
Oracle® Communications IP Service
Activator
SDK Configuration Policy Extension
Developer Guide

Release 7.5
F59547-01
September 2022

Oracle Communications IP Service Activator SDK Configuration Policy Extension Developer Guide, Release
7.5

F59547-01

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

1 Overview

Developing Configuration Policies with the Software Development Kit 1-1

Core Cartridges 1-1

Vendor Cartridges 1-1

2 Building a Configuration Policy

Building a Configuration Policy 2-1

Creating a Configuration Policy Source Directory and Skeleton Properties File 2-2

Defining the Configuration Policy and Customizing the Properties File 2-2

Generating the Configuration Policy Source Files 2-2

Customizing the Configuration Policy Source Files 2-2

Compiling and Packaging the Configuration Policy 2-2

Performing End-to-End Tests 2-2

About the Provided Sample Configuration Policies 2-2

Components of the Provided Sample Configuration Policies 2-3

Completing the Sample 2-3

Purpose of the Provided Sample Configuration Policies 2-3

Sample Skeleton Properties File 2-3

Sample Configuration Policies 2-4

Sample bannerSample Configuration Policy 2-4

Sample staticrouteSample Configuration Policy 2-5

Creating a Configuration Policy Source Directory and Properties File 2-5

Defining the Configuration Policy and Customizing the Properties File 2-6

Generating the Configuration Policy Source Files 2-6

Generating the bannerSample Configuration Policy Source Files 2-6

Result of the Generation Process 2-7

iii

Generating Your Own Configuration Policy Source Files 2-7

Result of the Generation Process 2-8

Troubleshooting Configuration Policy Generation 2-8

Using an Alternate Directory Structure 2-8

Configuration Policy Generator Message Logging 2-8

Customizing the Configuration Policy Source Files 2-8

Completing the Configuration Policy Source Files 2-9

Completing the bannerSample Configuration Policy Schema 2-9

Completing the staticrouteSample Configuration Policy Schema 2-9

Completing Your Own Configuration Policy Schema 2-9

Creating an HTML GUI Form 2-9

GUI Extension Schema API 2-10

Compiling the Configuration Policy 2-11

Compiling the bannerSample Configuration Policy Source Files 2-12

Compiling the staticrouteSample Configuration Policy Source Files 2-12

Compiling Your Own Configuration Policy Source Files 2-12

Troubleshooting Configuration Policy Compiling 2-12

Manifest File 2-13

Creating Interface Management Properties 2-13

Deploying Configuration Policies 2-14

Configuration Policy Version 2-14

NpUpgrade 2-15

Uninstalling Configuration Policies 2-15

3 Working with the IP Service Activator YANG Import Tool

Setting Up the YANG Import Tool 3-1

About the Configuration Policy Property Files 3-2

Importing and Parsing YANG Model Configuration Policies 3-3

Example: Importing and Parsing a Custom Configuration Policy 3-8

A Configuration Policy Generation Properties

iv

Preface

This guide explains how to use the Oracle Communications IP Service Activator Software
Development Kit (SDK) to create configuration policies.

Audience
This guide is intended for system developers using IP Service Activator Software
Development Kit (SDK) to develop configuration policies.

Before reading this guide, you should have read IP Service Activator Concepts and be
familiar with IP Service Activator.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter provides an overview of how to use the Oracle Communications IP Service
Activator Software Development Kit (SDK) to develop configuration policies.

Developing Configuration Policies with the Software
Development Kit

A base cartridge provides a framework to allow the Network Processor to perform basic
communication functions with a device. For details on creating base cartridges, refer to IP
Service Activator SDK Base Cartridge Developer Guide.

Additional services targeting specific vendor device types are added through integrated
service cartridges. Refer to IP Service Activator SDK Service Cartridge Developer Guide for
details.

A configuration policy provides a GUI form and a schema to collect data for a service.
Configuration policies require service cartridges to implement the service on specific devices.

Core Cartridges
IP Service Activator legacy cartridges, known as core cartridges, included the functions
provided by both a base and service cartridges all in the same package.

The base cartridge with separate related service cartridges is the preferred method of
supporting new services to maximize scalability and flexibility.

Vendor Cartridges
A base or core cartridge can be combined with a number of service cartridges to create a
vendor cartridge, which contains the functionality to connect to a specific device type, and
apply the services provided by the service cartridges.

1-1

2
Building a Configuration Policy

This chapter discusses configuration policy concepts and explains how to use the Oracle
Communications IP Service Activator Software Development Kit (SDK) to create
configuration policies. Configuration policies are implemented in a Service Activator
installation using service cartridges. Refer to IP Service Activator SDK Service Cartridge
Developer Guide for details about creating service cartridges.

A brief overview of the steps required to build configuration policies is given, followed by
detailed sections explaining all the required activities. Included are steps to try out the
procedures on the supplied bannerSample sample configuration policy source files.

Note:

For details about installing the SDK and the required third party tools, plus a
detailed overview of all SDK concepts, a discussion of cartridge components, and
an explanation of how cartridges integrate with the network processor, refer to IP
Service Activator SDK Developer Overview Guide.

Table 2-1 lists the directory placeholders used in this guide.

Table 2-1 Directory Placeholders

Placeholder Description

SDK_home The directory in which the SDK is installed.

Service_Activator_home The directory to which IP Service Activator is deployed. Typically
C:Program Files\Oracle Communications\IP Service Activator

This guide assumes:

• That the required versions of additional third party tools to support the SDK are installed
correctly.

• That you have set up the required environment variables to support the SDK functions.

For details on installing the SDK and the third party tool versions, refer to IP Service Activator
SDK Installation and Setup Guide.

Building a Configuration Policy
This section lists the steps required to build a configuration policy. Following a brief
introduction to these steps, each of the steps and all the activities required to execute them
are covered in detail.

The steps to build a configuration policy are:

• Creating a Configuration Policy Source Directory and Properties File

2-1

• Defining the Configuration Policy and Customizing the Properties File

• Generating the Configuration Policy Source Files

• Customizing the Configuration Policy Source Files

• Compiling the Configuration Policy

• Performing End-to-End Tests

Creating a Configuration Policy Source Directory and Skeleton
Properties File

In order to create your own configuration policy, you need to establish a uniquely
named directory structure for the source files, and create the skeleton properties file
that will be used to generate the starting source files.

Defining the Configuration Policy and Customizing the Properties File
This step involves determining the specific details of the configuration policy to be
created and specifying the information needed to apply the desired configuration to the
device. Refer to "Configuration Policy Generation Properties" for complete details on
the properties.

Generating the Configuration Policy Source Files
This step uses the SDK tools to read the skeleton properties file and create the
skeleton cartridge source files.

Customizing the Configuration Policy Source Files
This step is where most of your development effort will be spent. The key configuration
policy source components include:

• Schema for configuration policy data: see "Customizing the Configuration Policy
Source Files" for details.

• HTML GUI form: see "Creating an HTML GUI Form" for details.

Compiling and Packaging the Configuration Policy
This step uses the SDK tools to compile and package the configuration policy.

Performing End-to-End Tests
Use a service cartridge to deploy the configuration policy into a test Service Activator
environment as an extension to a base or core cartridge. See IP Service Activator
SDK Service Cartridge Developer Guide for information about creating service
cartridges.

About the Provided Sample Configuration Policies
This section describes the sample configuration policies provided.

Chapter 2
About the Provided Sample Configuration Policies

2-2

Components of the Provided Sample Configuration Policies
The SDK includes resources for two sample configuration policies: bannerSample and
staticrouteSample.

Included with each sample are:

• A skeleton.properties file used to generate the source files for the sample configuration
policy. For more information, see "Generating the Configuration Policy Source Files".

• A pre-edited sample schema used to demonstrate the edits required by the generated
schema to produce a working sample configuration policy.

The provided sample schema is located in:

SDK_home\samples\configPolicy\bannerSample\...

The generated sample schema is placed in:

SDK_home\configPolicies\bannerSample\...

Completing the Sample
To complete the sample, you can either copy the provided files over their generated
counterparts or edit the generated files.

Purpose of the Provided Sample Configuration Policies
The main values provided by the configuration policy sample are:

• You can inspect the generated schema to see how a simple, working, configuration policy
is constructed.

• You can complete, compile and package the superceded generated sample source files
into a working configuration policy and deploy it in a test system. The bannerSample
configuration policy is implemented by the ciscoBanner service cartridge.

• You can take a copy of the provided skeleton properties file, relocate and rename it, and
use it as the starting point to generate your own skeleton configuration policy source files.

Note:

Configuration policies are not supported on every router type/OS. For example, not
every router supports the banner sub-command banner slip-ppp command. Users
must ensure that the router supports the configuration policy commands that they
are trying to implement.

Sample Skeleton Properties File
The sample skeleton properties file that is used to create the source files for the
bannerSample sample configuration policy is called:

SDK_home\samples\configPolicy\bannerSample\skeleton.properties

Chapter 2
About the Provided Sample Configuration Policies

2-3

This properties file is pre-populated with the information needed to construct the
starting source files for the bannerSample sample configuration policy.

Some of the generated source files will require editing or you can overwrite them with
the provided source files.

As you read through the configuration policy creation steps, instructions are given on
how to use the sample to test some of the SDK tools and commands.

Refer to "Configuration Policy Generation Properties" for details on all the properties
implemented in the sample properties files which create the source files for the
sample.

Sample Configuration Policies
The configuration policy samples are:

• BannerSample

• StaticrouteSample

Sample bannerSample Configuration Policy
The bannerSample sample contains a schema for a consolidated banner
Configuration Policy that allows you to configure a sequence of one or more of each
possible banner command.

Key concepts illustrated by the sample include:

• Filling out the skeleton properties for a configuration policy

• Architecting the configuration policy schema

• Dealing with versioning and upgrades

It is assumed that only one occurrence of each banner type can exist on a device.

The banner types that can occur are:

• Exec: exec process creation banner

• Incoming: incoming terminal line banner

• Login: login message banner

• MOTD: message of the day banner

• Slip-ppp: slip-ppp message banner

Each banner is configured with a message which must begin and end with a delimiting
character of your choice. The delimiting character must not otherwise appear in the
message. The message may be single-line or multi-line. New line characters are
allowed.

An example banner follows:

Type: motd
Message: #Enter text for message of the day here.#

A configuration policy requires a service cartridge implementation. For details on the
ciscoBanner service cartridge, refer to IP Service Activator SDK Service Cartridge
Developer Guide.

Chapter 2
Sample Configuration Policies

2-4

Sample staticrouteSample Configuration Policy
The staticrouteSample sample contains a schema that allows you to configure one or more
static routes. Static routes are routes that cause packets moving between a source and a
destination to take a specified path. Such routes are useful for specifying a gateway of last
resort to which all unroutable packets will be sent.

Key concepts illustrated by the sample include:

• Filling out the skeleton properties for a configuration policy

• Architecting the configuration policy schema

• Dealing with versioning and upgrades

Static route configuration parameters are:

• Destination Prefix: IP address for the destination network in dotted decimal notation

• Destination Mask: subnet mask for the destination address in dotted decimal notation

• Next Hop IP: next hop IP address in dotted decimal notation

• Exit Interface Name: exit interface name

• Distance Metric: metric value as the distance metric for this route

A configuration policy requires a service cartridge implementation. For details on the
ciscoStaticRoute service cartridge and its parameters and options, refer to IP Service
Activator SDK Service Cartridge Developer Guide.

Creating a Configuration Policy Source Directory and Properties
File

To create your own configuration policy, you will need to establish a directory structure for the
source files, and create a skeleton properties file to generate the starting source files.

The simplest method is to copy the sample skeleton.properties file and edit it for your own
use.

To copy and edit the sample skeleton.properties file:

1. Create a unique name that identifies the configuration policy. This name will be referred
to as this_config_policy.

2. Create a new directory to hold your source files. For example:

SDK_home\configPolicies\this_config_policy

3. Copy the sample skeleton.properties file into your directory:

copy SDK_home\samples\configPolicy\bannerSample\skeleton.properties
SDK_home\configPolicies\this_config_policy

4. Edit your skeleton.properties file and change bannerSample to the this_config_policy in
the following entries:

config policy name
sdk_global_configPolicyName=this_config_policy
. . .
packaging structure

Chapter 2
Creating a Configuration Policy Source Directory and Properties File

2-5

sdk_global_package=com.metasolv.serviceactivator.configpolicies.this_config_p
olicy
configuration policy schema
sdk_schema_namespace=http://www.metasolv.com/serviceactivator/
this_config_policy
sdk_schema_namespaceAbbr=bn
sdk_schema_topLevelTag=this_config_policy
sdk_schema_topLevelType=this_config_policy

sdk_xmlbeans_package=com.metasolv.serviceactivator.this_config_policy

Defining the Configuration Policy and Customizing the
Properties File

You must perform this step before creating your Configuration Policy. This involves
determining the specific details of the configuration policy to be created and specifying
the information needed to apply the desired configuration to devices.

The configuration policy may require application across multiple operating systems or
device types. This can affect the definition of the configuration policy and/or require
separate configuration policies to be defined to achieve the desired end-goal.

A single configuration policy to implement a generic type of service may be subscribed
to by multiple service cartridges, each implementing it on a specific vendor's device.

Once the configuration policy is designed, use one of the sets of sample skeleton
configuration policy source files as a starting point to creating a configuration policy.

Generating the Configuration Policy Source Files
The SDK provides a tool for generating the configuration policy source files from the
skeleton properties file. Once the source files are generated, you will need to edit them
to complete your configuration policy.

Generating the bannerSample Configuration Policy Source Files
To generate the bannerSample configuration policy source files using the data from
the sample skeleton properties file:

1. Set the configuration policy version string variable. For example, if the
configuration policy version is 1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Do one of the following:

• In the SDK directory, run the cartridge generator script by running the included
batch file:

gencp samples\configPolicy\bannerSample\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=configPolicy -
DpropFile=SDK_home\samples\configPolicy\bannerSample\skeleton.properties

Chapter 2
Defining the Configuration Policy and Customizing the Properties File

2-6

Note:

To use the batch file, you must first add SDK_home\bin to your PATH variable
where SDK_home is the SDK directory.

Result of the Generation Process
The directory structure you created previously (see "Creating a Configuration Policy Source
Directory and Properties File") has been extended using the sdk_global_configPolicyName
value from the skeleton properties file. The source files generated under
SDK_home\configPolicies\sdk_global_configPolicyName\ include:

• build.xm: ant build file to build the configuration policy.

• src\...\schema\bannerSample.xsd: contains the configuration policy schema that will be
used to validate the data entered through the Service Activator client.

• src\ConfigPolicyRegistry.xml: contains registry information for the configuration policy
used to integrate it with a service cartridge.

The skeleton source file generation process also creates a log file is within the logs directory
at SDK_home\logs\generator.log.

To continue working with the sample configuration policy, go to "Compiling the Configuration
Policy".

Generating Your Own Configuration Policy Source Files
When you create your own configuration policy, the configuration policy name and the root
folder for the generated source are based on the sdk_global_configPolicyName property
value in the skeleton properties file. See "Creating a Configuration Policy Source Directory
and Properties File" for details. The property value is incorporated into the source files in
place of sdk_global_ConfigPolicyName.

To generate your own configuration policy source files using your customized skeleton
properties file:

1. Set the configuration policy version string variable. For example, if the configuration
policy version is 1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Do one of the following:

• In the SDK directory, run the cartridge generator script by running the included batch
file:

gencp configPolicies\<sdk_global_configPolicyName>\skeleton.properties

or

• Type in the command to run the generator script:

ant -DtemplateType=configPolicy -
DpropFile=SDK_home\configPolicies\sdk_global_configPolicyName\skeleton.properti
es

Chapter 2
Generating the Configuration Policy Source Files

2-7

Note:

To use the batch file, you must first add SDK_home\bin to your PATH
variable where SDK_home is the SDK directory.

Result of the Generation Process
This extends the SDK directory structure in a similar manner to what is described in
"Generating the Configuration Policy Source Files".

Note:

It is possible to use a different name for the skeleton properties file. If you
choose to do this, supply the new name instead of skeleton.properties in
the ant commands.

Troubleshooting Configuration Policy Generation
This section discusses where to find information to help you resolve configuration
policy generation issues.

Using an Alternate Directory Structure
If you are not using the standard directory structure to lay out all the configuration
policies, base cartridges and service cartridges being developed using the SDK, then
you must modify the Java sample build.xml file to ensure that all instances of sdkDir
are replaced with valid paths to the respective files. The preferred way to do this is to
set sdkDir to the top level directory for all the SDK-based artifacts.

Configuration Policy Generator Message Logging
The logging level of the configuration policy generator can be controlled by editing the
settings in the SDK_home\config\logging.properties file.

The default is to log debug level messages. Output is sent to both stdout and a logging
file: SDK_home\logs\generator.log.

For details on troubleshooting property file attributes, see IP Service Activator SDK
Base Cartridge Developer Guide.

Customizing the Configuration Policy Source Files
When creating a configuration policy, you will need to make appropriate edits to the
schema to support the particular functionality you want to implement. You will also
need to create an HTML GUI form.

Chapter 2
Customizing the Configuration Policy Source Files

2-8

Completing the Configuration Policy Source Files
You will need to make appropriate edits to the schema to complete the configuration policy
source files.

Note:

The provided schema is located in
SDK_home\samples\configPolicy\bannerSample\src\...\schema\schema.xsd
and the generated schema is located in
SDK_home\configPolicies\bannerSample\src\...\schema\bannerSample.xsd.

Completing the bannerSample Configuration Policy Schema
To complete the bannerSample configuration policy schema:

1. Do one of the following:

• Copy the provided schema over the generated schema.

or

• Edit the generated schema to complete its content development.

The provided schema demonstrates the edits required to complete the generated
schema to produce a working sample configuration policy.

Completing the staticrouteSample Configuration Policy Schema
To complete the staticrouteSample configuration policy schema:

1. Do one of the following:

• Copy the provided schema over the generated schema.

or

• Edit the generated schema to complete its content development.

The provided schema demonstrates the edits required to complete the generated
schema to produce a working sample configuration policy.

Completing Your Own Configuration Policy Schema
Once you have created your configuration policy schema using the process described in
"Generating Your Own Configuration Policy Source Files", edit your schema to add the
elements to describe the details of your Configuration Policy.

Creating an HTML GUI Form
The SDK includes a Configuration Policy HTML GUI builder tool. It builds an HTML file from
the XML Bean of a configuration policy that can be used in the Service Activator client to
create or edit an instance of that configuration policy.

Chapter 2
Customizing the Configuration Policy Source Files

2-9

Figure 2-1 illustrates the flow of data between the GUI extensions specified in the
extension XSD file (i.e. SDK_home\schema\cartridge.xsd)and the object model.

Figure 2-1 Data Flow Between GUI Extensions and Object Model

GUI Extension Schema API
A service model extension schema embeds GUI extension information for all the
elements that have an HTML representation. HtmlGuiBuilder relies on the GUI
extension information to translate a schema element into an HTML widget, a text area,
an input box, a drop-down, a JavaScript import, or other output.

The GUI extension information is defined in guiextensions.xsd. The following
example shows how to add GUI extension information to any schema element.

<xs:schema targetNamespace="http://www.metasolv.com/serviceactivator/banner"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bn="http://www.metasolv.com/serviceactivator/banner" xmlns:lib="http://
www.metasolv.com/serviceactivator/devicemodel"
xmlns:app="http://www.metasolv.com/serviceactivator/guiextensions"

Chapter 2
Customizing the Configuration Policy Source Files

2-10

xmlns:ipsa="http://www.metasolv.com/serviceactivator/documentation"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="banner" type="bn:Banner" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <app:gui>
 <!-- displayName become the label on the field -->
 <app:displayName>Banner</app:displayName>
 … …
 </app:gui>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Table 2-2 lists the possible schema types and their HTML widget equivalents.

Table 2-2 GUI Extension Schema Element Details

Schema Type HTML Widget

<app:displayName> Field label

<app:defaultValue> Field default value

<xs:enumeration> Dropdown menu label and value

<app:textarea> text area

<app:size> Field size

<app:optional> Reserved

<xs:choice> Not supported

Note:

There are three points to note with regard to the schema elements:

• A field can be an input box or a drop-down list.

• If an element has minOccurs="0", and it is a drop-down list, an empty item will
be added to the list and selected as the default.

• If an object has multiple elements, an Add button and a Delete will be added to
the HTML file, to create or delete an instance of the object.

Compiling the Configuration Policy
Configuration policy source files are compiled using ant. The compilation process creates the
required XML beans for it and packages them into a .zip file.

Note:

A classpath environment variable may interfere with the classpath required by the
SDK. It is therefore recommended that the classpath environment variable be unset
in the window or where the SDK is being used.

Chapter 2
Compiling the Configuration Policy

2-11

Compiling the bannerSample Configuration Policy Source Files
To compile the bannerSample configuration policy source files:

1. Set the configuration policy version string variable. For example, if the
configuration policy version is 1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Compile the bannerSample configuration policy source files with the command:

ant package -fSDK_Home\configPolicies\bannerSample\build.xml

Compiling the staticrouteSample Configuration Policy Source Files
To compile the bannerSample configuration policy source files:

1. Set the configuration policy version string variable. For example, if the
configuration policy version is 1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Compile the bannerSample configuration policy source files with the command:

ant package -fSDK_Home\configPolicies\staticrouteSample\build.xml

Compiling Your Own Configuration Policy Source Files
To compile your own configuration policy source files when you are done editing them:

1. Set the configuration policy version string variable. For example, if the
configuration policy version is 1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Compile the configuration policy source files with the command:

ant package -fSDK_Home\configPolicies\sdk_global_configPolicyName\build.xml
This will result in the following additions to the Configuration Policy directory structure:

SDK_home\configPolicies\sdk_global_configPolicyName
build.xml
beansrc
classes
html
lib
 sdk_global_configPolicyName.jar
package
 sdk_global_configPolicyName-configPolicy-${env.VERSION_STRING}.zip

Troubleshooting Configuration Policy Compiling
Compilation problems will be caused by schema errors. To debug these problems,
load the schema into an XML schema aware editor. This will make it much easier to
find and correct problems in the schema.

Chapter 2
Compiling the Configuration Policy

2-12

Manifest File
When a Configuration Policy is built, a manifest file is created listing all of the files that are
packaged into the Configuration Policy zip file. Installation of the Configuration Policy places
the manifest in the uninstall directory of the IP Service Activator installation.

Creating Interface Management Properties
In IP Service Activator the following has been implemented for configuration policies related
to interface or sub-interface creation and decoration.

Whenever an interface or sub-interface is created or decorated through IP Service Activator,
if the user specifies the IP address and netmask in the HTML page, the user can see the IP
address and netmask in the interface properties immediately. Both IPv4 and IPv6 address
formats are supported.

For configuration policies shipped with IP Service Activator, the location of ipaddress and
ipnetmask is fixed in the subinterface.xsd.

The path of the elements is as follows:

• ipaddress: root Node/primaryAddress/ipAddress

• ipNetMask: root Node/primaryAddress/ipNetMask

If you are using the SDK to create your own configuration policies related to interface or sub-
interface creation and decoration, you may wish to change the element names (other than
ipaddress and ipnetmask).

To change the element names:

1. Implement a new mappings tag.

The tag has the following constraints:

• The tag must be present in your XSD file.

• The tag is always related to a target. The only valid target is Interface.

The layout of the tag is:

 <xs:annotation>
 <xs:appinfo>
 <model:mappings target="Interface">
 <model:mapping direction="export">

<model:source_path>primaryAddress/ipAddress</model:source_path>

<model:target_attribute>ipAddress</model:target_attribute>
 </model:mapping>
 <model:mapping direction="export">

<model:source_path>primaryAddress/ipNetMask</model:source_path>

<model:target_attribute>ipNetMask</model:target_attribute>
 </model:mapping>
 </model:mappings>
 </xs:appinfo>
 </xs:annotation>

Chapter 2
Creating Interface Management Properties

2-13

Under mappings, you can specify a list of mappings. Each mapping contains a
direction attribute. The supported direction is export.

Each mapping has source_path and target_attribute as sub-tags. The source_path
can tell the path of the attribute from the root.

The target_attribute is fixed. The only supported target attributes are ipAddress and
ipNetMask.

Deploying Configuration Policies
The generated SDK configuration policy zip file needs to be deployed on a Service
Activator Network Processor host as well as on a Service Activator client host.

To deploy the configuration policy to a Network Processor host:

1. Unzip the sdk_global_configPolicyName-configPolicy-$
{env.VERSION_STRING}.zip file to the runtime environment of the Network
Processor in the Service_Activator_home directory. The configuration policy
schema, for example bannerSample.xsd, is installed in
Service_Activator_home\Config\schema.

2. If the Network Processor is already running, restarted it to load
sdk_global_configPolicyName.jar.

To deploy the configuration policy to the policy server host:

1. Unzip the sdk_global_configPolicyName-configPolicy-$
{env.VERSION_STRING}.zip file to the Service_Activator_Home directory.

2. Using the IP Service Activator client, right-click the Domain object and select
Properties.

The Properties dialog appears.

3. Select Setup.

4. Click Browse and select the sdk_global_configPolicyName.policy file.

5. Click OK.

6. Click Load and commit.

The configuration policy is now deployed.

Configuration Policy Version
Once the configuration policy is deployed, any newer version of the configuration
policy which includes schema edits should be built with another version number.

To up-version the configuration policy:

1. Modify the version value in ConfigPolicyRegistry.xml to supply a service model
XQuery transform referenced from the <upgrade> tag in
ConfigPolicyRegistry.xml.

2. Rebuild the package.

For example, with version 1.0 of a configuration policy deployed, a configuration policy
concrete may be created. Now version 2.0 is built and deployed and the Network
Processor is restarted. At the time that modifications to the configuration policy

Chapter 2
Deploying Configuration Policies

2-14

concrete are committed, the Network Processor will compare the currently registered version
2.0 with version 1.0 in the previously saved service model and detect a version mismatch. An
upgrade exception will be thrown causing a fault to be raised and the device state to change
to Intervention Required. NpUpgrade should be used by an administrator to perform the
required service model upgrade transforms.

NpUpgrade
The SDK includes the file config_policy_registration.xsd under SDK_home\schema.
NpUpgrade calls the XQuery pointed to by the <upgrade> tag in the
ConfigPolicyRegistration.xml file. The purpose of the XQuery is to upgrade the
configuration policy data from the old version to the new version inside the service model
document in the database. An XQuery is provided with each sample (e.g.
bannerSample_upgrade.xq).

The ConfigPolicyUpgradeTest.java file runs the XXX_upgrade.xq XQuery on the
XXX_invalid.xml and XXX_valid.xml files. These files can be modified and run to test
variations of the xquery and xml input. You can build and run these tests using ant unitTests
from the ipsaSDK/configPolicies/XXX folder. The result of running the test goes into file
reports/TEST---.xml underneath this folder.

The sample XQuery for banners (bannerSample_upgrade.xq) does the following:

• Replaces any <bannerType> elements that have the text tmotd with the text motd
• Removes any <bogus> or <obsolete> elements

• Keeps all other elements as is

The sample XQuery for static routes (staticrouteSample_upgrade.xq) does the following:

• Replaces any <ipa> element found with an <ip> element with the same content

• Removes any <bogus> or <obsolete> elements

• Keeps all other elements as is

Uninstalling Configuration Policies
Configuration policies are uninstalled using the uninstallCartridge.sh script, which resides in
the bin directory of the IP Service Activator installation. This script takes the name of the
manifest file, which contains a list of all installed configuration policy files, as a parameter,
and uses its contents to uninstall the configuration policy. (See "Troubleshooting
Configuration Policy Compiling".)

You can include the base directory or the IP Service Activator installation as a parameter to
the script. If you do not, the script queries the ORCHcore package to locate the base
directory of the IP Service Activator installation.

The uninstallCartridge.sh script sorts the manifest file in reverse order, then deletes files,
and then directories. Only empty directories are removed; this ensures that the script will not
remove directories used by other cartridges.

Chapter 2
Uninstalling Configuration Policies

2-15

Note:

you can use a relative path to specify the manifest file, but it must be relative
to the current directory (i.e. where you are running the uninstall script from).
You can also use an absolute path. To verify that the manifest file is in the
directory, use the command "ls<manifest>" using the same value that is
provided to the script.

To uninstall configuration policies:

1. Use the following command:

uninstallCartridge <manifest_file> [Service_Activator_home] [-k | -v]

Use the -k option to leave empty directories. The -v (verbose) option produces
extra output from the script.

2. Once uninstallation is complete, restart the Network Processor.

Note:

Uninstalling a cartridge or configuration policy developed using the SDK
does not remove the network processor's device model entries that
reference this cartridge or configuration policy. This information is maintained
because it is unknown whether you are uninstalling the cartridge or
configuration policy to remove it or to upgrade it.

To uninstall a configuration policy HTML GUI form from a Service Activator GUI host:

1. Delete the configuration policy HTML file from the Service_Activator_home
directory.

2. Edit Service_Activator_home\Config\ ConfigurationPolicy.cfg to delete the
policytypeReference name and reference to the configuration policy html file.

To remove a generated configuration policy from the SDK installation:

1. Delete all contents under
SDK_home\configPolicies\sdk_global_configPolicyName

To uninstall the SDK:

1. Delete all contents under SDK_home.

Chapter 2
Uninstalling Configuration Policies

2-16

3
Working with the IP Service Activator YANG
Import Tool

YANG is a data modeling language used to model configuration and state data manipulated
by the Network Configuration Protocol (NETCONF). The IP Service Activator YANG import
tool enables you to import configuration policies that use a device-specific YANG model. The
IP Service Activator YANG import tool parses the YANG model and requires no coding in IP
Service Activation.

Setting Up the YANG Import Tool
To set up the IP Service Activator YANG import tool:

1. Install IP Service Activator version 7.3.4.2.0 or later.

When installing IP Service Activator, on the Installation Type page, select to install All
Components, which is the default value. If you do not intend to install all components,
ensure that you select:

• The YANG component

• The NETCONF Base Cartridge

See IP Service Activator Installation Guide for more information about installing IP
Service Activator.

2. Launch IP Service Activator.

3. Enable NETCONF on the appropriate devices.

To enable NETCONF on a device:

a. From the Topology tab, right-click a device and select Properties.

b. Select Security.

The Security page appears.

c. In the Access Style field, select NETCONF.

d. Click OK.

NETCONF creates a secure SSH v2 connection to the device and sends XML
messages that you can review in the AuditTrails folder.

For example:

2016-12-15 20:55:19|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?><hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
</capabilities>
</hello>]]>]]>
2016-12-15 20:55:19|10.156.68.176|
<rpc>

3-1

<get-configuration format="text">
</get-configuration>
</rpc>]]>]]>
2016-12-15 20:55:19|10.156.68.176|
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>]]>]]>

4. If the device was previously defined with the Access Style SSH or TACACS+, do
the following:

a. Right-click the device and select Unmanage Device.

b. Commit the change.

c. Rediscover the device.

d. On the Device Properties Management page, click Manage.

e. Commit the change.

About the Configuration Policy Property Files
You use the configuration policy property files to define how to access the information
in the YANG model. A configuration policy property file must specify the path to the
firewall policer section:

container firewall {
 description "Define a firewall configuration";
 uses apply-advanced;
 container family {}
...
 list policer {
 key name;
 ordered-by user;
 description "Policer template definition";
 uses firewall_policer;
 }
 list flexible-match {

The configuration policy property file must also define the policer in the
firewall_policer section:

grouping firewall_policer {
description "Define a policer";
leaf name {
description "Policer name";
type string {
junos:posix-pattern "!^((__.*)|(.{65,}))$";
junos:pattern-message "Must be a non-reserved string of 64 characters or less";
}
} ...additional configuration...

This example code produces a configuration policy that contains the contents of
Policer section:

Chapter 3
About the Configuration Policy Property Files

3-2

Figure 3-1 Configuration Policy properties - Configuration Policy page

Importing and Parsing YANG Model Configuration Policies
You can use the YANG import tool to import and parse your own custom configuration
policies.

Chapter 3
Importing and Parsing YANG Model Configuration Policies

3-3

Note:

To import a configuration policy, you should have a general understanding of
the YANG model and an understanding of the filter used in the property file to
parse the configuration policy.

There is a 450K size limit on the configuration policy.

You can use the sample.properties file as a starting point to import and parse an
snmp configuration policy.

To parse a YANG model configuration policy:

1. Change to the yangImporter directory.

The yangImporter directory is in the following location:

/opt/installs/OracleCommunications/ServiceActivator/bin/yangImporter

2. Run the following command:

/yangImporter.sh localhost port username /opt/installs/configvSRX.yang
testsnmp sample.properties

For example:

./yangImporter.sh localhost 2809 rwalter /opt/installs/configvSRX.yang
testsnmp sample.properties

3. When prompted, enter the password for the user.

IP Service Activator generates a build message, creates the configuration policy,
and adds the policy to your IP Service Activator system.

Figure 3-2 Adding a Configuration Policy

IP Service Activator creates the HTML based on the YANG model:

Chapter 3
Importing and Parsing YANG Model Configuration Policies

3-4

Figure 3-3 HTML, Based on the YANG Model

4. Obtain the most recent model for the device.

To obtain the most recent model for a specific device:

a. Connect to the device and send the following command:

show system schema module configuration format yang output-file-
name /var/tmp/config.yang

b. Use SFTP to collect the model.

You may have to remove the first line and the last line of the model if the model
includes <output> as the first line and </output> as the last line.

5. Apply your policy to a NETCONF-enabled device that supports the YANG configuration
policy.

6. On the Configuration Policy properties Configuration Policy page, name the policy and
click Add groups.

Chapter 3
Importing and Parsing YANG Model Configuration Policies

3-5

Figure 3-4 Configuration Policy Properties

7. Enter a name for the group name, and then select Add snmp.

8. Enter the system name, the description, and all other relevant information.

9. Click Add interface.

10. Add a valid interface or subinterface for the device.

11. Click Apply.

12. On the Configuration Policy properties Role page, add a role.

13. Commit the changes.

14. Review the audit trail for npNetconf. For example:

2017-01-26 20:26:30|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?>
2017-01-26 20:26:30|10.156.68.176|<hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-26 20:26:30|10.156.68.176| <capabilities>
2017-01-26 20:26:30|10.156.68.176| <capability>
2017-01-26 20:26:30|10.156.68.176| urn:ietf:params:netconf:base:1.0
2017-01-26 20:26:30|10.156.68.176| </capability>
2017-01-26 20:26:30|10.156.68.176| <capability>
2017-01-26 20:26:30|10.156.68.176|
urn:ietf:params:netconf:capability:candidate:1.0
2017-01-26 20:26:30|10.156.68.176| </capability>
2017-01-26 20:26:30|10.156.68.176| </capabilities>

Chapter 3
Importing and Parsing YANG Model Configuration Policies

3-6

2017-01-26 20:26:30|10.156.68.176|</hello>
2017-01-26 20:26:30|10.156.68.176|]]>]]>
2017-01-26 20:26:31|10.156.68.176|<rpc> <lock><target><candidate/></target></lock>
2017-01-26 20:26:31|10.156.68.176|</rpc>
2017-01-26 20:26:31|10.156.68.176|]]>]]>
2017-01-26 20:26:31|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?><rpc>
2017-01-26 20:26:31|10.156.68.176| <edit-config>
2017-01-26 20:26:31|10.156.68.176| <target><candidate/></target>
2017-01-26 20:26:31|10.156.68.176| <config>
2017-01-26 20:26:31|10.156.68.176|<configuration xpath="/configuration/groups/
snmp" xmlns="http://yang.juniper.net/yang/1.1/jc" xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:ser="http://www.metasolv.com/serviceactivator/servicemodel"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2017-01-26 20:26:31|10.156.68.176| <groups>
2017-01-26 20:26:31|10.156.68.176| <group_name>mysnmpgroup</group_name>
2017-01-26 20:26:31|10.156.68.176| <snmp>
2017-01-26 20:26:31|10.156.68.176| <system-name>system</system-name>
2017-01-26 20:26:31|10.156.68.176| <description>my description</description>
2017-01-26 20:26:31|10.156.68.176| <location>my location</location>
2017-01-26 20:26:31|10.156.68.176| <contact>me</contact>
2017-01-26 20:26:31|10.156.68.176| <interface yangid="1">ge-0/0/2.5</interface>
2017-01-26 20:26:31|10.156.68.176| <if-count-with-filter-interfaces/>
2017-01-26 20:26:31|10.156.68.176| <filter-duplicates/>
2017-01-26 20:26:31|10.156.68.176| </snmp>
2017-01-26 20:26:31|10.156.68.176| </groups>
2017-01-26 20:26:31|10.156.68.176|</configuration>
2017-01-26 20:26:31|10.156.68.176| </config>
2017-01-26 20:26:31|10.156.68.176| </edit-config>
2017-01-26 20:26:31|10.156.68.176|</rpc>
2017-01-26 20:26:31|10.156.68.176|<rpc> <commit/>
2017-01-26 20:26:31|10.156.68.176|</rpc>
2017-01-26 20:26:31|10.156.68.176|]]>]]>
2017-01-26 20:26:32|10.156.68.176|<rpc> <unlock><target><candidate/></target></
unlock>
2017-01-26 20:26:32|10.156.68.176|</rpc>
2017-01-26 20:26:32|10.156.68.176|]]>]]>
2017-01-26 20:26:32|10.156.68.176|<rpc
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-26 20:26:32|10.156.68.176| <close-session/>
2017-01-26 20:26:32|10.156.68.176|</rpc>
2017-01-26 20:26:32|10.156.68.176|]]>]]>
2017-01-26 20:26:32|10.156.68.176|#End Configuration

The router is updated with the following:

groups {
mysnmpgroup {
snmp {
name system;
description "my description";
location "my location";
contact me;
interface ge-0/0/2.5;
if-count-with-filter-interfaces;
filter-duplicates;
}
}
}

Chapter 3
Importing and Parsing YANG Model Configuration Policies

3-7

Example: Importing and Parsing a Custom Configuration
Policy

This example demonstrates how to use the IP Service Activator YANG import tool to
send a configuration policy to a Juniper device:

set firewall policer p-all-1m-5k-discard if-exceeding bandwidth-limit 1m
set firewall policer p-all-1m-5k-discard if-exceeding burst-size-limit 5k
set firewall policer p-all-1m-5k-discard then discard
set firewall policer p-ftp-10p-500k-discard if-exceeding bandwidth-percent 10
set firewall policer p-ftp-10p-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-ftp-10p-500k-discard then discard
set firewall policer p-icmp-500k-500k-discard if-exceeding bandwidth-limit 500k
set firewall policer p-icmp-500k-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-icmp-500k-500k-discard then discard
set firewall family inet filter filter-ipv4-with-limits interface-specific
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol
tcp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp-
data
set firewall family inet filter filter-ipv4-with-limits term t-ftp then policer
p-ftp-10p-500k-discard
set firewall family inet filter filter-ipv4-with-limits term t-icmp from
protocol icmp
set firewall family inet filter filter-ipv4-with-limits term t-icmp then policer
p-icmp-500k-500k-discard
set firewall family inet filter filter-ipv4-with-limits term catch-all then
accept
set interfaces fe-0/1/1 unit 1 family inet filter input filter-ipv4-with-limits
set interfaces fe-0/1/1 unit 1 family inet policer input p-all-1m-5k-discard

The example demonstrates how to create a property files for:

• The firewall policer

• The firewall family

• The firewall interface

For each of these property files, the XPath is defined one level above the object and
uses the filter to specify the target.

The Firewall Policer

You create a property file called firewallpolicer.properties in IP Service Activator.

For example:

./yangImporter.sh localhost 2809 rwalter /opt/installs/configvSRX.yang firewallpolicer
firewallpolicer.properties

The XPath to this properties file is defined as:

xpath=/configuration/firewallbigNodeFilters=firewall::container(policer)

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-8

Figure 3-5 Firewall Policy

The Firewall Family

You create a property file called firewallFamily.properties in IP Service Activator.

For example:

./yangImporter.sh localhost 2809 rwalter /opt/installs/configvSRX.yang firewallfamily
firewallFamily.properties

The XPath to this properties file is defined as:

xpath=/configuration/interfaces/interface/unit/family/inet
bigNodeFilters=inet::container(policer,filter);

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-9

Figure 3-6 Firewall Family

The Firewall Interface

You create a property file called firewallInterfaceFamilyInet.properties in IP Service
Activator.

For example:

./yangImporter.sh 127.0.0.1 2809 rwalter /opt/installs/configvSRX.yang
firewallInterfaceFamilyInet firewallInterfaceFamilyInet.properties

The XPath to this properties file is defined as:

xpath=/configuration/firewall/family/
inetbigNodeFilters=firewall::container(filter)

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-10

Figure 3-7 Firewall Interface

When finished, the following configuration policies now exist in IP Service Activator:

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-11

Figure 3-8 Configuration Policies in IP Service Activator

In this example, the device is managed by the Juniper NETCONF cartridge. You apply
the firewall policer first, as the firewall family and firewall interface property files are
both dependent on the firewall policer property file. When you define the XPath as
previously indicated and commit, IP Service Activator sends the following to the router:

2017-01-31 20:35:03|10.156.68.176|#Start Configuration
2017-01-31 20:35:03|10.156.68.176|#Applying Configuration
2017-01-31 20:35:04|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?>
2017-01-31 20:35:04|10.156.68.176|<hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-31 20:35:04|10.156.68.176| <capabilities>
2017-01-31 20:35:04|10.156.68.176| <capability>
2017-01-31 20:35:04|10.156.68.176| urn:ietf:params:netconf:base:1.0
2017-01-31 20:35:04|10.156.68.176| </capability>
2017-01-31 20:35:04|10.156.68.176| <capability>
2017-01-31 20:35:04|10.156.68.176|

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-12

urn:ietf:params:netconf:capability:candidate:1.0
2017-01-31 20:35:04|10.156.68.176| </capability>
2017-01-31 20:35:04|10.156.68.176| </capabilities>
2017-01-31 20:35:04|10.156.68.176|</hello>
2017-01-31 20:35:04|10.156.68.176|]]>]]>
2017-01-31 20:35:04|10.156.68.176|<rpc> <lock><target><candidate/></target></lock>
2017-01-31 20:35:04|10.156.68.176|</rpc>
2017-01-31 20:35:04|10.156.68.176|]]>]]>
2017-01-31 20:35:04|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?><rpc>
2017-01-31 20:35:04|10.156.68.176| <edit-config>
2017-01-31 20:35:04|10.156.68.176| <target><candidate/></target>
2017-01-31 20:35:04|10.156.68.176| <config>
2017-01-31 20:35:04|10.156.68.176|<configuration xpath="/configuration/firewall/
policer" xmlns="http://yang.juniper.net/yang/1.1/jc" xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:ser="http://www.metasolv.com/serviceactivator/servicemodel"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2017-01-31 20:35:04|10.156.68.176| <firewall>
2017-01-31 20:35:04|10.156.68.176| <policer>
2017-01-31 20:35:04|10.156.68.176| <name>p-all-1m-5k-discard</name>
2017-01-31 20:35:04|10.156.68.176| <if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <bandwidth-limit>1m</bandwidth-limit>
2017-01-31 20:35:04|10.156.68.176| <burst-size-limit>5k</burst-size-limit>
2017-01-31 20:35:04|10.156.68.176| </if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <then>
2017-01-31 20:35:04|10.156.68.176| <discard/>
2017-01-31 20:35:04|10.156.68.176| </then>
2017-01-31 20:35:04|10.156.68.176| </policer>
2017-01-31 20:35:04|10.156.68.176| <policer yangid="1">
2017-01-31 20:35:04|10.156.68.176| <name>p-ftp-10p-500k-discard</name>
2017-01-31 20:35:04|10.156.68.176| <if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <bandwidth-percent>10</bandwidth-percent>
2017-01-31 20:35:04|10.156.68.176| <burst-size-limit>500k</burst-size-limit>
2017-01-31 20:35:04|10.156.68.176| </if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <then>
2017-01-31 20:35:04|10.156.68.176| <discard/>
2017-01-31 20:35:04|10.156.68.176| </then>
2017-01-31 20:35:04|10.156.68.176| </policer>
2017-01-31 20:35:04|10.156.68.176| <policer yangid="2">
2017-01-31 20:35:04|10.156.68.176| <name>p-icmp-500k-500k-discard</name>
2017-01-31 20:35:04|10.156.68.176| <if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <bandwidth-limit>500k</bandwidth-limit>
2017-01-31 20:35:04|10.156.68.176| <burst-size-limit>500k</burst-size-limit>
2017-01-31 20:35:04|10.156.68.176| </if-exceeding>
2017-01-31 20:35:04|10.156.68.176| <then>
2017-01-31 20:35:04|10.156.68.176| <discard/>
2017-01-31 20:35:04|10.156.68.176| </then>
2017-01-31 20:35:04|10.156.68.176| </policer>
2017-01-31 20:35:04|10.156.68.176| </firewall>
2017-01-31 20:35:04|10.156.68.176|</configuration>
2017-01-31 20:35:04|10.156.68.176| </config>
2017-01-31 20:35:04|10.156.68.176| </edit-config>
2017-01-31 20:35:04|10.156.68.176|</rpc>
2017-01-31 20:35:05|10.156.68.176|<rpc> <commit/>
2017-01-31 20:35:05|10.156.68.176|</rpc>

The configuration on the router is updated to the following:

show firewall | display set
set firewall policer p-all-1m-5k-discard if-exceeding bandwidth-limit 1m
set firewall policer p-all-1m-5k-discard if-exceeding burst-size-limit 5k

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-13

set firewall policer p-all-1m-5k-discard then discard
set firewall policer p-ftp-10p-500k-discard if-exceeding bandwidth-percent 10
set firewall policer p-ftp-10p-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-ftp-10p-500k-discard then discard
set firewall policer p-icmp-500k-500k-discard if-exceeding bandwidth-limit 500k
set firewall policer p-icmp-500k-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-icmp-500k-500k-discard then discard

Next, you create the firewall Family property file. When you define the XPath as
previously indicated and commit, IP Service Activator sends the following:

2017-01-31 20:41:56|10.156.68.176|#Start Configuration
2017-01-31 20:41:56|10.156.68.176|#Applying Configuration
2017-01-31 20:41:57|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?>
2017-01-31 20:41:57|10.156.68.176|<hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-31 20:41:57|10.156.68.176| <capabilities>
2017-01-31 20:41:57|10.156.68.176| <capability>
2017-01-31 20:41:57|10.156.68.176| urn:ietf:params:netconf:base:1.0
2017-01-31 20:41:57|10.156.68.176| </capability>
2017-01-31 20:41:57|10.156.68.176| <capability>
2017-01-31 20:41:57|10.156.68.176|
urn:ietf:params:netconf:capability:candidate:1.0
2017-01-31 20:41:57|10.156.68.176| </capability>
2017-01-31 20:41:57|10.156.68.176| </capabilities>
2017-01-31 20:41:57|10.156.68.176|</hello>
2017-01-31 20:41:57|10.156.68.176|]]>]]>
2017-01-31 20:41:57|10.156.68.176|<rpc> <lock><target><candidate/></target></
lock>
2017-01-31 20:41:57|10.156.68.176|</rpc>
2017-01-31 20:41:57|10.156.68.176|]]>]]>
2017-01-31 20:41:57|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?><rpc>
2017-01-31 20:41:57|10.156.68.176| <edit-config>
2017-01-31 20:41:57|10.156.68.176| <target><candidate/></target>
2017-01-31 20:41:57|10.156.68.176| <config>
2017-01-31 20:41:57|10.156.68.176|<configuration xpath="/configuration/firewall/
family/inet/filter" xmlns="http://yang.juniper.net/yang/1.1/jc" xmlns:xs="http://
www.w3.org/2001/XMLSchema" xmlns:ser="http://www.metasolv.com/serviceactivator/
servicemodel" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2017-01-31 20:41:57|10.156.68.176| <firewall>
2017-01-31 20:41:57|10.156.68.176| <family>
2017-01-31 20:41:57|10.156.68.176| <inet>
2017-01-31 20:41:57|10.156.68.176| <filter>
2017-01-31 20:41:57|10.156.68.176| <name>filter-ipv4-with-limits</name>
2017-01-31 20:41:57|10.156.68.176| <interface-specific/>
2017-01-31 20:41:57|10.156.68.176| <term yangid="1">
2017-01-31 20:41:57|10.156.68.176| <name>t-ftp</name>
2017-01-31 20:41:57|10.156.68.176| <from>
2017-01-31 20:41:57|10.156.68.176| <protocol yangid="2">tcp</protocol>
2017-01-31 20:41:57|10.156.68.176| <port yangid="3">ftp</port>
2017-01-31 20:41:57|10.156.68.176| <port yangid="4">ftp-data</port>
2017-01-31 20:41:57|10.156.68.176| </from>
2017-01-31 20:41:57|10.156.68.176| <then>
2017-01-31 20:41:57|10.156.68.176| <policer>p-ftp-10p-500k-discard</policer>
2017-01-31 20:41:57|10.156.68.176| </then>
2017-01-31 20:41:57|10.156.68.176| </term>
2017-01-31 20:41:57|10.156.68.176| <term yangid="6">
2017-01-31 20:41:57|10.156.68.176| <name>t-icmp</name>
2017-01-31 20:41:57|10.156.68.176| <from>
2017-01-31 20:41:57|10.156.68.176| <protocol yangid="7">icmp</protocol>
2017-01-31 20:41:57|10.156.68.176| </from>

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-14

2017-01-31 20:41:57|10.156.68.176| <then>
2017-01-31 20:41:57|10.156.68.176| <policer>p-icmp-500k-500k-discard</policer>
2017-01-31 20:41:57|10.156.68.176| </then>
2017-01-31 20:41:57|10.156.68.176| </term>
2017-01-31 20:41:57|10.156.68.176| <term yangid="8">
2017-01-31 20:41:57|10.156.68.176| <name>catch-all</name>
2017-01-31 20:41:57|10.156.68.176| <then>
2017-01-31 20:41:57|10.156.68.176| <accept/>
2017-01-31 20:41:57|10.156.68.176| </then>
2017-01-31 20:41:57|10.156.68.176| </term>
2017-01-31 20:41:57|10.156.68.176| </filter>
2017-01-31 20:41:57|10.156.68.176| </inet>
2017-01-31 20:41:57|10.156.68.176| </family>
2017-01-31 20:41:57|10.156.68.176| </firewall>
2017-01-31 20:41:57|10.156.68.176|</configuration>

The configuration on the router is updated to:

show firewall | display set
set firewall family inet filter filter-ipv4-with-limits interface-specific
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol tcp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp-data
set firewall family inet filter filter-ipv4-with-limits term t-ftp then policer p-
ftp-10p-500k-discard
set firewall family inet filter filter-ipv4-with-limits term t-icmp from protocol icmp
set firewall family inet filter filter-ipv4-with-limits term t-icmp then policer p-
icmp-500k-500k-discard
set firewall family inet filter filter-ipv4-with-limits term catch-all then accept
set firewall policer p-all-1m-5k-discard if-exceeding bandwidth-limit 1m
set firewall policer p-all-1m-5k-discard if-exceeding burst-size-limit 5k
set firewall policer p-all-1m-5k-discard then discard
set firewall policer p-ftp-10p-500k-discard if-exceeding bandwidth-percent 10
set firewall policer p-ftp-10p-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-ftp-10p-500k-discard then discard
set firewall policer p-icmp-500k-500k-discard if-exceeding bandwidth-limit 500k
set firewall policer p-icmp-500k-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-icmp-500k-500k-discard then discard

Next, you create the firewall Interface property file. When you define the XPath as previously
indicated and commit, IP Service Activator sends the following:

2017-01-31 20:46:32|10.156.68.176|#Applying Configuration
2017-01-31 20:46:33|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?>
2017-01-31 20:46:33|10.156.68.176|<hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-31 20:46:33|10.156.68.176| <capabilities>
2017-01-31 20:46:33|10.156.68.176| <capability>
2017-01-31 20:46:33|10.156.68.176| urn:ietf:params:netconf:base:1.0
2017-01-31 20:46:33|10.156.68.176| </capability>
2017-01-31 20:46:33|10.156.68.176| <capability>
2017-01-31 20:46:33|10.156.68.176| urn:ietf:params:netconf:capability:candidate:1.0
2017-01-31 20:46:33|10.156.68.176| </capability>
2017-01-31 20:46:33|10.156.68.176| </capabilities>
2017-01-31 20:46:33|10.156.68.176|</hello>
2017-01-31 20:46:33|10.156.68.176|]]>]]>
2017-01-31 20:46:33|10.156.68.176|<rpc> <lock><target><candidate/></target></lock>
2017-01-31 20:46:33|10.156.68.176|</rpc>
2017-01-31 20:46:33|10.156.68.176|]]>]]>
2017-01-31 20:46:33|10.156.68.176|<?xml version="1.0" encoding="UTF-8"?><rpc>
2017-01-31 20:46:33|10.156.68.176| <edit-config>

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-15

2017-01-31 20:46:33|10.156.68.176| <target><candidate/></target>
2017-01-31 20:46:33|10.156.68.176| <config>
2017-01-31 20:46:33|10.156.68.176|<configuration xpath="/configuration/
interfaces/interface/unit/family/inet/filter,policer" xmlns="http://
yang.juniper.net/yang/1.1/jc" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ser="http://www.metasolv.com/serviceactivator/servicemodel"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2017-01-31 20:46:33|10.156.68.176| <interfaces>
2017-01-31 20:46:33|10.156.68.176| <interface>
2017-01-31 20:46:33|10.156.68.176| <name>ge-0/0/3</name>
2017-01-31 20:46:33|10.156.68.176| <unit yangid="1">
2017-01-31 20:46:33|10.156.68.176| <name>60</name>
2017-01-31 20:46:33|10.156.68.176| <family>
2017-01-31 20:46:33|10.156.68.176| <inet>
2017-01-31 20:46:33|10.156.68.176| <filter>
2017-01-31 20:46:33|10.156.68.176| <input>
2017-01-31 20:46:33|10.156.68.176| <filter-name>filter-ipv4-with-limits</filter-
name>
2017-01-31 20:46:33|10.156.68.176| </input>
2017-01-31 20:46:33|10.156.68.176| </filter>
2017-01-31 20:46:33|10.156.68.176| <policer>
2017-01-31 20:46:33|10.156.68.176| <input>p-all-1m-5k-discard</input>
2017-01-31 20:46:33|10.156.68.176| </policer>
2017-01-31 20:46:33|10.156.68.176| </inet>
2017-01-31 20:46:33|10.156.68.176| </family>
2017-01-31 20:46:33|10.156.68.176| </unit>
2017-01-31 20:46:33|10.156.68.176| </interface>
2017-01-31 20:46:33|10.156.68.176| </interfaces>
2017-01-31 20:46:33|10.156.68.176|</configuration>
2017-01-31 20:46:33|10.156.68.176| </config>
2017-01-31 20:46:33|10.156.68.176| </edit-config>
2017-01-31 20:46:33|10.156.68.176|</rpc>
2017-01-31 20:46:34|10.156.68.176|<rpc> <commit/>
2017-01-31 20:46:34|10.156.68.176|</rpc>
2017-01-31 20:46:34|10.156.68.176|]]>]]>
2017-01-31 20:46:35|10.156.68.176|<rpc> <unlock><target><candidate/></target></
unlock>
2017-01-31 20:46:35|10.156.68.176|</rpc>
2017-01-31 20:46:35|10.156.68.176|]]>]]>
2017-01-31 20:46:35|10.156.68.176|<rpc
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
2017-01-31 20:46:35|10.156.68.176| <close-session/>
2017-01-31 20:46:35|10.156.68.176|</rpc>
2017-01-31 20:46:35|10.156.68.176|]]>]]>
2017-01-31 20:46:35|10.156.68.176|#End Configuration

The configuration on the router is updated to:

set interfaces ge-0/0/3 unit 60 family inet filter input filter-ipv4-with-limits
set interfaces ge-0/0/3 unit 60 family inet policer input p-all-1m-5k-discard
.
.
.
set firewall family inet filter filter-ipv4-with-limits interface-specific
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol
tcp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from port ftp-
data
set firewall family inet filter filter-ipv4-with-limits term t-ftp then policer
p-ftp-10p-500k-discard

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-16

set firewall family inet filter filter-ipv4-with-limits term t-icmp from protocol icmp
set firewall family inet filter filter-ipv4-with-limits term t-icmp then policer p-
icmp-500k-500k-discard
set firewall family inet filter filter-ipv4-with-limits term catch-all then accept
set firewall policer p-all-1m-5k-discard if-exceeding bandwidth-limit 1m
set firewall policer p-all-1m-5k-discard if-exceeding burst-size-limit 5k
set firewall policer p-all-1m-5k-discard then discard
set firewall policer p-ftp-10p-500k-discard if-exceeding bandwidth-percent 10
set firewall policer p-ftp-10p-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-ftp-10p-500k-discard then discard
set firewall policer p-icmp-500k-500k-discard if-exceeding bandwidth-limit 500k
set firewall policer p-icmp-500k-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-icmp-500k-500k-discard then discard

Chapter 3
Example: Importing and Parsing a Custom Configuration Policy

3-17

A
Configuration Policy Generation Properties

This appendix provides details on the parameters you can configure in the
skeleton.properties file used to generate configuration policy source files.

This file contains a number of properties that customize the generated configuration policy
source.

Property names are of the form sdk_context_type and are composed of three parts:

• sdk: indicates an sdk variable

• context: describes of the context in which the variable applies

• type: indicates how the variable is being used, and may imply a restriction on the possible
values:

– If supported appears in the type, a boolean value should be entered.

– If pattern appears in the type, a regular expression (regex) pattern should be
entered.

– If prompt appears in the type, a device response should be entered in the form of a
regex pattern.

– If cmd appears in the type, a device specific command should be entered.

Boolean variables are validated to ensure that the values conform to boolean values (i.e.
true or false).

Regex patterns are validated. For a regex it maybe necessary to use an escape sequence
preceding special characters in order for them to be translated to the source code.

Table A-1 shows the naming and packaging properties.

Table A-1 Naming and Packaging Properties

Property Description Example

sdk_global_configPolicyName Configuration policy name. This variable
is used throughout the generated source
code.

This property is mandatory.

bannerSample

sdk_global_package This is the configuration policy path in
dotted notation used for packaging. Its
value is translated to a directory
structure for the source files path
generation. The value is used in build
scripts.

The generated files are placed in
SDK_home\configPolicies\sdk_global_
configPolicyName\src\sdk_global_packa
ge

This property is mandatory

com.metasolv.serviceac
tivator.bannerSample
becomes
com\metasolv\servicect
ivator\bannerSample

A-1

Table A-1 (Cont.) Naming and Packaging Properties

Property Description Example

sdk_global_configPolicyVersion Configuration policy version that is being
developed. The version is used by the
Network Processor at runtime to detect
that an upgrade of an existing service
model may be required in the event of an
upgrade of the configuration policy. Refer
to "Configuration Policy Version".

This property is mandatory.

1.0

sdk_schema_namespace Target namespace of the configuration
policy schema.

This property is mandatory.

--

sdk_schema_namespaceAbbr Abbreviation of the target namespace of
the configuration policy schema. This is
used as a namespace prefix in the
schema.

This property is mandatory.

Bn

sdk_schema_topLevelTag Name of the element in the schema of
type sdk_schema_topLevelType. The
generated schema will contain one such
element.

This property is mandatory.

banners

sdk_schema_topLevelType Name of the complex type in the
configuration policy schema which will
describe the configuration policy.

This property is mandatory.

Banners

sdk_xmlbeans_package The java package in which the
XmlBeans will be generated. This is
primarily used to build the HTML GUI.

This property is mandatory.

com.metasolv.serviceac
tivator.banner

Appendix A

A-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	Developing Configuration Policies with the Software Development Kit
	Core Cartridges
	Vendor Cartridges

	2 Building a Configuration Policy
	Building a Configuration Policy
	Creating a Configuration Policy Source Directory and Skeleton Properties File
	Defining the Configuration Policy and Customizing the Properties File
	Generating the Configuration Policy Source Files
	Customizing the Configuration Policy Source Files
	Compiling and Packaging the Configuration Policy
	Performing End-to-End Tests

	About the Provided Sample Configuration Policies
	Components of the Provided Sample Configuration Policies
	Completing the Sample
	Purpose of the Provided Sample Configuration Policies
	Sample Skeleton Properties File

	Sample Configuration Policies
	Sample bannerSample Configuration Policy
	Sample staticrouteSample Configuration Policy

	Creating a Configuration Policy Source Directory and Properties File
	Defining the Configuration Policy and Customizing the Properties File
	Generating the Configuration Policy Source Files
	Generating the bannerSample Configuration Policy Source Files
	Result of the Generation Process

	Generating Your Own Configuration Policy Source Files
	Result of the Generation Process

	Troubleshooting Configuration Policy Generation
	Using an Alternate Directory Structure
	Configuration Policy Generator Message Logging

	Customizing the Configuration Policy Source Files
	Completing the Configuration Policy Source Files
	Completing the bannerSample Configuration Policy Schema
	Completing the staticrouteSample Configuration Policy Schema
	Completing Your Own Configuration Policy Schema

	Creating an HTML GUI Form
	GUI Extension Schema API

	Compiling the Configuration Policy
	Compiling the bannerSample Configuration Policy Source Files
	Compiling the staticrouteSample Configuration Policy Source Files
	Compiling Your Own Configuration Policy Source Files
	Troubleshooting Configuration Policy Compiling
	Manifest File

	Creating Interface Management Properties
	Deploying Configuration Policies
	Configuration Policy Version
	NpUpgrade

	Uninstalling Configuration Policies

	3 Working with the IP Service Activator YANG Import Tool
	Setting Up the YANG Import Tool
	About the Configuration Policy Property Files
	Importing and Parsing YANG Model Configuration Policies
	Example: Importing and Parsing a Custom Configuration Policy

	A Configuration Policy Generation Properties

