example of a skeleton Dm2Cli class is shown below:

public class AnnotatedDm2Cli extends ModelTransformer {
 public XmlObject transform(XmlObject doc, Map params, Map uris) throws
Exception {
 com.metasolv.serviceactivator.devicemodel.DeviceDocument lastDm;
 try {
 lastDm =
(com.metasolv.serviceactivator.devicemodel.DeviceDocument)uris.get("last_dm");
 } catch (Exception e) {
 lastDm = null;
 }

 XmlObject annotatedDm = doc.copy();

 CommandSessionDocument commandSessionDoc;

 // Your transform here.

 return commandSessionDoc;
}odel to CLI transform.

Best Practices for Extending the Device Model
Some best practices for creating device model extension .xsd files are:

• Define one element per command and one subordinate element for each
command parameter. For example, keyword param1 param2 below:

<keyword>
 <param1>value_1</param1>
 <param2>value_2</param2>
</keyword>

• When defining the type for an element that maps to a command, extend
lib:Changeable. This will allow annotate() (the DM compare processor) to mark it
@changeType="ADD"|"DELETE".

• Make an element Changeable and Identifiable if the command supports
modifications (as opposed to delete and re-add). This will allow annotate() to mark
it @changeType="ADD"|"DELETE"|"MODIFY". An element is Identifiable if it belongs
to a lib:Container and some of its subordinated elements make up a key within
the scope of the container.

• Make an element Identifiable but not Changeable if it is only used as context for
configuration items managed by Oracle Communications IP Service Activator
(such as interfaces).

• Use *Ref in the name of an element that references other elements.

• Use XML schema validation as much as possible. For example, use min/
maxOccurs, min/maxInclusive, pattern.

Chapter 6
Best Practices for Extending the Device Model

6-6

• Do not define unnecessary elements or types. Use containers only for defining scope for
Identifiable elements.

• Do not use any unnecessary abstraction in the DM. Instead of generating multiple
command types from a single DM element type, define one element type for each CLI
command that needs to be generated. The SM2DM transformation should take care of
the abstract-concrete mapping.

Chapter 6
Best Practices for Extending the Device Model

6-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the Software Development Kit
	About the SDK
	What You Can Produce Using the SDK
	Additional SDK Terms
	SDK Structured Development Process
	SDK Samples
	Cartridges in Use
	Next Steps in Learning About the SDK
	SDK Developer Guides
	Other Documentation Sources

	2 Overview of the Network Processor
	Introduction
	Network Processor Concepts
	Network Processor and Cartridge Components
	Process
	Registering Cartridges with the Network Processor

	Data Flow from a Configuration Policy through the Network Processor and Cartridge
	Service Model
	Sample Service Model
	Definitions and Associations
	Sample Service Model Associations

	Device Model
	Sample Device Model
	Device Model and the Service Model to Device Model Transform
	Sample Relating the Service Model to the Device Model
	netFlow
	staticRoute

	Device Model Validation
	Sample Annotated Device Model
	Sample Relating the Device Model to the Annotated Device Model
	Sample CLI Commands and the Device Model to CLI Transform
	Sample CLI Document
	CLI Elements

	Sample Relating the Annotated Device Model to the CLI Document
	CLI Merging
	Merge Section Descriptions

	Sample Relating the CLI Document to Configuration Commands
	Command Executor
	Network Processor End to End Flow-Through Illustration
	Device Model Extension
	Changeables and Identifiables

	3 Cartridge Overview
	Introduction to Cartridges
	Base Cartridges
	Service Cartridges
	Configuration Policies
	Cartridge Registration
	Base Cartridge Registry.xml
	Service Cartridge Extension.xml
	About Subscriptions
	Definition Type
	Configuration Policy Identification

	Configuration Policy ConfigPolicyRegistry.xml

	4 Cartridge Operations
	Audits
	Audit Template
	Audit Template Command Attributes

	Audit Synonyms

	Options
	Capabilities
	Message Definition
	Overriding Message Definitions

	Pre- and Post-Checks
	Types of Pre- and Post-Checks
	Type I Checks
	Type II Checks

	Cartridge Version
	Device Model Upgrades
	Network Processor NpUpgrade

	Configuration Version

	Configuration Management Support
	For More Information on Cartridge Operations

	5 Testing, Monitoring, and Error Handling
	Test Environments
	Unit Test

	DM Validation
	Logging
	Audit Trail Logging

	Handling Faults and Errors
	Rollback
	Device Model IDs
	Rollback Failures
	Quarantine

	6 Best Practices
	Choosing Whether to Extend a Cartridge or to Plan a New Cartridge
	Choosing the Cartridge Implementation
	Developer Knowledge
	Transformation Complexity
	Model Size
	Time to Complete
	XQuery Advantages and Disadvantages
	Java Advantages and Disadvantages

	XQuery Transform Best Practices
	XQuery Performance Optimization
	XQuery Searches
	Best Practices for Coding XQuery
	Syntax For Entering Control Characters in XQuery

	Java Transform Best Practices
	Java Searches
	Service Model to Device Model Java Transform
	Annotated Device Model to CLI Document Java Transform

	Best Practices for Extending the Device Model

