
Oracle® Communications IP Service
Activator
API Developer's Guide

Release 7.5
F59532-01
September 2022

Oracle Communications IP Service Activator API Developer's Guide, Release 7.5

F59532-01

Copyright © 2016, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

1 Working with the OJDL API

About the OJDL API 1-1

System Architecture 1-1

Prerequisites for Installing OJDL 1-3

Installing OJDL 1-4

Configuring SSL for OJDL 1-4

Using the OJDL API 1-5

Java Development Environment 1-5

OJDL Directory and File Structure 1-5

The doc Directory 1-6

The lib Directory 1-6

The Samples Directory 1-6

JavaDocs 1-7

Java Classes 1-7

Best Practices for Minimizing Commits 1-8

Managing Configuration Policies Using the OJDL API 1-9

Initial Setup 1-9

Creating a Configuration Policy 1-9

Creating the Configuration Policy Data Type 1-10

Creating the RuleGeneric Object to Contain the Configuration Policy 1-10

Assigning the Configuration Policy to the Required Device and Interface Roles 1-10

Modifying a Configuration Policy 1-10

Querying the EOM for the Configuration Policy 1-11

Modifying the Policy Definition 1-11

Registering an Interface Policy 1-11

Creating a Subinterface 1-11

Creating a Main Interface 1-13

iii

Decorating an Interface 1-13

Comparing Created and Discovered Interfaces 1-13

Configuration Policy Classes 1-13

Example Source Code 1-17

2 Installing and Configuring the REST API Web Service

Installing the REST API 2-1

Installing and Configuring Oracle WebLogic Server 2-2

Installing Oracle WebLogic Server 2-2

Setting Up WebLogic Server Security 2-2

Configuring Identity and Trust Keystores in WebLogic Server 2-2

Testing the SSL Configuration 2-3

Security and Authentication 2-4

Configuring the REST API Web Service 2-4

Configuring OSS Integration Manager 2-6

Deploying and Undeploying Web Services 2-7

About Web Service Security 2-8

3 Working with the Programmatic Intent-Based Network REST API

About the IP Service Activator REST API 3-1

REST API 3-1

REST API Methods 3-1

JMS Action Queue 3-2

Transactions 3-2

Device Discovery 3-3

Working with the Groovy Scripting Language 3-3

Developing Custom Groovy Scripts 3-4

Groovy Script Examples 3-6

Example: Generating CTM Commands 3-6

Example: Deleting a Layer 2 Ethernet Service 3-9

About Polling Using the GET Method 3-11

About Logging 3-11

Logging Using WebLogic Server Configuration 3-11

Configuring EOM Logging Using the IP Service Activator Configuration GUI 3-11

Configuring Additional Logging Using Groovy Scripts 3-11

iv

Preface

This guide provides information about developing application programming interfaces (APIs)
to Oracle Communications IP Service Activator.

This guide provides information about the following APIs:

• OSS Java Development Library (OJDL) API

• REST API

Audience
This guide is intended for systems integrators and developers who use a supported API to
develop interfaces to IP Service Activator. For example, you can use OJDL to develop
customized Web-based applications for Customer Network Management.

Readers should have knowledge of:

• The core IP Service Activator features

• The Oracle Solaris operating system and its commands

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Working with the OJDL API

This chapter outlines OSS Java Development Library (OJDL) for Oracle Communications IP
Service Activator, including the Java classes provided for developers.
The OJDL provides a Java-based Application Programming Interface (API) to IP Service
Activator. It includes a set of Java classes with some code samples, and an example web
interface.

This chapter assumes you have the following:

• Knowledge of the OSS Integration Manager (OIM), including the External Object Model
(EOM), the OIM command language, and the ability to write scripts. See IP Service
Activator OSS Integration Manager Guide for more information.

• Experience using the Java programming language and Java technologies.

About the OJDL API
The OJDL API is a generic Java API for IP Service Activator, which allows Java developers to
develop or customize interfaces, including web-based or intranet-based user interfaces.

The OJDL package includes:

• Java classes

• Java code samples

You can use the OJDL to develop Java-based interfaces that are used to integrate IP Service
Activator with components of your environment. These could include, for example, your
internal Operational Support System (OSS) environment or an external Customer Network
Management solution.

System Architecture
Figure 1-1 shows the relationship between the OJDL and the rest of the IP Service Activator
system:

1-1

Figure 1-1 OJDL in the IP Service Activator System

The OJDL uses the OSS Integration Manager (OIM) interface and provides access to
the External Object Model (EOM), a simplified version of IP Service Activator's internal
object model used by the OIM API. The OJDL is OSS compliant.

In effect, the OJDL provides additional layers that are built on top of OIM, which in turn
sits on top of the core IP Service Activator system, as shown in Figure 1-2.

Chapter 1
System Architecture

1-2

Figure 1-2 OJDL in the IP Service Activator Architecture Layers

The EOM is a subset of IP Service Activator's internal object model. It defines all the objects
that can be accessed or updated by external applications, including their attributes and the
relationships between them. The EOM allows you to create and access data objects without
requiring knowledge of the underlying complexity of the entire object model.

The OJDL Java classes provide access to the objects in the EOM. The OJDL provides the
same functionality as the OIM CLI, allowing you to create objects, get and set attributes,
search for objects, manage transactions, and report errors.

Prerequisites for Installing OJDL
There are no restrictions on where to install the OJDL directory on the host system.

The prerequisites for using the OJDL are:

• Your IP Service Activator installation must include an instance of the OIM. For more
information, see IP Service Activator Installation Guide.

• If you are developing Java code or running web-based applications, a suitable Java
development environment must be installed, such as the Java Platform, Standard Edition
(Java SE). For more information, see "Java Development Environment".

• You must have IP Service Activator configured to allow users to log in concurrently, so
that you can log in to IP Service Activator using OJDL. By default, the user that is created
during IP Service Activator installation does not have this option enabled. For more
information about enabling this option, see the section about changing the default user in
IP Service Activator System Administrator's Guide.

Chapter 1
Prerequisites for Installing OJDL

1-3

Installing OJDL
The OJDL package is not installed as part of the IP Service Activator standard
installation. It is a separate package that you can download from the Oracle software
delivery website.

To install the OJDL:

1. Log in to the Oracle software delivery Web site and select Product Downloads.
Select Oracle Communications IP Service Activator, and then select the
Components folder for the release that you want.

2. Download the ojdlpackage-versionNum.zip file available at the following path on
the Oracle software delivery website:

Oracle Communications IP Service Activator Media Pack -> Oracle
Communications IP Service Activator Software for Solaris

where versionNum is the version of IP Service Activator.

3. Move the file to the desired directory on the host where you are installing OJDL.
There are no restrictions on that directory path that you choose.

4. Unzip the file to create the OJDL directory. The name of the OJDL directory is in
the following format: ojdlpackage-versionNum.

The OJDL directory consists of the following subdirectories:

• doc: Contains the Java documentation (JavaDocs)

• lib: Contains the OJDL jar file that contains the Java classes

• samples: Contains code samples for testing purposes

Configuring SSL for OJDL
To configure SSL for OJDL:

1. Enable SSL for CORBA. See the section on "Enabling SSL for CORBA" in the
chapter, "Using the Configuration GUI" in IP Service Activator System
Administrator's Guide for more information.

2. Ensure that the application classpath includes the following JAR files:

• lib/jacorb-3.8.jar

• lib/jacorb-omgapi-3.8.jar

• lib/slf4j-api-1.7.7.jar

The JAR files in the preceding list are located in the following IP Service Activator
installation directory:

/opt/OracleCommunications/ServiceActivator/lib/java-lib

If your development environment is on a separate machine, you must copy these
JAR files from an IP Service Activator machine.

3. Depending on your OJDL configuration for SSL, set the system properties
custom.props to one of the following:

• /opt/OracleCommunications/ServiceActivator/Config/jsse_props.tcp

Chapter 1
Installing OJDL

1-4

• /opt/OracleCommunications/ServiceActivator/Config/jsse_props.ssl

For example:

-Dcustom.props=/opt/OracleCommunications736/ServiceActivator/Config/
jsse_props.ssl

Using the OJDL API
This section outlines the OJDL, including the Java classes provided for developers.

Java Development Environment
In order to develop Java code you need a suitable development environment, such as the
Java Platform, Standard Edition (Java SE), which includes the Java Development Kit (JDK).
You can download Java SE from the Oracle Technology Network Web site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
For information about the recommended JDK version for use with the OJDL, see IP Service
Activator Installation Guide.

Java SE/JDK can be downloaded free of charge, and can be used for commercial or non-
commercial purposes. However, you must retain the copyright notices.

This guide assumes the use of JDK, but other suitable Java tools can be used if required.
You need to ensure they are configured correctly.

OJDL Directory and File Structure
When using the OJDL for developing Java code, you need the directories shown in
Figure 1-3.

Figure 1-3 OJDL Directories

Chapter 1
Using the OJDL API

1-5

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The doc Directory
The doc directory includes HTML files that contain class and package information. The
index.html file lists all the classes and packages, and contains links to access the
HTML files that provide the relevant information. The doc directory contains the
following two subdirectories:

• doc\com\mslv\osa\ojdl\eom contains HTML files describing the EOM Java API
classes.

• doc\com\mslv\osa\ojdl\Oim contains HTML files describing the OIM Java API
subclasses (for the OIM IDL).

The lib Directory
The lib directory includes the ojdl.jar file, which contains a compressed version of all
the OJDL Java classes. Figure 1-4 shows the internal directory structure of ojdl.jar.

Figure 1-4 Internal Directory Structure of ojdl.jar

Note:

You must put the ojdl.jar file in the class path.

The Samples Directory
The samples directory contains Java code samples, which provide an illustration of the
use of the OJDL classes. The Java code samples are available in the following
directory:

samples\com\oracle\communications\ipsa\ojdlSamples

Chapter 1
Using the OJDL API

1-6

For a brief explanation of the code samples, see the README.txt file in the ojdlSamples
folder.

JavaDocs
The JavaDocs are stored in the doc directory. See "The doc Directory" for more information.

Java Classes
The OJDL Java classes provide access to the EOM objects. The classes can also be used to
create Java beans which can then be used to create reusable user interface components for
particular tasks. These may be written as Java applications, applets, or as scripts within a
Java Server Page.

The OJDL Java classes are stored in the lib directory. See "The lib Directory" for more
information.

The Java classes are documented as follows:

• Information about the classes is accessed through the doc\index.htm file.

• Details of methods and variables used are contained in the doc\index-all.htm file.

The main classes are summarized in Table 1-1. Refer to the JavaDocs for details.

Table 1-1 Main Java Classes

Class Description

EomAttribute A base class for representing an attribute within the EOM.

EomAttributesSe Holds a set of EomAttribute objects.

EomConnectionManager Defines a connection manager interface for connecting to the OIM.

EomDebug Provides a way to enable traces.

EomDefaultConnection The default implementation of EomConnectManager using the JDK
ORB.

EomDifferenceResolver Finds the logical difference of EomObjects contained in two
iterators.

EomDiscovery Enables the discovery of devices.

EomException The base class for any exception thrown by the OJDL. May be
thrown by methods interacting with the OIM.

EomExtendedSearchIterator Extends the EomSearchIterator by searching on an iterator of
EomObjects.

EomIntersectionResolver Finds the logical intersection of EomObjects contained in two
iterators.

EomIterator An extension of the java.util.Iterator interface. Provides a wrapper
around the search functionality of the OIM find command.

EomIteratorParameters Provides a way to pass parameters to an EomSearchIterator to
refine the search.

EomNonIntegerException Thrown when a non-integer value is being assigned to an integer
variable.

EomObject A base class for representing objects within the EOM. Each object
has an Id, name, and set of attributes.

Chapter 1
Using the OJDL API

1-7

Table 1-1 (Cont.) Main Java Classes

Class Description

EomObjectException Thrown during an EomObject creation.

EomObjectFactory A factory to build EomObjects.

EomOimException Thrown when a command cannot be executed by OIM.

EomResolver A base class for combining the results of two iterator sets.

EomSearchIterator Looks for all objects of a specific type with a given attribute.

EomSession Represents a connection to the OIM.

EomSessionException Thrown by a method in EomSession when connected to the OIM.

EomTransaction Models the general IP Service Activator transaction concept.

EomTransactionStateChange A base class that allows IP Service Activator to synchronously
return configuration success or failure messages through the OJDL
for transactions which perform adds, modifies, or deletes.

Best Practices for Minimizing Commits
It is good to minimize the number of IP Service Activator transaction commits to
complete an operation, because each commit introduces a delay when the object
model is updated to reflect the new changes.

The following example shows how commits may be minimized when an application
generates a large number of devices for testing. These devices are all of the same
type and use the device capabilities of an existing device.

To link the desired capabilities, you must first unlink the default capabilities that are
linked when the device is created. In the least efficient case, the client code would take
three commits; device create, commit, setpath to device and unlink existing caps,
commit, link new caps, commit.

In the more efficient form, the client code could accomplish this through one commit by
constructing a reference to the default capabilities of the device by appending the
following to the path of the device object:

/DeviceCapabilities:"DeviceCapabilities"

The following excerpt shows how to construct an EomIdentifier that references the
capabilities linked to the device when the transaction is committed:

EomIdentifier idForNotYetLinkedDefaultCaps = new
EomIdentifier("DeviceCapabilities", "DeviceCapabilities", newDevice.getPath() +
"/" + "DeviceCapabilities" + ":\"DeviceCapabilities\"");

Then the default caps are unlinked and the appropriate device caps are linked using
the following excerpt:

itsTransaction.unlinkObjects(newDevice,
itsSession.createEomObject(idForNotYetLinkedDefaultCaps));
itsTransaction.linkObjects(newDevice, deviceCaps);
tr = eomSession.openTransaction();
tr.commit();

Chapter 1
Using the OJDL API

1-8

Very large transactions can take more time to process after you commit them. This must be
balanced against the overall number of commits you issue.

Managing Configuration Policies Using the OJDL API
This section outlines how to use the OJDL API to manage Configuration Policies in Oracle
Communications IP Service Activator.

Initial Setup
The following JAR files are required in the application classpath in order to create
configuration policies using the OJDL API. They are installed with the Network Processor.

• servicemodelextensions.jar contains XML Bean Classes for the Configuration Policy
Service Model Extensions.

• xbean.jar contains Apache XML Beans API.

• jsr173_api.jar contains streaming API for XML, provided as part of the Apache XML
Beans API.

• ojdl.jar contains IP Service Activator OSS Java Development Library (OJDL) API.

These files are located in the following IP Service Activator installation directory:

• Solaris: /opt/OracleCommunications/ServiceActivator/lib/java-lib

If your development environment is on a separate machine you will have to copy the JAR
files from an IP Service Activator machine.

Creating a Configuration Policy
Configuration policies are optional XML extensions to the IP Service Activator object model
that are supported by the Network Processor cartridges.

A configuration policy can be created using the OJDL API by creating a RuleGeneric object.
A RuleGeneric object must have two parent objects: a Policy Type object, and the object to
which you want it to apply. The latter object can be an interface, or other applicable objects.
For details, refer to the discussion of the RuleGeneric object and the external object model in
IP Service Activator OSS Integration Manager Guide.

There are code examples available in the additional documentation included with the OJDL
libraries. For more information, see the StaticNATsConfigurationPolicyExample file in
samples\com\oracle\communications\ipsa\ojdlSamples. The Configuration Policy XML
definition is set in the RuleGeneric ContentValue attribute.

The structure of the XML for each configuration policy is defined by an XML Schema
specification in servicemodelextension-api-versionNum.buildNum.zip, which is installed
with the IP Service Activator client in the Service_Activator_Home\SamplePolicy folder. An
API is provided to programmatically construct the configuration policy XML data structures
using Java XML Beans, using the Apache XML Beans technology available at the Apache
web site:

http://xmlbeans.apache.org/

Chapter 1
Managing Configuration Policies Using the OJDL API

1-9

http://xmlbeans.apache.org/

Creating the Configuration Policy Data Type
Each configuration policy top level XML element is represented by an XML Beans
Document class. For example, the StaticNats configuration policy is created as a
StaticNatsDocument object. Refer to "Configuration Policy Classes" for the complete
configuration policy class mapping.

The content of the StaticNats object is set using the XML Beans API.

There are code examples available in the additional documentation included with the
OJDL libraries. For more information, see the
StaticNATsConfigurationPolicyExample file in the samples directory.

Creating the RuleGeneric Object to Contain the Configuration Policy
Configuration Policy objects are represented in the IP Service Activator External
Object Model (EOM) as RuleGeneric objects. The following two attributes must be set:

• ContentType: the configuration policy type

• ContentValue: the configuration policy xml string

The ContentValue configuration policy XML is generated by invoking the toString()
function.

There are code examples available in the additional documentation included with the
OJDL libraries. For more information, see the
StaticNATsConfigurationPolicyExample file in the samples directory.

When passing XML strings into the EOM object attributes, some special characters
need to be escaped by pre-pending an additional \ character. For example, \" and \'
must be fully escaped to \\\" and \\\' respectively. This conversion is performed by the
escapeForOIM() function provided in the example.

Assigning the Configuration Policy to the Required Device and Interface Roles
The RuleGeneric object can be created as a child of many objects in the object
hierarchy (as documented in IP Service Activator OSS Integration Manager Guide).
However, the policy object Concrete is applied on any of the Interface objects in the
inheritance hierarchy that match the RuleGeneric Roles. The RuleGeneric device and
interface roles must match the device and interface roles on the interface where the
configuration policy is applied.

There are code examples available in the additional documentation included with the
OJDL libraries. For more information, see the
StaticNATsConfigurationPolicyExample file in the samples directory.

Modifying a Configuration Policy
Modification of a configuration policy involves querying the object model for the current
configuration policy definition, modifying the configuration policy, and updating the
whole definition back into the object model.

Chapter 1
Managing Configuration Policies Using the OJDL API

1-10

Querying the EOM for the Configuration Policy
The configuration policy XML can be obtained from the RuleGeneric ContentValue parameter.
The XML is parsed back into the XML Beans object definition of the service model extension.

There are code examples available in the additional documentation included with the OJDL
libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the
samples directory.

As with creating the configuration policy, the XML content of RuleGeneric is updated to
handle the extra escape characters around the \" and \' characters. This conversion is
performed by the unescapeFromOIM() function.

Modifying the Policy Definition
The configuration policy definition is modified using the XML Bean API for the service model
extension documents.

There are code examples available in the additional documentation included with the OJDL
libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the
samples directory.

Registering an Interface Policy
Creating a new interface in IP Service Activator through the OIM and OJDL APIs involves a
specialized use of configuration policies with the interface configuration management
framework. As with interface management through IP Service Activator, there are three types
of interface management interactions:

• Main interface creation

• Subinterface creation

• Interface decoration

Each possible interaction must be registered as an Interface Policy Registration. The
Interface Policy Registration objects can either be pre-configured in IP Service Activator, or
created using the IP Service Activator APIs.

There are code examples available in the additional documentation included with the OJDL
libraries. For more information, see the nterfaceManagementPolicyExample file in the
samples directory.

Once an Interface Policy Registration is used to create or decorate an interface it cannot be
modified or deleted until all dependent parent interfaces have been deleted or unlinked from
the policy registration.

Creating a Subinterface
This section describes how to create a new interface in IP Service Activator so that the new
interface configuration will also be correctly provisioned on the device.

As a prerequisite the appropriate subinterface creation Interface Policy Registration must be
created.

Chapter 1
Managing Configuration Policies Using the OJDL API

1-11

Creating the Subinterface Object

Create a new subinterface object under the target interface. For consistency, it is
recommended that you create the child subinterface with the correct ifType, although
IP Service Activator will update this value on the next device discovery.

Create a new subinterface object under the target interface. For consistency, it is
recommended that you create the child subinterface with the correct ifType, although
IP Service Activator will update this value on the next device discovery.

The following example shows the creation of a new subinterface:

// Create the new subinterface interface object
String subinterfaceName = "Serial1/3.100";
attributes = new EomAttributesSet();
attributes.setAttribute("Type", "32");
EomObject subinterface = tr.createObject(parentInterface, "Subinterface",
 subinterfaceName, attributes);

Linking the New Subinterface Object to the Interface Policy Registration

The created subinterface object is linked to the previously defined Interface Policy
Registration. The act of linking the policy registration automatically creates a new
RuleGeneric configuration policy object with the correct data type settings based on
the Interface Policy Registration definition.

The following example shows the linking of the subinterface object with the interface
policy registration:

 // Link the new subinterface object to the interface policy registration
 tr.linkObjects(subinterface, registrationPolicy);
 tr.commit();

The new RuleGeneric object name consists of the interface names with -Data
appended to it.

Modifying the Interface Configuration Policy Data

The interface management configuration policy does not contain any default settings.
These must be manually created using the appropriate XML data structure for the
configuration policy data type defined in the interface registration policy. The XML
content can be created manually or using the XML Beans API provided.

There are code examples available in the additional documentation included with the
OJDL libraries. For more information, see the InterfaceManagementPolicyExample
file in the samples directory.

Linking the New Subinterface to an Interface Role

Up to this point the new subinterface has only been created in the IP Service Activator
object model. Before committing the subinterface creation to the device, the new
subinterface object must be linked to an appropriate interface role.

There are code examples available in the additional documentation included with the
OJDL libraries. For more information, see the InterfaceManagementPolicyExample
file in the samples directory.

Chapter 1
Managing Configuration Policies Using the OJDL API

1-12

(Optional) Discovering the Device

Optionally, the device can be re-discovered to align any interface changes (such as to the
ifType or VC objects) with the object model. For interface types that have child VC object
created by the configuration (such as the framerelay DLCI) device re-discovery is
recommended.

The following example shows the optional device discovery:

// Optionally rediscover the device the get any VC level objects (in this example
// the DLCI)
eomSession.sendCommandtoOIM("discover " + parentDeviceId);

Creating a Main Interface
The steps for main interface creation are largely the same as for subinterface creation. For a
main interface, the new interface is created as a child of the device and is linked to an
appropriate Interface type Interface Policy Registration object.

When creating a main interface, the Interface Policy Registration must define the default
capabilities that the interface (and its sub-interfaces and VCs) will be assigned. If the default
settings are used, the created interface will not have any capabilities assigned and a
capabilities reset and re-discovery must be performed instead.

Decorating an Interface
For interface decoration, follow the same steps as with subinterface creation, with the
exception that the interface does not need to be created first. For interface decoration, the
existing interface must be linked to a Decorate type Interface Policy Registration object.

Comparing Created and Discovered Interfaces
It is possible to determine if an interface was created using the IP Service Activator interface
configuration management framework or was initially discovered from the device by
inspecting the IsConfigurable parameter on the Interface or SubInterface object.

If IsConfigurable is set to True then the interface was created within IP Service Activator. If it
is set to False then the interface was added through discovery.

Configuration Policy Classes
Table 1-2 lists the configuration policy classes.

Table 1-2 Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

AtmPvcVcClassModule atmPvcVcClass com.metasolv.serviceactivator.atmpvcvcclass.
AtmPvcVcClassDocument

CatOSPolicingRuleModule catOSPolicingRule com.metasolv.serviceactivator.catospolicingru
le.CatOSPolicingRuleDocument

CiscoEthernetPortCharacteristicsM
odule

ciscoEthernetPortCharacteri
stics

com.metasolv.serviceactivator.ciscoEthernetP
ortCharacteristics.CiscoEthernetPortCharacte
risticsDocument

Chapter 1
Managing Configuration Policies Using the OJDL API

1-13

Table 1-2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

CiscoQosPfcTxPortQueuesModule ciscoQosPfcTxPortQueues com.metasolv.serviceactivator.ciscoqospfctxp
ortqueues.CiscoQosPfcTxPortQueuesDocum
ent

DlswModule dlswDevice com.metasolv.serviceactivator.dlsw.DlswDevic
eDocument

DlswModule dlswEthernetInterface com.metasolv.serviceactivator.dlsw.DlswEther
netInterfaceDocument

DlswModule dlswTokenRingInterface com.metasolv.serviceactivator.dlsw.DlswToke
nRingInterfaceDocument

InterfaceConfigMgmtModule atmSubInterfaceData com.metasolv.serviceactivator.subinterface.At
mSubInterfaceDataDocument

InterfaceConfigMgmtModule backUpInterfacePolicy com.metasolv.serviceactivator.subinterface.B
ackUpInterfacePolicyDocument

InterfaceConfigMgmtModule basicRateInterfaceData com.metasolv.serviceactivator.subinterface.B
asicRateInterfaceDataDocument

InterfaceConfigMgmtModule ciscoUniversalInterface com.metasolv.serviceactivator.subinterface.Ci
scoUniversalInterfaceDocument

InterfaceConfigMgmtModule dialerInterface com.metasolv.serviceactivator.subinterface.Di
alerInterfaceDocument

InterfaceConfigMgmtModule e1ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.E
1ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule e1Controller com.metasolv.serviceactivator.controller.E1C
ontrollerDocument

InterfaceConfigMgmtModule e3ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.E
3ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule e3Controller com.metasolv.serviceactivator.controller.E3C
ontrollerDocument

InterfaceConfigMgmtModule frSubInterfaceData com.metasolv.serviceactivator.subinterface.Fr
SubInterfaceDataDocument

InterfaceConfigMgmtModule hsrp com.metasolv.serviceactivator.hsrp.HsrpDocu
ment

InterfaceConfigMgmtModule loopbackInterfaceData com.metasolv.serviceactivator.subinterface.Lo
opbackInterfaceDataDocument

InterfaceConfigMgmtModule multilinkInterface com.metasolv.serviceactivator.subinterface.M
ultilinkInterfaceDocument

InterfaceConfigMgmtModule plPosInterfaceData com.metasolv.serviceactivator.subinterface.Pl
PosInterfaceDataDocument

InterfaceConfigMgmtModule pppMultilink com.metasolv.serviceactivator.subinterface.P
ppMultilinkDocument

InterfaceConfigMgmtModule stm1ChannelizedSerialInterf
ace

com.metasolv.serviceactivator.subinterface.St
m1ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule stm1Controller com.metasolv.serviceactivator.controller.Stm1
ControllerDocument

Chapter 1
Managing Configuration Policies Using the OJDL API

1-14

Table 1-2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

InterfaceConfigMgmtModule t1ChannelizedSerialInterface com.metasolv.serviceactivator.subinterface.T
1ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule t1Controller com.metasolv.serviceactivator.controller.T1Co
ntrollerDocument

InterfaceConfigMgmtModule t3ChannelizedSerialInterface com.metasolv.serviceactivator.subinterface.T
3ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule t3Controller com.metasolv.serviceactivator.controller.T3Co
ntrollerDocument

InterfaceConfigMgmtModule virtualTemplateInterface com.metasolv.serviceactivator.subinterface.Vi
rtualTemplateInterfaceDocument

InterfaceConfigMgmtModule vlanSubInterface com.metasolv.serviceactivator.subinterface.Vl
anSubInterfaceDataDocument

InterfaceConfigMgmtModule vrfExportRouteFilter com.metasolv.serviceactivator.vrfexportroutefi
lter.VrfExportRouteFilterDocument

IpsecModule IPsecModule com.metasolv.serviceactivator.ipsecmodule.Ip
secmoduleDocument

LspModule lspTunnel com.metasolv.serviceactivator.lsp.LspTunnelD
ocument

L2QosModule rateLimit com.metasolv.serviceactivator.l2Qos.RateLimi
tDocument

JuniperQosCosAttachmentModule juniperQosCosAttachment com.metasolv.serviceactivator.juniperqoscosa
ttachment.JuniperQosCosAttachmentDocume
nt

MiscPluginsModule atmVcClass com.metasolv.serviceactivator.vcclass.AtmVc
ClassDocument

MiscPluginsModule banners com.metasolv.serviceactivator.banner.Banner
sDocument

MiscPluginsModule bgpCE com.metasolv.serviceactivator.bgpce.BgpCE
Document

MiscPluginsModule dailerList com.metasolv.serviceactivator.dialerList.Diale
rListDocument

MiscPluginsModule dslInterfaceData com.metasolv.serviceactivator.subinterface.D
slInterfaceDataDocument

MiscPluginsModule extendedAcl com.metasolv.serviceactivator.extendedAcl.E
xtendedAclDocument

MiscPluginsModule ipPools com.metasolv.serviceactivator.ippool.IpPools
Document

MiscPluginsModule keyChains com.metasolv.serviceactivator.keyChain.KeyC
hainsDocument

MiscPluginsModule saveConfig com.metasolv.serviceactivator.saveConfig.Sa
veConfigDocument

MiscPluginsModule staticNats com.metasolv.serviceactivator.staticnat.Static
NatsDocument

Chapter 1
Managing Configuration Policies Using the OJDL API

1-15

Table 1-2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

MiscPluginsModule staticRoutes com.metasolv.serviceactivator.staticroute.Stat
icRoutesDocument

MiscPluginsModule userAuth com.metasolv.serviceactivator.userAuth.User
AuthDocument

MiscPluginsModule userData com.metasolv.serviceactivator.userData.User
DataDocument

MulticastModule multicastAutoRp com.metasolv.serviceactivator.multicast.Multic
astAutoRpDocument

MulticastModule multicastBootstrapRouter com.metasolv.serviceactivator.multicast.Multic
astBootstrapRouterDocument

MulticastModule multicastDevice com.metasolv.serviceactivator.multicast.Multic
astDeviceDocument

MulticastModule multicastInterface com.metasolv.serviceactivator.multicast.Multic
astInterfaceDocument

MulticastModule multicastVrf com.metasolv.serviceactivator.multicast.Multic
astVrfDocument

PrefixListModule prefixListEntries com.metasolv.serviceactivator.prefixlist.Prefix
ListEntriesDocument

QosCosAttachmentModule qosCosAttachment com.metasolv.serviceactivator.qoscosattachm
ent.QosCosAttachmentDocument

RoutePolicyModule bgpRoutePolicy com.metasolv.serviceactivator.routePolicy.Bg
pRoutePolicyDocument

RoutePolicyModule vrfRoutePolicy com.metasolv.serviceactivator.routePolicy.Vrf
RoutePolicyDocument

SubInterfaceModule plSerialInterfaceData com.metasolv.serviceactivator.subinterface.Pl
SerialInterfaceDataDocument

ServiceAssuranceModule collectorParameters com.metasolv.serviceactivator.collectorParam
eters.CollectorParametersDocument

ServiceAssuranceModule netflowParameters com.metasolv.serviceactivator.netflowParame
ters.NetflowParametersDocument

ServiceAssuranceModule rtrResponder com.metasolv.serviceactivator.rtrr.RtrRespon
derDocument

SgbpModule sgbp com.metasolv.serviceactivator.sgbp.SgbpDoc
ument

SnmpModule snmpCommunities com.metasolv.serviceactivator.snmp.SnmpCo
mmunitiesDocument

SnmpModule snmpHosts com.metasolv.serviceactivator.snmp.SnmpHo
stsDocument

VlanModule vlanDefinitions com.metasolv.serviceactivator.vlanModule.Vla
nDefinitionsDocument

VlanInterfaceModule mgmtVlanInterface com.metasolv.serviceactivator.vlanInterface.M
gmtVlanInterfaceDocument

VlanInterfaceModule vlanInterface com.metasolv.serviceactivator.vlanInterface.V
lanInterfaceDocument

Chapter 1
Managing Configuration Policies Using the OJDL API

1-16

Table 1-2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

VrfCustomNamingModule vrfCustomNaming com.metasolv.serviceactivator.vrfCustomNam
ing.VrfCustomNamingDocument

VrfIPsecModule customerIPsec com.metasolv.serviceactivator.vrfipsec.Custo
merIPsecDocument

VrfIPsecModule publicIPsec com.metasolv.serviceactivator.vrfipsec.PublicI
PsecDocument

Example Source Code
Code examples are available in the additional documentation included with the OJDL
libraries.

For configuration policy example source code, see the
StaticNATsConfigurationPolicyExample file in the samples directory.

For interface management example source code, see the
InterfaceManagementPolicyExample file in the samples directory.

Chapter 1
Managing Configuration Policies Using the OJDL API

1-17

2
Installing and Configuring the REST API Web
Service

This chapter describes how to install and configure the Oracle Communications IP Service
Activator REST API web service.

Installing the REST API
To install the IP Service Activation REST API Web service:

1. Install the Oracle JDK and the Java environment.

When installing Oracle JDK and the Java environment, set the JAVA_HOME path and
add JAVA_HOME/bin to PATH. See the IP Service Activator Installation Guide for more
information about installing Java for IP Service Activator.

2. Install and configuring Oracle WebLogic Server.

See "Installing and Configuring Oracle WebLogic Server" for more information.

3. Create a WebLogic Server domain.

See Oracle WebLogic Server product documentation for more information about creating
a WebLogic Server domain.

4. Create a JMS queue in Weblogic Server.

This JMS queue is the IPSA Web Service action queue.

5. Install IP Service Activator.

To use the REST API with IP Service Activator, you select the Web Service optional
integration component when you run the Oracle Universal Installer. Alternatively, if you
are running a silent installation, you use the Web Service response file to install IP
Service Activator with REST API capability.

If the Web Service component was installed on a previous version of IP Service Activator,
upgrade to the latest version and then redeploy the REST API web service.

For more information about installing IP Service Activator, see IP Service Activator
Installation Guide.

6. Configure IP Service Activator REST API.

You configure the REST API in IP Service Activator's Configuration GUI. See
"Configuring the REST API Web Service" for more information.

7. Deploy the REST API Web service to an Oracle WebLogic Server application server.

You deploy the REST API from the IP Service Activator's Configuration GUI. See
"Deploying and Undeploying Web Services" for more information.

2-1

Installing and Configuring Oracle WebLogic Server
You can install Web services on the same server with other IP Service Activator
components, or you can install Web services as a standalone component.

Installing Oracle WebLogic Server
When installing Oracle WebLogic Server for the REST API, consider the following:

• Install Oracle WebLogic Server (12.2.1.2 or later). Use the
fmw_12.2.x.y.z_infrastructure.jar as the installer.

• Create database schemas using the Repository Creation Utility (RCU), which is
included in the WebLogic Server installation. The schemas are required for
creating the WebLogic Server domain. Each schema can be used by only one
domain. If you create a new domain, you must also create a new schema. Use
unique schema names. For complete information about using RCU, see Oracle
Fusion Middleware Creating Schemas with the Repository Creation Utility at the
Oracle Help Center:

https://docs.oracle.com/middleware/12212/lcm/RCUUG/toc.htm
• When creating the domain, select JRF.

For more information about installing WebLogic Server, see Fusion Middleware
Installing and Configuring Oracle WebLogic Server and Coherence at the Oracle Help
Center:

http://docs.oracle.com/middleware/12212/lcm/WLSIG/toc.htm

Setting Up WebLogic Server Security
To use a REST API Web service, you must set up Secure Sockets Layer (SSL) in
WebLogic Server to ensure that all connections are secure and encrypted.

Configuring Identity and Trust Keystores in WebLogic Server
To configure the WebLogic Server to use SSL, you must have an SSL certificate for
the server that is running WebLogic Server. Production servers should have a trusted
certificate. Lab and testing servers can use self-signed certificates. Use Java to
generate custom keystore files and then configure WebLogic Server to use those files.

To configure the WebLogic Server to use custom identity and trust keystore files:

1. Generate custom SSL identity and trust files by entering the following in the Java
utility:

keytool -genkey -alias mykey -keyalg RSA -keysize 1024
 -sigalg SHA256withRSA -validity 128 -keypass 123456 -keystore
identity.jks -storepass 123456
keytool -export -alias mykey -file root.cer
 -keystore identity.jks -storepass 123456
keytool -import -alias mykey -file root.cer -keystore trust.jks
 -storepass 123456

where mykey is the key name, and 123456 is the key password.

Chapter 2
Installing and Configuring Oracle WebLogic Server

2-2

https://docs.oracle.com/middleware/12212/lcm/RCUUG/toc.htm
http://docs.oracle.com/middleware/12212/lcm/WLSIG/toc.htm

The system generates the following two files:

• identity.jks

• trust.jks

2. Copy the .jks files to the security directory of the WebLogic Server, for example,
OracleHome/user_projects/domains/domain_name/security.

3. Log in to the WebLogic Server.

The WebLogic Administration Console is displayed.

4. In the left pane, expand Environment, and select Servers.

5. Select the server where you want to configure the identity and trust keystores.

6. Select Configuration, and then select Keystores.

7. Select the Custom Identity and Custom Trust option, and specify the identity.jks and
trust.jks files that you generated in step 1.

Note:

The key name must match the key password that you entered when you
generated the files.

8. Click the SSL tab to define the SSL configuration options for the private key alias and
password.

For more information about setting up WebLogic Server security, see Fusion Middleware
Administering Security for Oracle WebLogic Server at the Oracle Help Center:

http://docs.oracle.com/middleware/12212/wls/SECMG/toc.htm

Testing the SSL Configuration
You can test whether SSL is set up correctly in the WebLogic Server.

To test the SSL configuration, in a browser, go to the WebLogic Administration Console, for
example, enter:

http://hostname:7001/console

If SSL is configured correctly, the browser connects to the WebLogic Administration Console
using a secure connection and the URL changes from http:// to https://, for example:

https://hostname:7002/console

The default port number for SSL is 7002 and if your browser connects, SSL is configured
correctly.

Note:

If you are using a self-signed certificate for authentication, the browser might need
to import the certificate before you make the connection.

Chapter 2
Installing and Configuring Oracle WebLogic Server

2-3

http://docs.oracle.com/middleware/12212/wls/SECMG/toc.htm

Security and Authentication
The REST API Web service supports only secure connections with authentication.

When you deploy the REST web service, the system creates and configures a
WebLogic group called IpsaDomainController. The REST web service user, which is
called ipsa_ws_user by default, is configured in the Web Service/Common section of
the IP Service Activator Configuration graphical user interface (GUI). This web service
user is automatically added to the IpsaDomainController group. See "Deploying and
Undeploying Web Services" for information about deploying the Web service for use
with the REST API.

The REST Web service is configured to accept calls only from a user that belongs to
the IpsaDomainController group, as authenticated by WebLogic Server, or is a specific
user with the name IpsaDomainController.

You can configure additional users and add them to this group using the WebLogic
Server Administration Console.

For more information about setting up WebLogic Server security, see Fusion
Middleware Administering Security for Oracle WebLogic Server at the Oracle Help
Center:

http://docs.oracle.com/middleware/12212/wls/SECMG/toc.htm

Configuring the REST API Web Service
You use the IP Service Activator Configuration GUI to configure the REST API Web
service and deployment parameters.

Note:

The database and CORBA components must also be configured for the Web
service to function correctly. See IP Service Activator System Administrator's
Guide for information about configuring other components using the
Configuration GUI.

To configure the REST API web service:

1. Open the IP Service Activator Configuration GUI.

If you installed the Web Services component during IP Service Activator
installation, the IP Service Activator Configuration GUI displays the Web Service
folder in the tree view.

See IP Service Activator System Administrator's Guide for more information.

2. In the Configuration GUI tree view, double-click the Web Service folder.

3. Click Common.

4. Enter the configuration parameters.

For information about Web service parameters, see IP Service Activator
Installation Guide, Post-Installation Tasks.

Chapter 2
Configuring the REST API Web Service

2-4

http://docs.oracle.com/middleware/12212/wls/SECMG/toc.htm

Note:

If you change IP Service Activator Web service parameters, re-deploy the Web
service to ensure that the changes take effect. See "Deploying and
Undeploying Web Services" for more information.

Table 2-1 describes the Web service configuration parameters.

Table 2-1 Web Service Configuration Parameters

Parameter Description

IPSA ORB Initial Host The host machine for IPSA CORBA. Default is 127.0.0.1.

IPSA ORB Initial Port The host port for IPSA CORBA. Default is 2809.

Database Server IP Address Database server IP address.

Database Server Port The database server port. Default is 1521.

Database Service Name The database service name. Default is IPSA.WORLD.

Database User Id The database user ID. Default is admin.

Database User Password The database user password.

Confirm Database User Password Re-enter the database user password.

IPSA User Name The IP Service Activator user name. Default is admin.

IPSA User password The IP Service Activator web service user password.

Confirm IPSA User password Re-enter the IP Service Activator web service user password.

IPSA Web Service User Name The IP Service Activator web service user name. Default is
ipsa_ws_user.

IPSA Web Service User password The IP Service Activator web service user password.

IPSA Web Service JMS Queue JNDI The JMS queue JNDI for the REST API action queue. The
default value is:

jms/IPSAJMSQueue

IPSA Web Service JMS connection
factory JNDI

The JMS Connection factory JNDI for the REST API action
queue. The default value is:

jms/IPSAConnectionFactory

Maximum Query Load The maximum query load in bytes. Default is 1024000.

EOM Debug Level Select an option to define the IP Service Activator EOM
Debug level.

OFF: logging is disabled

ERROR: unexpected exceptions are logged at this level
(default)

TRACE: all logging is enabled. OIM commands and
responses are logged at this level.

DEBUG: lower logging level than Trace

INFO: informational logging. Lower logging level than Debug.

Maximum Retry on Connection Failure The maximum number of retries on recoverable conditions,
for example, database/OIM failures. Default is 3.

OIM Session Timeout OSS Integration Manager session timeout in seconds.
Default is 1200.

Chapter 2
Configuring the REST API Web Service

2-5

Table 2-1 (Cont.) Web Service Configuration Parameters

Parameter Description

OJDL Transaction Short Watch Interval The OJDL transaction short watch interval in seconds.
Default is 5.

Also, you can use this value to configure transaction and
discovery monitoring.

OJDL Transaction Short Watch Period The OJDL transaction short watch period in seconds. Default
is 300.

Also, you can use this value to configure transaction and
discovery monitoring.

OJDL Transaction Long Watch Interval The OJDL transaction long watch interval in seconds. Default
is 60.

Also, you can use this value to configure transaction and
discovery monitoring.

OJDL Transaction Long Watch Period The OJDL transaction long watch period in seconds. Default
is 3600.

Also, you can use this value to configure transaction and
discovery monitoring.

OJDL Transaction Commit Period The OJDL transaction commit period in seconds. Default is
60.

Also, you can use this value to configure transaction and
discovery monitoring. This value is used as the time out
value for a transaction commit or for device discovery
completion. The REST API posts Timedout to the JMS
action queue if the time exceeds this value.

Configuring OSS Integration Manager
If you have an OSS Integration Manager (OIM), or multiple OIMs on multiple servers,
that you previously installed and configured in IP Service Activator, you can configure
the parameters to enable the Web service to interact with those OIMs.

Note:

IP Service Activator does not support multiple OIMs on a single server.

Using the OIM Configuration component in IP Service Activator Configuration GUI,
you can add, delete, and modify the OIM configurations that are used for Web
services.

For more information about installing and configuring OIMs in IP Service Activator, see
IP Service Activator OSS Integration Manager Guide.

To configure OIM for Web services:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click OIM Configuration.

3. Enter the configuration parameters for the OIM that you want to configure.

Chapter 2
Configuring the REST API Web Service

2-6

For information about OIM configuration parameters, see Table 2-2.

Table 2-2 OIM Configuration Parameters

Parameter Description

Name The CORBA name of the integration manager.

Maximum Sessions The maximum number of OIM sessions. Default is 10.

Minimum Idle Sessions The minimum number of idle sessions. Default is 5.

Read Only Select this option if you want to use the integration manager for
read only. Deselect this option if you want to use it for both reading
and writing.

Deploying and Undeploying Web Services
You use the IP Service Activator Configuration GUI to deploy the REST API Web service and
deployment parameters. Deploy the REST API Web service after you configure all
parameters, including the deployment parameters, in the IP Service Activator Configuration
GUI. For information about Web service parameters, see "Configuring the REST API Web
Service". For information about OIM configuration parameters, see "Configuring OSS
Integration Manager".

You can also undeploy the Web service.

Note:

To configure the Web service deployment, you require information about the
WebLogic Server on which the Order and Service Management (OSM) server is
deployed. WebLogic Server parameters are required to connect to a Oracle
WebLogic Server.

See "Installing and Configuring Oracle WebLogic Server" for information about WebLogic
Server. See Order and Service Management Concepts and Order and Service Management
Installation Guide for information about OSM.

To deploy the Web service:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click Deployment.

3. Enter the configuration parameters for the Web service deployment.

4. Click Deploy.

The configuration tool does the following:

• Updates the IpsaWebService.ear file with the parameter values that you entered in
the web service node.

• Creates a JMS Server, a JMS Module, and JMS queues in WebLogic, if they are not
already created.

• Creates a web service security user group and a user in WebLogic, if they are not
already created.

Chapter 2
Deploying and Undeploying Web Services

2-7

• Deploys the IpsaWebService.ear file to WebLogic.

For information about web service deployment parameters, see Table 2-3.

Table 2-3 Web Service Deployment Parameters

Parameter Description

Weblogic Host The WebLogic host. Default is 127.0.0.1.

Weblogic Port The port number for the WebLogic server. Default is
7001.

Weblogic Admin User Name The WebLogic administrator user name. Default is
weblogic.

Weblogic Admin User Password The WebLogic administrator user password.

Confirm Weblogic Admin User
Password

Re-enter the WebLogic administrator user password.

Weblogic Secure Connection Select this option if you want to use a secure connection
to the WebLogic server. Check box is selected by
default.

Weblogic Target Server The WebLogic target server where you want to deploy
the IP Service Activator web service.

Weblogic Home The directory where WebLogic is installed on the server.

To undeploy the web service:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click Deployment.

3. Click Undeploy.

About Web Service Security
IP Service Activator access control security for Web services determines the
functionality to which each user has access. To set up access control security, create a
security role. Give this role the privilege to start IP Service Activator Web services.
When the Web service client accesses the Web service, the client needs to
authenticate itself to the Oracle WebLogic Server hosting IP Service Activator Web
service. See Oracle WebLogic Administration Guide for information about setting up
access security.

Note:

Oracle WebLogic access control security protects only WebLogic Server
resources and does not cover secure communication with IP Service
Activator Web services. As a result, SOAP messages transmitted between
the Web service and its clients are in plain text.

The REST API Web service allows only access-level security. Clients must use a user
ID that is a member of the IPSA_WS_USERS_GROUP group to communicate with IP
Service Activator Web services. The web.xml file defines the security role

Chapter 2
About Web Service Security

2-8

IPSA_WS_USERS and the weblogic.xml file defines the security principal name as
IPSA_WS_USERS_GROUP.

Running the installer creates a default user. For information about the default user names
and passwords used with Web services, see IP Service Activator Installation Guide. This user
is a member of the IPSA_WS_USERS_GROUP group. Due to limitations of the WebLogic
Server console, information created by the command line tools, such as the role name, might
not be available on the console.

Chapter 2
About Web Service Security

2-9

3
Working with the Programmatic Intent-Based
Network REST API

This chapter describes the Oracle Communications IP Service Activator programmatic intent-
based network Representational State Transfer (REST) API (application programming
interface). You can use the REST API to provision customer-defined services. Also, the IP
Service Activator REST API combines a REST architecture with JMS notifications to integrate
IP Service Activator with Oracle Communications Order and Service Management (OSM) (or
any third-party software solution) and to enable OSM to manage service activation
transactions.

About the IP Service Activator REST API
HTTP requests to IP Service Activator execute actions (such as Post, Get, Delete, or Put)
against objects defined in custom Groovy scripts. The custom scripts also include information
to map the actions and objects to IP Service Activator operations.

If the HTTP request executes an action that initiates a device discovery or a transaction, the
IP Service Activator REST API enables you to monitor the result with the JMS action queue.

REST API
You use REST API constraints to create a software architecture style that is based on
resources. A resource is an object with a type, associated data, relationships to other
resources, and a set of methods that operate on it. It is similar to an object in an object-
oriented programming language; however, only a few standard methods are defined for a
resource, while an object typically has many methods.

In the REST-based architecture, you access resources by using a common interface that is
based on HTTP standard. A REST server manages and provides access to the resources,
and a REST client accesses and modifies the resources through the common API. The
common API is called the REST API and the services that support the API are called the
REST web service.

The REST API includes an API Software Development Kit (SDK) that enables you to define
API calls with a high level of granularity, which simplifies the logic that is required to provision
complex services.

REST API Methods
Every resource supports some or all of the HTTP common methods. A resource is identified
by a global ID that is typically a URI. A resource can be in a variety of formats, such as XML,
JavaScript Object Notation (JSON), plain text, HTML, and user-defined data format. A REST
client application can require a specific representation format by using the HTTP/HTTPS
protocol content negotiation.

The common REST API methods are the following:

3-1

• GET: Retrieves one or more resources. You can use this method to check the
state of a resource.

• PUT: Updates a resource. The PUT method updates the full definition of a
resource, regardless of what has changed.

• DELETE: Removes one or more resources.

• POST: Creates a new resource.

• PATCH: Updates only the parts of a resource definition that have changed.

A common flow includes using a method to perform an action on a resource, and then
using the GET method to check the state of that action. For example, you can create a
resource using the POST method (which includes a URI that points to the new
resource), and then, because it might take a long time for that resource to be applied
to the network, use the GET method to periodically check the state of the new
resource. See "About Polling Using the GET Method" for more information.

JMS Action Queue
When the IP Service Activator REST API receives a request that includes an X-
Request-ID value in the HTTP request header, it saves the X-Request-ID value to a
correlation ID. During a triggering event (when a transaction is created or when a
device discovery is initiated), the REST API sends a JMS message to the JMS action
queue with the correlation ID and with a type and a result. The type can hold the
values Transaction or Discovery, and the result can hold the values Succeeded,
Failed, Invalid, and Timedout (the REST API uses the same time out value for device
discovery and for transaction monitoring).

Note:

The REST API posts to a single JMS action queue. Multiple IP Service
Activator clients can monitor the action queue if you use sufficiently
descriptive correlation ID String values.

The REST API can complete a request immediately with an HTTP return code 200
(OK) or with an error code (for example, 400 bad request). The REST API posts
nothing to the JMS action queue when a request completes with an error. If the return
code is 202 (Accepted or Pending), the REST API posts the state change to the JMS
action queue.

Note:

The REST API monitoring processes persist information over restarts.

Transactions
If REST methods are intended to modify the system, the system creates transactions.
REST methods such as POST, PUT, PATCH, and DELETE can modify the system. If
there are no commands in the output map, the system does not need to be modified

Chapter 3
About the IP Service Activator REST API

3-2

and no transaction is created. See IP Service Activator Concepts for information about
transactions.

When commands are generated based on a REST API request and a transaction is
generated in IP Service Activator, the REST API periodically polls the transaction status in
the Integration Manager. When the transaction completes, the REST API posts the result to
the JMS action queue. When Groovy script generation fails or when a command delivery to
IP Service Activator fails, the REST API returns an error and no JMS message is sent.

Device Discovery
When an SNMP discovery operation completes, the REST API posts a message to the JMS
action queue based on the Boolean value defined for a device object. The Boolean value
defined for the device object is called discovery and is set to true while the SNMP discovery
process is in progress. The value is set to false when the discovery operation completes.

The REST API returns Failed if an error is detected. Otherwise, the REST API returns
Succeeded. If the device discovery does not complete before the time out expires, then the
REST API returns Timedout.

The REST API monitors for the following errors:

• IDS_DISCOVERY_ERX_NOT_ALLOWED (1633: Core discovery is not allowed for
Juniper E)

• IDS_DISCOVERY_DEVICE_FAIL (1634: Device discovery failed)

• IDS_DISCOVERY_DEVICE_TYPE_NOT_ALLOWED (1635: Core discovery is not
allowed for this device type)

Working with the Groovy Scripting Language
Groovy script is a general-purpose scripting language that runs on the Java Virtual Machine
(JVM). The syntax that is used for Groovy scripts is similar to the syntax for Java code. Most
Java code is also valid Groovy script.

REST resources are mapped to Groovy scripts using a registry. Each REST call is done to a
specific resource.

For example, a REST request to activate an Ethernet service could be done using a REST
PUT method to a resource called SCA_ETH_FDFr_EC. In this example, the URI that is
called using the REST service would be the following:

https://hostname:7002/Oracle/CGBU/IPSA/DomainController/resources/data/
SCA_ETH_FDFr_EC.

The first part of the URI references the server with the web service, that is: https://
hostname:7002. The next part references the IP Service Activator REST API, that is: Oracle/
CGBU/IPSA/DomainController/resources/data. The last part references the resource, and
can also contain a hierarchy, for example, Ethernet/SCA_ETH_FDFr_EC. The
corresponding Groovy registry entry is like the following example:

<groovyScript>
 <name>groovy/Post_SCA_ETH_FDFr_EC.groovy</name>
 <target>SCA_ETH_FDFr_EC</target>
 <operation>POST</operation>
</groovyScript>

Chapter 3
Working with the Groovy Scripting Language

3-3

The registry entry has the following components:

• Name: The name of the Groovy script that you want to run. In the example, the
Groovy script is contained in a directory.

• Operation: The REST methods that are supported by the script. You can include
multiple method entries. See "REST API Methods" for supported methods and
their definitions.

• Target: The resource supported by the script. This can be a single resource (for
example, EthernetConnection), or a hierarchy with a resource (for example,
Services/Ethernet/EthernetConnection).

The registry is loaded from the following directory: Service_Activator_home/
DomainController/groovy.registry

A sample Groovy registry and Groovy scripts are provided in the
Service_Activator_home/ServiceActivator/DomainController/sample directory. You
can copy the registry and scripts directly into the Service_Activator_home/
ServiceActivator/DomainController directory for testing. Sample JSON input is also
provided in corresponding .txt files.

Note:

When using sample Groovy scripts, you must change the input to match the
specific devices and interfaces that are configured in IP Service Activator.

Developing Custom Groovy Scripts
You run Groovy scripts to process REST requests. Groovy scripts interface with IP
Service Activator in the Integration Manager by executing commands (find operations,
for example) or by adding Integration Manager commands to an output variable to be
executed in a trackable transaction (using the X-Request-ID value specified in the
HTTP request header). See Oracle Communications IP Service Activator OSS
Integration Manager Guide for more information about integration manager
commands.

Table 3-1 lists and describes the variables that are available for creating custom
Groovy scripts.

Table 3-1 Variables for Creating Custom Groovy Scripts

Variable Description

json The input JSON format payload, converted to a map
representation. If no JSON payload is provided (for example,
with a GET method), this variable is an empty map.

output An ArrayList of strings. These are the OIM commands that the
script will generate. They are processed as a single transaction
after the Groovy script returns its results.

For information about commands and their formats, see IP
Service Activator OSS Integration Manager Guide.

Chapter 3
Working with the Groovy Scripting Language

3-4

Table 3-1 (Cont.) Variables for Creating Custom Groovy Scripts

Variable Description

returnedJson A HashMap that is converted to the JSON String returned from
the request. This is a component of the Response
(javax.ws.rs.core.Response) and is returned with the return
code.

uriArray An array of the elements of the URI. This is useful when you are
specifying a hierarchy in the registry with multiple resources
mapping to the same script, and enables the script to see what
resource and hierarchy it is called with.

queryMap Map of any query parameters passed on the request. For
example, a GET request might specify:

https://.../Layer3Ethernet?Customer=MyCustomer
The parts after the '?' will be parsed into the queryMap.

transactionNameArray An array of strings that are used when constructing the name of
the transaction. This is optional in the Groovy script.

The following code illustrates how transactions are named:

<operation><objectName>_<transNameArray0>_<transNameAr
ray1>_<timestamp>_<counter>
<operation> : The operation that is performed (Post,
Get, Delete).
<objectName>: The object against which the action is
performed.
< transNameArrayX>: (Optional) If a string is added
to transactionNameArray, each entry is added,
followed by an underscore.
<timestamp>: System date in the following format:
yyyMMddHHmmssSS
<counter>: A counter to ensure uniqueness of the
transaction name. The value can contain up to 3
digits and resets to 0 after 999.

domainControllerDir The absolute path to the Service Activator Domain Controller
directory. This value is useful when a script calls another script,
or when a path name is required.

requestId The value of X-Request-ID from the HTTP request header. This
is used to track the request's result up to the JMS action queue,
where the ID is used as the correlation ID.Also, this can be used
to log messages for reporting.

helper The API that is provided for assistance. This API has its own
javadoc and is provided to facilitate IP Service Activator
operations (for example, looking up resources or attributes) and
constructing some OIM commands automatically without
needing to explicitly create and add them to the output variable.

return This is not a variable, but is the return code from the script. It is
returned as the status of the REST call. If the status is not
successfully, for example it is 400 or greater, any IP Service
Activator operations are not performed. If the script returns
successfully, the REST call might still receive an error if the
methods are invalid or if IP Service Activator does not accept the
transaction.

Chapter 3
Working with the Groovy Scripting Language

3-5

Groovy Script Examples
The examples in this section are intended to give further guidance about using the
sample Groovy scripts that are provided with IP Service Activator.

Example: Generating CTM Commands
This example implements a REST-based mechanism for generating CTM commands.
The sample Groovy script is available in the following location:
Service_Activator_home/DomainController/sample/groovy/Post_CTM.groovy.

Note:

Oracle recommends using the POST method to implement this script
because generating these commands is similar to the commands for creating
a resource, even though this example does not create resources.

Step 1: Configuring JSON

Using JSON format, you must first design the input/output of the service that you want
to implement. The input must indicate the template that you want to use (name,
versions, driver type, and so on), as well as a list of attributes (name/value pairs).

The input is the following:

{
 "templateName":"String",
 "deviceRoll":"String",
 "interfaceRoll":"String",
 "schemaRelease":"Number",
 "templateVersion":"Number",
 "driverType":"String",
 "objectType":"String",
 "interfaceType":"String",
 "templateVariables": {
 "Name1":"Value1",
 "Name2":"Value2",
 …
 }
}

In this example, the template name is mandatory and all other template information is
optional. You can use wildcards in the CTM call for non-mandatory template
information. The structure of the templateVariables attribute contains a list of the
variables that are part of the template. The list of variables depends on the type of
template that you are using. The Groovy script does not enforce the variables in the
list; however, CTM generates an error if the variables are incorrect for the template.

The output is the following simple JSON with an array of strings that contain the
generated commands:

{
 "Commands": [
 "StringCommand1",

Chapter 3
Working with the Groovy Scripting Language

3-6

 "StringCommand2",
 …
 "StringCommandN"
]
}

Step 2: Developing the Groovy Script

This section of the example shows the Groovy script that you can develop to accomplish the
task of implementing a REST-based mechanism for generating CTM commands.

You can use the helper API to check for the mandatory parts of the incoming JSON code.
Create a map that contains the parts of the JSON code that are mandatory, in this example
that is the templateName and templateVariables. Note that this example does not check for
specific variable names in the templateVariables because these can change based on the
specific template.

The input JSON is located in the variable json, which is included in the call to isJsonValid,
as in the following:

def expectedJson = [templateName:"",
 templateVariables:""
]
if (!helper.isJsonValid(expectedJson, json)) {
 returnedJson.BadRequestErrorType = ["title":"Exception",
 "detail":'Invalid ctm input json']
 logger.log(Level.SEVERE, "Input is missing required ctm fields")
 return 400;
}

The next part of this step is to put the variables into a hashtable so that they can be passed
to CTM when generating the template. Groovy provides a way to iterate over the items in the
JSON format map, and allows you to add each key/value pair to the new hashtable. Using
validation, you can ensure that all the types are strings, in case an incorrect structure was
accidentally passed into this part of the JSON. Even numeric fields are strings because
JSON format does not differentiate numbers from strings. For example:

def Hashtable<String, String> fieldMap = new Hashtable<String, String>()
json.templateVariables.each { key, value ->
 if (value.getClass() == String) {
 fieldMap.put(key, value)
 }
}

You create Groovy variables that store the values that are needed to specify the template. In
this way, you can also check when a value is not specified and then set it to null. Null is used
by the CTM call to indicate that the value should not be used when searching for the template
and acts as a wildcard. The template name is also stored in a variable for convenience. For
example:

def templateName = json.templateName
def deviceRoll = null
if (json.containsKey("deviceRoll")) {
 deviceRoll = json.deviceRoll
}

def interfaceRoll = null
if (json.containsKey("interfaceRoll")) {
 interfaceRoll = json.interfaceRoll
}

Chapter 3
Working with the Groovy Scripting Language

3-7

def schemaRelease = null
if (json.containsKey("schemaRelease")) {
 schemaRelease = Integer.valueOf(json.schemaRelease)
}
templateVersion = null
if (json.containsKey("templateVersion")) {
 templateVersion = json.templateVersion
}

def driverType = null
if (json.containsKey("driverType")) {
 driverType = json.driverType
}

def objectType = null
if (json.containsKey("objectType")) {
 objectType = json.objectType
}

def interfaceType = null
if (json.containsKey("interfaceType")) {
 interfaceType = json.interfaceType
}

All the data that is required for generating the commands from the template is now
prepared, and you can call the CTM method using the helper API. This returns a
vector containing the string commands:

def Vector<String> cmds = helper.generateCtmCommands(templateName, deviceRoll,
interfaceRoll, schemaRelease, templateVersion, driverType, objectType,
interfaceType, fieldMap)

If there is an error and the commands could not be generated, the helper API returns
null. If this occurs, you can construct a different JSON output that indicates the failure.
Use the variable returnedJson to construct the JSON map that gets sent back. In this
example, the JSON has two elements, a "title" and "detail." It also returns a status 400,
which indicates a "Bad Request," because something was wrong with the data that
prevented the commands from being generated. This return code is passed back to
the calling system.

if (cmds == null)
{
 returnedJson.BadRequestErrorType = ["title":"Exception",
 "detail":'Error generating template']
 return 400
}

If the command vector is successfully generated, you can put the vector into the
Commands element of the returned JSON. The vector maps to an array in the JSON
and then returns the status of 200 to indicate that it was successful.

returnedJson.Commands = cmds

return 200

The result is that the registry is edited with the following entry added for this service:

<groovyScript>
 <name>groovy/Post_CTM.groovy</name>

Chapter 3
Working with the Groovy Scripting Language

3-8

 <target>CTM</target>
 <operation>POST</operation>
</groovyScript>

Example: Deleting a Layer 2 Ethernet Service
This example is for deleting a layer 2 service by using the sample that is in the following
location: Service_Activator_home/DomainController/sample/groovy/
Post_SCA_ETH_FDFr_EC.groovy. This example uses Groovy functions.

The first Groovy function is used to substitute all ':' characters in a string with '_' and return
the result, as in the following:

def String sanitizeIdentifier(String source)
{
 if (source == null)
 return null
 return source.replaceAll(':', '_')
}

One of the results of creating this service is that subinterfaces that do not already exist might
be created. This method searches for all the subinterfaces under the customer. Subinterfaces
are IP Service Activator objects. For information about finding and retrieving IP Service
Activator objects, see IP Service Activator OSS Integration Manager Guide.

The following Groovy script searches all the subinterfaces and uses the helper API to find a
generic rule with a specific name that matches the one used in the creation of the
subinterface. For information about the RuleGeneric object type, see IP Service Activator
OSS Integration Manager Guide. If the script locates a subinterface, it adds the delete
command with the object ID to the variable output. This output is what gets processed when
the script returns and performs operations on the OIM.

def void deleteGeneratedInterfaces(customerPath)
{
 // First, find all the subs
 subs = helper.findObjects("Subinterface", customerPath, [:])
 for (Map sub : subs)
 {
 // Now look for the subinterface creation policy underneath each
 subifCreation = helper.findObjectPath("RuleGeneric",
 sub.id,
 ["name":sub.name + "-Data"])
 if (subifCreation != null && !subifCreation.isEmpty())
 {
 output.add("delete [" + sub.id + "]")
 }
 }
}

This is a delete method, so there is no JSON output. Instead, the parameters that are used to
specify the instance that you want to delete are provided as part of the URI. For example:

https://hostname:7002/Oracle/CGBU/IPSA/DomainController/resources/data/
SCA_ETH_FDFr_EC?evcCfgIdentifier=EVC_BOA_001_1_BOA_002

A "?" separates the resource (SCA_ETH_FDFr_EC) from the parameters. In this example,
you must specify a parameter called evcCfgIdentifier, which identifies the specific instance
of the resource that is to be deleted. Not specifying this parameter results in the following
error:

Chapter 3
Working with the Groovy Scripting Language

3-9

if (queryMap.evcCfgIdentifier == null)
{
 returnedJson.BadRequestErrorType = ["title":"Exception",
 "detail":"No evcCfgIdentifier specified on delete operation"]
 return 400
}

Begin deleting the service by using the evcCfgIdentifier parameter in the queryMap.
This is a map that is provided with all the query parameters. You can do this using a
loop that will support multiple evcEvcIdentifier parameters using a single URI.

Run the character conversion function on each identifier (which is also done on
create), to get an ID without ':' characters. Then you can search for the customer that
matches that ID. If there is no result, you can assume it is already removed and ignore
the ID. In this way, if there is a duplicate or resent request, the system does not
generate an error (idempotent).

If you find the customer, you can add a delete method to the output to delete the
customer. Doing this also deletes everything contained within that customer (for
example, sites, VPNs, and so on). At this point, the customer has not yet been
deleted, but the delete command has been added to the output array.

Now you can call the method to remove any generated subinterfaces.

Note:

The commands put in the output are buffered and not executed in real time.
They are processed only when the script completes, which makes it safe for
the method deleteGeneratedInterfaces to search on the customer, even
though the previous line adds the command to delete the customer to the
output. It would not be safe for this method to reference the customer object
in anything it added to the output buffer.

{
 def String deleteId=sanitizeIdentifier(id)
 String customerPath = helper.findObjectPath("Customer", "/",
 ["name":"CE_" + deleteId])
 if (customerPath != null) {
 // Start by removing any created interfaces
 output.add("delete " + customerPath)
 deleteGeneratedInterfaces(customerPath)
 }
}

Next, you return a success code 202, accepted for processing. The processing of the
output happens in the background after this returns.

return 202 // Accepted for processing, not completed

Finally, you must add an entry to the Groovy registry for this script, for example:

<groovyScript>
 <name>groovy/Delete_SCA_ETH_FDFr_EC.groovy</name>
 <target>SCA_ETH_FDFr_EC</target>
 <operation>DELETE</operation>
</groovyScript>

Chapter 3
Working with the Groovy Scripting Language

3-10

About Polling Using the GET Method
If you're not using the JMS action queue for monitoring, you can poll manually to determine
when the state of a resource has changed by using the GET method to retrieve the current
state of the resource.

Plan your strategy for using the GET method to poll a resource for a state change (for
example, when creating a resource). Running the GET method too frequently can negatively
affect system performance, whereas running the GET method too infrequently means the
system might not be responsive enough.

Determine the polling strategy by considering how long it takes for the service to typically be
applied to the network and routers. For example, if the sample Ethernet service takes a
minimum of 20 minutes to apply to the network (with slow routers and low bandwidth), it
would not be useful to poll for the status every 20 seconds. In this case, polling in 5-minute
intervals is more acceptable, although the polling interval also depends on the calling
system's latency requirements.

About Logging
You can configure logging using the WebLogic Administration Console and the IP Service
Activator Configuration GUI. You can configure logging for the REST web service by using
Groovy scripts and the Java logging utilities.

Logging Using WebLogic Server Configuration
You can configure and manage logging by using WebLogic Server. You set logging levels in
WebLogic for the server that is running the REST web service.

By default, the system logs errors at the ERROR level. When you are troubleshooting REST
web service errors, you can change the logging to report DEBUG logs. If you change the
logging option, you might have to restart the WebLogic server for changes to take effect.

For more information about setting up logging in WebLogic Server, see WebLogic Server
documentation.

Configuring EOM Logging Using the IP Service Activator Configuration GUI
Configuring EOM logging by using the IP Service Activator Configuration GUI provides
logging information only about the connection between the REST web service and IP Service
Activator.

If you change this configuration, you must redeploy the REST web service for the change to
take effect.

See IP Service Activator System Administrator's Guide for information about using
configuration GUI log files.

Configuring Additional Logging Using Groovy Scripts
You can use Groovy scripts to configure additional logging on the REST web service by using
the Java logging framework. This log output is included in the set of logs that is managed by
WebLogic Server. See "Working with the Groovy Scripting Language" for more information.

Chapter 3
About Polling Using the GET Method

3-11

Add logging to a Groovy script by importing the Java logging utilities at the beginning
of the script, as in the following:

import java.util.logging.Level
import java.util.logging.Logger

def Logger logger = Logger.getLogger("MyClassOrFileName")

You can then use the logger within the Groovy script, for example:

logger.log(Level.SEVERE, "Error msg")

Chapter 3
About Logging

3-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Working with the OJDL API
	About the OJDL API
	System Architecture
	Prerequisites for Installing OJDL
	Installing OJDL
	Configuring SSL for OJDL
	Using the OJDL API
	Java Development Environment
	OJDL Directory and File Structure
	The doc Directory
	The lib Directory
	The Samples Directory

	JavaDocs
	Java Classes
	Best Practices for Minimizing Commits

	Managing Configuration Policies Using the OJDL API
	Initial Setup
	Creating a Configuration Policy
	Creating the Configuration Policy Data Type
	Creating the RuleGeneric Object to Contain the Configuration Policy
	Assigning the Configuration Policy to the Required Device and Interface Roles

	Modifying a Configuration Policy
	Querying the EOM for the Configuration Policy
	Modifying the Policy Definition

	Registering an Interface Policy
	Creating a Subinterface
	Creating a Main Interface
	Decorating an Interface
	Comparing Created and Discovered Interfaces

	Configuration Policy Classes
	Example Source Code

	2 Installing and Configuring the REST API Web Service
	Installing the REST API
	Installing and Configuring Oracle WebLogic Server
	Installing Oracle WebLogic Server
	Setting Up WebLogic Server Security
	Configuring Identity and Trust Keystores in WebLogic Server
	Testing the SSL Configuration
	Security and Authentication

	Configuring the REST API Web Service
	Configuring OSS Integration Manager

	Deploying and Undeploying Web Services
	About Web Service Security

	3 Working with the Programmatic Intent-Based Network REST API
	About the IP Service Activator REST API
	REST API
	REST API Methods
	JMS Action Queue
	Transactions
	Device Discovery

	Working with the Groovy Scripting Language
	Developing Custom Groovy Scripts
	Groovy Script Examples
	Example: Generating CTM Commands
	Example: Deleting a Layer 2 Ethernet Service

	About Polling Using the GET Method
	About Logging
	Logging Using WebLogic Server Configuration
	Configuring EOM Logging Using the IP Service Activator Configuration GUI
	Configuring Additional Logging Using Groovy Scripts

