Oracle® Enterprise Session Border

Controller
HMR Guide

Release E-CZ8.1.0
F20162-01
May 2019

ORACLE"

Oracle Enterprise Session Border Controller HMR Guide, Release E-CZ8.1.0
F20162-01
Copyright © 2014, 2019, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

About This Guide

1 Header Manipulation Rules

HMR Fundamentals 1-1
Audience 1-2
When to Use HMR 1-2
Managing HMR Impact on Performance 1-2
Applying HMRs to Traffic 1-2
Outbound HMR 1-3
Inbound HMR 1-3

Order of Header Rule Application 1-4

HMR Store Actions and Boolean Results 1-4
Routing Decisions 1-4

Static and Dynamic HMR 1-4
Static HMR 1-4
Dynamic HMR 1-5
Sample HMR 1-5
HMR Components 1-6
Relationship Between Rulesets and Its Rules 1-6
Ruleset Guidelines 1-6
Ruleset Components 1-6
Guidelines for Header and Element Rules 1-8
Guidelines for Header Rules 1-8
Guidelines for Element Rules 1-8
Duplicate Header Names 1-8
SIP Header Pre-Processing HMR 1-9
Back Reference Syntax 1-10
Dialog Matching 1-10
About Dialog-Matching Header Manipulations 1-10

Built-In HMRs 1-12
Built-In Variables 1-13

Built-In SIP Manipulation Configuration 1-16

ORACLE iii

Unique Regex Patterns Per Peer/Trunk 1-16

Rejecting SIP Requests 1-17
HMR Information in Logs 1-19
Using Regular Expressions 1-19
Example of HMR with Regex 1-19
Regex Characters 1-20
Literal (Ordinary) 1-20
Special (Metacharacters) 1-21
Regex Tips 1-22
Matching New Lines 1-22
Escaped Characters 1-22
Building Expressions with Parentheses 1-23
Boolean Operators 1-23
Equality Operators 1-23
Normalizing EBNF ExpressionString Grammar 1-24
Storing Regex Patterns 1-24
Performance Considerations 1-25
Additional References 1-25
HMR Configuration 1-25
Testing Pattern Rules 1-25
Creating Header Manipulation Rulesets 1-26
Configuring SIP Header Manipulation Rules 1-29
Configuring SIP Header Manipulation Element Rules 1-31
Status-Line Manipulation and Value Matching 1-33
Set the Header Name 1-33
Set the Element Type 1-33
Set the Match Value 1-34
Configuring SIP HMR Sets 1-35
Configuring a Session Agent 1-36
Configuring a SIP Interface 1-36
Example 1 Stripping All Route Headers 1-37
Example 2 Stripping an Existing Parameter and Adding a New One 1-37
Unique HMR Regex Patterns and Other Changes 1-39
The Default Expression 1-39
Manipulation Pattern Per Remote Entity 1-40
Reject Action 1-41
Reject Action Configuration 1-41
About Counters 1-42
SNMP Support 1-42
Log Action 1-43
Changes to Storing Pattern Rule Values 1-44

ORACLE iv

Removal of Restrictions 1-44

Name Restrictions for Manipulation Rules 1-44
New Value Restrictions 1-45
MIME Support 1-45
Manipulating MIME Attachments 1-45
About the MIME Value Type 1-46
SIP Message-Body Separator Normalization 1-47
Configuring MIME Support 1-48
HMR for SIP-ISUP 1-48
MIME Rules Overview 1-48
Identifying a MIME Rule 1-49
About MIME Rules 1-49
MIME Rules Configuration 1-50
Working with MIME Rules 1-52
MIME ISUP Manipulation 1-52
Adding an ISUP Body to a SIP Message 1-53
MIME ISUP Manipulation Configuration 1-54
Configuration Example 1-56
Header Manipulation Rules for SDP 1-57
Platform Support 1-58
SDP Manipulation 1-58
Regular Expression Interpolation 1-63
Regular Expressions as Boolean Expressions 1-64
Moving Manipulation Rules 1-66
Rule Nesting and Management 1-67
ACLI Configuration Examples 1-67
HMR Import-Export 1-72
Exporting 1-73
Importing 1-73
Using SFTP to Move Files 1-74
Removing Files 1-74
HMR Development 1-74
Development Overview 1-74
Development Tips 1-74
Planning Considerations 1-75
Traffic Direction 1-75
Order of Application Precedence 1-75
Order of HMR Execution 1-75
Applying HMR to a Specific Header 1-75
HMR Sets 1-76
Create Pseudocode 1-76

ORACLE y

Test HMRs 1-76

test-sip-manipulation 1-76
Development Example 1-77
Writing the Psuedo Code 1-77
Testing the Pattern Rule 1-77
Constructing the HMR 1-78
Loading Test SIP Message 1-79
Configuring Testing 1-79
Executing Testing 1-79
Log File Analysis 1-80
Configuration Examples 1-80
Example 1 Removing Headers 1-80
Example 2 Manipulating the Request URI 1-81
Example 3 Manipulating a Header 1-83
Example 4 Storing and Using URI Parameters 1-84
Example 5 Manipulating Display Names 1-85
Example 6 Manipulating Element Parameters 1-87
Example 7 Accessing Data from Multiple Headers of the Same Type 1-89
Example 8 Using Header Rule Special Characters 1-91
Example 9 Status-Line Manipulation 1-93
Example 10 Use of SIP HMR Sets 1-94
Example 11 Use of Remote and Local Port Information 1-96
Example 12 Response Status Processing 1-97
Example 13 Remove a Line from SDP 1-99
Example 14 Back Reference Syntax 1-100
Example 15 Change and Remove Lines from SDP 1-101
Example 16 Change and Add New Lines to the SDP 1-102

ORACLE vi

About This Guide

ORACLE

The HMR Resource Guide describes the SIP manipulation language called Header
Manipulation Rules (HMR).

This guide covers:
* HMR fundamentals
* Regular expressions

e Exporting and importing configuration rules

Documentation Set

The following table describes the documents included in the Oracle® Enterprise
Session Border Controller (E-SBC) E-CZ8.1.0 documentation set.

ACLI Configuration Contains conceptual and procedural information for
Guide configuring, administering, and troubleshooting the E-SBC.

Administrative Security |Contains conceptual and procedural information for
Guide supporting the Admin Security license, the Admin Security
ACP license, and JITC on the E-SBC.

Call Traffic Monitoring |Contains conceptual and procedural information for
Guide configuration using the tools and protocols required to
manage call traffic on the E-SBC.

FIPS Compliance Contains conceptual and procedural information about FIPS
Guide compliance on the E-SBC.
HMR Guide Contains conceptual and procedural information for header

manipulation. Includes rules, use cases, configuration,
import, export, and examples.

Installation and Contains conceptual and procedural information for system
Platform Preparation provisioning, software installations, and upgrades.
Guide

Release Notes Contains information about the E-CZ8.1.0 release, including
platform support, new features, caveats, known issues, and
limitations.

Time Division Contains the concepts and procedures necessary for
Multiplexing Guide installing, configuring, and administering Time Division
Multiplexing (TDM) on the Acme Packet 1100 and the Acme
Packet 3900.

Web GUI User Guide [Contains conceptual and procedural information for using
the tools and features of the E-SBC Web GUI.

Vii

ORACLE

About This Guide

Related Documentation

The following table describes related documentation for the Oracle® Enterprise
Session Border Controller (E-SBC). You can find the listed documents on http://
docs.oracle.com/en/industries/communications/ in the "Session Border Controller
Documentation" and "Acme Packet" sections.

Accounting Guide

Contains information about the E-SBC accounting support,
including details about RADIUS accounting.

ACLI Reference Guide

Contains explanations of how to use the ACLI, as an
alphabetical listings and descriptions of all ACLI commands
and configuration parameters.

Acme Packet 1100
Hardware Installation
Guide

Contains information about the hardware components and
features of the Acme Packet 1100, as well as conceptual
and procedural information for installation, start-up,
operation, and maintenance.

Acme Packet 3900
Hardware Installation
Guide

Contains information about the hardware components and
features of the Acme Packet 3900, as well as conceptual
and procedural information for installation, start-up,
operation, and maintenance.

Acme Packet 4600
Hardware Installation
Guide

Contains information about the hardware components and
features of the Acme Packet 4600, as well as conceptual
and procedural information for installation, start-up,
operation, and maintenance.

Acme Packet 6300
Hardware Installation
Guide

Contains information about the hardware components and
features of the Acme Packet 6300, as well as conceptual
and procedural information for installation, start-up,
operation, and maintenance.

HDR Resource Guide

Contains information about the E-SBC Historical Data
Recording (HDR) feature. This guide includes HDR
configuration and system-wide statistical information.

Maintenance and
Troubleshooting Guide

Contains information about E-SBC logs, performance
announcements, system management, inventory
management, upgrades, working with configurations, and
managing backups and archives.

MIB Reference Guide

Contains information about Management Information Base
(MIBs), Acme Packet’s enterprise MIBs, general trap
information, including specific details about standard traps
and enterprise traps, Simple Network Management Protocol
(SNMP) GET query information (including standard and
enterprise SNMP GET query names, object identifier names
and numbers, and descriptions), examples of scalar and
table objects.

Security Guide

Contains information about security considerations and best
practices from a network and application security perspective

for the E-SBC family of products.

viii

About This Guide

Revision History

The following table describes the history of updates to this guide.

Date Description

April 2018 e Initial Release

May 2019 * Adds explanation of the default
expression.

ORACLE iX

Header Manipulation Rules

Variances among SIP networks, like incompatible vendor deployments or disparate
SIP services, can degrade SIP services or disrupt SIP operations. To resolve these
variances, Oracle deploys Header Manipulation Rules (HMR), giving network
administrators the ability to control SIP traffic by manipulating SIP messages.

HMRs permit the network administrator to:

Insert, delete, or modify SIP headers or parameters

Copy or move header or parameter values

Rename parameter names

Modify MIME bodies including SDP, XML and ISUP

Change SIP-I/SIP-T ISUP messages, parameters, and fields

Change message information when, for example, normalization is required
Categorize and label specific message flows for special processing

Capture information from a message and insert it into another message

The SBC can perform these actions based on the following:

The type of SIP message (Request or Response)
The type of Request (INVITE, REGISTER, etc.)

The success or failure of a regular expression to match a header or parameter

HMR Fundamentals

HMR is a tool language based on rulesets, header rules, and element rules.

ORACLE

Rulesets contain one or more header rules, as well as optional element rules that
operate on specified header elements. They are applied to inbound or outbound
traffic for a session agent, realm, or SIP interface.

Header rules operate on specific headers. They can contain element rules, each of
which specify the actions to perform for a given element of this header.

Element rules perform operations on the elements of a header. Header elements
include all subparts of a header, excluding the header name; for example, header
value, header parameter, and URI parameter.

The E-SBC cannot dynamically perform validation as you enter rules. Use the ACLI
verify-config command to confirm that the HMR configuration does not contain invalid
or circular references.

An invalid reference is a reference that points to a non-existing rule.

A circular reference is a reference that creates an endless loop of manipulation
actions.

1-1

Audience

Chapter 1
HMR Fundamentals

This document is intended for those users who already understand the Oracle®
Enterprise Session Border Controller and the SIP protocol. In addition, Oracle
recommends you become as HMR-savvy as possible by attending Oracle training
courses prior to launching any HMR in production. You should be aware of all issues
that might result from misinformed or misapplied HMRs.

When to Use HMR

HMR is a flexible, powerful tool. As such, Oracle recommend using it with utmost care.
HMR should only be implemented in production networks once the HMRs and their
applications have been rigorously tested in a lab environment. You want to ensure
your HMRs work as you intend them before using them for your production network.

Oracle's Customer Support Team can assist you in developing HMRs for your
network. Our customer support team can ensure that your HMR are constructed,
configured, and applied properly, thereby guaranteeing your HMR achieves the result
you want.

Managing HMR Impact on Performance

The following suggestions help manage HMR effect on performance.

e Use the pre-constructed manipulations and variable tags. They consume less
processing and decrease the effect on performance.

e Include constructs and constrain the HMR to specific methods and messages. For
example, you can limit effected methods or the length of a string match.

e Construct the HMR to only work on the traffic that matches your criteria, letting the
remaining traffic pass untouched. (Unless you want to manipulate all traffic.)

e Take advantage of the test tools available on E-SBC to evaluate your HMRs.

e Administer the HMRs by using HMR export and import and reorder tools also
available.

e Use logfiles to resolve issues.

Applying HMRs to Traffic

ORACLE

You can apply HMR rules to inbound or outbound traffic for session agents, realms,
and SIP interfaces. The order of precedence is:

1. session agent
2. realm
3. SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP
manipulation for a realm overrides one for a SIP interface.

1-2

Chapter 1
HMR Fundamentals

Outbound HMR

Outbound HMR rules are applied just before the SIP message is sent out by the E-
SBC, after SIP-NAT processing. Any changes made by the HMR affects the message.
Those changes are not overridden by the E-SBC, which means the E-SBC does not
prevent the rules from breaking the protocol.

The rules are performed in a stateless manner. They do not store values across
messages and they do not remember what they did in previous messages.

" Note:

You can work around the stateless behavior by having an inbound HMR
copy the information needed to a private header, which then goes through
the E-SBC. The outbound rule can then look for the header and act upon the
information.

Inbound HMR

ORACLE

Inbound HMR rules are applied before most processing done by the E-SBC, but after
some SIP parser processing is performed. The message's source is determined to
decide which session agent, realm, or SIP interface it belongs to.

By default, the header rules are applied after the message is parsed; this verifies the
message is well-formed and follows the specifications. This is necessary to securely
perform any subsequent message processing, including HMR. An exception to this
rule can be created by setting the i nmani p- bef or e- val i dat e option. See "SIP Header
Pre-Processing HMR" for more details.

Because inbound rules are applied before the message is completely processed by
the E-SBC, you can use them to make the E-SBC perform specific actions outside of
ordinary processing. For example, you can change the request-URI, add a Route
header, or add a trunk group URI to make the E-SBC route the request on a different
path.

Inbound rules are stateless. However, if the E-SBC is in B2BUA mode (its most
common mode) it stores and remembers certain header values for later use in the
dialog. If HMR changes them on inbound, the E-SBC later believes them to be the
actual received values. There are a few exceptions to this with the following headers:

* Toand From can be changed by HMR and are used when the message gets
forwarded out another interface.
But if they were for a new request message, the E-SBC remembers the original
ones when it sends back 1xx-6xx responses. The previous hop that sent the new
request inspects the responses and needs them to be identical based on SIP
protocol rules. However, requests sent by the E-SBC back to the originator for the
call, from the called to the caller, will not be automatically undone by the E-SBC as
the responses were.

e Call-ID values are stored before HMR is applied and cannot be changed by HMR
on inbound.

If a SIP INVITE is received for a new call, inbound HMR can change the To or From
headers so that the next hop device gets the changed headers and the E-SBC stores

1-3

Chapter 1
HMR Fundamentals

them. But the 100 Trying, 180 Ringing, and 200 OK responses, for example, will use
the original To and From values and not the HMR modified ones. If the called party
later sends a Bye or re-Invite, back to the caller, the E-SBC will then use the HMR
modified values it stored, which may or may not be correct.

Order of Header Rule Application

The E-SBC applies SIP header rules in the order you have entered them. This guards
against the E-SBC removing data that might be used in the other header rules.

This ordering also provides you with ways to strategically use manipulations. For
example, you might want to use two rules if you want to store the values of a regular
expression. The first rule would store the value of a matched regular expression, and
the second could delete the matched value.

In addition to taking note of the order in which header rules are configured, you must
also configure a given header rule prior to referencing it. For example, you must create
Rulel with the action store for the Contact header before you can create Rule2 which
uses the stored value from the Contact header.

HMR Store Actions and Boolean Results

Although HMR rulesets are stateless (they do not store values across messages nor
remember what they did in previous messages), they can store strings for use within
the same ruleset. Some header rules and element rules can store values that later
header rules or element rules can use. Once the set of header rules and element rules
in a SIP manipulation are performed, and the SIP manipulation is complete for the
message, the stored values are forgotten.

Routing Decisions

Before routing the message, the E-SBC parses the ingress SIP message, ensuring the
validity of the message's structure. After this parsing, the E-SBC applies the inbound
header manipulation. You can use the inbound HMRs to modify the E-SBC's routing
behavior if you want to increase the flexibility of the routing options.

An outbound HMR is the last processing the E-SBC performs on traffic before passing
it back to the interface hardware. Knowing where this processing fits in helps you to
know what state the traffic will be in before being processed by the outbound HMR.
Outbound traffic is not subject to the screening functions performed by the hardware
on inbound traffic.

Static and Dynamic HMR

Static HMR

ORACLE

You can manipulate the headers in SIP messages both statically and dynamically. You
can edit response headers or the Request-URI in a request, and change the status
code or reason phrase in SIP responses.

Static HMR lets you set up rules that remove and/or replace designated portions of
specified SIP headers. The E-SBC can:

1-4

Dynamic HVMR

Chapter 1
HMR Fundamentals

Search headers for dynamic content or patterns with the header value. It can
search, for example, for all User parts of a URI that begin with 617 and end with

5555 (e.g., 617...5555).

Manipulate any part of a patterns match with any part of a SIP header. For
example, 617 123 5555 can become 617 231 5555 or 508 123 0000, or any

combination of those.

SIP HMR lets you set up dynamic header manipulation rules that give the E-SBC
complete control over alterations to the header value. Using regular expressions
provides a high degree of flexibility for header manipulation. For example, you can
search a specific URI when you do not know the value of the parameter, but want to
use the matched parameter value as the header value. It also lets you preserve
matched sections of a pattern, and change what you want to change.

Sample HMR

The following shows a complete HMR that manipulates To and From headers,
changes the URI-host element, and hides IP topology. It is applied as outgoing for a
realm. The HMR includes a built-in HMR variable SREMOTE_IP.

si p- mani pul ation

ORACLE

nane
description
split-headers
j oi n-header s
header-rul e
nane
header - name
action
conpari son-type
neg-type
met hods
mat ch-val ue
new val ue
element-rule
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
new val ue
header-rul e
nane
header - name
action
conpari son-type
neg-type
met hods
mat ch-val ue
new val ue

NAT | P

To

To

mani pul ate
case-sensitive
request

To

uri-host

none

ip
case-sensitive

$REMOTE_| P

From

From

mani pul ate
case-sensitive
request

1-5

Chapter 1

HMR Components

element-rule

name From

par anet er - name

type uri-host

action none

mat ch-val -type ip

conpari son-type case-sensitive

mat ch- val ue

new val ue $LOCAL_I P

HMR Components

Each SIP manipulation ruleset contains one or more header rules and element rules
for use as an inbound or outbound HMR ruleset. Generally, you set a header rule that
will store what you want to match, and then you create subsequent rules that operate
on this stored value.

Because header rules and element rules are applied sequentially, a given rule
performs its operations on the results of all the rules previously entered. For example,
if you want to delete a portion of a SIP header, you would create Rule 1 that stores the
value for the purpose of matching, and then create Rule 2 that would delete the portion
of the header you want removed. This prevents removing data that might be used in
the other header rules.

Relationship Between Rulesets and Its Rules

The relationship between manipulation rules and manipulation rulesets is created once
you load your configuration. The order in which you enter rulesets does not matter. It
also means that the E-SBC cannot dynamically perform validation as you enter rules,
so you should use the verify-config command to confirm your manipulation rules
contain neither invalid nor circular references. Invalid references are those that point to
SIP manipulation rules that do not exist, and circular references are those that create
endless loops of manipulation rules being carried out over and over.

Ruleset Guidelines

Keep the following guidelines in mind when creating rulesets:

* One ruleset per inbound message

* One ruleset per outbound message

* Header or element rules can call another HMR
* An HMR can have multiple header rules

* A header rule can have multiple header rules

Ruleset Components

ORACLE

The following table lists ruleset components.

1-6

Chapter 1
HMR Components

Component

Description

header-rule

match-value

element-rule

mime-rule

mime-header-rule

mime-isup rule

isup-param-rule

mime-sdp-rule

sdp-session-rule

sdp-media-rule

ORACLE

Header rules form the basis of rulesets. Used to operate on
one or more SIP headers within the SIP message; operations
performed at this level work on the entire header value,
excluding the label. Within a ruleset, each HR is performed in
order. Typically one performs regular expression "store" action
HRs before manipulation ones, although there are exceptions
depending on the needs. There is no hard limit to the number
of HR elements included in a ruleset, although in practical
terms one would probably not configure thousands of them.

Used to perform a matching comparison to decide whether to
store values, add a header, or delete a header. The type of
matching comparison performed is based on the comparison-
type field.

If the match-value is left blank, the action is performed
regardless. Therefore, if the header rule action is "delete",
"add", or "manipulate"”, and the match value is left blank, the
action will be performed on the header.

If the header rule action is "store" and the match value is left
blank, the E-SBC automatically stores everything, as if the
match value were . + which means match at least one
character, as many times as possible. Note that any
whitespace after the first non-whitespace character is kept as
well.

Used to operate on specific portions of a SIP header, such as
components of a URI value within the header or the
parameters of the header; if the header value contains a URI,
then this class operates only on the specified portion (i.e., URI
user or header parameter); this class does not operate on
headers with multiple header values.

Used to operate on any MIME part within a SIP message
(SDP, test, or some other proprietary body type); used as a
general facility to operate on the entire body as a single
continuous string.

Used to operate on the SIP headers within a body part; the
body part contains headers only when the MIME content is
contained in a multi-part message; when used to operate on a
MIME body that is not multi-part, then this class operates as
through it were a header-rule.

Special type of mime-rule because it expects the MIME
content of the specified body to be part of a valid binary ISDN
User Part (ISUP) format.

Used to perform operations on the parameters contained in an
ISUP body.

Special kind of mime-rule that is used to operate on the SDP
MIME content of a SIP message; at this level, the rule
operates on the entire SDP as a single contiguous string.

Used to operate on only the session portion of the SDP
content consists of all the characters starting from the
beginning until the first media line.

Used to operate on only a specific media portion of the SDP
content; consists of all the characters starting from the
beginning of the specified m-line until the next m-line or the
end of the SDP.

1-7

Chapter 1
HMR Components

Component Description

sdp-line-rule Used to operate on a single descriptor line within either the
session or media portion of the SDP.

Guidelines for Header and Element Rules

Header rules and element rules share these guidelines:

* References to groupings that do not exist result in an empty string.

 References to element rule names alone result in a Boolean condition of whether
the expression matched or not.

* A maximum of ten matches are allowed for a regular expression. Match 0
(grouping 0) is always the match of the entire matching string; subsequent
numbers are the results for other groups that match.

* Rule names must start with a letter, and then can contain any number of letters,
numbers, or underscores.

» All uppercase rule names are not allowed because this syntax is reserved for
variables.

* To avoid being interpreted as a minus operator, dashes are not permitted in rule
names.

Guidelines for Header Rules

Header rules guidelines include:

* Header names must be unique in a given HMR.
» Each header rule operates on one header.
* Multiple header rules can operate on the same header.

* Header rules can contain multiple element rules.

Guidelines for Element Rules

Element rule guidelines include:
* Element rule names must be unique within a header rule
e Each element rule operates on one component of the header

e Multiple element rules can operate on the same component

Duplicate Header Names

If more than one header exists for a configured header-name, the E-SBC stores each
value in an array whose index starts at 0. To reference those values, use the
syntax $<header - nane>[<i ndex>] .

Add a trailing [<i ndex>] value after the header-name parameter to represent the
specific instance of the header on which to operate. Additional stored header values
are indexed in the order in which they appear within the SIP message, and there is no
limit to the index. The E-SBC takes no action if the header does not exist.

ORACLE 1-8

Chapter 1
HMR Components

In addition to numerical values, possible index values are:

 ~The E-SBC references the first matching header.
e * The E-SBC references all headers.
" The E-SBC references the last stored header in the header rule.

Note that the header instance functionality has no impact on HMR'’s add action, and
you cannot use this feature to insert headers into a specific location. Headers are
added to the end of the list, except that Via headers are added to the top.

SIP Header Pre-Processing HMR

ORACLE

By default, the E-SBC performs in-bound SIP manipulations after it carries out header
validation. Adding the inmanip-before-validate option in the global SIP configuration
allows the E-SBC to perform HMR on received requests prior to header validation.
Because there are occasional issues with other SIP implementations—causing invalid
headers to be used in messages they send to the E-SBC—it can be beneficial to use
HMR to remove or repair these faulty headers before the request bearing them is
rejected.

When configured to do so, the E-SBC performs pre-validation header manipulation
immediately after it executes the top via check. Inbound SIP manipulations are
performed in order of increasing precedence: SIP interface, realm, and session agent.

The fact that the top via check happens right before the E-SBC carries out pre-
validation header manipulations means that you cannot use this capability to repairs
the first via header if it is indeed invalid. If pre-validation header manipulation were to
take place at another time during processing, it would not be possible to use it for SIP
session agents. The system learns of matching session agents after top via checking
completes.

For logistical reasons, this capability does not extend to SIP responses. Inbound
manipulation for responses cannot be performed any sooner that it does by default, a
time already preceding any header validation.

To enable SIP header pre-processing:

1. Access the sip-config configuration element.
ORACLE# configure termnal
ORACLE(confi gure)# session-router
ORACLE(session-router)# sip-config
ORACLE(si p-config)#

2. options—Set the inmanip-before-validate parameter.

ORACLE(si p-config)# options +i nmani p-before-validate
This value allows the E-SBC to perform pre-validation header manipulation in

order of increasing precedence: SIP interface, realm, and session agent.

3. Save and activate the configuration.

1-9

Chapter 1
HMR Components

Back Reference Syntax

You can use back reference syntax in the new-value parameter for header and
element rules. Denoted by the use of $1, $2, $3, etc. (where the number refers to the
regular expression's stored value), you can reference the header and header rule's
stored value without having to use the header rule's name. It instead refers to the
stored value of this rule.

For example, when these settings are in place:

* header-rule=changeHeader

e action=manipulate

* match-value=(. +)([*;])

you can set the new-value as si p: $2 instead of si p: $changeHeader . $2.

You can use the back reference syntax when;

* The header-rule action parameter is set to manipulate or find-replace-all
* The element-rule action parameter is set to replace or find-replace-all

Using back reference syntax simplifies your development work because you do not
need to create a store rule and then manipulate rule; the manipulate rule itself
performs the store action if the comparison-type parameter is set to pattern-rule.

Dialog Matching

The out - of - di al og setting is useful for To/From NATiIng rules.

Service providers can use HMR to support legacy RFC 2543 devices and some non-
compliant RFC 3261 devices. The header-rule msg-type setting called out - of - di al og
has been added, which applies the rule (and any of its sub-rules) only to out-of-dialog
requests. If the rule was applied as an outbound sip-manipulation to the first request,
then it will apply the rule against all subsequent requests going in the same direction.
The primary purpose of this new configuration setting is to support changing the To/
From URI's in mid-dialog requests without breaking dialog matching for some over-
strict SIP devices.

About Dialog-Matching Header Manipulations

The goal of this feature is to maintain proper dialog-matching through manipulation of
dialog-specific information using HMR. Two fundamental challenges arise when
looking at the issue of correctly parameters manipulating dialog-matching:

e Inbound HMR
e QOutbound HMR

The new setting out-of-dialog (for the msg-type parameter) addresses these
challenges by offering an intelligent more of dialog matching of messages for inbound
and outbound HMR requests. This is a msg-type parameter, meaning that it becomes
matching criteria for operations performed against a message. If you also specify
methods (such as REGISTER) as matching criteria, then the rule is further limited to
the designated method.

ORACLE 1-10

Chapter 1
HMR Components

For both inbound and outbound manipulations, using the out-of-dialog setting means
the message must be a request without a to-tag in order to perform the manipulation.

Inbound HMR Challenge

Because inbound manipulations take place before the message reaches the core of
Oracle® Enterprise Session Border Controller (E-SBC) SIP processing, the SIP proxy
takes the manipulated header as directly received from the client. This can cause
problems for requests leaving the E-SBC for the UAC because the dialog does not
match the initial request sent.

The unmodified header must be cached because for any subsequent request (For
example, a BYE originating from the terminator. See the following diagram.) the E-
SBC might need to restore the original value, enabling the UAC to identify the
message correctly as being part of the same dialog. For out-of-dialog requests (when
the To, From, or Call-ID headers are modified) the original header is stored in the
dialog when the msg-type out-of-dialog is used.

The E-SBC performs the restoration of original headers outside of SIP manipulations.
There are no manipulation rules to configure for restore the header to their original
context. The E-SBC recognizes that the headers are modified, and restores them to
their original state prior to sending the message out. Restoration takes place prior to
outbound manipulations so that any outbound manipulation can those headers after
they are restored.

inbound manipulation

UAC
INVITE >
~-——100 Trying |
INVITE -
- 100 Trying:
4180 Ringing————— :—mg%glgﬁng
- 200 0K
ACH -
ACK >
- BYE
-t BYE
200 OK———p»
200 OK »

Outbound HMR Challenge

ORACLE

When you use the out-of-dialog setting for an outbound manipulation, the Oracle®
Enterprise Session Border Controller executes this specific SIP header rule only if the
same SIP header rule was executed against the initial dialog-creating request.

For example, if the INVITE’s To header was not manipulated, it would not be correct to
manipulate the To header in the BYE request. To do so would render the UAC unable
to properly match the dialog. And this also means that the outbound manipulation
should be carried out against a To, From, or Call-ID header in the BYE request if it
was manipulated in the INVITE.

1-11

Chapter 1
HMR Components

outhound manipulation

INVITE
100 Trylng—————f
- ——INVITE
———————100 Trying———
180 Ringing——
200 0K -_—180 Ringing————|
200 OK -
- ACHK,
- ACK
i BYE
-} BYE
200 OK -
200 OK -

Dialog-matching Header Manipulation Configuration

You using the out-of-dialog setting in the msg-type parameter, part of the SIP header
rules configuration.

To enable dialog-matching header manipulation:

1. Access the header-rules configuration element.

ORACLE# configure termnal

ORACLE(confi gure)# session-router
ORACLE(sessi on-router)# sip-mnipul ation
ORACLE(si p- mani pul ation)# header-rul es
ORACLE(si p-header -rul es) #

2. msg-type—Set this parameter to out-of-dialog to enable dialog-matching header
manipulation.

3. Type done to save your work.

Built-In HMRs

ORACLE

In the course of HMR use, certain SIP manipulations have become commonly used.
Oracle is creating a library of built-in SIP manipulations that you use exactly like the
HMRs you create yourself. You apply the built-in HMRs as arguments to the in-
manipulationid and out-manipulationid parameters for session agents, realms, and
SIP interfaces. You can also apply them in HMR sets as a nested manipulation.

The following built-in replaces the host part of the From and To headers:
ACME_NAT_TO_FROM_IP

When performed outbound, this rule changes:

The To-URI hostname to the logical $TARGET _IP and port to $TARGET_PORT
The From-URI to the logical SREPLY _IP and port to be $REPLY_PORT

1-12

Chapter 1
HMR Components

Built-in rules start with the prefix ACME_, so Oracle recommends you name your own
rules in a different manner to avoid conflict.

You can view a list of built-in manipulations using the following ACLI command:

show bui | t-in-sip-mani pul ation

Built-In Variables

There are built-in variables for common components of the SIP message available for
use in your HMRs to improve performance and reduce development complexity.
These are reserved variables that operate exactly like the variables you define. The
recommended syntax is:

$<vari abl e>. $0

For example:

$PAI _USER. $0

If you omit the $0, the resulting value is TRUE or FALSE, which can be useful to
determine if there was no username in the PAI header or that no PAI header exists.

The values for the variables are obtained when they are resolved. For example if the
To-URI has been changed by a previous rule, the current rule gets the changed value
(as would apply to $ORIGINAL). If the header or value does not exist in the SIP
message, either an empty string is returned or, for Boolean uses, the value FALSE is
returned.

The following table lists and describes those built-in variables.

Variable Description

$LOCAL_IP IP address of the SIP interface on which the message was
received for inbound manipulation or sent on for outbound
manipulation.

$LOCAL_PORT Port number of the SIP interface on which the message was
received for inbound manipulation or sent on for outbound
manipulation.

$REMOTE_IP IP address the message was received from for inbound
manipulation or sent to for outbound manipulation.

$REMOTE_PORT Port number the message was received from for inbound
manipulation or sent to for outbound manipulation.

$REMOTE_VIA_HOST Host from the top Via header of the message.

$TRUNK_GROUP Legacy reserved variable that can resolve to <TRUE/
FALSE>.

$TRUNK_GROUP_CONTEXT Legacy reserved variable that can resolve to <TRUE/
FALSE>.

$MANIP_STRING Legacy reserved variable that can resolve to <TRUE/
FALSE>.

ORACLE 1-13

ORACLE

Chapter 1
HMR Components

Variable

Description

$MANIP_PATTERN

$CRLF

$ORIGINAL
$REPLY_IP
$REPLY_PORT
$TARGET_IP
$TARGET_PORT
$M_STRING
$M_PATTERN
$TO_USER
$TO_PHONE

$TO_HOST
$TO_PORT

$FROM_USER
$FROM_PHONE

$FROM_HOST
$FROM_PORT

$CONTACT_USER

$CONTACT_PHONE

$CONTACT_HOST

Use a regex pattern from the most specific matching session
agent, realm, or SIP interface. Only this variable can be used
in the match-value field. You cannot combine it with
additional characters. This variable can be used in any rule
you use a pattern-rule match value, including store action
rules.

You can also reference the stored values from those
referenced in later rules. For example, you can create a
whitelist based on trunk From header uri-user parameter.
The each session agent passes a different string to perform
the whitelist operation on.

Because the MANIP_PATTERN is dynamically decided at
run-time every time the HMR executes for each message, it
is possible no manipulation pattern will be found. In this
case, it will use the default\ , +. This default works most
like . +.

It's also possible a sub-group could be referenced that was
not in the pattern chosen, in this case the variable resolves
to empty/FALSE.

Search for carriage returns in new lines. Because you can
search for these value and replace them, you also must be
able to add them back in when necessary. Resolves to\r\ n
and is commonly used in MIME manipulation. If you are
creating a new body, there might be a need for many CRLFs
in the new-value parameter.

Original value of element

IP address of

Port number of

IP address of

Port number of

Manipulation string

Manipulation pattern

URI username from To header without any user parameters.

URI user of the To header as a phone number without any
visual separators and with the leading + if it is present.

URI host portion from the To header.

URI port number from the To header. This is set to 5060 if it
is not actually in the message.

URI username from the From header without any user
parameters

URI user of the From header as a phone number without any
visual separators and with the leading + if it is present

URI host portion from the From header.

URI port number from the From header. This is set to 5060 if
it is not actually in the message.

URI username from the first instance of the Contact header
without any user parameters.

URI user of the first instance of the Contact header as a
phone number without any visual separators and with the
leading + if it is present.

URI host portion from the first instance of the Contact header

1-14

ORACLE

Chapter 1
HMR Components

Variable

Description

$CONTACT_PORT

$RURI_USER
$RURI_PHONE
$RURI_HOST
$RURI_PORT
$PAI_USER

$PAI_PHONE

$PAI_HOST

$PAI_PORT

$PPI_USER

$PPI_PHONE

$PPI_HOST

$PPI_PORT

$PCPID_USER
$PCPID_PHONE
$PCPID_HOST
$PCPID_PORT
$CALL_ID

$TIMESTAMP_UTC

$T_GROUP
$T_CONTEXT

URI port number from the first instance of the Contact
header. This is set to 5060 if it is not actually in the
message.

URI username from the Request-URI header without any
user parameters.

URI user of the Request-URI header as a phone number
without any visual separators and with the leading + if it is
present.

URI host portion from the Request-URI header.

URI port number from the Request-URI header. This is set to
5060 if it is not actually in the message.

URI username from the first instance of the P-Asserted-
Identity header without any user parameters.

URI user of the first instance of the P-Asserted-ldentity
header as a phone number without any visual separators
and with the leading + if it is present.

URI host portion from the first instance of the P-Asserted-
Identity header.

URI port number from the first instance of the P-Asserted-
Identity header. This is set to 5060 if it is not actually in the
message.

URI username from the first instance of the P-Preferred-
Identity header without any user parameters.

URI user of the first instance of the P-Preferred-Identity
header as a phone number without any visual separators
and with the leading + if it is present.

URI host portion from the first instance of the P-Preferred-
Identity header.

URI port number from the first instance of the P-Preferred-
Identity header. This is set to 5060 if it is not actually in the
message.

URI username from the P-Called-Party-ID header without
any user parameters.

URI user of theP-Called-Party-ID header as a phone number
without any visual separators and with the leading + if it is
present.

URI host portion from theP-Called-Party-ID header.

URI port number from the P-Called-Party-ID header. This is
set to 5060 if it is not actually in the message.

Resolves to the Call-ID of the current SIP message; is a
commonly stored rule.

Gets the current time from the E-SBC's system clock in RFC
3339 format:
YYYY-MM-DDTHH:MM:SS.PPPZ

The PPP is partial seconds and the time is based on UTC.
For example:

2012-01-01 T22:00:09.123Z

Trunk group

Trunk group context

1-15

Chapter 1
HMR Components

Built-In SIP Manipulation Configuration

When you want to enable this feature for a realm, session agent, or SIP interface, you
configure the in-manipulationid or out-manipulationid parameters with the rule.

The sample here shows this feature being applied to a session agent, but the realm
and SIP interface configurations also have the same parameter you use to set up the
feature.

To use built-in SIP manipulations:

1. Access the session-agent configuration element.

ORACLE# configure terninal

ORACLE(configure)# session-router
ORACLE(sessi on-router)# sessi on-agent
ORACLE(sessi on-agent)

2. out-manipulationid—Enter name of the built-in rule you want to use.

" Note:

All built-in rules start with ACVE_.

3. Save your work.

Unique Regex Patterns Per Peer/Trunk

ORACLE

The build-in variable $MANIP_PATTERN reduces the complexity of writing HMRs for
multiple peers and trunks.

Similar to the reserved variable $MANIP_STRING, the variable $MANIP_PATTERN
uses a regex pattern from the most-specific matching session-agent, realm or sip-
interface. Within these configuration objects, the "manipulation-pattern” attribute allows
setting a unique regex pattern. Only one regex pattern can be specified in the
configuration attribute, and only the variable $SMANIP_PATTERN can appear in the
match-value field (i.e. the "$MANIP_PATTERN" cannot be combined with additional
characters in the match-value).

This feature enables service providers to configure one or a few common global HMRs
while having a unique regex pattern for each SIP trunk/peer. It reduces the number of
sip-manipulation sets that need to be provisioned, reducing provisioning work and
system memory usage.

The SMANIP_PATTERN can be used in any rule you can use a pattern-rule match-
value in, including store action rules. You can also reference the stored values from
those referenced in later rules (i.e., using the $RuleName for the Boolean TRUE/
FALSE, or $RuleName.$0 for the whole matching string). For example, a whitelist can
be created based on trunk From header uri-user parameter. Then each session-agent
passes a different string to perform the whitelist operation on. A configuration example
is shown below:

si p- mani pul ation
nane si pTrunkWhi t eLi st

1-16

header-rul e
name
header - nane
action
conpari son-type
nsg-type
met hods
mat ch-val ue
newval ue
element-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue
element-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

sessi on- agent

host nane

i p- addr ess
por t
realmid

mani pul ation-string
mani pul ation-pattern

sessi on- agent

host nane

i p- addr ess
por t
realmid

mani pul ation-string
mani pul ation-pattern

Rejecting SIP Requests

ORACLE

Chapter 1
HMR Components

whi t eLi st OnFrom
From

mani pul at e
case-sensitive
out - of - di al og

I NVITE

checkFromri User

uri-user

store

any
pattern-rule
$MANI P_PATTERN

rej ect|fNoMatch

uri-user

rej ect

any

bool ean

I'$whi t eLi st OnFrom $checkFronlri User
403: For bi dden

172.16.50. 101
172.16.50. 101
5060
peer1-core

A78132841([0-4][0-9])$

172.16. 50. 102
172.16. 50. 102
5060
peer2-core

A78132841([5-9][0-9])$

SIP requests can be rejected using HMRs.

To simplify rejecting SIP requests with HMRs, the E-SBC supports the reject action in
any rule type. This rejects SIP requests if the conditions within the rule (match-value,
msg-type, etc.) are true. When a SIP message is rejected, the E-SBC increments the

1-17

Chapter 1
HMR Components

counter called "Rejected Messages," which can be displayed in the ACLI with the show
sip transport command. SIP responses cannot be rejected but the counter is still
incremented.

A new MIB object in the ap-smgmt.mib for SNMP GET is available to obtain the
counter value. The E-SBC can send an SNMP trap when the counter exceeds a
configured threshold in a configured time window. The threshold is set by new “reject-
message-threshold” and “reject-message-window” config attributes in session-router
config.

When rejecting a matching SIP Request, a response-code and reason-phrase can be
specified. In the rule configured with the "reject” action, enter the syntax st at us-
code[: reason- phrase] in the new-value field. For example 401: Deni ed in the new-
value of a reject action rule will cause the SD to reject the SIP Request with a 401
response and "Denied" as the reason-phrase.

Si p- mani pul ation

nane rejectl NV
description
header-rul e
nanme fronb08
header - name from
action mani pul ate
conpari son-type case-sensitive
nmsg-t ype any
met hods I NVI TE
mat ch-val ue
new val ue
element-rule
name fromJser
par anet er - name
type uri - phone- nunber - onl y
action reject

mat ch-val -t ype any

conpari son-type case-sensitive
mat ch- val ue 5085551212
newval ue 401: Deni ed

" Note:

When a SIP request matches a rule with a reject action, the rejection is
immediate and later rules aren't executed.

< Note:

The reject action cannot respond with a 200 OK. The response code must be
4xX, 5XX, or 6xX.

ORACLE 1-18

Chapter 1
Using Regular Expressions

HMR Information in Logs

You can apply an action type called log to all manipulation rules. When you use this
action type and a condition matching the manipulation rule arises, the E-SBC logs
information about the current message to a separate log file. This log files will be
located on the same core in which the SIP manipulation occurred. On the core where
sipt runs, a logfile called matched.log will appear when this action type is executed.

The matched.log file contains a timestamp, received and sent E-SBC network
interface, sent or received IP address:port information, and the peer IP address:port
information. It also specifies the rule that triggered the log action in this syntax: r ul e-
type[rul e nane]. The request URI, Contact header, To Header, and From header are
also present.

Apr 17 14:17:54.526 On [0:0]192. 168. 1. 84: 5060 sent to 192.168. 1. 60: 5060
el ement - rul e[checkRURI Port]

I N\VITE sip:service@92. 168. 1. 84: 5060 SIP/2.0

From sipp <sip:+2125551212@92. 168. 1. 60: 5060>; t ag=3035S| PpTag001

To: sut <sip:service@92.168. 1. 384>

Contact: sip:sipp@?92.168. 1.60: 5060

Using Regular Expressions

Regular expressions (regex) are patterns that describe character combinations in text.
Regex provides a concise and flexible means to match strings of text, such as
particular characters, words, or patterns of characters. SIP messages are treated as
sets of substrings on which regex patterns rules are executed. With regex you can
create strings to match other string values and use groupings in order to create stored
values on which to operate.

" Note:

An understanding of regex is required for successful HMRs. Refer to
Mastering Regular Expressions from O'Reily Media for more information.

Oracle's E-SBC supports the standardized regular expression format called Portable
Operating System Interface (POSIX) Extended Regular Expressions. The E-SBC
regex engine is a traditional regex-directed (NFA) type.

Example of HMR with Regex

ORACLE

The following HMR removes a P-Associated-URI from an response to a REGISTER
request. The regex expression "<t el : lets you specify the removal only if it is a tel-
URI.

si p-mani pul ation

name remtel PAU
description
header-rul e

1-19

Chapter 1
Using Regular Expressions

nane modPAU

header - nane P- Associ at ed- URI
action del ete

conpari son-type pattern-rule

mat ch- val ue A<tel

msg-type reply

newval ue

met hods REQ STER

Regex Characters

Regular expressions are used to search for patterns of text using one or more of the

following devices:

Character Type Example Description

Literal text f oobar With the exception of a small number of characters
that have a special meaning in a regex, text
matches itself.

Special wildcard \d Known as metacharacters or metasequences,

characters these match or exclude specific types of text, such
as any number.

Character classes [1-5] When a suitable metacharacter or metasequence
doesn't exist, you can create your own definition to
match or exclude specified characters.

Quantifiers +or? These specify how many times you want the

Capturing groups and (foobar) or\1
backreferences

Boundaries and Nor$
anchors

Alternation |

preceding expression to match or whether it's
optional.

These specify parts of the regex that you want
remembered, either to find a similar match later on,
or to preserve the value in a find and replace
operation.

These specify where the match should be made,
for example at the beginning of a line or word.

This specifies alternatives.

By default, regular expressions are case-sensitive, so A and a are treated as different
characters. As long as what you're looking for fits a regular pattern, a regex can be

created to find it.

Literal (Ordinary)

ORACLE

Many of the characters you can type on your keyboard are literal, ordinary characters;
they present their actual value in the pattern. For example, the regex pattern si p, is a
pattern of all literal characters, that will be matched from left to right, at each position in
the input string, until a match is found. Given an input string of <si p: ne@er e. con®, the
regex pattern si p will successfully match the si p, starting at the position of the s and
ending at the position of the p. But the same regex will also match si p in

<si ps: me@ere. comr and t el : 12345; i si p=192. 168. 0. 3 because an s followed by an

i followed by a p exists in both of those as well.

1-20

Special (Metacharacters)

Chapter 1
Using Regular Expressions

Some characters have special meaning. They instruct the regex function (or engine
which interprets the expressions) to treat the characters in designated ways. The
following table outlines these special characters or metacharacters.

Description

Character Name

dot
* star/asterisk
+ plus

bar/vertical bar/pipe

{ left brace

? question mark
A caret

$ dollar sign

[left bracket

ORACLE

Matches any one character, including a space; it will match
one character, but there must be one character to match.
Matches a literal dot when bracketed or placed next to a
backslash: [.] or\..

Matches one or more preceding character (0, 1, or any
number), bracketed carrier class, or group in parentheses.
Used for quantification.

Typically used with a dot in the format . * to indicate that a
match for any character, 0 or more times.

Matches a iteral asterisk when bracketed: [*] .

Matches one or more of the preceding character, bracketed
carrier class, or group in parentheses. Used for
quantification.

Matches a literal plus sign when bracketed: [+] .

Matches anything to the left or to the right; the bar
separates the alternatives. Both sides are not always tried;
if the left does not match, only then is the right attempted.
Used for alternation.

Begins an interval range, ended with } (right brace) to
match; identifies how many times the previous single
character or group in parentheses must repeat.

Interval ranges are entered as minimum and maximums
{m ni mum maxi mun} where the character or group must
appear a minimum number of times up to the maximum.
You can also use interval ranges to set magnitude, or
exactly the number of times a character must appear; you
can set this, for example, as the minimum value without the
maximum {m ni num }.

Signifies that the preceding character or group in
parentheses is optional; the character or group can appear
not at all or one time.

Acts as an anchor to represent the beginning of a string.
Acts as an anchor to represent the end of a string.

Acts as the start of a bracketed character class, ended with
the] (right bracket). A character class is a list of character
options; one and only one of the characters in the
bracketed class must appear for a match. A - (hyphen) in
between two characters enclosed by brackets designates a
range; for example [a- z] is the character range of the
lower case twenty-six letters of the alphabet.

Note that the] (right bracket) ends a bracketed character
class unless it sits directly next to the [(left bracket) or the
M (caret); in those two cases, it is the literal character.

1-21

Regex Tips

Chapter 1
Using Regular Expressions

Character

Name

Description

(

left parenthesis

Creates a grouping when used with the) (right
parenthesis). Groupings have two functions:

Separate pattern strings so that a whole string can have
special characters within it as if it were a single character.

They allow the designated pattern to be stored and

referenced later (so that other operations can be performed

on it).

e Limit use of wildcards asterisk * and plus sign +.

» A character class enclosed by brackets [] is not a choice of one or more
characters but rather a choice of one and only one character in the set.

* The range 0-1000 is not the same as the range 0000-1000.

* Spaces are legal characters and will be interpreted like any other character.

Matching New Lines

In the regular expression library, the dot . character does not match new lines or

carriage returns. Conversely, the not-dot does match new lines and carriage returns.
This provides a safety mechanism preventing egregious backtracking of the entire SIP

message body when there are no matches. The E-SBC reduces backtracking to a

single line within the body.

Escaped Characters

ORACLE

SIP HMR's support for escaped characters allows for searches for values you would

be unable to enter yourself. Because they are necessary to MIME manipulation,
support for escaped characters includes:

Syntax Description

\s Whitespace

\'S Non-whitespace
\d Digits

\D Non-digits

\R Any\r,\n,or\r\n
\w Word

\W Non-word

\A Beginning of buffer
\Z End of buffer

\ f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

1-22

Chapter 1
Using Regular Expressions

Building Expressions with Parentheses

You can use parentheses () when you use HMR to support order of operations and to
simplify header manipulation rules that might otherwise prove complex. This means
that expressions such as (sip + urp) - (u + rp) can now be evaluated to si p.
Previously, the same expression would have evaluated to si pur pr p. In addition, you
previously would have been required to create several different manipulation rules to
perform the same expression.

Boolean Operators

The following Boolean operators are supported:
* & meaning AND.

* |, meaning OR.

e |, meaning NOT.

You can only use Boolean operators when the comparison type is pattern-rule and
you are evaluating stored matches. The E-SBC evaluates these Boolean expressions
from left to right, and does not support any grouping mechanisms that might change
the order of evaluation. For example, the E-SBC evaluates the expression A & B | C
(where A=true, B=false, and C=true) as follows: A & B = false; false | true = true.

Equality Operators

You can use equality operators in conjunction with string operators. You can also use
equality operators with:

* Boolean operators, as in this example: ($rul el. $0 == $rul e2. $1) & $rul e3.
e The!, & and| operators.
* Variables and constant strings.

You can group them in parentheses for precedence.

Equality operators always evaluate to either true or false.

Equality Operator Short Description Detailed Information
Symbol

== String case sensitive Performs a character-by-character, case-sensitive
equality operator string comparison on both the left side and the right
side of the operator.

~= String case Performs a character-by-character, case-insensitive
insensitive equality string comparison on both the left side and the right
operator side of the operator.

I= String case sensitive Performs a character-by-character, case-sensitive
inequality operator string comparison on both the left side and the right
side of the operator, returning true if the left side is
not equal to the right side.

ORACLE 1-23

Chapter 1
Using Regular Expressions

Equality Operator Short Description Detailed Information

Symbol
<= Less than or equal to Performs a string-to-integer conversion. If the
operator string-to-integer comparison fails, the value is
treated as 0. After the conversion, the operator will
compare the two values and return true only if the
left side is less than or equal to the right side of the
operator.
>= Greater than or Performs a string-to-integer conversion. If the
equal to operator string-to-integer comparison fails, the value is

treated as 0. After the conversion, the operator will
compare the two values and return true only if the
left side is greater than or equal to the right side of
the operator.

< Less than operator Performs a string-to-integer conversion. If the
string-to-integer conversion fails, the value is
treated as 0. After the conversion, the operator will
compare the two values and return true only if the
left side is less than the right side of the operator.

> Greater than Performs a string-to-integer conversion. If the
operator string-to-integer conversion fails, the value is
treated as 0. After the conversion, the operator will
compare the two values and return true only if the
left side is greater than the right side of the
operator.

Normalizing EBNF ExpressionString Grammar

The expression parser grammar implies that any expression string can have boolean
and string manipulation operators in the same expression. While technically this is
possible, the expression parser prevents it.

Because all boolean expressions evaluate to the string value TRUE or FALSE and
since all manipulation are string manipulations, the result of a boolean expression
returns the value TRUE or FALSE. The ExpressionString class interprets this as an
actual TRUE or FALSE value. For this reason, boolean operators are not mixed with
string manipulation operators (which is true with most programming languages).

The expression string grammar also indicates that it is possible to nest self-references
and rule names indefinitely. For HMR, this is not allowed. A self-reference can only
exist by itself, and a terminal index can only come at the end of a rule reference.

Storing Regex Patterns

ORACLE

Any HMR with a pattern-rule comparison type can store a regex pattern's matches for
later use. In many cases you don't have to create store rules before manipulation
rules. Data is only stored for items that later rules actually reference.

For example, if a later rule never references a header rule's stored value, but only its
element rules, then the header rule itself doesn't store anything. Alternatively, you
could delete a header or field, but still use its stored value later without having to
create a separate store rule for it. In general, fewer rules improve E-SBC performance.

1-24

Chapter 1
HMR Configuration

Performance Considerations

The regex engine consumes as much of the input string as it can before it backtracks
or gives up trying, which is called greediness. Greediness can introduce errors in
regex patterns and has an effect on performance. There is usually a trade-off of
efficiency versus exactness - you should choose how exacting you need to be. Keep
the following in mind in order to lessen the effect:

Poorly constructed regex patterns can effect the performance of regex matching
for long strings

Search on the smallest input string possible, perform a regex search in element
rules for the specific header component type you want to match for

Test the regex pattern against long strings which do not match to evaluate the
effect on performance.

Test a regex with a wildcard in between characters against an input string with
those characters repeated in different spots to evaluate performance

If the input string format is fairly fixed and well-known, be explicit in the regex
rather than using wildcards

If the regex pattern is trying to capture everything before a specific character, use
the negation of the character for the wildcard character. Note that this is true most
times, except when there is an anchor at the end.

Use beginning-line and ending-line anchors whenever possible if you want to only
match if the pattern begins or ends as such.

A dot . means any character, including whitespace. A wild-carded dot, such as .*
or .+, will capture/match everything until the end of line, and then it will backtrack if
there are more characters after the wildcard that need to be matched. If you don't
need to capture the things before the characters after the wildcard, don't use the
wildcard.

Additional References

To learn more about regex, you can visit the following Web site, which has information
and tutorials that can help to get you started:http://www.regular-expressions.info/.

HMR Configuration

To configure SIP header and parameter manipulation, first create a SIP header
manipulation ruleset. Then create the header manipulation rules and optional header
element rules for that ruleset to contain. Then configure a session agent or a SIP
interface to use the SIP header and parameter manipulation ruleset in the inbound and
outbound directions.

Testing Pattern Rules

Use test-pattern-rule to test the effect of your regex patterns.

ORACLE

1-25

http://www.regular-expressions.info/

Chapter 1
HMR Configuration

1. Access the test-pattern-rule configuration element.

ORACLE# configure ternnal

ORACLE(configure)# session-router
ORACLE(session-router)# test-pattern-rule
ORACLE(test-pattern-rule)#

2. expression—Enter the regular expression to test.

3. string—Enter the string against which you want to compare the regular
expression.

4. show—View the test pattern, the string, and the matches.

ORACLE(test-pattern-rul e)# expression ".*(;tgid=(.+)).*"
expression made 0 matches agai nst string
ORACLE(test-pattern-rule)# string "sip:+17024260002@CMSGAC, user =phone SI P/
2.0;tgid=Trunk1"
expression made 3 matches against string
ORACLE(test-pattern-rul e)# show
Pattern Rul e:
Expression : .*(;tgid=(.+)).*

String . Sip:+17024260002@CMEGAC; user =phone SI P/
2.0;tgid=Trunkl

Mat ched : TRUE

Mat ches:

$0 sip: +17024260002 @XCMSGAC; user =phone SI P/ 2. 0; t gi d=Trunk1
$1 ;tgi d=Trunkl
$2 Trunkl

ORACLE(test-pattern-rule)#

Creating Header Manipulation Rulesets

ORACLE

First create a header rule and then create element rules within that header rule.

1. Access the sip-manipulation configuration element.

ORACLE# configure termnal
ORACLE(configure)# session-router
ORACLE(sessi on-router)# sip-manipul ation
ORACLE(si p- mani pul ation)#
2. name—Enter the name you want to use for this ruleset.
3. Access the header-rules configuration element.
ORACLE(si p- mani pul ation)# header-rul es
ORACLE(si p-header-rul es) #
4. name—Enter a uniqgue name for this rule.

5. header-name—Enter the name of the header to which this rule applies.

1-26

Chapter 1
HMR Configuration

The name entered here is a case-insensitive string that must match a header
name. Create a rule using the long form of the header name and a rule using the
compact form of the header name.

¢ Note:
The Request-URI header is identified as request-uri.
6. action—Enter the action you want applied to the header specified in the name
parameter.
The default value is none. Valid options are:
* add—Add a new header, if that header does not already exist.
* delete—Delete the header, if it exists.

* manipulate—Elements of this header will be manipulated according to the
element rules configured.

e store—Store the header.
* none—No action to be taken.

7. match-value—Enter the value to be matched (only an exact match is supported)
with a header value.

The action specified is only performed if the header value matches.
8. msg-type—Enter the message type to which this header rule applies.

The default value is any. Valid options are:

» any—Both Requests and Reply messages

¢ reguest—Request messages only

* reply—Reply messages only

9. methods—Enter the SIP method names to which you want to apply this header
rule. If entering multiple method names, separate them with commas. For
example:

I NVI TE, ACK, BYE

Leaving the method field empty applies the header-rule to all methods.
10. Access the element-rules configuration element.

The element-rules configuration element defines the element rules, which are
executed on those elements of the header specified by the header rule.

ORACLE(si p-header-rul es)# el ement-rul es
ORACLE(si p-el enent-rul es) #

a. name—Enter the name of the element to which this rule applies.

ORACLE 1-27

ORACLE

Chapter 1
HMR Configuration

< Note:

The name parameter usage depends on the element type you enter
in step 6. For uri-param, uri-user-param, and header-param it is the
parameter name to be added, replaced, or deleted. For all other
types, it serves to identify the element rule and any name can be
used.

type—Enter the type of element on which to perform the action.

The default value is none. Valid options are:

header-value—Enter value of the header.
header-param-name—Header parameter name.
header-param—~Parameter portion of the header.
uri-display—Display of the SIP URI.
uri-user—User portion of the SIP URI.
uri-host—Host portion of the SIP URI.
uri-port—Port number portion of the SIP URI.
uri-param-name—Name of the SIP URI param.
uri-param—Parameter included in the SIP URI.
uri-header-name—SIP URI header name
uri-header—Header included in a request constructed from the URI.

uri-user-param—User parameter of the SIP URI.

action—Enter the action you want applied to the element specified in the name
parameter, if there is a match value.

The default value is none. Valid options are:

none—No action is taken.

add—Add a new element, if it does not already exist.
store—Store the elements.

replace—Replace the elements

delete-element—Delete the specified element if it exists.

delete-header—Delete the specified header, if it exists.

match-val-type—Enter the type of value that needs to be matched to the
match-field entry for the action to be performed.

The default value is ANY. Valid options are:

IP—Element value in the SIP message must be a valid IP address to be
compared to the match-value field entry. If the match-value field is empty,
any valid IP address is considered a match. If the element value is not a
valid IP address, it is not considered a match.

FQDN—Element value in the SIP message must be a valid FQDN to be
compared to the match-value field entry. If the match-value field is empty,

1-28

Chapter 1
HMR Configuration

any valid FQDN is considered a match. If the element value is not a valid
FQDN, it is not considered a match.

* ANY—Element value in the SIP message is compared with the match-
value field entry. If the match-value field is empty, all values are
considered a match.

e. match-value-—Enter the value you want to match against the element value
for an action to be performed.

f. new-value-—Enter the value for a new element or to replace a value for an
existing element. You can enter an expression that includes a combination of
absolute values, pre-defined parameters, and operators

Note:

Absolute values, with which you can use double quotes for clarity.
You must escape all double quotes and back slashes that are part of
an absolute value, and enclose the absolute value in double quotes.

Examples of entries for the new-value field.

si p: " +$TRUNK_GROUP+" . $TRUNK_GROUP_CONTEXT
$ORI G NAL+acne

$ORI G NAL+"ny nane i s john”

$ORI G NAL+"mmy name is \"john\""

$ORI G NAL-"781+"617

g. Type done and exit to save the rule and return to the header-rules
configuration element.

11. Type done and exit to save the rule and return to the sip-manipulation

configuration element.

Configuring SIP Header Manipulation Rules

To configure dynamic SIP header manipulation rules:

ORACLE

1.

Access the header-rules configuration element.

ORACLE# configure tern nal

ORACLE(confi gure)# session-router

ORACLE(sessi on-router)# sip-mani pul ation

ORACLE(si p- mani pul ation)# header-rul es

ORACLE(si p- header-rul es) #

name—Enter the unique identifier for this SIP HMR.

This configuration element has no default value.
header-name—Enter the name of the header on which to operate.

This configuration element has no default value.
Set this parameter to @status-line to prevent undesired matches with header
having the name status-code.

msg-type—Specify the type of message to which this SIP HMR will be applied.

1-29

ORACLE

Chapter 1
HMR Configuration

The default value is any. Valid values are:

* any
* request
* reply

methods—Enter the method type on which to operate.

When you do not set the method, the E-SBC applies the rule across all SIP
methods. Valid values are:

 INVITE
« ACK
« CANCEL

comparison-type—Enter the way in which the E-SBC will process match rules
against SIP headers.

The default is refer-case-sensitive. The valid values are:
* boolean

* refer-case-sensitive

e pattern-rule

* case-sensitive

e case-insensitive

action—Enter the action to perform on the SIP header.
The default value is hone. The valid values are:

e add

* delete

* manipulate

° store
° none
Note:

Remember that you should enter rules with the action type store before
you enter rules with other types of actions.

If the action type is set to store, the E-SBC treats the match value as a regular
expression. As a default, the regular expression used for the match value is . +
(which indicates a match value of at least one character), unless you set a more
specific regular expression match value.

match-value—Enter the value to match against the header value.

The E-SBC matches these against the entire SIP header value. This is where you
can enter values to match using regular expressions. Your entries can contain
Boolean operators.

1-30

Chapter 1
HMR Configuration

When you configure HMR (using SIP manipulation rules, elements rules, etc.), you
can use escape characters to support escaping Boolean and string manipulation
operators.

new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute for the entire header value.

This is where you can set stored regular expression values for the E-SBC to use
when it adds or manipulates SIP headers.

Configuring SIP Header Manipulation Element Rules

Element rules are a subset of the SIP header manipulation rules and are applied at the
element type level rather than at the entire header value.

ORACLE

To configure dynamic SIP header manipulation rules:

1.

Access the element-rules configuration element.

ORACLE# configure termnal

ORACLE(confi gure)# session-router

ORACLE(sessi on-router)# sip-manipul ation
ORACLE(si p- mani pul ation)# header-rul es
ORACLE(si p-header-rul es)# el ement-rul es
ORACLE(si p-el enent-rul es) #

—~

name—Enter the unique identifier for this element rule.
There is no default value.

parameter-name—Enter the SIP header parameter or element on which to
operate.

There is no default value.

type—Specify the type of parameter to which this element rule will be applied.
The default value is hone. The valid values are:
* header-value

* header-param-name

* header-param

e uri-display

e uri-user

e uri-user-param

e uri-host

e uri-port

e uri-param-name

e uri-param

* uri-header-name

e uri-header

To configure HMR so that only the status-line is affected, set comparison-type to
one of the following:

1-31

ORACLE

Chapter 1
HMR Configuration

» status-code—Designates the status code of the response line; accepts any
string, but during the manipulation process only recognizes the range from 1 to
699.

* reason-phrase—Designates the reason of the response line; accepts any
string.

match-val-type—Enter the value type that you want to match when this rule is
applied.

The default value is ANY. Valid values are:

. P
- FQDN
< ANY

comparison-type—Enter the way that you want SIP headers to be compared
from one of the available.

This choice dictates how the E-SBC processes the match rules against the SIP
header parameter/element. The default is refer-case-sensitive.

* boolean

» refer-case-sensitive

» refer-case-insensitive
e pattern-rule

action—Enter the action that you want this rule to perform on the SIP header
parameter/element.

The default is none. The valid rules are:
e add

* replace

* delete-element

* delete-header

e store

* none

Remember that you should enter rules with the action type store before you enter
rules with other types of actions.

When you set the action type to store, the E-SBC always treats the match value
you enter as a regular expression. As a default, the regular expression is uses for
the match value is . + (which indicates a match value of at least one character),
unless you set a more specific regular expression match value.

match-value—Enter the value to match against the header value in SIP packets.

The E-SBC matches these against the value of the parameter/element. This is
where you can enter values to match using regular expression values, or stored
pattern matches. Your entries can contain Boolean operators.

new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute for the entire header value.

This is where you can set stored regular expression values for the E-SBC to use
when it adds or manipulates parameters/elements.

1-32

Chapter 1
HMR Configuration

Status-Line Manipulation and Value Matching

The Oracle® Enterprise Session Border Controller's HMR feature has been enhanced
to support the ability to change the status code or reason phrase in SIP responses.
This addition—the ability to edit status-lines in responses—builds on HMR'’s existing
ability to edit response headers or the Request-URI in a request.

This section shows you how to configure SIP HMR when you want the Oracle®
Enterprise Session Border Controller to drop a 183 Session Progress response when
it does not have SDP, though flexibility is built into this feature so that you can use it to
achieve other ends. In addition, you can now set the SIP manipulation’s match-value
parameter with Boolean parameters (AND or OR).

Set the Header Name

Set the header-name to @status-line to modify the status code or reason phrase in
SIP responses.

1. Access the header-rules configuration element.

ORACLE# configure termnal

ORACLE(confi gure)# session-router
ORACLE(sessi on-router)# sip-manipul ation
ORACLE(si p-mani pul ation)# header-rul es
ORACLE(si p-header -rul es) #

2. header-name—Enter @status-line.

ORACLE(si p-header -rul es) # header-name @tatus-1line
ORACLE(si p-header -rul es) #

Set the Element Type

ORACLE

In the element-rules configuration element, set the type parameter to either status-
code or reason-phrase.

» status-code—Designates the status code of the response line. Accepts any
string, but during the manipulation process only recognizes the range from 1 to
699.

e reason-phrase—Designates the reason of the response line. Accepts any string.

¢ Note:

Like other rule types, the Oracle® Enterprise Session Border Controller
matches against the value for these using case-sensitive, case-insensitive,
or pattern-rule matching (set in the comparison-type parameter for the
element rule).

1-33

1.

2.

Chapter 1
HMR Configuration

Access the element-rules configuration element.

ORACLE# configure ternnal

ORACLE(configure)# session-router
ORACLE('sessi on-router)# sip-nani pul ation
ORACLE(si p- mani pul ati on) # header-rul es
ORACLE(si p-header-rul es)# el ement-rul es
ORACLE(si p- el ement -rul es) #

A~ A~ A~ A~

type—Enter either status-code or reason-phrase.

ORACLE(si p-el enent-rul es)# type status-code

The E-SBC uses the value of comparison-type to determine matching.

Set the Match Value

Set the match value in either the header-rules configuration element or the element-
rules configuration element

Set the Header Rules Match Value

Set a match value in the header-rules configuration element.

1.

Access the header-rules configuration element.

ORACLE# configure termnal

ORACLE(configure)# session-router
ORACLE(sessi on-router)# sip-nani pul ation
ORACLE(si p- mani pul ati on) # header-rul es
ORACLE(si p- header -rul es) #

match-value—Enter the value to match against the header value.

The Oracle® Enterprise Session Border Controller matches these against the
entire SIP header value. This is where you can enter values to match using regular
expression values; your entries can contain Boolean operators.

Set the Element Rules Match Value

ORACLE

Set a match value in the element-rules configuration element.

1.

Access the element-rules configuration element.

ORACLE# configure terninal

ORACLE(confi gure)# session-router

ORACLE(sessi on-router)# sip-mani pul ation
ORACLE(si p-mani pul ation)# header-rul es
ORACLE(si p- header-rul es) # el ement -rul es
ORACLE(si p-el ement -rul es) #

—~

match-value—Enter the value to match against the header value.

1-34

Chapter 1
HMR Configuration

The Oracle® Enterprise Session Border Controller matches these against the
entire SIP header value. This is where you can enter values to match using regular
expression values; your entries can contain Boolean operators.

Set the Response Code Block

Enable SIP response blocking to keep the Oracle® Enterprise Session Border
Controller from sending the designated response.

Note:

This example sets the dropResponse option to 699, where 699 is an arbitrary
code used to later match the HMR.

1. Access the sip-interface configuration element.

ORACLE# configure terninal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(si p-interface)#

2. Select the sip-interface object to edit.

ORACLE(si p-interface)# sel ect
<Real m D>;
1. realnDl 172.172.30. 31: 5060

selection: 1
ORACLE(si p-interface)#

3. options—Enter options +dropResponse=<response code> where <response
code> is the code(s) or range(s) to block. Separate multiple entries with a colon.

ORACLE(si p-interface)# options +dropResponse=699

WARNING:

Typing the option without the plus sign will overwrite previously
configured options. To append the options to this configuration’s options
list, prepend the option with a plus sign.

4. Save and activate your configuration.

Configuring SIP HMR Sets

To enable HMR sets, set the action configuration element to sip-manip.

ORACLE 1-35

3
4.
5
6

Chapter 1
HMR Configuration

Access the element-rules configuration element.

ORACLE# configure ternnal

ORACLE(configure)# session-router
ORACLE('sessi on-router)# sip-nani pul ation
ORACLE(si p- mani pul ati on) # header-rul es
ORACLE(si p-header-rul es)# el ement-rul es
ORACLE(si p- el ement -rul es) #

A~ A~ A~ A~

action—Enter sip-manip value to enable use this rule for a SIP HMR set. This
value then invoke the rule identified in the new-value parameter.

new-value—Enter the name of the manipulation rule you want invoked for the set.
Type done to save your configuration.
Run verify-config to detect invalid or circular references.

Save and activate your configuration.

Configuring a Session Agent

Configure a session agent to use a SIP header manipulation ruleset.

1.

4.

Access the session-agent configuration element.

ORACLE# configure termnal

ORACLE(confi gure)# session-router
ORACLE(sessi on-router)# sessi on-agent
ORACLE(sessi on- agent)

in-manipulationid—Enter the name of the SIP header manipulation ruleset you
want to apply to inbound SIP packets.

ORACLE(sessi on-agent)# in-mani pul ationid route-stripper

out-manipulationid—Enter the name of the SIP header manipulation ruleset you
want to apply to outbound SIP packets.

ORACLE(sessi on-agent) # out - mani pul ationid route-stripper

Type done to save your configuration.

Configuring a SIP Interface

Configure a interface to use a SIP header manipulation ruleset.

ORACLE

1.

Access the sip-interface configuration element.

ORACLE# configure termnal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(si p-interface)#

1-36

Chapter 1
HMR Configuration

2. in-manipulationid—Enter the name of the SIP header manipulation ruleset to
apply to SIP packets in the ingress direction.
ORACLE(si p-interface)# in-manipul ationid topol ogy-hiding

3. out-manipulationid—Enter the name of the SIP header manipulation ruleset to
apply to SIP packets in the egress direction.

ORACLE(si p-interface)# out-nmanipulationid topol ogy-hiding

4. Type done to save your configuration.

Example 1 Stripping All Route Headers

This example explains how to strip all route headers from a SIP packet. First, you
create a header manipulation ruleset, in the example it is called route-stripper. Then
you configure the list of header manipulation rules you need to strip route headers. In
this case, you only need one rule named Route (to match the Route header name)
with the action set to Delete.

ORACLE# configure termnal
ORACLE(confi gure)# session-router
ORACLE(sessi on-router)# sip-manipul ation
ORACLE(si p-mani pul ation)# name route-stripper
ORACLE(si p- mani pul ati on
(
(

)
)# header-rul es
ORACLE(si p- header -rul es)# name Route
ORACLE(si p-header-rul es)# action Delete
ORACLE(si p-header -rul es) # done
header-rul e
nane Rout e
action delete
mat ch- val ue
msg-type any

ORACLE(si p-header-rul es) # ex
ORACLE(si p-mani pul ation)# done
si p- mani pul ation

nane route-stripper
header-rul e
nane Rout e
action delete
mat ch-val ue
neg-type any

Example 2 Stripping an Existing Parameter and Adding a New One

ORACLE

This example explains how to strip the user parameter from the Contact header URI
and add the acme parameter with value as LOCAL IP, only for requests. First you
create a header manipulation ruleset, in the example it is called param-stripperl. You
then configure a list of header rules you need. In this case, you only need one rule
named Contact (to match the Contact header name), with action set to manipulate
(indicating the elements of this header would be manipulated). Next, you configure a
list of element rules for the Contact header rule.

1-37

ORACLE

Chapter 1
HMR Configuration

In this case you configure two element rules; one to strip the uri parameter user (the
rule name user matches the param name user) and the other to add the uri parameter
acme (the rule name acme matches the param name acme).

ORACLE# configure termna
ORACLE(configure)# session-router
ORACLE(sessi on-router)# sip-manipul ation
ORACLE(si p-mani pul ation)# name paramstripperl
ORACLE(si p-mani pul ation)# header-rul es
ORACLE(si p- header -rul es)# name Cont act
ORACLE(si p-header-rul es)# action manipul ate
ORACLE(si p-header-rul es)# nsg-type request

(#

()

()

()

)

—_—— — — T

ORACLE(si p-header-rul es)# el ement-rul es

ORACLE(si p-el enent-rul es)# name user

ORACLE(si p-el ement-rul es)# type uri-param
ORACLE(si p-el ement-rul es)# action del et e-el ement
ORACLE(si p-el enent-rul es)# done

el ement-rule

name user
type uri-param
action del et e- el ement
mat ch-val -t ype any
mat ch- val ue
new val ue

ORACLE(si p-el enent-rul es)# nane acme

ORACLE(si p-el enent-rul es)# action add

ORACLE(si p-el ement-rul es)# type uri-param

ORACLE(si p- el enent-rul es)# new val ue "$LOCAL_| P"

ORACLE(si p-el enent-rul es)# done

el ement-rul e

nane acne
type uri-param
action add

mat ch-val -t ype any

mat ch-val ue

new val ue "$LOCAL_| P

ORACLE(si p-el enent-rul es)# ex
ORACLE(si p- header -rul es) # done
header-rul e

nane Cont act
action mani pul ate
mat ch-val ue
nmeg-type request
element-rule
nane user
type uri-param
action del et e- el enent
mat ch-val -t ype any
mat ch- val ue
new val ue
element-rule
nane acme
type uri-param
action add
mat ch-val -t ype any

1-38

Chapter 1
Unique HMR Regex Patterns and Other Changes

mat ch-val ue

new val ue "$LOCAL I P"
ORACLE(si p-header-rul es) # ex
ORACLE(si p- mani pul ation)# done
si p-mani pul ation

name param stripperl
header-rul e

nane Cont act

action mani pul ate

mat ch-val ue

neg-type request

el ement-rul e
name user
type uri-param
action del et e- el ement
mat ch-val -type any
mat ch-val ue
newval ue

element-rule

name acme

type uri-param

action add

mat ch-val -t ype any

mat ch-val ue

new val ue "$LOCAL I P"

For example, if the IP address of the SIP interface ($LOCAL_IP) is 10.1.2.3 and the
Oracle® Enterprise Session Border Controller receives the following Contact header:

Contact: <sip:1234@0. 4. 5. 6; user =phone>

The header rule is applied to strip the user parameter from the Contact header URI
and add the acme parameter with the value 10.1.2.3:

Contact: <sip:1234@0. 4.5. 6; acne=10. 1. 2. 3>

Unique HMR Regex Patterns and Other Changes

In addition to the HMR support it offers, the Oracle® Enterprise Session Border
Controller can now be provisioned with unique regex patterns for each logical remote
entity. This supplement to pre-existing HMR functionality saves you provisioning time
and saves Oracle® Enterprise Session Border Controller resources in instances when
it was previously necessary to define a unique SIP manipulation per PBX for a small
number of customer-specific rules.

The Default Expression

The SBC supports the non-standard regex \ , + called the default expression. The
default expression matches one or more characters, including NUL characters. The
default expression cannot be used with other modifiers, like the star.

ORACLE 1-39

Chapter 1
Unique HMR Regex Patterns and Other Changes

< Note:

In previous releases, the PCRE (Perl Compatible Regular Expression)
engine used \, to match any character, including a NUL character. The
PCRE engine was updated in 8.1 and no longer supports \, .

Manipulation Pattern Per Remote Entity

On the Oracle® Enterprise Session Border Controller, you can configure logical
remote entities (session agents, realms, and SIP interfaces) with a manipulation
pattern string that the system uses as a regular expression. Then the SIP manipulation
references this regular expression using the reserved word $MANIP_PATTERN. At
runtime, the Oracle® Enterprise Session Border Controller looks for the logical entity
configured with a manipulation pattern string in this order of preference: session agent,
realm, and finally SIP interface.

On finding the logical entity configured with the manipulation string, the Oracle®
Enterprise Session Border Controller dynamically determines the expression. When
there is an invalid reference to a manipulation pattern, the pattern-rule expression that
results will turn out to be the default expression (which is \,+).

When the $SMANIP_PATTERN is used in a manipulation rule’s new-value parameter,
it resolves to an empty string, equivalent of no value. Even though this process ends
with no value, it still consumes system resources. And so Oraclerecommends you do
not use $MANIP_PATTERN as a new-value value.

In the following example, the SIP manipulation references the regular expression from
a realm configuration:

real mconfig

identifier net 200

description

addr - prefix 0.0.0.0

networ k-interfaces public:0

mani pul ation-pattern Loren(. +)

Si p- mani pul ation

nane mani p

description

header-rul es
nane header Rul e
header - name Subj ect
action mani pul ate
mat ch- val ue $MANI P_PATTERN
nmeg-type request
conpari son-type pattern-rule
new-val ue Mat h
net hods I NVITE

ORACLE 1-40

Chapter 1
Unique HMR Regex Patterns and Other Changes

Reject Action

When you use this action type and a condition matching the manipulation rule arises,
the Oracle® Enterprise Session Border Controller rejects the request (though does not
drop responses) and increments a counter.

* If the msg-type parameter is set to any and the message is a response, the
Oracle® Enterprise Session Border Controller increments a counter to show the
intention to reject the message—but the message will continue to be processed.

» If the msg-type parameter is set to any and the message is a request, the
Oracle® Enterprise Session Border Controller performs the rejection and
increments the counter.

The new-value parameter is designed to supply the status code and reason phrase
corresponding to the reject. You can use the following syntax to supply this
information: status-code[:reason-phrase]. You do not have to supply the status code
and reason phrase information; by default, the system uses 400:Bad Request.

If you do supply this information, then the status code must be a positive integer
between 300 and 699. The Oracle® Enterprise Session Border Controller then
provides the reason phrase corresponding to the status code. And if there is no reason
phrase, the system uses the one for the applicable reason class.

You can also customize a reason phrase. To do so, you enter the status code followed
by a colon (:), being sure to enclose the entire entry in quotation marks () if your
reason code includes spaces.

When the Oracle® Enterprise Session Border Controller performs the reject action,
the current SIP manipulation stops processing and does not act on any of the rules
following the reject rule. This course of action is true for nested SIP manipulations that
might have been constructed using the sip-manip action type.

Reject Action Configuration

ORACLE

To support the reject action, set two parameters in the session-router-config
configuration element.

1. Access the session-router-config configuration element.

ORACLE# configure termnal

ORACLE(confi gure)# session-router
ORACLE(sessi on-router)# session-router
ORACLE(sessi on-rout er-config)#

2. reject-message-threshold—Enter the minimum number of message rejections
allowed in the reject-message-window time on the E-SBC before generating an
SNMP trap.

The default is 0, meaning this feature is disabled and no trap will be sent.

3. reject-message-window—Enter the time in seconds that defines the window for
maximum message rejections allowed before generating an SNMP trap.

4. Type done to save your configuration.

1-41

About Counters

Chapter 1

Unique HMR Regex Patterns and Other Changes

The Oracle® Enterprise Session Border Controller tracks messages that have been
flagged for rejection using the reject action type. In the show sipd display, refer to the
Rejected Messages category; there is no distinction between requests and responses.

ORACLE# show si pd

13:59: 07- 102
SIP Status

Sessi ons
Subscri ptions
Di al ogs

Cal 1D Map

Rej ections

Rel NVI TEs

Medi a Sessi ons
Medi a Pendi ng
Cient Trans
Server Trans
Resp Contexts
Saved Contexts
Socket s

Req Dropped
DNS Trans

DNS Sockets
DNS Results
Rej ect ed Msgs

Active
0

'O O o

OO OO ' OO ODODOO o !

Session Rate = 0.0

Load Rate = 0.0

Renai ni ng Connections = 20000 (nmax 20000)

SNMP Support

The Oracle® Enterprise Session Border Controller provides SNMP support for the
Rejected Messages data, so you can access this information externally. The new MIB

ORACLE

objects are:

apSysRej ect edMessages

SYNTAX

MAX- ACCESS

STATUS

DESCRI PTI ON

criteria.”

"Nurmber of messages rejected by the SD due to matching

-- Period
Hi gh
0

[N e Moo Nl o R 'O O o

OO0 oo !

OBJECT- TYPE
Count er 32
read-only
current

Tot al

[eNeleNeoNeleoNeNeNoNeNoNoNe oo NoNoNe]

Lifetime --------
Total Per Max Hi gh
0 0 0
0 0 0
0 0 0
0 0 0
0 0
0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0
0 0 0
0 0 0
0 0 0
0 0 0

::={ apSysWynt M BGener al Cbj ects 18 }
apSysMynt Rej ect edMesagesThr eshol dExeededTr ap
{ apSysRej ect edMessages }

OBJECTS
STATUS

DESCRI PTI ON
" The trap will be generated when the number of rejected nessages
exceed the configured threshold within the configured w ndow "
.= { apSystenmvanagenent Monitors 57 }

current

NOTI FI CATI ON- TYPE

1-42

Log Action

ORACLE

Chapter 1
Unique HMR Regex Patterns and Other Changes

apSysMynt Rej ect edMessagesG oup OBJECT- GROUP
OBJECTS {
apSysRej ect edMessages
}
STATUS current
DESCRI PTI ON
"(bjects to track the nunber of nessages rejected by the
SD. "
::={ apSystenmvanagenent G oups 18 }
apSysMynt Rej ect edMessagesNot i fi cati onsG oup NOTI FI CATI ON- GROUP
NOTI FI CATI ONS {
apSysMynt Rej ect edMesagesThr eshol dExeededTr ap
}
STATUS current
DESCRI PTI ON
"Traps used for notification of rejected nmessages”
::={ apSystemvanagenent Notificati onsG oups 26 }
apSmgnt Rej ect edMessagesCap
AGENT- CAPABI LI TI ES

PRODUCT- RELEASE "Acnme Packet SD'
STATUS current
DESCRI PTI ON "Acme Packet Agent Capability for
enterprise
syst em management M B."
SUPPORTS APSYSMGMT- M B

| NCLUDES {
apSysMynt Rej ect edMessagesG oup,

apSysMynt Rej ect edMessagesNot i fi cati onsG oup

}
::={ apSngnt M bCapabilities 37 }

When you use this action type and a condition matching the manipulation rule arises,
the Oracle® Enterprise Session Border Controller logs information about the current
message to a separate log file. This log files will be located on the same core in which
the SIP manipulation occurred. On the core where sipt runs, a logdfile called
matched.log will appear when this action type is executed.

The matched.log file contains a timestamp, received and sent Oracle® Enterprise
Session Border Controller network interface, sent or received IP address:port
information, and the peer IP address:port information. It also specifies the rule that
triggered the log action in this syntax: rule-type[rule:name]. The request URI, Contact
header, To Header, and From header are also present.

Apr 17 14:17:54.526 On [0:0]192. 168. 1. 84: 5060 sent to 192.168. 1. 60: 5060
el ement - rul e[checkRURI Port]

I N\VITE si p: service@92. 168. 1. 84: 5060 SIP/2.0

From sipp <sip:+2125551212@92. 168. 1. 60: 5060>; t ag=3035S| PpTag001

To: sut <sip:service@?92.168.1.84>

Contact: sip:sipp@?92.168. 1.60: 5060

1-43

Chapter 1
Unique HMR Regex Patterns and Other Changes

Changes to Storing Pattern Rule Values

Release S-C6.2.0 introduces changes to the framework for storing regular expression
results within manipulation rules, altering the way the store action works. These
changes are beneficial to performance.

In previous releases, when the store action is used, the Oracle® Enterprise Session
Border Controller stores all values matching the regular expression defined in the
match-value parameter for all headers. At runtime, the system evaluates all stored
values to find the correct index.

Now, you no longer need to specify the store action. The simple fact of referencing
another rule tells the system it must store a value. When SIP manipulation is used, the
system first checks to see if any values require storing. The add action is an exception
to this process; storing happens after a header is added.

When referring to a rule, that rule still needs to have a regular expression defined in
the match-vale and the comparison type set to pattern-rule; else the default expression
will be used.

Removal of Restrictions

The following restrictions related to HMR have been removed in Release S-C6.2.0:

* The action find-replace-all now executes all element rules. Previously, no child
rules were executed.

* The action sip-manip now executes existing all element rules. Previously, no child
rules were executed.

* The action store now executes existing all element rules. Previously, only child
rules with the store action were executed.

* The action add now executes existing all element rules. Previously, only child
rules with the add action were executed.

Name Restrictions for Manipulation Rules

ORACLE

Historically, you have been allowed to configure any value for the name parameter
within a manipulation rule. This method of naming caused confusion when referencing
rules, so now manipulation rules name must follow a specific syntax. They must match
the expression *[[alpha:]][[:alnum:]_]+$ and contain at least one lower case letter.

In other words, the name must:

e Start with a letter, and then it can contain any number of letters, numbers, or
underscores

e Contain at least one lower case letter

All pre-existing configurations will continue to function normally. If you want to change
a manipulation rule, however, you are required to change its name if it does not follow
the new format.

The ACLI verify-config command warns you if the system has loaded a configuration
containing illegal naming syntax.

1-44

Chapter 1
MIME Support

Please note that the software allows you to make changes to HMRs, including
configuring new functionality to existing rules, as long as you do not change the rule
name. This results in an important consideration surrounding HMRs with hyphens in
previously configured rule names.

* You can reference stored values in new value names. (Recall that stored values
may be rule names.)

* You can perform subtraction in new value names.

If you use a rule names with hyphens within the REGEX of new value names, the
system cannot determine whether the hyphen is part of the rule name or is intended to
invoke subtraction within the REGEX. For this reason, you need to use great care with
legacy HMR naming that includes hyphens.

As a general rule, create new rule names that follow the new rule naming guidelines if
you intend to use new functionality in those rules.

New Value Restrictions

To simplify configuration and remove possible ambiguity, the use of boolean and
equality operators (==, <=, <, etc.) for new-value parameter values has been banned.
Since there was no specific functionality tied to their use, their ceasing to be use will
have no impact to normal SIP manipulation operations.

MIME Support

You can manipulate MIME types in SIP message bodies. You can manipulate the
body of SIP messages or a specific content type and you can change the MIME
attachment of a specific type within the body by using regular expressions. You search
for a particular string and the replacement of all matches for that type using a find-
replace-all action.

< Note:

The find-replace-all action can consume more system resources than other
HMR types of action. Use this powerful action type only when another action
cannot perform the type of manipulation you require.

Manipulating MIME Attachments

ORACLE

Set the action type to find-replace-all to modify MIME attachments.

To manipulate a particular portion of the MIME attachment, for example when
removing a certain attribute within the Content-Type of appl i cati on/ sdp, the E-SBC
needs to search the content multiple times because:

* SDP can have more than one media line
* The SIP message body can contain more than one appl i cati on/ sdp.

When the action type is find-replace-all, the E-SBC treats the match-value as a regular
expression and binds the comparison-type to pattern-rule, even if comparison-type is
set to some other value. This type of action is both a comparison and action: for each

1-45

Chapter 1
MIME Support

regular expression match within the supplied string, the E-SBC substitutes the new
value for that match.

Use subgroups to replace portions of the regular expression rather than the entire
matched expression. The subgroup replacement syntax is formed by adding the string
[[:n:]] tothe end of the regular expression—where n is a number between 0 and 9.
For example, setting the following parameters

action find-replace-all
mat ch- val ue sip:(user)@ost[[:1:]]
new val ue bob

creates a new rule to replace only the user portion of the URI that searches for the
regular expression and replaces all instances of the user subgroup with the value bob.

Setting the following parameters

action find-replace-all
mat ch-val ue 0
newval ue 1

creates a new rule to recursively replace all the O digits in a telephone number with 1.
With this rule the user portion of a URI—or for any other string—with a value
1-781-308-4400 would be replaced as 1-781-318-4411.

If you leave the new-value parameter blank for find-replace-all, the E-SBC replaces
the matched sub-group with an empty string—an equivalent of deleting the sub-group
match. You can also replace empty sub-groups, which is like inserting a value within
the second sub-group match. For example, user () @ost.con{[: 1:]] witha
configured new-value _bob yields user _bob@ost . com

Setting find-replace-all disables the following parameter-type values: uri-param-
name, uri-header-name, and header-param-name. These values are unusable
because the E-SBC only uses case-sensitive matches for the match-value to find the
parameter name within the URI. Since it can only be found by exact match, the E-SBC
does not support finding and replacing that parameter.

About the MIME Value Type

ORACLE

To modify the MIME attachment, the E-SBC supports a ni ne value for the type
parameter in the element rules. You can only use the ni ne type value against a
specific header, which in this case is Content (abbreviated as c).

When you set the element rule type to ni me, you must also set a value for the
parameter-name. This step is a requirement because it sets the content-type the E-
SBC manipulates in a specific part of the MIME attachment. You cannot leave this
parameter blank; the E-SBC does not let you save the configuration if you do. When
you use the store action on a multi-part MIME attachment that has different attachment
types, the E-SBC stores the final instance of the content-type because it does not
support storing multiple instances of element rule stored values.

If you do not know the specific content type, which means the E-SBC will find the
match value, you can use the asterisk * as a wildcard with the parameter-name. (You
cannot, however, set partial content types, for example, appl i cati on/*.) The E-SBC
then loops through the MIME attachment's content types.

1-46

Chapter 1
MIME Support

MIME manipulation does not support manipulating headers in the individual MIME
attachments. For example, the E-SBC cannot modify the Content-Type given a portion
of a message body like this one:

--boundary-1

Cont ent - Type: application/sdp
v=0

o=usel 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN 1 P4 192.168. 1. 60

t=0 0

mraudi 0 10000 RTP/ AVP 8
a=rtpmap: 8 PCVA/ 8000/ 1
a=sendrecv

a=ptine: 20

a=maxpt i me: 200

SIP Message-Body Separator Normalization

ORACLE

The stripPreambleCrlf option normalizes CLRF message-body separators.

The E-SBC supports MIME attachments — up to a maximum payload size of 64KB —
and has the ability to allow more than the required two CRLFs between the SIP
message headers and the multipart body’s first boundary. The first two CRLFs that
appear in all SIP messages signify the end of the SIP header and the separation of the
header and body of the message, respectively. Sometimes additional extraneous
CRLFs can appear within the preamble before any text.

The E-SBC works by forwarding received SIP messages regardless of whether they
contain two or more CRLFs. Although three or more CRLFs are legal, some SIP
devices do not accept more than two.

To ensure all SIP devices accept messages from the E-SBC, strip all CRLFs located
at the beginning of the preamble before the appearance of any text, ensuring that
there are no more than two CRLFs between the end of the last header and the
beginning of the body within a SIP message. Enable this feature by adding the new
stripPreambleCrlf option to the global SIP configuration.

To enable the stripping of CRLFs in the preamble:

1. Access the sip-config configuration element.
ORACLE# configure termnal
ORACLE(configure)# session-router

ORACLE(session-router)# sip-config
ORACLE(si p-config)#

2. options—Set the options parameter by typing options, a Space, the option name
stripPreambleCrlIf with a plus sign.

ORACLE(si p-config)# options +stripPreanbl eCrlf

In order to append the new options to the global SIP configuration’s options list,
you must prepend the new option with a plus sign. If you type the option without
the plus sign, you will overwrite any previously configured options.

1-47

Chapter 1
MIME Support

3. Save and activate your configuration.

Configuring MIME Support

To enable MIME support, set the action configuration element to find-replace-all at
both the header-rules level and element-rules level. Set the type configuration element
to mime at the element-rules level.

1. Access the header-rules configuration element.
ORACLE# configure termnal
ORACLE(configure)# session-router
ORACLE(sessi on-router)# sip-mani pul ation
ORACLE(si p-mani pul ation)# header-rul es
ORACLE(si p-header-rul es) #

2. action—Enter find-replace-all.
ORACLE(si p-header-rul es)# action find-replace-all

3. Navigate to the element-rules configuration element.

ORACLE(si p- header-rul es)# el ement -rul es
ORACLE(si p-el enent-rul es) #

4. action—Enter find-replace-all.

ORACLE(si p-el enent-rul es)# action find-replace-all
5. type—Enter mime.

ORACLE(si p-el enent-rul es)# type nime

6. Save and activate your configuration.

HMR for SIP-ISUP

You can apply HMRs on ISDN user party (ISUP) binary bodies. Using the same logic
and mechanisms applied to SIP header elements, HMR for SIP-ISUP manipulates
ISUP parameter fields and ISUP message parts. You create MIME rules that
manipulate targeted body parts of a SIP message.

MIME Rules Overview

ORACLE

MIME rules operate much the same way that SIP header rules do. You can set
parameters in the MIME rules that the E-SBC uses to match against specific SIP
methods and message types. The system compares the search criteria against the
body or body parts using the type of comparison you choose. You can pick the kind of
manipulation that suits your needs; the E-SBC then takes action with matching and
new values to change the SIP message.

1-48

Chapter 1
MIME Support

< Note:

Using the delete action on a multi-part MIME string reduces a number of
bodies down to one and the SIP message remains a multi-part MIME
message with only one body part (and thereby avoids the header conflicting
with the message itself).

|dentifying a MIME Rule

You identify the MIME rule by using a content type that refers to the specific body part
on which to operate. For example, given a SIP Content-Type header with the value
mul ti part/ m xed; boundar y=uni que- boundar y- 1, you would enter a content type
value of appl i cati on/ sdp to specifically manipulate the SDP portion of the SIP
message. The E-SBC knows automatically if it is operating on SIP messages with
single or multiple body parts, and the content type applies to both kinds. When making
its comparison, the E-SBC matches the content type of the body without regard to
case (case insensitive), ignoring any header parameters.

Both for making comparisons against the body part and for new/replacement values,
the E-SBC treats the match and new values you set for a MIME rule as ASCII strings.
A MIME rule operating on a binary body part yields an improper conversion of a new
value with respect to the binary body part.

About MIME Rules

ORACLE

MIME rules (set up in the ACLI mime-rules configuration) operate much the same
way that SIP header rules do. You can set parameters in the MIME rules that the
Oracle® Enterprise Session Border Controller uses to match against specific SIP
methods and message types. The system compares the search criteria against the
body or body parts using the type of comparison you choose. Offering a variety of
selection, you can pick kind of manipulation that suits your needs; the Oracle®
Enterprise Session Border Controller then takes action with matching and new values
to change the SIP message.

" Note:

when you use the delete action on a multi-part MIME string that reduces a
number of bodies down to one, the SIP message remains a multi-part MIME
message with only one body part (and thereby avoids the header conflicting
with the message itself).

You identify the MIMe rule by configuring a content type that refers to the specific body
part on which to operate. For example, given a SIP Content-Type header with the
value multipart/mixed;boundary=unique-boundary-1, you would enter a content-type
value of application/sdp to manipulate specifically on the SDP portion of the SIP
message. The Oracle® Enterprise Session Border Controller knows automatically if it
is operating on SIP messages with single or multiple body parts, and the content-type
setting applies to both kinds. And when making its comparison, the Oracle® Enterprise
Session Border Controller matches the content-type of the body with regard to case
(case insensitive), ignoring any header parameters.

1-49

Chapter 1
MIME Support

Both for making comparisons against the body part and for new/replacement values,
the Oracle® Enterprise Session Border Controller treats the match and new values
you set for a MIME rule as ASCII strings. Therefor, a mime rule operating on a binary
body part will yield an improper conversion of a new value with respect to the binary
body part.

Within MIME rules, you configure MIME headers, which operate on the specific
headers in the match body part of the SIP message. The Oracle® Enterprise Session
Border Controller uses the MIME header name to run a string comparison to match the
specific header in the message’s body part.

Using these rules, you can also manipulate the preamble—or the SIP message text
that follows the headers but precedes the body separator. To do so, enter the keyword
@preambile for the content type parameter in the MIME rule. Likewise you can
manipulate the epilogue—or the text that follows the last body part after the last
separator—using the keyword @epilogue.

Note that the ACLI limits character entries to 255 characters before the return
character must be entered, but MIME parts can easily exceed this 255-character size.
So you might need to enter a value larger that 255 characters. To do so, you start your
entry (in the match-value or new-value parameters) with a plus sign (+). The plus sign
instructs the system to add the string after it to the pre-existing match or new value.
For the new-value parameter, the Oracle® Enterprise Session Border Controller
checks the value immediately for validity. Be sure that when you are appending values
to a new-value that the entire expression is valid at each point where strings are
appended.

MIME Rules Configuration

ORACLE

This section shows you how to configure MIME rules and MIME headers.
To configure MIME rules:

1. In Superuser mode, type configure terminal and press Enter.

ORACLE# configure termnal
ORACLE(configure)#

2. Type session-router and press Enter.

ORACLE(configure)# session-router
ORACLE(sessi on-router)#

3. Type sip-manipulation and press Enter. If you are adding this feature to an
existing configuration, then remember you must select the configuration you
want to edit.

ORACLE(sessi on-router)# sip-mani pul ation
ORACLE(si p- mani pul ation) #

4. Type mime-rules and press Enter.

ORACLE(si p-mani pul ation)# m me-rul es
ORACLE(si p-mi ne-rul es) #

1-50

ORACLE

10.

11.

12.

13.
14.

15.

16.

17.

18.

Chapter 1
MIME Support

name—Enter a name for this MIME rule. This parameter is required and has no
default.

content-type—Enter the content type for this MIME rule. This value refers to the
specific body part in the SIP message body that is to be manipulated. For
example, given a SIP Content-Type header with the value multipart/
mixed;boundary=unique-boundary-1, you would enter a content-type value of
application/sdp to manipulate specifically on the SDP portion of the SIP
message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or
keyword @epilogue.

action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. These are the same actions
you can select when configuring SIP header manipulation. The default is none.

comparison-type—Enter the way that you want body part of the SIP message to
be compared. This choice dictates how the Oracle® Enterprise Session Border
Controller processes the match rules against the SIP header. the default is case-
sensitive. The valid values are: case-sensitive, case-insensitive, boolean,
refer-case-sensitive, refer-case-insensitive, and pattern-rule.

msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, and reply. The default value is any.

methods—Enter the list of SIP methods to which the MIME rules applies. There is
no default for this parameter.

match-value—Enter the value to match against the body part in the SIP message.
This is where you can enter values to match using regular expression values. Your
entries can contain Boolean operators.

new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

To configure MIME headers for performing HMR operations on specific headers in
the matched body part of the SIP message:

Follows Steps 1 through 4 above.
Type mime-header-rules and press Enter.

ORACLE(si p-mi me-rul es)# m ne- header-rul es
ORACLE(si p- mi ne- header -rul es) #

name—Enter a name for this MIME header rule. This parameter is required and
has no default.

mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. The default is none.

comparison-type—Enter the way that you want the header in the body part of the
SIP message to be compared. This choice dictates how the Oracle® Enterprise
Session Border Controller processes the match rules against the SIP header. the
default is case-sensitive. The valid values are: case-sensitive, case-insensitive,
boolean, refer-case-sensitive, refer-case-insensitive, and pattern-rule.

1-51

Chapter 1
MIME Support

19. match-value—Enter the value to match against the header in the body part of the
SIP message. This is where you can enter values to match using regular
expression values. Your entries can contain Boolean operators.

20. new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

21. Save your work.

Working with MIME Rules

Within MIME rules, you configure MIME headers that operate on the specific headers
in the match body part of the SIP message. The E-SBC uses the MIME header name
to run a string comparison to match the specific header in the message's body part.

Using these rules, you can also manipulate the preamble or the SIP message text that
follows the headers but precedes the body separator. To do so, enter the keyword

@r eanbl e for the content type parameter in the MIME rule. Likewise you can
manipulate the epilogue or the text that follows the last body part after the last
separator using the keyword @pi | ogue.

The ACLI limits character entries to 255 characters before the return character must
be entered. MIME parts can easily exceed this 255-character size, so you might need
to enter a value larger that 255 characters. To do so, you start your entry with a plus
sign +. The plus sign instructs the system to add the string after it to the pre-existing
match or new value. For the new-value parameter, the E-SBC checks the value
immediately for validity. Be sure that when you are appending values to a hew-value
that the entire expression is valid at each point where strings are appended.

MIME ISUP Manipulation

ORACLE

ISUP message can be carried in SIP messages through either a standard body or
through a multipart MIME encoded body. While ANSI and ITU are the two major
groups, each contains many specific variants. To facilitate instances where two sides
of a call use different versions, the E-SBC supports interworking between the following
SIP ISUP formats: ANSI, ITU, ETSI-356 (an ITU variant), and GR-317 (an ANSI
variant). To do so, the E-SBC can move, delete, and add parameters to various
sections of the message.

The ISUP message version is determined by either the content type of the SIP
message or the MIME content-type. Messages that contain an unknown ISUP format
pass through the E-SBC untouched. You can perform HMR operations on SIP ISUP
binary bodies (MIME ISUP).

< Note:

Custom formats are not supported.

Within mime-isup-rule, isup-param-rule, the format field instructs the E-SBC how to
encode and decode the current string. The field options are hexascii, binary-ascii,
ascii-string, bcd, and number-param.

e hex-asci i —the E-SBC will decode the ISUP param string from its binary value in
the SIP message into a string of hexadecimal ASCII (as seen in Wireshark) before
applying the match-value. It will convert the resolved new-value from hex-ascii into

1-52

Chapter 1
MIME Support

binary into the message. For example, if the received ISUP param was the binary
of 0x010a, it will convert it into the string 010a, and then apply the match-value. If
the regex pattern is 201 then it would match, as would 0a$ and ~010a$. If the new-
value is 010b, then it will encode it into the binary 0x010b. Since this is done after
resolving the new-value. The new-value can reference a previously stored value
as long as it is hex-ascii format.

bi nary-asci i — the E-SBC will decode the ISUP param string from its binary
value in the SIP message into a string of ones and zeros representing the
individual bits. It will convert the new-value as long as it's ones and zeros within
the param. For example, if the received ISUP param was the binary 0x010a, it will
convert it into the string 0000000100001010, and then apply the match-value. If the
regex patternis (.) or”.{7}(.) thenin both cases it will store the 8th bit
value in $1. In this manner, the user can check, get, or set individual bits in
parameters. The new-value can be a string, reference a stored value, or be a
concatenation of them as long as it is ones and zeros after being resolved.

ascii - string—the E-SBC will decode the ISUP param string from its binary value
in the SIP message into an ASCII string based on the ASCII specification and
convert the new-value back. For example, if the received ISUP param was the
binary 0x4849, it will convert it into the string HI , and then apply the match-value.

bcd—the E-SBC will decode the ISUP param string from its binary value in the SIP
message into digits using the BCD variant of ISUP. For example, if the received
ISUP param was the binary 0x0123, it will convert it to the string 0123 and then
apply the match-value.

nunber - par am—the E-SBC will decode the ISUP param string from its binary value
in the SIP message into a string representation of an E.164 phone number. The
ISUP param must be in a number formatted parameter like Calling Party Number
or Called Party Number. The E-SBC treats the ISUP parameter as one of the
common number parameter formats: the E-SBC will automatically decode the
correct number of digits based on the odd/even bit in the parameter, and add a
leading + based on the Nature of Address (NoA) field being E.164 international.
Similarly, when the E-SBC converts the new-value back into the ISUP parameter,
it will set the odd/even bit correctly, and set the NoA field based on the existence
of the leading + character. The string applied to match-value thus looks the same
as an element-rule of type phone-number (i.e. +12125551212). Since this format
is specific to ISUP parameters, it can only be used in isup-param-rule.

Adding an ISUP Body to a SIP Message

Unlike the MIME manipulation you can use by setting the SIP header rules
accordingly, you can add MIME parts to SIP messages using the MIME rules
configuration.

ORACLE

You can configure a SIP header manipulation to add an ISUP body to a SIP message.
and the Oracle® Enterprise Session Border Controller adds them after any SDP parts
if they are present. You can add an ISUP body to a SIP message in two ways:

You can create a mime-isup-rule with the action type set to add, and enter the
entire body in string hexadecimal form in the new-value parameter.

You can leave the new-value parameter empty at the mime-isup-rule level and
create an add rule for an isup-param-rule.

In this case, the Oracle® Enterprise Session Border Controller creates the
corresponding ISUP message based on the isup-msg-type value and supply all

1-53

Chapter 1
MIME Support

of the parameters with their default values. Since the isup-msg-type takes a list of
values as a valid entry, for this case it only uses the first one. However, the
Oracle® Enterprise Session Border Controller ignores the isup-msg-type value if
you set the new-value parameter. And the isup-param-rule, if configured,
overwrite the default value or add a new parameter based on the defined
parameter type.

It is also possible that you might supply a new-value both at the mime-isup-rule
level and at the isup-param-rule level. If you do, the new-value entry from the
mime-isup-rule is parsed into an ISUP object and the isup-param-rule operates
on that object.

MIME ISUP Manipulation Configuration

This section shows you how to configure MIME ISUP manipulation.

ORACLE

1.

In Superuser mode, type configure terminal and press Enter.

ORACLE# configure termnal
ORACLE(configure) #

Type session-router and press Enter.

ORACLE(confi gure)# session-router
ORACLE(sessi on-router) #

Type sip-manipulation and press Enter. If you are adding this feature to an
existing configuration, then remember you must select the configuration you
want to edit.

ORACLE(sessi on-router)# sip-nani pul ation
ORACLE(si p- mani pul ati on) #

Type mime-isup-rules and press Enter.

ORACLE(si p-mani pul ation)# nime-isup-rul es
ORACLE(si p-mi me-i sup-rul es) #

name—Enter a name for this MIME ISUP rule. This parameter is required and has
no default.

content-type—Enter the content type for this MIME rule. This value refers to the
specific body part in the SIP message body that is to be manipulated. For
example, given a SIP Content-Type header with the value multipart/
mixed;boundary=unique-boundary-1, you would enter a content-type value of
application/sdp to manipulate specifically on the SDP portion of the SIP
message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or
keyword @epilogue.

action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. These are the same actions
you can select when configuring SIP header manipulation. The default is none.

comparison-type—Enter the way that you want body part of the SIP message to
be compared. This choice dictates how the Oracle® Enterprise Session Border

1-54

ORACLE

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22,

Chapter 1
MIME Support

Controller processes the match rules against the SIP header. the default is case-
sensitive. The valid values are: case-sensitive, case-insensitive, boolean,
refer-case-sensitive, refer-case-insensitive, and pattern-rule.

msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, and reply. The default value is any.

methods—Enter the list of SIP methods to which the MIME rules applies. There is
no default for this parameter.

match-value—Enter the value to match against the body part in the SIP message.
This is where you can enter values to match using regular expression values. Your
entries can contain Boolean operators.

new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

isup-spec—Specify how the Oracle® Enterprise Session Border Controller is to
parse the binary body; valid values are the enumerated type. The values for this
parameter are these SIP ISUP formats:

* ANSI-2000 (default)—Corresponding to ANSI T1.113-2000
* ITU-99—Corresponding to ITU Q.763

isup-msg-type—Identify the specific ISUP message types (such as IAM and
ACM) on which to operate. The Oracle® Enterprise Session Border Controller
uses with the msg-type parameter (which identifies the SIP message) in the
matching process. You enter values in this parameters as a list of numbers rather
than as an enumerated value because of the large number of ISUP message type,
and the range is between 0 and 255. There is no default for this parameter.

mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

To configure ISUP parameters rules:
Follows Steps 1 through 4 above.
Type isup-parameter-rules and press Enter.

ORACLE(si p-mime-i sup-rul es)# isup-paramrul es
ORACLE(si p-isup-paramrul es) #

name—Enter a hame for this ISUP parameter rule. This parameter is required and
has no default.

mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. The default is none.

comparison-type—Enter the way that you want the header in the body part of the
SIP message to be compared. This choice dictates how the Oracle® Enterprise
Session Border Controller processes the match rules against the SIP header. the
default is case-sensitive. The valid values are: case-sensitive, case-insensitive,
boolean, refer-case-sensitive, refer-case-insensitive, and pattern-rule.

match-value—Enter the value to match against the header in the body part of the
SIP message. This is where you can enter values to match using regular
expression values. Your entries can contain Boolean operators.

1-55

23.

24,

25.

26.

Chapter 1
MIME Support

new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

parameter-type—Using ISUP parameter mapping, enter which of the ISUP
parameters on which your want to perform manipulation. This parameter takes
values between 0 and 255, and you must know the correct ISUP mapping value
for your entry. The Oracle® Enterprise Session Border Controller calculates the
offset and location of this parameter in the body. Note that the value returned from
the body does not the type or length, only the parameter value. For example, a
parameter-type value of 4 acts on the Called Party Number parameter value.

parameter-format—Enter how you want to convert specific parameter to a string
representation of that value. Valid values for parameter-format are: humber-
param, hex-ascii (default), binary-ascii, ascii-string, and bed. Both match and
new values are encoded and decoded by the designated parameter-format type.
In this regard, the match-value decodes the parameters and the new-value
encodes the ASCII string into the respective binary format.

Save your work.

Configuration Example

ORACLE

This section provides an example of a SIP manipulation configuration that shows
MIME rules and MIME ISUP rules.

Si p- mani pul ation

name mani p
description
header-rul e
nane header Rul el
header - name Dat e
action add
conpari son-type case-sensitive
msg-type reply
met hods
mat ch-val ue
new-val ue
element-rule
name el enRul el
par anet er - nane
type header - val ue
action add
mat ch-val -type any
conpari son-type case-sensitive
mat ch-val ue
newval ue "August 19, 1967"
mme-rule
nane m meRul el
Cont ent - Type appl i cation/ SDP
action mani pul ate
conpari son-type case-sensitive
nmeg-type request
met hods
mat ch- val ue
new-val ue
m ne- header

1-56

conpari son-type

nane
m nme- header - nane
action

case-sensitive

mat ch-val ue
new val ue

handl i ng=r equi red"
m me-isup-rule

name

content-type

action

conpari son-type

neg-type

met hods

mat ch-val ue

new val ue

i sup-spec

i sup-nsg-type

m me- header
name
m ne- header - narme
action
conpari son-type
mat ch-val ue
newval ue

handl i ng=opt i onal "

type)

i sup-paramrul e
name
par anet er-type

par anet er - f or mat

hex, binary, ascii, bcd}

action

conpari son-type
mat ch-val ue
newval ue

handl i ng=opt i onal "

Header Manipulation Rules for SDP

The Oracle® Enterprise Session Border Controller supports SIP header and
parameter manipulation rules for four types of SIP message contents:

ORACLE

 headers

* elements within headers

Chapter 1
MIME Support

m meHeader Rul el
Cont ent - Di sposi tion

add

"signal ;
m nmeRul el
application/ISUP
mani pul ate
case-sensitive
request
| N\VI TE

{ansi 00, itu-92}
0 (0-256 |AM ACM etc.)

m nmeHeader Rul el
Cont ent - Di sposi tion
add

case-sensitive
"signal ;

i supRul el

{0-256 specific

{ nunber - par anet er,

add
case-sensitive

"signal ;

e ASCIl-encoded Multipurpose Internet Mail Extensions (MIME) bodies
e binary-encoded MIME ISDN User Part (ISUP) bodies

While Session Description Protocol (SDP) offers and answers can be manipulated in a
fashion similar to ASCIl-encoded MIME, such manipulation is primitive in that it lacks
the ability to operate at the SDP session- and media-levels.

In addition, the system supports a variant of Header Manipulation Rules (HMR)
operating on ASCIl-encoded SDP bodies, with specific element types for descriptors at

1-57

Chapter 1
MIME Support

both the session-level and media-level, and the ability to apply similar logic to SDP
message parts as is done for SIP header elements.

The configuration object, mime-sdp-rules, under sip-manipulation specifically
addresses the manipulation of SDP parts in SIP messages. Just as existing header-
rules are used to manipulate specific headers of a SIP message, mime-sdp-rules will
be used to manipulate the SDP specific mime-attachment of a SIP message.

Platform Support

HMR for SDP is available on the Acme Packet 4600.

SDP Manipulation

mime-sdp-rules function in a similar fashion as header-rules. They provide

e parameters used to match against specific SIP methods and/or message types

e parameters used to match and manipulate all or specified parts of an SDP offer or
answer

e a means of comparing search strings or expressions against the entire SDP
- different action types to allow varying forms of manipulation

Since only a single SDP can exist within a SIP message, users need not specify a
content-type parameter as is necessary for a mime-rule. A mime-sdp-rule operates on
the single SDP within the SIP message. If no SDP exists with the message, one can
be added. If the message already contains a mime attachment, adding SDP results in
a multipart message.

All manipulations performed against all or parts of the SDP are treated as UTF-8
ASCII encoded text. At the parent-level (mime-sdp-rule) the match-value and new-
value parameters execute against the entire SDP as a single string.

An add action only succeeds in the absence of SDP because a message is allowed
only a single SDP offer or answer. A delete operation at the mime-sdp-rule level will
remove the SDP entirely.

Note that on an inbound sip-manipulation, SDP manipulations interact with the
Oracle® Enterprise Session Border Controller codec-policy. SDP manipulations also
interact with codec reordering and media setup. It is very possible to make changes to
the SDP such that the call can not be setup due to invalid media parameters, or
settings that will affect the ability to transcode the call. Consequently, user
manipulation of the SDP can prove risky, and should be approached with appropriate
caution.

Three configuration-objects, sdp-session-rule, sdp-media-rule, and mime-header-rule,
exist under the mime-sdp-rule. These objects provide finer grained control of
manipulating parts of the SDP.

sdp-session-rule

ORACLE

An sdp-session-rule groups all SDP descriptors, up until the first media line, into a
single entity, thus allowing the user to perform manipulation operations on a session-
specific portion of the SDP.

Like the mime-sdp-rule, all match-value and new-value operations performed at this
level are executed against the entire session group as a complete string. Given the

1-58

sdp-media-rule

ORACLE

Chapter 1
MIME Support

sample SDP below, if an sdp-session-rule is configured, the match-value and new-
values operate only on the designated portion.

v=0

o=nhandl ey 2890844526 2890842807 IN | P4 126.16.64.4
s=SDP Semi nar

i =A Seminar on the session description protocol
u=http://ww. cs. ucl . ac. uk/ staff/M Handl ey/ sdp. 03. ps
e=nj h@si.edu (Mark Handl ey)

c=IN I P4 224.2.17.12/ 127

t=2873397496 2873404696

a=recvonly

mraudi 0 49170 RTP/ AVP 0

mevi deo 51372 RTP/ AVP 31

meappl i cation 32416 udp wb

a=orient:portrait

Nested under the sdp-session-rule configuration object is an sdp-line-rule object, the
object that identifies individual descriptors within the SDP. The types of descriptors
used at the sdp-session-rule level are v, 0, s, i, U, e, p, ¢, b, t, 1, Z, k, and a, the
descriptors specific to the entire session description.

This level of granularity affords the user a very simple way to making subtle changes
to the session portion of the SDP. For instance, it is very common to have to change
the connection line at the session level.

The add and delete actions perform no operation at the sdp-session-rule level.

An sdp-media-rule groups all of the descriptors that are associated with a specific
media-type into single entity, thus allowing the user to perform manipulation operations
on a media-specific portion of the SDP. For example, a user can construct an sdp-
media-rule to change an attribute of the audio media type.

Like a mime-sdp-rule, all match-value and new-value operations performed at this
level are executed against the entire media-group as a complete string. Given the
sample SDP below, if a media-level-descriptor is configured to operate against the
application group, the match-value and new-values would operate only on designated
portion.

v=0
o=nhandl ey 2890844526 2890842807 IN | P4 126.16.64. 4
s=SDP Semi nar
i =A Seminar on the session description protocol
u=http://wwv. cs. ucl . ac. uk/ st af f/ M Handl ey/ sdp. 03. ps
e=nj h@si.edu (Mark Handl ey)
c=IN I P4 224.2.17. 12/ 127
t=2873397496 2873404696
a=recvonly
mraudi 0 49170 RTP/ AVP 0
mevi deo 51372 RTP/ AVP 31
mrappl i cation 32416 udp wb
a=orient:portrait

1-59

ORACLE

Chapter 1
MIME Support

A configuration parameter media-type is used to specify the media group on which to
operate. It contains all of the descriptors including the m-line up to the next m-line.
This parameter is a string field and must match the media-type exactly as it appears
within the SDP. The special media-type media can be used to refer to all media types.
This is particularly useful when performing an add operation, when the user wants to
add a media section between the first and second medias, but does not know what
media type they are. Otherwise, during an add operation, the media section would be
added before the specified media-type (if no index parameter was provided).

The types of descriptors used at the sdp-media-rule level are m, i, c, b, k, and a, the
descriptors specific to the media description.

This level of granularity affords the user a very simple way to making subtle changes
to the media portion of the SDP. For instance, it is very common to have to change the
name of an audio format (for example G729 converted to g729b), or to add attributes
specific to a certain media-type.

The index operator is supported for the media-type parameter (for example, media-
type audio[1]). Like header rules, if no index is supplied, this means operate on all
media-types that match the given name. For specifying specific media-types, the non-
discrete indices are also supported (for example, » - last). Adding a media-type,
without any index supplied indicates that the media should be added at the beginning.
The special media-type media uses the index as an absolute index to all media
sections, while a specific media-type will index relative to that given media type.

For sdp-media-rules set to an action of add where the media-type is set to media, the
actual media type is obtained from the new-value, or more specifically, the string after
m= and before the first space.

Given the following SDP:

v=0

o=nhandl ey 2890844526 2890842807 IN | P4 126.16.64. 4
c=IN P4 224.2.17.12/127

t=2873397496 2873404696

mraudi 0 49170 RTP/AVP 0

mraudi o 48324 RTP/ AVP 8

mevi deo 51372 RTP/AVP 31

With the sdp-media-rule:

sdp-nedi a-rul e

name snt
medi a-t ype audi o[1]

action mani pul ate

conpari son-type case-sensitive

mat ch- val ue

new val ue "mraudi o 1234 RTP/AVP 8 16"

This rule operates on the 2nd audio line, changing the port and adding another codec,
resulting in the SDP:

v=0

o=nhandl ey 2890844526 2890842807 I N | P4 126. 16.64.4
c=IN I P4 224.2.17.12/ 127

1-60

Chapter 1
MIME Support

t=2873397496 2873404696
nmraudi 0 49170 RTP/ AVP 0
mraudi 0 1234 RTP/ AVP 8 16
nrvi deo 51372 RTP/ AVP 31

The following rule, however:

sdp-nedi a-rul e

nane snr

medi a-t ype medi af 1]

action add

conpari son-type case-sensitive

mat ch-val ue

new val ue "nmrvi deo 1234 RTP/ AVP 45"

adds a new video media-type at the 2nd position of all media-lines, resulting in the
SDP:

v=0

o=nhandl ey 2890844526 2890842807 IN | P4 126.16.64.4
c=IN I P4 224.2.17.12/127

t=2873397496 2873404696

mraudi 0 49170 RTP/AVP 0

mrvi deo 1234 RTP/ AVP 45

mraudi o 48324 RTP/ AVP 8

mrvi deo 51372 RTP/AVP 31

sdp-line-rule

Unlike header-rules, sdp descriptors are not added in the order in which they are
configured. Instead they are added to the SDP adhering to the grammar defined by
RFC 4566 (as is shown below).

Session description
v=_(protocol version)
o= (originator and session identifier)
s= (session nane)
i =* (session information)
u=* (URl of description)
e=* (email address)
p=* (phone nunber)
c=* (connection information -- not required if included in

all nedia)

b=* (zero or more bandwi dth information |ines)

One or nore time descriptions ("t=" and "r=" lines; see
bel ow)

z=* (tinme zone adjustnents)

k=* (encryption key)

a=* (zero or nore session attribute lines)
Zero or nore media descriptions (see bel ow)

Time description
t= (time the session is active)

ORACLE 1-61

Chapter 1
MIME Support

r=* (zero or more repeat tines)

Medi a description, if present

m= (nedia name and transport address)

i=* (nmedia title)

c=* (connection information -- optional if included at
session |evel)

b=* (zero or more bandw dth information |ines)

k=* (encryption key)

a=* (zero or nore nedia attribute Iines)

* after the equal sign denotes an optional descriptor.

This hierarchy is enforced meaning that if you configure a rule which adds a session
name descriptor followed by a rule which adds a version descriptor, the SDP will be
created with the version descriptor first, followed by the session name.

The only validation that will occur is the prevention of adding duplicate values. In much
the same way that header-rules prevents the user from adding multiple To headers,
the descriptor rule will not allow the user to add multiple descriptors; unless multiple
descriptors are allowed, as is in the case of b, t, r and a.

There exists a parameter type under the sdp-line-rule object that allows the user to
specify the specific line on which to perform the operation. For example: v, o, s, i, U, e,
p, c, b, t, 1, z, k, @, and m. Details on these types can be found in RFC 4566.

For those descriptors, of which there may exist zero or more (b, t, r, and a) entries,
indexing grammar may be used to reference the specific instance of that attribute. This
indexing grammar is consistent with that of header-rules for referring to multiple
headers of the same type.

Given the example SDP below:

v=0

o=nhandl ey 2890844526 2890842807 IN | P4 126.16. 64. 4
s=SDP Semi nar

i =A Seminar on the session description protocol
u=http:// wwmv. cs. ucl . ac. uk/ st af f/ M Handl ey/ sdp. 03. ps
e=nj h@si.edu (Mrk Handl ey)

c=IN P4 224.2.17.12/127

t=2873397496 2873404696

r=604800 3600 0 90000

r=7d 1h 0 25h

a=recvonly

nraudi 0 49170 RTP/ AVP 0

nrvi deo 51372 RTP/ AVP 31

meappl i cation 32416 udp wb

a=orient:portrait

and the following sdp-line-rule:

sdp-line-rule

name removeRepeat | nt erval
type r{1]
action delete

ORACLE 1-62

Chapter 1
MIME Support

The rule removeRepeatinterval removes the second repeat interval descriptor within
the SDP.

The behavior of all SDP rules follow the same behavior of all manipulation rules in that
they are executed in the order in which they are configured and that each rule
executes on the resultant of the previous rule.

Each descriptor follows its own grammar and rules depending on the type specified.
The values of the descriptor are evaluated at runtime since the new-values themselves
are evaluated at runtime. At this time no validation of the grammar for each of the
types is performed. The user is responsible for properly formatting each of the
descriptors according to their specifications.

For instance, the version (v) descriptor can be removed from the SDP but leaving all
descriptors for that SDP, causing the SDP to become invalid. This is consistent with
the way header-rules operate, in that there is no validation for the specific headers
once they have been manipulated through HMR.

Regular Expression Interpolation

An interpolated regular expression is a regular expression that is compiled and
evaluated at runtime. Today all regular expressions are compiled at configuration time
in order to improve performance. There are cases where a regular expression is
determined dynamically from data within a SIP message. In these circumstances the
regular expression is unknown until the time of execution.

In order to have a regular expression be interpolated at runtime, it must be contained
within a set of {}. An interpolated expression can have any number of regular
expressions and strings appended together. Any characters to the left or right of the
curly braces will be appended to the value within the curly braces. The curly braces
are effectively two operators treated as one (interpolate the value contained within and
then concatenate the values to the left and right of the curly braces). If the
comparison-type is set to pattern-rule and the match-value contains a value that
matches the grammar below, then it will be treated as an interpolated expression.

([PWIMHNS[M0-9]+ [}

The example below demonstrates using a user defined variable within a regular
expression of another rule at runtime.

el ement-rule

name sonmeRul e

type header - val ue

action repl ace

conpari son-type pattern-rul e

mat ch- val ue rsipi{$rulel. $0}@.+$
new val ue si p: bob@onpany. com

If the value of $rulel.$0 evaluates to alice then it will successfully match against the
string sip:alice@comcast.net. An interpolated expression can be as simple as
“I$rulel.$0}" or as complex as “sip:{rulel.$0}@{$rule2[1].$2}$. It is not possible to
interpolate a normal regular expression since the grammar will not allow the user to
enter such an expression. Only variables can be contained with the curly braces.

ORACLE 1-63

Chapter 1
MIME Support

The resultant of interpolated expressions can be stored in user defined variables.
Given the same example from above, if the rule someRule was referenced by another
rule, the value of sip:alice@comcast.net would be stored within that rule.

Interpolation only makes a single pass at interpolation, but does so every time the
Rule executes. In other words, if the Rule is applied to the Route header, it will
interpolate again for each Route header instance. What this means is that the value
within the curly braces will only be evaluated once. For instance, if the value
{$someRule.$1} evaluates to {$foobar.$2} the Oracle® Enterprise Session Border
Controller (E-SBC) will treat $foobar.$2 as a literal string which it will compile as a
regular expression. The E-SBC will not recursively attempt to evaluate $foobar.$2,
even if it was a valid user defined variable.

Interpolated regular expressions will evaluate to TRUE if an only if both the regular
expression itself can be compiled and it successfully matches against the compared
string.

Regular Expressions as Boolean Expressions

ORACLE

Regular expressions can be used as boolean expressions today if they are the only
value being compared against a string, as is shown in the case below.

mne-rul e
nane someM neRul e
content-type appl i cation/text
action repl ace
conpari son-type pattern-rule
mat ch-val ue Mevery good boy .*
new val ue every good girl does fine

However, regul ar expressions can not be used in conjunction with other
bool ean expressions to formmore conpl ex bool ean expressions, as i s shown
bel ow.

mne-rul e
nane soneM neRul e
content-type application/text
action repl ace
conpari son-type bool ean
mat ch- val ue $soneRul e & “every good boy .*
newval ue every good girl does fine

There are many cases where the user has the need to compare some value as a
regular expression in conjunction with another stored value. It is possible to perform
this behavior today, however it requires an extra step in first storing the value with the
regular expression, followed by another Manipulation Rule which compares the two
boolean expressions together (e.g. $someRule & $someMimeRule).

In order to simplify the configuration of some sip-manipulations and to make them
more efficient this functionality is being added.

Unfortunately, it is not possible to just use the example as is shown above. The
problem is there are many characters that are commonly used in regular expressions
that would confuse the HMR expression parser (such as $, and +). Therefore
delimiting characters need to be used to separate the regular expression from the
other parts of the expression.

1-64

ORACLE

Chapter 1
MIME Support

To treat a regular expression as a boolean expression, it needs to be enclosed within
the value SREGEX(<expression>,<compare_string>=$ORIGINAL); where
<expression> is the regular expression to be evaluated. <compare_string> is the string
to compare against the regular expression. This second argument to the function is
defaulted to $ORIGINAL which is the value of the of the specific Manipulation Rule
object. It can be overridden to be any other value the user desires.

The proper configuration for the example above to use regular expressions as boolean
expressions is

mne-rul e
nane soneM neRul e
content-type application/text
action repl ace
conpari son-type bool ean
mat ch- val ue $soneRul e & $REGEX(“"“every good boy .*")
newval ue every good girl does fine

It is also possible to use expressions as arguments to the $SREGEX function. These
expressions will in turn be evaluated prior to executing the SREGEX function. A more
complex example is illustrated below.

header-rul e

nane checkPAU

header - name request-uri

action rej ect

conparison-type bool ean

mat ch-val ue (! $REGEX($rul e1[0], $FROM USER)) &
(! $REGEX($rul e2[0], $PAI _USER))

meg-type request

new- val ue 403: For bi dden

nmet hods | NVI TE, SUBSCRI BE, MESSAGE, PUBLI SH,
OPTI ONS, REFER

It should be noted that when using $REGEX() in a boolean expression, the result of
that expression is not stored in the user variable. The comparison-type must be set to
pattern-rule in order to store the result of a regular expression.

The arguments to the SREGEX() function are interpolated by default. This is the case
since the arguments themselves must be evaluated at runtime. The following example
is also valid.

mne-rul e
nane someM neRul e
content-type appl i cation/text
action repl ace
conpari son-type bool ean
mat ch- val ue $sonmeRul e & SREGEX(““every good

{$rul e1[0].$0} .*")

1-65

Chapter 1
MIME Support

Moving Manipulation Rules

ORACLE

Users can move rules within any manipulation-rule container. Any manipulation rule
which contains sub-rules will now offer the ACLI command move <from index> <to
index>. For example, given the order and list of rules below:

1. rulel
2. rule2
3. rule3
4. ruled

Moving rule3 to position 1 can be achieved by executing move 3 1. The resulting order
will then be: rule3, rulel, rule2, rule4. A move operation causes a shift (or insert
before) for all other rules. If a rule from the top or middle moves to the bottom, all rules
above the bottom are shifted up to the position of the rule that was moved. If a rule
from the bottom or middle moves to the top, all rules below are shifted down up to the
position of the rule that was moved. Positions start from 1.

A valid from-index and to-index are required to be supplied as arguments to the move
action. If a user enters a range that is out of bounds for either the from-index or to-
index, the ACLI will inform the user that the command failed to execute and for what
reason.

With respect to the issue of creating an invalid sip-manipulation by incorrectly ordering
the manipulation rules, this issue is handled by the Oracle® Enterprise Session Border
Controller validating the rules at configuration time and treating them as invalid prior to
runtime. This may or may not affect the outcome of the sip-manipulation as a
configured rule may not perform any operation if it refers to a rule that has yet to be
executed. It is now the user’s responsibility to reorder the remaining rules in order to
make the sip-manipulation valid once again.

It is important to note that rules of a different type at the same level are all part of the
same list. To clarify; header-rules, mime-rules, mime-isup-rules and mime-sdp-rules all
share the same configuration level under sip-manipulation. When selecting a move
from-index and to-index for a header-rule, one must take into consideration the
location of all other rules at the same level, since the move is relative to all rules at that
level, and not relative to the particular rule you have selected (for example, the
header-rule).

Since the list of rules at any one level can be lengthy, the move command can be
issued one argument at a time, providing the user with the ability to select indices. For
instance, typing move without any arguments will present the user with the list of all
the rules at that level. After selecting an appropriate index, the user is then prompted
with a to-index location based on the same list provided.

For Example:

ORACLE(si p- mi me- sdp-rul es)# nove
select a rule to nove

1: msr sdp-type=any; action=none; match-value=; msg-type=any

2: addFoo header-name=Foo0; action=none; match-value=; msg-type=any

1-66

Chapter 1
MIME Support

3: addBar header-name=Bar; action=none; match-value=; msg-type=any

selection: 2

destination: 1

Rul e nmoved fromposition 2 to position 1
ACMEPACKET(si p- mi me- sdp-rul es) #

Rule Nesting and Management

There will be cases where the user wants to take a stored value from the SDP and
place it in a SIP header, and vice-versa. All header-rules, element-rules, mime-rules,
mime-isup-rules, isup-param-rules, mime-header-rules and mime-sdp-rules are
inherited from a Manipulation Rule. A Sip Manipulation is of type Manipulation which
contains a list of Manipulation Rules. Each Manipulation Rule can itself contain a list of
Manipulation Rules. Therefore when configuring manipulation rules, they will be saved
in the order which they have been configured. This is different from the way other
configuration objects are configured. Essentially, the user has the option of configuring
which type of object they want and when they are done, it gets added to the end of the
sip-manipulation, such that order is preserved. This will mean that any Manipulation
Rule at the same level can not share the same name. For example, names of header-
rules can’t be the same as any of the mime-sdp-rule ones or mime-isup-rule. This
allows the user to reference stored values from one rule type in another at the same
level.

ACLI Configuration Examples

Remove SDP

The following eight sections provide sample SDP manipulations.

si p-mani pul ati on

name stripSdp
description remove SDP from SI P nessage
m me-sdp-rul e

name sdpStrip

neg-type request

met hods I NVITE

action del ete

conpari son-type case-sensitive

mat ch-val ue

new-val ue

Remove Video from SDP

ORACLE

Si p- mani pul ation

nane stripVideo
description strip video codecs fromSIP
message
m me-sdp-rul e
nane stripVideo
meg-type request
nmet hods I NVI TE

1-67

Add SDP

Chapter 1
MIME Support

action mani pul at e
conpari son-type case-sensitive
mat ch-val ue
new-val ue
sdp-nedi a-rul e
name removeVi deo
medi a-t ype vi deo
action del ete
conpari son-type case-sensitive
mat ch- val ue
newval ue
Si p- mani pul ation
nanme addSdp
description add an entire SDP if one does
not exist
m me-sdp-rul e
nane addSdp
nsg-type request
net hods I NVI TE
action add
conpari son-type case-sensitive
mat ch- val ue
newval ue “v=0\r\ no=nhandl ey

2890844526 2890842807 IN | P4 “+$LOCAL_|I P+"\r\ns=SDP Semi nar\r\ni =A
Semi nar on the session description protocol\r\nu=http:

[[www. ¢s. ucl . ac. uk/ st af f/ M Handl ey/ sdp. 03. ps\r\ne=nj h@si . edu
(Mark Handl ey)\r\nc=IN | P4 “+$LOCAL | P+"\r\nt=2873397496
2873404696\ r\ na=recvonl y\r\ nmraudi o 49170 RTP/ AVP O\r\n”

Manipulate Contacts

ORACLE

This rule changes the contact in the SDP to the value contained in the Contact header.

si p-mani pul ation

name changeSdpCont act
description changes the contact in the SDP to
the value of the contact header
header-rul e
nane st or eCont act
header - nare Cont act
action store
conpari son-type pattern-rule
neg-type request
met hods I NVITE
mat ch-val ue
new val ue
el ement-rul e
nane st or eHost
par anet er - name
type uri-host

1-68

m nme- sdp

Remove a Codec

action
mat ch-val -type
conpari son-type

mat ch-val ue
newval ue
-rule
name
neg-type
met hods
action
conpari son-type
mat ch-val ue
new val ue
sdp-session-rul e
name
action
conpari son-type
mat ch-val ue
newval ue
sdp-line-rule
name
type
action
conpari son-type
mat ch- val ue
new val ue

Chapter 1
MIME Support

store
ip
pattern-rule

changeConnecti on
request

| N\VI TE

mani pul ate
case-sensitive

changeCLi ne
mani pul ate
case-sensitive

updat eConnecti on

c

repl ace

case-sensitive

$st oreCont act . $st or eHost
$st oreCont act . $st or eHost . $0

This rule changes the contact in the SDP to the value contained in the Contact header.

si p- mani pul ation

name
descri pt
m ne- sdp

ORACLE

r emoveCodec

ion
-rule
name
neg-type
met hods
action
conparison-type
mat ch-val ue
newval ue
sdp-nedi a-rul e
name
medi a-t ype
action
conpari son-type
mat ch-val ue
newval ue
sdp-line-rule
name
type
action

conpari son-type

remove G711 codec if it exists

r emoveCodec
request

I NVI TE

mani pul ate
case-sensitive

removeGril
audi o
mani pul at e
case-sensitive

remove711

m

repl ace
pattern-rul e

1-69

Change Codec

ORACLE

Chapter 1
MIME Support

mat ch- val ue A(audi o [0-9]
{1,5} RTP.*)([07]
\b)(.*)$
new val ue $1+$3
sdp-line-rule
name stripAttr
type a
action del ete
conpari son-type pattern-rule
mat ch- val ue Artpmap| fntp):
[07]\Db$
newval ue
Si p- mani pul ation
nane convert Codec
description changeGr11t 0G729
m me-sdp-rul e
nane changeCodec
nsg-type request
net hods I NVI TE
action mani pul ate
conpari son-type case-sensitive
mat ch- val ue
new- val ue
sdp-nedia-rul e
name change711t 0729
medi a-t ype audi o
action mani pul ate
conpari son-type case-sensitive
mat ch- val ue
new val ue
sdp-line-rule
name change711
type m
action repl ace
conpari son-type pattern-rule
mat ch- val ue A(audio [0-9]{4,5}
RTP/AVP. *) (0)(.*)$
newval ue $1+" 18" +$3
sdp-line-rule
nane stripAttr
type a
action delete
conpari son-type pattern-rule
mat ch- val ue Artpmap: 0 PCMJ
. +$
new val ue
sdp-line-rule
nane addAttr
type a
action add
conpari son-type bool ean

1-70

Remove Last Codec and Change Port

Si p- mani pul ation

name

description

m me-sdp-rul e
name
nmeg-type
net hods
action
conpari s
mat ch-va
new-val u
sdp- nedi

new val ue

$renmpvelast . $i sLast Codec

$renmpvelast . $i sLast Codec
$i sLast Codec. $3

Remove Codec with Dynamic Payload

si p-mani pul ation
name
description
codecs
m ne-sdp-rul e
name
neg-type

ORACLE

Chapter 1
MIME Support

mat ch-val ue $change711t 0729
$stripAttr
new val ue rtpmap: 18 G729/ 8000

removelast Codec
remove the |ast codec

renovelast Codec

request
I NVITE
mani pul ate
on-type case-sensitive
| ue
e
a-rule
nane removelast
medi a-t ype audi o
action mani pul ate
conpari son-type case-sensitive
mat ch-val ue
newval ue
sdp-line-rule
nanme i sLast Codec
type m
action store
conpari son-type pattern-rule
mat ch-val ue Maudio)([0-9]{4,

5})(RTP/ AVP
[0-9]{1-3})$

sdp-line-rule

nane changePort

type m

action repl ace

conpari son-type bool ean

mat ch-val ue $removelast Codec
new val ue $removelast Codec

. $1+0+%r enovelLast Codec. $r emovelast .

r emoveAMR
renove the AVR and AMR-WB dynanic

sdpAMVR
request

1-71

HMR Import-Export

ORACLE

name

met hods
action
conpari son-type
mat ch-val ue
new-val ue
sdp-nedi a-rul e
medi aAVR
medi a-t ype
action
conpari son-type
mat ch- val ue
newval ue
sdp-line-rule
name
type
action
conpari son-type
mat ch- val ue
new val ue
sdp-nedi a-rul e
name
medi a-t ype
action
conpari son-type
mat ch- val ue
newval ue
sdp-line-rule
name
type
action
conpari son-type
mat ch- val ue
new val ue
sdp-line-rule
name
type
action

Chapter 1
HMR Import-Export

I NVI TE
mani pul ate
case-sensitive

audi o
mani pul at e
case-sensitive

i SAMR

a

delete
pattern-rul e
Artpmap: ([0-9]
{2,3}) AR

medi al SAMR
audi o
mani pul at e
bool ean
$sdpAMR. $redi a
AMVR. $i SAVR

del Fnt pAMR

a

delete
pattern-rul e
Mt p: { $sdpAVR.
$nmedi aAMR

$i SAMR $1}\ b

del AMRcodec
m
find-replace-al

conpari son-type pattern-rul e

mat ch- val ue

MNaudio [0-9]+
RTP. *({$sdpAVR

$medi aAMR. $i SAMR.

Due to the complexity of SIP manipulations rules and the deep understanding of
system syntax they require, it is often difficult to configure reliable rules. This feature
provides support for importing and exporting pieces of SIP manipulation configuration
in a reliable way so that they can be reused.

1-72

Chapter 1
HMR Import-Export

Exporting

The SIP manipulation configuration contains an export command which sends the
previously selected configuration to the designated file. The syntax is export
[FILENAME]. The system compresses the file with gzip and writes it to the / code/
i mport s directory.

" Note:

SIP manipulation configurations can only be exported one at a time.

Exported data will look like this:

<?xm version="1.0" standal one='yes' ?>
<si pMani pul ation
name=' mani p'
description=""
| ast Modi fi edBy="adm n@onsol e'
| ast Modi fi edDat e=' 2009- 10- 16 14: 16: 29' >
<header Rul e
header Nane="' Foo'
msgType="any'
nane=" header Rul ¢'
action='mani pul at e'
cnpType=" bool ean’
mat chVal ue=" $REGEX(" [bB] [A- Za-z] {2}")"
newval ue="'f 0o’
met hods=" [NVI TE' >
</ header Rul e>
</ si pMani pul ati on>

To avoid conflicts when importing, the key and object ID are not included as part of the
exported XML.

Importing

The import command imports data from a previously exported file into the currently-
selected configuration. If no configuration was selected, a new one is created. The
syntax is import [FILENAME]. Include the .gz extension in the filename. After
importing, type done to save the configuration.

Importing a configuration with the same key as one that already exists returns an error.
In this case:

e Delete the object with the same key and re-import.

e Select the object with the same key and perform an import that will overwrite it with
new data.

ORACLE 1-73

Chapter 1
HMR Development

Using SFTP to Move Files

After exporting a configuration, use SFTP to copy the file to other Oracle® Enterprise
Session Border Controllers. Place the file in the / code/ i npor t s directory before
using the import command on the second E-SBC.

Removing Files

Using the delete-import command with the name of the file you want to delete
removes it from the system. Using this command, you can delete files that are no
longer useful to you. Carrying out this command is final and there is no warning before
you go ahead with the deletion. A failed deletion (for instance, because there is no
such file) will produce an error message; a successful deletion simply returns you to
the system prompt.

HMR Development

Before you start developing an HMR, ask yourself whether you need an HMR. Check
whether an alternative is available. For example, you can configure the E-SBC to
perform some of the more common needed message manipulations like stripping
telephone events from SDP or resolving delayed offer issues. If you need more
flexibility to address your problem, then HMR is probably the answer.

Development Overview

Once you have decided you want to use HMR to resolve an issue, Oracle
recommends you follow this development procedure:

1. Understand regex. Your knowledge of regex is fundamental to building an HMR
that yields the desired result.

2. ldentify the direction of the traffic in relation to the E-SBC to which you want to
apply an HMR (inbound or outbound).

3. Identify the SIP message portion on which you want the HMR to operate: header,
parameter, or body.

4. Identify the remote entities involved and know their represented in your E-SBC
configuration. Are they session agents, realms or SIP interfaces? Take into
consideration the order of precedence among these entities for applying HMRs.

5. Build the HMR and test it using the E-SBC's Testing SIP Manipulations.

6. Apply the HMR appropriately to your configuration. Oracle recommends that you
develop, test, and apply HMRs in test or laboratory environments only.

7. Analyze the data resulting from your HMR to confirm it is working as you intend.

Development Tips

ORACLE

» Define all storage rules first. Each subsequent header rule processes against the
same SIP message, so each additional header rules works off of the results from
the application of the rule that precedes it.

In general, you want to store values from the original SIP header rather than from
the iteratively changed versions.

1-74

Chapter 1
HMR Development

* Implement rules at the element rule rather than the header rule level. Header rules
should only be a container for element rules.

* Add additional element rules to modify a single header. Do not create multiple
header rules, each with one element rule. Instead, create multiple element rules
within a header rule.

» Think of performance. Reuse as many built in variables as possible
* Avoid lengthy string matches unless absolutely necessary

* Wherever possible, constrain your HMR appropriately by specifying a SIP method
and message type

e Build an HMR library

Planning Considerations

You want to plan your functionality carefully when developing HMRs and you want to
test it thoroughly before deploying it on your production system.

Traffic Direction

You need to determine if you want changes to occur on traffic that is relative to the E-
SBC inbound or outbound.

Order of Application Precedence

As you decide direction, you must also consider the order in which the E-SBC applies
HMR for session agents, realms, and SIP interfaces. The order of precedence is:

e session agent
e realm
e SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP
manipulation for a realm overrides one for a SIP interface.

Order of HMR Execution

The E-SBC applies SIP header rules in the order you have entered them, which
guards against the removal of data that might be used by other header rules. The
order starts with the top-most rule and continues with the execution of the sub-rules
one by one. Each new rule is carried out on the result of the preceding rule.

This ordering also lets you strategically use manipulations. For example, you can use
two rules if you want to store the values of a regular expression. The first rule stores
the value of a matched regular expression and the second deletes the matched value.

Applying HMR to a Specific Header

You can operate on a specific instance of a given header by adding a trailing

[<i ndex>] value after the header name. This [<i ndex>] is a numerical value
representing the specific instance of the header on which to operate. However, the E-
SBC takes no action if the header does not exist. You can also use the caret * to
reference the last header of that type if there are multiple instances.

ORACLE 1-75

HMR Sets

Chapter 1
HMR Development

The count for referencing is zero-based, meaning that the first instance of the header
counts as 0.

Note:

You cannot use a trailing [<i ndex>] value after the header name to insert
headers into a specific location. Headers are added to the end of the list,
except that Via headers are added to the top.

Although the E-SBC has a set method for how certain manipulation rules take
precedence over others; you can use multiple SIP HMR sets to

* Apply multiple inbound and outbound manipulations rules to a SIP message
* Provision the order in which the E-SBC applies HMRs

You cause the header rule in one HMR to invoke another HMR. Values from that
invoked HMR for the match value, comparison type, and methods are then supported.
The invoked HMR is performed when those values are true.

Create Pseudocode

Test HMRs

You start with a high-level design, refine the design to pseudocode, and then refine the
pseudocode to source code. This successive refinement in small steps allows you to
check your design as you drive it to lower levels of detail. The result is that you catch
high level errors at the highest level, mid-level errors at the middle level, and low-level
errors at the lowest level -- before any of them becomes a problem or contaminates
work at more detailed levels.

Test methodologies include:

» Wireshark traces to create SIPp scripts
e test-pattern-rule to test pattern matches from the ACLI
» test-sip-manipulation available through the ACLI

* log.sipd messages

test-sip-manipulation

ORACLE

You can use a tool that allows you to test the outcome of your SIP manipulation and
header rules without sending real traffic through the E-SBC to see if they work.

To use the tool, you enter the ACLI's test-sip-manipulation utility and reference the rule
you want to test using its name. Then you enter a mode where you put in a SIP
message entered in ASCII. You can cut and paste this message from sipmsg.log or
from some other location. Using <Ctrl-D> stops the SIP message collection and
parses it.

1-76

Chapter 1
HMR Development

The test informs you of any parsing errors found in the SIP message. Once the
message is entered, you can execute the SIP manipulation against the message. The
output after this step is the modified SIP message after manipulations have been
applied. You will also find a debugging option, which displays SIP manipulation logging
to the screen as the manipulation takes place.

As a starting point for testing, this tool comes loaded with a default SIP message. It
cannot be associated with realms, session agents, or SIP interfaces, and so it also
comes with certain resolves reserved words, such

as: $LOCAL | P, $TRUNK GROUP_CONTEXT, and $REMOTE_PORT. In addition, you can use
your settings for testing across terminal sessions; if you choose to save your settings,
everything (including the SIP message) will be saved, with the exception of the
debugging option.

It is not recommended that you use this tool to add an ISUP message body.

Development Example

You want to perform specialized call routing for x11 numbers, such as 211, 311, 411
and so on, based on from where the call originated. You want to concatenate the user
part of the To URI with the seven digits following the +1 in the user part of the From
URI and to swap that value in the user part of the Request URI:

I NVITE sip: 211; csel =noni nd@92. 168. 65. 16: 5060; user =phone SI P/ 2.0
Via:SIP/2.0/UDP 10. 1. 110. 34; br anch=z9hG4bK-

Br oadWr ks. as3. ot waon10- 192. 168. 65. 16V5060- 0- 31288454- 509069652- 12735203801
70-

From"JOHN SM TH'<si p: +14167601262@i pt . it ech. ca; user =phone>

To: <si p: 211; csel =noi nd@2. 168. 65. 16: 5060; user =phone>

Note:

e Touser-uri: 211
* From user-uri: +14167601262
e Desired Request-URI: 2114167601

Writing the Psuedo Code

e Header rule getToURI for To header is not needed. The built-in
variable $RURI_USER can be used.

e Header rule getFromURIDigits for From header. Stores specific digits for the uri-
user-only part of the From header.

e Header rule constructRURIUsingToAndFrom to build the Request-URI. Replaces
the uri-user of the Request-URI with a concatenation of the stored digits.

Testing the Pattern Rule

(configure)# session-router test-pattern-rule
(test-pattern-rule)# string +14167601262

ORACLE L

Chapter 1
HMR Development

expression made 0 matches against string
(test-pattern-rule)# expression M+1([0-9]{7}).*$
expression made 2 matches again string

(test-pattern-rul e)# show

Pattern Rul e:
Expression
String

Mat ched . TRUE
Mat ches:

$0 +14167601262
$1 4167601

Note:

Constructing the HMR

Si p- mani pul ation
nane
description
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
neg-type
new val ue
met hods
el enent-rule
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
new val ue
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
neg-type

ORACLE

D M+L([0-9]1{7}).*$
+14167601262

A $ was used to denote the end of the string. Using a carriage return line
feed \ r\ n will not result in matches.

e $0 is the entire string being matched against.

e $1is the string represented in the first set of parentheses. Here, $1
matches the desired output so the regular expression is correct.

Contruct URI

getFromURIDigits
From

store
case-sensitive

request
INVITE
getDigit
uri-user
store
any

pattern-rule
M+1([0-9]1{7}).*$

const ruct RURI Usi ngToAndFr om
request-uri

mani pul ate

case-insensitive

request

1-78

new val ue

met hods

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -t ype
conpari son-type
mat ch-val ue
newval ue

Note:

Loading Test SIP Message

Chapter 1
HMR Development

I NVI TE
construct RURI
uri-user

repl ace

any

pattern-rule

$RURI _USER. $0+$get FromURI Digits. $getDigits. $1

$RURI _USER $0+$get FromJRIDigits. $getDigits. $1

Concatenate the two and replace the uri-user of the R-URI. The plus sign (+)
serves as the concatenation operator when the comparison-type is pattern-
rule. Only the $1 from the second ruleset is used because it represents just
the subset of the From digits needed.

(test-sip-manipul ation)# | oad-si p- message

You might want to edit the Content-Length value default value of 276 or to remove the
header. Retaining that value causes test-sip-manipulation to transmit only the first 276
characters of the loaded SIP message.

Configuring Testing

Test Sip Manipul ation
si p- mani pul ation
debuggi ng
direction
mani pul ation-string
mani pul ation-pattern
t grp- cont ext
local -ip
renote-ip
si p- nessage

Executing Testing

ORACLE

. Construct RUR
. enabl ed
. oout

s
192. 168. 1. 60: 5060

192. 168. 1. 61: 5060
parsed K

(test-sip-mani pul ati on)# execute

Header Rule Construct RURI (header Name=request-uri action=mani pul ate
cnpType=pattern-rul e) does not apply to method | NVITE

After Manipul ation[Construct RUR]

1-79

Chapter 1
Configuration Examples

The following output snippet shows that the HMR worked:

I NVI TE sip: 2114167601@L92. 168. 65. 16: 5060; user =phone SI P/ 2.0

Via: SIP/2.0/UDP 10. 1. 119. 152: 5060; br anch=x9hG4bKj 3svpd1030b08nc9t 3f 1. 1
From JOHN SM TH<si p:

+14167601262@i pt . t ech. ca; user =phone; t ag=SDekcf d01- 966714349- 1273696750280-
To: <sip:211;csel =noi nd@.0. 1. 119. 151: 5060; user =phone

Log File Analysis

Run log.sipd at debug level on the E-SBC where you plan to test the HMR to gain the
most information. Then examine log.sipd to review information about the HMR
execution.

Configuration Examples

This section shows you several configuration examples for HMR. This section shows
the configuration for the various rules that the Oracle® Enterprise Session Border
Controllerapplied, and sample results of the manipulation. These examples present
configurations as an entire list of fields and settings for each ruleset, nested header
rules and nested element rules. If a field does not have any operation within the set,
the field is shown with the setting at the default or blank.

Example 1 Removing Headers

ORACLE

For this manipulation rule, the Oracle® Enterprise Session Border Controller removes
the Custom header if it matches the pattern rule. It stores the defined pattern rule for
the goodBye header. Finally, it removes the goodBye header if the pattern rule from
above is a match.

This is a sample of the configuration:

si p- mani pul ation

name r emoveHeader
header-rul e
name renoveCust om
header - name Cust om
action del ete
conpari son-type bool ean
mat ch- val ue AThis is ny.*
neg-type request
new val ue
met hods I NVITE
header-rul e
nane goodByeHeader
header - name CGoodbye
action store
conpari son-type bool ean
mat ch- val ue ARenove (. +)
neg-type request
new val ue
met hods I NVITE

header-rul e

1-80

Chapter 1
Configuration Examples

nane goodBye

action del ete
conpari son-type pattern-rule
mat ch- val ue $goodByeHeader
meg-type request
new- val ue
nmet hods I NVI TE

This is a sample of the result:

Request-Line: | NVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0
Message Header
Via: SIP/2.0/UDP
192. 168. 200. 61: 5060; br anch=z9hG4bK0g639r 10f gcOaakk26s1. 1
From sipp <sip:sipp@092.168. 1. 60: 5060>; t ag=SDc1r n601- 1
To: sut <sip:service@?92.168.1.61:5060>
Call-1D: SDclrmb01-d01673bcacf cc112¢053d95971330335- 06a3gul
CSeq: 1 INVITE
Contact: <sip:sipp@92.168.200.61:5060;transport=udp>
Di splay: sipp <sip:user@92.168. 1. 60: 5060; up=abc>; hp=123
Parans: sipp <sip:sippl@92.168.1.60: 5060>
Parans: sipp <sip:sipp2@92.168. 1. 60: 5060>
Edit: disp <sip:user@92. 168. 1.60: 5060>
Max- For war ds: 69
Subj ect: Performance Test
Cont ent - Type: application/sdp
Content - Length: 140

Example 2 Manipulating the Request URI

ORACLE

For this manipulation rules, the Oracle® Enterprise Session Border Controller stores
the URI parameter tgid in the Request URI. Then if the pattern rule matches, it adds a
new header (x-customer-profile) with the a new header value tgid to the URI
parameter in the request URI.

This is a sample of the configuration:

Si p- mani pul ation

name Cust oner Tgi d
header-rul e
nane ruri Regex
header - nane request - uri
action store
conpari son-type pattern-rule
mat ch-val ue
nsg-type request
newval ue
net hods I NVI TE
element-rule
nane t gi dParam
par anet er - nane tgid
type uri-param
action store
mat ch-val -type any

1-81

ORACLE

conpari son-type

Chapter 1
Configuration Examples

pattern-rule

mat ch- val ue
new-val ue
header-rul e
nane addCust oner
header - nane X-Custoner-Profile
action add
conpari son-type pattern-rule
mat ch- val ue $ruri Regex. $t gi dParam
meg-type request
new-val ue $ruri Regex. $t gi dParam $0
nmet hods I NVI TE
header-rul e
nane del Tgi d
header - name request-uri
action mani pul ate
conpari son-type pattern-rule
mat ch- val ue $ruri Regex. $t gi dParam
meg-type request
new- val ue
nmet hods I NVI TE
elenment-rule
name t gi dParam
par anet er - name tgid
type uri-param
action del et e- el enent
mat ch-val -type any
conpari son-type case-sensitive
mat ch-
val ue $ruri Regex. $t gi dParam $0

new val ue

This is a sample of the result:

Request-Line: | NVITE sip:service@92. 168. 200. 60: 5060 SIP/ 2.0

Message Header

Via: SIP/2.0/UDP 192. 168. 200. 61: 5060; br anch=z29hG4bK0g6pl v3088h03acgh6el. 1
From sipp <sip:sipp@092.168. 1. 60: 5060>; t ag=SDc1r g601- 1

Par ams:

To: sut <sip:service@92.168.1.61:5060>

Cal | -1D: SDclrg601-f125d8b0ec7985¢378b04cab9f 91cc09- 06a3gul
CSeq: 1 INVITE

Contact: <sip:sipp@92.168.200.61:5060;transport=udp>
Coodbye: Renove Me

Custom This is ny custom header

Di splay: sipp <sip:user@?92.168. 1. 60: 5060; up=abc>; hp=123
sipp <sip:sippl@92.168. 1. 60: 5060>

Parans: sipp <sip:sipp2@92.168. 1. 60: 5060>

Edit: disp <sip:user@92.168.1.60:5060>

Max- For war ds: 69

Subj ect: Performance Test

Cont ent - Type: application/sdp

Content - Length: 140

X-Custoner-Profile: 123

1-82

Chapter 1
Configuration Examples

Example 3 Manipulating a Header

ORACLE

For this manipulation rule, the Oracle® Enterprise Session Border Controllerstores the
pattern matches for the Custom header, and replaces the value of the Custom header
with a combination of the stored matches and new content.

This is a sample of the configuration:

si p-mani pul ation

name modCust onHdr
header-rul e
name cust onBear ch
header - name Custom
action store
conparison-type pattern-rule
mat ch-val ue (This is my)(.+)(header)
neg-type request
new val ue
met hods I NVI TE
header-rul e
name cust onvbd
header - name Custom
action mani pul ate
conpari son-type pattern-rule
mat ch-val ue $cust onBear ch
neg-type request
new val ue
met hods I NVI TE
el enent-rul e
name hdr Val
par anet er - nane hdr Val
type header - val ue
action repl ace
mat ch-val -type any
conpari son-type case-sensitive
mat ch- val ue
new-val ue $cust onBear ch. $1+edi t ed+$cust onBear ch. $3

This is a sample of the result:

Request-Line: I NVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0
Message Header
Via: SIP/2.0/UDP
192. 168. 200. 61: 5060; br anch=z9h&4bK20g2s820boghbacgs600. 1
From sipp <sip:sipp@?92.168. 1. 60: 5060>; t ag=SDelr a601- 1
To: sut <sip:service@92.168. 1. 61: 5060>
Call-1D: SDelra601-4bb668e7ec9eeb92c783c78f d5b26586- 06a3gul
CSeq: 1 INVITE
Contact: <sip:sipp@92.168.200.61: 5060; t ransport =udp>
Coodbye: Renove Me
Custom This is ny edited header
Di splay: sipp <sip:user@92.168. 1. 60: 5060; up=abc>; hp=123
Params: sipp <sip:sippl@92.168.1.60: 5060>

1-83

Chapter 1
Configuration Examples

Params: sipp <sip:sipp2@92.168. 1. 60: 5060>
Edit: disp <sip:user@?92.168.1.60: 5060>
Max- For war ds: 69

Subj ect: Performance Test

Cont ent - Type: application/sdp

Cont ent - Lengt h: 140

Example 4 Storing and Using URI Parameters

For this manipulation rule, the Oracle® Enterprise Session Border Controller stores the
value of the URI parameter tag from the From header. It also creates a new header
FromTag with the header value from the stored information resulting from the first rule.

This is a sample of the configuration:

si p- mani pul ation

nane st or eEl enPar am
header-rul e
name Frohnr
header - nare From
action store
conpari son-type case-sensitive
mat ch-val ue
neg-type request
new val ue
met hods I NVITE
el ement-rul e
nane el ement Rul e
par anet er - nane tag
type uri-param
action store
mat ch-val -type any

conpari son-type

case-sensitive

mat ch-val ue
newval ue
header-rul e
name newHeader
header - nanme FronfTag
action add
conpari son-type pattern-rule
mat ch-val ue $FromHR. $el enent Rul e
neg-type any
new-val ue $FromHR. $el enent Rul e. $0
met hods

This is a sample of the result:

Request - Line: I NVI TE sip: service@92. 168. 200. 60: 5060; t gi d=123 SI P/ 2.0
Message Header
Via: SIP/2.0/UDP
192. 168. 200. 61: 5060; br anch=z9hG4bK4oda2e2050i h7acghécl. 1
From sipp <sip:sipp@92.168. 1. 60:5060>; t ag=SDf 1re601- 1
To: sut <sip:service@92.168.1.61:5060>
Call-1D: SDf 1re601-f 85059e74e1b443499587dd2dee504c2- 06a3gul

ORACLE 1-84

Chapter 1
Configuration Examples

CSeq: 1 INVITE
Contact: <sip:sipp@92.168.200.61: 5060; transport =udp>
CGoodbye: Renove Me
Custom This is ny custom header
Di splay: sipp <sip:user@92.168. 1. 60: 5060; up=abc>; hp=123
Params: sipp <sip:sippl@92.168. 1.60: 5060>
Params: sipp <sip:sipp2@92.168. 1. 60: 5060>
Edit: disp <sip:user@92.168. 1.60: 5060>
Max- For war ds: 69
Subj ect: Performance Test
Cont ent - Type: application/sdp
Cont ent - Lengt h: 140
FronTag: 1

Example 5 Manipulating Display Names

ORACLE

For this manipulation rule, the Oracle® Enterprise Session Border Controller sores the
display name from the Display header. It replaces the two middle characters of the
original display name with a new string. Then is also replaces the From header’s
display name with “abc 123 if it matches sipp.

This is a sample of the configuration:

si p-mani pul ation

nane modDi spl ayPar am
header-rul e

nane storeDi spl ay

header - nanme Di spl ay

action store

conpari son-type case-sensitive

mat ch-val ue

meg-type request

new-val ue

nmet hods I NVI TE

elenment-rule
name di spl ayName
par anet er - name di spl ay
type uri-display
action store
mat ch-val -type any

conpari son-type pattern-rule
mat ch- val ue (s)(ip)(p)
new-val ue
header-rul e

nane modDi spl ay

header - nanme Di spl ay

action mani pul ate

conpari son-type case-sensitive

mat ch-val ue

nmeg-type request

new-val ue

nmet hods I NVI TE

elenment-rule
nane modRul e

1-85

ORACLE

val ue

val ue

header-rul e

Chapter 1
Configuration Examples

par anet er - name di spl ay
type uri-display
action repl ace

mat ch-val -type any

conpari son-type
mat ch-

$storeDi spl ay. $di spl ayNane

new

pattern-rule

$storeDi spl ay. $di spl ayName. $1+l ur
+$st or eDi spl ay. $di spl ayNane. $3

nane modFr om

header - nane From

action mani pul ate

conpari son-type pattern-rule

mat ch-val ue

meg-type request

new- val ue

nmet hods I NVI TE

elenment-rule
name fronDi spl ay
par anet er - name
type uri-display
action repl ace
mat ch-val -type any
conpari son-type pattern-rul e
mat ch- val ue sipp
new-val ue "\"abc 123\" "

This is a sample of the result:

Request -

Line: INVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0

Message Header

192. 168.

Via: SIP/2.0/UDP

200. 61: 5060; br anch=z9hG4bK681kot 109gp04acgs600. 1

From "abc 123" <sip:sipp@92.168. 1. 60: 5060>; t ag=SD79r a601- 1
To: sut <sip:service@?92.168.1.61:5060>

Call-1D: SD79ra601- a487f 1259e2370d3dbb558c742d3f 8¢c4- 06a3gul
CSeq: 1 INVITE

Contact: <sip:sipp@92.168.200.61:5060;transport=udp>
CGoodbye: Renove Me

Custom This is ny custom header

Di splay: slurp <sip:user@?92.168. 1.60: 5060; up=abc>; hp=123
Parans: sipp <sip:sippl@92.168.1.60: 5060>

Parans: sipp <sip:sipp2@92.168. 1. 60: 5060>

Edit: disp <sip:user@92. 168. 1.60: 5060>

Max- For war ds: 69

Subj ect: Performance Test

Cont ent - Type: application/sdp

Content - Length: 140

1-86

Example 6 Manipulating Element Parameters

ORACLE

Chapter 1
Configuration Examples

For this more complex manipulation rule, the Oracle® Enterprise Session Border

Controller:

» From the Display header, stores the display name, user name, URI parameter up,
and header parameter hp

» Adds the header parameter display to the Params header, with the stored value of
the display name from the first step

* Add the URI parameter user to the Params header, with the stored value of the
display name from the first step

» If the URI parameter match succeeds in the first step, replaces the URI parameter

up with the Display header with the value def

* If the header parameter match succeeds in the first step, deletes the header
parameter hp from the Display header

This is a sample of the configuration:

si p-mani pul ation

nane

header-rul e

element-rule

element-rule

nane
header - name
action
conparison-type
mat ch- val ue
neg-type
new val ue
met hods
el enent-rul e
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch- val ue
new val ue

name
par anet er - name
type

action

mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

nane
par anet er - nane
type

action

el enPar ans

St or eDi spl ay
Di spl ay

store
case-sensitive

request
I N\VI TE
di spl ayName

uri-display
store

any
pattern-rul e

user Nane
user

uri-user
store

any
pattern-rul e

uri Param

up
uri-param
store

1-87

ORACLE

el ement-rule

mat ch-val -type
conpari son-type
mat ch- val ue
newval ue

name
par anet er - name
type

action

mat ch-val -type
conpari son-type

mat ch-val ue
newval ue
header-rul e

name

header - narme

action

conpari son-type

mat ch-val ue

neg-type

new val ue

met hods

el ement-rul e
name
par anet er - nane
type
action

mat ch-val -type any

conpari son-type
mat ch-val ue
new

val ue

Chapter 1
Configuration Examples

any
pattern-rule

header Par am
hp
header - par am
store

any
pattern-rule

Edi t Par ans

Par ams

mani pul ate
case-sensitive

request

| N\VI TE
addHeader Par am
di spl ay
header - par am
add

case-sensitive

$St oreDi spl ay. $di spl ayNane. $0

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue

new val ue

$St oreDi spl ay. $user Nane. $0

header -

rule
name
header - nane
action
conpari son-type
mat ch-val ue
neg-type
new val ue
met hods
el ement-rul e
name
par anet er - nane

type

addUri Param
user

uri-param

add

any
case-sensitive

Edi t Di spl ay

Di spl ay

mani pul ate
case-sensitive

request
| N\VI TE
repl aceUri Param

up
uri-param

1-88

val ue

Chapter 1
Configuration Examples

action repl ace

mat ch-val -type any

conpari son-type pattern-rule

mat ch-

$St or eDi spl ay. $uri Param

new-val ue def
elenment-rule

nane del Header Par am

par anet er - name hp

type header - par am

action del et e- el enent

mat ch-val -type any

conpari son-type pattern-rul e

mat ch- val ue $StoreDi spl ay. $header Par am

new-val ue

This is a sample of the result:

Request -

Line: INVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0

Message Header

192. 168.

Via: SIP/2.0/UDP

200. 61: 5060; br anch=z9h&4bK70kvei 0028 gdacghécl. 1

From sipp <sip:sipp@092.168. 1. 60: 5060>; t ag=SD89r n601- 1

To: sut <sip:service@?92.168.1.61: 5060>

Call-1D: SD89rnb01- b5b746¢cef 19d0154chlf 342ch04ec3ch- 06a3gul

CSeq: 1 INVITE

Contact: <sip:sipp@92.168.200.61:5060;transport=udp>

CGoodbye: Renove Me

Custom This is ny custom header

Di splay: sipp <sip:user@?92.168. 1. 60: 5060; up=def >

Paranms: sipp <sip:sippl@92.168. 1. 60:5060; user=user >; di spl ay=si pp
Paranms: sipp <sip:sipp2@92.168. 1. 60: 5060; user =user >; di spl ay=si pp
Edit: disp <sip:user@92. 168. 1. 60: 5060>

Max- For war ds: 69

Subj ect: Performance Test

Cont ent - Type: application/sdp

Content - Length: 140

Example 7 Accessing Data from Multiple Headers of the Same Type

For this manipulation rule, the Oracle® Enterprise Session Border Controller stores the
user name from the Params header. It then adds the URI parameter c1 with the value
stored from the first Params header. Finally, it adds the URI parameter c2 with the
value stored from the second Params header.

ORACLE

This is a sample of the configuration:

si p- mani

pul ation
nane Par ans
header-rul e
nane st or ePar ans
header - name Par ans
action store
conpari son-type case-sensitive

1-89

ORACLE

header-rul e

net hods

val ue

val ue

mat ch-val ue

neg-type

new val ue

met hods

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

name
header - narme
action
conpari son-type
mat ch-val ue
neg-type
new val ue
I NVI TE
el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
new

request

I NVITE

modEdi t
Edi t

Chapter 1
Configuration Examples

st or eUser Name
user

uri-user

store

any
case-sensitive

mani pul ate
pattern-rule

request

addPar aml

cl

uri-param

add

any
case-sensitive

$st orePar ams[0] . $st or eUser Narre. $0

element-rule
name
par anet er - name
type
action
mat ch-val -type
conpari son-type
mat ch- val ue
new

addPar an?

c2

uri-param

add

any
case-sensitive

$st oreParams[1] . $st or eUser Narre. $0

This is a sample of the result:

Request-Line: | NVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0
Message Header
Via: SIP/2.0/UDP
192. 168. 200. 61: 5060; br anch=z9hG4bK9g855p30c0s08acgs600. 1
From sipp <sip:sipp@092.168. 1. 60: 5060>; t ag=SD99ri 601- 1

To: sut <sip:service@?92.168.1.61: 5060>

Call-1D SD99ri 601- 6f 5691f 6461356f 607b0737e4039caec- 06a3gul
CSeq: 1 INVITE
Contact: <sip:sipp@92.168.200.61:5060;transport=udp>

1-90

Chapter 1
Configuration Examples

CGoodbye: Renove Me

Custom This is ny custom header

Di splay: sipp <sip:user@92.168. 1. 60: 5060; up=abc>; hp=123
Params: sipp <sip:sippl@92.168. 1.60: 5060>

Params: sipp <sip:sipp2@92.168. 1. 60: 5060>

Edit: disp <sip:user@?92.168. 1. 60: 5060; c1=si ppl; c2=si pp2>
Max- For war ds: 69

Subj ect: Performance Test

Cont ent - Type: application/sdp

Cont ent - Lengt h: 140

Example 8 Using Header Rule Special Characters

For this manipulation rule, the Oracle® Enterprise Session Border Controller:

ORACLE

Stores the header value of the Params header with the given pattern rule, and
stores both the user name of the Params header and the URI parameter abc

Adds the URI parameter Ipu with the value stored from the previous Params
header

If any of the Params headers match the pattern rule defined in the first step, adds
the URI parameter apu with the value aup

If all of the Params headers match the pattern rule defined in the first step, adds
the URI parameter apu with the value apu

If the first Params headers does not match the pattern rule for storing the URI
parameter defined in the first step, adds the URI parameter not with the value 123

If the first Params headers matches the pattern rule for storing the URI parameter
defined in the first step, adds the URI parameter yes with the value 456

This is a sample of the configuration:

si p-mani pul ation

nane speci al Char
header-rul e
name sear chPar ans
header - narme Par ans
action store
conpari son-type pattern-rule
mat ch-val ue sip (LY @F
neg-type request
new val ue
met hods I NVITE
el ement-rul e
nane user Nane
par anet er - name
type uri-user
action store
mat ch-val -type any
conpari son-type case-sensitive
mat ch-val ue
newval ue

el ement-rule

name enpt yUri Param

1-91

header-rul e

val ue

ORACLE

par anet er - name
type

action

mat ch-val -type
conpari son-type
mat ch- val ue
newval ue

name

header - narme

action

conpari son-type

mat ch-val ue

neg-type

new val ue

met hods

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue

Chapter 1
Configuration Examples

abc
uri-param
store

any
pattern-rule

addUser Last
Edi t

mani pul ate
case-sensitive

request
I NVI TE

| ast ParamJser

[pu

uri-param

add

any
case-sensitive

new val ue $sear chParans[*]. $user Nane. $0

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

el ement-rul e
name
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-

anyPar anser
apu

uri-param

add

any
pattern-rul e
$sear chPar ams[~]
aup

al | ParanmJser
apu
header - par am
add

any
pattern-rul e
$sear chPar ams| *]
apu

not Par anives
not
uri-param
add

any
pattern-rul e

I $sear chPar ans. $enpt yUri Par am

new val ue
el enent-rule
nane

123

not Par amNo

1-92

Chapter 1
Configuration Examples

par anet er - name yes
type uri-param
action add
mat ch-val -type any
conpari son-type pattern-rule
mat ch-
val ue $sear chPar ams. $enpt yUri Par am
new-val ue 456

This is a sample of the result:

Request-Line: | NVITE sip:service@92. 168. 200. 60: 5060; t gi d=123 SIP/ 2.0
Message Header
Via: SIP/2.0/UDP
192. 168. 200. 61: 5060; br anch=z9hG4bK681ndt 30e0gh6akgj 2s1. 1
From sipp <sip:sipp@092.168. 1. 60: 5060>; t ag=SDchr c601- 1
To: sut <sip:service@?92.168.1.61:5060>
Call-1D: SDchrc601-fcf5660a56e2131f d27f 12f cbd169f 8- 06a3gu0
CSeq: 1 INVITE
Contact: <sip:sipp@92.168.200.61:5060;transport=udp>
CGoodbye: Renove Me
Custom This is ny custom header
Di splay: sipp <sip:user@92.168. 1. 60: 5060; up=abc>; hp=123
Parans: sipp <sip:sippl@92.168.1.60: 5060>
Parans: sipp <sip:sipp2@92.168. 1. 60: 5060>
Edit: disp
<si p: user @92. 168. 1. 60: 5060; | pu=si pp2; apu=aup; not =123>; apu=apu
Max- For war ds: 69
Subj ect: Performance Test
Cont ent - Type: application/sdp
Content - Length: 140

Example 9 Status-Line Manipulation

ORACLE

This section shows an HMR configuration set up for status-line manipulation.

Given that the object of this example is to drop the 183 Session Progress response
when it does not have SDP, your SIP manipulation configuration needs to:

1. Search for the 183 Session Progress response

2. Determine if the identified 183 Session Progress responses contain SDP; the
Oracle® Enterprise Session Border Controller searches the 183 Session Progress
responses where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status
code to 699

4. Drop all 699 responses

si p- mani pul ation

nane mani p
description
header-rul e
nane | sCont ent Lengt h0

1-93

header - narme

action

conpari son-type

mat ch-val ue

neg-type

new val ue

met hods
header-rul e

name

header - narme

action

conpari son-type

mat ch-val ue

neg-type

new val ue

met hods

el ement-rul e

name

header-rul e

name

i s183Code
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
newval ue

header - nane

action

conpari son-type
mat ch-val ue

msg- type

newval ue

met hods

el enent-rule

& $i s183. $i s183Code

sip-interface

name
par anet er - name
type

action

mat ch-val -type
conpari son-type
mat ch- val ue

new val ue

options dropResponse=699

Example 10 Use of SIP HMR Sets

The following example shows the configuration for SIP HMR with one SIP
manipulation configuration loading another SIP manipulation configuration. The goals

ORACLE

of this configuration are to:

e Add a new header to an INVITE

Chapter 1
Configuration Examples

Cont ent - Lengt h

store

pattern-rule

0
reply

i 5183

@tatus-1ine

store

pattern-rule

reply
status-code
store
any
pattern-rul e
183
changel83
@tatus-1ine
mani pul ate

case-sensitive

reply

makel99

st atus-code

repl ace

any

pattern-rul e

$! sCont ent Lengt h0

199

1-94

ORACLE

Store the user portion of the Request URI

Chapter 1
Configuration Examples

Remove all Route headers from the message only if the Request URI is from a

specific user

Si p- mani pul ation
nane
description
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
meg-type
new val ue
met hods
Si p- mani pul ation
nane
description
Rout e headers
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
nmeg-type
new val ue
met hods
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
nmeg-type
new val ue
met hods
el enent-rul e
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch-val ue
new val ue
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
nmeg-type

del et eRout e
delete all Route Headers

del et eRout e
Rout e

del ete
case-sensitive

request

I NVITE

addAndDel et e
Add a New header and del ete

addHeader

New

add
case-sensitive

request
“Some Val ue"
INVI TE

st or eRUR
request - ur
store
pattern-rule

request
I NVI TE
storeUser

uri-user
store

any
pattern-rul e
305. *

del et eHeader
request - ur

Si p- mani p

Bool ean

$st or eRURI . $st or eUser
request

1-95

new-val ue
met hods

Chapter 1
Configuration Examples

del et eRout e
I NVI TE

Example 11 Use of Remote and Local Port Information

ORACLE

The following example shows the configuration f
The goals of this configuration are to:

or remote and local port information.

* Add LOCAL_PORT as a header parameter to the From header
* Add REMOTE_PORT as a header parameter to the From header

si p-mani pul ation

nane
description
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
neg-type
new val ue
met hods
el enent-rul e
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch- val ue
new val ue
el enent-rul e
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch- val ue
new val ue
el enent-rul e
nane
par anet er - nane
type
action

mat ch-val -type
conpari son-type
mat ch- val ue

new val ue

addOriglp

addl pPar am
From

mani pul ate
case-sensitive

request
I NVI TE

addl pPar am
newPar am
header - par am
add

any
case-sensitive

$LOCAL_I P
addLocal Port
| port
header - par am
add

any

case-sensitive
$LOCAL_PORT

addRenot ePor t
rport
header - par am
add

any
case-sensitive

$REMOTE_PORT

1-96

Example 12 Response Status Processing

Given that the object of this example is to drop the 183 Session Progress response
when it does not have SDP, your SIP manipulation configuration needs to:

ORACLE

1. Search for the 183 Session Progress response

Chapter 1
Configuration Examples

2. Determine if the identified 183 Session Progress responses contain SDP; the
Oracle® Enterprise Session Border Controller searches the 183 Session Progress

responses where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status

code to 699

4. Drop all 699 responses

si p-mani pul ation
nane
description
header-rul e
nane
header - name
action
conparison-type
mat ch- val ue
neg-type
new val ue
met hods
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
neg-type
new val ue
met hods
el enent-rul e
nane
par anet er - nane
type
action
mat ch-val -type
conpari son-type
mat ch- val ue
new val ue
header-rul e
nane
header - name
action
conpari son-type
mat ch- val ue
neg-type
new val ue
met hods

| sCont ent Lengt h0
Cont ent - Lengt h
store
pattern-rule

0

reply

is183
@tatus-line
store

pattern-rule

reply
i s183Code
st at us- code
store
any
pattern-rul e
183
changel83
@tatus-line
mani pul ate

case-sensitive

reply

1-97

Chapter 1
Configuration Examples

el enent-rule

nane make699

par anet er - name

type st at us- code

action repl ace

mat ch-val -type any

conpari son-type pattern-rule

mat ch- val ue $l sCont ent Lengt hO
& $i s183. $i s183Code

new-val ue 699

sip-interface
options dropResponse=699

The following four configuration examples are based on the this sample SIP INVITE:

I NVI TE sip: service@92. 168. 1. 61: 5060 SIP/ 2.0

Via: SIP/2.0/UDP 192. 168. 1. 60: 5060; br anch=z9hG4bK- 1- 0
From sipp <sip:sipp@92.168.1.60:5060>;tag=1

To: sut <sip:service@92.168.1.61:5060>

Call-1D: 1-15554@92. 168. 1. 60

CSeq: 1 INVITE

Contact: <sip:sipp@92.168. 1. 60: 5060; user =phone>

Max- Forwar ds: 70

Cont ent - Type: nul tipart/m xed; boundar y=boundary
Content-Length: 466

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN I1P4 192.168. 1. 60

t=0 0

mraudi 0 12345 RTP/ AVP 18
a=rtpmap: 8 Gr29/ 8000/ 1
a=fnt p: 18 annexb=no
a=sendrecv

a=ptine: 20

a=maxptime: 200

--boundary

Cont ent - Type: application/sdp
v=0

o=user1l 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN 1 P4 192.168. 1. 60

t=0 0

mevi deo 12345 RTP/AVP 34
a=rtpmap: 34 H263a/ 90000
a=ptinme: 30

--boundary- -

ORACLE 1-98

Chapter 1
Configuration Examples

Example 13 Remove a Line from SDP

ORACLE

In this example, the SIP manipulation is configured to remove all p-time attributes from
the SDP.

si p- mani pul ation

nanme renovePt i meFr onBody
description removes ptime attribute fromal
bodi es
header-rul e
name CTypeManp
header - nane Content - Type
action mani pul ate
conpari son-type case-sensitive
mat ch- val ue
neg-type request
new-val ue
nmet hods I NVI TE
element-rul e
nane renPtime
par anet er - name application/sdp
type m e
action find-replace-al
mat ch-val -type any
conpari son-type case-sensitive
mat ch- val ue a=ptime:[0-9]{1, 2}
(\n[\r\n)
newval ue

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

I N\VI TE si p: service@92. 168. 1. 61: 5060 SIP/2.0

Via: SIP/2.0/UDP 192. 168. 1. 60: 5060; br anch=z9hG4bK- 1- 0
From sipp <sip:sipp@92.168.1.60:5060>;tag=1

To. sut <sip:service@92.168.1.61; 5060>

Call-1D: 1-15554@92. 168. 1. 60

CSeq: 1 INVITE

Contact: <sip:sipp@92.168.1.60: 5060; user =phone>

Max- Forwar ds: 70

Cont ent - Type: nul tipart/m xed; boundar y=boundary
Content-Length: 466

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN |1 P4 192.168. 1. 60

t=0 0

mraudi o 12345 RTP/ AVP 18
a=rt pmap: 18 Gr29/8000/ 1
a=fnt p: 18 annexb=no
a=sendrecv

1-99

Chapter 1
Configuration Examples

a=maxpti me: 200

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN P4 192.168. 1. 60

t=0 0

mevi deo 12345 RTP/ AVP 34
a=rt pmap: 34 H263a/ 90000
- - boundary-

Example 14 Back Reference Syntax

ORACLE

In this sample of back-reference syntax use, the goal is to change the To user. The
SIP manipulation would be configured like the following:

si p-mani pul ation

nane changeToUser
description change user in the To header
header-rul e
nane ChangeHeader
header - nane To
action mani pul ate
conpari son-type case-sensitive
mat ch- val ue
neg-type request
new val ue
nmet hods I NVI TE
element-rul e
name repl aceval ue
par anet er - name
type header - val ue
action repl ace
mat ch-val -type any
conpari son-type pattern-rul e
mat ch-val ue (.+)(service)(.4)
new val ue $1+Bob+$3

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

I N\VITE si p: service@92. 168. 1. 61: 5060 SIP/2.0

Via: SIP/2.0/UDP 192.168. 1. 60: 5060; br anch=z9hG4bK- 1- 0
From sipp <sip:sipp@92.168. 1. 60: 5060>; t ag=1

To: sut <sip:Bob@92.168. 1. 61: 5060>

Call-1D: 1-15554@92. 168. 1. 60

CSeq: 1 INVITE

Cont act: <sip:sipp@92.168.1.60: 5060; user =phone>

Max- Forwards: 70

Cont ent - Type: nul tipart/m xed; boundar y=boundary
Content - Length: 466

1-100

Chapter 1
Configuration Examples

Example 15 Change and Remove Lines from SDP

ORACLE

In this sample of changing and removing lines from the SDP, the goal is to convert the
G.729 codec to G.729a. The SIP manipulation would be configured like the following:

si p-mani pul ation

nane st d2pr op- codec- nanme
description rule to translate standard to
proprietary codec nane
header-rul e
name CTypeManp
header - name Cont ent - Type
action mani pul ate
conpari son-type case-sensitive
mat ch- val ue
nsg-type any
new val ue
met hods
elenent-rul e
name g729- annexb- no-
st d2prop
par anet er - nanme application/sdp
type m e
action find-replace-all
mat ch-val -type any
conpari son-type case-sensitive
mat ch-val ue a=rtpmap: [0-9]{1, 3}
(Gr29/ 8000/ 1\ r\na=fnmt p: [0-9] {1, 3} annexb=no)[[:1:]]
new val ue Gr29a/ 8000/ 1

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

I N\VITE si p: service@92. 168. 1. 61: 5060 SIP/2.0

Via: SIP/2.0/UDP 192.168. 1. 60: 5060; br anch=z9hG4bK- 1- 0
From sipp <sip:sipp@92.168. 1. 60: 5060>; t ag=1

To: sut <sip:service@92.168.1.61:5060>

Call-1D: 1-15554@92. 168. 1. 60

CSeq: 1 INVITE

Cont act: <sip:sipp@92.168.1.60: 5060; user =phone>

Max- Forwards: 70

Cont ent - Type: nul tipart/m xed; boundar y=boundary
Content - Length: 466

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN P4 192.168. 1. 60

t=0 0

1-101

Chapter 1
Configuration Examples

mraudi 0 12345 RTP/ AVP 8
a=rtpmap: 18 Gr29a/ 8000/ 1
a=sendrecv

a=maxpti me: 200

--boundary

Cont ent - Type: application/sdp
v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN P4 192.168. 1. 60

t=0 0

mrvi deo 12345 RTP/ AVP 34

a=rt pmap: 34 H263a/ 90000

- - boundary-

Example 16 Change and Add New Lines to the SDP

ORACLE

In this sample of changing and adding lines from the SDP, the goal is to convert non-
standard codec H.263a to H.263. The SIP manipulation would be configured like the
following:

si p- mani pul ation

nane prop2st d- codec- nane
description rule to translate proprietary to
standard codec nane
header-rul e
nane CodecManp
header - name Cont ent - Type
action mani pul ate
conparison-type case-sensitive
mat ch- val ue
neg-type any
new val ue
met hods
elenent-rul e
name H263a- prop2st d
par anet er - nanme application/sdp
type m e
action find-replace-al
mat ch-val -type any
conpari son-type case-sensitive
mat ch-val ue a=rt pmap: ([0- 9]

{1,3}) H263a/.*\r\n
newval ue a=rtpmap; +$1+"
H263/ 90000" +$CRLF+a=f nt p: +$1+" QCl F=4" +$CRLF

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

I N\VITE si p: service@92. 168. 1. 61: 5060 SIP/2.0

Via: SIP/2.0/UDP 192.168. 1. 60: 5060; br anch=z9hG4bK- 1- 0
From sipp <sip:sipp@92.168. 1. 60: 5060>; t ag=1

To: sut <sip:service@92.168.1.61:5060>

1-102

ORACLE

Chapter 1
Configuration Examples

Call-1D: 1-15554@92. 168. 1. 60

CSeq: 1 INVITE

Contact: <sip:sipp@92.168.1.60: 5060; user =phone>
Max- Forwards: 70

Cont ent - Type: nul tipart/m xed; boundar y=boundary
Content - Length: 466

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN P4 192.168. 1. 60

t=0 0

mraudi 0 12345 RTP/ AVP 8

a=rtpmap: 18 Gr29/8000/ 1

a=fnt p: 18 annexb=no

a=sendrecv

a=maxpt i me: 200

--boundary

Cont ent - Type: application/sdp

v=0

o=user1 53655765 2353687637 IN | P4 192.168. 1. 60
S=-

c=IN P4 192.168. 1. 60

t=0 0

mrvi deo 12345 RTP/ AVP 34

a=rt pmap: 34 H263/ 90000

a=fntp:34 QCIF=4

- - boundary-

1-103

	Contents
	About This Guide
	1 Header Manipulation Rules
	HMR Fundamentals
	Audience
	When to Use HMR
	Managing HMR Impact on Performance
	Applying HMRs to Traffic
	Outbound HMR
	Inbound HMR
	Order of Header Rule Application
	HMR Store Actions and Boolean Results
	Routing Decisions

	Static and Dynamic HMR
	Static HMR
	Dynamic HMR

	Sample HMR

	HMR Components
	Relationship Between Rulesets and Its Rules
	Ruleset Guidelines
	Ruleset Components
	Guidelines for Header and Element Rules
	Guidelines for Header Rules
	Guidelines for Element Rules
	Duplicate Header Names
	SIP Header Pre-Processing HMR
	Back Reference Syntax
	Dialog Matching
	About Dialog-Matching Header Manipulations
	Inbound HMR Challenge
	Outbound HMR Challenge
	Dialog-matching Header Manipulation Configuration

	Built-In HMRs
	Built-In Variables
	Built-In SIP Manipulation Configuration

	Unique Regex Patterns Per Peer/Trunk
	Rejecting SIP Requests
	HMR Information in Logs

	Using Regular Expressions
	Example of HMR with Regex
	Regex Characters
	Literal (Ordinary)
	Special (Metacharacters)
	Regex Tips
	Matching New Lines
	Escaped Characters
	Building Expressions with Parentheses
	Boolean Operators
	Equality Operators
	Normalizing EBNF ExpressionString Grammar

	Storing Regex Patterns
	Performance Considerations
	Additional References

	HMR Configuration
	Testing Pattern Rules
	Creating Header Manipulation Rulesets
	Configuring SIP Header Manipulation Rules
	Configuring SIP Header Manipulation Element Rules
	Status-Line Manipulation and Value Matching
	Set the Header Name
	Set the Element Type
	Set the Match Value
	Set the Header Rules Match Value
	Set the Element Rules Match Value
	Set the Response Code Block

	Configuring SIP HMR Sets
	Configuring a Session Agent
	Configuring a SIP Interface
	Example 1 Stripping All Route Headers
	Example 2 Stripping an Existing Parameter and Adding a New One

	Unique HMR Regex Patterns and Other Changes
	The Default Expression
	Manipulation Pattern Per Remote Entity
	Reject Action
	Reject Action Configuration
	About Counters
	SNMP Support

	Log Action
	Changes to Storing Pattern Rule Values
	Removal of Restrictions
	Name Restrictions for Manipulation Rules
	New Value Restrictions

	MIME Support
	Manipulating MIME Attachments
	About the MIME Value Type
	SIP Message-Body Separator Normalization
	Configuring MIME Support

	HMR for SIP-ISUP
	MIME Rules Overview
	Identifying a MIME Rule
	About MIME Rules
	MIME Rules Configuration
	Working with MIME Rules
	MIME ISUP Manipulation
	Adding an ISUP Body to a SIP Message
	MIME ISUP Manipulation Configuration
	Configuration Example

	Header Manipulation Rules for SDP
	Platform Support
	SDP Manipulation
	sdp-session-rule
	sdp-media-rule
	sdp-line-rule

	Regular Expression Interpolation
	Regular Expressions as Boolean Expressions
	Moving Manipulation Rules
	Rule Nesting and Management
	ACLI Configuration Examples
	Remove SDP
	Remove Video from SDP
	Add SDP
	Manipulate Contacts
	Remove a Codec
	Change Codec
	Remove Last Codec and Change Port
	Remove Codec with Dynamic Payload

	HMR Import-Export
	Exporting
	Importing
	Using SFTP to Move Files
	Removing Files

	HMR Development
	Development Overview
	Development Tips

	Planning Considerations
	Traffic Direction
	Order of Application Precedence
	Order of HMR Execution
	Applying HMR to a Specific Header
	HMR Sets

	Create Pseudocode
	Test HMRs
	test-sip-manipulation

	Development Example
	Writing the Psuedo Code
	Testing the Pattern Rule
	Constructing the HMR
	Loading Test SIP Message
	Configuring Testing
	Executing Testing
	Log File Analysis

	Configuration Examples
	Example 1 Removing Headers
	Example 2 Manipulating the Request URI
	Example 3 Manipulating a Header
	Example 4 Storing and Using URI Parameters
	Example 5 Manipulating Display Names
	Example 6 Manipulating Element Parameters
	Example 7 Accessing Data from Multiple Headers of the Same Type
	Example 8 Using Header Rule Special Characters
	Example 9 Status-Line Manipulation
	Example 10 Use of SIP HMR Sets
	Example 11 Use of Remote and Local Port Information
	Example 12 Response Status Processing
	Example 13 Remove a Line from SDP
	Example 14 Back Reference Syntax
	Example 15 Change and Remove Lines from SDP
	Example 16 Change and Add New Lines to the SDP

